Carnegie Mellon University

BME Stories


A new perspectives piece co-authored by Carnegie Mellon University and University of Pittsburgh researchers relates machine learning to biological learning, showing that the two approaches aren’t interchangeable, yet can be harnessed to offer valuable insights into how the brain works. Read the story.


ACS Scholars are undergraduate seniors who embody Carnegie Mellon University’s high standards of academic excellence, volunteerism, leadership and involvement in student organizations, athletics or the arts. This year is very special for the Department of Biomedical Engineering as six out of then ten CIT ACS Scholars are connected with BME. Read the story.


Chemical and Biomedical Engineering Assistant Professor, Elizabeth Wayne, has been awarded NIH R35 grant, otherwise known as the Maximizing Investigators’ Research Award (MIRA), providing her with $1.7 million in funding over five years. Read the story.


Using light to control how cells “talk” to one another isn’t new science, but Prof. Tzahi Cohen-Karni and his team have discovered that MXene, an easily produced nanomaterial, can allow for efficient cellular communication. Read the story.


Studies focused on neuronal interactions extend across domains in neuroscience, primarily using the approaches of spike count correlation or dimensionality reduction. Carnegie Mellon University researchers have identified a way to bridge them, resulting in a richer understanding of neuronal activity. Read the story.


Choking under pressure is a notorious phenomenon that has been the subject of intense scrutiny for decades. For the first time, researchers at Carnegie Mellon University and the University of Pittsburgh have shown that animals also exhibit this strange tendency. Read the story.


BME major Jared Cohen found that making time for friends and taking on leadership roles in student organizations has contributed to both the fun and success he is having at Carnegie Mellon. Read the story.


Prof. Siyang Zheng and his lab are fabricating devices at micrometer/nanometer scale and synthesizing nanomaterials for critical medical applications. By using this innovative nanotechnology, therapeutic drugs could be inserted directly into the cancerous cells, leaving the rest of the patient’s body largely untouched by harsh drugs. Read the story.


The Feinberg research group, along with collaborators in the Netherlands, has developed a dynamic heart model comprised of engineered heart muscle tissue designed to mimic physiologic preloads and afterloads. Read the story.


Carnegie Mellon University researchers are part of an international team working on wearable biomedical technology that will enhance freediver safety, as well as provide fresh treatment insights for cardiac patients. Read the story.


In work recently published in Nature Communications, Prof. He’s group demonstrated, for the first time, that specific cell types can be targeted through tFUS neuromodulation. Their study found that excitatory neurons showed high sensitivity to ultrasound pulse repetition frequency, while inhibitory neurons did not. Read the story.


Carnegie Mellon researchers collaborate on DARPA’s multidisciplinary project to regulate sleep/wake cycles. BME Prof. Tzahi Cohen-Karni will head Carnegie Mellon’s team of experts to work on the NTRAIN (Normalizing Timing of Rhythms Across Internal Networks of Circadian Clocks) project. Read the story.


Silk’s strong potential dates back to ancient times, and BME Professor Rosalyn Abbott is using it present-day to engineer adipose tissue depots for filling soft tissue defects and modelling diseases. Her group’s latest research uncovered a novel finding—that silk scaffolding is responsive to ultrasound. Read the story.


Professor Keith Cook has discovered a novel anticoagulation strategy to keep artificial lung devices from failing due to clot formation, without creating any negative side effects. This new research was published in Biomaterials. Read the story.


The Carnegie Mellon University’s Department of Biomedical Engineering is delighted to welcome Dr. Sossena Wood as a new faculty member. Her postdoctoral training was in Biomedical Engineering at Carnegie Mellon University as an inaugural Presidential Postdoctoral Fellow in Dr. Jana Kainerstorfer’s lab. Read the story.


Prof. Tzahi Cohen-Karni together with his colleagues from Carnegie Mellon and Istituto Italiano di Tecnologia have identified a flexible, low-cost, and biocompatible platform for enabling richer intracellular recordings. The research was published in Science Advances. Read the story.


