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Many NP-hard Combinatorial Optimization (CO)
problems can be cast as a quadratic unconstrained
binary optimization (QUBO) model, which maps
naturally to an Ising model. The final spin configuration
in the Ising model can adiabatically arrive at as
a solution to a Hamiltonian, given a known set
of interactions between spins. We enhance two
Photonic Ising Machines (PIMs) and compare their
performance against classical (Gurobi) and quantum
(D-Wave) solvers. The temporal multiplexed coherent
Ising machine (TMCIM) uses the bistable response
of an electro-optic modulator to mimic the spin up
and down states. We compare TMCIM performance
on Max-cut problems. A spatial photonic Ising
machine (SPIM) convolves the wavefront of a coherent
laser beam with the pixel distribution of a spatial
light modulator (SLM) to adiabatically achieve a
minimum energy configuration, and solve a number
partitioning problem (NPP). Our computational
results on Max-cut indicate that classical solvers are
still a better choice, while our NPP results show
that SPIM is better as the problem size increases.
In both cases, connectivity in Ising hardware is
crucial for performance. Our results also highlight
the importance of better understanding which CO
problems are most likely to benefit from which type
of PIM.

1. Introduction

Several Combinatorial Optimization (CO) problems -
maximum cut and number partitioning included - that
arise in practice are NP-hard, and scale exponentially
with size on conventional digital computing architecture.
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As the demand for solving such large CO problems keeps increasing, alternative architectures
need to be explored. Ising solvers are attractive for many reasons. To begin with, the other
popular alternative to conventional computing at this time, the circuit-based quantum computer,
has limited number of qubits, high gate errors, low decoherence times and limited connectivity,
and so unable to realistically solve problems of any reasonable size. Second, many CO problems
can be cast naturally as Ising problems by first converting them to a Quadratic Unconstrained
Binary Optimization (QUBO) model [1,2]. Consequently, the implementations of various types
of hardware - quantum and semi-classical annealers among them - that minimise the Ising
Hamiltonian have exploded in recent years, as they are seen as promising analog alternatives
to mainstream digital computing [3].

Among the semi-classical approaches are the Photonic Ising Machines (PIMs). PIMs are
additionally attractive (over quantum computers) because they operate at room temperature
and can be easily assembled from available components that are not very expensive. The
two hardware prototypes that we consider are the time multiplexed coherent Ising machine
(TMCIM) [4] and the spatial photonic Ising machine (SPIM) [5]. Other examples of photonic
Ising solvers range from injection locked lasers [6,7] and optical parametric oscillators [4,8-13],
to degenerate cavity lasers that solve the phase retrieval problem [14] and simulate the XY model
Hamiltonian [15]. Some implementations also incorporate error correction mechanisms [16].
A comparison of such a measurement feedback coherent Ising machine, against quantum
algorithms is given in [17].

Comparisons between quantum and semi-classical annealers [18], and different nonlinear
analog Ising machines [19] have been reported. However, we find that most comparisons do
not consider the current state-of-the-art classical solvers such as Gurobi [20]. Ultimately, the
attractiveness of Ising solvers to industrial practice will be based on their ability to outperform
classical methods that are in ubiquitous use today, and not just be better than other emerging
alternatives that are themselves trying to prove their capabilities. Consequently, our goal is not
just to compare our solvers with other emerging architectures, but also against state-of-the art
general purpose commercial solvers, which are themselves continuing to improve.

Our TMCIM replicates [4] with hardware enhancements by incorporating a Zync field
programmable gate array (FPGA) and high bandwidth analog-to-digital converters (ADCs) and
digital to analog convertors (DACs). Parallel multipliers that were implemented on the FPGA
improved the speed. We use different instances of the Max-cut problem, with varying graph
densities, to compare the performance of the TMCIM against Gurobi 9.1 [20] and D-Wave
Advantage 1.1 [21].

Our SLM refines the implementation of [22] by using multiple discrete phase levels, instead of
just a binary grating on a spatial light modulator (SLM). We also reduce the effects of stray light
reflected off the edge pixels of the SLM. This spatial multiplexed Ising machine (SPIM) is then
used to solve the Mattis model, a special case of an all-to-all coupled 2-D Ising problem, which
can be mapped to a number partitioning problem [5,23]. The programmability of SLMs allows
for recurrent algorithms to iteratively correct the wavefront [24,25], and their high pixel density
allows them to process thousands of spins in parallel [26,27]. In Sec. 4, we benchmark SPIM on
the number partitioning problem against both Gurobi and D-Wave.

