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Abstract. In the aftermath of a sudden catastrophe, First Responders (FRs) strive to reach and rescue immobile
victims. Simultaneously, civilians use the same roads to evacuate, access medical facilities and shelters, or reunite with
their relatives, via private vehicles. The escalated traffic congestion can significantly hinder critical FR operations. A
proposal from the Türkiye Ministry of Transportation and Infrastructure is to allocate a lane on specific road segments
exclusively for FR use, mark them clearly, and pre-communicate them publicly. For a successful implementation of
this proposal, an FR path should exist from designated entry points to each FR-demand point in the network. The
reserved FR lanes along these paths will be inaccessible to evacuees, potentially increasing evacuation times. Hence,
in this study, we aim to determine a subset of links along which an FR lane should be reserved and analyze the
resulting evacuation flow under evacuees’ selfish routing behavior. We introduce this problem as the First Responder
Network Design Problem (FRNDP) and formulate it as a mixed-integer non-linear program. To efficiently solve
FRNDP, we introduce a novel bi-level nested heuristic, the Graver Augmented Multi-Seed Algorithm (GAMA) within
GAMA, called GAGA. We test GAGA on synthetic graph instances of various sizes as well as scenarios related to a
potential Istanbul earthquake. Our comparisons with a state-of-the-art exact algorithm for network design problems
demonstrate that GAGA offers a promising alternative approach and highlights the need for further exploration of
quantum-inspired computing to tackle complex real-world problems.
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1. Introduction
Disaster Management (DM) is a critical and growing area of study in the Operations Research
community (Kamyabniya et al. 2024). DM research is typically classified into four phases: mitigation,
preparedness, response, and recovery (McLoughlin 1985, Galindo and Batta 2013). The present work
contributes to the preparedness and response phases by addressing pre-disaster planning, aiming to
improve traffic management for a swift and effective post-disaster first response and evacuation. To
this end, we introduce and study the First Responder Network Design Problem (FRNDP).
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After a sudden-onset disaster, such as a massive earthquake, mobile individuals naturally attempt
to evacuate the affected region, access medical facilities or shelters, and reunite with their relatives
(Goltz and Mileti 2011). Simultaneously, FRs - comprising search-and-rescue teams, firefighters,
police officers, ambulance crews, debris clearance, and road restoration teams, relief aid distribution
teams, and volunteers - rely on the same road infrastructure to promptly reach immobile victims in
urgent need (Alexander and Klein 2009). The inevitable traffic congestion caused by mobile citizens
has the potential to significantly hinder critical first-response operations.

The complex and time-sensitive nature of first-response operations requires meticulous pre-disaster
planning. This involves employing analytical methodologies to swiftly implement pre-identified and
pre-communicated policies when a disaster strikes. The two consecutive earthquakes of magnitudes
7.8 and 7.5 that hit Türkiye on February 6, 2023, and affected over 15 million people in 11 provinces in
southeastern Türkiye and northwestern Syria exemplify the complexity of the required first-response
operations. The earthquakes caused over 50,000 deaths, more than 100,000 injuries, and over 2.7
million displaced people in Türkiye alone due to 36,932 collapsed and more than 311,000 damaged
buildings (World Bank and Global Facility for Disaster Reduction and Recovery 2023). After the
earthquakes, 271,060 personnel were deployed to the region, including 35,250 search and rescue
personnel, public employees, personnel of NGOs, international search and rescue personnel, and
volunteers (The European Union Delegation in Türkiye and the EU Joint Research Centre 2023).
Although rescue and response teams tried to reach the disaster-stricken region immediately, not all
cities and villages could be provided with sufficient emergency services within the critical first 24
hours due to accessibility difficulties (METU 2023).

A proposal to ensure the accessibility of FRs is to reserve a lane on specific road segments exclu-
sively for FR use during the crucial initial hours following a disaster referred to as “golden hours”
(Lerner and Moscati 2001). However, this course of action requires careful planning, as this allo-
cation diminishes the already congested road capacity for evacuees in private vehicles (Xie and
Turnquist 2009). Moreover, road reservations must be decided and announced before the occurrence
of a potential disaster. Communicating such a strategy amidst disaster chaos, compounded by poten-
tial communication breakdowns, would be an extremely challenging, if not impossible, task. Another
advantage of identifying FR lanes to be reserved a priori is that the corresponding roads and the
buildings along them can be strengthened via retrofitting projects in the pre-disaster stage to with-
stand the disaster (Peeta et al. 2010, Yücel et al. 2018, Zhang et al. 2023). The Transportation
and Infrastructure Ministry of Türkiye announced, on August 26th, 2023, which highways would
be reserved for FRs as part of preparation to better respond to a potential Istanbul earthquake
and stated that critical structures on these roads would be strengthened. Accordingly, the Istanbul
Municipality has been actively working on identifying emergency routes on urban roads.
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In FRNDP, we seek to answer the questions, “On which links should we reserve a lane to be
exclusively used by FRs?” and “What will be the resulting evacuation flow under evacuees’ self-
ish routing mechanism?”. Essentially, the problem is a complex mixed-integer non-linear program
(MINLP) where the objective function depends on the outcome of another optimization problem,
i.e., evacuees’ selfish routing decisions. Thus, the effort in FRNDP is to acquire the best combination
of FR paths so that FRs can access all FR-demand regions via reserved lanes while minimizing the
aggregate public evacuation time, constrained by the chosen FR paths and the evacuees’ behaviors.
We assume that a lane must be reserved in both directions along the FR path so that immobile
individuals can be quickly taken to exit points and medical centers as well.

Recognizing the important practical application of FRNDP, the goal of this study is to develop
an algorithmic framework capable of leveraging advancements in quantum computing to tackle this
challenging optimization problem. To this end, we note that our goal is not merely to develop a
new heuristic for solving FRNDP that outperforms existing methods. With this perspective, the
primary contributions of this study are twofold. First, we propose FRNDP for the first time in the
DM literature. Although lane reservation problems for transportation networks have been addressed
in DM literature (Xie and Turnquist 2009, Kimms and Maassen 2012), the existing models focus
on other mechanisms for managing transportation networks such as lane reversals and intersection
crossing elimination, or differ in their requirements such as needing to reserve an entire road for an
FR instead of one lane. FRNDP exploits single-lane reservations in both directions along FR paths
while maintaining public evacuation road capacities. Second, from a methodological perspective, our
study introduces a novel quantum-inspired approach using test sets to solve FRNDP instances. We
build on Graver Augmented Multi-Seed Algorithm (GAMA) (Alghassi et al. 2019b) to develop an
effective heuristic, GAMA within GAMA, which we call GAGA. Our work introduces a different
class of algorithms than the studies that have utilized quantum computing in hybrid approaches
for bi-level problems, such as the quantum-inspired evolutionary algorithm coupled with a Frank-
Wolfe algorithm (Yan et al. 2008) or with genetic algorithms (Fan et al. 2021). To the best of
our knowledge, a bi-level optimization problem has not been solved using graver test sets. Our
computational experiments benchmark GAGA with an exact state-of-the-art algorithm and give
promising results with encouraging implications for the emerging area of quantum-inspired computing
in addressing complex real-world problems.

