Carnegie Mellon University

Eberly Center

Teaching Excellence & Educational Innovation

Mellon College of Science – Learning Objectives Samples

03-410 Genes, Drugs, and Disease (Gordon Rule) (excerpt)

  • Recognize the structures of amino acids, carbohydrates, lipids, and nucleic acids.
  • Predict the net charge on ionizable groups at any given pH.
  • Predict, in qualitative terms, the role of molecular forces in stabilizing protein-drug complexes and the potential effect of chiral centers on drug activity.
  • Construct expression plasmids for the expression of potential drug targets in E. Coli.
  • Interpret DNA sequencing data.
  • Given an amino acid sequence of a protein, design the gene for expression of a protein,.
  • Given the target of a drug in polymer biosynthesis (e.g., protein synthesis), predict the effect of that drug on bacteria or viral growth.
  • Explain the relationship between the binding sites of drugs and their biological activity.
  • Infer the most likely pattern of inheritance from a pedigree and predict the probability of inheriting a genetic disease.
  • Relate deficiencies in amino acid metabolism, carbohydrate metabolism, and nucleotide synthesis to genetic diseases.

09-105 Introduction to Modern Chemistry I (Lenny Vuocolo) (excerpt)

At the end of this course, you should be able to:

  • correctly utilize mathematical relationships of chemistry and recognize under which conditions and situations they apply
  • apply multiple chemical concepts to solve problems, including problems not explicitly encountered before
  • apply and connect previously learned concepts in order to derive new concepts

09-109 Kitchen Chemistry (complete set)

  • Identify the key chemical features and characteristics of basic food ingredients and explain how these properties affect and determine their handling, use, and taste.
  • Analyze and compare ingredients, recipes and protocols and be able to predict the purpose of and test the effectiveness of ingredients in recipes and dishes.
  • Use scientific principles to produce dishes using novel techniques and explain how they were constructed.
  • Exemplify the scientific process and inquiry driven research by designing, implementing, and documenting experiments.
  • Work effectively in a laboratory groups.

09-341 The Art and Science of Color (complete set)

At the end of the class, students should be able to:

  • Relate artistic effects created by using pigments, changes in the aspects of artworks over time, and restoration methods to physical and chemical properties of inorganic pigments.
  • Know the characteristics of, and take practical advantage of, the properties of a wide range of artist’s pigments.
  • Use and read different color measuring systems and describe the relationships between them.
  • Be able to make and use egg tempera paints in a variety of ways
  • Communicate and collaborate effectively across the art & chemistry disciplines.

21-241 Matrix Algebra (complete set)

  • Solve problems using matrix techniques and algorithms.
  • Recognize and recall major linear algebraic definitions and theorems.
  • Develop short but rigorous proofs of true mathematical statements and construct counterexamples for false statements.
  • Apply major linear algebraic theorems to prove other results.
  • Interpret linear algebra techniques and results as geometric operations and structures in 3-dimensional space.

21-256 Multivariate Analysis and Approximation (complete set)

  • Solve mathematical models (given as such or obtained from real life problems) by using multivariate analysis techniques:  vector operations, matrix operations, integration in various coordinate systems, optimization methods.
  • Interpret and analyze the results in the context of the problem (for example, what is the significance of the value of the Lagrange multiplier in an optimization problem, does a negative value make sense for an area.)
  • Formulate real life problems (word problems) into mathematical language, and solve them by using multivariate analysis techniques.
  • Recognize situations in which multivariate analysis concepts can be applied to economics, biology, statistics (or other fields), and identify which concepts and techniques are necessary to solve a specific problem.

33-445: Advanced Quantum Physics I (Rachel Mandelbaum) (complete set)

  • By the end of the semester, students should be able to do all of the following:                
  • articulate the behavior of quantum 2-state systems (e.g., the spin degrees of freedom of a particle);                            &n\ bsp;           
  • use matrix mechanics to calculate properties of systems with spin angular momentum;
  • calculate the time-evolution of a 2-state system using Schrodinger’s equation;
  • carry out basic calculations related to systems of two spin-1/2 particles, such as the hydrogen atom;
  • use wave mechanics in 1 dimension to describe continuous degrees of freedom such as position and momentum for a quantum system; and
  • describe the basic quantum approach to observables such as angular momentum, energy, position, and momentum, including the difference from the classical approach.