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Abstract

Costs of adjustment delay and complicate behavioral response to tax change.

To accommodate such response, we integrate a dynamic discrete choice frame-

work into optimal tax theory. We identify long run outcomes with stationary

distributions of workers over income-generating states and formulate optimal

tax equations in terms of the sensitivity of such distributions to consumption

variation. We obtain formulas for these sensitivities that facilitate quantitative

evaluation of long run substitution patterns. Novel “inverted” optimal tax equa-

tions are derived that establish marginal costs of inducing long run population

movements to states as sufficient statistics for optimal taxes. The optimal tax

implications of a dynamic quantitative model of occupational choice are ana-

lyzed. JEL Codes: H21, H24, H31. Key Words: Optimal Taxation, Occupational

Choice

1 Introduction

While some responses to tax reform are fast, others take time, because they require

costly adjustment of an occupation, location, skill, or other income-generating work

state. To accommodate tax-induced substitution that is delayed and complicated

by costs of adjustment, we integrate a dynamic discrete choice model into optimal

tax analysis. In this setting, we analyze optimal long run tax designs that reach

beneath incomes and tax underlying work states.

*We thank Erhan Artuç for sharing his code and John Sturm for thoughtful comments. We thank
audiences at the Sargent Alumni Reading Group, SED 2022, PET 2022, Midwest Macro 2022, 5th
PHBS Workshop in Macroeconomics, NTA Meetings 2023, Econometric Society Winter Meetings 2023,
the Universities of Buffalo, Miami, Rochester, and Toronto and the FRB of Atlanta.
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Dynamic discrete choice models relate flows of workers across landscapes of

income-generating states and, hence, stationary distributions of workers over these

states (“work state distributions”) to consumption allocations. We identify sensitivi-

ties to consumption of such distributions as central components of long run optimal

tax analyses. We then make three contributions. First, we provide formulas for

such sensitivities that elucidate the structure of long run substitution and facilitate

the quantitative evaluation of long run tax designs. Second, we “invert” a classical

discrete choice optimal tax formula to obtain a novel expression that identifies the

marginal cost of inducing a long run population shift towards a state as a sufficient

condition for that state’s optimal tax. We leverage the structure of the stationary

distribution sensitivity to obtain an interpretable formula for this marginal cost and,

hence, optimal taxes. Third, we deliver an application to optimal US occupational

taxation. This exercise recovers distributional sensitivities and, hence, tax distortion

far larger in the long than the short run. Nonetheless, optimal long run occupational

taxes are close to those implied by the current US tax system under a benchmark

welfare criterion. Low income occupations with high turnover, however, receive more

favorable tax treatments.

We begin by laying out a dynamic discrete choice framework for optimal tax work

and, in this context, deriving a Diamond-Mirrlees-Saez optimal tax formula for the

long run. This formula has a familiar structure: It equates marginal redistributive

benefits to marginal excess burdens of taxation. The key departure is that the

latter now depend on long run behavioral responses to tax reform. Quantifying

such responses has long been recognized as a key challenge for tax design.1 In

our framework, it requires evaluation of sensitivities of the stationary work state

distribution to consumption variation.

Towards quantification of these sensitivities, we first derive a propagation equa-

tion that treats short-run distributional responses to consumption variation as

multi-dimensional impulses and converts them into stationary distribution re-

sponses. If the relevant short run responses can be measured in the data, then the

equation permits evaluation of stationary distribution sensitivities even if these are

not explicitly observed. Absent direct evidence on equilibrium short-run response

across (all) behavioral margins relevant to a given tax design problem, in particular,

if the goal is to evaluate responses at a counterfactual equilibrium, a structural

model of short-run response is needed. For a class of such models, we relate an

equilibrium’s short run sensitivities to its Markov transition, stationary distribution

1For example, Saez et al. (2012) note that: “The long-term response [of earnings to tax change] is
of most interest for policymaking, although also .... more difficult to identify empirically.”
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and a (small) set of preference parameters. Counterfactual equilibrium transitions

and distributions can be generated from those observed and the same set of pref-

erence parameters via the dynamic hat algebra used in quantitative trade models

(Caliendo et al. (2019)). Thus, given these parameters, an observed equilibrium and

our formulas, counterfactual stationary distribution sensitivities and, hence, long

run marginal excess burdens are available for any alternate consumption allocation,

including the optimal one.2 We refer to the required preference parameters as

structurally sufficient for dynamic optimal tax analysis.

Diamond-Mirrlees-Saez optimal tax expressions are intuitive, interpretable and

informative about tradeoffs at the optimum. However, they provide only implicit

descriptions of taxes. This renders them less informative about which taxes are

large and which are small. To address this we derive a new optimal tax equation

that “inverts” the marginal excess burden component of the classic formulas. The

resulting equation identifies the marginal cost of inducing a long run proportional

population shift towards a state as a sufficient statistic for that state’s optimal tax

(up to a government spending shifter). Such marginal costs are given by covariances

between the short run flow payoff adjustments needed to induce long run population

shifts and the societal costs of delivering those payoff adjustments.

We say that an economy exhibits proportional attraction and dispersion if when a

payoff increment at a state occurs it attracts workers in proportion to population

from other states and if when workers disperse from a state, because of changed

circumstances or in pursuit of new opportunities, they do so in proportion to

population at destination states. Such behavior is a feature of benchmark models

like the repeated logit or variants of the repeated logit in which stickiness of choice

is introduced via Calvo-like random re-optimization opportunities. Proportional

attraction and dispersion implies that the marginal cost of inducing a long run

proportional population shift towards a state is simply the adjusted reciprocal of

marginal utility (of consumption) at the target state relative to mean. If, in addition,

the social criterion is utilitarian and utility from consumption is log, such marginal

costs are affine in consumption. These in turn imply an optimal affine income tax.

More generally, payoff reallocations must be tuned to induce a proportional long

run population reallocation and suppress non-proportionalities in attraction and

dispersion. This, in turn, has implications for the marginal cost of inducing such a

reallocation and for optimal taxes. In particular, to induce a proportional long run

population reallocation towards a target state, payoffs must be relatively reduced in

2Well known procedures for empirically recovering these structurally sufficient parameters exist
in the applied dynamic discrete choice literature.
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downstream states (i.e. in states that disproportionately receive dispersing workers

from the targeted state) and relatively increased in upstream ones (from which the

targeted state disproportionately attracts). If a state is a stepping stone, channeling

workers from low to high income opportunities, this tuning implies a shift of payoff

from low to high marginal utility states, which releases resources. The marginal cost

of a long run proportional population shift to a stepping stone is correspondingly

reduced and it receives a more favorable optimal tax treatment. The inverted optimal

tax formula also indicates what can go wrong if a policymaker relies on short

run sensitivities to evaluate tax designs. When states are persistent, short run

sensitivities imply larger marginal costs of inducing population shifts than long run

suggesting much greater scope for redistribution and greater optimal variation in

taxes across states.

In the context of a structural model of occupational choice, we deploy the ma-

chinery described above to explore the optimal design of policies that reach below

incomes and tax occupations.3 Our benchmark model implies a small number

of preference parameters that are structurally sufficient for tax evaluation. We

estimate the key marginal utility parameter using U.S. occupational transition data

and combine this and other calibrated parameters with our formulas to calculate

long and short run distributional sensitivities at the prevailing empirical allocation.

We then use the estimated parameters and our formulas to calculate and interpret

optimal tax functions. Three main results emerge.

1. Long run distributional sensitivities at the prevailing allocation are an order

of magnitude greater than short run. This implies much greater long run

behavioral distortion from taxation than would be suggested by short-run

sensitivities. We estimate that in the long run an extra dollar extracted from

high earning lawyers yields $0.52 of revenue after taking into account long

run substitution of the legal profession for lower tax alternatives. Conversely,

an extra dollar taken from low earning maintenance workers generates $1.71

of revenue as workers migrate to higher earning and higher tax occupations.

These values compare with short-run revenue (annual) impacts of $0.95 and

$1.06 respectively.

2. Under a welfare criterion that identifies the marginal social welfare weight with

reciprocals of consumption as in Saez (2002), the optimal tax structure is not

too distant from actual. Both are approximately affine in occupational income,

3There is a history of occupation taxes in the U.S. at the state and local level, see Appleton (2012).
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with similarly sized deductions and slopes. Thus, apparently large long run

occupational choice distortions rationalize an approximation to current policy.

3. Low earning/low retention occupations receive more generous optimal tax

treatments. Food services is such an occupation. This treatment is rational-

ized by dampened long run distributional sensitivities and marginal excess

burdens. Viewed through the lens of our inverted optimal tax formula, long

run population reallocation costs for such occupations are relatively reduced.

We evaluate the robustness of our results to modifications of our benchmark

quantitative model. The first permits workers to make an initial education choice.

Thereafter, workers are segmented into high (college) and low (high school) edu-

cational groups. The second (elaborated in the appendix) allows for unobserved

heterogeneity and partitions workers into unobserved “mobile” and “immobile” types.

In each case, we re-estimate the model, recover type-specific distributional sensitivi-

ties and evaluate optimal taxes. Other robustness exercises decompose management

into finer occupational categories, vary structurally sufficient model parameters

around estimated values, and vary long run elasticities of substitution between

occupations. Each exercise generates additional insight, but preserves the main

results listed above.4

The paper proceeds as follows. Section 2 lays out a benchmark dynamic discrete

choice environment and policy problem. Section 3 provides a formula for the sta-

tionary distribution sensitivity that factors it into short run substitution and long

run propagation components. We describe empirical strategies for quantitatively

operationalizing the formula. Section 4 introduces the inverse optimal tax equation

and relates tax design to the marginal cost of inducing population movement. Sec-

tion 5 gives extensions. Section 6 develops our application to a salient occupational

choice model. Section 7 concludes.

Literature A large literature considers optimal taxation in settings in which house-

hold choices respond smoothly and immediately to tax variation. Contributions

of Diamond and Mirrlees (1971), Mirrlees (1971), and Saez (2001) are seminal.

Rothschild and Scheuer (2013) initiate a line of research in which taxes are de-

signed for workers making discrete occupational and continuous effort choices. See

4For example, when augmenting with education, we find that the tax schedule retains its affine
shape, but that high education/low income occupation combinations receive relatively generous tax
treatments. These combinations have low long run own population elasticities underpinned by low
retention of highly educated workers. This mitigates the tax distortion incurred in assisting these
populations.
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also Ales et al. (2015). In these papers workers have no inherent preferences over

occupations: They select the occupation that maximizes their income and make

small income adjustments in response to small tax changes. Work on static discrete

choice optimal tax design originates with Saez (2002, 2004). Recent developments

include Ales and Sleet (2022), Fajgelbaum and Gaubert (2020), Laroque and Pavoni

(2017) and Lockwood et al. (2017). Our paper builds on these by considering long

run optimal tax design in explicitly dynamic settings. Like the static discrete choice

literature, the key behavioral input is a distributional sensitivity to consumption

variation. Now, however, it is a long run stationary distribution sensitivity.

Saez et al. (2012) observe that slow behavioral adjustment on career and human

capital margins may elevate long term earnings responses to tax variation. They

emphasize, however, the difficulties in empirically identifying such responses. We

show how to construct long term behavioral responses from short in stationary

settings and how to leverage dynamic discrete choice models to quantify long

term responses at counterfactual policies. Keane (2011) emphasizes costly human

capital accumulation and the elevated long-run responses to tax variation that this

implies. Guvenen et al. (2014) evaluate implications of such long run responses

for equilibrium earnings distributions. Several papers in the macro-public finance

tradition consider implications of human capital formation for tax design. Examples

include Heathcote et al. (2017), Heathcote et al. (2020), and Krueger and Ludwig

(2016). These papers focus on continuous, beginning of career human capital

choices that have long-lasting effects on worker productivity. In each the human

capital margin dampens income tax progressivity prescriptions. Closer to us in

formulation is Coen-Pirani (2021). He provides a tractable model that integrates

discrete location choice into a worker’s productivity process. He characterizes the

complete transition of an optimal parametric income tax function.

In stressing granular tax designs that reach beneath incomes, we depart from

work in public finance that collapses adjustment along all behavioral margins into

a single reduced form elasticity of taxable income. This work focuses on income

tax design and evaluation for which the elasticity of taxable income, appropriately

measured, serves as a sufficient statistic, see Gruber and Saez (2002) or Saez et al.

(2012). Our approach requires selecting a subset of margins on which to focus

and developing a deeper understanding of short and long-run responses on those

margins. It permits analysis of more granular tax designs. Inevitably, however, it

omits some adjustment margins relevant for full income tax analysis. We regard it

as a complement to papers that directly measure elasticities of taxable income.

Our dynamic discrete choice model is closest to that introduced into trade litera-
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ture by Artuç et al. (2010). Variations on this have been used to examine the impact

of trade and other shocks on worker choice of sector, industry or location. Examples

include Artuç et al. (2010), Artuç and McLaren (2015), Caliendo et al. (2019) and

Kleinman et al. (2023). We utilize (a variation on) the estimation approach of Artuç

et al. (2010) to obtain values for structural parameters and the dynamic hat algebra

methodology of Caliendo et al. (2019) to construct counterfactual equilibria. Klein-

man et al. (2023) evaluate first order responses of dynamic discrete environments to

disturbances. They focus on transition paths to productivity shocks. In contrast,

we analyze long run responses to tax variation and use the resulting distributional

sensitivities as inputs into optimal tax equations. Our distributional sensitivity

formulas are redolent of sensitivity formulas obtained in the macroeconomic produc-

tion network literature, e.g., Baqaee and Farhi (2019). These describe the response

of sectoral Domar weights (sales shares) to microeconomic TFP or markup shocks.

Domar weight vectors and input-output matrices in network models are analogous

to stationary population distributions and Markov transitions in our set up.

2 Benchmark Environment and Policy Problem

This section lays out a simple baseline environment for steady state dynamic discrete

choice tax analysis.

Notational conventions We denote vectors and matrices with bold face letters and

write f(x) to denote the element-wise application of a function f to a vector or matrix.

A superscript ⊤ denotes a transpose; I is an identity matrix; Dx a diagonal matrix

with vector x on its leading diagonal; Πx a matrix with each column equal to (the

same) vector x. If P is the stationary distribution of a Markov chain, we call ΠP a

stationary distribution matrix. If Q is the transition of a Markov chain, then Q(j, i)

is the probability of moving to j from i. Given a matrix X each column of which

is a vector of outcomes and a Markov transition Q, we denote by EQ[X] = Q⊤X

and ÊQ[X] = (I − Q⊤)X, respectively, the matrix of conditional expectations and

deviations from conditional expectations under Q.

Work states and demographics Let I = {1, . . . , I} be a fixed discrete work-state

space. Depending on the application, these states may represent work intensities,

locations, occupations, skills or combinations of the preceding. Our later quan-

titative analysis will focus on occupation choices. A perpetual youth structure is
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assumed. In each period a mass δ of new born entrants augments a mass 1− δ of

survivors from the preceding period.

Labor supply of survivors Surviving workers select a work state at the beginning

of each period to maximize their lifetime payoff inclusive of moving costs and

payoff shocks. Let c ∈ RI
+ be a time invariant stationary allocation describing

consumption available to workers in each state. Lifetime payoffs are assembled

from u : R+ → R, an increasing, strictly concave and differentiable function mapping

current consumption to current utility, β, a discount factor inclusive of survival

probability, κ : I×I → R, an adjustment cost function, and {εt}∞t=0, εt ∈ RI, a process

for payoff shocks. Such shocks are drawn by workers in successive periods of their

lives independently of past draws and the draws of others. Expected maximal shock

draws are assumed finite: E[maxI ε(j)] ∈ R. Given a consumption allocation c, initial

state i0 and process for states adapted to shock draws, i∞ = {it}∞t=1, a surviving

worker obtains lifetime payoff (exclusive of initial shock and adjustment cost):

U(i0, i
∞; c) = u(c(i0)) + E

[
∞∑
t=1

βt{u(c(it))− κ(it, it−1) + εt(it)}

]
. (1)

Let V(c)(i) be the optimal payoff of a surviving worker who is initially at i and selects

states in subsequent periods to solve: V(c)(i) := supi∞ U(i, i∞; c). It is readily shown

that, given c, V(c) is the unique bounded solution to the recursion:

V(c) = u(c) + βK[V(c)], (2)

where K : RI → RI is a payoff aggregator satisfying:

∀i ∈ I, K[v](i) := E

[
max
j∈I

{v(j)− κ(j, i) + ε(j)}
]
. (3)

The map K : RI → RI is monotone, convex, commutes with the addition of constant

vectors5 and, under a regularity condition on the distribution of shocks, is smooth.

Optimizing transition behavior of workers is described by a Markov matrix Q(V(c)),

where the map Q : RI → M, with M the space of Markov matrices, is related to K
via:6

Q(v) =

(
∂K[v]

∂v

)⊤

. (4)

5That is K[v + r1] = K[v] + r1, where r is a scalar and 1 ∈ RI is a unit vector.
6This is the content of the Williams-Daley-Zachary theorem, see, e.g., Fosgerau et al. (2013).
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It follows from (4) and the properties of K that (i) Q(v)(j, i) is non-decreasing in

v(j) and non-increasing in v(k), k ̸= j, and that (ii) Q(v) is constant with respect

to uniform increases in payoff, i.e Q(v) = Q(v + r1) for any scalar r and unit

vector 1. Further, twice differentiability of K implies that Q is differentiable with
∂(Q(v))
∂v

= ∂2(K[v]⊤)
∂v2 .

Example 1. In a dynamic logit model with ε a vector of component-wise independent

Gumbel shocks, the payoff aggregator (up to a constant) and Markov maps are:

K[v](i) = log
∑
j∈I

ω(j, i) expv(j) and Q(v)(j, i) =
ω(j, i) expv(j)∑

j′∈I ω(j
′, i) expv(j′)

, (5)

with ω(j, i) := exp−κ(j,i).

Labor supply of entrants Let P0 denote a distribution of entrants over work states.

This distribution may be treated parametrically or endogenized by introducing an

additional entry state 0, extending κ onto I × I0, I0 = I ∪ {0}, and treating entrants

as selecting work states to solve:

K0[V(c)] := E

[
max
j∈I

{V(c)(j)− κ(j, 0) + ε(j)}
]
. (6)

Analogous to the case of survivors, (B.17) implies P0(c) = P0(V(c)), where P0(v) :=
∂K0[v]
∂v

⊤
. In particular, if a logit structure is assumed, then:

P0(v)(j) =
ω(j, 0) expv(j)∑

j′∈I ω(j
′, 0) expv(j′)

, with ω(j, 0) := exp−κ(j,0). (7)

Stationary Distribution/Value function pairing Together a tuple (Q,P0, δ,V, c) defines

a Markov transition Q(c) that incorporates demographics and behavior:

Q(c) = (1− δ)Q(V(c)) + δΠP0(V(c)). (8)

We assume that the induced Q(c) is ergodic and has unique stationary distribution

P(c). The stationary labor supply block of the model is then summarized by:

V(c) = u(c) + βK[V(c)] and P(c) = Q(c)P(c). (9)

In the sequel to streamline the presentation, arguments c and v of functions are

omitted when the dependence is understood.
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Long run and short run Our model implies immediate reactions of lifetime payoffs
∂V
∂c

and transition probabilities ∂Q
∂c

to permanent consumption perturbations. The

stationary distribution P responds more slowly as the modified flows ∂Q
∂c

propagate

and population stocks adjust. We denote the one period or short run sensitivity of

P(j) to a permanent consumption perturbation c(i) by:

Φ(j, i) :=
∑
k∈I

∂Q(j, k)

∂c(i)
P(k) (10)

and collect these sensitivities into a matrix Φ.7 The Jacobian ∂P
∂c

gives the long run
sensitivity of P to a permanent consumption perturbation. We denote corresponding

short and long run semi-elasticities by, respectively, Ψ = DP
−1Φ and 1

P
∂P
∂c

.

Remark 1. The interpretation of Φ as a short run distributional sensitivity is subject

to three caveats. First, “short run” is defined in the theoretical model as response

over a single period. In quantitative work, a stance must be taken on the length

of a period. In such work, we identify a model period with a year. Second, Φ

gives the short run (single model period) response to a permanent consumption

perturbation. If a policymaker engineers a long run consumption perturbation

slowly via a sequence of tax and equilibrium wage adjustments distributed over

periods, then the initial population response to this reform will deviate from Φ.

Third, Φ describes a short run (single model period) distributional response on the

underlying state space. Suppose that a policymaker only partly observes a worker’s

state. Let Q denote the matrix of transition probabilities across subsets of the state

space that the policymaker can distinguish. Although Q responds immediately to a

permanent consumption perturbation and the interpretation of Φ remains intact, the

aggregated transition Q responds more slowly as distributions on distinguishable

subsets evolve. We return to this observation and its implications in Section 5.

Interpretations The specification given in (9) captures the essential elements that

differentiate long from short run analyses: frictions that delay migration to higher

average payoff states and repeated shocks that create churn in the population.

Remark 2 (Interpreting Costs of Adjustment). Equation (9) omits an explicit amenity

value for each state. It is readily shown, however, that amenity values can be

absorbed into costs of adjustment to deliver the framework that we use. The

costs κ may encode ladders and stepping stones with, for example, κ(in, i1) >

7In matrix form, Φ =
[
P⊤ ⊗ I

] ∂(vec Q)
∂c , with ⊗ the Kronecker product, vec Q matrix Q reorganized

as a vector by stacking its columns and ∂(vec Q)
∂c the Jacobian of vec Q with respect to c.
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∑n−1
m=1 κ(im+1, im), implying that it is less costly for a worker to move to in from i1 in a

series of steps. Thus, human capital ladders can be incorporated into the model.

Remark 3 (Interpreting Payoff Shocks). Our model attributes pairings (K,Q) to dis-

crete choice in the face of payoff shocks. Such shocks may be interpreted as

disturbances to preferences, to adjustment costs or, under appropriate assumptions

on u and taxes, to wages. Alternative rationales are available. A dynamic logit

pairing of (K,Q) may, for example, be motivated by appeals to costly search (Wu

(2020)) or bounded rationality (Mattsson and Weibull (2002)). A more agnostic

interpretation treats Q (and P0) as modeling devices designed to generate stochastic

choice behavior and behavioral elasticities that better match the data.

Remark 4 (Random Re-optimization). Random re-optimization opportunities may be

incorporated into the model.8 If ρ is the re-optimization probability, then (2) holds,

with K[V(c)] redefined as:

K[V(c)](i) = (1− ρ)V(c)(i) + ρE

[
max
j∈I

{V(c)(j)− κ(j, i) + ε(j)}
]

(11)

and (8) becomes:

Q(c)(j, i) = (1− δ){(1− ρ)I(j, i) + ρQ(V(c))(j, i))}+ δP0(V(c))(j). (12)

Remark 5 (Exogenous Transitions; Persistent Types). A worker’s state could encompass

its productivity, skill or health. It is then natural to think of some transitions or

retentions as exogenous rather than chosen.9 To explicitly incorporate these, split

the state space as I = X × A, with X a set of chosen and A a set of exogenously

determined state components. Assume that the exogenous components or “types”

are determined before choice within a period and that they evolve according to a

Markov chain with matrix ρ and entry distribution ρ0. The worker’s problem is as in

(2), but with K now modified as:

K[V(c)](x, α) =
∑
α′∈A

E

[
max
x′∈X

{V(c)(x′, α′)− κ(x′, α′, x) + ε(x′)}
]
ρ(α′|α), (13)

where | notation is used to indicate conditioning. The Markov matrix over states

8These may be incorporated into our framework by permitting εt(j) = −∞ shock draws, allowing
the distribution for {εt} to depend on a worker’s current state and with some probability to assign
−∞ payoff to all but the current state. In this remark, we describe a more explicit treatment.

9As in the random re-optimization case, exogenous transitions can be incorporated via penalizing
εt shock draws. Again we describe a more explicit treatment.
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becomes:

Q(c)(x′, α′|x, α) = (1− δ)Q(V(c))(x′|α′, x)ρ(α′, α) + δP0(V(c))(x′, α′)ρ0(α
′), (14)

with ∂K[v](x,α)
∂v(x′,α′)

= Q(v)(x′|α′, x)ρ(α′|α) and Q(v)(x′|α′, x) the probability that a worker

selects x′ given chosen state x and updated type α′.

Special cases Logit models are widely used in applied work. We use three logit

special cases of our framework for illustrative purposes. Each case supposes that

payoff shocks are Gumbel and behavior (conditionally) logit.

1. (Repeated logit). This case imposes κ(j, i) = κ(j). Thus, adjustment costs

are independent of a worker’s current state, choice is repeated rather than

persistent and long and short run substitution responses coincide. In addition,

the logit assumption induces proportional attraction and dispersion behavior:

when a payoff increment at a state occurs it attracts workers in proportion to

population from other states, 1
P(j)

∂P(j)
∂v(i)

= −P(i), for j ̸= i , and when workers

disperse from a state in response to new shock draws they do so in proportion

to population at destination states.

2. (Calvo-logit). This case imposes exogenous retention except at randomly oc-

curring re-optimization dates. At these, κ(j, i) = κ(j) and behavior is logit.

The associated transition Q = (1− ψ)I + ψΠP is obtained from (12) by setting

ψ = (1− δ)ρ+ δ. The latter is interpreted as a re-optimization probability that

combines the probabilities of replacement by an optimizing entrant and re-

optimization by a survivor. As discussed below, choice is sticky and short

run substitution suppressed relative to long, |Φ| ≤ |∂P
∂c
|, but the proportional

attraction and dispersion property is preserved.

3. (Dynamic logit). Our third case closes down retirement and entry, δ = 0, but

allows costs of adjustment to depend on a worker’s current state. In this case

Q = Q(V), with Q given as in (5). Churn of workers over states is generated

by payoff shocks. It divorces short from long run substitution patterns and

permits state-contingent heterogeneity in both.

Production, resource-feasibility and equilibrium A function F : RI
+ → R describes the

economy’s technology for converting allocations of workers over states p ∈ RI
+ into

final goods. The function is assumed to be increasing, to have constant returns to

scale, to have a continuous derivative ∂F
∂p

=
(

∂F
∂p(1)

, . . . , ∂F
∂p(I)

)
and to satisfy an Inada
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condition at zero.10 Let G ∈ R+ denote an exogenous level of government spending.

A consumption allocation c is resource-feasible at steady state if:

F (P(c))− c ·P(c)−G ≥ 0. (15)

A resource-feasible allocation c can be implemented as part of a stationary competi-
tive equilibrium (SCE) in which profit maximizing firms pay workers their marginal

products, w = ∂F (P(c))
∂p

⊤
, and taxes are equated to the wedges between private

consumptions and marginal products, T = w − c. Conversely, an SCE c is resource-

feasible. In short, c is an SCE allocation if and only if it satisfies (15).

Policy choice We initially assume that the policymaker can observe fully and

condition taxes upon a worker’s current state. This implies that it can implement any

resource-feasible (and, hence, SCE) consumption allocation via appropriate choice

of tax policy. We thus adopt the standard approach of formulating the policymaker’s

problem as a choice of resource-feasible consumption allocation c and then back

out supporting taxes T = ∂F (P(c))
∂p

⊤
− c. In the context of our benchmark model,

this implies that only transitory payoff shocks ε and re-optimization opportunities

are privately observed by the worker. The extension of our results to settings with

privately observed type-states that persist over time is described in Section 5.11

Let M : RI
+ → R be a smooth, increasing social objective defined over stationary

consumption allocations. For example, the social objective may be a Pareto-weighted

sum of lifetime utilities: M(c) = λ⊤V(c). The policymaker’s problem is then:

max
c

{M(c) | F (P(c))− c ·P(c)−G ≥ 0}. (16)

This is a familiar discrete choice tax design problem with the key caveat that the

distribution of workers over states is the stationary distribution satisfying (9).12

10In principle F can be elaborated to describe the production of intermediate goods and the
transportation of goods across space. Such rich production structures are important components of
trade and spatial models where labor demand implications of productivity or foreign import supply
shocks are focuses of analysis. Our analysis concerns implications of tax design for labor supply
and so we emphasize the (reduced) map from long run worker allocations to final goods.

11In our benchmark model, the policy space is, thus restricted, in the sense that tax functions
are time invariant, consistent with our focus on long run designs, and independent of histories of
individual states. On the other hand, it is richer than is assumed in applied models that restrict
attention to taxes as parametric functions of earnings.

