
Math.Comput.Sci. (2014) 8:71–97
DOI 10.1007/s11786-014-0176-y Mathematics in Computer Science

Collaborative Verification-Driven Engineering
of Hybrid Systems

Stefan Mitsch · Grant Olney Passmore ·
André Platzer

Received: 1 November 2013 / Revised: 15 February 2014 / Accepted: 3 March 2014 / Published online: 24 April 2014
© Springer Basel 2014

Abstract Hybrid systems with both discrete and continuous dynamics are an important model for real-world
cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising
techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined
and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of
verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many
domains (e. g., robotics, control systems, computer science, software engineering, and mechanical engineering).
Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of
proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve
undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players
with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous
work on hybrid and arithmetic verification with tools for (1) graphical (UML) and textual modeling of hybrid
systems, (2) exchanging and comparing models and proofs, and (3) managing verification tasks. This toolset makes
it easier to tackle large-scale verification tasks.

Keywords Formal verification · Hybrid system · Cyber-physical system · Model-driven engineering

Mathematics Subject Classification (2010) Mathematical modeling (engineering) 97M50 ·
Hybrid systems 34K34 · Theorem proving 68T15

S. Mitsch (B) · A. Platzer
Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
e-mail: smitsch@cs.cmu.edu

A. Platzer
e-mail: aplatzer@cs.cmu.edu

S. Mitsch
Department of Cooperative Information Systems, Johannes Kepler University, Linz, Austria

G. O. Passmore
LFCS, Edinburgh and Clare Hall, Cambridge, 10 Crichton Street, Edinburgh, UK
e-mail: grant.passmore@cl.cam.ac.uk

72 S. Mitsch et al.

1 Introduction

Computers that control physical processes form so-called cyber-physical systems (CPS), which are pervasively
embedded into our lives today. For example, cars equipped with adaptive cruise control form a typical CPS [42]
that is responsible for controlling acceleration on the basis of distance sensors. Further prominent examples can be
found in many safety-critical areas, such as in factory automation [51], medical equipment [39], power plants and
grid [71], automotive [18,23], aviation [73], and railway industries [65]. From an engineering viewpoint, a CPS can
be described as a hybrid system in terms of discrete control decisions (the cyber-part, e. g., setting the acceleration
of a car) and differential equations modeling the entailed physical continuous dynamics (the physical part, e. g.,
motion) [57]. More advanced models of CPS include aspects of distributed hybrid systems or stochasticity [61],
but are not addressed here.

The key challenge in engineering hybrid systems is the question of how to ensure their correct functioning in
order to avoid incorrect control decisions w.r.t. safety requirements (e. g., a car with adaptive cruise control will
never collide with a car driving ahead). Promising techniques to ensure safety seem to be model-driven engineering
(MDE) [30,69] to incrementally develop systems in a well-defined and traceable manner and formal verification to
mathematically prove their correctness. Together, these techniques form the vision of verification-driven engineering
(VDE) [35].

Often, CPS are complex systems and require expertise in many different domains, for instance, in robotics, control
systems, computer science, software engineering, and mechanical engineering. Despite the remarkable progress in
automating formal verification of hybrid systems, many interesting and complex verification problems still remain
that are hard to solve in practice with a single tool by a single person. It is, thus, not uncommon for serious hybrid
systems development and verification teams to consist of many players, some with expertise in robotics, control
theory and dynamical systems, some in software engineering, some in mathematical logic, some in real algebraic
geometry, and so on. Hence, modeling languages that convey a model to a broad and possibly heterogeneous audience
together with integrated tools in a toolchain and well-established project management techniques to coordinate team
members are crucial to achieve effective collaborative large-scale verification of hybrid systems (cf., e. g., [13,74]).
For example, the graphical nature of UML seems to be suitable to convey information even to UML novices and
promote communication between team members (e. g., as observed in a large industry study for safety-critical
process control [4]). Moreover, it can even increase comprehensibility and accessibility of formal notations [66].

Collaboration on CPS verification is important for yet another reason: Because hybrid systems are undecidable
[3], hybrid systems verification tools work over an undecidable theory, and so verifying complicated systems within
them often requires significant human guidance. This need for human guidance is true even for decidable theories
utilized within hybrid systems verification [12], such as the first-order theory of non-linear real arithmetic (also
called the theory of real closed fields or RCF), a crucial component of real-world verification efforts. Though
decidable, RCF is fundamentally infeasible (it is worst-case doubly exponential [14]), which poses a problem
for the automated verification of hybrid systems. Much expertise is needed to discharge arithmetical verification
conditions in a reasonable amount of time and space, expertise requiring the use of deep results in real algebraic
geometry. Successful examples of team-based large-scale verification of non-hybrid systems include the operating
system kernel seL4 [32] in Isabelle/HOL and the Flyspeck project [25], and show that, indeed, collaboration is key
for proving large systems. Similar effects are expected in CPS verification.

This paper introduces the VDE toolset Sphinx comprising modeling and verification tools for hybrid systems
(including a backend deployment for project management and collaboration support). The toolset applies proof
decomposition in-the-large across multiple verification tools, basing on the completeness of differential dynamic
logic (dL [57,60]), which is a real-valued first-order dynamic logic for hybrid programs, a program notation for
hybrid systems. Sphinx extends our previous work on the deductive verification tool KeYmaera [64] and on the
nonlinear real arithmetic verification tools RAHD [54] and MetiTarski [55] with tools for (1) graphical (UML)
modeling, model transformation, and textual modeling of hybrid systems, (2) exchanging and comparing models
and proofs, and (3) exchanging knowledge and tasks through a project management backend.

Collaborative Verification-Driven Engineering 73

Structure of the Paper. In the next section, we give an overview of related work. In Sect. 3 we introduce our
architecture of a verification-driven engineering toolset, and describe implementation and features of its components.
Section 4 introduces an autonomous robotic ground vehicle as application example. Finally, in Sect. 5 we conclude
the paper with an outlook on real-world application of the toolset and possible directions for future work.

2 Related Work

Model-driven engineering in a collaborative manner has been successfully applied in the embedded systems com-
munity. Efforts, for instance, include transforming between different UML models and SysML [26], modeling in
SysML and transforming these models to the simulation tool Orchestra [5], integration of modeling and simulation
in Cosmic/Cadena [22], or modeling of reactive systems and integration of various verification tools in Syspect [19].

Recent surveys on verification methods for hybrid systems [2], modeling and analysis of hybrid systems [16], and
modeling of cyber-physical systems [17], reveal that indeed many tools are available for modeling and analyzing
hybrid systems, but in a rather isolated manner. Supporting collaboration on formal verification by distributing tasks
among members of a verification team in a model-driven engineering approach has not yet been the focus. Although
current verification tools for hybrid systems (e. g., PHAVer [20], SpaceEx [21]), as well as those for arithmetic (e. g.,
Z3 [15]) are accompanied by modeling editors of varying sophistication, they are not yet particularly well prepared
for collaboration either. Developments in collaborative verification of source code by multiple complementary static
code checkers [10], modular model-checking (e. g., [37]), and extreme verification [27], however, indicate that this
is indeed an interesting field. Most notably, usage of online collaboration tools in the Polymath project has led to
an elementary proof of a special case of the density Hales–Jewett theorem [24].

The Unified Modeling Language (UML [28]) is a standardized language for object-oriented modeling. But
without extension it is not well suited for modeling hybrid systems [9]. Therefore, the profiling mechanism of
UML was used to extend the standardized UML languages SysML [26] for modeling hardware and software
components of complex systems and MARTE [44] for modeling real-time and embedded systems. These and other
extensions [9,40,68] increase the support for hybrid modeling in UML. However, those profiles augment the UML
Statechart formalism, since their languages base on hybrid automata as underlying principle. We, instead, use
hybrid programs and therefore extend UML Activity Diagrams since they are a more natural way of modeling.
Examples for integrating formal notations with informal ones can be found outside the hybrid systems community,
for instance, UML-B [70], TRIO [38], or VeriAgent [50].

In summary, we address model-driven engineering and formal verification as follows.

• Unlike [5,22,26], who focus on exchanging models, we also facilitate collaboration on formal verification.
• Unlike [15,20,21], who focus on one aspect of verification, we provide modeling and collaboration tools that

should make it easier for domain experts to work in verification teams and exchange models and verification
results between different tools.

• Unlike [15,20], who focus on verification tools, we also work on modeling support and collaboration.
• Unlike [9,40,68], who define a hybrid automaton semantics for UML Statecharts, we define a hybrid program

semantics for UML Activity Diagrams.
• Unlike [38,50,70], who combine formal models with semi-formal modeling in UML for discrete systems, we

define a UML profile for hybrid systems modeling.

3 The VDE Toolset Sphinx

Verification teams often comprise experts with diverse heterogeneous background who are accustomed to different
modeling and verification tools with heterogeneous notations. In order to integrate different modeling and verification
tools, the verification-driven engineering toolset Sphinx1 proposed in this paper follows a model-driven architecture:

1 http://www.cs.cmu.edu/~smitsch/sphinx.html.

http://www.cs.cmu.edu/~smitsch/sphinx.html

74 S. Mitsch et al.

Fig. 1 Overview of components in the verification-driven engineering toolset. The toolset provides components for (1) hybrid sys-
tems modeling, (2) hybrid systems verification, (3) proof collaboration, (4) arithmetic modeling, and it provides or uses off-the-shelf
components for (5) arithmetic verification. It uses further off-the-shelf components as repositories in the backend

Metamodels for different modeling and proof languages form the basis for manipulating, persisting, and transforming
models. The idea is to provide general-purpose graphical and textual modeling languages for hybrid systems, while
at the same time keeping the Sphinx platform open for additional languages. That way, we can still develop and
integrate domain-specific languages (DSL), which are specifically tailored to the terminology used in a particular
domain and with a semantics defined by transformation to hybrid programs [57–60]. Such DSLs would enable
domain experts to express models that are suitable for verification purposes in their familiar terminology.

