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ABSTRACT
Route choice systems (RCS) and traffic control systems (TCS) constitute two major approaches to
mitigating congestion in urban road networks. The interaction between signal control and route
choice is often captured in the combined traffic assignment and control problem, whose solution
has many practical applications. In this paper, we consider this interaction from a narrower RCS
perspective, and focus on distributed route choice models for operational rather than planning
purposes. Our goal is to analyze the relative performance of alternative route choice models as
different assumptions are made about the type of TCS in use in the urban road network. To this
end, we define a unified agent-based framework for formulating different route choice models, and
integrate this framework with a microscopic traffic simulation environment. Within our framework,
each agent’s memory is updated repeatedly (daily) to reflect available prior individual and social
experience, and then a route is chosen by a probabilistic sequential decision-making process that
is a function of the agent’s updated current memory. Several previously developed route choice
models from the literature are implemented using the framework, and their performance, along
with some additional hybrid models that are suggested by the modeling framework, is evaluated
on two simulated real-world TCSs: (1) a 32-intersection road network in Pittsburgh, PA running
a fixed, SYNCHRO-generated coordinated signal control plan, and (2) the same road network
running with the SURTRAC adaptive TCS. The results show that specific route choice models
perform differentially when applied in conventional and adaptive traffic signal control settings,
and that better overall network performance for all route choice models is achieved in the adaptive
signal control setting. Our unified framework also makes it possible to analyze the performance
impact of route choice model components, and to formulate better performing hybrid models.
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INTRODUCTION
In urban road networks, traffic congestion is a major problem, resulting in significant costs for
drivers through wasted time and fuel, detrimental impact to the environment due to increased
vehicle emissions, and increased needs for infrastructure upgrades.

It is generally recognized that traffic control systems (TCSs) (1, 2, 3, 4) and route choice
systems (RCSs) (5, 6, 7, 8) are two major technologies for dealing with traffic congestion. In
any signalized road network, the delay incurred by a TCS at intersections significantly affects
the cost of travel through the network, and the collective route choices of drivers utilizing the
network produce flow patterns, which in turn influence the design of the TCS and its control plans.
From a planning perspective, this loop is commonly referred to the combined traffic assignment
and control problem (9, 10). Broadly, techniques for solving this problem have many practical
applications, e.g., in supporting policy evaluation in urban planning, in providing route guidance
operations, and in identifying optimal combinations of signal settings and routing patterns (10).

In this paper, we consider the interaction between TCSs and RCSs from the perspective
of agent-based route choice models, which builds on concepts from game theory. The problem
is formulated as a congestion game (11, 12, 13, 14, 15), a form of commuting problem where a
set of agents (drivers) must repeatedly select travel routes from an origin location to a destination
location. The set of possible routes are shared resources, and the cost to each driver depends on the
route chosen and the number of others that have chosen the same route in the same time period. The
game is repeated day by day, and drivers try to adapt their route choices according to the available
information. The user equilibrium (UE) and system optimal (SO) represent performance optimums
in the fully noncooperative and fully cooperative cases, respectively. However, these optimums
assume that all agents have complete information and make perfect decisions, which is rarely
achievable in the real world. Due to their perception errors, agents should consider an imperfect,
or noisy, rational expectations equilibrium (16). As also indicated by early work in stochastic UE
(6, 7) and boundedly rational UE (17), agents still have a tendency toward cost minimization, but
not necessarily choose the lowest. Instead, agents try to quickly adapt to the set of correlated
equilibria (13), where the probability distribution over the choice set is obtained using shared
information. Based on a concept of equilibrium similar to that adopted in the stochastic traffic
assignment literature, an agent-based framework has the power to naturally model heterogeneous
individual behavior under dynamic flow conditions, although there is an additional challenge for
the system to reach desired equilibria based on (myopic) individual decisions, under essentially
decentralized operating conditions.

