
ROAD INTERSECTION MONITORING FROM VIDEO
WITH LARGE PERSPECTIVE DEFORMATION

Takashi Furuya1, Camillo J. Taylor2

Computer and Information Science, University of Pennsylvania

[1] Tel: 215-450-2133, Email: tfu@seas.upenn.edu

[2] 474 Levine Hall (GRW) 3330 Walnut Street, Philadelphia, PA 19104-6389

Tel: 215-898-0376, Fax: 215-573-2048, Email: cjtaylor@cis.upenn.edu

June 7, 2014

ABSTRACT

We propose a method to extract traffic information from videos of road
intersections, taken from a low-resolution camera fixed 2 to 7m above ground.
First, feature points are detected and tracked with the Kanade-Lucas-Tomasi
tracker to obtain trajectories. These trajectories are then segmented into
groups corresponding to vehicles so that the vehicle’s path, velocity, time of
entry and exit can be determined.

Keywords: Vehicle Detection, Intersection Monitoring, Feature Tracking,
Background Subtraction

INTRODUCTION

Traffic flow records are essential for both urban planning and traffic management. These
could be collected from inexpensive cameras which are already installed in highways and
road intersections; however, extracting useful information from these videos requires sig-
nificant manual labor or the use of commercial software.

As an example, traffic studies in Philadelphia are often conducted by temporarily de-
ploying a video camera at an intersection. Footage acquired from this camera is used
to analyze routes taken by cars over the recorded period. Once the video has been ob-
tained, a human operator may manually annotate vehicle turns and counts. This process
is time consuming and labor intensive. An alternative is to rely on commercial entities
such as Miovision Technologies [1] which has an automated/semi-automated system to
accomplish such tasks for a fee.

As part of the U.S. DOT funded T-SET [2] program, a project was initiated to develop an
open source video analysis software to reduce the costs of extracting traffic information
from videos. This would make it possible to gather more traffic flow information in a
timely manner. This paper presents part of this effort. Source code and documentation
for the system are currently available in a public repository [3].

– 1 –



Figure 1: A sample snapshot from video.

To give an idea for the type of data we are working with, Figure 1 shows a single frame from
a video provided by the Delaware Valley Regional Planning Commission (DVRPC).

Three major factors that make the above video difficult to analyze are listed below:

• Large perspective deformation

Unlike a nadir view such as would be provided by satellites or helicopters, the
relatively low position of the camera causes closer objects to appear larger and
move faster than those further away from the camera. Further, the same vehicle
does not always maintain a fixed appearance because it may make turns that may
reveal or occlude various aspects. Our tracking system needs to account for these
effects.

• Shadows

The shadows associated with the vehicles can confound the tracking process. It is
often difficult to discriminate between motions due to a vehicle and motions due to
a vehicles shadow. This can lead to incorrect counts.

• Diverse motion

The vehicles in this video may stop at a variety of positions and make a variety of
turns. We can contrast this with the problem of analyzing video of highway traffic
where the flows are more constrained and predictable.

Our proposed algorithm aims to tackle these three issues by combining several techniques,
which are described in the next section.

– 2 –



PREVIOUS RESEARCH

Various works on video-based traffic monitoring has been published since the early 1990s.
Many of these use a variant or a combination of the following strategies [4]:

• Region-based tracking

These methods begin with a background subtraction step which is used to iden-
tify regions in the image corresponding to vehicles. Image regions are typically
delineated using a connected components procedure and the resulting blobs are
individually tracked over time.

Typically an adaptive Gaussian mixture model is used for background subtraction
[5]. It creates a background model that evolves over time to account for gradual
lighting changes.

Once the blobs are obtained, they need to be tracked. Inter-frame blob matching
can be accomplished by comparing all of the blobs’ regions from the first frame with
those from the second. This has been done by choosing pairs with a large area of
overlap [6] or with the highest cross correlation [4]. Kalman filtering is generally
done as a final step [4, 6, 7].

A major drawback with this approach is that it is not robust to the presence of
shadows and congestion; nearby blobs are often connected to each other as shown
in Figure 2a. On the contrary, distant objects may not be visible or appear partially
fragmented, as in Figure 2b. Their small size and slow motion on screen make them
susceptible to noise.

• Model-based tracking

Unlike the previous methodology, model-based tracking relies on additional prede-
fined models such as the vehicle’s dimensions, appearance, and path [8, 9]. Our
goal in this effort was to make the system as flexible as possible and to reduce the
burden on the user so methods that relied on on prior estimates or detailed models
were not considered.

• Optical-flow based tracking

Optical flow computes the instantaneous velocity between two frames for a selected
subset of pixels. Lucas and Kanade’s pyramid based algorithm is commonly used.
The resulting flow estimates must still be analyzed and segmented.

