Carnegie Mellon University

Elias Towe

Elias Towe

Grobstein Professor of Materials Science and Engineering & Professor of Electrical and Computer Engineering

Address
Department of Materials Science and Engineering
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Bio

Research Area: Inorganic Functional Materials

Elias Towe was educated at the Massachusetts Institute of Technology, where he received the S.B., S.M., and Ph.D. degrees from the Department of Electrical Engineering and Computer Science, where he was also a Vinton Hayes Fellow. Prior to joining the faculty at Carnegie Mellon in 2001, he was, at the same time, a Professor of Electrical and Computer Engineering at the University of Virginia, and a Program Manager at the Defense Advanced Research Projects Agency. Towe is a recipient of several awards and honors. He is currently a professor of Electrical and Computer Engineering, and Materials Science and Engineering.

Education

Ph.D.,Massachusetts Institute of Technology

Research

Towe's group pursues research in basic optical and quantum phenomena in materials for applications in novel photonic devices that enable a new generation of information processing systems for communication, computation, and sensing. The group is also interested in understanding new pathways and fundamental mechanisms for solar energy conversion devices. Current focus is on the use of phenomena (such as three-dimensional quantum-confinement effects in nanometer-scale structures) in the study of novel devices. Examples include: quantum-dot infrared detectors and imaging sensors, electrically-pumped photonic crystal micro-cavity lasers with quantum-dot active regions, multi-spectral solar energy conversion devices, plasmonic bio-sensors, and fluorescence bio-sensing devices.

Publications

K Shannon, E Towe, O K Tonguz, On the Use of Quantum Entanglement in Secure Communications: A Survey, arXiv :2003.07907, 2020.

J W Reddy, I Kimukin, L T Stewart, Z Ahmed, A L Barth, E Towe, M Chamanzar, High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs, Frontiers in Neuroscience DOI: 10.3389/fnins.2019.00745, 2019.

Y-H Liang, E Towe, Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal insulator–semiconductor structures, Applied Physics Express 10 (12), 2017.