Carnegie Mellon University

Tiziana Di Matteo

Professor of Physics

Astrophysics & Cosmology
Wean Hall 8305

lab website 

Prof. Tiziana Di Matteo

Education & Professional Experience

PhD: University of Cambridge (U.K.), Astrophysics (1998)
B.Sc.: University College London (U.K), Astrophysics (1995)

Professional Societies:
Fellow, American Physical Society

Honors and Awards:
Carnegie Science Award of Excellence (2008)
Berkham Faculty Grant (2006)
Michael Penston Prize of the Royal Astronomical Society (1999)

Curriculum ViTAE

Professor of Physics, Carnegie Mellon University, 2014–
Indefinite Tenure, Carnegie Mellon University, 2009
Associate Professor, Carnegie Mellon University, 2005–2014
Associate Professor, The Max-Planck Institute for Astrophysics, Garching, 2003–05
Research Associate, The Max-Planck Institute for Astrophysics, Garching (Germany), 2001–03
Post-doctoral Research (Astrophysics): Harvard University, 1998–2001

Research Interests

It is now well-established that black holes are an important feature of our cosmic environment. Stellar-mass black holes number in the millions in every galaxy; there is now conclusive evidence that black holes as massive as a billion suns reside at the centers of most galaxies. Black holes are thought to power the most energetic phenomena in the Universe from quasars to, perhaps even Gamma-Ray-Bursts. My research interests focus on studies of black holes encompassing a wide range of topics in both High Energy Astrophysics and Cosmology. They include theoretical studies of the interplay between black hole growth and galaxy formation and investigations of various aspects of the physics of accretion disks around black holes.

Cosmological simulations of black hole formation: I am currently involved in developing a new prescription in the context of hydrodynamical simulations of galaxy formation which, together with star formation and supernovae feedback, follows black hole accretion and its associated feedback in the center of galaxies. This is a novel attempt within models of galaxy formation to track self-consistently the growth of supermassive black holes and the evolution of the galaxy itself. Galaxy formation and black hole growth are mutually intertwined processes, requiring joint theoretical modeling to be meaningfully addressed.

21-cm tomography and foregrounds: An exciting future probe of the epoch of reionization will be 21-cm tomography of the neutral hydrogen in the Intergalactic medium and in gravitationally collapsed systems. I have been modeling the contaminating foreground radiation to the primary 21-cm radiation due to galaxies which produce radio emission and free-free emission and extended sources include radio halos and relics. We are using cosmological simulations and are producing simulated sky maps for the upcoming Lofar and PAST facilities.

Neutrino transport around black holes and Gamma-Ray Bursts: In recent years the exciting field of Gamma-Ray Bursts has opened up to the studies of black hole accretion. Rapid, hyper-Eddington accretion is likely to power the central engines of Gamma-Ray Bursts. In these extreme conditions of densities and temperatures the accreting material is cooled by neutrino emission rather than by radiation. I have been working on deriving dynamical solutions for neutrino dominated accretion flows.

Accretion models and X-rays: Accretion of matter onto a black hole is able to liberate large amounts of its binding energy. By studying the power output from accretion disks, we are able to probe the deep gravitational potentials around black holes. Nearby black holes however, are much less luminous than active galactic nuclei in distant galaxies. I build models for the emission from nearby black holes using Chandra Satellite and XMM-Newton observations.

Selected Publications

MS Liu, T Di Matteo, Y Feng, The effects of AGN feedback and SPH formulation on black hole growth in galaxies, Monthly Notices of the Royal Astronomical Society 458, 1402 (2016)

SM Wilkins, Y Feng, T DiMatteo, R Croft, The Lyman-continuum photon production efficiency in the high-redshift Universe, Monthly Notices of the Royal Astronomical Society 458, L6 (2016)

Y Feng, T Di Matteo, RA Croft, The BlueTides simulation: first galaxies and reionization, Monthly Notices of the Royal Astronomical Society 455, 2778 (2016)

Yu Feng, Tiziana Di Matteo, Rupert Croft, Ananth Tenneti, Simeon Bird, Nicholas Battaglia, Stephen Wilkins, The formation of Milky Way–mass disk galaxies in the first 500 million years of a cold dark matter universeThe Astrophysical Journal 808, 1 (2015) 

N. Khandai, T. Di Matteo, R. Croft, S. Wilkins, Y. Feng, E. Tucker, C. DeGraf, M.-S. Liu, The MassiveBlack-II simulation: the evolution of haloes and galaxies to z~0Monthly Notices of the Royal Astronomical Society 450, 1349 (2015) 

Y. Feng, T. Di Matteo, R. Croft, N. Khandai, High-redshift supermassive black holes: accretion through cold flowsMonthly Notices of the Royal Astronomical Society 440, 1865 (2014) 

S. M. Wilkins, T. D. Matteo, R. Croft, N. Khandai, Y. Feng, A. Bunker, W. Coulton, Confronting predictions of the galaxy stellar mass function with observations at high redshiftMonthly Notices of the Royal Astronomical Society 429, 2098 (2013)

Y. Feng, R. A. C. Croft, T. D. Matteo, N. Khandai, Growth and anisotropy of ionization fronts near high-redshift quasars in the MassiveBlack simulationMonthly Notices of the Royal Astronomical Society 429, 1554 (2013)

Colin DeGraf, Tiziana Di Matteo, Nishikanta Khandai, Rupert Croft, Julio Lopez, Volker Springel, Early black holes in cosmological simulations: luminosity functions and clustering behaviourMonthly Notices of the Royal Astronomical Society 424, 1892 (2012)

T. Di Matteo, N. Khandai, C. DeGraf, Y. Feng, R. A. C. Croft, J. Lopez, V. Springel, Cold flows and the first quasarsThe Astrophysical Journal 745, L29 (2012)

Yu Feng et al., Terapixel imaging of cosmological simulationsThe Astrophysical Journal Supplement Series 197, 18 (2011)

B. Ciardi, R. Salvaterra, T. Di Matteo, Lyα versus X-ray heating in the high- z intergalactic medium , Monthly Notices of the Royal Astronomical Society 401, 2635 (2010)

T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, Direct cosmological simulations of the growth of black holes and galaxies , The Astrophysical Journal 676, 33 (2008)

Federico I. Pelupessy, Tiziana Di Matteo, Benedetta Ciardi, How Rapidly Do Supermassive Black Hole “Seeds” Grow at Early Times?The Astrophysical Journal 665, 107 (2007)

A. Janiuk, Y. Yuan, R. Perna, T. Di Matteo, Instabilities in the Time‐Dependent Neutrino Disk in Gamma‐Ray BurstsThe Astrophysical Journal 664, 1011 (2007)

More Publications:
ORCID  Researcher ID