• Feature-based tracking

In this approach, distinguishing features points, such as Harris corners, are detected
and tracked over time. The trajectories formed by these points are grouped such
that each group corresponds to a path taken by a single vehicle. This is generally
done in a two-step process: first, an undirected graph is constructed, where nodes
represent trajectories and edges represent similarities between pairs of trajectories.
Then the graph is used to group the nodes.

Similarity between trajectories may be computed by checking the maximum distance
between them. Slight variations of this approach have been studied in tracking
vehicles at intersections and also people in crowded environments [10,11].

– 3 –



(a) A frame (left) and its binary foreground image (right). Note that the
red car’s shadow connects with the blue car in front.

(b) A zoomed in region from another frame with its foreground’s connected
components displayed in different colors. It is difficult to capture cars turning
in the region specified by the rectangle with a red outline.

Figure 2: Background subtraction failing.

Our proposed method builds on this last technique. In addition our work takes into
account the perspective deformations induced by the cameras vantage point.

METHOD

Our system is divided into three main steps: (1) determining the projective transforma-
tion; (2) extracting trajectories; and (3) grouping them. The entire process is summarized
in Figure 3.

Projective Transformation Determination

This calibration step is performed once for every video based on input from the user.
More specifically the user is asked to identify two sets of parallel lines in the frame as
shown in Figure 4. These usually correspond to the two roadways that are meeting. The
system then computes vanishing points for both sets of lines and uses these results to
compute a rectifying homography, T , which can be used to map points on the image to
their location in a top down view of the scene. This transformation allows us to estimate
how the feature points are actually moving through the scene.

– 4 –



Figure 3: Block diagram of proposed algorithm.

Figure 4: Lines drawn by user (left) and effect of applying the rectifying transformation
T to the original image (right).

Trajectory Extraction

The second step processes the video and outputs a list of trajectories. Initially, good
features to track are detected in the first frame [12]. They are tracked over time using
the Kanade-Lucas-Tomasi tracker. We used the OpenCV implementation for the corner
detector and tracker. Figure 4 shows some of these points and their trajectories.

In order to detect the corners, we first convert the color frame image to gray scale using
the following formula to calculate the luma (brightness):

Y = 0.299R + 0.587G + 0.114B

where R, G, and B are each of the color channel values and Y is the gray scale out-
put.

We determined that sampling up to 400 corners in each frame is sufficient to detect points
on most vehicles. We also set the minimum Euclidean distance between the points to be
5 pixels and the block size (used for calculating the derivative covariance matrix for each
pixel neighborhood) to be 3. New points are sampled every 15 frames as the tracker

– 5 –



Figure 5: Feature points and their trajectories.

loses points over time. We found this rate to be appropriate for our video. The tracking
parameters are summarized in Table 1.

We incorporate a forward-backward error threshold, or a maximum bidirectional error as
is done in the Matlab implementation of the KLT tracker [13]. This error measure is
calculated by tracking a point in frame i to frame i + 1 and then tracking that point in
frame i + 1 back to frame i. The Euclidean distance between the original and the new
point both in frame i is computed. If the distance is larger than the value we set, we
mark that point as invalid. We found that this significantly improves the quality of our
trajectories. The resulting tracking procedure yields the position of each feature in every
frame, (xi,t, yi,t), along with an estimate for its instantaneous velocity, (ẋi,t, ẏi,t).

Table 1: Parameters used for KLT tracker.

Parameter Name Value
Block size (size of neighborhood search window) 31 x 31
Maximum number of pyramid levels 3
Maximum number of iterations 30
Maximum bidirectional error 2

We also perform a background subtraction procedure to help identify foreground objects
in the frame. We used a uni-modal Gaussian background model in RGB space which
was constructed by sampling 1000 random frames from our hour long video. As a post-
processing step, morphological operations are applied to the binary foreground image to
remove noise. This is done by opening then closing with a circular structuring element of
size 3 x 3 pixels. This procedure contributes a fifth value to each tracked feature, bi,t, which
is 1 if the feature is currently considered part of the background, and 0 otherwise.

– 6 –



Figure 6: Vehicle trajectories after feature point trajectories are grouped.

To prevent tracking stationary points in the background, we stop tracking if the following
two conditions are met for 4 consecutive frames:

bi,t = 1 and ẋ2
i,t + ẏ2i,t < 1.52

The two conditions are necessary since bi,t by itself is noisy and thus unreliable. Velocity
by itself is also insufficient since the vehicles may sometimes be stationary. Finally, short
trajectories (i.e. those spanning less than 4 frames in our case) are also removed since
they do not form a reliable trajectory and are more difficult to group correctly.