Beyond a direct formulation of COs into QUBOs, several hybrid quantum-classical algorithms
and quantum-inspired algorithms are being developed that decompose CO problems (such as
those that arise in Finance, Supply Chain and Cancer Genomics [28-30]) to take advantage of
emerging Ising solvers. Ising solvers are central to the overall computational effectiveness of
such algorithms as that is where the “hardness” is expected to be tackled. Improving PIMs, and
understanding where they can be most beneficial, therefore, has a direct impact on being able
solve practical problems, growing in size, even as classical methods continue to improve.
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2. The Ising Model

The mathematical model consists of discrete variables that represent magnetic dipole moments
or atomic spins that can be in one of two states. The spins are arranged on an undirected graph,
G = (V, E), with a set of vertices or nodes V and a set of edges E. A vertex is denoted as i € V
and an edge as (i,j) € E. A binary variable s; € {£1} associated with each vertex i, represents
spin direction. The Hamiltonian (or energy function, or cost function) of the model is

H(s)=— > Jijsisj — »_ hisi, (2.1)

(ig)€E iev

where J;; is the pairwise interaction constant or coupling constant and h; is the external magnetic
field acting on the spins. We attempt to find a particular spin configuration s, for which the
Hamiltonian energy becomes a minimum. Equation (2.1) can also be cast as a problem without
local fields by adding an ancillary spin, sq, and coupling it to each spin:

HlZ*ZJijSisj - Zhisisa. (22)
5] 4

The first term in (2.2) is invariant to flipping all spins. Hence, the final solution is obtained by
flipping the spins based on the value of sq.

For a graph with N vertices representing the spin configuration s=(sq, s2,...,sy), the
coupling constant or connectivity matrix J;; is a square matrix of dimension N x N, with each
element representing the interaction strength between the pairs of spins (s;, s;). The external
magnetic field h;, of dimension N, represents an external magnetic field exerted on s;.

3. Temporal Multiplexed Coherent Ising Machine (TMCIM)

The Poor Man’s Coherent Ising Machine uses a suitably biased Mach-Zender-Modulator (MZM)
to produce bistable photonic states [4]. These are time multiplexed to represent the spins s;, and
the optical output is detected, sampled and fed back to the modulator via a field programmable
gate array (FPGA). Given J;;, the FPGA estimates H (s) and updates the value of s;. This is run
iteratively until all the values of s; are unchanged. Our enhancements over the device in [4]
include the use of a Zync FPGA, and the use of parallel multipliers on the FPGA to speed up
the calculation of the Ising Hamiltonian.

There have been many studies benchmarking CIMs against D-Wave and classical neural
networks [31-34]. We use our TMCIM to solve different instances of the Max-cut problem [35],
generated from rudy [36], and compare them with Gurobi [20], in addition to studying the
performance of DWA on them.

(a) Setup and Methods

Fig. 1 shows a schematic of our experimental setup which is based on the work by Bohm et.
al [4,19], having a transfer function

wnlk+ 1] = cos” (fulk] = T + Calk]) - (3.1)

N | =

fulk] = azn[k] + B Jmnam (K], (32)

where k represents the iteration index. The “spin” values are encoded in the sign of the time
multiplexed photo-voltage o [k] = sign(zx [k]), where z, is a particular time bin of the feedback
signal (see Fig. 2).

Jmn in (3.2) is the coupling coefficient in the Ising Hamiltonian we want to minimize, and
o and 3 are gain parameters that need to be adjusted for each problem instance to reach near
optimal solutions. (n[k] represents Gaussian noise added to the signal in the FPGA, to ensure

H
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Figure 1. A schematic of the experimental setup used.
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Figure 2. Piece-wise constant values of photo-voltage correspond to different spins, where the spin is up if V> 0 and
down if V' < 0. This implementation gives rise to multiplexing of spin values in time.

initial randomness. The non-linear cos?() and the bias of 7 are implemented using a biased MZM,
while frn[k] + Cn[k] is calculated in the FPGA.

The dynamical equations of this setup create a pitchfork bifurcation [19] as the parameter «
is varied. The bifurcation point with 8 =0 is ay, that is, when a < ay,yf, only values near 0 are
stable. At values of a > ay;, the spins randomly choose values +ag, which are the new bistable
points (0 is now an unstable point, as seen in Fig. 3). When S # 0, it can be shown [19] that only
near-optimal (low energy) solutions to the Ising Hamiltonian are stable for a given «, 5. For each
instance of the Max-cut problem, our choice of «, 5 will affect the quality of our solution. Instead
of doing a brute-force search through a grid of different values of o and /3, we used a bound
from [19] that helps us to search only through different values of 3 instead.