Various route choice models (RCMs) have been proposed. In the regret matching strategy
(13), agents may depart from the current choice with probabilities proportional to their regret for
not choosing other particular choices in the past steps. This simple adaptive strategy can con-
verge to a correlated equilibrium. The exploration-replication policy (ERP) (12) is a distributed
routing policy that approximates the Wardrop equilibrium. It uses an adaptive sampling rule that
is inspired by replicator dynamics, which amplifies the choice of low-cost routes. To reduce the
computational burden of fictitious play (FP), the fading memory joint strategy FP (JSFP) is pro-
posed (14), and convergence is established to a pure Nash equilibrium in potential games. The
linear reward-inaction (LRI) algorithm (11) is used for distributed learning of the equilibrium in a
linear Wardrop game. In discrete choice theory (5), multinomial logit (MNL) models have been
extensively studied, and some variants can handle the underlying i.i.d. assumption to some ex-
tent (18). In (19), an agent-based model is proposed to account for the heterogeneity of different
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drivers using the Dirichlet distribution, the conjugate prior of the multinomial distribution, where
the concentration parameters are obtained over time using Bayesian learning. This model has been
shown to converge to a UE and is able to handle flow disruptions in a single-commodity network.

The theoretical convergence properties of all of the above models have been studied and
demonstrated in idealized settings, and little attempt has been made to understand their perfor-
mance in real-world traffic networks. Our goal in this paper is to investigate this general question,
with particular emphasis on how various route choice models interact with different traffic control
systems or plans. To this end, we define a unified agent-based framework for formulating different
(distributed) route choice models, and integrate this framework with a microscopic traffic simu-
lation environment. Within our framework, each agent’s memory is updated repeatedly (daily) to
reflect available prior individual and social experience, and then a route is chosen by a probabilistic
sequential decision-making process that relies on the agent’s updated memory. A set of existing
route choice models are implemented using the framework, along with some additional hybrid
models, and these models are then empirically evaluated in two simulated real-world settings: (1)
a 32-intersection road network in Pittsburgh, PA running with a fixed, SYNCHRO-generated co-
ordinated signal control plan and (2) the same road network running with the SURTRAC adaptive
traffic control system (3, 4, 20). Furthermore, our unified framework makes it possible to sepa-
rately analyze the performance impact of route choice models and their components, and provides
a basis for formulating better performing hybrid route choice models.

PROBLEM FORMULATION
For a traffic network, overall performance is determined by the interaction of two basic systems.
The TCS allocates green times for vehicular flows passing through intersections; and the RCS
dynamically assigns routes for vehicles traveling on the roads in the network.

The TCS is used for controlling traffic lights at intersections. For each intersection with a
set of entry and exit roads, the traffic light cycles through a sequence of phases, and each phase
governs the right of way for a set of compatible movements from entry to exit roads. For traffic
control, a signal sequence contains a sequence of phases and associated durations. For the phase
switching process, there are timing constraints for safety and fairness: the yellow light after each
phase runs for a fixed duration, while each phase has a duration that can range between a minimum
and maximum. Various TCSs (1, 2, 3) have been proposed to minimize the travel time for drivers.

Let the traffic network be represented by a directed graph G = (V,E), which contains a set
of nodes (intersections) V and a set of edges (roads) E. Let RS be the set of origin-destination
(O-D) pairs (or commodities (11)), and rs ∈ RS represents an O-D pair. Let Krs be a fixed set of
routes between an O-D pair rs, where each route contains a set of adjacent edges that connect rs.
The route sets for all O-D pairs can be pre-generated by some strategies (7, 8, 21) 1. Let A be a set
of drivers (vehicles), of whom each travels between a given O-D pair rs, departing at a given time
t. The RCS is used for helping each driver a ∈ A to decide his route k ∈ Krs. Then these vehicles
contribute to dynamic traffic flows on the edges over time.

The travel time on a route is equal to the sum of the travel times of its edges. As in a
congestion game (11, 14, 16), each edge e ∈ E is associated with a non-decreasing latency function
le(x) ≥ 0, where x ≥ 0 is the flow on edge e for a specific time period. Analytic models, e.g.,

1A classification of generation models can be found in (7). The route sets should include most efficient routes, and
some alternative routes to bypass possibly congested links, for different flow situations in the network.
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the Bureau of Public Roads (BPR) function (18), provide a suitable means for calculating le for
planning applications. However, in the presence of TCS, travel flows are not continuous, and
the traffic network is a complex system with nonlinear dynamics. To be more realistic in this
operational setting, a microscopic traffic simulator is used for the travel time calculation.