The notion of a model here denotes an instance of a metamodel, i. e., it comprises hybrid system models, proofs,
and strategies. Following the definition of the Object Management Group (OMG2), a metamodel defines a language
to formulate models: one example for a metamodel is the grammar of differential dynamic logic (dL [57–60]),
which, among others, defines language elements for non-deterministic choice, sequential composition, assignment,
repetition, and differential equations. An example for a model is given in Sect. 3.1: it describes a simple water tank
as a set of formulas, differential equations, and other dL language elements. The model conforms to the grammar
of dL, and thus is an instance of the dL metamodel. Figure 1 gives an overview of the toolset architecture: the
dL metamodel, dL proof metamodel, arithmetic metamodel, and arithmetic proof metamodel each represent an
interface between tools and to the backend.

dL metamodel The hybrid modeling components (textual and graphical editors for dL, as well as model compar-
ison) manipulate models that conform to the dL metamodel. The dL models are serialized to and deserialized
from their textual form that can be read by KeYmaera.

Hybrid Program UML The hybrid program UML profile extends UML with hybrid system concepts that can be
translated to dL models.

2 http://www.omg.org.

http://www.omg.org

Collaborative Verification-Driven Engineering 75

dL proof metamodel The proof comparison component reads proofs that conform to the dL proof metamodel.
These proofs may either be closed ones (completed proofs, nothing else to be done) or partial proofs (to be
continued). Again, proofs in Sphinx are serialized and deserialized from the textual form as generated by
KeYmaera.

Arithmetic metamodel Arithmetic editors (not yet implemented) manipulate arithmetic models. Again transfor-
mations are performed between models expressed in terms of the arithmetic metamodel and the corresponding
textual input (e. g., SMT-LIB syntax [6]) as needed by arithmetic tools, such as RAHD [54], MetiTarski [1], Z3
[15], GRF [56], or MathSat [11].

Arithmetic proof metamodel Finally, the proof comparison component reads arithmetic proofs expressed in terms
of the arithmetic proof metamodel, which is serialized to and deserialized from the textual format of the arithmetic
tool.

3.1 A Hybrid Water Tank Example

We illustrate the notion of hybrid systems and our hybrid programs and hybrid program UML profile by means
of the classical water tank example: a water tank should not overflow when the flow in or out of the water tank
is chosen once every time interval. The hybrid program UML model is shown in Fig. 2. We will use the hybrid
program UML syntax informally here and later introduce it in detail in Sect. 3.5.3.

The system introduces a global clock c and a bound on the loop execution time ε, which must be strictly positive
as indicated by the invariant ε > 0 attached to the class World. The system further consists of one agent, the
WaterTank, which is characterized by the current water level x , the current flow f and the maximum level M . The
maximum level is constant (readOnly) and non-negative, as defined in the attached invariant M ≥ 0.

(a)

(b)

Fig. 2 Example of a hybrid system: a water tank. a The structure of the water tank model: the current water level x must not exceed
the maximum level M when the flow f is chosen once every ε time units, which will be triggered by the clock c. b The behavior of
the water tank model: the controller ctrl chooses a new nondeterministic value for the flow f , such that it satisfies the subsequent test
before it is passed to the continuous dynamics dyn. Controller and continuous dynamics are repeated nondeterministically many times
(which means it can be skipped entirely, cf. Table 1 and the hybrid program UML semantics in Table 2)

76 S. Mitsch et al.

The behavior of the system is a single loop with two actions: the ctrl action chooses a new nondeterministic flow
that will not exceed the water tank’s maximum capacity (cf. the test M−x

ε
). The subsequent continuous evolution dyn

resets the clock c and evolves the water level in the tank according to the chosen flow along the differential-algebraic
equation x ′ = v & c ≤ ε ∧ x ≥ 0 (the constraints ensure that the clock will not exceed a certain limit c ≤ ε and
the water level will always be non-negative x ≥ 0).

The specification about the water tank is annotated as constraints on the initial and the final node: when we start
the water tank model in a state where the current level is within the limits of the water tank, then all runs of the
model should keep the water level within the limits.

3.2 Development and Verification Process Overview

Let us exemplify the Sphinx toolset with a virtual walk through a collaborative verification scenario. We begin
with modeling a hybrid system as in the water tank example above using the graphical and textual dL editors. The
resulting model, which conforms to the dL metamodel, is transformed on-the-fly during editing to a textual input
file, and loaded into KeYmaera. In KeYmaera, we apply various strategies for proving safety of our hybrid system
model, but may get stuck at some difficult arithmetic problem. We mark the corresponding node in the partial proof
and save it in KeYmaera’s textual output format. The proof collaboration tool transforms the partial proof text file
into a model of the partial proof. We persist the hybrid model and the model of the partial proof in the model and
proof repository. Then we create a request for arithmetic verification (ticket) in the project management repository
using the task planning component. The assignee of the ticket accesses the linked partial proof, and extracts an
arithmetic verification model from the marked proof node. Then a transformation runtime creates the textual input
for one of the arithmetic verification tools. In this tool, a proof for the ticket can be created, along with a proof
strategy that documents the proof. Such a proof strategy is vital for replaying the proof later, and for detecting
whether or not the arithmetic proof still applies when the initial model has changed. Both, proof and proof strategy,
are imported into the proof collaboration tool and persisted to the corresponding repository. The ticket is closed,
together with the node on the original proof (if the arithmetic proof is complete; otherwise, the progress made is
reported back). We fetch the new proof model version from the repository and inspect it using the proof comparison
component. Then we transform the proof model into its textual form, load KeYmaera and continue proving our
hybrid system from where we left off, but now with one goal closed. In case the corresponding arithmetic prover is
connected to KeYmaera, we could even load the proof strategy from the strategy repository and repeat it locally to
reduce proof effort on other subgoals.

3.3 KeYmaera: Hybrid System Verification

KeYmaera3 [64] is a verification tool for hybrid systems that combines deductive, real algebraic, and computer
algebraic prover technologies. It is an automated and interactive theorem prover for a natural specification and
verification logic for hybrid systems. KeYmaera supports differential dynamic logic (dL) [57–60], which is a real-
valued first-order dynamic logic for hybrid programs, a program notation for hybrid systems. KeYmaera supports
hybrid systems with nonlinear discrete jumps, nonlinear differential equations, differential-algebraic equations,
differential inequalities, and systems with nondeterministic discrete or continuous input.

For automation, KeYmaera implements a number of automatic proof strategies that decompose hybrid systems
symbolically and prove the full system by proving properties of its parts [59]. This compositional verification
principle helps scaling up verification, because KeYmaera verifies a big system by verifying properties of subsystems.
Strong theoretical properties, including relative completeness results, have been shown about differential dynamic
logic [57,60].

3 http://symbolaris.com/info/KeYmaera.html.

http://symbolaris.com/info/KeYmaera.html

Collaborative Verification-Driven Engineering 77

KeYmaera implements fixedpoint procedures [62] that try to compute invariants of hybrid systems and differential
invariants of their continuous dynamics, but may fail in practice. By completeness [57,60,61], this is the only part
where KeYmaera’s automation can fail in theory. In practice, however, also the decidable parts of dealing with
arithmetic may become infeasible at some point, so that interaction with other tools or collaborative verification via
Sphinx is crucial.

At the same time, it is an interesting challenge to scale to solve larger systems, which is possible according to
completeness but highly nontrivial. For systems that are still out of reach for current automation techniques, the fact
that completeness proofs are compositional can be exploited by interactively splitting parts of the hybrid systems
proof off and investigating them separately within Sphinx. If, for instance, a proof node in arithmetic turns out to
be infeasible within KeYmaera, this node could be verified using a different tool connected to Sphinx.

KeYmaera has been used successfully for verifying case studies from train control [65], car control [41,42,46],
air traffic management [43,63], robotic obstacle avoidance [45], and robotic surgery [36]. These verification results
illustrate how some systems can be verified automatically while others need more substantial user guidance. The
KeYmaera approach is described in detail in a book [59]. KeYmaera is linked to Sphinx by implementing extensions
to the Eclipse launch configuration. These extensions hook into the context menu of Eclipse (models in dL and dL
proof files in our case) and, on selection, launch KeYmaera as an external program. In the same fashion, further
verification tools can be connected to Sphinx.

In order to guide domain experts in modeling discrete and continuous dynamics of hybrid systems, the case
studies, further examples, and their proofs are included in the KeYmaera distribution. When applying proof strategies
manually by selection from the context menu in the interactive theorem prover, KeYmaera shows only the applicable
ones sorted by expected utility. Preliminary collaboration features include marking and renaming of proof nodes,
as well as extraction of proof branches as new subproblems. These collaboration features are used for interaction
with the arithmetic verification tools and the collaboration backend described below.

3.4 Real Arithmetic Verification

Proofs about hybrid systems often require significant reasoning about multivariate polynomial inequalities, i. e.,
reasoning within the theory of real closed fields (RCF). Though RCF is decidable, it is fundamentally infeasible
(hyper-exponential in the number of variables). It is not uncommon for hybrid system models to have tens or even
hundreds of real variables, and RCF reasoning is commonly the bottleneck for nontrivial verifications. Automatic
RCF methods simply do not scale, and manual human expertise is often needed to discharge a proof’s arithmetical
subproblems.

Real closed fields infeasibility is not just a problem for hybrid systems verification. Real polynomial constraints
are pervasive throughout the sciences, and this has motivated a tremendous amount of work on the development
of feasible proof techniques for various special classes of polynomial systems. In the context of hybrid systems
verification, we wish to take advantage of these new techniques as soon as possible.

Given this fundamental infeasibility, how might one go about deciding large RCF conjectures? One approach
is to develop a battery of efficient proof techniques for different practically useful fragments of the theory. For
example, if an ∃ RCF formula can be equisatisfiably transformed into an ∧∨-combination of strict inequalities, then
one can eliminate the need to consider any irrational real algebraic solutions when deciding the formula. Tools such
as RAHD [54], Z3 [15] and MetiTarski [1] exemplify this heterogeneous approach to RCF, and moreover allow
users to define proof strategies consisting of heuristic combinations of various specialized proof methods. When
faced with a difficult new problem, one works to develop a proof strategy which can solve not only the problem
at hand but also other problems sharing similar structure. Such strategies, though usually constructed by domain
experts, can then be shared and utilized as automated techniques by the community at large.

As verification tools like KeYmaera progress, they accumulate a large database of RCF facts which pertain to
the system being analyzed. As subsequent RCF subproblems are generated, they are tested for validity modulo
this database of background facts. In practice, often only a small subset of the background RCF facts are needed

78 S. Mitsch et al.

Fig. 3 The dL metamodel extracted from the input grammar of KeYmaera

to decide the generated subproblems. The difficulty lies in how the most relevant facts should be selected. The
geometric relevance filtering (GRF) method [56] is an RCF decision method combining high-dimensional sampling
techniques and incremental cell decomposition methods adapted from cylindrical algebraic decomposition (CAD)
to use geometric information to select relevant background facts. GRF supports human experts in deciding which
arithmetic subproblems to keep and which ones to discharge.

