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Abstract As the title indicates, this chapter presents a brief, self-contained introduction to

five fundamental problems in Quantum Information Science (QIS) that are especially

well-suited to be formulated as Semi-definite Programs (SDP). We have in mind two

audiences. The primary audience comprises of Operations Research (and Computer

Science) graduate students who have familiarity with SDPs, but have found it daunting

to become even minimally conversant with pre-requisites of QIS. The second audience

consists of Physicists (and Electrical Engineers) already knowledgeable with modeling

of QIS via SDP but interested in computational tools that are applicable more gener-

ally. For both audiences, we strive for rapid access to the unfamiliar material. For the

first, we provide just enough required background material (from Quantum Mechan-

ics, treated via matrices, and mapping them in Dirac notation) and simultaneously for

the second audience we recreate, computationally in Jupyter notebooks, known closed-

form solutions. We hope youwill enjoy this introduction and gain understanding of the

marvelous connection between SDP and QIS by self-study, or as a short seminar course.

Ultimately, we hope this disciplinary outreach will fuel advances in QIS through their

fruitful study via SDPs.

Keywords Quantum Information Science, Semi-definite programs,Quantumentanglement, Quan-

tum channels, Quantum state discrimination, Channel capacity

1. Introduction
Thomas Sprat, in 1667, as historian at the Royal Society of London, noted a connection

between being an outsider to a trade and inventiveness:

A glance from an angle might well reveal a new aspect of nature.

We would like to create such a trading zone through this chapter - and invite Operations

Researchers and Computer Scientists - to foster innovative contributions to Quantum Infor-

mation Science (QIS).

QIS spans a variety of sub-fields including quantum computing and quantum commu-

nication [68]. Quantum computing offers a novel way to perform calculations which could

be faster than regular (classical) computing for several important problem classes, such as

prime factorization [84]. This novelty and speed comes from utilizing properties of quan-

tummechanics such as superposition and entanglement [46]. Quantum communication can

not only carry a new type of information using qubits ("quantum bit"), it can also be used

to communicate regular (classical) information (bit) with greater privacy [12, 13]. Further-

more, quantum communication can be non-additive: two quantum communication devices
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can send more together than each device used separately [93]. These potential advantages

of using quantum states for information processing are often abated by noise. This noise

affects quantum states and their properties important for computation and communication.

To fully understand and leverage quantum technologies computation and communica-

tion, it is important to study basic properties of quantum states such as entanglement and

information theoretic properties such as capacity to carry information [14]. In such stud-

ies semi-definite programs (SDPs) play a useful role. Since SDPs are a well-known tool in

Operations Research (OR) and Computer Science (CS), they offer researchers in OR and CS

communities a natural way to interact with QIS.

Semi-definite programs (for a brief introduction, see [71,96,98]) are an extension of linear

programs (LPs) obtained by replacing element wise non-negative vector variables in LPs

with positive semi-definite matrices. This replacement results in a non-linear, but convex

optimization problem, which is much more general than an LP. However, this general SDP

carries with it a variety of nice properties of LPs which make it possible to efficiently solve

SDPs, both in theory and practice. For instance, most of the theory of duality directly

extends from LPs to SDPs [11]. The simplex method for LPs [22, 80] can, in principle, be

extended to SDPs [73]. For SDP constraints, one can construct cutting planes in polynomial

time [18] and thus use a polynomial-time ellipsoid method [66, 83] to numerically solve an

SDP. However, in practice it is often faster to use interior point methods [1, 49, 67] (such as

those extending Karmarkar’s interior point method [52] for LPs) to efficiently solve SDPs.

The ability to efficiently solve SDPs is not their only draw. These optimization programs

naturally appear in a variety of fields including control theory [18], graph theory [33,

50], combinatorial optimization [2], and algebraic geometry [37]. SDPs in these and other

engineering fields usually have real positive semi-definitematrix variables.Complexpositive
semi-definite matrices naturally appear, and play an important role in quantummechanics,

a linear theory in the physical sciences which successfully describes the physical world.

It is no surprise that a variety of fundamental and applied problems in quantum theory

can be re-written as SDPs [55, 99, 106]. Such re-writing has been fueled by the growth of

quantum computing and information science, which study and hope to practically perform

information processing using physical objects accurately described by quantum theory.

Quantum information science offers an exciting and potentially fertile area where SDPs and

other optimization techniques can continue to play an important role. Standard exposition

of quantummechanics often involves new notation, unitary dynamics, and other historical

aspects of quantum theory. This route to learning quantum mechanics has its advantages,

but it can create a barrier to entry for optimization experts working outside the area of

quantum information science (QIS). The keymotivation for this work is to lower this barrier

and expose a broader audience to the recent SDP work in QIS.

In what follows, in Secs. 2 and 3 we provide a bare bones introduction to quantum

mechanics and information theory with running examples, most using 2× 2 matrices. In

this introduction we not only cover basic concepts likes quantum states, measurements,

Born’s rule (see Sec. 2.2), entanglement, entropy, and quantum channels, but also take the

opportunity to introduce Dirac notation, which is standard across quantum theory and

QIS. Next we present five problems in QIS: quantum state discrimination (in Sec. 4), state

fidelity (in Sec. 5), channel discrimination (in Sec. 6), entanglement and separability (in

Sec. 7), and channel capacity (in Sec. 8). These problems, presented in order of increasing

level of mathematical sophistication, by no means comprise a complete list of problems

in QIS where SDPs and other optimization techniques are of value. However, they offer

a strong stepping stone to continue future exploration of this type. For each problem, we

provide a motivation, a crisp mathematical statement, an SDP formulation, certain special

cases (sometimes with algebraic SDP solutions), numerical examples with working Python

notebooks, and avenues for future exploration.
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2. QuantumMechanics: The Bare Minimum
2.1. Quantum states and Dirac notation

Quantum mechanics accurately predicts measurable properties of microscopic physical

objects. While these physical objects live in the real world, they are described in quantum

mechanics using complex numbers. The simplest complex number, i, is just the square root
of minus one. In general, any complex number can be written as z = x+ iy, where x, y are

real numbers; that is, x, y ∈ R. We say z ∈ C, the space of complex numbers. The complex

conjugate of z is x− iy and is represented by z∗. Using z and z∗ one constructs the norm,

|z|=
√
z∗z =

√
x2 + y2

, of a complex number.

Of main interest in quantummechanics are tuples of complex numbers. A length d tuple
of this type is just a column vector v in d-dimensional complex space Cd. The inner product
of a column vector v with w, v∗ · w, resembles the ordinary dot product v · w of real

vectors, except the entries of the first column vector v are complex conjugated. A collection

of d column vectors, {vi}, where each vector has unit norm (v∗i vi = 1) and any distinct

pair of vectors are orthogonal, that is, the inner product, v∗i vj = 0, for i 6= j, is called an

orthonormal basis of Cd. Using this orthonormal basis, any vector in Cd can be written as a

linear combination,

∑
i civi, where ci ∈C.

In quantum physics literature, the space Cd, its column vectors v, and the inner product

of a column vwith another column vectorw are denoted byH, |v〉, and 〈v|w〉, respectively.
This notation is calledDirac notation, where 〈v|w〉 is called a braket, its first half, 〈v|, is called
a bra and the second half, |w〉 is called a ket. The ket |v〉 is represented by a column vector.

Taking the transpose of this column vector and then complex conjugating each entry results

in a row vector. This row vector represents the bra 〈v|. The multiplication of a ket |v〉 by a

scalar c∈C is denoted as c|v〉. Any ket |v〉 that has unit inner product with itself, 〈v|v〉= 1,
is called a pure state.
The inner product 〈v|w〉 is a complex number obtained by multiplying the row vector

〈v|with the column vector |w〉. By interchanging the order of multiplication, we multiply a

d-dimensional column vector |w〉 with a d-dimensional row vector 〈v| to obtain the outer-

product, |w〉〈v|, which is a d× d square matrix with complex entries. This square matrix

represents a linear operator. We denote the set of linear operators onH by L(H). The action
of the operator |w〉〈v| on |u〉 ∈H is given by

(|w〉〈v|)|u〉= |w〉(〈v|u〉) = (〈v|u〉)|w〉. (1)

The equality on the right technically defines the action of the operator on the left. However,

the middle term, obtained by removal of a parenthesis and replacement of two vertical bars

|| between v and uwith one bar | is an example of slickness embedded inDirac notation. This

slickness explains the action of operators without doing a matrix calculation. For instance,

the result in (1) is essentially a matrix calculation where the (d× d) matrix for |w〉〈v| is
multiplied with a d-dimensional column vector |u〉, to obtain the outcome, (〈v|u〉)|w〉.
Unlike |w〉〈v|, not all linear operators are dyads, linear operators can be written as sums

of dyads and represented by matrices. The transpose of a matrix M is denoted by MT
,

and the adjoint M† is obtained by complex conjugating each entry of MT
(see footnote

∗

for commment on the notation). If N is another linear operator, then (NM)† =M†N†. For
square matrices, those with equal numbers of rows and columns, we denote the matrix

determinant by det(M). Square matrices with non-zero determinants can be inverted, and

∗
We have used notation which is common in physics where ∗ and † denote complex conjugate and adjoint

operations, respectively. In mathematics and optimization, it is common to use z̄ for complex conjugate of z and ∗
for adjoint operation. There is yet another combination, z̄ for complex conjugate of z but † for adjoint operations,
which can be seen in some physics, computer science and optimization literature.
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the matrix inverse M−1
satisfies MM−1 =M−1M = I , where I is the identity matrix. For

any square matrixM , there is a set of non-zero vectors {|ai〉} such thatM satisfies

M |ai〉= αi|ai〉. (2)

Here complex numbers αi are called eigenvalues and |ai〉 are called eigenvectors. A square

matrixM which commutes with its adjoint,MM† =M†M , is called a normal matrix. Any

normal matrixM can be diagonalized using an orthonormal basis,

M =
∑
i

αi|mi〉〈mi|, (3)

where the basis vector |mi〉 is an eigenvector of M and has the complex eigenvalue αi.
Two special types of normal matrices are of particular interest in quantum mechanics. One

is a unitary matrix, usually denoted by U , which satisfies UU† = U†U = I ; another is a

Hermitian matrix, O, which satisfies O =O†. Before proceeding forward, we illustrate the

use of the adjoint operation † in Dirac notation. Suppose |ψ〉 is any ket, then |ψ〉† = 〈ψ| and
〈ψ|† = |ψ〉. If |φ〉 is another ket, then (|ψ〉〈φ|)† = |φ〉〈ψ|. For complex numbers c0 and c1, the
adjoint of the linear combination (c0|ψ〉+ c1|φ〉)† = c∗0〈ψ|+ c∗1〈φ|. If N is a linear operator,

then 〈i|N†|j〉= (〈j|N |i〉)∗.
The simplest non-trivial space H has dimension two (d= 2); that is, any |ψ〉 ∈ H can be

written as a linear combination of two orthonormal vectors. It is customary to introduce

a standard (or computational) basis {|0〉, |1〉} for H with d = 2. Here 〈0|0〉 = 〈1|1〉 = 1 and

