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Abstract— For an autonomous vehicle, detecting and tracking
other vehicles is a critical task. Determining the orientation
of a detected vehicle is necessary for assessing whether the
vehicle is a potential hazard. If a detected vehicle is moving,
the orientation can be inferred from its trajectory, but if
the vehicle is stationary, the orientation must be determined
directly. In this paper, we focus on vision-based algorithms for
determining vehicle orientation of vehicles in images. We train
a set of Histogram of Oriented Gradients (HOG) classifiers to
recognize different orientations of vehicles detected in imagery.
We find that these orientation-specific classifiers perform well,
achieving a 88% classification accuracy on a test database of 284
images. We also investigate how combinations of orientation-
specific classifiers can be employed to distinguish subsets of
orientations, such as driver’s side versus passenger’s side views.
Finally, we compare a vehicle detector formed from orientation-
specific classifiers to an orientation-independent classifier and
find that, counter-intuitively, the orientation-independent clas-
sifier outperforms the set of orientation-specific classifiers.

I. INTRODUCTION

The ability to detect and track other vehicles automatically
is a core requirement for any autonomous vehicle designed
to operate in traffic. In order to plan a safe path through
the environment, a vehicle needs to determine not just the
location of other vehicles, but also their predicted trajec-
tories. The orientation of a vehicle constrains its short term
trajectory, and when the vehicle being tracked is in motion, it
is relatively straightforward to estimate its orientation based
on its direction of motion. The orientation of stationary
vehicles, however, must be determined by other means. In
this paper, we explore the ability of vision-based recognition
algorithms to determine vehicle orientation from images.

The problem of determining the orientation of stationary
vehicles is important for autonomous vehicles, especially
in urban environments. Stationary vehicles are encountered
frequently, and an autonomous vehicle must be able to
estimate whether a detected vehicle poses a potential hazard.
A car sitting at the end of a driveway is much more likely
to pull out into the street than a car parallel parked on the
side of the street. The cars may be in the same location in
both cases, but their orientation is the differentiating factor.

Various technologies have been shown to be effective
for detecting vehicles, including active sensors, such as
LIDAR [1], [2], [3], and RADAR [4], [5], and passive
sensors, such as cameras [6], [7]. Each sensing modality
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Fig. 1. The process by which the vision system described in this paper
is used in concert with a LIDAR system. (a) First, a vehicle candidate is
detected based on a LIDAR shape classification algorithm [2] (green lines).
The projection of the 3D LIDAR points onto the image plane (blue lines) is
calculated as a function of the estimated size/scale of the vehicle (plus some
padding) and is then passed to the HOG classifier. (b) HOG features are
extracted. (c) These features are passed to the vehicle detection algorithm
and if a vehicle is detected (red lines), (d) it is passed through the bank of
detectors to determine the orientation (purple lines and label).

has advantages and disadvantages. LIDAR and RADAR can
identify moving objects by inferring (indirectly for LIDAR
or directly for RADAR) the velocity of the surfaces that
reflect the emitted energy. Stationary vehicles may be indis-
tinguishable from a complex background and, thus, could
not be identified as a vehicle until they started moving.
At relatively close ranges, LIDAR can be used to detect
stationary vehicles by fitting a model to the points returned,
but such an approach will break down at longer ranges, where
the limited angular resolution of the sensor will cause the
points on the car to become much more sparse [8]. Computer
vision algorithms can detect stationary vehicles in images at
various ranges, orientations, and even under partial occlusion.
Although the accuracy of vision-based methods is not yet
high enough for practical application in autonomous vehi-
cles, recent work has shown that contextual reasoning can
offer improvements over brute force search over the entire
image [9]. Unfortunately, such methods are not currently
computationally efficient enough for autonomous vehicle
applications.