Consider a positively weighted graph with adjacency matrix J. Recall, the goal of a Max-cut
problem is to partition the IV vertices of the graph into two sets, P™ and P, such that the cut
value C (the sum of the weights of edges connecting the pt,p ~) is maximized. This also divides
the edges of the graph into three sets: Et,E~ and EC, which are the edges between vertices in
P, P~ and those between P and P~ respectively. The sum of the edges in E¢ gives us the
cut,

C= Z Jij- (3.3)

ije EC
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Figure 3. A bifurcation of the final values that spins settle to, as we vary the gain parameter «, with 5 =0. For o >
apif ~ 3.7, we have two bistable points, which is a suitable parameter space to operate in. At each value of o, we allow
60 spins (different colours) to evolve according to (3.1),(3.2) and plot their final value.

If we label all the spins in Pt with o =1 and all the spins in P~ with o = —1, the above problem
can be recast as the Ising Problem, with the Hamiltonian

HI*ZJMO'Z'O'J’:*ZJU *ZJZ‘j *ZJM +22Jij
] E+ E- EC EC
(3.4)
=-D+2> Jy.
EC

Here, D is the sum of the weights of the graph and ) ¢ J;; gives you the cut value. Thus, if we
set Jjj = —Jgraph, Minimizing the Ising Hamiltonian gives us the Max-cut. However, the solutions
obtained are stable only when we satisfy the condition [19]:

o — api < % Z JmnOmon. (3.5)
mn

Since we set Jmn to be negative, we can change the sign of the LHS and the inequality. Note that
this requires o < ayy¢ for stability. The summation on the RHS is now positive (due to the sign
change), and we can upper bound it by the sum of edges of the graph. With that modification, we
can sweep 3 as

Qpif — &

fIEL "

where |E| is the sum of all edges in the graph. After we fix a to around 0.8 times oy (chosen
empirically), we set f =1 and extract § as a function of c.. We plot this in a landscape of solution
accuracy with «, 3, to get the red line in Fig. 4. The proximity of the yellow (stable) region to the

B=N f=1,0.9,08,... (3.6)

red line indicates that our bound is accurate enough for this application.

(b) Hardware

Computation of (3.1) is performed optically using the MZM, while (3.2) occurs on an FPGA.
FPGAs are capable of performing large numbers of parallel multiplications, which we can make
use of to speed up the computation. In addition, the FPGA can be used to interface with the high
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Figure 4. Variation of solution accuracy with a and 3 for a random 100 spin unweighted graph. The red line shows the
lower bound of 3, i.e. we sweep 3 starting from a point on the red line and move right (since we keep a constant), similar
to [19].

speed ADCs and DACs.! In an enhancement over the implementation in [19], we studied the use
of two FPGA boards: A Zynq7020 chip on a RedPitaya SIGNALIlab 250-12 (250 MHz, 12 bit ADC
and DAC) and a RedPitaya STEMIab 125-14 (125 MHz, 14 bit ADC and DAC). The STEMlab board
was used to obtain solution accuracy and for comparisons with Gurobi for smaller instances (100
nodes or less). The SIGNALIlab board was used for the experiments on larger graphs (up to 1000
nodes).

The DAC and ADC buffers consist of 16384 samples, of which we use 500 to synchronise the
signals; the rest are uniformly distributed to each “spin”. The sampling rates and buffer length
are governed by the decimation used, with a maximum of 65536 samples being available at 1.907
kS/s [37]. The MZM (an Optilab IM-1550-12) is biased at V;; /4. The output power of the MZM at
0 bias is around —4 dBm, which yields a mean photovoltage of 150 mV. To synchronize the time
multiplexed waveforms, we send known waveforms to calibrate for delays.

Our main bottleneck in solution time is the matrix multiplication in (3.2). We optimize this
using a system of parallel multipliers on the FPGA to speed up the matrix vector multiplication.
Each matrix vector multiplication is decomposed into a set of parallel vector-vector products, or
dot products. Each such dot product is handled by a single digital signal processor (DSP) slice,
which essentially acts as a multiply accumulate unit. We parallelize as many dot products as we
can by using multiple DSP slices in parallel.

Each DSP slice handles one or many spins, depending on how many slices are in parallel. If the
number of slices is less than the number of spins, we “fold” multiple operations onto a singleslice.
For example, for 16 spins and 8 DSP slices, the first slice will handle spin 1 and spin 9. To allow for
parallel access to the adjacency matrix J, we distribute the matrix across multiple Block-RAMs
present inside the FPGA. A single row’s elements are stored contiguously in the Block-RAM,
but different rows are distributed across multiple RAMs. A single Block-RAM is associated with
a single DSP slice, and hence may contain more than one row if the slices handle more than
one spin. This promises a reduction in the clock cycles taken (originally ~ N 2 by a factor of the
number of multipliers present in the FPGA board.

