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Abstract— Future driver assistance systems are likely to moving obstacles can be done reliably. In more complex
use a multisensor approach with heterogeneous sensors for environments like an urban setting new artifacts come into
tracking dynamic objects around the vehicle. The quality am play. Here a multisensor approach can help to make the

type of data available for a data fusion algorithm depends t classificati bust . th ilabl
heavily on the sensors detecting an object. This article peents movement classification more robust using the available

a general framework which allows the use sensor specific redundancy.

advantages while abstracting the specific details of a serrso On the other hand more sensors lead to an increased

Different tracking models are used depending on the current complexity. Typical driver assistance systems today use a

set of sensors detecting the object. A sensor independent ginqle environmental sensor and a tracking model tied to

algorithm for classifying objects regarding their current and . . .

past movement state is presented. The described architectu the charact_erlstlcs of this Sensor. When using heterog@eo

and algorithms have been successfully implemented in Tarta Sensors which are based on different sensor technologies th

Racing’s autonomous vehicle for the Urban Grand Challenge. quality and type of the data now depends on the combination

Results are presented and discussed. of sensors detecting an object [5][6]. Besides that, differ
I. INTRODUCTION ent sensors produce different kinds of misinterpretatioins

measurements, so called artifacts. These depend on sensor

.MOSt qf the existing commermal d“"?r assistance systemg;o 515 like the detection mechanism and feature extract
with environmental perception are designed for longitatin algorithms for example

traffic in well structured environments (for example Adapti This article describes an architecture for sensor dataffusi

Cruise Control [1]). Currently new driver assistance syste which allows to incorporate the information of different

are being developed Wh'.Ch work in more complex €MVisensors in a generalized way. All sensor specific algorithms
ronments and use a multisensor fusion approach to proc

data 121 E | " for int " encapsulated in sensor specific modules with a general-
sensor data [2]. Examp €s are systems for INterseClion-assy oy interface. This reduces the effort needed to extend the
ta_mce or systems that assist drivers in construction sfies o system with new sensors or sensor technologies. Two sensor
highway. ._..independent algorithms implemented in this architectute w

P& described which address the topics described above:

\ adaptive model switching approach which deals with

adaptive cruise control systems for example are deS|gnedtH)e phenomenon of sensor dependent data quality, and a

EOt rr]eact to objects .V(;/r}'clh have T‘Ot bgen detected mc.);’”?ﬂovement classification algorithm which robustly combines
y the system 1o avol aise reactions due to sensor asll a(fhe information of different sensors to an overall movement
(where artifacts are defined as erroneous detections or Mi$3ssification

interpretations). On the other hand future driver assitgan
systems will be designed to work with static obstacle

of static and moving obstacles in these environments. So

The architecture and algorithms have been successfully

. i ) ?mplemented in Tartan Racing’s autonomous vehicle for the
like poles or guafdra"s' tpo. Analpgous tq moving O.bStadEeran Challenge 2007 . Data from thirteen environmental
tracking [2], special algorithms exist to estimate the posi sensors with different detection modes has been fused into

and shape of static obstacles. To reduce artifacts witretheg model of composite object hypotheses. The data was used
algorithms it is important to distinguish static from dynam :

in a variety of applications including distance keepindein
obstacles, too [4]. . . : section handling and parking. The environment consisted of
I_n well structured environments I'ke_ on a_h|ghway SENSOLL urban road network with intersections, sharp curves and
artifacts are well understood and a distinction of statid ane e traffic in open parking lots.

This work would not have been possible without the dedicatdrts

of the Tartan Racing team and the generous support of oursepmn Il. MULTISENSORSETUP
including General Motors, Caterpillar, and ContinentahisT work was A het t f thirt diff t
further supported by DARPA under contract HR0011-06-C2014 eterogeneous setup ot thirteen dilrerent sensors were

Passages about the model switching approach have beeshmsblon used on Tartan Racing’s autonomous vehicle. Fig. 1 shows
a local german conference "Steuerung und Regelung von &agren und  the placement of these sensors and Table | lists the charac-
Motoren”, 12./13. February 2008 in Baden-Baden [5]. L
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around the vehicle. The multiple sensors provided complete
sensing coverage all around the vehicle and the combination
of RADARs and LIDARs allowed for long-range detection

of vehicles while still being able to estimate shape and
orientation as the vehicle approaches the robot. The nhiltip
sensors also provided redundancy in case of sensor failures
and artifacts.

