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Abstract

Cutting planes for a mixed-integer program are linear inequalities which are satisfied
by all feasible solutions of the latter. These are fundamental objects in mixed-integer
programming that are critical for solving large-scale problems in practice. One of
the main challenge in employing them is that there are limitless possibilities for
generating cutting planes; the selection of the strongest ones is crucial for their
effective use. In this thesis, we provide a principled study of the strength of general-
purpose cutting planes, giving a better understanding of the relationship between
the different families of cuts available and analyzing the properties and limitations
of our current methods for deriving cuts.

We start by analyzing the strength of disjunctive cuts that generalize the ubiqui-
tous split cuts. We first provide a complete picture of the containment relationship
of the split closure, second split closure, cross closure, crooked cross closure and t-
branch split closure. In particular, we show that rank-2 split cuts and crooked cross
cuts are neither implied by cross cuts, which points out the limitations of the latter;
these results answer questions left open in [56, 65]. Moreover, given the prominent
role of relaxations and their computational advantages, we explore how strong are
cross cuts obtained from basic and 2-row relaxations. Unfortunately we show that
not all cross cuts can be obtained as cuts based on these relaxation, answering a
question left open in [56]. One positive message from this result, though, is that
cross cuts do not suffer from the limitations of these relaxations.

Our second contribution is the introduction of a probabilistic model for comparing
the strength of families of cuts for the continuous relaxation. We employ this model
to compare the important split and triangle cuts, obtaining results that provide
improved information about their behavior. More precisely, while previous works
indicated that triangle cuts should be much stronger than split cuts, we provide the
first theoretical support for the effect that is observed in practice: for most instances,
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these cuts have the same strength.

In our third contribution, we study the multi-dimensional infinite relaxation in-
troduced by Gomory and Johnson in the late 60’s, which has been an important
tool for analyzing and obtaining insights on cutting planes. The celebrated Gomory-
Johnson’s 2-Slope Theorem gives a sufficient condition for a cut to be facet defining
from the 1-row infinite relaxation. We provide an extension of this result for the
k-row case, for arbitrary k, which we call the (k + 1)-Slope Theorem. Despite in-
creasing interest in understanding the multi-row case, no such extension was known
prior to our work. This result, together with the relevance of 2-slope functions for
the 1-dimensional case, indicates that (k + 1)-slope functions might lead to strong
cuts in practice.

In our fourth contribution, we consider cuts that generalize Gomory fractional
cuts but take into account upper bounds imposed on the variables. More specifically,
we revisit the lopsided cuts obtained recently by Balas and Qualizza via a disjunctive
procedure. We give a geometric interpretation of these cuts, viewing them as cuts for
the infinite relaxation that are strengthened by a geometric lifting procedure. Using
this perspective, we are able to generalize these cuts to obtain a family of cuts which
has on one end the GMI cut, and on the other end the lopsided cuts. We show that
all these cuts are “new”, namely they are all facets of the infinite relaxation with
upper bounded basic variable. We conclude by presenting preliminary experimental
results, which unfortunately shows that these cuts decrease in importance as they
move away from the GMI inequality, complementing the experimental results from
Balas and Qualizza.

In our final contribution, we further explore properties and characterizations of
split cuts, focusing on a general model of mixed-integer corner relaxation. The
backbone of this work is a description of the split cuts for this relaxation from the
perspective of cut-generating functions; this essentially establishes the equivalence of
split cuts and (a generalization of) the k-cuts [50]. As our previous result, this char-
acterization is obtained using the geometric lifting idea, illustrating its flexibility as
a tool for analyzing cuts. As a consequence, we show that every split cut for a corner
relaxation is the restriction of a split cut for the mixed-integer infinite relaxation,
which further indicates the universality of the latter. As another consequence, we
construct a pure-integer set with arbitrarily weak split closure, giving a pure-integer
counterpart of the mixed-integer construction from [27].



Part I

Introduction and Known Results
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CHAPTER 1

Integer Programming and

Cutting Planes

Mixed-integer programming is a modeling framework that can be naturally used
to describe problems involving discrete decisions. A mixed-integer program (MIP)
comprises a linear function to be maximized (or minimized) subject to a collection
of linear constraints over the decision variables, with additional constraints enforcing
that some variables need to be integral. More precisely, given rational1 vectors c ∈ Qn

and d ∈ Qm, a matrix A ∈ Qn×r and a vector b ∈ Qr, the goal is to find a setting
(x∗, y∗) of the decision variables (x, y) that solve the following problem:

max cx+ dy

s.t. Ax+ By ≤ b (1.1)

x ∈ Zn.

The set

P , {(x, y) ∈ Zn × Rm : Ax+ By ≤ b} (1.2)

is called the set of feasible solutions of (1.1).

Despite their apparent simplicity, MIPs can be used to model a multitude of
problems and processes of very different nature [108]. A prototypical problem that

1MIPs with irrational data can also be defined. However, some of the results concerning the
structure of MIPs and cutting planes depend on this rationality assumption, so to avoid further
technicalities we will only deal with rational MIPs

7
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can be modeled by a MIP is the Traveling Salesman Problem, which can be described
as follows: a salesperson wants to visit N different cities to sell its products; the goal
is to find the best order for visiting the cities so as to minimize the total distance
traveled. However, many other situations, even those including non-linear objectives
and constraints, may be modeled using this framework [114].

1.1 Solving MIPs

Given the modeling power of these programs, it is not surprising that solving a
general MIP is computationally hard [97]. Nonetheless, the usefulness of MIPs has
driven intensive research aiming at either solving special classes of MIPs (e.g. [100,
103, 74]) or deriving heuristics that perform well in instances that appear in practice.
Throughout this thesis, we focus on the latter objective. Although many strategies
for solving general MIPs have been studied [96], by far the most popular one involves
a combination of two ideas: branch-and-bound and cutting planes. This strategy is
typically dubbed branch-and-cut and is implemented in most general purpose MIP
solvers like CPLEX, EXPRESS or GUROBI .

Both these ideas rely on the following observation: linear programs, that is, MIPs
without integrality constraints, can be much more easily solved [37]. It then becomes
interesting to consider the linear programming (LP) relaxation of the MIP (1.1) where
integrality constraints are dropped:

max cx+ dy

s.t. Ax+ By ≤ b, (1.3)

and its feasible set

PLP , {(x, y) ∈ Rn+m : Ax+ By ≤ b}.

Although solving the above linear relaxation gives some information about the
optimal solution of the original MIP (and in particular provides an upper bound
on the optimal value of the latter), the obtained solution (xLP , yLP ) might not be
feasible for (1.1) due to the non-integrality of xLP ; the necessity of excluding this
point from consideration motivates the following.

In order to move towards a feasible solution to the original MIP, a typical branch-
and-bound strategy [108] splits the space into regions R1, R2, . . . , Rk whose union
contains all the feasible solutions P , but excludes the fractional solution (xLP , yLP ).



1.2. The Role of Cutting Planes in Solving MIPs 9

An LP relaxation over each region Ri is computed, and those that have too small an
optimal value are discarded. The procedure then continues on each of the remain-
ing regions, further subdividing them based on the optimal solution of the linear
relaxations.

Of central importance for this thesis is the concept of cutting planes [108]. The
idea is to strengthen the linear relaxation (1.3) by adding new linear inequalities
fx + gy ≤ h which do not “cut off” any of the feasible solutions for (1.1), that is,
every solution (x, y) ∈ P satisfies fx+ gy ≤ h. The inequality fx+ gy ≤ h is called
a valid cut, cutting plane or valid inequality for (1.1).

Although these valid inequalities cannot eliminate all the spurious points in PLP \
P , we have the following fundamental property: if we augment the linear relaxation
PLP by adding all valid inequalities and solve the obtained program, this gives an
optimal solution for the original problem (1.1). Therefore, it is conceivable to solve an
MIP by solving its linear relaxation and progressively augmenting it with more and
more valid inequalities; this is the (pure) cutting plane method. The pure cutting
plane method has some theoretical appeal, but even for problems of medium size
this method is currently taken to be impractical. However, another way of using
valid inequalities is to incorporate them in a branch-and-bound procedure, where
the linear relaxations of the different regions are strengthened through the addition
of cuts; this yields the branch-and-cut procedure.

We remark, though, that there are infinitely many valid inequalities for (1.1),
which touches upon the central theme of this thesis: which valid inequalities should
we use? This choice heavily depends on our ability to recognize how strong a valid
inequality is. Our main goal in this thesis is precisely to obtain a better understanding
of the strength of valid inequalities.

1.2 The Role of Cutting Planes in Solving MIPs

The combination of branch-and-bound with cutting planes tailored for specific prob-
lems has been largely successfully in solving special classes of MIPs. A typical exam-
ple of the efficiency of this method is illustrated by the Traveling Salesman Problem,
where instances with almost 100,000 locations are solved to optimality; these tech-
niques have enough power to find the optimal tour over all 24,978 cities, towns, and
villages in Sweden [46].

The combination of branch-and-bound with general purpose cutting planes is also
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currently successful in solving some large scale MIPs. The state of affairs, however,
was not always like this. Until the early 90s “the research community was unanimous:
In order to solve integer programs of meaningful sizes, one had to exploit the struc-
ture of the underlying combinatorial problem” [48]. In particular, general purpose
cutting planes were seen as mostly of theoretical interest. However, in the mid 90s a
breakthrough came with a series of papers by Balas, Ceria and Cornuéjols (and also
Natraj), where they obtained striking computational results using these cuts within
the branch-and-bound framework [14, 15, 16]. These papers show the efficacy of
GMI cuts (introduced back in the 60s [84]) and the newly discovered lift-and-project
cuts, when properly employed. Both of these cuts are part of the family of cuts called
split cuts, which will play a central role in this thesis. This development has since
revived the importance of understanding the functioning of general purpose cutting
planes. See [102] for an excellent survey of the evolution of MIP solvers.



CHAPTER 2

Perspectives on Cutting Planes

In this section we start a more formal development of cutting planes. We assume
familiarity with basic polyhedral theory and integer programming; see [108, 113] for
background material.

Here we can classify the study and development of cutting planes into roughly
four different perspective: disjunctive cuts, intersection cuts, cuts for corner and
related relaxations and cuts from other relaxations. One interesting feature is that
there is a large interplay between these perspectives and most cuts can be analyzed
and obtained using either of them; however, one perspective may present a much
clearer picture of certain properties of the cuts under study.

2.1 Disjunctive Cuts

In order to make the discussion more precise, we will also need the following formal
definition of a mixed-integer set.

Definition 1. A mixed-integer set is a pair of the form Q = (K,Zm × Rn), where
K is a convex set in Rm+n. In the special case n = 0, we call this pair an integer
set. We will also often make use of the identification Q ≡ K ∩ Zm × Rn.

Typically such mixed-integer set Q will be used to represent the feasible solutions
of a MIP, and K is set to be its linear relaxation. From now on, we formally redefine
the set of feasible solutions given in (1.2) to be the appropriate mixed-integer set

11



12 Chapter 2: Perspectives on Cutting Planes

P , (PLP ,Zn × Rm). This slightly cumbersome definition is required because some
of the constructions depend on the specific LP relaxation used, and not only on the
set of feasible solutions.

In a highly influential paper, Balas introduced the concept of disjunctive pro-
gramming [12] (see also [13]). This is a modeling framework whose main idea is
to handle more explicitly constraints of the form “either or”, present in many opti-
mization problems. Indeed, these constraints are implicitly present in the integrality
constraints of MIP (1.1): in any feasible solution (x, y) ∈ P , we have, say, either
x1 ≤ 0 or x1 ≥ 1.

2.1.1 Split Cuts: the Simplest Disjunctive Cuts

Although we do not attempt to discuss disjunctive programming in full generality
here, we illustrate how the simple connection with MIPs outlined above can be
employed to give the most useful cuts in practice (as mentioned in Chapter 1): split
cuts.

Consider a mixed-integer set P = (PLP ,Zn×Rm) (identified with the feasible set
(1.2)). Given an integral vector π ∈ Zn and an integer γ ∈ Z, let

D(π, γ) , {(x, y) ∈ Rn+m : πx ≤ γ} ∪ {(x, y) ∈ Rn+m : πx ≥ γ + 1} (2.1)

denote the set of points (x, y) that either satisfy πx ≤ γ or πx ≥ γ + 1. Such
set is called a split disjunction for the mixed integer set P . Geometrically, we are
considering the parallel hyperplanes πx = γ and πx = γ+1 and, informally, focusing
on points on one side of one hyperplane, and on the opposite side of the other
hyperplane.

Again because of the integrality constraints, every feasible solution (x, y) ∈ P
belongs toD(π, γ) (note that the example in the beginning of this section corresponds
to taking π = (1, 0, . . . , 0) and γ = 0). Since these solutions also belong to the linear
relaxation PLP , we have the inclusion P ⊆ PLP ∩ D(π, γ). Importantly, the set
PLP ∩D(π, γ) is typically strictly smaller than PLP , and in this case the disjunction
D(π, γ) effectively excludes spurious points from PLP \ P ; recall that this is exactly
what we want from cutting planes.

We call a linear inequality fx + gy ≤ h a split cut for P with respect to the
disjunction D(π, γ) if it is valid for PLP ∩ D(π, γ) [47]. An important observation
that will be used in later sections is that adding together all split cuts with respect
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to D(π, γ) gives the convex hull conv(PLP ∩D(γ, π)), namely

conv(PLP ∩D(π, γ)) = PLP ∩
⋂

{(x, y) ∈ Rn+m : fx+ gy ≤ h},
where the last intersection is taken over all split cuts fx + gy ≤ h with respect to
D(π, γ).

Split cuts in this form were introduced by Cook, Kannan and Schrijver [47] based
on the disjunctive programming work of Balas. Despite its simplicity, the split cut
family encompasses many other well-known families of cuts [104]. In particular, as
mentioned in Section 1.2, the GMI and lift-and-project cuts responsible for the major
improvement of MIP solvers in the 90s are all split cuts. Another notable example
is that split cuts are equivalent to the mixed-integer rounding cuts [107], which were
introduced independently in [108]1.

Because of its power and simplicity, split cuts have received much attention from
researchers, and a large body of work concerning split cuts is already available. In
particular, the practical success of split cuts is partially due to the fact that there are
very efficient ways of generating a “small” collection of good split cuts. Notice again
that there are infinitely many split cuts, even with respect to a single split disjunction.
The first significant advance in the generation of split cuts was obtained by Balas
and Peregaard [20], which established a connection between lift-and-project cuts
and pivots over the simplex tableaux to provide an efficient cut generator2. Exciting
recent advances have been obtained by Dash and Goycoolea [59], Bonami [39] and
Fischetti and Salvagnin [80] to obtain even better results. These procedures are able
to harness almost the full power of split cuts in a computationally efficient way (see
also [23]).

There has also been much work in measuring and understanding the strength
of split cuts and comparing it with other families of cuts, both empirically and
theoretically. Since this is the central topic of this thesis, we devote Chapter 3 to
explore these results in more detail.

2.1.2 More General Disjunctive Cuts

Given that we already have a refined understanding of split cuts and can harness
their power, the next step is generalize this construction to obtain even stronger

1MIR cuts can be seen as a derivation of split cuts using the simple set relaxation explored in
Section 2.4.2.

2This connection is related to the fact that essentially every split cut can be obtained from basic
relaxations [3].
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cuts. The development of split cuts outlined above can indeed be extended to give
more general disjunctive cuts. Instead of working with the disjunctions of the form
D(π, γ), one can actually consider a general disjunction D =

⋃k
i=1Di (where each Di

is, say, a polyhedron) satisfying that no feasible solution is excluded by it: P ⊆ D.

Arguably the simplest such disjunction, after the split one, is the cross disjunction:
given π1, π2 ∈ Zn and γ1, γ2 ∈ Z, define

D(π1, π2, γ1, γ2) , D(π1, γ1) ∩D(π2, γ2).

The fact that P ⊆ D(π1, π2, γ1, γ2) follows again either directly from the presence of
integrality constraints in (1.1) or from the fact that P ⊆ D(πi, γi) for i = 1, 2. A
linear inequality is a cross cut for P with respect to the disjunction D(π1, π2, γ1, γ2)
if it is valid for PLP ∩D(π1, π2, γ1, γ2) [56].

Importantly, cross cuts provide a tighter relaxation of P : notice for instance
that PLP ∩ D(π1, π2, γ1, γ2) ⊆ PLP ∩ D(πi, γi) for i = 1, 2. Therefore, cross cuts
are hopeful candidates to provide even better performance than split cuts, while its
simple structure means that it is possible to obtain a good understanding of some of
its important properties.

Another important family of disjunctive cuts is the crooked cross cuts family [56].
Given π1, π2 ∈ Zn and γ1, γ2 ∈ Z define the sets

Dc
1(π

1, π2, γ1, γ2) = {(x, y) ∈ Rn+m : π1x ≤ γ1, (π
2 − π1)x ≤ γ2 − γ1},

Dc
2(π

1, π2, γ1, γ2) = {(x, y) ∈ Rn+m : π1x ≤ γ1, (π
2 − π1)x ≥ γ2 − γ1 + 1},

Dc
3(π

1, π2, γ1, γ2) = {(x, y) ∈ Rn+m : π1x ≥ γ1 + 1, π2x ≤ γ2},
Dc

4(π
1, π2, γ1, γ2) = {(x, y) ∈ Rn+m : π1x ≥ γ1 + 1, π2x ≥ γ2 + 1}.

We call the set

Dc(π1, π2, γ1, γ2) ,
4
⋃

i=1

Dc
i (π

1, π2, γ1, γ2)

a crooked cross disjunction for P . A linear inequality is a crooked cross cut for P if
it is valid for PLP ∩D for some crooked cross disjunction D.

Cross and crooked cross cuts have obtained recent attention, starting with a paper
by Dash, Dey and Günlük [56]. This direction was further explored theoretically and
computationally in [57, 65], showing that these cuts are indeed promising and are
able to improve over split cuts in practical instances.

The final family of disjunctive cuts that we mention here is the direct generaliza-
tion of split and cross cuts, called t-branch cuts [101]. Consider an integer t together



2.2. Intersection and Generalized Intersection Cuts 15

with πi ∈ Zm and γi ∈ Z for i = 1, . . . , t. The set D(π1, . . . , πt, γ1, . . . , γt) given by

D(π1, . . . , πt, γ1, . . . , γt) ,
t
⋂

i=1

D(πi, γi)

is called a t-branch split disjunction for P . The fact that Zn×Rm ⊆ D(πi, γi) implies
that P ⊆ D(π1, . . . , πt, γ1, . . . , γt). A linear inequality is a t-branch split cut for P
with respect to a t-branch split disjunction D if it is valid for PLP ∩D.

In Section 3.2.1 we discuss known results about the strength of all these disjunc-
tive cuts.

2.2 Intersection and Generalized Intersection Cuts

One can see disjunctive cuts from a slightly different perspective. Consider again, for
instance, the split disjunction D(π, γ) given by equation (2.1). Now notice that we
can see this disjunction as the removal of what is between two parallel hyperplanes:
D(π, γ) = Rn+m \ S(π, γ), where the split set S(π, γ) is defined as {(x, y) ∈ Rn+m :
γ < πx < γ + 1}. Therefore, the effect of split cuts for P with respect to D(π, γ) is

conv(PLP ∩D(π, γ)) = conv(PLP \ S(π, γ)),
namely removing the set S(π, γ) from PLP and then convexifying. Notice that the
set S(π, γ) is convex. We can see cross cuts in a similar way: given a cross disjunction
D(π1, π2, γ1, γ2), its effect on P

LP is conv(PLP \ (S(π1, γ1) ∪ S(π2, γ2))), where now
the removed set S(π1, γ1) ∪ S(π2, γ2) is typically non-convex. One difficulty when
trying to generate cuts this way (or using disjunctions directly) is that it is hard to
know which cuts are valid for, say, PLP \(S(π1, γ1)∪S(π2, γ2)). Intersection cuts deal
with this difficulty by using two observations: i) it uses a simplicial conic relaxation
BLP instead of PLP ; ii) removes only convex sets from this relaxation.

2.2.1 Intersection Cuts

We start by describing the conic relaxation BLP , the so called basic relaxation. The
idea is simple: we drop linear inequalities from the definition of PLP and only keep a
linearly independent set of them. More precisely, a basic relaxation of (1.2) is given
by a set of the form

B = {(x, y) ∈ Zn × Rm : A′x+ B′y ≤ b′}, (2.2)
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where the rows of the matrix [A′, B′] are linearly independent [3]. We also use BLP
to denote the linear relaxation of B:

BLP = {(x, y) ∈ Rn × Rm : A′x+ B′y ≤ b′}.

Clearly B is a relaxation of P and BLP is a relaxation of BLP , namely P ⊆ B and
PLP ⊆ BLP .

It is not difficult to verify that BLP ⊆ Rn+m is a full dimensional displaced
simplicial cone, namely there a point v (the apex) and a set of linearly independent
vectors r1, r2, . . . , rn+m (the generators) such that BLP = v + cone(r1, r2, . . . , rn+m)
(cone(V ) denotes the conic hull of a set V of vectors). It is instructive to think of
the apex v as the optimal solution of the linear relaxation PLP , which we want to
cut off.

Now we describe the sets S that are allowed to be removed from the relaxation
BLP in order to obtain intersection cuts. We say that a set S ⊆ Rn+m is a convex
lattice-free set with respect to Zn×Rm if is satisfies two properties: 1) S is convex; 2)
S does not contain any point of Zn×Rm in its interior, namely int(S)∩Zn×Rm = ∅.
We will also focus on convex lattice-free sets which contain the apex v in their
interior. Again the motivation is that BLP \ int(S) contains all the points of the
original feasible set P but exclude the “current solution” v. Notice, in particular,
that the set S(π1, γ1) is a lattice-free set (and so is its topological closure). Any cut
valid for BLP \ int(S), for some basic relaxation BLP and convex lattice-free set S
containing the apex of BLP , is called an intersection cut [12].

The main advantage of working with the displaced simplicial cone BLP instead
of PLP is that for any convex lattice-free set S with v ∈ int(S), the remainder
BLP \ int(S) gives you exactly one cut; more precisely, there is exactly one inequality
fx+ gy ≤ h such that

conv(BLP \ int(S)) = BLP ∩ {(x, y) ∈ Rn+m : fx+ gy ≤ h}.

Importantly, it is usually easy to obtain an expression for this cut.

To see the geometry driving both of these observations, let us focus on the impor-
tant case where all extreme rays of BLP intersect the boundary ∂S, or more precisely,
for all i ∈ {1, 2, . . . , n+m} there is λi > 0 such that v+λir

i ∈ ∂S; let pi be such point
v + λir

i. Then there is exactly one inequality fx + gy ≤ h which simultaneously is
unsatisfied by v and which all points p1, p2, . . . , pn+m satisfy at equality (notice that
the fact that BLP is simplicial implies that the points pi’s are affinely independent)
and conv(BLP \ int(S)) is exactly BLP ∩ {(x, y) ∈ Rn+m : fx + gy ≤ h}. Moreover,
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given the knowledge of the generators ri’s and S, one can easily find the intersection
points pi’s (say, by solving linear programs, or exploring the specific structure of
S) and then compute the cut fx + gy ≤ h by “fitting” it to the these points (say,
by solving a system of linear equations). Actually, if we rewrite BLP in a corner
relaxation form, introduced in the next section, the cut can be computed in an even
more efficient manner.

Intersection cuts were introduced by Balas [11] and in conjunction with the corner
relaxation and related relaxations, has been the focus of much of the studies in the
theory and practice of cutting planes. We defer the discussion of some of the results
regarding intersection cuts to Section 2.3.2, where we formally define the corner
relaxation.

2.2.2 Generalized Intersection Cuts

Although working with the conic relaxation BLP offers the advantage of simplifying
the actual cut generation procedure (once the relaxation and the set S are chosen),
some power might be lost in the process of relaxing PLP to BLP . Indeed, it has
been shown recently that for some problems the cuts obtained from the construction
BLP \ int(S) (even running over all BLP and S) are very weak [52]. In order to
obtain reasonable cuts for such problems using this intersection cuts machinery, it
then becomes necessary to iterate the process: start with the linear relaxation PLP ,
obtain relaxations of the form BLP and add some intersection cuts back to PLP to
obtain a stronger linear relaxation PLP

2 of P ; then repeat the process starting with
PLP
2 to obtain the stronger linear relaxation PLP

3 , and so on. Notice that the choice
of cuts used in, say, the first iteration of this process affects the further relaxations
PLP
i ’s, and it is hard to predict the behavior of the whole procedure. Moreover, this

iterative nature often leads to numerical instabilities.

In order to obtain stronger cuts directly and reduce (or potentially avoid alto-
gether) the necessity of iterating the cut generation procedure, Balas and Margot
recently proposed the so called generalized intersection cuts [18]. The idea behind
generalized intersection cuts is the following: given a convex lattice-free set S and
any relaxation P̃LP of PLP , we can still look at (the extreme points/rays of) the inter-
section P̃LP ∩ ∂S (in the above discussion where P̃LP = BLP , the extreme points of
this intersection are exactly the pi’s) and construct cuts based on these intersection
points (for instance, by selecting n+m affinely independent such points and finding
the unique linear equation containing them).
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The main difficulty of a practical cut generation via such procedure is the choice
of the appropriate relaxation P̃LP , dealing with the potentially large number of
intersection points that need to be maintained, and how to combine these points to
actually generate the cuts. In [18], the authors propose to start with P̃LP = BLP as
before, but then progressively adding back some of the original inequalities defining
PLP to obtain tighter relaxations while controlling the number of intersection points
generated. Balas, Margot and Nadarajah [19] present further discussion on how to
make this procedure computationally practical, and perform experiments with these
cuts.

2.3 Corner and Related Relaxations

One of the difficulties of generating strong cuts for a general MIP like (1.1) is exactly
its generality: there is very little structure to rely on. Because of that, one of the
most successful strategies to generate cuts for (1.1) is to actually generate cuts for a
relaxation of it, which was already hinted to in the previous section. The relaxations
considered have a significantly simpler structure and hence it is easier to understand
what are the strong cuts for them, namely those that we should generate in practice;
also, their special structure typically allow for a more efficient cut generation.

Another important feature of deriving cuts from relaxations of a MIP is that it is
more explicit what information is being used to derive such cuts. For instance, if a
relaxation is relaxing the integrality of some of the variables and a cut is generated,
then we know this cut did not take into account such integrality information. Some
relaxations we consider indeed relax the integrality of some variables (e.g., the con-
tinuous relaxation in Section 2.3.4), while others relax the non-negativity of some
variables (e.g., the corner relaxation in Section 2.3.2) and others are able to some-
how ignore the specific structure of particular MIPs (e.g., the infinite relaxation in
Section 2.3.3). In order to derive strengthened cuts, it is invaluable to known what
additional information needs to be incorporated.

2.3.1 Generalized Corner Relaxation

We start by defining the most general family of MIPs that includes all other corner-
type relaxations. Given a point f ∈ Rn\Zn and sets R,Q ⊆ Rn, define the generalized
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corner relaxation C(f,R,Q) as the set of solutions (x, s, y) to the system

x = f +
∑

r∈R

r · s(r) +
∑

q∈Q

q · y(q)

x ∈ Zn (C(f,R,Q))
y(q) ∈ Z ∀q ∈ Q

s ∈ R
{R}
+ , y ∈ R

{Q}
+ ,

where R
{S}
+ is the set of non-negative functions h : S → R+ with finite support. We

also define

CLP (f,R,Q) =
{

(x, s, y) : x = f +
∑

r∈R

r · s(r) +
∑

q∈Q

q · y(q), s ≥ 0, y ≥ 0

}

(2.3)

to be the linear relaxation of C(f,R,Q).
A valid cut or valid function for a generalized corner relaxation C(f,R,Q) is a pair

of non-negative functions (ψ, π) ∈ RR
+ × R

Q
+ (where RS

+ denotes the set of functions
from S to R+) such that for every (x, s, y) ∈ C(f,R,Q) we have

∑

r∈R

ψ(r)s(r) +
∑

q∈Q

π(q)y(q) ≥ 1. (2.4)

We will associate the function pair (ψ, π) with the cut defined by the above inequality.
With slight abuse of notation, we may use (ψ, π) to denote the set of points satisfying
(2.4) (e.g., CLP (f,R,Q) ∩ (ψ, π)).

We next explore the different special cases of generalized corner relaxations that
have been considered in the literature, also mentioning the motivation behind these
constructions.

2.3.2 Corner Relaxation

A corner relaxation is obtained from the above definition by using finite set R,Q,
namely it is a mixed-integer set C(f,R,Q) for finite R,Q. The corner relaxation
was introduced by Gomory [85, 86] and has received a lot of attention (see [44] for
an excellent introduction to the corner relaxation and related notions). Importantly,
although some power is lost when taking a relaxation (this will be discussed in more
detail in Section 3.2), many of the prominent families of cuts are actually valid for
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the corner relaxation. For example, Andersen, Cornuéjols and Li [3] showed that
every split cut for a general MIP (2.5), which includes the GMI and lift-and-project
cuts mentioned in Chapter 1, can be obtained as a split cut from one of its corner
relaxations. One can think of a corner relaxation as a basic relaxation embedded in
a higher-dimensional space.

Motivation. We now motivate the construction of the (generalized) corner relax-
ation. For that, it will be convenient to encode the feasible set (1.2) in a different
way. First, we put the MIP (1.2) in standard form3

Dw = d

w ≥ 0 (2.5)

wi ∈ Z, ∀i ∈ I

by performing the following operations: 1) transforming each inequality Aix+Biy ≤
bi into the pair of constraints Aix + Biy + si = bi and si ≥ 0; 2) replacing any
unrestricted variable, say xi, by the term x+i + x−i and imposing the non-negativity
x+i ≥ 0, x−i ≥ 0; 3) renaming all the variables into w, with the integral variables
{wi}i∈I corresponding to the variables y. Moreover, we assume that the matrix
D has full row rank: if not, then either the linear system Dw = d has no solutions
(which we can recognize efficiently, making the instance easy to handle), or it contains
equations that are linear combinations of others, which are redundant and can be
removed from the formulation.

Then given a square submatrix B of D of full rank (called a basis), we can rewrite
(2.5) in tableau form with respect to B (i.e., pre-multiplying the system by B−1) to
obtain the equivalent system

wB = d̄− N̄wN

w ≥ 0

wi ∈ Z, ∀i ∈ I,

where wB are known as the basic variables and wN are called the non-basic variables.

At this point we still have a system equivalent to (2.5). In order to finally obtain
the corner relaxation of (2.5) with respect to the basis B we simply remove the

3See, for instance, [37] for more details on the transformations and assumptions made in this
part, as well as the notation used.
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non-negativity constraints for the basic variables wB:

wB = d̄− N̄wN

wN ≥ 0

wi ∈ Z, ∀i ∈ I.

Further notice that if a given basic variable wi is not required to be integral (i.e., i /∈
I), then the equality constraint with wi on the left-hand side is not really constraining
the solution set of the system. Therefore, we can drop the equality constraints
corresponding to all the basic variables which are not required to be integral. This
brings us to a corner relaxation, namely system of the form C(f,R,Q) with finite
R,Q.4

Cuts. It is known that valid functions, and more precisely the cuts given by (2.4)
associated with them, capture every valid cut for a corner relaxation C(f,R,Q) that
cuts off the infeasible point (f, 0, 0) [44].

The first observation that strengthens the connection between the corner relax-
ation and intersection cuts is the following. Notice that CLP (f,R,Q) ⊆ Rn+|R|+|Q|

is actually a displaced simplicial cone with apex (f, 0, 0) and generators {(r,1r, 0)}
and (q, 0,1q), where 1v : Rn → {0, 1} is the indicator function of the vector v [44].
Therefore, we can obtain intersection cuts using CLP (f,R,Q) as relaxation.5 (To
simplify the notation, we use r̃ = (r,1r, 0) and q̃ = (q, 0,1q).)

For that, we are going to define the following fundamental objects in convex
analysis that give a functional description of a convex set [111].

Definition 2 (Gauge function). Given a full dimensional convex set K ⊆ Rn con-
taining the origin in its interior, the function γK : Rn → R+ defined by

γK(r) = inf
{

t > 0 :
r

t
∈ K

}

is called the gauge function of K.

Let S ⊆ Rn+|R|+|Q| be a convex lattice-free set; in this context, by lattice-free we
mean that int(S)∩Zn×R|R|×Z|Q| = ∅. Moreover, assume that S contains the point

4It is instructive to think of the point (f, 0, 0) ∈ Rn ×R|R| ×R|Q| as being the optimal solution
for the linear relaxation of (2.5).

5Notice that CLP (f,R,Q) is not full dimensional as the basic relaxation CLP used in the pre-
vious section. However, we will still be able to obtain a cut by looking at intersection points of
CLP (f,R,Q) ∩ ∂S, for a convex lattice-free set S.
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(f, 0, 0) in its interior. Let ψS be the gauge function of the translated set S− (f, 0, 0)
(which now contains the origin in its interior), namely ψS = ρS−(f,0,0). The inequality

∑

r∈R

ψS(r̃)s(r) +
∑

q∈Q

ψS(q̃)y(q) ≥ 1

is called the intersection cut for CLP (f,R,Q) associated with S.

Theorem 1 ([11]). Let S ⊆ Rn+|R|+|Q| be a convex lattice-free set containing the
point (f, 0, 0) in its interior. Then the cut (ψS, ψS) is valid for C(f,R,Q). More
precisely,

CLP (f,R,Q)\int(S) ⊆ CLP (f,R,Q)∩
{

(x, s, y) :
∑

r∈R

ψS(r̃)s(r) +
∑

q∈Q

ψS(q̃)y(q) ≥ 1

}

.

To get a feeling for the connection of this cut with intersection cuts as defined
earlier, suppose that for every r ∈ R we have ψS(r̃) > 0 and for every q ∈ Q
we have ψS(q̃) > 0, and notice that in this case the intersection between the line
{(f, 0, 0) + λr̃, λ ≥ 0} and ∂S is exactly (f, 0, 0) + 1

ψS(r̃)
r̃ (and similarly for q̃). Then

it is easy to verify that the hyperplane (in Rn+|R|+|Q|) given by
∑

r∈R ψS(r̃)s(r) +
∑

q∈Q ψS(q̃)y(q) = 1 contains all these intersection points. Also notice that the apex
(f, 0, 0) is indeed cut off by this cut.

We also have a converse that says that every valid inequality for C(f,R,Q) is
actually an intersection cut.

Theorem 2 ([43]). Every valid cut for C(f,R,Q) is dominated by an intersection
cut.

The connection offered by the previous proposition means that understanding
strong cuts for the relaxation C(f,R,Q) amounts to understanding convex lattice-
free sets. The prominent role played by such sets has attracted a lot of research, see
[44, 31, 106, 82, 10, 95] for some related work. We remark that actually objects related
to lattice-free sets have played a major role in the geometry of numbers, including the
fundamental Minkowski’s Convex Body Theorem and Khintchine Flatness Theorem
[91].

Although convex lattice-free sets in R2 are well understood, the structure of
these sets in higher-dimensional spaces is still poorly understood. From a practical
perspective, it is hard to know which of these sets should be used to generate cuts for a
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given MIP. Working with low-dimensional lattice-free sets will be a major motivation
behind the continuous relaxation introduced in Section 2.3.4.

As a side remark, we can tie back intersection cuts to disjunctive cuts as follows.
Consider a convex lattice-free set S with (f, 0, 0) in its interior, and consider a linear
description of this set in the form S = {(x, s, y) : aj(x, s, y) ≤ bj, j ∈ J}. Then the set
conv(CLP (f,R,Q)\int(S)) is given exactly by applying the disjunction

⋃

j∈J{(x, s, y) :
aj(z, s, y) ≥ bj} to CLP (f,R,Q) and then convexifying:

conv(CLP (f,R,Q) \ int(S)) = conv

(

CLP (f,R,Q) ∩
⋃

j∈J

{(x, s, y) : aj(z, s, y) ≥ bj}
)

.

Therefore, the intersection cut
∑

r∈R ψS(r̃)s(r)+
∑

q∈Q ψS(q̃)y(q) ≥ 1 associated with
S is also a disjunctive cut.

2.3.3 Infinite Relaxation

One difficulty of working with a corner relaxation is that the structure of the cuts
seem to heavily depend on the specific sets R and Q used to define it. In order to
reduce this dependence, define the infinite relaxation as the set C(f, ∅,Rn). This
relaxation was introduced by Gomory and Johnson [87, 88]. One can also define the
mixed-integer infinite relaxation as the set C(f,Rn,Rn), but here we focus on the
(pure-integer) infinite relaxation.

As pointed out in [44], the non-negativity assumption in the definition of a valid
function is not without loss of generality in the context of the infinite relaxations.
However, although there are functions π taking negative values that satisfy (2.4) for
all feasible y, any such function must be non-negative over all rational vectors. Since
data in mixed-integer linear programs are usually rational, it is natural to assume non-
negativity in the definition of valid functions, which brings some technical benefits.

After introducing this relaxation, Gomory and Johnson [87, 88] started analyzing
the structure of valid inequalities. In particular, they gave a simple characterization
of all minimal valid inequalities, which can be seen as the only necessary inequalities
to describe CLP (f, ∅, Q) (see Section 3.1 for definitions). In addition, they provided
what was arguably the deepest result in the theory of the infinite relaxation, the
2-Slope Theorem, that gives a sufficient condition for valid inequalities to be a “facet”
of C(f, ∅, Q) for the case n = 1. One of the results presented in this thesis is the
extension of this theorem for general n (Chapter 6), which had been open since this
seminal Gomory-Johnson paper in the 60s.



24 Chapter 2: Perspectives on Cutting Planes

Notice that the infinite relaxation introduces a shift from the more geometric per-
spective to a functional analytic perspective. However, the relaxation presented next
will clarify that there is actually a strict connection between these two perspectives.

2.3.4 Continuous Relaxation

As mentioned previously, one difficulty in obtaining strong cuts for the corner re-
laxation is that lattice-free sets in high dimensions are not well understood. The
continuous relaxation presented next tries to overcome this difficulty. The continu-
ous relaxation is defined as a set of the form C(f,R, ∅), for a finite set R ⊆ Rn.

Given that this relaxation is really a special case of the corner relaxation where
only continuous non-basic variables as present, we can still derive intersection cuts
for it using convex lattice-free sets K ⊆ Rn+|R| with (f, 0) ∈ int(K); we remark that
in this context lattice-free means that int(K)∩(Zn×R|R|) = ∅. The main observation
is that all the “action” is really happening only on the first n dimensions of the space,
relative to the integral variables x.

More precisely, the first observation is the following: Consider a convex setK ′ con-
tainingK, but still such thatK ′ is lattice-free (notice that (f, 0) ∈ int(K ′)). Then the
valid cut

∑

r∈R ψK′((r,1r))s(r) ≥ 1 generated byK ′ dominates
∑

r∈R ψK((r,1r))s(r) ≥
1: every point (x, s) ∈ Rn+|R| satisfying the latter also satisfies the former. Therefore,
we can focus our attention to (inclusion-wise) maximal lattice-free sets containing
(f, 0).

