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This paper presents the tracking system of Boss, Carnegie Mellon University’s winning entry in 

the DARPA Urban Challenge in 2007. We present the key challenges for implementing the 

tracking system, the design principles that guided its implementation, the software architecture of 

the tracking system and the sensor setup used by Boss. The system has been shown to work 

robustly in many different situations, including intersection handling, distance keeping or driving 

on open parking lots. The design principles and tracking architecture are formulated in a general 

way and may be used for the development of driver assistance systems which have to deal with 

the same situations.    
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1. INTRODUCTION  

  

Autonomous driving [1] and driver assistance 

systems [2] are two fields of vehicle autonomy where 

advances in one directly affect advances in another.  

For instance, the fusion of environment sensor data in a 

driver assistance system can be directly applied the 

autonomous driving domain. Special fields of interest 

include system architecture design, environment 

perception and situation assessment algorithms.  

This article describes the multisensor multiobject 

tracking system used by Boss.  Boss, named after 

Charles F. “Boss” Kettering, is an autonomous 

self-driving car built by Tartan Racing [4] (see Figure 1). 

Boss competed in and won the 2007 Urban Challenge.   

The Urban Challenge was a race of autonomous 

vehicles through an urban environment organized by 

DARPA [3]. It took place at the former George Air 

Force Base in Victorville, California on November 3
rd 

2007. Vehicles had to drive a distance of 60 miles 

spread over three autonomous missions where no direct 

human intervention from the teams was allowed. Before 

the race 11 finalists were selected from 35 teams in a 

qualification event. During the competition, all of the 

vehicles were simultaneously on the course with 50 

human driven cars. Vehicles had to interact with each 

other in various situations including (but not limited to) 

passing other vehicles, handling intersections, driving 

on urban roads or on parking lots. Six vehicles finished 

the challenge, three without human intervention: Team 

Tartan Racing (1
st
) [4], Team Stanford Racing (2

nd
) [5], 

and Team Victor Tango (3
rd

) [6]. 

  

 

Fig. 1 Boss - autonomous robot of Team Tartan Racing 

at the 2007 Urban Challenge. 

The paper is organized as follows. Section 2 

describes the specific challenges for development of an 

object tracking system for the Urban Challenge from the 

viewpoint of Team Tartan Racing. Section 3 describes 

the design decisions that were made for implementing 

the system. The architecture of the tracking system is 
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presented in section 4, including an overview of the 

sensor layout, and the software architecture. Finally in 

section 5 conclusions drawn from this work are 

presented. 

  

2. KEY CHALLENGES 

  

This section summarizes the key challenges for 

developing an object tracking system for an autonomous 

vehicle participating in the Urban Challenge.  

Determine which objects participate actively in 

traffic – For a correct situation assessment (e.g. at an 

intersection or while driving down a lane, see e.g. [9]) 

Boss must be able to identify all vehicles around it 

which actively participate in traffic so that it can interact 

with them according to the traffic rules.  

The physical appearance of vehicles is not well 

defined. For the Urban Challenge most vehicles had 

extensive customizations such as external sensors which 

differentiate them from stock vehicles of the same class. 

This makes is hard (if not impossible) to use a 

classification algorithm which is based only on static 

properties of an object to identify all vehicles in a scene 

(such as a classification algorithm based on image 

processing only).  

Information such as if an object is currently moving 

can provide cues to help decide if an object participates 

actively in traffic or not. Movement characteristics, 

however, have to be determined from noisy sensor data. 

A particular challenge is considering vegetation close to 

road boundaries (e.g. bushes) where it may be difficult 

to determine if they are moving or not because of the 

ambiguity in their shape. 

Even if all vehicles around the robot are identified, 

many ambiguous situations exist. As an example, how 

should a vehicle parked near, but not at a stop line be 

treated.  The vehicle could be stalled, or just sloppily 

waiting for precedence at the intersection.  

