
Business Management Meets Quantum Computing
Motivated by operations research and operations management applications, the Quantum Computing Group at the Tepper School aims to turn quantum computing as a service into reality.
Quantum and quantum-inspired algorithms offer dramatically new possibilities to tackle practical problems previously considered intractable. Right now.
Sridhar R. Tayur, Ford Distinguished Research Chair and University Professor of Operations Management, leads the Quantum Computing Group at the Tepper School.Sridhar Tayur on Quantum Computing
Moonshot: Quantum Computing
A brief history of quantum physics and its application to quantum computing.
Quantum Computing and Integer Optimization: An Overview
An introductory lecture on the use of quantum computing in Non-Linear Integer Optimization.
Quantum Integer Programming
Introductory Quantum Integer Programming for the Operations Research/Operations Management community (Cornell, April 2020).
Quantum Computing Areas of Research
The research of the Quantum Computing Group (QCG) at the Tepper School focuses on the creation of radically different types of algorithms to optimize complex large-scale industrial problems startlingly faster, with the ultimate desired outcome of commercialized algorithms that are easily accessible for practical application.
QCG research takes place in three parallel areas:
- Solving practical problems using novel quantum and quantum-inspired algorithms.
- Developing robust and efficient processes of translating a mathematical algorithm into physical instructions executed by the hardware — known as compilers — for quantum computers.
- Understanding and enhancing quantum speedup: how and why speed is increased, and by how much.
Solving Practical Problems
Our Quantum and Quantum-inspired (classical) algorithms are novel approaches to tackle complex models that arise in areas such as finance, supply chain management, and cancer genomics.
By creatively advancing methods from geometry of numbers, computational integer programming, and algebraic geometry, QCG research has:
- Solved instances of real-world finance problems in seconds that can take hours by classical best-in-class commercial solvers, by developing hybrid quantum-classical algorithms and testing them on the D-Wave 2000Q quantum computer. These algorithms can be immediately ported onto digital annealers.
Research: Graver Bases via Quantum Annealing with Application to Non-Linear Integer Programs
- Developed the Graver-Augmented Multi-Seed algorithm (GAMA), a Quantum-inspired classical algorithm that is two (and three) orders of magnitude faster than commercial best-in-class solvers. GAMA has been applied to solve problems in supply chain management involving integrated production, inventory, and logistics. These work on standard computer hardware and do not require access to digital annealers or quantum hardware.
Research: GAMA: A Novel Algorithm for Non-Convex Integer Programs
Compiling on Quantum Computers
To solve practical problems on a real quantum computer, we must translate the real-world problem into something that can be understood by the physical hardware — a process known as compiling.
There are two dominant computational models for quantum computing:
- Circuit (Gate) models, with hardware from Google, IBM, and Rigetti.
- Adiabatic Quantum Computing (AQC) with hardware from D-Wave.
QCG has developed two novel algorithms for compiling quantum circuits.
Research: Knuth-Bendix Completion Algorithm and Shuffle Algebras for Compiling NISQ Circuits
QCG has also developed a systematic computational approach to prepare a polynomial optimization problem for AQC.
Research: A Novel Algebraic Geometry Compiling Framework for Adiabatic Quantum Computations
Current QCG research on compiling enhances methods for Gate/circuit chips to account directly for the noise, incorporating models into our algorithms directly and adapts computational methods from Mixed-Integer Linear Programming to create open-source compilers for AQC.
Research: Integer Programming Techniques for Minor-Embedding in Quantum Annealers
Understanding Quantum Speedup
Where does quantum speedup really come from? How can we enhance the speedup of quantum (and hybrid) algorithms? This is an exciting and deep area of research.
QCG research has helped provide algorithmic guidelines that enable further speedup in AQC.
Research: Enhancing the Efficiency of Adiabatic Quantum Computations
Research: Homological Description of the Quantum Adiabatic Evolution With a View Toward Quantum Computations
MyAmpleLife Blog: The Next Quantum Revolution