The remainder of this paper is structured as follows. Section 2 reviews the related literature. Section
3 formally describes FRNDP and presents a MINLP model. In Section 4, we propose our novel
quantum-inspired bi-level algorithm. Section 5 implements a Branch-and-Bound (B&B) algorithm
for comparison purposes. Section 6 conducts computational experiments and discusses managerial
insights. Section 7 concludes our paper.
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2. Related works
FRNDP is a new variant of the Discrete Network Design Problem (DNDP), a well-studied bi-level
optimization problem in transportation. In DNDP, the leader (outer) problem identifies an optimal
set of candidate links to be adjusted in the network to minimize a travel-oriented metric (e.g., total
travel time) subject to a budget constraint. The follower (inner) problem models the users’ reactions,
typically governed by a static traffic assignment problem (TAP) under user equilibrium (Dafermos
1980, Bard 2013).

Three primary classes of exact methodologies have been proposed to solve the DNDP or its linear
approximation (derived by piece-wise linear link travel time approximation or linear outer approxi-
mation (Wang et al. 2015)): (i) a B&B algorithm (LeBlanc 1975, Farvaresh and Sepehri 2013, Bagloee
et al. 2017, Yin et al. 2022), (ii) a generalized Benders’ decomposition approach (Gao et al. 2005,
Fontaine and Minner 2014, Bagloee et al. 2017, Fontaine and Minner 2018, Afkham et al. 2022), and
(iii) a single-level reformulation (Farvaresh and Sepehri 2011, Fontaine and Minner 2014). LeBlanc
(1975) proposed a B&B as the first exact method to solve DNDP. The authors used the single-level
system-optimum DNDP (SO-DNDP) relaxation of the TAP, which ignores the follower objective
function, to generate lower bounds and solve DNDP iteratively. Variational inequalities (Luathep
et al. 2011), as well as interdiction cuts (Wang et al. 2013), have also been suggested to complement
the SO-DNDP formulation. Bagloee et al. (2017) developed a B&B algorithm in which a generalized
Benders decomposition approach is utilized to solve the SO-relaxation of the TAP at each node of the
B&B tree. Bi-level optimization problems with a convex follower problem can be reformulated into a
single-level model via the Karush-Kuhn-Tucker (KKT) conditions accompanied by binary variables
to model complementary slackness (Bard 2013). This also applies to the DNDP since the follower
TAP problem is a convex nonlinear program (NLP) (Beckmann et al. 1956, Rey 2020). A survey by
Rey (2020) highlights that the largest DNDP instances solved to optimality are still small in scale.

Apart from exact methods, a range of heuristic approaches–evolutionary and greedy algorithms,
followed by a classical paradigm– have been developed to solve DNDP variants. Chang and Chang
(1993) introduced a heuristic algorithm based on expected generalized travel costs in an iterative
assignment procedure to solve a DNDP variant of upgrading investment decisions under a budget
limitation. Janson and Husaini (1987) presented two heuristics, one based on ranking and deleting
alternative network modifications and the other on a constrained random sampling approach. Wu
et al. (2009) proposed a greedy heuristic for a lane reservation problem for the Olympic games to
minimize the total travel time for ordinary traffic while ensuring strict time windows for athletes and
equipment among venues. Shangin and Pardalos (2016) focused on the network design problem with
connectivity requirements, developing algorithms based on a greedy strategy and variable neighbor-
hood search metaheuristics. Cheng et al. (2022) studied the problem of selecting some lanes on the
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road network to reserve for vehicles with special tasks (such as the FRs in our problem) that need
to arrive at their destination within a target travel time. Their objective is to minimize the impact
of lane reservations on regular vehicles while ensuring the target travel time for special vehicles. The
authors developed an artificial bee colony (ABC) algorithm for the upper-level reservation decisions,
and the Frank-Wolfe algorithm to solve the lower-level user equilibrium TAP.

Only a few studies provided quantum mechanics-inspired ideas (e.g., superposition, quantum gates,
and probabilistic states) to improve classical methods for the bi-level network design problems. Yan
et al. (2008) formulated a bi-level model to optimize transportation network capacity improvement
under budget constraints, with the upper level minimizing total travel time and the lower level
addressing user equilibrium TAP. The authors utilized a Quantum-Inspired Evolutionary Algorithm
(QEA) coupled with a Frank-Wolfe algorithm. Recently, Fan et al. (2021) examined a QEA combined
with genetic algorithms to schedule regional integrated energy systems. The QEA uses quantum bits
to represent possible solutions, and quantum gates to update these quantum bits in each generation,
enabling a more efficient search of the solution space compared to classical algorithms. Additionally,
a repair operation is included to ensure that solutions respect the budget constraints. Different from
these QEAs, GAMA is based on a concept from algebraic geometry and integer programming called
a Graver basis. A Graver basis is a set of directions or vectors that guide the optimization process
to iteratively improve a feasible solution. GAMA has found successful applications in various fields,
including portfolio management (Venturelli and Kondratyev 2019, Alghassi et al. 2019c), cancer
genomics (Alghassi et al. 2019a), and the quadratic assignment problem (Alghassi et al. 2019b).

Focusing on DM applications, a few DNDP variants have been proposed to establish emergency
routes while considering the evacuation problem at the inner level (Afkham et al. 2022, Nikoo et al.
2018, Shariat Mohaymany and Nikoo 2020, Xie and Turnquist 2009, Kimms and Maassen 2012).
Afkham et al. (2022) developed a bi-level optimization model for mass self-evacuation planning for
non-compliant evacuees and employed an accelerated Benders decomposition. Nikoo et al. (2018)
identified the emergency transportation routes to be closed to public traffic using a Branch-and-
Cut (B&C) algorithm. Shariat Mohaymany and Nikoo (2020) developed a multi-objective stochastic
program to obtain disaster response routes considering earthquake scenarios with arc failure prob-
abilities, solved by a B&C algorithm. Xie and Turnquist (2009) studied a problem that included
decisions for lane reversals, intersection crossing elimination and emergency vehicle lane reservations,
and proposed a hybrid Lagrangian relaxation and tabu search algorithm for a triggered nuclear alarm
case study as a slow-onset disaster context. Their model differs from FRNDP as it focuses on other
mechanisms for network management, and their FR lane reservations only affect traffic in one direc-
tion - from FRs to the demand nodes - and not in reverse. Kimms and Maassen (2012) proposed a
three-staged heuristic for evacuation planning with the assignment of rescue teams. Their problem
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differs from FRNDP as FR lane reservations require an entire road to be blocked off instead of allow-
ing single lane reservations. The main similarity between FRNDP and DNDP variants is that they
share the same structure of a bi-level formulation with a discrete outer problem of minimizing the
total travel time and a continuous inner problem that solves a user equilibrium TAP. A complicating
difference of FRNDP is that the outer problem requires reserving sets of lanes for FRs that connect
each FR-demand node to an FR entry point, in both directions. A second difference between these
problems is that FRNDP lacks budget constraints since lane reservations for FRs are cost-negligible.