I11. M ODELING MOVING OBSTACLES
Fig. 1. Sensor setup on Tartan Racing's autonomous velgle [ A. Tracking Model

Tracking algorithms like the Kalman filter use a model to
describe the dynamic properties of an object hypothesis [3]
The detail of the tracking model is defined both by the needs

TABLE |
SENSORSCHARACTERISTICS[5]

o T . , . of the application and the capabilities of the used sensors.
ype Max. Vertic. | Horiz. Features used for tracking 8 :
Range® | Angle” | Angle” We propose an approach where the tracking model is
Continental | Scanning Radar | 60m/ 4.3° 56/18 | 2D coordinates of detection/velocity SWitChed according to the a.Va.ila.bIe sensor informatiom TW
ARSI0D_{ (e 2o : : models were sufficient for all application scenarios of the
Continental Fixed Beam 150m 4° 14° 2D coordinates of detection . .
ISF172 Laser Urban Challenge and serve as an example in the following
DK g1 | camninglaser, | 80m | 0.25° | 180° | Edge Targel/2D coordinates of part of the article: a box m(_)del an_d a point model.
IBEO Scanning Laser, | 200m | 32° | 240 | Edge Targel2D coordinates of The box model uses a fixed width and lengthl > w
RoscalT | 2w detecton — to represent the shape of a vehicle whereas the point model
Velodyne Scanning Laser, 120m 26.8° 360° Edge Target/2D coordinates, height . . .
HDL-64E | 64 beams information target for validation has no shape information. The box model uses the position
2coording © specifcaton of the center of the box, y the yaw anglep, raw angle rate

$, a velocityv, and an acceleratiom as state variables. The

- . ) _ i velocity and acceleration are always in the direction of the
sufficient distance to merge safely with traffic moving aﬁonger edge of length. The state propagation equations are

speeds up to 30mph. The RADARs measure Doppler shifygeq on g simple bicycle model [7] which couple thand

which allows direct measure of velocity which is MOre, cnordinates via the yaw angle and yaw rate.

accurate than having to estimate velocity from multiplé’ o noint model is described by 2 coordinates in the 2D
sequential distance measurements like the LASER sens ?anex,y the corresponding velocitieis § and accelerations
The features (_a>_<tracted fr_om RADAR data are reported aS;85 A constant acceleration model is used for state propa-
se'F of 2D posn_lon coordlna_tes that ref_lect the cente_zr of th&ation [3]. The noise parameters adapt with the length and
‘?bleCt along with an associated velocity of thqt point. _Th%irection of the velocity vectofz, ¢). This again couples the
fixed beam LASER sensors only return a 2D point, no direcf g, coordinates and—similar to the bicycle model—does
velocity measuremer_n is possible. ) ~ not constrain the model to a predefined direction defined
The planar scanning LASER sensors return mformatloBy the coordinate system. This way the model is usable

about the (2D) shape and orientation of a vehicle in thg tracking vehicles driving in an arbitrary and previgusl
near range [8]. The shape is computed from the intersectiofknown direction.

of the plane of the beam with the object. The returned

shape is used to estimate the yaw angle and yaw rate Bf Movement Classification

the detected vehicle. Due to the fixed angular resolution of Some applications need reliable information if an object

the scanning lasers, the shape information at long distdace is potentially moving (like a vehicle) or if it is a static @ujt

not good enough to perform yaw estimation with the requiregike a pole or traffic cone). For an autonomous vehicle like

accuracy. As with the RADAR sensors the data however i§ the Urban Challenge this information is needed for the

accurate enough to associate the information to lanes on thehavior algorithms of the system. These are responsible

road. for the decisions of the vehicle, like safe driving through
The 3D LASER scanner is the only sensor on the robein intersection (’Is this object a parked vehicle or waiting

that provides information about the shape of the object ifor precedence?”). Driver assistance systems make use of

height as well as width and length. However, the effectivéhis information, too. Examples are systems for intersecti

detection range of the sensor is not sufficient for auton@moussistance or collision avoidance algorithms.