'ADC, DAC: Analog to Digital and Digital to Analog Converters respectively
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(c) Comparison of TMCIM with Gurobi and D-Wave Advantage

We first present the results of our TMCIM on various Max-Cut instances and compare them with
Gurobi 9.1 [20], run on an Intel Core i3 processor. The graph instances were generated using
rudy [36].

In Table 1 the graph size is fixed at 100 nodes, and we vary its density. It took us 7T'=12.7s
to sweep § in the range 0.1 < f <1 in steps of 0.1 according to (3.6), with a fixed «, for k =30
iterations (c.f. (3.2)). The best value of Max-cut obtained across all 10 values of 3 at the end of 30
iterations is reported in Table 1. We then ran Gurobi for 107" time and noted the solution obtained
for each graph density, normalizing the obtained Max-cut value to 1. Thus, with a graph density
of 10%, we observe that the TMCIM provides a better solution that Gurobi that was given 10T
time. We also studied how Gurobi performs with time. As we can see, until the graph density
reaches 40%, TMCIM performs better than Gurobi. However, the TMCIM performance degrades
at densities 50 % and higher.

Note that the time presented in Tables 1 and 2 is not the total time taken by the TMCIM, as
it does not include the initial setup and loading times. It is computed from the start of the first
iteration to the end of the last iteration and includes the time taken for matrix multiplication and
optical modulation in each iteration.

Table 1. Cut values for a 100 node graph, with random unweighted edges. The cut values are normalized against that
obtained using Gurobi (107"), with T'= 12.7s in real time.

Graph TMCIM | Gurobi | Gurobi | Gurobi | Gurobi | Gurobi
Density (%) (T) (0.1T) | (0.57) (T) (5T) (107)
10 1.014 0.975 0.975 0.975 0.992 1
20 1.006 0.873 0.984 0.989 0.995 1
30 1.008 0.862 0.862 0.862 0.991 1
40 1.019 0.884 0.884 0.884 0.993 1
50 0.994 1 1 1 1 1
60 0.986 1 1 1 1 1
70 0.991 1 1 1 1 1
80 0.951 0.999 0.999 0.999 0.999 1
90 0.927 1 1 1 1 1
100 0.974 1 1 1 1 1

Table 2 fixes the density of the graph at 40%, and compares the performance as the size of the
graph increases from 100 to 1000 nodes. Since finding the right set of o, 8 parameters becomes
harder for larger graphs, the TMCIM performance is considerable lower. However, better bounds
on the Max-Cut problem may alleviate this issue, and will be further investigated in future work.

Note that the TMCIM was limited in its execution time by the hardware multiplier on
the FPGA. By using parallel multipliers we could reduce T'. Fig. 5 demonstrates the possible
improvement, measured in clock cycles, as we increased the number of parallel multipliers from
16 to 40. For this study, we used low cost and easily programmable versions of the Zync FPGA.

Next, we also include D-Wave Advantage 1.1 (DWA) in our comparisons. In Fig. 6, we vary
graph size N from 20 to 100 nodes with graph density of 10%. We limited our study to these
as it was where TMCIM showed the greatest benefit earlier and because, with 5000 qubits and
Pegasus connectivity in DWA architecture, the maximum size of a fully connected graph that can
be embedded is 119 nodes. For each instance of a graph with /N nodes, we ran the TMCIM 10
times to obtain the success probability as the fraction of Max-cut values that reached close to the
Gurobi (10T") solution. For example, we see that TMCIM is always able to give us a Max-cut
value that is at least 96% of the value from Gurobi (10T") for all N. (It could be hiher than Gurobi

H
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Table 2. Cut values obtained for a 100-1000 node graphs with graph density 40%, using randomly generated integral
weighted edges from 1 to 10. The cut values obtained by TMCIM and different runs of Gurobi are normalized against
Gurobi (107).

Graph | Timetaken | TMCIM | Gurobi | Gurobi | Gurobi || Gurobi
Size | (TMCIM) (s) (T) (0.1T) | (0.57) (T) (5T)
100 15.500 1.019 0.884 0.884 0.884 0.993
200 21.300 0.985 0.996 0.996 0.998 1
300 31.400 0.982 0.999 1 1 1
400 46 0.990 0.998 0.998 0.998 1
500 65.100 0.979 0.997 0.999 0.999 1
600 85.900 0.960 1 1 1 1
700 112.600 0.961 0.999 0.999 1 1
800 143.800 0.940 0.999 1 1 1
900 179.700 0.977 1 1 1 1
1000 220.200 0.936 0.999 1 1 1
1000
—e— FPGA 16
FPGA 24
—e— FPGA 32
8001 o FpGA40
3
S, 600
O
X~
8
© 400
200

20 40 60 80 100
Graph Size (N)

Figure 5. A plot of the number of clock cycles (clock frequency of 100 MHz) taken for matrix multiplication versus instance
size, for different numbers of parallel units on the FPGA. The timing is done using the FPGA’s clock. In these runs, all the
attempts hit the perfect cut value, since the graph instance was small. Hence, the optimality is not represented.

value.) However, if we require a solution accuracy of 99%, then we are able to match (or exceed)
Gurobi only up to N =30 nodes. DWA, however, degrades in performance beyond as few as 20
nodes. We believe this is another outcome of limited connectivity in Pegasus, and highlights the
importance of connectivity in Ising solvers, an advantageous feature of TMCIM.

