
Dissertation Proposal: Modern Methodologies for

Practical Discrete Optimization Models

Ryo Kimura

March 29, 2018

1 Introduction

Modern discrete optimization models, especially those motivated by practical
problems, continue to grow in complexity and scale. The development of modern
methodologies to address such models arising from practice is of paramount
importance, and even more so given that advanced analytical tools become
increasingly widespread among businesses.

This proposal presents four projects, commonly aligned in the pursuit of
solving larger, more complex models involving discrete variables. The first two
sections present the use of decomposition as a method for handling more com-
plex structures; the first a combination of assignment and scheduling; the sec-
ond robustness with respect to combinatorial uncertainty sets. The latter two
sections propose projects which aim to increase our understanding of recently
developed tools for discrete optimization; multivalued decision diagrams and
quantum annealing.

2 A Logic-based Benders Approach for Home
Healthcare Scheduling

(To appear in Transportation Science)
Home healthcare scheduling is the problem of assigning home health aides

to geographically dispersed patients such that as many patients are covered as
possible and all aides have feasible visitation schedules. The combination of
routing and scheduling constraints in a single problem makes practically sized
instances difficult to solve optimally with a monolithic mixed integer program-
ming (MIP) model. While several heuristic approaches have been suggested,
we propose an exact method using logic-based Benders decomposition (LBBD),
which exploits the natural decomposition of the problem into an assignment
and routing component. This allows us to solve each component with solution
methodologies especially suited to such problems (MIP for the former, con-
straint programming (CP) for the latter). We implement both standard LBBD
and a variant called branch-and-check (B&Ch) and compare their performance

1

on instances derived from real-world data. We show that B&Ch better exploits
the significant difference in difficulty between solving the master problem and
solving the subproblems.

2.1 The Model

We define the home healthcare problem over d = 5 days. Each patient j must
be visited on vj days during this time period by an assigned aide posessing a
set Qj of qualifications. Each visit has a duration of pj time units and must
take place within a time window [rj , dj]. If a patient requires multiple visits
during the scheduling horizon, these visits must be “spread out” if possible; in
particular, if vj = 2 then there must be at least two days between each visit,
and if vj = 3 then there must be at least one day between each visit.

On the other side, each aide i has a set Q′i of qualifications. On any given
day k, aide i begins at their starting location bi, travels to the home of each
assigned patient, and returns to their terminal location b′i (in our case, bi = b′i).
The travel time between aide/patient locations j and j′ is tjj′ time units, based
on an optimal route that is calculated in advance. Aide i must leave location
bi during the time window [rbi , dbi] and return to location b′i during [rb′i , db′i].
In addition, aide i cannot be “on duty” more than Ui time units during the
scheduling horizon, where the aide “clocks in” upon arrival at the first patient
of the day and “clocks out” upon departure from the last patient.

For variables, we let yijk = 1 if aide i is assigned to visit patient j on day k.
We let xij = 1 if aide i is assigned to patient j and δj = 1 if patient j is assigned
to some aide. We also let the integer variable πikν denote the νth patient visited
by aide i on day k, and real variable sj denote the time that the visit to patient
j starts on each day it occurs (i.e., we assume here that visits to a patient j
occurs at the same time; this reflects the real-world situation we modeled).

Finally, we add a generic constraint (x, y) ∈ X to represent aide-patient
assignments that are in the current schedule and should stay fixed. We note
that, while the constraint is straightforward to implement (since x and y are
binary variables), it is extremely important in practice, since minimizing sched-
ule volatility is of paramount importance in home healthcare, and thus it is far
preferable to modify an existing schedule to accommodate new patients than to
create an entirely new schedule from scratch.

Given these constraints, our goal is to maximize the number of patients that
are assigned an aide. The problem can then be stated as follows:

2

max
∑
j

δj (1)

s.t.
∑
i

xij = δj ,
∑
i,k

yijk = vjδj , ∀j (2)

yijk ≤ xij , ∀i, j, k (3)

xij = 0, ∀i, j : Qj 6⊆ Q′i (4)

yibik = yib′ik = 1, ∀i, k (5)

`+d−vj−1∑
k=`

yijk ≤ 1, ∀j : vj = 2, 3, ` = 1, . . . , d− vj + 1 (6)

(x, y) ∈ X (7)

δj , xij , yijk ∈ {0, 1}, ∀i, j, k (8)

nik =
∑
j

yijk, all-different{πikν | ν = 1, . . . , nik}, ∀i, k (9)

πikν ∈ {j | yijk = 1}, ∀i, k, ν = 1, . . . , nik (10)