3.5 Modeling and Proof Collaboration

In order to interconnect the variety of specialized verification procedures introduced above, Sphinx follows a
model-driven engineering approach: it introduces metamodels for the included modeling and proof languages.
These metamodels provide a clean basis for model creation, model comparison, and model transformation between
the formats of different tools. This approach is feasible, since in principle many of those procedures operate over
the theory RCF, or at least share a large portion of symbols and their semantics. One could even imagine that very
same approach for exchanging proofs between different proof procedures, since proofs in RCF, in theory, can all
be expressed in the same formal system. Currently, proofs in Sphinx are exchanged merely for the sake of being
repeated in the original tool (although KeYmaera already utilizes many such tools and hence is able to repeat a wide
variety of proofs).

In the case of textual languages, Sphinx uses the Eclipse Xtext4 framework to obtain metamodels directly from
the language grammars (cf. Fig. 3, obtained from the dL grammar [57]), together with other software artifacts, such
as a parser, a model serializer, and a textual editor with syntax highlighting, code completion, and cross referencing.
These metamodels are the basis for creating models in dL, as well as for defining transformations between dL and
other modeling languages. The models in dL make use of mathematical terms, and are embedded in KeY files since
KeYmaera uses the KeY [49] format for loading models and saving proofs. In the following sections, we introduce
dL in more detail and describe the support for creating dL models and working on proofs in Sphinx.

4 http://www.eclipse.org/Xtext.

http://www.eclipse.org/Xtext

Collaborative Verification-Driven Engineering 79

3.5.1 Differential Dynamic Logic

For specifying and verifying correctness statements about hybrid systems, we use differential dynamic logic dL
[57,59,60], which supports hybrid programs as a program notation for hybrid systems. The syntax of hybrid
programs is summarized together with an informal semantics in Table 1; the metamodel introduced in Fig. 3 reflects
this syntax. The sequential composition «α; β» expresses that β starts after α finishes (e. g., first let a car choose
its acceleration, then drive with that acceleration). The non-deterministic choice «α ∪ β» follows either α or
β (e. g., let a car decide nondeterministically between accelerating and braking). The non-deterministic repetition
operator «α∗» repeats α zero or more times (e. g., let a car choose a new acceleration arbitrarily often). Discrete
assignment «x := θ » instantaneously assigns the value of the term θ to the variable x (e. g., let a car choose a
particular acceleration), while «x := ∗» assigns an arbitrary value to x (e. g., let a car choose any acceleration).
«x ′ = θ & F » describes a continuous evolution of x within the evolution domain F (e. g., let the velocity of a
car change according to its acceleration, but always be greater than zero). The test «?F» checks that a particular
condition expressed by F holds, and aborts if it does not (e. g., test whether or not the distance to a car ahead is
large enough). A typical pattern that involves assignment and tests, and which will be used subsequently, is to limit
the assignment of arbitrary values to known bounds (e. g., limit an arbitrarily chosen acceleration to the physical
limits of a car, as in x := ∗; ?x ≥ 0). The deterministic choice «if(F) then α else β» executes α if F holds, and
β otherwise (e. g., let a car accelerate only when it is safe; brake otherwise). Finally, «while(F) do α end» is a
deterministic repetition that repeats α as long as F holds.

To specify the desired correctness properties of hybrid programs, differential dynamic logic (dL) provides modal
operators [α] and 〈α〉, one for each hybrid program α. When φ is a dL formula (e. g., a simple arithmetic constraint)
describing a state and α is a hybrid program, then the dL formula [α]φ states that all states reachable by α satisfy φ.
Dually, dL formula 〈α〉φ expresses that there is a state reachable by the hybrid program α that satisfies dL formula
φ. The set of dL formulas is generated by the following EBNF grammar (where ∼ ∈ {<,≤,=,≥,>} and θ1, θ2

are arithmetic expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ → ψ | φ ↔ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

Table 1 Statements of hybrid programs

Statement Metamodel element Effect

α; β Chop Sequential composition, performs HP α and then HP β afterwards

α ∪ β Choice Nondeterministic choice, follows either HP α or HP β

α∗ Star Nondeterministic repetition, repeats HP α n ≥ 0 times

x := θ Assign (term) Discrete assignment of the value of term θ to variable x (jump)

x := ∗ Assign (wild card term) Nondeterministic assignment of an arbitrary real number to x
(
x1

′ = θ1, . . . , ContinuousEvolution Continuous evolution of xi along differential equation system

xn
′ = θn & F

)
DiffSystem xi

′ = θi , restricted to maximum domain or invariant region F

?F Quest Check if formula F holds at current state, abort otherwise

if(F) then α else β IfThenElse Perform HP α if F holds, perform HP β otherwise

while(F) do α end WhileSym Perform HP α as long as F holds

[α]φ BoxModality dL formula φ must hold after all executions of HP α

〈α〉φ DiamondModality dL formula φ must hold after at least one execution of HP α

80 S. Mitsch et al.

3.5.2 Creating Models

Sphinx currently includes dL as generic modeling language to create models of hybrid and cyber-physical systems.
The concrete textual dL editor is created from the dL metamodel and shown in Fig. 4, which also illustrates the
graphical editor based on UML and the KeYmaera prover attached through the console.

In order to facilitate the creation of textual models in dL, Sphinx includes templates of common model artifacts
(e. g., ODEs of linear and circular motion). These templates, when instantiated, allow in-place editing and automated
renaming of the template constituents. As usual in the Eclipse platform, such templates can be easily extended and
shared between team members.

Since generic modeling languages, such as dL for hybrid systems, tend to incur a steep learning curve, the Sphinx
platform can be extended with dedicated domain-specific languages (DSL). Such DSLs should be designed to meet
the vocabulary of a particular group of domain experts. They can be included into Sphinx in a fashion similar to
the generic modeling language dL, i. e., in the form of Eclipse plugins that provide the DSL metamodel and the
modeling editor.

In the next section we describe the Hybrid Program UML profile, an extension to UML for graphical modeling
of hybrid programs that should make it easier to convey the main features of a hybrid system to a broader audience.

3.5.3 The Hybrid Program UML Profile

The Hybrid Program UML profile follows a fundamental principle of UML in that it separates modeling the
structure of a hybrid system from modeling its behavior. Currently, Sphinx supports class diagrams for modeling
the structure of a hybrid system, since hybrid programs do not yet support modules. Future work includes the
addition of composite structure diagrams as used in [9,68], and the introduction of proof rules that exploit the

Fig. 4 Screenshot of the textual and graphical modeling editors and a proof in KeYmaera (details on the textual and graphical syntax
are described in Sect. 3.5). The left-most three panels, from top to bottom, show the project explorer of Eclipse (access to models and
proofs), a hierarchical tree view of the graphical model, and a miniature outline of the graphical model. The graphical editor is displayed
in the center of the tool with the textual editor to the right. The text editor selection highlights the controller part that is displayed in the
graphical editor. The bottom-most panel shows the KeYmaera theorem prover with its console output in the background

Collaborative Verification-Driven Engineering 81

additional structural information during the verification process. For modeling behavior, we use activity diagrams
instead of the UML statecharts used in existing hybrid system UML profiles [9,40,68], since activity diagrams
model control flow more akin to hybrid programs. UML statecharts are a language to model system behavior as
graphs where the vertices are the states of the system and the edges represent transitions between states. Thus, with
some extension UML statecharts are suitable to represent hybrid automata (cf. [9,40,68]). UML activity diagrams,
in contrast, are a language to model system behavior as graphs where the vertices are actions or decisions and the
edges represent control flow. The notion of control flow between actions (statements) makes activity diagrams more
suitable to model (computational) processes [28], such as our hybrid programs.

We use model transformation to define the semantics of the Hybrid Program UML profile relative to dL. Besides
defining the semantics of the Hybrid UML profile, model transformations can be implemented as model transforma-
tion specifications (e. g., using the Atlas transformation language ATL [29]) and executed to transform models back
and forth between the Hybrid Program UML profile and their hybrid program counterparts. Since hybrid automata
can be encoded in hybrid programs [59, Appendix C],5 we define both, a hybrid program semantics and a hybrid
automaton semantics, for the Hybrid Program UML profile. Note, however, that hybrid automata, when encoded in
dL, are often less natural to express and also less efficient to verify than well-structured hybrid programs, because
they lack program structure that could be exploited during the proof and require additional variables to identify the
states of the automaton.

We use UML profiles as extension mechanism to provide hybrid system modeling concepts that are not yet
present in standard UML. Profiles are the standard way to extend UML with domain-specific modeling concepts
[28]. A UML profile is defined by specifying stereotypes and constraints. A stereotype is applicable to a particular
element of the UML (e. g., a classifier) and adds additional modeling capabilities to the original UML element.
For example, standard UML actions have a body that we can use to capture an atomic hybrid program, such
as deterministic assignment or differential equations. When we want to describe additional information, such
as differential invariant constraints or evolution domain constraints of a differential-algebraic equation, we can
introduce a stereotype Dynamics for UML actions that adds the necessary modeling abilities to actions. Constraints
can be added to profiles in order to restrict properties to only admissible values, derive property values from other
properties, or otherwise check the consistency of a UML model. UML provides the Object Constraint Language
(OCL, [53]) for defining such constraints. In the following paragraphs we describe our profiles for modeling the
structure and the behavior of a hybrid system, which was already informally used in Sect. 3.1.

System Structure Hybrid programs in dL use variables and functions over the reals as modeling primitives. Further
structuring mechanisms, such as classes, are not yet supported in dL. In order to still capture and communicate
the intended structure of a hybrid program, we provide stereotypes for UML class diagrams.6 Figure 5 shows the
stereotypes currently available in the Hybrid UML profile for modeling the structure of a hybrid system.

A hybrid system usually consists of multiple entities [52], which are either objects that may evolve through
manipulation but not by themselves, or agents whose evolution is driven by the decisions of a controller (e. g., the
robot agent that has to avoid obstacles).