Our study pioneers the development of GAGA, a novel quantum-inspired bi-level optimization
algorithm to solve FRNDP instances, where both levels employ GAMA. GAMA augments a given
feasible solution by using Graver basis elements as a set of candidate improving directions, to progress
toward the optimal solution. The algorithm uses a multi-seed approach, meaning it starts from
multiple feasible points (seeds) to explore the solution space. Picking the best solution (among the
local optima) helps us come closer to the global optimum. For solving the outer level problem in
FRNDP, GAGA is similar to the aforementioned heuristics that use search methods like ABC and
neighborhood search. The key difference is the underlying GAMA heuristic within the GAGA, where
the search method relies on Graver basis elements (generated by quantum or quantum-inspired
methods) to obtain candidate feasible solutions for improving the objective function. Typically, the
nested heuristics solve the inner problem exactly using methods such as Frank-Wolfe. A further
difference in the GAGA approach is to also use GAMA for approximately solving the inner problem.
At the end of the inner GAMA search, we solve the inner problem exactly to ensure a feasible final
solution. The fundamentals of GAMA and the GAGA structure will be detailed in Section 4.

3. First responder network design problem
Section 3.1 provides an outline of FRNDP, and Section 3.2 formulates a MINLP model for FRNDP
with a glossary of notation provided in Appendix A of the Online Supplement. To clarify the concepts
of Sections 3 and 4, an illustrative example is presented in Appendix B of the Online Supplement.

3.1. Problem overview
Consider a network G = (N,A) with node set N and directed link set A. Let F be the set of nodes
that must be visited by FRs, and S denote the set of nodes with disaster-affected individuals (agents)
who aim to evacuate the network. Let E be the set of entry/exit nodes from which FRs can enter
and agents can evacuate the network. Without loss of generality, we assume that these entrance and
exit nodes are the same and originate from highways within the network or medical or shelter points,
even though they can theoretically be distinct. Let di denote the number of agents, in terms of the
number of vehicles, residing at i∈ S. For each (i, j)∈A, let uij be the maximum vehicle capacity, Tij

be the free-flow travel time of the link for a single vehicle, hij ∈ {1,2, · · · } be the number of lanes,
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and xij be the number of agents traveling on it. Let tij(xij , uij , Tij) denote the travel time function
from i to j along link (i, j)∈A, which depends on traffic flow, link capacity, and free-flow travel time.
It is modeled as the classic Bureau of Public Roads (BPR), a strictly convex function of the form

tij(xij , uij , Tij) = Tij

(
1 + α

(
xij

uij

)β
)

, (1)

where we set α = 0.15 and β = 4 following the standard by US Bureau of Public Roads. Office of
Planning. Urban Planning Division (1964). We assume that agents decide to travel to an exit node
in E under optimal selfish routing behavior, which can be altered depending on the behavior of other
agents. Finally, it is assumed that the reserved FR lanes will not be congested.

The key tradeoff in FRNDP involves determining the allocation of limited link capacity between
FRs and agents. Therefore, the primary decision in FRNDP is to select a subset of links along which
one lane in both directions will be reserved for FRs. Reserving one lane in both directions is necessary
to allow FRs to visit nodes and return to their origin points to transport immobile individuals to exit
points or medical centers. Additionally, since the traffic volume for FRs is relatively low, reserving a
single lane on selected links is deemed sufficient and consistent with the literature on lane reservation
problems (Fang et al. 2011, Wu et al. 2018, Li et al. 2022). FRNDP ensures that each node in F

is connected to a node in E via a path of reserved lanes. Reserving a lane on link (i, j) reduces its
capacity by uij ←

hij−1
hij

uij . We note that if more than one lane exists on a link, agents can use its
unreserved lanes. Furthermore, an entrance node in E can be connected to multiple nodes in F via
several common reserved lanes, opting not to overfill the capacity. The objective is to minimize the
total evacuation time for agents located in S under user equilibrium traffic conditions. An alternative
objective could be to minimize the maximum travel time over the agents.

3.2. A MINLP model
Based on the described problem characteristics in Section 3.1, in this section, we formulate FRNDP
as a bi-level MINLP. The necessity of developing a bi-level model is discussed in Appendix C of
the Online Supplement. The outer problem P1(x) corresponds to choosing which links to reserve
a lane on for a given inner problem solution x. Similarly, the inner problem P2(y) solves the user
equilibrium traffic problem for a given outer problem solution y. A glossary of notations, including
sets, parameters, and decision variables, has been provided in Appendix A of the Online Supplement.

P1(x) min
y

∑
(i,j)∈A

xij · tij

(
xij , uij(yij), Tij

)
(2a)

s.t.
∑

j∈N :(i,j)∈A

wijk−
∑

j∈N :(j,i)∈A

wjik = δik ∀i∈N\E,∀k ∈ F (2b)

wijk ≤ yij ∀(i, j)∈A,∀k ∈ F (2c)∑
j∈N :(i,j)∈A

wijk ≤ 1 ∀i∈N\E,k ∈ F (2d)
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yij = yji ∀(i, j)∈A (2e)

yij ∈ {0,1} ∀(i, j)∈A (2f)

wijk ∈ {0,1} ∀(i, j)∈A,∀k ∈ F (2g)

x ∈ P ∗
2 (2h)

P2(y) min
x

∑
(i,j)∈A

∫ xij

0
tij

(
v,uij(yij), Tij

)
dv (3a)

s.t.
∑

j∈N :(i,j)∈A

xij −
∑

j∈N :(j,i)∈A

xji = di ∀i∈N\E (3b)

xij ≥ 0 ∀(i, j)∈A (3c)

y∈ P ∗
1 (3d)

The outer problem P1(x) comprises a binary variable yij ∀(i, j)∈A that represents the choice of link
(i, j) for FR lane reservation. Also, decision variables wijk ∀(i, j) ∈ A,k ∈ F represent the choice of
using link (i, j) to reach node k by FRs. The objective function (2a) minimizes the total travel times
of all agents from their settled nodes to an exit node. Note that the capacity uij and thus the travel
times tij depend on variables y as discussed in Section 3.1. Constraints (2b) ensure that reserved
lanes connect each FR-demand node to an FR entry node. Constraints (2c) guarantee that one or
more FR-demand nodes can be connected to an FR entry node through a path comprising link (i, j) if
a lane on link (i, j) is reserved. Although cyclic paths are admissible in P1(x), constraints (2d) avoid
such paths by requiring that there can be a maximum of one outward edge at each node i ∈N\E.
Constraints (2e) impose the assumption that lane reservation is made bidirectional. Constraints (2f)
and (2g) define decision variable domains. Constraint (2h) ensures that P1(x) uses x as the optimal
solution to P2(y), where x corresponds to inner problem decision variables and P ∗

2 (y) is the set of
optimal solutions to P2(y) for a given outer solution y.

The P2(y) model takes as input a given feasible solution y from the outer problem P1(x). We
define a continuous variable xij ∀(i, j)∈A that represents the flow of agents evacuating the network
using link (i, j). The inner objective (3a) is the standard objective function used in selfish routing
problems (Beckmann et al. 1956, Ata et al. 2017), albeit with a modified travel time function that
captures the dynamic link capacities with respect to lane reservations. We note that the flow on any
edge can exceed its capacity. However, the travel time in such cases increases drastically, as given by
Equation (1). Constraints (3b) ensure that all agents at nodes in S reach an exit node E. Constraints
(3c) enforce the non-negativity of the x variables. Continuous flow is a standard assumption in classic
TAP models, upon which the stability of results and user equilibrium have been demonstrated in
the literature (Lu and Nie 2010, Jin 2015, Rey 2020). Constraint (3d) ensures that P2(y) uses y as
the optimal solution to P1(x), where y corresponds to outer problem decision variables and P ∗

1 (x) is
the set of optimal solutions to P1(x) for a given inner solution x. We note that there is no need to
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balance flow conservation for entry/exit nodes E, as indicated by constraints (2b) and (3b) because
the agent flows begin/terminate at these points. To tackle the complex FRNDP models P1(x) and
P2(y), we propose a novel quantum-inspired algorithm named GAGA in Section 4.