πik1 = bi, πiknik = b′i, ∀i, k (11)

rj ≤ sj ≤ dj − pj , ∀i, j (12)

sπikν + pπikν + tπikνπik,ν+1
≤ sπik,ν+1

, ∀i, k, ν = 1, . . . , nik − 1 (13)∑
k

(
sπik,nik−1

+ pπik,nik−1
− sπik2

)
≤ Ui, ∀i (14)

sj ∈ R, ∀j; πikk′ ∈ Z, ∀i, k, k′ (15)

(1) states the objective of maximizing the number of assigned patients. (2)
ensures patients who are assigned an aide get visited the approrpriate number
of times by that aide. (3) ensures only aides who are assigned to a patient can
visit that patient on any given day. (4) prevents aide-patient assignments with
mismatched qualifications. (5) ensures every aide starts and ends every day at
their starting/terminal locations. (6) ensures visits of patients requiring mul-
tiple visits are “spread out” over the scheduling period. (7) ensures the visit
schedules of patients currently assigned to aides are not altered. (8) specifies
the domains of the the variables which appear in the model. (9) enforces basic
constraints of a sequence variable. (10) ensures the sequence variables are taken
over those patients which are assigned by the master problem variables. (11)
ensures the first and last visits in the sequence are the starting/terminal loca-
tions. (12) ensures the time windows are respected. (13) ensures the aide has
enough time between scheduled visits to serve the patient and travel to the next
assigned patient. (14) ensures the aide does not work more than the maximum
time allowed. (15) specifies the domain of the variables which appear in the
subproblems.

3

2.2 Logic-based Benders Decomposition

The home healthcare problem has a natural decomposition into an assignment
component (assigning aides to patients) and a routing component (determining
the weekly visitation schedule). To take advantage of this, we utilize logic-based
Benders Decomposition (LBBD), which is an extension of classical Benders de-
composition. LBBD applies to optimization problems of the form

min{f(x, y) | C(x, y), C(x)}

where C(x, y) is a constraint set containing variables x and y, and C(x) is a
constraint containing only x. Fixing x to a value x̄ that satisfies C(x) defines the
subproblem min{f(x̄, y) | C(x̄, y)}. In many applications (such as the present
one), the subproblem decouples into smaller problems that can be solved inde-
pendently of one another.

When none of the subproblem variables affect the objective, which is the
case for the home healthcare problem, the subproblem is a feasibility problem,
and simply checks whether there exists a feasible extension (x̄, ȳ) to the master
problem solution x̄. If the subproblem is feasible, we have found an optimal
solution; otherwise, we generate a Benders cut αx̄(x) ≥ β which cuts off x̄ and
potentially other similar infeasible solutions. The Benders cut is then added to
the master problem, which is solved to obtain the next value x̄ to which x is
fixed. We repeat the process until all subproblems are feasible or we find that
the original problem is infeasible.

2.3 Branch-and-Check

Branch-and-check (B&Ch) is a variant of LBBD that more tightly integrates
the master problem and subproblem solving procedures. More specifically, in
B&Ch we solve the subproblem and generate Benders cuts every time we find a
feasible solution in the master problem’s branch-and-bound tree. (By contrast,
in standard LBBD we solve the subproblem and generate cuts every time we
find an optimal solution to the master problem.) Thus, (in B&Ch) when the
master problem’s branch-and-bound procedure terminates, every feasible solu-
tion that remains in the tree is also feasible to the subproblem, since every such
solution was checked for subproblem feasibility and was not cut off as a result.
Consequently, the optimal solution in the master problem’s branch-and-bound
tree is also optimal to the original problem.

Thie means that, unlike standard LBBD, in B&Ch the master problem only
needs to be solved once; however, the subproblem is solved many more times,
since we must check every feasible solution we encounter in the master problem’s
branch-and-bound tree. Intuitively, this means B&Ch should yield a computa-
tional advantage compared to standard LBBD when the time required to solve
the subproblem is several orders of magnitude smaller than the time required
to solve the master problem. Since this is indeed the case for our problem, we
expect B&Ch to achieve better performance than standard LBBD; we verify
this hypothesis in the computational results.

4

2.4 Master Problem, Subproblem, and Benders Cuts

In our problem, the master problem variables are yijk, xij , and δj , corresponding
to constraints (2)–(8). Once these variables are fixed, the sets Pik = {j | yijk =
1}, which specify which patients aide i must visit on day k, are well-defined, and
we obtain one subproblem for each aide-day pair (corresponding to constraints
(9)–(15)), corresponding to the problem of determining whether there exists a
feasible schedule where aide i visits every patient in Pik on day k. However, in
order to synchronize visits and ensure the total working hours limit is satisfied
(constraints (14) and (15)), we define one subproblem for each aide, collecting
together subproblems corresponding to the same aide but different days.