Track and predict the behaviour of observed 

objects – The higher level reasoning algorithms of Boss 

need information about the current states of observed 

vehicles around the robot. This includes not only their 

instantaneous velocity and position but also a decent 

estimate of their future state both on roads and in free 

movement zones (e.g. parking lots). The autonomous 

vehicle uses this information for its strategic decisions 

(e.g. merging into moving traffic, see e.g. [9]) and for 

calculating collision free trajectories (e.g. while driving 

on a road or through a parking lot, see e.g. [10]).  

Provide information about the environment in 

multiple application scenarios – Boss needs to be able 

to deal with various application scenarios, like distance 

keeping, merging into moving traffic or intersection 

handling. The characteristics of these situations lead to 

different possible optimization strategies for dealing 

with uncertainties regarding the detection of obstacles 

around the robot.  

For smooth distance keeping while driving down a 

lane very few false detections can be tolerated. Every 

erroneous object which is reported to the higher level 

algorithms by the tracking system can cause the robot to 

slow down or even stop unnecessarily. In this scenario, 

there is generally sufficient time to validate 

measurements to reject false positives. In contrast to 

distance keeping, while merging into moving traffic 

some false detections are acceptable in favor of 

minimizing false negatives, and causing an unsafe 

merge maneuver. Here the tracking system should 

report object as soon as possible accepting the 

probability of a false positive. 

Deal with sensor variety – There is no single sensor 

that can provide all relevant data for driving in an urban 

environment. The main reason is the limited field of 

view of sensors, but additionally redundant sensors are 

required to deal with uncertainties regarding the 

detection of objects and the interpretation of sensor data.  

A surface that is hard to measure at range with a laser 

sensor may be readily detectable with a radar, and vice 

versa. Additionally individual sensor interpretation 

algorithms might misinterpret raw data and filter out 

information that is relevant (e.g. wrong suppression of 

noise). 

Because of this the tracking system must be 

designed to be able to incorporate sensors that use 

different detection principles and interpretation 

algorithms without being inflexible regarding changes 

in the sensor configuration. Additionally the tracking 

system must be extensible with new sensors and sensor 

technologies since the development process often 

generates new insights. These insights may lead to a 

reconfiguration of the sensor system or the addition of 

new sensors to deal with the shortcomings of an existing 

configuration.  

 
3. DESIGN PRINCIPLES 

  

The following design principles guided the 

implementation of the tracking system for the Urban 

Challenge. The concepts helped to structure the 

software of the autonomous vehicle.  

  

7.1 Classification of Vehicles 

The tracking system does not classify objects as 

vehicles. Instead it puts out a list of dynamic obstacle 

hypotheses. All objects in this list are assumed to 

potentially move during the observation period and as 

such may be vehicles. 

Every hypothesis is accompanied by a movement 

classification. The current movement is classified into 

moving or not moving respectively; the past moving is 

classified as either observed moving or not observed 

moving. A hypothesis is classified as moving once the 

tracking system decides that the object is currently not 

stopped. It is classified as observed moving once the 

tracking system decides that the object has changed its 

position over time.  

The final decision of when a dynamic object 
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hypothesis is interpreted as a vehicle which participates 

actively in traffic is left to the situation assessment 

algorithms encapsulated in the higher level reasoning 

system which is responsible for the behaviour of the 

robot. Thus the dynamic obstacle hypothesis list can be 

interpreted with respect to the current situation.  

At an intersection, for example, all dynamic 

obstacle hypotheses (regardless of the movement state 

classification) are interpreted as vehicles which 

participate actively in traffic. This information is used to 

determine precedence order.  

Alternatively, while driving down a lane, only 

object hypotheses which have the observed moving flag 

set and objects hypotheses which are close to the center 

of a lane are interpreted as vehicles which participate 

actively in traffic (for details see [11]). 

In the intersection example the interpretation is 

conservative in order to reduce the risk of falsely taking 

precedence. Error recovery algorithms in the higher 

level reasoning system deal with cases where the 

situation is misunderstood by the robot (e.g. a static 

traffic cone is interpreted as a vehicle, see also [9]).  

