
Traffic21 Policy Brief

Mixed-Autonomy  
Era of Transportation
Resilience & Autonomous Fleet Management

By I-Cheng Lin, Osman Yağan and Carlee Joe-Wong

Summer 2022



Acknowledgments

This work was supported by the 

National University Transportation 

Center for Improving the Mobility 

of People and Goods (Mobility21) 

at Carnegie Mellon University. We 

would like to express our deep and 

sincere gratitude to Sean Qian and the 

community stakeholders, especially 

Chuck Imbrogno from the Southwestern 

Pennsylvania Commission, for their 

feedback on our work. We would also 

like to thank Shaival Chetan Parikh 

and Chen Zhao for helping to build 

the simulator for the dynamic fleet 

management. 

2



3

Introduction
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Recent advances in technology, including systems like the 

Internet of Things (IoT) connecting a significant number of 

devices, increasingly autonomous vehicles, and widespread 

deployments of machine learning, promise to form the core of 

newly intelligent future transportation systems. The advent of 

autonomous vehicles (AVs) in particular, which have recently 

started to be deployed (with safety drivers) to the public in 

California [1], may dramatically change the dynamics of the 

vehicles in the transportation network and the interactions 

between them. Prior analyses of AVs’ effects on traffic flow, 

however, often do not account for realistic mixed autonomy 

settings, in which autonomous vehicles interact with human-

driven vehicles (HVs). Studies that do focus on the interactions 

between AVs and HVs, however, mostly focus on microscopic 

behaviors, so the effect on the whole transportation network is 

not clear. Our study demonstrates the potential for autonomous 

vehicles to improve traffic flow for both autonomous and non-

autonomous vehicles in mixed-autonomy settings within a 

transportation network system.

Future Environment: Mixed-Autonomy

[1] https://www.reuters.com/technology/california-issues-permits-
cruise-waymo-autonomous-vehicle-service-2022-02-28/
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The adaptation of autonomous vehicles (AVs) can benefit the operation of the whole 

transportation network in terms of better utilization, lower travel time, and energy 

consumption. Many of these potential benefits stem from three core AV capabilities. First, 

the AVs can be programmed to make collaborative decisions that will improve the overall 

driving experience for all users, and look for ways to reduce traffic congestion even if 

it means the AVs might experience a longer travel time or a less efficient trip. Second, 

AVs are equipped with multiple sensors and use computers to automatically detect and 

respond to changes in the environment. Thus, the adaptation of AVs could enhance the 

safety of the transportation network and accommodate a denser traffic flow by allowing 

autonomous vehicles to follow each other more closely on roads without compromising 

safety. Third, since the computation of AVs takes less time than humans to respond, they 

generally have a lower reaction time than the HVs. Moreover, since the AVs can share 

the information between them, they can respond to incidents a few blocks away that are 

not visible to human sight, further reducing the reaction time, which we emphasize next.

Autonomous Vehicles: Benefits
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Autonomous Vehicles: Collaboration 
and Information Exchange

The third benefit arises from the fact that the AVs can exchange information with 

other AVs in real-time via vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) 

communication and can also obtain information about the transportation network in 

general by communicating with other monitoring services. Thus, AVs will have a more 

complete picture of road network conditions (e.g., congestion along their routes) and 

can react and adjust their chosen routes, travel speeds, etc. accordingly. This capability 

is similar to that of Google Maps and similar services, but it is available all the time and 

can respond automatically without needing to open a navigation app and have a human 

choose between the offered routes. Since AVs can communicate with each other, they 

could negotiate and make collaborative decisions, preventing them from competing for 

the same road resource. In fact, HVs could also offer some of these benefits via navigation 

apps, which could guide different vehicles to use different roads and inform them about 

real-time traffic conditions. However, the reaction times for HVs will still be longer than 

they are for AVs, and in some cases, HVs may not follow the recommendations given 

by navigation apps. Thus, we expect that coming deployments of AVs, or at least semi-

autonomous vehicles that exhibit these three capabilities, will most likely be required to 

realize these benefits. Indeed, AVs are likely to be initially deployed in fleets (e.g., of taxis or 

delivery vehicles), increasing their ability to cooperate with one another.
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Interaction Between AVs and HVs: 
How Decisions of AVs Influence HVs

In the big picture, HVs (without navigation apps) 
generally try to behave selfishly, to minimize their 
own travel times, maximize their fuel efficiency, etc., 
while the AVs could make collaborative decisions 
that seek to benefit all vehicles. Interactions between 
AVs and HVs occur on several different timescales, 
due to the different timescales of decisions taken by 
AVs and HVs. At a macroscopic scale, AVs and HVs 
must choose routes to take to their destinations. For 
example, AVs could try to utilize the roads that are 
relatively empty to induce lower traffic levels on the 
often-used road. At the microscopic scale, AVs and 
HVs choose their velocities along these routes.