So assume now that K is a maximal convex lattice-free set in Rn+|R|. It is
easy to see that K must be a cylinder, more precisely, there is S ⊆ Rn such that
K = S × R|R|: simply set S to be the projection of K into the first n coordinates.
Because of this property, the functions ψK and ψS have the following relationship:
for every (r, r′) ∈ Rn+|R|, ψS(r) = ψK((r, r

′)). Therefore, the cut given by K is really
determined by S:

∑

r∈R

ψK((r,1r))s(r) ≥ 1 ≡
∑

r∈R

ψS(r)s(r) ≥ 1.

The cut
∑

r∈R ψS(r)s(r) ≥ 1 is called the intersection cut or lattice-free cut from the
set S. Notice that S is lattice-free, namely int(S) ∩ Zn = ∅, and that f ∈ int(S).
Theorem 2 directly gives the following connection.

Proposition 1. For finite R ⊆ Rn, conv(C(f,R, ∅)) = CLP (f,R, ∅) ∩
⋂

S{(x, s) ∈
Rn+|R| :

∑

r∈R ψS(r)s(r) ≥ 1}, where the intersection is taken over all convex lattice-
free sets S ⊆ Rn with f ∈ int(S).
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This proposition shows that in the continuous relaxation, we can focus on lattice-
free sets in Rn instead of the potentially much larger space Rn+|R|. However, the
dimension n itself is typically quite large. The next idea is that, bearing some loss,
we can focus on the case where n is small, say 1 or 2, by simply dropping most of
the equations defining C(f,R, ∅).

2-Row continuous relaxations were studied recently by Andersen et. al [4], and
this has spurred intensive research on the topic (see [44]). Despite the very simplified
structure of such relaxation, one compelling feature is the following: a famous bad
example for split cuts introduced by Cook, Kannan and Schrijver [47] can be handled
using a single cut obtained from a 2-row continuous relaxation [4] (see Section 3.2
for more details).

Liftings. As mentioned in the beginning of Section 2.3, one way to strengthen the
cuts obtained from relaxations is by incorporating information of the original MIP
that was discarded in the process. In particular, given a valid inequality for the
continuous relaxation, we can obtain a stronger inequality that is valid for a corner
relaxation by imposing back integrality on some of the variables. This procedure is
called lifting. Very interesting results about the structure of these liftings have been
recently obtained in [72, 71, 28, 45, 29, 33]. We remark that the idea of strengthening
inequalities by considering additional integrality conditions is not new, having already
been explored by Balas and Jeroslow [17] with the monoidal strengthening procedure.

We also point out that a continuous version of the infinite relaxation was consid-
ered by Borozan and Cornuéjols [40]. They show that in their model, there is an
equivalence (via the intersection cut procedure) between valid cuts and lattice-free
sets in Rn. Again lifting procedures can be used to give strong inequalities for the
infinite relaxation. Therefore, these lifting procedures are able to establish a con-
nection between the geometric perspective of intersection cuts and the functional
perspective of cuts for the infinite relaxation. In Chapters 7 and 8 we explore further
such connections.

2.4 Other Relaxations

In this section we present relaxations that are not directly related to the corner
relaxation but are very useful for deriving cuts. For this section it will be convenient
to work with MIPs in the standard form (2.5).
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2.4.1 k-Row Relaxation

Consider the mixed-integer set P given by the MIP (2.5) in standard form. A k-row
relaxation of P is obtained by combining the equality constraints into k equalities.
More precisely, such relaxation is a set of the form

P (M) = {w :MDw =Md,w ≥ 0, wi ∈ Z ∀i ∈ I},

for a k × ℓ matrix M (where ℓ is the number of equality constraints in (2.5)).

Although such relaxations greatly simplify the structure of the problem, which
also lends to efficient cut generation procedures, they are surprisingly powerful. For
example, Nemhauser and Wolsey [107] showed that every split cut can be obtained
as a split cut for a 1-row relaxation. More results concerning this relaxation are
presented in Section 3.2.3.

2.4.2 Simple Mixed-integer Sets

Another different idea for using relaxations to derive cuts is to consider very simple
mixed-integer sets for which we can obtain (usually) the description of all facets; a
(relaxation for a) general MIP is then “embedded” in these simple sets.

The most basic example of this approach is to look at the following 2-dimensional
set

Q1 = {(u, v) ∈ Z× R : u+ v ≥ β, v ≥ 0},
for some β ∈ R. The inequality [β]u + v ≥ [β]⌈β⌉, where [β] = β − ⌊β⌋ denotes the
fractional part of β, is valid for Q1. In fact, it is the only missing facet from its linear
relaxation.

Proposition 2 ([114]). conv(Q1) = {(u, v) ∈ R×R : u+v ≥ β, [β]u+v ≥ [β]⌈β⌉, v ≥
0}.

Although the set Q1 is not directly a relaxation of (2.5), we can still “embed” the
latter in the former [104, 55]. For example, let fw ≥ h be a valid inequality for (2.5);
for example, we can take fw = h to be one of the rows of the system Dw = d, or
a linear combination of these rows. The second step is to transform the coefficient
vector f into f̃ as follows. Let I ′ ⊆ I be a subset of the indices of integral variables.
Then for every i ∈ I ′, we obtain the coefficient f̃i by rounding up fi; for every i /∈ I ′,
we obtain the coefficient f̃i by setting it equal to 0 if fi < 0, and equal to fi otherwise.
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It is easy to check that the cut f̃w ≥ h is actually dominated by fw ≥ h, and so the
former is valid for (2.5). This gives the following relaxation of (2.5):

Q =







w :

∑

i∈I′ f̃iwi +
∑

i/∈I′ f̃iwi ≥ h
wi ∈ Z ∀i ∈ I ′

wi ≥ 0 ∀i /∈ I ′







.

Notice the resemblance of this set with Q1. More precisely, by the definition
of f̃ , for every feasible solution w ∈ Q we have that

∑

i∈I′ f̃iwi is integral and

that
∑

i/∈I′ f̃iwi is non-negative. Setting u =
∑

i∈I′ f̃iwi and v =
∑

i/∈I′ f̃iwi gives a
correspondence between the points in Q and those in Q1 (for β set to h). Under this
correspondence, the inequality [β]u+ v ≥ [β]⌈β⌉ for Q1 becomes the valid inequality

[h]
∑

i∈I′

f̃iwi +
∑

i/∈I′

f̃iwi ≥ [h]⌈h⌉

for Q, which is also valid for the original program (2.5).

We remark that improved embedding procedures can be used, which can lead
to stronger inequalities (see [114, 55]). For instance, one can use this improved
procedure to obtain the mixed-integer rounding (MIR) inequality with respect to a
given base inequality fw ≥ h. Recall that it was shown that MIR inequalities are
equivalent to split cuts [107].

This approach for generating cuts shifts the difficulty from understanding the
facial structure of a MIP (or some of its relaxation) into finding the right simple set
to be considered and then properly embedding the original MIP into this set. Thus,
in some ways, this approach is complementary to the approaches that we have been
discussing so far. One attractive feature is that one can generate cuts for specific
optimization problems by abstracting an appropriate simple set similar to Q1 which
captures the main features of the problem.

The approach of using simple sets for deriving cuts has been very successful, in
particular in obtaining generalizations of MIR inequalities. For instance, extensions
of Q1 with multiple integer variables were used to obtain the 2-step MIR [60] and
n-step MIR [98], an extension with multiple constraints connected through a single
continuous variable was used to obtain the mixing MIR inequalities [92], and an
extension with bounded variables was used to obtain mingling inequalities [7, 8].

We also highlight that this approach can be used to obtain cuts for non-linear
mixed-integer programs by using simple non-linear mixed-integer sets, such as the
conic [9] and n-step conic [105] MIR inequalities. The possibility of generating cuts
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for non-linear programs using simple sets had already been observed in [92], by
incorporating the non-linearity in the embedding step.



CHAPTER 3

Strength of Cuts

The infinitude of possibilities for generating cuts motivates the main theme of this
thesis: in order to generate effective cuts, we need to understand the strength of the
different families available and the properties and limitations of our current methods
for deriving cuts.

Before presenting some ways of measuring the strength of cuts and known results
relative to them, we discuss the interplay between theory and practice in this context.
The end goal of studying cutting planes is to eventually obtain improvement in the
efficiency of solving MIPs in practice. Therefore, it is natural that the empirical
performance of cuts is a very important factor when studying the strength of cuts.
However, relying on experiments to determine the strength of cuts has two major
drawbacks: the results are highly dependent on the problem instances used, and also
on how the cuts are generated throughout the experiments.1 Therefore, we feel that
analytical results about the strength of cuts are very important, specially when they
can relate back to experimental results. Moreover, the theoretical understanding
of cuts is also important for providing insights on how to improve on the currently
available cuts.

Aiming at bridging the theoretical and practical performance of cuts for the
continuous relaxation is the focus of one of our results, presented in Chapter 5. Even
though the model considered is not fully realistic, it is able to partially explain the
empirical performance of some families of cuts better than previous models.

1Looking at the closure of a family of cuts avoids the second problem, although at this point it
is not always feasible to take such approach.

29
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3.1 Measures of Strength

In this section we present some of the common ways of measuring the strength of
families of cuts.

Minimality, extremality and facetness. This is the most traditional way of
capturing the strength of cuts. Consider a generic feasible set P of a MIP as in (1.2).
Recall the standard definitions of minimal valid and facet defining inequalities for
conv(P ) (see for instance [108]). With slight overload in notation, we also use the
term facet to refer to facet defining inequalities.

The concept of minimal valid and facet defining inequalities defines a hierarchy
of inequalities: minimal valid inequalities are a subset of valid inequalities, and facet
defining inequalities are a subset of the former. Importantly, one does not lose any
power by focusing on the smaller of these classes:

conv(P ) =
⋂

{(x, y) ∈ Rn+m : fx+ gy ≤ h},

where the intersection runs over all facets fx + gy ≤ h of conv(P ). Therefore,
focusing on trying to generate facets of conv(P ) has been a standard practice. Indeed,
in the 80s and 90s there was a flurry of work deriving facet defining inequalities for
specific problems, where we highlight the success obtained for the Traveling Salesmen
Problem [5].

The notions of minimal valid and facet defining inequalities can also be extended
to the an infinite relaxation C(f, ∅,Rn) in a reasonably natural way [87, 88, 89]. We
say that a valid function π is minimal if there is no other valid function π′ such
that π′ ≤ π with π′(r) < π(r) for some r ∈ Rk; this is essentially the same as in
the finite-dimensional case. Now, to make the definition of a facet in this context
more transparent, given a valid function π we define E(π) to be the set of all feasible
solutions (x, y) ∈ C(f, ∅,Rn) that satisfy π at equality, namely

∑

r∈Rn π(r)y(r) = 1.
Then π is facet defining if there is no other valid function π′ such that E(π′) ) E(π),
that is, which has strictly more contact points with C(f, ∅,Rn). Finally, we say that
the valid function π is extreme is there are no valid functions π1 and π2 such that
π = (π1 + π2)/2.

It is known that a facet defining function is extreme, which in turn is a minimal
function [88, 89]. Therefore, these notions define a 3-level hierarchy of valid functions
for the infinite relaxation. Unfortunately, unlike in the finite-dimensional case, it is
not clear if it suffices to consider facet defining functions (or even extreme functions).
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Nonetheless, being a facet (or extreme) is taken to be an indication of strength of a
valid function [89].

Another distinction is that in the finite-dimensional case, the corresponding def-
initions of facet defining inequality and extreme inequality coincide. As far as we
know, it is an open question whether they also coincide in the context of the infinite-
relaxation. Another distinction is that in the finite-dimensional case, the correspond-
ing definitions of facet defining inequality and extreme inequality coincide. As far
as we know, it is an open question whether they also coincide in the context of the
infinite-relaxation.

Closure inclusion. The notion of minimal/extreme/facet defining inequalities is
interesting for studying the strength of a particular cut, but not as useful for com-
paring the strength among families of cuts. One reason for that is that not all cuts
within a family (e.g. split cuts) will be, say, facet defining for a given MIP. One
way of performing such comparison is by considering the closure of the families of
interest.

More precisely, consider a mixed-integer set P = (K,Zm × Rn). Given a family
F of valid cuts for P , the F-closure of P , denoted by F(P ), is the mixed-integer set
(K ′,Zm × Rn) obtained by adding to K all the cuts in F :

K ′ = K ∩
⋂

{(x, y) ∈ Rn+m : fx+ gy ≤ h},

where the last intersection is taken over all cuts fx+ gy ≤ h in F .

By validity of the cuts, we always have that conv(P ) ⊆ F(P ) and the smaller
the closure is, the better an approximation to conv(P ) it gives. Therefore, given two
families F and F ′ of cuts (for instance, cross cuts and split cuts), the closure inclusion
F(P ) ⊆ F ′(P ) indicates that the family F is stronger than F ′. Unfortunately, it can
happen that neither F(P ) ⊆ F ′(P ) nor F ′(P ) ⊆ F(P ), in which case more refined
methods are needed to provide further information.

We note that this inclusion comparison can be performed between any two relax-
ations of P (say, taking the intersection of all corner relaxations versus F(P ), for
some family F).

Integrality gap. This type of measure is by far the most widely used to report
the performance of cuts in experimental results. Given a MIP (1.1) and a specific
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relaxation, the integrality gap2 is given by

[value when optimizing over the relaxation]− [optimal value of MIP]

optimal value of MIP
.

Another related measure is the percentage of integrality gap closed, which com-
pares the capacity that a given relaxation has of closing the integrality gap when
compared to the actual integer hull:

[value when optimizing over the relaxation]− [value when optimizing over the LP relaxation]

[optimal value of MIP]− [value when optimizing over the LP relaxation]
.

Blow-up measure. One can develop a more refined measure of strength than the
closure inclusion defined above, at least for problems of blocking type. A closed,
convex set X ⊆ Rn

+ is said to be of blocking type if for every x ∈ X, whenever y ≥ x
then we have y ∈ X [113]. Although this is a restrictive property, we remark that, for
instance, the projection of the continuous relaxation onto the space of the s variables
is of blocking type (see [51]). For a set X of blocking type and for a scalar α ∈ R+,
define αX = { x

α
: x ∈ X}. Notice that αX contains X for all α ≥ 1.

Consider a non-empty set X ⊆ Rn
+ of blocking type and let A,B ⊆ Rn

+ be closed
convex relaxations of X; notice that A and B are also of blocking type. In order to
compare A and B, define bu(A,B) as the amount that A has to be “blown up” in
order to contain B, namely

bu(A,B) = inf{α : αA ⊇ B},

see [83].3 Informally, the larger bu(A,B) is, the larger B is compared to A. In
particular, if A contains B then we have bu(A,B) ≤ 1, otherwise we have bu(A,B) >
1. Therefore, this measure refines the closure inclusion discussed above.

This is also somewhat related to the integrality gap measure. To see this, define
the multiplicative gap between A and B with respect to the cost vector c as:

gap(A,B, c) =
inf{cs : s ∈ A}
inf{cs : s ∈ B} , (3.1)

2Although we use this measure with a general relaxation and not only with the linear relaxation,
we still use the term integrality gap.

3We define bu(A,B) = ∞ if there is no finite α such that αA ⊇ B.
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where we define gap(A,B, c) = ∞ if inf{cs : s ∈ B} = 0. It was shown in [27] that,
whenever A is polyhedral4, then the quantity bu(A,B) equals the worst gap over all
non-negative cost vectors c:

bu(A,B) = sup
c∈Rm

+

{gap(A,B, c)} . (3.2)

Therefore, if there is any direction/cost where B is far away from A (so B is a loose
relaxation in this direction), the value of this measure becomes large. This sensitivity
to individual directions is one of the drawbacks of this measure of strength.

Rank. Yet another way of comparing the strength of two families of cuts is by
looking at their relative rank. Consider a mixed-integer set P and a family F of
valid cuts for it. The ith F-closure of P , denoted by F i(P ), is obtained by iterating
the closure procedure i times. More formally, it is defined by the recursion F i(P ) =
F(F i−1(P )) with F1(P ) = F(P ). An inequality valid for the ith closure F i(P ) is
called a rank-i F -inequality.

Then given two families F and F ′ of cuts, we can look at the rank of F ′ relative
to F , namely the minimum i such that F i(P ) ⊆ F ′(P ). If such value is large, then
it shows that it takes several rounds of cuts from the family F to obtain the same
effect given by one round of cuts from F ′, which indicates that F is significantly
weaker than F ′.

We remark that this notation is also related to the length of cutting planes proofs
(see for instance [110]), a topic that we will not explore here.

Other measures. A few other measures, which we will not cover in detail here,
have also been used in the literature. For example, we can cite the merit index and
intersection index measures introduced by Gomory and Johnson in [89], as well as
the shooting experiments, proposed originally by Kuhn, used later by Gomory and
developed further in [90].

3.2 Known Strength Results

In this section we survey some of the results known about the strength of the different
types of cuts and relaxations presented in Chapter 2.

4In Chapter 5 we show that this polyhedrality assumption is not needed.
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3.2.1 Disjunctive Cuts

Split cuts (or equivalently GMI, MIR, or strengthened lift-and-project cuts) is the
most important family of cuts used in current MIP solvers [102]. The strength of
these cuts was further substantiated by the controlled experimental works of Balas
and Saxena [23] (see also [64, 77, 78]). There, the authors consider a procedure for
generating split cuts that allow them to approximately optimize over the split closure.
They employ this procedure over instances of the standard MIPLIB 3.0 problem set
and show that, for the purpose of optimization, the split closure gives a very good
approximation of the integer hull: the percentage of integrality gap closed is, on
average, at least 82%. We remark that this procedure was not meant to be used in
practice, and in fact it is not efficient enough for this task. However, recent works
[59, 39, 80] have been able to obtain comparable approximations to the split closure
in a practical manner.

Despite their strong empirical performance, Cook, Kannan and Schrijver [47]
showed that in some cases split cuts can be weak. More precisely, they constructed
a MIP with a valid cut that cannot be obtained by the ith split closure, for any
i (see also [34, 68, 101] for generalizations). Also, Basu, Cornuéjols and Margot
[27] constructed an example (based on the continuous relaxation from Section 2.3.4)
where the split closure is arbitrarily bad when compared to the integer hull according
to the blow-up measure. These results show a big disconnect between the practical
and the theoretical performance of split cuts.

Interestingly, Dash, Dey and Günlük [56] pointed out that the bad examples of
Cook, Kannan and Schrijver and of Basu, Cornuéjols and Margot can be handled
by using a single cross cut. This implies that, for these example, the cross closure
is strictly stronger (in terms of inclusion) than the iterated application of the split
closure. Li and Richard [101] constructed examples for t > 2 where the t-branch split
closure is strictly stronger than the iterated application of the cross (or 2-branch split)
closure. Subsequently, it was constructed in [63] examples for all t > k > 0 where
the t-branch split closure is strictly stronger than the iterated application of the
k-branch split closure.

In addition, it is known that the 3-branch split closure is always contained in the
crooked cross closure, which, in turn, is always contained in the cross closure [57, 56].
However, these two dominance relationships were not known to be strict prior to
our work. In [57] the authors show that there are crooked cross cuts that cannot be
obtained by a single cross cut; however, this result does not rule out the possibility
that the cross closure (which contains potentially infinitely many cuts) is always
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equal to the crooked cross closure. The question whether the crooked cross closure
can be strictly stronger than the cross closure was then left as an open question in
[57].

Despite the similarities between cross cuts and rank-2 split cuts (intuitively both
use two split disjunctions), Dash, Günlük and Vielma remarked (in Section 4.1 of
[65]) that although the Cook-Kannan-Schrijver example gives a cross cut that cannot
be obtained via rank-2 split cuts, it was not known if in fact the cross closure is always
stronger than the second split closure. Another related question that remained open
is whether the 3-branch split closure can be strictly contained in the crooked cross
closure.

Addressing these open questions is the focus of our work presented in Chapter 4,
where we provide the complete picture of the closure-inclusion relationship of these
generalizations of split cuts (see Figure 4.1).

3.2.2 Corner and Related Relaxations

Strength of corner itself. The study of cuts valid for the corner and related
relaxation dates back from the 60s and has extensive associated literature. Instead
of surveying cuts for the corner relaxation, here we focus on a slightly different idea:
how well do corner relaxations approximate a MIP. Notice that if corner relaxations
provide a poor approximation, then cuts generated from them will also be weak.

One result that indicates that not much power is lost when considering corner
relaxations was obtained by Andersen, Cornuéjols and Li [3], and roughly states that
every split cut for a general MIP can be obtained as a split cut from one of its corner
relaxations. However, Fischetti and Monaci [79] recently conducted experiments
which indicate that unfortunately the corner relaxation obtained from the optimal
LP solution has often a large integrality gap. The authors also consider the so
called strict corner relaxation and show that it seems to have a significantly smaller
integrality gap.5 Complementing these experimental results, Cornuéjols, Michini and
Nannicini [52] show that for the stable set problem, even if all corner relaxations are
intersected, the relaxation obtained still has a large integrality gap.

In Chapter 4 we show that the result of Andersen, Cornuéjols and Li does not

5The authors in the paper use different names for the relaxations. What we are calling strict

corner relaxation they call corner relaxation, and what we are calling corner relaxation they call
group relaxation



36 Chapter 3: Strength of Cuts

hold for cross cuts, namely we cannot obtain all of them from basic relaxations.6

This gives more indication about the potential weakness of these relaxations. On
the up side, this disconnect also puts cross cuts forth as an option to overcome the
weakness of the corner relaxations.

We pointed out earlier that it is possible to relax the MIP (2.5) by dropping
some of the equations to obtain a corner relaxation with only k rows, typically for
a small value of k. Indeed, the famous GMI cuts are obtained from the unassuming
1-row corner relaxation. Based on this surprising fact, some authors have tried to
understand the strength of 1-row corner relaxations and if we are already harnessing
all that they have to offer [62, 81]. Their experimental results indicate that many
times the GMI cuts are actually the only useful cuts that can be obtained from
these relaxations. The experiments conducted in [50], where the authors consider a
variant of GMI cuts that is also obtained from a 1-row corner relaxation, also indicate
that when the MIP has many constraints these cuts seem to have their effectiveness
reduced.

Continuous relaxation. The results mentioned above indicate that it is not
enough to work with 1-row corner-type relaxations. Hoping to remedy this situa-
tion, there has been a recent push for understanding how cuts for the multi-row
version of the corner relaxation behave [69].7 The continuous relaxation proved to
be a fertile model for exploring these multi-row cuts [4].

Although earlier papers had already started studying the minimal valid inequal-
ities for the continuous relaxation, the paper of Basu et. al [27] was one of the
first to explore in more detail the strength of the cuts obtained from different lattice-
free sets. To be more precise, they consider 2-row continuous relaxations (i.e. with
n = 2). As mentioned in Section 2.3.4, all cuts for this relaxation can be obtained
from 2-dimensional lattice-free sets. Actually Louveaux, Weismantel and Wolsey [4]
showed that all such cuts can be obtained by lattice-free sets of 3 types: split sets,
triangles and quadrilaterals. We remark that split cuts for the continuous relaxation
are the same as intersection cuts obtained from split sets (see for instance Theorem
19 in Chapter 8).

Consider a continuous corner relaxation C = C(f,R, ∅). Let SC, TC and QC
denote respectively its split, triangle and quadrilateral closures, which are by defini-

6Actually this result holds for any family of cuts which includes cross cuts, such as crooked cross
cuts and t-branch split cuts with t ≥ 2

7Another possibility is to consider 1-row relaxations that are stronger than the corner relaxation,
see for instance [6, 7].
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tion obtained by adding to CLP (f,R, ∅) all cuts given by the corresponding type of
lattice-free sets. Finally, to make things formal let C denote the projection of conv(C)
onto the s-space; let SC be the projection of SC onto the s-space, and define TC
and QC similarly.8

Basu et. al [27] first show that one always has TC ⊆ SC and QC ⊆ SC, so
triangle and quadrilateral cuts are (with respect to closure inclusion) stronger than
split cuts. They also show that bu(C, TC) ≤ 2 and bu(C, QC) ≤ 2, indicating that
triangle and quadrilateral cuts provide a fair approximation to conv(C). However,
they also show that, for a specially constructed instance of the continuous relaxation,
the blow-up measure bu(TC, SC) can be made to be arbitrarily large. In particular,
this shows that bu(C, SC) can be made arbitrarily large, and hence split cuts provide
a poor approximation to the integer hull.

These results indicate that triangle and quadrilateral cuts can be particularly
useful.9 Indeed, the bad example for the split closure given by Cook, Kannan and
Schrijver can be handled using triangle cuts [4]. These observation have then mo-
tivated experiments with these cuts (and generalizations), for example the results
by Espinoza [75], Balas and Qualizza [21], Basu et. al [26] and Dey et. al [67].
Unfortunately, the results obtained from these experiments show that in practice
only a mild improvement over split cuts is typically obtained. This again shows a
gap between the theoretical and empirical results.

Developing new ways of measuring the strength of cuts that try to help explaining
this situation is the focus of our work presented in Chapter 5.

Infinite relaxation. There has been plenty of research trying to understand prop-
erties of strong valid inequalities for the infinite relaxation. In the same paper where
they introduced this relaxation, Gomory and Johnson [87, 88] completely character-
ized minimal valid inequalities in terms of subadditive functions satisfying additional
properties. They also discussed methods for obtaining extreme inequalities.

Another particularly interesting result obtained by Gomory and Johnson in these
papers is the celebrated 2-Slope Theorem. This theorem states that every minimal
valid function which has 2 slopes is extreme for the 1-row infinite relaxation (n = 1).
One interesting feature is that the valid inequality for the infinite relaxation corre-

8Notice that this projection is injective for these sets and that no information is really lost. See
the beginning of Chapter 5 for further justification.

9Also, among these three classes, triangle and quadrilateral cuts are the only ones that are not
necessarily valid for a 1-dimensional corner relaxation, see Section 3.2.3 below.
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sponding to the classic GMI inequality satisfies the assumptions of this theorem [44],
which further substantiates its strength. The functions corresponding to other well
known inequalities such as the 2-step MIR are also 2-slope. Moreover, shooting ex-
periments performed in [90, 61, 76] seem to indicate that cuts from 2-slope functions
are indeed important for the corner and related relaxations. All these observations
substantiate that the 2-Slope Theorem is indeed capturing a meaningful property of
strong valid inequalities.

Moving away from the 1-row version of this relaxation, Dey and Richard [69]
revisited the 2-row infinite relaxation (n = 2). There, they provide tools for proving
the minimality of a valid inequality. The authors also construct families of extreme
inequalities by extending the techniques used by Gomory and Johnson. Cornuéjols
and Molinaro [53] also studied this relaxation and extended the 2-Slope Theorem for
this setting, giving the 3-Slope Theorem. Extending this theorem, and more generally
the understanding of extreme functions, to the case of general n is the focus of our
work presented in Chapter 6, where we prove the (n + 1)-Slope Theorem for the
n-row infinite relaxation. Based on the discussion above, this result indicates that
the (k + 1)-slope functions might be a promising class to generate strong cuts that
use information from multi-row corner-type relaxations.

3.2.3 k-Row relaxation

As mentioned previously, although such relaxations greatly simplify the structure
of the problem, they are surprisingly powerful even for small k. For example,
Nemhauser and Wolsey [107] showed that every split cut can be obtained as a split
cut for a 1-row relaxation.

In a similar vein, Dash, Dey and Günlük [56] showed that every cross cut (resp.
crooked cross cut) can be obtained as a cross cut (resp. crooked cross cut) for a
3-row relaxation. However, they left as an open question whether these cuts can
be obtained using 2-row relaxations instead. Again, the ability of considering as
small number of rows as possible is interesting from the perspective of efficiently
generating good cuts. Moreover, if crooked cross cuts from 2-row relaxations yielded
all crooked cross cuts, then crooked cross cuts would be equivalent to cuts from all
2-row continuous relaxations of a MIP [56].

We address this open question in our result presented in Chapter 4.
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CHAPTER 4

The Relative Strength of

Generalizations of Split Cuts

In previous chapters we contended that split cuts are among the most important
cutting planes for general MIPs, and therefore it is interesting to obtain a good
understanding of its generalizations. In this chapter we compare cuts obtained from
different generalizations of split cuts; in particular, we analyze the strength of the
closure of all of the disjunctive cuts introduced in Section 2.1, namely split, cross,
crooked cross and general t-branch split cuts, as well as cuts obtained from multi-row
and basic relaxations. We refer the reader to Section 3.2.1 for further motivation
and survey of related work.

On the technical side, in all the results presented here we need to show that
adding possibly infinitely many cuts of a specific family is not strong enough. For
that, we develop tools that allow us to exhibit the weakness of one cut at a time and
then patch things together to obtain the weakness of the whole collection of cuts.

We remark that the Cook, Kannan and Schirjver example [47] is similar in spirit
to some of the constructions that we use. However, in their proof, the authors make
use of the fact that the split closure is polyhedral, which essentially allows them
to consider the effect of only finitely many valid inequalities. In contrast, it is not
known whether the cross/crooked closure or the intersection of the relaxations that
we consider are polyhedral. This forces us to develop tools that directly tackle the
interaction of potentially infinitely many cuts.

41
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Organization of the chapter. First we recall some formal definitions needed
throught the chapter and state our main results, even if still not completely formally.
Section 4.3 presents a simple but main technical tool, dubbed the “Height Lemma”,
for handling infinitely many cuts. In Sections 4.4, 4.5, and 4.6 we compare the
closures of multi-branch split cuts and crooked cross cuts. In the last two sections
we compare the strength of cross cuts with cuts obtained from multi-row and basic
relaxations.

Acknowledgments. This chapter is joint work with Sanjeeb Dash and Oktay
Günlük.

4.1 Statement of Results

We now state in more detail the main results obtained in this chapter. For that,
recall from Section 3.1 that the given a family F of valid cuts for a mixed-integer set
P , the F-closure of P , denoted by F(P ), is given by the intersection of all cuts in
F :

F(P ) ,
⋂

{(x, y) ∈ Rn+m : fx+ gy ≤ h},

where the intersection is taken over all cuts fx + gy ≤ h in F . Also recall that the
ith F-closure of P , denoted by F i(P ), is obtained by iterating the closure procedure
i times, that is, F i(P ) = F(F i−1(P )) and F1(P ) = F(P ).

We say that a family of cuts dominates another if for every mixed-integer set,
the closure of the first family of cuts for the set is contained in the closure of the
second family of cuts for the same set. We say that the dominance is strict if there
are examples where the elementary closure of the first family is strictly contained in
the elemetary closure of the second family.

Multi-branch split cuts. Recall that it is known that 3-branch split cuts domi-
nate crooked cross cuts which, in turn, dominate cross cuts [57, 56]. However, these
two dominance relationships were not known to be strict prior to our work. In [57] the
authors show that there are crooked cross cuts that cannot be obtained by a single
cross cut; however, this result does not rule out the possibility that the cross closure
(which contains potentially infinitely many cuts) is always equal to the crooked cross
closure.
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In our first set of results in this chapter, we establish that 3-branch split cuts
strictly dominate crooked cross cuts which, in turn, strictly dominate 2-branch split
cuts.

Theorem 1. There is a mixed-integer set such that its crooked cross closure is strictly
contained in its cross closure.

Theorem 2. There is a mixed-integer set such that its 3-branch split closure is
strictly contained in its crooked cross closure.

Similarly, Dash et al. remark (Section 4.1 of [65]) that although there are cross
cuts (Example 2 of [47]) that cannot be obtained via rank-2 split cuts, it is not known
if in fact the cross closure strictly dominates the second split closure. This question is
relevant in their computational procedure for generating cross cuts. We also answer
this question and show that cross cuts and rank-2 split cuts are not comparable.

Theorem 3. For every finite integer t > 0, there is a mixed-integer set whose second
split closure is strictly contained in its t-branch split closure.

In Figure 4.1 we summarize the dominance relationships between these closures,
with a plain arrow from A to B if the closure A dominates the closure B, and a
crossed arrow from A to B if the closure A does not dominate the closure B (in the
sense that for some mixed-integer set, the first closure is not contained in the second
closure). When both types of arrows are present between a pair of closures, then one
closure strictly dominates the other. Dashed arrows indicate results known prior to
this work and solid arrows indicate results obtained in this work. In the figure, we
denote the closure of t-branch split cuts with tBC for t = 1, 2, 3 and we use 4+BC
for all t > 3. We denote the crooked cross cut closure by CCC and use SC2 to
denote the second split closure. Note that the displayed arrows can be used to infer
the relationship between any pair of the closures considered.

Cuts from relaxations. In the next set of results, we analyze the strength of cuts
arising from the k-row relaxation defined in Section 2.4.1 and the basic relaxation
defined in Section 2.2.

Dash, Dey and Günlük [56] showed that every cross cut (resp. crooked cross
cut) can be obtained as a cross cut (resp. crooked cross cut) from a 3-row relaxation.
However, they left as an open question whether these cuts can also be obtained from 2-
row relaxations. They also note that if crooked cross cuts can be obtained as crooked
cross cuts from 2-row relaxations, then crooked cross cuts would be equivalent to cuts
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4+BC 3BC 2BC 1BC

CCC

SC2

Figure 4.1: Comparing multi-branch split cuts with crooked cross cuts and rank 2
split cuts

from all 2-row continuous group relaxations of the set. In this chapter we answer
this question.

Theorem 4. There is a mixed-integer set such that its cross cut closure cannot be
obtained by all cuts from its 2-row relaxations.

Since the crooked cross closure is contained in the cross closure, the above theorem
directly implies the following.

Corollary 1. There is a mixed-integer set such that its crooked cross cut closure
cannot be obtained by all cuts from its 2-row relaxations.

Finally, we also show that unlike split cuts, t-branch split cuts in general cannot
always be obtained from basic relaxations.

Theorem 5. There is a mixed-integer set such that its cross cut closure cannot be
obtained by all cuts from its basic relaxations.

In Figure 4.2 we show some of the dominance relationships between these closures.
We denote the closure of cuts from k-row relaxations by kR for k = 1, 2, 3 and we
use CCC to denote crooked cross cuts, CC to denote cross cuts (2-branch split cuts)
and SC to denote split cuts (1-branch split cuts). We use BR to denote cuts from
basic relaxations. The fact that 2R does not dominate 3R follows from the fact that
2R does not dominate CC. The fact that 1R does not dominate 2R can be proved
using the example of Cook, Kannan and Schrijver [47] where the integer hull has
infinite split rank. It is shown in [4] that the integer hull in this example can be
obtained from a 2-row relaxation. On the other hand, it is possible (and nontrivial)



4.2. Preliminaries 45

to show that all cuts from 1-row relaxations of this example are split cuts, and thus
cannot yield the integer hull. We believe that CCC does not dominate 1R but we
cannot prove this.

3R 2R 1R

CCC CC SC

BR

Figure 4.2: Comparing cuts from multi-row and basic relaxations with multi-branch
split cuts

4.2 Preliminaries

In this chapter we will mostly work with mixed-integer sets of the following form:
given rational matrices A,G, b with dimensions r ×m, r × n and r × 1, respectively,
the polyhedron PLP is given by

PLP = {(x, y) ∈ Rm × Rn : Ax+Gy = b, y ≥ 0}, (4.1)

and the associated mixed-integer set is given by

P = (PLP ,Zm × Rn). (4.2)

Recall we will often use the identification P ≡ PLP ∩ (Zm × Rn).

4.2.1 Split Cuts and More General Disjunctive Cuts

We recall some definitions from Sections 2.1 and 2.2. A split disjunction for the
mixed-integer set P is a set of the form

D(π, γ) =
{

(x, y) ∈ Rm+n : πx ≤ γ
}

∪
{

(x, y) ∈ Rm+n : πx ≥ γ + 1
}

for some π ∈ Zm, γ ∈ Z. Define the split set associated with the disjunction D(π, γ)
as

S(π, γ) = {(x, y) ∈ Rm+n : γ < πx < γ + 1} = Rm+n \D(π, γ).
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Split cuts. A linear inequality is a split cut for P with respect to the disjunction
D(π, γ) if it is valid for PLP ∩D(π, γ) [47]. For an integer k ≥ 1, we use SCk(P ) to
denote the kth split closure of P . Notice that by definition the split closure of P is
given by

SC(P ) =
⋂

(π,γ)∈Zm+1

conv(PLP ∩D(π, γ)) =
⋂

(π,γ)∈Zm+1

conv(PLP \ S(π, γ)).

t-branch split cuts. Consider an integer t together with πi ∈ Zm and γi ∈ Z for
i = 1, . . . , t. The set D(π1, . . . , πt, γ1, . . . , γt) given by

D(π1, . . . , πt, γ1, . . . , γt) =
t
⋂

i=1

D(πi, γi) = Rm+n \
t
⋃

i=1

S(πi, γi) (4.3)

is called a t-branch split disjunction for P [101]. A linear inequality is a t-branch
split cut for P with respect to a t-branch split disjunction D if it is valid for PLP ∩D.
We use tBC(P ) to denote the t-branch split closure of P , which is then given by

tBC(P ) =
⋂

(π1,γ1),...,(πt,γt)∈Zm+1

conv(PLP ∩D(π1, . . . , πt, γ1, . . . , γt)).

Notice that in the case t = 1 we have 1BC(P ) = SC(P ).

In [56], 2-branch split disjunctions are called cross disjunctions, and 2-branch
split cuts are called cross cuts. In this case, we have the equivalent definition of the
cross closure as

CC(P ) =
⋂

(π1,γ1),(π2,γ2)∈Zm+1

conv(PLP \ (S(π1, γ1) ∪ S(π2, γ2))).

Crooked cross cuts. Given π1, π2 ∈ Zm and γ1, γ2 ∈ Z we define the sets

Dc
1(π

1, π2, γ1, γ2) = {(x, y) ∈ Rm+n : π1x ≤ γ1, (π
2 − π1)x ≤ γ2 − γ1},

Dc
2(π

1, π2, γ1, γ2) = {(x, y) ∈ Rm+n : π1x ≤ γ1, (π
2 − π1)x ≥ γ2 − γ1 + 1},

Dc
3(π

1, π2, γ1, γ2) = {(x, y) ∈ Rm+n : π1x ≥ γ1 + 1, π2x ≤ γ2},
Dc

4(π
1, π2, γ1, γ2) = {(x, y) ∈ Rm+n : π1x ≥ γ1 + 1, π2x ≥ γ2 + 1}.

We call the set Dc(π1, π2, γ1, γ2) =
⋃4
i=1D

c
i (π

1, π2, γ1, γ2) a crooked cross disjunction
for P . A linear inequality is a crooked cross cut for P if it is valid for PLP ∩Dc for
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some crooked cross disjunction Dc. We use CCC(P ) to denote the crooked cross
closure of P , which is again given by

CCC(P ) =
⋂

(π1,γ1),(π2,γ2)∈Zm+1

conv(PLP ∩Dc(π1, π2, γ1, γ2)).

4.2.2 Relaxations of Mixed-integer Sets

k-row relaxation. Consider a polyhedral set P as in (4.2). Recall that a k-
row relaxation of P is obtained by combining the r equality constraints defining
the set into k ≤ r equalities. More precisely, it is the mixed-integer set P (M) =
(PLP (M),Zm×Rn) where PLP (M) = {(x, y) ∈ Rm×Rn :MAx+MGy =Mb, y ≥ 0}
for a k × r matrix M . Any inequality valid for P (M) is called a cut from a k-row
relaxation.