If the subproblem for aide i is infeasible, this indicates the assignments of
patients Pik to aide i on days k is infeasible; hence we add a Benders cut
preventing this set of patients (or any superset thereof) from being assigned to
aide i in the future. More specifically, we add the following:∑

k

∑
j∈Pik

(1− yijk) ≥ 1

While not presented here for space, in the paper we also describe a simple
cut-strengthening scheme for the generated Benders cuts.

2.5 Relaxation

Computational experience from [8] and various other articles have shown that
including a suitable relaxation of the subproblem in the master problem of-
ten significantly improves the performance of LBBD. For conciseness, we only
present the most successful relaxation among the three we tested (which we call
the time window relaxation), since it significantly outperformed the other two
(details of the multi-commodity flow relaxation and assignment relaxation can
be found in the paper).

The time window relaxation is based on the following simple observation:
suppose aide i is required to visit a set P of patients on day k, and the time
window of every patient in P falls before a certain time T . Then the total time
aide i spends traveling to and serving patients in P must fall between the earliest
time aid i can leave their starting location and the common deadline T . We can
express the total amount of time aide i spends working on patients in P by a
weighted sum of the yijk variables; the total travel time can be lower bounded
by taking the minimum time of travel between any two patient locations or
between the home location and a patient location.

More specifically, let J [t, t′] be the set of patients whose time windows lie
in the interval [t, t′], so that J [t, t′] = {j | [rj , dj] ⊆ [t, t′]}. Let the backward
augmented duration p′ijk for a patient j assigned to aide i on day k to be the
visit duration pj plus the minimum travel time from the previous location, which
may be the aide’s starting location, i.e.,

p′ijk = pj + min

{
tbij , min

j′∈Jik
{tj′j}

}

5

where Jik is the set of patients that are already assigned to aide i on day k, or
have not yet been assigned to an aide. Thus the backward augmented duration
is a lower bound on the time required to reach and carry out a visit.

We now observe that the sum of backward augmented durations of visits in
J [rbi , αik`] must be at most the width of the backward interval [rbi , αik`], i.e.,∑

j∈J[rbi ,αik`]

p′ijkyijk ≤ αik` − rbi

A similar inequality can be defined to an aide’s terminal location. These
inequalities are tight when the total duration of the patients in J [t, t′] is large
relative to the width t′ − t of the interval. In addition ,they are more effective
when scheduling on a rolling basis, because the shortest travel time is computed
only over patients who are already assigned to aide i on day k or are unassigned.

2.6 Computational Results

We tested both standard LBBD (S-LBBD) and branch-and-check (B&Ch) on
real-world data provided by a major hospice care organization. We also imple-
mented a monolithic MIP model based on multi-commodity flow to compare
the performance of S-LBBD and B&Ch. To obtain an initial schedule, we ran a
greedy heuristic followed by running S-LBBD while fixing most of the patients
scheduled by the initial heuristic to obtain a 60-patient schedule. It is better
than a heuristic schedule but worse than an optimal one, as one might expect
when scheduling on a rolling basis.

Table 1 shows the solution time of MIP, S-LBBD, and B&Ch (using the time
window relaxation) when we attempt to re-schedule n = 8, . . . , 24 of the 60 pa-
tients in the initial schedule. We see that we can optimally solve instances where
roughly a third of the patients are rescheduled, which is reasonable in practice.
Moreover, the results indicate that B&Ch clearly outperforms S-LBBD; this
confirms our intuition that B&Ch tends to fare better when there is a signifi-
cant difference in the computational difficulty between the master problem and
the subproblems.

2.7 Conclusion and Future Work

We presented both LBBD and B&Ch approaches to solving the home healthcare
problem, and showed that they result in algorithms that can solve practically
sized instances in a reasonable time. One limitation of our work is that because
the subproblems of different aides are solved independently, we are unable to
handle all but the simplest of inter-aide temporal constraints. For example, in
our framework there is no way to impose synchronization of different aide visits
in an efficient manner. A more sophisticated decomposition scheme may allow
us to implement such constraints.

6

Table 1: Solution times for 60-patient hospice care instances

New New Patients MIP S-LBBD B&Ch
patients visits covered Time (s) Iters Time (s) Time (s)

8 40 60 43.6 7 3.17 0.63
9 45 59 41 13 5.99 0.71

10 50 59 46.6 7 3.27 0.74
11 55 59 53.3 11 5.63 0.7
12 60 59 53.2 12 6.49 1.3
13 65 59 63 21 12.3 1.11
14 70 58 113 84 72.3 9.28
15 75 58 223 86 77 9.78
16 80 58 844 91 98.5 43.5
17 85 59 1591 93 106 31.1
18 90 58 3017 116 202 62
19 95 58 1189 119 388 90
20 100 57 1016 124 1251 600
21 105 58 923 168 1272 380
22 110 58 ∗ 217 951 523
23 115 58 264 ∗ 2092
24 120 ∗ ∗

∗Computation time exceeded one hour.