The velocity of the AVs could then influence the 
velocity of HVs. Imagine there are many AVs on the 
road; if all of them operate at a similar speed, the HVs 
will likely follow the same speed. The more AVs on 
the road, the more the HVs will follow the decisions 
of the AV fleet. For example, if AVs have extra 

Our Goals
There are three main goals of this research. We first consider the optimal strategy of the autonomous 
vehicle fleets and the equilibrium, or average steady-state, traffic conditions. Since the traffic 
flow in practice may vary over time, we then consider the resilience and robustness of the whole 
transportation system.

1

2

3

When the traffic flow is stable, vehicles should eventually reach an equilibrium state (e.g., level 
of congestion) on a road network. This equilibrium, however, may be suboptimal if the vehicles 
do not have full information of the city or only aim to optimize their own delays. We model the 
coexistence of HVs and AVs in routes chosen, finding that the system reaches a close-to-optimal 
equilibrium when only 20-50% of vehicles are programmed to make collaborative decisions that 
aim to optimize the overall delay of the whole transportation network.

The adaptation of AVs and their co-existence with HVs form a multi-agent mixed-autonomy 
environment. This work aims to find the optimal operating policies for the fleet of AVs, 
considering HVs behave selfishly based on their own information.

We find out how AVs could prevent cascading network congestion, which may result in  
large-scale congestion and failure initiated by a disaster or a particular event — reaching the 
optimal robustness of the whole transportation system.

information due to their network connectivity, they 
could react to the incidents happening a few blocks 
away, preventing sudden braking, which may also help 
the HVs to change their velocity smoothly.
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Equilibrium Analysis
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Equilibrium with Selfish Behaviors

The selfish behavior of the vehicle means that it only 
aims to minimize its own travel delay regardless of 
the available resources and the capacity of the roads. 
When all vehicles behave selfishly, they often reach 
equilibrium traffic conditions that are not collectively 
optimal for all vehicles on the road. Take the famous 
Braess’s Paradox as an example. The figure on the right 
illustrates the original network, which reaches a steady 
state travel delay on each road. If we add a road with 
low delay connecting the middle two nodes A and B,  
the traffic will likely go through the path O->A->B->D  
utilizing this new road, eventually causing traffic jams 
on this path. This equilibrium is then suboptimal: 
many vehicles on this path will experience long 
delays throughout their journey, while the original 
equilibrium with traffic using paths O->A->D or O->B->D 
induces a low delay on roads OA and BD with a high 
delay on roads AD and OB. Thus, the equilibrium state 
reached by selfish behaviors with this new road is not 
the optimal one since on average, vehicles experience 
high delays. Sometimes, this equilibrium is far from 
optimum.

Illustration of Braess’s Paradox. O is the origin of traffic and D is the 
destination of the traffic. Roads OA and BD are shorter and have 
lower capacity. On the other hand, roads OB and AD are longer 
while having higher capacity.
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Benefits from Collaborative Decisions

Sometimes a collaborative decision could play an 
essential role in optimizing the traffic and avoiding 
these suboptimal equilibria. Let us take this toy 
example. If all the vehicles are selfish, they will 
try to use the shorter route with lower travel time 
for them. Once the delay of this route is the same 
as that of the longer ones, the selfish agent will 
start to use the longer one. However, this means 
that during the equilibrium state, the delay of 
the shorter route will be the same as that of the 
longer route. If some vehicles have information 
on the road usage and could make collaborative 
decisions that are not selfish, they could utilize the 
longer route with higher capacity while leaving 
the shorter route to the selfish agent. We could 
compensate the users using the longer route by 
waiving road tolls or other means to guarantee 
fairness. By doing so, the equilibrium reached could 
have a much lower overall travel time than the 
equilibrium state induced by fully selfish behavior.

ILLUSTRATION OF BENEFITS FROM ALTRUISM
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How Do Ratios of AVs Influence the Travel Time?

If too few vehicles are not selfish, their 
decisions will not effectively influence 
the equilibrium state of the traffic. After 
reaching a certain percentage of vehicles 
that do collaborate in aiming to optimize the 
overall delay of the whole transportation 
system, the equilibrium state starts to 
change, and the overall performance 
increases. When the percentage of 
collaborative AVs exceeds a certain level, 
the optimal equilibrium is reached, and 
increasing the ratio of AVs will no longer 
decrease total travel time. However, the AVs 
could maintain a shorter following distance 
from other vehicles. If we consider this, 
the overall travel time will keep decreasing 
slightly with the increasing ratios of the AVs.