Basic relaxation. For this relaxation we need to consider a polyhedron defined in
inequality form. Let PLP = {(x, y) ∈ Rm×Rn : Ax+Gy ≤ b} where A,G and b have
r ≥ m+ n rows, and consider the associated mixed-integer set P = (PLP ,Zm ×Rn).
For a subset J ⊆ {1, . . . , r} of row indices, we use AJ to denote the submatrix of A
consisting of the rows of A corresponding to the indices in J . We define GJ and bJ
similarly. Then a basic relaxation of P is obtained by keeping in the linear relaxation
only linearly independent constraints, namely it is a mixed-integer set of the form
P[J ] = {(x, y) ∈ Zm×Rn : AJx+GJy ≤ bJ} for some J ⊆ {1, 2, . . . , r} such that the
matrix [AJ GJ ] has full-row rank. Any inequality valid for P[J ] is called a cut from
a basic relaxation.

4.2.3 Notation

We use ‖ · ‖ to denote the ℓ2 norm. Given a point x ∈ Rn and a positive real r > 0,
we use B(x, r) = {y ∈ Rn : ‖x − y‖ < r} to denote the ball centered at x with
radius r. For a set S ⊆ Rn we use aff(S) to denote the affine hull of S. Given a set
of vectors V ⊆ Rn we use span(V ) to denote the subspace spanned by V . Given a
matrix M ∈ Rn×m, we use rowspan(M) to denote the subspace spanned by the rows
of M .
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4.3 Height Lemma

In preparation for the proof of our results we present the main technical tool used,
called Height Lemma (this generalizes a similar result in [63]). Intuitively this lemma
states the following: consider a collection (of arbitrary cardinality) of full dimensional
pyramids, all sharing the same base. If we have a uniform lower bound on the height
of the pyramids, plus the property that their apexes are not arbitrarily far from
each other, then the intersection of all these pyramids contains a point outside of
the common base. The motivation is that these pyramids will later represent what
is ‘left over’ of P when we employ a subset of the cuts of interest, so this result
allow us to talk about the left over of P when we add all these cuts together. In the
formal statement below, the points s1, s2, . . . , sn form the base of the pyramids and
the points in Q are the apexes.

Lemma 1 (Height Lemma). Let (a, b) ∈ Rn × R with a 6= 0 and let s1, s2, . . . , sn be
affinely independent points in the hyperplane {x ∈ Rn : ax = b}. Take b′ > b and
U ≥ 0 and define Q = {x ∈ Rn : ax ≥ b′, ‖x‖ ≤ U}. If Q 6= ∅, then there exists a
point x in

⋂

q∈Q conv(s1, s2, . . . , sn, q) satisfying the strict inequality ax > b.

Proof. Let H = {x ∈ Rn : ax = b} and S = conv(s1, s2, . . . , sn). We say that a
point x that satisfies ax > b has positive height ; so our goal is to find a point in
⋂

q∈Q conv(s1, s2, . . . , sn, q) with positive height. To simplify the notation, we assume
without loss of generality that ‖a‖ = 1.

Clearly S is an (n − 1)-dimensional simplex contained in H and, by comparing
dimensions, the affine hull of S equals H. Consider a point x∗ in the relative interior
of S, and let r > 0 be such that the ball B(x∗, r) ∩H is contained in S. Let U ′ be
an upper bound on the norm of the points in S (this exists as S is bounded). We
show that the point x∗ + (b′ − b) r

U+U ′a belongs to
⋂

q∈Q conv(s1, s2, . . . , sn, q), which
gives the desired result.

Consider q ∈ Q and let q∗ denote its orthogonal projection into H, namely
q∗ = q − b′′a for b′′ = b′ − b. The idea is to show that x∗ can be written as a convex
combination αq∗ + (1−α)y∗ for some point y∗ in S (see Figure 4.3). Then replacing
q∗ by q in this expression, we get by convexity that αq+(1−α)y∗ = x∗+αb′′a belongs
to conv(s1, s2, . . . , sn, q) and has positive height. Importantly, our construction will
guarantee that we can bound α from below independently of the choice of q.

To make this construction, consider the line {q∗ + λ(x∗ − q∗) : λ ∈ R} passing
though the points q∗ and x∗, and notice that it lies in the hyperplane H. This
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q
∗

q
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x
∗ y
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q

x

Figure 4.3: The left picture shows conv(s1, s2, . . . , sn, q) and the hyperplane H =
{x ∈ Rn : ax = b}. The right picture shows the construction of y∗ and the point
x which belongs to conv(s1, s2, . . . , sn, q) and has positive height, namely it satisfies
ax > b.

line intersects the boundary of the closed ball B̄(x∗, r) ∩ H in two points, so let y∗

denote such point which is farthest from q∗ (notice that this point belongs to S);
specifically, we have y∗ = q∗ + λ∗(x∗ − q∗) for λ∗ = 1 + r

‖x∗−q∗‖
, and notice that

‖y∗ − q∗‖ = λ∗‖x∗ − q∗‖ = r + ‖x∗ − q∗‖. Rearranging, we can write explicitly x∗ as
a convex combination of q∗ and y∗: x∗ = αq∗ + (1− α)y∗ for α = r

‖y∗−q∗‖
∈ [0, 1]. As

mentioned previously, we get that the point αq+(1−α)y∗ = x∗+ r
‖y∗−q∗‖

b′′a belongs

to conv(s1, s2, . . . , sn, q). Using the triangle inequality, we get that

r

‖y∗ − q∗‖b
′′ ≥ r

‖y∗‖+ ‖q∗‖b
′′ ≥ r

U + U ′
b′′.

Using convexity we conclude that the point x∗+b′′ r
U+U ′a belongs to conv(s

1, s2, . . . , sn, q).
Since the point is independent of q, it belongs to

⋂

q∈Q conv(s1, s2, . . . , sn, q) and the
result follows.

Also note that in the proof we do not use the property that the norms of the
points in Q are bounded, we only use the fact that their projection on H has bounded
norm. It is therefore possible to generalize this result slightly to unbounded Q that
has bounded projection on H.

By employing an affine transformation, this lemma also carries over to affine
subspaces of Rn.

Corollary 2. Let A ∈ Rn be an affine subspace of dimension k. Fix (a, b) ∈ Rn×R

such that a 6= 0 and let s1, s2, . . . , sk ∈ Rn be affinely independent points in A∩ {x ∈
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Rn : ax = b}. Take b′ > b and U ≥ 0 and define Q = {x ∈ A : ax ≥ b′, ‖x‖ ≤ U}. If
Q 6= ∅, then there exists a point x in

⋂

q∈Q conv(s1, s2, . . . , sn, q) satisfying the strict
inequality ax > b.

For a vector v ∈ Rn, a n×nmatrixM and a set S ⊆ Rn, let S−v = {s−v : s ∈ S}
and MS = {Ms : s ∈ S}. To see that the corollary follows from Lemma 1, let M be
an n×n matrix with determinant one such thatM(A−s1) = Rk×{0}n−k. Applying
this affine transformation and subsequently removing the last k coordinates, the
corollary reduces to the previous lemma applied to objects in Rk (points in Q are
mapped to points in Rk × {0}n−k with bounded norm).

4.4 Crooked cross Closure Versus Cross Closure

In this section we prove Theorem 1 by constructing a polyhedral set P whose cross
closure CC(P ) is strictly contained in its crooked cross closure CCC(P ). One impor-
tant component of the construction is a triangle that cannot be covered by a cross
set.

Theorem 6 ([58]). There exists a rational triangle T ∗ ⊆ R2 satisfying the following:
(i) T ∗ does not contain integer points in its interior; (ii) T ∗ contains the points (0, 0),
(1, 0), (0, 1) in its boundary; (iii) there is δ > 0 such that for any pair of split sets
S1, S2 for Z2, the set T ∗ \ (S1 ∪ S2) has area at least δ.

Let T ∗ be such a triangle and let x∗ be a point in the interior of T ∗, say its centroid
(which has rational coordinates). In this section we work with the polyhedron PLP

defined as

PLP =
{

(x, y) ∈ R2 × R : (x, y) ∈ conv (T ∗ × {0}) ∪ (x∗ × {1})
}

,

and the mixed-integer set P = (PLP ,Z2 × R). We also define Tǫ , PLP ∩ {x ∈ R3 :
x3 = ǫ} for ǫ ≥ 0 and define T ∗

ǫ to be the projection of Tǫ onto the first 2 coordinates.
We next obtain the following result.

Lemma 2. The inequality x3 ≤ 0 is valid for CCC(P ).

Proof. Notice that T ∗
0 = T ∗ and T ∗

1 = x∗, and as the latter belongs to the interior of
T ∗, we conclude that Tǫ is contained in the interior of T ∗ for all ǫ > 0. As T ∗ does
not contain any integer points in its interior, T ∗

ǫ ∩ Z2 = ∅ for all ǫ > 0 and therefore
conv(P ) ⊆ T ∗ × {0}. Consequently, the inequality x3 ≤ 0 is valid for conv(P ).
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To conclude the proof, we recall the fact that the convex hull of any polyhe-
dral mixed-integer set in Z2 × R is given by crooked cross cuts [57]. In particular,
conv(P ) = CCC(P ) and consequently x3 ≤ 0 is valid for CCC(P ), concluding the
proof.

We next show that the inequality x3 ≤ 0 is not valid for CC(P ); since CC(P )
always contains CCC(P ) – which equals conv(P ) in this section – such a result would
imply that CC(P ) strictly contains CCC(P ), as desired. We start by showing that
a single cross disjunction cannot imply the cut x3 ≥ 0.

Lemma 3. There exists ǫ∗ > 0 such that for any pair of split sets S1, S2 for P , the
set Tǫ∗ \ (S1 ∪ S2) is non-empty.

Proof. Notice that area(T ∗
0 ) > area(T ∗

1 ) = 0 and area(T ∗
ǫ ) is continuous as a function

of ǫ. Let δ > 0 be given by Theorem 6 and take ǫ∗ > 0 such that area(T ∗
ǫ∗) ≥

area(T ∗
0 )− δ/2; the existence of ǫ∗ is guaranteed by the Intermediate Value Theorem.

Let S∗
1 denote the projection of the split set S1 onto the first 2 (integer) coordi-

nates, and notice that S1 = S∗
1 ×R and that S∗

1 is a split set for (T ∗,Z2). Define S∗
2

similarly. It then follows that Tǫ∗ \ (S1∪S2) is non-empty if and only if T ∗
ǫ∗ \ (S∗

1 ∪S∗
2)

is non-empty; we prove the latter. Theorem 6 guarantees that the set T ∗ \ (S∗
1 ∪ S∗

2)
has area at least δ, and so T ∗

ǫ∗ \(S∗
1∪S∗

1) has area at least δ/2. Therefore Tǫ∗ \(S1∪S2)
is non-empty.

Together with the previous lemma, the Height Lemma directly implies that the
cut x3 ≤ 0 is not valid for the cross closure of P ; the proof is exactly the same as in
Lemma 8 and is omitted.

Lemma 4. The inequality x3 ≤ 0 is not valid for CC(P ).

Employing Lemmas 2 and 4 we obtain Theorem 1:

Theorem 1 (restated). CCC(P ) ( CC(P ).

4.5 Crooked Cross Cuts Versus 3-branch Split Cuts

In this section we prove Theorem 2 by constructing an integer set P = (PLP ,Z3)
such that 3BC(P ) = conv(P ) = ∅ but CCC(P ) 6= ∅. We define the polyhedron PLP
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to be the intersection of a specific octahedron with the unit cube, i.e.,

PLP =

{

x ∈ [0, 1]3 :
∑

i∈I

xi −
∑

i/∈I

xi ≤ |I| − 1

2
, ∀I ⊆ {1, 2, 3}

}

.

Notice that P is the empty set.

We first claim that 3BC(P ) = ∅. To see this, consider the 3-branch split disjunc-
tion D = D(e1, e2, e3, 0, 0, 0), where ei is the ith unit vector in R3. Notice that x
belongs to D iff xi /∈ (0, 1) for all i = 1, 2, 3, and therefore x ∈ PLP ∩D if and only
if x is a 0-1 vector. Therefore PLP ∩D = ∅. Since 3BC(P ) ⊆ PLP ∩D, the claim
follows.

Now we need to show that CCC(P ) 6= ∅; in particular, we show that (1/2, 1/2, 1/2)
belongs to CCC(P ). For that, we need the following characterization of the crooked
cross closure.

Theorem 7. ([57, Theorem 3.1]) For any mixed-integer set P̃ = (P̃LP ,Zn × Rl),

CCC(P̃ ) =
⋂

π1,π2∈Zn

conv
(

P̃LP ∩ {(x, y) : π1x ∈ Z, π2x ∈ Z}
)

.

Lemma 5. The point (1/2, 1/2, 1/2) belongs to CCC(P ).

Proof. Consider an arbitrary pair of vectors π1, π2 ∈ Z3 and define PLP
π1,π2 = conv(PLP∩

{x ∈ R3 : π1x ∈ Z, π2x ∈ Z}). Given Theorem 7, it suffices to show that

(1/2, 1/2, 1/2) ∈ PLP
π1,π2 . (4.4)

For that, let v ∈ R3 be a non-zero vector orthogonal to π1 and π2. We will prove
(4.4) for the case v1 6= 0; the proof for the cases v2 6= 0 or v3 6= 0 is similar. The idea
in the analysis is that the set {x ∈ R3 : π1x ∈ Z, π2x ∈ Z} contains all lines in the
direction of v that pass through an integer point. We are interested in the lines that
cross the intersection of PLP with the plane x1 = 1/2; therefore, it suffices to project
Z3 onto this plane along v and analyze the obtained set of points Λ, and show that
conv(PLP ∩ Λ) contains (1/2, 1/2, 1/2).

Define the integer points w1 = (0,−⌊v2
2
⌋,−⌊v3

2
⌋) and w2 = (1, 1 + ⌊v2

2
⌋, 1 + ⌊v3

2
⌋);

clearly wjπi ∈ Z for i, j ∈ {1, 2}. Now consider the points u1 = w1 + v/2 and u2 =
w2 − v/2, which lie in the plane x1 = 1/2. We can use the fact that v is orthogonal
to π1, π2 to deduce that ujπi ∈ Z for i, j ∈ {1, 2}. Also, notice that uj2 and uj3 belong
to the interval [0, 1] for j ∈ {1, 2}. Now any point in [0, 1]3 with one component
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equal to 1/2 is contained in PLP , and therefore so are u1, u2. Therefore, these points
belong to PLP

π1,π2 . By convexity of PLP
π1,π2 , the point (u1 + u2)/2 = (1/2, 1/2, 1/2) also

belongs to it, which concludes the proof of the lemma.

The fact that 3BC(P ) = ∅ 6= CCC(P ) then concludes the proof of Theorem 2:

Theorem 2 (restated). 3BC(P ) ( CCC(P ).

4.6 t-branch Split Closure Versus Second Split Clo-

sure

In this section we prove Theorem 3, which states that there is an integer set P whose
t-branch split closure is not contained in its second split closure. More specifically,
we will work with the integer set P = (PLP ,Zn+1) where PLP is based on a distorted
simplex and is defined as

PLP =

{

x ∈ Rn+1 :
n
∑

i=1

xi + 2xn+1 ≤ n+ 2− ǫ, xi ≥ ǫ, i = 1, . . . , n

}

,

where ǫ > 0 is a small scalar defined in the proof of Lemma 7 below (see Figure 4.4).

We claim that the cut xn+1 ≤ 0 is valid for SC2(P ). First notice that Chvátal-
Gomory cuts [108] for P can be obtained by rounding the right-hand sides of the
constraints above. Since every Chvátal-Gomory cut is also a split cut, we observe
that

SC(P ) ⊆
{

x ∈ Rn+1 :
n
∑

i=1

xi + 2xn+1 ≤ n+ 1, xi ≥ 1, i = 1, . . . , n

}

⊆
{

x ∈ Rn+1 : xn+1 ≤
1

2

}

.

Again by using Chvátal-Gomory cuts, we get that

SC2(P ) ⊆ {x ∈ Rn+1 : xn+1 ≤ 0},

which proves the claim. Since P ⊆ SC2(P ), we get the following.
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x2

x3

x1

(ǫ, ǫ, 2− 3/2ǫ)

(ǫ, 4− 2ǫ, 0)

(4− 2ǫ, ǫ, 0)

Figure 4.4: The set P when n = 2

Lemma 6. The inequality xn+1 ≤ 0 is valid for SC2(P ). Furthermore, it is facet
defining as it contains the following n+ 1 affinely independent points in P :

s1 = (2, 1, . . . , 1, 0), s2 = (1, 2, . . . , 1, 0), . . . , sn = (1, 1, . . . , 2, 0), sn+1 = (1, 1, . . . , 1, 0).
(4.5)

We next argue that the inequality xn+1 ≤ 0 is not valid for the t-branch split
closure of P when t < n. First we show that a single t-branch split cut cannot imply
the cut xn+1 ≤ 0. The main tool used is the fact that simplices cannot be covered
by a small collection of split sets. More precisely, define the simplex

∆n =

{

x ∈ Rn :
n
∑

i=1

xi ≤ n, xi ≥ 0, i = 1, . . . , n

}

.

Theorem 8 ([63]). For every integer n > 0, there exists a constant δ > 0 such that
the volume of the n-dimensional simplex ∆n not covered by any collection of n − 1
split sets is at least δ.
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Lemma 7. Let S1, . . . , St be a collection of split sets for P with t < n and let
S =

⋃t
i=1 Si be their union. Then the set PLP \ S contains a point x such that

xn+1 = 1.

Proof. Consider the slice of PLP with xn+1 = 1, namely

T , PLP ∩ {x ∈ Rn+1 : xn+1 = 1}

=

{

x ∈ Rn+1 :
n
∑

i=1

xi ≤ n− ǫ, xn+1 = 1, xi ≥ ǫ, i = 1, . . . , n

}

.

We will show that if t < n then T \ S 6= ∅, which proves the lemma. Let πi ∈ Zn+1

and γi ∈ Z be such that Si = {x ∈ Rn+1 : γi < πix < γi + 1}. Notice that

T ∩ Si = T ∩
{

x ∈ Rn+1 : γi − πin+1 <

n
∑

i=1

πixi < γi − πin+1 + 1

}

and therefore, T ∩ Si = T ∩ (S∗
i × R), where S∗

i is the split set S(πi, γi − πin+1)
contained in Rn. Let S∗ =

⋃n
i=1 S

∗
i and observe that T ∩ S = T ∩ (S∗ × R). Let T ∗

denote the projection of T onto the first n coordinates, namely

T ∗ =

{

x ∈ Rn :
n
∑

i=1

xi ≤ n− ǫ, xi ≥ ǫ i = 1, . . . , n

}

,

and notice that T \ S 6= ∅ if and only if T ∗ \ S∗ 6= ∅, so it suffices to prove the latter.

Now notice that T ∗ is a perturbation of the simplex ∆n, depending on ǫ. Choosing
ǫ > 0 small enough, we get the volume of T ∗ \ S∗ arbitrarily close to the volume
of ∆n \ S∗, which is strictly positive by Theorem 8. This implies that T ∗ \ S∗ is
non-empty, which concludes the proof of the lemma.

Applying the height lemma, we can make a statement about the simultaneous
effect of every possible collection of t < n split sets S1, S2, . . . , St on P .

Lemma 8. For t < n, the inequality xn+1 ≤ 0 is not valid for the t-branch split
closure of P .

Proof. Let St denote the family of t-branch split sets for I = Zn+1, namely sets of
the form

⋃t
i=1 Si where each Si is a split set for I. To prove the lemma, we show

that
⋂

S∈St
conv(PLP \ S) contains a point x with xn+1 > 0.
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For each S ∈ St, let xS be the point given by Lemma 7. As xS ∈ PLP and
xSn+1 = 1, we have ||xS|| ≤ n + 1 and so we can apply the Height Lemma with
parameters a = (0, 0, . . . , 0, 1), b = 0, b′ = 1, U = n + 1, and s1, s2, . . . , sn+1 defined
in (4.5) to get that

⋂

S∈St
conv(s1, s2, . . . , sn+1, x

S) contains a point x with xn+1 > 0.
Notice that for each S ∈ St we have conv(s1, s2, . . . , sn+1, x

S) ⊆ conv(PLP \S) (since
the integer points s1, s2, . . . , sn+1 belong to P ⊆ conv(PLP \ S)), which implies that
⋂

S∈St
conv(PLP \S) contains a point x with xn+1 > 0. This concludes the proof.

Using Lemmas 6 and 8 we now prove Theorem 3.

Theorem 3 (restated). For any positive integer t < n, SC2(P ) is strictly contained
in tBC(P ).

Proof. To simplify the notation define

A =

{

x ∈ Rn+1 :
n
∑

i=1

xi + 2xn+1 ≤ n+ 1, xn+1 ≤ 0, xi ≥ 1, i = 1, . . . , n

}

.

We have already showed that

SC2(P ) ⊆ A. (4.6)

We claim that A is an integral polyhedron. To see that, first note that it is defined
by n + 2 inequalities in Rn+1, and therefore it has at most n + 2 extreme points
that are obtained by intersecting all but one of the defining hyperplanes. It can be
checked that the only fractional point that can be obtained by intersecting n+ 1 of
these hyperplanes is obtained by excluding the inequality xn+1 ≤ 0. The correspond-
ing point, however violates xn+1 ≤ 0 and therefore is not an extreme point of the
polyhedron, thus proving the claim.

This integrality, together with the fact that P ⊆ A ⊆ PLP , implies that A =
conv(P ). Moreover, since SC2(P ) ⊇ P , this also gives that the containment in (4.6)
actually holds as equality, and hence conv (P ) = SC2(P ). By Lemma 8 we then
conclude that SC2(P ) is strictly contained in tBC(P ).

Further, as PLP is defined by n+1 linearly independent linear inequalities in n+1
variables, P is a basic relaxation of itself, and therefore conv (P ) can be obtained by
cuts from basic relaxations. This yields the following corollary.

Corollary 3. For any positive integer t < n, the set of points satisfying all cuts from
basic relaxations of P is strictly contained in tBC(P ).
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4.7 Cross Cuts from Basic Relaxations

In this section we prove Theorem 5 by constructing a mixed-integer set P with the
property that the intersection of all cuts from its basic relaxations does not dominate
its cross closure. We will work with the polyhedron (see Figure 4.5)

PLP =
{

(x, w) ∈ R2 × R : − x1 − x2 + w ≤ 0, (4.7)

x1 + x2 + w ≤ 2,

− x1 + x2 + w ≤ 1,

x1 − x2 + w ≤ 1
}

,

and define P = (PLP ,Z2 × R). For j = 1, 2, 3, 4, let PLP
j denote the relaxation of

PLP obtained by dropping the jth constraint in (4.7); also let Pj = (PLP
j ,Z2 × R).

Figure 4.5: The left picture shows P along the (x1, x2)-plane, with the unit square
[0, 1]2 in dashed lines and the intersection of P with the plane t = 0 in bold. The
right picture shows the basic relaxation P2, which gives rise to the set P I

2 = P2 ∩ I.

As PLP ⊆ R3 is defined by four linearly independent constraints, the sets Pj
for j = 1, 2, 3, 4 give all the basic relaxations of P . Thus we want to show that
⋂4
j=1 conv(Pj) 6⊆ CC(P ). For that, we show that w ≤ 0 is a cross cut for P but it is

not valid for
⋂4
j=1 conv(Pj).

Lemma 9. The inequality w ≤ 0 is a valid cross cut for P .

Proof. We will show that w ≤ 0 is a cross cut for P derived from the cross disjunction
D(e1, e2, 0, 0) = R3 \ (S1∪S2) where e

i is the ith unit vector in R3 and S1 is the split
set {(x, w) ∈ R2 ×R : 0 < x1 < 1} and S2 is the split set {(x, w) ∈ R3 : 0 < x2 < 1}.
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This statement would be false only if there exists some point (x, w) belonging to
both PLP and D(e1, e2, 0, 0) with w > 0. But if (x, w) belongs to PLP and w > 0, the
inequalities in (4.7) immediately imply that 0 < x1 + x2 < 2 and −1 < x1 − x2 < 1.
Therefore (see Figure 4.6)

{

(x, w) ∈ PLP : w > 0
}

⊆ S1 ∪ S2 = R3 \D(e1, e2, 0, 0),

and hence (x, w) does not belong to D(e1, e2, 0, 0). The result then follows.

x1 = 0 x1 = 1

x2 = 1

x2 = 0

Figure 4.6: The set {x ∈ R2 : 0 < x1 + x2 < 2,−1 < x1 − x2 < 1} is the interior of
the depicted quadrilateral.

Next we show that this cut cannot be obtained from basic relaxations.

Lemma 10. The inequality w ≤ 0 is not valid for
⋂4
j=1 conv(Pj).

Proof. Observe that the points

p1 = (1, 1, 0), p2 = (0, 0, 0), p3 = (1, 0, 0), p4 = (0, 1, 0)

all belong to P and therefore to conv(Pj) for j = 1, . . . , 4. Also, the points

q1 = (0, 0, 1), q2 = (1, 1, 1), q3 = (0, 1, 1), q4 = (1, 0, 1)

belong to, respectively, P1, P2, P3 and P4 (qj violates only the jth constraint defining
PLP ). But (pj + qj)/2 = (1/2, 1/2, 1/2) for j = 1, . . . , 4, and therefore the point
(1/2, 1/2, 1/2) belongs to

⋂4
j=1 conv(Pj) but violates w ≤ 0.

Theorem 5 follows from the previous two lemmas:

Theorem 5 (restated). Let {Pj}j∈J denote the set of basic relaxations of P . Then

PLP ∩
(

⋂

j∈J

conv(Pj)

)

6⊆ CC(P ).
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4.8 Cross Cuts that Cannot be Obtained from 2-

row Relaxations

In this section we prove Theorem 4, namely we exhibit a mixed-integer set such that
the intersection of all cuts from its 2-row relaxations does not dominate its cross
closure. The polyhedron we work with in this section is

PLP =
{

(x, y) ∈ R2 × R4 : x1 =
1

2
+

1

2
y1 −

1

2
y4, (4.8)

x2 =
1

2
+

1

2
y1 −

1

2
y3,

− y1 − y2 + y3 + y4 = 0, y ≥ 0
}

,

and the associated mixed-integer set P = (PLP ,Z2 × R4).

Observation 1. The set P contains the points pk = (xk, yk) for k = 1, . . . , 4 given
by

x1 = (0, 0), y1 = (0, 2, 1, 1)

x2 = (1, 1), y2 = (2, 0, 1, 1) (4.9)

x3 = (0, 1), y3 = (1, 1, 0, 2)

x4 = (1, 0), y4 = (1, 1, 2, 0).

Moreover, the points p1, p2, and p3 are affinely independent.

For convenience, we define

D =





1 0
0 1
0 0



 , A =





1/2 0 0 −1/2
1/2 0 −1/2 0
−1 −1 1 1



 , b =





1/2
1/2
0





so that PLP = {(x, y) ∈ R2 × R4 : Dx − Ay = b, y ≥ 0}. We use Ai to denote
the ith row of A. Note that rank(A) = 3, and so dim(P ) ≤ 3. On the other hand,
P contains the affinely independent points p1, p2, p3 and (1/2, 1/2, 0, 0, 0, 0), and so
dim(P ) = 3.

PLP can be obtained from the polyhedron in (4.7) by: (i) introducing slack
variable yi to convert the ith (i = 1, . . . , 4) inequality to an equation, e.g., −x1 −
x2 + w + y1 = 0; (ii) Replacing w in the second to the fourth equations by x1 +
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x2 − y1 (obtained from the first equation) and, (iii) subtracting the third and fourth
equations from the second equation, and then dividing the third and fourth equations
by 2. It follows from the above operations that there is a one-to-one correspondence
between the solutions of (4.7) and (4.8). For any solution (x1, x2, w) of (4.7), one
gets a solution (x1, x2, y1, . . . , y4) of (4.8) by keeping x1, x2 unchanged and letting
y1, . . . , y4 stand for the slacks of the inequalities in (4.8). Conversely, for any solution
(x1, x2, y1, . . . , y4) of (4.8), (x1, x2, x1 + x2 − y1) or (x1, x2, 1 − (y1 + · · · + y4)/4) is
a solution of (4.7). The latter claim follows from the fact that adding up the four
constraints in (4.7) (after introducing the slack variables) yields 4w+y1+y2+y3+y4 =
4.

Any 2-row relaxation of P is of the form

P (M) = (PLP (M),Z2×R4), PLP (M) =
{

(x, y) ∈ R2×R4 :MDx−MAy =Mb, y ≥ 0
}

for a 2× 3 matrix M . To prove Theorem 4, we will show that

PLP ∩
(

⋂

M∈R2×3

conv(P (M))
)

6⊆ CC(P ).

Before starting, we observe that it is sufficient to consider matrices M that have full
row rank.

Lemma 11. For any M ∈ R2×3, there is a rank 2 matrix M ′ ∈ R2×3 such that
conv(P (M ′)) ⊆ conv(P (M)).

Proof. Clearly there exists a rank 2 matrix M ′ ∈ R2×3 such that rowspan(M ′) ⊇
rowspan(M). It is easy to verify that such M ′ satisfies PLP (M ′) ⊆ PLP (M), and
hence conv(P (M ′)) ⊆ conv(P (M)).

We start by showing that the inequality cy ≥ 4, where c = (1, 1, 1, 1), is a cross
cut for P . Notice that the inequality cy ≥ 4 translates to the inequality w ≤ 0 for
the polyhedron (4.7).

Lemma 12. The inequality cy ≥ 4 is a cross cut for P .

Proof. We will show that cy ≥ 4 is a cross cut for P derived from the cross disjunction
D(e1, e2, 0, 0) = R6 \ (S1 ∪ S2), where e

i is the ith unit vector in R6, S1 = {(x, y) ∈
R2 × R4 : 0 < x1 < 1} and S2 = {(x, y) ∈ R2 × R4 : 0 < x2 < 1}.

This statement would be false only if there exists some point (x̄, ȳ) belonging to
both PLP and D(e1, e2, 0, 0) with cȳ < 4. But if (x̄, ȳ) belongs to PLP and cȳ < 4,
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then (x̄, w̄) with w̄ = 1 − cy/4 is a solution of (4.7) with w̄ > 0. As in the proof
of Lemma 9, we then infer that 0 < x̄1 + x̄2 < 2 and −1 < x̄1 − x̄2 < 1, hence
(x̄, ȳ) ∈ S1∪S2 = R6 \D(e1, e2, 0, 0) and thus (x̄, ȳ) does not belong to D(e1, e2, 0, 0).
The result then follows.

We will next show that there exists a point (x̄, ȳ) ∈ PLP∩
(
⋂

M∈R2×3 conv(P (M))
)

such that cȳ < 4, and hence the cross cut cy ≥ 4 is not valid for this set. To this
end, we will show that for any M ∈ R2×3 we can construct a point (x(M), y(M)) ∈
PLP ∩ conv(P (M)) such that cy(M) ≤ 3. We will then apply the Height Lemma
using these points and a common base formed by points p1, p2 and p3 presented in
Observation 1. The following lemma, whose proof is deferred to Section 4.8.1, shows
the existence of the points mentioned above.

Lemma 13. Consider a matrix M ∈ R2×3 of rank 2. Then, there is a point (x, y)
with the following properties: (i) (x, y) ∈ P PL ∩ conv(P (M)); (ii) cy ≤ 3; (iii)
‖(x, y)‖ ≤ 6.

Using Lemma 13 we next prove Theorem 4:

Theorem 4 (restated). The crooked cross cut closure of P cannot be obtained by
all cuts from its 2-row relaxations. More precisely,

PLP ∩
(

⋂

M∈R2×3

conv
(

P (M)
)

)

6⊆ CC(P ).

Proof. Consider a matrix M ∈ R2×3. Using Lemma 13 (and Lemma 11 if neces-
sary), find a point (x(M), y(M)) in PLP ∩ conv(P (M)) such that cy(M) ≤ 3 and
‖(x(M), y(M))‖ ≤ 6. Also, for i = 1, 2, 3, the affinely independent points pi in Obser-
vation 1 belong to PLP ∩ conv(P (M)) and satisfy cyi = 4. Then applying Corollary
2 (with A = aff(PLP ), a = (0, 0,−c), b = −4 and b′ = −3), we conclude that the set

Q =
⋂

M∈R2×3

conv
(

p1, p2, p3, (x(M), y(M))
)

contains a point (x∗, y∗) satisfying cy∗ < 4. Note that it is possible to apply Corollary
2 because the dimension of aff(P ) is 3.

Since PLP ∩ (
⋂

M∈R2×3 conv(P (M))) contains Q, it also contains (x∗, y∗). This
shows that the cut cy ≥ 4 is not valid for this set; together with Lemma 12, this
concludes the proof of Theorem 4.
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4.8.1 Proof of Lemma 13

LetM ∈ R2×3 be a rank 2 matrix. Since rank(A) = 3, this implies that rank(MA) =
2. We will construct the points (x(M), y(M)) satisfying the properties of the lemma
in three steps. In the first step, we will construct points in aff(PLP ), which violate
cy ≥ 4, but do not belong to P (M); informally, these points almost belong to
PLP ∩ P (M), except that they do not satisfy the required non-negativity condition.
In the second step, we create two directions d1 and d2 in order to ‘correct’ the points
constructed in the first step. In the final step, we use these directions to correct
the points created in the first step, obtaining the desired point (x(M), y(M)) in
PLP ∩ P (M) but still violating cy ≥ 4.

Step 1. Consider the points (xi, yi) ∈ P for i = 1, . . . , 4 from Observation 1, and
recall that they all satisfy cyi = 4. Since they belong to P , we have Dxi − Ayi = b
for i = 1, . . . , 4. Moreover, since Ac = 0, we have Dxi − A(yi − c/2) = b for all i,
which then implies MDxi−MA(yi− c/2) =Mb for all i. In other words, the points
(xi, ȳi) = (xi, yi − c/2) (i = 1, . . . , 4) satisfy the equations defining both PLP and
P (M) but violate one non-negativity inequality each, as

ȳ1 = (0, 2, 1, 1)− c/2 = (−1, 3, 1, 1) /2

ȳ2 = (2, 0, 1, 1)− c/2 = (3,−1, 1, 1) /2 (4.10)

ȳ3 = (1, 1, 0, 2)− c/2 = (1, 1,−1, 3) /2

ȳ4 = (1, 1, 2, 0)− c/2 = (1, 1, 3,−1) /2.

Note that each point above has exactly one negative coefficient which equals −1/2,
and the remaining coefficients are strictly positive and at least 1/2. These four points
also violate the inequality cy ≥ 4, as c · c = 4 and therefore, (xi, yi − c/2) satisfies
c(yi − c/2) = 2.

Step 2. We now define the ‘correcting’ directions d1, d2 ∈ R4. To do so, recall that
rowspan(A) has dimension 3 and by assumption rowspan(MA) is a 2-dimensional sub-
space of rowspan(A). If A3 6∈ rowspan(MA), let i∗ = 3, and if A3 ∈ rowspan(MA),
let i∗ ∈ {1, 2} be the index such that Ai∗ does not belong to rowspan(MA). Notice
that the rows of MA together with Ai∗ span exactly rowspan(A).

Now define d1, d2 ∈ R4 to be solutions of the following two systems of four equa-
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tions each (the coefficient η is specified later):





MA
Ai∗
c



 d1 =





0
1
η



 and





MA
Ai∗
c



 d2 =





0
−1
η



 . (4.11)

As the rows of MA together with Ai∗ span exactly rowspan(A) and the vector c is
orthogonal to the rows of A and hence to rowspan(A), the matrix in the left-hand
side of equations in (4.11) (which is the same) is invertible. Therefore, these systems
have unique nonzero solutions.

We will show that for some η, there are scalars λ1, λ2 > 0 such that λ1d1 and
λ2d2 are nonzero vectors satisfying the following properties:

1. MA(λ1d1) =MA(λ2d2) = 0.

2. There exists an α ∈ (0, 1) such that A(αλ1d1 + (1− α)λ2d2) = 0.

3. maxi λ
1d1i = 1/2 = maxi |λ1d1i | and maxi λ

2d2i = 1/2 = maxi |λ2d2i |.

4. cλ1d1 ≤ 1 and cλ2d2 ≤ 1.

The motivation for these properties is the following: (i) the first and second
properties will ensure that the ‘corrected’ vectors (xi, ȳi + (αd1 + (1 − α)d2)) still
satisfy all the constraints of P and P I(M), except for the non-negativity conditions;
(ii) we will use the third property to argue that there is an index i such that the
corresponding corrected vector satisfies the non-negativity conditions, and hence
belongs to PLP ∩ P (M); (iii) the fourth property will ensure that the corrected
vector does not satisfy the inequality cy ≥ 4.

Note that Properties 1 and 2 hold for all λ independent of the choice of η. Prop-
erty 1 follows directly from the first two equations in both systems in (4.11). For
Property 2, since Ai∗d

1 = 1 and Ai∗d
2 = −1, we have that Ai∗(d

1 + d2) = 0. There-
fore, d1 + d2 is orthogonal to the rows of MA and to Ai∗ , and hence to the rows of
A (as rows of MA and Ai∗ span rowspan(A)).

In order to obtain Properties 3 and 4 we need to rescale the vectors d1 and d2,
but notice that this operation preserves Properties 1 and 2. We consider two cases
depending on whether A3 belongs to rowspan(MA) or not, and set the coefficient η
appropriately.
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Case 1: A3 ∈ rowspan(MA). Set η = 0. In this case, the last constraint in
both systems in (4.11) (which are identical) guarantee that λ1d1 and λ2d2 satisfy
Property 4 for all λ1, λ2.

We now consider Property 3 for a rescaling of d1; the proof for d2 is identical.
Since A3 belongs to rowspan(MA), the first two constraints in the first system in
(4.11) guarantee that A3d

1 = 0, and therefore d11 + d12 = d13 + d14. The last constraint
implies that d11 + d12 + d13 + d14 = 0. In addition, d1 6= 0 as Ai∗d

1 6= 0. Therefore,
d11 + d12 = d13 + d14 = 0 and hence maxi d

1
i = maxi |d1i |, so we can multiply d1 by an

appropriate positive scalar λ1 so that maxi λ
1d1i = 1/2. The vector λ1d1 then satisfies

Properties 1,2,3, and 4.

Case 2: A3 /∈ rowspan(MA). Set η = 1. In this case i∗ = 3, namely both
systems in (4.11) contain a constraint of the form A3d = ±1 (instead of the implied
constraint A3d = 0 in the previous case). Adding the third and fourth constraints
in the first system in (4.11), we get d13 + d14 = 1. Subtracting the third constraint
from the fourth constraint, we get d11 + d12 = 0. Therefore maxi d

1
i = maxi |d1i | ≥ 1/2.

We can then rescale d1 by λ1 ∈ (0, 1] so that λ1d1 satisfies Property 3. Further, λ1d1

satisfies Property 4, since cd1 ≤ 1. Therefore, λ1d1 satisfies Properties 1,2,3 and 4.

As for d2, adding and subtracting constraints as in the case of d1, we see that
d23 + d24 = 0 and d21 + d22 = 1. Once again we can scale d2 so that it satisfies all
properties.