driving with merging and passing maneuvers in 30mph To get this information a detailed scene understanding

traffic. Furthermore, the top of the vehicle occludes some @ necessary. Even if a classification algorithm classifies a

the laser’s field of view and as such the laser cannot detesibject as a vehicle, ambiguous cases exist such as if the

objects that are extremely close to the vehicle (including @ehicle is parked or just about to start moving.

large blind spot in the rear). As a simplification which was sufficient for the scenarios
For the Urban Challenge no one sensor or sensor modalty the Urban Challenge, we propose an algorithm which

was sufficient to provide enough information to track olgectclassifies all object hypothesis into:



Applications

Object Hypothesis & Prediction

Estimation |
Best Model Selection / i

Global Movement Classification
Edge Target extracted from

laser raw data
Measurement (Detection/Observation,
‘[Alternative/New Proposals, Movement Observation) x
Sensor Layer Proposal Generation Fig. 3. Left: Possible Box Model interpretations of Edgedtds. Right:
Local Movement Classification Snapshots of a vehicle driving perpendicular to the robsbuph an
— Association intersection. Edge Targets: Laser scanner features; Didsa&Radar features
Feature Extraction [5].

Fig. 2. Sensor Fusion Architecture [4], [5].
are hidden to the sensor layer. An application specific fil-
tering can be achieved this way [9], however this was not

« The current movement state: Moving and Not Movingimplemented for the Urban Grand Challenge.

« The past movement state: Observed Moving and Not Each time a sensor has new raw data it requests a

Observed Moving prediction of the current best set of object hypothesis at
The current movement state is set to moving once the objdte current measurement time and associates the raw data
tracking system decides that the object is not stopped. The these predicted object hypothesis [9]. For each exitacte
past movement state is set to observed moving, once tfeature a set of possible interpretations is created bygusin
object hypothesis has significantly changed its position. A heuristic which takes the sensor specific characterisfics
similar classification is used in current adaptive cruiseticd  the raw data into account. Examples for these characteyisti
implementations, which only react to objects, that havenbeare the resolution of the sensor, the noise level of distance
observed moving in the past. measurements, the maximum angle under which an object
is detectable or a special treatment of the boundaries of the
field of view.

Fig. 2 shows the architecture of a sensor fusion system Fig. 3 (right) shows edge targets which are extracted from
that implements the two approaches described in the previoghe raw data of the scanning lasers (a heuristic for the plana
sections (see also [5], [9]). It is divided into two layers, dasers is described in [8]). Edge target features are "L”
Sensor Layer and a Fusion Layer. For each sensor type (es@iaped features, which describe objects which either have
RADAR, scanning LASER, etc.) a specialized sensor layeafyo edges with a near 90 angle or objects where only one
is implemented. For each sensor an instance of its particulgdge is visible. Fig. 3 (left) shows possible interpretagiof
sensor layer runs on the system. This way all sensor typgige targets as a box model. As there is a great deal of uncer-
specific operations are encapsulated in specialized medulginty in the edge target features all possible interpi@tat
New sensor types can be added without changing existirge generated. If the data is not sufficient to be interprased
sensor modules and the implementation of the fusion layef.hox model (e.g. at larger distances or because the raw data

This simplifies the extensibility of the system. does not represent a vehicle) a point object interpretasion
At the fusion layer all general functions for object traakin ysed instead.

are performed. These include state estimation, best modelggsed on a sensor specific heuristic a measure for the

selection, and movement classification (Fig. 3). Statengsti compatibility of the generated interpretations with thecas
tion is done with a probabilistic estimator using a predisti cjated prediction is computed. Then it is checked if any ef th
and an update step [5]. The algorithms for best modghterpretations differs significantly from the currentdkang
selection and the movement classification will be describagodel used on the fusion layer.

in the following sections. _ o _ If this is not the case then the best interpretation will be
The current set of best object hypothesis is provided tgseq to generate an observation. An observation holds all
the applications and is also fed back to the sensor layer. Jgrormation necessary for the update step of the estimation
be compatible with this decomposition the algorithms iesidt the fusion layer. It encapsulates the measurement egsati
the fusion layer must have the following properties: and the information about the measurement noise. Analogous
« Be independent of sensor types. to the state propagation encapsulated in the fusion lajter, a
« Be independent of the number of sensors used in thg the observation information is encapsulated in the senso
tracking system. layer. Thus the algorithm which updates the state estintate a
« Be independent of the number of tracking models useghe fusion layer does not need to interpret the data from the
in the tracking system. sensor layer. This makes the fusion layer independent of the
All information about how states are propagated is encajpensors modules implemented in the system.
sulated in the fusion layer, the state propagation equstion If any of the interpretation differs significantly from the