〈0|1〉= 0. It is common to represent the computational basis as column vectors

|0〉 :=
(

1
0

)
, and |1〉 :=

(
0
1

)
. (4)

As mentioned earlier, the inner product 〈0|1〉 can be obtained by multiplying each row of

|1〉with the complex conjugate of each row of |0〉. In general, the state of a two-dimensional

quantum system, called a qubit, is given by |ψ〉= c0|0〉+ c1|1〉where |c0|2 + |c1|2 = 1; |ψ〉 can
be written as a column vector

|ψ〉 :=
(
c0
c1

)
. (5)

The notation |0〉 and |1〉 is intended to draw an analogy with classical bits. Just like the

distinguishable states 0 and 1 of a bit, the quantum states |0〉 and |1〉 represent perfectly
distinguishable states of a qubit. Like any classical analogy for a quantum system, this

analogy between bits and qubits has its limitations. For instance, the linear combination

c0|0〉+c1|1〉, where |c0|2 + |c1|2 = 1, |c0|> 0, and |c1|> 0, is a perfectlywell-defined quantum

state; however, there is no analogous state of a classical bit. There are particular linear

combinations of the standard basis elements that are of special interest. One such linear

combination is

|+〉 := 1√
2

(|0〉+ |1〉) = 1√
2

(
1
1

)
, and |−〉 := 1√

2
(|0〉− |1〉) = 1√

2

(
1
−1

)
. (6)

Notice, 〈+|+〉= 〈−|−〉= 1 and 〈+|−〉= 0; as a result {|+〉, |−〉}, forms a basis ofH. This basis
is sometimes called the Hadamard basis because it can be obtained from the computational

basis, |+〉=H|0〉 and |−〉=H|1〉, using the Hadamard operator

H = 1√
2

(
1 1
1 −1

)
. (7)

Notice the Hadamard matrixH is unitary (HH† =H†H = I) and Hermitian (i.e.,H =H†);
as a consequence H2 = I .
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Let {|j〉} be the computational basis of a d-dimensional space H. In Dirac notation, the

identity operator I onH can be written as

I =
d−1∑
j=0
|j〉〈j|. (8)

The expression above is often called the completeness relation. This relation can be useful.

For instance, suppose |ψ〉 is any ket inH, represented by some column vector. One may use

the completeness relation as follows:

|ψ〉= I|ψ〉=
∑
j

(|j〉〈j|)|ψ〉=
∑
j

〈j|ψ〉|j〉, (9)

to find that 〈j|ψ〉 is simply the jth entry (j starts fromzero) of the columnvector representing

|ψ〉 in the standard basis. For instance, the column vector |ψ〉 in (5) has c0 = 〈0|ψ〉 and
c1 = 〈1|ψ〉. The completeness relation can also be used to find entries of a linear operatorN
onH,

N = INI =
(∑

i

|i〉〈i|
)
N
(∑

j

|j〉〈j|
)

=
∑
i,j

〈i|N |j〉|i〉〈j| (10)

to find that the ith row and jth column ofN is simply 〈i|N |j〉. If d is two, then the matrix for

N in the standard basis is simply

N =
(
〈0|N |0〉 〈0|N |1〉
〈1|N |0〉 〈1|N |1〉

)
. (11)

In general, the trace of an operatorN , Tr(N), is simply

∑
j〈j|N |j〉. Uses of the completeness

relation, similar to those above, can show thatTr(|ψ〉〈φ|) = 〈φ|ψ〉 andTr(A|ψ〉〈φ|) = 〈φ|A|ψ〉.
So far we have focused on a single quantum system. Suppose there are two systems a

and b in quantum states |v〉a ∈ Ha and |w〉b ∈ Hb, respectively. Then state of the joint ab
system is written as |v〉a⊗|w〉b, a tensor product,⊗, of |v〉a and |w〉b. This joint state belongs
to a space Hab =Ha ⊗Hb obtained by taking the tensor product of Ha with Hb. Suppose
|v〉a and |w〉b are represented by column vectors of dimension da and db, respectively; then
|v〉a ⊗ |w〉b is given by a column vector of dimension dadb formed by taking the Kronecker
product of each column vector. For instance, let da = db = 2,

|v〉a =
(
c0
c1

)
, |w〉b =

(
d0
d1

)
, (12)

where |c0|2 + |c1|2 = |d0|2 + |d1|2 = 1, then

|v〉a⊗ |w〉b =

c0

(
d0
d1

)
c1

(
d0
d1

)
 =


c0d0
c0d1
c1d0
c1d1

 . (13)

In general, the state |ψ〉 ∈ Hab can be written as a linear combination of an orthonormal

basis ofHab. One simple orthonormal basis of this type can be constructed by taking tensor

products of the computational basis elements of Ha and Hb, respectively. For instance, if
da = 2, db = 2, {|0〉a, |1〉a} and {|0〉b, |1〉b} are computational basis ofHa andHb, respectively,
then {|0〉a⊗|0〉b, |0〉a⊗|1〉b, |1〉a⊗|0〉b, |1〉a⊗|1〉b} is an orthonormal basis forHab. This basis
can be represented as follows

|0〉a⊗ |0〉b =


1
0
0
0

 , |0〉a⊗ |1〉b =


0
1
0
0

 , |1〉a⊗ |0〉b =


0
0
1
0

 , and |1〉a⊗ |1〉b =


0
0
0
1

 .

(14)



Siddhu and Tayur: Preparation of TutORials Chapter
6 Tutorials in Operations Research, © 2022 INFORMS

States of the two qubit systemHab can be written as a linear combination of the basis above.

A simple linear combination of the basis elements above is

|φ〉= 1
2(
∑
i,j

|i〉a⊗ |j〉b). (15)

It turns out that |φ〉 can be written as |+〉a ⊗ |+〉b and represents the state of two qubits,

each in the state |+〉. Another simple linear combination is

|χ〉= 1√
2

(|0〉a⊗ |0〉b + |1〉a⊗ |1〉b). (16)

Unlike |φ〉, the linear combination above cannot bewritten as |v〉a⊗|w〉b for any |v〉a and |w〉b.
Thus, the joint system ab is in a state that cannot be adequately described by specifying the

state of each individual system a and b. Such joint states are called entangled. Entanglement

is a key aspect of quantum theory. In general, a state |ψ〉ab, given by a linear combination

Mij |i〉a⊗ |j〉b, is entangled if the matrixM , with entriesMij , has rank greater than one.

Given twomatrices,N , mappingHa to itself, andM , mappingHb to itself, one can define

their tensor product, N ⊗M , a matrix fromHa⊗Hb to itself which acts as follows:

N ⊗M(|v〉a⊗ |w〉b) =N |v〉a⊗M |w〉b. (17)

If squarematricesN andM have dimensions da and db, respectively, then the squarematrix

N ⊗M has dimension da× db. This larger square matrix is obtained by taking a Kronecker

product of N andM . For instance, let da = db = 2,

N =
(
N00 N01
N10 N11

)
, and M =

(
M00 M01
M10 M11

)
, (18)

then N ⊗M =N00

(
M00 M01
M10 M11

)
, N01

(
M00 M01
M10 M11

)
,

N10

(
M00 M01
M10 M11

)
, N11

(
M00 M01
M10 M11

)
,

 =


N00M00 N00M01 N01M00 N01M01
N00M10 N00M11 N01M10 N01M11
N10M00 N10M01 N11M00 N11M01
N10M10 N10M11 N11M10 N11M11

 . (19)

2.2. Measurement and Born’s Rule
In quantum mechanics, physical variables or observables are represented by Hermitian

operators. As stated earlier, aHermitian or self-adjoint operatorO is one that equals its adjoint

O†. The simplest Hermitian operator is a projector. A projector P is both Hermitian, P † = P ,
and idempotent, P 2 = P . The simplest projector has rank 1 and can be written as P =
|ψ〉〈ψ|/Tr(|ψ〉〈ψ|) where |ψ〉 is any ket. In general, any Hermitian operator O (representing

some observable) has a spectral decomposition using which it can be written as the sum of

orthogonal projectors,

O=
∑
i

λiPi (20)

where λi are distinct real numbers representing distinct eigenvalues of O, the projectors

{Pi} satisfy PiPj = δijPj —that is, they are orthogonal— and

∑
iPi = I— that is, {Pi} form

a projective decomposition of the identity. If an observable O is measured on a system with

state |φ〉, then one obtains its eigenvalue λi as a measurement outcome. According to Born’s

rule, the probability of observing the value λi is

pi = Tr(Pi|φ〉〈φ|). (21)
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One simple observable is the identity I . Its decomposition of the form (20) contains a

single projector I corresponding to the eigenvalue 1. If I is measured on a system with

state |φ〉, then one obtains its eigenvalue, 1, as a measurement outcome with probability

1 = Tr(I|φ〉〈φ|). Another simple observable in two dimensions is B = |1〉〈1|. The decompo-

sition (20) for B takes the form

B = 0 · |0〉〈0|+ 1 · |1〉〈1|. (22)

When the observableB is measured on the state |φ〉 in (5), one obtains two outcomes, 0 with

probability |c0|2 = Tr(|0〉〈0||φ〉〈φ|) and 1 with probability |c1|2 = Tr(|1〉〈1||φ〉〈φ|). Notice,

the normalization condition, |c0|2 + |c1|2 = 1, stated below (5) ensures that the probabilities

sum to one. This type of measurement, which results in the measurement of B, is called a

measurement in the computational basis.

3. Quantum Information Theory: The Bare Minimum
An example of classical information is learning the outcome of an unbiased coin toss.

This outcome takes values from a two-letter alphabetX = {H,T}, whereH and T represent

heads and tails. The probability that the coin toss result X takes a value x ∈ X is p(x) :=
Pr(X = x), where p(H) = p(T ) = 1/2 for an unbiased coin. For a general biased coin, p(H) =
p, p(T ) = 1−p and 0≤ p≤ 1. Learning the coin toss outcome provides classical information

because this learning removes uncertainty in the outcome. The amount of uncertainty in

the outcome of a biased coin with p(H) = p is captured by the binary entropy,

h(p) :=−p log2 p− (1− p) log2(1− p), (23)

measured in bits, where 0 log 0 := 0. When p= 1/2, h(p) = 1 bit, a result that agrees with the

usual intuition that learning the outcome of an unbiased coin provides 1 bit of information.