Step 3. Consider the vectors λ1d1 and λ2d2 from the previous step. Let i =
argmaxk d

1
k and j = argmaxk d

2
k. As λ

1d1 is nonzero, and because of Property 3, we
have λ1d1i = 1/2 and ȳi+λ1d1 ≥ 0. Property 1 implies thatMDx−MA(ȳi+λ1d1) =
MDx − MAȳi = Mb, and therefore (xi, ȳi + λ1d1) belongs to P (M) (but not to
PLP , since we can still have Dxi − A(ȳi + λ1d1) 6= b). Also, Property 4 implies that
c(ȳi+λ1d1) ≤ 3, and hence the point does not satisfy the inequality cy ≥ 4. Similarly,
Properties 1 and 3 imply that (xj, ȳj + λ2d2) ∈ P (M), and c(ȳj + λ2d2) ≤ 3.

Finally, by Property 2 there is an α ∈ (0, 1) such that the point

(x(M), y(M)) , α(xi, ȳi + λ1d1) + (1− α)(xj, ȳj + λ2d2)

satisfies Dx(M) − Ay(M) = Dxi − Aȳi = b. Therefore, this point (x(M), y(M))
belongs to PLP ∩ conv(P (M)). In addition, we clearly have cy(M) ≤ 3, and it is
easy to verify that ‖(x(M), y(M))‖ ≤ 6. This concludes the proof of Lemma 13.



CHAPTER 5

Probabilistic Analysis of the

Strength of the Split and

Triangle Closures

In this chapter we study the strength of the split and triangle cuts for the continuous
relaxation or relaxed corner polyhedra (RCPs) introduced in Section 2.3.4. Recall
from Section 3.2.2 that Basu et. al [27] showed examples of RCPs whose split closure
can be arbitrarily worse than their triangle closure, under the blow-up measure given
by (3.2). However, also recall that despite experiments carried out by several authors
[75, 21, 26, 67], the usefulness of triangle cuts in practice has fallen short of its
theoretical strength.

In order to understand this issue, we consider two types of measures between the
closures: the ‘worst-cost’ blow-up measure, where we look at the direction where
the split closure has the largest gap, and the ‘average-cost’ measure which takes an
average over all directions. Moreover, we consider a natural model for generating
random RCPs. Our first result is that, under the worst-cost measure, a random
RCP has a weak split closure with reasonable probability. This shows that the
bad examples given by Basu et. al are not pathological cases. However, when
we consider the average-cost measure, with high probability both split and triangle
closures obtain a very good approximation of the integer hull of the RCP. The above
result holds even if we replace split cuts by the simple split or Gomory cuts. This
gives an indication that split/Gomory cuts are indeed as useful as triangle cuts,
except in specific situations.

65
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Two recent papers address the fundamental question of comparing the strengths
of triangle and split cuts from a probabilistic point of view. He et al. [93] use the
same random model for generating RCP’s, but a different measure to compare the
strength of cuts, comparing the random coefficients of the inequalities induced by the
randomness of the rays. Their analysis does not consider the important triangles of
Type 3. Although the results cannot be directly compared, their paper also indicates
that split cuts perform at least as well as some classes of triangles.

Del Pia et al. [109] base their analysis on the lattice width of the underlying
convex set. They show that the importance of triangle cuts generated from Type 2
triangles (the same family which was considered in [27]) decreases with decreasing
lattice width, on average. They also have results for triangles of Type 3 and for
quadrilaterals.

Our approach is very different from these two papers.

Organization of the chapter. We start off by recalling some definitions relative
to RCPs, and then in Section 5.2 we introduce the probabilistic model that we use
for generating random RCPs and the measure of strength used to compare closures,
including the average-cost measure. In Section 5.3 we show that with constant prob-
ability, random RCP has its split closure significantly weaker that its triangle closure
according to the worst-cost measure. In Section 5.4, we show that under the average-
cost measure, with high probability even the simple-splits closure provides a good
approximation of the integer hull. Finally, in Section 5.5 we discuss the extension of
the latter result to a mixed-integer version of the relaxed corner polyhedra.

Acknowledgments. This chapter is joint work with Amitabh Basu and Gérard
Cornuéjols.
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5.1 Preliminaries

Recall that the continuous relaxation or relaxed corner polyhedron (RCP) is a MIP
of the form

min cs

x = f +
n
∑

j=1

rjsj (RCP)

x ∈ Zm,

s ≥ 0, s ∈ Rn.

Notice that we are now keeping an objective function as well, and not only focusing on
the set of feasible solutions. Therefore, an RCP is defined by the vectors f, r1, . . . , rn

and the cost vector c. We call a tuple 〈f, r1, r2, . . . , rn〉 an ensemble. Given an
ensemble E and cost vector c, we use RCP (E , c) to denote the corresponding RCP.

Intersection cuts. We recall the definition of intersection cuts for the relaxed
corner polyhedron from Section 2.3.4. Consider a convex lattice-free set X ⊆ Rm

(namely int(X)∩Zm = ∅) that contains f in its interior. The function ψX : Rm → R

is defined as the gauge function of K − {f}, namely

ψX(r) = inf
{

λ > 0 : f +
r

λ
∈ X

}

. (5.1)

The inequality
n
∑

j=1

ψX(r
j)sj ≥ 1

is valid for RCP (E , c) and it is called an intersection cut or lattice-free cut. Con-
versely, it was shown in [40] that all (minimal) cuts for RCP (E , c) can be obtained
in this way.

One important family of inequalities is derived from sets X which are (the closure
of) split sets, that is, X is of the form {x ∈ Rm : γ ≤ πx ≤ γ + 1} for some π ∈ Zm

and γ ∈ Z. These are denoted as split cuts. Also of particular importance are simple-
split cuts, that is, cuts from sets of the form {x ∈ Rm : γ ≤ eix ≤ γ + 1⌉}, where ei
is the ith canonical vector in Rm. Finally, in the two-dimensional case m = 2, a cut
obtained from sets X that are a triangle.
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Working on the s-space. It will be much more convenient for us to work only
on the s-space, instead of the original (x, s)-space of (RCP). So define P (E) as the
projection of the feasible region of RCP (E , c) onto the s-space. We also use PL(E)
to denote the projection of the linear relaxation of RCP (E , c) onto the s-space.

Similarly, we define the projected version of the split closure, denoted by S(E),
as the intersection of the relaxation PL(E) and all valid split cuts for RCP (E , c).
Define the projected simple-split closure G(E) and (for the case m = 2) the projected
triangle closure T (E) similarly.

One justification why we can restrict to these projected sets is the following. By
the construction of RCP’s, optimizing a function of the form cs over the feasible
region of RCP (E , c) yields the same value as optimizing this function over the pro-
jected region P (E); a similar observation holds for all projected sets defined above.
Since the measures of strength that we use are based on the gap(., .) construction,
these observations imply that it suffices to focus on the gap between the projected
regions.

Not only working on the s-space is more natural, but also gives us the following
nice property: the recession cone of P (E) is Rn

+(see [51]) and hence P (E) is of blocking
type. Since P (E) ⊆ S(E), this implies that S(E) is also of blocking type, and so are
the closures G(E) and T (E).

5.2 Random Model and Measures of Strength

Random model. LetDm
n denote the distribution of ensembles 〈f, r1, . . . , rn〉 where

f is picked uniformly from [0, 1]m and each of r1, . . . , rn is picked independently and
uniformly at random from the set of unit vectors in Rm, i.e. the rays r1, . . . , rn are
sampled uniformly from Sn−1. We make a note here that the rays in an RCP can
be assumed to be unit vectors, by suitably scaling the cost coefficients. Hence, in
our model, we assume the rays are sampled from the set of unit vectors. When the
dimension is 2, we write Dn for the distribution, omitting the superscript.

Measures of strength. Recall some definitions from Section 3.1. A closed, convex
set X ⊆ Rn

+ is said to be of blocking type if y ≥ x ∈ X implies y ∈ X. Given two
sets A and B of blocking type, the gap between these sets with respect to the cost
vector c is defined as

gap(A,B, c) =
inf{cs : s ∈ A}
inf{cs : s ∈ B} , (5.2)
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whenever both numerator and denominator are finite. Notice that this value is
greater than 1 if A is contained in B. We define the gap to be +∞ if A is empty or
inf{cs : s ∈ B} = 0.

Based on this idea, we can define the worst-cost measure between the two sets A
and B as the worst possible gap over all non-negative cost vectors:

wc(A,B) = sup
c∈Rm

+

{gap(A,B, c)} (5.3)

= sup
c∈[0,1]m

{gap(A,B, c)} , (5.4)

where the second equation follows from the fact that the ratios are preserved under
positive scaling of the cost vectors. Note that for convex sets of blocking type,
only non-negative cost vectors have bounded optimum, motivating why we restrict
ourselves to this case.

For any convex set X of blocking type, define αX = { x
α
: x ∈ X}. Recall that

the blow-up measure between A and B is

bu(A,B) = inf{α : αA ⊇ B}.

It was shown in [27] that, whenever A is polyhedral, then have the equivalence
wc(A,B) = bu(A,B). In Section 5.6 we prove a generalization of this result that
does not rely on the polyhedrality of any of these sets.

Now we define another (more robust) measure of strength which tries to capture
the average strength with respect to different costs. Consider a distribution C over
vectors in Rn

+. Then, the average-cost measure between A and B is defined by

avg(A,B, C) = Ec∼C [gap(A,B, c)] . (5.5)

5.3 Worst-cost Measure in R2

The main result of this section is that, for a significant fraction of the RCP’s in the
plane, S(E) is significantly worse than T (E) based on the worst-cost measure.

Theorem 9. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(T (E), S(E)) ≥ α) ≥
[

1− 2

(

1− g(
β

4α
)

)n] [
1− β

α
− 1− β2

4α2

]

,
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n α β Pr
100 1.5 0.37 25.7%
100 2 0.43 16.7%
500 2 0.16 33.6 %
500 3 0.22 21.3%
1000 2 0.01 37.7%
1000 3 0.14 25.0 %
1000 4 0.17 18.2 %
+∞ 2 0 43.75 %
+∞ 4 0 30.56 %

Table 5.1: Values of the bound of Theorem 9 for different values of n and approxi-
mation factor α. The value of β in every entry was chosen empirically and attempts
to optimize the bound.

where

g(x) =

(

x

0.75− (2−
√
2)x

− x

1− (2−
√
2)x

)

.

Notice that this bound increases as n grows. In the limit n → ∞, and using the
optimal choice β → 0, the bound becomes 1/α − 1/(4α2). To obtain an idea about
the probabilities in the above theorem, Table 5.1 presents the bound obtained for
different values of n and α.

The way to prove this result is to consider a particular (deterministic) ensemble
〈f, r1, r2〉 which is ‘bad’ for the split closure and show that it appears with significant
probability in a random ensemble. We employ the following monotonicity property to
transfer the ‘badness’ to the whole RCP. The proof appears at the end of Section 5.6.

Lemma 14. Consider an ensemble E = 〈f, r1, . . . , rn〉 and let E ′ = 〈f, ri1 , ri2 , . . . , rik〉
be a sub-ensemble of it. Then wc(T (E), S(E)) ≥ wc(T (E ′), S(E ′)).

5.3.1 A Bad Ensemble for the Split Closure

First, we introduce the following notation: Given a point f and a ray r, we say that
f + r crosses a region R ⊆ Rn if there is λ ≥ 0 such that f + λr ∈ R.

In this part we will focus on ensembles E = 〈f, r1, r2〉 where f ∈ (0, 1)2, and
f + r1 and f + r2 cross the open segment connecting (0, 0) to (0, 1). The high-level
idea is the following. Suppose that r1 an r2 have x1-value equal to -1 and consider
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a lattice-free triangle T containing the points f + r1 and f + r2, and also containing
f in its interior. This triangle gives an inequality which is at least as strong as
s1+s2 ≥ 1, hence we have a lower bound of 1 for minimizing s1+s2 over the triangle
closure T (E). However, further assume that the angle between rays r1 and r2 is
large. Then we can see that any split that contains f in its interior will have a very
large coefficient for either s1 or s2. More specifically, suppose that there is a large M
such that, for every inequality ψ(r1)s1 + ψ(r2)s2 ≥ 1 coming from a split, we have
max{ψ(r1), ψ(r2)} ≥ M . Then the point (s1, s2) = (1/2M, 1/2M) satisfies every
such inequality and hence is feasible for the split closure S(E); this gives an upper
bound of 2/M for minimizing s1 + s2 over the split closure. Then using the choice
of c = [1, 1] in the maximization in (5.3) gives wc(T (E), S(E)) ≥M/2.

The following lemma, whose proof is presented in Section 5.8, formalizes the
observation that if r1 and r2 are spread out then the split closure is weak.

Lemma 15. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2,
r1 = c1(−1, t1) and r2 = c2(−1, t2) with c1, c2 ≥ 0 and t1 ≥ t2. Moreover, assume
that both f + r1 and f + r2 cross the left facet of the unit square. Then

min{c1s1 + c2s2 : (s1, s2) ∈ S(E)} ≤ 2

t1 − t2
.

Now we are ready to establish the main lemma of this section, which exhibits bad
ensembles for the split closure.

Lemma 16. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2.
Suppose that f + r1 crosses the open segment connecting (0, 1− ǫ) and (0, 1) and that
f + r2 crosses the open segment connecting (0, 0) and (0, ǫ), for some 0 ≤ ǫ < 1/2.
Then wc(T (E), S(E)) ≥ (1− 2ǫ)/2f1.

Proof. Let v1 = (−1, t1), v
2 = (−1, t2) and let c1, c2 ≥ 0 be such that r1 = c1v

1 and
r2 = c2v

2. By the assumptions on the rays, we have t1 ≥ t2.

Consider the rays v1 = (−1, t1) and v2 = (−1, t2) such that f + v1 crosses the
point (0, 1− ǫ) and f + v2 crosses the point (0, ǫ) (see Figure 5.1).

Notice that t1 ≥ t1 ≥ t2 ≥ t2, implying that t1 − t2 ≥ t1 − t2. Moreover, using
similarity of the triangles with vertices f , (0, 1− ǫ), (0, ǫ) and f , f + v1, f + v2, we

obtain that t1 − t2 =
(1−2ǫ)(1+f1)

f1
. Therefore, t1 − t2 ≥ (1− 2ǫ)/f1.

Employing Lemma 15 over E gives min{c1s1 + c2s2 : (s1, s2) ∈ S(E)} ≤ 2f1/(1−
2ǫ). In contrast, min{c1s1 + c2s2 : (s1, s2) ∈ T (E)} ≥ 1, because of the inequality
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f

r
1

r
2

v
1

v
2

Figure 5.1: This figure illustrates the construction used in the proof of Lemma 16.
The vectors r1, r2, v1 and v2 are represented by solid arrows, while the vectors v1 and
v2 are represented by dashed arrows.

c1s1 + c2s2 ≥ 1 derived from the lattice-free triangle with vertices f + v1, f + v2 and
f − (γ, 0) for some small γ > 0. Notice that such γ exists because f + v1 and f + v2

do not cross the points (0, 1) and (0, 0) respectively. Using the cost vector c = [c1, c2],
we obtain the desired bound wc(T (E), S(E)) ≥ (1− 2ǫ)/2f1.

5.3.2 Probability of Bad Ensembles

Using the ensemble constructed in the previous section and the monotonicity prop-
erty from Lemma 14, we now analyze the probability that a random ensemble E ∼ Dn

is bad for the split closure. Let ∆ denote the triangle in R2 with vertices (0, 0), (0, 1),
(1/2, 1/2).

Lemma 17. Let E = 〈f, r1, . . . , rn〉 be a random ensemble from Dn, where f =
(f1, f2). Then for all f̄ = (f̄1, f̄2) ∈ ∆ and all ǫ ∈ (0, 1/2), we have

Pr

(

wc(T (E), S(E)) ≥ 1− 2ǫ

f̄1

∣

∣

∣f = f̄

)

≥ 1− 2
(

1− g(f̄1)
)n
,

where

g(x) =

(

x

1− ǫ− (2−
√
2)x

− x

1− (2−
√
2)x

)

.
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Proof. Let us call portals the open segment connecting (0, 1− ǫ) and (0, 1) and the
open segment connecting (0, ǫ) and (0, 0). Due to Lemmas 14 and 16 it suffices to
bound from below the probability that a random ensemble has rays ri and rj such
that f + ri crosses one portal and f + rj crosses the other portal.

Consider a ray ri; the probability that f+ri crosses the open segment connecting
(0, 1−ǫ) and (0, 1) equals to θ/2π, where θ is the angle between the vectors (0, 1−ǫ)−f̄
and (0, 1)− f̄ . We prove the following lower bound for θ in the appendix.

Claim 1. θ ≥ g(f̄1).

Therefore, the probability that f̄+ri crosses the open segment connecting (0, 1−ǫ)
and (0, 1) is at least g(f̄1). By symmetry, we can also prove that the probability that
f̄ + ri crosses the open segment connecting (0, ǫ) and (0, 0) is also at least g(f̄1); this
bounds also holds for this case because it is independent of f̄2.

Let B1 denote the event that no ray of E crosses the open segment connect-
ing (0, 1 − ǫ) and (0, 1) and let B2 denote the even that no ray of E crosses the
open segment connecting (0, ǫ) and (0, 0). Using our previous bound we obtain that
Pr(B1) ≤ (1 − g(f̄1))

n, and the same lower bound holds for Pr(B2). Notice that
the probability that E has rays ri and rj such that f + ri and f + rj cross distinct
portals is 1− Pr(B1 ∨B2); from union bound we get that this probability is at least
1− 2(1− g(f̄1))

n. This concludes the proof of the lemma.

5.3.3 Proof of Theorem 9

In order to conclude the proof of Theorem 9 we need to remove the conditioning
in the previous lemma. To make progress towards this goal, for t ∈ [0, 1/2] let
∆t = ∆∩{(x1, x2) : x1 ≤ t}. It is easy to see that the area of ∆t equals (1− t)t. Now
it is useful to focus on the set ∆t \∆βt, for some β ∈ [0, 1], since we can bound the
probability that a uniform point lies in it and Lemma 17 is still meaningful. Using
the independence properties of the distribution Dn we get that for every β ∈ [0, 1]
and ǫ ∈ (0, 1/2) a random ensemble E = 〈f, r1, . . . , rn〉 ∼ Dn satisfies:

Pr

(

wc(T (E), S(E)) ≥ 1− 2ǫ

2t

∣

∣

∣
f ∈ ∆

)

≥ Pr

(

wc(T (E), S(E)) ≥ 1− 2ǫ

2t

∣

∣

∣f ∈ ∆t \∆βt

)

Pr
(

f ∈ ∆t \∆βt

∣

∣

∣f ∈ ∆
)

≥ [1− 2 (1− g (βt))n] · 4 · [(1− t)t− (1− βt)βt] ,
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where the first inequality follows from the fact that ∆t \ ∆βt ⊆ ∆ and the second
inequality follows from the fact that βt ≤ f1 ≤ t and that the function g(x) is
increasing in x.

Finally, notice that this bound holds for all four 90-degree rotations of ∆ around
the point (1/2, 1/2); this is because of the symmetries of Dn. Thus, by law of total
probability we can remove the last conditioning. Using ǫ = 1/4 and α = 1/4t we
then obtain Theorem 9. We remark that we fixed the value of ǫ in order to simplify
the expression in the theorem and that the value 1/4 was chosen experimentally in
order to obtain good bounds specially for reasonably small values of n.

Since T (E) is a relaxation of P (E), as a corollary of the theorem we obtain a
bound on the probability that the split closure is bad for random RCP’s.

Corollary 4. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(P (E), S(E)) ≥ α) ≥
[

1− 2

(

1− g(
β

4α
)

)n] [
1− β

α
− 1− β2

4α2

]

,

5.4 Average-cost Measure

For ǫ > 0 we define the product distribution Pǫ over [ǫ, 1]n where a vector is obtained
by taking each of its n coefficients independently uniformly in [ǫ, 1]. In this section
we show that avg(P (E), G(E),Pǫ) is small for most ensembles E in Dm

n .

Theorem 10. Fix reals ǫ > 0 and α > 1 and an integer m > 0. Then for large
enough n,

Pr
E∼Dm

n

(avg(P (E), G(E),Pǫ) ≤ α) ≥ 1− 1

n
.

We remark that the property that the cost vector is bounded away from zero in
every coordinate is crucial in our analysis. This is needed because the ratio in (5.2)
can become ill-defined in the presence of rays of zero cost.

The high level idea for proving the theorem is the following. Consider an ensemble
E = 〈f, r1, . . . , rn〉. Define f 1 as the integral point closest to f in l2 norm. It is not
difficult to see that for every c ∈ Pǫ, min{cs : s ∈ P (E)} is lower bounded by ǫ|f 1−f |,
and this is achieved when the ensemble has the ray (f 1−f)/|f 1−f | with cost ǫ. We
prove that this lower bound also holds for minimizing over G(E) instead of P (E). In
addition, we show that for most ensembles E , there are enough rays similar to f 1−f
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that have small cost. This allows us to upper bound min{cs : s ∈ P (E)} by roughly
ǫ|f 1 − f | for most of the ensembles, which gives the desired result.

We start by proving the upper bound. For that, we need to study a specific subset
of the ensembles in Dm

n . We remark that the bounds presented are not optimized
and were simplified in order to allow a clearer presentation.

5.4.1 (β, k)-Good Ensembles

Consider an ensemble E = 〈f, r1, . . . , rn〉. At a high level, we consider special regions
in Rm ‘around’ f − f 1, whose size depends on a parameter β > 0; then an ensemble
is (β, k)-good if it has at least k rays in each of these regions.

To make this precise, let Sm−1 denote the (m−1)-dimensional unit sphere in Rm.
Define t = f 1 − f and let ρ be a rotation of Rm which maps t/|t| into em. Let C̄(β)
be the cap of the hypersphere Sm−1 consisting of all unit vectors with dot product at
least β with em. We also define H+

i as the halfspace given by {x ∈ Rm : xi ≥ 0} and
H−
i = {x ∈ Rm : xi ≤ 0}. We use the halfspaces H+

i and H−
i to partition C̄(β) into

2m−1 parts. That is, for I ⊆ [m−1], let C̄I(β) = C̄(β)∩ (
⋂

i∈I H
+
i )∩ (

⋂

i∈[m−1]\I H
−
i ).

Finally, let C(β) = ρ−1C̄(β) and CI(β) = ρ−1C̄I(β), that is, the sets obtained by
applying the inverse rotation ρ−1.

Using these structures, we say that E is (β, k)-good if for every I ⊆ [m− 1] there
are at least k rays ri in CI(β). The main property of such ensembles is that they
allow us to use the following lemma.

Lemma 18. Let R be a subset of the rays of E such that R ∩ CI(β) 6= ∅ for all

I ⊆ [m−1]. Then there is a solution s ∈ P (E) supported in R such that
∑n

i=1 si ≤ |t|
β
.

Proof. Without loss of generality assume that R∩C(β) = {r1, r2, . . . , rn′}. First we
show that t ∈ cone(R∩C(β)). This follows from Farkas’ Lemma and the hypothesis
R ∩ CI(β) 6= ∅ for all I ⊆ [m− 1]; the proof is deferred to the appendix.

Claim 2. t ∈ cone(R ∩ C(β)).

So consider s1, s2, . . . , sn′ ≥ 0 with
∑n′

i=1 sir
i = t. We claim that

∑n′

i=1 si ≤ |t|/β.
To see this, first notice that by definition of C(β) we have r(t/|t|) ≥ β for all r ∈ C(β).

Then multiplying the equation
∑n′

i=1 sir
i = t by t gives

∑n′

i=1 siβ|t| ≤
∑n′

i=1 sir
it =

tt = |t|2 and the claim follows.
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Since f + t = f 1 is integral we obtain that s is a feasible solution for P (E). This
concludes the proof of the lemma.

Using this lemma we can prove an upper bound on optimizing a cost vector in
Pǫ over P (E).

Lemma 19. Fix β, ǫ > 0 and an integer k ≥ 0. Consider a (β, k)-good ensemble E
and let z(c) = min{cs : s ∈ P (E)}. Then

Ec∼Pǫ
[z(c)] ≤ |t|

(

p
ǫ

β2
+ (1− p)

1

β

)

,

where

p = 1− 2m−1

(

1− ǫ/β

1− ǫ

)k

.

Proof. Consider a vector c which satisfies the following property: (*) for each I ⊆
[m− 1] there is a ray in CI(β) which has cost w.r.t c at most ǫ/β. Then employing
Lemma 18 we obtain that z(c) ≤ |t|ǫ/β2. Similarly, for a general vector c ∈ [ǫ, 1]m

we have the bound z(c) ≤ |t|/β.
Now consider a vector c ∼ Pǫ. For a fixed I, the probability that every ray in

E ∩CI(β) has cost greater than ǫ/β is at most ((1− ǫ/β)/(1− ǫ))k. By union bound,
c satisfies property (*) with probability at least

1− 2m−1

(

1− ǫ/β

1− ǫ

)k

.

The lemma then follows by employing the bounds on z(c).

5.4.2 Probability of Obtaining a (β, k)-Good Ensemble

In this section we estimate the probability that a random ensemble in Dm
n is (β, k)-

good. Let

k̄ = n
area(C̄∅(β))

area(Sm−1)
−
√

n(lnn+m− 1)

2
. (5.6)

Using some Chernoff bound arguments, we can show the following lemma. The
proof is deferred to the appendix.
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Lemma 20. Consider a random ensemble E ∼ Dm
n and let k̄ be defined as in (5.6).

If k̄ ≥ 0, then

Pr
(

E is (β, k̄)-good
)

≥ 1− 1

n
.

5.4.3 Lower Bound for Simple Splits

In this section we show that ǫ|t| is also a lower bound for optimizing any vector in
[ǫ, 1]n over G(E).
Lemma 21. Fix ǫ > 0 and consider an ensemble E in Dm

n and a vector c ∈ [ǫ, 1]n.
For t defined as before, we have

min{cs : s ∈ G(E)} ≥ ǫ|t|.

Proof. To prove this lemma, let Si ≡
∑n

j=1 ψ
i(rj)sj ≥ 1 be the inequality for P (E)

obtained from the simple split {x : 0 ≤ xi ≤ 1}. Clearly Si is valid for G(E). Using
the definition of Minkowski’s functional, it is not difficult to see that

ψi(rj) =
rji

[rji ≥ 0]− fi
,

where [rji ≥ 0] is the function that is equal to 1 if rji ≥ 0 and equal to 0 otherwise.

Now consider the inequality
∑n

j=1 ψ(r
j)sj ≥ 1 where

ψ(rj) =

∑m
i=1(f

1
i − fi)

2ψi(rj)
∑m

i=1(f
1
i − fi)2

.

This inequality is a non-negative combination of the inequalities Si and therefore is
valid for G(E). We claim that for any c ∈ [ǫ, 1]m, min{cs :∑n

j=1 ψ(r
j)sj ≥ 1} ≥ ǫ|t|,

which will give the desired lower bound on optimizing c over G(E).
To prove the claim recall that

∑m
i=1(f

1
i − fi)

2 = |t|2 and notice that

ψ(rj) =
1

|t|2
m
∑

i=1

(f 1
i − fi)

2ψi(rj) =
1

|t|2
m
∑

i=1

(f 1
i − fi)

2rji
[rji ≥ 0]− fi

.

Employing the Cauchy-Schwarz inequality and using the fact that |rj| = 1, we get

ψ(rj) ≤ 1

|t|2 |r
j|

√

√

√

√

m
∑

i=1

(

(f 1
i − fi)2

[rji ≥ 0]− fi

)2

≤ 1

|t|2

√

√

√

√

m
∑

i=1

(f 1
i − fi)4

([rji ≥ 0]− fi)2
.
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However, since f 1 is the integral point closest to f , for all i it holds that (f 1
i −

fi)
2 ≤ ([rji ≥ 0]−fi)2. Employing this observation on the previous displayed inequal-

ity gives ψ(rj) ≤ 1/|t|. Therefore, any s satisfying
∑n

j=1 ψ(r
j)sj ≥ 1 also satisfies

∑n
j=1 sj ≥ |t|. The claim then follows from the fact that every coordinate of c is

lower bounded by ǫ. This concludes the proof of Lemma 21.

5.4.4 Proof of Theorem 10

Recall that ǫ, α and m are fixed. Let β be the minimum between
√

2/α and a
positive constant strictly less than 1; this guarantees that C̄∅(β) > 0. Consider a
large enough positive integer n. Let E be a (β, k̄)-good ensemble in Dm

n , where k̄ is
defined as in (5.6). Notice that k̄, as a function of n, has asymptotic behavior Ω(n).
We assume that n is large enough so that k̄ > 0.

Now let us consider Lemma 19 with k = k̄. The value p defined in this lemma
is also function of n, now with asymptotic behavior 1 − o(1). Thus, if n is chosen
sufficiently large we get 1− p ≤ ǫβα/2 and hence Ec∼Pǫ

[z(c)] ≤ |t|ǫα. If in addition
we use the lower bound from Lemma 21, we obtain that avg(P (E), G(E),Pǫ) ≤ α.
The theorem then follows from the fact that an ensemble in Dm

n is (β, k̄)-good with
probability at least 1− 1/n, according to Lemma 20.

5.5 Implications for the Mixed-Integer Case

In this section we consider the mixed integer model obtained from (RCP) by intro-
ducing integer ‘non-basic’ variables. That is we consider IP’s of the form

min c1s+ c2y

x = f +
n
∑

j=1

rjsj +

p
∑

j=1

qjyj (MG)

x ∈ Zm, s ≥ 0, y ∈ Z
p
+

As RCP’s arise as relaxations for IP’s in tableaux form, the above IP also appears
in the same context and offers a possibly much tighter relaxation since it only relaxes
possible non-negativity constraints of basic variables. Our goal is to understand how
the results from the previous section carry over to this model.
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The IP (MG) is completely defined by a cost vector c and a tuple E = 〈f, r1, . . . , rn, y1, . . . , yq〉.
With some overload in the notation we also call such tuple an ensemble. Given an
ensemble E and a cost vector c, we use MG(E , c) to denote the associated mixed-
integer program. As before, we work on the space of the ‘non-basic’ variables, hence
we define P̃ (E) as the projection of the feasible region of MG(E , c) onto the (s, y)-
space.

The random model for RCP’s can be extended naturally for these mixed integer
programs. That is, define the distribution D̃m

n,p over ensembles where f is picked uni-
formly from [0, 1]m and each of the rays r1, . . . , rn, y1, . . . , yq is picked independently
and uniformly at random from the set of unit vectors in Rm. Similarly, we define the
cost distribution P̃ǫ where a vector in [ǫ, 1]n+p is obtained by selecting each coefficient
independently uniformly in [ǫ, 1].

Again our goal is to study the strength of simple split cuts for these random mixed
integer programs. The (unstrengthened) extension of split cuts to MG’s is also direct:
given a split X in Rm, its associated split cuts is

∑n
j=1 ψX(r

j)sj+
∑p

j=1 ψX(q
j)yj ≥ 1,

where ψX is defined in (5.1). It is easy to see that such inequality is valid for P̃ (E),
since it is in fact valid for the set of solutions when the integrality constraints on the
‘non-basic’ variables are dropped. The simple split cut of MG(E), denoted by G̃(E),
is defined as the intersection of all simple split cuts.

With definitions at hand, we extend Theorem 10 for MG’s. The proof is a fairly
direct modification of the proof of Theorem 10. We give it in the appendix.

Theorem 11. Fix reals ǫ > 0 and α > 1 and positive integers m and p. Then for n
sufficiently larger than m,

Pr
E∼D̃m

n,p

(

avg(P̃ (E), G̃(E), P̃ǫ) ≤ α
)

≥ 1− 1

n
.
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Appendix

5.6 Characterizing the Measure of Strength

Let V be a linear vector space over the reals. Let V ∗ denote the (algebraic) dual
space of V , i.e. the set of all linear functionals on V .

Let K be a convex cone in V . We denote the dual cone by K∗ = {f ∈ V ∗ | f(s) ≥
0 for all x ∈ K}. For a set C ⊆ V , and γ ≥ 0, we denote γC = {γx | x ∈ C}. Let
P and Q be subsets of K defined as follows, where A and B are arbitrary (possibly
empty) index sets:

P = {s ∈ K | pα(s) ≥ 1 ∀α ∈ A}, Q = {s ∈ K | qβ(s) ≥ 1 ∀β ∈ B}, (5.7)

where pα, qβ ∈ K∗ for all α ∈ A and β ∈ B.

Define

d1(P,Q) =

{

sup{γ > 0 | Q ⊆ γP} if ∃γ > 0 such that Q ⊆ γP
0 otherwise

d2(P,Q) = infα∈A infs∈Q pα(s)

IG(P,Q) = infΦ∈K∗
infs∈Q Φ(s)

infs∈P Φ(s)

with the convention that
infs∈Q Φ(s)

infs∈P Φ(s)
= +∞ if infs∈P Φ(s) = 0 for some Φ ∈ K∗.

Lemma 22. d2(P,Q) = d1(P,Q).

Proof. (≥) If d1(P,Q) = 0 then the inequality holds trivially since d2(P,Q) ≥ 0 :
for every α ∈ A, pα ∈ K∗ is nonnegative over Q ⊆ K. Consider any γ > 0 such
that Q ⊆ γP , any s ∈ Q and any α ∈ A. Since s ∈ Q ⊆ γP , s

γ
∈ P . Therefore,

pα(
s
γ
) ≥ 1 and therefore pα(s) ≥ γ. Since this relation is true for any s ∈ Q and any

α ∈ A, we conclude that infα∈A infs∈Q pα(s) ≥ γ, i.e. d2(P,Q) ≥ γ. This relation
holds for any γ > 0 such that Q ⊆ γP , taking a supremum all such γ, we get
d2(P,Q) ≥ sup{γ > 0 | Q ⊆ γP} = d1(P,Q).

(≤) If d2(P,Q) = 0, then the inequality is trivial because d1(P,Q) ≥ 0 by defini-
tion. If d2(P,Q) = +∞, this means that either Q is empty or A is empty or both. If
Q is empty, then Q ⊆ γP for all γ > 0 and so d1(P,Q) = +∞. If A is empty, P = K
and γP = K for all γ > 0 and Q ⊆ K, and so d1(P, q) = +∞. So we consider the
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case 0 < d2(P,Q) < +∞. By definition, we have d2(P,Q) ≤ pα(s) for all s ∈ Q
and α ∈ A. Therefore, 1 ≤ p( s

d2(P,Q)
) for all α ∈ A. This implies that s

d2(P,Q)
∈ P ,

i.e. s ∈ d2(P,Q)P . Since this is true for all s ∈ Q, we find that Q ⊆ d2(P,Q)P .
Therefore, d1(P,Q) = sup{γ > 0 | Q ⊆ γP} ≥ d2(P,Q).

The above result generalizes a lemma from Basu et. al [27].

Lemma 23. IG(P,Q) = d1(P,Q).

Proof. (≥) If d1(P,Q) = 0 then the inequality is trivial because IG(P,Q) ≥ 0. If
infs∈P Φ(s) = 0 for all Φ ∈ K∗, then IG(P,Q) = +∞ and the inequality holds
trivially. Otherwise, consider any Φ ∈ K∗ such that infs∈P Φ(s) > 0, and γ > 0 such

that Q ⊆ γP . If Q is empty, then infs∈QΦ(s) = +∞ and so
infs∈Q Φ(s)

infs∈P Φ(s)
≥ γ. Otherwie,

consider s ∈ Q, so s
γ
∈ P . Therefore, Φ(s) = γΦ( s

γ
) ≥ γ infs∈P Φ(s). Taking an

infinium over all s ∈ Q on the left hand side, we get that infs∈QΦ(s) ≥ γ infs∈P Φ(s).

So again we get that
infs∈Q Φ(s)

infs∈P Φ(s)
≥ γ. Now taking an infimum over all Φ ∈ K∗ on

the left hand side, and a supremum over all γ > 0 such that Q ⊆ γP , we obtain
IG(P,Q) ≥ d1(P,Q).

(≤) Since d1(P,Q) = d2(P,Q) by Lemma 22, it suffices to show that IG(P,Q) ≤
d2(P,Q). If A is empty, then d2(P,Q) = +∞ and the inequality holds trivially.

Otherwise, we observe that for any α ∈ A, infs∈Q pα(s) ≥ infs∈Q pα(s)

infs∈P pα(s)
since pα(s) ≥ 1

for all s ∈ P . Since pα ∈ K∗, we conclude that infs∈Q pα(s) ≥ infΦ∈K∗
infs∈Q Φ(s)

infs∈P Φ(s)
=

IG(P,Q). We then take an infimum over α ∈ A on the left hand side and conclude
that d2(P,Q) ≥ IG(P,Q).

We define wc(P,Q) = 1
IG(P,Q)

. Note that this definition generalizes the definition

in (5.3). Hence we conclude that

Theorem 12. d1(P,Q) = d2(P,Q) = IG(P,Q) = 1
wc(P,Q)

Let B be any Hamel basis for V . We can then consider the standard “coordi-
natization” of any point s ∈ V as a function s : B → R with finite support, i.e.
s(r) 6= 0 for finitely many r ∈ B. Moreover, any linear functional Φ ∈ V ∗ can then
be represented as a function φ : B → R.

Let P be any subset of V . For any subset K ⊆ B, we denote VK as the subspace
spanned by the vectors in K. The truncation of P to VK is defined as PK = P ∩ VK.



82 Chapter 5: Probabilistic Analysis of Split and Triangle Closures

Consider P and Q given as in (5.7). If we think of PK, QK as subsets of the linear
space VK, we can also talk about wc(PK, QK). More precisely, let KK = K ∩ VK.
Viewing VK as a linear vector space in its own right and KK as a convex cone in this
linear space, we consider the algebraic dual of VK and the dual cone K∗

K. We can then

define IG(PK, QK) = infΦ∈K∗
K

infs∈QK
Φ(s)

infs∈PK
Φ(s)

and define wc(PK, QK) =
1

IG(PK,QK)
. We can

also represent PK, QK as subsets of the linear space VK in the form (5.7), using linear
functionals from K∗

K. Let P be given as P = {s ∈ K | pα(s) ≥ 1 ∀α ∈ A}. With
our “coordinatization”, we view each pα as a function from B to R; we consider p̄α
as the restriction of pα to K. Then it is easy to check that PK as a subset of VK is
given by PK = {s ∈ KK | p̄α(s) ≥ 1 ∀α ∈ A}. We do the same for QK. This enables
us to define d2(PK, QK) in the linear space VK. The definition of d1(PK, QK) needs
no comment; it is a purely set theoretic definition. Of course, Theorem 12 applies to
PK, QK when viewed as subsets of the linear space VK, with the appropriate definition
for d1(PK, QK), d2(PK, QK), IG(PK, QK) and wc(PK, QK) and this will be utilized in
proving the next lemma.

Lemma 24. Consider two closed convex sets sets P ⊆ V and Q ⊆ V of the form
(5.7). Then for any K ⊆ B,

wc(P,Q) ≥ wc(PK, QK).

Proof. If wc(P,Q) = +∞ there is nothing to prove. So assume wc(P,Q) = α < +∞.
Lemma 12 gives that Q ⊆ 1

α
P . We claim that this implies that Qk ⊆ 1

α
Pk. To

see this, consider q ∈ QK = Q ∩ VK. Since q ∈ Q ⊆ 1
α
P , we get that q ∈ 1

α
P .