4. Quantum-inspired algorithm
We begin by introducing the fundamentals of GAMA in Section 4.1. Section 4.2 overviews the com-
putation of a partial Graver basis in GAMA. Section 4.3 describes a customized GAMA for FRNDP,
following the studies of Alghassi et al. (2019b) and Alghassi et al. (2019c). Finally, we introduce
GAGA, a novel bi-level optimization algorithm for FRNDP, in Section 4.4. The concepts discussed
in Section 4 are illustrated in Appendix B of the Online Supplement.

4.1. GAMA
GAMA is a heuristic algorithm for solving general non-linear integer optimization problems of the
form presented in model (4), 

min f(x)
Ax = b

l≤ x≤ u, x∈Zn

(4)

where A∈Zm×n, b, l, u∈Zn, and f :Rn→R is a non-linear real-valued objective function with linear
constraints. One approach to solving such models is to use an augmentation procedure. It begins with
an initial feasible solution to model (4) and iteratively seeks improvement by exploring directions from
a set of pre-determined candidate improving directions, known as a test set or optimality certificate.
The algorithm terminates once no candidate direction results in an improved objective function value.
The test set is defined in Definition 1, taken verbatim from Alghassi et al. (2019c).

Definition 1 A set Ω⊆Zn is a test set or an optimality certificate if for every feasible, non-optimal
solution of model (4), say x0, there exists t∈Ω and λ∈Z+ such that f(x0 + λt) < f(x0). The vector
t∈Ω is called an augmenting direction.

In principle, GAMA uses a Graver basis (Graver 1975) as its test set. Definitions 2 and 3 introduce
the Graver basis, taken verbatim from Alghassi et al. (2019c).

Definition 2 Given vectors x, y ∈Rn, we define x to be conformal to y, written as x⊑ y, if xi×yi ≥ 0
(x and y lie in the same orthant), and |xi| ≤ |yi|, ∀ i∈ {1, · · · , n}. Similarly, a sum u =

∑
i vi is called

conformal if vi ⊑ u, ∀i.

Definition 3 For a matrix A ∈ Zm×n, define the lattice L∗(A) = {x|Ax = 0, x ∈ Zn, x ̸= 0}. The
Graver basis, G(A)⊂Zn, of an integer matrix A is defined as the finite set of ⊑-minimal (indecom-
posable) elements in L∗(A). A set of elements G is ⊑-minimal if ∀gi, gj ∈ G, gi ̸⊑ gj, when i ̸= j.
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The Graver basis of an integer matrix A∈Zm×n is known to be a test set for integer linear programs
(Graver 1975). Graver basis also serves as a test set for specific non-linear objective functions, such
as Separable convex minimization (Murota et al. 2004), Convex integer maximization (De Loera
et al. 2009), Norm p minimization (Hemmecke et al. 2011), Quadratic (Lee et al. 2010, Murota et al.
2004) and Polynomial minimization (Lee et al. 2010). These works show that the required number
of augmentation steps for their studied problems is polynomial. The Graver basis can be computed
for relatively small problems using classical methods, such as those developed by Pottier (1996)
and Sturmfels and Thomas (1997). However, obtaining a complete test set for larger problems is
computationally expensive. Thus, we employ the partial Graver basis, as described in Section 4.2.

4.2. Partial Graver basis computation
Acquiring a complete test set for the complex FRNDP is computationally prohibitive. We utilize par-
tial Graver basis, which is a subset of the Graver basis. Using a partial Graver basis, GAMA provides
a high-quality, feasible, but not provably optimal solution. Alghassi et al. (2019b) and Alghassi et al.
(2019c) studied such a method where the heuristic is improved by starting GAMA from multiple
initial feasible solutions as starting seeds instead of just one. A partial Graver basis is systematically
obtained as follows. We begin by collecting elements in L∗(A) by taking the differences of the feasible
solutions of model (4). Subsequently, a classical post-processing step by ⊑-minimal filtering (Alghassi
et al. 2019b) yields a partial Graver basis. We provide the details of this post-processing procedure
in Appendix D of the Online Supplement. To obtain a sample of feasible solutions, we express the
constraints of model (4) as (Ax− b)⊤(Ax− b) = 0, which can be rewritten as x⊤QIx−2b⊤Ax+ b⊤b =
0, where QI = A⊤A. This is equivalent to solving a quadratic unconstrained integer optimization
(QUIO) given by model (5),

min x⊤QIx− 2b⊤Ax, x∈Zn, (5)

where the objective function value cannot be less than −b⊤b, and in case of equality, the x variable
is guaranteed to be feasible. For an integer x, an integer-to-binary transformation from x to X

is required, which can be performed using a binary encoding or a unary encoding, expressed as
x = L + EX, with L being the lower bound vector and E as the encoding matrix.

In general, for any i∈ {1, ..., n}, if the lower and upper bounds are li and ui respectively, then xi =
li +e⊤

i Xi. For binary encoding, e⊤
i = [20,21, ...,2ki−1] where ki = ⌈log2(ui− li)⌉ and for unary encoding,

e⊤
i = [1,1, ...,1] with |ei|= ui− li. Usually, the transformation that results in fewer additional variables

leads to better performance. However, in FRNDP, we only deal with binary variables, so no encoding
is required. From the transformation described above, we attain a Quadratic Unconstrained Binary
Optimization (QUBO) with binary variables X as in model (6),

min X⊤QBX, X ∈ {0,1}nk, (6)
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where QB = E⊤QIE + 2diag[(L⊤QI − b⊤A)E] and k =
∑n−1

i=0 ki. The above QUBO can be solved
on behalf of model (5) via an annealer or by means of simulated annealing (SA) (Kirkpatrick et al.
1983) to obtain a sample of feasible solutions. An annealer refers to a specially constructed quantum
or semi-classical hardware (Lucas 2014, McMahon et al. 2016, Glover et al. 2018, King et al. 2018,
Harris et al. 2018, Wang and Roychowdhury 2019, Chou et al. 2019, Mohseni et al. 2022) used for
solving QUBO problems mapped to an Ising model.

4.3. GAMA for FRNDP

In this section, we customize GAMA to FRNDP by only searching on FR paths. GAMA solves the
outer problem P1(x) by searching over a feasible set of FR paths and solves the inner problem P2(y)
for each feasible set of FR paths by using a gradient descent algorithm from LeBlanc et al. (1975),
which gives a provably optimal solution to the inner problem. To search over feasible sets of FR
paths, we start by obtaining a sample of npaths feasible paths for each node k ∈ F , each connected
to some FR entry node in E. These feasible paths are attained by solving a QUBO over constraints
(2b) using a quantum annealing device (i.e., D-Wave), classical SA, or a path-finding algorithm such
as (Yen 1971)’s algorithm for k-shortest paths. Then, we combine feasible FR paths for each node in
F to create M feasible solutions (seeds) for the entire network. We generate each feasible solution by
randomly choosing a path for each k ∈ F from the corresponding set of npaths. In our experiments,
we checked that the M feasible solutions correspond to different initial FR paths in our experiments.
Next, we obtain a set of lattice elements (recall Definition 3) by taking all pairwise differences of the
M feasible solutions. Finally, we obtain a partial Graver basis from the lattice elements by using the
procedure in Alghassi et al. (2019b,c), ensuring that all elements are conformal minimal.