In general, any random variableX taking values x from a finite alphabetX with probability

p(x) has Shannon entropy,
H(X) =−

∑
x∈X

p(x) log2 p(x). (24)

The entropy H(X) quantifies the amount of uncertainty in the random variable X . Opera-

tionally, it represents the ultimate limit for compressing symbols x appearing with proba-

bility p(x) (see [21] for additional discussion). For two random variableX and Y with joint

probability mass function p(x, y), the joint entropy,

H(X,Y ) =−
∑
x,y

p(x, y) log2 p(x, y), (25)

captures the amount of uncertainty in both X and Y taken together as a single random

variable. For a given outcome x ofX , the probability of obtaining y is p(y|x) = p(x, y)/p(x).
This probability mass has entropy,

H(Y |X = x) =−
∑
y

p(y|x) log2 p(y|x), (26)

representing the uncertainty in Y given x. The average value of the entropy above,

H(Y |X) =
∑
x

p(x)H(Y |X = x), (27)

is called the conditional entropy of Y givenX . Subtracting this conditional entropy from the

entropy of Y gives

I(X;Y ) =H(Y )−H(Y |X) (28)
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the mutual information between Y and X . The mutual information is unchanged when X
and Y in (28) are interchanged. For two probability mass functions p(x) and q(x), where

q(x) = 0 only if p(x) = 0, one defines the relative entropy,

D(p||q) =
∑
x

p(x) log2
(
p(x)/q(x)

)
, (29)

a measure of how different q(x) is from p(x). Operationally, D(p||q) quantifies the penalty

of compressing symbols from a distribution p(x), assuming it is q(x)(see [21] for additional
discussion).

The notion of entropy can be generalized to the quantum world. However, prior to per-

forming such a generalization, we discuss the quantum analog of a probability distribution,

called a density operator or a mixed state. Consider a collection of N unmarked quantum

systems, ni > 0 of which are in the quantum state |ψi〉; then a quantum system chosen

uniformly at random from this collection is assigned a density operator,

ρ=
∑
i

pi|ψi〉〈ψi|, (30)

where pi = ni/N . By construction, the density operator ρ above is Hermitian, positive semi-

definite (ρ � 0 or 〈φ|ρ|φ〉 ≥ 0 for all |φ〉), and has unit trace (Tr(ρ) = 1). In general, any

positive semi-definite operator with unit trace can be written in the form (30). In this form,

if every |ψi〉 is some fixed state |χ〉, then ρ= |χ〉〈χ| represents a pure quantum state |χ〉 and
ρ2 = |χ〉〈χ|.|χ〉〈χ|= 〈χ|χ〉|χ〉〈χ|= |χ〉〈χ|= ρ. More generally, ρ represents a mixed state and

can be written as

ρ=
∑
i

λi|mi〉〈mi|, (31)

where eigenvalues λi are real, positive, and sum to one and {|mi〉} are orthonormal kets.

Using the form of ρ in (31), one can easily obtain ρ2
by replacing each λi with λ2

i . Notice

ρ2 = ρ if each λ2
i = λi, which happens only when λj = 1 for some fixed j and zero for all

others— that is, ρ= |mj〉〈mj |— represents a pure state. Another natural context for using

density operators is to describe sub-systems of larger quantumsystems. Suppose a quantum

system ab, composed of two systems a and b with spaces Ha and Hb, respectively, is in a

pure state |χ〉 ∈ Hab. As mentioned at the end of Sec. 2, this state need not be the product

of two pure states, one each on Ha and Hb. The state of the a and b systems is represented

by mixed states with density operators

ρa = Trb(ρab), and ρb = Tra(ρab), (32)

respectively, where ρab = |χ〉〈χ|, Tra is the partial trace over Ha; i.e., Tra(A⊗R) =RTr(A)
where⊗ is the tensor product (see discussion containing (17) and (18)) and Trb is the partial
trace overHb, defined similarly.

The simplest example of a density operator is a qubit density operator. Such density

operators can be written in the Bloch parametrization,

ρ(r) = 1
2(I +xX + yY + zZ), (33)

where the real three-dimensional vector r := (x, y, z), called the Bloch vector, hasmagnitude

|r|=
√
r.r, at most 1 and

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(34)

are the Pauli matrices, written in the standard basis {|0〉, |1〉}. Using the Bloch parametriza-

tion (33), any qubit density operator can be represented by its Bloch vector in a unit sphere



Siddhu and Tayur: Preparation of TutORials Chapter
Tutorials in Operations Research, © 2022 INFORMS 9

called the Bloch sphere (see Fig. 1). For instance the density operator |i〉〈i| has Bloch vector

r = (0,0, (−1)i) A Bloch vector of unit length, r.r = 1, represents a pure state qubit density

operator, in other words, ρ(r)2 = ρ(r). If the length of the Bloch vector is less than one, then

ρ(r) is a mixed state.

To help understand the Bloch sphere picture, we focus on the density operator in (33).

This density operator can be written in the form (31)

ρ(r) = λ|m1〉〈m1|+ (1−λ)|m2〉〈m2|, (35)

where λ= (1 + |r|)/2 and 1−λ are the eigenvalues of ρ(r). Notice the eigenvalues are non-

negative if and only if |r| ≤ 1. The eigenvectors |m1〉 and |m2〉, corresponding to eigenvalues

λ and 1− λ, respectively, are normalized, 〈m1|m1〉= 〈m2|m2〉= 1, and orthogonal to each

other, 〈m1|m2〉= 0, i.e., they represent orthogonal pure states. While one can write explicit

expressions for these pure states, it is more useful to focus on the projectors |m1〉〈m1|
and |m2〉〈m2| onto these pure states (see discussion above (31) for additional discussion

on projectors). These projectors represent density operators and it is instructive to use the

Bloch parametrization (33) to represent them

|m1〉〈m1|= ρ(r1), and |m2〉〈m2|= ρ(r2), (36)

where r1 := r/|r| and r2 :=−r/|r| are unit vectors. Using the above equation in (35), we find

ρ(r) is the convex combination of two pure state density operators,

ρ(r) = λρ(r1) + (1−λ)ρ(r2). (37)

In addition, one finds that the Bloch vector r is a convex combination, r = λr1 + (1− λ)r2,
of two unit vectors r1 and r2. The Bloch sphere picture (see Fig. 1) provides a simple way to

visualize all three density operators ρ(r), ρ(r1) and ρ(r2).
More generally, two systems a and b, each with density operators ρa and ρb, respectively,

are assigned a joint density operator

ρab = ρa⊗ ρb, (38)

where ⊗ represents tensor product (see discussion containing (17) and (18)).

The quantum analog of the Shannon entropy (24) is the von-Neumann entropy of a

density operator ρ (31),

S(ρ) :=−Tr(ρ logρ) =−
∑
i

λi logλi. (39)

The inequality above can be derived using the eigen-decomposition (31), where the

eigenvalues λi of ρ are strictly positive. Using this decomposition, one obtains logρ :=∑
i logλi|mi〉〈mi| by simply replacing the eigenvalues λi with their logarithm. Multiplying

logρ with ρ gives ρ logρ=
∑
i λi logλi|mi〉〈mi|. The trace of this product, multiplied with

minus, one gives the right side of the equality (39) For the qubit density operator in (33) the

von-Neumann entropy can be easily computed using (35) as

S
(
ρ(r)

)
= h(λ+) :=−

(
λ+ logλ+ + (1−λ+) log(1−λ+)

)
, (40)

where we use λ− = 1− λ+. Much like the Shannon entropy, the von-Neumann entropy

quantifies the amount of uncertainty in the quantum state ρ. In addition, the von-Neumann

entropy plays a fundamental role in a vast variety of information processing tasks. For

instance, it represents the ultimate rate for compressing quantum states [81].

In practice, quantum systems are susceptible to noise. Prior to describing quantum noise,

let us consider classical noise. Classical noise is often modelled by a channel N : X → Y ,
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Figure 1. Bloch sphere in xyz Cartesian coordinates: The Bloch vector r represents a qubit density

operator ρ(r) (33). The other Bloch vectors, r1 and r2 (defined below (36)), have unit length. These

vectors r1 and r2 are antipodes of each other and represent projectors, |m1〉〈m1| and |m2〉〈m2|,
respectively. Such rank-1 projectors can be written using a square bracket notation; for instance,

[0] := |0〉〈0|.

whichmaps some input symbolx∈X to an output symbol y ∈Ywithprobability p(y|x) (see
Sec. 8 for more details). If a channel’s input symbol X arrives with some probability p(x)
then the channelmaps this input distribution to an output distribution p(y) =

∑
x p(y|x)p(x)

over the channel outputs Y .
Consider a simple example of a classical erasure channelEwith erasure probability p. The

channel’s input alphabet X = {0,1} and output alphabet Y = {0,1, e}. With probability p,
the channel erases the input x by mapping it to an output y= e, otherwise with probability

1− p the input is sent perfectly, i.e., the output y = x. This erasure channel’s conditional

probability distribution p(y|x) is given as follows: p(e|0) = p(e|1) = p, p(0|0) = p(1|1) =
(1−p), and p(1|0) = p(0|1) = 0. Using this conditional probability distribution, one can find

the output distribution

p(y) = (1− p) p(x)δy,x + pδy,e. (41)

If x= i, where i∈ {0,1}, then p(y= i) = 1− p, p(y= 1− i) = 0, and p(y= e) = p.
The quantum analog of a channel, called a quantum channel, describes quantum

noise [94]. Like its classical counterpart, a quantum channel acting on the quantum analog

of a probability distribution, a density operator, maps it to another density operator. In

addition, a quantum channel acting on one part of a bi-partite density operator maps the

bi-partite density operator to a valid density operator. Mathematically, a quantum channel

is a completely positive trace preserving (CPTP) map (see discussion below (45)). One sim-

ple example of a quantum channel is an erasure channel. Let a be a da-dimensional quantum

system with space Ha =H and let b be a db = (da + 1)-dimensional quantum system with

space Hb =H⊕H′, where H′ is spanned by multiples of a single ket |e〉. Then an erasure

channel with erasure probability p, Ep :L(Ha)→L(Hb), is given by

Ep(ρ) = (1− p)ρ+ pTr(ρ)|e〉〈e|, (42)

where the channel input ρ is sent perfectly with probability 1 − p; otherwise, the input

is erased with probability p and mapped to a fixed pure state |e〉〈e| orthogonal to ρ. The
above equation is akin to (41) where the output probability distribution p(y) was expressed

in terms of the input probability distribution p(x) for the classical erasure channel E. The

connection with classical erasure can be made even tighter: a classical erasure channel E
can emerge from a quantum erasure channel Ep in the following sense. Suppose a classical
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input symbol x= i, i∈ {0,1} is mapped to a quantum state [i], then sent via Ep, and finally

measured using projectors {P0 = [0], P1 = [1], Pe = [e]} corresponding to measurements

outcomes y ∈ {0,1, e} respectively. Then, using the Born rule (21), the expression for Ep (42),
and the definitions of the projectors {Pj}, one finds that p(y|x), the probability that the

measurement outcome is y given the input symbol is x, can be simply written as p(y= j|x=
i) = Tr(Ep([i])[j]). This conditional probability is exactly the same as the one for the erasure

channel E above (41).