We consider a day-to-day evolution process. On day n, each driver can decide to stay on
the same route as the previous trip, or change to an alternative route, prior to his departure. Let ttan

be the travel time of the driver a (on day n), the average travel time of all drivers (T Tn) is

T Tn = åa∈A ttan/|A|. (1)

This evolution process is similar to the combined traffic assignment and control problem
(9, 22). In this paper, we focus more on the side of evaluating different strategies in a unified
framework of RCS, which feed their outcomes as presumably optimized input instances for TCS,
and gain limited experience from the outcomes of TCS day by day. Nevertheless, the significance
of the optimization capability of TCS in the whole loop will be evaluated as well.

ROUTE CHOICE FRAMEWORK
For RCS, it is natural to consider an decentralized, agent-based framework, where route choices
are made by agents. Agent-based modeling promotes situatedness, robustness, and scalability. It
is natural in the era of mobile computing, as smart phones and in-vehicle navigation systems are
broadly adopted. We assume there is no explicit central coordination, although agents can access
limited social information, which might be available from information service providers (ISPs)
through wireless or vehicle-to-infrastructure (V2I) communication.

Basic Framework
Specifically, the route choice framework contains an ISP 2 and a set of autonomous agents. For
each agent, the basic decision making capability arises from the interaction between memory and
behavior (23), under the bounded rationality assumption (24). Each day, each agent first manages
its memory by a memory updating process over a set of updating rules using available individual
and social experience, then chooses a route by a probabilistic sequential decision making process
over a set of decision rules that are instantiated with the memory elements of specific types.

This framework is designed to be extensible, where memory elements and (updating and
decision) rules 3 are basic components that can be added/removed.

All agents are homogeneous in that they possess the same components. However, the agents
are essentially heterogeneous during the day-by-day execution. First, they might have significantly
different memory instances. For example, the individual travel times are different not only due
to different departure times but also because of inherent disturbance in the complex network with
TCS. Second, the stochastic nature in their run-time decisions will lead to the execution of different
decision rules that work on different memory elements (each encodes individual knowledge).

During each day, each agent a ∈ A chooses a route k ∈ Krs for a specific O-D pair rs, and
departs at a specific time t ∈ [1,T ]. On day (n+1), an agent can obtain limited social information
from an ISP and its own travel experience in day n. Let Ars be the group of agents traveling between

2Using a single ISP is for the simplicity of description. Multiple ISPs can be naturally considered. Furthermore,
an ISP can provide rather accurate social information, e.g., (T̂T

rs
n , F̂F

rs
n ), given a reasonable large sample size.

3In this paper, all rules are represented using the generic type “R”, and defined with specific input parameters.
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rs. Each agent a ∈ Ars has its own travel experience (t̂t
rs
an, k̂

rs
an), i.e., the individual travel time and

the chosen route during day n. The ISP will provide it with the social information (T̂T
rs
n , F̂F

rs
n ),

i.e., the travel times and the proportions for all routes between rs, for the agents in Ars.
In the following description, we will focus on the components related to the decision mak-

ing of each agent a ∈ Ars during day (n +1). For simplicity of description, the symbols a (for an
agent), rs (for an O-D pair), and n (for a day) will be dropped if the information is not necessarily.

Memory and Updating Process
Memory is a basic component for supporting the learning process. Specifically, memory is used
for storing and retrieving a fixed list of elements, where each element contains certain historical
experience of a specific type. As in a Markov chain process, memory elements are initialized and
then updated day by day. Different memory elements might hold different properties, according to
their types and how are they updated in the day-by-day process.

Here some generic types used in existing route choice models are considered. Let y and
Y be a single value for a specific route and an array, respectively, that are defined on all routes in
Krs. The only subtype of y considered here is a generalized cost 4 value c. Three subtypes of Y
are considered: C is a generalized cost array, where C(k) ≥ 0 indicates the cost for route k. F is a
frequency array, where F(k) > 0 and åk∈Krs

F(k) = 1. We also consider an array of concentration
parameters D used in Dirichlet distribution (19), where D(k) > 0.

We first introduce a list of updating rules that work on these generic types, and then use
them to update specific elements in the memory, with specific individual and social experience.