12See the seminal contributions of Saez (2002, 2004) and Ales and Sleet (2022), Laroque and
Pavoni (2017), and Fajgelbaum and Gaubert (2020) for recent applications. All are static.
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Optimal tax equations The first order condition from (16) supplies a discrete choice

Diamond-Mirrlees-Saez optimal tax equation:

DP
−1 1

Υ

∂M

∂c

⊤

︸ ︷︷ ︸
MSW

= 1−D−1
P

∂P

∂c

⊤
T︸ ︷︷ ︸

1+MEB

, (17)

where, on the left side, Υ is the Lagrange multiplier on the resource constraint. The

complete left side term is interpreted as a vector of optimal marginal social welfare

(MSW) weights. Its i-th element gives the social value of a permanent consumption

increment at state i deflated by Υ and expressed in resource units. The right side

gives the cost of delivering a consumption increment at each state. It nets from the

direct unit resource cost the extra tax revenues −DP
−1 ∂P

∂c

⊤
T generated by workers

as they move in response to consumption increments. The latter, with elements

MEB(i) = − 1
P(i)

∑
j∈I T(j)∂P(j)

∂c(i)
, is interpreted as a vector of long run marginal excess

burdens of taxation. Together with the resource constraint, equation (17) may be

used to characterize or calculate the optimal taxes and equilibrium associated with

a particular welfare criteria. Alternatively, it may be used to recover the marginal

social welfare weights that rationalize a particular observed tax function T. The

MEB vector can be used independently to evaluate the long run budgetary cost of a

small permanent tax reform and the projects that it funds.

Long run distribution sensitivities The preceding discussion identifies stationary

distribution sensitivities ∂P
∂c

as key inputs into long-run marginal excess burden

calculations and, hence, long-run optimal tax equations. Quantitative activation

of the optimal tax equation (17) requires information on ∂P
∂c

. However, long run

behavioral responses to tax reform are difficult to identify directly. The high dimen-

sional nature of ∂P
∂c

introduces additional complication. Further, if (17) is used to

characterize optimal taxes at a fixed welfare criteria, then ∂P
∂c

must also be calculated

at a counterfactual equilibrium.

3 The structure of long run substitution

This section develops an expression for the stationary distribution Jacobian ∂P
∂c

.

The expression indicates how information in transition data may be leveraged to

obtain estimates of long run substitution responses at prevailing and counterfactual

equilibria. It highlights the central role of post-substitution transition behavior in

relating short to long substitution responses.
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3.1 Propagation

Let c denote a stationary consumption allocation and Q an induced Markov matrix

describing worker transition behavior. The matrix Q may be derived from the

behavioral model of Section 2. However, that is not necessary for the first result of

this section. Let P be a stationary distribution of workers over states satisfying the

(implicit) equation: (I−Q)P = 0. Singularity of I−Q precludes direct application of

the implicit function theorem to this last equation requiring a different approach to

recovery of ∂P
∂c

. Define the generalized (group) inverse of matrix A to be the unique

matrix A# satisfying A#AA# = A#, AA# = A#A, and AA#A = A.13

Proposition 1 (Propagation). If Q is differentiable with respect to c and P is a probabil-
ity distribution that solves (I−Q)P = 0, then the Jacobian ∂P

∂c
satisfies:

∂P

∂c
= (I−Q)#Φ, (18)

with Φ the short run sensitivity matrix. If Q defines an ergodic chain, then (I−Q)# =∑∞
m=0{Qm −ΠP}, ∂P

∂c
=
∑∞

m=0Q
mΦ or, in terms of semi-elasticities,

1

P

∂P

∂c
= Ψ+DP

−1
∞∑
m=1

Cov (Qm,Ψ) , (19)

with Ψ = DP
−1Φ the short run semi-elasticity matrix.

Proof. See Appendix A.

Formula (18) implies that the group inverse (I−Q)# acts as a propagation factor
that converts the short run sensitivity Φ into the long run sensitivity ∂P

∂c
.

Interpreting Proposition 1. In the ergodic case, the propagation factor in Proposi-

tion 1 has the form (I−Q)# =
∑∞

m=0{Qm −ΠP} permitting straightforward computa-

tion and interpretation of long given short run substitution responses. Consider a

small permanent consumption increment at a state i. This relatively raises lifetime

payoffs at i and, possibly, at other states from which it is cheap to access i. In

each subsequent period, flows to these payoff enhanced states will be elevated,

generating successive waves of substitution, Φ(·, i). Having substituted in response

to a consumption perturbation, workers then behave to a first order according to

Q. Thus, QmΦ(·, i) gives the first order impact on P of workers who substituted m

13If A is invertible, then the group inverse is the inverse. In the applied math literature, (I−Q)#,
with Q a Markov matrix, is referred to as the deviation matrix or the ergodic potential of Q.
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periods ago. From (18), the long run response to the consumption perturbation

cumulates these terms: ∂P
∂c
(·, i) =

∑∞
m=0Q

mΦ(·, i). Intuitively, if extra consumption

at i shifts workers between states j and k that have very similar post-substitution

behavior (i.e. such that columns Qm(·, j) and Qm(·, k) are similar), then each wave

of short run substitution dissipates and short and long run substitution patterns

are similar. Conversely, if the extra consumption diverts workers to states with

very different post-substitution transition behavior, then short run and long run

substitution will be very different.14 Expression (19) quantifies these effects via the

sum of the cross-covariance matrices Cov (Qm,Ψ). The following examples illustrate.

Example 2 (No persistence). If adjustment costs are zero and there is no persistence

in the chain, then Q = ΠP and (18) implies ∂P
∂c

= Φ +
∑∞

m=1Π
m
PΦ = Φ. In this case,

substituting workers disperse according to P in the period after substitution. No

persistence thus implies identity of long and short-run responses to consumption

perturbations and an absence of propagation. □

Example 3 (Slow diffusion with two states). In the two state case with transition

elements Q(1, 1) = p and Q(2, 2) = q, evaluation of (18) implies: ∂P
∂c
(j, i) = 1

2−(p+q)
Φ(j, i).

Define p + q to be the persistence of Q and call Q persistent if p + q > 1. It follows

that the greater the persistence of Q, the greater the long run amplification of short

run responses. Intuitively, if the chain is persistent, a consumption increment at i

leads to an accumulation of workers at i over time. □

Example 4 (Calvo-logit). In the Calvo-logit model Q = (1−ψ)I+ψΠP. Thus, (I−Q)# =
1
ψ
(I−ΠP) and ∂P

∂c
= (I−Q)#Φ = 1

ψ
Φ. In this case, post-substitution, workers draw

shocks and re-optimize with probability ψ. Hence, they accumulate in states to

which they have substituted. Further, when workers re-optimize they disperse

according to P. Together these effects imply that long-run sensitivities are uniformly

increased by a factor of 1/ψ relative to short run. □

Environments with many states, persistence, and heterogeneous patterns of

diffusion admit more complex patterns of propagation.

Example 5 (Stepping stones and dead ends). Consider the scenario illustrated in

Figure 1, where blocks indicate work states and arrows positive flows of workers.

Entrant workers replace retirees and are born into a state labeled “School” (s).

From there they may choose to go to a “Stepping Stone” (ss) or a “Dead End” (de)

job. Suppose that these alternatives deliver identical low levels of pay and similar

14In particular, if Q is persistent with large values for Q(i, i) and Q(j, j), then each wave of workers
that substitutes from j to i accumulates in i rather than j implying enhanced long run substitution.
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School (s)retire/replace (r/r) retire/replace (r/r)

Stepping
Stone (ss)

Dead
End (de)

High
Pay (hp)

Figure 1: Job Network. Blocks are states; Arrows are positive flows. Exogenous
flows to retirement and replacement with new entrants are shown as dashed arrows.

average lifetime payoffs. The ss job, however, has prospects and provides a positive

probability of moving to a “High Pay” (hp) job. The de job, in contrast, offers a

less stressful, low effort life and a higher amenity value, but no opportunity for

advancement. Assume that an exogenous fraction of workers from each job state

retire in each period. Although ss and de deliver identical incomes (and would receive

the same treatment under an income tax), the different transitions from each imply

different long run substitution patterns over jobs and incomes.

Figure 2 illustrates short and potential long run effects of permanently increasing

consumption at ss. Such an increase immediately raises Q(ss, s), while reducing

sr/r r/r

ss
Extra

$
de

hp

(a) Short run effects.

sr/r r/r

ss
Extra

$
de

hp

(b) Long run effects.

Figure 2: Short and long run effects of extra consumption at the “Stepping Stone”.
Blue arrows show reduced transitions; red arrows increased transitions. Blue boxes
show reduced worker populations. Red boxes show increased worker populations.

Q(de, s) and Q(hp, ss) (shown by red and blue arrows, respectively, in Figure 2).15

Initially, worker populations increase at ss and decline at the other two job states

(shown by red and blue boxes in Figure 2a). In particular, the initial decline in

15We continue to assume that direct flows between de and hp and s and hp are not possible.
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Q(hp, ss) causes a population reduction at hp of:

Φ(hp, ss) = −∂Q(ss, ss)

∂c(ss)
P(ss) < 0.

In later periods the build up of workers at ss relative to de combined with the

positive transition rate from ss to hp and zero transition from de to hp, offsets the

effect of the reduction in Q(hp, ss) on the numbers arriving at hp. Precisely, let
∂P
∂c
(hp, ss) =

∑∞
m=0 Γm, with Γm :=

∑
k∈I Q

m(hp, k)Φ(k, ss) the impact on the population

at hp of substitution m periods ago. The terms Γm are increasing in m, since

Γ0 = Φ(hp, ss) < 0 < Φ(ss, ss) and:

Γm = Q(hp, hp)Γm−1 +Q(hp, ss)Q(ss, ss)m−1Φ(ss, ss), (20)

with the second right hand side term in (20) giving the impact on the size of the

m-th substitution cohort at hp of those who substituted m periods ago to ss and only

now move to hp, The terms Γm eventually become positive, arresting the decline in

the population at hp and, potentially, as they cumulate, implying ∂P
∂c
(hp, ss) > 0. In

this case, long run populations are increased at ss and hp, but depleted at de (shown

by red and blue boxes in Figure 2b). □

Connecting to data In the absence of direct evidence on long run substitution, the

formulas in Proposition 1 imply that long run sensitivities ∂P
∂c

at an observed equi-

librium can be constructed from short using observed transitions Q. In particular,

given data on Q, the propagation matrix (I−Q)# can be constructed and applied to

estimates of short run sensitivities Φ. In the absence of direct or complete evidence

on Φ a structural model may be adopted to relate short run substitution to observed

transition behavior. We turn to this next.

3.2 Integrating Short Run Substitution

We proceed in three steps. First, we derive a general characterization of short run

substitution for models of the form considered in Section 2 and combine it with

Proposition 1 to provide a more complete description of long run substitution. Then

in a second step, we impose additional structure that permits evaluation using data.

We conclude by deriving implications for the marginal excess burden.

Lemma 1 below provides a first characterization of short run substitution. It is

independent of the particular preference shock structure assumed in the benchmark
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model and implies that, after possible normalization of utilities, a consumption

increment at i generates greater short run substitution from j ̸= i if it reduces the

lifetime payoff at j relative to that expected under a Markov chain S defined below.

The lemma utilizes the following symmetry-like property for Markov chains.

Definition 1. Let R be the transition of an ergodic Markov chain with stationary distri-
bution P. The chain is said to be reversible if R = DPR

⊤DP
−1.

Lemma 1 (Short run substitution). Let S = I−DPΞDP
−1, with Ξ(j, i) = 1

P(j)

∑
k∈I

∂Q(j,k)
∂v(i)

P(k).
After possible normalization of utilities, S is a reversible Markov chain with stationary
distribution P and the short run semi-elasticity Ψ satisfies:

Ψ = ÊS

[
∂V

∂c

]
:=

∂V

∂c
− ES

[
∂V

∂c

]
= (I− S⊤)

∂V

∂c
. (21)

Proof. See Appendix A.

We call S the (short run) substitution matrix; its j ̸= i-th off-diagonal element gives

the one period out-flow from j in response to a payoff increment at i (normalized

by the population at i). In our setting reversibility of S is analogous to Slutsky

symmetry.16 Lemma 1 can be combined with Proposition 1 to give the following

characterization of long run substitution.

Proposition 2 (Long run substitution). The (stationary distribution) semi-elasticity matrix
1
P
∂P
∂c

satisfies:

1

P

∂P

∂c
= ÊS

[
∂V

∂c

]
+DP

−1
∞∑
m=1

Cov
(
Qm, ÊS

[
∂V

∂c

])
. (22)

Proof. See Appendix A.

Expression (22) decomposes the long run response of the distribution P to a

permanent consumption increment into a current short run response (the first term)

and an accumulation of past responses (the second summation term). The latter

implies that long run substitution between two states j ̸= i is enhanced relative

to short run (and more workers are drawn from j by a consumption increment

at i) if the covariance terms Cov
(
Qm(j, ·), ÊS

[
∂V
∂c

]
(·, i)

)
are negative. This occurs if

the consumption increment at i raises (resp. reduces) lifetime payoffs relative to

16That S has positive off-diagonal elements, columns summing to one and satisfies S = DPS
⊤DP

−1

is independent of the particular cardinal representation of utilities. But the scale of I−S (and, hence,
the sign of the diagonal elements of S) requires their normalization.

19



those expected under S in states with low (resp. high) probabilities of subsequently

transitioning to j. In particular, if i or states upstream to i that are payoff enhanced

by the consumption increment have low probabilities of subsequent transition to j,

then the covariance in (22) will be smaller (more negative) and long run substitution

between i and j will be elevated.

Remark 6. Equation (22) is reminiscent of expressions found in the macro-network

literature, e.g. Baqaee and Farhi (2019). Those expressions describe how Domar

weight (sales share) vectors are perturbed by shocks. In our setting, Domar weight

vectors are replaced by stationary distributions of workers, input-output matrices

by Markov transition matrices, forward-looking prices by marginal lifetime value

functions and productivity shocks by consumption perturbations. □

Imposing additional structure; Connecting to data We show in the appendix that

the benchmark model implies a map H such that S = H(Q), where H is determined

by the structure of preference shocks and re-optimization opportunities. Examples

follow.

Example 6 (Calvo-Logit). Evaluation of S in the Calvo-logit case gives: S = Q =

(1− ψ)I+ ψΠP. Thus, off-diagonal elements, j ̸= i, satisfy: S(j, i) = ψP(j). This case

exhibits proportional attraction: the outflow from j in response to an increment in

v(i) is proportional to P(j) (scaled by the re-optimization probability ψ). The repeated

logit corresponds to the limiting case with ψ = 1 and S(j, i) = P(j). □

Example 7 (Dynamic Logit). For the dynamic logit without perpetual youth: S =

QDPQ
⊤DP

−1, with off-diagonal (j ̸= i) elements of S satisfying:

S(j, i) = P(j) +P(j)Cov
(
Q(j, ·)
P(j)

,
Q(i, ·)
P(i)

)
. (23)

In this case, proportional attraction is disrupted by the covariance term. It implies

that short-run substitutability between j and i is elevated when Q(j, ·) and Q(i, ·)
covary positively. Intuitively, in this case j and i attract workers from similar states

and, so, are closer short-run substitutes with util increments at one siphoning off

workers who would have transitioned to or remained at the other. In contrast, if Q

is very persistent, then j mainly “attracts” workers from j and similarly for i. In this

case, the covariance is negative and short run substitution is suppressed.17 □

17Let Q̂ := DPQ
⊤DP

−1. Then Q̂ is the “time-reversed” version of Q and S = QQ̂ defines a Markov
chain called the multiplicative reversibilization of Q. An economic logic underpins the identity of S
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The workers’ envelope conditions imply:

∂V

∂c
= (I− βQ)−1D∂u. (24)

If H and β and equilibrium values for Q, Q and D∂u are known, then together

(21), S = H(Q) and (24) permit recovery of the corresponding equilibrium short run

semi-elasticity Ψ or, equivalently, sensitivity Φ = DP
−1Ψ. It is common in the applied

literature to impose a Gumbel restriction on preference shocks, which pins down H
as in (23), and to calibrate β. In addition, for this case, well known procedures exist

for estimating the parameters of D∂u. Then given (non-parametric) estimates of Q,

Q and c, equilibrium values for Φ or Ψ may be constructed. The long run sensitivity
∂P
∂c

is obtained for this equilibrium using (18). Explicit estimates of the potentially

high dimensional cost of adjustment parameter κ are not required. Although such

costs affect behavior, their impact on long run substitution is fully encoded in the

estimated Q and Φ.

Construction of ∂P
∂c

for counterfactual equilibria proceeds along similar lines,

but requires corresponding counterfactual values for Q. The dynamic hat algebra

approach of Caliendo et al. (2019) shows how such values for Q may be constructed

from those of observed equilibria under a dynamic logit assumption (and a log

assumption on flow utility from consumption). No additional parameter estimates

are needed beyond those used to evaluate long run sensitivities at an observed

equilibrium. The discount factor and marginal utility parameters are structurally

sufficient for counterfactual evaluation. We elaborate this procedure in the appendix

and implement it in Section 6.

Marginal Excess Burdens Long run marginal excess burden formulas are readily

recovered from (22).

Proposition 3. Long run marginal excess burdens satisfy:

−DP
−1∂P

∂c

⊤
T = −DP

−1
∞∑
m=0

Cov
(
ÊS

[
∂V

∂c

]
, (Qm)⊤T

)
. (25)

The covariance term in (25) cumulates the impact on tax revenues of waves of

substituting workers who, post substitution, diffuse according to Q in successive

with QQ̂. Off-diagonal j ̸= k elements of S and corresponding substitutability are large if inflows to
j and k originate from common sources with high probability. In such cases, positive correlation
between Q̂(j, ·) and Q(k, ·) occurs: if workers at i came from j with high probability (Q̂(j, i) is large),
and workers leave i for k with high probability (Q(k, i) is large), then i is a common source for j and k.
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periods. In static models only the m = 0 covariance is present. The Calvo-Logit

supplies a simple benchmark case in which the covariance terms at successive

horizons m are proportionate.

Example 8 (Calvo-logit). In the Calvo-logit model ∂P
∂c

= (I − Q)#Φ = 1
ψ
Φ and S =

(1− ψ)I+ ψΠP. Substituting these and the envelope condition into (22) gives:

1

P

∂P

∂c
(j, i) =

1

ψ
× ψ

ν

∂u(c(i))

∂c
(I(j, i)−P(j))︸ ︷︷ ︸
Φ(j,i)

, (26)

with ν := 1− β(1− ψ). In this case, an extra unit of consumption at i draws workers

proportionately to population from states j with, respectively, short and long run

intensities ψ
ν
∂u(c(i))
∂c

and 1
ν
∂u(c(i))
∂c

. Evaluating the long run MEB (25) using (26) gives:

−DP
−1∂P

∂c

⊤
T = −1

ν
D∂u(T−G1). (27)

The simple form in (27) relies on the proportional attraction and dispersion properties

of the Calvo-logit model: in the long run, a consumption increment at i draws

workers in proportion to population towards i with intensity 1
ν
∂u(c(i))
∂c

and with each

proportional unit shift generating revenues T(i)−G. □

More generally, state-contingent costs of adjustment imply that a consumption

increment at i attracts most strongly from states that have low costs of moving to

i and disperses most strongly towards states that have low costs of moving from

i (inclusive of i itself). Long run substitution patterns are modified accordingly.

Equation (22) describes exactly how, with (25) giving implications for long run

marginal excess burdens.

4 Inverse optimal tax equations

Stationary distribution sensitivities ∂P
∂c

facilitate quantitative evaluation of long run

marginal excess burdens. They may be inserted into (17) and used to characterize

optimal tax distortions. We pursue this in Section 6. As we now show, their

structure also facilitates derivation of “inverted” optimal tax equations that provide

more explicit characterizations of taxes.

The goal of this section is the conversion:

DP
−1 1

Υ

∂M

∂c

⊤
= 1−D−1

P

∂P

∂c

⊤
T =⇒ T = H+G1 (28)
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for an interpretable and quantifiable matrix H. Such conversion is straightforward

with two states. Then, (17) may be rearranged, combined with the policymaker

budget constraint and the expressions for long run sensitivities ∂P
∂c

from Example 3

to obtain:

T(i) =
1−P(i)

Ψ(i, i)/
∑

j∈I(1−Q(j, j))

(
1− 1

P(i)

1

Υ

∂M

∂c
(i)

)
+G. (29)

Intuitively, higher taxes are associated with low marginal social welfare weights,

higher policymaker spending and reduced own semi-elasticity values 1
P(i)

∂P(i)
∂c(i)

=
Ψ(i,i)∑

j∈I(1−Q(j,j))
; the latter a simple inverse (semi-)elasticity result. In (29),

∑
j∈I(1 −

Q(j, j)) is the inverted counterpart of the propagation matrix from our earlier sensi-

tivity formulas. For persistent chains, it acts as a compression factor implying lower

taxes than would be suggested by inspection of short run semi-elasticities Ψ(i, i).

More generally, utilizing our previous expressions for long run distributional

sensitivities, the following inverted optimal tax formula emerges.

Proposition 4 (Inverted Optimal Tax Formula). Optimal taxes satisfy:

T−G1 = Cov(Ω,C), (30)

where Ω = AB and:

A := (I−Q⊤)︸ ︷︷ ︸
Reverse

Propagation

B := (I− S⊤)#DP
−1(I− βQ)︸ ︷︷ ︸

Reverse Short Run
Substitution Matrix

C := D∂u
−1

(
1−DP

−1 1

Υ

∂M

∂c

⊤)
︸ ︷︷ ︸

Redistribution
Vector

.

(31)

Proof. See Appendix A.

Interpreting the inverted formula Our earlier optimal tax equation (17) was formu-

lated in terms of the marginal benefits and costs of a consumption reallocation. In con-

trast, (30) is expressed in terms of the marginal benefits and costs of a population re-
allocation. To see this first define the unit population reallocation matrix ∆ := I−ΠP

and interpret its i-th column: ∆(·, i) =
(

−P(1) . . . 1−P(i) . . . −P(I)
)⊤

as a

proportional reallocation of workers from each j to i. The extra revenues accruing to

the policymaker from reallocation ∆(·, i) are:

T⊤∆(·, i) = T(i)−
∑
j∈I

T(j)P(j) = T(i)−G.
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Thus, the i-th element T(i)−G on the left side of (30) is the fiscal benefit of a long
run unit population reallocation to i. Expression (30) equates such benefits to the

social costs of long run unit population reallocations implying that the latter are

sufficient statistics for optimal taxes (up to a government spending shifter). These

social costs are obtained as covariances between the flow payoff variations required

to induce long run population reallocations (rows of Ω) and the societal costs of

delivering such variations (C).18 The flow payoff variation matrix Ω further factors

into matrices A and B, with the following interpretations:

1. The reverse propagation matrix A describes the short run population realloca-

tions needed to induce long run unit population reallocations in the face of

post-substitution diffusion.

2. The reverse short run substitution matrix B gives the flow payoff reallocations

needed to induce short run unit population reallocations holding expected

lifetime utility fixed.

This factorization is a direct consequence of the stationary distribution sensitivity

formulas of the preceding section. The vector C includes both the direct resource

cost of delivering flow payoff variation (given by reciprocals of marginal utilities of

consumption) and redistributive attitudes towards such variation. To illuminate (30)

consider first the Calvo-logit benchmark.

Calvo-logit inverted formula In the Calvo-logit case Q = Q = S = (1 − ψ)I + ψΠP.

Substituting these into (30) and simplifying gives:

Ω = ν(DP
−1 − E), (32)

where ν := (1− β(1− ψ)) and E is a matrix of ones. Again the simple form (32) stems

from the proportionality of attraction and dispersion implied by the Calvo-logit model.

Removal of a unit of payoff from workers in each state and allocation of 1/P(i) to

those in i induces a proportional long run population shift to i. The constant ν in

(32) adjusts for frequency of decision-making and scales to ensure a unit long run

18Adão et al. (2023) derive an interesting inverted optimal tax equation in the context of optimal
tariff design. In particular, they use an inversion step to decompose optimal tariffs additively into
efficiency, redistributive and other components. Although the settings, static continuous demand for
tradable goods vs. dynamic flows of workers across discrete states, and tax formulas are different,
a related decomposition is available in our setting. Writing (30) as T = ΩDPC, with G = 0 for
simplicity, it follows that T = ΩDPD∂u

−1 −ΩD∂u
−1 1

Υ
∂M
∂c

⊤
, where the first term gives the resource

cost of inducing a long run population reallocation holding expected lifetime utility constant and the
second gives an additional redistributive cost utilizing the societal payoff function M .
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population shift.19 Substitution of (32) into (30) yields:

T−G1 = νÊP[C], (33)

where ÊP[x] = x− EP[x]1 gives deviations from expected values at P. Thus, costs of

inducing long run population reallocations and, hence, optimal taxes, vary across

states in proportion to the costs of delivering flow payoff variation (net of mean)

described by C.

Setting M(c) = P⊤V(c), using (30) to express C and, hence, (33) as an implicit

function of c and inverting permits yields:

T = w − C
(
w + νE

[
1

∂u(c)/∂c

]
−G1

)
, (34)

with C : RI
+ → RI

+ defined implicitly by C(r)(i) + 1−β(1−ψ)
∂u(C(r)(i))/∂c = r(i) for r ∈ RI

+. Hence, in

this case an income tax is optimal with shape controlled by the curvature of 1
∂u/∂c

via C. In particular, if 1
∂u/∂c

is convex (resp. concave), then optimal taxes are convex

in income and progressive (resp. concave and regressive). If u(c) = a log c, then 1
∂u/∂c

is linear in c and optimal taxes are affine in income with:

T =
1

1 + b
ÊP[w] +G1 and b =

a

ν
=

a

1− β(1− ψ)
. (35)

Larger values of a and smaller values of ψ translate into smaller marginal income

tax rates.

Payoff tuning More generally, a tax designer assessing the cost of a long run unit

population reallocation to a state (and trading it off against the tax revenue benefits)

must consider the downstream propagation and upstream substitution implications

of assigning payoff to the state. The designer must “tune” payoffs accordingly.

Consider, for example, a long run unit population reallocation towards the

“Stepping Stone” (ss) job in Example 5. This requires a 1% reduction in the population

of workers at all jobs and a reallocation of these workers to ss. The removal of a unit

of payoff from workers in each state and allocation of 1/P(ss) to those in ss, as in

the Calvo-logit case, will, over time, raise the number of workers at ss. However, it

will not draw workers proportionately from across the job network, as required by a

unit population reallocation. It will draw disproportionately from “Dead End” (de),

19Large values of ψ (and ν) imply frequent re-optimization, short spells in states and larger required
variation in flow payoffs to induce long run unit population reallocation.
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because this is a close “upstream” substitute. It will draw less than proportionately

from “High Pay” (hp) because this is “downstream” from ss and a build up of workers

in the latter will propagate to hp. To generate a long run unit population shift, the

policymaker must tune the payoff adjustment. The matrix Ω for this case describes

exactly how this should be done. Intuitively it requires relatively raising payoff at

de to deter excessive depletion, while relatively reducing it at hp to deter onward

propagation and excessive build up. If hp workers have greater consumption and

lower marginal utilities of consumption than de workers, this tuning will release

resources. In turn, this will reduce the resource cost of inducing a long run unit

population shift towards ss. This creates a force for lower optimal taxes at ss

compared to similarly earning de.20

Approximate inverted optimal tax formula Given a dynamic discrete choice equi-

librium with transition Q, transition for survivors Q, substitution matrix S, and

stationary distribution P, define best fit Calvo-logit behavior as a ψ ∈ [0, 1] and

transition Q̃ := (1−ψ)I+ψΠP such that ψ minimizes max{∥∆Q∥, ∥∆S∥, ∥∆Q∥}, where:

∆Q :=
1

ψ
(Q− Q̃) ∆Q :=

β

ν
DP(Q− Q̃)⊤DP

−1 ∆S :=
1

ψ
(S− Q̃), (36)

ν = 1− β(1− ψ) and ∥ · ∥ is a matrix norm. If the equilibrium is generated by a Calvo-

logit model, then the best fit behavior is exact and ∆Q = ∆Q = ∆S = 0. Otherwise

the matrices ∆Q, ∆Q, and ∆S describe deviations in Q, Q and S from the values

implied by the best fit Calvo-logit. They capture non-proportionalities in transition

and substitution behavior.

