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Peak Power Control of
Battery and Super-capacitor Energy Systems in Electric Vehicles

Yash V. Pant, Truong X. Nghiem and Rahul Mangharam
Department of Electrical and Systems Engineering

University of Pennsylvania
{yashpant, nghiem, rahulm}@seas.upenn.edu

Abstract— Hybrid energy systems consist of a load powered
by a source and a form of energy storage. Systems with mixed
energy supply find applications in the electric grid with renew-
able and non-renewable sources, in mission critical systems such
as Mars rovers with rechargeable and non-rechargeable batter-
ies and low-power monitoring systems with energy harvesting.
A general problem for hybrid energy systems is the reduction
of peak power consumption to ensure cost-efficient operation as
peak power draws require additional resources, adversely affect
the system reliability and storage lifetime. Furthermore, in some
cases such as electric vehicles, the load dynamics are fast, not
perfectly known a priori and the computation power available is
often limited, making the implementation of traditional optimal
control difficult. This paper aims to develop a control scheme
to reduce the peak power drawn from the source for hybrid
energy systems with limited computation power and limited
load forecasts. We propose a scheme with two control levels and
provide a sufficient condition for control of the different energy
storage/generation components to meet the instantaneous load
while satisfying a peak power threshold. The scheme provides
performance comparable to Model Predictive Control, while
requiring less computation power and only coarse-grained load
predictions. As a case study we implement the scheme for a
battery-supercapacitor system in an electric vehicle with real
world drive cycles to demonstrate the low execution time and
effective reduction of the battery power (hence temperature),
which is crucial to the lifetime of the battery.

I. INTRODUCTION

Hybrid energy systems (HES) consist of a load powered by
a source and a renewable form of energy storage. They find
use in many applications due to their unique properties (e.g.,
fast response time, peak power reduction, supplementary
energy source) and the potential advantages (e.g., cost-
efficient operation, longer battery lifetimes) they offer over
homogeneous energy systems. A common problem across
different HES is peak power demands which result in cost
intensive operation, increased capacity requirements, faster
degradation of energy storage resources and potentially lower
reliability of the energy delivery system. For example, in
the electric grid, peak power demands are costly as they
require additional (usually inefficient) backup power plants
to be switched on to meet the demand, raising the operating
cost [1]. In the case of battery driven systems like electric
vehicles, peak power demands have an adverse effect on
battery lifetime [2].

This work was supported in part by TerraSwarm, one of six centers of
STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA and also by the US Department of Transportation
University Transportation Center Program.

Smart control of how to use a combination of a power
source and a renewable energy storage (or generation) in HES
can lead to peak power reduction on the energy source. The
problem of peak power reduction with HES has been studied
for many systems [3], [4], [5] including electric vehicles,
where the use of supercapacitors to reduce power demands
on batteries has been a well studied topic [6].

To solve the peak power problem for HES, our main
contributions in this paper are: a) we propose a scheme which
has two levels of control: a simple low-level control algorithm
running at a fast sampling rate to directly actuate the plant;
and a more complex high-level control algorithm running
at a slow sampling rate to compute optimal parameters for
the low-level control to operate under a peak threshold. This
architecture makes the scheme suitable for systems with
fast dynamics because all the complex computations are not
affected by the low-level sampling rate. b) The scheme does
not require fine grained load predictions at every time step.
c) We provide a sufficient condition for controlling different
energy sources to meet the instantaneous load while satisfying
a peak power threshold and energy constraints on the HES.
The proposed control scheme operates with good performance
while being computationally efficient, which lends itself to
an online implementation.

A. The hybrid energy system model

We consider a HES consisting of three components: a load,
a power source and an energy storage. An example of a
HES is shown in Fig. 1. The load has an instantaneous energy
demand at every time t ≥ 0, denoted d(t), that needs to be
supplied exactly. Examples of loads are electric appliances
in a building, and electric motors in an electric vehicle (EV).
Typically d is non-negative, which means that energy needs
to be supplied to the load. However, in certain applications
such as EVs, d can be negative, which means the load has
regeneration energy that can be used by the other components.
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Fig. 1. A simplified view of an architecture for a battery and supercapacitor
hybrid energy source powering an EV motor.



The power source, or source for short, is the main energy
supplier in the system, e.g., the electric grid for buildings and
the battery in an EV. The source has high energy density and
can provide a large amount of energy over time. However,
as discussed earlier, it is desirable to avoid high peaks in the
power drawn from the source. Let u(t) denote the power rate
of the source at time t, which is positive (negative) if power
flows out of (into) the source.