Updating Rules
For time series data y, the new value ỹ of the exponential moving average (EMA) is obtained by
updating an current EMA value ỹ with the new value y, with the coefficient a ∈ [0,1]:

ỹ = REMA(ỹ,y|a) = a · y+(1−a) · ỹ. (2)

The EMA function can be easily realized in the array fashion, i.e.,

Ỹ = Rvec
EMA(Ỹ,Y|a), (3)

by applying Eq. 2 on individual elements of the EMA data array Ỹ and the data array Y.
The Rindex

EMA(Ỹ,y,k′|a) function only updates the dimension k′ of Ỹ, which has

Ỹ (k′) = REMA(Ỹ (k′),y|a). (4)

The normalization functions Rsum
NORM and Rmin

NORM obtain scaled arrays from an array Y by
respectively dividing each of its elements with the sum of all its elements åk∈|Krs|Y (k) and the
minimal value mink∈|Krs|Y (k). They will just do nothing if the denominator is zero.

There are some indexing-style functions. The better-indexing function, i.e., RBI(C,c), re-
turns an array Y, where Y (k) = 1 if C(k) < c for ∀k, and Y (k) = 0 otherwise. The current-indexing
function, i.e., RCI(k′), returns an unit array Y, where Y (k′) = 1 and Y (k) = 0 for ∀k 6= k′.

Assuming F = RMNL(−q ·D) (the multinomial logit rule RMNL will be introduced later in
Eq. 8), where q > 0 is the dispersion parameter, the reverse-fitting rule, i.e., RRF(F), returns an

4Note that cost and utility values can be mutually transformed in simple ways.
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array of concentration parameters D by reversely fitting from a frequency array F, i.e.,

D(k) = log(exp(q) ·F(k)/Fmin)/q , for ∀k ∈ Krs, (5)

where Fmin is the minimal value in F.
In the linear reward-inaction updating rule (11), i.e., RLRI(F,C, k̂), the frequency array F

is updated using a normalized cost array Cnorm = Rsum
NORM(C) on all routes, and Y = RCI(k̂):

F(k) = F(k)+b · (1−Cnorm(k)) · (Y(k)−F(k)), (6)

where b ∈ (0,1) is a precision parameter.

Memory Updating Process
The memory updating process initializes and updates the memory using individual experience
(t̂t, k̂) and social information (T̂T, F̂F). Individual experience is available each day, whereas social
information is available on the first day but only with the probability g afterward. In this paper, we
simply set g = 1. One might set g < 1 to accommodate the fact that the access to social information
may be limited. The types of t̂t, T̂T, and F̂F are c, C, and F, respectively.

Table 1 gives the implementation for the memory updating process. Here the memory
contains five elements, i.e, {t̃t, T̃T, F̃F, F̃LRI, D̃}, with the types shown in the fifth column. Each
element will be initialized by the obtained data in the second column. Afterward, the updating
processes are activated row by row, with probability in the fourth column. Each element might
be updated by multiple updating rules. For each updating process, its inputs might come from
new experience (either individual or social experience) and the memory elements in upper rows, if
available. One might add elements with other properties using different updating rules.

Here t̃t, T̃T, and F̃F are information sources, which are expected to have small perception
errors over time. The updating of t̃t and T̃T is more agent-oriented to account for the individual
difference, whereas the updating of F̃F is more social-oriented for a less-biased estimation.

For each agent, F̃LRI and D̃ are updated directly and indirectly through MNL to represent
route choice probabilities. During the initialization, F̃F provides a “warm-start” for F̃LRI directly
and for D̃ using RRF . Both of them are updated over time, which represents the basic learning
mechanism toward a form of (correlated) equilibrium with other agents.

TABLE 1 : Implementation for the memory updating process

Memory Initialization Updating Process Probability Type

t̃t t̂t REMA(t̃t, t̂t|a = 0.5) 1.0 c

T̃T T̂T
Rvec

EMA(T̃T, T̂T|a = 0.01) g
C

Rindex
EMA(T̃T, t̂t, k̂|a = 0.5) 1.0

F̃F F̂F
Rsum

NORM(Rvec
EMA(F̃F, F̂F|a = 0.5)) g

F
Rsum

NORM(Rvec
EMA(F̃F,RCI(k̂)|a = 0.01)) 1.0

F̃LRI F̂F Rsum
NORM(RLRI(F̃LRI, T̃T, k̂|b = 0.01)) 1.0 F

D̃
RRF(F̂F) Rvec

EMA(D̃,RRF(F̂F)|a = 0.01) g
D

(q = 0.05) Rmin
NORM(D̃+Rsum

NORM(RBI(T̃T, t̂t))) 1.0
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Each agent can adjust the weights of social information through adjusting a values by using
moving averages to update memory. The balance of using individual and social knowledge due to
different updating behavior in the learning process might be an interesting topic in future research.