Yet another example of a quantum channel is a qubit depolarizing channel ∆ : L(Ha)→
L(Hb) where da = db = 2,

∆(ρ) = λρ+ (1−λ)
2 Tr(ρ)I, (43)

and−1/3≤ λ≤ 1. There is no obvious analogy between this quantum depolarizing channel

and a classical channel, however the Bloch sphere picture, discussed below (33), provides a

helpful way to visualize the action of the depolarizing channel. The depolarizing channel

takes its qubit input ρ, with Bloch vector r, to a qubit output ∆(ρ) with Bloch vector λr. The
effect of the channel is to scale the Bloch sphere and make its length smaller (see Fig. 2 for a

graphical representation). For values of λ≥ 0, this channel is often interpreted as sending

its input perfectly with probability λ or replacing the input with the maximally mixed

state I/2. There are a large variety of well-studied quantum channels [40, 106, 108]. Some

common ones include the qubit dephasing channel and the (generalized) qubit amplitude

damping channel [54, 109].

To describe the action of two separate quantum channels B and B′ acting on systems

a and a′, respectively, one uses tensor products in a manner similar to those used for

describing pure states and mixed state on two systems (see discussion containing (12)

and (38)). Let systems a and a′ be acted upon by quantum channels B :L(Ha)→L(Hb) and
B′ : L(Ha′)→L(Hb′), respectively, then the channel acting on the joint aa′ system is the

tensor product channel B ⊗B′. The tensor product channel is linear, and if ρa and ρa′ are

density operators of a and a′, respectively, then

B⊗B′(ρa⊗ ρa′) =B(ρa)⊗B′(ρa′). (44)

z axis

[0]

[1]
Figure 2. Qubit depolarizing channel: The qubit Bloch sphere (in black) is transformed into to an ori-

gin centered spherewith a shorter radius (in red) under the action of a qubit depolarizing channel (43).

Remark.When discussing the transmission of classical information across a quantum chan-

nel, one arrives at induced classical channels (see Ch.20 in [108]). These classical channels
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N : X →Y arise out of quantum ones and they model the effective classical noise experi-

enced by classical information encoded and decoded into quantum states passing through

a quantum channel B. The capacity C(N) of any such induced channel N is obtained by

maximizing the mutual information (28) between the channel output Y and input X over

all possible input distributions p(x). This capacity is bounded from above by the Holevo
capacity of the channel B, which represents the ultimate rate at which classical information

can be sent across a quantum channel without entanglement at the input [41]. This is not

the subject of any of the five SDP problems presented here.

In general, any quantum channel B : L(Ha)→L(Hb), where Ha and Hb have possibly

unequal dimensions, can be written using a Kraus decomposition [59]

B(A) =
∑
i

KiAK
†
i , (45)

where A∈L(Ha), andKi :Ha→Hb are Kraus operators that satisfy the relation∑
i

K†iKi = Ia. (46)

For an erasure channel of the form (42) acting on qubits inputs, the Kraus operators can be

written as matrices

K1 =
√

1− p

1 0
0 1
0 0

 , K2 =√p

0 0
0 0
1 0

 , K3 =√p

0 0
0 0
0 1

 , (47)

using the standard basis {|0〉, |1〉} at the input and the basis {|0〉, |1〉, |e〉} at the output. A

simple calculation shows that the matrices above satisfy (46) with Ia as the 2× 2 identity

matrix I2. The qubit depolarizing channel ∆ (43) can also be written in the Kraus form (45)

where

K1 =
√

1− pI2, K2 =
√
p/3X, K3 =

√
p/3Y, K4 =

√
p/3Z, (48)

and p = 3(1− λ)/4. From this Kraus form, one may view ∆(ρ) as a channel that applies

each of the Pauli errors X,Y, and Z with equal probability p/3 and applies the identity

map with probability 1− p. Using standard matrix multiplication, or the property X†X =
Y †Y = Z†Z = I2, one can check that the operators in (48) also satisfy the equality in (46).

This equality (46) ensures that B is trace preserving; that is, Tr(B(A)) = Tr(A) for any

operator A ∈ L(Ha). Together, (46) and the Kraus decomposition (45) ensure that B is a

completely positive trace preservingmap.While a positive trace preservingmap is one that

maps positive semi-definite operators to positive semi-definite operators of the same trace,

a CPTP map satisfies a stronger condition: for all positive semi-definite operators Λar and
any finite-dimensional spaceHr with dimension dr, the operator

Γbr = (B⊗I)Λar, (49)

is positive semi-definite and has the same trace as Λar, where I is the identity channel

taking L(Hr) to itself and B⊗I is a tensor product of two channels B and I (see discussion
containing (44)) . Turns out this stronger condition is satisfied if and only if atHr =Ha and
Λaa = |γ〉〈γ|, where |γ〉=

∑
i |i〉a⊗ |i〉a is an unnormalizedmaximally entangled state across

Ha⊗Ha, the operator Γba is positive semi-definite and its partial trace over b is the identity
on Ha, i.e., Trb(Γbr) = Ia [20, 48]. For this reason, an operator mapping Hba :=Hb ⊗Ha to

itself,

Jba(B) := (B⊗I)|γ〉〈γ|, (50)
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is sometimes called the Choi-Jamiołkowski representation of the channel B. Given two

quantum channels B : L(Ha)→L(Hb) and B′ : L(Ha)→L(Hb), their linear combination,

S = c0B + c1B′, c0, c0 ∈ C, is a linear map from L(Ha) to L(Hb), however this map need

not be a quantum channel. In general, a linear map S : L(Ha)→L(Hb) from operators on

Ha to operators on Hb is called a superoperator. This superoperator represents a CPTP map

if and only if its Choi-Jamiołkowski representation, Jba(S), is positive semi-definite and

Trb(Jba(S)) = Ia.
The Kraus form (45) ensures that a map is CPTP, but it can be also used to interpret

properties of a quantum channel. For instance, if each Kraus operator in (45) has rank 1,

then B becomes an entanglement breaking channel [43]. Such channels have the property

that any entangled channel input ρra is mapped to an unentangled output (50) (see Sec. 7

for additional discussion about entanglement). One simple example of an entanglement

breaking channel is a qubit channel E with two Kraus operators:

K1 = |0〉〈0|=
(

1 0
0 0

)
and K2 = |1〉〈1|=

(
0 0
0 1

)
. (51)

Each operator above has rank 1. To express E using these operators in (51), one uses and

simplifies an equation of the form (45) to obtain

E(ρ) = |0〉〈0|Tr(ρ|0〉〈0|) + |1〉〈1|Tr(ρ|1〉〈1|). (52)

4. Problem 1: Quantum State Discrimination
The concept of projective measurements, discussed in Sec. 2.2, and quantum channels,

discussed at the end of Sec. 3, can be combined to obtain a more general measurement

scheme described mathematically as a positive operator value measure (POVM). Consider

a quantum channel B :L(Ha)→L(Hb)⊗L(He), of the form

B(ρ) =
∑
i

KiρK
†
i ⊗ |i〉〈i|, (53)

where ⊗ represents tensor product (see discussion containing (17) and (18)). Using Born’s

rule, a projective measurement on one half of the channel output He in the computational

basis ofHe results in an outcome iwith probability

pi = Tr
(
B(ρ)(Ib⊗ |i〉〈i|)

)
. (54)

Using standard linear algebra along with the definition Ei :=K†iKi, we obtain

pi = Tr(ρEi). (55)

The collection of operators {Ei} are called a POVM. These operators are positive semi-

definite and sum to the identity Ia; that is,

Ej =E†j � 0, and

∑
i

Ei = Ia. (56)

Any general measurement on a quantum system a can be described using a POVM {Ei}.
Associated with each Ei is a measurement outcome iwhich occurs with probability (55).

A general setup for the quantum state discrimination problem can be obtained as follows.

Suppose a random variable X takes one of n values i with probability pi. When X = i, a
d-dimensional quantum state σi is prepared. The key task in quantum state discrimination
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is to measure the prepared state and predict iwith high probability. If the random variable

Y predicts X , then we wish to maximize the success probability:

ps :=
∑
i

piPr(Y = i|X = i). (57)

Suppose {Ej} is a POVM that describes the measurement; then the conditional probability

Pr(Y = j|X = i) = Tr(Ejσi). (58)

Using the above equation, themaximumsuccess probability (57) over all POVMs is obtained

as the optimum value p∗s of the semi-definite program,

maximize

∑
i

piTr(Eiσi)

subject toEj � 0, ∀1≤ j ≤ n,

and

n∑
j=1

Ej = I.

(59)

Consider a simple case when n= d= 2, p1 = q, p2 = 1− q,

σ1 =
(

1 0
0 0

)
, and σ2 =

(
0 0
0 1

)
. (60)

In this case, the SDP in (59) admits an algebraic solution, E1 = σ1,E2 = I −E1 and ps = 1,
which is independent of p. Such algebraic solutions exist for any d≥ 2 and 2≤ n≤ dwhen

Tr(σiσj) = δij (61)

for all 1 ≤ i, j ≤ n; that is, when σi are pairwise orthogonal to one another. In such cases

Ei = σi for all 1≤ i 6= n−1 andEn = I−
∑
iEi is a solution to (59) with optimum value p∗s =

1, independent of pi. An interesting case where the SDP in (59) can be solved algebraically

is n= 2 and arbitrary d. In this case, the SDP in (59) reduces to

maximize

1
2(1 + Tr

(
F (p1σ1− p2σ2)

)
subject to − I � F � I,

(62)

wherewe have introduced the operatorF :=E1−E2. The above SDP has an optimumvalue

p∗ = 1
2(1 + ||p1σ1− p2σ2||1), (63)

where ||A||1 = Tr
√
A†A is the operator 1-norm, also called the nuclear norm, and

√
A†A,

square root of a positive semi-definite matrix, is an operator obtained by replacing the

eigenvalues of A†Awith their square root. The optimum value is often called the Helstrom

bound [39]. In general, the SDP in (59) cannot be solved analytically; however, one can use

numerical SDP solvers. For using such numerical solvers, we reformulate the SDP in (59)

as follows

maximize

n−1∑
i=1

piTr(Eiσi) + (1−
n−1∑
i=1

pi)Tr
(
(I −

n−1∑
j=1

Ej)σn
)

subject to I −
n−1∑
j=1

Ej � 0,

andEj � 0,

(64)
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where 1≤ j ≤ n− 1. Numerical solutions to the SDP above can be obtained using solvers

in open-source packages. For instance, one may use a Python interface, PICOS [79], and an

open-source solver, CVXOPT [3]. Using these numerical tools we formulate the SDP above

with n = d = 2, p ∈ [0,1] chosen randomly, and σi defined in (60). We find almost perfect

agreement between the numerically obtained objective value pns and the algebraic value

p∗s= 1 stated below (61). In other examples with fixed n= 2, d= 6, and randomly chosen

p∈ [0,1], σ1, and σ2, we find good agreement, |pns −ps ∗ | 'O(10−9), between the numerical

value pns and the true value, ps∗, computed using (63). These and additional examples are

available along with this chapter (see Notebook 1 in [90]).