The energy storage, or storage for short, has the capability
to store short-term energy, e.g., supercapacitors. It is used
to alleviate the peak power issues by reducing, or flattening,
the power drawn from the source. Similar to the source,
v(t), which denotes the power rate of the storage at time t, is
positive (negative) if power flows out of (into) the storage. The
state of charge (SoC) of the storage is denoted by x. Because
of its limited capability to store energy, x is constrained
between a minimum value xmin and a maximum value xmax,
where xmin < xmax. When x = xmin, the storage is fully
discharged, or exhausted. When x = xmax, the storage is
fully charged. We assume an ideal storage with no charge and
discharge losses, therefore its SoC has a simple first-order
dynamics: dx(t)

dt = −v(t) with saturations at xmin and xmax.
The relation between the three components is specified by

a balance equation which states that at any time t, the load’s
demand must be matched by the source and the storage:

u(t) + v(t) = d(t), ∀t ≥ 0. (1)

B. Organization of the paper

The rest of this paper is organized as follows. Section II
discusses the standard predictive control approach and its
limitations. In Section III we introduce the basic idea and
structure of our control scheme, and a key theorem that is
central to the scheme. In Section IV we present the high-level
control optimization of the scheme. An adaptive thresholding
algorithm for a finer time scale is discussed in Section IV-D.
Section V consolidates the previous sections and highlights
the overall detailed structure of the proposed scheme. We
evaluate our scheme when applied to a battery-supercapacitor
system on a EV and compare it to other schemes to show its
benefits in Section VI. Finally, in Section VII we conclude
and discuss future work and potential improvements.

II. STANDARD PREDICTIVE CONTROL APPROACH

Model Predictive Control (MPC) has been a popular
approach for industrial control systems [7]. The MPC problem
involves optimizing a cost function subject to the dynamics of
the system, over a finite horizon of time. The first computed
input is applied, and at the next step the optimization is
solved again. With predictions for future load, it is possible
to develop a optimization formulation to minimize the peak
power demand on the energy storage component of a HES.
For example, Choi et al. [8] applied finite-horizon control to
a battery-supercapacitor system with linear capacitor (energy
storage) dynamics and a log-barrier cost function to smooth
the battery (power source) current profile over a time-varying
load demand. This resulted in a continuous control of both

the battery and the capacitor together, but required exact
knowledge of the future demand of load.

Even with perfect predictions of the load demand, opti-
mization horizons cannot be arbitrarily long. With this in
mind, we can apply existing control techniques like MPC to
control the HES with a norm cost on the power supplied from
the power source. Eq. (2) shows the MPC formulation for a
HES with discretized dynamics and upper and lower energy
storage limits on the power storage. Note, the power source
is treated as an infinite energy source but has a high cost of
use while the energy storage has limited energy capacity but
has no cost of use.

minimize ‖u‖p (2a)

subject to (2b)
u(t+ i) + v(t+ i) = d(t+ i), (2c)
x(t+ i+ 1) = x(t+ i)− hv(t+ i), (2d)
xmin ≤ x(t+ i) ≤ xmax, ∀i = 0, . . . ,M (2e)

Here, Eqs. (2c) and (2d) hold ∀i = 0, . . . ,M − 1, where
M is the control horizon, h is the sampling time, and u =
[u(t), . . . , u(t+M−1)]T . Eq. (2c) is the balance equation (1).
Eq. (2d) is the discretized energy dynamics of the energy
storage (discretization period is h), and we assume there
is no loss term, although linear loss terms can be easily
incorporated. Finally, Eq. (2e) implies that the SoC of the
energy source, x, has to be within some bounds at all times.
A. Limitations of standard MPC

While MPC is a logical formulation for peak minimization
in HES, there are some drawbacks to using MPC:

1) MPC needs fine-grained information about the load
demand, i.e., either the exact load demand, or its
distribution (for stochastic MPC), at every time instant,
which is difficult to obtain for many practical systems.

2) For a system with fast dynamics, the computational
requirements for MPC may make it impractical for
implementation, especially given limited computational
capability. Move-blocking MPC [9] has been developed
as a technique to reduce the computational overhead by
reducing the number of control variables to be solved for.
However it assumes a constant control signal during each
blocking window, which consists of multiple time steps.
This may result in infeasibility given some constraints
on the system’s state variables, e.g., x in Eq. (2e) may
violate its upper or lower limits if the control signal is
not free to change at every time step.

III. MULTI-LEVEL CONTROL APPROACH

To overcome the aforementioned drawbacks of move-
blocking MPC we propose a multi-level control approach
based on the following fundamental idea. Consider the load
curve from the current time t0 to some time instant tf > t0
as depicted by the solid line in Fig. 2. The interval [t0, tf ]
is divided into N ≥ 1 equidistant subintervals: t0 < t1 <
· · · < tN = tf . During each [ti, ti+1), 0 ≤ i ≤ N − 1, we
set a peak threshold P i on u and control the source and the
storage so that u does not exceed P i at any time during the
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Fig. 2. The fundamental idea of the proposed control approach.

subinterval, i.e., u(t) ≤ P i, ∀t ∈ [ti, ti+1). In Fig. 2, the
peak thresholds for the subintervals are illustrated by the
dashed lines. The residuals between the load and the source
will be picked up by the storage. In particular, in Fig. 2, the
blue regions when the source power exceeds the load are
charged to the storage, while the red regions when the load
exceeds the source power are supplied by the storage.

To realize the above idea, we design a control structure
consisting of two levels, as illustrated in Fig. 3:
• High-level control determines the peak threshold for

each time subinterval such that:
– a global objective is attained, for example the overall

peak of u is reduced, and
– each individual peak threshold can be satisfied while

ensuring that the instantaneous load is provided.
• Low-level control determines, at any time t, the powers
u(t) and v(t) so that the required load is served, the
peak threshold for the current subinterval (as determined
by the high-level control) is satisfied, and the storage is
neither over-charged or over-exhausted.