Entities are usually characterized by some properties (e. g., the robot’s position) [7,33]. These properties can
be discerned into constant properties (cf. Constant: their value can be read but not written, e. g., the position of a
stationary obstacle), whereas others can change and are therefore called fluent [67] or variable (cf. Variable: their
value can both be read and written, e. g., the position of the robot). These stereotypes can be equivalently modeled
using standard UML notation readOnly for properties. Additional constraints may apply to properties (e. g., a
minimum positive braking force B > 0, or bounds on the acceleration −B ≤ a ≤ A). We can model these constraints
in the structure of the system using the stereotype Invariant, if the constraints have to be satisfied throughout model

5 The transformation from hybrid automata into hybrid programs follows the same principle as implementing a finite automaton in a
programming language. The converse transformation from hybrid programs into hybrid automata is based on the transition structure
induced by the semantics of hybrid programs [59,61].
6 In principle, a single class would already be a valid structure for a hybrid program. It is, however, useful to split the system into
multiple separate classes corresponding to different entities in the system.

82 S. Mitsch et al.

Fig. 5 The Hybrid Program UML profile: structure of hybrid programs

execution; otherwise, they are part of the system behavior. We use dL to formalize those constraints, since OCL
does not support arbitrary arithmetic expressions. Some properties in a hybrid program are shared among all entities
(e. g., time). A class marked with the stereotype System can capture such shared knowledge.

We allow further decomposition of agents into multiple classes. These classes are linked to their respective agent
via the association concept of UML. If we want to emphasize that an instance of some class is owned by at most
one agent at a time, we use composition (e. g., a robot’s internal control variables could be factored into a dedicated
control state, which no other robot has access to). If we want to share instances of a class between multiple agents,
we use a standard association instead. No further annotation with stereotypes is necessary.

System Behavior Hybrid programs know essentially two kinds of actions that can change the state of a system:
instantaneous jumps (i. e., assignment) are part of the discrete control structure of a hybrid system, and differential
equations are part of the continuous dynamics of a hybrid system. Figure 6 shows the stereotypes for modeling the
discrete and continuous dynamics of a hybrid system.

Activity diagrams, as introduced briefly above, provide modeling concepts to represent actions (opaque actions are
essentially atomic blackbox actions), decisions, guarded control flow, and constraints. In hybrid program UML we
distinguish the following actions (actions are represented as rounded rectangles with a name compartment and a body
compartment in UML): Nondeterministic assignment (AssignAny) chooses any value for the variable. Deterministic
assignment (AssignTerm) chooses the value defined by an arithmetic term for the variable. Continuous evolution
(Dynamics) evolves the values of variables along a differential equation system that stays within a maximum
evolution domain. The differential invariant of the differential equation system, if known, can be annotated as
a constraint to the dynamics action. The common features of deterministic and nondeterministic assignment are
factored into the abstract base class Assignment.

The control flow of a hybrid program can be defined with three composition operations for hybrid program
statements: nondeterministic choice, sequential composition, and nondeterministic repetition. Nondeterministic
choice can be modeled with standard UML notation for decisions (splitting and merging nodes), while sequential
composition is control flow. We introduce a stereotype NondetRepetition for control flow (i. e., nondeterministic
repetitions will be backwards edges), which can be annotated with a constraint to specify an inductive loop invariant.

Tests in hybrid programs ensure that a particular condition is satisfied in subsequent program statements. They
are modeled as algebraic constraints on control flows. Further useful constraints are either part of the specification
language (Initial, Safety, Liveness) to express correctness criteria, or guide the verification process but do not
influence system behavior (InductiveInvariant, DiffInvariant, Convergence, DiffVariant).

Collaborative Verification-Driven Engineering 83

Fig. 6 The Hybrid Program UML profile: behavior of hybrid programs

We define the semantics of Hybrid Program UML relative to dL by transformation specifications from the Hybrid
Program UML profile to the hybrid program metamodel. Currently, we support two kinds of transformations: well-
structured activity diagrams7 can be transformed into well-structured hybrid programs with loops, whereas arbitrary
activity diagrams can be transformed into dL automata, which are hybrid automata embedded into hybrid programs
with additional variables and tests to represent the states.

The Hybrid Program Semantics of Hybrid Program UML Currently, all constants and variables are handled
globally as a flat structure (i. e., the structuring mechanisms present in a Hybrid Program UML model are not
yet directly reflected in a hybrid program). The hybrid programs α and β in Table 2 represent either one of the
atomic actions in Hybrid Program UML (assignment, nondeterministic assignment, or continuous dynamics) or a
well-structured part of an activity diagram. An edge between two actions α and β corresponds to a sequential
composition of the corresponding transformed hybrid programs α and β, cf. (1). A guard on an edge is transformed
into a sequential composition with an intermediate test, cf. (2). A decision node and a matching merge node
with a forward edge and a backward edge is translated into a nondeterministic repetition, cf. (3). If the forward
edge is missing this means at least one repetition, cf. (4). Decision nodes with tests are either translated into if-
statements (5) or if-else-statements (6). Finally, a decision node with a matching merge node (but without a back
edge) is transformed into a nondeterministic choice, cf. (7). This transformation in Table 2 gives perfectly structured
hybrid programs for well-nested activity diagrams.

The Hybrid Automaton Embedding Semantics of Hybrid Program UML The hybrid automaton embedding in
hybrid programs defined in Table 3 matches smaller patterns in an activity diagram compared to the hybrid program
transformation in Table 2. It is thus applicable to a wider range of activity diagrams, which do not even have
to be well-structured (i. e., arbitrary state jumps are allowed). As a downside, the transformation preserves no
explicit program structure (e. g., sequence of statements) that could be exploited during verification. This means
that sufficient information about the program structure has to be conveyed in the system invariant. This practice
significantly increases the verification effort.

7 Well-structured activity diagrams consist of properly nested loops and branches and define a unique initial and final node.

84 S. Mitsch et al.

Table 2 The hybrid program semantics of Hybrid Program UML

HP UML Hybrid program Description

(1) α; β Direct control flow is a sequential composition

(2) α; ?F; β Guarded control flow is a sequential composition with intermediate test

(3) α∗ Decision node and merge node linked with backedge and forward edge is a
nondeterministic repetition

(4) α; α∗ Decision node and merge node linked with backedge is at least one repetition

(5) if(F) α fi Decision node and merge node linked with forward edge is a conditional
branch

(6) if(F) α else β fi Decision node and merge node with actions and mutually exclusive guards on
each branch are if-else conditional

(7) α ∪ β Decision node and matching merge node are a nondeterministic choice
(analogous for more than two branches)

Table 3 The hybrid automaton embedding semantics of Hybrid Program UML

HP UML Hybrid automaton embedding Description
in hybrid program

(1) ?s = id(α); α; s := id(β) Action with direct control flow to another action is a
sequential composition of a location test and the
actual atomic action, with the transition modeled
as assignment of a new location ID

(2) ?s = id(α); α; s := id(♦) Control flow between an action and a decision/merge
node is a sequential composition of a state test and
assignment of a new state ID

(3) ?s = id(α); α; ?F; s := id(β) Guarded control flow is a sequential composition
with an intermediate test (analogous for
decision/merge node)

(4) ?s = id(♦); (
s := id(α) ∪ s := id(β)

)
Control flow between a decision node and actions is

a nondeterministic choice (analogous for more
than two branches)

The hybrid automaton embedding constructs an automaton-structure from hybrid program notation instead
of explicit program structure [59]. It uses an additional variable s to keep track of the current location of the
automaton. A unique identifier per vertex and edge of the activity diagram identifies the automaton location.
The hybrid automaton embedding is then a nondeterministic choice over all the locations embedded in a single

Collaborative Verification-Driven Engineering 85

nondeterministic repetition,8 and the control flow is translated into updates of the current location with the respective
follow-up location, as summarized in Table 3. The construction is analogous to the embedding of hybrid automata
into hybrid programs [59, App. C], which follows exactly the same principles of implementing finite automata as
programs.

3.5.4 Hybrid System Simulation

An interesting opportunity for inspecting the behavior of a hybrid system during the modeling phase (prior to
verification) is provided by Mathematica 9, which is able to simulate and plot hybrid system behavior using a
combination of NDSolve and WhenEvent conditions.9 We transform corresponding excerpts of dL to Mathematica
for visualizing plots of the dynamic behavior of a hybrid program over time in Sphinx. Simulations can be useful
for debugging system models and quickly conveying intuitions about their behavior to the respective members of
the collaborative verification-driven engineering team.

3.5.5 During the Proof

Collaboration support in Sphinx includes model and proof comparison tools, both locally and with the model
and proof repositories maintained in a central source code repository. For this, not only textual comparison is
implemented, but also structural comparison of models expressed in terms of the dL metamodel and proofs expressed
in terms of the dL proof metamodel is supported (cf. Fig. 7). Exchanging proofs and inspecting updates on partial
proofs is vital especially when multiple team members collaborate on a proof. We inherit textual comparison
integrated into our textual modeling editors from Eclipse and the Xtext framework. Textual comparison of proofs,
however, may not be the most efficient way of pointing to the relevant changes in a proof, because proofs, in addition
to the relevant proof steps, often contain information for bookkeeping to mechanically check the proof. Thus, we
additionally inherit a structural comparison tool from the EMF Compare Diff/Merge framework10 on the basis of
a graph diff algorithm [34], so that differences are categorized by the relationships in the metamodel. The relevant
changes in the actual proof section of the proof file are then compared by their metamodel elements, which represent
proof rules; if necessary, the additional bookkeeping code can be overlayed on demand. Figure 7 shows a structural
comparison overview in the top pane. Four changes are in the proof section, which is expanded; three of them are
located in the part of the inductive proof of a loop, where we have to show that the loop body preserves the invariant.
The first applied proof rule is selected and, therefore, the two lower panes show where this new proof step was
inserted into the proof.

Specific unsolved subproblems of a proof (e. g., complex arithmetic problems) can be flagged in KeYmaera and
extracted to other tools to further facilitate knowledge and expertise exchange. That makes it easier to partition the
verification effort and collaborate in jointly coming up with a solution. An open question, however, concerns the
merging of the partial verification results into a single coherent proof without recourse to external verification steps.
In a first step, in Sphinx we only allow exchanging proof strategies that can be executed by KeYmaera. Sphinx
injects these proof strategies directly into a dL proof instead of an open goal, and KeYmaera checks the injected
proof steps for correctness. That way, external (arithmetic) solvers can replace manual verification effort without
compromising proof trustworthiness.