Given a partial Graver basis and M initial seeds, GAMA for FRNDP performs as follows. For each
initial seed, it considers the corresponding initial feasible solution. Then, it applies each direction
in the partial Graver basis to update variables w and y, with a step size λ = 1. Next, it runs the
gradient descent algorithm of LeBlanc et al. (1975) to calculate the values of the inner x variables. If
a direction exhibits improvement, the solution is updated along the step. The algorithm terminates
when no direction improves the objective function value compared to the recent one.

GAMA is particularly suitable for solving FRNDP because it has significant flexibility in handling
complex objective functions. In crisis situations, it is critical to minimize the time-to-destination for
every agent (i.e., evacuees and FRs). Consequently, most studies in the literature use total travel
time as the objective. Considering its practical relevance and to maintain consistency with the liter-
ature, we adhere to the same objective function in our study. Still, other objective functions can be
incorporated based on different measures of efficiency and fairness, such as the Gini index represent-
ing the differences between travel time across the locations. GAMA has a significant advantage over
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classical methods in this respect as it can handle arbitrary objective functions, provided the solution
evaluation is fast enough to perform improvement checks in all directions of the Graver basis. GAGA,
which we introduce next as an extension of GAMA, also inherits this advantage.

4.4. GAGA: Bi-level GAMA within GAMA
As discussed in Section 4.3, we use the GAMA heuristic to solve the outer problem, P1(x). A method-
ological enhancement in this work is to also solve the inner problem P2(y) using GAMA, motivated
by the fact that approximately solving P2(y) at each step can significantly accelerate the solution pro-
cedure. While the GAMA solution to P2(y) is an approximation, we enhance the final inner GAMA
solution with an additional step by solving P2(y) using the gradient descent algorithm proposed by
LeBlanc et al. (1975). To the best of our knowledge, this is the first time a heuristic that uses GAMA
(for P2(y)) within GAMA (for P1(x)) has been explored. We refer to this nested algorithm as GAGA.

As before, to generate a partial Graver basis with respect to the constraint matrix in P2(y), we find
lattice elements that are differences of paths between nodes with evacuees in S and exit nodes in E,
and then apply the same procedure to end up with conformally minimal solutions. To create many
of these paths, for each node, k ∈ S, we generate a sample of npaths feasible paths to exit nodes in
E. As before, this can be done with an annealer, SA, or a path-finding algorithm. We construct each
initial feasible solution to P2(y) in GAGA as follows. For each node k ∈ S, we randomly sample dk

paths, with replacement, from the set of npaths paths and send one evacuee along each path. Similar
to generating initial FR paths, we generate M initial seeds for FR paths, where it is verified that the
M seeds correspond to different full evacuee paths.

The inner GAMA solves P2(y) as follows. We start from each of the M different initial solutions. At
each step, GAMA checks each possible improving direction in the partial Graver basis, using a step
size of λ = 1, and updates the current solution when an objective improving direction is attained. The
inner GAMA terminates when there is no improving direction up to a tolerance. Without a tolerance
threshold, the Graver augmentation runs until there is no improving direction amongst all Graver
basis elements. We experiment with/without a tolerance threshold of 10−3 for the inner problem.

We note that the Graver augmentation for P2(y) is carried out using a partial Graver basis.
Moreover, the resulting flow amounts will have integer values since the step size, λ = 1, despite the
underlying model allowing for continuous flow values. Hence, it is possible and can be expected that
the user equilibrium flow obtained by the GAMA heuristic is a close approximation to, but not the
exact user equilibrium flow solution. Therefore, as a final step, we run the gradient descent algorithm
from LeBlanc et al. (1975) on each of the local optimal FR solutions at the end of the GAGA and
report the optimal total evacuation time under this user flow equilibrium as the best result. In the
rest of the paper, we denote the final solution obtained at the end of the GAGA procedure as GAGA-
only and the solution after running the additional step of the gradient descent as GAGA-LeBlanc.
Unless explicitly stated, the final solutions presented refer to the GAGA-LeBlanc values.
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5. A Branch-and-Bound algorithm
A branch-and-bound algorithm is considered among the most efficient exact solution methodolo-

gies for DNDP (Rey 2020). We implement a B&B algorithm in this section to solve FRNDP and

compare its performance with GAGA. In theory, the B&B algorithm is an exact method, but in

practice, it would require far too long to enumerate all feasible solutions. The method mimics the

algorithm that was first developed by LeBlanc (1975) and later extended in Farvaresh and Sepehri

(2013) by solving the SO-DNDP instead of the TAP. Our executed B&B is adapted to consider the

additional constraints of FRNDP, such as ensuring reserved links for FRs form paths from entry to

FR-demand nodes. We acknowledge that other heuristics and exact methods would also be inter-

esting to investigate. Next, we will describe the details of the B&B algorithm, including the primal

heuristic, branching rule, dual-bound heuristic, and node selection heuristic.

We use the following primal heuristic to attain a feasible solution to P1(x). First, we compute the

shortest path from each node in E to each node in F using Dijkstra’s algorithm. Then, for each node

in F , we reserve the links along the shortest of these paths, which corresponds to an assignment

of the variables y. Next, we solve P2(y) using a gradient descent algorithm (LeBlanc et al. 1975),

which solves each subproblem by calculating several shortest paths for each node in S. The algorithm

applies a halving method on the step size λ until a relative tolerance of ϵ = 0.001 as the gradient

descent stopping criterion. We use a greedy heuristic at the root node to find an initial feasible

solution to begin the gradient descent algorithm. At a non-root node, we initialize a feasible solution

with the optimal solution of the parent node to accelerate the gradient descent algorithm.

Next, we describe the branching rule. We develop a branching procedure that creates two child

nodes in the B&B tree for a given link: one reserves this link while the other does not. We use a

random order of the FR nodes F . If node i ∈ F were considered in the previous branch, then the

next branch would use the next node j ∈ F from the given order. Also, we order the links connecting

j to an exit node k ∈E in the solution y, starting from the exit node. We select the first link that

has not yet been fixed for branching. We note that this branching rule creates one child node with

the identical optimal solution to its parent.

A dual bound can be obtained by solving for the total evacuation time of a system optimal (i.e.,

authoritarian) solution using the same gradient descent algorithm. Aligned with the literature, we

noticed that the lower bounds are not effective in fathoming search nodes in the B&B tree. Thus, to

improve the B&B efficiency, we forgo calculating lower bounds in our experiments. As a consequence

of not calculating lower bounds, we implement a breadth-first node selection heuristic instead of

another commonly used heuristic that chooses the next node to solve based on lower bounds.
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6. Computational experiments
In this section, we evaluate the performance of GAGA on two classes of instances. Section 6.1
examines synthetic instances. In Section 6.2, we design a case pertinent to a region in Istanbul, the
most populated city in Türkiye, which is under serious earthquake risk. As pointed out in recent
news (Duvar English: Turkey’s own independent gazette 2023) and scientific studies (Parsons et al.
2000), Istanbul is expected to be hit by an earthquake with a magnitude above 7.0 Richter in the
upcoming decade at a probability of 64%±15%. In our experiments, we compare the performance
of GAGA with the B&B method described in Section 5. Appendix C of the Online Supplement
gives an analysis of the necessity of a bi-level formulation, and Section 6.3 gives an analysis of our
experimental results. Throughout the experiments, we varied the following GAGA parameters.