Probabilistic Sequential Decision Making Process
The probabilistic sequential decision making process (PS-DMP) returns a route k ∈ Krs using the
elements in the memory. PS-DMP contains an ordered list of sub-processes, i.e., [sp1, ..., spm

..., spM], in which each sub-process sp is described in a tuple (Decision Rule, Probability). Each
decision rule either selects a route k in the route set or returns undecidable if it cannot find one.

PS-DMP then runs through the sequence of its sub-processes from sp1 to spM . For each
sp, its decision rule instance is executed with the associated probability. Suppose the current sub-
process is spm, the total process is terminated and returns k if the current spm returns a valid route
k ∈ Krs. Otherwise, it means that the decision rule of spm is not executed (with the associated
probability) or returns undecidable, and the process continues to execute the next sub-process
spm+1. PS-DMP simple returns k̂ if the final decision of spM is still undecidable.

PS-DMP follows the style of fast and frugal heuristics (24). Each decision rule is (fast and)
frugal based on limited information. PS-DMP is especially focused on supporting both sequential
and probabilistic parallel execution of multiple decision rules. Sequential execution is supported
by allowing rules to be undecidable, where some of them might only work well within a small sub-
space in the decision space. Probabilistic parallel execution is supported for rules with associated
probability values, and these rules can cooperate (through the memory) across iterations (25).

We will first introduce decision rules, and then describe the implementation of PS-DMP.

Decision Rules
Various decision rules have been proposed from perspectives of game theory, discrete choice the-
ory, transportation science, and constraint optimization. As updating rules are related to using data
to learn, decision rules are related to using data to decide between routes.

The best-move decision rule, i.e., RB(C), always returns k∗, i.e., the action with the lowest
cost in a given cost array C. This rule might be used to quickly reach a local optimum in constraint
optimization (26). This rule is similar to the best response in the fading memory JSFP (14).

The random-move decision rule (RRND) returns an action k ∈ [1, |Krs|] at random. This rule
can be used to escape from a local optimum (26), and to explore new, unused actions (12).

Some inertia-style decision rules stay at k̂ in specific situations, and returns undecidable
otherwise. The e-inertia decision rule (Re

IN) (19) returns k̂ if (C(k̂)−C(k∗))/C(k̂) ≤ e , in which
e ≥ 0 is a relative threshold value related to the perception error. This rule has also been used
to prevent unnecessary migrations caused by probabilistic effects. If e = 0, Re

IN becomes a best-

inertia decision rule (RB
IN), which returns k̂ if k̂ ≡ k∗ (19). The d -inertia decision rule (Rd

IN) (19)
returns k̂ with probability C(k∗)/C(k̂). The absolute-inertia decision rule (RA

IN) simply returns k̂.
The proportional decision rule, i.e., RP(F), has the selection probabilities on each route

k ∈ Krs, with respect to a frequency array F (or an action probability vector (11)) on Krs:

pk =
F(k)

åk′∈Krs
F(k′)

, for ∀k ∈ Krs. (7)

The multinomial logit decision rule (5), i.e., RMNL(C), has the selection probabilities on
each route k ∈ Krs, with respect to a generalized cost array C on all the routes in Krs:
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pk =
exp(−C(k))

åk′∈Krs
exp(−C(k′))

, for ∀k ∈ Krs. (8)

The regret-matching decision rule (13), i.e., RRM(C,c), has two inputs, i.e., the average cost
array C on all routes and the average individual cost c experienced by the agent, and a parameter
n ≥ 1. The RRM rule has the probability pk to switch to route k for ∀k 6= k̂,

pk = max(0,c−C(k))/(n · c), for ∀k 6= k̂, (9)

where c−C(k) can be interpreted as the “regret” for not choosing k in the past steps. It has been
shown that regret matching is strongly related to fictitious play (FP) (14). Here (n · c) is used to
set the parameter m > 0 used in the original algorithm (13). The m value should be sufficiently
large to ensure åk 6=k̂ pk < 1 and guarantee the convergence to the set of correlated equilibria, but a
too large value reduces the speed of convergence (13). Choosing a fixed value as in (13) might be
quite difficult, since c for different agents in different O-D pairs varies significantly.