3 Robust Scheduling with Combinatorial Un-
certainty Sets

Robust scheduling is a broad field concerned with scheduling problems that
explicitly take the uncertainty of parameters into account. More specifically,
robust scheduling aims to provide a solution which performs well against the
worst-case realization of the parameter values. When the uncertainy set has
a “nice” structure, the robust counterpart can often be reformulated into an
efficiently solvable form by applying duality theory. However, when the uncer-
tainty set has a combinatorial structure, such an explicit reformulation may not
be available. Our goal is to develop a general framework for addressing such
robust scheduling problems.

The main idea is to dynamically refine the combinatorial uncertainty set
as we are solving the problem. More specifically, we can view the uncertainty
set as representing some set of scenarios, and if we choose a small number of
“representative worst-case” scenarios, guaranteeing robustness over the smaller
set of scenarios may be equivalent to guaranteeing robustness over the entire
uncertainty set. We first describe the general framework, then describe its
application to the robust job-shop problem with processing time delays.

7

3.1 Robust Scheduling

Stated most generally, we wish to solve problems of the form

(P) = min
x∈S

{
max
q∈Q

f(x; q)

}
=

 min v
s.t. x ∈ S

v ≥ f(x; q) ∀q ∈ Q

where f is an arbitrary objective function, S is a discrete set, and Q is a set
of scenarios. If Q has a “nice” structure (e.g., Q is convex, or even better,
polyhedral), the above problem may be transfomed into an efficiently solvable
form via duality theory (see [2]). However, if Q is finite and discrete, no such
explicit reformulation may exist. For example, Q may represent a set of machine
breakdowns where the breakdown patterns of different machines are correlated.
Nevertheless, even in such cases the set of scenarios Q often has a combinatorial
structure, in the sense that for a fixed x ∈ S, we can solve maxq∈Q f(x; q)
“reasonably efficiently”, even though the problem may be (technically speaking)
NP-hard. This is especially the case for robust scheduling problems.

This suggests the use of decomposition methods to take advantage of the
structure of Q. In particular, given any subset Q ⊆ Q, the problem

(MP) =

 min v
s.t. x ∈ S

v ≥ f(x; q) ∀q ∈ Q

provides a lower bound to the optimal solution of (P). Furthermore, if we find
that the optimal solution x∗ to (MP) with objective value v∗ satisfies v∗ ≥
maxq∈Q f(x∗; q), then x∗ actually achieves robustness to the whole of Q, not
just Q. If we can find a small Q with this property, we can solve the original
robust optimization problem much more efficiently. Of course, finding such a
Q is difficult in general; however, we can try to systematically construct it via
scenario generation.

3.2 Scenario Generation

We propose the scenario generation algorithm (SGA) as a method of iteratively
generating a small number of “representative scenarios” Q that allow us to solve
the original robust problem optimally. The idea is simple; start with Q = ∅ and
solve (MP) to obtain an optimal solution x∗ with objective value v∗. Then solve

(SP) = max{f(x∗; q) | q ∈ Q}

and compare its optimal value w∗ with v∗. If v∗ = w∗ then x∗ is robust to
the original uncertainty set Q and we are done. Otherwise, we add the optimal
solution of (SP) (i.e., the worst-case scenario relative to x∗) to Q and re-solve
(MP). Since Q is finite, eventually Q = Q in which case (MP) ≡ (P). However,
the hope is that only a small number of iterations are required in order to achieve
robustness to all of Q. Algorithm 1 gives a more detailed description of SGA.

8

Algorithm 1 Scenario Generation Algorithm (SGA)

i← 0, Q0 ← ∅
while not reached time/iteration limit do

Solve master problem (MPi) w.r.t. scenarios Qi

↪→ xi := optimal solution, vi := objective value
Solve subproblem (SPi)
↪→ qi := worst-case scenario w.r.t. xi

if Obj(xi, qi)− vi = 0 then
Terminate with optimal solution xi

else
Qi+1 ← Qi ∪ {qi}
i← i+ 1

end if
end while
Terminated by limit, report best solution found so far

Note that while we must solve (SP) to optimality if we wish to prove that
the solution x∗ is robust to all of Q, there is no requirement that Q needs to be
constructed in this way. Indeed, we may improve the overall efficiency of SGA if
we only search for optimally bad scenarios some of the time, and we are content
with only finding scenarios that achieve a certain minimum level of objective
degradation for other iterations. This idea is explored in the paper, but we do
not discuss it here for space considerations.