Discrimination of quantum states, and quantum hypothesis testing, is a vast [5,38,39,51,

56, 69, 72] and active sub-field of quantum information science. Here, we have touched the

surface of this field by introducing certain special cases. For solving these special cases, we

illustrate the use of open-source numerical tools. The interested reader may find a variety

of other resources and open problems in these reviews [6, 7, 19] and references therein.

5. Problem 2: Quantum State Fidelity
Classical objects of different types are perfectly distinguishable. On the other hand,

quantum objects in two different quantum states are not always perfectly distinguishable.

Thismotivates a basic question, given two different states of a quantum system: how similar

are these states to each other? One measure of similarity between quantum states is fidelity.
Consider pure states |ψ〉 and |φ〉; these are simply unit vectors in some space Ha. The
magnitude of the overlap between these vectors,

F (ψ,φ) = |〈ψ|φ〉|, (65)

is defined as the fidelity between the pure states |ψ〉 and |φ〉. When the pure states |ψ〉 and
|φ〉 are the same, their fidelity F (ψ,φ) is one; when |ψ〉 and |φ〉 are orthogonal, F (ψ,φ) = 0,
and in general, 0≤ F (ψ,φ)≤ 1.
While fidelity between pure states is straightforward to define, quantum systems cannot

always be described by pure states. In general, quantum systems are described by mixed

states. However, a quantum system a in some mixed state ρ can always be viewed as a

sub-system of two systems a and r in some pure state |ψ〉. More precisely, let Ha and Hr
describe the spaces of a and r, respectively, and then any ρ describing a can be obtained as

ρ= Trr(|ψ〉〈ψ|), (66)

where |ψ〉 ∈ Har. The state |ψ〉 above is called a purification of ρ and r, the purifying

system. If ρ has a spectral decomposition ρ=
∑
i λi|ei〉〈ei| then its purification has the form

|ψ〉 =
∑
i

√
λi|ei〉 ⊗ U |ei〉 where U is any unitary matrix on Hr and ⊗ represents tensor

product (see discussion containing (12) and (13)). Clearly, every choice ofU gives a different

purification of the same state ρ and two different purifications are related by a unitary on

the purifying system Hr. To define the fidelity between two, possibly mixed states ρ and σ
of a system a, we can consider the maximal fidelity between their purifications,

F (ρ,σ) = max
ψ,φ
|〈ψ|φ〉|, (67)

where |ψ〉 and |φ〉purify ρ and σ respectively, using the same purifying system r. Uhlmann’s

theorem [97] (see Th.9.2.1 in [108] for a short proof) shows that the fidelity defined above

reduces to the simple form

F (ρ,σ) = ||√ρ
√
σ||1. (68)

When ρ and σ are pure states |ψ〉〈ψ| and |φ〉〈φ|, respectively, the fidelity expression (68)

simply reduces to (65). When ρ is a mixed state but σ = |ψ〉〈ψ| is a pure state then the

fidelity (68) is simply

F (ρ,σ) = 〈ψ|ρ|ψ〉. (69)
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Suppose ρ and σ are mixed states that are diagonal in the same basis |x〉. It is convenient to
write these states as follow

ρ=
∑
x

p(x)|x〉〈x|, and σ=
∑
x

q(x)|x〉〈x| (70)

where p(x) and q(x) are probability distributions. The fidelity between these diagonal

operators above

F (ρ,σ) =
∑
x

√
p(x)

√
q(x), (71)

is simply the Bhattacharya overlap [16] between the classical probability distributions p(x)
and q(x).

Fidelity F (ρ,σ) (68) is given by the optimum value of these primal and dual semi-definite

programs [57,105],

Primal: (72)

maximize

1
2Tr(Λ + Λ†)

subject to

(
ρ Λ

Λ† σ

)
� 0,

and Λ∈L(Ha);

Dual: (73)

minimize

1
2
(
Tr(ρY ) + Tr(σZ)

)
subject to

(
Y −I
−I Z

)
� 0.

The primal and dual SDPs can be solved numerically. When ρ and σ are randomly chosen

4-dimensional pure states we find optimum values Fp and Fd, for the primal and dual SDP

objectives respectively. These are in good agreement with each other, andwith F computed

using (65). In particular, the maximum absolute difference between any pair of these three

values is O(10−9). This absolute difference remains typically small, O(10−5), when ρ is a

random mixed state and σ is a random pure state, each 3-dimensional. To compute this

difference numerically we solve the primal and dual SDP above and find F using (69).

A similar computation, using 10-dimensional mixed states ρ and σ chosen randomly and

F computed using (71), shows good numerical agreement. Typically the maximum pair-

wise difference between all three values Fp, Fd, and F , is O(10−7). A short tutorial helping

perform these computations is available along with this chapter (see Notebook 2 in [90]).

While the fidelity function (68) can be computed using standard numerical algebra

libraries, the SDP formulation (73) for computing fidelity has additional utilities. One utility

is the use of the formulation (73) to show that a variety of generalizations of the fidelity

function [34, 53, 111, 112] can also be computed efficiently via an SDP. Some of these gen-

eralizations play a useful rule in security analysis of quantum protocols. Another utility of

the SDP formulation is to the quantum channel discrimination problem discussed next.

6. Problem 3: Quantum Channel Discrimination
Consider a protocol with two parties, Alice and Bob, where Alice prepares a quantum

state ρa and hands it to Bob. Upon receiving ρa, Bob generates a random variableX , which

takes the value 1 with probability t and 2 with probability 1− t. When X = i, Bob applies

the channel Bi : Ĥa→ Ĥb and obtains a state Bi(ρa). This new state is returned to Alice,

whose task is to measure it and correctly predict i. Alice knows a description of each fixed

channel Bi and controls the state ρa, but is unaware of the random value i. By varying ρa
the maximum probability with which Alice can correctly predict i by measuring Bi(ρa) is

q∗ = 1
2(1 + max

ρa

||tB1(ρa)− (1− t)B2(ρa)||1). (74)



Siddhu and Tayur: Preparation of TutORials Chapter
Tutorials in Operations Research, © 2022 INFORMS 17

Using

D := tB1− (1− t)B2, (75)

one may rewrite the above expression,

q∗ = 1
2(1 + max

ρa

||D(ρa)||1). (76)

One can show that (see discussion below Def. 3.37 in [106])

max
ρa

||D(ρa)||1 = ||D||1, (77)

where the 1-norm ||D||1 of the map D is the maximum 1-norm of the operator ||D(X)||1
where ||X||1 ≤ 1.

In the protocol above, instead of preparing a state ρa, Alice can prepare a (possibly entan-

gled) state ρar on Ha ⊗Hr, tensor product of Ha with Hr (see discussion containing (12)

and (38)), a space of some auxiliary systemwith dimension dr of Alice’s choosing. Alice can

then send the a sub-system of ρar to Bob. Bob applies the map Bi to this sub-system and

returns the sub-system to Alice. The final state with Alice is given by Bi⊗Ir(ρar), where Ir
is the identity channel onHr. By varying ρar and dr, the maximum probability with which

Alice can correctly predict i by measuring Bi⊗Ir(ρar) is

s∗ = 1
2(1 + sup

ρar,dr

||D⊗Ir(ρar)||1). (78)

One can show that (see discussion below Def. 3.43 in [106])

sup
ρar,dr

||D⊗Ir(ρar)||1 = ||D||�, (79)

where the diamond norm (also called the completely bounded trace norm) ||D||� := ||D ⊗
Ia||1. The equality abovedemonstrates that the dimension of the auxiliary systemHr chosen
by Alice does not need to be larger than da, the dimension of system a being sent fromAlice

to Bob. In addition, since 1/2≤ s∗ ≤ 1, ||D||� for any D of the form (75) is at most 1.

The probabilities q and s, defined in (76) and (78), respectively, can be obtained from the

1-norm and the diamond norm of the map D defined in (75). As mentioned below (79)

and (77), for any map D : Ĥa→ Ĥb, both the 1-norm ||D||1 and the diamond norm ||D||�
are defined as the maximum value of some convex function. Computing the maximum of

a convex function is a non-trivial problem. However, in the special case of the diamond

norm, such a maximization can be reframed as a semi-definite program. Consider a linear

superoperator D : Ĥa→Ĥb with Choi-Jamiołkowski representation Jba(D) (for definition,
see (50)). The diamond norm of D is the optimal value of the

Primal SDP: (80)

maximize

1
2
(
Tr(Jba(D)X) + Tr(Jba(D)X)∗

)
subject to

(
Ib⊗ ρa X
X† Ib⊗σa

)
� 0,

Tr(ρa) = 1,
Tr(σa) = 1,

andX ∈L(Ha),

and

Dual SDP: (81)
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minimize

1
2
(
||Trb(Nab)||∞+ ||Trb(Mab)||∞

)
subject to

(
Nba −Jba(D)

−Jba(D)† Mba

)
� 0,

where ||A||∞ denotes the infinity norm, also called the spectral norm of the operator

A∈ Ĥ [104].

This norm is dual to the nuclear norm. It is the minimum real µ for which A� µI . Using

this characterization of the infinity norm, the dual semi-definite program above can be

re-written as

minimize

1
2(µ+ ν)

subject to

(
Nba −Jba(D)

−Jba(D)† Mba

)
� 0,

Trb(Nba)� µIa,
Trb(Mba)� νIa,

and µ,ν ∈R .

These SDPs above can be derived using a connection between the fidelity function and

the diamond norm. The connection, together with a simplification of the SDP (73) for the

fidelity function, can be used to arrive at the above SDP (for details see [105]).

Let us consider some simple examples where the diamond norm can be computed alge-

braically in closed form. Our first example is the diamond norm of any quantum channel

B : Ĥa → Ĥb. Using the definition of the diamond norm ||B||�, one can easily show that

any quantum channel has diamond norm one. Our second example considers the protocol

between Alice and Bob discussed at the beginning of this section. In that protocol, suppose

da = db = 2; in other words, Alice and Bob exchange qubit states. In addition, consider a

concrete case where B1 is simply the identity channel I and B2 is the qubit depolarizing

channel ∆ in (43), and each is equally probable, i.e., t= 1/2; thus D in (75) takes the form

D(ρ) = 1
2
(
B1(ρ)−B2(ρ)

)
= (1−λ)

2 (ρ−Tr(ρ)I2). (82)

Using the form of D in (82), we find (see App. A for details)

||D||1 = (1−λ)/2, and ||D||� = 3(1−λ)/4. (83)

The norms above, along with equations (76) and (78), give

q∗ = (3−λ)/4 and s∗ = (7− 3λ)/8> q∗. (84)

Since s∗ is larger than q∗, we find that Alice can increase the probability of correctly

distinguishing ∆ from I using a qubit auxiliary system. This increase comes from the

possibility of Alice sending to Bob one half of a joint system, in state ρaa. Later, system b
returned by Bob to Alice results in a joint state ρba which Alice may measure jointly.