New research led by Prof. Bin He, in collaboration with the Mayo Clinic, combines clinical application and engineering innovation to present a safe, noninvasive, cost-effective, and quicker imaging option for patients with epilepsy. The work was published in the Proceedings of the National Academy of Sciences. Read the story.


Esther Bedoyan, a junior majoring in electrical and computer engineering (ECE) and biomedical engineering (BME) with a minor in Chinese studies, has received the prestigious 2021 Barry Goldwater Scholarship to encourage her pursuit of a research career. Read the story.


The American Institute for Medical and Biological Engineering (AIMBE) has announced the election of several Carnegie Mellon University faculty to its College of Fellows. Drs. FeinbergWhiteheadYu, and Zapanta were nominated, reviewed, and elected by peers and members of the College of Fellows for outstanding contributions to the medical and biological engineering fields. Read the story.


Prof. Adam Feinberg along with postdoctoral fellow Dan Shiwarski and graduate student Joshua Tashman have created a novel biosensor that reveals the mechanobiological forces that shape organ development and biological phenomena like hypertension. Read the story.


The Biomedical Engineering Department at Carnegie Mellon is excited to share the names of the winners of the 2021 National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP). The fellowship recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based master's and doctoral degrees at accredited US institutions. Read the story.


Professors Byron Yu and Steven Chase together with their colleagues from the University of Pittsburgh examine how changes in internal states can affect the learning process using BCI technology. Their findings, published in Nature Neuroscience, may pave the way for more effective methods to teach people skills quickly, and to a higher level of proficiency. Read the story.


Khulood Al Ali (MS BME, 2020) knew from an early age that she wanted to earn a degree at Carnegie Mellon University. I chose Carnegie Mellon for the challenges, motivation and innovation — to join the next generation of leaders making the world a better place. I believe I'm in the right place, with the right people at the right time. Read the story.


Prof. Adam Feinberg and his team have created the first full-size 3D bioprinted human heart model using their Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique. The model, created from MRI data using a specially built 3D printer, realistically mimics the elasticity of cardiac tissue and sutures. Read the story.


Prof. Carmel Majidi and his group have developed a unique silver-hydrogel composite that has high electrical conductivity and is capable of delivering direct current while maintaining soft compliance and deformability. The findings were published in Nature Electronics. Read the story.


A recent R01 grant from the National Institutes of Health (NIH) received by Prof. Matt Smith in collaboration with Prof. Byron Yu will fund a multi-region study of how neurons within the brain prepare and maintain an internal state of attention. Read the story.


Prof. Maysam Chamanzar, Carnegie Mellon University and Azadeh Yazdan, University of Washington have received a National Institutes of Health (NIH) R01 grant to create a dural smart port that will allow direct access to the brain using optical and electrical stimulation, as well as recording. Read the story.


Undergrad Sean Pereira was drawn to the work of Prof. Rosalyn Abbott, who was exploring silk applications to address different challenges in biomedical engineering. Pereira is using his computational skills to search for patterns in the data that might indicate why one tissue works well in some procedures but not others. Read the story.


Prof. Chamanzar’s team has developed a new class of materials for optical biointerfaces. He’s labeled this new field of optical technology as “Parylene photonics” and demonstrated results in a recent paper in Nature Microsystems and Nanoengineering. Read the story.


Carnegie Mellon’s Andrew Carnegie Society (ACS) has chosen 40 seniors for recognition as ACS Scholars for the 2020-21 academic year. Two of this year’s honorees are from the Biomedical Engineering Department: Stefanie McMillan and Sanjana Shah. Read the story.


An international team of scientists led by Carnegie Mellon University researchers has engineered novel hybrid exosomes with polymer surfaces that can be used to precisely and consistently deliver therapeutics. The research has been published online by the Proceedings of the National Academy of Sciences. Read the story.