Moreover, q ∈ VK = 1
α
VK. So q ∈ 1

α
P ∩ 1

α
VK = 1

α
(P ∩ VK) = 1

α
PK. Therefore,

QK ⊆ 1
α
PK. By definition, d1(PK, QK) ≥ 1

α
and therefore by Theorem 12, we have

that wc(PK, PK) ≤ α and the result follows.

We now use Lemma 24 in the special case of V = Rn and K = Rn
+ to derive

Lemma 14. We consider the standard basis for V , B = {e1, . . . , en}.

Proof of Lemma 14. In order to simplify the notation, we assume without loss of
generality that E ′ = 〈f, r1, r2, . . . , rk〉. We let K = {e1, . . . , ek} ⊆ B.

Consider T (E) and recall that it is defined as {s ∈ Rn :
∑n

i=1 ψT (r
i)si ≥ 1 ∀T ∈

T }, where T is the set of all triangles in R2 that contain f but no integral point
in their interior. Since ψT ≥ 0, it follows that T (E) is a convex set of the form
5.7. Similarly, S(E) is a convex set of the form 5.7. Using again its definition,
we have that T (E ′) = {s ∈ Rk :

∑k
i=1 ψT (r

i)si ≥ 1 ∀T ∈ T }, and therefore
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T (E ′) = T (E)K. The same argument can be used to show that S(E ′) = S(E)K. Then
employing Lemma 24 with P = T (E) and Q = S(E), we obtain the desired result
wc(T (E), S(E)) ≥ wc(T (E ′), S(E ′)).

5.7 Proof of Claim 1

Recall that θ is the angle between the vectors (0, 1 − ǫ) − f̄ and (0, 1) − f̄ . So we
have

θ = arctan

(

1− f̄2
f̄1

)

− arctan

(

1− ǫ− f̄2
f̄1

)

. (5.8)

Recall that arctan(.) is concave in R+. This implies that (5.8) is minimized when
f̄2 is minimum. Since f̄ ∈ ∆, f̄2 ≥ f̄1 and hence we have

θ ≥ arctan

(

1− f̄1
f̄1

)

− arctan

(

1− ǫ− f̄1
f̄1

)

. (5.9)

In order to simplify the previous bound we integrate arctan and notice that its
derivative can be bounded as 1/(x2 + 1) ≥ 1/(x+

√
2− 1)2 for all x ∈ [1,∞). Thus:

θ ≥ arctan

(

1− f̄1
f̄1

)

− arctan

(

1− ǫ− f̄1
f̄1

)

=

∫
1−f̄1
f̄1

1−ǫ−f̄1
f̄1

1

x2 + 1
≥
∫

1−f̄1
f̄1

1−ǫ−f̄1
f̄1

1

(x+
√
2− 1)2

= − 1

x+
√
2− 1

∣

∣

∣

1−f̄1
f̄1

1−ǫ−f̄1
f̄1

=

(

f̄1

1− ǫ− (2−
√
2)f̄1

− f̄1

1− (2−
√
2)f̄1

)

= g(f̄1).

5.8 Proof of Lemma 15

The proof follows the arguments used in Section 5.6.2 in [25]. A key step is a
method for constructing a polyhedron contained in the split closure. We minimize
the function c1s1+ c2s2 over this strengthening of the split closure. The resulting LP
implies an upper bound on the objective value when minimizing the function over
the split closure.

To obtain this polyhedron, we define some inequalities which dominate the split
closure S(E). A pseudo-split is the convex set between two distinct parallel lines
passing through (0, 0) and (0, 1) respectively. The direction of the lines, called direc-
tion of the pseudo-split, is a parameter.The pseudo-split inequality is derived from
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a pseudo-split exactly in the same way as from any maximal lattice-free convex set
using formula (5.1). Note that pseudo-splits are in general not lattice-free and hence
do not generate valid inequalities for RCP (E , c). However, we can dominate any
split inequality cutting f by an inequality derived from these convex sets. Indeed,
consider any split S containing the fractional point f in its interior and passing
through the segment joining (0, 0) and (0, 1). The pseudo-split with direction identi-
cal to the direction of S generates an inequality that dominates the split inequality
derived from S, as the coefficient for any ray is smaller in the pseudo-split inequality.
The condition imposed on the rays to cross the left facet of the unit square implies
the following. Any split which contains f , but does not pass through the segment
(0, 0), (0, 1), is dominated by any pseudo-split passing through the segment joining
(0, 0) and (0, 1). So to dominate the split closure in this case, we only need to consider
the inequalities derived from the pseudo-splits.

The next lemma states that we can dominate the split closure by using only the
inequalities generated by the pseudo-splits with direction parallel to the rays r1, r2.

Lemma 25. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2,
r1 = c1(−1, t1) and r

2 = c2(−1, t2) with c1, c2 ≥ 0 and t1 ≥ t2, such that both f + r1

and f+r2 cross the segment joining (0, 0) and (0, 1). Then any pseudo-split inequality
is dominated by the convex combination of the two pseudo-splits parallel to r1, r2.

Proof. Let the pseudo-split parallel to r1 be denoted by S1 and similarly the pseudo-
split parallel to r2 be S2. Consider any other pseudo split S ′. Consider the point
f̄ on the segment joining (0, 0) and (0, 1) be such that the segment joining f and
f̄ is parallel to the direction of S ′. Let Ē be the ensemble 〈f̄ , r1, r2〉. We compare
the inequalities generated by the convex set S ′ using the formula (5.1) for P (E) and
P (Ē). Let ψX(r

i) be the coefficeint for ri in P (E) and ψ̄X(ri) be the coefficient for
ri in P (Ē) with respect to the convex set X.

Observation 2. ψS′(ri) = ψ̄S′(ri) for i = 1, 2 since the distance cut by S ′ on the
rays r1, r2 does not change in the two ensembles.

Observation 3. ψS1
(ri) ≥ ψ̄s1(r

i). This is because the coefficient for r1 remains 0
and the distance cut by S1 on r2 is more in ensemble E as compared to in ensemble
Ē . By a similar argument, ψS2

(ri) ≥ ψ̄s2(r
i) : the coefficient for r2 remains 0 and

the distance cut off on r1 is more in E compared to Ē .

We now make the following claim.

Claim 3. There exists 0 ≤ λ ≤ 1 such that ψ̄S′(ri) = λψ̄S1(ri) + (1 − λ)ψ̄S2(ri) for
i = 1, 2.
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Proof. We first note that ψ̄Si
(ri) = 0 for i = 1, 2. This implies it suffices to show

that
ψ̄S′ (r2)

ψ̄
S1 (r2)

+
ψ̄S′ (r1)

ψ̄
S2 (r1)

= 1. Indeed, we can then pick λ =
ψ̄S′ (r2)

ψ̄
S1 (r2)

. We use similarity of

triangles to establish that
ψ̄S′ (r2)

ψ̄
S1 (r2)

+
ψ̄S′ (r1)

ψ̄
S2 (r1)

= 1. Refer to Figure 5.2 for the following

notation. In the figure, ray r2 is extended back to intersect S1 at D and S ′ at E.

Note that
ψ̄S′ (r2)

ψ̄
S1 (r2)

is equal to Ff/Gf . By similarity of triangles, Ff/Gf = Df/Ef =

AC/AE. Also,
ψ̄S′ (r1)

ψ̄
S2 (r1)

is equal to Bf/Af = CD/Af and by similarity of triangles,

CD/Af = CE/AE. Since, AC/AE + CE/AE = 1, we have our identity.

f

A

B

C

D

E

F

G

S1

S2

S
′

r
1

r
2

Figure 5.2: Figure for proof of Claim 3

Now combining Claim 3 and Observations 2 and 3, we obtain that the inequality
ψS′(r1)s1+ψS′(r2) ≤ 1 is dominated by the convex combination of the two inequalities
ψS1

(r1)s1 + ψS1
(r2) ≤ 1 and ψS2

(r1)s1 + ψS2
(r2) ≤ 1 defined by λ from Claim 3.

We have thus shown that we need to consider the following LP to bound min{c1s1+
c2s2 : (s1, s2) ∈ S(E)} from above.

min c1s1 + c2s2
ψS1

(r1)s1 + ψS1
(r2)s2 ≥ 1

ψS2
(r1)s1 + ψS2

(r2)s2 ≥ 1
s ∈ R2

+.

(5.10)
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We can derive the constraints corresponding to S1, S2. We have then to find an
upper bound on the value of the following LP.

min s1 + s2

0 · s1 +
c2(t1 − t2)

f2 + f1t1
s2 ≥ 1

c1(t1 − t2)

1− f2 − f1t2
s1 + 0 · s2 ≥ 1

s ∈ R2
+ .

(5.11)

The upper bound can be obtained by exhibiting a feasible solution :

s1 =
1− f2 − f1t2
c1(t1 − t2)

and s2 =
f2 + f1t1
c2(t1 − t2)

.

The value of this feasible solution is

c1s1 + c2s2 =
1 + f1(t1 − t2)

t1 − t2
.

Finally notice that f+f1r
1 = (0, f2+f1t1) and using the crossing property we get

that f2 + f1t1 ≤ 1. Similarly, f + f1r
2 = (0, f2 + f1t2), hence f2 + f1t2 ≥ 0. Isolating

f2 in both inequalities and chaining them we obtain f1(t1 − t2) ≤ 1. This concludes
the proof of Lemma 15.

5.9 Proof of Claim 2 in Lemma 18

First we need a preliminary lemma.

Lemma 26. Let R′ ⊆ C̄(β) be such that R′ ∩ C̄I(β) 6= ∅ for all I ⊆ [m − 1]. Then
em ∈ cone(R′).

Proof. Consider a vector a ∈ Rm such that ar ≥ 0 for all r ∈ R′; we claim that am ≥
0. To see this, consider the set of indices I = {i ∈ [m−1] : ai < 0}. Making use of our
hypothesis, there is r′ ∈ R′∩C̄I(β), which then satisfies

∑

i∈I air
′
i+
∑

i∈[m−1]\I air
′
i ≤ 0.

Since ar′ ≥ 0, this implies that amr
′
m ≥ 0. Finally, since r′em ≥ β > 0, we obtain

that r′m > 0 and hence am ≥ 0.

From Farkas’ Lemma em ∈ cone(R′) iff there is no vector with amr ≥ 0 for all
r ∈ R′ and am < 0, so the result follows from the previous claim.
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In order to prove Claim 2 we can proceed as follows. Letting R′ = ρR, the
definition of R and the fact that C̄I(β) = ρCI(β) implies that R′ ∩ C̄I(β) 6= ∅ for
all I ⊆ [m − 1]. Then Lemma 26 implies that em ∈ cone(R′). Since ρ−1 is a linear
transformation, we have t = ρ−1em ∈ ρ−1(cone(R′)) = cone(R).

5.10 Proof of Theorem 11

As in the proof of Theorem 10, we need an upper bound on z(c) = min{cs : s ∈ P̃ (E)}
and a lower bound on min{cs : s ∈ G̃(E)}.

For the upper bound, we consider solutions of (MG) with y = 0. We are now back
to a problem of the form (RCP). We say that a tuple E = 〈f, r1, . . . , rn, y1, . . . , yq〉
is (β, k)-good if the ensemble 〈f, r1, . . . , rn〉 is (β, k)-good as defined in Section 5.4.1.
We can apply Lemmas 18-20 to (β, k)-good tuples E .

For the lower bound, we relax the integrality constraint on the y variables of
(MG). We are now back to a problem of the form (RCP) with n + p continuous
variables. Applying Lemma 21, we get

Lemma 27. Fix ǫ > 0 and consider an ensemble E in D̃m
n,p and a vector (c1, c2) ∈

[ǫ, 1]n+p. For t = f 1 − f , we have

min{c1s+ c2y : (s, y) ∈ G̃(E)} ≥ ǫ|t|.

The proof of Theorem 11 now follows the proof of Theorem 10:

Let β be the minimum between
√

2/α and a positive constant strictly less than
1; this guarantees that C̄∅(β) > 0. Consider a large enough positive integer n. Let
E be a (β, k̄)-good tuple in D̃m

n+p, where k̄ is defined as in (5.6). Notice that k̄, as a
function of n, has asymptotic behavior Ω(n). We assume that n is large enough so
that k̄ > 0.

Now let us consider Lemma 19 with k = k̄. The value p defined in this lemma
is also function of n, now with asymptotic behavior 1 − o(1). Thus, if n is chosen
sufficiently large we get 1− p ≤ ǫβα/2 and hence Ec∼P̃ǫ

[z(c)] ≤ |t|ǫα. If in addition

we use the lower bound from Lemma 27, we obtain that avg(P̃ (E), G̃(E), P̃ǫ) ≤ α.
The theorem then follows from the fact that a tuple in D̃m

n+p is (β, k̄)-good with
probability at least 1− 1/n, according to Lemma 20.
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5.11 Proof of Lemma 20

We assume that β, n and m are such that k̄ ≥ 0.

Consider a random ensemble E = 〈f, r1, . . . , rn〉 from Dm
n and let R denote the

set of rays of E . We have that

Pr
(

E is (β, k̄)-good
)

= Pr





∧

I⊆[m−1]

|R ∩ CI(β)| ≥ k̄



 ≥ 1−2m−1 Pr
(

|R ∩ C̄∅(β)| < k̄
)

,

(5.12)
where the last inequality follows from the union bound and the fact that, by symme-
try, Pr

(

|R ∩ CI(β)| < k̄
)

is the same as Pr
(

|R ∩ C̄∅(β)| < k̄
)

for every I ⊆ [m− 1].

Due to the independence of the rays, |R ∩ C̄∅(β)| behaves as a sum of n 0/1
random variables which take value 1 with probability area(C̄∅(β))/area(S

m−1). At
this point we recall the additive Chernoff bound on the tail of such distributions.

Theorem 13 (Theorem 1.1 of [73]). Let X =
∑n

i=1Xi, where Xi are random vari-
ables independently distributed in [0, 1]. Then for all t > 0

Pr(X < E[X]− t) ≤ e−2t2/n.

By linearity of expectation we obtain that E[|R∩C̄∅(β)|] = n(area(C̄∅(β))/area(S
m−1)),

hence employing the previous bound with t =
√

n(lnn+m− 1)/2 we obtain that

Pr
(

|R ∩ C̄∅(β)| < k̄
)

≤ 1

nem−1
.

This upper bound together with inequality (5.12) gives Lemma 20.



CHAPTER 6

(k + 1)-Slope Theorem for the

k-Dimensional Infinite

Relaxation

In this chapter we consider the infinite relaxation introduced in Section 2.3.3. Recall
that the latter is a further relaxation of the important corner relaxation, having the
additional property that we obtain a single (infinite-dimensional) integer program
that can be used to generate important cuts for essentially any finite-dimensional
integer program. Also recall that there is a hierarchy of cuts for the infinite relaxation
relative to their strength, with valid cuts/functions as the weakest ones, passing
through minimal functions, extreme functions and reaching facets, the strongest ones
in the hierarchy.

In this chapter we focus on understanding the facets of the infinite relaxation. We
present sufficient conditions for a function to be a facet; these conditions generalize
the 2-Slope Theorem of Gomory and Johnson [87, 88, 89] and the 3-Slope Theorem
of Cornuéjols and Molinaro [53]. More precisely, we show that any minimal valid
function for the k-dimensional infinite relaxation that is continuous, piecewise linear,
with at most k + 1 slopes and does not factor through a linear map with non-trivial
kernel, is a facet.

Organization of the chapter. In the next section, we start by recalling some
definitions regarding the infinite relaxation and stating formally our main results;

89
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this section also presents a high-level idea of the proof strategy. Section 6.2 provides
some preliminary technical results, while Section 6.3 delves into the proof of our main
result. The chapter closes with Section 6.4 providing short concluding discussions.

Acknowledgments. This chapter is joint work with Amitabh Basu, Robert Hilde-
brand and Matthias Köppe.

6.1 Introduction

6.1.1 Basic Definitions

Recall from Section 2.3.3 the infinite relaxation (here we consider the projection of
the infinite relaxation to the y-space, as in the previous chapter):

f +
∑

r∈Rk

r · sr ∈ Zk (IR)

sr ∈ Z+ for all r ∈ Rk

s has finite support.

Valid functions, Minimal functions, extreme functions and facets. Also
recall the following concepts. A function π : Rk → R is valid for (IR) if π ≥ 0 and
the inequality

∑

r∈Rk

π(r)sr ≥ 1 (6.1)

is satisfied by every feasible solution s of (IR). A valid function π is said to beminimal
if there is no valid function π′ 6= π such that π′(r) ≤ π(r) for all r ∈ Rk.

It is intuitively clear that for every valid function there is a minimal one which
dominates it. However, we could not find a proof of this statement in the literature,
and so we present a proof using Zorn’s Lemma in Section 6.5.

Theorem 3. Let π be a valid function. Then there exists a minimal valid function
π′ such that π′ ≤ π.

A function π : Rk → R is periodic with respect to the lattice Zk if π(r) = π(r+w)
holds for all r ∈ Rk and w ∈ Zk. We say that π satisfies the symmetry condition if
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π(r)+π(−f − r) = 1 for all r ∈ Rk. Finally, π is subadditive if π(a+ b) ≤ π(a)+π(b)
for all a, b ∈ Rk.

Theorem 4 (Gomory and Johnson [87]). Let π : Rk → R be a non-negative function.
Then π is a minimal valid function for (IR) if and only if π(0) = 0, π is periodic
with respect to Zk, subadditive and satisfies the symmetry condition.

Although minimality reduces the number of relevant valid functions that we need
to study, it still leaves too many under consideration. Inspired by the importance of
facets in the finite-dimensional setting, Gomory and Johnson introduce the analogous
concepts in this setting [87, 88, 89]. A valid function π is extreme if it cannot be
written as a convex combination of two other valid functions, i.e., π = 1

2
π1 +

1
2
π2

implies π = π1 = π2. It is easy to verify that extreme functions are minimal [87]. For
any valid function π, let S(π) denote the set of all feasible solutions s satisfying (IR)
such that

∑

r∈Rk π(r)sr = 1. A valid function π is a facet if for every valid function π′,
the condition holds that S(π) ⊆ S(π′) implies π′ = π. This concept was introduced
by Gomory and Johnson in [89] and we prove below that if π is a facet, then it is
extreme. Thus, facets can be seen as the strongest valid functions.

Lemma 28. If π is a facet, then π is extreme.

Proof. Suppose π is a facet and let π = 1
2
π1 +

1
2
π2. We observe that S(π) ⊆ S(π1)

and S(π) ⊆ S(π2). Let s ∈ S(π). Then

1 =
∑

r∈Rk

π(r)sr =
1

2

∑

r∈Rk

π1(r)sr +
1

2

∑

r∈Rk

π2(r)sr ≥
1

2
+

1

2
= 1,

so equality must hold throughout and in particular,
∑

r∈Rk πi(r)sr = 1 for both
i = 1, 2. Therefore s ∈ S(πi) for both i = 1, 2. Since π is a facet, by definition this
implies π = π1 = π2.

In general, constructing or even proving that a valid function is a facet or extreme
can be a very difficult task. Arguably the deepest result on the infinite relaxation
is a sufficient condition for facetness in the restricted setting k = 1, the so-called
2-Slope Theorem of Gomory and Johnson [88, 89].

Theorem 5 (Gomory–Johnson 2-Slope Theorem). Let π : R → R be a minimal valid
function. If π is a continuous piecewise linear function with only two slopes, then π
is a facet (and hence extreme).
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(a) (b)

Figure 6.1: The assumptions of the Cornuéjols–Molinaro 3-slope theorem (Theorem
6). (a) A function with 3 slopes and 3 directions, where each color represents the
cells where the function has a certain slope. (b) A function with 3 slopes and only
1 direction.

In addition to its theoretical appeal, this result also has practical relevance. It
supplies theoretical indication about the intrinsic power of 2-slope functions, which
are very effective cuts in integer programming solvers [38] (e.g., GMI’s). This sur-
prising result was already known in the 1970s, and despite the increased efforts in
understanding the case k > 1, a generalization of this result was obtained only
recently for the case k = 2 by Cornuéjols and Molinaro [53].

Theorem 6 (3-Slope Theorem). Let π : R2 → R be a minimal valid function. If π is
a continuous piecewise linear function with only 3 slopes and with 3 directions, then
π is extreme.

Here, the directions of the function refer to the direction of the edges bounding
the cells of the piecewise linear function. Assuming 3 directions ensures that we do
not include 3-slope functions that are constant in some direction; see Figure 6.1 for
an illustration. The authors show in [53] that there exist functions with 3 slopes that
are not extreme. This suggests that for k ≥ 2, we need some additional hypothesis,
over and above a (k + 1)-slope assumption, to imply extremality.

Theorems 5 and 6 contribute a simple sufficient condition for extremality that
capture why specific families of functions are extreme (for instance the 3-slope func-
tions in Section 7 of [69]). Our goal in this chapter is to prove such a theorem for
general k.
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6.1.2 Our Results

We generalize the above results and present a sufficient condition for facetness (and
therefore for extremality) of valid functions for arbitrary dimension k. For this, we
generalize the notion of a function having 3 directions.

Definition 3. A function θ : Rk → R is genuinely k-dimensional if there does not
exist a function φ : Rk−1 → R and a linear map T : Rk → Rk−1 such that θ = φ ◦ T .

In the context of piecewise linear functions π : R2 → R, the above definition
is related to the concept of functions with 3 directions as used in [53]. Indeed,
Section 6.7 shows that the assumption of being genuinely 2-dimensional is a weaker
assumption; namely, if a function has 3 directions, then it is genuinely 2-dimensional.

Theorem 7. Let π : Rk → R be a minimal valid function that is piecewise linear with
a locally finite cell complex and genuinely k-dimensional with at most k + 1 slopes.
Then π is a facet (and therefore extreme) and has exactly k + 1 slopes.

This settles an open question posed by Gomory and Johnson in [89]. We comment
here that the hypothesis of being piecewise linear with a locally finite cell complex
will be made precise in Section 6.2 and the definition implies that such functions
are continuous. Thus, in this chapter we only consider continuous piecewise linear
functions, just like the hypotheses of Theorems 5 and 6.

One direct application of Theorem 7 is to investigate the facetness of certain
valid functions studied in [33]. There is a useful procedure known as the trivial
lifting procedure which can be used to derive minimal valid functions for (IR) using
the Minkowski functionals of maximal lattice-free convex sets. This procedure was
studied in [33] as applied to maximal lattice-free simplices. It turns out that for a
special class of such simplices, the minimal valid functions obtained will have k + 1
slopes and Theorem 7 can be directly applied to prove that they are facets (see
Section 6.8 for more details).

6.1.3 Proof Structure

The high-level structure of the proof of Theorem 7 is similar to the proof of the
2-Slope and 3-Slope Theorems presented in [89] and [53]. Let π : Rk → R be a valid
function satisfying the assumptions of the theorem. We consider an arbitrary valid
function π′ such that S(π) ⊆ S(π′), and our goal will be to show that π = π′. In
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order to achieve this, we first prove in Section 6.3.1 that if π is affine in a region of
Rk, then π′ is also affine in this region, albeit with a possibly different gradient.

The next step, Section 6.3.2, is to write a system of equations which is satisfied by
the gradients of π as well as the gradients of π′. This is the most involved step in the
proof. Some properties proved in [53] rely on arguments about low dimensional ob-
jects; whereas, the appropriate high dimensional generalizations require more sophis-
ticated techniques. In particular, we make use of a topological lemma about closed
coverings of the simplex, the Knaster–Kuratowski–Mazurkiewicz Lemma (Lemma
42), which in the one-dimensional case reduces to the easy fact that an interval
cannot be covered by two disjoint closed sets.

The final step, Section 6.3.3, is then to prove that this system has a unique
solution, which implies that the gradients of π and π′ are the same. This, together
with the fact that π(0) = π′(0) = 0, implies that π = π′. The proof of this last step
simplifies the one presented in [53] and directly exposes the properties driving the
uniqueness of the system.

6.2 Preliminaries

6.2.1 Basic Polyhedral Theory

In this section we recall some basic definitions from polyhedral theory (see [115]) as
well as two simple lemmas that will be used throughout the text. The open ball of
radius ǫ around a point r will be denoted by Bǫ(r).

Definition 4. A polyhedral complex in Rk is a collection P of polyhedra in Rk such
that:

(i) if P ∈ P, then all faces of P are in P,

(ii) the intersection P ∩Q of two polyhedra P,Q ∈ P is a face of both P and Q.

Any polyhedron in a polyhedral complex P is called a cell of the complex. A cell
P is maximal if there is no Q ∈ P containing it. The complex is pure if all maximal
cells have the same dimension. The complex is said to be complete if the union of all
elements in the complex is Rk. A subcomplex of P is a subset P ′ ⊆ P such that P ′

is itself a polyhedral complex.



6.2. Preliminaries 95

A polyhedral fan is a polyhedral complex of a finite number of cones (not nec-
essarily pointed). Given a polyhedral fan F and r ∈ Rk, we use the notation
F + r = {C + r | C ∈ F }, which is a finite polyhedral complex. Given a cone
C ⊆ Rk, a triangulation of C is a polyhedral fan P such that each element of P is
a simplicial cone and the union of all elements in P is C. Given a polyhedral fan
P , a triangulation of P is a polyhedral fan F such that for every element P ∈ P ,
there exists a triangulation of P as a subcomplex of F and every element of F is
simplicial.

Given a polyhedral complex P and a set X ⊆ Rk, we use the notation P ∩X to
denote the collection of sets {P ∩X | P ∈ P and P ∩X 6= ∅ }. Observe that if P is
complete, the union of all sets in P ∩X is X.

With a slight abuse of notation, for any point v ∈ Rk and a polyhedral complex
P , we will use v ∈ P to denote that v ∈ P for some element P ∈ P .

Definition 5. A polyhedral complex P is called locally finite if for every point r ∈ Rk

there exists an open ball Bǫ(r) around r, such that P ∩Bǫ(r) equals (Fr + r) ∩Bǫ(r)
for some polyhedral fan Fr (recall that a polyhedral fan is finite by definition).

We remind the reader that a polyhedral fan may contain cones that are not
pointed. Notice that the above definition is equivalent to stating that each point in
Rk has a neighborhood which intersects only finitely many elements of P . In addition,
using standard arguments, it is easy to see that this finite intersection extends from
points to compact sets.

Proposition 3. Let P be a locally finite polyhedral complex. Then for every compact
set K ⊆ Rk, only finitely many elements of P intersect K.

Now we present two simple linear algebraic facts that will be useful for the next
sections.

Lemma 29. If r1, . . . , rk+1 ∈ Rk are such that cone(ri)k+1
i=1 = Rk, then every proper

subset of {r1, . . . , rk+1} is composed of linearly independent vectors.

Proof. It suffices to show that every k-subset of {r1, . . . , rk+1} is linearly indepen-
dent. Without loss of generality, we will just show that r1, . . . , rk are linearly in-
dependent. If not, then there exists a hyperplane H containing the linear span of
r1, . . . , rk. Suppose H+ is the half-space defined by H containing rk+1. This implies
that cone(ri)k+1

i=1 ⊆ H+, contradicting the fact that cone(ri)k+1
i=1 = Rk.
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Lemma 30. Let {a1, . . . , ak+1} and {b1, . . . , bk+1} be two sets of k+1 vectors in Rk.
Suppose cone(ai)k+1

i=1 = Rk, and ai · bj < 0 for i 6= j. Then cone(bj)k+1
j=1 = Rk.

Proof. We show that the cone X = cone(bj)k+1
j=1 = Rk by considering the polar cone

X◦ = { r ∈ Rk | bj · r ≤ 0, j = 1, . . . , k + 1 }

and equivalently showing that X◦ = {0}. Consider any vector r0 6= 0. Since
cone(ai)k+1

i=1 = Rk, by Carathéodory’s theorem, there exists j ∈ {1, . . . , k + 1} such
that −r0 =

∑

i 6=j λia
i with λi ≥ 0. Since bj · ai < 0 for all i 6= j, we have that

bj · (−r0) < 0, or equivalently, bj · r0 > 0. Thus r0 6∈ X◦.

6.2.2 Piecewise Linear Functions

We now give a precise definition of piecewise linear functions and related notions.

Definition 6. Let P be a pure, complete polyhedral complex in Rk and let {Pi}i∈I
be a partition of the set of maximal cells of P. Consider a function θ : Rk → R such
that for each i ∈ I, there exists a vector gi ∈ Rk such that for every P ∈ Pi, there
exists a constant δP such that θ(r) = gi · r + δP for all r ∈ P . Then θ is called
a piecewise linear function, more specifically a piecewise linear function with cell
complex P, and a piecewise linear function compatible with {Pi}i∈I .

Given a piecewise linear function θ with cell complex P , for any maximal cell
P ∈ P let gP ∈ Rk denote the vector such that θ(r) = gP · r + δP for some constant
δP . We define the equivalence relation ∼ on the maximal elements of P according
to their gradients as P ∼ P ′ if and only if gP = gP

′

. Each equivalence class defines
a subcomplex Pi ⊆ P , i ∈ I for some index set I. We say that θ has n slopes if
|I| = n. The gradient set of a piecewise linear function is the set of vectors {gi}i∈I
corresponding to the equivalence classes Pi, namely gi = gP for all P ∈ Pi.

6.2.3 Lipschitz Continuity

The following two lemmas assert strong continuity properties of piecewise linear,
subadditive functions with a locally finite cell complex. We will use ‖ · ‖ to denote
the Euclidean norm.
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Lemma 31. Let θ : Rk → R be a piecewise linear function with a locally finite cell
complex. Moreover, suppose θ(0) = 0. Then θ is locally Lipschitz continuous at the
origin, i.e., there exist ǫ > 0 and K > 0 such that |θ(r)| ≤ K‖r‖ for all r ∈ Bǫ(0).

Proof. Let θ be a piecewise linear function with a locally finite cell complex P . Since
P is locally finite, there exists an open ball Bǫ(0) around the origin such that P ∩
Bǫ(0) = F∩Bǫ(0) for some complete polyhedral fan F . This implies that there exists
a finite subcomplex P ′ ⊆ P such that P ∩ Bǫ(0) = P ′ ∩ Bǫ(0) and every maximal
element of P ′ contains the origin. Therefore, the union of all P in P ′ contains Bǫ(0).

Since θ is piecewise linear and θ(0) = 0, for every maximal element P ∈ P ′, there
exists gP ∈ Rk such that θ(r) = gP · r for all r ∈ P and so |θ(r)| ≤ ‖gP‖‖r‖ by the
Cauchy–Schwarz inequality. Let K = max{ ‖gP‖ | P ∈ P ′ }. Then |θ(r)| ≤ K‖r‖
for all r ∈ Bǫ(0).

The next lemma relates global continuity properties of a subadditive function
with its behavior around the origin (a similar result is presented in Theorem 7.8.2 of
[94]).

Lemma 32. Let θ : Rk → R be a subadditive function that is locally Lipschitz con-
tinuous at the origin. Then θ is (globally) Lipschitz continuous.

Proof. We first show that there exist K > 0 and ǫ > 0, such that given any r̃ ∈ Rn,
|θ(r) − θ(r̃)| ≤ K‖r − r̃‖ for all r ∈ Rn satisfying ‖r − r̃‖ < ǫ. Indeed, since θ is
locally Lipschitz continuous at the origin, it follows that there exists K > 0, ǫ > 0
such that, for all r ∈ Rn satisfying ‖r− r̃‖ < ǫ, we have |θ(r− r̃)| ≤ K‖r− r̃‖. Hence,
for all r ∈ Rn satisfying ‖r − r̃‖ < ǫ,

|θ(r)− θ(r̃)| ≤ max{θ(r̃ − r), θ(r − r̃)} ≤ K‖r − r̃‖,

where the first inequality follows from the subadditivity of θ.

We now show that for any r̃, r ∈ Rk, |θ(r̃)− θ(r)| ≤ K‖r̃− r‖. Define m to be an
integer larger than ‖r̃− r‖/ǫ. Let ri = i

m
(r− r̃)+ r̃, so r0 = r̃ and rm = r. Moreover,

‖ri+1 − ri‖ = ‖r̃ − r‖/m < ǫ. Therefore, |θ(ri+1) − θ(ri)| ≤ K‖ri+1 − ri‖ for all
i = 0, . . . ,m− 1. Hence,

|θ(r̃)− θ(r)| ≤
m−1
∑

i=0

|θ(ri+1)− θ(ri)| ≤
m−1
∑

i=0

K‖ri+1 − ri‖ = K‖r̃ − r‖.
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6.2.4 Properties of Genuinely k-Dimensional Functions

Now we focus on properties that we gain by imposing that a function is genuinely
k-dimensional. We will need the following lemma, which is implied by Lemma 13
in [30] and is a consequence of Dirichlet’s Approximation Theorem for the reals.

Lemma 33. Let y ∈ Rk be any point and r ∈ Rk \ {0} be any direction. Then for
every ǫ > 0 and λ̄ ≥ 0, there exists w ∈ Zk such that y +w is at distance less than ǫ
from the half line {y + λr | λ ≥ λ̄}.

Lemma 34. Let θ : Rk → R be non-negative, Lipschitz continuous, subadditive and
periodic with respect to the lattice Zk. Suppose there exist r ∈ Rk \ {0} and λ̄ > 0
such that θ(λr) = 0 for all 0 ≤ λ ≤ λ̄. Then θ is not genuinely k-dimensional.

Proof. Let the Lipschitz constant for θ be K, that is, |θ(x) − θ(y)| ≤ K‖x − y‖ for
all x, y ∈ Rk.

We will begin by showing that θ(λr) = 0 for all λ ∈ R. Let λ′ ∈ R.

Suppose that λ′ > λ̄ and let M ∈ Z+ such that 0 ≤ λ′/M ≤ λ̄. From the
hypothesis, we have that θ( λ

′

M
r) = 0. By non-negativity and subadditivity of θ we

see 0 ≤ θ(λ′r) ≤Mθ( λ
′

M
r) = 0, and therefore, θ(λ′r) = 0. This shows that θ(λr) = 0

for all λ ≥ 0.

Next suppose λ′ < 0. By Lemma 33, for all ǫ > 0 there exists a w ∈ Zk such that
λ′r+w is at distance less than ǫ from the half line {λ′r+λr | λ ≥ −λ′} = {λr | λ ≥ 0}.
That is, there exists a λ̃ ≥ 0 such that ‖λ′r + w − λ̃r‖ ≤ ǫ. Since θ(λ̃r) = 0, by
periodicity and then Lipschitz continuity, we see that 0 ≤ θ(λ′r) = θ(λ′r + w) =
θ(λ′r + w)− θ(λ̃r) ≤ Kǫ. This holds for every ǫ > 0 and therefore θ(λ′r) = 0. Thus,
we have shown that θ(λr) = 0 for all λ ∈ R.

Let L = {λr | λ ∈ R}. We claim that if x − y ∈ L, then θ(x) = θ(y). Since
x− y ∈ L, as shown above, θ(x− y) = 0. By subadditivity, θ(y) + θ(x− y) ≥ θ(x),
which implies θ(y) ≥ θ(x). Similarly, θ(x) ≥ θ(y), and hence we have equality.

We conclude that θ = φ ◦ projL⊥ for some function φ : Rk−1 → R and therefore θ
is not genuinely k-dimensional.

Lemma 35. Let θ : Rk → R be non-negative, piecewise linear with a locally finite
cell complex, subadditive, periodic with respect to the lattice Zk and genuinely k-
dimensional with at most k + 1 slopes and suppose that it satisfies θ(0) = 0. Then θ
has exactly k + 1 slopes. Let the gradient set of θ be the vectors g1, . . . , gk+1. Then
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they satisfy cone(gi)k+1
i=1 = Rk. Furthermore, for every i = 1, . . . , k+ 1, there exists a

maximal cell P ∈ Pi such that 0 ∈ P .

Proof. First we note that since θ is subadditive, satisfies θ(0) = 0 and is piecewise
linear with a locally finite cell complex, Lemmas 31 and 32 imply that θ is a Lipschitz
continuous function.

We label the gradient set of θ as g1, . . . , gn and the corresponding subcomplexes as
P1, . . . ,Pn where n ≤ k+1. Without loss of generality, assume that 0 ∈ Pi for i ≤ m
and 0 6∈ Pi for i > m for some m ≤ n ≤ k + 1. Let C = { r ∈ Rk | gi · r ≤ 0, i =
1, . . . ,m } be the polar cone of cone(gi)mi=1. We show that C = {0}, which implies
that cone(gi)mi=1 = Rk. This would imply that m = k + 1 and cone(gi)k+1

i=1 = Rk.
Moreover, this would imply that 0 ∈ Pi for every i and so there exists a maximal
cell in Pi containing 0.

Suppose there exists r0 ∈ C \ {0}. Since θ has a locally finite cell complex, there
exists an open ball Bǫ(0) such that P ∩Bǫ(0) = F ∩Bǫ(0), where F is a polyhedral
fan where every maximal cell contains the origin. Since 0 ∈ Pi for i ≤ m and 0 6∈ Pi
for i > m, there exists 0 < δ < ǫ such that Bδ(0) intersects only P1, . . . ,Pm. Let
λ̄ > 0 such that λr0 ∈ Bδ(0) for all 0 ≤ λ ≤ λ̄. Since r0 ∈ C, we see that gi · r0 ≤ 0
for all i = 1, . . . ,m. Since F is a polyhedral fan, the line segment from 0 to λ̄r0 lies
completely within a cell P ′ ∈ Pi for some i = 1, . . . ,m. Thus 0 ≤ θ(λr0) = λgi·r0 ≤ 0
for all 0 ≤ λ ≤ λ̄. But then by Lemma 34, θ is not genuinely k-dimensional. This is
a contradiction.

6.2.5 Line Integrals

The following discussion shows that we can compute line integrals of the gradients
of (k + 1)-slope functions. We choose to restrict ourselves to functions with lo-
cally finite cell complexes. This is motivated by the necessity of excluding certain
pathological cases and allows us to give a completely elementary proof. We remark
that this restriction precludes handling some important functions such as the ones
constructed in [32], which do not have locally finite cell complexes. More general
versions of Lemma 36 below can, of course, be proved using the Lebesgue version of
the fundamental theorem of calculus.

Lemma 36. Consider a locally finite, complete polyhedral complex P in Rk and let
{Pi}k+1

i=1 be a partition of the set of maximal cells of P. Fix a point r ∈ Rk. Then
there exist µ1, µ2, . . . , µk+1 ∈ R+ with

∑k+1
i=1 µi = 1 such that for every function θ that
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is piecewise linear compatible with {Pi}k+1
i=1 with gradients g1, . . . , gk+1 corresponding

to this partition, the following holds.

θ(r) = θ(0) +
k+1
∑

i=1

µi(g
i · r).

Proof. Let ρ : [0, 1] → Rk be the parameterization of the segment [0, r] given by
ρ(λ) = λr. Let Qi = { ρ−1(P ∩ [0, r]) | P ∈ Pi }. By convexity, Qi is a family of
intervals in [0, 1] (some of these intervals could be degenerate). Moreover, since P is
locally finite, Remark 3 guarantees that Qi is a finite family. In addition, since P is
complete, the union of the intervals in

⋃k+1
i=1 Qi equals [0, 1].