Our approach to stationary vehicle detection is to fuse
information from LIDAR and vision-based sensing, thereby
gaining the benefits of both modalities. The process is



illustrated in Figure 1. However, this paper focuses on the
vision aspects of the overall algorithm. A 3D LIDAR-based
algorithm, described separately in [2], is used to estimate the
ground surface and identify regions of the scene containing
objects sitting on the ground that are potential vehicles.
These vehicle candidates are in the form of 3D cuboids
encompassing the points for each contiguous region. The
cuboids are then projected into the image from a camera that
has been calibrated relative to the LIDAR, thereby identify-
ing the approximate image location of the vehicle candidates.
The vision-based algorithm then focuses its resources on
those areas of the scene. Thus, the vision algorithm only
needs to operate on a single candidate patch at a small set of
scales set by the LIDAR-based detector. This greatly reduces
the computation required and eliminates the need to handle
the case where multiple cars must be distinguished in a single
image patch. Vision is used to confirm whether or not a
vehicle is at the location hypothesized by the LIDAR, and if
so, then to determine the orientation of the target vehicle.

In this paper, we focus on the use of vision-based algo-
rithms to determine the orientation of vehicles in images.
The general problem of vehicle detection in images has been
studied extensively, but research on the more specific prob-
lem of determining vehicle orientation is fairly sparse [10].
In our work, we explore a detection algorithm based on
a feature set called the Histogram of Oriented Gradients
(HOG), which was first proposed by Dalal [11], [12], [13].
In Dalal’s formulation, the detector provides a binary output
indicating whether a specific region of an image contains
an instance of the desired object (in our case a vehicle).
Each image passed into the detector is first converted into a
set of gradients which are spatially discretized. A sub-image
of a given size is extracted from this gradient histogram
and converted into a feature vector (the HOG). This feature
vector is then used as input to a binary support vector
machine (SVM), and if the output exceeds a threshold, the
object is detected at that location. This process is repeated at
different offsets in the image and at multiple scales. A target
object usually generates many detections at slightly different
scales and offsets. Therefore, a mean-shift density estimation
algorithm is used to combine these detections into a single
bounding box location for a group of nearby detections.

The chief contribution of this paper is a detailed investi-
gation of how a set of HOG-based classifiers can be used to
distinguish the orientation of vehicles in images. We explore
how to create classifiers that are capable of determining
individual orientations of vehicles as well as multiple orien-
tations simultaneously. We also compare the effectiveness of
a generic (orientation-independent) vehicle detector to a set
of orientation-specific detectors. We conducted our analysis
using a corpus of vehicle imagery extracted from publicly-
available image databases, which we manually cropped and
labeled with the vehicle orientation information.

II. RELATED WORK

Research in vehicle tracking has been accomplished using
a variety of different sensors including, but not limited to,

imagery [6], [7], LIDAR [1], [3], and RADAR [4], [5].
In much of this work, the orientation of the vehicle is
determined as part of the tracking process (e.g., the direction
of motion indicates the front of the vehicle). Our approach is
to develop a visual classification algorithm that can be used
to augment and prime a LIDAR-based tracking algorithm.
One advantage of a vision-based approach as opposed to a
LIDAR-only approach is that it can be used to estimate the
existence and orientation of vehicles that are immobile (such
as parked cars) where a tracking-only approach would be
unable to pick the vehicle out from an arbitrary background.

Various combinations of features and classifiers can be
applied to recognize a vehicle in an image. Several popu-
lar feature types have emerged in the literature, including
Haar wavelets [14] [15] and Gabor filter outputs [16], both
of which focus primarily on appearance; and edge tem-
plates [17], histogram of oriented gradients (HOG) [11] [18],
edgelets [19], and shapelets [20], all of which focus pri-
marily on shape. Shape- and appearance-based approaches
are attractive because they operate on a single image and,
as such, can be used to detect both moving and stationary
objects. The discriminative power of shape-based features is
generally considered to be stronger than that of appearance-
based features. Within the class of shape-based algorithms,
those that are derived from the HOG approach are considered
one of the most accurate for visual classification problems.
One notable example of the use of HOG is [10], where
the algorithm has been used in concert with color features
and explicit shape models, which demonstrates the ability to
detect vehicles even in the presence of multiple occlusions.
Our work uses only the HOG feature set to allow for
operation on an autonomous vehicle.