Newer versions of Gurobi continue to enhance the performance of classical solvers, that can
additionally be run on faster machines. Similarly, D-Wave Advantage2 comes with improved
connectivity, Zephyr, with a future release that is slated to have 7500 qubits. Likewise, higher
capable FPGAs are already available and will continue to improve. Our study is an attempt
to illustrate the relative capabilities today. We suggest that periodic benchmarking be done as
substantial improvements become available.
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Figure 6. Success probability of reaching the Gurobi (107") solution, for a graph density of 10% for different graph sizes:
(a) TMCIM (b) D-Wave Advantage with an anneal time of 20 us.

4. Spatial Photonic Ising Machine
The Mattis spin glass [38,39] is a special case of the general Ising model, with the Hamiltonian

H:ZCiCjUin, 4.1)
i,J
where o; is the binary spin at the i lattice point and (; is the amplitude contributing to the
coupling between spins. We constructed a spatial photonic Ising machine (SPIM) to solve (4.1)
and map it onto the number partitioning problem (NPP) for problem sizes up to over 16000 spins.
Our use of the spatial light modulator (SLM) improves upon the implementation of [22] by
using multiple discrete phase levels. We also reduce the effects of stray light reflected off the edge
pixels of the SLM by surrounding the active optical region by a checkerboard pattern of 0 and =
phases, effectively cancelling out any reflections from the edges.
As before, we benchmark the performance of SPIM with Gurobi and D-Wave Advantage 1.1.

(a) Setup and Methods

The experimental setup employed comprises a laser source, linear optical elements and an
imaging system, as shown in a schematic given in Fig. 7. A Gaussian laser beam from a 633 nm
He-Ne laser is aligned with the help of 2 mirrors in kinematic mounts. The light is linearly
polarized by a polarization beam splitter (PBS) aligned to the axis of the SLM. The beam profile
is then expanded as it passes through 2 convex lenses. The intensity of the beam is reduced after
passing through a beam splitter (BS). The resulting light is incident onto the screen of the SLM
(Holoeye PLUTO-2-VIS-016). The wavefront at the SLM plane undergoes a Fourier Transform
upon reflection by passing through a convex lens of focal length 50 mm, and this Fourier object
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(captured at the back-focal plane of the lens) is then magnified using a second convex lens of the
same focal length. Finally, the magnified object is captured on a screen and imaged by a CMOS
camera (Basler acA2000-165um).

Alignment Mirror

—r——%

Beam Expander PBS Cube

SLM BS Cube

Phase masks
superimposed _

Fourier Lens Laser

.

Alignment Mirror

Magnifying Lens

HDMI Connection

e CF’;//j
4/—\_/' o

USB Connection Camera

Figure 7. Schematic of the experimental setup. The laser is linearly polarized by a PBS cube and using a beam expander,
we fill out the active area of the SLM. The light reflected from the SLM undergoes a Fourier Transform after passing
through a convex lens and subsequent magnification by a second convex lens increases the spatial resolution of the
Fourier plane. At the top left of the figure the superimposed phase masks are indicated. These represent the binary
checkerboard (c; = %1), phase mask of spins (s; = /2 or 3w/2), and phase mask corresponding to the normalised
numbers in the set (a; = cos ! ¢;). These phase masks are superimposed as 0; = s; + c;jo;.

Let us take the electric field at the plane of the SLM to be E(7). Assume a polarized incident
laser beam such that the incoming wavefront is

N%2-1

En(7)= Y rect; (i), (4.2)

=0

where (; gives the complex amplitude of the electric field at the 50 pixel of the SLM. We also
assume that the active area of the SLM comprises N x N pixels of side length L, and that the
laser spot is approximately a plane wave of constant amplitude Ey over this active area and zero
elsewhere. The z-component of the electric field at the SLM plane is written as

N2-1

E.(7¥)=Ey Z ¢jrect;(7), (4.3)
j=0

where rect; () is the rectangular function and ¢; = exp (i0;). Here, 6; is the phase delay imparted
by the ;™ SLM pixel to the laser beam. The field given in (4.3) undergoes a Fourier Transform to
become E (k) at the camera plane [40]:

NZ-1
B (R) = EOJ S grect; (7) exp (ik - 7)d2r. (4.4)
j=0
The intensity [ (k) at the readout plane is hence given by
- 2\ N?-1
Nk . k-L R R
‘Em(kz) = I.%sinc? ( 5 ) Z CmCndmdn exp [1k (rm — rn)] 4.5)
m,n=0

We now set a target intensity and define the cost function

Cost= Z [1(55/7 yl) - [Target(xlz y/)] 2 ) (4.6)

Y
z', Y
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where 7’ and y’ are spatial coordinates in the camera plane. These represent the components
of ko '# +y'g. The constant of proportionality is given by )\if, where ) is the wavelength
of the laser and f is the focal length of the Fourier lens. Since ITarget(ac/, y')2 = constant and

>owr o1 («, y’)2 ~ constant over iterations, we can take the Hamiltonian to be the cross product
term such that

» =\ N2-1

. k-L P

H=-2L" JSIHCQ (2> Z CmCndmdn exp [ik - (rm — Tn)]ITarget(k)d2k~ (4.7)
m,n=0

If we consider a binary phase modulation by the SLM, i.e. ¢ = £1, then H represents an all-to-all

coupling in the Ising model, with coupling constants

Jmn - *2L2]: |:I~Target(k')smc2 <]€2L>:| Can (48)

The coupling constant of two sites on the SLM depends on the chosen target intensity that we
desire to settle to. To encode problems of our choice, we choose the target intensity to be a 2D
delta function with peak at the central pixels of the camera, so that its effect after a Fourier
transformation is constant, and we have a coupling term that depends on (m (n.

(b) Hardware

Using 256 x 256 pixels as the active area of the SLM, we group adjacent pixels as a spin. For
example, a 8 x 8 square of pixels would correspond to one spin, allowing us to solve a 16 x 16
Ising problem. This aggregation is done to create sufficient contrast to be detected by the camera.
We choose an active area of 256 x 256 pixels as it fills the laser spot on the SLM. Initializing
a random spin distribution within the active area, we keep a constant binary checkerboard in
the inactive area. Using this setup, we ran iterative algorithms to move from the random spin
distribution to the target distribution. Flipping one spin at a time in each iteration, we capture the
resulting pattern with a CMOS camera.

The camera exposure time is set to give a maximum range for the intensity detection. The
cost function, (4.6), of this pattern is then calculated with respect to the target image. At the it
iteration, Cost[i] — Cost[i-1] = AF, and a Metropolis-Hastings (M-H) algorithm [41] is run with
an annealing schedule until the cost function converged to a minimum [42,43].

To calibrate the system, we ran the SPIM with a 16 x 16 spin lattice, and observed a steady
decrease in the cost function, as shown in Fig. 8. The cost function for the M-H algorithm
decreased to within a few percent of its initial value within 800 iterations.

(c) Solving the Number-Partitioning Problem (NPP)

The Mattis Hamiltonian can be exactly mapped to the objective function to be minimized to solve
the NPP [2], subject to a proportionality constant. With the same experimental setup from Sec. 4,
we take the electric field at the plane of the SLM to be E(7), polarized along &. Suppose the SLM
active area comprises N x NN pixels of side length I. Let M x M pixels be one spin, so we have a
lattice of S x S spins, with N = M S. As shown in Sec. 4, and using the same approximations and
notations, the z-component of the electric field at the camera plane is given by

N2-1

Ex(E):EOJ > ¢jrect;(7) exp (ik - 7)d’r. (4.9)

j=0
k = 0 gives the field at the origin of the readout plane as in [44]:

N2-1

B (0) x—Eol® > ¢;. (4.10)
§=0
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Figure 8. Ising machine results for 16 x 16 spins. We flip d = 1 spins at each iteration. The checkerboard is almost
entirely reproduced, as the cost function decreases to 0.04 of its initial value within around 800 iterations. The Hamiltonian
function is correlated with the cost function defined in (4.6) and similarly decreases. On the top right graph, the variable

8= ,CB%T, where kp = 1.38 x 10~23JK~1 and T is the temperature of the system.

where ¢; = ajei(_l)Jaj. A similar idea was used in [27]. Here o; gives the spin value and «a; =
cos™1¢ j, with (; as the numbers normalized by dividing over the largest number in the set. These
two terms are constant over an area of adjacent M x M pixels on the SLM, or within one spin.
Hence, the electric field at the center of the camera plane is

S2-1
E4(0) —Eol? Z Ca [ela“ + e 1% M2 terms] (4.11)
a=0

We choose M to be even, which allows us to group pairs of exponentials and obtain:

52-1
E(0) o —Egl>M? Z 0a cos (aa). (4.12)
a=0

The intensity at the center of the camera plane becomes

S5%2-15%2-1

1(0) o Z Z Om0n cos (am) cos (an). (4.13)

m=0 n=0

Comparing (4.1) and (4.13), we find that 7(0) maps onto H.