As detailed previously, Calvo-logit models impart a simple structure to Ω and,

hence, to optimal taxes. For situations in which behavior is close to Calvo-logit, an

interpretable approximation to Ω is available that makes explicit how downstream

propagation and upstream substitution shape taxes. In Appendix A, we derive a

polynomial expansion of Ω around its best fit Calvo-logit value in terms of ∆Q, ∆Q,

and ∆S and show that for max{∥∆Q∥, ∥∆S∥, ∥∆Q∥} small enough:

Ω ≈ ν
(
DP

−1 − E
)
+ ν

(
∆⊤

S −∆⊤
Q −∆⊤

Q
)
DP

−1. (37)

The first right hand component of (37), ν
(
DP

−1 − E
)
, coincides with that in (32) and

gives the flow payoff adjustments needed to target long run population reallocations

20This may be countered by redistributive considerations. If the policymaker has particular
concern for those workers in hp and little concern for those in de, it may perceive this to be tuning to
be costly, discouraging it from a lower tax on ss.

26



on particular states in the best fit Calvo-logit model. As before it implies that

to induce population movement towards i, flow payoff must be increased at i by

ν/P(i) and reduced at each j ̸= i by −ν. The remaining terms in (37) give first

order approximations to the payoff tuning necessitated by deviations from best fit

Calvo-logit. These terms are readily interpretable:

1. ∆⊤
S (i, j) = ∆S(j, i) > 0, j ̸= i, indicates that j is a relatively close short run

substitute to i and that extra lifetime payoff at i disproportionately attracts

workers from j. To ensure that j is not excessively depleted and a long run

unit population reallocation to i occurs some extra lifetime and, hence, flow

payoff is needed at j relative to the Calvo-logit benchmark. The converse is

true if ∆S(j, i) < 0.

2. ∆⊤
Q(i, j) = ∆Q(j, i) > 0 indicates that outflows to j from i are relatively large. To

deter a build up of workers in j and ensure that a long run unit population

reallocation to i occurs, lifetime and, hence, flow payoff in j must be depressed

relative to the benchmark.

3. ∆⊤
Q(i, j) = ∆Q(j, i) > 0 indicates that surviving workers have a higher probability

of flowing to j from i relative to the benchmark making (via the envelope

condition) long run payoffs more sensitive to payoff at j. Less extra flow payoff

at j is needed to induce an additional unit of long run payoff at i.

The best fit Calvo-logit model implies optimal taxes of the form (33). Approximate

deviations in optimal taxes from these are generated by the societal “pricing” of

the payoff tuning terms in (37) using C. Results are most transparent under a

slight variation of the assumptions used in the Calvo-logit setting: u = a log and
∂M
∂c

= D∂uP.21 Combining (37) with (30) delivers the approximation:

T ≈ 1

1 + b
ÊP[w] +

(
1

1 + b

)2 {
∆⊤

S −∆⊤
Q −∆⊤

Q
}
ÊP[w] +G1, (38)

with b = a/ν. The linearity of taxes in incomes found in (35) is disrupted by variations

in the rows of ∆⊤
S −∆⊤

Q −∆⊤
Q.

Consider a “stepping stone” state i that attracts workers from low income states

following a payoff increment (∆S(j, i) > 0 for j such that ÊP[w](j) < 0) and prop-

agates them onto high income states (∆Q(k, i) > 0 for k such that ÊP[w](k) > 0).

Equation (38) indicates that taxes will then be depressed at i relative to the Calvo

21This is equivalent to assuming ∂M
∂c = λ⊤ ∂V

∂c , with λ = 1
1−β (I − βQ)P and so coincides with

utilitarianism (with respect to lifetime payoffs) if Q = Q and there is no entry and replacement.
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benchmark since the corresponding elements of ∆⊤
S −∆⊤

Q −∆⊤
Q correlate negatively

with those of ÊP[w]. Intuitively, to ensure a unit population shift to i, a relative

increase in payoff at upstream states j and reduction at downstream states k must

occur. Since workers at upstream states have low consumptions and high marginal

utilities and workers at downstream states the reverse, this payoff adjustment

releases resources and, hence, lowers the cost of inducing a long run population

shift to i. At the optimum the fiscal benefits of such a shift and, hence, taxes at i

must be correspondingly lower.

Mistaking short for long run responses In static models, the optimal tax equation

(30) reduces to: T = Cov(B,C) − G1, with B = (I − S⊤)#DP
−1. Dynamic consider-

ations introduce the reverse propagation matrix A that converts short into long

run population reallocation costs. A policymaker that mistook short for long run

sensitivities and implemented optimal taxes satisfying T = Cov(B,C) + G1 might

regard themselves as having balanced the costs and benefits of population shifts and

as having attained an optimum. However, such an assessment omits the long term

implications of post-substitution propagation. These implications are contained

within the reverse propagation matrix A. If states are highly persistent, A is close to

zero indicating that small short run population adjustments are sufficient to induce

unit long run shifts. The overall social marginal cost of inducing a long run popu-

lation shift is correspondingly reduced. At an optimum, equality of marginal costs

and benefits implies that optimal tax variation around the mean G is compressed

(and much smaller than would be inferred from consideration of Cov(B,C) alone).

Connecting to data Quantitative evaluation of Ω = AB at empirical or counterfac-

tual equilibria proceeds analogously to that for ∂P
∂c

. The reverse propagation matrix

A is immediately recovered from transition data at an empirical equilibrium. A

dynamic logit model (with or without perpetual youth) relates S to Q. It thus permits

evaluation of B using transition data. Vector C is obtained after specification of a so-

cial criterion and estimation of parameters describing marginal utilities. Assembling

the elements then gives the cost vector Cov(Ω,C) = ΩDPC at the equilibrium. Costs

Cov(Ω,C) are obtained at a counterfactual consumption allocation c after recovery

of the counterfactual Q and P via dynamic hat algebra.
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5 Persistent Private Heterogeneity

Various elaborations of our model are possible. Here we focus on one: Persistent

private heterogeneity.22 As described in Remark 5, our model of worker choice readily

incorporates persistent worker states (or types) that evolve exogenously. Following

that remark, partition a worker’s state into chosen x and type α components:

i = (x, α) ∈ I = X ×A, where X and A have cardinalities nX and nA, respectively. Let

ρ denote the Markov transition over exogenous states and ρ0 the initial distribution

of entrants over these states.

We now suppose that a policymaker cannot condition a worker’s consumption on

its type: c(x, α) = c(x). Underlying this are two assumptions. First, that a worker’s

type α affects its costs of attaining or remaining in a choice state x, but not the

pre-tax income it receives from x. Second, that the policymaker cannot condition

taxes directly on α for informational (or, perhaps, other) reasons. In this sense there

is persistent private heterogeneity. The formula for stationary distribution responses

(22) continues to apply, with P and Q defined on I = X × A as in Remark 5. The

interpretation of the components of this formula as representing short run responses

and their propagation remains valid. However, the informational restriction on policy

design implies that the optimal tax equation is modified as:

DP
−1 1

Υ

∂M

∂c

⊤

︸ ︷︷ ︸
MSW

= 1−DP
−1∂P

∂c

⊤
N⊤T︸ ︷︷ ︸

1+MEB

, (39)

where N = (I . . . I), comprised of nA identity matrices each of dimension nX, is an

aggregator matrix that converts distributions over the complete state space I into

marginals over the chosen state space X and P = NP is the marginal of P over X .

N⊤ functions as a distributor matrix that distributes vectors on the chosen state

space into ones on the complete state space. Quantitative implementation of the

formulas in Proposition 2 and (39) for this case requires disentangling the Markov

chain (ρ, ρ0) and the components Q and P0 from data on steady state flows between

states over different time horizons. In Appendix D.8 we do so for a simple case.23

The optimal tax equation can be recast in terms of the “aggregated Markov chain”

over chosen states which the policymaker observes and conditions taxes on. Let

22In Appendix E, we consider stochastic ageing, transitions, and externalities.
23If α-types are observable to the econometrician, then ρ and ρ0 and the chosen components of

Q may be estimated non-parametrically from data. For types that are unobservable, we follow the
simple case of Artuç et al. (2010). Kasahara and Shimotsu (2009) considers the case of unobservable
permanent types with degenerate Markov transition ρ = I.
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Q be the matrix of transition probabilities between chosen states at the stationary

distribution:

Q(x′, x) =
∑
α,α′∈A

Q((x′, α′), (x, α))
P(x, α)

P(x)
.

It is immediate that Q defines a Markov chain with stationary distribution P.24 The

argument of Proposition 1 applies and, for the ergodic case,

∂P

∂c
= (I−Q)#Φ =

∞∑
m=0

(Q)mΦ, (40)

where Φ(x′, y) =
∑

x∈X
∂Q(x′,x)
∂c(y)

P(x). The optimal tax equation can then be recast in

terms of the aggregated chain as:

DP
−1 1

Υ

∂M

∂c

⊤
= 1−DP

−1Φ
⊤
(I−Q

⊤
)#T. (41)

In this setting, Φ describes the response to consumption perturbations of steady

state flows between observable states. However, it no longer describes an immediate

response since such flows depend on the mix of types at each choice state, which

takes time to adjust. In Appendix B.4, we use Φ to define a substitution matrix S

for this setting and, hence, obtain an inverted optimal tax equation that expresses

optimal taxes in terms of marginal costs of inducing population adjustment across

observable states.

6 Optimal tax design with dynamic occupational choice

This section describes a quantitative application of our framework to an occupational

choice setting. The occupational choice margin is a natural candidate for our

approach. Varied authors have found evidence that a major component of human

capital is occupation specific and have identified occupational variation as an

important determinant of steady state earnings variation.25 Further, training and

relocation costs make adjusting occupations expensive and occupational choice

inherently dynamic. Such costs can delay occupational adjustment, divorcing long

from short-run responses to tax change.

24However, the chain defined by Q does not describe the evolution of workers over observable
states. See Appendix B.4 for discussion.

25See, inter alia, Cortes and Gallipoli (2018), Kambourov and Manovskii (2009). The model that we
quantify is related to those used in the trade literature to evaluate sectoral and occupational labor
supply and wage responses to trade shocks.
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6.1 Data and estimation

Model We estimate an occupational choice model similar to the benchmark model

described in Section 2. The state space I is identified with a set of I occupations. A

perpetual youth structure accommodates the occupational churn associated with

retirement and replacement and implies greater mobility earlier in life.26 A worker’s

effective discount factor is given by β = b(1− δ), with 1− δ the survival probability.

Workers’ per period preferences net of Gumbel shocks are set to u(c(i)) = a log c(i).

The κ(j, i) cost values, j ̸= i, are interpreted as combining occupational amenity

differentials and the effort costs of retraining for and adjusting to a new occupation.

We assume that each new generation of workers is distributed exogenously across

occupations according to P0 and, hence, treat P0 as a parameter rather than an

equilibrium object.27 A Cobb-Douglas production function over occupations of

the form F (p) = A
∏I

i=1 p(i)
ϕ(i),

∑I
i=1ϕ(i) = 1, is assumed.28 We initially consider a

consolidated model in which workers are distinguished by an exogenously given

birth state occupation and realized Gumbel shocks. We then consider versions in

which these differences are augmented by permanent, observable educational types

generated by entrants in an initial choice. In Appendix D.8, we consider persistent

hidden mobility types.

Method The parameters {a, β, δ} are structurally sufficient for optimal tax analysis.

We set β and δ to values from the literature. Our estimation procedure for a exploits

the inversion and finite dependence ideas of Hotz and Miller (1993) and is similar to

Artuç et al. (2010)’s development and implementation of those ideas.29 We obtain a

stationary Q via a smoothed non-parametric estimator applied to transition data for

non-entrants and set P0 to the distribution of twenty-five year olds over occupations.

From these an estimated transition Q is obtained. Details of these steps are

provided in Appendix D. Estimates of the structurally sufficient parameters {a, β, δ}
are combined with an estimated steady state Q, c and P0 to recover counterfactual

Q and P via dynamic hat algebra. See Appendix C for details. Long-run stationary

distribution sensitivities can then be obtained using our formulas. Cobb Douglas

26Our model implies that mobility declines with age as workers move from lower paying entry
occupations to higher paying ones. However, we abstract from occupational learning, which augments
early in life mobility.

27We relax this assumption in Subsection 6.4.
28We consider implications of alternative degrees of substitutability between occupations in the

appendix.
29Some restrictions on adjustment costs are needed for identification. Relative to Artuç et al.

(2010) we adopt a more flexible time invariant cost structure that relates costs of adjustment to
multi-dimensional required skill differentials across occupations.
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production function parameters ϕ are selected to be consistent with occupational

income shares. GDP is normalized to one and the TFP parameter A set accordingly.

Data Our primary data source for estimation of the empirical Q and a is the March

Supplement of the Current Population Survey (ASEC-CPS) for the years from 2003

to 2020. We restrict our sample to full-time wage-earners aged 25 to 65. Further

details of the sample selection are deferred to Appendix D.1. We aggregate 2010

Census occupation codes into 2-digit SOC occupations, minus Farming, fishing, and

forestry occupations.30 Along with their occupation, responders provide information

on their pre-tax wage income. We use TAXSIM of NBER to estimate federal and

state income taxes and calculate after-tax incomes. A valuable aspect of ASEC-CPS

is the inclusion of information on occupational transitions: Responders report

their current occupation and the occupation they held last-year. This permits

non-parametric estimation of the survivor Markov transition matrix Q.

Calibration and Estimation Results Following Heathcote et al. (2017), we set b = .96

and δ = .029 implying an effective discount rate of β = .93. The key additional

parameter requiring estimation is a. Our procedure (elaborated in Appendix D) uses

a smoothed non-parametric estimator of the survivor transition matrix Q and a

parametric specification of the cost of adjustment structure. Estimates of a show

some sensitivity to choice of smoothing procedure and cost structure. We give

results for several configurations in Table 1. We obtain a baseline value, a = 0.142,

Cost Function (κ) Interpolation Method (Q) Estimates of (a)
Type-I Imputation 0.207(0.074)
Type-II Imputation 0.180(0.066)
Type-I PPML 0.088(0.038)
Type-II PPML 0.092(0.045)

Table 1: Estimation of a parameter.

Notes: The left column shows the type of cost function. Types are explicitly defined in Appendix D. The middle column
indicates the smoothing procedure used. Imputation replaces zero transition flows in the data with small positive constants
and adjusts other elements down to ensure columns of the transition matrix sum to one. PPML indicates that the transition
matrix is smoothed using the Poisson pseudo-maximum likelihood method. The right column shows the estimates of a.

by averaging these estimates. This value is within the 95% confidence interval of all

30The two digit level decomposition represents a compromise between reliable estimation of flows
between occupations, which argues for greater aggregation, and isolation of differently paying options
for workers, which motivates a finer decomposition. Management is a large occupation at the three
digit level, which encompasses an array of differently paying roles. We present additional results in
Appendix D in which we further disaggregate the management occupation.
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estimations reported in Table 1. In Appendix D, we undertake sensitivity analysis

around this baseline value. G is set to $19,804 (2019 dollars).

6.2 Elasticities, Marginal Excess Burdens at the data allocation

Short and long run distributional elasticities Given the selected values of β and δ and

the estimates of a, Q, P0 and, hence, Q, we compute the model-implied short and

long-run elasticity matrices ΨDc and c
P
∂P
∂c

for the empirical allocation using (22). We

summarize these results below.31 We find stationary long-run own elasticities that

are an order of magnitude greater in absolute value than short-run elasticities. A

1% permanent increase in consumption at an occupation implies an approximate

0.1% to 0.16% change in the fraction of workers at that occupation over a year

in most cases. Cross occupation responses are smaller still at between -0.00%

and -0.03%. However, in the long-run, a 1% consumption increment induces own

fraction changes of between 1.12% and 1.59%, while cross occupation responses

vary between 0.01% and -0.23%. All cross elasticities in the short and most in

the long-run are negative implying that a consumption increment in one reduces

population in most others regardless of time horizon and that they are substitutes.32

Short and long run marginal excess burdens Figure 3 reports the marginal excess

burdens −DP
−1Φ⊤T (blue) and −DP

−1 ∂P
∂c

⊤
T (red) at short and long horizons and at

the prevailing empirical allocation. In the figure, occupations are ordered (right to

left) by income. We retain this ordering in all successive figures.33 The marginal
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Figure 3: Short and Long Run Marginal Excess Burdens in the Data

31Full results are displayed in Appendix D.
32Health and personal services are exceptions. They are weak long run complements.
33Occupational labels in this and later figures are abbreviated. Full occupational labels are

reported in Table D.1 in the appendix.
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excess burden values in Figure 3 give the additional short and long-run per capita

revenues induced by behavioral adjustment when the policymaker delivers a dollar

of consumption to workers at each occupation. In the short-run the marginal excess

burdens are close to zero indicating small behavioral revenue consequences. An

extra dollar of consumption delivered to a worker in the highest paid and highest

taxed legal occupation costs $0.95 in the short-run because some workers migrate

to legal from lower earning and less taxed occupations or are retained by legal

generating a small offsetting revenue gain of $0.05. Conversely, an extra dollar

delivered to a worker in the low paid and low taxed maintenance occupation costs

$1.06. The additional cost comes from a small short-run population increase in this

low tax occupation. Confronted with this evidence, a policymaker concerned with

redistributing from higher to lower earning workers might judge the incentive costs

to be small and be encouraged to undertake a strongly redistributive reform across

occupations.34 However, the long-run marginal excess burdens are significantly

larger. The long run cost of delivering resources to those in the legal occupation is

$0.52 on the dollar, while the long run cost of delivering to those in maintenance is

$1.71 on the dollar. A dollar taken from those working in the legal occupation and

delivered to those in maintenance depresses revenues by $1.19 in the long-run.

The lowest paid occupation, food services, stands out. Since taxes are monotone

in income and own elasticities are positive, a force is introduced for marginal excess

burdens that fall with the income-ranking of an occupation. This suggests that

the marginal excess burden should be highest in the food service occupation since

a dollar delivered to those in this occupation draws workers towards the lowest

income and tax payment. The short run marginal excess burden in food services is

highest, but this is not the case in the long run, when the marginal excess burden is

lower than in the higher earning maintenance and health service occupations. The

relatively low long run marginal excess burden at the food services occupation is

driven by relatively low long run own and (in absolute value) cross semi-elasticities
1
P
∂P
∂c

. Our long run substitution formula (19) attributes this to relatively low retention

by food services that dampens long run accumulation of workers in this occupation.

34This evidence only relates to the occupational choice margin. The policymaker may be concerned
with distortion to the hours margin or other margins along which short run adjustment is possible.
However, the empirical public finance literature has emphasized low compensated elasticities of labor
supply and attributed larger short run responses to timing and evasion. It argues that the latter
are best confronted by broadening the tax base and removing avoidance opportunities rather than
lowering tax rates. See Saez et al. (2012).
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6.3 Optimal tax results

Welfare criteria Saez (2002) advocates for direct specifications of marginal social

welfare weights that encode transparently the policymaker’s taste for local redistri-

bution at alternate consumption allocations. We first follow this approach and set

optimal marginal social welfare weights equal to 1
Υ
∂u(c)
∂c

= a
Υ

1
c
. This choice aligns with

Saez (2002)’s specification in a static occupational choice setting. It also implies a

direct inverted relationship between consumption allocations and marginal excess

burdens at the optimum since then from (17):

c

E[c]
=

1

1+MEB
. (42)

In the macroeconomics literature, criteria such as M(c) = P0
⊤V(c), with ∂M

∂c
= P0

⊤ ∂V
∂c

,

or M(c) = P(c)⊤V(c), with ∂M
∂c

= P⊤ ∂V
∂c

+ V⊤ ∂P
∂c

, are frequently employed. These

alternatives tilt the social weighting towards, respectively, lower consumptions

encountered earlier in life or higher consumptions encountered later in life.35 We

consider alternative welfare criteria later.

Optimal taxes under the benchmark welfare criterion Under our benchmark welfare

specification given the parameter values described above and utilizing the argument

in Appendix C to calculate counterfactual transitions and state distributions, equa-

tion (17) is solved to yield long-run stationary optimal consumption, wage, and tax

allocations.

Figure 4 illustrates optimal and actual taxes and average income tax rates by

occupation. Actual values are averaged within occupation and describe the effective

occupational tax schedule in the U.S.. The optimal tax code is well approximated by

an affine income tax (with the partial exception of food services, which is discussed

below). This approximated code features an intercept of -$6,769 and a slope of 0.4

and, hence, is equivalent to a deduction of $17,059 and a flat marginal tax rate

of 0.4.36 It is close to (but slightly more redistributive) than the actual effective

occupational income tax code which is well approximated by an affine function with

intercept -$6,594 (deduction: $16,739) and marginal tax rate 0.39. Thus, the large

long run distribution sensitivities and marginal excess burdens obtained at the data

allocation (and also found at the optimum, see Appendix D for tables of optimal

35Our benchmark criterion can be formulated as a weighting over lifetime utilities λ⊤V, with
λ =

{(
1− β

1−β
δ

1−δ

)
P+

(
β

1−β
δ

1−δ

)
P0

}
fixed in the optimization.

36Here and subsequently all dollar amounts are in 2019 US dollars.
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(c) Taxes: Data
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(d) Average Income Tax Rates: Data

Figure 4: Taxes and Average Income Tax Rates by Occupation at the Optimum and
in the Data. Benchmark welfare criterion. Incomes and tax payments in 2019 USD.

values) rationalize an optimal occupational tax function not very distant from actual

under the selected welfare criterion. As noted, the low short run elasticities and

marginal excess burdens would, in contrast, suggest much greater potential for

reform of actual taxes at the criterion.

The food services occupation again emerges as a moderate outlier. The average

tax rate paid by workers in this occupation is about 6% below that implied by

the approximately optimal affine code and about 8% below that paid in the data.

This amounts to a reduction in tax of about $1,790 or an additional tax deduction

of $4,511 for food services workers. Again, this is underpinned by the relatively
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greater churn of workers through food services. This underpins lower own and cross

elasticities and marginal excess burden values for this occupation relative to other

low paying ones and rationalizes correspondingly lower taxes.37

Optimal taxes through the lens of the inverted optimal tax formula Table 2 shows the

costs of inducing long and short run unit population movements towards selected

occupations in thousands of 2019 dollars at the optimum.

Occupation Long Run Cost Short Run Cost
Legal 22.75 180.68
Management 13.39 129.52
Healthcare practitioner and technical 7.67 75.31
Business and financial 6.07 58.73
Education, training, and library −2.93 −32.05
Installation, maintenance, and repair −3.05 −34.89
Construction and extraction −4.78 −52.88
Transportation and material moving −6.67 −71
Office and administrative support −7.99 −74.6
Personal care and service −12.15 −90.7
Healthcare support −12.27 −101.54
Building and grounds cleaning and maintenance −11.78 −104.53
Food preparation and serving −15.98 −114.37

Table 2: Long and short run costs of inducing population movement (selected
occupations).

From (30) the long run cost is exactly the optimal tax variation T−G1 = Cov(Ω,C)

around the mean. Table 2 indicates that in most cases short run costs are an order of

magnitude larger than their long run counterparts in absolute value. Intuitively, low

short run population elasticities necessitate large consumption reallocations to in-

duce population movement towards a target occupation. These, in turn, imply large

redistributive costs or benefits depending on whether the reallocation is directed

towards a high or low paid occupation. In contrast much larger long run elasticities

of population adjustment require much smaller consumption reallocations to induce

long run population movements towards target occupations.

6.4 Optimal Taxation by Educational Group

A concern with the benchmark perpetual youth model and the previous results is

that all exogenous heterogeneity is attributed to initial occupation and transitory

37For example, the optimal long run own semi-elasticity in food services (2.77) falls sharply relative
to higher paid maintenance (3.57).
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shocks. Different persistent exogenous worker types may exhibit different mobility

patterns and may merit different tax treatments (if they can be identified by the

policymaker). A natural starting point is to use education to proxy persistent worker

skill types.38 This is problematic, however, as education is in part a choice and

policy contingent on education may distort that choice. Consequently, we extend

our benchmark model to allow entrant workers an education and initial occupation

choice contingent on a shock draw. In subsequent periods, surviving workers select

only occupations, but with payoffs and a cost of adjustment that depend on their

education. Thus, in these periods, education functions as a “type”. We assume

that the policymaker can implement education and occupational contingent taxes

and consumption allocations and investigate the extent to which different mobility

patterns of education types (and different entrant choices) shape policy.

Extended model with an educational choice Formally, the worker state space is

extended to include two components, i = (o, s) ∈ O × S = I, with o ∈ O = {1, . . . , O}
an occupation and s ∈ S = {1, . . . , S} an education type. Entrants select a pair (o, s)

and have expected maximized value:

K0[V(c)] := E

[
max

s∈S,o∈O
{V(c|s)(o)− κ0(o, s) + ε(o, s)}

]
, (43)

with c ∈ RI
+ = ROS

+ , ε(o, s) a Gumbel preference shock and κ0 an entrant cost function.

The entrant choice distribution is:

P0(V(c))(o, s) =
ω0(o, s) exp

V(c|s)(o)∑
o′∈O,s′∈S ω0(o′, s′) expV(c|s′)(o′) , with ω0(o, s) := exp−κ0(o,s). (44)

Survivors can update their occupations, but not their educations. The latter,

however, influence payoffs and occupational costs of adjustment. Survivor payoffs

evolve as: V(c|s) = u(c, s) + βK[V(c|s), s], with u(c, s) = {u(c(o, s), s)}o∈O and for each

s ∈ S:

∀o ∈ O, K[v(s), s](o) := E

[
max
o′∈O

{v(o′, s)− κ(o′, o, s) + ε(o′)}
]
. (45)

38In Appendices B.4.3 and D.8, we pursue a different approach. We consider a special case of the
persistent type cases considered in Section 5. Specifically, we augment the baseline model with latent
mobility types. A worker is either mobile or immobile. If mobile, it is able to re-optimize its work
state; if immobile it cannot. A Markov chain describes the evolution of types over choice states. This
model is consistent with occupational mobility rates that are decreasing in tenure as documented in
Seo and Oh (2023) for sectors. Contingent on the utility parameter a, this model has similar long run
optimal tax implications to our benchmark.
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With Gumbel shocks, the corresponding education-specific Markov matrix is:

Q[V(c|s), s](o′, o) = ω(o′, o, s) expV(c|s)(o′)∑
r∈O ω(r, o, s) exp

V(c|s)(r) ,

where ω(o′, o, s) := exp−κ(o′,o,s).

The Cobb-Douglas technology is modified to accommodate different educational

types: F (p) = A
∏

o∈O
(∑

s∈S ψ(o, s)p(o, s)
)ϕ(o), where p(o, s) and ψ(o, s) are, respec-

tively, measures and productivities of workers over education and occupation. Im-

plied equilibrium pre-tax earnings are then: w(o, s) = ψ(o, s)ϕ(o)F (P)/
∑

s′∈S P(o, s′).

The policymaker is assumed to observe and condition taxes on (o, s). In our empirical

implementation of this framework, we assume two education choices: high school

and college. Estimation and calculation of optimal taxes proceeds similarly to the

benchmark case. See Appendix B.5.

Distributional elasticities and marginal excess burdens We begin by describing

evaluations of our long run elasticity and marginal excess burden formulas at the

empirical allocation. As in the benchmark case, long run elasticities are an order of

magnitude larger than short run. However, there are marked differences in these

elasticities across educational groups (see Figure 5a, which shows own long run

elasticities for different occupation/educational combinations plotted against the

average incomes of these combinations). In particular, at low paid occupations,

college educated workers have lower own long run elasticities than high school

workers (e.g. 1.057 (C) vs. 1.509 (HS) on food services, 1.076 (C) vs. 1.502 (HS) on

personal services). This is underscored by low attraction of college educated entrants

to low paid occupations and low retention at these occupations of college educated

survivors.39 Both forces suppress long run elasticities, the latter reducing long run

relative to short run elasticities for college educated at low paid occupations.

On average, college educated workers have larger absolute pay and, hence, tax

differentials across occupations than do the high school educated. Nonetheless, the

low elasticities associated with low income occupations translate into relatively low

long run marginal excess burdens for college workers in these occupations at the

empirical educational/occupational allocation. See Figure 5b.

Optimal tax results Figure 6 shows optimal taxes under our benchmark welfare

criterion. Overall, the optimal tax code is less redistributive than for the general

39For example, retention of college educated workers in food services is 0.8 versus 0.88 for high
school educated workers.
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Figure 5: Long run own elasticities and marginal excess burdens at the empirical
allocation.
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Figure 6: Taxes and Average Income Tax Rates by Occupation at the Optimum.
Benchmark welfare criterion.

population, with the approximating optimal affine tax function featuring a reduced

deduction of $11,321 and a lower marginal tax rate of 0.35. Although the tax code

retains a broadly affine structure when taxes are plotted against income at different

occupation/education type combinations, college educated workers in low paid
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occupations are outliers and pay low optimal taxes. Such tax treatments reflect low

own elasticities for these populations both at the empirical allocation as described

above and at the optimum.