Later, actual proof certificates and further proof strategies will be exchanged to further increase trust, and more
sophisticated comparisons of proof goals are envisioned to more robustly support replaying proofs.

8 The final location does not change the location variable s. Thus, the system remains in the final location despite the fact that the
nondeterministic repetition is allowed to execute arbitrarily many times.
9 http://www.wolfram.com/mathematica.
10 http://www.eclipse.org/emf/compare/.

http://www.wolfram.com/mathematica
http://www.eclipse.org/emf/compare/

86 S. Mitsch et al.

Fig. 7 Comparison of the structure of two proof versions

3.6 The Collaboration Backend

Technical Details The Sphinx modeling tool uses existing Eclipse plugins to connect to a variety of backend source
code repositories and online project management tools. As source code repository we currently use Subversion11

and the Eclipse plugin Subclipse,12 but any other source code repository that is connected to Eclipse would work
just as well. Currently, Mylyn13 and its connectors are used for accessing online project management tools (e. g.,
Bugzilla,14 Redmine,15 or any web-based tool via Mylyn’s Generic Web templates connector) and exchanging tickets
(i. e., requests for verification). These tickets are the organizational means for collaborating on verification problems
and tasks within a working group. Exchange of models and proofs may then be conducted either by attaching files
to tickets, or by linking tickets directly to models and proofs in the source code repository. In the latter case,
one benefits from the model and proof comparison capabilities of Sphinx. The collaboration through source code
repositories and online project management systems seems useful because those are generally well-accepted by
computer scientists and in other engineering domains; what still needs to be determined, however, is whether these
collaboration tools are similarly well received by other domain experts.

Horizontal Splitting An important question for collaboration in cyber-physical systems verification is how domain
experts with abstract, high-level understanding of a model can work with experts in control and dynamics to fill in
details, and finally with verification experts to detect constraints that are necessary for verification. Such a horizontal
splitting is in accordance with the distinction between high-level platform-independent models (PIM) and more
detailed platform-specific models (PSM) as promoted by the OMG. In our tool suite, domain experts can introduce
placeholders into graphical models, which are essentially activity nodes with a descriptive name but without the
formal definition of their underlying meaning (e. g., the dynamics of the water tank as a differential equation). Sphinx
translates placeholders into comments in the formal language, so that other experts (e. g., in modeling motion with
differential equations) can fill in those gaps. Moreover, if Sphinx encounters a placeholder in a graphical model, it
augments the safety condition with false so that all proof attempts on incomplete models will fail. Domain experts

11 subversion.apache.org.
12 subclipse.tigris.org.
13 http://www.eclipse.org/mylyn.
14 http://www.bugzilla.org.
15 http://www.redmine.org.

subversion.apache.org
subclipse.tigris.org
http://www.eclipse.org/mylyn
http://www.bugzilla.org
http://www.redmine.org

Collaborative Verification-Driven Engineering 87

can even omit tests (constraints) on transitions. The absence of constraints that are essential for safety will be
detected by the theorem prover KeYmaera anyway, as described below.

Constraint Detection Often, a development team has a good overall understanding of the desired safety conditions,
but not of all of the corner cases and constraints that make the system safe w.r.t. these safety conditions. Therefore,
one of the most challenging problems in cyber-physical systems verification is to find such constraints (e. g., loop
invariants or switching constraints). KeYmaera can help finding constraints in various ways, as done in a prior case
study on train control [65]. KeYmaera syntactically decomposes hybrid programs, so that only arithmetic proof
obligations remain towards the leaves of a proof. These arithmetic proof obligations, if being unprovable, reveal
specific valuations as counterexamples and the assumptions that were collected up to that point.

• The path leading to an unprovable goal encodes the specific location in the model; it may thus guide a domain
expert to an important corner case in the model.

• A counterexample may reveal necessary initial and invariant conditions when choosing an uncontrolled dynam-
ics model [65] as input to KeYmaera.

The discovered constraints can then be communicated to the domain expert for review before the verification
continues.

4 Application Example

In this section we illustrate a verification example of an autonomous robot [45] that we collaboratively developed
and solved using KeYmaera and geometric relevance filtering [56]. We compare the effort of using KeYmaera
interactively, KeYmaera fully automated, and KeYmaera together with geometric relevance filtering connected via
Sphinx.

With the increased introduction of autonomous robotic ground vehicles as consumer products—such as
autonomous hovers and lawn mowers, or even accepting driverless cars on regular roads in California—we face
an increased need for ensuring product safety not only for the good of our consumers, but also for the sake of
managing manufacturer liability. One important aspect in building such systems is to make them scrutable, in order
to mitigate unrealistic expectations and increase trust [72]. In the design stage of such systems, formal verification
techniques ensure correct functioning w.r.t. some safety condition, and thus, increase trust. In the course of this,
formal verification techniques can help to make assumptions explicit and thus clearly define what can be expected
from the system under which circumstances (before the system is built and executed).

We are going to illustrate a design and verification process that encourages collaboration from high-level graphical
models which convey intuition about the system to a broad and possibly heterogeneous audience to detailed formal
models, which are suitable for formal verification. For this we will discuss our formal model of an autonomous
robotic ground vehicle and its proof. More details on the model and case studies, as well as extensions for moving
obstacles, sensor uncertainty, sensor failure, and actuator disturbance can be found in [45].

We will begin with a hierarchically structured graphical model that defines the high-level system behavior, the
expected operating environment and the initial conditions under which the robot can be activated safely together
with the invariants and safety conditions that the robot will then guarantee. We will complement the high-level
model with a more detailed robot controller model. Together, these models are translated into dL and formally
verified. Finally, we will discuss a simple one-dimensional model of the robot to exemplify how modeling decisions
in dL can make verification easier.

4.1 Hierarchical Graphical Modeling

First, we construct a high-level model of the structure and the behavior of the robotic ground vehicle and of the
assumptions about the environment it is operating in. Figure 8 uses the Hybrid Program UML profile to model the
structure of the robotic obstacle avoidance algorithm.

88 S. Mitsch et al.

The system class World provides a global clock c and ensures a cycle time of at most ε time units (i. e., any
controller in the system will run at least once every ε time units). The state of a robot is characterized by its
position (x, y) and orientation (dx , dy) in two dimensions and its linear velocity (v). The robot can control its
linear acceleration within certain bounds (a ∈ [−B, A]) and choose a new trajectory. It measures the position of
the nearest obstacle to make decisions about its trajectory.

The high-level behavior of the robotic obstacle avoidance algorithm is modeled in a hierarchical activity diagram
using our Hybrid Program UML profile. Figure 9 shows the high-level behavior with the controller and the dynamics.
In this example, the dynamics is a non-linear differential-algebraic equation that describes the robot’s motion on a
circular segment: x ′ = vdx , y′ = vdy, dx

′ = − vdy
r , dy

′ = vdx
r , v

′ = a & v ≥ 0 ∧ c ≤ ε. The high-level behavior
further details the initial condition under which the obstacle avoidance algorithm is safe to start and the safety
condition that we want to be true for all executions (in these conditions we use pr = (x, y) to denote the position
of the robot and po to denote the position of the obstacle in two dimensions).

A model of such high-level behavior is useful to communicate major design decisions, such as the expected
operating environment and the most important constraints that the system must obey. It also consolidates more
detailed models that may have been produced by different members of a verification team. As future work we will
integrate composite structure diagrams, as in [9], to make the interfaces between those detailed models explicit. A
more detailed model of the controller complements the high-level ctrl block with detailed implementation-specific
decisions, as shown in Fig. 10.

The robot has three control options (top to bottom in Fig. 10): If the robot’s current state is safe with respect
to the sensed position of the nearest obstacle, then the robot may choose a new curve and accelerate with any rate
within its physical bounds. For this, we utilize the modeling pattern introduced above: we assign an arbitrary value
to the robot’s acceleration state (a := ∗), which is then restricted to any value from the interval [−B, A] using a
test (? − B ≤ a ≤ A). The robot can brake (a := −B), which we want to be an emergency action that should
be executed with minimal time delay (i. e., we want braking to be safe even when the robot relies on previously

Fig. 8 The structure of the robotic obstacle avoidance model

Fig. 9 Overview of the behavior of the robotic obstacle avoidance model. The model is structured hierarchically, with details on ctrl
specified in Fig. 10

Collaborative Verification-Driven Engineering 89

Fig. 10 The controller of the robotic obstacle avoidance model

sensed obstacle positions). Finally, if the robot is stopped (?v = 0), it may choose to remain in its current spot
(a := 0).

To stay always safe the robot must account for (1) its own braking distance (v
2

2B), (2) the distance it may travel
with its current velocity (εv) until it is able to initiate braking, and (3) the distance needed to compensate the
acceleration A that may have been chosen in the worst case. For a complete model of the robotic obstacle avoidance
algorithm and further variants as a hybrid program we refer to [45].

4.2 The Effect of Collaboration on Arithmetic Verification Effort

In the following paragraphs we discuss how the structure of the robotic obstacle avoidance algorithm and the
resulting proof structure can be exploited to facilitate collaboration during the proof. Furthermore, we describe
variants of the proof with varying degree of manual guidance and with/without collaboration using geometric
relevance filtering [56]. This way, we are able to give a comparison on the proof effort that is necessary to discharge
arithmetic proof obligations with and without collaboration.

The dL proof calculus provides proof rules to syntactically decompose a hybrid program into smaller, easier
provable pieces. Such a proof unfolds into many subgoals that often can be handled separately. Proof 1 sketches the
proof structure of the robot obstacle avoidance safety proof together with the proof rules used in the proof sketch.16

The names in the proof are the abbreviations that we introduced in the graphical model as placeholders for more
complicated formulas, which get expanded when necessary. The three control choices of ctrl are transformed by
the proof rule [∪]r into a conjunction, which is further split by the proof rule ∧r into separate branches in the
proof.