• nsamples ∈ {1000,10000}: The number of reads or samples in the SA step or D-Wave annealer.
• npaths ∈ {20,25,30,35,40}: The number of paths from/to each node i∈N\E.
All the relevant source codes and instance data are available on Github (Karahalios et al. 2024).

GAGA is implemented on a single core of Intel Xeon Gold 6252 @ 2.10 GHz (Processor-A) with
192GB memory and 48 cores. The B&B has been carried out on a single core of Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz (Processor-B) with 64 GB memory and 8 cores. The performance of
these processors has been compared in Appendix E of the Online Supplement. We note that only a
single core is used for the computational experiments in both the GAGA and B&B runs. There is
no parallel processing involved, although there appears to be a high possibility of developing such
algorithms. So, the different number of cores in the two processors is not relevant for the runtime
comparison.

6.1. Synthetic graphs

A set of graph instances is constructed using synthetic data to facilitate a practical assessment of
GAGA performance and its comparison with B&B. In these graphs, we randomly generate n nodes
on a two-dimensional grid, with coordinates within a uniform [0,1] distribution. Next, we produce
| n

10 | extra nodes as entry/exit nodes E on the boundary of the unit square. The remaining nodes
constitute the set F . An edge connects each pair of nodes with a probability that is the product of
p and an additional factor that takes into account the distance between the two nodes. Capacities
of edges follow a Normal(50,20) distribution. All edges possess two lanes in both directions. The
evacuee population at each node follows a Normal(100,10) distribution. The free-flow travel time, Tij

in Equation (1) is chosen to be 1 unit for all edges equally. All non-positive samples in these random
variables have been replaced with positive samples. The instance numbers are denoted as i. As a
remark, if a generated instance is found to be infeasible, we replace it with another new instance. In
total, we design 10 instances i∈ {0, · · · ,9} for each n∈ {10,20,30} and p∈ {0.5,0.75} combination.
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Table 1 compares the objective function values for instances of n ∈ {20,30} nodes (The n = 10

results are analyzed in Appendix F of the Online Supplement) obtained from GAGA using feasible

solutions from SA, with B&B. Alternative to SA, we generate a set of feasible solutions using Yen

(1971) k-shortest loopless path algorithm. The B&B algorithm is given a runtime of 14,400 seconds,

which is longer than the maximum time taken for the GAGA run on any of these instances. The SA

runs are carried out with nsamples ∈ {1000,10000} (referred to as GAGA-SA-1000 and GAGA-SA-

10000) to assess the impact of the nsamples parameter on the solution quality. The results using feasible

solutions from Yen’s algorithm are called GAGA-Yen. Yen’s algorithm is used to obtain the first

k-shortest paths without cycles, and accordingly, we set k = 25 to be consistent with npaths = 25. The

bold numbers in Table 1 highlight the best objective function values (i.e., total travel times) achieved

among the four methods discussed. We observe in Table 1 that the solutions are comparable among

both GAGA-SAs and GAGA-Yen. Compared with B&B, GAGA yields better solution quality. We

conduct a thorough computational analysis of these graphs in Appendix G of the Online Supplement.

6.2. Case study: Istanbul instances

To assess GAGA on a real-life urban road network and demonstrate the impact of FR lane reservation

on evacuees’ travel times, we generate three sample instances based on the city of Istanbul, Türkiye

in Section 6.2.1. The performance comparison of GAGA and B&B is detailed in Section 6.2.2.

6.2.1. Instance generation

In this section, we designate a realistic case study on a specific region in Istanbul, including the

Avcılar district and a neighborhood around the Kucukcekmece Lake. Istanbul is subject to major

earthquake risk due to the fault line passing under the sea to the city’s south (Erdik and Durukal

2008). The region of study is home to nearly 500,000 residents. We leveraged Istanbul’s Open-

StreetMap (OSM) dataset to generate the region’s road network, focusing on the road infrastructure

information layer, analyzed in ArcGIS 10.5. The links are clustered into three groups based on their

road-type features. The first class encompasses primary, secondary, motorway, and trunk road types.

The second group includes tertiary, residential, service, track, and living street lanes. While the sec-

ond group cannot accommodate FR lane reservations due to capacity and lane limitations, they

remain accessible for evacuees to navigate the network. Given the substantial number of links in

the second class, the selected arcs comprise only roads featuring two or more lanes on both sides.

Finally, vehicle-impassable link types such as cycleway, pedestrian, footway, steps, and path have been

excluded. The resulting network, depicted in Figure 1, consists of 179 vertices, each representing a

residential area or a potential origin node for FR demands, and 234 arcs connecting the vertices in
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Table 1 Objective function value comparison of GAGA implemented with (i) SA-1000, (ii) SA-10000, and (iii)
Yen (1971)’s k-shortest loopless path algorithm, with B&B