The two control levels are linked by the peak thresholds P i,
which are computed by the high-level control and executed
by the low-level control.

A. Low-level Control
Let P (t) denote the peak threshold in effect at time t, i.e.,

P (t) = P i if t ∈ [ti, ti+1). The general rule for the low-level
control is to keep u at the peak threshold for the current
subinterval as long as it is feasible to do so.
• If the storage is not exhausted (x(t) > xmin) and the load

exceeds the peak threshold (d(t) > P (t)), the storage is
discharged to supply for the residual.

• If the storage is not fully charged (x(t) < xmax) and
the peak threshold exceeds the load (d(t) < P (t)), we
keep u(t) = P (t) to charge the storage with the surplus
energy, so that should the demand spike later on, the
stored energy can be used to alleviate the peak.

Load
d

x(t)

d(t)

P i, xi+1

u

u(t)

Energy
Storage

vv(t)

High-level control Load Forecast

Power
Source

Low-level
Control Logic

Fig. 3. Structure of the proposed control approach.

If this rule is infeasible then the source must track the load,
i.e., u(t) = d(t). Specifically, the low-level control logic is
described in Alg. 1, where we omit the time t for brevity.

A top saturation is an interval [t1, t2] during which the
storage is saturated at the maximum SoC xmax, i.e., x(t) =
xmax and d(t) < P (t) ∀t ∈ [t1, t2]. Similarly, a bottom
saturation is an interval [t1, t2] during which the storage is
saturated at the minimum SoC xmin, i.e., x(t) = xmin and
d(t) > P (t) ∀t ∈ [t1, t2]. These cases correspond to line 4
in Alg. 1. If no saturation happens at time t, the system is
saturation-free. This case corresponds to line 2 in Alg. 1.

Algorithm 1 Low-level control logic.

1: if
(
d ≤ P ∧ x < xmax

)
∨
(
d ≥ P ∧ x > xmin

)
then

2: u← P , v ← d− P
3: else
4: u← d, v ← 0
5: end if

B. Interface Between High and Low Control Levels

The key result of this paper, presented in Theorem 1,
regards the interface between the high-level control and the
low-level control. It specifies a sufficient condition on the
peak thresholds P i, as computed by the high-level control,
so that with the low-level control logic in Alg. 1 the set peak
thresholds are always honored. Let the notation d+ denote the
non-negative portion of the load’s demand, i.e., d+(t) = d(t)
if d(t) ≥ 0 and d+(t) = 0 otherwise.

Theorem 1: Given an interval [0, T ), T > 0, a desired
final SoC xf ∈ [xmin, xmax], and E+, E, d̄ such that

E+ ≥
∫ T

0
d+(t) dt ≥ 0 (3a)

E ≥
∫ T

0
d(t) dt (3b)

d̄ ≥ max0≤t<T d(t). (3c)

Choose any peak threshold P ≥ 0 satisfying

P ≥ (xf − x(0) + E) /T (4)

and, if E+ > 0,

P ≥ d̄
(
1− (x(0)− xmin) /E+

)
, (5)

P ≥ d̄
(
1− (xmax − xf) /E

+
)

. (6)

Then with the low-level control algorithm in Alg. 1, the
following statements hold:
a) For all t ∈ [0, T ): u(t) ≤ P .
b) x(T ) ≥ xf .

Statement (a) essentially confirms that, with the chosen
peak threshold P , the source power never exceeds the peak
threshold. Furthermore, by statement (b), the final SoC of the
storage is at least xf (i.e., the desired final SoC is achieved).
The proof of Theorem 1 can be found in the Appendix.

IV. HIGH-LEVEL CONTROL

The key result in Theorem 1 connects the high-level control
and the low-level control. Essentially, to ensure that the peak
threshold set by the high-level control is always honored by
the low-level control, it should satisfy the sufficient conditions



given in the Theorem. In this section, we formulate the high-
level control problem using a receding-horizon control (RHC)
approach [7].

Let us recall the fundamental idea of our approach in
Section III. We divide a given time horizon [t0, tf ] into N
subintervals. In the high-level control, we determine for each
subinterval i a peak threshold P i, which is then used by the
low-level control in Alg. 1. The computed peak thresholds
are good if they not only satisfy the sufficient conditions
in Theorem 1 but also optimize a certain global objective
for the horizon [t0, tf ]. The latter can be represented in a
RHC formulation. In the next subsection, we discuss the load
forecast information required by the high-level control to
compute the peak thresholds.