With the experimental setup given in Fig. 7, the laser intensity is recorded at the central 64 x
64 pixels on the image plane. The aim here is to minimize the total intensity captured at each
iteration. A recurrent feedback loop is therefore setup between the camera and SLM through a
Python program on a computer.

The Hamiltonian given by (4.1) is adiabatically changed from a problem instance of all equal
numbers, to the desired problem instance, according to:

S2-152-1 0 0
H(t) x Z Z Om0On COS < 7:”) cos (%) (4.14)

m=0 n=0
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The interpretation here is that the Hamiltonian initially represents a scenario where all the
numbers to be partitioned are equal when ¢ = 0; hence, the checkerboard pattern for the spins
is a ground state solution. These spins are rotated in phase on the SLM, which causes a change in
H to shift to represent the original Hamiltonian as we rotate the phase. For ¢t =T, H is the same
as in (4.13). Since the rotation here is cosine and not linear, the intermediate problem instances of
the Hamiltonian are different from the target Hamiltonian. The purpose of the nonlinear phase is
to introduce field amplitudes that will encode the number to be partitioned, and this nonlinear
phase is superposed with the phase mask representing the spins as described in (4.10). The value
of ¢ is not changed continuously, but in steps determined by the precision of the SLM. At each
instance where the phases are changed, a few iterations are given to let the SLM settle to the
changed Hamiltonian, as can be observed in Fig. 9.

The SLM active area is chosen as 256 x 256 pixels or 512 x 512 pixels, depending on the size
of the problem. Within this active area, we utilize the full analogue range of the SLM (8 bits) to
simultaneously perform amplitude and phase modulation to get a Mattis model Hamiltonian at
the readout plane. In our implementation, the range of problem instances depends on the size
of the floating point variables sent to the SLM, which is 24 bits after the decimal place. For any
number ¢ = cos o, we have d{ = —sin ada. Since the increment limit for the floating point is
da=107%, and |sin a| < 1, we get the upper limit as d¢ < 10~®. Hence, we can generate problem
instances where each number has at most 8 significant digits.

Taking N x N adjacent pixels as a spin, a ground state is initialized, which for our initial
Hamiltonian is any configuration that is 50% phase 7/2 and 50% phase 37 /2. The SLM is also
divided into macropixels of size 2 x 2 pixels each. An additional phase of (—1)7 cos™! ¢y, is
applied onto the 40 macropixel of the SLM active area, where m is the index of the spin. This
allows us to take full advantage of the digital capabilities of a SLM and gives us more control
over the phase changes in each M-H iteration. In the problem instances we consider, the coupling
constants are all positive, and adiabatically tuning them results in a dip in the cost function. The
exposure time of the camera is chosen for each problem instance as the value required to just
reach saturation of the intensity reading upon initializing a problem instance. This allows us to
maximize the range of intensity values and hence the cost function change that the camera can
detect, which leads to improved results.

At each stage in the adiabatic process [23], the M-H algorithm is run by flipping d > 1 spins
at each iteration, and then deciding whether to keep the flip based on the change in intensity.
Generally, we expect a lower value of d to provide better quality of the solution, though it takes
longer to converge. We find an adiabatic solution by minimizing H o I (0) continuously as 3 =
(kpT)~! decreases, until a solution is reached. This way of encoding the problem onto a SPIM
gives us an efficient means to get approximate solutions to the NPP.

(d) Comparison of SPIM with Gurobi and D-Wave Advantage

SPIM consistently performs well for problem sizes ranging from 16 spins to 16384 spins. A sample
plot for a problem instance of size 16384 spins is shown in Fig. 9, where we defined a spin as a bin
of 4 x 4 pixels and took a decision on d = 8 spins in each M-H step. The plot at the top right of the
figure shows the cost function decreasing throughout the experiment, with sharp dips whenever
the coupling constants are changed. The quality of our solution is quantified by a fidelity,

Ciora
3 &3
where (; and o are the values of the 7™ number and spin. Squaring the fidelity gives:
o Cao
n? = iy G015 | (4.16)
2245 G
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Figure 9. Results for a problem instance of size 16384 spins. The periodic sudden dips in the cost function are a signature
of the adiabatic tuning of the coupling constants. As shown in the plot on the bottom right of the figure, the fidelity escapes
a local minima fairly easily, allowing us to sample a large energy landscape. Further, we can see that the number of
accepted flips is lower than the number of rejected flips. Insets on the colourmaps shown in the left show an expanded
view of a section of 10 x 10 spins.
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Figure 10. Scaling of the solution quality with problem size. The trend mostly shows that solution quality increases on
average with problem size. The experimental scheme is hence favourable in time complexity. The last point is higher
because of increase in cross-talk as the bin size is now 1 pixel.