The exploration-replication decision rule (12), i.e., RER(C, F), is inspired by the replicator
dynamics in evolutionary game theory, which amplifies the probabilities of using actions with
lower costs. The rule uses two inputs, i.e., a cost array C and a frequency array F on the route
set Krs. The execution consists two steps. First, it samples a route k′ ∈ Krs based on RRND with
the probability b, and RP(F) with the probability (1−b), using the frequency array F as the input.
Then it choose the route ks with the following probability:

pk′ =
max(0,C(k̂)−C(k′))

d · (C(k̂)+a)
. (10)

where a ≥−C(k) for ∀k ∈ Krs is used to prevent a negative cost, d is the relative slope that denotes
an upper bound on the elasticity of the latency functions le on all edges. For example, d = 4 for
the function le(x) ∼ x4 used in (18). By default, a = 0, since C(k) ≥ 0 for ∀k in our setting.

Implementation
The implementation proceeds in two steps. The first step is to define a list of instances of decision
rules, where each instance is instantiated with specific elements in the memory as the inputs, with
specific setting parameter values, and with a unique name to be called later.

• (R1): Re
IN(T̃T) with e = 0.1.

• (R2): Rd
IN(T̃T).

• (R3): RA
IN .

• (R4): RB(T̃T).
• (R5): RP(F̃LRI).
• (R6): RMNL(−q · D̃) with q = 0.05 (In Table 1, RRF uses the same q value).
• (R7): RRM(T̃T, t̃t) with n = 10.
• (R8): RER(T̃T, F̃F) with a = 0, b = 0, and d = 4.

The second step is to define individual PS-DMP cases, where each case can be viewed as a stand-
alone route choice model (RCM), based on the instances of decision rules.

• (LRI): [(R5, 1)]. It is the linear reward-inaction (LRI) algorithm (11).
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• (ERP): [(R3, 31/32), (R8, 1)]. It is the exploration-replication policy (ERP) (12).
• (RM): [(R7, 1)]. This is a variant of the regret-matching (RM) model (13).
• (ABM): [(R1, 1), (R2, 1), (R6, 1)]. This is a variant of the agent-based model in (19).
• (LRI2): [(R1, 1), (R2, 1), (R5, 1)]. LRI is hybridized with two sub-processes in ABM.
• (ERP2): [(R1, 1), (R2, 1), (R8, 1)]. ERP is hybridized with two sub-processes in ABM.
• (ABM-B): [(R1, 1), (R2, 1), (R4, 1/2), (R6, 1)]. Here ABM is hybridized with R4. As

instantiated in the framework, R4 is similar to the best response in JSFP (14).
• (ABM-BI): [(R3, 3/4), (R1, 1), (R2, 1), (R4, 1/2), (R6, 1)]. Here ABM-B is hybridized

with R3. R3 is corresponding to inertia, a probabilistic reluctance to change choices (14).

Let us take ABM-B as an example for describing the execution. Here sp1=(R1, 1), which
simply executes R1 with probability 1. If R1 returns k̂, the total process is terminated and returns
k̂; otherwise R1 returns undecidable, and the process goes to sp2. If R2 also returns undecidable,
then R4 is only executed with probability 1/2, otherwise R6 is executed. Here R1 and R2 are
executed sequentially, whereas R4 and R6 are executed in a probabilistic parallel fashion.

EXPERIMENTS
In this section, experiments are designed to evaluate the route choice models implemented in the
unified framework, based on two traffic control systems, in a microscopic simulation environment.

Experimental Setup
We evaluate the performance of algorithms in simulation using an open-source microscopic road
traffic simulator, Simulation of Urban Mobility (SUMO)5.