7 Conclusion

Policymakers selecting tax designs for the long run must evaluate long run sub-

stitution patterns over income-generating activities. In equilibrium workers travel

between work states as they pursue opportunities, are dislodged by shocks, or retire

and are replaced. If tax variation shifts worker flows amongst states with different

onward diffusion characteristics, then long run responses to tax variation differ

from short run. In particular, long run responses exceed short run responses if

retention by destination states is large and adjusted flows take time to accumulate

in payoff enhanced states. Variation in short run substitution and post substitution

diffusion motivates differential optimal tax treatment of states with similar incomes,

but different accessibility and prospects. This paper develops interpretable formulas

that capture these dimensions of behavior and that describe the long run response

of distributions of workers over income-generating states to consumption variation.

It integrates these formulas into optimal tax equations. In addition, it provides new

“inverted” formulas that identify the long run social cost of targeting a proportional

reallocation of workers onto a state as a sufficient statistic for that state’s optimal

tax. In benchmark logit and Calvo specifications with a utilitarian objective, such

costs reduce to scaled reciprocals of marginal utilities of consumption net of mean.

In more complex settings, the consumption reallocations needed to induce a pro-

portional population reallocation must be “tuned” to suppress non-uniformities in

substitution and diffusion.

The formulas developed in this paper are readily connected to data via established

techniques in structural dynamic discrete choice estimation and the dynamic hat

algebra approach of trade. The latter leverages information contained in observed

transitions across work states and requires identification and estimation of only

a small number of “structurally sufficient” preference parameters. We implement

these procedures to explore the optimal taxation of occupations. We find that

long-run occupational choice elasticities are an order of magnitude greater than

their short-run counterparts and rationalize an optimal policy similar to the de facto

affine-in-income occupational tax schedule prevailing in the U.S.. This affine form

is augmented with relatively lower taxes for low income/high churn occupations.

41



We view our methods and approach as a complement to the rich empirical litera-

ture on the elasticity of taxable income, or to work in macro-public finance that has

focused on the intensive hours margin, latent general or pre-career human capital

formation. Our extension section and appendix indicates further dimensions for

enriching and developing our analysis to accommodate unobserved persistent het-

erogeneity, incomplete tax systems, and transitions. We leave further development

in these directions to future work.
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A Appendix: Main Proofs

Proof of Proposition 1 Let ∂Q denote a perturbation of Q such that Q+∂Q remains a
transition matrix and let ∂P denote the corresponding perturbation of the stationary
distribution P. From Golub and Meyer (1986), Theorem 3.2, ∂P = (I−Q)#∂F, where
∂F = ∂QP denotes the vector of flow responses associated with the perturbation.
Equation (18) follows immediately. By Lamond and Puterman (1989), p. 123, if Q is
ergodic and, hence, aperiodic, (I−Q)# =

∑∞
m=0(Q

m−ΠP). Equation (19) then follows
from (18) since ΠPΦ = 0. □
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Proof of Lemma 1 By definition:

(I− S)DP =
[
P⊤ ⊗ I

] ∂(vec Q)

∂v
= δ

∂P0

∂v
+ (1− δ)

[
P⊤ ⊗ I

] ∂(vec Q)

∂v
,

and the i-th column of (I− S)DP gives the adjustment in population flows induced
by an additional util in the i-th state. Since the overall population is constant, the
total adjustment is zero. Hence, summing the elements in the i-th column gives
0 = P(i) −

∑
j∈I S(j, i)P(i) or 1 =

∑
j∈I S(j, i). Recall from Section 2 that Q(j, k) and

P0(j) are decreasing in v(i), i ̸= j. Thus, an extra unit of payoff at i reduces the
flow of workers to j ̸= i, for each j ∈ I, S(j, i) ≥ 0. It is possible that S(i, i) < 0 for
some i. However, (I − S)DP

−1 ∂V
∂c

= t(I − S)DP
−1 1

t
∂V
∂c

= (I − {(1 − t)I + tS})DP
−1 1

t
∂V
∂c

.
Thus, a rescaling of utilities (inclusive of costs and shocks) by 1/t ∈ [1,∞), that
leaves behavior unchanged, modifies S as: S̃ = (1 − t)I + tS. Hence, it is always
possible to renormalize utilities so that S is positive and Markov. Further, since,
from Section 2, adding an extra util at all states leaves behavior unchanged, it
follows that each row sum must also be zero: 0 = (I− S)DP1. Hence, P = SP and P

is a stationary distribution of S. For reversibility, recall that Q = ∂K
∂v

⊤ and P0 =
∂K0

∂v

⊤

and so (I−S)DP = (1−δ)∂
2(K⊤P)
∂v2 +δ

∂2(K⊤
0 )

∂v2 and is the Hessian of (1−δ)K⊤P+δK0. Thus,
(I − S)DP and, hence, SDP is symmetric. Then SDP = DP

⊤S⊤ and S is reversible.
Finally, Ψ = Ξ∂V

∂c
= DP

−1(I − S)DP
∂V
∂c

= (I − (S)⊤)∂V
∂c

= (I − S⊤)∂V
∂c

, where the last
equality uses the reversibility of S. □

Lemma A.1 (Short run substitution). There exists a function H = {Hk} such that:

∀j, k, S(j, k) = I(j, k)− 1

P(k)

∑
i∈I

Hk(Q)(j, i)P(i),

where H depends only on the distribution over payoff shocks.

Proof. By definition: S(j, k) = I(j, k)− 1
P(k)

∑
i∈I

∂Q(v)(j,i)
∂v(k)

P(i). For expositional simplicity,
set aside perpetual youth and assume that payoff shocks are identically distributed
at each state. Then: Q(v)(j, i) = Q(v)(j, i) = Q̃({v(k) − κ(k, i) − v(I) + κ(I, i)}I−1

k=1)(j),
where Q̃ : RI−1 → D, with D the set of probability distributions on I. Hence,
S(j, k) = I(j, k) − 1

P(k)

∑
i∈I

∂Q̃({v(k)−κ(k,i)−v(I)+κ(I,i)}I−1
k=1)(j)

∂v(k)
P(i). By an argument in Hotz

and Miller (1993), Q̃ is invertible. The result follows.

Proof of Proposition 2 Substituting (I−Q)# =
∑∞

m=0{Qm−ΠP} into (18) and using the
reversibility of S gives: ∂P

∂c
=
∑∞

m=0{Qm −ΠP}(I − S)DP
∂V
∂c

=
∑∞

m=0{Qm −ΠP}DP(I −
DP

−1SDP)
∂V
∂c

=
∑∞

m=0{Qm − ΠP}DP(I − S⊤)∂V
∂c

. Separating out the first time and
using the definition of ÊS then yields: ∂P

∂c
= ÊS

[
∂V
∂c

]
+
∑∞

m=1{Qm −ΠP}DP(I− S⊤)∂V
∂c

.
Observing that the (j, k)-th element of: {Qm − ΠP}DP(I − S⊤)∂V

∂c
is an expectation

(over i under P) of {Qm(j, i)−P(j)}
{
∂V(i)
∂c(k)

− ES

[
∂V(l)
∂c(k)

∣∣∣ i]} and that since both terms in
the product have a zero expectation under P, this element equals the (j, k)-th term
of Cov

(
Qm, ÊS

[
∂V
∂c

])
. The right hand side covariance in (22) follows. □

45



Proof of Proposition 4 Begin with (17), 1
Υ
∂M
∂c

⊤
= P −

(
∂P
∂c

)⊤
T. Replacing P with

DPQ
1 and substituting for

(
∂P
∂c

)⊤
=
(
∂V
∂c

)⊤
DP(I− S⊤)(I−Q⊤)# gives: 1

Υ
∂M
∂c

⊤
= DP1−(

∂V
∂c

)⊤
DP(I − S⊤)(I − Q⊤)#T. Reorganizing: (I − S⊤)(I − Q⊤)#T = θ, where θ :=

DP
−1
(
∂V
∂c

⊤
)−1

DP1 − DP
−1
(
∂V
∂c

⊤
)−1

1
Υ
∂M
∂c

⊤. Since S is a Markov matrix, the group

inverse (I − S⊤)# of I − S⊤ exists and: (I − Q⊤)#T = (I − S⊤)#θ + nS, where nS is
an element of the null space of I − S⊤. Since S is a Markov matrix nS = gS1 for
some constant gS. Using (I−Π⊤

P)(I−Q⊤)# = (I−Q⊤)#, (I−Π⊤
P)(I− S⊤)# = (I− S⊤)#

and (I − Π⊤
P)1 = 0, we obtain: (I − Π⊤

P)(I − Q⊤)#T = (I − Π⊤
P)(I − S⊤)#θ + (I −

Π⊤
P)gS1 =⇒ (I−Q⊤)#T = (I− S⊤)#θ. Next noting that (I−Q⊤) is the group inverse

of (I −Q⊤)#, we have: T = (I −Q⊤)(I − S⊤)#θ + nQ, for some nQ in the null space
of (I − Q⊤)#. Recalling that (I − Q⊤)# =

∑∞
n=0((Q

⊤)n − Π⊤
P), we have that nQ = gQ1

for some constant gQ, so that: T = (I − Q⊤)(I − S⊤)#θ + gQ1. Next observe that:
P⊤T = P⊤(I−Q⊤)(I−S⊤)#θ+gQP

⊤1 = gQ, where we use the fact that: P⊤(I−Q⊤) = 0.
Thus, G = P⊤T = gQ. Hence, we have: T = (I−Q⊤)(I− S⊤)#θ +G1, which completes
the proof. □

Proof of Proposition 4 Begin with (17), 1
Υ
∂M
∂c

⊤
= P −

(
∂P
∂c

)⊤
T. Replacing P with

DPQ
1 and substituting for

(
∂P
∂c

)⊤
=
(
∂V
∂c

)⊤
DP(I− S⊤)(I−Q⊤)# gives: 1

Υ
∂M
∂c

⊤
= DP1−(

∂V
∂c

)⊤
DP(I − S⊤)(I − Q⊤)#T. Reorganizing: (I − S⊤)(I − Q⊤)#T = θ, where θ :=

DP
−1
(
∂V
∂c

⊤
)−1

DP1 − DP
−1
(
∂V
∂c

⊤
)−1

1
Υ
∂M
∂c

⊤. Since S is a Markov matrix, the group

inverse (I − S⊤)# of I − S⊤ exists and: (I − Q⊤)#T = (I − S⊤)#θ + nS, where nS is
an element of the null space of I − S⊤. Since S is a Markov matrix nS = gS1 for
some constant gS. Using (I−Π⊤

P)(I−Q⊤)# = (I−Q⊤)#, (I−Π⊤
P)(I− S⊤)# = (I− S⊤)#

and (I − Π⊤
P)1 = 0, we obtain: (I − Π⊤

P)(I − Q⊤)#T = (I − Π⊤
P)(I − S⊤)#θ + (I −

Π⊤
P)gS1 =⇒ (I−Q⊤)#T = (I− S⊤)#θ. Next noting that (I−Q⊤) is the group inverse

of (I −Q⊤)#, we have: T = (I −Q⊤)(I − S⊤)#θ + nQ, for some nQ in the null space
of (I − Q⊤)#. Recalling that (I − Q⊤)# =

∑∞
n=0((Q

⊤)n − Π⊤
P), we have that nQ = gQ1

for some constant gQ, so that: T = (I − Q⊤)(I − S⊤)#θ + gQ1. Next observe that:
P⊤T = P⊤(I−Q⊤)(I−S⊤)#θ+gQP

⊤1 = gQ, where we use the fact that: P⊤(I−Q⊤) = 0.
Thus, G = P⊤T = gQ. Hence, we have: T = (I−Q⊤)(I− S⊤)#θ +G1, which completes
the proof. □

Lemma A.2 below provides an expansion for Ω in terms of behavioral deviation
from Calvo-logit matrices. It utilizes the expansion to obtain an approximation to Ω.

Lemma A.2. Suppose a dynamic discrete choice equilibrium with transition Q, tran-
sition for survivors Q(V), substitution matrix S, and stationary distribution P. Let ψ
and Q̃ define best fit Calvo-logit behavior to this equilibrium and let ∆Q, ∆S, and ∆Q
be as in (36). Then:

Ω = ν(I−∆⊤
Q)
(
I−Π⊤

P + ψ
∞∑
n=0

(1− ψ)n
∞∑
m=1

(
m+ n

m

)
ψm(∆⊤

S )
m
)
(I−∆⊤

Q)DP
−1, (A.1)

where
(
m+n
m

)
= n+m!

m!n!
is a binomial coefficient. Let ∥ · ∥ denote a (sub-multiplicative)
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matrix norm. If max{∥∆Q∥, ∥∆S∥, ∥∆Q∥} ≤ ϵ for some ϵ ∈ (0, 1), then:

∥ΩDP − ν
(
I−Π⊤

P +∆⊤
S −∆⊤

Q −∆⊤
Q
)
∥ ≤ 4ν

ϵ2

1− ϵ
. (A.2)

Proof. Recall: ΩDP = (I − Q⊤)(I − S⊤)#DP
−1(I − βQ)DP. Proceed term-by-term.

First: I − Q⊤ = I − Q̃⊤ − ψ∆⊤
Q = ψ(I − Π⊤

P) − ψ∆⊤
Q. Second: DP

−1(I − βQ)DP =

νI − βψDP
−1ΠPDP − ν∆⊤

Q = νI − βψΠ⊤
P − ν∆⊤

Q. Now turn to S and recall: S =

Q̃+ ψ∆S = (1− ψ)I+ ψΠP + ψ∆S. Since ΠP is a stationary distribution for S and Q̃,
∆SΠP = 0. In addition, since ∆S is a matrix whose columns are differences of (scaled)
probability distributions, 1⊤∆S = 0. Consequently, since the rows of ΠP are constant,
ΠP∆S = 0. Substituting for S in Sn −ΠP, expanding and using these relations gives:∑∞

n=0(S
n−ΠP) =

∑∞
n=0(1−ψ)n(I−ΠP) +

∑∞
n=0

∑n
m=1

(
n
m

)
ψm(1−ψ)n−m∆m

S = 1
ψ
(I−ΠP) +∑∞

n=0(1− ψ)n
∑∞

m=1

(
m+n
m

)
ψm∆m

S , where
(
m+n
m

)
= (m+n)!

m!n!
is a binomial coefficient and the

second right hand sums are well defined given ∥∆S∥ < ϵ < 1. As for ∆S, ∆QΠP = 0
and ΠP∆Q = 0. Using this and assembling elements:

Ω =νψ(I−∆⊤
Q)

(
1

ψ
(I−Π⊤

P) +
∞∑
n=0

(1− ψ)n
∞∑
m=1

(
m+ n
m

)
ψm∆m

S

)(
I−∆⊤

Q
)
DP

−1.

Extracting the ∆S term from the right hand side sum gives: Ω = ν(I−Π⊤
P −∆⊤

Q)(I−
Π⊤

P +∆⊤
S +ψ

∑∞
n=0(1−ψ)n

∑∞
m=2

(
m+n
m

)
ψm∆m

S )(I−∆⊤
Q). Expanding the right hand side:

Ω − ν(I − Π⊤
P + ∆⊤

S − ∆⊤
Q − ∆⊤

Q) = ν(−∆⊤
Q∆

⊤
S − ∆⊤

S∆
⊤
Q + ∆⊤

Q∆
⊤
Q + ∆⊤

Q∆
⊤
S∆

⊤
Q + ψ(I −

∆⊤
Q)
∑∞

n=0(1−ψ)n
∑∞

m=2

(
m+n
m

)
ψm∆m

S )(I−∆⊤
Q). Thus, ∥Ω−ν(I−Π⊤

P+∆⊤
S −∆⊤

Q−∆⊤
Q)∥ =

ν∥(−∆⊤
Q∆

⊤
S−∆⊤

S∆
⊤
Q+∆⊤

Q∆
⊤
Q+∆⊤

Q∆
⊤
S∆

⊤
Q+ψ(I−∆⊤

Q)
∑∞

n=0(1−ψ)n
∑∞

m=2

(
m+n
m

)
ψm∆m

S )(I−
∆⊤

Q)∥. Using the sub-multiplicativity of the matrix norm and the bounds in the
proposition:∥∥∥Ω− ν

(
I−Π⊤

P +∆⊤
S −∆⊤

Q −∆⊤
Q
) ∥∥∥ = ν{3ϵ2 + ϵ3 + ψ(1 + ϵ)2K}, (A.3)

where: K :=
∥∥∑∞

n=0(1− ψ)n
∑∞

m=2

(
m+n
m

)
ψm∆m

S

∥∥. Evaluation of the latter term using
the sub-multiplicativity of norms, the bounds on the deviation matrices and the
definition of the negative binomial distribution, ϵ < 1 yields the bound: 0 < K ≤ ϵ2

ψ(1−ϵ) .
Substituting this into (A.3) gives the desired result.
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Online Appendices: Not for Publication

B Appendix: Additional Theoretical Results

B.1 Propagation in terms of mean first passage times

Expression (19) can be compactly reformatted in terms of semi-elasticities and
expected travel times or mean first passage times between states. Let mQ denote
the matrix of mean first passage times for Q, with mQ(j, i), j ̸= i, the expected travel
time to j from i given Q and mQ(i, i) the expected first return time to i given Q.
Proposition 1 has the following corollary.

Corollary 1 (Propagation; Semi-elasticities). Let Ψ, with (j, k)-th element Ψ(j, k) :=
1

P(j)

∑
i∈I

∂Q(j,i)
∂c(k)

P(i), denote the matrix of short run semi-elasticities of P. The long and
short-run semi-elasticity matrices of P with respect to c are related via:

1

P

∂P

∂c
= Ψ− Cov (mQ,Ψ) , (B.1)

with elements 1
P(j)

∂P(j)
∂c(k)

= Ψ(j, k) − Cov (mQ(j, ·),Ψ(·, k)) and where covariances are
with respect to P.

Proof. From Proposition 1, ∂P
∂c

= (I−Q)#Φ. From Cho and Meyer (2000), the (j, i)-th,
j ̸= i, off diagonal element of (I−Q)# is given by a(j, j)−P(j)mQ(j, i), where a(j, j) is
the j-th diagonal element of (I−Q)#. Consequently,

∂P(j)

∂c(k)
= a(j, j)

∑
i∈I

Φ(i, k)−P(j)
∑
i ̸=j

mQ(j, i)Φ(i, k). (B.2)

However,
∑

i∈I ∂Φ(i, k) = 0. Combining this with the fact that the first return time
mQ(j, j) equals 1

P(j)
(see Kemeny and Snell (1976)), and (B.2) gives: 1

P(j)
∂P(j)
∂c(k)

= Ψ(j, k)−∑
i∈I mQ(j, i)Φ(i, k) = 1

P(j)
∂P1(j)
∂c(k)

−
∑

i∈I mQ(j, i)Ψ(i, k)P(i). Finally since:
∑

i∈I Ψ(i, k)P(i)

=
∑

i∈I Φ(i, k) = 0, we obtain the desired result (B.1).

Equation (B.1) implies that long and short run semi-elasticities of P deviate
from one another to the extent that mean first passage times of Q covary with
short-run semi-elasticities. The latter covariance succinctly captures the role of
post-substitution behavior in modifying long run relative to short run substitution
patterns. Consider a pair of states j and k and suppose that a consumption
increment at k depresses worker flows to states with low mean first passage times
to j (resp. enhances worker flows to states with high mean first passage times to
j). Then the covariance Cov (mQ(j, ·),Ψ(·, k)) is positive, 1

P
∂P
∂c
(j, k) is reduced relative

to Ψ(j, k) and long run substitution is enhanced. In Example 5 in the main text,
workers in dead end (de) jobs have a lower probability of transition and, hence, a
higher mean first passage time to high pay (hp) jobs than do workers in stepping
stone (ss) jobs. An additional dollar on a de job would draw school leavers from
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ss to de and, hence, generate a positive value for Cov (mQ(hp, ·),Ψ(·, de)). Long run
substitution between de and hp is enhanced.40

B.2 Further interpretation of the inverted optimal tax equation (30)

Consider each component of the Ω = AB matrix in turn. The first is the reverse
propagation matrix A = I−Q⊤. Its i-th row gives the short run population shift needed
to induce a long run unit population reallocation to i. It inverts the propagation
matrix (I−Q⊤)#. To see this explicitly, note that if the short run population shift
{I(k, i) −Q(k, i)}k∈I is repeatedly applied, then, cumulating the impact and taking
account of post-substitution behavior, the long run change in population at each j
is:

∞∑
n=0

∑
k∈I

Q(j, k)n(I(k, i)−Q(k, i)) = I(j, i)−P(j) = ∆(j, i). (B.3)

Thus, the repeated short run population shift A(i, ·) = (−Q(1, i) . . . 1 − Q(i, i) . . . −
Q(I, i)) implements the long run shift ∆(·, i). If Q = ΠP, then A(i, ·) = ∆⊤(i, ·). In
this case a long run population reallocation ∆(·, i) is achieved via repeated short
run shifts of ∆(·, i), each shift diffusing in the subsequent period. More generally,
short run shifts must be “tuned” to generate a unit long run population reallocation
towards i: short run shifts to states k with high onward propagation from i must be
damped (relative to ∆(k, i) = I(k, i)−P(k)), while those with low onward propagation
must be relatively enhanced. In particular, for strongly persistent chains the
elements of A = I−Q⊤ must be reduced towards the zero matrix and the required
short run shifts are small.

Define ∆c ∈ RI to be a mean payoff-preserving consumption reallocation if
P⊤ ∂V

∂c
∆c = 0. Mean payoff-preserving consumption reallocations leave expected

lifetime payoffs at the stationary equilibrium unchanged. The rows of the matrix
B = (I− S⊤)#DP

−1(I− βQ) give the mean payoff-preserving flow payoff reallocations
needed to induce short run population shifts to desired states. B may be decomposed
as:

B = (I− S⊤)#DP
−1︸ ︷︷ ︸

B1

(I− βQ)︸ ︷︷ ︸
B2

with B1 giving the mean preserving lifetime payoff reallocations needed to induce
short run unit population shifts to desired states and B2 converting these into flow
payoff reallocations. If S = ΠP, as is the case in the repeated logit, then B1 reduces
to (I−ΠP)DP

−1 with i-th row (−1, . . . , 1/P(i)−1, . . . ,−1). In this case, lowering payoffs
by one in each state and augmenting payoff at i by 1/P(i) induces a short run unit
population shift to i. More generally and consistent with our previous discussion,
payoff reallocations must be tuned to induce a short run shift to a desired state by

40Relatedly, consider the case j = k. Equation (B.1) implies that a consumption increment at k
has a larger long run impact on the population at k if −Cov (mQ(k, ·),Ψ(·, k)) > 0. In particular, if
the consumption increment induces workers to substitute from states with high mean first passage
times to k, then the covariance will be negative and large in absolute value.
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concentrating reductions on alternatives with low substitutability to i. The matrix
B2 gives the consumption adjustments required to generate an extra unit of payoff
in each state. B2 = (I− βQ(V)) and, hence, takes account of future propagation of
workers when determining flow payoff adjustments.

The matrix: C = D∂u
−1
(
1−DP

−1 1
Υ
∂M
∂c

⊤
)

describes the resource cost of shifting a
unit of flow payoff towards workers in state i net of its redistributive impact. If M
is a weighted sum of lifetime utilities, then C = D∂u

−1
(
1− 1

Υ
DP

−1D∂u(I− βQ)−1λ
)
,

where λ is the Pareto weight vector. In particular, if the policymaker’s social
criterion is utilitarian (with respect to lifetime utilities), λ = P, then Cov(Ω,C) =

ABDPD∂u
−1(1 − DP

−1 1
Υ
∂M
∂c

⊤
) reduces to ABD∂u

−1DP1 = ABD∂u
−1P. The rows of

ABD∂u
−1DP give the mean payoff-preserving consumption reallocations needed to

induce long run population movements to target states. Since such reallocations
leave mean lifetime payoffs unchanged, they do not affect this utilitarian criterion
and, hence, there is no redistributive cost or benefit in this case, just the direct
resource cost.

B.3 Equivalence of models with and without explicit amenity values

The next lemma shows that models with separable amenity values at different states
may be renormalized to absorb these values into costs of adjustment, purging them
from the analysis. We do so for a dynamic logit without perpetual youth, but the
argument is generalizable.

Lemma B.1. Given a dynamic logit model without perpetual youth in which workers
have flow utilities net of Gumbel shocks a log c(i) + h(i) and costs of adjustment κ(j, i),
there is an alternative model with amenity values h′ = 0 and costs of adjustment
κ′ satisfying for all i, κ′(i, i) = 0, that generates the same transition matrices at all
consumption allocations as the original environment.

Proof. Express lifetime payoffs at a given arbitrary consumption allocation c as:

V(j)− κ(j, i) = Ṽ(j, i) := a log c(j) + h(j)− κ(j, i) + βV(j),

with V(j) = log
∑

expṼ(k,j). The associated transition is Q(j, i) = expa log c(j)+h(j)−κ(j,i)+βV(j)∑
k expa log c(k)+h(k)−κ(k,i)+βV(k)

.

Define: κ′(j, i) := − 1
1−βh(j) + κ(j, i) + 1

1−βh(i) −
1

1−βκ(i, i) +
β

1−βκ(j, j), where note

κ′(j, j) = 0. In addition, define: V
′
(j) := V(j) − 1

1−βh(j) +
1

1−βκ(j, j) and Ṽ′(k, j) :=

3



Ṽ(k, j)− 1
1−βh(j) +

1
1−βκ(j, j). Then:

Q(j, i) =
expa log c(j)+h(j)−κ(j,i)+βV(j)∑
k∈I exp

a log c(k)+h(k)−κ(k,i)+βV(k)

=
expa log c(j)+h(j)−κ(j,i)+ β

1−β
h(j)− β

1−β
κ(j,j)+βV

′
(j)∑

k∈I exp
a log c(k)+h(k)−κ(k,i)+ β

1−β
h(k)− β

1−β
κ(k,k)+βV

′
(k)

=
expa log c(j)−{− 1

1−β
h(j)+κ(j,i)+ 1

1−β
h(i)− 1

1−β
κ(i,i)+ β

1−β
κ(j,j)}+βV′

(j)∑
k∈I exp

a log c(k)−{− 1
1−β

h(k)+κ(k,i)+ 1
1−β

h(i)− 1
1−β

κ(i,i)+ β
1−β

κ(k,k)}+βV′
(k)

=
expa log c(j)−κ′(j,i)+βV

′
(j)∑

k∈I exp
a log c(k)−κ′(k,i)+βV

′
(k)

Thus, workers with zero amenity values and costs of adjustment κ′ and continuation
payoffs V

′
make the same choices at (arbitrary) c as agents with amenity values h,

costs of adjustment κ and continuation payoffs V. We conclude by showing that V
′

is the expected continuation payoff function for workers with costs of adjustment κ′.
First note Ṽ(j, i) = a log c(j) + h(j)− κ(j, i) + βV(j) and, hence,

Ṽ′(j, i) = Ṽ(j, i)− 1

1− β
h(i) +

1

1− β
κ(i, i)

= a log c(j) + h(j)− κ(j, i)− 1

1− β
h(i) +

1

1− β
κ(i, i) + βV(j)

= a log c(j) + h(j)− κ(j, i)− 1

1− β
h(i) +

1

1− β
κ(i, i) +

β

1− β
h(j)− β

1− β
κ(j, j) + βV

′
(j)

= a log c(j)− κ′(j, i) + βV
′
(j).

Also, V
′
(j) = V(j) − 1

1−βh(j) +
1

1−βκ(j, j) = log
∑

k∈I exp
Ṽ(k,j) + log exp− 1

1−β
h(j)+ 1

1−β
κ(j,j) =

log
∑

k∈I exp
Ṽ′(k,j). Combining the previous expressions, V′ is the lifetime expected

continuation payoff of agents with zero amenity values and costs of adjustment κ′

as desired.

B.4 Tax equations for settings with persistent types

This appendix describes sensitivity formulas and optimal tax equations for settings
with exogenously evolving persistent types that are not observed by the policymaker.
We first recall and elaborate the setting described in Section 5. Next, we describe an
inverted optimal tax equation for this setting that makes use of an aggregated Markov
chain. Finally, we describe a specialization of results to the “mobile-immobile” types
case considered in the main text.

