News Briefs
Tuesday, February 12, 2013 -- Carnegie Mellon Astrophysicists To Participate in European Space Agency's Dark Energy Mission: McWilliams Center Researchers Shirley Ho and Rachel Mandelbaum Named to US Science Team Working With Space-based Telescope
By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982
Friday, August 3, 2012-- NSF Advances Large Synoptic Survey Telescope to Final Design Stage
approval to advance to the final design phase. The NSB approval permits the NSF Director to include funds for construction of the 8-meter wide-field survey telescope in a future budget request. The NSF will construct the LSST in partnership with the Department of Energy’s Office of Science, which is funding the LSST camera.
“The decision by the National Science Board is great news for U.S. science and especially for all of those who have been working on the LSST,” said Fred Gilman, dean of Carnegie Mellon University’s Mellon College of Science and chair of the AURA Management Council for the LSST (AMCL) that oversees the project. “The LSST, along with other large scale surveys like the current Sloan Digital Sky Survey, will place U.S.-based researchers at the forefront of cosmological research for the coming decades, providing data to probe the nature of dark energy.”
Construction on the LSST is hoped to begin in 2014 atop Cerro Pachón, a mountain in Northern Chile. When fully operational, the 8.4-meter telescope will use its 3 billion-pixel camera to survey the entire visible sky in multiple colors. The telescope will take snapshots every 15 seconds, creating a movie that will allow researchers to study objects that change or move on rapid timescales, like exploding supernovae, potentially hazardous near-Earth asteroids, and distant Kuiper Belt Objects. The images will also be used to trace millions of remote galaxies and to help answer questions about dark matter and dark energy.
Since joining the LSST collaboration in 2008, CMU and its Bruce and Astrid McWilliams Center for Cosmology have taken an increasing leadership role in the project. A member of the LSST Executive Board, Gilman was named chair of the AMCL in 2012. Assistant Professors of Physics Shirley Ho and Rachel Mandelbaum are co-leaders of research tasks within the recently formed LSST Dark Energy Science Collaboration, which also involves research by CMU theoretical astrophysicists Rupert Croft, Tiziana Di Matteo and Hy Trac.
By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982
May 12, 2012-- Mandelbaum Receives Department of Energy Early Career Award for Dark Matter and Dark Energy Research

PITTSBURGH—Carnegie Mellon University physicist Rachel Mandelbaum was awarded a five-year, $750,000 grant from the U.S. Department of Energy (DOE) to study the elusive dark matter and dark energy that make up the majority of the universe.
Mandelbaum is one of 68 researchers nationwide to receive funding from the DOE's Early Career Research Program this year. The program, which has been in place for three years, provides funding for outstanding scientists within 10 years of completing their doctoral degree.
"The funding from the DOE will support my research into some of the key mysteries in the field of cosmology," said Mandelbaum, who is an assistant professor of physics and a member of the Bruce and Astrid McWilliams Center for Cosmology. "This generous support will allow me to work with some of the major ongoing and upcoming astronomical surveys in order to study the nature of dark matter and dark energy."
Mandelbaum's ongoing research focuses on weak gravitational lensing. When light from distant galaxies travels through the universe, its path becomes deflected as it passes by massive objects like large galaxies. This effect, called weak gravitational lensing, results in small distortions in how we observe distant galaxies from Earth. When carefully measured, weak gravitational lensing is the most direct way to study the distribution of dark and ordinary matter in the universe.
Mandelbaum will use data collected from several large astronomical spectroscopic and imaging surveys including the Sloan Digital Sky Survey III's Baryon Oscillation Spectroscopic Survey and the Hyper Supreme-Cam at the Subaru Telescope to measure weak gravitational lensing. She will then combine her results with other cosmological observations to provide a better understanding of the nature of dark energy. The findings will help to inform future research by next-generation astronomical imaging surveys, like the one set to be completed by the Large Synoptic Survey Telescope.
By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982
Thursday, February 16, 2012--Physicist Rachel Mandelbaum Receives the Annie Jump Cannon Award
Assistant Professor of Physics Rachel Mandelbaum was presented with the 2011 Annie Jump Cannon Award at the semi-annual meeting of the American Astronomical Society held in January 2012.
Mandelbaum was cited “for her groundbreaking contributions to the field of weak gravitational lensing of galaxies. Her work on understanding and eliminating numerous systematic effects inherent in weak lensing data have advanced this technique to the point where it can now be used with confidence for precision cosmology.”