Fig. 1 shows a real-world road network (3) of the downtown area of Pittsburgh, PA. We
considered a time-of-day period corresponding to a mid-day period. This period has an average
of 4786 vehicles per hour. The total simulation duration is four hours to reduce the side bias.
Initial routes and flows were generated using SUMO, based on the turning movement counts at all
intersections. A total of 3234 routes are generated.

Two traffic control systems (TCSs) were considered. For the “fixed” TCS, the coordinated
signal timing plans used to control the Pittsburgh downtown network, including cycle times, splits,
and offsets for all intersections, were provided to us by the city. These plans were generated
originally using SYNCHRO, given the traffic signal constraints and turning movement counts in
the time-of-day period. This TCS is used to evaluate the capability of RCS in the context of fixed
traffic signal timings.

The “adaptive” system is a decentralized, schedule-driven TCS, which integrates traffic
flow theory and artificial intelligence techniques. Each intersection is controlled by a local sched-
uler (3), which maintains a phase schedule that minimizes the total delay for vehicles traveling
through the intersection and continually makes decisions to update the schedule according to a
rolling horizon. The intersection scheduler communicates outflow information implied by its cur-
rent schedule to its immediate neighbors, to extend visibility of incoming traffic and achieve net-
work level coordination (20). This approach has been embedded into the scalable urban traffic
control (SURTRAC) system running in the East Liberty area of Pittsburgh, PA since 2012, and has
reduced the average travel time through the pilot site by over 25% (4). Further details can be found
in (3, 4, 20). This system is well suitable for the combined RCS and TCS process, since it can gen-

5http://www.sumo-sim.org
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FIGURE 1 : Downtown Pittsburgh traffic network with 32 intersections: Among a total of 32
intersections, there are 22 intersections with two phases (of which 4 have a pedestrian phase),
8 intersections with three phases, 1 intersection with one phase plus a pedestrian phase, and 1
intersection with four phases. Most roads allow two-way traffic.

erate near-optimal signal control results quickly (normally milliseconds or less per intersection for
each execution of the core algorithm), for each flow pattern generated by RCS. From the viewpoint
of the iterative optimization and assignment procedure, this TCS provides an efficient optimization
part for the dynamic assignment problem, in a realistic setting.

For all test cases, the day-by-day average travel times over 30 days are reported.

Results
The primary purpose is to evaluate the performance of different RCMs in a unified environment.

We first consider a basic usage of RCS, i.e., to quickly reach an equilibrium in the network.
Figure 2 shows the results for six models, starting from basic flows that corresponding to an imper-
fect equilibrium obtained by myopic behavior of human drivers. ERP and LRI were not included
here due to their much slower convergence. With ABM-B, the adaptive route choice behavior re-
duced average travel time by 21.7%, and the adaptive TCS produced a further reduction 13.4%,
on the average travel time. Four of the six models, except for ERP2 and RM, approached to an
approximate equilibrium quite fast, although ERP2 and RM also showed the convergence behavior
to some extent.

It is also expected that an RCS might handle changing traffic flow between O-D pairs. We
considered the four models that were effective in the basic test. Here the initial condition is the
previous equilibrium solution obtained by ABM-B. For Figures 3 and 4, the flows from A to B (in
Figure 1) were increased by 100% and 200%, which corresponds to 315 and 730 more vehicles
per hour. These vehicles are distributed into the routes between A and B at random.
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FIGURE 2 : Basic flow: Starting from the flows based on real movement counts.

There are larger differences under the fixed TCS, which appeared to be more congested.
LRI2 and ABM converged relatively slow, especially for the higher disturbance case in Figure 4a.
ABM-BI could quickly approach to an approximated equilibrium.

Under the adaptive TCS, the four RC models achieved much lower travel times, although
they have noisy evolution curves. ABM-B achieved the best performance in the two disturbed flow
cases, whereas ABM-BI converged slower as compared to ABM-B.

The adaptive TCS is now the main force to resolve the congestion in the network. The traf-
fic system is in congested and non-congested states in Figure 3, and over-congested and congested
states in Figure 4, for the fixed and adaptive TCSs, respectively. For fixed-time TCSs, the loss of
effectiveness as dynamic flow changes might be seen as an aging problem in the real world. The
advance of the adaptive TCS might due to that the real-time adaptation leads to flexible capacity
control for reducing the risk of congestion, as working at near equilibrium generated by RCS.