While driving down a lane the interpretation is less 

conservative allowing the robot to drive smoothly even 

with parked vehicles at the road boundaries. Again 

misunderstandings are handled by error recovery 

algorithms such as in the case where a traffic cone in the 

middle of a road is interpreted as stopped vehicle.  

 

7.2 Dealing with detection uncertainties 

The tracking system only puts out a particular 

dynamic object hypothesis as long as sensor data 

supports the existence of the hypothesis. In case no 

sensor data currently supports the hypothesis an object 

prediction only occurs for durations typical of sensor 

measurement dropouts (e.g. caused by sensor noise). In 

all other cases the object hypothesis is removed from 

the hypotheses list and the higher level reasoning 

algorithms (situation assessment algorithms) have to 

deal with the uncertainty explicitly. 

This gives the robot the flexibility to react to object 

loss in a situationally dependent manner. Furthermore, 

the tracking system is separated from the situation 

assessment algorithms and can be developed 

independently. 

If for example an object is not detected anymore 

while the robot waits for precedence at an intersection 

(e.g. caused by a sensor occlusion) the robot will wait 

for some amount of time to check if the object is 

detected again. During that time the previously 

determined precedence order is kept.  

A different strategy with different timeouts is used 

while driving down a lane. Here the distance and the 

relative velocity of the vanishing object is used to 

determine if it makes more sense to slow down, stop or 

keep on driving smoothly (see also [11]). 

 

 

7.3 Modeling Dynamic Objects 

Two discrete models are used to model dynamic 

object hypothesis: a simple point model and a complex 

box model. The box model uses a fixed length and 

width to represent the shape of a vehicle.  Estimated 

state variables are the position of the box, the velocity 

and acceleration in the longitudinal direction of the box, 

a yaw angle and a yaw rate. A reduced bicycle model is 

used for state propagation. The point model has no 

information about the shape of an object, only the 

position, velocity and acceleration in the 2D plane are 

estimated. A constant acceleration model with adaptive 

noise is used for state propagation (for details see [7]).  

The models are switched depending on the 

currently available sensor information (see [7]). This 

allows using the more complex model whenever enough 

sensor information is available. The probability that 

enough information is available is directly influenced by 

the physical sensor setup on the robot, and how much 

redundancy is built into the configuration. 

  

7.4 Extrapolation of observed vehicles 
The extrapolation of dynamic object hypotheses is 

generally based on logical constrains defined by the 

road network. Only object hypotheses which are 

classified as moving and observed moving are 

extrapolated. A multi-hypothesis approach is taken. 

Future positions and velocities of object hypotheses are 

extrapolated based on the current position on the road 

and the estimated velocity. At every point where a 

driver has an obvious choice to change his action (e.g. 

intersections) multiple hypotheses are generated. In 

regions where no environment structures can be 

exploited for an extrapolation (e.g. open parking lots) a 

prediction is based only on state variables. 

On roads this approach allows dealing with 

uncertainties in the estimated state variables in a robust 

way. Even if state variables could be estimated without 

any error, our approach generates a better prediction 

since a prediction based on state variables alone makes 

sense only for short periods of time. Human drivers use 

a similar model of other vehicles since if it could not be 

assumed that other vehicles behave at least to a certain 

degree according to the traffic rules (e.g stopping at a 

stop line, driving within a lane) smooth driving would 

be impossible. 

In open areas like parking lots, the increased 

freedom of the autonomous vehicle allows it to deal 

with higher uncertainties in the prediction of observed 

objects (e.g. a large distance can be kept to other 

vehicles). If the sensor configuration is chosen 

appropriately (see section 4.1) the box model can be 

used in regions close to the robot for object tracking. 