Instance GAGA-SA-1000 GAGA-SA-10000 GAGA-Yen B&B
n p i obj time (s) obj time (s) obj time (s) obj time (s)
20 0.5 0 2.83 e+06 2,931.32 2.64 e+06 4,368.71 2.69 e+06 3,697.60 4.03 e+06 14,400
20 0.5 1 1.45 e+06 2,387.13 1.47 e+06 3,463.57 1.42 e+06 2,390.27 2.15 e+06 14,400
20 0.5 2 0.71 e+06 1,931.70 0.73 e+06 2,503.33 0.75 e+06 1,813.50 9.50 e+05 14,400
20 0.5 3 2.18 e+05 1,625.86 2.09 e+05 2,383.20 2.15 e+05 1,406.08 3.12 e+05 14,400
20 0.5 4 7.39 e+05 2,788.98 7.71 e+05 2,917.41 8.37 e+05 2,186.68 8.35 e+05 14,400
20 0.5 5 0.96 e+06 2,011.54 0.97 e+06 2,678.38 0.90 e+06 1,676.48 1.07 e+06 14,400
20 0.5 6 3.24 e+06 2,536.07 2.89 e+06 3,327.69 2.65 e+06 2,685.08 3.95 e+06 14,400
20 0.5 7 2.08 e+05 2,199.30 2.01 e+05 3,456.32 2.03 e+05 2,229.30 2.56 e+05 14,400
20 0.5 8 2.43 e+05 1,641.64 2.42 e+05 2,354.32 2.41 e+05 1,514.79 3.37 e+05 14,400
20 0.5 9 6.20 e+05 2,529.35 6.24 e+05 3,374.94 5.80 e+05 2,948.75 5.51 e+05 14,400
20 0.75 0 6.90 e+04 1,783.51 7.30 e+04 3,277.64 7.30 e+04 1,188.81 7.86 e+04 14,400
20 0.75 1 1.12 e+05 1,900.06 1.12 e+05 3,649.95 1.12 e+05 1,753.16 1.18 e+05 14,400
20 0.75 2 0.83 e+05 1,691.69 0.87 e+05 2,724.63 0.88 e+05 1,159.22 1.01 e+05 14,400
20 0.75 3 7.00 e+04 2,235.44 7.50 e+04 2,782.49 7.90 e+04 1,148.20 9.35 e+04 14,400
20 0.75 4 0.99 e+05 1,735.64 1.00 e+05 2,965.26 1.02 e+05 1,159.36 1.06 e+05 14,400
20 0.75 5 0.97 e+05 1,963.95 0.97 e+05 3,402.85 0.97 e+05 2,020.67 1.01 e+05 14,400
20 0.75 6 0.91 e+05 1,508.97 0.93 e+05 3,555.80 0.92 e+05 1,476.82 9.74 e+04 14,400
20 0.75 7 0.89 e+05 1,710.47 0.89 e+05 3,122.01 0.90 e+05 1,367.58 1.01 e+05 14,400
20 0.75 8 0.98 e+05 1,776.35 0.99 e+05 3,183.02 1.01 e+05 2,031.30 1.11 e+05 14,400
20 0.75 9 0.99 e+05 1,779.24 1.02 e+05 4,046.86 1.02 e+05 1,470.36 1.05 e+05 14,400
30 0.5 0 1.97 e+05 8,131.35 1.97 e+05 9,303.11 1.84 e+05 6,661.51 1.98 e+05 14,400
30 0.5 1 2.09 e+05 6,741.38 2.05 e+05 8,337.86 2.06 e+05 6,223.99 2.36 e+05 14,400
30 0.5 2 1.62 e+05 6,310.00 1.63 e+05 5,466.08 1.61 e+05 2,403.93 1.80 e+05 14,400
30 0.5 3 1.76 e+05 7,258.44 1.77 e+05 8,490.38 1.83 e+05 5,364.12 2.38 e+05 14,400
30 0.5 4 3.04 e+05 8,005.14 3.22 e+05 8,665.91 2.89 e+05 6,750.19 3.49 e+05 14,400
30 0.5 5 1.88 e+05 7,435.17 1.88 e+05 7,963.70 1.91 e+05 4,415.26 2.26 e+05 14,400
30 0.5 6 1.88 e+05 7,244.06 1.95 e+05 8,679.78 1.88 e+05 5,036.13 2.33 e+05 14,400
30 0.5 7 3.82 e+05 8,138.68 4.05 e+05 9,202.13 4.20 e+05 4,607.10 4.39 e+05 14,400
30 0.5 8 1.51 e+05 5,786.28 1.52 e+05 7,515.79 1.57 e+05 4,728.17 1.86 e+05 14,400
30 0.5 9 2.78 e+05 7,180.90 2.73 e+05 7,172.85 2.59 e+05 4,259.48 3.30 e+05 14,400
30 0.75 0 1.04 e+05 5,948.39 1.02 e+05 11,937.47 1.05 e+05 3,976.56 1.15 e+05 14,400
30 0.75 1 1.23 e+05 5,546.67 1.22 e+05 10,765.75 1.28 e+05 3,371.02 1.37 e+05 14,400
30 0.75 2 0.98 e+05 7,392.68 0.96 e+05 12,556.06 1.01 e+05 3,642.89 1.14 e+05 14,400
30 0.75 3 1.03 e+05 6,083.00 0.99 e+05 12,773.28 1.04 e+05 2,800.32 1.08 e+05 14,400
30 0.75 4 0.98 e+05 6,049.69 0.95 e+05 12,036.30 1.02 e+05 3,160.86 1.15 e+05 14,400
30 0.75 5 1.04 e+05 6,026.44 1.02 e+05 13,553.03 1.06 e+05 3,695.71 1.13 e+05 14,400
30 0.75 6 0.99 e+05 6,660.11 0.98 e+05 11,316.65 0.99 e+05 3,509.40 1.11 e+05 14,400
30 0.75 7 1.07 e+05 6,519.37 1.05 e+05 11,515.46 1.09 e+05 3,668.31 1.27 e+05 14,400
30 0.75 8 0.93 e+05 6,524.25 0.94 e+05 11,144.66 0.96 e+05 3,562.64 1.06 e+05 14,400
30 0.75 9 0.89 e+05 7,337.74 0.88 e+05 12,763.55 0.93 e+05 4,114.14 1.04 e+05 14,400

both directions. The thick pink and the thin grey links correspond to the first and second categories
of edges, respectively. The yellow squares (highlighted with ‘E’) represent entry/exit nodes.

Yabe et al. (2019) studied a cross-comparative analysis of individuals’ evacuation behavior in post-
earthquake. Their results indicate that after an earthquake with a 7 seismic intensity, nearly 60% of
individuals strive to evacuate the region immediately. This result, however, neglects the earthquake
hitting time, which can affect the magnitude of the evacuation. Therefore, jointly considering such an
evacuation ratio with uncertainties in evacuees’ travel volume, we generated three instances on the
same network while varying the evacuation level. Considering the population size popi provided in
the Istanbul Metropolitan Municipality (2023) report and distributed over nodes i, 4-person vehicle
capacities indicating an agent entity and the evacuation ratio reported by Yabe et al. (2019), we
assume that among the three instance sets 1, 2, and 3, the number of evacuating vehicles di emanating
from each node i is measured by

∣∣0.25p×U [0.1,0.3]
∣∣, ∣∣0.25p×U [0.3,0.5]

∣∣, and
∣∣0.25p×U [0.5,0.7]

∣∣,
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respectively. The uniform distribution U accounts for evacuation randomness and captures different
evacuation ratios depending on the occurrence time of an earthquake with a seismic intensity of 7. In
the designated network, 154 nodes exist with varying evacuation levels, and 69 nodes require an FR
visit, taking into account the estimated severely damaged areas (Istanbul Metropolitan Municipality
2023) among the nodes that are reachable via thick FR lane hosting road segments.

Figure 1 The network associated with case study instances. FR lanes can be reserved along the thick edges.
The nine circles represent entry/exit nodes.

6.2.2. Comparing GAGA and B&B

Considering the traffic equilibrium, we generate feasible paths from each FR-demand node to
the exit nodes using SA. The graph density in these instances is sufficiently low so that any cyclic
paths obtained in the feasible solutions can be simply eliminated in a post-processing step using
Dijkstra’s algorithm. So, for these instances, we suppress the constraints (2d) in the QUBO model.
Subsequently, we construct the partial Graver basis for both FR and evacuee paths. We compare the
‘GAGA-SA-10000’ with the B&B results. Four different GAGA settings are discussed below.

1. Unnormalized: The evacuation level remains the same. The inner problem optimization is ter-
minated when no further augmentation is possible at that solution.

2. Unnormalized, Tol = 1e-3 : The evacuation level remains the same. The Graver walk in the
inner problem is terminated when the fractional difference in optima before and after one full pass
over all the Graver elements is less than 10−3.

3. Normalized: The evacuation level is normalized such that the maximum value is 100. The inner
problem optimization is terminated when no further augmentation is possible at that solution.

4. Normalized, Tol=1e-3 : The evacuation level is normalized such that the maximum value is 100.
The tolerance before and after one full pass over all the Graver elements is less than 10−3.