These branches can be handled separately by different verification team members, who apply further proof rules
of the dL proof calculus to continue the proof (cf. branches expert A, B and C). Towards the leaves of a branch the
proof rules of dL increasingly eliminate hybrid program elements by turning them into first-order real arithmetic
formulas. These formulas are often hard to prove, because the dL proof rules are not designed to automatically
identify and eliminate unnecessary context information (e. g., φ still contains information about acceleration, even
though it is irrelevant to prove braking safety). Quantifier elimination, which is the final step to proof correctness
of a first-order real arithmetic formula, is doubly exponential in the formula size [14]. This means that we want to
reduce the number of variables at the leaves of the proof as much as possible. At this stage collaboration across
different verification tools becomes possible: we can ship off the formulas to an arithmetic tool or expert to discover

16 The dL proof calculus is explained in detail in [59,60].

90 S. Mitsch et al.

Proof 1 Proof sketch of the robot obstacle avoidance algorithm using indicated proof rules

([∪]r)
� � [α]φ ∧ [β]φ,	
� � [α ∪ β]φ,	 (∧r)

� � φ,	 � � ψ,	

� � φ ∧ ψ,	 ([;]) [α][β]φ
[α;β]φ (Wr)

�
� φ

(Wl)
�
φ �

[∪]r ,∧r

QE
∗

Wl,Wr
φ̃ � ψ̃

expert A
φ . . . � ψ . . .

φ � [sense; curve; acc][dyn]ψ

[∪]r ,∧r

B
. . .

φ � [brake][dyn]ψ C
. . .

φ � [?v = 0; stop][dyn]ψ
φ � [(brake) ∪ (?v = 0; stop)][dyn]ψ

φ � [(sense; curve; acc) ∪ (brake) ∪ (?v = 0; stop)][dyn]ψ
[;]
φ � [ctrl][dyn]ψ
φ � [ctrl; dyn]ψ

Table 4 Proof effort in KeYmaera with and without collaboration

Variant Proof size Manual steps Exported (solved) Time (s) Mem. (MB)

Branches Steps All Wl,Wr Full (Arith.)

(1) Baseline 67 868 139 84 0 34.8 (2.4) 51.7

(2) Guided (interactive finish) 67 935 202 148 0 45.8 (11.6) 52.9

(3) Guided (auto finish) Aborted after >2 h

(4) Guided (GRF finish) 67 980 108 54 18 (13) 38.1 (4) 52.2

(5) Mechanic (interactive finish) 87 1,193 440 356 0 46.9 (3.7) 52.2

(6) Mechanic (auto finish) Aborted after >2 h

(7) Mechanic (GRF finish) 87 1,230 139 55 32 (28) 46.4 (4.2) 52.4

what information is unnecessary and can then weaken the formulas in the sequent (Wl, Wr) before we invoke the
quantifier elimination procedure (QE).

We compare different proof variants of the robot obstacle avoidance algorithm to highlight the potential reduction
in proof effort when developers with different expertise collaborate on a proof. Table 4 compares the number of
proof branches, the total number of proof steps, the number of manually executed steps, the number of manually
executed weaken operations, the number of exported goals and goals solved by the external tool, the proof execution
duration, and the memory used during the arithmetic in the proof. The baseline (line 1 in Table 4) is a proof with
manual optimization to reduce branching. We created two further variants of the proof: the guided variant manually
weakened obviously unnecessary contextual information to reduce the number of branches in the proof; the mechanic
variant branches fully automated by KeYmaera. Both variants were finished fully interactively (cf. lines 2 and 5 in
Table 4), fully automated in KeYmaera (cf. lines 3 and 6 in Table 4), and automated with real-arithmetic formulas
exported to geometric relevance filtering (cf. lines 4 and 7 in Table 4).

The interesting result is that geometric relevance filtering can solve many of the cases introduced by the fully
mechanic branching, while it fails on the same highly complex problems as in the partly mechanic case. This means
that the external tool directs the manual effort that is still needed in both variants to the interesting cases, while
it takes care of much of the tedious work. Thus, although less manual effort was put into guiding the automated
branching of KeYmaera, the effort for reducing arithmetic goals to a manageable size for quantifier elimination
procedures was reduced by prior collaboration involving geometric relevance filtering [56].

4.3 The Effect of Model Variants on Proof Structure

Since it is hard to come up with a fully verifiable model that includes all the details right from the beginning, the
models discussed in the previous section and in our previous case studies [45–47] are the result of different modeling

Collaborative Verification-Driven Engineering 91

and verification variants. In the process of creating these models, different assumptions and simplifications were
applied until we reached the final versions. We developed proof-aware refactoring methods to carry over verified
properties about an original model to a refactored model [48], in order to reduce proof effort.

In this section, we discuss how various design decisions influence the structure of a proof and, in turn, the
verification effort.

4.3.1 Modeling

We use a simplified model of a robot on a one-dimensional track [47]. In this example, navigation of a robot is
considered safe, if the robot is able to stay within its assigned area (e. g., on a track) and does not actively crash with
obstacles. Since we cannot guarantee reasonable behavior of obstacles, however, the robot is allowed to passively
crash (i. e., while obstacles might run into the robot, the robot will never move into a position where the obstacle
could not avoid a collision).

Model 1 shows a textual dL model of a hybrid system comprising the control choices of an autonomous robotic
ground vehicle, the control choices of a moving obstacle, and the continuous dynamics of the system. The system
represents the common controller-plant model: it repeatedly executes control choices followed by dynamics, cf.
(1). The control of the robot is executed in parallel to that of the obstacle, cf. (2).

Once again, the robot has three options: it can brake unconditionally, cf. (3). If its current state is safe, as defined
by (6), then the robot may accelerate with any rate within its physical bounds, cf. (4). Finally, if the robot is stopped,
it may choose to remain in its current spot and may or may not change its orientation while doing so, cf. (5). This
is expressed again by arbitrary assignment with subsequent test: this time, the test ?o2

r = 1, however, restricts the
orientation value to either forwards or backwards (or ∈ {1,−1}).

To stay safe the robot must account for the worst case braking, travel, and acceleration distance, cf. (6). This
safety margin applies to either the upper or the lower bound of the robot’s area, depending on the robot’s orientation:
when driving forward (i. e., towards the upper bound), we do not need a safety margin towards the lower bound, and
vice versa. This is expressed by the factors 1−or

2 and 1+or
2 , which mutually evaluate to zero (e. g., 1−or

2 = 0 when
driving forward with or = 1). The distance between the robot and the obstacle must be large enough to (1) allow
the robot to brake to a stand-still, (2) compensate its current velocity and worst-case acceleration, and (3) account

Model 1 Single wheel drive without steering (one-dimensional robot navigation)

swd ≡ (ctrl; dyn)∗ (1)

ctrl ≡ (ctrlr ‖ ctrlo) (2)

ctrlr ≡ (ar := −B) (3)

∪ (?safe; ar := ∗; ? − B ≤ ar ≤ A) (4)

∪ (?vr = 0; ar := 0; or := ∗; ?o2
r = 1) (5)

safe ≡ xb + 1 − or

2

(
v2

r

2B
+

(
A

B
+ 1

) (
A

2
ε2 + εvr

))
< xr < xb − 1 + or

2

(
v2

r

2B
+

(
A

b
+ 1

) (
A

2
ε2 + εvr

))
(6)

∧ ‖xr − xo‖ ≥ v2
r

2B
+

(
A

B
+ 1

) (
A

2
ε2 + εvr

)
+ V

(
ε + vr + Aε

B

)
(7)

ctrlo ≡
(

?vo = 0; oo := ∗; ?o2
o = 1

)
(8)

∪ (vo := ∗; ?0 ≤ vo ≤ V) (9)

dyn ≡ (t := 0; x ′
r = orvr , v

′
r = ar , x ′

o = oovo, t ′ = 1 & vr ≥ 0 ∧ vo ≥ 0 ∧ t ≤ ε) (10)

92 S. Mitsch et al.

for the obstacle moving towards the robot with worst-case velocity V while the robot is still not stopped, cf. (7).
Note, that we have to be more conservative towards the obstacle than towards the bounds, because we want to be
able to stop even when the obstacle approaches the robot from behind.

The obstacle, essentially, has similar control options as the robot (with the crucial difference of not having to
care about safety): it may either remain in a spot and possibly change its orientation (8), or choose any velocity up
to V , cf. (9).

4.3.2 Verification

We verify the acceleration and orientation choices as modeled in Model 1 above are safe, using a formal proof
calculus for dL [57,59]. The robot is safely within its assigned area and at a safe distance to the obstacle, if it is
able to brake to a complete stop at all times.17 The following condition captures this requirement as an invariant
«r stoppable (o, b)» that we want to hold at all times during the execution of the model:

r stoppable (o, b) ≡ ‖xr − xo‖ ≥ v2
r

2B
+ voV

b
∧ xb + 1 − or

2

v2
r

2B
< xr < xb − 1 + or

2

v2
r

2B

∧ vr ≥ 0 ∧ o2
r = 1 ∧ o2

o = 1 ∧ 0 ≤ vo ≤ V

The formula «r stoppable (o, b)» states that the distance between the robot to both the obstacle and the bounds
is safe, if there is still enough distance for the robot to brake to a complete stop before it reaches either. Also, the
robot must drive with non-negative velocity, the chosen directions of robot and obstacle must be either forwards
(or = 1) or backwards (or = −1), and the obstacle must use only non-negative velocities up to V .

Theorem 1 (Safety of single wheel drive) If a robot is inside its assigned area and at a safe distance from the
obstacle’s position xo initially, then it will not actively collide with the obstacle and stay within its area while it
follows the swd control model (Model 1), as expressed by the provable dL formula:

r stoppable (o, b) → [swd]((vr > 0 → ‖pr − po‖ > 0) ∧ xb < xr < xb

)
(11)

We proved Theorem 1 using KeYmaera. With respect to making autonomous systems more scrutable, such a
proof may help in a twofold manner: on the one hand, it may increase trust in the implemented robot (given the
assumption that the actual implementation and execution can be traced back to the abstract model). On the other
hand, it makes the behavior of the robot more understandable. In this respect, the most interesting properties of the
proven model are the definition of safe and the invariant, which allow us to analyze design trade-offs and tell us
what is always true about the system regardless of its state. As an example, let us consider the distance between

the robot and the obstacle that is considered safe: ‖xr − xo‖ ≥ v2
r

2B + (A
B + 1)(A

2 ε
2 + εvr)+ V (ε + vr +Aε

B). This
distance can be interpreted as the minimum distance that the robot’s obstacle detection sensors are required to
cover (e. g., as done in [46]); it is a function of other robot design parameters (maximum velocity, braking power,
worst-case acceleration, sensor/processor/actuator delay) and the parameters expected in the environment (obstacle
velocity). The distance ‖xr −xo‖ can be optimized w.r.t. different aspects: for example, to find the most cost-efficient
combination of components that still guarantees safety, to specify a safe operation environment given a particular
robot configuration, or to determine time bounds for algorithm optimization.