IV. SYSTEM ARCHITECTURE FOROBJECT TRACKING



prediction provided by the fusion layer the sensor initieéi ple. For instance, the planar and 3D LASER sensors support
a new object hypothesis for each differing interpretatiorboth the box and the point model while the RADAR and
Any of these new hypothesis can potentially replace thfixed beam LASER sensors can only support the point model.
current model hypothesis used on the fusion layer. A set A sensorproposesa particular model if it provides an
of hypothesis is called proposal. A proposal can be providgatoposal with this model as an alternative to the model
in addition to an observation or - if there is no interpretati currently in use by the fusion layer. The model may be
compatible with the current best object hypothesis - withouifferent in either the state vector (e.g. a different yawlan
an observation. In this case the associated data is onbdcallfor a box model, for example); or it may be a different
a detection to reflect the fact that the sensor detected theodel entirely (e.g. a point model instead of a box model).
object, but cannot provide any meaningful information foA sensor will propose an entirely different model if it cafnno
the state estimation. For features which cannot be assdciasupport the current model at all (e.g. a RADAR sensor will
to any object hypothesis a sensor module provides an unasséways propose a point model, if the current model is a box
ciated proposal per extracted feature with an ordinal amder model) or if the sensor does not support the current model
of the quality of the contained new object hypotheses.  based on the internally computed quality measure for the
In the fusion layer the best tracking model is selectethterpretation (e.g. a LASER sensor can propose a point
based on the proposals provided from the different sensarsodel if the detected vehicle is at a distance where yaw
and any other information available. The implementatiosannot be estimated anymore).
used during the Urban Challenge uses information about roadA model iscurrently supportedy a sensor if the sensor is
shape to bias the selection of the best proposal in on roadrrently directly observing the object with the model (e.g
scenarios. In parking lots scenarios the best proposat@ccoLASER sensor observes a box model) or if the sensor is
ing to the ordinal ordering of the new object hypotheses isurrently proposing the model as an alternative (e.g LASER
selected. sensor proposes a box model while the point model is the
Depending on the sensor capabilities a sensor specifiarrent model). Before a proposal can be considered by the
movement classification algorithm is implemented inside thfusion layer, the sensor must continually propose that node
sensor layer. The result of the sensor internal classifieati for a pre-defined number of consecutive cycles. This helps to
is a so called movement observation. This can be one omiitigate rapid model switching in the case where the sensor
of three possibilitiesmovement confirmatiomo movement is receiving noisy returns.
confirmation no information available
A movement confirmatiotells the fusion layer that the Algorithm 1 Model selection algorithm
sensor assumes that the associated object hypothesiS1iS = o, modelPrefp...numberofModels= 0
currently moving based on the sensor internal judgemeng: for all possible models = 1...numberOfModelslo

X . . relSupportf] < numCurrentlySupportingSenors/numSupportingSensors
In our configuration the RADAR module could measure thes: i relSupportf] >= minRelSupporthen

velocity via the Doppler shift. The movement of objects not: modelprefi] — modelPref(] + 1
moving perpendicular to the RADAR measurement directiory: endif
can be detected reliably this way. 8: end for

. . . 9: maxModelPref— max(modelPreff)
A no movement confirmatiotells the fusion layer that 10: maxModelPrefidx— max arg(modelPref])

i i Qi i 1: if 0 == maxModelPrefthen
the a.SSOCIated ObJeCt hypOtheSIS IS Currently nOt. mMovirgy. 12! do nothing (no decision is possible, keep the current besteijio
certain sensors can detect a movement only in a specifig: exit the algorithm
H i H i ! else
Q|rect|on_s (!|ke the RADAR sensor described above) th%‘: bestModel— model[maxModelPrefidx]
information is passed in form of a so called movement vec- 16: end if
i i i inti i i i i ich 17: if bestModel==currentModehen
tor, which is a unit vector pointing in the dlrgcnon in WhICh iﬁ hreshe.. floor(tumSupportingSensoriresholdReinit)
the sensor detected no movement. A special case is a Nl it numProposingSensors thresh then
vector which can be used if based in the sensor informatiﬁf elséemmahze model (model is OK but states need to be reaifited)
the object is not moving at all. This approach could be useg: do nothing (may be a false alarm)