Trajectory Grouping

The last step is to group the acquired trajectories so that each group corresponds to a
vehicle. Figure 5 shows the results of this grouping stage using distinct colors and Figure
6 shows the resultant vehicle trajectories.

The trajectories from the previous section are first transformed into the top-down view
using the rectifying homography T obtained in the first section. Then, their velocities
(in the rectified space) are computed. Trajectories containing points which fall outside
the region of interest after transformation are removed. The system can then compute
a measure of similarity between any two features, i and j, based on these position and
velocity estimates as follows:

d2i,j,t = (xi,t − xj,t)
2 + (yi,t − yj,t)

2

s2i,j,t = (ẋi,t − ẋj,t)
2 + (ẏi,t − ẏj,t)

2

– 7 –



Two trajectories are deemed to belong to the same object if they satisfy the following
condition,

∑
t

Si,j,t

N
> 0.9

Where N is the total number of frames both trajectories are present, and Si,j,t is a binary
value indicating their similarity at every point in time, defined as,

Si,j,t =

{
1, if di,j,t < 26 and si,j,t < 3.6

0, otherwise

This means that the two trajectories belong to the same object if their distance remains
small and velocities are similar for 90% of the time.

A graph can be constructed, where every trajectory is a node and an edge connecting
them represents the fact that they are thought to belong to the same object. It is possible
to extract each vehicle’s group of trajectories by applying Dulmage-Mendelsohn decompo-
sition on this graph’s adjacency matrix. Groups with less than 4 trajectories are removed
since they are not reliable.

The trajectory of each vehicle is calculated by averaging all of the feature point trajectories
present at each frame. Then, the final merged trajectory is smoothed using a centered
weighted moving average as follows,

x̄t =

t+k∑
i=t−k

nixi

t+k∑
i=t−k

ni

Where x̄t is the smoothed position at frame t, k is the size on each side to consider for
smoothing (i.e. larger k means a smoother curve), xi is the averaged position at frame i,
and ni is the number of feature points in this group at frame i. We used a value of 2 for
k. This smoothing is done for both x and y positions. The endpoints of the trajectory
where ni = 1 are cut off because a single feature point’s trajectory rarely matches that
vehicle’s trajectory (if this last step is omitted, there are jumps at the beginning and at
the end).

EXPERIMENTAL RESULTS

The system was evaluated based on the number of correctly counted vehicles. To calculate
the accuracy, the numbered labels (like those on Figure 6) were manually identified (or
noted) as being in one of the following three categories:

– 8 –



• True Positive

It is tracking the vehicle correctly for most of the time it is visible on screen.

• False Positive

It is either tracking part of the road without any vehicle, or tracking a vehicle that
is already being tracked (over-counting).

• False Negative

A vehicle passed by but no labels were assigned to it.

The following formula was used to calculate the accuracy:

Accuracy =
TruePositive

TruePositive + FalsePositive + FalseNegative

The overall performance was assessed based on eight 30 seconds clips from the provided
video which has a frame rate of 20 frames per second. Test sequences 1-4 are gener-
ally vertical motion (when seen from above) and tests 5-8 are horizontal motion. These
clips were chosen since they appeared to be representative of the entire video. Count-
ing performance is shown in Table 2 and a breakdown of the execution time is in Table
3.

The overall accuracy on this experiment was 56% and the system processed the video
frames at a rate of 8.7 ± 1.4 frames per second with almost all of the time taken in
trajectory extraction.

Table 2: Counting performance for each test.

Test No.
Correctly Counted

(True Positive)
Missed

(False Negative)
Over-counting
(False Positive)

1 19 1 13
2 19 3 14
3 23 2 16
4 12 0 10
5 10 0 4
6 12 0 8
7 9 5 2
8 10 0 10

Total 144 11 77

DISCUSSION

We note that most of the errors are due to over-counting and that there are very few missed
vehicles which suggests that: (1) our feature points are correctly tracking the vehicles,
and that (2) the point trajectories need to be grouped together more aggressively. Part
of the problem can be attributed to the fact that our rectification model assumes that all
of the tracked points are close to the ground which is not always the case. Points that

– 9 –



Table 3: Total Execution time.

Computation Time (sec)
Trajectory Extraction 68.576 ± 12.968
Trajectory Rectification 0.024 ± 0.007
Velocity Computation 0.004 ± 0.001
Trajectory Similarity Evaluation 0.334 ± 0.187
Trajectory Grouping 0.023 ± 0.011
Total 68.962 ± 13.174

are further from the ground plane are displaced by the rectification procedure and may
become disconnected from their neighbors which leads to over- counting.

Another observation with regard to over-counting is that feature points are generally
detected around the front and back sides of the vehicle but not in between. This may also
contribute to detecting the same car multiple times. On the other hand, points are not
detected within the vehicles’ shadows. This suggests that feature point tracking is a robust
approach to video-based vehicle tracking applications where shadows are present.