With respect to the manual guidance and collaboration needed in such a proof, we had to apply knowledge in
hybrid systems and in-depth understanding of the robot model to find a system invariant, which is the most important
manual step in the proof above. We further used arithmetic interactions, such as the hiding of superfluous terms

17 The requirement that the robot has to ensure an option for the obstacle to avoid a collision is ensured trivially, since the obstacle in
this model can choose its velocity directly. In a more realistic model the obstacle would choose acceleration instead; then the robot had
to account for the braking distance of the obstacle, too.

Collaborative Verification-Driven Engineering 93

to reduce arithmetic complexity, transforming and replacing terms (e. g., substitute the absolute function with two
cases, one for negative and one for positive values).

4.3.3 The Proof Structure of Model Variants

We now want to discuss the proof structure of different model variants: For example, one can make explicit
restrictions on particular variables, such as first letting the robot start in a known direction (instead of an arbitrary
direction). Such assumptions and simplifications, of course, are not without implications on the proof. While in
some aspect a proof may become easier, it may become more laborious or more complex in another. In this section,
we discuss five variants of the single wheel drive model (without obstacle) to demonstrate implications on the proof
structure and on the entailed manual guidance needed to complete a proof in KeYmaera.

The following model variants are identical in terms of the behavior of the robot. However, assumptions on the
starting direction were made in the antecedent of a provable dL formula, and the starting direction as well as
the orientation of the robot were explicitly distinguished by disjunction or non-deterministic choice, or implicitly
encoded in the arithmetic, as described below (we denote a changed formula by using primed versions of the original
formula reference).

Assumed Starting Direction, Orientation by Disjunction In the first variant, the robot is assumed to start in a
known direction, specified in the antecedent of (11′).

or = 1 . . . → [swd](xb < xr < xb) . (11′)

Also, the robot had an explicit choice on turning during stand-still in (5′).

ctrlr ≡ . . . ∪ (?vr = 0; ar := 0; or := −or) ∪ (?vr = 0; ar := 0) (5′)

The orientation of the robot is explicitly distinguished by disjunction in (6′).

safe ≡ (or = −1 ∧ xb + . . . < xr) ∨ (or = 1 ∧ xr < xb − . . .). (6′)

Orientation by Arithmetic In the second variant, we kept the assumed starting direction of the first variant.
However, the orientation by disjunction in the definition of safe was replaced by using or as discriminator value
encoded in the arithmetic, resulting in (6) of Model 1.

Arbitrary Starting Direction by Disjunction The third variant relaxes the assumption on the starting direction by
introducing a disjunction of possible starting directions in the antecedent of formula (11′) to get (11′′).

(or = 1 ∨ or = −1) . . . → [swd](xb < xr < xb) (11′′)

Arbitrary Starting Direction by Arithmetic The fourth variant replaces the disjunction in the antecedent of (11′′)
by stating the two orientation options as o2

r = 1 to get the antecedent in (11).

Replace Non-Deterministic Choice with Arithmetic Finally, we replace the non-deterministic turning choice of (5′)
with (?vr = 0; ar := 0; or := ∗; ?o2

r = 1) to get (5) of Model 1. This last variant proves correctness of (11) with
swd as in Model 1.

Table 5 summarizes the proof structures of the five variants.
Unsurprisingly—when considering the rules of the dL proof calculus [58] as listed in Table 5—disjunctions in

the antecedent (∨l) or in tests of hybrid programs, as well as non-deterministic choices ([∪]) increase the number of
proof branches and with it the number of manual proof steps. Verification experts, who are familiar with the proof

94 S. Mitsch et al.

Table 5 Nodes, branches, and manual proof steps of variants [47]

Variant Nodes Branches Manual steps Avoids

(i) Assumed starting direction, orientation by disjunction 387 34 24

(ii) Orientation by arithmetic 331 28 25 (∨l)

(iii) Arbitrary starting direction by disjunction 650 56 44

(iv) Arbitrary starting direction by arithmetic 185 17 22 (∨l)

(v) Replace non-deterministic choice 160 14 29 ([∪])(∧r)

�, φ � 	 �,ψ � 	
�, φ ∨ ψ � 	 (∨l)

calculus and the branching behavior of KeYmaera, can in some cases express the same model with an alternative
encoding using arithmetic expressions. The number of proof branches can be reduced, if we can replace disjunctions
in the antecedent (but also conjunctions in the consequent) or non-deterministic choices in the hybrid program by
an equivalent arithmetic encoding. Conversely, this means that some arithmetic problems can be traded for easier
ones with additional proof branches.

5 Conclusion

In this paper, we gave a vision of a verification-driven engineering toolset including hybrid and arithmetic verification
tools, and introduced modeling and collaboration tools with the goal of making formal verification of hybrid systems
accessible to a broader audience. The current implementation of Sphinx18 includes a textual and a graphical modeling
editor for dL; automated transformation from the graphical models to textual models; simulation of the valuations
of variables in hybrid programs over time; integration of KeYmaera as a hybrid systems verification tool; model
and proof comparison; and connection to various collaboration backend systems.

We applied the tool suite to examples based on prior case studies on robotic obstacle avoidance [45]. We made
the following two main observations on the effects of collaboration.

Arithmetic Verification Although less manual effort was put into guiding the automated branching of KeYmaera,
the effort for reducing arithmetic goals to a manageable size for quantifier elimination procedures was reduced
by prior collaboration involving geometric relevance filtering [56].

Domain Model Decisions The effect of some modeling decisions—which may come natural to domain experts,
such as using disjunction or non-deterministic choice for modeling logical or program alternatives—on the
verification effort can be reduced by verification experts that are familiar with the proof calculus by introducing
an alternative arithmetic encoding.

As a vision of extending collaboration support, it is planned to integrate Wikis and other online collaboration tools
(currently, we use Redmine both as project management repository and for knowledge exchange) for exchanging
knowledge on proof tactics. Additionally, collaboration with experts outside the own organization can be fostered
by linking to Web resources, such as MathOverflow.19 In such a platform, requests could be forwarded to those
experts whose knowledge matches the verification problem best.

Another interesting research direction are refactoring operations, which systematically construct incremental
model variants without the need for re-verification of the entire model [48]. In a naive way, after a refactoring was
applied we would have to reprove all properties about a model. But often a refactoring operation changes only

18 Available for download at http://www.cs.cmu.edu/~smitsch/sphinx.html.
19 mathoverflow.net.

http://www.cs.cmu.edu/~smitsch/sphinx.html
mathoverflow.net

Collaborative Verification-Driven Engineering 95

fragments of a model while it leaves the remainder of the model untouched, or the refactored model and properties
are systematically reducible to previous proofs by side deduction. A refactoring operation should systematically
reduce verification effort by creating new artifacts that are less effort to prove than the complete model. In a
verification-driven engineering process, a refactoring operation creates (1) a refactored model and properties with
links to the original model and a description of the applied refactoring; (2) a correctness conjecture, together with
verification tickets in the project management backend. This way, all changes applied to models and their properties
via refactoring operations can be provably traced back.

The VDE toolset is currently being tested in a collaborative verification setting between Carnegie Mellon Uni-
versity, the University of Cambridge, and the University of Edinburgh.

Acknowledgments This material is based upon work supported by the National Science Foundation under NSF CAREER Award
CNS-1054246, NSF EXPEDITION CNS-0926181, and under Grants CNS-1035800 and CNS-0931985, by DARPA under agreement
number FA8750-12-2-0291, and by the US Department of Transportation’s University Transportation Center’s TSET grant, award#
DTRT12GUTC11. Passmore was also supported by the UK’s EPSRC [Grants Numbers EP/I011005/1 and EP/I010335/1]. This work
was also supported by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under grant FFG FIT-IT
829598, FFG BRIDGE 838526, and FFG Basisprogramm 838181. The research leading to these results has received funding from the
People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant
agreement n◦ PIOF-GA-2012-328378.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3),
175–205 (2010)

2. Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S., (eds.) Proceedings
of the 11th International Conference on Embedded Software (EMSOFT), pp. 273–278. ACM (2011)

3. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The
algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

4. Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.: Experiences from introducing UML-based development in a large safety-critical
project. Empir. Softw. Eng. 11(4), 555–581 (2006)

5. Bajaj, M., Scott, A., Deming, D., Wickstrom, G., Spain, M.D., Zwemer, D., Peak, R.: Maestro—a model-based systems engineering
environment for complex electronic systems. In: Proceedings of the 22nd Annual INCOSE International Symposium. INCOSE,
Rome (2012)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0 (2012). http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-
v2.0-r12.09.09.pdf (last accessed 2013-01-09)

7. Baumgartner, N., Mitsch, S., Müller, A., Salfinger, A., Retschitzegger, W., Schwinger, W.: A tour of BeAware: a situation awareness
framework for control centers. Inf. Fusion (2014). doi:10.1016/j.inffus.2014.01.008

8. Belta, C., Ivancic, F., (eds.): Hybrid Systems: Computation and Control (part of CPS Week 2013), HSCC’13, ACM, Philadelphia
(2013)

9. Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The HybridUML profile for UML 2.0. STTT 8(2), 167–176 (2006)
10. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with explicit assumptions. In: Giannakopoulou, D.,

Méry, D. (eds.) FM, Volume 7436 of LNCS, pp. 132–146. Springer, Berlin (2012)
11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS,

Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer, Berlin (2013)
12. Collins, P., Lygeros, J.: Computability of finite-time reachable sets for hybrid systems. In: 44th IEEE Conference on Decision and

Control and European Control Conference (CDC-ECC), pp. 4688–4693. IEEE (2005)
13. Craigen, D., Gerhart, S.L., Ralston, T.: Formal methods reality check: industrial usage. IEEE Trans. Softw. Eng. 21(2), 90–98 (1995)
14. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)
15. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, Lecture Notes in

Computer Science, vol. 4963, pp. 337–340. Springer, Berlin (2008)
16. De Schutter, B., Heemels, W., Lunze, J., Prieur, C.: Survey of modeling, analysis, and control of hybrid systems. In: Lunze, J.,

Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control—Theory, Tools, Applications, chap. 2, pp. 31–55. Cambridge
University Press, Cambridge (2009)

17. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)
18. Deshpande, A., Göllü, A., Varaiya, P.: Shift: A formalism and a programming language for dynamic networks of hybrid automata.