EXAMPLES OF PARALLEL ROUTES
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Mechanism to Incentivize a Better Equilibrium

We can find the optimal equilibrium state by solving 
a two-stage convex optimization problem. In the first 
stage, if we view each route as a bucket of water that 
fills up as more vehicles take that route, then we can 
treat selfish HVs as acting like water that flows into all 
buckets uniformly, eventually equalizing the delays 
on each route. This problem is analogous to a power 
allocation problem for the Gaussian noise channel 
in communication engineering. By applying specific 
methods, we could solve the optimal equilibrium state 
of parallel routes and figure out the portion of AVs 
that can reach this optimum by adopting water filling 
algorithms for the inner optimization problem for the 
HVs and then solving the AVs’ optimization problem.

Identify the optimal ratios of collaborative 
vehicles and ensure that this proportion of 
vehicles follows the collaborative decisions. 
In our simulations, usually, collaborative 
vehicles start to be effective after the ratio 
is between 20%~50%. We could reach such 
ratios with a combination of AVs and HVs 
following the collaborative decisions by 
compensating the expense of the vehicles 
or making a certain degree of obedience to 
the collaborative decisions a prerequisite 
for AV registration with local or state 
transportation agencies. This could be 
realized in practice by exemptions from 
tolls, or a dynamic tolling system with 
discounts for the collaborative vehicles. 
Agencies like PennDOT, for example, may 
impose vehicle-miles-traveled tolls on 
state highways that could be waived for 
collaborative vehicles. Other example 
incentives more suited to urban areas might 
include discounts at parking garages.

POLICY SUGGESTED

ILLUSTRATION OF WATER-FILLING ALGORITHMS
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Dynamic Fleet Management
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The AVs and their co-existence with HVs form a multi-
agent, mixed-autonomy environment. To monitor the 
dynamics of such a transportation system, we need to 
consider the different effects of decisions and actions 
of each agent made in different times. This is different 
from the equilibrium analysis which does not involve 
the concept of “time.” This work aims to find the optimal 
operating policies for the fleet of AVs, considering that 
HVs behave selfishly based on their

 own information. Optimizing a single AV will fail to 
reach the optimal operation of the whole system. On 
the other hand, centralized control of thousands of 
AVs in the city will face computation issues and severe 
communication delays. We strike a balance between 
centralized and decentralized policies using state-of-
the-art reinforcement learning: Centralized training 
and decentralized actions using counterfactual  
multi-agent policy gradient methods (COMA) [1].

Balance Between Centralized and  
Distributed Decision Making

[1] Counterfactual Multi-Agent Policy Gradient 
https://dl.acm.org/doi/abs/10.5555/3504035.3504398
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Logic Behind the Model: Small Group Management

Our work uses a mesoscopic view, considering both network-level routing decisions and road 
level velocity decisions. We group the AVs in the same area as a small fleet, using multi-agent 
reinforcement learning (MARL) and the cell-transmission model (CTM) [1] of the traffic to find 
the optimal policies for the AVs that maximize the social welfare — the average travel time of 
all vehicles. In each cell or region, vehicles can communicate locally with each other via V2V 
communication to the cellular base station in that area. Our trained model can be stored at the 
base station, gathering all the information in the block and determining the best actions.

[1] The Cell Transmission 
Model: Network Traffic https://
escholarship.org/content/
qt9pz309w7/qt9pz309w7.pdf

Velocity Control: Reason and Interactions  
Between AVs and HVs

When a particular event ends (e.g., concert, football 
game, etc.), many people leave a specific area; or when 
an accident happens, many vehicles may detour to 
adjacent areas. These kinds of incidents may trigger 
sudden traffic in the transportation network. Without 
velocity control, all this traffic might feed into the 
transportation network to the same area at the same 
time. Thus, a traffic jam will occur. Once the traffic jam 

starts, the travel speed of the whole network will start 
to decrease drastically as the traffic spreads; thus, the 
average travel time of the whole system might increase! 
If we control the vehicles’ velocity in the network, we 
can try to prevent the vast traffic flows from meeting in 
a specific area. The control of the speed of the vehicles 
is a key factor in the scheduling of traffic control.
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Routing Control: Choices of AVs and HVs

Routing is always a critical problem that also influences the traffic a lot. Every 
single vehicle’s selfish goal is to find the routes that minimize their costs (i.e., 
travel time, energy consumption, toll, etc.). However, if all vehicles attempt 
to choose the route that minimizes their costs, all of them might try to use 
the shortest path and make specific paths congested or even blocked. With 
a collaborative routing control of AVs that considers the selfish behavior of 
individual HVs, we could try to let the fleet of AVs optimize the whole traffic 
network by incentivizing the optimal behavior of the HVs.

