Carnegie Mellon University


Computational Biology [with SCS]—M.S.
The emerging field of computational biology represents the application of modern computer science to solving biological problems. Carnegie Mellon’s world-class strengths in computer science and strong tradition of interdisciplinary research combine to provide training in this new discipline. Program goals include meeting the growing need for computational biologists in the biotechnology and pharmaceutical industries and at universities and research institutes, and allowing nontraditional and reentering students to establish credentials that enable acceptance into Ph.D. programs in computational biology. Students complete the program in three to four semesters.
Biological Sciences—Ph.D.
The Ph.D. in Biological Sciences program exemplifies the interdisciplinary approach that has become an essential feature of modern biomedical science. A low student-to-faculty ratio ensures individual attention and advising. Our program emphasizes new technologies, analytical thinking skills and creative approaches to problem solving. Health-related areas of focus include biotechnology, genetics/genomics, computational biology, microbiology, and neuroscience.


Chemistry—M.S., Ph.D.
This program is noted for research at the interface of chemistry with biology, physics and engineering, including polymer science, materials, green and environmental, bioorganic, bioinorganic, biophysical, spectroscopy, theoretical and computational chemistry. The Ph.D. program’s goal is to prepare students for an academic or research career in chemistry. The M.S. in Chemistry is available only to students who are in the process of pursuing the Ph.D. Except in special circumstances, Chemistry does not admit students seeking only the M.S.
Colloids, Polymers and Surfaces [with COE]—M.S.
This program focuses on the engineering of complex fluids, which consist of nanoparticles (colloids), macromolecules and interfaces. Topics are relevant to industrial technology and the manufacture of products based on complex fluids; examples include pharmaceuticals, coatings and paint, cosmetics, surfactant-based products and biotech materials. The program can be completed in nine months with coursework only, or in 1.5 years with a research project.
Polymer Science—M.S.
This program provides the basic background for scientists and engineers to pursue technical careers in industries that manufacture, process and use polymeric materials.
Students with these interests may also want to consider the interdisciplinary M.S. in Colloids, Polymers and Surfaces, a joint program with Chemical Engineering designed for professionals working in the polymer field. The M.S. in Polymer Science is available only to students who are in the process of pursuing the Ph.D.


Computational Finance [with Heinz, DC and Tepper]—M.S.
This 18-month full-time degree (in Pittsburgh or New York) or three-year part-time (in New York) MSCF program focuses on the use of quantitative methods and information technology in the field of finance. The curriculum provides an in-depth understanding of the mathematics used to model security prices, the statistical tools needed to summarize and predict the behavior of financial data, the computer science and e-commerce skills needed to understand the technology used in the financial industry, and the corporate finance needed to employ these skills in finding innovative solutions to business needs.
Algorithms, Combinatorics and Optimization [with SCS and Tepper]—Ph.D.
This program is administered jointly by the Department of Mathematical Sciences, the Department of Computer Science, and the Tepper School of Business. It focuses on discrete mathematics and algorithmic issues arising in computer science and operations research, particularly the mathematical analysis of these issues. The participating units evaluate applicants separately. The requirements for this degree and information on participating faculty are available at the ACO page.
Arts in Mathematical Sciences - Ph.D.
The Doctor of Arts degree shares all requirements and standards with the Ph.D., except with regard to the thesis. The D.A. thesis is not expected to display the sort of original research required for a Ph.D. thesis, but rather to demonstrate an ability to organize, understand, and present mathematical ideas in a scholarly way, usually with sufficient innovation and worth to produce a publishable work. Whenever practical, the department provides D.A. candidates with the opportunity to use materials developed to teach a course. While a typical Ph.D. recipient will seek a position that has a substantial research component, the D.A. recipient will usually seek a position where research is not central.
Mathematical Sciences—Ph.D.
Students seeking a Ph.D. in Mathematical Sciences are expected to show a broad grasp of mathematics and demonstrate a genuine ability to do mathematical research. The Doctor of Philosophy in Mathematical Sciences is a traditional research degree, and its requirements are representative of all doctoral programs.  After being admitted to graduate status by the Department, a student seeking a Ph.D. must be admitted to candidacy for this degree by fulfilling the appropriate program requirements.  The most important requirement for the Ph.D. degree is timely completion and public defense of an original Ph.D. thesis. The Ph.D. thesis is expected to display depth and originality and be publishable by a refereed journal.
Pure and Applied Logic [with DC and SCS]—Ph.D.
This is an interdisciplinary program with faculty from the Department of Mathematical Sciences, the Department of Philosophy, and the School of Computer Science. The participating units evaluate applicants separately and set their own program requirements. Students who have been admitted to the PAL program, and who complete the requirements for the Ph.D. in Mathematical Sciences with a thesis in the area of logic, can choose to receive either a Ph.D. in Pure and Applied Logic or a Ph.D. in Mathematical Sciences. The choice of which degree to receive is usually based on the intended career path.


The M.S. in Physics is awarded to those who have demonstrated a mastery of advanced topics in physics beyond the B.S. degree level. The M.S. degree is usually offered only to students enrolled in the Ph.D. degree program.
Applied Physics—Ph.D.
Beyond the conventional Ph.D. program, Carnegie Mellon offers a degree in Applied Physics. Ph.D. thesis research that may appropriately be characterized as Applied Physics can be carried out either within the Physics Department or in conjunction with other branches of the University, such as the Robotics Institute, the Data Storage Systems Center, the Materials Science and Engineering Department or the Electrical and Computer Engineering Department.
The Ph.D. in Physics offers advanced training to students at the leading edge of physics research and prepares them to become the next generation of leaders in academia and industry. The program is rigorous as well as practical. In particular, the first two years of the graduate curriculum is designed to provide students with the solid foundation necessary to start research in their chosen area of specialization. Graduate students have the opportunity to study traditional core physics areas of astrophysics, biophysics, condensed matter physics, high energy and medium energy particle physics, or perform interdisciplinary work at the boundaries of chemistry, biology, materials science, or engineering.