Using the finiteness of the above families, let 0 = λ0 ≤ λ1 ≤ . . . ≤ λn = 1 be the
end-points of the intervals in

⋃k+1
i=1 Qi; i.e., each interval [λj, λj+1] is an interval in Qi,

for some i = 1, . . . , k+1. This implies that ρ([λj, λj+1]) is contained in a polyhedron
in Pi. In this case, the compatibility of θ with {Pi}k+1

i=1 gives

θ(λj+1r)− θ(λjr) = gi · (λj+1r)− gi · (λjr) = (λj+1 − λj)(g
i · r).

Therefore,

θ(r)− θ(0) =
n−1
∑

j=0

(θ(λj+1r)− θ(λjr)) =
k+1
∑

i=1

|Qi|(gi · r), (6.2)

where |Qi| is the sum of the lengths of all the intervals in Qi. Setting µi = |Qi|
completes the result.

6.3 Proof of Theorem 7

We now concentrate on a function π which satisfies the hypothesis, i.e., π is a minimal
valid function that is piecewise linear with a locally finite cell complex and genuinely
k-dimensional with at most k + 1 slopes. We recapitulate properties of π that we
have derived. Theorem 4 shows that π(0) = 0, π is subadditive, periodic with respect
to the lattice Zk, and satisfies the symmetry condition. Lemma 31 and Lemma 32
show that π is Lipschitz continuous. Lemma 35 uses the assumption of π being a
genuinely k-dimensional function and shows that π has exactly k + 1 slopes. Let π
be a piecewise linear function with cell complex P and we denote the gradient set of
π by {ḡ1, . . . , ḡk+1} and the subcomplex corresponding to vector ḡi as Pi. Lemma
35 also shows that 0 ∈ Pi for all i = 1, . . . , k + 1.
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The proof structure is guided by the so-called Facet Theorem proved in [87].
For the sake of completeness and because of differences in notation, we provide a
statement of this theorem below and a self-contained proof in Section 6.6. For any
valid function θ, let E(θ) denote the set of all pairs (u, v) ∈ Rk × Rk such that
θ(u+ v) = θ(u) + θ(v).

Theorem 8 (Facet Theorem). Let π be a minimal valid function. Suppose for every
minimal valid function π′, the condition holds that E(π) ⊆ E(π′) implies π′ = π.
Then π is a facet.

Main Goal. We consider any minimal valid function π′ such that E(π) ⊆ E(π′)
and show that π′ = π. By Theorem 8, this will imply that π is a facet.

Since π′ is minimal, by Theorem 4, π′ is non-negative, subadditive, periodic with
respect to the lattice Zk. Moreover, π′(0) = 0 and the symmetry condition holds,
i.e., π′(r) + π′(−f − r) = 1 for all r ∈ Rk, and because of periodicity, π′(w − f) = 1
for every w ∈ Zk. Finally, the symmetry condition and non-negativity of π′ implies
that π′ is bounded above by 1.

For the following proof, we will use θ when we wish to refer to a more general
function than π′.

6.3.1 Compatibility

We show that π′ is a piecewise linear function compatible with {Pi}k+1
i=1 .

The idea of the proof is the following. First, using the partial additivity of π′

implied by E(π) ⊆ E(π′), we show that π′ is affine in parallelotopes around the
origin. Then, we use translates of these parallelotopes to show that π′ is affine in
each maximal cell of P . In fact, our arguments will imply that π′ has the same
gradient in every maximal cell in Pi, which then gives the desired result.

In order to carry out the first step, we will use the following variant of a classical
result in real analysis regarding Cauchy’s functional equation (see [1] for a reference).
The first application of this result in the context of the infinite group problem was
made by Gomory and Johnson in [89]. The form in which we will use this result
appears as Lemma 5.8 in [44] and was proved in [32].

Lemma 37 (Interval Lemma). Let θ : R → R be a function bounded on every bounded
interval. Given real numbers u1 < u2 and v1 < v2, let U = [u1, u2], V = [v1, v2], and
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U + V = [u1 + v1, u2 + v2]. If θ(u) + θ(v) = θ(u + v) for every u ∈ U and v ∈ V ,
then there exists c ∈ R such that

θ(u) = θ(u1) + c(u− u1) for every u ∈ U ,

θ(v) = θ(v1) + c(v − v1) for every v ∈ V ,

θ(w) = θ(u1 + v1) + c(w − u1 − v1) for every w ∈ U + V .

Lemma 38 (π′ is linear on parallelotopes at the origin). Let P0 be a cell in P
containing the origin. Consider any parallelotope Π ⊂ P0 such that: (i) 0 ∈ Π and
(ii) Π + Π ⊆ P0. Then there exists g′ such that π′(r) = g′ · r for all r ∈ Π.

Proof. Since Π contains the origin, let v1, . . . , vn be generating vectors of Π, namely
these are linearly independent vectors such that Π = {∑n

i=1 λiv
i | λi ∈ [0, 1] for i =

1, . . . , n }.
We first claim that for all r, r′ ∈ Π, we have that π′(r) + π′(r′) = π′(r + r′). To

see this, recall that π is affine in P0, and hence in Π. Since π(0) = 0, π is actually
linear in Π. Using the fact that Π +Π ⊆ P0, we obtain that π(r) + π(r′) = π(r + r′)
for all r, r′ ∈ Π; since E(π) ⊆ E(π′), the same holds for π′, which proves the claim.

Fix any i ∈ {1, . . . , n}. We claim that π′ is linear on the segment [0, vi]. Consider
the function φ(λ) = π′(λvi), which by the previous paragraph is additive over [0, 1],
i.e., φ(λ) + φ(λ′) = φ(λ+ λ′) for all λ, λ′ ∈ [0, 1]. Since π′ (and hence φ) is bounded,
the Interval Lemma (Lemma 37) applied to θ implies there exists a scalar αi such
that π′(λvi) = φ(λ) = αiλ + φ(0) for all λ ∈ [0, 1]. Since π′(0) = 0, we also have
φ(0) = 0. Therefore, π′(λvi) = αiλ.

As v1, . . . , vn are linearly independent, there exists a g′ ∈ Rk such that g′ ·vi = αi
for all i = 1, . . . , n. We claim that π′(r) = g′ ·r for all r ∈ Π. By letting r =

∑n
i=1 λiv

i,
the result follows because π′ is additive on Π.

π′(r) = π′
(

n
∑

i=1

λiv
i
)

=
n
∑

i=1

π′(λiv
i) =

n
∑

i=1

αiλi = g′ ·
(

n
∑

i=1

λiv
i
)

= g′ · r.

Before we proceed, we prove a technical lemma about the continuity of π′. The
motivation is to prove that π′ is affine in each maximal cell of P by showing this for
the interior of each cell, and then the full result follows by continuity.

Lemma 39. π′ is Lipschitz continuous.

Proof. We first show that π′ is locally Lipschitz continuous at 0, i.e., there exist
K > 0, ǫ > 0 such that |π′(r)| ≤ K‖r‖ for all r ∈ Bǫ(0). Since π has a locally finite
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cell complex, there exists a neighborhood Bǫ1(0) of the origin satisfies P ∩ Bǫ1(0) =
F ∩ Bǫ1(0) for some complete polyhedral fan F . We consider a triangulation F̄ of
F , i.e., F̄ contains a triangulation for each cone in F and every element of F̄ is
simplicial. Consider any maximal simplicial cone C ∈ F̄ and consider P ∈ P such
that C ∩ Bǫ1(0) ⊆ P (note that such a P exists because F̄ is a triangulation of F).
Then there exist generators {v1C , . . . , vkC} for C such that the parallelotope Π formed
by {v1C , . . . , vkC} is such that Π + Π ⊆ P . We do this construction for all maximal
elements of F̄ to obtain a finite polyhedral complex of parallelotopes S.

We now show that the union of all elements in S contains 0 in its interior. For
every maximal element C of F̄ , there exists ǫC > 0 such that δr ∈ ΠC for all r ∈ C
and all 0 ≤ δ ≤ ǫC , where ΠC is the parallelotope in S corresponding to C. Observe
that F̄ is complete because F is complete and F̄ is a triangulation of F . Therefore,
choosing ǫ2 = min{ ǫC | C ∈ F̄ }, the ball Bǫ2(0) is contained in the union of all the
parallelotopes in S.

From Lemma 38, for every parallelotope Π ∈ S, there exists gΠ ∈ Rk such that
π′(r) = gΠ · r for all r ∈ Π. Let K = max{‖gΠ‖ | Π ∈ S}. By the Cauchy–
Schwarz inequality, |π′(r)| ≤ ‖gΠ‖‖r‖ ≤ K‖r‖ for all r ∈ Π. Since the union of
all parallelotopes in S contains Bǫ2(0) in its interior, |π′(r)| ≤ K‖r‖ for all r ∈ Rn

satisfying ‖r‖ < ǫ2, i.e., π
′ is locally Lipschitz continuous at the origin.

Since π′ is a subadditive function that is locally Lipschitz continuous at the origin,
Lemma 32 shows that π′ is (globally) Lipschitz continuous.

The following lemma will be the main tool for using translates of patches to prove
that π′ is affine in the maximal cells of P .

Lemma 40 (Finite path of patches). Let P ⊆ Rk be a full-dimensional polyhedron
and Π ⊆ Rk be a full-dimensional parallelotope with 0 ∈ Π. Let x, y be points that
lie in int(P ). Then there exist a number 0 < ǫ ≤ 1, an integer m, and points
x0 = x, x1, x2, . . . , xm = y ∈ P such that:

(i) xj + ǫΠ ⊆ P for j = 0, . . . ,m,

(ii) (xj + ǫΠ) ∩ (xj+1 + ǫΠ) is non-empty for j = 0, . . . ,m− 1,

where ǫΠ = { ǫx | x ∈ Π }.

Proof. After a linear change of coordinates, we can assume that the parallelotope Π
is the unit cube [0, 1]k.
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Since x, y ∈ int(P ), then there exists δ > 0 such that both Bδ(y) and Bδ(x) lie
within P . Choose 0 < ǫ ≤ 1 so that ǫΠ ⊂ Bδ(0). Therefore, x + ǫΠ ⊆ P and
y + ǫΠ ⊆ P . Let m > ‖y0 − x0‖∞/ǫ be an integer.

Let

xj = x0 +
j

m
(y0 − x0) for j = 1, . . . ,m;

thus xm = y0. Since x + ǫΠ ⊆ P and y + ǫΠ ⊆ P , by convexity xj + ǫΠ ⊆ P for all
j = 0, . . . ,m. In particular, xj ∈ P for all j = 0, . . . ,m. Moreover ‖xj+1 − xj‖∞ <
ǫ ≤ 1, and thus (xj + ǫΠ) ∩ (xj+1 + ǫΠ) is non-empty.

Lemma 41 (π′ is affine on each maximal cell of π). Let P0 ∈ Pi be a maximal cell
containing the origin and let Π be a full-dimensional parallelotope with 0 ∈ Π ⊆ P0

such that π′(x) = g′ · x for all x ∈ Π. Let P be a maximal cell in Pi and x̄ ∈ int(P ).
Then π′(x) = g′ · (x− x̄) + π′(x̄) for all x ∈ P .

Proof. First consider ȳ ∈ int(P ). Let ǫ and x0 = x̄, . . . , xm = ȳ ∈ P be the data
from applying Lemma 40 on x, y, P and Π. Fix any j ∈ {0, . . . ,m} and consider an
arbitrary s ∈ ǫΠ. Since P ∈ Pi, π(xj + s)− π(xj) = ḡi · s = π(s), where the second
equality follows from Π ⊆ P0 ∈ Pi. Therefore, π(xj + s) = π(xj) + π(s) and so the
pair (xj, s) is in E(π) ⊆ E(π′). Therefore, π′(xj + s) = π′(xj) + π′(s), and thus
π′(xj + s) = π′(xj) + g′ · s. Thus π′, restricted to each xj + ǫΠ, is an affine function
with gradient g′, which we write as

π′(x) = g′ · (x− x̄) + αj for x ∈ xj + ǫΠ (6.3)

for some real number αj.

For all j = 0, 1, . . . ,m, we prove that αj = π′(x̄) and therefore π′(x) = g′ · (x −
x̄) + π′(x̄) holds for all x ∈ xj + ǫΠ. We do this by induction on j. For j = 0, this
holds since x̄ = x0. Now let j + 1 > 0 and assume αj = π′(x̄). Let z be any point
in the intersection (xj + ǫΠ) ∩ (xj+1 + ǫΠ), which is non-empty by Lemma 38. By
evaluating (6.3) for j and j+1 at x = z, we see that in fact αj+1 = π′(x̄). Therefore,
in particular, π′(ȳ) = π′(xm) = a′(ȳ − x̄) + π′(x̄).

This shows that for every x ∈ int(P ), π′(x) = g′ · (x− x̄) + π′(x̄). By Lemma 39,
π′ is continuous, and therefore the equation extends from int(P ) to all of P .

Proposition 4. The function π′ is a piecewise linear function compatible with {Pi}k+1
i=1 .

Proof. Fix i ∈ {1, . . . , k + 1}. Since π satisfies the hypotheses of Lemma 35, there
exists a maximal cell P0 ∈ Pi containing the origin. Since P0 is a full-dimensional
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polyhedron containing the origin, there exists a full-dimensional parallelotope Π with
0 ∈ Π and Π +Π ⊆ P0. Let g

′ be the vector from Lemma 38 such that π′(r) = g′ · r
for r ∈ Π. Define g̃i = g′. Now let P be any maximal cell in Pi and pick any
y ∈ rel int(P ). By Lemma 41,

π′(r) = g̃i · (r − y) + π′(y) = g̃i · r + δP

for r ∈ P , where we set δP = π′(y) − g̃i · y. Thus π′ is a piecewise linear function
compatible with {Pi}k+1

i=1 .

Notice that this compatibility implies that there exist vectors g̃1, g̃2, . . . , g̃k+1

corresponding to P1, . . . ,Pk+1 such that for any P ∈ Pi, there exists δP such that
π′(r) = g̃i · r + δP . However, note that we have not shown g̃1, g̃2, . . . , g̃k+1 to be all
distinct.

6.3.2 Constructing a System of Linear Equations

As the next step in proving that π = π′, we construct a system of linear equations
which is satisfied by both ḡ1, . . . , ḡk+1 and g̃1, . . . , g̃k+1.

The system has two sets of constraints, the first of which follows from Theorem
4 and Lemma 36. The second set of constraints is more involved. Consider two
adjacent cells P, P ′ ∈ P that contain a segment [x, y] ⊆ Rk in their intersection.
Along the line segment [x, y], the gradients of P and P ′ projected onto the line
spanned by the vector y − x must agree; the second set of constraints captures this
observation. We will identify a set of vectors r1, . . . , rk+1 such that every subset of k
vectors is linearly independent and such that each vector ri is contained in k cells of
P with different gradients. We then use the segment [0, ri] to obtain linear equations
involving the gradients of π and π′. The fact that every subset of k vectors is linearly
independent will be crucial in ensuring the uniqueness of the system of equations.

Remark 1. In the case k = 2, in the terminology of [53], these vectors would all be
directions of the piecewise linear function π; see also the discussion in Section 6.7.

To show the existence of such a set of vectors, we utilize the following classical
lemma in combinatorial topology.

Lemma 42 (KKM [99, 2]). Consider an n-simplex conv(uj)nj=1. Let F1, F2, . . . , Fn
be closed sets such that for all I ⊆ {1, . . . , n}, the face conv(uj)j∈I is contained in
⋃

j∈I Fj. Then the intersection
⋂n
j=1 Fj is non-empty.
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Lemma 43. There exist vectors r1, r2, . . . , rk+1 ∈ Rk with the following properties:

(i) For every i, j, ℓ ∈ {1, . . . , k+1} with j, ℓ different from i, the equations ri · ḡj =
ri · ḡℓ and ri · g̃j = ri · g̃ℓ hold.

(ii) cone(ri)k+1
i=1 = Rk.

Proof. We consider the neighborhood Bǫ(0) of the origin given by the local finite-
ness assumption (see Definition 5). Let Fi =

⋃

P∈Pi
(P ∩ B̄ǫ(0)), namely the set

of points in the closed ball B̄ǫ(0) for which π has gradient ḡi. Since B̄ǫ(0) is com-
pact, Proposition 3 says that only finitely many terms are non-empty in the union
⋃

P∈Pi
(P ∩ B̄ǫ(0)). Moreover each term P ∩ B̄ǫ(0) is closed as it is the intersection

of a polyhedron with a closed ball. Thus, each Fi is a finite union of closed sets and
therefore is closed. Our first goal is to show that, for each i = 1, . . . , k + 1, there is
a vector ri which belongs to

⋂

j 6=i Fj.

In order to better understand how the sets Fi intersect, we start by defining the
set Hi = { r ∈ Rk | ḡi · r ≤ 0 }. The crucial property of this set is that the gradient
of π at these points must be different from ḡi, at least around the origin.

Claim 4. For every i = 1, . . . , k + 1, the set Fi is disjoint with Hi.

Proof. Suppose to the contrary that there exists P ∈ Pi and r ∈ Hi ∩ P ∩ B̄ǫ(0).
Since r ∈ B̄ǫ(0), the entire segment [0, r] is contained in P . Moreover, ḡi · r ≤ 0 as
r ∈ Hi. Thus π(λr) = λḡi · r ≤ 0 for all 0 ≤ λ ≤ 1. Since π is piecewise linear
with a locally finite cell complex and subadditive, Lemmas 31 and 32 show that π
is Lipschitz continuous. Therefore, π satisfies the hypotheses of Lemma 34 and we
conclude that π is not genuinely k-dimensional. This is a contradiction.

For a subset I ⊆ {1, . . . , k + 1}, define the cone CI =
⋂

i/∈I Hi (for convenience
of notation, we use Cj instead of C{j} for a singleton set). From the above claim,
for all i /∈ I we have Fi disjoint with CI ; since Bǫ(0) ⊆ ⋃

i=1,...,k+1 Fi, we get that
CI∩Bǫ(0) ⊆

⋃

i∈I Fi. Alternatively, the gradient of π in any point in CI∩Bǫ(0) must
be within the set {ḡi}i∈I . We need the following technical property of the cones CI .

Claim 5. Cj is full-dimensional for all j = 1, . . . , k + 1.

Proof. Observe that the polar cone

(Cj)
◦ =

{
∑

i 6=j λiḡ
i | λi ≥ 0

}
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Figure 6.2: The geometry of the proof of Lemma 43. Each cone Ci (shaded in dark
colors) is the intersection of the halfspaces Hj (defined by the gradients ḡj) for j 6= i.
Near the origin (within the ball Bǫ(0)), each point of Ci lies in the set Fi of points
where the function π has gradient ḡi (shaded in light colors). Picking points vi near
the origin in the interior of Ci, we construct a simplex ∆ with 0 in its interior. By
applying the KKM Lemma to each of its facets ∆i, we show the existence of the
vectors ri with the desired properties.
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does not contain any lines because the set {ḡi}i 6=j is linearly independent by Lemma 29
and Lemma 35. Hence, Cj is full-dimensional.

In order to continue analyzing how the sets Fi intersect, it is useful to focus on
a full-dimensional simplex conv(vj)k+1

j=1 around the origin. More precisely, Claim 5
allows us to pick vj ∈ int(Cj) ∩ Bǫ(0) for every j = 1, . . . , k + 1. Since vj ∈ int(Cj),
we have vj · ḡi < 0 for all i 6= j. Then employing Lemma 30 with ai = ḡi and
bi = vi, we deduce that cone(vi)k+1

i=1 = Rk. Therefore, ∆ = conv(vi)k+1
i=1 is indeed a

full-dimensional simplex.

Since ∆ ⊆ Bǫ(0) ⊆ ⋃

i=1,...,k+1 Fi, the sets Fi form a closed cover of ∆, and in

particular they form a closed cover of each facet ∆i = conv(vj)j 6=i. We will show
that, for each i = 1, . . . , k+1, there is a point ri in ∆i which belongs to

⋂

i 6=j Fj. For
that, we apply the KKM Lemma (Lemma 42) to the simplex ∆i.

To do so, we need to show that for every I ⊆ {1, . . . , k + 1} \ {i}, the face
conv(vj)j∈I is contained in

⋃

j∈I Fj. To see that this holds, consider an arbitrary

subset I ⊆ {1, . . . , k+1} \ {i}. By definition, for every j ∈ I we have vj ∈ int(Cj)∩
Bǫ(0) ⊆ CI ∩ Bǫ(0). Since CI ∩ Bǫ(0) is convex, it follows that the entire face
conv(vj)j∈I belongs to CI ∩ Bǫ(0). As mentioned previously, CI ∩ Bǫ(0) ⊆

⋃

j∈I Fj
and hence the face conv(vj)j∈I is contained in

⋃

j∈I Fj.

Therefore, for each i = 1, . . . , k + 1, the KKM Lemma (Lemma 42) implies the
existence of a point ri ∈ ∆i belonging to

⋂

j 6=i Fj as desired.

Now it is easy to see that r1, . . . , rk+1 satisfy property (i) as claimed. Fix i ∈
{1, . . . , k + 1}. Consider j 6= i and let P ∈ Pj contain ri; notice that actually
ri ∈ P ∩∆i ⊆ P ∩ Bǫ(0). Since P ∩ Bǫ(0) = F ∩ Bǫ(0) for some polyhedral fan F ,
P also contains the entire segment [0, r]. Since π is affine in P with gradient ḡj, it
follows that π(ri)−π(0) = ri ·ḡj; this implies that for all j, ℓ 6= i we have ri ·ḡj = ri ·ḡℓ.
Similarly, since π′ is a piecewise linear function compatible with {Pi}k+1

i=1 , again we
have that π′(ri)− π′(0) = ri · g̃j for all j 6= i, and hence ri · g̃j = ri · g̃ℓ for all j, ℓ 6= i.

Finally, we prove that r1, . . . , rk+1 satisfy property (ii) as claimed. Because ri ∈
⋂

j 6=i Fj, Claim 4 directly implies that ri /∈ Hj for every j 6= i, namely ri · ḡj > 0

when j 6= i. Now using Lemma 30 with ai = −ḡi and bi = ri, we deduce that
cone(ri)k+1

i=1 = Rk. This concludes the proof of Lemma 43.

We finally present the system of linear equations that we consider.

Corollary 1. Consider vectors a1, a2, . . . , ak+1 ∈ Zk− f such that cone(ai)k+1
i=1 = Rk.

Also, let r1, r2, . . . , rk+1 be the vectors given by Lemma 43. Then there exist µij ∈ R+,
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i, j ∈ {1, . . . , k + 1} with
∑k+1

j=1 µij = 1 for all i ∈ {1, . . . , k + 1} such that both

g̃1, . . . , g̃k+1 and ḡ1, . . . , ḡk+1 are solutions to the linear system

∑k+1
j=1(µija

i) · gj = 1 for all i ∈ {1, . . . , k + 1},
ri · gj − ri · gℓ = 0 for all i, j, ℓ ∈ {1, . . . , k + 1} such that i 6= j, ℓ,

(6.4)

with variables g1, . . . , gk+1 ∈ Rk.

Proof. Feasibility for the first set of constraints follows directly from the minimality
of π and π′, Theorem 4 and Lemma 36. Feasibility for the second set of constraints
follows from Lemma 43 (i).

We remark that we can always find vectors a1, a2, . . . , ak+1 ∈ Zk − f such that
cone(ai)k+1

i=1 = Rk, so the system above indeed exists.

6.3.3 Unique Solution of the Linear System

We now analyze the solution set of (6.4), which will be rewritten as a system of
k(k+1) linear equations for the k+1 gradient vectors, i.e., in k(k+1) variables. We
will show the gradients of π and π′ coincide by demonstrating that this system either
has no solutions or has a unique solution. Recall from linear algebra that, given a
square matrix A and a vector b, if the augmented matrix [b A] has full row rank,
then the linear system Ay = b either has no solutions or has a unique solution.

Proposition 5. ḡi = g̃i for every i = 1, . . . , k + 1.

Proof. We wish to show that the system (6.4) either has no solution or a unique
solution. We begin by rewriting the system in terms of some new variables. Since
for any fixed i, the value of rigj must coincide for all j = 1, . . . , k + 1, i 6= j, we use
the variable zi, i = 1, . . . , k + 1 to denote this common value. We can rewrite the
system (6.4) as

∑k+1
j=1(µija

i) · gj = 1 for all i = 1, . . . , k + 1

ri · gj − zi = 0 for all i, j = 1, . . . , k + 1, such that i 6= j.
(6.5)

Note that there is a one-to-one mapping between solutions of (6.4) and (6.5). We
now rearrange the variables and the constraints of (6.5) so that it can be represented
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as Ay = b, where

A =

[

∆ Ok+1×k+1

R I ′

]

, y = [g1, . . . , gk+1, z]T , and b = [1, . . . , 1, O1×k . . . , O1×k]
T ,

where ∆ is a (k + 1) × k(k + 1)-matrix, R is a k(k + 1) × k(k + 1)-matrix, I ′ is a
k(k+1)× (k+1)-matrix and Oi×j is the i× j-matrix with all zero entries. The i-th
row of ∆, i = 1, . . . , k + 1, is given by (µi1a

i, . . . , µi(k+1)a
i) where ai is written as a

row vector. The matrix R has a block diagonal structure:

R =







R1

. . .

Rk+1






,

where each Ri is a k × k-matrix. For each i = 1, . . . , k + 1, the matrix Ri has rows
rj, j 6= i.

The matrix I ′ has entries corresponding to the coefficients on z, and will be
written as

I ′ =







−I1
...

−Ik+1






,

where Ii is a k × (k + 1)-matrix obtained from the k × k identity matrix with the 0
column inserted as the i-th column.

We now argue that the matrix [b A] has full row rank. Since A is a (k+1)2×(k+1)2

square matrix, if [b A] has full row rank, the system Ay = b either has a unique
solution or no solution.

We use one further trick to prove [b A] has full row rank: we analyze the row
rank of the matrix [b D A], where D is a (k+ 1)2 × k-matrix of all zero entries. The
rank of [b D A] is the same as [b A] and we now show that [b D A] has full row rank.
We now perform the block row and column operations on the matrix

[ b | D | A ] =



















1 O1×k µ11a
1 . . . µ1(k+1)a

1 O1×k
...

...
...

...
...

1 O1×k µ(k+1)1a
k+1 . . . µ(k+1)(k+1)a

k+1 O1×k

Ok×1 Ok×k R1 −I1
...

...
. . .

...
Ok×1 Ok×k Rk+1 −Ik+1



















.
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First, add all the block columns of A corresponding to each g1, . . . , gk+1 to the block
D, giving (recall that

∑k+1
j=1 µij = 1 for all i ∈ {1, . . . , k + 1})



















1 a1 µ11a
1 . . . µ1(k+1)a

1 O1×k
...

...
...

...
...

1 ak+1 µ(k+1)1a
k+1 . . . µ(k+1)(k+1)a

k+1 O1×k

Ok×1 R1 R1 −I1
...

...
. . .

...
Ok×1 Rk+1 Rk+1 −Ik+1



















.

Second, in the last matrix above, multiply the last block of k+1 columns (correspond-
ing to the variables zi) on the right by the matrix R̄, which is the (k+1)× k matrix
whose rows are the k + 1 vectors ri, for all i = 1, . . . , k + 1. Note that −IiR̄ = −Ri

for every i = 1, . . . , k + 1. Hence, if we multiply the last block of columns with R̄
and add to the second block of columns in the last matrix above, we obtain



















1 a1 µ11a
1 . . . µ1(k+1)a

1 O1×k
...

...
...

...
...

1 ak+1 µ(k+1)1a
k+1 . . . µ(k+1)(k+1)a

k+1 O1×k

Ok×1 Ok×k R1 −I1
...

...
. . .

...
Ok×1 Ok×k Rk+1 −Ik+1



















.

The final matrix has an upper triangular block structure. The blocks on the diagonal
are

A′ =







1 a1

...
...

1 ak+1






, R1, . . . , Rk, and

[

Rk+1 −Ik+1

]

.

Each Ri has full row rank since every proper subset of {r1, . . . , rk+1} is linearly
independent by Lemma 29. Also, A′ has full row rank because a1, . . . , ak+1 are
affinely independent since cone(ai)k+1

i=1 = Rk. Hence, we have shown that [b D A] has
full row rank.

Therefore the system (6.4) has either no solutions or has a unique solution. Since
Corollary 1 shows that both g̃1, . . . , g̃k+1 and ḡ1, . . . , ḡk+1 are solutions to (6.4), it
follows that g̃i = ḡi for all i = 1, . . . , k + 1.



112 Chapter 6: (k + 1)-Slope Theorem for the k-Dimensional Infinite Relaxation

6.3.4 Conclusion of the Proof

We finally put all the pieces together to complete the proof of Theorem 7. Recall
that our main goal before beginning Subsection 6.3.1 was to show that π = π′. Since
both π and π′ are minimal, Theorem 4 guarantees that π(0) = π′(0) = 0. At the
end of Subsection 6.3.1, we concluded that there exist g̃i, i = 1, . . . , k, and δP for all
P ∈ P such that π′(r) = g̃i ·r+δP , where P is the polyhedral complex corresponding
to π. Proposition 5 shows that ḡi = g̃i for all i = 1, . . . , k + 1. From Lemma 36, for
every r ∈ Rk there exist µ1, µ2, . . . , µk+1 such that

π(r) = π(0) +
k+1
∑

i=1

µi(ḡ
i · r) = π′(0) +

k
∑

i=1

µi(g̃
i · r) = π′(r).

This proves that π = π′ and concludes the proof of Theorem 7.

6.4 Conclusion

As mentioned, the (k+1)-slope theorem we present here answers an open question of
Gomory and Johnson from the 1970’s and brings us one step closer to understanding
the infinite group relaxation for arbitrary k. We do not currently know if or how our
theorem can be generalized further. There are several directions that the assumptions
could be weakened, for example, removing the locally finite criterion for piecewise
linear function or allowing for discontinuous functions. A non–piecewise linear 2-
slope extreme function was presented in [32], and nothing more is known about
such functions. The issue of discontinuous extreme functions has also only begun
to be addressed in [70]. Also, it is unknown if the definitions of facets and extreme
functions coincide or if there do exist extreme functions which are not facets.

Another area of interest is generalizing the interval lemma. Although we applied
the interval lemma here in k dimensions, we always used an interval connected to the
origin when applying it. The interval lemma is stronger than just this one application,
and we should try to understand how and when it can be used in higher dimensions.
The only known generalization of the interval lemma for when k = 2 given in [69].
An interval lemma for general k would likely lead to some interesting results in higher
dimensions.

Lastly, we are also interested to know how (k+1)-slope functions compare compu-
tationally. Studying this requires determining useful classes of (k+1)-slope functions
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in varying dimensions and generating cutting planes from them. We hope that such
functions perform well in practice.
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Appendix

6.5 Proof of the existence of minimal valid func-

tions – Theorem 3

Proof of Theorem 3. Consider the non-empty set Σ of valid functions π′ with π′ ≤ π
(the set is non-empty because π ∈ Σ). We now consider (Σ,≤) as a partially ordered
set, where the partial order is imposed by the relation π1 ≤ π2 for π1, π2 ∈ Σ. If we
can show that every chain in (Σ,≤) has a lower bound, then applying Zorn’s lemma
we would conclude that Σ has a minimal element which will be the minimal function
π′ we are looking for.

Consider any chain C in (Σ,≤), i.e., for π1, π2 ∈ C either π1 ≤ π2 or π2 ≤ π1.
Consider the function πC defined as follows: πC(r) = infπ′∈C π

′(r). We claim that
πC ∈ Σ. We only need to verify that it is a valid function; it is clear that πC ≤ π.
Since π′ ≥ 0 for all π′ ∈ C, πC ≥ 0.

Suppose to the contrary that there exists s ≥ 0 with finite support such that
f +

∑

r∈Rk rsr ∈ Zk, but
∑

r∈Rk πC(r)sr < 1. Let {r1, . . . , rn} be the finite support
of s, i.e., sr = 0 for all r 6∈ {r1, . . . , rn}. Let S = max{sr1 , . . . , srn} and let ǫ =
1−∑r∈Rk πC(r)sr > 0. Since πC(r

i) = infπ′∈C π
′(ri), there exists πi ∈ C, i = 1, . . . , n

such that πi(r
i) ≤ πC(r

i) + ǫ
2nS

. Since C is a chain, there exists i∗ ∈ {1, . . . , n}
such that πi∗ ≤ πi for all i ∈ {1, . . . , n}. Hence, πi∗(r

i) ≤ πC(r
i) + ǫ

2nS
for every

i ∈ {1, . . . , n}. But then

∑

r∈Rk

πi∗(r)sr ≤
∑

r∈Rk

πC(r)sr +
n
∑

i=1

ǫ

2nS
sri ≤ 1− ǫ+

ǫ

2nS
nS < 1,

which shows that πi∗ is not a valid function, which is a contradiction because πi∗ ∈
Σ.

6.6 Facet Theorem

The next lemma shows that a weaker condition than that in the definition of a facet
is enough to guarantee facetness.
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Lemma 44. Let π be minimal valid function. Suppose for every minimal valid
function π∗, the condition holds that S(π) ⊆ S(π∗) implies π∗ = π. Then π is a
facet.

Proof. Consider any valid function π′ (not necessarily minimal) such that S(π) ⊆
S(π′); we show that π′ = π.

Suppose to the contrary that there exists r1 ∈ Rk such that π(r1) 6= π′(r1). We
claim that actually there is r2 such π(r2) > π′(r2). To see this, first notice that the
symmetry condition of π (via Theorem 4) guarantees that π(r1) + π(−f − r1) = 1.
Moreover, it is clear that the solution s̄ given by s̄r1 = s̄−f−r1 = 1 and s̄r = 0
otherwise is feasible; together, these observations imply that s̄ ∈ S(π). Since S(π) ⊆
S(π′), we have that s̄ ∈ S(π′) and hence

π′(r1) + π′(−f − r1) =
∑

r∈Rk

π′(r)s̄r = 1 = π(r1) + π(−f − r1).

Since π(r1) 6= π′(r1), it follows that either π(r1) > π′(r1) or π(−f−r1) > π′(−f−r1),
and the claim holds.

Now consider a minimal valid function π∗ ≤ π′ (which exists by Theorem 3). No-
tice that S(π′) ⊆ S(π∗): for s̄ ∈ S(π′), using its validity we get 1 ≤∑r∈Rk π∗(r)s̄r ≤
∑

r∈Rk π′(r)s̄r = 1, hence equality hold throughout and s̄ ∈ S(π∗). Since S(π) ⊆
S(π′), we get that S(π) ⊆ S(π∗). However, π 6= π∗, since there is r2 such that
π(r2) > π′(r2) ≥ π∗(r2). This contradicts the assumptions on π, which concludes the
proof.

Proof of Theorem 8. By Lemma 44, all we need to show is that for every minimal
valid function π′, S(π) ⊆ S(π′) implies π′ = π. We simply show that for every
minimal valid function π′, S(π) ⊆ S(π′) implies E(π) ⊆ E(π′).

So let π′ be a minimal valid function with S(π) ⊆ S(π′). Consider any (r1, r2) ∈
E(π), namely such that π(r1) + π(r2) = π(r1 + r2). Notice that the solution s̄ given
by s̄r1 = s̄r2 = s̄−f−r1−r2 = 1 and s̄r = 0 is feasible. Moreover, using symmetry
condition of π we get that s̄ ∈ S(π). Indeed,
∑

r∈Rk

π(r)s̄r = π(r1)+π(r2)+π(−f − (r1 + r2)) = π(r1 + r2)+π(−f − (r1 + r2)) = 1.

Since S(π) ⊆ S(π′), the solution s̄ also belongs to S(π′), and now the symmetry
condition of π′ gives

1 =
∑

r∈Rk

π′(r)s̄r = π′(r1)+π
′(r2)+π

′(−f − r1 − r2) = π′(r1)+π
′(r2)+(1−π′(r1 + r2)).
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Thus, π′(r1)+π
′(r2) = π′(r1 + r2) and (r1, r2) ∈ E(π′). This concludes the proof.

6.7 Proof that Theorem 7 generalizes Theorem 3

of [53]

We restate Theorem 3 of [53] here using our terminology. A direction of a piecewise
linear function π with cell complex P is a linear space parallel to a one-dimensional
element of P , such as an edge.

Theorem 9 (Theorem 3 of [53]). Let π : R2 → R be a minimal valid function. If π
is piecewise linear with a locally finite cell complex, has 3 slopes and has 3 directions,
then π is extreme.

Consider π satisfying the hypothesis of the above theorem; it suffices to show
that π satisfies the hypothesis of Theorem 7. So let {ai}3i=1 be the gradient set
of π. Lemma 3.6 of [53] implies that cone(ai)3i=1 = R3. The next lemma, which
provides a partial converse to Lemma 35, shows that this property guarantees that π
is genuinely 3-dimensional; this implies that π satisfies the hypothesis of Theorem 7
and concludes the proof.

Lemma 45. Let θ : Rk → R be a piecewise linear function with gradient set {ai}i∈I .
If cone(ai)i∈I = Rk, then θ is genuinely k-dimensional.

Proof. By means of contradiction, suppose that θ is not genuinely k-dimensional.
So consider a function φ : Rk−1 → R and a linear map T : Rk → Rk−1 such that
θ = φ ◦ T . Notice that the kernel of T contains some non-zero vector, and let v be
one such vector.

Let θ be a piecewise linear function with cell complex P and take a maximal
cell P ∈ P ; we claim that aP · v = 0. Since P is full-dimensional, we can find
x, y ∈ P such that y − x = λv for some λ 6= 0. Since T (v) = 0, we have π(y) =
π(x+ λv) = φ(T (x+ λv)) = φ(T (x)) = π(x). Moreover, by definition of P , we have
that π(r) = aP · r+ δP for all r ∈ P . Putting the two previous observations together,
we get that 0 = π(y)− π(x) = aP · (y − x) = λaP · v. Since λ 6= 0, this implies that
aP · v = 0.

However, since this holds for every P ∈ P , it is clear that cone(ai)i∈I belongs to
the orthogonal complement of v, and hence does not equal Rk. This contradicts the
assumption on the vectors ai and concludes the proof of the lemma.
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6.8 Lifting of Cuts from Lattice-free Simplices

Let S ⊆ Rk be a simplex which contains f in its interior and which is lattice-free,
namely S does not contain integer points in its interior. It is known that S can
be expressed using linear inequalities in the form {x ∈ Rk : ai(x − f) ≤ 1, i =
1, 2, . . . , k+1}, for some collection {ai}k+1

i=1 where cone(ai)
k+1
i=1 = Rk. Let πS : Rk → R

be defined as follows:

πS(r) = min
w∈Zk

max
i∈{1,2,...,k+1}

ai(r + w). (6.6)

Note that πS ≥ 0 since cone(ai)
k+1
i=1 = Rk. The main observation is that πS is a valid

function for (IR) (see Corollary 7.6 in [44]).