A. Required Load Forecast Information

From Theorem 1, to determine a peak threshold for each
subinterval [ti, ti+1), 0 ≤ i ≤ N − 1, the high-level control
requires the three values defined in Eq. (3), namely
• E+

i ≥
∫ ti+1

ti
d+(t) dt is an upper bound of the total

non-negative energy demand for the subinterval;
• Ei ≥

∫ ti+1

ti
d(t) dt is an upper bound of the total net

energy demand for the subinterval;
• d̄i ≥ maxti≤t<ti+1 d(t) is an upper bound of the

maximum power demand during the subinterval.
Note that E+

i , Ei and d̄i are upper-bound estimates of
the corresponding values on the right-hand side, so exact
estimates of these values are preferred but not required. To
obtain these estimates for each time subinterval requires a
prediction of the load during the subinterval. Depending on
the actual application, the level of technical effort involved
in the prediction might vary widely. For example, if the load
is generated by electric appliances in a building, the upper
bound estimates can be calculated based on the schedule or
the history of appliance use, which is relatively easy. However,
if the load is generated by the motors of an EV, obtaining
these estimates will be much more difficult as it involves
predicting the road condition, the traffic condition, and the
driving habits to name a few. For that reason, we assume that
these estimates are available and ignore for now the technical
details of obtaining them.

B. High-level Control Optimization

Given a horizon [t0, tf ] divided into N subintervals, the
high-level control determines the peak thresholds such that the
conditions in Theorem 1 are satisfied and a global objective
function F (P ) is minimized. Here P is the vector of the
peak thresholds: P =

[
P 0, . . . , PN−1

]T
. The choice of the

objective function depends on the goals of the application.
A possible choice is the lp-norm function F (P ) = ‖P ‖p,
where ‖·‖p denotes the lp-norm of a vector, for p ≥ 1 or
p =∞. When the l∞-norm is used, the overall peak during
[t0, tf ] is minimized because ‖P ‖∞ = max0≤i≤N−1 P i. In
our case study in Section VI we found that the l2-norm
worked best to both smoothen the u curve and reduce its
overall peak. To further smoothen u we can penalize the
variations in P by adding a term

∑N−2
i=0

∣∣P i+1 − P i

∣∣. For

example F (P ) = ‖P ‖p+ε
∑N−2

i=0

∣∣P i+1 − P i

∣∣ where ε > 0
is a predefined constant.

Let xi, 1 ≤ i ≤ N , be the desired SoC of the storage at
the end of the subinterval [ti, ti+1]. These values are also
determined by the high-level control. The final desired SoC
xN can be either free or fixed at a predefined value xf ∈
[xmin, xmax]. We can now formulate the high-level control
optimization for the interval [t0, tf ] as follows:

minimizeP ,x1,...,xN
F (P )

subject to

P i ≥ (xi+1 − xi + Ei) / (ti+1 − ti) (7a)

if E+
i > 0: P i ≥ d̄i

(
1− (xi − xmin) /E+

i

)
(7b)

if E+
i > 0: P i ≥ d̄i

(
1− (xmax − xi+1) /E+

i

)
(7c)

P i ≥ 0 (7d)
xmin ≤ xi+1 ≤ xmax (7e)
x0 = x(t0), xN = xf (7f)

in which the constraints (7a) to (7e) are satisfied for all
i = 0, . . . , N − 1. Eq. (7e) constraints the SoC between
xmin and xmax. Eq. (7f) specifies the initial condition and
the (optional) final condition on the SoC of the storage. We
remark that all the constraints are linear, therefore if F is
convex the optimization (7) can be solved efficiently [10].

C. Receding-Horizon High-level Control Algorithm

The optimization (7) only solves the peak thresholds for a
finite time horizon, which is usually due to the limitation that
we cannot predict the load too far into the future. However,
the system typically operates far beyond that time horizon,
possibly forever. In order to compute the peak thresholds
continuously as time progresses, we employ the receding-
horizon control approach [7].

Let Ts > 0 be the sampling time step and ti = iTs, i ∈ N,
be the sampling instants of the high-level control. We assume
that at each ti we can obtain the predictions (E+

j , Ej , d̄j)
for N future steps: i ≤ j ≤ i+N − 1. The RHC approach
is illustrated in Fig. 4. At time ti, we solve Eq. (7) for the
time window [ti, ti+N ] consisting of N sampling intervals.
We then apply the resulting optimal peak thresholds and
desired SoCs for only the first interval [ti, ti+1]. At the next
time instant ti+1, the N -step horizon window is advanced
by one step to [ti+1, ti+1+N ], for which new predictions
are obtained and the optimization process is repeated. The
high-level control algorithm is summarized in Alg. 2.

Algorithm 2 RH high-level control algorithm.
for i = 0, 1, 2, . . . do

Obtain (E+
j , Ej , d̄j) for j = i, . . . , i+N − 1

Solve optimization (7)
Apply P i and xi+1

Wait until ti+1

end for



ti ti+1 ti+N

P i

P i+N−1

applied

moving windowfuturepast

Fig. 4. RHC approach for high-level control: The solid line is the load.
The dashed line is the peak threshold determined by the high-level control.
Optimization (7) is solved for a moving time window of N sampling steps.