3.3 Example: Robust Job-Shop

3.3.1 Problem Statement

To clarify the exposition, we first describe the standard job-shop problem, and
then our robust variant. In the standard job-shop problem, we are given a set
of n jobs J and m machines M, where each job j consists of a sequence of
operations oij characterized (1) the machine that processes it (machine i), and
(2) its duration dij . Our goal is to find a schedule (i.e., start times sij for each
operation) with the optimal objective value, where the schedule must satisfy
the following constraints:

1. (capacity): each machine can run at most one operation at a time

2. (precedence): if operation oij comes before operation oi′j in the sequence
associated with job j, then we must finish oij before we can start oi′j ; we
shall refer to these precedence constraints by the set P

Typically we aim to minimize the maximum completion time over all jobs (also
called the makespan, or CMAX) or the sum of weighted completion times
(SWCT), where the completion time of a job j is the time at which the last
operation of j finishes processing. For simplicity, we assume that each job re-
quires exactly one operation from each of the m machines.

9

Our problem is a robust variant of this standard job-shop problem. Here, in
addition to the standard data we are given a set of possible processing delays
δij for each operation, where δij ∈ [0, Dij] where Dij is the maximum possible
delay of operation oij . We assume that at most k of the δij ’s are nonzero, and
at most one of the δij ’s corresponding to operations on the same machine is
nonzero. This allows us to represent, for example, machine breakdowns with
restart semantics by setting Dij = D + dij − 1, where D is the (fixed, known)
duration of a single breakdown.

It is worth elaborating on what is meant by “robustness” here. More specif-
ically, a solution to the robust job-shop problem is a sequencing S of operations
on each machine, which implicity defines a set of schedules {s(S, q) : q ∈ Q},
where Q is the set of all feasible delay scenarios and s(S, q) is the unique semi-
active schedule that respects the specified sequence S (i.e., no operation can
be started earlier while still satisfying all precedence relations implied by S),
the job precedences P, and the delays in q. This corresponds to a rescheduling
policy where each operation is scheduled “as early as possible” given all delayed
operations are started immediately after the delay (i.e., AOR rescheduling, [1]).
Thus S is declared optimal if: for any other sequence of operations S′, there is
a delay scenario q′ ∈ Q such that Obj(s(S′, q′)) ≥ maxq∈QObj(s(S, q)) where
Obj(s) is the objective value of the schedule s. The solution concept used here
is equivalent to that of a partial order schedule presented by [6], interpreting the
job-shop problem as a special case of the resource-constrained project scheduling
problem.

3.3.2 Model

We use a constraint programming model to represent our problem. In partic-
ular, we make use of the interval variables, sequence variables, and scheduling
constraints provided IBM CP Optimizer ([4]). We give a brief formal defini-
tion of these constructs defined by IBM CP Optimizer, and then describe a CP
model for the robust job-shop problem that uses these constructs.

Intuitively, an interval variable represents an object that takes up some
interval of time. Formally, we define the set CPOInterval as

CPOInterval = {(`, u) ∈ Z2 | 0 ≤ ` ≤ u}

in which case an interval variable I is a variable that takes values in the set
CPOInterval. We write startOf(I) and endOf(I) to refer to the first and
second components of I respectively; in addition, we define lengthOf(I) :=
endOf(I)− startOf(I).

Intuitively, a sequence variable over an ordered set (i.e., an array) of interval
variables I represents a total ordering of the intervals in I. Formally, we define
the set CPOSequence(I) by

CPOSequence(I) = {σ : I → {1, . . . , |I|} | σ is bijective}

in which case a sequence variable S = S(I) is a variable that takes values in

10

the set CPOSequence(I). We write σS to refer to the bijective mapping on I
specified by S.

We also define the following constraints:

1. Let I, I ′ be intervals. The constraint endBeforeStart(I, I ′) requires that
endOf(I) ≤ startOf(I ′)

2. Let I be an array of intervals and S = S(I) a sequence variable over I.
The constraint noOverlap(S) requires that (i) the intervals ordered by S
are non-overlapping and (ii) the ordering imposed by S is consistent with
the temporal ordering of I. That is, for every pair of intervals I, I ′ ∈ I,
(i) either endOf(I) ≤ startOf(I ′) or endOf(I ′) ≤ startOf(I), and (ii)
endOf(I) ≤ startOf(I ′) if and only if σS(I) < σS(I ′)

3. Let I and I ′ be arrays of intervals of the same cardinality k, and let S =
S(I) and S′ = S′(I ′) be sequence variables over I and I ′ respectively. The
constraint sameSequence(S, S′) requires that the ordering imposed by S
and S′ be the same modulo the “trivial” mapping between I = {I1, . . . , Ik}
and I ′ = {I ′1, . . . , I ′k}, i.e., for any pair (i, j) with 1 ≤ i < j ≤ k, σS(Ii) <
σS(Ij) if and only if σS′(I

′
i) < σS′(I

′
j)

We now describe the CP model for the robust-job-shop problem. Intuitively,
our model defines a separate standard job-shop model for each scenario, then
links the solutions of different scenarios together with the sameSequence con-
straint.