In [33], the authors provide conditions on S, such that πS gives a so-called unique
lifting (see [45] and [29] for a discussion of unique liftings). It can be shown that
for such special simplices, πS is a minimal valid function for (IR) (see Theorem 7.2
in [44]). We claim that given such a simplex S, the function πS satisfies all the
hypothesis of Theorem 7, and therefore the latter can be used to show that πS is
a facet of (IR). We need to verify that πS is a genuinely k-dimensional piecewise
linear function with a locally finite cell complex and having at most k + 1 slopes.
From equation (6.6) it follows that πS is a piecewise linear function with k + 1
slopes (one slope for each ai). Moreover, one can also show that πS is genuinely
k-dimensional because πS(r) = 0 if and only if r ∈ Zk (one needs to use the fact that
cone(ai)

k+1
i=1 = Rk implies that maxi∈{1,2,...,k+1} a

i(r + w) = 0 if and only if r = −w).
Finally, using the fact that cone(ai)

k+1
i=1 = Rk, one can show that the cell complex of

πS is locally finite: given any bounded region B ⊆ Rk the minimum in equation (6.6)
can be replaced by minimum over all w’s of bounded norm:

∀r ∈ B, πS(r) = min
w∈Zk,‖w‖≤U

max
i∈{1,2,...,k+1}

ai(r + w), (6.7)

for some sufficiently large scalar U . This can be used to prove the local finiteness.
This concludes the proof of the claim.





CHAPTER 7

Lifting Gomory Cuts With

Bounded Variables

Recently, Balas and Qualizza [22] introduced new cuts for mixed 0/1 programs called
lopsided cuts. Their derivation is based on the Balas-Jeroslow modularization tech-
nique [17] and uses significantly the (upper) bounds present in the variables. This is
of special interest given that current techniques for generating cuts (e.g. based on
the corner relaxation) ignore the bounds on several variables; in fact, the role of that
latter information is still not well understood.

In this chapter we provide a geometric derivation of these lopsided cuts and
generalize it to an infinite family, which includes the GMI inequality. The first step
in our approach is to see the Balas-Qualizza cuts as valid cuts for version of the
mixed-integer infinite relaxation where the basic variable is upper bounded. Then
we notice that these cuts are actually liftings (taking into account the upper bound
on the basic variable) of the fractional Gomory function. For that, we use a variation
of the “geometric lifting” technique introduced by in [45]. This perspective allow us
to extend the construction to obtain the generalization of the Balas-Qualizza cuts.

Moreover, we also show that all the cuts in the family we obtain are “new”: they
are all extreme for the mixed-integer infinite relaxation with upper bounded basic
variable. We also provide some preliminary computational results that unfortunately
shows that these cuts decrease in importance as they move away from the GMI
inequality, complementing the experimental results from [22].
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Organization of the chapter. We start defining the upper bounded mixed-integer
relaxation that we use and recall some definitions used in this chapter. In Section
7.2 we briefly introduce the modified geometric lifting perspective that we employ.
In Section 7.3, we construct the family of cuts that is the main object of study of
this chapter, while in Sections 7.4 and 7.5 we provide an analysis of their strength
theoretically and empirically, respectively.

Acknowledgment. This chapter is joint work with Gérard Cornuéjols and Tamás
Kis.

7.1 Preliminaries

We consider a linear equation where a bounded integer variable x is expressed in
terms on nonnegative variables. By a change of variable, we may assume that x ≤ 1.
Consider the upper bounded system

x = f +
∑

r∈R

rsr +
∑

r∈R

ryr

x ∈ {−∞, . . . , 0, 1} (7.1)

sr ≥ 0

yr ∈ Z+

(s, y) has finite support,

which is an upper bounded version of a mixed-integer infinite relaxation.

For simplicity of exposition, we focus on the case 0 < f < 1. Note however that
the approach that we present below can also be used when f is further from the
bound. We will fix f ∈ (0, 1) from now own. We use IP to denote the set of (x, s, y)
feasible solutions for the above.

Let ψGMI denote the classical Gomory function for the coefficients of the contin-
uous variables

ψGMI(r) =

{ − r
f

r < 0
r

1−f
r ≥ 0

.

Our goal is to lift ψGMI for the integral variables, namely find π such that
∑

r

ψGMI(r)sr +
∑

r

π(r)yr ≥ 1



7.2. Modified Geometric Lifting 121

is satisfied by all (x, s, y) ∈ IP .

7.2 Modified Geometric Lifting

Since integrality constraints on basic variables (i.e. on the left-hand side of the
equation in 7.1) are more easily handled, the idea is to ‘transfer’ the integrality of y
to a basic variable. For that, we first consider the extended system

(

x

z

)

=

(

f

0

)

+
∑

r∈R

(

r

0

)

sr +
∑

r∈R

(

r

ℓ(r)

)

yr

x ∈ {−∞, . . . , 0, 1} (IP(ℓ))

z ∈ Z

sr ≥ 0

yr ∈ Z+

(s, y) has finite support.

We use IP (ℓ) to denote the set of feasible solutions (x, z, s, y) for the above and
observe that, when ℓ(r) is integral for all r ∈ R, this extended system is equivalent
to the original one.

Proposition 6. IP = projx,y,s IP (ℓ) for all ℓ : R → Z.

We assume ℓ : R → Z in the remainder of the paper. Now we relax the integrality
of the non-basic variables to obtain the system that we work with:

(

x

z

)

=

(

f

0

)

+
∑

r∈R

(

r

0

)

sr +
∑

r∈R

(

r

ℓ(r)

)

yr

x ∈ {−∞, . . . , 0, 1} (Z(ℓ))

z ∈ Z

sr ≥ 0

yr ≥ 0

(s, y) has finite support.

Notice that this system partially captures the original integrality of y and hence
(its projection onto the (x, y, s)-space) is tighter than the relaxation obtained by
completely dropping the integrality of y from IP .
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7.3 Wedge Inequalities

We now construct the family of cuts which are the object of study in this paper. Let
S = {−∞, . . . , 0, 1} × Z and notice that every feasible solution (x, z, s, y) for Z(ℓ)
satisfies (x, z) ∈ S. We say that a set K ⊆ R2 is S-free if K does not contain in its
interior any point of S.

For α ∈ (0, 1], we consider the S-free convex setKα = {(x, z) : a1·[(x, z)− (f, 0)] ≤
1, a2 · [(x, z)− (f, 0)] ≤ 1} with

a1 =

(

− 1

f
,
1

f

)

a2 =

(

1

1− f
,−1− α(1− f)

αf(1− f)

)

.

x

z

Kα

f

Figure 7.1: S-free convex set Kα. The slope of the lower facet of Kα is αf
1−α(1−f)

.

The S-free convex set Kα contains (f, 0) in its interior and therefore it can be
used to derive an intersection cut for Z(ℓ). More specifically, from the theory of
S-free cuts [30], we obtain the valid inequality

∑

r

ψ̄(r)sr +
∑

r

π̄ℓα(r)yr ≥ 1 (7.2)

with ψ̄(r) = max{a1 · (r, 0), a2 · (r, 0)} and π̄ℓα(r) = max{a1 · (r, ℓ(r)), a2 · (r, ℓ(r))}.
We have the following explicit formula for the coefficients (see Figure 7.2):

ψ̄(r) =

{ − r
f

r < 0
r

1−f
r ≥ 0

π̄ℓα(r) =

{

−r+ℓ(r)
f

ℓ(r) > αr
r

1−f
− ℓ(r)(1−α(1−f))

αf(1−f)
ℓ(r) ≤ αr.
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lopsided cut

π̄0.5

GMI

Figure 7.2: Graph of π̄0.5 and of functions corresponding to lopsided and GMI cuts.
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Inequality (7.2) will be called wedge inequality in the remainder. Since ψ̄ = ψGMI ,
the function (ψ̄, π̄ℓα) is a lifting of the Gomory function. Geometrically this is clear:
the Gomory function ψGMI is obtained by considering the lattice-free set [0, 1] in
IP (f). For all α the function ψ̄ is obtained from the set Kα along rays (r, 0), and
therefore the relevant part of Kα is Kα ∩ {z = 0} which is the segment [0, 1]× {0}.

We remark that if x is a 0,1 variable, another cut, exploiting the lower bound of
0, can be obtained by substituting x by 1− x.

7.3.1 Optimizing ℓ

Notice that the cut above is valid for every ℓ : R → Z; we can choose the one which
gives the ‘best’ coefficients, i.e. the smallest value of π̄ℓα(r). Thankfully, each ray is
associated to a different component of ℓ, so we can actually get the best coefficient
for all the rays simultaneously.

Proposition 7. For given r and α, the value of ℓ that minimizes π̄ℓα(r) is ℓα(r) =

⌈α(r + f − 1)⌉. Furthermore π̄ℓαα (r) = min{−r+⌈αr⌉
f

, r
1−f

− ⌊αr⌋(1−α(1−f))
αf(1−f)

}.

Proof. Fix r ∈ R. Note that π̄ℓα(r) as a function of ℓ(r) is a piece-wise linear function
which is decreasing in the interval (−∞, αr] and increasing in the interval [αr,∞),
hence with minimum at ℓ(r) = αr. Therefore, the minimum over all integer values
of ℓ(r) is attained at either ℓ(r) = ⌊αr⌋ or ⌈αr⌉. This shows the second part of the
proposition.

To prove the first part, let ℓ̃ be the (unique) value ℓ̃ ≤ αr < ℓ̃ + 1 such that

π̄ℓ̃α(r) = π̄ℓ̃+1
α (r). A simple calculation gives ℓ̃ = α(r + f − 1). Since there is

only one integer in the range [ℓ̃, ℓ̃ + 1), the optimum choice of the integer ℓ(r) is
ℓα(r) = ⌈α(r + f − 1)⌉.

This has the following geometric interpretation: The optimum choice of ℓ is such
that the ray (r, ℓ(r)) belongs to the strip (f, 0) + R (see Figure 7.3). This is related
to the region of best possible liftings for wedges as introduced in [45] Section 3.1.

To simplify the notation, let π̄α = π̄ℓαα .

7.3.2 Limit Cases

Now we consider the extreme cases α = 1 and α → 0.
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x

z

(f, 0) + R

Figure 7.3: Region (f, 0) +R of best possible liftings.

Proposition 8. For α = 1, π̄1(r) = min{ ⌈r⌉−r
f
, r−⌊r⌋

1−f
}, i.e. we get the GMI cut.

Now we focus on the case α → 0. Let

π̄0(r) =







−r
f

r < 0
r

1−f
r ∈ [0, 1− f ]

−r+1
f

r > 1− f.

Lemma 46. Fix r ∈ R. Then there exists α0 > 0 such that for any 0 < α ≤ α0, we
have ℓα(r) = 0 if r ≤ 1− f and ℓα(r) = 1 if r > 1− f . Hence, for all 0 < α ≤ α0 we
have π̄α(r) = π̄0(r).

The above lemma directly gives the behavior of π̄α with α → 0.

Proposition 9. The pointwise limit limα→0 π̄α equals π̄0, i.e. we get the lopsided cut
of Balas and Qualizza [22].

7.4 Strength of (ψ̄, π̄α)

The main goal of this section is to show that the function (ψ̄, π̄α) is extreme for 7.1.
In fact we will prove an even stronger result, namely that this function is extreme in
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the 0, 1 case. That is, we consider the more restricted system

x = f +
∑

r∈R

rsr +
∑

r∈R

ryr

x ∈ {0, 1} (B(f))

sr ≥ 0

yr ∈ Z+

(s, y) has finite support.

Since 7.1 is a relaxation of B(f), (ψ̄, π̄α) is valid for the latter for all α ∈ [0, 1].

We say that a valid function (ψ, π) is extreme for (B(f)) if there are no distinct
valid functions (ψ1, π1) and (ψ2, π2) such that ψ = ψ1

2
+ ψ2

2
and π = π1

2
+ π2

2
. The

following theorem formally states the main result of this section.

Theorem 14. For all α ∈ [0, 1], the function (ψ̄, π̄α) is extreme for (B(f)).

In particular, this implies that we cannot improve the coefficients of the valid
inequality for (7.1)

∑

r

ψ̄(r)sr +
∑

r

π̄α(r)yr ≥ 1

even if we use the additional information that x ∈ {0, 1}. We start by showing
something weaker, namely that this inequality is minimal.

7.4.1 Minimality

Just as for the infinite relaxation, we say that a valid function (ψ, π) for B(f) is
minimal if there is no other valid function (ψ′, π′) such that ψ′ ≤ ψ and π′ ≤ π.
The following lower bound on valid functions is the main observation to prove that
(ψ̄, π̄α) is minimal.

Lemma 47. Let (ψ, π) be a valid function for B(f). Then:

1. ψ ≥ ψ̄

2. π(r) + π(1− f − r) ≥ 1 for all r ∈ R.

Proof. Consider the first property. Notice that for r > 0, setting s̄r = 1−f
r

and
all other s̄r′ ’s equal to 0 gives a feasible solution for (B(f)); the validity of (ψ, π)
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implies that ψ(r)s̄r ≥ 1, or equivalently that ψ(r) ≥ ψ̄(r). For r < 0, we employ the
same reasoning to the solution given by s̄r = −f

r
and s̄r′ = 0 for r′ 6= r to obtain

ψ(r) ≥ ψ̄(r). Finally, we use the solution s̄0 = M > 0, s̄1 = 1 − f and s̄r′ = 0 for

r′ /∈ {0, 1} to obtain that ψ(0) ≥ 1−ψ(1)(1−f)
M

; taking M → ∞ gives ψ(0) ≥ 0 = ψ̄(0).

The second property is proved similarly by considering the feasible solution ob-
tained by setting ȳr = 1, ȳ1−f−r = 1 and every other component of ȳ to 0.

Lemma 48. For all α ∈ [0, 1], the function (ψ̄, π̄α) is minimal for (B(f)).

Proof. Consider (ψ, π) such that ψ ≤ ψ̄ and π ≤ π̄α. The first part of Lemma 47
shows that ψ = ψ̄. Moreover, elementary calculations show that for all r, π̄α(r) +
π̄α(1− f − r) = 1. This shows that π = π̄α. Hence the pair (ψ̄, π̄α) is minimal.

7.4.2 Extremality

First we focus on proving Theorem 14 for the case α ∈ (0, 1]. It is easy to check that
the function π̄α is piecewise linear; furthermore, for α > 0 its breakpoints occur at k

α

and k
α
+ 1− f for k ∈ Z; notice that the first and the second set of breakpoints are

respectively the local minima and maxima of π̄α. Let . . . < x−2 < x−1 < x0 = 0 <
x1 < x2 < . . . be this set of breakpoints; according to this definition, xi is a local
minimum for i even. It is easy to check that π̄α is quasiperiodic, namely for all i ∈ Z

and r ∈ [x2i−1, x2i+1] we have π̄α(r) = π̄α(x2i) + π̄α(r − x2i).

In order to prove Theorem 14, consider valid functions (ψ1, π1) and (ψ2, π2) sat-
isfying ψ̄ = ψ1

2
+ ψ2

2
and π̄α = π1

2
+ π2

2
; we show that ψ̄ = ψ1 = ψ2 and π̄α = π1 = π2.

First notice that Lemma 47 implies ψ1 ≥ ψ̄ and ψ2 ≥ ψ̄; but then since ψ1

2
+ ψ2

2
=

ψ, it is clear that we must have the equality ψ1 = ψ2 = ψ̄. Therefore, we only need
to prove π1 = π2 = π̄α. It is easy to see that (ψ̄, π1) and (ψ̄, π2) are minimal: if

there were, say, a valid π′
1 6= π1 such that π′

1 ≤ π1, then (ψ̄,
π′
1

2
+ π2

2
) would be a

valid function contradicting the minimality of (ψ̄, π̄α). Now we evoke the following
property about minimal valid functions.

Lemma 49. Consider a minimal valid function (ψ, π) for (B(f)). Then π is subad-
ditive, namely for all r1, r2 ∈ R, π(r1 + r2) ≤ π(r1) + π(r2).

After proving that π(0) ≥ 0 as in the first part of Lemma 47, the proof of Lemma
5.2 given in [44] goes through to prove the above lemma; details are omitted.

Claim 6. For r ∈ [x−1, x1], π1(r) = π2(r) = ψ̄(r) = π̄α(r).
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Proof. Fix j ∈ {1, 2}. Using standard techniques (see [45]), one can show that since
(ψ̄, πj) is valid then (ψ̄,min{ψ̄, πj}) is also valid. The minimality of (ψ̄, πj) then
implies that πj ≤ min{ψ̄, πj} ≤ ψ̄.

However, notice that for r ∈ [x−1, x1], ψ̄(r) = π̄α(r). As before, for r ∈ [x−1, x1]
the fact that ψ̄(r) = π1(r) + π2(r) together with the previous paragraph implies
π1(r) = π2(r) = ψ̄(r). The result then follows.

Claim 7. For r ∈ [x2i−1, x2i+1] and j = 1, 2, we have

πj(r)− πj(x2i) = π̄α(r)− π̄α(x2i).

Proof. Since πj is minimal, Lemma 49 gives that πj(r) ≤ πj(x2i) + πj(r − x2i). But
since r − x2i ∈ [x−1, x1], it follows from Claim 6 and the quasiperiodicity of π̄α
that πj(r − x2i) = π̄α(r − x2i) = π̄α(r) − π̄α(x2i); this gives that πj(r) − πj(x2i) ≤
π̄α(r)− π̄α(x2i) for j = 1, 2. Adding these inequalities for j = 1, 2, dividing by 2 and
using the fact that π̄α = π1

2
+ π2

2
, we again obtain that we must have the equality

πj(r)− πj(x2i) = π̄α(r)− π̄α(x2i) for j = 1, 2. This concludes the proof.

Now take i ∈ N, and r ∈ [x2i−1, x2i+1]; we will show that π1(r) = π2(r) = π̄α(r).
For that, simply write πj(r) = (πj(r)− πj(x2i)) +

∑2i
k=1(πj(xk)− πj(xk−1)) + πj(x0).

Applying Claim 7 to each parenthesized expression and Claim 6 to the last term, we
obtain that πj(r) = π̄α(r), giving the desired result. The case i ∈ −N can be handled
analogously, which then proves Theorem 14 when α ∈ (0, 1].

The case α = 0 needs to be handled separately. As before, we still have ψ1 =
ψ2 = ψ̄. Moreover, as in Claim 6, the fact that π̄0(r) = ψ̄(r) for all r ≤ 1 − f
implies that π1(r) = π2(r) = π̄0(r) for all r ≤ 1 − f . For r > 1 − f , we claim
that we have an equality analogous to Claim 7, namely that πj(r) − πj(1 − f) =
π̄0(r) − π̄0(1 − f) for j = 1, 2. To see this, first notice that for r > 1 − f we have
π̄0(r) = π̄0(1−f)− π̄0(1−f−r). Then using the subadditivity of πj and the fact that
1−f −r ≤ 1−f , we get πj(1−f) ≤ πj(1−f −r)+πj(r) = π̄0(1−f)− π̄0(r)+πj(r),
and the claim follows as in Claim 7. Since πj(1 − f) = π̄0(1 − f), this equation
gives that πj(r) = π̄0(r) for all r > 1 − f and j = 1, 2. This concludes the proof of
Theorem 14.

7.4.3 Split Cuts

Let LP denote the linear relaxation of formulation 7.1, i.e. it is obtained from 7.1
by replacing the integrality conditions x ∈ {−∞, . . . , 0, 1}, yr ∈ Z+ by x ≤ 1, yr ≥ 0.
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We say that an inequality
∑

r ψ(r)sr +
∑

r π(r)yr ≥ 1 is a split inequality if it is
satisfied by all (x, s, y) in LP ∩ ({ax +

∑

r bryr ≤ c} ∪ {ax +
∑

r bryr ≥ c + 1}), for
some a, c ∈ Z, br ∈ Z for all r ∈ R.

Notice that the split disjunction {ax+∑r bryr ≤ c}∪{ax+∑r bryr ≥ c+1} is valid
(i.e., it contains all feasible solutions) even when we relax the upper bound on x in 7.1,
namely when we simply take x to be an integer. Thus, split inequalities do not use the
information of the upper bound on x in the choice of the disjunction used to generate
it. What we show next is that, although the disjunction {(x, z, s, y) : (x, y) /∈ intKα}
employed to generate the wedge inequality uses the upper bound on x, this inequality
is dominated by a split inequality.

Theorem 15. For all α ∈ (0, 1] and all ℓ : R → Z, the wedge inequality (7.2) is a
split inequality.

Proof. To prove the theorem, we show that the wedge inequality (7.2) is satisfied by
all (x, s, y) in LP ∩ ({x ≤∑r ℓ(r)yr} ∪ {x− 1 ≥∑r ℓ(r)yr}).

Let β = αf
1−α(1−f)

. Notice that 0 < β ≤ 1 since 0 < α ≤ 1.

Claim 1 If (x̄, s̄, ȳ) ∈ LP ∩ ({x ≤∑r ℓ(r)yr}∪{x−1 ≥∑r ℓ(r)yr}), then (x̄, s̄, ȳ) ∈
LP ∩ ({x ≤∑r ℓ(r)yr} ∪ {β(x− 1) ≥∑r ℓ(r)yr}).

Proof. If (x̄, s̄, ȳ) ∈ LP ∩ {x ≤ ∑

r ℓ(r)yr}, then the claim holds. Now suppose
(x̄, s̄, ȳ) ∈ LP ∩ {x− 1 ≥∑r ℓ(r)yr}. Since 0 < β ≤ 1, and x ≤ 1 is a constraint of
LP , we have (1−β)(x̄−1) ≤ 0. Hence,

∑

r ℓ(r)ȳr ≤ (x̄−1)−(1−β)(x̄−1) = β(x̄−1)
and we are done.

To finish the proof of the theorem, observe that (7.2) is valid for LP ∩ ({x ≤
∑

r ℓ(r)yr}∪{β(x− 1) ≥∑r ℓ(r)yr}). To see this, consider the function ψ : R2 → R

defined as ψ(r, ℓ) = max{a1 · (r, ℓ), a2 · (r, ℓ)}. It is easy to verify that ψ is convex,
and positively homogeneous, and thus it is subadditive, i.e., ψ(r, ℓ) + ψ(r′, ℓ′) ≥
ψ(r + r′, ℓ + ℓ′). Moreover, ψ(x − f, z) = 1 on the boundary of the set Kα. By
convexity of ψ and Kα, we get that ψ(x − f, z) ≥ 1 if (x, z) 6∈ intKα, i.e. x ≤ z or
β(x− 1) ≥ z. Using the equations for (x, z) in the definition of LP (ℓ), we derive the
following valid inequality for all (s, y) such that (x, z) satisfies x ≤ z or β(x−1) ≥ z:

1 ≤ ψ(x− f, z) = ψ(
∑

r

(r, 0)sr +
∑

r

(r, ℓ(r))yr) ≤
∑

r

ψ(r, 0)sr +
∑

r

ψ(r, ℓ(r))yr.

Substituting
∑

r ℓ(r)yr for z into the inequalities x ≤ z or β(x − 1) ≥ z gives the
desired result.
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We obtain as a corollary a result for the cuts (ψ̄, π̄α), including the case α = 0.

Corollary 5. For all α ∈ [0, 1], the inequality generated by (ψ̄, π̄α) is a split inequal-
ity.

Proof. It suffices to prove for α = 0. Consider any feasible solution (x, s, y) in
LP ∩ ({(x, s, y) : x ≤ ∑r>1−f yr} ∪ {(x, s, y) : x ≥ 1 +

∑

r>1−f yr}). Since s and y
have finite support, Lemma 46 implies that there exists α0 > 0 such that: (i) ℓα0

(r)
equals 0 if r ≤ 1 − f and equals 1 if r > 1 − f ; (ii) π̄α0

(r) = π̄0(r) for all r such
that sr 6= 0 or yr 6= 0. Property (i) and the proof of Theorem 15 give that (x, s, y)
satisfies the inequality defined by (ψ̄, π̄α0

). Property (ii) then shows that (x, s, y) also
satisfies the inequality defined by (ψ̄, π̄0). This concludes the proof.

7.5 Computations

We performed computational tests to assess the practical consequences of Theo-
rem 15 of Section 4.3. We have selected 63 instances from MIPLIB 2010 with
binary and continuous variables only. We have generated wedge cuts (ψ̄, π̄α) with
α ∈ {0, 0.5, 0.8, 0.85, 0.9, 0.95, 1} for the most fractional binary variables in the opti-
mal basis of the LP relaxation. For the experiments we have used the LP solver of
FICO Xpress with no preprocessing at all. For each instance, and each fixed α < 1,
we generated one round of 50 + 50 wedge cuts for strengthening the LP relaxation
(50 for each one of the two orientations of the cone Kα, cf. Section 3). For α = 1,
when wedge cuts are equivalent to GMI cuts by Proposition 2, we have generated
one round of 50 cuts. Hence, for each instance we have a total of 7 runs of our
cutting plane algorithm, and in each run we have added cuts with a single fixed α
parameter only. Let LB(I) and LB+

α (I) denote the optimum value of the LP re-
laxation, and that after adding one round of cuts of parameter α, respectively, on
instance I. For each instance I, and parameter α, we have computed the quantity
Aα(I) = (LB+

α (I)−LB(I))/|LB(I)+1|, where the denominator is perturbed by 1 to
handle those cases with LB(I) = 0. Let Āα denote the average of the Aα(I) values
over the 63 instances for each α. Table 7.1 depicts the averages.

Observe that as α tends to 1 (i.e., the cuts approach GMI cuts), the improvement
over the LP optimum strictly increases. Our findings complement those of Balas and
Qualizza [22] which showed that in practice lopsided cuts do not improve much over
GMI cuts from the tableau, although they are occasionally stronger. On average,
they tend to be weaker. What these results indicate is that it does not pay to use
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α 0 0.5 0.8 0.85 0.9 0.95 1 (GMI)
Āα 0.1305 0.131 0.136 0.139 0.141 0.144 0.146

Table 7.1: Average improvement over the LP optimum for increasing α values.

bounds on the basic variables when generating GMI cuts from tableau rows. Instead
it is preferable to generate the standard GMI cut and to simply use the bounds
directly in the formulation. This seems counterintuitive but it is in agreement with
the proof of Theorem 15.





CHAPTER 8

Characterization of the Split

Closure by Cut Generating

Functions via Geometric Lifting

In this chapter we further explore properties and characterizations of split cuts. For
that, we focus on the generalized corner relaxations defined in Section 2.3.

The backbone of this work is a description of split cuts for this relaxation from
the perspective of cut-generating functions. This description establishes a connection
between these split cuts and (a generalization of) the k-cuts introduced by Cornuéjols,
Li and Vandenbussche [50]. To obtain this result, we further explore the geometric
lifting idea employed in the previous chapter, illustrating its flexibility as a tool for
analyzing cuts.

In this chapter we also present some implications of this result. First, we show
that every split cut for a corner relaxation is the restriction of a split cut for the
mixed-integer infinite relaxation; this further indicates the universality of the latter.
Moreover, we use our characterization of split cuts to construct a pure-integer set
(actually a pure-integer corner relaxation) that has an arbitrarily weak split closure
with respect to the blow up measure introduced in Section 3.1; this result gives a
pure-integer counterpart of the mixed-integer example given by Basu et al. in [27].

Organization of the chapter. We start by stating more formally our results and
discussing their connections with related work. In Section 8.2 we introduce the defini-
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tions and tools used during this chapter. Section 8.3 then proves our characterization
of split cuts, while Section 8.4 illustrates some implications of this result.

Acknowledgment. This chapter is joint work with Amitabh Basu.

8.1 Introduction

In the context of corner relaxations (in particular in the group problem setting [87,
88, 89]) a very important perspective is to study cuts as cut-generating functions
[42, 54]. Informally, cut-generating functions allow one to compute the coefficient of
a variable in a given cut using only information pertaining to this variable. Two main
advantages of cut generating functions is that they usually allow a computationally
efficient way of generating cuts in practice, and also possess special structure that
allows one to better understand the properties of these cuts [87, 88, 89, 53, 36].

On the other hand, most cuts, split cuts included, are naturally defined from
a geometric perspective (e.g. disjunctive cuts and intersection cuts). In fact, the
connection between the geometric and functional perspectives on cuts has been an
important tool to improve our understanding of the properties and relationship be-
tween cuts.

Despite the importance of split cuts, to the best of our knowledge, no explicit
description of split closures of corner relaxations in terms of cut generating functions
exists in the literature. The backbone of this work is precisely to give such a descrip-
tion. In fact, for 1-row corner relaxations, we establish a tight connection between
split cuts and the k-cuts defined by Cornuéjols, Li and Vandenbussche [50]; for n-row
corner relaxations, we naturally extend the definition of the latter to the so-called
α-cuts. Informally, an α-cut for an n-row corner relaxation is obtained by taking a
permissible integer vector α ∈ Zn, aggregating the n rows of the problem using the
αi’s as multipliers and then employing the GMI function to the resulting equality
(see Section 8.2 for proper definitions).

Theorem 16. Consider a generalized corner relaxation C = C(f,R,Q). Then the
α-cuts are exactly the split cuts for C. More precisely:

• Every α-cut is a split cut for C.

• Every split cut for C is dominated by an α-cut.
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We remark that this result is similar in spirit to the equivalence of split cuts,
GMI cuts and MIR cuts (see for instance [107, 49, 56]). One might be able to recover
Theorem 16 for finite-dimensional corner relaxations by carefully inspecting these
available proofs (notice, for instance, that the multipliers α that we use form a subset
of the integral vectors Zn). However, our proof, which unlike these works does not
rely on linear programming duality, naturally handles the case of infinite-dimensional
relaxations.

Another goal of this work is to explore the power of geometric lifting as a tool
for analyzing the structure of cuts. This idea was originally introduced by Conforti,
Cornuéjols and Zambelli [45] and was already used in a modified way in Chapter
7 to understand cuts for a version of the corner relaxation with extra upper/lower
bounds on the variables. It is the use of this perspective that allow us to handle the
infinite dimensional case seamlessly, since it allows one to translate all the work to a
finite set of basic variables.

As a consequence of the generality of the above characterization, we can establish
a connection between split cuts for finite-dimensional corner relaxations and split
cuts for the mixed-integer infinite relaxation C(f,Rn,Rn). This result illustrates the
universality of the latter: not only the mixed-integer infinite relaxation encodes all
corner polyhedra, but it also preserves the structure of split cuts.

Theorem 17. Consider a generalized corner relaxation C(f,R,Q).

• If C(f,R,Q) 6= ∅ then every split cut for it is the restriction of a split cut for
the infinite relaxation C(f,Rn,Rn).

• If C(f,R,Q) = ∅ then every split cut for it is dominated by a restriction of a
split cut for the infinite relaxation C(f,Rn,Rn).

In addition, using Theorem 16 we can make the following observation about
the split closure. Recall that Cook, Kannan and Schrijver constructed an example
of a mixed-integer program with infinite split rank [47]. Reinforcing the potential
weakness of the split closure, Basu et al. [27] constructed mixed-integer programs
(actually projected corner relaxations) whose split closures provide an arbitrarily
weak approximation to their integer hull (with respect to the blow up measure). On
the other hand, it is known that every pure-integer program has finite split rank
[41, 112]. However, our next result shows that in the pure-integer setting, we can
still find examples where the split closure provides an arbitrarily weak approximation
of the integer hull.
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Theorem 18. For every rational ǫ > 0, there is a pure-integer corner relaxation
Cǫ ⊆ Z3 whose split closure SCǫ has the property that

min{y1 + y2 : (x, y) ∈ Cǫ}
min{y1 + y2 : (x, y) ∈ SCǫ}

≥ 1

12ǫ
.

Corollary 6. For a rational ǫ > 0 let Cǫ and SCǫ be as in Theorem 18. Let Cǫ and
SCǫ be, respectively, the projections of conv(Cǫ) and SC onto the y-space. Then

inf{α : αCǫ ⊇ SCǫ} ≥ 1

12ǫ
.

(Recall that for a set X we define αX = {x/α : x ∈ X}.)

8.2 Preliminaries

8.2.1 Generalized Corner Relaxation

Valid cuts. Recall from Section 2.3.1 the definition of a valid function for a gener-
alized corner relaxation C(f,R,Q). Also with slight overload in notation, given sets
R′ ⊇ R and Q′ ⊇ Q and functions ψ ∈ RR′

and π ∈ RQ′

, we say that (ψ, π) is a valid
cut/function for C(f,R,Q) if the restriction (ψ|R, π|Q) is valid for it. Notice that if
(ψ, π) is valid for C(f,R′, Q′), then it is valid for the restriction C(f,R,Q).

GMI and k-cuts. Given a real number a ∈ R, let [a] denote its fractional part
a− ⌊a⌋. Then given f ∈ R \ Z, the GMI function (ψfGMI, π

f
GMI) is defined as

ψfGMI(r) = max

{

r

1− [f ]
,− r

[f ]

}

(8.1)

πfGMI(q) = max

{

q − ⌊q + [f ]⌋
1− [f ]

,−q − ⌊q + [f ]⌋
[f ]

}

. (8.2)

The GMI function is valid for C(f,R,R).
For f ∈ [0, 1]n \ Zn, define the sets Zf = {w ∈ Zn : wf /∈ Z} and Z+

f = Zf ∩ {w :
∑n

i=1wi ≥ 0}. Given α ∈ Z+
f , the α-cut function (ψfα, π

f
α) is defined as

ψfα(r) = ψαfGMI(αr) (8.3)

πfα(q) = παfGMI(αq). (8.4)

In the case n = 1 this definition is a cut-generating function view of the k-cuts
introduced in [50].
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Split cuts. Consider an n-dimensional corner relaxation C(f,R,Q). Given α ∈ Zf
and β : Q→ Z, we define the split disjunction

D(α, β, f) ,

{

(x, s, y) : αx+
∑

q∈Q

β(q)y(q) ≤ ⌊αf⌋
}

∪
{

(x, s, y) : αx+
∑

q∈Q

β(q)y(q) ≥ ⌈αf⌉
}

.

A cut (ψ, π) is a split cut for C(f,R,Q) with respect to the disjunction D(α, β, f) if
it is satisfied by all points in the set CLP (f,R,Q) ∩D(α, β, f).1

Notice that this definition holds for the case where R and/or Q are infinite,
thus generalizing the standard definition of split cuts to this setting; this further
generalizes the definition used in Chapter 7.

8.2.2 Continuous Corner Relaxation

It will be convenient to define a slightly modified version of the continuous relax-
ation C(f,R, ∅) which allows up to two copies of vectors in R. For that, define the
continuous corner relaxation CC(f,R,Q):

x = f +
∑

r∈R

r · s(r) +
∑

q∈Q

q · y(q)

x ∈ Zn (CC(f,R,Q))
s ∈ R

{R}
+ , y ∈ R

{Q}
+

Valid cuts and lattice-free cuts. Recall the notion of lattice-free cuts from
Section 2.3.4; we adapt it slightly for our setting.

Given a convex lattice-free set S ⊆ Rn containing f in its interior, we define the
function (ψS, πS) by setting

ψS = πS = γS−f (8.5)

where γ is the gauge or Minkowski functional from Definition 2. The function (ψS, πS)
is valid for CC(f,Rn,Rn). We call these lattice-free cuts.

1Notice that we only consider α in Zf , and not in Zn, because if α ∈ Zn \ Zf we have
CLP (f,R,Q) ∩D(α, β, f) = CLP (f,R,Q).
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Split cuts. As in the previous section, we define split cuts for CC(f,R,Q). For
that, given α ∈ Zf , define the split disjunction

D̄(α, f) = {(x, s, y) : αx ≤ ⌊αf⌋} ∪ {(x, s, y) : αx ≥ ⌈αf⌉}.

The cut (ψ, π) is a split cut for CC(f,R,Q) with respect to the disjunction D̄(α, f)
if it is satisfied by all points in CCLP (f,R,Q) ∩ D̄(α, f).

Given an integer vector α ∈ Zn, we define the lattice-free split S(α, f) as

S(α, f) = {x ∈ Rn : ⌊αf⌋ ≤ αx ≤ ⌈αf⌉}.

The set S(α, f) is convex and lattice-free, and notice that whenever α ∈ Zf it contains
f in its interior; in this case, (ψS(α,f), πS(α,f)) is a valid cut for CC(f,R,Q). We call
this cut a lattice-free split cut.

8.2.3 Equivalence of Split Cuts and Lattice-free Split Cuts

We now show that the notion of a split cut and lattice-free split cut are equivalent
(see Theorem 19).

Theorem 19.

CCLP (f,R,Q) ∩ (ψS(α,f), πS(α,f)) = conv
(

CCLP (f,R,Q) ∩ D̄(α, f)
)

.

In other words, for a continuous corner relaxation, every split cut is a lattice-free
split cut and vice versa.

Proof.

Claim 8. Let S(α, f) be a lattice-free split for some α ∈ Zf . Let r∗ be such that
ψS(α,f)(r

∗) = πS(α,f)(r
∗) = 0. Then a point x̃ ∈ Rn belongs to int(S(α, f)) if and only

if x̃+ λr∗ belongs to int(S(α, f)) for all λ ∈ R.

Proof. By definition S(α, f) = {x : ⌊αf⌋ ≤ αx ≤ ⌈αf⌉}. By definition of the
Minkowski functional, ψS(α,f)(r

∗) = 0 implies that r∗ is in the recession cone of
S(α, f). Thus, αr∗ = 0. Then x̃ belongs to int(S(α, f)) iff ⌊αf⌋ < αx̃ < ⌈αf⌉,
which happens iff ⌊αf⌋ < α(x̃ + λr∗) < ⌈αf⌉ for all λ ∈ R, which is equivalent to
(x̃+ λr∗) ∈ int(S(α, f)) for all λ ∈ R.



8.2. Preliminaries 139

For ease of notation, we denote CCLP = CCLP (f,R,Q) and S = S(α, f) in the
remainder of this proof.

(⊇) Since CCLP ∩ (ψS, πS) is convex, it suffices to show that CCLP ∩ D̄(α, f) ⊆
CCLP ∩ (ψS, πS); so it suffices to show that CCLP ∩ D̄(α, f) satisfies (ψS, πS).

Take (x̄, s̄, ȳ) ∈ CCLP ∩ D̄(α, f). Suppose by contradiction that

∑

r∈R

s̄(r)ψS(r) +
∑

q∈Q

ȳ(q)πS(q) < 1. (8.6)

Define R′ = {r ∈ R : ψS(r) > 0} and Q′ = {q ∈ Q : πS(q) > 0}. Also define
λr = s̄(r)ψS(r) and µq = ȳ(q)πS(q), and let ν =

∑

r∈R′ λr +
∑

q∈Q′ µq; notice that
ν ∈ [0, 1) because of (8.6).

Notice that we can write x̄ as

x̄ = f +
∑

r∈R′

λr

(

r

ψS(r)

)

+
∑

q∈Q′

µq

(

q

πS(q)

)

+∆′,

where the leftover ∆′ equals
∑

r∈R\R′ s̄(r)r +
∑

q∈Q\Q′ ȳ(q)q. Rewriting a bit more,
we have

x̄ = (1− ν)f + ν

[

∑

r∈R′

λr
ν

(

f +
r

ψS(r)

)

+
∑

q∈Q′

µq
ν

(

f +
q

πS(q)

)

]

+∆′. (8.7)

Now notice that for all r ∈ R′, the vector f + r
ψS(r)

belongs to S, and for all q ∈ Q′

the vector f + q
πS(q)

belongs to S. Since the bracketed term in the above displayed
expression is a convex combination of these vectors, it also belongs to S. Moreover,
f belongs to the interior of S, and hence (going back to equation (8.7)) we have that
x̄−∆′ belongs to the interior of S.