III. CLASSIFYING THE VISUAL ORIENTATION OF
VEHICLES

For this study, we used eight orientations of vehicles with
respect to the camera as shown in Figure 2. The orientations
included: front (0 degrees), front-angle driver (45 degrees),
side driver (90 degrees), rear-angle driver (135 degrees),
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Fig. 2. The classifiers were trained to recognize views of cars from eight
orientations. In this paper, we use the convention that the driver’s seat is on
the left side of the vehicle.



Fig. 3. Examples of training images. Each row shows one viewpoint -
front (first row), front-angle driver (second row), side driver (third row),
rear-angle driver (fourth row), and rear (fifth row).

rear (180 degrees), rear-angle passenger (225 degrees), side
passenger (270 degrees), and front-angle passenger (315
degrees). Examples of these views are shown in Figure 3.
Such coarse angles were used because it would be difficult
to label training and evaluation instances at any higher
resolution. Furthermore, this level of granularity is adequate
for the task of determining whether a stationary vehicle is a
potential hazard.

The majority of the images used in this study were
obtained from freely-available on-line sources, including
Caltech 1011, Caltech “Markus”2, MIT3, and Pascal VOC:
20054. We collected additional images of specific vehicles
as well. Statistics of the numbers of images in each category
are shown in Table I. These datasets consist primarily of
images of vehicles in urban settings. They contain a variety
of vehicles, including compacts, sedans, trucks, vans, and
SUVs.

All of the imagery was taken outdoors in daylight, though
the amount of light varied between the images (some were
taken on clear days and others were taken on cloudy days).
All images were taken from the ground (presumably by a
person carrying a camera at head height). There was a wide
variety of clutter found in each image, and the vehicles in
the images were located at a wide range of distances from
the camera as well.

The images were cropped and scaled based on the manu-
ally determined bounding boxes. During testing, the clas-
sifiers were presented with image patches that contained
the original cropped image plus upwards of 50% additional
padding around the outside. We chose this approach for
two reasons. First, we are interested in determining the

1http://www.vision.caltech.edu/Image Datasets/Caltech101/101 objectCategories.tar.gz
2http://www.vision.caltech.edu/Image Datasets/cars markus/cars markus.tar
3http://cbcl.mit.edu/projects/cbcl/software-datasets/cars128x128.tar.gz
4http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/voc2005 1.tar.gz,

http://pascallin.ecs.soton.ac.uk/challenges/VOC/download/voc2005 2.tar.gz

orientation of vehicles, and less so in determining the ex-
istence or location of vehicles. Second, as described in the
introduction, our method is designed to work in conjunction
with a LIDAR-based cueing algorithm that identifies the im-
age regions where potential vehicles exist. Furthermore, the
range from the LIDAR provides a secondary source of scale
information, allowing us to obtain a good approximation of
the expected size of the potential vehicle in the image. The
widths and heights of these training images were selected
to provide a consistent boundary around the top/bottom and
left/right side of the car in the image. Thus, the front and
rear training examples were roughly square (50x60 pixels),
the front-angle and rear-angle examples were wider (100x50
pixels), and the side examples were widest overall (130x50
pixels).

The resulting images were divided into two sets: training
and testing. In each trial, 90% of the instances in each
category were randomly chosen for inclusion in the training
set, and the remaining 10% served as the testing set. A set of
images containing no vehicles was used as the base negative
example training set. This set of images was obtained from
the INRIA people dataset5. In our experiments, we found that
better performance for orientation-specific classifiers was
achieved if we augmented this base negative example training
set with positive instances of training examples from other
orientations. For example, when training the front classifier,
all of the positive examples from front-angle, side, rear-
angle, and rear were added to the negative training examples
for the front classifier. The inclusion of the other views
as negative examples for each orientation-specific classifier
helps ensure that the underlying binary SVM learns the
parameters of a hyperplane that maximizes the response
to a specific orientation of the car while minimizing its
response to the other orientations. Without the inclusion of
the negative examples for different views, there is no way
to ensure that the learned hyperplane does not also have a
strong response to other orientations of the vehicle.