D. Adaptive Peak Threshold
The low-level control algorithm uses a constant peak

threshold P i throughout the interval [ti, ti+1]. The calculation
of P i by the high-level control is often over-conservative due
to our lack of knowledge of the actual future load during the
interval. However, as time progresses, at time t ∈ [ti, ti+1),
we have knowledge of the past load from ti to t, hence
we can improve the peak threshold to be less conservative.
In other words, we can adapt the peak threshold with the
feedback information from the past load. Specifically, define
Ei(t) = Ei −

∫ t

ti
d(τ) dτ and E+

i (t) = E+
i −

∫ t

ti
d+(τ) dτ ,

which can be calculated by simple integrators. Note that
Ei(ti) = Ei and E+

i (ti) = E+
i . Then, by considering [t, ti+1)

as the time interval in Theorem 1, we can re-compute the
peak threshold for the rest of the interval, as in Alg. 3. The
adaptive peak threshold computation is executed periodically
after every Ta > 0 time units during each interval [ti, ti+1).

Algorithm 3 Adaptive peak threshold algorithm.
repeat every instant t = ti, ti + Ta, . . . during [ti, ti+1]

Obtain Ei(t) and E+
i (t)

P ← max {0, (xi+1 − x(t) + Ei(t)) / (ti+1 − t)}
if E+

i (t) > 0 then
P ← max

{
P , d̄i

(
1− (x(t)− xmin) /E+

i (t)
)
,

d̄i
(
1− (xmax − xi+1) /E+

i (t)
) }

end if
end repeat

It can be shown, using Lemma 1 in the Appendix, that
for all ti ≤ t < t′ ≤ ti+1, if E+

i (t) > 0 and E+
i (t′) > 0

then d̄i

(
1 − x(t)−xmin

E+i (t)

)
≥ d̄i

(
1 − x(t′)−xmin

E+i (t′)

)
. Hence, the

lower-bound on P in Eq. (5) is non-increasing during the
interval. Similarly, we can show that the lower-bounds on
P in Eqs. (4) and (6) are also non-increasing. Therefore, it
is guaranteed that the adjusted peak threshold computed by
Alg. 3 will not increase towards the end of the interval.

V. OVERALL CONTROL STRUCTURE

We have discussed in Sections III to IV the essential
components of the proposed control scheme: the low-level
control, the high-level control and the adaptive peak threshold
algorithm. These components are put together in the overall
control structure in Fig. 5. At the bottom right is the plant
consisting of the power source, the energy storage and the
load. At the top is the high-level control which carries out
load forecasting and the receding-horizon control algorithm

High-level Control

Low-level Control

Load
d

P (t)

x(t)

d(t)

P i, xi+1

u

u(t)

Energy
Storage

vv(t)

(E+
j , Ej , d̄j)

i ≤ j ≤ i + N − 1

Adaptive
Peak Threshold
(Algorithm 3)

Receding-horizon
high-level control
(Algorithm 2)

Load
Forecast

Low-level
Control Logic
(Algorithm 1) Power

Source

Fig. 5. Overall detailed structure of the proposed scheme.

(Alg. 2). The calculated peak thresholds and desired SoCs
are then provided to the low-level control. The adaptive
peak threshold algorithm (Alg. 3) periodically adjusts the
peak constrain P (t), which is used by the low-level control
algorithm (Alg. 1) to control the powers of the source and
the energy storage.

Fig. 5 highlights an important feature of the proposed
scheme, that is the separation between the executions of the
high-level control and the low-level control. In particular:
• The low-level control consists of simple algorithms.

Therefore its implementation is simple and it can be
executed at a very fast rate.

• The high-level control, which consists of more complex
algorithms involving load predictions and an optimiza-
tion, can be executed at a much slower rate.

An implication of this feature is that any change in the
execution (sampling) rate of the low-level control does
not affect the high-level control. This helps reduce the
development and implementation cost of the control scheme.

VI. CASE STUDY : POWER MANAGEMENT IN ELECTRIC
VEHICLES

To demonstrate the proposed scheme we consider the case
of an EV with a battery and supercapacitor (SC) HES. A
battery has a relatively high energy density but a low power
density compared to an SC. The low power density results in
the following problems: (a) a large number of battery packs
are needed to provide sufficient peak power to the electrical
systems, and (b) the battery life can be diminished through
large variations of current flow that generate excessive heat
and increase the internal resistance of the battery [2]. In
contrast, the SC has a relatively high power density but a
low energy density compared to the battery.

Keeping the battery operating temperature under check
is necessary to avoid battery degradation. Modular designs
of the battery have been used to explore partitioning and
control of individual or a group of cells [11] for thermal
management. The use of SCs to reduce the power drawn
from the battery has also been explored extensively. Rule
based and non-predictive control of battery supercapacitor
systems has been studied in [12], [13]. Predictive control for
such systems has also been studied with finite horizon control
involving perfect knowledge of future load demand [8] and
also with data-driven model predictive control [14]. For the



scope of this study, we obtain predictions from historic data.
This is covered in more detail in section VI-B. Note that the
scheme proposed in this paper does not need exact prediction
of load demand at every time instant (cf. Section IV).