Consider an extreme casewhereλ=−1/3 [103]. SupposeAlice prepares a pure entangled

state, ρaa = |ψ+〉〈ψ+|, and
|ψ+〉= 1√

2
(|00〉+ |11〉). (85)

One-half of this entangled state is sent to Bob. If Bob applies the identity channel I, the state
ρba remains unchanged. If Bob applies ∆, the state ρba becomes orthogonal to |ψ+〉〈ψ+|.
This orthogonal state can be distinguished perfectly by doing a joint measurement on

ba (see discussion accompanying (61)). As a result, we get s∗ = 1. Without using such
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entangled inputs, the maximum probability of distinguishing I from ∆ is q∗ = 5/6. We test

these findings numerically. In particular, we compute the diamond norm of D in (82) by

solving the primal and dual SDPs, (80) and (81). The optimum value of both SDPs is in

good agreement, and their difference is typically O(10−10). Using this value, we obtain the

numerical estimate s∗n (78) of s∗ (84); their absolute difference is typically small O(10−11)
too. Comparing s∗n with q∗ reveals s∗n is larger and thus entanglement helps discriminate

quantum channels I and ∆.

Remark. The above example can be generalized to a d-dimensional quantum system

called a qudit. In this higher-dimensional case, B1 is the qudit identity channel Id and B2 is

the qudit depolarizing channel,

∆d(ρ) = λρ+ (1−λ)Tr(ρ)I
d
. (86)

In (75) setting t= 1/2,B1 = Id and B2 = ∆d(ρ) results in a superoperator

D(ρ) = 1−λ
2 (ρ−Tr(ρ)I

d
), (87)

whose 1 norm and diamond norm are (see App. A for details)

||D||1 = (1−λ)d− 1
d

, and ||D||� = (1−λ)d
2− 1
d2 , (88)

respectively. Using the above equations, along with (76) and (78), one finds that s∗ > q∗ and
the difference s∗− q∗ scales as O(1/d).
In our third channel discrimination example (basedonEx. 3.36 in [106]),we again consider

the protocol between Alice and Bob discussed at the beginning of this section. In this

protocol Alice and Bob exchange qudits. With equal probability, i.e., t= 1/2, Bob chooses

one of two Werner-Holevo channels

B1(ρ) = 1
d+ 1

(
Tr(ρ)I + ρT

)
or B2(ρ) = 1

d− 1
(
Tr(ρ)I − ρT

)
, (89)

where the transpose is done in the standard basis. Channels B1 and B2 have Choi-

Jamiołkowski representations,

Jba(B1) = 1
d+ 1(Ib⊗ Ia +Sba), and Jba(B2) = 1

d− 1(Ib⊗ Ia−Sba), (90)

respectively, where

Sba|i〉⊗ |j〉= |j〉⊗ |i〉 (91)

is the swap operator acting on Hb ⊗Ha (spaces Ha and Hb have equal dimension d). The
operators (Ib⊗ Ia+Sba)/2 and (Ib⊗ Ia−Sba)/2 equal the projector onto the symmetric and

anti-symmetric sub-spaces of Hb⊗Ha, respectively. For these Werner-Holevo channels, D
in (75) takes the form

D(ρ) = d

d2− 1
(
ρT −Tr(ρ)I

d

)
. (92)

The operator norm ||D||1 = 2/(d+ 1); using (74), we get

q∗ = 1
2 + 1

d+ 1 . (93)

As stated below (78), ||D||� is at most 1 and equals the maximum value of ||D ⊗ I(X)||1
where ||X||1 ≤ 1. Let X be a projector onto the maximally entangled states on two qudits,

|φd〉 :=
1√
d

∑
i

|i〉a⊗ |i〉a, (94)
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then

||D⊗I(X)||1 = ||1
d

(
J (B1)ba−J (B2)ba

)
||= 1. (95)

As a result, ||D||� = 1. From (78) and (79) it follows that

s∗ = 1. (96)

A numerical estimate s∗n of s∗ is found by directly using the definition of s∗ (78) and by

solving the primal and dual SDPs, (80) and (81) with D in (92) and d= 3. This numerical

estimate is in reasonably good agreement with the value of s∗ stated above.

Notice that for any d, there is a gap between s∗ above and q∗ in (93) which is at least 1/2
and scales asO(1/d). The strategy that allows us to obtain s∗ = 1makes use of entanglement.

In particular the maximally entangled state |φd〉〈φd| (94) can be sent by Alice to Bob. If

Bob applies B1 then Bob’s joint state with the auxilliary system is Jba(B1)/Tr(Jba(B1)),
otherwise Bob applies B2, creating the joint state Jba(B2)/Tr(Jba(B2)). Notice these two

joint states are orthogonal to each other, and thus can be distinguished perfectly by doing a

joint measurement on Hba (see discussion accompanying (61)). Notice that measuring the

joint system is necessary, if Alice throws away the reference system a and keeps only b; then
the states received by Alice from Bob would be identical, regardless of the channels B1 and

B2 applied by Bob.

In the special cases discussed above, we provided algebraic expressions for the diamond

norm. When such algebraic expressions are not available, one needs to use numerical

techniques to a solve semi-definite program and obtain the diamond norm. A short tutorial

on solving these semi-definite programs using Python packages PICOS and solvers in

CVXOPT/MOSEK is available along with this chapter (see Notebook 3 in [90]).

The SDP formulation of the diamond norm has several virtues. It shows that a variety

of bounds on the ability of quantum channels to send information can be computed effi-

ciently [42, 100]. Not only bounds, one can use the SDP formulation to obtain computable

measures of entanglement [102], a non-trivial problem in entanglement theory. The SDP

formulation has also aided the use of diamond norm in quantum error correction [47, 64]

and compressed sensing [58].

7. Problem 4: Quantum Entanglement and Separability
Entanglement is a patently non-classical aspect of quantum states. Any bipartite quantum

state onHa⊗Hb is said to be entangled if the state’s density operator ρab cannot be expressed
as a convex combination,

ρab =
∑
i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|, (97)

of pure product states |ψi〉 ⊗ |φi〉 on the tensor product (see discussion containing (38) for

the definition) of Ha and Hb; here pi ≥ 0 and

∑
i pi = 1. A quantum state with a density

operator of the form in (97) is called a separable state. In what follows, we discuss criteria

for the separability of quantum states. When ρab is a pure state, i.e., ρ2
ab = ρab, then criteria

for separability of ρab is relatively easy (see discussion at the end of Sec. 2.1). To discuss a

criterion of separability that applies more generally, we need a notion called the extension
of a density operator.

Consider a density operator ρab on Hab. For any integer n ≥ 1, let Hbk be a space of a

dimension equal to that ofHb and

HB :=
k⊗
j=1
Hbj , (98)
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where

⊗
is our notation for tensor product (defined in the discussion containing (12)

and (13)) of several spaces Hb1,Hb2, · · · ,Hbk. For k = 1, HB =Hb1 and a density operator

ρaB onHaB is an extension of ρab if ρaB = ρab. For k > 1, ρaB is called an extension of ρab if
the partial trace ρab1 of ρaB overHb2⊗Hb3⊗ · · ·⊗Hbk is ρab; in other words,

ρab = ρab1 = Trb2,b3,...,bn(ρaB). (99)

An extension ρaB of ρab is called symmetric if swapping any space Hbi with Hbj in HB ,
where 1≤ i < j ≤ n, has no effect on ρaB ; that is,

ρaB = ΠbibjρaBΠbibj , (100)

where the swapoperatorΠbibj onHa⊗HB simply extends the usual swapoperatorSbibj (91)
on Hbi ⊗Hbj to Ha ⊗HB . This extension applies Sbibj to Hbi ⊗Hbj and the identity to all

other spaces.

A quantum state ρab is separable if and only if it has a symmetric extension for all

k ≥ 1 [29, 75, 107]. Further, one can show that if ρab has a symmetric extension for some k,
then it has a symmetric extension for all k′ >k. These powerful symmetric extension results

provide a straightforward route to check if a given density operator ρab is separable or

entangled. This route is to pick an integer k≥ 1 and frame a constraint satisfaction problem

which simply checks if the linear constraints (99) and (100) can be satisfied by a unit-trace

positive semi-definite operator ρaB . For each k, this problem can also be framed as a SDP. If

this SDP is infeasible, then ρab does not have a symmetric extension for that k and hence ρab
must be entangled. On the other hand if the SDP is feasible, then ρab may still be entangled.

Another criterion for checking if a state ρab is separable is the positive under partial

transpose (PPT) criterion [74]. Notice Tb, a transpose with respect to Hb of the separable

state of ρab in (97), results in

Tb(ρab) =
∑
i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|T , (101)

where the superscript T represents transpose in the standard basis ofHb. For any separable

state ρab, the operator Tb(ρab) above is positive semi-definite; thus, one says any separable

state ρab is PPT. On the other hand, if for some state σab the partial transpose Tb(σab) is

not PPT, then σab cannot be separable; that is, σab is entangled if it is not PPT. For da = 2
and db = 2,3, this PPT criterion is both necessary and sufficient [44]. But generally, this PPT

criterion is necessary but not sufficient. However, this PPT criterion can be combined with

the previously discussed necessary and sufficient condition for a separable state to have

a symmetric extension for all k. This combination results in the PPT symmetric extension
criterion for separability [26]. In this criterion, for any k ≥ 1, the symmetric extension ρaB
of ρab must also be PPT, where the partial transpose is taken with respect to each of the k
spacesHb1,Hb1b2, . . . ,Hb1b2...bk; that is,

Tb1b2...bj(ρaB)� 0, (102)

for all 1≤ j ≤ k.
The PPT symmetric extension criterion also provides a route to check if a density operator

ρab is separable or entangled. In this route, one picks an integer k and first formulates an

SDP for finding a symmetric extension ρaB and then adds linear PPT constraints (102) to

this SDP. These additional PPT constraints can turn an SDP that was feasible to one that

isn’t. Such an infeasible SDP indicates the absence of a PPT symmetric extension, and thus

the presence of entanglement. As a result, the PPT symmetric extension-based route to

checking entanglement can be strictly better than the usual symmetric extension route.
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The SDP formulations discussed so far were about checking feasibility. From a numerical

standpoint, it is convenient to reformulate these feasibility problems as SDP optimization

problems. For any k ≥ 1, the SDP optimization problems arising from the PPT symmetric

extension criterion can be written as

minimize µ

subject to ρab = Trb2,b3,...bk(ρaB),
ρaB = ΠbibjρaBΠbibj , 1≤ i < j ≤ k,
Tr(ρaB) = 1,
ρaB +µIaB � 0,

and Tb1b2...bj(ρaB) +µIaB � 0, 1≤ j ≤ k.