Over-counting may also be caused by occlusion. A vehicle’s path may be split into two
sections due to temporary occlusions, resulting in double-counting. When such a case
occurs, the KLT tracker loses the features. This is difficult to handle during trajectory
extraction, so it is probably better solved on a higher level, for instance by using a Kalman
filter to track individual vehicles. This may also help solve the issue of re-counting once-
lost vehicles, which occurs frequently when they are not moving.

We note that there are a few instances in which the program misses passing vehicles by
over-grouping them. Such an error can occur when two or more vehicles move close to
each other the entire time or when they start from the same position. The main cause
can be attributed to Dulmage-Mendelsohn decomposition. This approach to grouping is
brittle in that even a single connection between two groups of trajectories could make
them count as a single group. Figure 7 illustrates such case.

(a) Two example cases in which vehicles are
group together.

(b) A hypothetical example. Blue lines cor-
respond to trajectories and red lines indicate
connections between them. In this example
two separate vehicles are grouped together.

Figure 7: Over-grouping example and causes.

– 10 –



CONCLUSION

In this paper, we present a technique to combine background subtraction and feature
tracking to extract and group trajectories to determine traffic parameters. This method
is robust to shadows and is able to handle perspective distortions to some extent. This
traffic monitoring system was evaluated based on the number of cars taking one of 16
paths over eight 30 second video sequences. It has an accuracy of 56% and execution
speed of 8.7 ± 1.4 frames per second.

The accuracy of this system may be improved by incorporating a better trajectory group-
ing technique as well as ways to account for occlusion. Execution time may be improved
by focusing on the trajectory extraction step.

FUTURE WORK

There are three main areas worth investigating. The first is to take into account possible
variations in feature heights when grouping trajectories. As mentioned before, the current
method considers everything to be on the ground plane thus causing large positional errors
on some areas of the intersection. It may be possible to guess the unknown height for each
tracked point using its relationship with the others such that a more accurate trajectory
may be obtained.

The second point is to cluster the trajectories using normalized cuts, a technique less brit-
tle than Dulmage-Mendelsohn decomposition for determining subgraphs from adjacency
matrix [14]. An alternative approach would be to group trajectories based on finding
strongly connected cliques in the adjacency graph.

Acknowledgements: We are particularly grateful to Beau Kuhn for working with us
over the summer and to T-SET for their financial support.

REFERENCES

[1] Miovision technologies. http://miovision.com/. Accessed: June 6, 2014.

[2] Technologies for safe and efficient transportation. http://utc.ices.cmu.edu/utc/.
Accessed: June 6, 2014.

[3] Takashi Furuya. Public repository for the software for road intersection monitoring
from video with large perspective deformation. https://github.com/takfuruya/

DVRPC, 2014.

[4] Benjamin Coifman, David Beymer, Philip McLauchlan, J. Malik, and Jitendra Malik
B. A real-time computer vision system for vehicle tracking and traffic surveillance,
1998.

[5] Chris Stauffer and W. E L Grimson. Adaptive background mixture models for real-
time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer
Society Conference on., volume 2, pages –252 Vol. 2, 1999.

– 11 –



[6] S. Gupte, O. Masoud, R.F.K. Martin, and N.P. Papanikolopoulos. Detection and
classification of vehicles. Intelligent Transportation Systems, IEEE Transactions on,
3(1):37–47, Mar 2002.

[7] A. Ghasemi and R. Safabakhsh. A real-time multiple vehicle classification and track-
ing system with occlusion handling. In Intelligent Computer Communication and
Processing (ICCP), 2012 IEEE International Conference on, pages 109–115, Aug
2012.

[8] D.R. Magee. Tracking multiple vehicles using foreground, background and motion
models. Image and Vision Computing, 22:143–155, 2001.

[9] D. Roller, K. Daniilidis, and H.H. Nagel. Model-based object tracking in monocular
image sequences of road traffic scenes. International Journal of Computer Vision,
10(3):257–281, 1993.

[10] A.M. Cheriyadat, B.L. Bhaduri, and R.J. Radke. Detecting multiple moving ob-
jects in crowded environments with coherent motion regions. In Computer Vision
and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society
Conference on, pages 1–8, June 2008.

[11] N. Saunier and T. Sayed. A feature-based tracking algorithm for vehicles in inter-
sections. In Computer and Robot Vision, 2006. The 3rd Canadian Conference on,
pages 59–59, June 2006.

[12] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society Conference
on, pages 593–600, Jun 1994.

[13] Matlab klt point tracker. http://www.mathworks.com/help/vision/ref/vision.

pointtracker-class.html. Accessed: June 6, 2014.

[14] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 22(8):888–905, Aug 2000.

– 12 –


