Skip to main content
Carnegie Mellon University

Biological Physics

Overview

Biological Physics is an exciting interdisciplinary frontier in physics. It applies tools and techniques of physics to understand how biological systems work from the scales of single molecules to an entire living organism. At the same time, biological phenomena offer us physicists unique opportunities to learn new physics on complex, non-equilibrium systems.

The biological physics group at Carnegie Mellon combines theory, experiments and computational modeling to investigate the fundamental principles that govern the structure, mechanics and dynamic behavior of living systems across different levels of biological organization and complexities.

You can learn more about the activities in our group HERE!

See Dr. Fangwei Si's lab here: 

 

Simulated membrane buckle

Markus Deserno uses theoretical and computational approaches – continuum elasticity theory and field thory as well as coarse-grained simulations – to study molecular-scale and mesoscale phenomena in biophysics. This allows him to study larger systems on longer time scales than in atomistic simulations and access a new arena for physical questions, many of which have biological significance. Specifically, Deserno investigates lipid membranes, proteins, viruses, or DNA on length scales larger than atomic resolution but smaller than a typical cell. On these scales, many fundamental physical concepts make a big impact on biology – among them thermal fluctuations, cooperativity, self-assembly, or elasticity. For instance, due to their surfactant-like nature individual lipid molecules in an aqueous environment spontaneously aggregate into membranes, which are laterally many orders of magnitude larger than their thickness. These quasi-two-dimensional fluid surfaces resist bending, a continuum elastic concept, but since the associated moduli are only about one order of magnitude bigger than thermal energy, membranes exhibit large thermal undulations that affect their properties.