Venkat Viswanathan-Mechanical Engineering - Carnegie Mellon University

Venkat Viswanathan

Assistant Professor, Mechanical Engineering

Address:
5000 Forbes Ave
Scaife Hall 303
Pittsburgh, PA 15213

Bio

Venkat Viswanathan's research focus is on understanding and developing novel electrochemical devices for energy storage and utilization.  The research strategy is based on a theoretical treatment of interfacial processes at different length and time scales.  Quantitative models are developed employing  density functional theory calculations, non-equilibrium Green's function transport and continuum scale modeling as appropriate.  The predictions of these models are compared to experiments and the feedback from experiments are fed back into the models enabling a synergistic tying of theory and experiment.

His graduate work involved understanding and identifying the fundamental limitations of lithium-air batteries and trends in electrocatalysis of oxygen reduction.  His awards include Electrochemical Society Daniel Cubicciotti Award in 2010; Electrochemical Society Herbert H. Uhligh Summer Fellow in 2009.

Education

Ph. D. 2013, Stanford University
B.Tech, M.Tech, 2008 Indian Institute of Technology, Madras

Selected Publications

Full Publication List at: http://scholar.google.com/citations?user=4g7P1w4AAAAJ&hl=en

  • A Khetan, H. Pitsch, and V Viswanathan, Solvent Degradation in Nonaqueous Li-O2 Batteries: Oxidative Stability vs H-abstraction, J Phys Chem Lett, (2014), 5, 2419-2424
  • A Khetan, H. Pitsch, and V Viswanathan. Identifying Descriptors for Solvent Stability in Non-Aqueous Li-O2 Batteries, J Phys Chem Lett, 2014 vol. 5 pp. 1318-1323.
  • H. S. Casalongue, S. Kaya, V. Viswanathan, Daniel J. Miller, Daniel Friebel, H. A. Hansen, J. K. Nørskov, A. Nilsson, H. Ogasawara, Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode, Nature Communications, 4, 2817
  • V. Viswanathan and H. A. Hansen, Unifying Solution and Surface Electrochemistry: Limitations and Opportunities in Surface Electrocatalysis, Top. Catal., (2013) DOI: 10.1007/s11244-013-0171-6
  • A. Jackson,† V. Viswanathan,† A. J. Forman, A. H. Larsen, J. K. Nørskov, T. F. Jaramillo, Climbing the Activity Volcano: Core–Shell Ru@Pt Electrocatalysts for Oxygen Reduction, ChemElectroChem, (2014) 1, 67-71.
  • A. C. Luntz, V. Viswanathan, J. Voss, J. Varley, J. K. Nørskov, R. Scheffler and A. Speidel Tunneling and Polaron Charge Transport Through Li2O2 in Li-O2 Batteries, J. Phys. Chem. Lett., (2013) 4, 3494-3499.
  • J. Varley, V. Viswanathan, J. K. Nørskov and A. C. Luntz, Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li-O2 batteries, Energy Environ. Sci., (2014) DOI: 10.1039/C3EE42446D
  • V. Viswanathan, J. K. Nørskov, A. Speidel, R. Scheffler, S. R. Gowda, and A. C. Luntz, Li-O2 Kinetic Overpotentials: Tafel Plots from Experiment and First Principles Theory, J. Phys. Chem. Lett., (2013) 4, 556-560. 
  • V. Viswanathan, H. A. Hansen, J. Rossmeisl, and J. K. Nørskov, Unifying the 2e− and 4e− reduction of oxygen on metal surfaces, J. Phys. Chem. Lett., (2012) 3, 2948-2951. 
  • D. Friebel, V. Viswanathan, D. J. Miller, T. Anniyev, H. Ogasawara, A. Larsen, C. O’Grady, J. K. Nørskov and A. Nilsson, Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: An in situ XAS and DFT study, J. Am. Chem. Soc., (2012) 134 (23), 9664-9671. 
  • B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov and A. C. Luntz, The twin problems of interfacial carbonate formation in non-aqueous Li-O2 batteries, J. Phys. Chem. Lett., (2012) 3, 997-1001. 
  • V. Viswanathan, H. A. Hansen, J. Rossmeisl, and J. K. Nørskov, Universality in oxygen reduction electrocatalysis on metal surfaces, ACS Cat., (2012) 2, 1654-1660. 
  • V. Viswanathan, H. A. Hansen, J. Rossmeisl, T. Jaramillo, H. Pitsch, and J. K. Nørskov, Simulating linear sweep voltammetry from first-principles: Application to electrochemical oxi- dation of water on Pt(111) and Pt3Ni(111), J. Phys. Chem. C, (2012) 116 (7), 4698-4704. 
  • V. Viswanathan, K. Thygesen, J.S. Hummelshøj, J. K. Nørskov, G. Girishkumar, B. D. McCloskey, and A. Luntz, Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries, J. Chem. Phys., (2011) 135, 214704. 
  • B.C. Han, V. Viswanathan, and H. Pitsch, First-principles based analysis of electrocatalytic activity of unreconstructed Pt(100) surface for oxygen reduction reaction, J. Phys. Chem. C, (2012) 116 (10), 6174-6183. 
  • V. Viswanathan, and F. Wang, Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on Platinum nanoparticles, Nanoscale, (2012) 4 (16), 5110-5117. 
  • M. Garcia-Mota, M. Bajdich, V. Viswanathan, A. Vojvodic, A. T. Bell, J. K. Nørskov, Importance of correlation in determining the electrocatalytic oxygen evolution activity on cobalt oxides, J. Phys. Chem. C, (2012) 116 (39), 21077-21082. 
  • V. Viswanathan, F. Wang, and H. Pitsch, Generalized Monte-Carlo based framework for simulating catalytic and electrocatalytic systems, Comput. Sci. Eng., (2012) 14 (2), 60-68.