with vehicle to vehicle communication available for exampl %25 els:”d if
however it was not used during the Urban Challenge. 25:  change model to bestModel
Finally no information availabléells the fusion layer that 26: end if
the sensor module cannot provide any information regarding
the current movement state for the associated object. In the current implementation the box model is the pre-
ferred model above the point model and the system will
attempt to use that model whenever possible due to the
A heuristic is used inside the fusion layer to determine thadditional information in conveys. Alg. 1 describes the
best model for tracking [5]. It is only based on the proposaldecision algorithm [5]. Lines 1-16 of the algorithm decide
and observations from sensors which currently detect evhich model type has the highest support by the sensors. By
observe a given object. varying the valueminRelSupporthe point at which models
A sensorsupportsa model if by using only observations are switched can be adjusted. A higher value ensures that a
from this particular sensor the model is observable in princswitch to model with a higher accuracy will be performed

V. MODEL SELECTION ALGORITHM



only if there are enough sensors supporting it. In the Tarta * /‘/'

Racing system the number of supporting sensors increas B & _
as the tracked vehicle gets closer to the robot. For exampl VA Tragked Veniole
at a range closer than 30m up to four sensors can support t (Point Model)
box model, which helps to suppress artifacts as shown in Figusig

4, right. Lines 17-26 of the algorithm determine if the model
needs to be reinitialized. Here again a minimum number o
sensors is needed to support the request for a reiniti@izat
The floor function ensures that not all sensors need to agroe=sy
to a reinitialization unlesghresholdReinifs set to 1. :

VI. MOVEMENT CLASSIFICATION
A. Moving vs. Not Moving

The following heuristic inside the fusion layer combines o . i
the movement observations from all sensors detecting %ﬁ" 4. The model is switched from point to box once the vehis
. . etected with the scanning LASER sensors [5].
object to determine the current movement state.
First how often an object has been confirmed moving

is determined by polling all sensors. If the total numbepe performed when at least one RADAR sensor detected the
is above a thresholdh,.oving then the object is called gpject. In all other cases only the result of the statistieat

potentially movingAs all sensors are counted the time that i$.54 pe used to determine the movement state.
necessary to get to the resptitentially movings dependent

on the number of sensors currently detecting the objedd. Observed Moving vs. Not Observed Moving
If only one sensor detects the objeét,..ingy CONsecutive  To determine if an object should be classifiedoaserved
confirmations are needed. moving the following heuristic works robustly. First the

If the object is not classified gsotentially movingbased distance traveled is estimated from the last time the object
on the movement confirmations a statistical test on thigas been classified a®t observed moving evaluated. If
velocity estimation is performed. It is checked if the hy+his distance is above a threshold it is checked if the oligect
pothesisH,: "Absolute velocity is smaller tham,,;,.” can  classified asnovingbased on the movement observations. If
be rejected. If this is the case, then the object is classifiadis is true, then the object is classified@sserved moving
as potentially moving If it is not true then the object has to be classifiedrasving

The statistical test can always be performed as it is basést a time periOdtgfimn,l to be classified asbserved moving
on the state variables only. This is the case for situations The mandatory check against the distance traveled in-
where none of the sensors has the capability to performageased the robustness against short term artifacts,iakpec
sensor based movement confirmation as described aboveduring the initialization phase of the filters. It is possibl
our system this was true for the LASER sensors as no sensernot perform this check for objects which are confirmed
specific algorithm was implemented. There may however h@oving by the sensors alone, however this did not increase
ways, to exploit information included in the raw data tothe performance significantly, so that the more consemativ
detect a movement. approach makes sense.