Our methods show that under different ratios of AVs, the model could lower the average travel time of the 
whole transportation system. With the control of the velocity and routing of AVs, our model could learn the 
traffic pattern and react to the sudden traffic that may potentially fail the network and incentivize a better 
behavior of HVs. In short, reasonable control of the AVs could drastically change the performance of the 
whole transportation system even when the portion of AVs is much smaller than HVs.

An AV fleet operator can apply our proposed method to 
train the model to manage AV fleets locally. The operator 
should (i) execute such a model in each area to determine 
the actions of micro fleets and (ii) gather the observations 
and actions of each micro fleet in each time interval and 
return them to the centralized controller to judge the 
operations. The update frequency can be determined 
by monitoring the traffic situation. If some new traffic 
pattern occurs, the performance of the whole network 
may decrease drastically; we can update the model more 
frequently to deal with such a situation. On the other hand, 
if the current trained models work well enough, we could 
lower the update frequency to ease the communication 
between local actors and the centralized critic. Such models 
can be adopted by the Incident response teams who need 
to direct traffic away from accidents.

POLICY SUGGESTED

Learning curve of the MARL framework
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The Resilience  
of the Transportation 
Network
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Accidents, Natural Disasters  
in the Transportation Network

We finally consider the resilience of transportation systems to sudden 
disruptions. If a severe accident occurs on a particular road, the traffic 
should be detoured. The extra traffic on other roads might cause a traffic 
jam in the adjacent area where the accident initially happened. The recent 
bridge collapse in Frick Park, Pittsburgh, is an example of such a sudden 
disruption. Moreover, if a disaster like an earthquake or flood occurs, 
more than one area will be impacted. With more than one spot in the 
transportation network failed, we could expect the whole transportation 
network to suffer from significant additional traffic. These additional 
traffics might potentially trigger a process called cascading failure which 
eventually might cause the whole system to break down as congestion 
spreads to the entire network.

Traffic Redistribution: How AVs Could Help

We conjecture that AVs can help to prevent cascading 
failures by taking advantage of the benefits we 
mentioned earlier in this report. By pulling up-to-
date traffic information from the internet, AVs could 
respond to failures quicker than HVs, preventing the 
vehicle from realizing the situation at the last moment. 
With this information, the AVs could plan their routing 
based on the information of the failure. In other words, 

the AVs could avoid the low traffic capacity area, which 
the extra traffic could potentially jam. Finally, selfish 
agents might want to minimize travel time and be 
reluctant to use longer routes. The altruism of the AVs 
might disperse the traffic to the roads and the areas that 
are used less often, thus ensuring that the traffic burden 
is more equitably spread throughout the city.
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The Phenomenon of Cascading Failures

Much research [1-3] on the robustness 
of the network systems focuses on the 
phenomenon called cascading failures, 
where failures in a small part of the 
network (e.g., congestion on a few critical 
roads) may trigger a process of sequential 
failures due to traffic in the failed part of 
the network being transferred elsewhere, 
eventually causing a disastrous impact on 
the whole system. Such a cascading failure 
process can also make other systems 
like railway networks, communication 
networks, etc., break down. The blackout 
in Italy on September 28, 2003, is an 
example where the initial failure of a 
few power lines eventually caused a 
nationwide power outage.

[1] Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization  
https://aip.scitation.org/doi/10.1063/1.2737822

[2] Model for cascading failures in complex networks https://arxiv.org/abs/cond-mat/0309141 

[3] Cascading failures in interdependent systems under a flow redistribution model  
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.022307

ILLUSTRATION OF CASCADING FAILURE
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A Better Redistribution Decision by AVs

Simulations were done to verify whether AVs could 
help enhance the transportation network’s resilience. 
We evaluate the AVs’ benefits with different AV-to-
HV ratios. The AVs could collaborate to determine the 
areas to detour with the complete information of the 

system. The results in the figure below show that the 
collaboration of the AVs could prevent the system from 
failing. With a higher portion of AVs, eventually, there 
will be fewer congested areas on the map.