Our orientation-specific vehicle detectors are based on
Dalal’s HOG detection algorithm [13]. We based our imple-
mentation on the publicly available HOG detector software
library, which we modified to support multiple instantiations
of the detector. In order to compare the results of the
different detector instances, we needed to normalize the raw
output of the classifiers. An SVM is a maximum margin
discriminator that maps a feature vector to a real number
score whose value is designed to separate targets from clutter.
In our multi-class task, we need to compare the output of
multiple pair-wise discriminators (i.e., orientation-specific
detectors). However, it is not meaningful to compare the
scores of different SVM discriminators. If the output of a
discriminator can be converted into a posterior probability,
then Bayesian discrimination can be used to compare them
to determine the best class among many. We chose to use
Platt’s technique [21], which models the posterior probability

5http://pascal.inrialpes.fr/data/human/INRIAPerson.tar



TABLE I
THE TOTAL NUMBER OF TRAINING AND TESTING IMAGES FOR EACH

DATA SET. EACH NEGATIVE TRAINING IMAGE IS BROKEN INTO

SUB-IMAGES AND SAMPLED AT MULTIPLE SCALES TO CREATE 1000S OF

NEGATIVE TRAINING SAMPLES PER IMAGE.

Data set # positive # negative # test
images images images

all-sides 2292 648 250
front 82 1089 42
front-angle 538 1033 58
front-angle driver 269 1033 29
front-angle passenger 269 1033 29
side 936 995 104
side driver 468 995 52
side passenger 468 995 52
rear-angle 388 1061 42
rear-angle driver 194 1061 21
rear-angle passenger 194 1061 21
rear 348 1058 38

of class Ci given data, D, as a sigmoid of the score:

P (Ci|D) =
1

(1 + exp(a× s + b))
(1)

where s is the output score of the classifier, and a and b are
parameters fit to a histogram of the scores (Figure 4). This
is an approximation and depends on how well the sigmoid
fits the data. Empirically, we found this simple model worked
well in most cases we tested. Using these posterior estimates
from the classifier scores, we selected the class with highest
probability among all the classes for each feature vector.
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Fig. 4. Sigmoid function generated labeled data given to the all-sides
classifier.

IV. EXPERIMENTAL RESULTS

We performed two specific studies for how the HOG
classification algorithm could be used for identifying vehicles
and their orientations. First, we evaluated the ability of the
HOG classifier to recognize vehicles at different orientations
assuming that a car was present in each image provided to
the classifier. Second, we performed a detection-only study
where we evaluated two different mechanisms for using the
HOG classifier to detect the presence of a car in an image.

A. Classification of Trained Car Orientations

For the car orientation classification experiments, only
the positive images (e.g. the images that actually contained

TABLE II
CONFUSION MATRIX FOR THE CLASSIFIERS TRAINED INDEPENDENTLY

OF DRIVER/PASSENGER VIEW.

Actual Predicted
front front- side rear- rear

angle angle
front 27 2 0 1 12

front-angle 1 50 0 5 2
side 0 0 104 0 0

rear-angle 0 20 0 22 0
rear 1 0 0 0 37

vehicles) were shown to the classifiers. In these experiments,
each image was shown to a set of different classifiers.
The output responses from each of those classifiers were
compared, and the maximum probability was chosen as the
output. Confusion matrices were generated for a number of
different training/testing scenarios.

1) Classification independent of driver/passenger view:
The first experiment was performed with a set of classifiers
trained on images containing both driver and passenger
views. This scenario evaluated whether the classifiers can
distinguish front from rear, and front-angle from rear-angle.
The resulting confusion matrix for these classifiers is shown
in Table II.