As light from distant galaxies travels through the universe, it’s path is deflected as it passes by massive objects, causing the images of the galaxies to be distorted. The distortions are usually small, and therefore the effect is called weak gravitational lensing. When carefully measured and analyzed, weak lensing can be used to determine the large-scale distribution of both ordinary and dark matter throughout the universe.
The award is given to women within five years of receiving their doctoral degree who have made distinguished contributions to astronomy or for similar contributions in related sciences that have immediate application to astronomy.
By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982
Wednesday, January 11, 2012--Group Led by Carnegie Mellon’s Shirley Ho Uses SDSS-III Data To Calculate Power Spectrum of the Universe
Researchers Begin To Read Largest Map of the Universe
AUSTIN, Texas—Researchers led by Shirley Ho, an astrophysicist at Carnegie Mellon University’s Bruce and Astrid McWilliams Center for Cosmology and the U.S. Department of Energy’s Lawrence Berkeley National Laboratory, have analyzed a trillion pixel map of the universe to create the most accurate calculation of the power spectrum of the universe over the past six billion years.
The group’s findings were presented Jan. 11 at the annual meeting of the American Astronomical Society (AAS) in Austin, Texas, and will appear in a future issue of the Astrophysical Journal. The results are currently available at http://arxiv.org/abs/1201.2137.
Last year at the AAS meeting, researchers working on the Sloan Digital Sky Survey III (SDSS-III) unveiled the largest three-dimensional color map of the universe to date. The trillion-plus pixel image taken from the SDSS-III’s telescope at the Apache Point Observatory in New Mexico covers more than a quarter of the sky and contains more than a half billion objects, a quarter billion stars and a quarter billion galaxies.
This image shows the positions of the 900,000 luminous galaxies used in these studies. Each green dot represents one galaxy. The image covers a redshift range from 0.25 to 0.75, a time when the universe was between 7 billion and 11 billion years old. (Image Courtesy David Kirkby, UC-Irvine and SDSS-III Collaboration)
“We have this huge map of the universe, the next step was to begin to read the map to find out what we could learn,” Ho said.
Ho and colleagues selected 900,000 luminous red galaxies from among more than 1.5 million galaxies observed through the SDSS-III’s Baryon Oscillation Spectrographic Survey (BOSS). They measured the galaxies’ brightness in five different colors; from this information the researchers were able to determine the age of the galaxies. Using the imaging data, the group then gleaned the most accurate measurement of the power spectrum of the universe — a statistical representation of how the density of matter varies throughout the universe.
“The power spectrum tells you how fast the universe is expanding, and how much dark energy, dark matter and neutrinos exist in the universe,” Ho said. “The power spectrum contains a wealth of information that could help to explain what happened at the beginning of the universe and during the expansion of the universe.”
For example, the researchers used the power spectrum to gather information about baryon acoustic oscillations (BAOs), relics of sound waves that can be used to measure dark energy in the universe. By using the new measurements, Ho and colleagues were able to precisely measure BAOs farther back in time than ever before using the colors of galaxies. They also were able to use the data to estimate that dark energy accounts for 73 percent of the density of the universe — a finding that matches estimations from other datasets.
The researchers will continue to mine the data to find more information about the universe, its expansion and contents.
This video shows the positions of the 900,000 luminous galaxies used in these studies. Each green dot represents one galaxy. The image covers a redshift range from 0.25 to 0.75, reaching to six billion years ago. The rotation of the image provides a view that shows what the distribution would look like from all sides.
For more information visit: http://www.sdss3.org/press/20120111.sloanguide.php
Related papers from the research group include:
Ross et al. (2011): "Ameliorating Systematic Uncertainties in the Angular Clustering of Galaxies: A Study using SDSS-III" 2011, MNRAS, Vol 417, pp. 1350-1373. http://arxiv.org/abs/1105.2320
Ho et al. (2012): "Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications" http://arxiv.org/abs/1201.2137
Seo et al. (2012): "Acoustic scale from the angular power spectra of SDSS-III DR8 photometric LRGs" To appear on arXiv Thursday, January 12, 2012; preprint available at http://lakme.lbl.gov/~sheejong/Research/ANGULAR_BAO/Paper/AngularBAOfinal.pdf
de Putter et al. (2012): "New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies" http://arxiv.org/abs/1201.1909
###
About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university’s seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon’s main campus in the United States is in Pittsburgh, Pa. It has campuses in California’s Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled “Inspire Innovation: The Campaign for Carnegie Mellon University,” which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.