Let Q denote the set of possible delay scenarios. For each delay scenario
q ∈ Q, let oijq be the interval variable representing the operation that job j
runs on machine i realized in scenario q, and let Siq be the sequence variable
corresponding to machine i and scenario q. Let Cjq represent the completion
of time job j, i.e., the time at which the last operation of job j completes its
processing, in scenario Q. For a machine i′, let Oq(i

′) = {oijq | i = i′} be
the set of operations that run on machine i in scenario q. Let Pq denote the
precedence constraints on operations imposed by the job sequences, applied to
the operations of scenario q. Then the following is our model for the robust
job-shop problem:

min v (16)

s.t. v ≥ Obj(C1q, . . . , Cnq) ∀q ∈ Q (17)

Cjq ≥ endOf(oijq) ∀i ∈M,∀j ∈ J ,∀q ∈ Q (18)

sameSequence(Si1, Siq) ∀i ∈M, q ∈ Q (19)

noOverlap(Siq) ∀i ∈M,∀q ∈ Q (20)

endBeforeStart(o, o′) ∀(o, o′) ∈ Pq,∀q ∈ Q (21)

lengthOf(oijq) = dij ∀i ∈M,∀j ∈ J ,∀q ∈ Q (22)

Cjq ≥ 0, Cjq ∈ Z ∀j ∈ J ,∀q ∈ Q (23)

oijq ∈ CPOInterval ∀i ∈M, ∀j ∈ J ,∀q ∈ Q (24)

Siq ∈ CPOSequence(Oq(i)) ∀i ∈M,∀q ∈ Q (25)

11

While we do not present it here, we note that generating the worst-case
scenarios for a given sequence S (i.e., solving (SP)) can also be modeled as a
constraint program.

3.3.3 Computational Results

Computational results for robust job-shop are underwhelming but unsurprising,
and so are not shown here; for certain instances the robust solution provides
significantly better worst case behavior than the solution obtained by solving
the determinstic problem, while for other instances there is no significant dif-
ference. Further, the scenario generation algorithm (SGA) does not scale for
larger values of k; this, however, is unsurprising, given that the deterministic
job shop problem is already a notoriously difficult NP-hard problem.

3.4 Future Work

While the robust job-shop problem is well-motivated and its determinstic ver-
sion has been extensively studied, it is perhaps unsuited for an evaluation of
SGA, given the deterministic problem already requires specialized approaches
to obtain a scalable algorithm. Scheduling problems where the deterministic
problem is solvable in practice (though still NP-hard), such as the traveling
repairman problem, or parallel machine scheduling problems, may given more
promising/insightful results.

4 Post Optimality Analysis of Mixed Integer Pro-
grams using Decision Diagrams

Recent work by [7] has shown that multivalued decision diagrams (MDDs) pro-
vide a useful framework for representing and answering questions about near-
optimal solutions, after the problem has been solved. Their work focused on
pure integer programs, and showed that with an appropriate notion of “reduc-
tion” which preserves representability of near-optimal solutions (called sound
reduction), such an MDD can be compiled efficiently and provide users the
ability to ask questions about the set of near-optimal solutions.

This work proposes to extend their results to mixed integer programs (MIPs).
The biggest challenge to this extension is determining how to incorporate con-
tinuous variables into the framework of decision diagrams. As they stand, de-
cision diagrams are inherently a very discrete object; each path corresponds to
a single feasible solution, and the set of solutions represented by an MDD is a
finite, discrete set. However, the set of feasible solutions (and thus near-optimal
solutions) for a MIP is neither finite nor discrete. Thus, we must either explic-
itly represent the continuous part in the MDD via some form of discretization,
or implicitly represent it by careful construction of an MDD which does not
represent the whole problem to full precision.

Thus the main questions for this project are as follows:

12

1. What is the “right way” to represent the set of near-optimal solutions of
a MIP via an MDD?

2. What properties must such an MDD satisfy in order to allow for useful
post-optimality analysis? Can such an MDD be constructed efficiently?

3. How does this framework perform for practical MIP instances?

4.1 Multivalued Decision Diagrams

For our purposes, a decision diagram D is a directed multigraph that represents
the set of solutions to a problem of the form

(P) = min

n∑
j=1

fj(xj)

∣∣∣∣∣∣ x ∈ S

where the domain Sj of each variable xj is finite. The node set ofD is partitioned
into subsets or layers U1, . . . , Un+1, with U1 containing only the root node r and
Un+1 containing only the terminal node t. Every arc a of D is directed from
a node u ∈ Uj to a node in layer Uj+1. Each arc a leaving u ∈ Uj has a label
xj(a) ∈ Si that represents the assignment of value xj(a) to variable xj , and a
weight wj(a) that represents the cost of assigning value xj(a) to variable xj .
The arcs leaving u must have distinct labels. If it possible for more than two
arcs to leave each node, D is called a multivalued decision diagram (MDD).