In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S., (eds.) Hybrid Systems, Lecture Notes in Computer Science, vol. 1273, pp.
113–133. Springer, Berlin (1996)

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://dx.doi.org/10.1016/j.inffus.2014.01.008

96 S. Mitsch et al.

19. Faber, J., Linker, S., Olderog, E.-R., Quesel, J.-D.: Syspect—modelling, specifying, and verifying real-time systems with rich
data. Int. J. Softw. Inf. 5(1–2), 117–137 (2011)

20. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L., (eds.) Hybrid Systems:
Computation and Control, 8th International Workshop, HSCC 2005, Zurich, Proceedings, LNCS, vol. 3414, pp. 258–273. Springer,
Berlin (2005)

21. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx:
scalable verification of hybrid systems. In: Ganesh Gopalakrishnan, S.Q. (ed.) CAV, LNCS. Springer, Berlin (2011)

22. Gokhale, A.S., Balasubramanian, K., Krishna, A.S., Balasubramanian, J., Edwards, G., Deng, G., Turkay, E., Parsons, J., Schmidt,
D.C.: Model driven middleware: a new paradigm for developing distributed real-time and embedded systems. Sci. Comput. Pro-
gram. 73(1), 39–58 (2008)

23. Goswami, D., Schneider, R., Masrur, A., Lukasiewycz, M., Chakraborty, S., Voit, H., Annaswamy, A.: Challenges in automotive
cyber-physical systems design. In: ICSAMOS, pp. 346–354. IEEE (2012)

24. Gowers, T., Nielsen, M.: Massively collaborative mathematics. Nature 461, 879–881 (2009)
25. Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Dis-

crete Comput. Geom. 44(1), 1–34 (2010)
26. Hause, M.C., Thom, F.: An integrated MDA approach with SysML and UML. In: Proceedings of the 13th International Conference

on Engineering of Complex Computer Systems, ICECCS ’08, pp. 249–254. IEEE Computer Society, Washington (2008)
27. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model checking. In: Dershowitz, N., (ed.) Verification: Theory

and Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, LNCS, vol. 2772, pp. 332–358. Springer,
Berlin (2003)

28. Hitz, M., Kappel, G., Kapsammer, E., Retschitzegger, W.: UML @ Work. dpunkt (2005)
29. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)
30. Kent, S.: Model driven engineering. In: Butler M.J., Petre L., Sere K., (eds.) IFM, LNCS, vol. 2335. pp. 286–298. Springer, Berlin

(2002)
31. Kerber, M., Lange, C., Rowat, C., (eds.): Enabling Domain Experts to use Formalised Reasoning—Symposium AISB, Do-Form

2013, Exeter. Proceedings. AISB (2013)
32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish,

M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, pp. 207–220. ACM, New York (2009)

33. Kokar, M.M., Matheus, C.J., Baclawski, K.: Ontology-based situation awareness. Int. J. Inf. Fusion 10(1), 83–98 (2009)
34. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model matching: An analysis of approaches to

support model differencing. In: Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software Models,
CVSM ’09, pp. 1–6. IEEE Computer Society, Washington (2009)

35. Kordon, F., Hugues, J., Renault, X.: From model driven engineering to verification driven engineering. In: Proc. of the 6th IFIP Int.
Workshop on Software Technologies for Embedded and Ubiquitous Systems, pp. 381–393. Springer, Berlin (2008)

36. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a
surgical robot. In: Belta and Ivancic [8]

37. Kupferman, O., Vardi, M.Y.: Modular model checking. In: Revised Lectures from the International Symposium on Compositionality:
The Significant Difference, COMPOS’97, pp. 381–401. Springer, London (1998)

38. Lavazza, L., Quaroni, G., Venturelli, M.: Combining UML and formal notations for modelling real-time systems. In:
ESEC/SIGSOFT FSE, pp. 196–206. ACM (2001)

39. Lee, I., Sokolsky, O., Chen, S., Hatcliff, J., Jee, E., Kim, B., King, A.L., Mullen-Fortino, M., Park, S., Roederer, A., Venkatasub-
ramanian, K.K.: Challenges and research directions in medical cyber-physical systems.. Proc. IEEE 100(1), 75–90 (2012)

40. Liu, J., Liu, Z., He, J., Mallet, F., Ding, Z.: Hybrid MARTE statecharts. Front. Comput. Sci. 7(1), 95–108 (2013)
41. Loos, S.M., Platzer, A.: Safe intersections: at the crossing of hybrid systems and verification. In: Yi, K. (ed.) ITSC, pp. 1181–1186

(2011)
42. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now formally verified. In: FM, LNCS, vol. 6664,

pp. 42–56. Springer, Berlin (2011)
43. Loos, S.M., Renshaw, D., Platzer, A.: Formal verification of distributed aircraft controllers. In: Belta and Ivancic [8]
44. Mallet, F., de Simone, R.: MARTE: a profile for RT/E systems modeling, analysis—and simulation? In: Molnár, S., Heath, J.R.,

Dalle, O., Wainer, G.A. (eds.) SimuTools, p. 43. ICST (2008)
45. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics:

Science and Systems (2013)
46. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control. In: Lu, C. (ed.) Proc. of the 2nd Int.

Conference on Cyber-Physical Systems (ICCPS), pp. 171–180. IEEE (2012)
47. Mitsch S., Passmore, G.O., Platzer, A.: A vision of collaborative verification-driven engineering of hybrid systems. In: Kerber et al.

[31], pp. 8–17
48. Mitsch, S., Quesel, J.-D., Platzer, A.: Refactoring, refinement, and reasoning—a logical characterization for hybrid systems.

In: FM, LNCS. Springer, Berlin (2014, to appear)
49. Mostowski, W.: The KeY syntax. In: Beckert, B., Hähnle, R., Schmitt, P.H., (eds.) Verification of Object-Oriented Software.

The KeY Approach, Lecture Notes in Computer Science, vol. 4334, pp. 599–626. Springer, Berlin (2007)

Collaborative Verification-Driven Engineering 97

50. Mota, E., Clarke, E.M., Groce, A., Oliveira, W., Falcão, M., Kanda, J.: VeriAgent: an approach to integrating UML and formal
verification tools.. Electr. Notes Theor. Comput. Sci. 95, 111–129 (2004)

51. Niemueller, T., Ewert, D., Reuter, S., Karras, U., Ferrein, A., Jeschke, S., Lakemeyer, G.: Towards benchmarking cyber-physical
systems in factory automation scenarios. In: Timm, I.J., Thimm, M., (eds.) KI, Lecture Notes in Computer Science, vol. 8077.
Springer, Berlin, pp. 296–299 (2013)

52. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proc. of the 2nd Int. Conf. on Formal Ontology in Information Systems
(FOIS ’01), pp. 2–9. ACM, Ogunquit (2001)

53. Object Management Group. OMG object constraint language (OCL). Technical Report formal/2012-01-01, OMG (2012)
54. Passmore, G.O.: Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex. PhD thesis, University of Edinburgh

(2011)
55. Passmore, G.O., Paulson, L.C., de Moura, L. M.: Real algebraic strategies for MetiTarski proofs. In: Jeuring, J., Campbell, J.A.,

Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V., (eds.) AISC/MKM/Calculemus, LNCS, vol. 7362, pp. 358–370. Springer,
Berlin (2012)

56. Passmore, G.O., Platzer, A., Zawadzki, E., Avigad, J.: Geometric relevance filtering for real closed field arithmetic (2013,
in preparation)

57. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)
58. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)
59. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)
60. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012)
61. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)
62. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Formal Methods Syst.

Design 35(1), 98–120 (2009)
63. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams,

D. (eds.) FM, LNCS, vol. 5850, pp. 547–562. Springer, Berlin (2009)
64. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G.

(eds.) IJCAR, LNCS, vol. 5195, pp. 171–178. Springer, Berlin (2008)
65. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.)

ICFEM, LNCS, vol. 5885, pp. 246–265. Springer, Berlin (2009)
66. Razali, R., Snook, C.F., Poppleton, M.R.: Comprehensibility of UML-based formal model: a series of controlled experiments.

In: Proceedings of the 1st ACM International Workshop on Empirical Assessment of Software Engineering Languages and Tech-
nologies: Held in Conjunction with the 22Nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
WEASELTech’07, pp. 25–30. ACM, New York (2007)

67. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press,
Cambridge (2001)

68. Schäfer, W., Wehrheim, H.: Model-driven development with Mechatronic UML. In Engels, G., Lewerentz, C., Schäfer, W., Schürr,
A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engineering, Lecture Notes in Computer Science, vol. 5765,
pp. 533–554. Springer, Berlin (2010)

69. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)
70. Snook, C.F., Butler, M.J.: UML-B: formal modeling and design aided by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122

(2006)
71. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224

(2012)
72. Tintarev, N., Oren, N., Deemter, K.V., Kutlak, R., Green, M., Masthoff, J., Vasconcelos, W.: SAsSy—scrutable autonomous systems.

In: Kerber et al. [31], pp. 1–3
73. Tomlin, C., Pappas, G., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems.. IEEE

Trans. Autom. Control 43(4), 509–521 (1998)
74. Woodcock, J., Larsen, P. G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. 41(4),

19:1–19:36 (2009)

	Collaborative Verification-Driven Engineering of Hybrid Systems
	Abstract
	1 Introduction
	2 Related Work
	3 The VDE Toolset Sphinx
	3.1 A Hybrid Water Tank Example
	3.2 Development and Verification Process Overview
	3.3 KeYmaera: Hybrid System Verification
	3.4 Real Arithmetic Verification
	3.5 Modeling and Proof Collaboration
	3.5.1 Differential Dynamic Logic
	3.5.2 Creating Models
	3.5.3 The Hybrid Program UML Profile
	3.5.4 Hybrid System Simulation
	3.5.5 During the Proof

	3.6 The Collaboration Backend

	4 Application Example
	4.1 Hierarchical Graphical Modeling
	4.2 The Effect of Collaboration on Arithmetic Verification Effort
	4.3 The Effect of Model Variants on Proof Structure
	4.3.1 Modeling
	4.3.2 Verification
	4.3.3 The Proof Structure of Model Variants

	5 Conclusion
	Acknowledgments
	References

