Professor Elizabeth A. Holm-Department of Materials Science and Engineering - Carnegie Mellon University

Professor Elizabeth A. Holm

Professor of Materials Science and Engineering

Department of Materials Science and Engineering
Carnegie Mellon University
5000 Forbes Avenue
Office: Wean Hall 3315
Phone: (412) 268-1762
Fax: (412) 268-7596


Prior to joining CMU in 2012, Professor Holm spent 20 years as a computational materials scientist at Sandia National Laboratories, working on simulations to improve processes for lighting manufacture, microcircuit aging and reliability, and the processing and welding of advanced materials. Prof. Holm obtained her B.S.E in Materials Science and Engineering from the University of Michigan, S.M in Ceramics from MIT, and dual Ph.D. in Materials Science and Engineering and Scientific Computing from the University of Michigan. Active in professional societies, Prof. Holm has received several honors and awards, is a Fellow of ASM International, 2013 President of The Minerals, Metals, and Materials Society, an organizer of several international conferences, and has been a member of the National Materials Advisory Board. Prof. Holm has authored or co- authored over 110 publications. 


Dual PhD Materials Science and Engineering and Scientific Computing, University of Michigan
SM Ceramics, MIT


Professor Holm uses the tools of computational materials science to study a variety of materials systems and phenomena. Her research areas include the theory and modeling of microstructural evolution in complex polycrystals, the physical and mechanical response of microstructures, mechanical properties of carbon nanotube networks, atomic-scale properties of internal interfaces, machine vision for automated microstructural classification, and machine learning to predict rare events. Computational techniques applied to these problems range from the atomic scale (molecular dynamics) through the mesoscale (Monte Carlo, phase field, cellular automata) to the continuum scale (finite element). A particular focus is identifying useful concepts from data science, including machine learning, machine vision, evolutionary computing, and network analysis, and developing them to answer materials science questions.

Selected Publications

S. Ratanaphan, D. L. Olmsted, V. V. Bulatov, E. A. Holm, A. D. Rollett, G. S. Rohrer,“Grain boundary energies in body-centered cubic materials,” Acta Mater. 88 346-354 (2015).

N. A. Pedrazas, T. E. Buchheit, E. A. Holm, E. M. Taleff, “Dynamic Abnormal Grain Growth in Tantalum,” Mat. Sci. Engin. A 610 76084 (2014).

E. R. Homer, E. A. Holm, S. M. Foiles, D. L. Olmsted, “Trends in Grain Boundary Mobility: Survey of Motion Mechanisms,” JOM 66[1] 114-120 (2014).

E. R. Homer, V. Tikare, E. A. Holm, “Hybrid Potts-Phase Field Model for Coupled Microstructural-Compositional Evolution,” Computational Materials Science 69 414-423 (2013).

E. R. Homer, S. M. Foiles, E. A. Holm, D. L. Olmsted, “Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries,” Acta Mater. 61 1048-1060 (2013).

C. R. Weinberger, C. C. Battaile, T. E. Buchheit, E. A. Holm, “Incorporating atomistic models of lattice friction into BCC crystal plasticity models,” Int. J. Plasticity 37[10] 16-30 (2012).

J. D. Madison, V. Tikare, E. A. Holm, “A hybrid simulation methodology for modeling dynamic recrystallization in UO2 LWR nuclear fuels,” J. Nuc. Mater. 425[1-3] 173-180 (2012). doi:10.1016/j.jnucmat.2011.10.023

T. E. Buchheit, C. C. Battaile, C. R. Weinberger, E. A. Holm, “Multiscale modeling of low temperature deformation in BCC metals,” (Invited) JOM 63[11] 33-36 (2011).

S. Wang, E. A. Holm, J. Suni, M. H. Alvi, P. N. Kalu, A. D. Rollett, “Recrystallized grain size in single phase materials,” Acta Mater. 59[10] 3872-3882 (2011). doi:10.1016/j.actamat.2011.03.011

E. A. Holm, G. S. Rohrer, S. M. Foiles, A. D. Rollett, H. Miller, D. Olmsted, “Validating computed grain boundary energies in FCC metals using the grain boundary character distribution,” Acta Mater. 59 5250-5256 (2011).

E. A. Holm and S. M. Foiles, “How Grain Growth Stops: A mechanism for grain growth stagnation in pure materials,” Science 328 1138-1141 (2010) doi: 10.1126/science.1187833.

D. Olmsted, S. M. Foiles, E. A. Holm, “Survey of grain boundary properties in FCC metals: I. Grain boundary energy,” Acta Mater. 57 3694–3703 (2009).

D. Olmsted, E. A. Holm, S. M. Foiles, “Survey of grain boundary properties in FCC metals: II. Grain boundary mobility,” Acta Mater. 57 3704–3713 (2009).

K. G. F. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton and P. M. Derlet, “Computing the Mobility of Grain Boundaries,” Nature Materials 5[2] 124-127 (2006).

D. Basanta, M. A. Miodownik, E. A. Holm and P. J. Bentley, “Using Genetic Algorithms to Evolve 3D Microstructures from 2D Micrographs” Metall. Mater. Trans. A 36A[7] 1643-1652 (2005).

E. S. McGarrity, P. M. Duxbury, and E. A. Holm, “Statistical physics of grain boundary engineering,” Phys. Rev. E 71[2] 026102 (2005).

M. A. Miodownik, P. Smereka, E. A. Holm, and D. J. Srolovitz, “Scaling of Dislocation Cell Structures: Diffusion in Orientation Space,” Proc. Roy. Soc. Lond. A457 1807-1819 (2001).

E. A. Holm and G. N. McGovney, “Network Algorithms for Minimum Energy Fracture Surfaces,” Advances in Computational Engineering and Sciences, S. N. Atluri and F. W. Brust (editors) (Tech Science Press, Palmdale, CA, 2000) pp. 1784-1789.