(103)

Dropping the last constraint in the SDP above results in an SDP arising from the symmetric

extension criterion. For some fixed k, if ρab does not have a PPT symmetric extension then

the optimum value of the above SDP, µ∗, is strictly positive. This strict positivity implies

that ρab is entangled. On the other hand, if µ∗ is zero or less than zero, then ρab has a PPT

symmetric extension and this ρab may or may not be entangled.

The simplest example of the SDP in (103) occurs for k = 1. In this case HB =Hb1 =Hb,
and thus for any state ρab, the SDP above can be reduced to the form

minimize µ

subject to Tb(ρab) +µIab � 0.
(104)

Here, µ∗ is simply obtained by putting a negative sign in front of the smallest eigenvalue of

Tb(ρab), the partial transpose of ρabwith respect toHb. Suppose da = db = 2, and ρab = |χ〉〈χ|,
where |χ〉 is defined in (16); then one may write

ρab = 1
2(|0〉〈0|a⊗ |0〉〈0|b + |1〉〈0|a⊗ |1〉〈0|b + |0〉〈1|a⊗ |0〉〈1|b + |1〉〈1|a⊗ |1〉〈1|b, ), (105)

or express ρab above as a 4× 4 matrix in the |i〉a⊗ |j〉b basis as

ρab = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (106)

The partial transpose of ρab with respect toHb,

Tb(ρab) = 1
2(|0〉〈0|a⊗ |0〉〈0|b + |1〉〈0|a⊗ |0〉〈1|b + |0〉〈1|a⊗ |1〉〈0|b + |1〉〈1|a⊗ |1〉〈1|b), (107)

can also be written in a matrix form,

Tb(ρab) = 1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (108)

again using the |i〉a⊗ |j〉b basis. The smallest eigenvalue of the above matrix is −1/2. As a

result, the optimum value of the SDP (104), µ∗, is 1/2. A strictly positive µ∗ value indicates
that ρab = |χ〉〈χ| is an entangled state. This entanglement was already discussed below (16),

the SDP approach above merely confirms this fact. Next, let da = db = 3 and ρab be a state

described in [45],

ρab = 2
7 |ψ

+〉〈ψ+|+ α

7 σ+ + 5−α
7 Sabσ+Sab, (109)
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where 0 ≤ α ≤ 5, |ψ+〉 = 1√
3 (|00〉+ |11〉+ |22〉), σ+ = 1

3 (|01〉〈01|+ |12〉〈12|+ |20〉〈20|), and
Sab is the swap operator in (91). Replacing α with 5−α in (109) is equivalent to swapping

theHa andHb spaces. Such a swap has no effect on the solution to the SDP (104) and does

not changewhether ρab is entangled or separable. Thus, we restrict ourselves to 0≤ α≤ 5/2.
Using a procedure similar to the one described above, one can compute Tb(ρab) and its

smallest eigenvalue, α∗ = (5−
√

4α2− 20α+ 41)/42. We know µ∗ =−α∗. It is easy to check

that µ∗ is strictly positive for 0 ≤ α < 1, and negative for 1 ≤ α ≤ 5/2. Thus we conclude,

that for α< 1, the qudit state ρab in (109) is entangled. For other values of 1≤ α≤ 5/2, µ∗ is
negative and one cannot conclude if ρab is entangled or separable. A path forward to check

entanglement for these other values of α is to solve a larger SDP by setting k= 2 in (103).

For k= 2,HB =Hb1⊗Hb2, ρab1 = ρab, and the SDP in (103) can be reduced to the form

minimize µ

subject to ρab1 = Trb2(ρaB),
ρaB = Πb1b2ρaBΠb1b2,

Tr(ρaB) = 1,
ρaB +µIaB � 0,
Tb1(ρaB) +µIaB � 0,

and Tb1b2(ρaB) +µIaB � 0.

(110)

To solve this SDP, we use open-source numerical packages. A short tutorial using Python

packages PICOS and CVXOPT is available along with this chapter (see Notebook 4 in [90]).

Using these packages, for the above SDP we find the optimal value µ∗. This value is strictly
positive for 1≤ α< 2 and thus ρab in (109) is entangled for 1≤ α< 2. This entanglementwas

not found by the SDP in (104) and it demonstrates that the SDP for k = 2 is strictly better

at detecting entanglement than the SDP for k= 1. The finding that ρab in (109) is entangled

for 0≤ α< 2 is consistent with [45], where the entanglement of ρab was first discussed. That

discussion also considers the parameter range 2≤ α≤ 5/2, where ρab in (109) is shown to

be separable.

The methods for checking separability discussed here are often called an SDP hierarchy.

The hierarchy discussed here is based on the work of [26]. This is not the only hierarchy; a

number of other hierarchies have been studied [15,35,36,65]. While we have only provided

a brief introduction, the theory of quantum entanglement is an active area of study with a

variety of open problems (see references in and citation to [46]).

8. Problem 5: Quantum Channel Capacity
Information is processed via physical media. However, because physical media introduce

noise, it is natural to ask the amount of noiseless information that can be sent across

some noisy medium. To answer such questions, one constructs an abstract model for the

noisy medium. This model is called a noisy communication channel. A classical channel

sends distinguishable input symbols to distinguishable output symbols. Suppose the input

symbols come from a discrete set, an alphabet X , and the output symbols come from a

possibly different alphabet Y . A discrete memoryless channel N takes an input x ∈ X to

an output y ∈ Y with probability p(y|x). The input and output may be considered random

variables X and Y , respectively, and the channel simply takes X to Y . This channel N is

called memoryless because any output Y = y only depends on the current channel input

X = x and not on a prior input.

Noise introduced by a channel can be corrected by error-correcting codes that encode

and decode information across multiple channel uses. The rate of error correction across

multiple channel uses is captured by the notion of an achievable rate. Roughly speaking, an
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Figure 3. Encoding,E(k)
, anddecoding,D(k)

, classical information across k uses of a classical channel
N .

encoding E(k)
and decoding D(k)

over k joint uses of a channel N (see Fig. 3) that sends

kR bits with vanishing error as k 7→∞ is said to have an achievable rate R. The maximum

possible achievable rate is called the channel capacity C(N). Achievable rates and channel

capacity are fundamental quantities in information theory; Shannon [82] provided a simple

way to compute an achievable rate for any given channel N with conditional probability

p(y|x). This rate, which we call the channel mutual information, is simply given by

C(1)(N) = max
p(x)

I(X : Y ), (111)

where p(x) is a probability distribution over input symbols x, and I(X;Y ) is the mutual

information (28) between the input X and output Y . For any fixed N —that is, fixed

p(y|x)— themutual information is concave in p(x) (see Th.2.7.4 in [21]). As a result,C(1)(N)
can be computed efficiently using tools from convex optimization [4, 17]. In addition, the

channel mutual information is additive: for any two channels N and N ′ used together

the channel mutual information C(1)(N ×N ′) is simply the sum C(1)(N) +C(1)(N ′). The
channel capacity C(N) can be written in terms of the channel mutual information as a limit

C(N) = lim
k 7→∞

1
k
C(1)(N×k), (112)

where N×k represents k joint uses of N . This limit greatly simplifies due to additivity,

C(N) = C(1)(N), a remarkable single-letter expression. From this expression, the capacity

of any channel N to send information over infinitely many channel uses is given by the

maximummutual information between the input and output of a single use of the channel.

Both information and the physical medium carrying this information can be modelled

using quantummechanics. In thismodel, noise introduced byphysicalmedium is described

by a quantum channel. A fundamental question in quantum information theory is to under-

stand themaximum rate at which noiseless quantum information can be sent across a noisy

quantum channel (for instance see [13]). This question is answered in a way analogous to

the one above used by Shannon to understand the capacity of a classical channel.

Noise introduced by a quantum channel B can be corrected by using quantum error-

correcting codes that encode and decode information across quantum channels. Roughly

speaking, a quantum code with encoding E(k)
and decoding D(k)

over k joint uses of a

channel B (see Fig. 4), which sends kR qubits with vanishing error as k 7→∞, is said to have
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Figure 4. Encoding, E(k)
, and decoding, D(k)

, quantum information across k uses of a quantum

channel B.

an achievable rate R. The maximum possible achievable rate of this type is defined to be

the quantum capacity Q(B). The quantum analog of the channel mutual information C(1)

is the channel coherent information of a channel B : Ĥa→Ĥb [8],

Q(1)(B) = max
ρa

Ic(B, ρa), (113)

where Ic(B, ρa) := S
(
B(ρa)

)
− S

(
Bc(ρa)

)
is the entropy bias or the coherent information of a

channelB at ρ andBc : Ĥa→Ĥc is the complementary channel ofB andHc the complemen-

tary output space, sometimes called the environment of B. Recall any channel B has a Kraus

decomposition (45), written using dc Kraus operators Ki : Ha → Hb; the complementry

channel Bc can be defined using a Kraus decomposition,

Bc(A) =
db∑
j=1

LjAL
†
j , (114)

where the Kraus operators Lj :Ha→Hc have matrix elements [Lj ]ki = [Ki]jk.
Unlike I(X : Y ), Ic(B, ρa) is not necessarily concave in the input ρa for fixed B. As a result,

despite the fundamental importance of Q(1)(B), methods for computing Q(1)
are limited.

While C(1)
is additive, its quantum analog Q(1)

is non-additive; that is, for two channels B
and B′ used together, the coherent information of the joint channel satisfies an inequality

Q(1)(B⊗B′)≥Q(1)(B) +Q(1)(B′), (115)

which can be strict [9, 10, 25, 61, 86, 87, 92, 93], where B ⊗ B′ is the tensor product of two

channels (see the discussion containing (44) for definition).

The quantum capacityQ(B) can be written in terms of the channel coherent information

as a limit [23, 63, 85]

Q(B) = lim
k 7→∞

1
k
Q(1)(B⊗k), (116)

where B⊗k denotes k tensor products of B with itself. This expression for the quantum

capacity requires computing a limit over multiple uses of the same channel. In general,

this multi-letter expression for Q is intractable to compute because of non-additivity. As a

result, Q(1)
is always a lower bound on Q, but it need not equal Q. For a special class of

channels called degradable channels Q(1) =Q [24]. A channel B is said to be degradable if
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there is another channel C such that C ◦B=Bc, and Bc, the complement of B, is called anti-

degradable. For any two (anti) degradable channels B and B′, the inequality in (115) is an

equality [60]; that is, additivity holds. Such additivity simplifies the multi-letter expression

for Q in (116) to a single-letter formula:

Q(B) =Q(1)(B), (117)

where B is a degradable or anti-degradable channel. For a degradable channel, Q(1)(B) is
relatively easy to compute: the entropy bias∆(B, ρa) for a degradable channelB is a concave
function of ρ [110] and can be maximized using tools from convex optimization [30, 76].