Other views that had seemingly large confusion were the
front-angle and the rear-angle. This is not entirely unexpected
given that many vehicles have similar appearance from
the front angles and from the rear angles. However, this
particular set of classifiers was not necessarily ideal for real
use because it was designed explicitly to be incapable of
detecting the difference between the driver and passenger
view of vehicles. Rather these were an initial experiment
set up to see whether the specific angles, regardless of
passenger or driver views, were readily distinguishable. One
potential utility of these classifiers is discussed at the end
of this paper. To address the more detailed question of
distinguishing the passenger and driver views, a different set
of view-dependent classifiers were developed and tested in
the following sections.

2) Classification dependent of driver/passenger view:
Second, an experiment was conducted where the front-angle,
side, and rear-angle classifiers were all trained only on
images that were from the driver view and then tested on
images that only showed the driver view of the car. (Note: the
front and rear data sets were the same as the first experiment,
since driver and passenger view is meaningless to those
views.) The resulting confusion matrix is shown in Table III.

As can be seen from the confusion matrix, these driver
view classifiers were much better at recognizing the dif-
ference between the front-angle and rear-angle views when
shown driver view test images. This appears to be an example
which illustrates that having a smaller variance in the types
of images to be recognized creates a more accurate detector
(as compared with the previous experiment).

We then conducted an experiment to determine how well



TABLE III
CONFUSION MATRIX FOR THE CLASSIFIERS TRAINED ONLY ON DRIVER

VIEWS AND TESTED ONLY ON IMAGES OF DRIVER VIEWS.

Actual Predicted
front front- side rear- rear

angle driver angle
driver driver

front 28 2 1 1 10
front-angle 0 28 1 0 0

driver
side 0 0 51 1 0

driver
rear-angle 0 0 0 20 1

driver
rear 1 0 0 0 37

TABLE IV
CONFUSION MATRIX SHOWING HOW CLASSIFIERS TRAINED ON

FRONT-ANGLE AND REAR-ANGLE DRIVER AND PASSENGER VIEWS

RESPONDED TO TEST IMAGERY OF THE SAME CATEGORIES.

Actual Predicted
front- front- rear- rear-
angle angle angle angle
driver passenger driver passenger

front-angle 29 0 0 0
driver

front-angle 0 29 0 0
passenger
rear-angle 0 0 21 0

driver
rear-angle 0 0 0 21
passenger

the four angles could be differentiated from each other, as
shown in the confusion matrix in Table IV. As can be seen,
the four angle classifiers do very well in differentiating one
view from the other regardless of whether the image of the
car is from the front, the rear, or from driver or passenger
views.

The same test was performed with the side-views as
shown in the confusion matrix in Table V. As can be
seen, approximately 10% of the the driver-side images were
misclassified as passenger-side. Certain vehicles are very
symmetrical when viewed from the sides, which apparently
can confuse the side detectors. A few of the driver views
misclassified as passenger views can be seen in Figure 5.

3) Results of orientation-specific detectors: Finally, the
complete set of eight orientation-specific classifiers was

Fig. 5. Several examples of vehicle side views that were misclassified as
being the other side.

TABLE V
CONFUSION MATRIX SHOWING HOW CLASSIFIERS TRAINED ON THE

SIDES OF VEHICLES FROM DRIVER AND PASSENGER VIEWS RESPONDED

TO TEST IMAGERY FROM THE SAME CATEGORIES.

Actual Predicted
side side

driver passenger
side 51 1

driver
side 3 49

passenger

tested against all of the vehicle imagery. Figure 6 shows some
results of the different orientation-specific classifiers on the
test data. The confusion matrix showing the results of this
experiment is shown in Table VI. From the table, we can
see that the eight different side-and-orientation dependent
classifiers are able to perform fairly well to identify the
orientation of vehicles and achieved an accuracy of 88%
correct over 284 test images.