A. Peak power reduction for EV batteries
Reducing the peak power drawn from the battery has

a direct impact on the battery’s thermal behavior. Battery
thermal models [15], [16] show that the battery module’s
rate of change of temperature increases with both charging
and discharging. Simplified thermal dynamics of the battery
can be obtained from the energy balance equation [15] as
K dT

dt = Q + H where K is a constant. Here the rate of

temperature change dT
dt is proportional to the heat H due

to convection and the heat Q due to power flow in and
out of the battery. Q is directly proportional to the power
I2Rint where I is the battery current and Rint is the battery’s
internal resistance. SCs, with their low-energy storage and
high charge/discharge rate capacities [6], can be used to
partially or completely meet the peak power demands from
the load (for a short period of time), effectively reducing
the power drawn from the battery and hence reducing heat
generation in the battery. Figure 1 shows a general architecture
for a battery supercapacitor energy source delivering power
to a motor. Details on the architecture can be found in [6].

B. Generating predictions for the proposed scheme
In order to get predictions of the load demand parameters

of Theorem 1, we rely on historical data. For the simulations
in this paper, we use data from the ChargeCar project [17]
to give us real world drive cycles and also to predict the
required parameters. To get predictions for our scheme and
Stochastic MPC, we limit ourselves to trips along a particular
route (assumed that the route is known a priori). This is
done to reduce the amount of data to be processed and also
since intuitively, the driving profile is expected to be similar
for trips along a particular route. Figure 6 shows the route
along which the simulation trips are. It is a 1.1 mile trip, and
for driver data we used, the fastest trip took 16 minutes, the
longest 19.4 minutes and on an average it took 17.5 minutes
to complete the trip. To average simulation data across all
trips, we truncated all trips to 16 minutes. Since there is
limited data for trips along the same route (9 trips along the
route selected for simulations in the paper), we take all the
trips to generate the predictions (worst case upper bounds for
parameters needed for the proposed scheme and maximum
likelihood estimation for the stochastic MPC) and then pick
one of the trips as the simulation trip. While this follows the
unagreeable practice of having a testing set which is a subset
of the training set, this is necessary to make the parameters
E,E+, d̄ be upper bounded by the worst case for all trips.
Since the focus of this paper is on the control algorithm of the
proposed scheme itself, the development of more advanced
prediction schemes is left for future work.

C. Control schemes for the battery supercapacitor system
In order to show the effectiveness of the proposed scheme

in reducing peak power drawn from the battery (and hence

Fig. 6. GPS coordinates for the selected simulation.

reducing battery temperature) we implemented and evaluated
the following schemes for comparison:
1) Battery-only: The load demand is met by the battery only.
This serves as a worst-case reference (for any scheme with a
supercapacitor).
2) Naive scheduling: This scheme uses the SC to meet
the load whenever it has charge, and charges the SC with
regeneration (if the SC is not already at maximum storage
capacity).
3) Stochastic MPC: Since the future load demand being
known perfectly is nearly impossible for an EV, we modify the
MPC formulation in Eq. (2) to take in a load vector d in the
form of a multivariate normal distribution. This distribution
is obtained by taking historic data and fitting a multivariate
distribution using maximum likelihood estimation and the
constraints involving are now stochastic, to be met with a high
probability. Due to limited space we do not elaborate upon
the formulation, but details on stochastic MPC formulations
can be found in [18].
4) Optimal scheme: The optimal control formulation is
similar to the deterministic MPC formulation in Eq. (2),
except that the horizon M is the length of the entire simulation.
The optimization is solved in one shot, and is done offline.

Note that the optimal scheme gives the best-case perfor-
mance (since the optimization is done with load demand
known perfectly a priori) which we use as a baseline to
evaluate any scheme. In practice, this optimal scheme is
intractable for lengthy drive cycles because the entire driving
period has to be known a priori.

The proposed control scheme needs comparatively less
information than stochastic MPC and the optimal scheme:
only the upper bounds on the total energy demanded by the
load and the maximum power demand in the horizon. Also,
due to the separation of the two control levels, the high-level
optimization can be solved at a low rate, irrespective of the
sampling rate for the low-level control. These features make
the scheme attractive in practice.
D. Simulation setup

To evaluate the effectiveness of the proposed scheme and
the battery supercapacitor control schemes outlined above, we
use the Advanced Vehicle Simulator (ADVISOR) developed
by National Renewable Energy Lab (NREL) [19]. The
schemes are evaluated with the load power demand generated



for an EV going through drive cycles on the route chosen from
the ChargeCar data. We use the Lithium-Ion battery model
in ADVISOR and simulate it for the battery power profile
generated for the real world drive cycles by the different
schemes. The temperature and SoC profiles generated from
the simulation are used to compare the performance of the
different schemes.
E. Simulation results

We simulated our scheme and the others for all the nine
trips on the same route with the SC half full initially. The SC
has ratings of 50F and 60V. The ADVISOR Li-ion battery
consists of 25 12V-cells rated at 7.035Ah (at C/3 discharge
rate and 25 ◦C). For our scheme we used N = 8, Ts = 5 s and
Ta = 1 s. For the stochastic MPC, the horizon was limited
to 8 s since maximum likelihood estimation can fit only a
distribution of length less than or equal to the number of
data sets available (9 trips at 1Hz sampling in our case). The
proposed scheme and stochastic MPC used a l2-norm cost
function for the optimizations (solved with YALMIP). The
simulations were carried out on a Intel i5 machine (2.5GHz,
6GB RAM) running MATLAB R2012a.