About the Sloan Digital Sky Survey III: Funding for the SDSS-III has been provided by the Alfred P. Sloan Foundation, institutional members of the SDSS-III, the National Science Foundation and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.
By: Jocelyn Duffy, jhduffy@andrew.cmu.edu, 412-268-9982
Friday, December 9, 2011 -- Early Black Holes Grew Big Eating Cold, Fast Food
Largest Cosmological Simulation To-Date Explains How Supermassive Black Holes Came Into Existence Shortly After the Big Bang

The large scale cosmological mass distribution in the simulation volume of the MassiveBlack. The projected gas density over the whole volume ('unwrapped' into 2D) is shown in the large scale (background) image. The two images on top show two zoom-in of increasing factor of 10, of the regions where the most massive black hole - the first quasars - is formed. The black hole is at the center of the image and isbeing fed by cold gas streams. Image Courtesy of Yu Feng.
PITTSBURGH -- Researchers at Carnegie Mellon University’s Bruce and Astrid McWilliams Center for Cosmology have discovered what caused the rapid growth of early supermassive black holes – a steady diet of cold, fast food.
Computer simulations, completed using supercomputers at the National Institute for Computational Sciences and the Pittsburgh Supercomputing Center and viewed using GigaPan Time Machine technology, show that thin streams of cold gas flow uncontrolled into the center of the first black holes, causing them to grow faster than anything else in the universe. The findings will be published in the Astrophysical Journal Letters.
In the early days of the universe, a mere 700 to 800 million years after the Big Bang, most things were small. The first stars and galaxies were just beginning to form and grow in isolated parts of the universe. According to astrophysical theory, black holes found during this era also should be small in proportion with the galaxies in which they reside. Recent observations from the Sloan Digital Sky Survey (SDSS) have shown that this isn’t the case -- enormous supermassive black holes existed as early as 700 million years after the Big Bang.
“The Sloan Digital Sky Survey found supermassive black holes at less than 1 billion years. They were the same size as today’s most massive black holes, which are 13.6 billion years old,” said Tiziana Di Matteo, associate professor of physics at Carnegie Mellon. “It was a puzzle. Why do some black holes form so early when it takes the whole age of the universe for others to reach the same mass?”
Supermassive black holes are the largest black holes, with masses billions of times larger than that of the sun. Typical black holes have masses only up to 30 times larger than the sun's. Astrophysicists have determined that supermassive black holes can form when two galaxies collide and their two black holes merge into one. These galaxy collisions happened in the later years of the universe, but not in the early days. In the first few millions of years after the Big Bang, galaxies were too few and too far apart to merge.
“If you write the equations for how galaxies and black holes form, it doesn’t seem possible that these huge masses could form that early,” said Rupert Croft, an associate professor of physics at Carnegie Mellon. “But we look to the sky and there they are.”
To find out exactly how these supermassive black holes came to be, Di Matteo, Croft and Carnegie Mellon post-doctoral researcher Nishikanta Khandai created the largest cosmological simulation to-date. Called MassiveBlack, the simulation focused on recreating the first billion years after the Big Bang.
“This simulation is truly gigantic. It’s the largest in terms of the level of physics and the actual volume. We did that because we were interested in looking at rare things in the universe, like the first black holes. Because they are so rare, you need to search over a large volume of space,” said Di Matteo.
They began by running the simulation under conditions laid out under the standard model of cosmology – the accepted theories and laws of modern day physics governing the formation and growth of the universe.
“We didn’t put anything crazy in. There’s no magic physics, no extra stuff. It’s the same physics that forms galaxies in simulations of the later universe,” said Croft. “But magically, these early quasars, just as had been observed, appear. We didn’t know they were going to show up. It was amazing to measure their masses and go ‘Wow! These are the exact right size and show up exactly at the right point in time.' It’s a success story for the modern theory of cosmology.”
Their simulation data was incorporated into a new technology developed by Carnegie Mellon computer scientists called GigaPan Time Machine. The technology allowed the researchers to view their simulation as if it was a movie. They could easily pan across the simulated universe as it formed, and zoom in to events that looked interesting, allowing them to see greater detail than what could be seen using a telescope.