Furthermore, some knowledge can be gained by examining the difference of RCMs from
their components, based on the unified framework. Compared to ERP and LRI, all six models
strongly consider the cost information before agents change routes. ONly LRI has a weak usage of
costs, and the proportional decision rule might return poorer routes. ERP sets a strong limitation,
i.e., only 1/32 agents are activated each day (12), but that inertia rule is not cost-based.

We can also find some difference in main route-changing rules, which are R7 and R8 for
RM and ERP2, and R5 and R6 for LRI2 and ABM variants. Both R7 and R8 primarily use the cost
array T̃T to directly make decisions, whereas R5 and R6 works by updating choice probabilities
directly and indirectly. Actually, the correlated equilibrium (13) is a collective result of individual
choice probabilities. For the class of R5 and R6, it might be easier to learning more precisely.

R5 and R6 use the frequency array F̃F as a “warm start”, which might deviate too far from
the equilibrium state for heavily disturbed cases. This can be seen from the slower convergence
rates in Figures 3a and 4a, especially as the latter case has a higher disturbance.

It is also interesting to examine the usage of R4, which behaves like the best response in the
fading memory JSFP with inertia (14). R4 is used in ABM-B and ABM-BI. ABM-B achieved the
best performance in four test cases. In Figure 3a and 4a, ABM-B reached a high-quality solution
within a few iterations, but does not retain a stable solution as time moves on.

A simple way to handle the instability problem is to introduce more inertia (13, 14). As
shown in Figure 3a and 4a, ABM-BI could approach to an approximated equilibrium. However,
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FIGURE 3 : Disturbed flow: The O-D flow from A to B is increased by 100%.
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FIGURE 4 : Disturbed flow: The O-D flow from A to B is increased by 200%.

there is no free lunch. ABM-BI converged slower than ABM-B in the other four less congested
cases.

We have shown some effective hybrid models in the framework. It is naturally to ask if
there are ways to build more effective and stable RCMs in the huge combinatorial model space
supported by the extensible framework, as new memory elements and decision rules can be easily
added, and various combinations of PS-DMP cases can be implemented. One possible way is
online meta-learning (25) over multiple PS-DMP cases. For example, in Figure 3a and 4a, ABM-
B might be used in the first several iterations, and ABM-BI is applied afterward. An intelligent,
automatic selection procedure is required, by inferring from available information.

CONCLUSIONS
In this paper, an agent-based route choice framework was proposed. The framework contains
a set of autonomous route choice agents. Each agent manages its own memory by a memory
updating process, based on limited individual and social experience, and then selects a route by
a probabilistic sequential decision making process over some decision rules that are instantiated
with the memory elements. Based on this framework, various route choice models can be realized
in a combinatorial model space, supported using a few memory elements and decision rules.

Some state-of-the-art route choice models and their hybrids were implemented in the uni-
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fied framework. These models were then empirically evaluated in a microscopic simulation envi-
ronment using two real-world TCSs, i.e., a fixed, SYNCHRO-optimized coordinated signal control
system and an adaptive, scalable urban traffic control (SURTRAC) system. We have shown some
models converge quickly to an approximate equilibrium in a real-world network, while other are
slow to converge in the the time frame considered. In the presence of disturbed flows, all mod-
els achieved better performance in the adaptive TCS, demonstrating that both RCS and TCS can
contribute to reduced travel time. Overall, variations of the ABM route choice model hybridized
with some best response and inertia behavior achieved the best performance. Based on the unified
framework, properties of some choice rules in these route choice models could be obtained, ac-
cording to the difference in their evolution curves. This knowledge might be useful to build more
effective and stable models in the extensible framework.

There are several aspects of the current system that warrant further study. First, it might be
extended to a Stackelberg game formulation (22, 27), where TCS is the leader and the users in RCS
are followers, with some forms of pricing strategies to reduce the price of anarchy among multiple
noncooperative commodities. Second, it is natural to extend our framework for investigating the
system behavior under the influence of mixed cooperation and competition among multiple traffic
ISPs (15, 28). Third, the agent-based framework is a natural platform to describe the heterogeneity
of user behavior, e.g., (constrained) departure time choice (29) and risk preference (30), and to
characterize route choice behavior and understand its dynamics in highly time-dependent flows.
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