Considering the instance sizes, B&B and GAGA are given a time limit of 72 hours. We note
that a pre-Graver-walk time is incorporated for each of the four settings when computing the initial
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feasible solutions and partial Graver bases while the B&B runtime starts from 0. Except for the
Unnormalized setting, the total runtime of GAGA for the other three settings is less than B&B. For
the Unnormalized setting, the total runtime for the first instance is less than B&B. In the other two
instances, however, the Graver augmentation time increases due to increased evacuation levels. Hence,
the Graver walk is not fully completed within the time limit for all initial seeds. The results comparing
each of the four settings and comparing GAGA-SA-10000 with B&B are provided in Tables 2 and
3, where the objective function (total travel times) is in units of minutes. The performance of the
algorithms over time for the three instances is plotted in Figure 2. The initial seeds are ordered both
“randomly” or “improving” among the SA solutions. In the latter, the seed with the most inferior
optimal solution comes first, and the optimal solutions improve as we proceed to the next seeds.

Table 2 Unnormalized v.s. Unnormalized,Tol=1e-3 : GAGA-SA-10000 and B&B results on case study instances
Unnormalized Unnormalized, Tol = 1e-3

Instance GAGA-SA-10000 B&B GAGA-SA-10000 B&B
obj obj obj obj

n m i (minutes) time (s) (minutes) time (s) (minutes) time (s) (minutes) time (s)
179 234 1 1.54 e+06 (M=100) 236439 1.55 e+06 259200 1.43 e+06 (M=100) 97056 1.55 e+06 259200
179 234 2 2.56 e+07 (M=85) 303312 2.56 e+07 259200 2.46 e+07 (M=85) 99077 2.56 e+07 259200
179 234 3 1.16 e+08 (M=43) 301813 1.23 e+08 259200 1.01 e+08 (M=43) 140761 1.23 e+08 259200

Table 3 Normalized v.s. Normalized,Tol=1e-3 : GAGA-SA-10000 and B&B results on case study instances
Normalized Normalized, Tol = 1e-3

Instance GAGA-SA-10000 B&B GAGA-SA-10000 B&B
obj obj obj

n m i (minutes) time (s) (minutes) time (s) (minutes) time (s) (minutes) time (s)
179 234 1 1.55 e+06 (M=100) 166785 1.55 e+06 259200 1.50 e+06 (M=100) 95280 1.55 e+06 259200
179 234 2 2.59 e+07 (M=85) 195092 2.56 e+07 259200 2.46 e+07 (M=85) 98936 2.56 e+07 259200
179 234 3 1.13 e+08 (M=43) 244233 1.23 e+08 259200 1.03 e+08 (M=43) 118397 1.23 e+08 259200

Figure 2 visualizes the performance results for the case study instances. We observe that the optimal
solution from B&B is similar to the GAGA result for the Unnormalized and Normalized settings, but
nearly ∼ 10% larger when a tolerance threshold is included. Comparing among the GAGA runs, the
time to solution is much longer for the Unnormalized and Normalized settings without tolerance. The
best GAGA results are obtained with the Unnormalized and Normalized settings with a tolerance
threshold and outperform B&B. Thus, we can conclude that running GAGA in an Unnormalized or
Normalized setting and including a tolerance criterion in the inner user equilibrium problem tends
to produce high-quality solutions in a shorter time compared to B&B.

6.2.3. Effect of FR-demand level on evacuation times
To examine the impact of increasing the number of FR-demand nodes (set F ), which signifies the
severity of a disaster, we generated 10 samples for each combination of n∈ {20,30} and p∈ {0.5,0.75},
resulting in a total of 40 samples. These samples are based on the synthetic instance with ID 0, with
the cardinality of set F gradually increasing. The results are illustrated in Figure 3, where the x-axis
indicates the percentage of nodes with FR-demand, and the y-axis represents the total evacuation
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(a) Instance ID=1, initial seed order: random (b) Instance ID=1, initial seed order: improving

(c) Instance ID=2, initial seed order: random (d) Instance ID=2, initial seed order: improving

(e) Instance ID=3, initial seed order: random (f) Instance ID=3, initial seed order: improving
Figure 2 Comparison of GAGA (under four different Graver walks) with B&B for case instances

time. As shown in Figure 3, our objective function, i.e., the total evacuation time, rises in almost
an S-shaped curve as the number of FR-demand nodes increases where the objective function value
increased significantly after 50% FR-demand level amongst the nodes on the map.

Figure 3 Effect of varying FR-demand as a result of disaster damage level on the total evacuation time
(seconds) on the synthetic graph instance 0 averaged over n ∈ {20, 30} and p ∈ {0.5, 0.75} settings
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6.3. Insights
We point out several critical insights from the multi-faceted analysis in Section 6 and Appendices F
and G. First, the lane reservation decisions, as depicted in green in Figure 4, are remarkably consis-
tent across the three Avcilar instances, regardless of variations in evacuation level. This consistency
suggests that FRNDP strategies, driven by a single reservation plan, remain robust under differ-
ent disaster scenarios and magnitudes. Second, among the solutions of the three Avcilar instances,
FR lanes are reserved on approximately 60% of all potential FR road segments. This high percent-
age underscores the critical role of FRNDP in effective DM preparedness and response planning.
Expectedly, all highways and primary road segments in the study region were selected for FR lane
reservation. This outcome validates the proposed model and emphasizes the importance of prioritiz-
ing these segments for lane reservations. Third, we observed that the total evacuation time follows
an S-shaped curve as the number of FR-demand nodes increases. Notably, the objective function
experienced a sharp rise after the share of nodes having FR-demand across the map exceeded 50%.
Hence, besides optimization of FR-lane reservation, proactive reinforcement of vulnerable areas in the
network to avoid increased total evacuation times is imperative. Lastly, ignoring individuals’ selfish
routing behavior during the network design phase to simplify computations can significantly increase
total evacuation times by up to 5.5% in certain scenarios, with evacuation times for some regions
increasing by up to 10%. This implies the importance of accounting for evacuees’ selfish routing
behavior in a bi-level model for choosing lane reservations.

Figure 4 FR lane reservation plan for case study instances
7. Conclusion
Following a disaster, the immediate priority lies in locating and rescuing individuals who may be
trapped or injured while ensuring others can travel to safe locations independently. An effective mech-
anism is to pre-determine and publicly pre-communicate a set of lanes restricted to FRs. However,
identifying such roads requires a careful assessment of the tradeoff between effective FR responses and
reducing the travel time for disaster-affected people. Our studied FRNDP is formulated as a bi-level
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optimization problem, where the arcs reserved for the FRs are selected at the first level to minimize
total travel time, which depends on the second-level problem where the public travels between their
origin-destination pairs over the eligible roads, adopting a selfish routing principle. Unlike the existing
methodologies for similar network design problems, we develop a a novel quantum-inspired solution
algorithm: Nested GAMA within the GAMA algorithm, called GAGA. We test several variations of
GAGA on synthetic graph instances and three realistic scenarios for a predicted Istanbul earthquake.
In most instances, we obtain superior solution quality and run-time performance of GAGA compared
to a state-of-the-art exact algorithm for a traditional formulation.

We hope that our promising results encourage applying quantum-inspired methods to other dis-
aster preparedness problems, and explore further development of this novel methodology in other
application domains. In this context, the results of our study are important to show that the proposed
approach - primarily implemented on classical computers due to limitations in current quantum com-
puting environments - can provide high-quality solutions. We envision that, with future hardware
advancements that enable quantum advantages, this alternative approach could also demonstrate
significant computational benefits to generate better solutions much faster.
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