As they zoomed in to the creation of the first supermassive black holes, they saw something unexpected. Normally, when cold gas flows toward a black hole it collides with other gas in the surrounding galaxy. This causes the cold gas to heat up and then cool back down before it enters the black hole. This process, called shock heating, would stop black holes in the early universe from growing fast enough to reach the masses we see. Instead, Di Matteo and Croft saw in their simulation thin streams of cold dense gas flowing along the filaments that give structure to the universe and straight into the center of the black holes at breakneck speed, making for cold, fast food for the black holes. This uncontrolled consumption caused the black holes to grow exponentially faster than the galaxies in which they reside.
And since when a galaxy forms when a black hole forms, the results could also shed light on how the first galaxies formed, giving more clues to how the universe came to be. Di Matteo and Croft hope to push the limits of their simulation a bit more, creating even bigger simulations that cover more space and time.
###
For more information, visit:
Terapixel Imaging of Cosmological Simulations
Feng, Y., Croft, R.A.C., Di Matteo, T., et al. 2011, ApJS, 197, 18
http://adsabs.harvard.edu/abs/2011ApJS..197...18F
The Formation of Galaxies Hosting z~6 Quasars
Khandai, N., Feng, Y., DeGraf, C., Di Matteo, T., & Croft, R.A.C.
2011, arXiv:1111.0692
http://adsabs.harvard.edu/abs/2011arXiv1111.0692K
Early Black Holes in Cosmological Simulations: Luminosity Functions and Clustering Behaviour
DeGraf, C., Di Matteo, T., Khandai, N., et al.\ 2011, arXiv:1107.1254
http://adsabs.harvard.edu/abs/2011arXiv1107.1254D
Cold Flows and the First Quasars
Di Matteo, T., Khandai, N., DeGraf, C., et al.\ 2011, arXiv:1107.1253
http://adsabs.harvard.edu/abs/2011arXiv1107.1253D
Gigapan link:
http://gigapan.org/gigapans/76215/
http://www.psc.edu/science/2011/supermassive/
April 25, 2011 -- Giga Pan Time Machine Allows Visual Exploration of Space and Time
Researchers at Carnegie Mellon University’s Robotics Institute have leveraged the latest browser technology to create GigaPan Time Machine, a system that enables viewers to explore gigapixel-scale, high-resolution videos and image sequences by panning or zooming in and out of the images while simultaneously moving back and forth through time. Viewers, for instance, can use the system to focus in on the details of a booth within a panorama of a carnival midway, but also reverse time to see how the booth was constructed. Or they can watch a group of plants sprout, grow and flower, shifting perspective to watch some plants move wildly as they grow while others get eaten by caterpillars. Or, they can view a computer simulation of the early universe, watching as gravity works across 600 million light-years to condense matter into filaments and finally into stars that can be seen by zooming in for a close up. August 13, 2010 -- Large Synoptic Survey Telescope (LSST) Project Receives Top Priority From the Decadal Survey of Astronomy and Astrophysics
A committee convened by the National Academy of Sciences to conduct a decadal survey of astronomy and astrophysics has ranked the Large Synoptic Survey Telescope (LSST), a collaborative research project in which Carnegie Mellon University is a partner, as its top priority among ground-based projects.
The committee's report titled "New World and New Horizons in Astronomy in Astrophysics" evaluates astrophysics and astronomy programs in terms of their risks, readiness, schedule and costs. Findings from this survey serve as a recommendation to the National Science Foundation (NSF), NASA and the Department of Energy (DoE) about which projects should receive funding over the next 10 years.
In the report the committee recommended that the NSF and DoE consider the LSST for immediate funding, citing that the telescope was poised to accomplish the research goals set forth by the survey and was the "most ready-to-go" among ground-based projects. The telescope should achieve "first light" by the end of the decade.
For further details, see the MCS press release.
July 21, 2010 -- Radio Astronomers Develop New Technique for Studying Dark Energy
Pioneering observations made by researchers from Academia Sinica in Taiwan, Carnegie Mellon University and the University of Toronto with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have validated a new tool for mapping large cosmic structures. Observations made using the method, called intensity mapping, promise to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the universe. The findings will be published in the July 22 issue of Nature.
"Since the early part of the 20th century, astronomers have traced the expansion of the universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them," said Jeffrey Peterson, of Carnegie Mellon's Bruce and Astrid McWilliams Center for Cosmology.
