Carnegie Mellon University

Michael Hendrich

Michael P. Hendrich

Professor, Chemistry

  • Mellon Institute 526
  • 412-268-1058


1988 Ph.D., University of Illinois


Spectroscopy, biophysical chemistry, enzymatic mechanisms, bioinorganic chemistry, metalloenzymes


Metalloproteins are essential for the basic processes of life, including DNA synthesis, metabolism, photosynthesis, detoxification, and the chemical transformations of nitrogen, oxygen, and carbon molecules required for life. Many diseases are due to metal imbalances or inactivity of critical metalloenzymes. Metalloenzymes are nature’s amazing catalytic centers, transforming the most stable chemical bonds in nature, and thus are important factors for health, agriculture, and the environment.

Our focus is an atomic level understanding of catalytic function. We achieved this through isolation and spectroscopic characterization of intermediates of reaction cycles of enzymes and biomimetic complexes. The metals of interest are probed with a combination of EPR, ENDOR, Mössbauer spectroscopies, or SQUID magnetization. We have developed new spectroscopic instrumentation, computer simulation software, and quantitative methodologies specifically suited to probe metalloproteins and metal complexes.

Some of the complexes under study are:

  • Dioxygenases, important the in production of an essential metabolite (NAD) and in aromatic ring-opening reactions in nature.
  • The b6f complex of oxygenic photosynthesis, important in the generation of an electrochemical gradient to drive chemical processes.
  • Multi-heme enzymes important in the metabolic processing of N-containing compounds in nature.
  • Biomimetic complexes related to O2 activation.


NaClO-Generated Iron(IV)oxo and Iron(V)oxo TAMLs in Pure Water
Matthew R. Mills, Andrew C. Weitz, Michael P. Hendrich, Alexander D. Ryabov, and Terrence J. Collins, Journal of the American Chemical Society 2016 138 (42), 13866-13869, DOI: 10.1021/jacs.6b09572

Models for Unsymmetrical Active Sites in Metalloproteins: Structural, Redox, and Magnetic Properties of Bimetallic Complexes with MII-(μ-OH)-FeIII Cores
Yohei Sano, Nathanael Lau, Andrew C. Weitz, Joseph W. Ziller, Michael P. Hendrich, and A. S. Borovik, Inorganic Chemistry 2017 56 (22), 14118-14128, DOI: 10.1021/acs.inorgchem.7b02230

Spectroscopy and DFT Calculations of a Flavo-diiron Enzyme Implicate New Diiron Site Structures
Andrew C. Weitz, Nitai Giri, Jonathan D. Caranto, Donald M. Kurtz, Jr., Emile L. Bominaar, and Michael P. Hendrich, Journal of the American Chemical Society 2017 139 (34), 12009-12019, DOI: 10.1021/jacs.7b0654

Modular Artificial Cupredoxins
Mann, S. I.; Heinisch, T.; Weitz, A. C.; Hendrich, M. P.; Ward, T. R.; Borovik, A. S.; J. Am. Chem. Soc. 2016, 138, 9073

Reactivity of an FeIV-Oxo Complex with Protons and Oxidants
Hill, E.A. , Weitz, A.C,  Onderko, E.,  Romero-Rivera, A., Y.,  Swart, M., Bominaar, E.L.,  Green, M.T., Hendrich, M.P.,  Lacy, D.C., and Borovik, A.S. J. Am. Chem. Soc., 2016, 138 (40), pp 13143–13146

Tuning the reactivity of Fe(V)(O) toward C-H bonds at room temperature: effect of water
Singh, K. K.; Tiwari, M.; Ghosh, M.; Panda, C.; Weitz, A.; Hendrich, M. P.; Dhar, B. B.; Vanka, K.; Sen Gupta, S.; Inorg. Chem. 2015, 54, 1535-1542, DOI:10.1021/ic502535f.

High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II
Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.; Yano, J.; Hendrich, M. P.; Borovik, A. S.; Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5319-5324, DOI:10.1073/pnas.1422800112.

Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes
Petasis, D. T.; Hendrich, M. P.; Methods Enzymol. 2015, 563, 171-208, DOI:10.1016/bs.mie.2015.06.025.

Activation of Dioxygen by a TAML Activator in Reverse Micelles: Characterization of an Fe(III)Fe(IV) Dimer and Associated Catalytic Chemistry
Tang, L. L.; Gunderson, W. A.; Weitz, A. C.; Hendrich, M. P.; Ryabov, A. D.; Collins, T. J.; J. Am. Chem. Soc. 2015, 137, 9704- 9715, DOI:10.1021/jacs.5b05229.

Endoperoxide formation by an alpha-ketoglutarate-dependent mononuclear non-haem iron enzyme
Yan, W.; Song, H.; Song, F.; Guo, Y.; Wu, C. H.; Sae Her, A.; Pu, Y.; Wang, S.; Naowarojna, N.; Weitz, A.; Hendrich, M. P.; Costello, C. E.; Zhang, L.; Liu, P.; Jessie Zhang, Y.; Nature 2015, 527, 539-543, DOI:10.1038/nature15519.

Quantitative interpretation of EPR spectroscopy with applications for iron-sulfur proteins
Petasis, Doros T.; Hendrich, Michael P.; Edited by Rouault, Tracey A, from Iron-Sulfur Clusters in Chemistry and Biology 2014, 21-48.

Preparation and properties of an MnIV-hydroxide complex: proton and electron transfer at a mononuclear manganese site and its relationship to the oxygen evolving complex within photosystem II
Taguchi, Taketo; Stone, Kari L.; Gupta, Rupal; Kaiser-Lassalle, Benedikt; Yano, Junko; Hendrich, Michael P.; Borovik, A. S.; Chemical Science 2014, 5, 3064-3071.

A Diferrous-Dinitrosyl Intermediate in the N2O-Generating Pathway of a Deflavinated Flavo- Diiron Protein
Caranto, Jonathan D.; Weitz, Andrew; Giri, Nitai; Hendrich, Michael P.; Kurtz, Donald M.; Biochemistry 2014, 53, 5631-5637.

The Nitric Oxide Reductase Mechanism of a Flavo-Diiron Protein: Identification of Active-Site Intermediates and Products
Caranto, Jonathan D.; Weitz, Andrew; Hendrich, Michael P.; Kurtz, Donald M.; J. Am. Chem. Soc. 2014, 136, 7981-7992.

Formation of a Room Temperature Stable FeV(O) Complex: Reactivity Toward Unactivated C–H Bonds
Ghosh, Munmun; Singh, Kundan K.; Panda, Chakadola; Weitz, Andrew; Hendrich, Michael P.; Collins, Terrence J.; Dhar, Basab B.; Gupta, Sayam Sen; J. Am. Chem. Soc. 2014, 136, 9524-9527.


2008–present Professor, Carnegie Mellon University
1999–2008 Associate Professor, Carnegie Mellon University
1994–1999 Assistant Professor, Carnegie Mellon University
1993–1994 Assistant Research Professor, University of Minnesota

Awards and Distinctions

1995 Searle Scholar Award