This allows a sufficient accuracy for the prediction of 

observed vehicles so that the robot can avoid collision 

with other vehicles and drive safely (see [10]).  
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4. TRACKING SYSTEM ARCHITECTURE  

 

The tracking system is a subsystem of the robot’s 

overall perception system which also includes a static 

obstacle estimation module, a road estimation module 

and an instantaneous map estimation module (see also 

[10]). The static obstacle estimation module provides 

information about all obstacles in a scene that are 

assumed to never move during the observation period 

(see figure 4b), the instantaneous map provides 

untracked 3D information about objects around the 

robot (see figure 4f), and the road estimation module 

provides information about the roads around the robot 

(see figure 4a). Information from these modules is used 

within the tracking system (see section 4.2). 

 

4.1 Sensor Configuration 
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Fig. 2: Sensor Configuration for Object Tracking [8]. 

 
Table 1: Sensor Characteristics  

 
Sensor Sensor Type Max. 

Range*  

Vert. 

Angle 

Horiz.  

Angle 

Continental 

ARS300 

Scanning Radar 

(near/far) 

60/200m 4.3° 56°/18° 

Continental 

ISF172 

Fixed Beam Laser 150m 4° 14° 

SICK  

LMS291 

Scanning Laser,  

1 level 

80 m 0.25° 180° 

IBEO  

AlascaXT 

Scanning Laser,  

4 level 

200m 3.2° 240° 

Velodyne 

HDL-64E 

Scanning Laser,  

64 beams 

120m 26.8° 360° 

*according to specification. 

 

Figure 2 shows the sensor configuration which is 

installed on Boss for object tracking. All sensors run 

asynchronously. The combined field of view provides 

complete coverage around the robot. The sensors on the 

panheads are pointed with respect to the current driving 

situation (e.g. to the left and right at an intersection). 

The two most important types of sensors on the 

vehicle for object tracking are the HDL-64E laser 

scanner and the ARS300 scanning radars. Due to the 

large vertical opening angle the HDL-64E is the only 

sensor on the vehicle that provides 3D information 

about objects. The opening angle of all other sensors on 

the robot is not large enough to reliably distinguish 

detections originating from the ground from detections 

originating from vehicles. This problem is generally due 

to rapid slope changes of the ground, which can occur in 

urban environments. The effective range of the 

HDL-64E in the configuration used on the robot is 

however not sufficient for all autonomous maneuvers, 

especially merging and passing maneuvers at 30mph.  

The radars robustly detect objects in the near and 

far range. By using the Doppler shift the relative 

velocity of objects can be measured directly. This gives 

a low latency and high accuracy for velocity estimation 

and can be used to distinguish dynamic from static 

objects. Additionally, for all detections where an 

absolute velocity is measured it can be inferred that the 

measurement does not originate from the ground. This 

makes the system more robust against misinterpretations 

of sensor data. 

The sensor setup is designed for redundancy 

regarding the detection principles, raw data 

interpretation and single sensor failures. On the 

panheads for example laser and radar technology is used 

to minimize the probability of not detecting an object 

during merge maneuvers. The software architecture 

allows the system to continue working even if single 

sensors stop working completely. In the front of the 

robot the sensor setup keeps the probability low that a 

real vehicle cannot be tracked with the complex a box 

model (see also [8]). 

 

4.2 Software Architecture 

Sensor Layer

Fusion Layer

(Obervations , Proposals, 

Movement Observation)

Object Hypotheses List

Local Classification & Proposal Generation

Association

Local Target Validation

Feature Extraction

Object Management

Estimation & Prediction

Model Selection

Global Classification

Validated

Features
Features

Road World Model & 

Instantaneous MapGlobal Target Validation

RWM Checking

Sensor Layer

Fusion Layer

(Obervations , Proposals, 

Movement Observation)

Object Management

Estimation & Prediction

Model Selection

Global Classification

Validated

Features
Features

Global Target Validation

 
Fig. 3: Software Architecture for Object Tracking  

The tracking system is divided into two layers: a 

sensor and a fusion layer. The sensor layer encapsulates 

sensor specific algorithms. For each type of sensor a 

sensor layer module is implemented. One instance per 

physical sensor device runs on the robot. The fusion 

layer is responsible for combining the data of the 

different sensors to the list of dynamic obstacle 

hypotheses. The following functionality is implemented 

inside the layers (see figure 3 and [11]). 