A path p in D from r to t represents an assignment of values to x =
(x1, . . . , xn), which we will denote by x(p). The diagram represents (P) if its
r-t paths represent precisely the values of x for which x ∈ S and each arc a
leaving a node in layer Uj is given weight fj(xj(a)). In this case, the weight of
any r-t path p in D is the cost

∑
j fj(xj(p)) of the corresponding solution x(p),

and any shortest r-t path defines an optimal solution x(p) of (P).

4.2 Sound Decision Diagrams for Pure IPs

Our primary interest is in representing near-optimal solutions of (P). Let P (∆)
be the set of feasible solutions with cost within ∆ of the optimal cost z∗, which
we refer to as ∆-optimal solutions, i.e.,

P (∆) =

x ∈ S
∣∣∣∣∣∣
∑
j

fj(xj) ≤ z∗ + ∆

We say a diagram D exactly represents P (∆) if its r-t paths correspond exactly
to the ∆-optimal solutions of (P). While exact representation is ideal, it may
result in diagram with exponentially many nodes. Fortunately, a decision di-
agram is sometimes smaller when it contains more paths, hence implying that
certain relaxations of the solution set can be encoded more concisely. As defined

13

by [3], sound decision diagrams take advantage of this by allowing solutions that
are not ∆-optimal, but only when they are worse than ∆-optimal.

Formally, diagram D is sound for P (∆) when every ∆-optimal solution of
(P) is represented by an r-t path of D, and every r-t path of D either represents
a ∆-optimal solution or has weight greater than z∗ + ∆. A path with weight
greater than z∗ + ∆ can represent a feasible or infeasible solution of (P).

[7] defines the notion of sound reduction (which preserves soundness of a
diagram), then prove that a sound diagram D for P (∆) has a mininum number
of nodes and arcs if and only if D is minimal (i.e., every node and arc is lies on
some r-t path representing a ∆-optimal solution) and sound reduction cannot
be further applied. This allows for the construction of minimal sound decision
diagrams by repeated application of sound reduction. Further, given a diagram
sound for P (∆), they show how to efficiently calculate what is called the δ-
optimal domain of a variable xj (i.e., the set of values xj can take among all
δ-optimal solutions), for any given δ ≤ ∆.

Our goal is to extend these results to the MIP case, and if not obtain some-
thing comparable or show that it is impossible.

4.3 Representation of Continuous Variables

We briefly present two potential approaches to incorporating continuous vari-
ables in a decision diagram. For terminology, let

(MIP) = min{cTx+ dTy : Ax+By ≥ b, x ∈ S, y ≥ 0}

Let z∗ denote the optimal value of (MIP). Note that for any x̄ ∈ S, we obtain
an upper bound on z∗ via

z∗(x̄) = cTx̄+ min{dTy : By ≥ b−Ax̄, y ≥ 0} = cTx̄+ Lx̄(y)

4.3.1 Implicit Representation

One approach is to not explicitly represent continuous variables in the diagram,
but instead only represent the discrete variables, then incorporate the continu-
ous variables in filtering arcs. [5] shows how this can be done though the lens of
Benders decomposition. Potential ideas include defining an appropriate notion
of equivalence between two nodes, representation of the cost of a solution (since
this is no longer explicitly represented in the diagram), and rules for determining
when two nodes can be merged.

4.3.2 Explicit Representation

An alternative approach is to discretize the feasible region of the MIP by only
considering basic feasible solutions. Specifically, we say (x̄, ȳ) is a basic feasible
solution of (MIP) if x̄ ∈ S and ȳ is a basic feasible solution of the LP defined by
L(x̄). An advantage of this approach is that the cost is exactly represented in
the diagram; a drawback is that the objective function is no longer separable,
and thus it is more difficult to merge nodes while maintaining soundness.

14

5 Quantum Annealing

Quantum computing is a method of computation unlike anything that comes
before it; as a result, there is great potential for developing efficient algorithms
for problems which were previously inaccessible by classical computers. How-
ever, very little of the nature of quantum computing is known, particularly in
reference to its application to optimiziation.