To get robust results the significance levelof the test  Because of artifacts and noise every approach will lead
and v, can be tuned. With a higher,,;,, and a lower to wrong classifications in certain cases. This implies that
a the test becomes more conservative. Lowerindeads there has to be a way to revise the current decision regarding
to longer times until enough data is available to rejflgt  the observed movinglassification. The following heuristic
increasingu,,,;, leads to less false positives at low speedsakes short term artifact into account. Thkserved moving

however slow objects are not classified correctly. Hardwargecision is only kept if the object is classified as moving for
wise the test can influenced by increasing the number eftime period:??™ , > t°™ . Once this time period is over

i i
sensors detecting an object or with a higher accuracy oftge observed ’?ﬁ’g\,mg ﬁgé is kept fopt™ > tobm . As a
single sensor. result a wrongobserved movinglassification is kept for a

If an object is classified apotentially movinga cross maximum oftobm |
check against the no movement vectors provided by the
sensors is performed. For this the dot product between the VII. RESULTS
normalized current velocity estimate and the no movement Fig. 4 shows a vehicle driving up to an intersection
vector is build and checked against a threshold. If the teswith the autonomous vehicle waiting for precedence. At a
from any of the dot products reveals that the object is natistance of more than 150m only the pointed RADAR sensor
moving then the object is classified as not moving, otherwisdetects the approaching vehicle—the point model is used
it is classified as moving. for tracking. The adaptation of the noise with respect to the
If the cross check can be performed depends on the senseefocity vector stabilizes velocity estimation in the ditien
detecting the object. In our system the cross check could ondf travel. As soon as the vehicle is close enough for the



(b)

Fig. 5.
from bushes. (b) Object hypotheses. (c) Only object hymathenith the
observed moving flag are shown.

(a) Edge Targets. The targets left and right to thel ra@ginate

the system extensible and flexible for changes an archigectu
and algorithms have to be found which allow an abstraction
of the sensors.

In this paper we proposed an architecture which en-
capsulates all sensor specific algorithms in a sensor layer
and sensor independent algorithms in a fusion layer. The
architecture allowed an efficient development of our ohstac
tracking system for the Urban Challenge.

For object tracking we proposed an adaptive model switch-
ing approach, where the tracking model is selected based on
the available sensor information. The selection is based on
votes from sensors detecting the object and is independent
of the underlying sensors and tracking models. The prdctica
realization showed that the approach works robustly for a
combination of RADAR and LASER sensors (fixed beam
and scanning).

For classifying the movement state of detected dynamic
obstacles an sensor independent algorithm has been pre-
sented, which combines sensor specific movement observa-
tions and a sensor independent hypothesis test into a robust
classification of the movement state. We showed results of

LASER sensors to generate box model proposals the trackifige algorithm which allow smooth autonomous driving of
model is changed. The RADAR sensors still provide accurai§r robot.
velocity measurements which allow a precise estimation The feature extraction algorithms used for the LASER
of the time gap for merging—the position measurementsensors searched for "L” shapes only. In areas with bushes
however are represented only with a very low weight in thgrtifacts caused by this approach can lead to false pos-
observation. Due to the information provided by the LASERjves regarding the movement classification. Future work
sensors the yaw angle of the object can now be estimategyi| include the development of more sophisticated feature
In open parking lots the sensor configuration can generaggtraction algorithms which are able to reject this datarin a

a box model with sufficient accuracy to predict the movemen{arly stage. The additional use of information about thel roa
of a tracked vehicle for up to three seconds based Qfiready showed very good results.

estimated states only. This makes the robot able to drive
in an open parking lot together with other vehicles—human
or robot driven. [1]

The distinction of static and moving obstacles was a
key concept of the perception system of Tartan Racing’qz]
autonomous vehicle for the Urban Challenge 2007 [4]. Fig.
5 (a) shows features extracted form LASER scanner data ol
a road which has dense bushes and a fence next to the ro
boundaries. Fig. 5 (b) shows the according object hypathesi
and Fig. 5 (c) only object hypothesis which are classified as
observed moving. Only the vehicle driving down the road isg
classified a®bserved moving

In environments encountered during the Urban Challenge
the approach allowed smooth autonomous driving. The con-
figuration used on the robot however was a compromisés]
between the delay to classify an object hypothesis as mpving
the minimum classification velocity and the suppression of
false alarms. In areas like shown in Fig. 5 (a) not all false[7]
alarms for moving obstacles could be suppressed. AddltionarS]
information about the location of obstacles relative to the
road was used to bias the decision and reduce the number
of false alarms to nearly zero. (]

VIII. CONCLUSIONS AND FUTURE WORK

In a data fusion system with heterogeneous sensors the
sensors contribute different levels of information. To mak
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