Shirley Ho-Dept of Physics - Carnegie Mellon University

Shirley Ho

Assistant Professor, Physics

Office: 8301 Wean Hall
Phone: 412-268-7134
Fax: 412-681-0648

Education

Ph.D., Princeton University

Research

Cosmology has entered a new era beginning in the 21st century when a combination of the measurement of cosmic microwave background and the low redshift data, such as those from supernova, has established a standard cosmological model. This is a spatially flat universe started with a possibly standard inflationary scenario, where energy density is split between two unknown dark components, dark energy and dark matter and a fraction of baryons. Understanding the dark components of the Universe and how it all began are the two most outstanding problems of contemporary cosmology. To attack these two outstanding problems, I utilize the spatial distribution of galaxies, quasars, and neutral hydrogen (probed by the Lyman alpha forest in quasar spectra or 21-cm observations) as standard rulers for the Universe. In particular, I utilize a standard ruler in the network of galaxies/matter tracers called Baryon Acoustic Oscillations to constrain models of dark energy. I am a member of the Sloan Digital Sky Survey III, which is in the process of surveying the largest volume of galaxies, quasars and neutral hydrogen. I am also a core team member of the Planck HFI and LFI, which is making the best cosmic microwave background map at large scale. I combine the cosmic microwave background and the distribution of galaxies and quasars to investigate the varying potential of the Universe (probably due to dark energy) via Integrated Sachs Wolfe Effect, and constrain the matter content of the Universe with gravitational lensing of the CMB. I would be very happy to talk to/ work with students and postdocs about new ways to understand the dark components of the Universe and its beginning. I also make use of the McWilliams Center's high performance computing facilities, including Warp, to perform large scale clustering analysis of the Universe.

Selected Publications