Given the role of degradable channels in simplifying the discussion of quantum capac-

ities, it is natural to ask if approximate notions of degradable channels can approximately

simplify the discussion of quantum capacities. One such approximate notion is that of an

ε-degradable channel [95]. A channel B is ε-degradable if there is another channel C such

that

||C ◦ B−Bc||� = ε. (118)

If ε is zero, then B is degradable and (117) holds. If ε is not zero, then (117) gets modified to

Q(1)(B)≤Q(B)≤Q(1)(B) + ε log(dc−1)/2 +h(ε/2) + ε log(dc) + (1 + ε

2)h
(
ε/(2 + ε)

)
, (119)

where dc is the output dimension of the complementary channel Bc. The smallest ε for
which (118) holds, εB, can be found using a semi-definite program (SDP),

minimize 2µ
subject toTrc(Zca)� µIa,

Trc
(
Jcb(C)

)
= Ib,

Zca �Jca(Bc)−Jca(C ◦B),
Zca � 0,

andJcb(C)� 0.

(120)

In this SDP, µ is a real variable while Zca and Jcb(C) are positive semi-definite variables.

These variables satisfy linear constraints. In particular the constraintZca �Jca(Bc)−Jca(C ◦
B) is linear in Jcb(C) because Jca(C ◦ B) is linear in Jcb(C) and can be written using

Jca(B) (see App. B). The operators Jca(Bc) and Jcb(B) are both constants which only

depend on the channel B.
For any channel B, the SDP (120) can be solved numerically to compute εB. However,

εB alone is not sufficient to evaluate the bound (119) on the quantum capacity of Q(B). In
addition, one requiresQ(1)(B). As stated earlier, methods for computingQ(1)(B), obtained
from solving a non-convex optimization problem (113), are limited. This limitationmakes it

non-trivial to evaluate the bound (119) for an abritrary channelB. However, there are special

well studied channels for which Q(1)(B) is known [25, 32, 88, 109]. These include channels

that are degradable and have εB = 0, but also include channels that are not degradable.

One simple example of a degradable channel is the qubit dephasing channelwith dephas-

ing probability q [109],
Fq(ρ) = (1− q)ρ+ qZρZ†, (121)

where Z is the Pauli matrix defined in (34). The coherent information of this channel,

Q(1)(Fq), is simply Ic(Fq, I/2) = 1−h(q). Since Fq channel is degradable, εFq
= 0. One may

verify this by solving the SDP (120) to obtain a numerical value ε∗Fq
of εFq

. We find the

absolute difference between ε∗Fq
and εFq

to be small, O(10−10). Using εFq
, an equation of

the form (119) for Fq gives Q(1)(Fq) ≤ Q(Fq) ≤ Q(1)(F1). These inequalities simply state

that the quantum capacity of Fq equals its coherent information, 1−h(q).
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Another simple example of a degradable channel is the erasure channel. Recall, the era-

sure channel Ep with erasure probability p acting on a da-dimensional input is defined

in (42). We consider the case where 0 ≤ p ≤ 1/2. For these values of p, the erasure chan-

nel is degradable, εEp
= 0 and agrees with its numerical estimate ε∗Eq

up to O(10−9). This
estimate is obtained by solving the SDP (120) for a qubit erasure channel with erasure

probability chosen randomly between zero and one half. The channel coherent informa-

tion, Q(1)(Ep), simply equals Ic(Ep, I/da) = (1− 2p) logda (see Sec.4 in [89]). These results,

together with (119), imply that Q(1)(Ep) =Q(Ep) for p ≤ 1/2. This equality also holds for

1/2< p≤ 1, where Ep is anti-degradability.
As our final example, we consider the qubit depolarizing channel, ∆, with Kraus decom-

position (48),

∆(ρ) = (1− p)ρ+ p

3(XρX +Y ρY +ZρZ), (122)

where 0≤ p≤ 1. The coherent information of this channel is

Q(1)(∆) = max(0,1−h(p)− p log2 3). (123)

The qubit depolarizing channel∆ is not degradable, except at p= 0. The smallest ε forwhich

equation (118) holds must be found by numerically solving an SDP (120). This numerical

solution, alongwith (119), can beused to compute bounds on the quantumcapacity of∆. For

instance, when the depolarizing parameter p' .026, solving the SDP (120) gives a numerical

value ε∗D ' 3.8× 10−3
of εD. Using this value, one finds that |Q(∆)−Q(1)(∆)| ≤ 5.1× 10−2

.

For these and other numerics of this type, a short Python based notebook accompanies

chapter (see Notebook 5 in [90]). This same notebook has additional examples consisting of

the qubit dephasing and erasure channels.

So far we have discussed ε-degradable channels, which is one approximate notion of

degradability. This notion allowsone tofind computable bounds on the quantumcapacity of

channels with known coherent information. Another notion for approximate degradability

is ε-close degradable channels [95]. A given channel B is ε-close degradable if there is a

degradable channelMwhich is ε close to B in diamond norm distance, i.e., ||B −M||� = ε.
If B is ε-close degradable, then its quantum capacity can be bounded as follows

|Q(B)−Q(1)(M)| ≤ ε log(db) + (2 + ε)h( ε

2 + ε
). (124)

In the expression above Q(1)(M) can be computed using tools from convex optimization

becauseM is degradable. On the other hand, there is no known way to efficiently compute

the smallest ε for which a given channel B is ε-close degradable. Such computations could

potentially lead to new and possibly tighter bounds (124) on the quantum capacity of

channels. Finding such bounds is an active area of fundamental research in quantum

Shannon theory [27, 28, 42, 70, 91, 100, 101].

9. Concluding Remarks
The SDPmodelswere chosen here so that they can be accompanied byworking numerical

examples to aid in learning, as a companion to closed-form solutions possible in special

situations. However, practical use of SDPs forQIS can easily become numerically intractable

for current solvers as the number of quantum systems involved increase (a quantum system

consisting of k qubits has dimension d = 2k and it introduces O(2k) variables, which is

exponential in k.) This can make the SDPs in Secs. 4,5,6, and 7 numerically intractable for

larger k. This is not the only manner in which SDPs in QIS become intractable. As one

example, the quantum query complexity of a Boolean function of n-bits can be computed

using an SDP that has O(2n) variables(see [77, 78] and references therein). Another reason

is non-linearity: certain optimization problems involving the von-Neumann entropy, a non-

linear function, can be approximated using an SDP [30,31], with numerical effort increasing

with precision, sometimes prohibitively. We hope that this introduction to QIS through

these starter problems provides a rapid and accessible gateway to new researchers.
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Appendix

A. Norms of Superoperators
In Sec. 6 we defined a superoperator D (87), which can we written as,

D(ρ) = (1−λ)
2 (I(ρ)−T (ρ)), (125)

where I(ρ) = ρ and T (ρ) = Tr(ρ) I
d
. Here we compute the l1-norm and the diamond norm of this

superoperator. The l1-norm of D is given by (77)

||D||1 = max
ρ
||D(ρ)||1. (126)

The set of density operators is convex and ||.||1, the 1−norm of an operator, is a convex function. As a

result, the optimum value of the convex maximization problem above is achieved at an extreme point

of the set of density operator. These extreme points are projectors onto pure states, i.e., |ψ〉〈ψ| where

〈ψ|ψ〉= 1. Thus
||D||1 = max

|ψ〉
||D(|ψ〉〈ψ|)||1. (127)

A simple calculation shows that forD in (125),D(|ψ〉〈ψ|) is independent of |ψ〉 and equals (1−λ)(d−
1)/d.

To compute the diamond norm ofD in (125) we use a technique similar to the one employed in [62]

to compute ||D||� for d = 2. Using (78), we can bound ||D||� from below by ||Id ⊗D(X)||1, where

||X||1 ≤ 1. LettingX = |φd〉〈φd|, where

|φd〉=
1√
d

d∑
i=1

|i〉⊗ |i〉 (128)

is the maximally entangled state on two qudits, gives

||D||� ≥ ||D(|φ〉〈φ|)⊗Id||1 = (1−λ)d
2− 1
d2 . (129)

This lower bound can be matched by an upper bound. To obtain this upper bound notice D in (125)

is proportional to N = I −T , the difference of two quantum channels. The diamond norm of such a

difference is given by the SDP [104]:

minimize 2µ
subject to µIa �Trb(Zba),

Zba �Jba(N ),
andZab � 0.

(130)

Notice Zba = d2−1
d
|φd〉〈φd| is a feasible solution of this SDP with µ= d2−1

d2 , thus ||N ||� ≤ 2 d
2−1
d2 . Since

||D||� = (1−λ)
2 ||N ||�, we get a matching upper bound to (129).

B. Transfer Matrix and Choi-Jamiołkowski representation
Let H be a d-dimensional complex space and L(H) be the space of linear operators on H. Given

two operators A and B in L(H), their Frobenius inner product is

〈A,B〉 := Tr(A†B). (131)

Using this inner product, one can define an orthonormal basis of d2
operators, {|i〉〈j|}, for L(H).

Using such a basis, a channel superoperator B :L(Ha)→L(Hb) can be written in matrix form,

B(|k〉〈l|a) =
∑
i,j

T (B)kl,ij |i〉〈j|b, (132)
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where the complex numbers

T (B)kl,ij = 〈B(|k〉〈l|a), |i〉〈j|b〉, (133)

form the entries of ad2
b×d2

amatrixT (B), sometimes called the transfermatrixof the channelB. The rows

and columns of T (B) are indexed by 0≤ k, l≤ db − 1 and 0≤ i, j ≤ da − 1 respectively. This transfer

matrix T (B) : Ha ⊗ Ha → Hb ⊗ Hb is related to the channel’s Choi-Jamiołkowski representation

Jba(B)∈Hba (defined in (50)) as follows

〈kl|T (B)|ij〉= 〈ki|Jba(B)|lj〉, (134)

where we use the notation |ij〉 := |i〉⊗ |j〉.
Let B : L(Ha)→L(Hb) and C : L(Hb)→L(Hc) be two channels with transfer matrices T (C) and

T (B), respectively. Using the two channels in series results in a third channel C ◦ B with transfer

matrix T (C ◦B). This matrix is simply the product of the individual transfer matrices and is given by

T (C ◦B) = T (C)T (B), (135)

Using the above equation, along with the relation (134) one can show that Jca(C ◦ B), the Choi-

Jamiołkowski representation of C ◦B, is just a linear function of Jba(B) and Jcb(C).
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