October 26, 2009 -- DOE Grant launches CMU initiative to automate discovery of Astrophysical Phenomena
August 31, 2009 -- Tiziana Di Matteo's work highlighted in Pittsburgh Post Gazette
Prof. Di Matteo's recent work on black holes has been highlighted in the Pittsburgh Post Gazette in an article entitled: "The Thinkers: Black holes, black energy and the history of the universe".
Pittsburgh Post Gazette article:
http://www.post-gazette.com/pg/09243/994390-53.stm?cmpid=news.xml
July 1, 2009 -- Bruce McWilliams featured in Physics World
"Once a Physicist: Bruce McWilliams" is the feature article in the Careers section of physicsworld.com
Physics World article:
http://physicsworld.com/cws/article/print/39686
March 20, 2009 -- Tiziana Di Matteo takes part in panel on Computational Physics at APS March Meeting
During Friday's session of the meeting of the American Physical Society at the David L. Lawrence Convention Center in Pittsburgh, CMU cosmologist Tiziana Di Matteo was part of a panel on computational physics.Pittsburgh Post Gazette article:
http://www.post-gazette.com/pg/09079/956990-53.stm?cmpid=news.xml
Pittsburgh Tribune-Review article:
http://www.pittsburghlive.com/x/pittsburghtrib/search_adv/s_617147.html
February 18, 2009 -- Tiziana Di Matteo Presents Detailed Cosmological Simulations at AAAS Meeting
Tiziana Di Matteo, Associate Professor of Physics at Carnegie Mellon University, is harnessing the power of supercomputing to recreate how galaxies are born, how they develop over time, and ultimately how they collapse. Di Matteo presented an overview of her cosmological simulations as part of the "Big, Small, and Everything in Between: Simulating Our World Using Scientific Computing" session at the 2009 American Association for the Advancement of Science (AAAS) Annual Meeting, Feb. 15 in Chicago.
Carnegie Mellon Press Release:
http://www.cmu.edu/news/archive/2009/February/feb18_dimatteo.shtml
Medill Reports, Chicago, Northwestern University article:
"Supercomputing means better models of earthquakes, cells and the universe"
http://news.medill.northwestern.edu/chicago/news.aspx?id=116329
September 10, 2008 -- First Beam Sent Around Large Hadron Collider
The first beam in the Large Hadron Collider at CERN Laboratory in Geneva was
successfully steered around the full 27 kilometers of the world\uffffs most
powerful particle accelerator. This historic event marks a key moment in the
transition from over two decades of preparation to a new era of scientific
discovery. Carnegie Mellon physicists constructed the state-of-the-art
electronics, consisting of 150,000 channels, for the endcap muon system of
the LHC's compact muon solenoid detector.

- Fermilab Press Release
http://www.fnal.gov/pub/presspass/press_releases/US-CMS.html
- CERN video of the magnet being lowered
http://cdsweb.cern.ch/record/1019674
- CERN Press Release:
http://press.web.cern.ch/press/PressReleases/Releases2008/PR08.08E.html
- U.S. LHC First Beam Web site:
http://press.web.cern.ch/press/PressReleases/Releases2008/PR08.08E.html - Pittsburgh Tribune Review Article "Carnegie Mellon has hand in Big Bang Collider":
http://www.pittsburghlive.com/x/pittsburghtrib/search/s_587408.html
September 2, 2008 Giant Furnace Opens to Reveal 'Perfect' LSST Mirror Blank
The mirror blank for the Large Synoptic Survey Telescope (LSST) has been successfully cast at the University of Arizona's Steward Observatory Mirror Lab. The telescope requires three large mirrors to give crisp images over a record large field of view. The two largest of these mirrors are concentric and fit neatly onto the 51,900 pound and 27.5 foot in diameter mirror blank. Carnegie Mellon is one of 23 universities, national laboratories and corporations involved in constructing the telescope.