Figure 7 shows the mean temperature profiles for a Li-
Ion battery subject to the 9 drive cycle from ChargeCar
data and controlled by the different schemes. The simulation
results for all schemes are summarized in Table I, which
presents the relevant battery parameters, averaged over the 9
simulation trips. Observe that our scheme performs as well
as stochastic MPC and leads to a marked reduction in the
average and the maximum battery temperatures compared to
the battery-only and the naive schemes. These results show
the effectiveness of the proposed scheme in reducing the
battery operating temperature, with only historic data. The
naive scheme has very little improvement over the battery-
only scheme. This implies that using initial charge in the
capacitor and regenerative energy alone to charge the SC
does not give the best possible use of the SC.

In terms of computation time, for a drive cycle length
of 965s and at 1Hz sampling rate, stochastic MPC took an
average of 579s while our scheme took significantly less time,
only 29s on average. This is because the stochastic MPC
implementation repeats its optimization at every time step
of 1s, while our scheme only needs to solve the high-level
optimization every 5s. The computation time of the low-level
control is negligible due to its simplicity. Moreover, because
of the separation of the two control levels in our scheme,
increasing the low-level sampling rate of the system does not
affect the computation time of the high-level control.

VII. CONCLUSION

In this paper, we developed a mulit-level control scheme
for peak power reduction in HES. The basic idea is to cap
the power drawn from the source by a peak threshold while
using the energy storage for the residual between the load
and the source power. We provided a sufficient condition for
the peak threshold calculated by the high-level control to
be feasible for the low-level control logic. This architecture
allows the complex computations be decoupled from the

Scheme MaxTemp MeanTemp Exec.
(C)(%) (C)(%) Time (s)

Proposed scheme 47.1733 (9.57) 27.5373 (6.24) 29.50
Stochastic MPC 47.3732 (9.18) 28.0696 (4.43) 579.29
Optimal 38.5115 (26.16) 24.6182 (16.15) 0.49
Naive 50.6186 (2.96) 28.9097 (1.57) N/A
Battery-only 52.1639 29.3711 N/A

TABLE I
BATTERY PARAMETERS (AVERAGED OVER THE TRIPS USED FOR

EVALUATION) OBTAINED FROM THE SIMULATIONS.
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Fig. 7. Battery temperature (averaged over all simulation trips) vs time for
different schemes. A lower battery temperature increases battery lifetime.

low-level sampling rate, hence making the proposed scheme
efficient computationally and applicable to systems with fast
dynamics. A notable advantage of this scheme is that it
does not require exact and fine grained predictions of the
load at every time step. Using a case study of a battery
and supercapacitor energy system for electric vehicles, we
evaluated the proposed scheme and showed its effectiveness
in reducing peak battery power (hence battery temperature)
as well as its applicability to fast dynamical systems.
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APPENDIX: PROOF OF THEOREM 1
To prove Theorem 1 we need the following Lemma.
Lemma 1: Define function E+(t) = E+ −

∫ t

0
d+(τ) dτ .

Then for all 0 ≤ t < t′ ≤ T ,

E+(t′)
(
x(t)− xmin

)
≤ E+(t)

(
x(t′)− xmin

)
. (8)

Proof: By the definition of E+, we have E+(t) ≥
E+(t′) ≥ 0. If x(t) ≤ x(t′) then obviously Eq. (8) holds,
so we assume that x(t) > x(t′). Similarly, if E+(t) = 0 or
E+(t′) = 0 then Eq. (8) trivially holds. Therefore we also
assume that E+(t) > 0 and E+(t′) > 0, thus E+ > 0 and
Eq. (5) holds. Furthermore, we suppose that

P ≥ d̄
(

1− x(t)−xmin

E+(t)

)
, (9)

which will be justified later. To prove Eq. (8), we first consider
the basic case when there is no saturation between t and t′.

Basic case. Let ∆t = t′−t, ∆max
E = d̄∆t ≥ ∆+

E , ∆E =∫ t′

t
d(τ) dτ , ∆+

E = E+(t) − E+(t′) =
∫ t′

t
d+(τ) dτ ≥ ∆E .

Because there is no saturation between t and t′, u(t) = P

∀t ≤ t ≤ t′. Therefore x(t′) = x(t)−
∫ t′

t

(
d(τ)− P

)
dτ =

x(t) + P∆t − ∆E . Since x(t) > x(t′) we have ∆max
E ≥

∆+
E ≥ ∆E > P∆t ≥ 0 and d̄ > 0. We want to show that

x(t)−x(t′)
E+(t)−E+(t′) = ∆E−P∆t

∆+
E

≤ x(t)−xmin

E+(t) . (10)

Indeed, if x(t)−xmin

E+(t) ≥ 1 then Eq. (10) clearly holds because
∆E−P∆t

∆+
E

≤ 1. Consider the case when x(t)−xmin

E+(t) < 1.

