Carnegie Mellon University

Center for Informed Democracy & Social - cybersecurity (IDeaS)

CMU's center for disinformation, hate speech and extremism online

IDeaS Center for Informed Democracy & Social-cybersecurity

15281 Artificial Intelligence: Representation and Problem Solving
Units: 12.0
Instructors: Rosenthal, Stephanie
Schedule: TR 11:50AM-1:10PM  CUC MCCNMY (additional lectures and times listed)


This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. We expect that by the end of the course students will have a thorough understanding of the algorithmic foundations of AI, how probability and AI are closely interrelated, and how automated agents learn. We also expect students to acquire a strong appreciation of the big-picture aspects of developing fully autonomous intelligent agents. Other lectures will introduce additional aspects of AI, including natural language processing, web-based search engines, industrial applications, autonomous robotics, and economic/game-theoretic decision making.

(15122) and (21240 or 21241) and (15151 or 21127 or 21128)