The reason for the non-symmetry between the driver and
passenger sides is that the images chosen for training each
classifier were selected at random from the full training set.
Similarly, the test set was chosen at random so the various
driver/passenger pairs for front-angle, side, and rear-angle,
were not necessarily given the same (but mirrored) images
to view. Vehicles typically have a great deal of symmetry
between sides and potentially between the different angles
which is a source of classification error. More experimenta-
tion is needed to determine whether the front detector’s errors
in classification are caused by insufficient training data. The
better results from the rear detector suggest that this may be
the case.

B. Detection of Vehicles

The purpose for this research was to be able to classify the
orientations of vehicles found in an image. However, in order
to successfully do this, we are required to be able to detect
the presence of a vehicle in the environment, regardless of
its orientation. A simple way to do this would be to run
all of the individual orientation-specific detectors over the
image and return the union of their outputs. However, a
question remained regarding the effectiveness of the different
orientation-specific classifiers in general, due to the fact that
they were fed negative imagery of the other orientations as
part of their training set. One way to avoid this problem is
to construct a single classifier to recognize vehicles in the
image regardless of orientation. In this case, problems asso-
ciated with negative imagery could potentially be avoided,
as there would be no need to include this in the negative
imagery. However, since views of vehicles from different
angles, particularly front or rear vs. side, are so different,
the question remained whether such a universal car detector
would have poorer performance across vehicles in general.

First, a classifier, called “all-sides”, was trained on all eight
of the orientations of interest so that it would function as



TABLE VI
CONFUSION MATRIX FOR ALL ORIENTATION-SPECIFIC CLASSIFIERS.

Actual Predicted
Front Front-angle Side Rear-angle Rear Rear-angle Side Front-angle

(driver) (driver) (driver) (passenger) (passenger) (passenger)
Front 26 1 0 0 10 2 2 1

Front-angle 0 26 1 0 0 2 0 0
(driver)

Side 0 0 50 1 0 0 1 0
(driver)

Rear-angle 0 0 0 18 0 0 0 3
(driver)

Rear 1 0 0 0 37 0 0 0
Rear-angle 0 0 0 0 0 21 0 0
(passenger)

Side 0 0 3 0 0 2 47 0
(passenger)
Front-angle 0 0 0 4 0 0 0 25
(passenger)

Front (1.00) Front-angle driver (0.99)

Side driver (1.00) Rear-angle driver (1.00)

Rear (0.44) Rear-angle passenger (0.96)

Side passenger (0.31) Front-angle passenger (1.00)

Fig. 6. Example results of the classifiers. Each image represents a view of
a car that had the highest response from the corresponding classifier trained
to recognize the view. Probability scores are shown in parenthesis under the
image.

a generic car detector. A second classifier, called “union”,
consisted of all eight orientation-specific classifiers. The
detection threshold value for each classifier was chosen from
an ROC curve computed on the training data as the point on
the curve closest to the upper left corner. This is the threshold
which will maximize the positive hit rate while keeping the
false positive rate as low as possible. The overall classifier
will report a detection if any of the individual classifiers
exceed the detection threshold.
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Fig. 7. An ROC curve for the performance of the two different classifiers
for detecting the presence of vehicles rather than computing the orientation.
A threshold value for each classifier, which corresponds to the value in the
curve closest to the upper left of the graph, has been computed and is shown
in the legend.

In these experiments, all of the test data described in the
previous section were used as the positive examples. A set
of negative examples four times the size of the positive set
was used. Figure 7 illustrates the performance of the two
different classifiers.

As can be seen from the ROC curve, the single all-
sides classifier outperforms the union of the eight specific
angle detectors. Not only is the all-sides classifier more
accurate, but the runtime complexity is a fraction of the
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Fig. 8. Detection results from the “all-sides” classifier. From top to bottom
are examples of front, front-angle (driver and passenger), side (driver and
passenger), rear-angle (driver and passenger), and rear. Probability scores
are shown in parenthesis under the image.

union classifier. The union classifier requires that the image
be searched for responses to the HOG classifier 8 times,
whereas the all-sides only requires a single search. Some
of the results of the car detection algorithm are shown in
Figure 8.