• Sensor Layer 

o Feature extraction Features which potentially 

correspond to vehicles are extracted from the 

sensor raw data. 

o Local Feature Validation. Features are 

validated using a sensor specific heuristic to 

reject misinterpretations (e.g. ground 

detections). 
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Fig. 4: a) Road Structure b) Static Map; Illustration of object tracking algorithm: c) Raw data (diamonds 

represent radar detections, dots originate from laser scanners) d) only laser scanner data e) features extracted 

from laser scanner data f) feature validation against road structure and instantaneous obstacle map g) data 

association h) interpretation of features and proposal generation i) Model selection and update of state 

estimation (see [8]). 

  

o Data Association. Features are associated to 

object hypotheses by a sensor type specific 

algorithm (taking into consideration e.g. 

detection capabilities, potential false detections, 

sensor resolution, field of view). 

o Local Movement Classification. Based on 

sensor specific data it is decided if an object 

moves or not (e.g. Doppler effect). 

o Proposal Generation. New object hypotheses 

for unassociated features or as alternative to 

existing hypotheses are generated. 

o Observation Generation. All information 

necessary to update the state estimation for an 

associated object hypothesis on fusion level is 

generated. 

 

• Fusion Layer 

o Global Feature Validation. Features are 

validated using non-sensor specific algorithms 

(e.g. checks against the location relative to the 

road). 

o Model Selection. Based on the proposals the 

best tracking model is selected via a voting 

algorithm (see [8]). 

o Estimation & Prediction/Extrapolation. The 

state estimate is updated using available 

observations. The state are predicted: a) (short 

term) to the sensor measurement times for data 

association and b) (long term) for the higher 

level reasoning algorithms (e.g. collision 

avoidance). 

o Global Movement Classification. The 

movement state is classified using the local 
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movement classifications and the state 

estimates. 

o Object Management. Object hypotheses are 

added or deleted from list 

 

Figure 4 illustrates the tracking algorithm with data 

taken during the national qualification event of the 

Urban Challenge. The architecture allows adding new 

sensor types to the system with minimal changes to 

existing code. Adding more sensors of an already 

implemented sensor type requires no modifications to 

the source code at all. This makes the system extensible 

with little effort. 

 

5. Conclusions 

  

This paper presented the key challenges for 

implementing a tracking system for the Urban 

Challenge. The design principles which were used to 

cope with these challenges were explained and the 

tracking system which was built according to these 

design principles has been presented. The sensor setup 

which was used for object tracking during the Urban 

Challenge has been shown and an example which 

illustrates the tracking algorithm with real sensor data 

was given. 

A key concept of the approach is the separation of 

the situation assessment algorithms from the tracking 

system. This simplifies the implementation of the 

overall system and allows optimizing the behaviour of 

the robot with respect to different situations without 

modifying the perception system. The behaviour of the 

robot can be adapted to the capabilities of the perception 

system. 

The tracking system does not directly classify 

objects as vehicles. Instead it provides a list of dynamic 

object hypotheses which potentially correspond to 

vehicles. The situation assessment algorithms are 

responsible for interpreting this list with respect to the 

current situation.  

The situation assessment algorithms are also 

responsible for dealing with uncertainties regarding the 

detection of vehicles. The perception system only 

provides information about objects which are currently 

detected by sensors and filters out only sensor specific 

short term effects caused for example by sensor noise. 

The tracking system was used successfully at the 

2007 Urban Challenge for various application scenarios. 

These included intersection handling, distance keeping, 

merging into moving traffic and driving on open 

parking lots. The concepts presented in this paper may 

be used to further improve Driver Assistance Systems 

which assist the driver in such situations. 
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