4



B.4.1 The persistent type model

We adopt notation similar to that of Remark 5 and Section 5 in the main paper.
As there, we split the state space as I = X × A, with X a finite set of chosen and
publicly observed states of size X and A a finite set of exogenously determined
and privately observed states or types of size A. We refer to these as (chosen)
states and types below. Types are determined before choice within a period and
evolve according to a Markov chain with transition ρ and initial distribution ρ0. To
clearly distinguish conditional from joint probabilities, we modify notation from the
main text by placing |’s to separate conditioning arguments in probabilities. Let
Q(V(c))(x′|x, α′) denote the probability that a surviving worker of type α′ in chosen
state x selects x′ at a stationary equilibrium with consumption allocation c and
P0(V(c))(x|α′) the probability that an entrant of type α′ selects x given consumption
allocation c. The complete Markov matrix over types and chosen states may be
written compactly in matrix form as:

Q = (1− δ)DQ(ρ⊗ I) + δDΠP0
(Πρ0 ⊗ I), (B.4)

where DQ organizes the matrices Qα := Q(V(c))(·|·, α) onto a block diagonal matrix,
I is an identity matrix of dimension X, and DΠP0

organizes the matrices ΠPα
0
,

Pα
0 = P0(V(c))(·|α) onto a block-diagonal matrix.41 Element-wise Q has the form:

Q((x′, α′)|(x, α)) = (1− δ)Q(x′|x, α′)ρ(α′|α) + δP0(x
′|α′)ρ0(α

′), (B.5)

where dependence on c and v is suppressed in the notation. All sensitivity formulas
in the main text hold with Q defined as in (B.4) (or (B.5)). For example, eq. (18) or
(22) hold with component matrices Φ and S defined using Q as in the main text. The
resulting sensitivity formulas can be used to construct long run marginal excess
burdens and can be inserted into optimal tax equations as described in the main
text in (39).

B.4.2 Inverted optimal tax equations and aggregations of Markov chains

Let
P(x) =

∑
α∈A

P(x, α), (B.6)

denote the marginal stationary distribution over chosen states and:

Q(x′|x) =
∑
α′∈A

∑
α∈A

Q((x′, α′)|(x, α))P(x, α)

P(x)
(B.7)

the probability that a worker moves to x′ from x unconditioned on type at the steady
state. In general functions of random variables generated by Markov chains do not
evolve as Markov chains. In particular, xn = f(xn, αn) does not evolve as a Markov

41As in the main text, Πz denotes a matrix that repeats a vector z on its columns.
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chain (outside of special cases):

Prob(x′′|x′, x) = Prob(x′′, x′|x)
Prob(x′|x)

=
∑

A×A×A

Q(x′′, α′′|x′, α′)

 Q(x′, α′|x, α)P(x,α)

P(x)∑
A×AQ(x′, α′|x, α)P(x,α)

P(x)



̸=︸︷︷︸
in general

∑
A×A

Q(x′′, α′′|x′, α′)
P(x′, α′)

P(x′)
= Prob(x′′|x′).

Despite this Q is a Markov chain with stationary distribution P.

Lemma B.2. P is a stationary distribution of the Markov chain Q.

Proof. First, observe that for each x′, P(x′) =
∑

α,α′∈A
∑

x∈X Q(x′, α′|x, α)P(x, α) =∑
x∈X

∑
α,α′∈A Q(x′, α′|x, α)P(x, α) =

∑
x∈X Q(x′|x)P(x). Further, each Q(x′|x) is non-

negative and
∑

x′∈X Q(x′|x) = 1.

We refer below to Q as the aggregated (over type) transition matrix, but stress
again that the process describing worker transitions over observed states is not
Markov. Since P is a stationary distribution of Q, P = (I−Q)P and we continue to
have by the argument in the paper:

∂P

∂c
= (I−Q)#Φ, (B.8)

with:

Φ(x′|x) =
∑
x′′∈X

∂Q(x′|x′′)
∂c(x)

P(x′′).

Now, however, differentiating (B.7),

∂Q(x′|x)
∂c(y)

=
∑
A×A

∂Q(x′, α′|x, α)
∂c(y)

P(x, α)

P(x)

+
∑
A×A

{Q(x′, α′|x, α)−Q(x′|x)} 1

P(x)

∂P(x, α)

∂c(y)
. (B.9)

In the long run, a consumption perturbation modifies the aggregate one step transi-
tion matrix Q by perturbing the type-specific transitions Q(·|·, α) (the first right hand
side term in (B.9)) and the stocks P(·, α) of different agent types with different flow
rates in each state (the second right hand side term in (B.9)). While the first of these
responses is instantaneous, the second is not. The term Φ provides the long run
response of the net flow of workers into j induced by a consumption perturbation at
k. Absent type heterogeneity, this response is immediate. With such heterogeneity,
it takes time to realize.
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Plugging (B.8) into the optimal tax equation gives:

DP − 1

Υ

∂M

∂c

⊤
=
∂P

∂c

⊤

T = Φ
⊤
(I−Q

⊤
)#T. (B.10)

This equation is similar to that previously obtained in the setting without persistent
heterogeneity except that P, Q and Φ now relate to the aggregated process over
private types.

In our earlier analysis we obtained an inverted optimal tax equation by further
factoring the analogue of Φ and applying a generalized inverse to the matrix pre-
multiplying taxes. In the current setting such a factorization is not available.
However,

1⊤Φ(·, y) =
∑
x′∈X

∑
x∈X

∂Q(x′, x)

∂c(y)
P(x) = 0.

This motivates us to define:
S := I−Φ.

Then, Φ = I− S and 1⊤Φ = 0 implies 1⊤ = 1⊤S and, hence, each column of S sums
to one. After possible renormalization of utilities, all elements of S are non-negative.
Hence, S is a Markov matrix. Replacing Φ

⊤
with (I−S) in (B.10) and applying similar

arguments to that used in the model without heterogeneity and the definition of S
yields:

T = (I−Q
⊤
)(I− S

⊤
)#C+G1,

with C := DP− 1
Υ
∂M
∂c

⊤. The interpretation is modified from that in the main text. Now,

(I−S
⊤
)# is the consumption reallocation needed to induce a “unit flow of population”

towards each state in each period. Precisely, if consumption is reallocated according
to {(I− S

⊤
)#(j, i)}i∈I, then in the induced steady state an additional 1% of workers

from each state will flow every period towards j. Again I−Q accounts for subsequent
propagation of each inflowing wave. Together each row of (I−Q

⊤
)(I− S

⊤
)# gives the

consumption reallocation needed to induce a long run population shift to each state.
The vector C costs this consumption reallocation (taking into account redistribution
costs or benefits from the reallocation).

B.4.3 The mobile-immobile model

This appendix section describes a simple persistent types economy: the “mobile-
immobile” economy. Such a model was previously proposed by Artuç et al (2010).
The model is consistent with evidence that a workers’ probability of leaving an occu-
pation state is declining in their occupational tenure. In the model, the probability
of being a mobile type declines conditional on occupational tenure. This section
extends the mobile/immobile formulation of Artuç et al (2010) to accommodate
perpetual youth and provides long run distributional sensitivity formulas for it.
We describe its quantification and give quantitative results for this environment in
Appendix D.8.
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In this economy, a worker is either mobile or immobile (non-mobile): α ∈ A :=
{m,n}. Mobile types receive choice state-contingent Gumbel shocks and are able
to re-optimize over choice states, immobile types cannot re-optimize. Entrants are
born mobile: ρ0 = em = (1 0)⊤. The mobility type of survivors evolves according to
an ergodic Markov chain ρ on A. Thus, the Markov chain over types inclusive of
replacement by an entrant is:

ρ̃ = (1− δ)ρ+ δΠem .

Let µ denote the stationary mass of mobile types:

µ =
ρ̃(m|n)

ρ̃(m|n) + ρ̃(n|m)
=

δ + (1− δ)ρ(m|n)
δ + (1− δ)ρ(m|n) + (1− δ)ρ(n|m)

. (B.11)

The transition matrix formula (B.4) specializes to:

Q = (1− δ)

(
Q 0
0 I

)
(ρ⊗ I) + δ

(
ΠP0 0
0 I

)
(ΠIm ⊗ I)

where Q is the transition matrix of mobile survivors, I has the same dimension as
X and P0 is the choice vector of entrants. Element-wise this is:

Q(x′,m|x, α) = (1−δ)Q(x′|x)ρ(m|α)+δP0(x
′|x) and Q(x′, n|x, α) = (1−δ)I(x′|x)ρ(n|α).

The special structure of this case, relative to the more general model with
persistent types, permits simplified formulas for long run responses. For each α,
let Pα = P(·, α) denote the measure of the type α over choice states. Then, in steady
state:

Pn = (1− δ){ρ(n|m)Pm + ρ(n|n)Pn} =⇒ Pn =
(1− δ)ρ(n|m)

1− (1− δ)ρ(n|n)
Pm =

1− µ

µ
Pm. (B.12)

It follows from (B.12) that it is sufficient to compute the long run response of Pm

(or P(·|m) = Pm

µ
) to obtain long run responses for Pn and, hence, P = Pm + Pn, the

marginal over choice states.
Substituting (B.12) into the steady state expression for Pm gives:

Pm =(1− δ)Q{ρ(m|m)Pm + ρ(m|n)Pn}+ δP0 = ν(1− δ)QPm + δP0,

where

ν =
ρ(m|m)µ+ ρ(m|n)(1− µ)

µ
.

This is converted into a conditional distribution of mobile types over choice states
by dividing by µ:

P(·|m) =ν(1− δ)QP(·|m) +
δ

µ
P0, (B.13)
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The sensitivity of P(·|m) to c can be calculated from (B.13):

∂P(·|m)

∂c
= (I− ν(1− δ)Q)−1Φm,

where:

Φm(x′, x) :=
∑
x′′∈X

{
ν(1− δ)

∂Q(x′, x′′)

∂c(x)
+
δ

µ

∂P0(x
′)

∂c(x)

}
P(x′′|m). (B.14)

Assuming Gumbel shocks and a logit structure for mobile workers:

Φm(x′, x) =ξ
∑
x′′∈X

{
I(x′, x′′)P(x′|m)

−
∑
x′′′∈X

{θQ(x′, x′′′)Q(x′′, x′′′) + (1− θ)P0(x
′)P0(x

′′)}P(x′′′|m)
}∂V(x′′,m)

∂c(x)
,

where ξ = ν(1− δ) + δ
µ

and θ = ν(1− δ)/ξ. In matrix form:

Φm = ξ(DPm − θQDPmQ⊤ − (1− θ)ΠP0DPmΠ⊤
P0

)
∂V

∂c

m

= ξ(I− Sm)DPm

∂V

∂c

m

,

where ∂V
∂c

m
= ∂V(·,m)

∂c
, ∂V
∂c

= (I− βQ̂)−1N⊤D∂u, Q̂ =

(
Q 0
0 I

)
(ρ⊗ I) and:

Sm = θQDPmQ⊤D−1
Pm + (1− θ)ΠP0DPmΠ⊤

P0
D−1

Pm .

The overall sensitivity is then recovered as:

∂P

∂c
=

[
µI

(1− µ)I

]
∂P(·|m)

∂c
,

where I is an X ×X identity matrix.

B.5 Educational types case

In the quantitative section of the paper, we consider a model in which workers make
an initial educational and occupational choice and then in subsequent periods of
life make only occupational choices. This subsection describes the behavioral model
used and its implications for distributional sensitivities.

Assume that a worker’s state has two components, i = (o, s) ∈ O × S = I, where
o ∈ O = {1, . . . , O} denotes an occupation and s = {1, . . . , S} an education type.
Suppose that s is chosen in the first period of life and thereafter is fixed; o is updated
in each period as in the benchmark model. Then, survivor payoffs conditional on
education types evolve as, for each s ∈ S,

V(c|s) = u(c, s) + βK[V(c|s), s], (B.15)

where c ∈ RI
+ = ROS

+ , u(c, s) = {u(c(o, s), s)}o∈O and for each s ∈ S, K[·, s] : RI → RI is a
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payoff aggregator satisfying:

∀o ∈ O, K[v(s), s](o) := E

[
max
o′∈O

{v(o′, s)− κ(o′, o, s) + ε(o′)}
]
. (B.16)

Assuming Gumbel shocks and a logit structure, the corresponding education type-
specific Markov matrix given V(c|s) is:

Q[V(c|s), s](o′, o) = ω(o′, o, s) expV(c|s)(o′)∑
r∈O ω(r, o, s) exp

V(c|s)(r) ,

with ω(o′, o, s) := exp−κ(o′,o,s). Let V(c) = {V(c|s)} and let Q[V(c)] denote the block
diagonal matrix formed from placing the matrices {Q[V(c|s), s]} on the diagonal.

Entrants select an education state and an initial occupation. Their expected
maximized value is:

K0[V(c)] := E

[
max

s∈S,o∈O
{V(c|s)(o)− κ0(o, s) + ε(o, s)}

]
. (B.17)

Again assuming a logit structure:

P0(V(c))(o, s) =
ω0(o, s) exp

V(c|s)(o)∑
o′∈O,s′∈S ω0(o′, s′) expV(c|s′)(o′) , with ω0(o, s) := exp−κ0(o,s). (B.18)

The complete transition is then assembled as:

Q(c) = (1− δ)Q(V(c)) + δΠP0(V(c)).

Remark B.1. The preceding can be modified and generalized by assuming an initial
nested logit structure in which workers first select an educational level conditional
on a payoff shock and then select an initial occupation contingent on a subsequent
occupation conditional payoff shock.

Formulas for sensitivities can be constructed as in the main paper on the state
space I = O × S. Explicitly,

∂P

∂c
=

∞∑
m=0

Q(c)mΦ

with:

Φ(j, k) =
∑
i∈I

{
(1− δ)

∂Q(j, i)

∂c(k)
+ δ

∂P0(j)

∂c(k)

}
P(i). (B.19)

Under the logit assumption:

∂Q(j, i)

∂c(k)
=
∑
l∈I

{I(j, l)−Q(j, i)}Q(l, i)
∂V(l)

∂c(k)
(B.20)
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and

∂P0(j)

∂c(k)
=
∑
l∈I

{I(j, l)−P0(j)}P0(l)
∂V(l)

∂c(k)
. (B.21)

Substituting (B.20) and (B.21) into (B.19):

Φ(j, k) =
∑
l∈I

∑
i∈I

{
I(j, l)P(j)− {(1− δ)Q(j, i)Q(l, i) + δP0(j)P0(l)}P(i)

}∂V(l)

∂c(k)
.

In matrix form:

Φ = (DP − (1− δ)QDPQ⊤ − δΠP0DPΠ
⊤
P0

)
∂V

∂c
= (I− S)DP

∂V

∂c
,

where:

S = (1− δ)QDPQ⊤DP
−1 + δΠP0DPΠ

⊤
P0

DP
−1.

C Connecting to data

Estimating stationary distribution sensitivities at an observed equilibrium Evaluation
of prevailing tax systems using (17) requires calculation of ∂P

∂c
at an observed

equilibrium. Equation (22) implies that, in the absence of direct evidence, ∂P
∂c

can
be constructed from estimates of Q, P, S, and ∂V

∂c
. Non-parametric estimates of Q

and P may be obtained directly from data. The matrix S can be constructed from
estimates of Q, P, P0 and δ given an assumption regarding preference shocks and
re-optimization opportunities. We assume a dynamic logit with perpetual youth in
quantitative work. While lifetime payoff sensitivities ∂V

∂c
are not directly observable,

it follows from ∂V
∂c

= (I − βQ)−1D∂u that they may be constructed from Q(V) and
parameters describing marginal utilities of consumption and the discount factor.
In particular, if u(c) = a log c, then only the two parameters a and β are needed
(along with observed Q) to build ∂V

∂c
. Costs of adjustment κ, which may be difficult

to identify, do not need to be separately estimated. All information about these
parameters relevant for stationary distribution sensitivities is embedded in observed
Q, Q, P and P0. Marginal utility and discount parameters may be estimated
by applying the approach of Artuç et al (2010), which combines a procedure for
identifying flow payoff differences inclusive of adjustment cost terms from observed
Q together with an IV strategy for estimating sensitivity of payoffs to consumption
variation.42

Estimating stationary distribution sensitivities at a counterfactual equilibrium Eval-
uation of optimal taxes at a fixed welfare criterion using (17) requires calculation

42Hotz and Miller (1993) originate a procedure for inverting conditional choice probabilities to
obtain flow payoff differences. Variations on such procedures are applied in structural IO and trade,
see Artuç et al (2010).
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of P and ∂P
∂c

at counterfactual equilibria. One approach is to assume a dynamic
logit and structurally estimate all preference parameters and use these parameters
to build maps from consumption allocations to Q, P, Q, P0,and ∂V

∂c
. These permit

evaluation of ∂P
∂c

via (22). Alternatively, redirecting an approach of Caliendo et al.
(2019) towards stationary tax reform, if u = a log, then the map from counterfactual
consumption allocations c to Q and to P0 can be constructed from estimates of a
and the discount factor β in combination with a prevailing consumption allocation,
transition for survivors and distribution for entrants. Combined with an estimate of
δ, counterfactual Q may then be constructed. Corresponding maps from c to P and
to ∂P

∂c
follow from (9) and (22). Estimates of cost of adjustment parameters are again

not needed. Thus, the only preference parameters that require explicit estimation for
tax evaluation are a and β. We refer to these parameters as structurally sufficient for
optimal tax analysis. The result is formalized in Proposition C.1, which for simplicity
we state for the case without perpetual youth.

Proposition C.1. Assume a dynamic logit model without perpetual youth in which
utility from consumption is u = a log. Let c denote a consumption allocation and
Q the corresponding transition matrix. Let c̃ denote an alternative (counterfactual)
consumption allocation and define ∆c := c̃

c
. Then the corresponding counterfactual

transition matrix Q̃ satisfies:

Q̃(j, i) =
∆U(j)Q(j, i)∑
k∈I ∆U(k)Q(k, i)

, (C.1)

with ∆U the unique solution to ∆U = {(∆c(j))a(
∑

k∈I exp
log∆U(k)Q(k, j))β}j∈I. The

corresponding counterfactual distribution P̃ is the unique solution to P̃ = Q̃P̃.

Proof. The lifetime payoffs associated with moving to j from i net of current Gumbel
shocks at c are: V(j)−κ(j, i) = a log c(j)−κ(j, i)+β log

∑
k∈I exp

V(k)−κ(k,j), with κ(i, i) = 0.
Let Ṽ be the corresponding lifetime payoff function at the new stationary allocation

c̃. Then: Q̃(j,i)
Q(j,i)

=

expṼ(j)−κ(j,i)∑
k∈I expṼ(k)−κ(k,i)

expV(j)−κ(j,i)∑
k∈I expV(k)−κ(k,i)

= expṼ(j)−V(j)∑
k∈I

expṼ(k)−κ(k,i)∑
l∈I expV(l)−κ(l,i)

= expṼ(j)−V(j)∑
k∈I expṼ(k)−V(k) expV(k)−κ(k,i)∑

l∈I expV(l)−κ(l.i)

= expṼ(j)−V(j)∑
k∈I expṼ(k)−V(k) Q(k,i)

. Define ∆U(j) := expṼ(j)−V(j). Substituting this into the

previous formula gives: Q̃(j, i) = ∆U(j)Q(j,i)∑
k∈I ∆U(k)Q(k,i)

. Also: ∆U(j) = expṼ(j)−V(j) =

expa log c̃(j)−a log c(j)+β{log
∑

k∈I expṼ(k)−κ(k,j) − log
∑

k∈I expV(k)−κ(k,j)}. And so, ∆U(j) = (∆c(j))a

× expβ{log
∑

k∈I expṼ(k)−κ(k,j) − log
∑

k∈I expV(k)−κ(k,j)} = (∆c(j))a(
∑

k∈I expṼ(k)−κ(k,j)∑
k∈I expV(k)−κ(k,j) )

β

= (∆c(j))a(
∑

k∈I exp
Ṽ(k)−V(k) expV(k)−κ(k,j)∑

k∈I expV(k)−κ(k,j) )
β = (∆c(j))a

(∑
k∈I ∆U(k)Q(k, j)

)β. Thus,

Q̃ satisfies (C.1) for a ∆U satisfying the preceding equation. It is readily established
that the map T (f) = {a log(∆c(j)) + β log

(∑
k∈I exp

f(k,j) Q(k, j)
)
}j∈I is a contraction (on

the space R2I ). Thus, log∆U is the unique solution to f = T (f) (given ∆c and Q) and
Q̃ satisfies (C.1) for the unique ∆U satisfying log∆U = T (log∆U).

12



D Quantitative Application

This appendix gives additional details on the quantitative application.

D.1 Data Selection

Our primary source of data is the March Supplement of the Current Population
Survey (ASEC-CPS) for the years 2003 to 2020. This data set allows us to identify
transitions by comparing the reported longest-held job in the previous calendar
year to the job held at the time of the survey, in March. We restrict our analysis
to full-time wage-earners aged 25 to 65 at the beginning of their occupational
transition and drop individuals who spent more than one stretch of time looking
for work in the previous year or who moved their place of residence for reasons of
retirement, job loss, or college attendance. These restrictions eliminate or reduce
retirement transitions, student employment and involuntary separations. We drop
self-employed individuals, those who did not work at least 30 hours a week for at
least 26 weeks in the previous year and those not working full time at the time of
the interview. As a measure of wage income, we use reported wage income earned
in the calendar year previous to the survey year, across all jobs held.43 We drop
individuals whose implied hourly wage is less than the minimum wage, whose
annual wage income is less than 1,000 times the minimum hourly wage, whose real
weekly earnings are less than $75 per week or above $750,000 per year (in 2019
dollars), who file taxes jointly and whose spouse has a real income greater than
$750,000 and those whose wage and salary income contributes less than 80% of
their total income.

We calculate individual statutory taxes using TAXSIM. Our tax notion is federal,
state, and FICA taxes. Hence, we obtain individual after-tax labor earnings. We
then calculate average occupation-specific after-tax labor incomes for each year as
the average after-tax wage income across all individuals in the same occupation in
a given year. We use this as a proxy for the consumption available in an occupation.

D.2 Estimation

Q estimation Transition probabilities for survivors {Qt}2019t=2002 are estimated from
ASEC-CPS data using a cell estimator and the appropriate survey weights. Because
transition probabilities enter the estimation in logarithms, estimates that are equal
to zero are problematic. We address this issue in two alternative ways: through
imputation of a very low value and through Pseudo-Poisson Maximum Likelihood
regression. The first method is straightforward. When an estimated survivor
transition Q̃t(j, i) is equal to zero we substitute it with 1e-03 and rescale all estimated
probabilities in {Q̃t(k, i)}k∈I so that they sum up to 1. We use this procedure to
generate our baseline estimates of {Qt}.

43A caveat is that this makes the measurement of occupational wages noisy, since it might contain
wage income from occupations different than the reported longest-held occupation in the previous
calendar year.
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The alternative PPML approach uses the Poisson regression equation:

Q̃t(j, i) =

exp

( ∑
d=1,2

β1
d1[ct(j) ≥ ct(i)](ct(j)− ct(i))

d +
∑
d=1,2

β2
d1[ct(j) < ct(i)](ct(j)− ct(i))

d+∑
s=1,2,3

∑
d=1,2

β3
s,d1[σs(j) ≥ σs(i)][σs(j)− σs(i)]

d +
∑
d=1,2

β4
s,d1[σs(j) < σs(i)](σs(j)− σs(i))

d+

∑
t′

∑
i′

β5
t′(i

′)1(i′ = i, t′ = t) +
∑
t′

∑
j′

β6
t′(j

′)1(j′ = j, t′ = t) + β71(j ̸= i) + β0

)
+ ξt(j, i).

where s = 1, 2, 3 indexes, respectively, cognitive, physical, and social skills and
σs(i) is an index describing the amount of skill s required in occupation i. To
obtain these indices we start from O*NET data, which provides a large number of
occupation characteristics and skill requirements. Following Yamaguchi (2010),
we use principal component analysis to reduce the O*NET variables to three main
components. In estimations with distinct observable worker types, all coefficients
are allowed to differ across types. The predicted values Q̂t(j, i) from this regression
are rescaled so that

∑
k∈I Q̂t(k, i) = 1 and then substituted for Q̃t(j, i). We apply a

strategy described by Artuç et al (2010) to annualize the survivor transitions we
obtain from CPS data. We utilize survivor transitions corrected in these ways for
zeros and frequency in our estimation of the utility parameter a (described below).

To obtain a stationary measure of Q, the transition inclusive of replacement and
re-entry, for use in our dynamic hat algebra evaluations of counterfactuals, we
first combine nonparametric survivor transition estimates {Q̃t}2019t=2002 (obtained via
imputation), with birth/death probabilities δ and 1− δ and estimates of the empirical
entrant distributions {P̃0,t} to generate a sequence of empirical transitions {Q̃t}.
Entrant distributions are identified with the distributions of 25 year old workers
over occupations. The sequence {Q̃t} is averaged over all time periods to form a
proxy for the stationary transition:

Q =
1

2019− 2002 + 1

2019∑
t=2002

Q̃t.

Calibration and Structural Estimation The benchmark model’s structural preference
parameters are, respectively, the sensitivity of utility to log consumption a, the dis-
count factor b and the survival probability 1− δ. Also, the Cobb-Douglas production
function parameters A and ϕ are needed to compute optimal tax equilibria. Follow-
ing Heathcote, Storesletten and Violante (2017), we set b = .96 and δ = .029 implying
β = (1 − δ)b = .93. Cobb Douglas production function parameters are set to be
consistent with occupational income shares. Table D.1 reports average incomes by
occupation (deflated to 2019 dollars for each year and averaged over sample years),
the empirical distribution of 25 year olds over occupations averaged over sample
years (denoted P0

data in the table), the distribution of all workers over occupations
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averaged over sample years (denoted Pdata in the table), the stationary distribution
of our estimated Q (labeled P) and the estimated Cobb-Douglas parameter values ϕ.
We note that Pdata and P are reasonably close giving reassurance that our stationary
occupation distribution assumption is plausible for the time period we consider.

Occupation Average Income P0
data Pdata P ϕ

Legal $127594 0.009 0.012 0.023 0.044
Management $101749 0.076 0.125 0.111 0.168
Architecture and engineering $ 95814 0.028 0.028 0.033 0.048
Computer and mathematical $ 94815 0.041 0.039 0.039 0.055
Life, physical, and social $ 85813 0.012 0.012 0.019 0.025
Healthcare practitioner and technical $ 85081 0.061 0.062 0.054 0.068
Business and financial $ 81698 0.068 0.057 0.058 0.07
Arts, design, entertainment, sports, and media $ 72533 0.023 0.015 0.023 0.025
Sales and related $ 69466 0.104 0.087 0.081 0.083
Protective service $ 67133 0.025 0.026 0.029 0.029
Education, training, and library $ 59914 0.063 0.068 0.06 0.053
Installation, maintenance, and repair $ 58263 0.037 0.041 0.037 0.032
Community and social services $ 54796 0.019 0.019 0.023 0.019
Construction and extraction $ 54246 0.059 0.052 0.05 0.04
Transportation and material moving $ 49531 0.056 0.059 0.055 0.04
Production $ 48562 0.067 0.075 0.066 0.048
Office and administrative support $ 47556 0.145 0.137 0.139 0.098
Personal care and service $ 38962 0.021 0.016 0.021 0.012
Healthcare support $ 36931 0.024 0.019 0.026 0.014
Building and grounds cleaning and maintenance $ 35941 0.015 0.023 0.024 0.013
Food preparation and serving $ 33241 0.048 0.027 0.029 0.014

Data averaged across sample years. Incomes are converted to 2019 USD prior
to averaging. Mean income is $66,974 in 2019 USD. P0

data and Pdata represent
the distribution of young and all workers at the data. P refers to the station-
ary distribution of workers implied by the estimated transition, Q. ϕ refers to
the Cobb Douglas parameters which are calculated as a share of total income.

Table D.1: Occupational Incomes, Distributions, and Cobb-Douglas Parameters

The remaining parameter to be estimated is a. For this estimation step we do not
impose the steady state assumption. We also modify the model slightly relative to
that in the main paper and introduce a shock to consumption that is realized after
agents migrate to a location. This aligns with the formulation in Artuç et al (2010).
Given transitions for survivors {Qt}, the discount adjusted probability for survivors
of moving early from i to j rather than moving later is defined as:

yt(j, i) = [logQt(j, i)− logQt(i, i)] + β[logQt+1(j, j)− logQt+1(j, i)]. (D.1)

The next proposition uses the model to relate this variable to worker consumption
and to a.

Proposition D.1. Assume that payoffs are as in the benchmark dynamic discrete choice
model. Given an intertemporal consumption allocation {ct}∞t=1 and corresponding
transitions for survivors {Qt}∞t=0:

yt(j, i) = a[log ct(j)− log ct(i)]− κ(j, i) + µt, (D.2)
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where: µt := Ê[a{log ct(j)− log ct(i)}+ logQt+1(j, i) − logQt+1(j, j)|It], Ê[x|It] = E[x|It]− x
and E[x|It] denotes the expectation of x conditional on an information set that includes
period t Gumbel shocks, but excludes period t consumption shocks. κ is normalized
by 1− β relative to the text.