The denominator in the above equation remains constant through all the iterations. Therefore,
the square of the fidelity is proportional to the Mattis model Hamiltonian given in (4.1) and by
extension, the intensity at the center of the camera plane as well. The fidelity is thus positively
correlated with the Hamiltonian throughout the energy landscape.

In the plot shown on the bottom left of Fig. 9, we can see that the fidelity escapes a local
minima quite easily; hence, we are able to sample a large solution space. This is partly due to the
intrinsic intensity noise of the laser source, and partly due to the algorithm employed. The lower
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plot in the same figure reveals that the number of accepted flips is a lot lower than the number of
rejected flips. This is due to the Fourier transform, an all-to-all operation, which results in a spin
flip causing only a tiny change to the detected intensity.

Note that to solve a 16384 spin instance, we used a 4 x 4 bin for each spin, indicating that we
could have attempted even higher spin instances if we were willing to make the bin size smaller. A
plot of the solution quality with problem size is shown in Fig. 10, where the solution is averaged
over several randomly generated problem instances. Unlike similar work done previously, we
do not use the Hamming distance as a metric for the solution quantity [5]. The NPP typically
has several approximate solutions which may be degenerate, and yet of starkly different spin
configurations. The Hamming distance gives us information on how many spins need to be
flipped to achieve the true ground state, but from an application point of view, the aim here is
to benchmark the quality and utility of the achieved solution against other solvers.

The performance of our SPIM in solving the NPP is compared with that of the D-Wave
Advantage and Gurobi, as before. Table 3 compares the best fidelity achieved over a single run
for different problem instances of a fixed size. Gurobi consistently performs better than SPIM and
D-Wave. SPIM, however, is more consistent than D-Wave, although not uniformly better.

Table 3. Performance of size 64 spins on different problem instances, with the best fidelity achieved in each trial.

Trial  Gurobi DWA SPIM
1 4.38E-05 2.89E-05 5.34E-04
3.58E-05 1.78E-04 1.28E-04
453E-05 241E-03 2.74E-04
1.07E-05 1.27E-05 1.47E-04
9.74E-05 1.16E-04 5.89E-04

Q1 b= W N

Table 4. Benchmarking the SPIM with the DWA and Gurobi. *The SPIM runtime indicated is the maximum required for
all problem sizes. **The DWA runtime indicated includes the embedding time for 121 spins for different problem instances.

Solver =~ Max. Problem Size = Avg. Fidelity for 64 spins Runtime
SPIM 16384 6E-04 9 min.*
DWA 121 5.49E-04 ~ 10 min.**

< 1 min. for 64 spins

Gurobi 1024 4.66E-05 ~ 10 min. for 1024 spins

Table 4 shows average fidelity achieved and its corresponding runtime, for the maximum
problem size solvable on each platform. For smaller problem sizes, up to 1024 spins, the
performance of Gurobi is better. However, as the size of the problem gets larger, Gurobi is unable
to fetch a solution. SPIM scales favourably for larger problem instances, going up to 16384 spins.
Despite the fact that D-Wave has 5000+ qubits, the number of spins that can be embedded is
capped at a 11 x 11 grid for the NPP. This is due to the large overhead in embedding a coupling
between spins for a graph of density 100%, once again highlighting the importance of connectivity
in solving Ising problems.

5. Summary

We have studied the performance of two photonic Ising machines - TMCIM and SPIM - with
off the shelf optical components, by refining and enhancing the architectures, building on work
at other research groups. TMCIM and SPIM were both benchmarked against Gurobi, one of the
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most commonly used classical solvers in industry today, and against D-Wave, one of the most
prominent commercial providers of quantum annealing solutions to industry. Our goal was to
evaluate and understand the capabilities of these PIMs against the best alternatives that are
already in use or are being considered as promising.

TMCIM gave better results than Gurobi for the Max-cut problem with 100 nodes (spins) with
a graph density no greater than 40%. For larger problems, its solution accuracy is lower than
Gurobi, but better than D-Wave, which we attribute to better connectivity between spins. Not
surprsingly, SPIM could tackle the number partition problem with 16384 spins larger than what
D-Wave could solve (again due to higher connectivity). Importantly, SPIM scales better than
Gurobi that could not find solutions for problems with more than 1024 spins. This highlights
the importance of understanding which NP-hard CO problems are likely to benefit from which
architecture of PIMs, rather than treat them all interchangeably.

As all approaches continue to make progress, it is important to conduct periodic benchmarking
to understand the best choices to solve particular CO problems that arise in practice. We hope our
work here contributes towards that goal.
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