There are many approaches to utilizing quantum computing for optimiza-
tion. Among these, the most immediately testable is the framework of quantum
annealing. Algorithmically speaking, quantum annealing is the quantum ana-
logue of simulating annealing, and both are heuristic methods which are gen-
erally used to approximately solve hard combinatorial optimization problems.
The main advantage of quantum annealing is its ability to escape local optima
via quantum tunneling and that it can be (and in fact has been) implemented
directly using a quantum chip, allowing the algorithm to be run extremely
quickly. However, there are many caveats to quantum annealing as well; most
notably, quantum annealing can only natively solve quadratic unconstrained
binary optimization problems, a narrow but still NP-hard class of problems.
Also, physical limitations on the quantum annealing chip require us to solve a
minor-embedding problem on a subgraph of the Chimera graph every time we
want to solve a problem, which is NP-hard in general. Our overaching goal is
to better understand the properties of quantum annealing as an algorithm with
respect to combinatorial optimization. More specifically,

1. Are there any common structural properties among optimization problems
that are known to “work well” with quantum annealing?

2. Which classes of graphs are easiest to minor-embed in a Chimera graph?
Are there any classes of optimization problems which correspond to such
graphs?

5.1 Quantum Annealing

Quantum annealing is an algorithm that heuristially solves the Ising problem

(PI) = min
s∈{−1,+1}n

{
sTJs+ hTs

}
parameterized by J ∈ Sn and vector h ∈ Rn, where Sn is the set of n×n symmet-
ric matrices. By a simple transformation, this is equivalent to an unconstrained
binary optimization problem (QUBO), i.e.,

(PQ) = min
x∈{0,1}n

{
xTQx

}
parameterized by Q ∈ Sn.

Roughly speaking, quantum annealing works by exploiting the quantum adi-
abatic principle, which states that an Ising system (defined by J and h) in a
state of lowest energy stays (with high probability) in a state of lowest energy

15

when J and h are changed gradually over time. In particular, a quantum an-
nealer is initially configured to an Ising system whose state of lowest energy is
trivially known (e.g., J = I is the identity matrix and h = 0 is the zero vector).
Then I and 0 are gradually changed to the J and h of interest, then we take a
measurement to observe the state of the system. When this is repeated many
times, with high probability the state of the system will be in a low energy state
of the Ising system defined by J and h.

This effectively means that quantum annealing provides us with a way to
very quickly produce an ensemble of “good” solutions to a QUBO. Investigat-
ing how best to exploit this particular property of quantum annealing is an
overarching goal of this project.

5.2 Minor Embedding Problem

A major practical roadblock for utilizing quantum annealing is the necessity of
embedding the QUBO we wish to solve into the quantum annealer. Due to phys-
ical limitations, the quantum annealer is configured with a fixed connectively
structure (in particular, a Chimera graph). However, we can force different
nodes to be treated as the same by adjusting the coefficient of J appropriately;
this effectively amounts to contracting the corresponding arc in the underlying
graph. Thus, whenever we wish to solve a particular QUBO via quantum an-
nealing, we must generate a minor embedding of the graph corresponding to the
constraint matrix into the underlying graph of the quantum annealer.

While certain classes of problems have been solved via quantum annealing,
there is result connecting the structure of of the constraint matrix of a QUBO
and the ease of finding a minor embedding. Clarifying this connection is a major
focus of this project.

References

[1] R. J. Abumaizar and J.A. Svestka. “Rescheduling job shops under random
disruptions”. In: International Journal of Production Research 35.7 (1997),
pp. 2065–2082.

[2] Dimitris Bertsimas and Melvyn Sim. “The Price of Robustness”. English.
In: Operations Research 52.1 (2004), pp. 35–53.

[3] Tarik Hadžić and J. N. Hooker. “Cost-Bounded Binary Decision Diagrams
for 0-1 Programming”. In: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems. Ed. by Pas-
cal Van Hentenryck and Laurence Wolsey. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 84–98.

16

[4] Philippe Laborie. “IBM ILOG CP Optimizer for Detailed Scheduling Illus-
trated on Three Problems”. English. In: Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems. Ed. by Willem-Jan van Hoeve and John N. Hooker. Vol. 5547. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 148–162.

[5] Koos van der Linden. “Decision diagrams for decomposed mixed integer
linear programs”. MA thesis. TU Delft, 2017.

[6] Nicola Policella et al. “From Precedence Constraint Posting to Partial Or-
der Schedules: A CSP Approach to Robust Scheduling”. In: AI Commun.
20.3 (Aug. 2007), pp. 163–180.

[7] Thiago Serra and JN Hooker. “Compact Representation of Near-Optimal
Integer Programming Solutions”. In: (2017).

[8] Erlendur S. Thorsteinsson. “Branch-and-Check: A Hybrid Framework Inte-
grating Mixed Integer Programming and Constraint Logic Programming”.
In: Proceedings of the 7th International Conference on Principles and Prac-
tice of Constraint Programming. CP ’01. London, UK, UK: Springer-Verlag,
2001, pp. 16–30.

17