Proof. Transition matrix for survivors is: Qt(j, i) =
expVt(j)−κ(j,i)∑

k∈I expVt(k)−κ(k,i) , with lifetime pay-

offs: Vt(j) = E[u(ct(j)) +β log
∑

k∈I exp
Vt+1(k)−κ(k,j) |It], where the conditioning informa-

tion set It includes the period t Gumbel shock, but excludes shocks to the consump-
tion allocation that occur at t. Hence, for each j, i: Vt(j)−κ(j, i)−logQt(j, i) = Vt(i) :=
log
∑

k∈I exp
Vt(k)−κ(k,i). So, Vt(i) = Vt(j)−κ(j, i)− logQt(j, i) = E[u(ct(j))+βVt+1(j)|It]−

κ(j, i) − logQt(j, i) = E[u(ct(j))+ β{Vt+1(j)−logQt+1(j, j)}|It]−κ(j, i)−logQt(j, i), where
the normalization κ(j, j) = 0 is applied. Also, for j = i, Vt(i) = Vt(i) − logQt(i, i) =
E[u(ct(i)) + βVt+1(i)|It]− logQt(i, i) = E[u(ct(i)) + β{Vt+1(j)− κ(j, i)− logQt+1(j, i)}|It]−
logQt(i, i). Combining these conditions and using the payoff parameterization
a log c = u(c), renormalizing κ by 1− β and using the definitions in the proposition
yields (D.2).

Proposition D.1 underpins an identification strategy originated (in more general
form) by Hotz and Miller (1993). In particular, it suggests the estimating equation:

yt(j, i) = â{log ct(j)− log ct(i)}+ κ̂(j, i) + ϵt(j, i). (D.3)

To construct empirical values for the dependent variable yt, we combine the non-
parametric estimates of survivor transition probabilities {Q̃t} described previously
with calibrated values for β. The term κ̂(j, i) is a specification of transition costs. We
estimate the model with two cost functions. κ̂1(j, i) is a quadratic polynomial of skill
requirement differentials between occupations interacted with a dummy indicating
whether the destination occupation has a higher skill requirement than the origin.
κ̂2(j, i) is also quadratic in skill differentials when the skill differential is positive,
but it is restricted to be a constant when the worker down skills:

κ̂1(j, i) =κ0 +
∑
s=1,2,3

∑
d=1,2

κupskilld,s × 1(σs(j) ≥ σs(i))× (σs(j)− σs(i))d

+
∑
s=1,2,3

∑
d=1,2

κdownskilld,s × 1(σs(j) < σs(i))× (σs(j)− σs(i))
d, (D.4)

κ̂2(j, i) =κ0 +
∑
s=1,2,3

∑
d=1,2

κupskilld,s × 1(σs(j) ≥ σs(i))× (σs(j)− σs(i))
d

+
∑
s=1,2,3

∑
d=1,2

κdownskills × 1(σs(j) < σs(i)). (D.5)

As before, σs(j) indicates occupation ij’s type s skill requirement. In estimations
with distinct observable worker types, all coefficients in the transition costs are
allowed to differ across types.

The error ϵt(j, i) in (D.3) is interpreted as a sum of sampling, measurement, and
expectation error. We then estimate the parameters in (D.3) and, hence, a via IV
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regression. Following Artuç et al (2010), we use log[ct−2(j)/ct−2(i)] as instrument for
log[ct(j)/ct(i)].

D.3 Additional Results for the Benchmark Model

This section provides additional quantitative results that supplement those in the
main text.

Empirical Equilibrium Figure D.1 displays the matrix of mean first passage times
mQ implied by (the non-parametrically estimated stationary) Q at the empirical
policy as a heat map. Rows show mean first passage times to an occupation,
columns show mean first passage times from an occupation. They are computed
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Figure D.1: Mean first passage matrix, mQ, in the data.
Notes: Darker colors imply higher smaller mean first passage times and faster travel between occupations.

from the estimated stationary Q and its associated stationary distribution using
formulas available in Kemeny and Snell (1976), Theorem 4.4.7, p.79. Elements on
the diagonal of mQ (mean first return times) are lower than off-diagonal elements
reflecting the persistence of the chain. Mean first passage times to management,
sales and office and administration are lower than other occupations. These are
occupations that workers migrate to from both lower and higher paid activities. There
is slight relative reduction of mean first passage times between transport, production
and construction indicating higher substitutability between these occupations.
Mean first passage times to food services (last row in the figure) are in the 300’s,
significantly below those to maintenance or health services. In addition mean first
passage times from food services (last column in the figure) to sales, office and
administration and management are below those for other low income occupations.
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Figures D.2a and D.2b display the short and long run distributional elasticities
computed using (21) and (22) and a dynamic logit assumption at the policy in the
data.
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(b) Long run elasticities

Figure D.2: Short and long run elasticities at the empirical policy.

Notes: Darker colors imply higher elasticities between occupations.

Optimum, Benchmark Social Criterion Figures D.3 and D.4 displays the transition
Q, mean first passage mQ, short and long run elasticity matrices for the optimum
with benchmark social objective. These are not structural and are modified by policy.
However, the modifications are small and they are similar to their estimated values
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at the data equilibrium.
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Figure D.3: Q and mean first passage matrices at the optimum.
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(a) Short run elasticity matrix
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(b) Long run elasticity matrix

Figure D.4: Short and long run elasticity matrices at the optimum.
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D.4 Results under alternate welfare criteria

We next report optimal tax schedules under a social criterion different from the paper.
Specifically, we identify social welfare with the expected utility of a new entrant
to the labor market distributed over occupations according to P0 at steady state.
Since workers discount the future, this welfare criterion emphasizes occupations
that are inhabited earlier in life. Figure D.5 illustrates the implied optimal taxes and
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Figure D.5: Taxes and Average Income Tax Rates by Occupation at the Optimum
and in the Data. Alternate welfare criterion.

average income taxes by occupation. Relative to the previous optimum, taxes are
reduced in lower paid occupations inhabited disproportionately by younger workers
and are raised in higher paid ones inhabited disproportionately by older workers.
The intercept of the approximated tax falls and the slope rises. Again food services
stands out, with taxes essentially reduced to zero. Concern for younger workers and
recognition that workers transition into and out of food services relatively quickly
encourages redistribution towards those in this occupation. In contrast, those in
the legal occupation see a tax hike relative to the earlier optimum.
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D.5 Results with entrant occupational choice

Our benchmark model assumes that the occupations of entrants is fixed exogenously.
Our subsequent educational types model allows entrant workers to pick both their
initial education and occupation. In this subsection, we give results for the case
without educational types, but with entrant selection of occupations. Specifically, we
allow entrants to choose their initial occupation according to the logit formulation
in (B.18). We apply dynamic hat algebra to generate responses of entrants to policy
variation.

Figure D.6 displays optimal taxes for the model with entrant choice under two
social welfare criteria. In the first, effective Pareto weights are set to be one, as
in the main text. In the second, we set Pareto weights to equal the distribution of
entrants’ states. Optimal marginal income taxes are depressed relative the ones in
the main text or under the alternative optimality criterion in the appendix because
the government does not want to distort entrant choices.
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(a) Optimal taxes in benchmark criteria
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(b) Optimal taxes in alternative criteria

Figure D.6: Optimal taxes for entrant choice case.
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D.6 Markov transition matrices for the educational type model

This section supplements results in the main text for the model with educational
types. Figure D.7 shows Q matrices for the two education groups. The high school Q

Legal Manag A&E C&M L&P&S Health B&F Arts Sales Pr Serv Educ Instal C Serv Constr Transp Prod O&A Pe Serv H Serv Mainten F Serv
Origin Occupation

Legal

Manag

A&E

C&M

L&P&S

Health

B&F

Arts

Sales

Pr Serv

Educ

Instal

C Serv

Constr

Transp

Prod

O&A

Pe Serv

H Serv

Mainten

F Serv

De
st

in
at

io
n 

O
cc

up
at

io
n

0.014

0.002

0.003

0.002

0.003

0.004

0.004

0.007

0.003

0.006

0.003

0.002

0.004

0.004

0.005

0.005

0.003

0.003

0.003

0.002

0.002

0.002

0.002

0.003

0.005

0.002

0.011

0.003

0.002

0.003

0.002

0.004

0.004

0.006

0.014

0.003

0.003

0.002

0.005

0.003

0.008

0.004

0.003

0.003

0.004

0.004

0.005

0.003

0.003

0.006

0.002

0.005

0.006

0.009

0.009

0.003

0.004

0.003

0.003

0.003

0.01

0.005

0.002

0.003

0.006

0.003

0.005

0.003

0.004

0.007

0.002

0.005

0.004

0.005

0.01

0.003

0.003

0.003

0.004

0.005

0.017

0.005

0.006

0.004

0.003

0.003

0.01

0.003

0.004

0.003

0.002

0.015

0.008

0.011

0.01

0.004

0.003

0.003

0.005

0.002

0.005

0.002

0.003

0.002

0.003

0.002

0.005

0.003

0.003

0.003

0.003

0.004

0.004

0.004

0.009

0.003

0.006

0.003

0.003

0.002

0.014

0.002

0.003

0.003

0.003

0.003

0.009

0.003

0.003

0.004

0.003

0.004

0.004

0.004

0.022

0.003

0.003

0.003

0.004

0.002

0.008

0.01

0.003

0.003

0.003

0.003

0.007

0.003

0.004

0.007

0.004

0.004

0.005

0.005

0.012

0.003

0.003

0.003

0.005

0.002

0.01

0.002

0.003

0.002

0.003

0.003

0.002

0.003

0.002

0.004

0.002

0.005

0.006

0.008

0.018

0.003

0.002

0.003

0.005

0.003

0.005

0.003

0.003

0.002

0.003

0.003

0.003

0.004

0.003

0.005

0.002

0.006

0.009

0.009

0.008

0.003

0.003

0.003

0.004

0.004

0.008

0.002

0.004

0.002

0.006

0.003

0.003

0.006

0.004

0.004

0.003

0.006

0.005

0.005

0.015

0.007

0.004

0.003

0.004

0.002

0.005

0.004

0.003

0.002

0.003

0.002

0.002

0.005

0.002

0.002

0.002

0.009

0.006

0.009

0.007

0.003

0.003

0.004

0.003

0.002

0.009

0.003

0.003

0.002

0.008

0.006

0.004

0.008

0.006

0.006

0.003

0.005

0.006

0.008

0.016

0.008

0.005

0.004

0.004

0.002

0.004

0.002

0.003

0.002

0.003

0.003

0.002

0.004

0.002

0.002

0.008

0.002

0.011

0.01

0.006

0.002

0.003

0.003

0.003

0.002

0.003

0.002

0.002

0.002

0.003

0.002

0.002

0.007

0.003

0.002

0.005

0.002

0.009

0.011

0.012

0.003

0.003

0.003

0.004

0.002

0.003

0.002

0.002

0.002

0.003

0.003

0.002

0.005

0.002

0.002

0.004

0.002

0.01

0.009

0.008

0.002

0.002

0.002

0.003

0.001

0.005

0.002

0.002

0.002

0.002

0.005

0.002

0.008

0.002

0.001

0.002

0.002

0.003

0.006

0.005

0.002

0.002

0.002

0.003

0.002

0.006

0.002

0.003

0.002

0.005

0.003

0.002

0.009

0.004

0.005

0.003

0.003

0.005

0.008

0.007

0.017

0.011

0.003

0.007

0.003

0.004

0.002

0.003

0.002

0.008

0.003

0.002

0.006

0.003

0.003

0.003

0.003

0.004

0.006

0.005

0.012

0.008

0.003

0.005

0.002

0.006

0.003

0.003

0.002

0.003

0.003

0.003

0.005

0.003

0.003

0.005

0.002

0.006

0.009

0.01

0.007

0.003

0.003

0.004

0.002

0.009

0.002

0.003

0.002

0.004

0.003

0.003

0.013

0.003

0.003

0.004

0.002

0.007

0.007

0.012

0.014

0.003

0.004

0.006

0.881

0.026

0.908

0.898

0.898

0.863

0.914

0.89

0.887

0.901

0.905

0.89

0.909

0.871

0.909

0.904

0.916

0.93

0.881

0.898

0.903

0.882

(a) Q: High school educated

Legal Manag A&E C&M L&P&S Health B&F Arts Sales Pr Serv Educ Instal C Serv Constr Transp Prod O&A Pe Serv H Serv Mainten F Serv
Origin Occupation

Legal

Manag

A&E

C&M

L&P&S

Health

B&F

Arts

Sales

Pr Serv

Educ

Instal

C Serv

Constr

Transp

Prod

O&A

Pe Serv

H Serv

Mainten

F Serv

De
st

in
at

io
n 

O
cc

up
at

io
n

0.007

0.003

0.004

0.003

0.005

0.006

0.003

0.005

0.003

0.006

0.002

0.003

0.002

0.002

0.002

0.009

0.002

0.002

0.002

0.002

0.002

0.003

0.004

0.002

0.003

0.01

0.003

0.008

0.002

0.005

0.002

0.002

0.002

0.002

0.002

0.006

0.002

0.002

0.002

0.002

0.003

0.009

0.007

0.003

0.004

0.004

0.003

0.005

0.003

0.005

0.002

0.003

0.003

0.003

0.003

0.004

0.002

0.002

0.003

0.002

0.002

0.012

0.005

0.003

0.003

0.007

0.003

0.004

0.002

0.004

0.002

0.003

0.002

0.002

0.002

0.004

0.002

0.002

0.002

0.002

0.003

0.016

0.004

0.005

0.005

0.005

0.003

0.005

0.003

0.014

0.002

0.004

0.003

0.003

0.006

0.004

0.002

0.002

0.002

0.002

0.002

0.005

0.003

0.003

0.002

0.004

0.003

0.004

0.003

0.005

0.002

0.003

0.002

0.002

0.002

0.004

0.002

0.002

0.002

0.002

0.002

0.022

0.003

0.005

0.002

0.003

0.003

0.007

0.003

0.004

0.002

0.003

0.002

0.002

0.002

0.01

0.002

0.002

0.002

0.002

0.003

0.016

0.007

0.005

0.003

0.004

0.009

0.008

0.003

0.008

0.002

0.006

0.003

0.003

0.002

0.007

0.003

0.002

0.002

0.003

0.003

0.021

0.003

0.003

0.002

0.004

0.011

0.003

0.003

0.005

0.002

0.003

0.002

0.002

0.003

0.011

0.003

0.002

0.002

0.003

0.003

0.005

0.003

0.004

0.003

0.003

0.009

0.004

0.008

0.006

0.002

0.005

0.003

0.004

0.004

0.007

0.002

0.002

0.002

0.002

0.002

0.006

0.003

0.002

0.002

0.003

0.004

0.002

0.004

0.002

0.002

0.002

0.002

0.002

0.002

0.004

0.002

0.002

0.002

0.002

0.003

0.011

0.011

0.01

0.003

0.003

0.005

0.004

0.015

0.003

0.005

0.003

0.003

0.002

0.006

0.007

0.003

0.002

0.006

0.003

0.004

0.009

0.003

0.004

0.004

0.006

0.007

0.003

0.007

0.003

0.01

0.002

0.002

0.003

0.002

0.008

0.004

0.002

0.002

0.003

0.003

0.012

0.013

0.003

0.003

0.004

0.009

0.003

0.008

0.003

0.006

0.006

0.003

0.008

0.004

0.006

0.003

0.002

0.002

0.003

0.004

0.01

0.005

0.008

0.003

0.004

0.006

0.003

0.011

0.006

0.008

0.005

0.007

0.006

0.008

0.014

0.006

0.002

0.003

0.005

0.003

0.016

0.008

0.004

0.003

0.006

0.006

0.005

0.009

0.004

0.008

0.005

0.004

0.004

0.006

0.01

0.003

0.004

0.003

0.003

0.003

0.017

0.003

0.005

0.002

0.004

0.014

0.004

0.011

0.003

0.007

0.002

0.004

0.003

0.003

0.002

0.002

0.002

0.002

0.002

0.003

0.022

0.007

0.008

0.003

0.006

0.009

0.005

0.015

0.003

0.002

0.008

0.003

0.013

0.006

0.014

0.014

0.003

0.006

0.003

0.012

0.003

0.003

0.005

0.02

0.008

0.006

0.011

0.003

0.01

0.002

0.004

0.002

0.004

0.002

0.006

0.019

0.003

0.003

0.004

0.01

0.003

0.003

0.005

0.004

0.004

0.003

0.021

0.003

0.007

0.003

0.003

0.003

0.004

0.008

0.01

0.004

0.002

0.009

0.007

0.018

0.005

0.006

0.005

0.005

0.009

0.01

0.003

0.019

0.005

0.006

0.005

0.002

0.007

0.007

0.007

0.002

0.908

0.918

0.91

0.909

0.889

0.924

0.896

0.88

0.891

0.901

0.929

0.873

0.894

0.88

0.859

0.873

0.886

0.023

0.81

0.853

0.869

0.023

0.028

0.805

(b) Q: College educated.

Figure D.7: Q matrices for different education groups at the empirical policy.

matrix shows significantly less upward mobility towards higher paying white collar
occupations than does the college Q matrix. (Compare the upper triangles of the
respective transition matrices and the lower retention rates for college educated
workers in low paid occupations relative to high school educated workers). Instead,
the high school Q matrix shows greater mobility to and from blue collar occupations
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like construction, transportation and production and the lower paid office and
administration occupation.

D.7 Robustness exercises

This section describes sensitivity of the benchmark results to various robustness
exercises.

Elasticity of Substitution of Occupational Labor In the main text, we assume a
Cobb Douglas technology. We now consider implications of alternative degrees of
substitutability across occupations. Suppose a CES production function: F (P) =∑

i∈I

(
ϕ(i)P(i)

ϵ
ϵ−1

) ϵ−1
ϵ

where ϕ(i) is the share of occupation i and ϵ is the elasticity of
substitution of labor across occupations. Figure D.8 displays optimal taxes for the
cases ϵ = 0.5 and ϵ = 2. These variations have negligible impacts on optimal taxes.
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(a) Taxes: Optimal, ϵ = 0.5.
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(b) Taxes: Optimal, ϵ = 2.

Figure D.8: Optimal taxes under alternative elasticities of substitution.

Variation of the a parameter The parameter a controls the sensitivity of utility to
log consumption and is an important parameter. It is the target of our structural
estimation (and the target of many discrete choice estimations).

24



20 40 60 80 100 120 140

0

10

20

30

40

50

60

Legal

Manag
A&E

C&M

L&P&SHealth

B&F

Arts

Sales
Pr Serv

Educ
InstalC Serv

Constr
Transp

Prod

O&A

Pe Serv
H SuppMainten

F Serv

(a) Taxes: Optimal, a = 0.09.
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(b) Average Tax Rates: Optimal, a = 0.09.
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(c) Taxes: Optimal, a = 0.18.
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(d) Average Tax Rates: Optimal, a = 0.18.

Figure D.9: Taxes and Average Income Tax Rates by Occupation at the Optimum.
a = 0.09 and a = 0.18.

Figure D.9 shows the optimal tax function for two values of a: a = 0.09 and
a = 0.18, that are, respectively, lower and higher than our benchmark estimate of
a = 0.142. Given these modified values, we continue to compute counterfactual
Q values according to Proposition C.1. Although variation in a leaves the broad
affine structure of optimal taxes intact (along with the particular treatment of low
income/high churn food services), it significantly impacts the intercept and slope of
the affine approximation. In particular, higher values of a are associated with larger
long run stationary distribution elasticities and long run marginal excess burdens
(in absolute value) and an optimal affine tax approximation with a correspondingly
larger intercept and lower marginal tax rate. As a increases from 0.09 to 0.18, the
tax intercept rises from -$14,009 to -$3,187 (both 2019 USD) and the marginal rate
falls from 0.51 to 0.34. Thus, a is a central parameter in determining optimal tax
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code redistributiveness.

Decomposing Management In the main text we decompose occupations to 21 ag-
gregates corresponding to 2-digit 2010 SOC codes. This decomposition represents a
compromise between reliable estimation of flows between occupations, which argues
for greater aggregation, and isolation of differently paying options for workers, which
motivates a finer decomposition. Management is a large occupation at the main
occupation level that encompasses an array of differently paying roles. To accommo-
date this and assess the extent to which aggregation of different management roles
affects results we decompose the management occupation into five categories labeled
M1, M2, M3, M4, and M5. These categories group finer management occupations
with similar mean incomes. Table D.2 details the decomposition.

Label Income Range Finer Management Occupations
M1 > 2 CEO’s, legislators, public administrators
M2 1.66− 2 computer & information systems managers,

architectural & engineering managers, natural science managers
M3 1.33− 1.66 general & operations managers, marketing managers, financial managers,

human resources managers, education administrators,
medical & health services managers

M4 1.1− 1.33 administrative services managers, industrial production managers,
purchasing managers, construction managers, funeral directors,
property, real estate, community association managers,
social & community service managers

M5 < 1.1 All others

Note: Finer management occupations grouped into categories by their mean income, expressed as a
multiple of the mean income across the entire population.

Table D.2: Management Categories Definition

Figure D.10 shows the structure of long run elasticities in this case. Several
of the management categories are long run complements. M5 has the lowest long
run own elasticity and, in contrast, one the highest short run own elasticities of
0.185. Like food services, M5 has significant churn of workers relative to other
similarly earning occupations. In particular, there are high flow rates to and, to a
lesser extent, from other higher earning management categories. This lowest paid
management occupation displays characteristics of a stepping stone occupation,
with relatively large flows up to M3 and M4.
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Figure D.10: Long Run Elasticities at the Data

Optimal taxes are illustrated in Figure D.11. The broad structure retains the
approximate affine form of the benchmark case. Now, however, M5 management
occupation joins food services in receiving a relatively more favorable optimal tax
treatment. In particular, the flows from occupation M5 to higher income occupations
are higher compared to the flows from similarly earning occupations education and
installation. Therefore, the optimal tax rate for M5 occupation is 4% lower compared
to the optimal rates of the these other occupations.
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(a) Taxes: Optimal.
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(b) Average Income Tax Rates: Optimal.
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(c) Taxes: Data.
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(d) Average Income Tax Rates: Data.

Figure D.11: Taxes and Average Income Tax Rates by Occupation at the Optimum
and in the Data under Decomposition of Management.

D.8 Mobile/Immobile type case

We now provide results for the model with latent mobile/immobile types described
in Appendix B.4.3. We first describe how to take this extension to the data and then
give the results.

D.8.1 Taking the mobile/immobile types case to the data

To implement formulas for the case with persistent mobile and immobile types
quantitatively, it is necessary to recover estimates of ρ, Q (and a) from the data.
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Identifying ρ. Define the gross flow rate of survivor workers as:

g = {µ(1− ρ(n|m)) + (1− µ)ρ(m|n)} z, (D.6)

where z =
∑

x′ ̸=x,xQ(x′, x)P(x|m) gives the fraction of mobile types that choose to
move. If a worker changes its choice state at t, then they are a mover at t and,
conditional on surviving, change their choice state at t+1 and t+2 with probabilities:

υ1 = z(1− ρ(n|m)) and υ2 = {(1− ρ(n|m))2 + ρ(m|n)ρ(n|m)}z. (D.7)

Since δ, g, υ1 and υ2 are observable (in panels of two period duration), (B.11), (D.6)
and (D.7) reduce to three equations in the three unknowns: {µ, ρ(m|n), ρ(n|m), z}.

Identifying Q In the data, at a stationary equilibrium, the distribution of workers
over chosen states unconditional on type, P(x) = P(x,m) +P(x, n), and the Markov
transition for survivors unconditional on mobility type Q satisfy:

Q(x′|x) =Q(x′|x)(1− ρ(n|m))P(x,m) + ρ(m|n)P(x, n)

P(x)
(D.8)

+ I(x′|x)ρ(n|m)P(x,m) + (1− ρ(m|n))P(x, n)

P(x)
,

Or:

Q(x′|x) =Q(x′|x){(1− ρ(n|m))µ+ ρ(m|n)(1− µ)}
+ I(x′|x){ρ(n|m)µ+ (1− ρ(m|n))(1− µ)), (D.9)

Then, Q is recoverable using (D.9) and the estimates of ρ and µ.

Estimation of a Artuç et al (2010) describe how to estimate a given a recovered
sequence of Markov transitions for survivors and knowledge of ρ. For completeness,
we reproduce their result. Estimation of a utilizes equation (D.10) derived in
Proposition D.2. This proposition extends Proposition D.1 to the setting with hidden
mobility types.

Proposition D.2. Assume a model with persistent mobile and immobile types. Given an
inter-temporal consumption allocation {ct}∞t=1 and corresponding transitions for mobile
survivors {Qt}∞t=0:

logQt(x
′,x)− logQt(x, x) = βρ(m|m)E[logQt+1(x

′, x)− logQt+1(x
′, x′)|It] (D.10)

+ βρ(n|n)E[logQt+1(x
′, x)− logQt+1(x, x)|It]

+ β2{ρ(m|n)ρ(n|m) + ρ(n|n)ρ(m|m)}E[logQt+2(x
′, x)− logQt+2(x

′, x′)|It]
+ aE[{log ct(x′)− log ct(x)}+ β{ρ(n|m)− ρ(n|n)}{log ct+1(x

′)− log ct+1(x)}|It]
+Hκ(x′, x).

where H is defined in the proof of the proposition,
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Proof. By definition, Qt(x
′, x) = expVt(x

′,m)−κ(x′,x)∑
x′′∈X expVt(x

′′,m)−κ(x′′,x) , with lifetime payoffs: Vt(x
′′,m) =

E[u(ct(x′′)) + ρ(m|m)β log
∑

x′′′∈X expVt+1(x′′′)−κ(x′′′,x′′) + ρ(n|m)βVt+1(x
′′, n)|It] and u = a log.

So, for all x, x′: Vt(x
′,m)−κ(x′, x)−logQt(x

′, x) = Vt(x,m) := log
∑

x′′∈X expVt(x′′,m)−κ(x′′,x).
Consequently, we have: Vt(x,m) = Vt(x

′,m) − κ(x′, x) − logQt(x
′, x) = E[u(ct(x′))

+ βρ(m|m) Vt+1(x
′,m) + βρ(n|m)Vt+1(x

′, n)|It] − κ(x′, x) − logQt(x
′, x) = E[u(ct(x′))+

βρ(m|m) Vt+1(x
′,m) − logQt+1(x

′, x′) + βρ(n|m) Vt+1(x
′, n)|It] −κ(x′, x) − logQt(x

′, x),
where κ(j, j) = 0 is applied. And for x′ = x, Vt(x,m) = Vt(x,m) − logQt(x, x) =
E[u(ct(x)) + βρ(m|m) Vt+1(x,m) + βρ(n|m)Vt+1(x, n)|It] − logQt(x, x) = E[u(ct(x)) +
βρ(m|m)Vt+1(x

′,m) − κ(x′, x) − logQt+1(x
′, x)+βρ(n|m)Vt+1(x, n)|It]− logQt(x, x). Com-

bining these conditions gives:

logQt(x
′, x)− logQt(x, x) = (D.11)

E[∆ut(x′, x)− βρ(m|m){logQt+1(x
′, x′)− logQt+1(x

′, x)− κ(x′, x)}
+ βρ(n|m){Vt+1(x

′, n)−Vt+1(x, n)}|It]− κ(x′, x),

where: ∆ut(x
′, x) := u(ct(x

′)) − u(ct(x)). Now, using the equations for the evolution
of the non-mobile type’s payoffs and the fact that, as obtained above, Vt+1(x

′,m) =
Vt+1(x

′,m)− logQt+1(x
′, x′) and Vt+1(x,m) = Vt+1(x

′,m)− logQt+1(x
′, x)− κ(x′, x),

Vt(x
′|n)−Vt(x|n) = (D.12)

E[∆ut(x′, x)− βρ(m|n){logQt+1(x
′, x′)− logQt+1(x

′, x)− κ(x′, x)}
+ βρ(n|n){Vt+1(x

′, n)−Vt+1(x, n)}|It].

Pushing (D.12) forward one period and substituting into (D.11) gives:

logQt(x
′, x)− logQt(x, x) = (D.13)

E[∆ut(x′, x)− βρ(m|m){logQt+1(x
′, x′)− logQt+1(x

′, x)− κ(x′, x)}
+ βρ(n|m)∆ut+1(x

′, x)

− β2ρ(m|n)ρ(n|m){logQt+2(x
′, x′)− logQt+2(x

′, x)− κ(x′, x)}
+ β2ρ(n|n)ρ(n|m){Vt+2(x

′, n)−Vt+2(x, n)}|It]− κ(x′, x).