Multiplying inequality (9) with ∆t > 0 we have P∆t ≥
∆max

E

(
1− x(t)−xmin

E+(t)

)
. Therefore

∆E−P∆t

∆+
E

≤
[
∆E −∆max

E

(
1− x(t)−xmin

E+(t)

)]
/∆+

E . (11)

On the other hand, multiplying the inequality x(t)−xmin

E+(t) < 1

with
(
∆+

E −∆max
E

)
≤ 0 gives us x(t)−xmin

E+(t)

(
∆+

E −∆max
E

)
>

∆+
E −∆max

E ≥ ∆E −∆max
E where the last inequality comes

from ∆+
E ≥ ∆E . Expanding the above inequality we get

x(t)−xmin

E+(t) >
[
∆E−∆max

E

(
1− x(t)−xmin

E+(t)

)]
/∆+

E . (12)

Then Eq. (10) follows from Eqs. (11) and (12). Now that we
have shown Eq. (10), we cross-multiply it to obtain

E+(t) (x(t)− x(t′)) ≤
(
E+(t)− E+(t′)

) (
x(t)− xmin

)
which is simplified to Eq. (8). The basic case is complete.

General case. In the general case, when there might be
saturations between t and t′, we can always divide the interval
[t, t′] into k ≥ 1 consecutive subintervals

[t, t′] = [t(0), t(1)] ∪ [t(1), t(2)] ∪ · · · ∪ [t(k−1), t(k)]

where t = t(0) < t(1) < · · · < t(k) = t′, such that during each
entire subinterval, the system is either saturated or saturation-
free. Consider any subinterval [t(i), t(i+1)], 0 ≤ i ≤ k −
1. During the subinterval, if the system is saturated then
x(t(i)) = x(t(i+1)), hence Eq. (8) holds. On the other hand,
if the system is saturation-free during the subinterval then
Eq. (8) for that subinterval is validated by the basic case.
In addition, recall that E+(t) > 0 and E+(t′) > 0, thus
E+(t(0)) ≥ · · · ≥ E+(t(k)) > 0. Therefore we have

x(t(0))−xmin

E+(t(0))
≤ x(t(1))−xmin

E+(t(1))
≤ · · · ≤ x(t(k))−xmin

E+(t(k))

which verifies Eq. (8) for [t, t′].
Proof of Eq. (9). We showed that Eq. (9) implies Eq. (8). We
now prove Eq. (9) ∀t ∈ [0, T ] such that E+(t) > 0. By Eq. (5),
Eq. (9) holds for t = 0. Consider the interval [0, t] for any 0 <

t ≤ T such that E+(t) > 0. Then Eq. (8) gives x(0)−xmin

E+ ≤
x(t)−xmin

E+(t) . It follows that P ≥ d̄ (1− (x(0)− xmin) /E+) ≥
d̄ (1− (x(t)− xmin) /E+(t)). Therefore Eq. (9) is verified.

A direct consequence of Lemma 1 is the following result.
Lemma 2: There is no bottom saturation during [0, T ).

Proof: A bottom saturation happens when x(t) = xmin

and d(t) > P . If E+ = 0 then d(t) ≤ 0 ≤ P for all t ∈
[0, T ). If E+ > 0 then there are two cases. If x(0) = xmin

then, by Eq. (5), P ≥ d̄, hence the load can never exceed P .
The remaining case is when x(0) > xmin. Suppose at time
t? ∈ [0, T ), x(t?) = xmin. Then Lemma 1 reads

E+(t?)
(
x(0)− xmin

)
≤ E+(0)

(
x(t?)− xmin

)
= 0.

Because x(0) > xmin and E+(t?) ≥ 0, we must have
E+(t?) = 0. It follows that

∫ T

t?
d+(t) dt = 0, that is the

load must be non-positive, hence not exceeding P , for the
rest of the interval. This allows us to conclude.

We can now prove Theorem 1.
Proof: Statement (a) follows directly from Lemma 2.

For statement (b), there are two cases.
Case 1: during the interval, there is no top saturation.

Then, because there is no bottom saturation either, we have
x(T ) = x(0) −

∫ T

0

(
d(t)− P

)
dt = x(0) + PT − E. It

follows from Eq. (4) that x(T ) ≥ xf .
Case 2: there is at least one top saturation during the

interval. For this to happen, we must have E+ > 0, hence
Eq. (6) holds. Let t? ∈ [0, T ] be the last time instant of top
saturation during the interval, that is x(t?) = xmax and, if
t? < T , x(t) < xmax for all t? < t ≤ T . If t? = T then
trivially x(T ) = xmax ≥ xf . So we only consider t? < T . It



must be that d̄ > P ≥ 0 because otherwise, the saturation
will continue after t?. We then have

x(T ) = xmax + P (T − t?)−
∫ T

t?
d(t) dt. (13)

Let E? =
∫ T

t?
d+(t) dt. Obviously

∫ T

t?
d(t) dt ≤ E? ≤ E+

and E?/d̄ ≤ T − t?. Then Eq. (13) gives us

x(T ) ≥ xmax + P E?

d̄
− E? = xmax + E?

(
P
d̄
− 1
)

.

Note that P/d̄ − 1 < 0 because 0 ≤ P < d̄. Therefore
x(T ) ≥ xmax +E+

(
P/d̄− 1

)
. It then follows from Eq. (6)

that x(T ) ≥ xf .
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