In this experiment, multiple hits in a single image were
possible (as evidenced in the top row of front-view images).
However, only the hit with the maximum value was recorded
and used. If the maximum value hit was in the wrong part of
the image, the output was identified as a mis-classification.

We speculate that including negative car views into the
training sets for the orientation-specific classifiers in general
caused those classifiers to have a lower response rate to the
test imagery than the classifier trained on views from all
views of the car. However, at this time, further evaluation and
analysis is required to determine whether this hypothesis is
correct, or if there is another effect that is causing the poorer
performance of the individual orientation-specific classifiers
for detecting the presence of vehicles in general.

The strong performance of the all-sides classifier suggests
a potential efficiency boost for the general use of this system.
The required operating time for the union classifiers for this

rearfront

front/rear

allsides

passengerdriver

sides

front−angle rear−angle

passengerdriverpassengerdriver

angles

Fig. 9. A hierarchical method for searching for vehicle orientation in an
image.

experiment was 8 times more than the all-sides classifier
because of the need to re-run each of the 8 orientation-
dependent classifiers over the image. Thus, the all-sides clas-
sifier could be used first to identify the location of potential
cars in the image. Then the individual angle classifiers could
be used over those sub-patches, the size of which is smaller
than the original search area, and greatly improve the time
necessary to run the detector.

V. DISCUSSION AND FUTURE WORK

In this paper, we have described a study in which we used
a set of Histogram of Oriented Gradients (HOG) classifiers to
determine the orientation of vehicles in images. We explicitly
trained each classifier to recognize a different view of a vehi-
cle using publicly-available datasets, which we hand-labeled
and annotated. By running each of the different classifiers
on an image of a vehicle and picking the maximum, our
algorithm determined the correct orientation of the vehicle
88% of the time.

We also determined that “merged-view” classifiers de-
signed to detect only angles or only sides of the vehicle were
also possible. In order to successfully train these classifiers,
the negative image training set consisted of all of the views
that the classifier was not meant to recognize.

One challenge of determining the specific orientation of
the vehicle using the HOG classifier approach still requires
that the images be searched by multiple different classifier
instances – one for each orientation of interest. Thus, for the
problem described in this research, any implementation of the
classifier would be slowed down by a factor of 8. However,
because detectors can be created which encompass multiple
views, such as the “all-sides” detector and the left/right-
invariant detectors described above, a binary-search approach
for finding the vehicle orientation could be employed, as
illustrated in Figure 9.

Initially, a single generic view-independent vehicle de-
tector (all-sides) would be used to locate potential vehicle
candidates. This could additionally be run at a lower number
of pyramid scales to speed up the overall process without
sacrificing too much accuracy. Once a vehicle candidate
is found, three more classifiers, front/rear detection, side
detection, and all angles detection would be run, and the
highest performing result would then proceed down the tree
to further disambiguate the orientation. This hierarchical



Fig. 10. Plot of relative strengths of orientation detectors as vehicle moves
between front and front-angle-driver views. Strength is measured as the
length of the red bars in the angle graphs.

breakdown could potentially reduce the number of individual
classifiers from eight (or nine if the all-sides classifier is
used as an initial detector) to, at worst, four. Because there
is a large potential for repeated/redundant operations in this
algorithm, it may be possible to share the computation across
classifiers to improve run-time efficiency.

Our ongoing work is to fully integrate the visual classi-
fication algorithm with the LIDAR detector and tracker [2]
in order to prune false positives from the set of potential
trackable vehicles as well as to use the resulting orientation
from the visual classifier to improve the state estimate of the
tracked vehicle. Additionally, we are examining whether this
approach can more accurately determine the actual angle of
the vehicle (not just the angle of the strongest responding
classifier) by comparing the relative responses of adjacent
classifiers. An example of how the classifiers respond when
presented with “in-between” data can be seen in Figure 10.
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