Next push (D.11) forward one period and rearrange to get:

βρ(n|m)E[Vt+2(x
′, n)−Vt+2(x, n)|It+1] = (D.14)

logQt+1(x
′, x)− logQt+1(x, x)− E[∆ut+1(x

′, x)

+ βρ(m|m){logQt+2(x
′, x′)− logQt+2(x

′, x)− κ(x′, x)}|It+1] + κ(x
′, x).
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Finally, substitute (D.14) into (D.13):

logQt(x
′, x)− logQt(x, x) = (D.15)

E[∆ut(x′, x)− βρ(m|m){logQt+1(x
′, x′)− logQt+1(x

′, x)− κ(x′, x)}|It]
+ βρ(n|m)E[∆ut+1(x

′, x)|It]
− β2ρ(m|n)ρ(n|m)E[logQt+2(x

′, x′)− logQt+2(x
′, x)− κ(x′, x)|It]

+ βρ(n|n)E[logQt+1(x
′, x)− logQt+1(x, x)−∆ut+1(x

′, x)|It]
+ β2ρ(n|n)ρ(m|m)E[logQt+2(x

′, x′)− logQt+2(x
′, x)− κ(x′, x)|It]

+ βρ(n|n)κ(x′, x)− κ(x′, x).

Reorganize this as:

logQt(x
′, x)− logQt(x, x) = βρ(m|m)E[logQt+1(x

′, x)− logQt+1(x
′, x′)|It]

+ βρ(n|n)E[logQt+1(x
′, x)− logQt+1(x, x)|It]

− β2{ρ(m|n)ρ(n|m) + ρ(n|n)ρ(m|m)}E[logQt+2(x
′, x′)− logQt+2(x

′, x)|It]
+ E[∆ut(x′, x)|It] + β{ρ(n|m)− ρ(n|n)}E[∆ut+1(x

′, x)|It]
+ {−1 + β{ρ(m|m) + ρ(n|n)}+ β2{ρ(m|n)ρ(n|m)− ρ(n|n)ρ(m|m)}}κ(x′, x).

Equation (D.10) can be estimated via GMM to recover a. Given an estimated a and
values for ρ, we use dynamic hat algebra to construct responses to counterfactual
policy variation.

D.8.2 Results for the mobile/immobile types model

We use estimated values in Artuç et al (2010) to construct transition matrix over
mobility types, i.e. ρ(n|m) = 0.441 and ρ(m|n) = 0.146. Together with (B.11), these
values imply that 28% of population consists of mobile workers.

We first set a = 0.142 as in the main text and calculate the long run marginal
excess burdens implied by the model in Appendix B.4.3 at the empirical policy.
Figure D.12 shows that the marginal excess burden values are very close to the
ones in the main text.
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Figure D.12: Short and long run marginal excess burdens in the data when a = 0.142

We then calculate optimal taxes for this case. Figure D.13 shows that optimal
taxes follow almost an affine tax system. Both lump-sum transfers ($5,534) and
optimal marginal income tax rates (0.38) are very close to the optimal taxes in the
main text. We continue to observe that the Food Services workers receive a better
tax treatment- $1,771 less taxes compared to the implied taxes by affine tax system-
as in the main text.

30 40 50 60 70 80 90 100 110 120 130
0

5

10

15

20

25

30

35

40

45

50

Legal

Manag
A&E

C&M

L&P&S
Health

B&F
Arts

Sales
Pr Serv

Educ
Instal

C Serv Constr
Transp

Prod

O&A

Pe Serv
H Serv

Mainten

F Serv

(a) Taxes: Optimal.

30 40 50 60 70 80 90 100 110 120 130
0.1

0.15

0.2

0.25

0.3

0.35 Legal

ManagA&E
C&M

L&P&S

Health

B&FArts
Sales

Pr Serv

Educ
Instal

C Serv

Constr
Transp

Prod

O&A

Pe Serv

H Serv

Mainten

F Serv

Estimated

(b) Average Income Tax Rates: Optimal.

Figure D.13: Taxes and Average Income Tax Rates by Occupation at the Optimum
with Unobservable Heterogeneity when a = 0.142.

Next, we re-estimate a using the estimation strategy in Artuç et al (2010) and
Proposition D.2. When we use imputation, i.e. replacing zeros with 1e-3, for the
transition matrix, we find a = 0.30. When we use PPML for smoothing the transition
matrix, we find a = 0.05. We take the average of these and set a = 0.175 which is in
the 95% confidence interval for both estimated a value. We again show marginal
excess burden in the data. The values are slightly higher due to the increase in a.
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Figure D.14: Short and Long Run Marginal Excess Burdens in the Data when
a = 0.175

Next, we calculate optimal taxes. We observe that the optimal marginal tax rate
is 0.33, a lower rate compared to the previous optimal rate. Higher a implies that
workers are more sensitive to consumption differentials, which increases sensitivies
and marginal excess burdens. Therefore, the government sets a lower rate for this
environment. On the other hand, we still observe that the generous tax treatment
for Food Service workers stands. At the optimum, they pay $1,713 less taxes than
the implied optimal tax rate by the affine tax system.
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(b) Average Income Tax Rates: Optimal.

Figure D.15: Taxes and Average Income Tax Rates by Occupation at the Optimum
with Unobservable Heterogeneity when a = 0.175.

E Further Extensions

This appendix sketches extensions that accommodate transitions, stochastic aging,
and externalities.
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Transitions The theory developed in the body of the paper can be modified to
accommodate optimal transitions by expanding the state space to incorporate dates
as well as work states. Let c = {c(i, t)}i∈I,t∈N denote an allocation of consumption
across work states and time and assume a resource constraint:

∞∑
t=1

qt {F (Pt(c))− ct ·Pt(c)−G} ≥ 0, (E.1)

with q∞ = {qt+1}∞t=0 an exogenous sequence of intertemporal prices normalized so
that

∑∞
t=1 qt = 1 and Pt the distribution of agents over work states at t. Letting

M : R∞
+ → R denote a smooth, concave and increasing societal objective defined over

(intertemporal) consumption allocations c gives rise to a first order condition with
identical structure to (17):

1

Υ

∂M

∂c

⊤
= Pq −

(
∂Pq

∂c

)⊤

T, (E.2)

where Pq = {qtPt}∞t=1 is the implied “distribution” of workers over dates and states
that convolutes prices and state distributions, ∂M

∂c
is the derivative of M at the

optimum, and T is the family of tax wedges {∂F (Pt)
∂p(i)

− ct(i)}. Extracting the first order
condition for a specific ct from (E.2) and expressing it in terms of the component
{Ps} gives:

1

Υ

∂M

∂ct

⊤
= qtPt −

∞∑
s=1

qs

(
∂Ps

∂ct

)⊤

Ts, (E.3)

with the final term on the right hand side of (E.3) giving the dynamic marginal excess
burden associated with a consumption perturbation at t. Now, a consumption
perturbation at t impacts the forward-looking behavior of workers and, hence, the
transitions Qs in all periods prior to t. It affects state distributions in periods both
before and after t via the impact of these transitions. Using the law of motion for
probability distributions Pt and the chain rule for matrix derivatives, the cross-
sensitivities of population shares at date s with respect to consumption at date t
may be computed. Lemma E.1 gives the formula.

Lemma E.1. The Jacobian of Ps with respect to the consumption allocation ct is given
by:

∂Ps

∂ct
=

min(s,t)∑
r=1

Qs
r+1Φr,t, (E.4)

where Qs
r+1 =

∏s
r+1 Qm and Φr,t =

[
(Pr−1)

⊤ ⊗ I
] ∂(vec Qr)

∂ct
.

In (E.4), Qs
r+1 acts as the propagation factor for the impact of the short-run (one

period) sensitivity at r, Φr,t, on the state distribution at s. The expression in (E.4)
combines all of these impacts at dates 1 ≤ r ≤ s to get the overall sensitivity at s.
Note that perturbations of the consumption allocation at t can only affect behavior
and the short-run transition in periods prior to t. Thus, only transitions in periods
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between 1 and min(s, t) are cumulated into expression (E.4). Models of short-run
state distribution responses Φr,t may be integrated into expressions (E.4). For
example, if a dynamic logit model without perpetual youth is assumed, then:

∂Ps

∂ct
=

min(s,t)∑
r=1

(Qs
r+1)

⊤{I− Sr}
∂Vr+1

∂ct
, (E.5)

with period r substitution matrix: Sr = Q⊤
r DPr−1QrD

−1
Pr−1

and Vr+1 the lifetime payoff
from period r + 1.44

Stochastic Aging and Perpetual Youth Mobility is often greatest earlier in life when
workers have many future periods over which to accrue returns on any costly work
state transition. To keep the state space manageable (and to capture the fact that
human depreciation is random), it is useful to assume a stochastic aging process.
Let S = {1, . . . , s} denote the set of age states. Workers in age state s ∈ {1, . . . , s− 1}
remain at s with probability 1−δ(s) and enter s+1 with probability δ(s). A worker with
age state s = s remains at s with probability 1− δ(s) and retires and is replaced by
an entrant worker with probability δ(s). The perpetual youth model is a special case
of this structure with a single age state s = 1. Let D denote the age transition matrix
that collects the elements δ(s). The stationary distribution of workers over age states
is readily computed as {Ls}s∈S with Ls = 1/δ(s)∑

s′∈S 1/δ(s′)
. To simplify assume that entrant

workers are distributed across work states according to an exogenous distribution
P0. Worker preferences are identical to those in the benchmark dynamic discrete
choice model except that utility functions and costs of adjustment are permitted
to depend on age.45 In contrast, pre-tax incomes, tax policy and consumption are
assumed to depend on work state, but not age. An incumbent worker receives an
age and a Gumbel preference shock at the beginning of the period and updates its
work state. The lifetime utility of a worker with current age s and work state i net of
current Gumbel shock is:

Vs(i) = u(c(i), i, s) + β(1− δ(s))Vs
(i) + βδ(s)V

s+1
(i),

with V
s
(i) = log

∑
j∈I exp

Vs(j)−κ(j,i,s) for s ̸= s and V
s+1

(i) = 0. Let Qs denote the Markov
transition over work states for a worker of age s. The complete transition over age

44Simpler expressions for transition responses and for the dynamic marginal excess burden emerge
if the policymaker is constrained to make a time invariant tax policy choice, wages are time invariant,
and intertemporal prices are geometric: qt = (1 − q)qt−1 for some 0 < q < 1. Then, if P0 = P, we
have that: ∂Ps

∂c =
∑s−1

r=0 Q
rΦ, and the dynamic excess burden becomes: (1 − q)

∑∞
t=1 q

t−1(∂Pt

∂c )⊤T =
(1− q)(Φ)⊤(I− qQ⊤)−1T, where T denotes the vector of stationary equilibrium taxes. In comparison to
(18), the propagation factor (I−Q)# is replaced by (the resolvent) (1− q)(I− qQ)−1, which convolutes
the price q with the transition Q. In this case q parameterizes the policymaker’s concern with
intertemporal resource allocation. In the limiting case, q → 0, the policymaker is concerned only with
the short-run resource consequences of its policy choices and limq→0(1− q)(I− qQ)−1 = I. Conversely,
limq→1(1− q)(I− qQ)−1 = (1− q)

∑∞
t=0 q

tQt → (I−Q)#, the long-run propagation factor.
45And recall that amenity values are folded into costs of adjustment, so that these are implicitly

age-state dependent.
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and work states is assembled from D and {Qs}. The policymaker’s problem may be
formulated as in (16) with P =

∑
s∈S P

sLs the stationary distribution of workers over
work states and each Ps the stationary distribution over work states conditional on
age. The first order condition (17) and marginal excess burdens require evaluation
of ∂P

∂c
. Exploiting the structure of this problem, define for s = 1, . . . , s, Ps = QsP

s
,

with P
s
= (1− δ(s))Ps + δ(s)Ps−1. Totally differentiating and rearranging then gives:

∂Ps

∂c
=

∞∑
n=0

(1− δ(s))n(Qs)n
{
Φs + δ(s)Qs∂P

s−1

∂c

}
, (E.6)

where Φs(j, k) =
∑

i∈I
∂Qs(j,i)
∂c(k)

P
s
(i). Expression (E.6) resembles that from the basic

model up to the inclusion of the (1− δ(s))n terms in the propagation factor (which
act as a dampening factor on propagation) and the respecification of the bracketed
term as a sum of a short run within age group s sensitivity and a long run sensitivity
of those aged s− 1. The short run sensitivity Φs = {I−Ss}DP1

s
∂V
∂c

s, where P1
s = QsP

s

and Ss = QsDP
s(Qs)⊤DP1

s
−1, has a similar form to earlier sections. This system of

sensitivities may be solved recursively starting with s = 1.

Externalities Production externalities are easily added by returning to the policy-
maker’s problem (16) and deriving the first order condition:

DP
−1 1

Υ

∂M

∂c

⊤
= 1−DP

−1

(
∂P

∂c

)⊤{
∂F (P)

∂p
− c

}
(E.7)

and then substituting for taxes:

DP
−1 1

Υ

∂M

∂c

⊤
= 1−DP

−1

(
∂P

∂c

)⊤

{E+T} , (E.8)

with E = ∂F (P)
∂p

−w an externality term giving the difference between the social and
private marginal products of employment in each work state. The right hand side
externality term may be consolidated with the left hand side marginal social welfare
weight term to give an externality adjusted marginal social welfare weight. In the
context of static optimal occupational taxation, Lockwood et al. (2017) provide a
quantification of the externalities associated with occupations pursued by skilled
workers. However, the magnitude of occupational externalities remains highly
uncertain.
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Abstract

We introduce a dynamic model of matching within a competitive market framework that explicitly incorporates time-
invariant unobserved heterogeneity on both sides of the market along with endogenous separation and re-matching. In
each period, agents make two sequential, forward-looking discrete choices. First, they decide whether to match with a
partner or remain unmatched. In the second stage, they are committed to their matching status and face other choice
margins. We establish the model’s identification under the assumpton of stationarity in panel datasets where the sampling
unit is the household but the measurement unit is the individual, such as the German SOEP.We propose an Expectation-
Maximization (EM) algorithm for estimation. Monte Carlo simulations support our theoretical identification results and
demonstrate that our model offers a computationally viable framework for studying the economic incentives underlying
matching, separation, and re-matching, particularly in settings where unobserved characteristics play a critical role.

1 Introduction

The economic, empirical literature on household formation has continually drawn from the literature on discrete choices.
The random utility model (RUM) of discrete choice (McFadden, 1973) served as a foundation to model one-to-one matching
in a competitive market without search frictions (Choo and Siow, 2006). Dynamic discrete choice (DDC) models represent
the extension of the RUM to dynamic settings and were pioneered by Rust (1987). Coupled with the identification and
estimation strategy developed by Hotz and Miller (1993), which exploit nonparametrically identified conditional choice
probabilities (CCPs) as nuisance parameters to identify the structural parameters of the model, they enabled the empirical
study of a wide range of economic settings where agents are forward-looking and their choice sets are discrete. More recently,
Choo (2015) and Gayle and Shephard (2019) extended the discrete-choice matching model to dynamic environments where
agents are forward looking and need to take into account the possibility of separation in the future. Their identification and
estimation strategy are based on CCPs and provide researchers with a tractable and computationally cheap way to study
matching market where separation is possible. Though, they took separation as exogenous, thus limiting the analysis of its
underlying economic incentives. In this paper, we build on that literature by allowing for endogenous separation and re-
matching. Such events are important in the study of household formation, given that divorce and re-marriage are increasingly
prevalent in many western countries (e.g. Livingston (2014)).

We study the identification of our model in the presence of time-invariant, individual characteristics on both sides of the
market that are relevant for matching but unobserved to the econometrician. This is motivated by findings in the literature on
the marital wage premium that suggest that selection on unobservables into marriage might account for the positive correlation
between marital status and income that can be observed in the data Ludwig and Brüderl (2018). Because agents choose their
match based on their own unobserved characteristics as well as those of their (potential) matches, identification is complicated
by unobserved covariates and unobserved choices simultaneously. We first discuss the nonparametric identification of the
CCPs and the distribution of the unobserved heterogeneity, then the identification of the structural utility parameters. Our
nonparametric identification argument builds on Kasahara and Shimotsu (2009). It relies on multiple marginal distributions of
observables providing a sufficient number of independent restrictions to identify the distribution of unobservable heterogeneity
in the underlying population. In our model, agents make two sequential, forward-looking discrete choices at each discrete
period of time. In the first stage, they decide whether to match with a partner or remain unmatched. In the second, they
are committed to their matching status and face other choice margins. Second-stage CCPs are identified from the exogenous
sampling process over match outcomes, adopted by panel datasets such as the German SOEP by sampling over households,
and variation in match composition at the moment of sampling, together with the assumption of a stationary environment.
Lastly, once second-stage CCPs are identified, first-stage CCPs can be calculated from a linear system of restrictions derived
by integrating unobservable heterogeneity out of products of first- and second-stage CCPs.

To estimate the model, we adapt the Expectation-Maximization (EM) algorithm developed by Dempster et al. (1977)
and applied to DDC models by Arcidiacono and Miller (2011). The required adjustments are minimal. In addition to
calculating the posterior type distribution of each sampled agent, it is sufficient to compute the posterior type distribution

1

https://www.dropbox.com/scl/fi/l3j7dxq1jvnl2sfv59mc4/MicheliniBasulto2025_draft.pdf?rlkey=ldey8s0x6heasj0lerjxmtbib&st=c2lxnln6&dl=0


of each of their partners in their observed history, conditional on the sampled agent’s type. These posterior probabilities
are then used as weights in the maximization of an expected likelihood function, where the expectation is taken over the
unobserved heterogeneity of sampled agents and their partners, while unobserved heterogeneity is treated as observed inside
the expectation .

We conclude this article with a Monte Carlo exercise to showcase the model and the estimation algorithm.

2 Model

Agents live T periods with T ∈ N∪∞. Each male individual i and female individual j enters each period t endowed with their
respective individual characteristics ϕi,t = (xi,t, si) ,ϕi,t ∈ Φ, xi,t ∈ X , si ∈ S , Φ = X × S . 1 The state x is observable
to the econometrician while s indicates the unobserved characteristics. 2 Let X, and S denote the finite sizes of X , and S
respectively. The unobserved characteristics s are exogenous and time-invariant. Agents enter enter each period t as single
or matched to their respective partners l(i, t − 1) and r(j, t − 1), whom they matched with in period t − 1. To lighten the
notation, denote l(i, t) = ∅ and r(j, t) = ∅ the case when i and j respectively do not match with any partner in period t. At
each period, two stages of decision-making take place. In the first stage, agents decide whether to match with a partner and
their partner’s characteristics by maximizing their own expected lifetime utility in a competitive matching market. In the
second stage, agents have committed to their match status and make another choice. Single agents make choices maximizing
their own individual expected lifetime utility, while couples make choices maximizing a convex combination of each partner’s
expected lifetime utility. We use a tilde to group variables pertaining to a couple, e.g. s̃ij ≡ (si, sj),x̃ij,t ≡ (xi,t, xj,t),

ϕ̃ij,t ≡ (xi,t, si, xj,t, sj). If l(i, t) = ∅ (r(j, t) = ∅), then ϕ̃il(i,t),t = ϕi,t (ϕ̃r(j,t)j,t = ϕj,t).

First stage. In the first stage, a male i (female j) draws a vector of preference shocks (θi,t (ϕ) , θi,t(∅))∈ RΦ+1 ((θj,t (ϕ), θj,t(∅))
∈RΦ+1) that are independent and identically Gumbel distributed and are independent across choices, time periods, and from
any other agent’s draw. Given these preference shocks, each agent solves their respective utility maximization problem:

Ůt
f
(
ϕ̃r(j,t−1)j,t

)
= max

{
max
ϕ∈Φ

{
V ft (ϕ, ϕj,t) + κf

(
ϕ|ϕ̃r(j,t−1)j,t

)
+ θj,t (ϕ)

}
, V f∅t (ϕj,t) + κf

(
∅|ϕ̃r(j,t−1)j,t

)
+ θj,t(∅)

}
(1)

Ůt
m
(
ϕ̃il(i,t−1),t

)
= max

{
max
ϕ∈Φ

{
V mt (ϕi,tϕ) + κm

(
ϕ|ϕ̃il(i,t−1),t

)
+ θj,t (ϕ)

}
, V m∅t (ϕi,t) + κm

(
∅|ϕ̃il(i,t−1),t

)
+ θi,t(∅)

}
(2)

Where the function κm
(
ϕ|ϕ̃il(i,t−1),t

)
indicates the transition cost for male i who enters time t with characteristics ϕit,

is matched with partner l(i, t− 1) with characteristics ϕl(i,t−1)t, and transitions to a partner l(i, t) with characteristics ϕ. 3

With a slight abuse of notation, κm
(
∅|ϕ̃il(i,t−1),t

)
indicates the cost incurred by agent i to become single. The function κf for

females is similarly defined. We assume that κm
(
∅|ϕ̃il(i,t−1),t

)
= κf

(
∅|ϕ̃r(j,t−1)j,t

)
= 0 for all ϕ̃il(i,t−1),t and ϕ̃r(j,t−1)j,t.

This assumption is necessary for identification and it is standard in dynamic discrete choice models. The functions V ft and
V mt are continuation values defined in detail below. Denote the expected lifetime utility at the beginning of stage one, before
drawing the preference shocks θ as:

Uft

(
ϕ̃r(j,t−1)j,t

)
= Eθj,tŮt

f
(
ϕ̃r(j,t−1)j,t

)
Umt

(
ϕ̃l(i,t−1),t

)
= Eθi,tŮt

m
(
ϕ̃il(i,t−1),t

)
The assumption that the market does not have search frictions implies that every agent that chooses to be matched will

be matched. As a consequence, when an agent is single, it is because he chose to be single, regardless of whether he was
matched in the previous period or not. Because we assume that there is no cost to transtion from partner l to partner l′

when they have identical characteristics ϕfl,t = ϕfl′,t, it is entirely indifferent for agent i whether he is matched to l or l′. As
a consequence, the conditional choice probability of choosing to stay matched to l is identical to that of chosing to divorce
l and immediately match with l′. Because agents can observe each other’s state s, agents’ identities provide no additional
information to other agents. On the other hand, as we will show below, the econometrician can gain information about the
unobserved state by tracking the identity of distinct spouses.

1The assumption that male and female inhabit the same space of characteristics simplifies our exposition, but it is not crucial.
2In general, x and z can each be mapped onto a vector of covariate values, i.e. a point in a space induced by such covariates. Therefore, the

exposition of the model can proceed while considering x and z as the sole covariates, without loss of generality.
3The use of the t index twice might seem reduntant, but it is important below for values such as xl(i,t−1),t, which indicates the value of x at

time t for the individual who was matched to i at t−1. This value is distinct from xl(i,t),tin that individuals l(i, t−1) and l(i, t) might be different.
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Second stage. After matching decisions have been made, matched agents face the finite choice set A (ϕi,t, ϕj,t) of size
A (ϕi,t, ϕj,t), and single agents face the choice set A (ϕi,t) of size A (ϕi,t). They draw a vector of independent, Gumbel-
dstributed preference shocks εij,t ∈ RA(ϕi,t,ϕj,t)and εi,t ∈ RA(ϕi,t) respectively, having one element for each action in their
choice sets. Shocks are independent across agents, time periods, and independently from the match preference shocks drawn
during the matching stage. Matched agents and couples then proceed to choose the actions ãij,t and ai,t that maximize
their expected lifetime utility, after which they enjoy their flow utilities. We define the flow utilities of males and females
in couple (i, j) derived from action ã as umt (ã|ϕi,t, ϕj,t) and uft (ã|ϕi,t, ϕj,t) respectively, and the utility of single male i and

single female j as um∅t (a|ϕi,t) and u
f
∅t (a|ϕj,t), respectively.

We define the second-stage conditional valuation functions as the sum of the agents flow utilities and the discounted
expected lifetime utility from the next period onwards.

vft
(
ã|ϕr(j,t),t, ϕj,t

)
= uft

(
ã|ϕr(j,t),t, ϕj,t

)
+ βEϕ̃r(j,t)j,t+1|ϕ̃r(j,t)j,t

Uft+1

(
ϕr(j,t),t+1, ϕj,t+1

)
vmt
(
ã|ϕi,t, ϕl(i,t),t

)
= umt

(
ãϕi,t, ϕl(i,t),t

)
+ βEϕ̃il(i,t),t+1|ϕ̃il(i,t),t

Umt+1

(
ϕi,t+1, ϕl(i,t),t+1

)
vf∅t (a|ϕj,t) = uf∅t (a|ϕj,t) + βEϕj,t+1|ϕj,t

Uft+1 (ϕj,t+1)

vm∅t (a|ϕi,t) = um∅t (a|ϕi,t) + βEϕi,t+1|ϕi,t
Umt+1 (ϕi,t+1)

Note that the definitions of v and U incorporate the standard assumptions of additive time-spearability of preferences
and independence of the preference shocks and the state conditional on the lagged state.

Define V ft
(
ϕr(j,t), ϕj,t

)
as the expected lifetime utility for a female j in state ϕj,t matched to a male r(j, t) in state ϕr(j,t)

before the realization of the couple’s preference shocks εij,t. The utility of male i matched with female l(i, t) is analogously
defined and denoted V mt

(
ϕi,t, ϕl(i,t),t

)
. For single males and females, the analogue values are denoted as V m∅t (ϕi,t) and

V f∅t (ϕj,t). Let λ
(
ϕ̃ij,t

)
denote the Pareto weight associated with the male’s expected lifetime utility in couple (i, j).

V f∅t (ϕj,t) = Eεj,t max
a∈A (ϕf

j,t)
vf∅t (a|ϕj,t) + εj,t(a)

V m∅t (ϕi,t) = Eεi,t max
a∈A (ϕm

i,t)
vm∅t (a|ϕi,t) + εi,t(a)

ãij,t = arg max
ã∈A (ϕ̃ij,t)

λ
(
ϕ̃ij,t

)
vmt (ã|ϕi,t, ϕj,t) +

(
1− λ

(
ϕ̃ij,t

))
vft (ã|ϕi,t, ϕj,t) + εij,t(a)

V mt
(
ϕi,t, ϕl(i,t),t

)
= Eεil(i,t),tv

m
t

(
ãil(i,t),t|ϕi,t, ϕl(i,t),t

)
+ εil(i,t),t

(
ãil(i,t),t

)
V ft
(
ϕr(j,t), ϕj,t

)
= Eεr(j,t)j,tv

f
t

(
ãr(j,t)j,t|ϕr(j,t), ϕj,t

)
+ εr(j,t)j,t

(
ãr(j,t)j,t

)
We denote ã0 ∈ A

(
ϕ̃ij,t

)
and a0 ∈ A

(
ϕmi,t
)
as baseline actions such that

uft
(
ã0|ϕr(j,t),t, ϕj,t

)
= 0

umt
(
ã0|ϕi,t, ϕl(i,t),t

)
= 0

uf∅t (a0|ϕj,t) = 0

um∅t (a0|ϕi,t) = 0

This assumption is necessary for identification and it is standard in dynamic discrete choice models. Figure 1 represents
the timing of the model.