INITIAL FAILURE 100% AVs

50% AVs NO AVs



21

Extension to Multiple Networks:  
Transportation in Metropolitan Areas

Finally, we consider the presence of 
alternate transportation modalities, 
which can similarly help to relieve 
congestion on road networks. 
The urban transportation system 
typically includes road networks, 
bus, subway, railway, and bike-
sharing systems. These networks 
are interdependent in the sense 
that passengers may transfer 
between them. The robustness of 
such interdependent systems was 
studied, with results showing that 
interdependent networks could 
be more vulnerable to cascading 
failures than an isolated network. 
We study the coupling between 
the networks, which indicates 
the portion of the passengers to 
use another network system. We 
show that dynamically adjusting 
the coupling [1] (i.e., passenger 
transfers) between networks can 
optimize the usage of the whole 
system and let each network 
share the load of the passengers, 
maximizing the utilization of the 
whole system and preventing it 
from overloading and failing!

1 — b (t)

1 — a (t)

ILLUSTRATION OF COUPLING BETWEEN 
INTERDEPENDENT NETWORKS

Network A

Network B

b (t)

a (t)
[1] Dynamic Coupling Strategy for 
Interdependent Network Systems  
Against Cascading Failures  
https://arxiv.org/abs/2203.01295
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A Dynamic Strategy to Prevent Failure 
of Transportation Networks

We introduce the dynamic coupling strategy with a step-wise optimization (SWO) framework 
between networks, which could determine the optimal coupling coefficients at each stage of the 
cascading failure process. We show that (under certain conditions) the SWO strategy reaches 
the global optimum regarding the final surviving number of areas. Thus, our step-wise dynamic 
optimization can lead to the optimal operation of the whole system. The figure below shows the 
results of our SWO strategy compared to other fixed coupling strategies. Under the same initial 
failure size (the portion of the network that fails), the dynamic strategy could yield the largest 
surviving portion of the whole system.

Performance of the SWO 
strategy compared to 
other fixed coupling 
strategies. The x-axis 
indicates the initial 
failure portion, and 
the y-axis indicates the 
final surviving portion. 
Under the same initial 
attack, better strategies 
lead to higher surviving 
portions.

SURVIVING CURVES FOR UNIFORM DISTRIBUTED FREE SPACE

For the road transportation system, AVs could 
identify the roads that are close to the capacity 
limits; or foresee the roads that may potentially 
receive lots of extra traffic due to the failures in 
adjacent areas. Based on such information, planning 
agencies could compute traffic flow redistribution 
policies for AVs to avoid traffic jams and cascading 
failures.

Applying the proposed framework to multiple 
interdependent transportation systems can optimize 

the dynamic flow adjustment between different 
networks. Recommendations with transportation 
apps, e.g., the Port Authority mobile app, could 
achieve such traffic flow transferring between 
different network systems. Furthermore, ensuring 
the availability of public transportations and 
providing discounted parking areas, discounted 
tickets, etc. in these locations could also be a good 
policy to encourage passenger transfers.

POLICY SUGGESTED
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AVs in the mixed-autonomy era could act as coordinators in the transportation 
system. With collaboration and information sharing between the AVs and the 
centralized server, we find that AV fleets can take the actions that incentivize 
the best response of the HVs. Even a partial adaptation of AVs not only increases 
the utilization of the transportation system, minimizing vehicles’ delays, but also 
increases the resilience of the transportation network against failures and sudden 
traffic. Thus, drivers’ on-road experience could be elevated to the next level in the 
new era of mixed-autonomy.

Summary of Policies Suggested

1. 	Identify the optimal ratios (usually between 20%~50%) of collaborative vehicles 
and ensure that this proportion of vehicles follows the collaborative decisions.

2. 	Execute the dynamic micromanagement model in each area to determine the 
actions of micro AV fleets. Gather the observations and actions of each micro fleet 
every specific time interval and return to the centralized controller to judge the 
operations and update the model.

3. 	Compute traffic flow redistribution policies for AVs to avoid traffic jams and 
cascading failures on road networks. In multiple interdependent transportation 
systems, agencies may apply dynamic coupling strategies to optimize the 
robustness of the system against cascading failures of the transportation system.

Future Works

1.	 The equilibrium analysis of the transportation network could be extended to 
different road topologies. A more sophisticated operation policy can be obtained 
for different network structures.

2. 	Various models for the MARL settings of AV fleet management could be applied 
in addition to the COMA used in this report. Based on the centralized/distributed 
level of the environment, we can find the model that meets the communication 
resource constraints.

3. 	We can search for an optimal strategy for setting the coupling coefficients under 
different network topologies. For example, many real networks follow the power 
law and could be generated by preferential attachment.

Summary
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