![]()
LSST press release, video and images: http://www.lsst.org/News/LSSTC_08.shtml
April 22, 2008
Carnegie Mellon Celebrates the Establishment of the Bruce and Astrid McWilliams Center for Cosmology
Carnegie Mellon Press Release:
http://www.cmu.edu/news/archive/2008/April/april22_cosmologycenter.shtml
“CMU, Pitt Seek to Solve Space Mysteries,” Pittsburgh Tribune Review:
http://www.pittsburghlive.com/x/pittsburghtrib/s_563378.html
“Gift Helps CMU Probe Cosmic Mystery,” Pittsburgh Post-Gazette:
http://www.pittsburghlive.com/x/pittsburghtrib/s_563378.html
April 22, 2008
Joel Primack to Give “Brief History of Dark Matter” at Buhl Lecture
Carnegie Mellon Press Release:
http://www.cmu.edu/news/archive/2008/April/april11_buhllecture.shtml
March 28, 2008 LSST Mirror Casting Event
Using 51,900 pounds of glass, The University of Arizona's Steward Observatory Mirror Laboratory has began castting of the mirrors to be used in the Large Synoptic Survey Telescope (LSST). Representatives from LSST's 23 member organizations, including Carnegie Mellon's Fred Gilman, gathered in Tucson March 28 to celebrate "High Fire," the point where the furnaces heating the glass reached their peak temperature of 2150 degrees Fahrenheit.
LSST's High Fire Event Page: http://www.lsst.org/News/highfire_event.shtml
University of Arizona Press Release: http://uanews.org/node/18772
Pittsburgh Tribune Review Article: http://www.pittsburghlive.com/x/pittsburghtrib/s_557780.html
March 28, 2008 Carnegie Mellon Receives $4.15 Million in Grants From the Gordon and Betty Moore Foundation
Part of the grant will fund a computer super-cluster. Shared with researchers in Computer Science, Carnegie Mellon cosmologists will use this cluster to carry out complex simulations of the early universe.
Carnegie Mellon Press Release: http://www.cmu.edu/news/archive/2008/March/march28_moorefoundationgrant.shtml
February 1, 2008
Tiziana DiMatteo Wins Emerging Female Scientist Award at Carnegie Science Center Awards for Excellence
DiMatteo received the award for her contributions in the field of cosmology. Having developed the most detailed computer simulations of galaxy formation to date, she has provided vital information needed to gain deeper understanding into how galaxies evolve over time.
- http://www.cmu.edu/mcs/about-mcs/news/080206-dimatteo.html Carnegie Mellon Press Release
- “Universe Brave New World for CMU Physics Professor,” Pittsburgh Tribune Review
http://www.pittsburghlive.com/x/pittsburghtrib/search/s_550292.html
- “Carnegie Science Awards Announced,” Pittsburgh Post-Gazette
http://www.post-gazette.com/pg/08032/853878-115.stm
January 22, 2008
Compact Muon Solenoid Celebrates the Lowering of Final Detector Element
Carnegie Mellon is one of 155 institutions involved in constructing the Compact Muon Solenoid (CMS), one of the detectors in the Large Hadron Collider. Carnegie Mellon physicists constructed the state-of-the-art electronics, consisting of 150,000 channels, for the endcap muon system of the CMS detector.

CERN Press Release
http://press.web.cern.ch/press/PressReleases/Releases2008/PR01.08E.html
CMU Press Release http://www.cmu.edu/news/archive/2008/January/jan8_lsst.shtml
January 8, 2008
Carnegie Mellon Joins Large Synoptic Survey Telescope Project
Carnegie Mellon is now among 23 universities, national laboratories and corporations involved in constructing the world's most powerful survey telescope
- “CMU Joins Super Telescope Team,” Pittsburgh Tribune Review
http://www.pittsburghlive.com/x/pittsburghtrib/news/cityregion/s_546515.html
- “Pitt, CMU to Help Develop Largest Survey Telescope,” Pittsburgh Post-Gazette
http://www.post-gazette.com/pg/08012/848702-85.stm
- Large Synoptic Survey Telescope (LSST) Web site
http://www.lsst.org
December 18, 2007
Compact Muon Solenoid Tracking Detector Successfully Installed
CERN Press Release
http://press.web.cern.ch/press/PressReleases/Releases2007/PR12.07E.html
Fall 2007
Profile of Bruce McWilliams
Packaging the Goods: Bruce McWilliams Delivers Tomorrow’s Technology and Talent,” MCS News
http://www.cmu.edu/mcs/about-mcs/news.html
June 27, 2007
Carnegie Mellon Leads International Team in Conducting Most Detailed Cosmological Simulation To Date
By incorporating the physics of black holes into a highly sophisticated model running on a powerful supercomputing system, an international team of scientists has produced an unprecedented simulation of cosmic evolution that verifies and deepens our understanding of relationships between black holes and the galaxies in which they reside.
Carnegie Mellon Press Release
http://www.cmu.edu/news/archive/2007/June/june27_blackholes.shtml
February 28, 2007
Giant Compact Muon Solenoid Magnet Goes Underground