To conclude the proof of this part, we can apply the Claim 8 repeatedly using
each of the terms in the definition of ∆′ to obtain that x̄ = (x̄−∆′)+∆′ also belongs
to the interior of S (recall that the sum defining ∆′ is a finite sum becaue s̄ and ȳ
have finite support). But this implies that the solution (x̄, s̄, ȳ) does not belong to
CCLP ∩ D̄(α, f), which raises a contradiction.

(⊆) Take a point (x̄, s̄, ȳ) ∈ CCLP∩(ψS, πS); we show that it belongs to conv(CCLP∩
D̄(α, f)).

Define R′, Q′, λr, µq and ν as before; now notice that since (x̄, s̄, ȳ) satisfies
(ψS, πS), we have ν =

∑

r∈R′ λr +
∑

q∈Q′ µq =
∑

r∈R′ s̄(r)ψS(r) +
∑

q∈Q′ ȳ(q)πS(q) =
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∑

r∈R s̄(r)ψS(r) +
∑

q∈Q ȳ(q)πS(q) ≥ 1 (the third equality follows from the fact that
ψS(r) = 0 for all r ∈ R \ R′ and πS(r) = 0 for all r ∈ Q \ Q′, and the inequality
follows from the fact that (x̄, s̄, ȳ) satisfies (ψS, πS)). For every r ∈ R′, define the
point

U r =

(

f +
νr

ψS(r)
,

(

ν

ψS(r)

)

· 1r, 0
)

where 1r denotes the indicator function of r. Let ur = f+ νr
ψS(r)

be its first component;

similarly, for every q ∈ Q′ define

V q =

(

f +
νq

πS(q)
, 0,

(

ν

πS(q)

)

· 1q
)

and let vq = f + νq
πS(q)

be its first component.

Notice that all U r and V q belong to CCLP ; moreover, using the definition of ψS
and πS and the fact that ν ≥ 1, we have that ur /∈ int(S) and vq /∈ int(S) for all
r ∈ R′ and q ∈ Q′. Therefore, the points U r and V q belong to CCLP ∩ D̄(α, f).

Now define

∆ =





∑

r∈R\R′

s̄(r)r +
∑

q∈Q\Q′

ȳ(q)q, s̄|R\R′ , ȳ|Q\Q′



 .

Again using Claim 8 repeatedly, we get that U r+∆ ∈ CCLP ∩ D̄(α, f) and V q+∆ ∈
CCLP ∩ D̄(α, f).

Now notice that we can write (x̄, s̄, ȳ) as follows:

(x̄, s̄, ȳ) =
∑

r∈R′

λr
ν
(U r +∆) +

∑

q∈Q′

µq
ν
(V q +∆). (8.8)

It then follows that (x̄, s̄, ȳ) belongs to conv(CCLP ∩ D̄(α, f)) as desired (notice that
the λr’s and µq’s are finitely supported, because they come from s̄ and ȳ).

Since we will work mostly with lattice-free split cuts, to simplify the notation
define S̄(α, f) = S(α, f) − f as the “centered” version of S(α, f), so that ψS(α,f) =
πS(α,f) = γS̄(α,f).
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8.2.4 Geometric Lifting

The idea behind lifting of cuts is to first obtain a (weaker) cut by ignoring some of
the integrality of the variables and then strengthen it by incorporating back some of
the discarded information. In our context, we can formally define lifting as follows:
given a cut (ψ, π) valid for CC(f,R,Q), we say that a cut (ψ′, π′) valid for C(f,R,Q)
is a lifting of (ψ, π) if ψ′ = ψ and π′ ≤ π. For example, the GMI function introduced
in Section 8.2.1 can be seen as a lifting of a lattice-free cuts, a fact that will be very
important for our developments.

Fact 1 ([45]). The GMI function (ψfGMI , π
f
GMI) is a lifting of the lattice-free cut

(ψS(1,f), πS(1,f)). More precisely,

ψfGMI(r) = ψS(1,f)(r), πfGMI(q) = min
w∈Z

πS(1,f)(q + w).

Conforti, Cornuéjols and Zambelli considered a geometric approach to lifting [45].
There they focus on lifting/improving one coefficient at a time; for that, they choose
different lattice-free bodies for each coefficient. One drawback is that one needs to
show that the cut obtained is valid.

We take a different perspective on geometric lifting, which is the same used in
Chapter 7: we lift all coefficients simultaneously in an independent but coordinated
manner, guaranteeing that the cut we end up with is always valid. The idea is
to relax the integrality of all the non-basic variables in C(f,R,Q) and capture all
of them in an aggregated way by introducing an additional equality to the system.
More precisely, given an integral function ℓ : Q→ Z we consider the program

(

x
xn+1

)

=
(

f
0

)

+
∑

r∈R

(

r
0

)

· s
(

r
0

)

+
∑

q∈Q

(

q
ℓ(q)

)

· y
(

q
ℓ(q)

)

x ∈ Zn+1

z ∈ Z

s ∈ R
{R0}
+ , q ∈ R

{Qℓ}
+

(CC(f 0, R0, Qℓ))

where we define f 0 = (f, 0), R0 = {(r, 0) : r ∈ R} and Qℓ = {(q, ℓ(q)) : q ∈ Q}.
Intuitively, CC(f 0, R0, Qℓ) is a relaxation of C(f,R,Q) and hence valid cuts for

the former should be valid for the latter. Indeed, it is easy to check that given a
lattice-free set S ⊆ Rn+1 containing (f, 0) in its interior, the cut (ψ+

S , π
+
S ) given by

ψ+
S (r) = γS−f

(

r

0

)

∀r ∈ R, π+
S,ℓ(q) = γS−f

(

q

ℓ(q)

)

∀q ∈ Q
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is valid for C(f,R,Q). Moreover, keeping the set S ⊆ Rn+1 fixed, we can also look
for the strongest possible cuts we can obtain by choosing different ℓ’s; more precisely,
the function (ψ̃S, π̃S) given by

ψ̃S(r) = ψ+
S (r) = γS−f

(

r

0

)

∀r ∈ R, (8.9)

π̃S(q) = inf{π+
S,ℓ(q) | ℓ : Q→ Z} = inf

{

γS−f

(

q

ℓ(q)

)

: ℓ(q) ∈ Z

}

∀q ∈ Q (8.10)

is valid for C(f,R,Q).

Lemma 50. Let S = S(α, f) ⊆ Rn be a lattice-free split set for some α ∈ Zf .
Define π∗(r) = inf{γS−f (r + w) : w ∈ Zn}. Then, there exists w∗ ∈ Zn such that
π∗(r) = γS−f (r + w∗).

Proof. It can be verified that

γS−f (r) = max

{

αr

⌈αf⌉ ,
−αr

αf − ⌊αf⌋

}

, max {c1αr,−c2αr} ,

see for instance [45].

For any w ∈ Zn, there exists λ ∈ R and v ∈ Rn such that w = λα+v and αv = 0.
Thus, γS−f (r + w) = max{c1αr + c1λ‖α‖2,−c2αr − c2λ‖α‖2}. Let Λ = {λ ∈ R :
∃v ∈ Rn such that λα+ v ∈ Zn, αv = 0} be the projection of the lattice Zn onto the
subspace spanned by α; since α is rational, we have that Λ is a lattice [24]. With
this definition, we have

π∗(r) = inf{γS−f (r + w) : w ∈ Zn} = inf
{

max{c1αr + c1λ‖α‖2,−c2αr − c2λ‖α‖2} : λ ∈ Λ
}

.

(8.11)

Now ω(λ) , max{c1αr+ c1λ‖α‖2,−c2αr− c2λ‖α‖2} is a piecewise linear convex
function in λ with two pieces, and Λ is a lattice. Moreover, ω(λ) ≥ 0 for all λ ∈ R.
Thus, the infimum in the right-hand side of (8.11) is actually achieved. This proves
the lemma.
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8.3 Characterization of Split Cuts

8.3.1 Split Cuts as Lifted Lattice-free-Split Cuts

In this section we show that every split cut for C(f,R,Q) can be obtained via geo-
metric lifting from a cut derived from a lattice-free split set.

As hinted in the previous section, the LP relaxations CCLP (f 0, R0, Qℓ) and CLP (f,R,Q)
are isomorphic. More explicitly, define the functional Γℓ : CLP (f,R,Q) → CCLP (f 0, R0, Qℓ)
which maps a solution (x, s, y) into (x′, s′, y′) by setting

x′i = xi, i = 1, 2, . . . , n

x′n+1 =
∑

q∈Q

ℓ(q)y(q)

s′(r, 0) = s(r) for all r ∈ R

y′(q, ℓ(q)) = y(q) for all q ∈ Q.

It is easy to see that Γ is bijective.

Fact 2. The tuple (x, s, y) is a solution to CLP (f,R,Q) iff Γ(x, s, y) is a solution to
CCLP (f 0, R0, Qℓ).

This isomorphism naturally induces an isomorphism in the cuts between these
programs: define the functional Γ◦

ℓ : R
R × RQ → RR0 × RQℓ

which maps (ψ, π) into
(ψ1, π1) by setting

ψ1(r, 0) = ψ(r) ∀r ∈ R, π1(q, ℓ(q)) = π(q) ∀q ∈ Q.

This map is also a bijection, and we have

Fact 3. The tuple (x, s, y) satisfies (ψ, π) if and only if Γℓ(x, s, y) satisfies Γ
◦
ℓ(ψ, π).

Fact 3 implies

Lemma 51. Let (ψ, π) and (ψ′, π′) be valid cuts for C(f,R,Q). Then

CLP (f,R,Q) ∩ (ψ, π) ⊆ CLP (f,R,Q) ∩ (ψ′, π′)

iff
CCLP (f 0, R0, Qℓ) ∩ Γ◦

ℓ(ψ, π) ⊆ CCLP (f 0, R0, Qℓ) ∩ Γ◦
ℓ(ψ

′, π′).

In other words, (ψ, π) dominates (ψ′, π′) with respect to CLP (f,R,Q) iff the cut
Γ◦
ℓ(ψ, π) dominates Γ◦

ℓ(ψ
′, π′) with respect to CCLP (f 0, R0, Qℓ).
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Moreover,

Fact 4. Let S ⊆ Rn+1 be a lattice-free set containing (f, 0) in its interior. Then for
every integer ℓ, (ψ+

S , π
+
S,ℓ) = (Γ◦

ℓ)
−1(ψS, πS).

The heart of the argument for the main result of this section is the follow-
ing lemma, which establishes the equivalence between split cuts for C(f,R,Q) and
CC(f 0, R0, Qℓ); the idea is that we can simulate any split disjunction for the former
by setting the value of ℓ appropriately and using a disjunction on the latter program
which utilizes the new constraint xn+1 =

∑

q∈Q ℓ(q) · y(q).
Lemma 52. The cut (ψ, π) is a split cut for C(f,R,Q) with respect to the disjunction
D(α, β, f) iff Γ◦

β(ψ, π) is a split cut for CC(f 0, R0, Qβ) with respect to the disjunction
D̄((α, 1), (f, 0)).

Proof. Observe that (x, s, y) ∈ D(α, β, f) if and only if Γβ(x, s, y) ∈ D̄((α, 1), (f, 0)).
From Fact 2, (x, s, y) ∈ CLP (f,R,Q) if and only if Γβ(x, s, y) ∈ CCLP (f 0, R0, Qβ).
Thus, (x, s, y) ∈ CLP (f,R,Q)∩D(α, β, f) if and only if Γβ(x, s, y) ∈ CCLP (f 0, R0, Qβ)∩
D̄((α, 1), (f, 0)). By Fact 3, (ψ, π) is valid for CLP (f,R,Q) ∩ D(α, β, f) if and only
if Γ◦

β(ψ, π) is valid for CCLP (f 0, R0, Qβ) ∩ D̄((α, 1), (f, 0)), proving the result.

Now we are ready to prove the main result of this section (recall the definition of
(ψ̃S, π̃S) from equations (8.9) and (8.10)).

Lemma 53. A valid cut (ψ, π) for C(f,R,Q) is a split cut iff there is α ∈ Zf
such that (ψ, π) is dominated by the cut (ψ̃S, π̃S) with respect to CLP (f,R,Q), where
S = S((α, 1), (f, 0)).

Proof. (⇒) Suppose that (ψ, π) is a split cut for C(f,R,Q) with respect to the
disjunction D(α, β, f). By Lemma 52 we get that (ψ′, π′) = Γ◦

β(ψ, π) is a split cut

for CC(f 0, R0, Qℓ) with respect to the disjunction D̄((α, 1), (f, 0)). From Theorem 19,
we get that (ψ′, π′) is dominated by (ψS, πS) with respect to CCLP (f 0, R0, Qℓ). From
Lemma 51 we then have that (ψ, π) is dominated by (Γ◦

β)
−1(ψS, πS) = (ψ+

S , π
+
S,β)

with respect to CLP (f,R,Q), were the equality follows from Fact 4. Since (ψ̃S, π̃S) is
at least as strong as the latter cut, we have the first part of the lemma.

(⇐) By Lemma 50, (ψ̃S, π̃S) = (ψ+
S , π

+
S,ℓ) for some ℓ : Q → R. Thus, it suffices

to show that for all ℓ : Q → Z the cut (ψ+
S , π

+
S,ℓ) is a split cut for C(f,R,Q). First

notice that Theorem 19 implies that (ψS, πS) is a split cut for CC(f 0, R0, Qℓ). Fact 4
says (ψ+

S , π
+
S,ℓ) = (Γ◦

ℓ)
−1(ψS, πS); Lemma 52 then gives that (ψ+

S,ℓ, π
+
S ) is a split cut

for C(f,R,Q), thus concluding the proof of the lemma.
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Remark 2 (Lifting is complete for splits). Consider a split set S = S((α, 1), (f, 0))
and let S ′ = {x ∈ Rn : (x, 0) ∈ S} be the lower-dimensional set corresponding to
the slice of S along the plane xn+1 = 0. Notice that ψ̃S(r) = ψS

(

r
0

)

= ψS′(r) for all
r ∈ R and similarly π̃S(q) ≤ πS′(q). The above lemma then shows that every split cut
for C(f,R,Q) is (dominated by) a lifting of a lattice-free split cut for the relaxation
CC(f,R,Q) coming from a (possibly non-maximal) split set S ′ ⊆ Rn.

8.3.2 Linear Transformation of Lattice-free Cuts

An important tool to connect the GMI and α-cuts with lattice-free split cuts for
CC(f 0, R0, Qℓ) is to understand how the latter change when we apply a linear trans-
formation to the split sets used to generate them.

The first observation follows directly from the definition of γ.

Claim 9. Consider a convex set S ⊆ Rn with the origin in its interior. Then for
every linear transformation A : Rm → Rn we have

γS(Ar) = γA−1(S)(r) ∀r ∈ Rm.

Proof. Using linearity of A we get that

γS(Ar) = inf

{

1

λ
> 0 : λ(Ar) ∈ S

}

= inf

{

1

λ
> 0 : A(λr) ∈ S

}

= inf

{

1

λ
> 0 : λr ∈ A−1(S)

}

= γA−1(S)(r).

Now we see how the description of a centered split S̄(u, f) changes when we
apply a linear transformation to this set. To make this formal, given a linear map
A : Rm → Rn, we use At : Rn → Rm to denote the adjoint of A (i.e., the unique
linear map satisfying A(u) · v = u · At(v) for all u ∈ Rm, v ∈ Rn); recall that
(fixing orthonormal bases for Rm and Rn), the matrix corresponding to At is just the
transpose of the matrix corresponding to A.

Lemma 54. Consider a centered split set S̄(u, f) with u ∈ Zn and f ∈ Rn, and a
linear transformation A : Rm → Rn. Then for every vector f ′ ∈ A−1(f), we have

A−1(S̄(u, f)) = S̄(At(u), f ′).
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Proof. Assume that A−1(f) is non-empty, otherwise there is nothing to prove, and
consider f ′ ∈ A−1(f). Recall that S̄(u, f) = S(u, f) − f = {x : ⌊uf⌋ ≤ u(x + f) ≤
⌈uf⌉}. Then we have

A−1(S̄(u, f)) = {x ∈ Rm : ⌊uf⌋ ≤ u · (A(x) + f) ≤ ⌈uf⌉}
= {x ∈ Rm : ⌊u · A(f ′)⌋ ≤ u · A(x+ f ′) ≤ ⌈u · A(f ′)⌉}
= {x ∈ Rm : ⌊At(u) · f ′⌋ ≤ At(u) · (x+ f ′) ≤ ⌈At(u) · f ′⌉}
= S̄(At(u), f ′).

Employing Claim 9 and Lemma 54, we directly get the following.

Corollary 7. Consider a linear transformation A : Rm → Rn. Then for every
centered split set S̄(u, f) ⊆ Rn and vector f ′ ∈ A−1(f), we have

γS̄(u,f)(Ar) = γS̄(At(u),f ′)(r) ∀r ∈ Rn.

The next corollary states that we can use the geometric lifting to simulate the
“trivial lifting” of a cut given by an interval, which is very handy given that we can
construct the GMI function this way (recall Fact 1).

Corollary 8. For every centered split set S̄(u, f) ⊆ R1, we have

γS̄(u,f)(r + w) = γS̄((u,u),(f,0))

(

r

w

)

∀r, w ∈ R.

Proof. Employ the previous corollary with the linear map (x1, x2) 7→ x1 + x2, whose
adjoint is given by x1 7→ (x1, x1), and with f ′ = (f, 0).

In combination with the above result, the next corollary is useful to connect the
definition of α-cuts with our geometric lifting.

Corollary 9. Consider f ∈ Rn and an integral vector α ∈ Zf . Then

γS̄((1,1),(αf,0))

(

αq

w

)

= γS̄((α,1),(f,0))

(

q

w

)

∀q ∈ Rn, w ∈ R.

Proof. Employ Corollary 7 with the linear map (x1, x2, . . . , xn+1) 7→ (
∑n

i=1 αixi, xn+1),
whose adjoint is given by (x1, x2) 7→ (α1x1, α2x1, . . . , αnx1, x2), and with f ′ =
(f, 0).
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8.3.3 α-cuts as Lifted Lattice-free Split Cuts

Now we use the tools from the previous section to show that α-cuts for C(f,R,Q) are
liftings of lattice-free split cuts for CC(f,R,Q). Notice the similarity of the statement
below and Lemma 53, which shows that every split cut for C(f,R,Q) is a lifting of a
lattice-free split cut for CC(f,R,Q); in fact, it is through these liftings of lattice-free
split cuts that we can show the equivalence of α-cuts and split cuts for C(f,R,Q) in
the sequel. 5

Lemma 55. For every α ∈ Z+
f , the α-cut can be obtained using the geometric lifting

procedure. More precisely, defining S = S((α, 1), (f, 0)) we have

(ψfα, π
f
α) = (ψ̃S, π̃S).

Proof. Recall that from the definition of α-cuts and Fact 1 that ψfα(r) = ψαfGMI(αr) =
γS̄(1,αf)(αr). Then using Corollary 8 with u = 1 and w = 0 and Corollary 9 with
w = 0, we get that

ψfα(r) = γS̄(1,αf)(αr)
Cor 8
= γS̄((1,1),(αf,0))

(

αr

0

)

Cor 9
= γS̄((α,1),(f,0))

(

r

0

)

= ψ̃S((α,1),(f,0))(r).

Similarly, recall that

πfα(q) = παfGMI(αq) = min
w∈Z

ψαfGMI(αq + w) = min
w∈Z

γS̄(1,αf)(αq + w).

Then employing Corollaries 8 and 9 we get that

πfα(q) = min
w∈Z

γS̄(1,αf)(αq + w)
Cor 8
= min

w∈Z
γS̄((1,1),(αf,0))

(

αq

w

)

Cor 9
= min

w∈Z
γS̄((α,1),(f,0))

(

q

w

)

= π̃S((α,1),(f,0))(q),

concluding the proof of the lemma.

8.3.4 Concluding the Proof of Theorem 16

Notice that Lemmas 53 and 55 almost give us Theorem 16: the difference is that in
the former the characterization of split cuts uses vectors α in Zf , while the latter
uses vectors α in the smaller set Z+

f ; hence, at this point, there can potentially be
split cuts for C(f,R,Q) which are not dominated by α-cuts. To show that such α’s
are redundant, we start with the following simple observation about the symmetry
of split sets.
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Lemma 56. Consider a centered split set S̄(u, f), for u, f ∈ Rn. Then S̄(u, f) =
S̄(−u, f).

Proof. Notice that for every real number a ∈ R we have −⌊a⌋ = ⌈−a⌉. Then by
definition of a split set

S(u, f) = {x : ⌊uf⌋ ≤ ux ≤ ⌈uf⌉} = {x : −⌊uf⌋ ≥ −ux ≥ −⌈uf⌉}
= {x : ⌈−uf⌉ ≥ −ux ≥ ⌊−uf⌋} = S(−u, f).

By definition of centered split sets, we get S̄(u, f) = S(u, f) − f = S(−u, f) − f =
S̄(−u, f), concluding the proof.

As a consequence, we can get the following invariance of lifted lattice-free split
cuts.

Lemma 57. Consider f ∈ [0, 1]n \ Zn and α ∈ Zf . Define SP = S((α, 1), (f, 0))
and SM = S((−α, 1), (f, 0)). Then

(ψ̃+
SP , π̃

+
SP ) = (ψ̃+

SM , π̃
+
SM).

Proof. To prove that ψ̃+
SP = ψ̃+

SM we can use Corollary 7 with the self-adjoint linear
map (x1, x2) 7→ (x1,−x2):

ψ̃+
SP (r) = γS̄((α,1),(f,0))

(

r

0

)

Cor 7
= γS̄((α,−1),(f,0))

(

r

0

)

Lemma 56
= γS̄((−α,1),(f,0))

(

r

0

)

= ψ̃+
SM(r).

Similarly, to prove that π̃+
SP = π̃+

SM we have that for every ℓ : Q→ R

π+
SP,ℓ(q) = γS̄((α,1),(f,0))

(

q

ℓ(q)

)

Cor 7
= γS̄((α,−1),(f,0))

(

q

−ℓ(q)

)

Lemma 56
= γS̄((−α,1),(f,0))

(

q

−ℓ(q)

)

= π+
SM,−ℓ(q).

Then using the symmetry in the possible choices of ℓ,

π̃+
SP (q) = min

ℓ
π+
SP,ℓ(q) = min

ℓ
π+
SM,−ℓ(q) = π̃+

SM(q),

concluding the proof of the lemma.
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Proof of Theorem 16. First we prove that every α-cut is a split cut for C(f,R,Q).
Consider some ᾱ ∈ Z+

f and the cut (ψfᾱ, π
f
ᾱ). From Lemma 55 we have that (ψfᾱ, π

f
ᾱ)

equals (ψ̃S, π̃S) for S = S((ᾱ, 1), (f, 0)). The validity of the latter for C(f,R,Q) then
implies the validity of the former, and using the “if” part of Lemma 53 concludes
the proof of this part.

For the second part, consider a split cut (ψ, π) for C(f,R,Q). From Lemma 53
there exists α in Zf such that (ψ, π) is dominated by (ψ̃S((α,1),(f,0)), π̃S((α,1),(f,0))) with
respect to CLP (f,R,Q).

Set ᾱ as either α or −α, such that ᾱ ∈ Z+
f . Then employing Lemmas 57 and 55,

respectively, we get

(ψ̃S((α,1),(f,0)), π̃S((α,1),(f,0))) = (ψ̃S((ᾱ,1),(f,0)), π̃S((ᾱ,1),(f,0))) = (ψfᾱ, π
f
ᾱ).

Therefore, the α-cut (ψfᾱ, π
f
ᾱ) dominates the split cut (ψ, π) with respect to CLP (f,R,Q),

as desired.

8.4 Applications

8.4.1 Universality of Infinite Relaxation with Respect to
Split Closure

We now use Theorem 16 to prove Theorem 17. Before that we need the follow-
ing technical lemma that gives a more natural characterization of the domination
relationship between valid cuts.

Lemma 58. Consider a non-empty corner relaxation C = C(f,R,Q). Let (ψ, π) and
(ψ′, π′) be valid cuts for C. Then (ψ, π) dominates (ψ′, π′) with respect to CLP (f,R,Q)
iff (ψ, π) ≤ (ψ′, π′).

Proof. The “if” part is trivial, so we prove only the “only if” part. So assume (ψ, π)
dominates (ψ′, π′) with respect to CLP (f,R,Q) and, by contradiction, assume that
(ψ, π) 6≤ (ψ′, π′). We consider the case where ψ 6≤ ψ′, the other one is analogous. So
let r̄ ∈ R be such that ψ(r̄) > ψ′(r̄).

First consider the case where ψ′(r̄) ≥ 0, and hence ψ(r̄) > 0. Then we construct
the solution

(x̄, s̄, ȳ) =

(

f +
1

ψ(r̄)
r̄,

r̄

ψ(r̄)
, 0

)

,
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where r̄ : R → R is the function taking value r̄(r̄) = 1 and r̄(r) = 0 for all other
r. Notice that (x̄, s̄, ȳ) belongs to CLP (f,R,Q) ∩ (ψ, π) but not to CLP (f,R,Q) ∩
(ψ′, π′). This contradicts the assumption that (ψ, π) dominates (ψ′, π′) with respect
to CLP (f,R,Q), which concludes the proof in this case.

Now consider the case where ψ′(r̄) < 0. Let (x̄, s̄, ȳ) be a feasible solution for
C(f,R,Q); in particular we have (x̄, s̄, ȳ) ∈ CLP (f,R,Q) ∩ (ψ, π). Now let λ > 0 be
large enough and consider the solution

(x′, s′, y′) = (x̄+ λr̄, s̄+ λ r̄, ȳ).

Since valid functions are non-negative by assumption (and in particular ψ(r̄) ≥ 0),
notice that we still have (x′, s′, y′) ∈ CLP (f,R,Q)∩ (ψ, π). However, since ψ′(r̄) < 0,
setting λ large enough gives that (x′, s′, y′) does not belong to CLP (f,R,Q)∩ (ψ′, π′),
again reaching a contradiction. This concludes the proof of the lemma.

Proof of Theorem 17. The second statement of the theorem follows directly from
Theorem 16, so we prove the first statement. Let (ψ, π) be a split cut for C(f,R,Q) 6=
∅. The second part of Theorem 16 guarantees that there is ᾱ ∈ Z+

f such that

(ψfᾱ|R, πfᾱ|Q) dominates (ψ, π) with respect to C(f,R,Q). Since the latter cut is non-

negative, we can employ Lemma 58 above to get that (ψfᾱ|R, πfᾱ|Q) ≤ (ψ, π).

Then define the cut (ψ′, π′) for C(f,R,R) such that (ψ′|R, π′|Q) = (ψ, π) and

(ψ′|R\R, π′|R\Q) = (ψfᾱ|R\R, πfᾱ|R\Q). We then have that: (i) (ψ′, π′) is a split cut for

C(f,R,Q), because (ψ′, π′) ≥ (ψfᾱ, π
f
ᾱ) and (ψfᾱ, π

f
ᾱ) is a split cut for C(f,R,Q) (by

the first part of Theorem 16); (ii) (ψ, π) is a restriction of (ψ′, π′). This concludes
the proof of the theorem.

8.4.2 Pure Integer Program with Weak Split Closure

In this section we prove Theorem 18 by exhibiting a pure integer corner relaxation
with a weak split closure; throughout, we will only work with corner relaxations
C(f,R,Q) where both R and Q are finite sets of rational vectors.

Recall that the split closure of a corner relaxation C(f,R,Q), denoted by SC(f,R,Q),
is the set of all points in CLP (f,R,Q) that satisfy all split cuts for C(f,R,Q). Using
Theorem 16 we can describe this closure as

SC(f,R,Q) = CLP (f,R,Q) ∩





⋂

α∈Zf

(ψfα, π
f
α)



 . (8.12)
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Bad example. Now we present the family of integer corner relaxations with a
weak split closure. Consider the following family parametrized by a rational number
ǫ > 0:

x =
1

2
+

(

1

2
+
ǫ

2

)

y1 +

(

1

2
+ ǫ

)

y2 (Cǫ)

y1, y2 ≥ 0

x, y1, y2 ∈ Z.

To make things more clear, we define f = 1/2, q1 = (1
2
+ ǫ

2
) and q2 = (1

2
+ ǫ); so

formally Cǫ = C(f, ∅, {q1, q2}).
Let SCǫ denote the split closure of Cǫ; we claim that there is a gap of 1/12ǫ

between these two sets when minimizing y1 + y2, i.e., they satisfy Theorem 18. The
intuition behind this construction is the following. The equivalence in Theorem 16,
via equation (8.12) allow us to focus solely on understanding the effect of α-cuts
on the above program. Since the latter only has integrally constrained non-basic
variables, this means focusing on the functions πfα. Observing the behavior of the
function πfα, we see that it essentially has “high” value (close to 1) for inputs close
to 1/2; while this is not exactly true for large α ∈ Zf , our particular choice of q1

and q2 guarantees that one of πfα(q
1) or πfα(q

2) is reasonably large for every choice
of α ∈ Zf .

Lemma 59. For every ǫ > 0, we have that max
{

πfα(q
1), πfα(q

2)
}

≥ 1/3 for all
α ∈ Zf .

Proof. By the definition of Zf , notice that for every α ∈ Zf we have that the frac-
tional part [αf ] equals f . Thus, using the definition of πfα given by equations (8.2)
and (8.4), we get that πfα takes the form

πfα(q) =

{

2[αq] , if [αq] ≤ 1
2

2− 2[αq] , if [αq] > 1
2

(8.13)

The next claim gives some control on the behavior of the fractional part [αq] that
appears in the above expression.

Claim 10. For every α ∈ Zf either [αq1] or [αq2] lies in the interval [1/6, 5/6].

Proof. Take α ∈ Zf . Since [αf ] = [f ], we have that [αq1] = [1/2 + k/(2ǫ)] =
[1/2 + [k/(2ǫ)]]. Using the latter, it is easy to verify that [αq1] ∈ [1/6, 5/6] if and
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only if [kǫ/2] /∈ (1/3, 2/3). Similarly, we have that [αq2] ∈ [1/6, 5/6] if and only if
[kǫ] /∈ (1/3, 2/3).

To conclude the proof, it suffices to show that [αǫ/2] ∈ (1/3, 2/3) implies [αǫ] /∈
(1/3, 2/3). For that notice that when [αǫ/2] ∈ (1/3, 1/2], this implies [αǫ] ∈ (2/3, 1]
and hence [αǫ] /∈ (1/3, 2/3). On the other hand, when [αǫ/2] ∈ [1/2, 2/3) we have
[αǫ] ∈ [0, 1/3), again reaching the conclusion [αǫ] /∈ (1/3, 2/3). This concludes the
proof of the claim.

Then take α ∈ Zf and using the above claim let i ∈ {1, 2} be such that [αqi] ∈
[1/6, 5/6]. If [αqi] ∈ [1/6, 1/2], then employing equation (8.13) we get that πfα(q

i) =
2[αqi] ≥ 1/3; if [αqi] ∈ [1/2, 5/6], the same equation gives πfα(q

i) = 2 − 2[αqi] ≥
2− 10/6 = 1/3. This concludes the proof of the lemma.

Using the above lemma, we see that the point (x̄, ȳ1, ȳ2) given by ȳ1 = ȳ2 = 3 and
x̄ = f + q1ȳ1+ q

2ȳ2 belongs to the linear relaxation of (Cǫ) and satisfies all α-cuts for
it; therefore, this point belongs to the split closure of SCǫ. This directly gives the
following.

Lemma 60. The optimal value of minimizing y1 + y2 over the split closure SCǫ is
at most 6.

Now in order to show the weakness of the split cuts, we show that the optimal
value of minimizing y1 + y2 over the whole of Cǫ is much larger.

Lemma 61. The optimal value of minimizing y1 + y2 over Cǫ is at least 1/(2ǫ).

Proof. We can rewrite the equation in (Cǫ) as

x =
1

2
(1 + y1 + y2) + ǫ

(y1
2

+ y2

)

.

Since for every solution in Cǫ we have y1, y2 ∈ Z+, this implies that 1
2
(1 + y1 + y2) ∈

Z+/2; since in such solution we also have x ∈ Z, this implies that ǫ(y1/2+y2) ∈ Z+/2.
Moreover, we need to have one of y1 or y2 strictly positive (and the other non-
negative), so the previous observation actually implies that ǫ(y1/2 + y2) ≥ 1/2 is
satisfied by all feasible solutions. Such solutions then satisfy the weaker inequality
y1 + y2 ≥ 1/(2ǫ); this concludes the proof of the lemma.

Now we are ready to prove Theorem 18 and Corollary 6.
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Proof of Theorem 18. Follows directly from Lemmas 60 and 61.

Proof of Corollary 6. Recall that Cǫ and SCǫ are respectively the projections of
conv(Cǫ) and SCǫ onto the y-space. It is clear that we have

min{y1 + y2 : y ∈ Cǫ}
min{y1 + y2 : y ∈ SCǫ}

≥ 1

12ǫ
(8.14)

just as in Theorem 18.

A closed, convex set X ⊆ Rn
+ is said to be of blocking type if for every x ∈ X,

y ≥ x implies y ∈ X. It is known that Cǫ is of blocking type [44]; moreover, using the
description of SCǫ given in (8.12), and the fact that the (ψfα, π

f
α)’s are non-negative,

we also have that SCǫ is of blocking type. Finally, since SC is a relaxation of conv(C),
we have C ⊆ SC.

Now Basu et al. [35] showed that, for two sets A ⊆ B ⊆ Rn of blocking type, the
blow up measure is equivalent to the worst gap over all non-negative directions; in
our case translates to the following:

inf{α : αCǫ ⊇ SCǫ} = sup
c∈R2

+

{

min{cy : y ∈ Cǫ}
min{cy : y ∈ SCǫ}

}

.

The proof of Corollary 6 then follows from (8.14).
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CHAPTER 9

Final Remarks

In this thesis, we undertook a principled study of the strength of general-purpose
cutting planes, giving a better understanding of the relationship between the different
families of cuts available and analyzing the properties and limitations of our current
methods for deriving cuts. However, there are still many open avenues in these
directions, as pointed out at the end of previous chapters. Here, we briefly mention
two interesting possibilities for further expanding our knowledge on cutting planes.

9.1 Constrained Corner/Infinite Relaxation

Although the corner and related relaxations are still arguably the the most important
tools to derive and analyze cuts, there has been renewed interest in considering
stronger relaxations that bring back some of the non-negativity constraints lost in
their derivation (see discussion in Section 3.2.2). As examples, we have the works
[66, 31, 82], which focus on the continuous relaxation. However, it seems that we
still do not have a satisfactory understanding of how to make use of both integrality
of non-basic and bounds on basic variables, namely in a model such as B(f) presented
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in Chapter 7 and repeated here for convenience:

x = f +
∑

r∈R

rsr +
∑

r∈R

ryr

x ∈ {0, 1} (9.1)

sr ≥ 0

yr ∈ Z+

(s, y) has finite support.

One proposal in this direction, is to start by understanding how the split cuts for
(9.1) look like. The results from Chapter 7 give a starting point for this program.
Even though the computational results from the cuts presented there did not show a
significant improvement over GMI cuts, the hope is that we can still obtain stronger
splits by directly making use of the bounds on the basic variables.

Actually, it might be convenient to consider a finite-dimensional version of the
model (for simplicity, we include here only the integer variables):

x = f +
n
∑

j=1

rjyj

x ∈ {0, 1} (9.2)

y ∈ Zn+.

We present two more concrete suggestions for approaching this problem. One is to
analyze the split cuts coming from all of the corner relaxations of (9.2), expressing
these cuts back in the y-space. For each of the corner relaxations, we can then try
to use the insights on split cuts obtained in Chapter 8. Another possibility is to
use directly the geometric lifting idea considered in Chapters 7 and 8, considering
a system with extra rows (and extra basic variables) which capture the integrality
of the y variables (see Z(ℓ) in Chapter 7). Notice that, in particular, we can add
n new rows and obtain an equivalent system (after it is projected onto the original



9.2. Geometric Perspective on Cuts for Non-linear MIPs 159

variables) which only has integrality on the basic variables:

x = f +
n
∑

j=1

rjyj

zj = yj j = 1, 2, . . . , n

x ∈ {0, 1}
y ∈ Rn

+

z ∈ Zn.

In this case, we are essentially back in the setting of the continuous relaxation, where
we can look at ({0, 1}×Zn)-free sets in the (x, z)-space. The hope here is that we do
not actually need to add all n extra rows in order to obtain new information about
split cuts, as it happened in Chapter 7.

Question 1. Understand split cuts for (9.1) or (9.2). For the former, in particular,
obtain a characterization of the valid functions corresponding to split cuts.

Another even more concrete question comes from the following observation: as
we made explicit in Chapter 7, the cuts obtained for (9.1) are valid for a relaxation
where x is only upper bounded by 1, and hence do not use the information that x is
also non-negative. The question is if we can use both upper and lower bounds on x
simultaneously.

Question 2. Understand if it is possible to obtain a valid function (ψ, π) for (9.1)
which is not valid for the set 7.1 presented in Chapter 7.

9.2 Geometric Perspective on Cuts for Non-linear

MIPs

There has been renewed interest in understanding mixed-integer programs that con-
tain non-linear constraints. For instance, Atamtürk and Narayanan [6] consider
second-order conic mixed-integer programs of the form

min cx+ ry

‖Aix+Giy − bi‖ ≤ dix+ f iy − hi, i = 1, 2, . . . , k

x ∈ Zn, y ∈ Rp,
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where Ai, Gi are rational matrices and b, c, r, di, f i are rational vectors. In order to
generate valid cuts for such problems, the authors adopt the simple set approach
from Section 2.4.2, studying the facial structure of sets of the form

{x ∈ Zn+, y ∈ R
p
+, t ∈ R : t ≥ |ax+ gy − b|}.

The computational experiments reported show that these cuts close a significant part
of the integrality gap.

This approach was also extended by Masihabadi, Sanjeevi and Kianfar [105]. We
remark that the possibility of generating cuts for non-linear programs using simple
sets had already been observed in [92], although there the authors still consider a
linear simple set and incorporate non-linearity in the embedding step.

Given that all these results are obtained from the simple set perspective on cut
generation, it is natural to ask if we can interpret these cuts in a more geometric
way, for example via the disjunctive or intersection cuts perspective. Not only this
would give a better understanding of cuts for non-linear MIPs, but also could help
leveraging the known results from linear MIPs to the non-linear setting.

Question 3. Can we obtain the conic MIR inequalities of [9] using a disjunctive or
intersection cuts perspective?
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[40] V. Borozan and G. Cornuéjols. Minimal valid inequalities for integer con-
straints. Mathematics of Operations Research, 34(3):538–546, 2009.
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[92] O. Günlük and Y. Pochet. Mixing mixed-integer inequalities. Mathematical
Programming, 90(3):429–457, 2001.

[93] Q. He, S. Ahmed, and G. L. Nemhauser. A probabilistic comparison of split
and type 1 triangle cuts for two-row mixed-integer programs. SIAM Journal
on Optimization, 21(3):617–632, 2011.

[94] E. Hille and R. Phillips. Functional Analysis and Semi-Groups. American
Mathematical Society, 1957.

[95] C. A. J. Hurkens. Blowing up convex sets in the plane. Linear Algebra and its
Applications, 134:121–128, 1990.
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