3 Data sampling procedure and selection

Before discussing the identification of the model, it is necessary to discuss the data sampling procedure. Our model requires a
panel data of individual agents and their matches. It is crucial for identification that the sampling occur over match outcomes,
so that both unmatched individuals and matched pairs can be randomly drawn from the population. This is the case in any
population survey where the sampling unit is the household and the measurement unit is the adult individual. Households
can be comprised of a single adult individual or a couple of adults– disregarding more rare household compositions that
involve more adults. The panel needs to follow over time (up to some exogenous attrition) all individuals that formed the
matches originally sampled, and measure the characteristics of all their future matches as well. The German SOEP dataset
fulfills these requirements.4 In 1984, a first representative sample of West German private households was drawn. In 1990 a
new representative sample of East German houeholds was added. Since then, new refresher samples are periodically drawn

4https://www.diw.de/en/diw 01.c.678568.en/research data center soep.html
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Figure 1: Timing of choices and the evolution of the state.

from the general population of German private households and included in the SOEP to counter attrition and ensure the
panel remains representative. In the year following the first interview, the individuals in the household might move out,
thereby forming a new household (or joining a preexisting one). Such individuals are located and interviewed, together with
any adult individual who might live with them. This way, the new houshold is now part of the SOEP panel, and so are all
the individuals therein. The process repeats each year, and every adult who was ever interviewed will be contacted in the
following years for follow-up interviews. Similarly, any adult individual joining a household that is already in the sample will
be interviewed and, upon moving out, the household they will form or join will enter the SOEP sample. For this reason,
our model can be estimated on SOEP data by interpreting cohabitation as a match. Children of individuals in the panel are
interviewed starting from age 16, and are followed year after year just like other panel members. To identify our model, we
only need to consider households that were randomly sampled from the general population, i.e. individuals in the original
samples or refresher samples. . We index these randomly drawn households by (i, j)t0 , i ∈ I ∪ ∅, j ∈ J ∪ ∅, i ̸= j where I
is the set of males in the randomly drawn households andJ is the set of females. Denote with t0(i, j) the moment of the
first survey for household (i, j)t0 which could be 1984, 1990, or any of the years when a refresher sample was drawn. At the
moment of survey in t0(i, j), the household composition is already determined. Because of this, the household composition is
simultaneously sampled together with the unobservable characteristics of its members from the general population, according
to some endogenous joint probability π(si, sj). If individual i (j) is in a one-person household at the time of the first interview,
the joint probability of being single and being of type si (sj) is denoted π(si, ∅) (π(∅, sj)). Notice that∑

s,s′

π (s, s′) +
∑
s

π (s, ∅) +
∑
s′

π (∅, s′) = 1

where Pm and .
To indicate if a household is composed of a single male, a single female, or a couple at sampling, we define the variable

ht0(i, j) =


hmt0 if (i, j)t0 = (i, ∅)
hft0 if (i, j)t0 = (∅, j)
h̃t0 otherwise

Suppose individuals i and j formed a match together at the time of their first interview t0(i, j). Suppose they separate at
t0 + 1 and i immediately forms a new household with individual l /∈ I . Then at t0 + 2, i and l separate and l immediately
forms a new household with r /∈ I . Then, although the household formed by l and r at t0 + 2 year is included in the SOEP
dataset and will be surveyed at all t > t0 + 2 until attrition, we do not need their observations from t0 + 3 onwards. Since
the presence of l and r in the SOEP is determined by the matching choices of i and l, rather than by random sampling
from the German population, neither l nor r are representative of the overall population because they were selected into
the sample based on their characteristics (including those unobserved to the econometrician) through partner choice. Hence,
including observations concerning l or r for t0 +3 onwards would require accounting for their selection on unobservables into
the sample. Such endeavor is beyond the scope of this article. The only reason we use observations concerning l at time
t0 + 2 is to be able to condition on l’s characterstics when i and l separate. 5

5We only consider households formed by a single individual or by two cohabiting heterosexual partners. Households comprised of two adults
that do not consider each other partners are treated as two distinct one-person households. In the case of households comprised of one or more
couples living with other adults, we consider each couple as a distinct household, and the other single adults are each considered independent
households as well.
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4 The likelihood

We can write the sampling likelihood for each sampled household. First, the households in {(i, ∅)t0}. The discussion for
households in {(∅, j)t0}proceeds analogously.

L(i, ∅)t0 ≡ P
({
x̃il(i,t),t, xl(i,t−1),t, ãil(i,t),t

}
t
|hmt0

)
=
∑
si

π(si, ∅)P
({
x̃il(i,t),t, xl(i,t−1),t, ãil(i,t),t

}
t
| si, hmt0

)
With some abuse of notation because xl(i,t−1),t is undefined for t = 1, 2. Define L (i) = {l : ∃ t s.t.l(i, t) = l}(R(j) =

{r : ∃ t s.t.r(j, t) = r}) the set of individuals that ever matched to i (j) in the data. Denote l∗(i, k) to indicate i’s k-th
spouse since sampling. Define |L (i)| (|R(j)|) to indicate the total number of spouses i had in his observed history. Define
T (i, l(i, t∗)) = {t : l(i, t) = l(i, t∗)}, the set of time periods when l(i, t∗) and i have been matched. The likelihood can be
expressed as:

L(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si, hmt0 )
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
× (3)

∑
{sl∗}l∗∈L (i)

T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕ̃il(i,t−1)t, h

m
t0

) ∏
l∗∈L (i)\j

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h

m
t0

)
(4)

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
=

{
f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1),t−1

)
× if t > 1, l(i, t− 1) ̸= ∅

fm (xit|ϕit−1, ait−1) if t > 1, l(i, t− 1) = ∅

The derivation of (3) is in B.1. Notice that ãil(i,t),t = ait, x̃il(i,t),t = xit, andϕ̃il(i,t),t = ϕit if l(i, t) = ∅, and similarly

ãr(j,t)j,t = ajt, x̃r(j,t)j,t = xjt, and ϕ̃r(j,t)j,t = ϕjt if l(i, t) = ∅. Because
(
x̃il(i,t−1),t, x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
are always

observable, f (x̃′|x̃, ã) is always nonparametrically identified for any values of (x̃, x̃′, ã), and can be separated from the rest
of the likelihood. For convenience, we divide (3) by

F
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
≡

T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
to obtain

L̊(i, ∅)t0 ≡ P̊
({
x̃il(i,t),t, xl(i,t−1),t, ãil(i,t),t

}T
t=1

, hmt0

)
(5)

=
∑
si

π(si, ∅)pm(ai1, xi1|si, hmt0 ) (6)

∑
{sl∗}l∗∈L (i)

T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕ̃il(i,t−1)t, h

m
t0

) ∏
l∗∈L (i)\j

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h

m
t0

)
In the rest of the paper, we use the notation P̊ to indicate likelihood functions that exclude transition probabilities.
Then, the likelihood for households in {(i, j)t0} for i, j ̸= ∅ is the following.

L(i, j)t0 ≡ P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}
t
|h̃t0

)
(7)

=
∑
si

∑
sj

π(si, sj)P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}
| si, sj , h̃t0

)

=
∑
s̃ij

π (s̃ij) p
(
ãij1, x̃ij1|s̃ij , h̃t0

) T∏
t=2

f(x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1),t−1, ãr(j,t−1)j,t−1)×

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i



∏
l∗∈L (i)\j

∏
t∈T (i,l∗) P

(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h̃t0

)
×∏

r∗∈R(j)\i
∏
t∈T (j,r∗) P

(
ϕr∗,t, ãr∗j,t|ϕ̃r(j,t−1)j,t, h̃t0

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t, h̃t0

)
×∏

t∈T (i,∅) P
(
ϕl,t = ∅, ai,t|ϕ̃il(i,t−1)t, h̃t0

)∏
t∈T (j,∅) P

(
ϕr,t = ∅, aj,t|ϕ̃r(j,t−1)j,t, h̃t0

)


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With some abuse of notation being xl(i,t−1),t and xr(j,t−1),t undefined for t = 1. Notice that at each time t such that

l(i, t) = j and r(j, t) = i, we have ϕ̃il(i,t),t = ϕ̃r(j,t)j,t = ϕ̃ij,t.
6

7

Where

f(x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)

=



f(x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1)×
f(x̃r(j,t−1)j,t|x̃r(j,t−1)j,t−1, ãr(j,t−1)jt−1) if l(i, t− 1) ̸= ∅, r(j, t− 1) ̸= ∅

f(x̃ijt|x̃ijt−1, ãijt−1) if l(i, t− 1) = j, r(j, t− 1) = i

f(xit|xit−1, ait−1)f(x̃r(j,t−1)j,t|x̃r(j,t−1)j,t−1, ãr(j,t−1)j,t−1) if l(i, t− 1) = ∅, r(j, t− 1) ̸= ∅

f(x̃il(i,t−1)t|x̃il(j,t−1)t−1, ãil(i,t−1)t−1)

×f(xjt|xjt−1, ajt−1) if l(i, t− 1) ̸= ∅, r(j, t− 1) = ∅

f(xit|xit−1, ait−1)× f(xjt|xjt−1, ajt−1) if l(i, t− 1) = ∅, r(j, t− 1) = ∅

The derivation of (7) is in B.2.
Once again, for convenience, we divide 7 by

F (x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)

≡
T∏
t=2

f(x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)

to define

L̊(i, j)t0 ≡ P̊
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}
t
|h̃t0

)
(8)

=
∑
s̃ij

π (s̃ij) p
(
ãij1, x̃ij1|s̃ij , h̃t0

)

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i



∏
l∗∈L (i)\j

∏
t∈T (i,l∗) P

(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h̃t0

)
×∏

r∗∈R(j)\i
∏
t∈T (j,r∗) P

(
ϕr∗,t, ãr∗j,t|ϕ̃r(j,t−1)j,t, h̃t0

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t, h̃t0

)
×∏

t∈T (i,∅) P
(
ϕl,t = ∅, ai,t|ϕ̃il(i,t−1)t, h̃t0

)∏
t∈T (j,∅) P

(
ϕr,t = ∅, aj,t|ϕ̃r(j,t−1)j,t, h̃t0

)


5 Nonparametric identification

The model implies that the first- and second-stage choice probabilities can be factored, conditionally on ϕ̃il(i,t−1),t, as follows

P
(
ϕl(i,t),t, ãil(i,t),t|ϕ̃il(i,t−1)t

)
= ψm(ϕl(i,t),t|ϕ̃il(i,t−1),t)p(ãil(i,t),t|ϕit, ϕl(i,t),t)

P
(
ϕl,t = ∅, ai,t|ϕ̃il(i,t−1)t

)
= ψm(∅|ϕ̃il(i,t−1),t)p(ai,t|ϕit)

Our goal is to identify ψm(ϕl(i,t),t|ϕ̃il(i,t−1),t) and p(ãijt|ϕit, ϕl(i,t),t) for all values of
(
ϕ̃il(i,t−1),t, ϕl(i,t),t, ϕit, ϕl(i,t),t, ãijt

)
.

6The reason why the likelihoods of the histories of agents (i, j), who formed a household together at sampling, are joint despite the assumption
that one’s marital choices do not affect the other (i.e. an agent is always single because they chose so) is that their unobserved types are potentially
correlated (e.g. if there exists sorting on unobservables) and it would be a mistake to factor π(si, sj) = π(si)π(sj).

7Notice that
∏
t∈T (i,j)\{t=1} P

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t

)
cannot be factored out of the summations over

l∗(i, k) and r∗(j, k) because of the dependency on r(j, t− 1) and l(i, t− 1), which could include r(j, t− 1) ̸= i and l(i, t− 1) ̸= j if the couple (i, j)
separated at any point in time, matched to other partners, and then re-matched.
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5.1 Identification in a special case

In this subsection, we look at identification in a simplified case, where we assume that the matching transition costs do not
depend on the previous spouse’s characteristics. This allows to simplify the likelihood noticing that each spouse’s l∗ (r∗)
unobserved type only enters the choice probabilities related to the periods in T (i, l∗) (T (j, r∗)).

Assumption 1.

κf
(
ϕ|ϕ̃r(j,t−1)j,t

)
= κf (ϕ|ϕj,t) (9)

κm
(
ϕ|ϕ̃il(i,t−1),t

)
= κm (ϕ|ϕi,t)

which implies

ψm(ϕl(i,t),t|ϕ̃il(i,t−1),t) = ψm(ϕl(i,t),t|ϕit)
ψf (ϕr(j,t),t|ϕ̃r(j,t−1)j,t) = ψf (ϕr(j,t),t|ϕjt)

5.1.1 Unmatched individuals

Under Assumption 1,(5) simplifies to

L̊(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si, hmt0 )
T∏
t=2

P
(
ãil(i,t),t, xl(i,t),t|ϕit, hmt0

)
Which is derived in B.3.
This shows that the sample likelihood for a single individual fulfills the property of independent marginals required by

Kasahara and Shimotsu (2009) and Hall and Zhou (2003). Let πm(s|hmt0 ) indicate the distribution of unobserved types for
males conditional on being single at period t0(i, ∅).

Then, we can write

L̊(i, ∅)t0 = P (hmt0 )
∑
si

π(si|hmt0 )p
m(ai1, xi1|si, hmt0 )

T∏
t=2

P
(
ãil(i,t),t, ϕl(i,t),t, xl(i,t−1),t|ϕit, hmt0

)
(10)

And notice that P (hmt0 ) is nonparametrically identified in the data since hmt0 is observable.

Assumption 2.

The conditional choice probabilities ψ and p do not depend on t.
To simplify the exposition of the identification argument, we consider a fixed choice set for every individual at every state

and every match status.

Assumption 3.

A (ϕ) = A ∀ϕ ∈ X × S

A
(
ϕ̃
)
= A 2 ∀ϕ̃ ∈ (X × S )

2

for all x̃, s̃, x̃′, s̃′.

The following identification proof is constructive and proceeds by steps. First, we focus on households of type (i, ∅)t0at
the moment of sampling and 1 shows the identification of pm(ait|ϕit, hmt0 ) and P

(
ãil(i,t),t, xl(i,t),t|ϕit, hmt0

)
for every value

of
(
ait, ãil(i,t),t, xl(i,t),t, ϕit

)
. The identification argument is identical for (∅, j)t0 households. Then, we focus on households

of type (i, j)t0 , formed of two partners at the moment of sampling and 2 shows the identification of p(ãij,t|ϕ̃ij,t, h̃t0) for

all values of
(
ãij,t, ϕ̃ij,t

)
. Finally, 1 proves of the identification of ψm

(
ϕl(i,t),t|ϕit

)
, with the argument being identical for

ψf
(
ϕr(j,t),t|ϕjt

)
.

Lemma 1. , Under assumptions 1, 2, and 3, the parameters π(s|hmt0 ), P
(
ãil(i,t),t, xl(i,t),t|ϕit, hmt0

)
, pm(ait|ϕit, hmt0 ), for all

s ∈ S , ϕ ∈ Φ, a ∈ A (x, s) are identified from (10)

Proof. See E.1.
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5.1.2 Matched pairs

The simplified likelihood:

L̊(i, ∅)t0 =
∑
s̃ij

π(s̃ij)p(ãij1, x̃ij,1|s̃ij , h̃t0)
T∏
t=2

P
(
ãil(i,t),t, ãr(j,t)j,t, xl(i,t),t, xr(j,t),t|ϕ̃ij,t, s̃ij , h̃t0

)

= P (h̃t0)
∑
s̃ij

π(s̃ij |h̃t0)p(ãij1, x̃ij,1|s̃ij , h̃t0)
T∏
t=2

P
(
ãil(i,t),t, ãr(j,t)j,t, xl(i,t),t, xr(j,t),t|ϕ̃ij,t, s̃ij , h̃t0

)
(11)

Where π(s̃|h̃t0) is the distribution of unobserved heterogeneity among couples at time t0(i, j). The derivation of (11) is
in B.4.

Again, it is apparent that the likelihood satisfies the indepenent marginals property.

Lemma 2. Under assumptions 1, 2, and 3, the parameters π(s̃|h̃t0), p(ã, x̃|s̃) for all s̃ ∈ S 2, x̃ ∈ X 2, ã ∈ A
(
ϕ̃
)
, ã′ ∈

A
(
ϕ̃
)
, ϕ ∈ Φ, ϕ′ ∈ Φ are identified from (11)

Proof. See E.2.

Proposition 1. Under assumptions 1, 2, and 3, the parameters
(
ψm(x′, s′|x, s), pm(a|x, s), p(ã|ϕ̃), πm(s), πf (s)

)
for all

ϕ ∈ Φ, ϕ′ ∈ Φ, s ∈ S , s′ ∈ S , x ∈ X , x′ ∈ X , a ∈ A (x, s) , ϕ̃ ∈ X 2 × S 2, ã ∈ A
(
ϕ̃
)
are identified from (10) and (11).

Proof. See E.3

6 Identification of the structural parameters

The parameters of the model are identified from moments of the data generating process that can be consistently estimated
from the data, as proven above, through their analytic expressions. The identification arguments are well known Hotz and
Miller (1993) and are based on the existence of a mapping between CCPs and differences in conditional valuation functions.
The first set of such moments concern the conditional choice probabilities.

Due to the type-1 extreme value distributional assumption for the preference shocks in the first and the second stage, the
ex-ante lifetime utilities have a known closed form expressions in the following cases:

V f∅t (ϕj,t) = ln
∑

a∈A (ϕj,t)

exp vf∅t (a|ϕj,t) = vf∅t (a
∗|ϕ)− ν ln p(a|ϕj,t) + µ+ νγ∀a∗ ∈ A (ϕj,t) + µ+ νγ (12)

V m∅t (ϕi,t) = ln
∑

a∈A (ϕm
i,t)

exp vm∅t (a|ϕi,t) = vm∅t (a
∗|ϕi,t)− ν ln p(a|ϕi,t) + µ+ νγ∀a∗ ∈ A (ϕi,t) + µ+ νγ (13)

Uft

(
ϕ̃r(j,t−1)j,t

)
= ln

∑
ϕ∈Φ

exp
[
V ft (ϕ, ϕj,t) + κf

(
ϕ|ϕ̃r(j,t−1)j,t

)]
+ exp

[
V f∅t (ϕj,t) + κf

(
∅|ϕ̃r(j,t−1)j,t

)]
= V ft (ϕ

∗, ϕj,t) + κf
(
ϕ∗|ϕ̃r(j,t−1)j,t

)
− ν lnψf (ϕ∗|ϕj,t) + µ+ νγ ∀ϕ∗ ∈ Φ (14)

= V f∅t (ϕj,t) +��������
κf
(
∅|ϕ̃r(j,t−1)j,t

)
− ν lnψf (∅|ϕj,t) + µ+ νγ

Umt

(
ϕ̃il(i,t−1),t

)
= ln

∑
ϕ∈Φ

exp
[
V mt (ϕ, ϕi,t) + κm

(
ϕ|ϕ̃il(i,t−1),t

)]
+ exp

[
V m∅t (ϕi,t) + κm

(
∅|ϕ̃il(i,t−1),t

)]
= V mt (ϕ∗, ϕi,t) + κm

(
ϕ∗|ϕ̃il(i,t−1),t

)
− ν lnψm (ϕ∗|ϕi,t) + µ+ νγ ∀ϕ∗ ∈ Φ (15)

= V m∅t (ϕi,t) +��������
κm
(
∅|ϕ̃il(i,t−1),t

)
− ν lnψm (∅|ϕi,t) + µ+ νγ

Because the ex-ante lifetime utility of matched individuals derives from the maximization of a joint utility function, rather
than the individual’s utility, the expressions for V ft (ϕit, ϕj,t) and V mt (ϕit, ϕj,t) deviate slightly from the usual closed form
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and they are derived in A

V ft (ϕit, ϕj,t) =
∑

ã∈A (ϕi,ϕj)

p(ã|ϕ̃ij,t)

(
vft

(
ã|ϕ̃ij,t

)
− ν ln p(ã|ϕ̃ij,t)

)
+ µ+ νγ

V mt (ϕit, ϕj,t) =
∑

ã∈A (ϕi,ϕj)

p(ã|ϕ̃ij,t)

(
vmt

(
ã|ϕ̃ij,t

)
− ν ln p(ã|ϕ̃ij,t)

)
+ µ+ νγ

Given the ex-ante value functions, the marriage probabilities conditional on the observed state variables and the unob-
served types take the familiar logit form:

ψf
(
ϕr(j,t)t|ϕ̃r(j,t−1)j,t

)
=

expV ft (ϕ̃r(j,t)j,t) + κf
(
ϕr(j,t),t|ϕ̃r(j,t−1)j,t

)
− V f∅t(ϕj,t)���������

−κf
(
∅ϕ̃r(j,t−1)j,t

)
∑
ϕ∈Φ∪∅ expV

f
t (ϕ, ϕj,t) + κf

(
ϕ|ϕ̃r(j,t−1)j,t

)
− V f∅t(ϕj,t)���������

−κf
(
∅|ϕ̃r(j,t−1)j,t

) (16)

ψm
(
ϕl(i,t)t|ϕ̃il(i,t−1),t

)
=

expV mt (ϕ̃il(i,t),t) + κm
(
ϕl(i,t),t|ϕ̃il(i,t−1),t

)
− V m∅t (ϕi,t)

���������
−κm

(
∅|ϕ̃il(i,t−1),t

)
∑
ϕ∈Φ∪∅ expV

m
t (ϕi,t, ϕ) + κm

(
ϕ|ϕ̃il(i,t−1),t

)
− V m∅t (ϕi,t)���������

−κm
(
∅|ϕ̃il(i,t−1),t

) (17)

The second-stage choice probabilities for single male, single female, and couples also have well-known closed form expres-
sions:

pf (a|ϕjt) =
exp vf0t (a|ϕj,t)− vf0t (∅, ϕj,t)∑

a′∈A (ϕj,t)
exp vf0t (a

′|ϕj,t)− vf0t (∅|ϕj,t)
(18)

pm(a|ϕit) =
exp vm0t (a|ϕj,t)− vm0t (∅|ϕj,t)∑

a′∈A (ϕj,t)
exp vm0t (a

′|ϕj,t)− vm0t (∅|ϕj,t)
(19)

p(ã|ϕ̃ij,t) =

expλ
(
ϕ̃ij,t

) vmt

(
ã|ϕ̃il(i,t),t

)
−vmt

(
∅|ϕ̃il(i,t),t

) +
(
1− λ

(
ϕ̃ij,t

)) vft

(
ã|ϕ̃r(j,t)j,t

)
−vft

(
∅|ϕ̃r(j,t)j,t

) 
∑
ã′∈A (ϕ̃ij,t) expλ

(
ϕ̃ij,t

) vmt

(
ã′|ϕ̃il(i,t),t

)
−vmt

(
∅|ϕ̃il(i,t),t

) +
(
1− λ

(
ϕ̃ij,t

)) vft

(
ã′|ϕ̃r(j,t)j,t

)
−vft

(
∅|ϕ̃r(j,t)j,t

)  (20)

These moments can be used to form and minimize a loss function such as (negative) structural likelihood, a weighted
sum of square residuals in a GMM estimator, or a distance function with respect to nonparametric estimates of the choice
probabilities, thereby estimating the structural parameters. To calculate the value of each of these CCPs at any value of the
structural parameters, we need to telescope the conditional valuation functions v and use 12,13,14, and 15 to express them
as functions of conditional choice probabilities themselves. Instead of undertaking the difficult task of solving the system
of nonlinear equations in the values of the CCPs, we follow Hotz and Miller (1993) and Arcidiacono and Miller (2011) by
replacing the CCPs appearing in the right hand side of each structural with nonparametric estimates.

7 Estimation

7.1 The EM algorithm

The Expectation Maximization (EM) algorithm is a computationally conservative alternative to direct maximum likelihood
estimation with partial data. The technique was formalized in general terms by Dempster et al. (1977) and its convergence
properties were further studied by Wu (1983). Arcidiacono and Miller (2011) applied the technique to dynamic discrete choice
models. Instead of maximizing a likelihood that integrates over unobserved states and choices, we iteratively maximize
an expected log-likelihood. In this approach, unobserved characteristics and choices are treated as observed within the
expectation, while the expectation is taken over their possible values using the ex-post type distribution given the observed
data. Our model lends itself to this technique due to the presence of the unobserved characteristics s. Though, unlike the
setting of Arcidiacono and Miller (2011), our model features an unobserved choice in addition the unobserved conditioning
variable, because agents choose their partner’s unobserved state sl (sr) in the first stage of each period. We extend the
algorithm in Arcidiacono and Miller (2011) by estimating the posterior type probability of each chosen partner l (r) in addition
to the posterior type probability of each sampled household (i, j)t0 , and using the product of such posterior probabilities as
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weights in the expectation of the log-likelihood. We define

qis = P
(
si = s|

{
ai′l(i′,t),t, xi′t, xl(i′,t),t

}
t
, hmt0

)
qsl|si = P

(
sl = s|

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si, h

m
t0

)
qijs̃ = P

(
s̃ij = s̃|

{
x̃i′j′t, xl(i′,t),t, xr(j′,t),t, ai′l(i′,t),t, ar(j′,t)j′,t

}
t
, h̃t0

)
qsl|s̃ij = P

(
sl = s|

{
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, s̃ij , h̃t0

)
and form the expected likelihood

Es̃ij ,sl(i,t),sr(j,t)

[
ln P̊

({
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

,
{
s̃ij , sl(i,t), sr(j,t)

}
ij,t

)
|
{
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

]
The algorithm proceeds as follows.

1. Initialize the values
(
q0is, q

0
ijs̃, q

0
sl|si , q

0
sr|sj

)
for any household (i, j) and any partner l and r, and (ψm0(ϕ′|ϕ), ψf0(ϕ′|ϕ),

p0(ã|ϕ̃), pm0(a|ϕ), pf0(a|ϕ)) for all values of ϕ, ϕ′ ∈ X ,ϕ̃ ∈ X 2, a ∈ A , and ã ∈ A 2.

2. At any iteration h, maximize the expected log-likelihood over the space of first-stage and second-stage choice probabil-

ities, conditional on the values
(
qh−1
is , qh−1

ijs̃ , q
h−1
sl|si , q

h−1
sr|sj

)
. This step provides the values (ψmh(ϕ′|ϕ), ψfh(ϕ′|ϕ), ph(ã|ϕ̃),

pmh(a|ϕ), pfh(a|ϕ)).

3. Calculate the values
(
qhis, q

h
ijs̃, q

h
sl|si , q

h
sr|sj

)
based on the values

(
ψmh(ϕ′|ϕ), ψfh(ϕ′|ϕ), ph(ã|ϕ̃), pmh(a|ϕ), pfh(a|ϕ)

)
.

4. Reiterate from step 2 until convergence.

In the following subsection, we discuss the details of steps 2 and 3.

7.2 The general case

7.2.1 Unmatched individuals

In general, by definition, we have

qis =

π(s, ∅)P̊
({

ãil(i,t),t, ϕ̃il(i,t),t

}T
t=1

|si = s, hmt0

)
∑
s′ π(s

′, ∅)P̊
({

ãil(i,t),t, ϕ̃il(i,t),t

}T
t=1

|si = s′, hmt0

)

qsl|si =

P̊

(
sl,
{
ãil(i,t),t, ϕ̃il(i,t),t

}T
t=1

|si, hmt0

)
P̊

({
ãil(i,t),t, ϕ̃il(i,t),t

}T
t=1

|si, hmt0

)
Where

P̊
({
ãil(i,t),t, ϕ̃il(i,t),t

}
t
|si = s, hmt0

)
= pm(ai1, ϕi1|si, hmt0 )×∑
{sl∗}l∗∈L (i)\j

T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕ̃il(i,t−1)t, h

m
t0

) ∏
l∗∈L (i)

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h

m
t0

)

P̊
(
sl,
{
ãil(i,t),t, ϕ̃il(i,t),t

}
t
|si, hmt0

)
= pm(ai1, ϕi1|si, hmt0 )×∑
{sl∗}l∗∈L (i)\{j,l}

{
T∏

t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕ̃il(i,t−1)t, h

m
t0

)
∏

l∗∈L (i)

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t, h

m
t0

) T∏
t∈T (i,l)

P
(
xl,t, sl, ãil,t|ϕ̃il(i,t−1)t, h

m
t0

)}
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7.2.2 Matched pairs

For couples, we have

qijs̃ =

π(s̃)P̊

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃ij = s̃

)
∑
s̃′ π(s̃

′)P̊

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃′
)

qsl|s̃ij =

P̊

(
sl,
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃ij
)

P̊

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃ij
)

Where

P̊

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃ij = s̃

)
= p

(
ãij1, ϕ̃ij1|s̃ij

)
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

∏
l∗∈L (i)\j

∏
t∈T (i,l)

P
(
ϕl,t, ãil,t|ϕ̃il(i,t−1)t

) ∏
r∗∈R(j)\i

∏
t∈T (j,r)

P
(
ϕr,t, ãrj,t|ϕ̃r(j,t−1)j,t

)
×

∏
t∈T (i,j)\{t=1}

P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t

)

P̊

(
sl,
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
i,j,t

|s̃ij
)

= p
(
ãij1, ϕ̃ij1|s̃ij

) ∑
{sl∗}l∗∈L (i)\{j,l}

∑
{sr∗}r∗∈R(j)\i∏

l∗∈L (i)\j

∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t

) ∏
t∈T (i,l)

P
(
xl,t, sl, ãil,t|ϕ̃il(i,t−1)t

) ∏
r∗∈R(j)\i

∏
t∈T (j,r)

P
(
ϕr,t, ãrj,t|ϕ̃r(j,t−1)j,t

)
×

∏
t∈T (i,j)\{t=1}

P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t

)

These expression are used to update
(
qhis, q

h
ijs̃, q

h
sl|si , q

h
sr|sj

)
at step 3 of the EM algorithm by plugging into

P̊
({
ãil(i,t),t, ϕ̃il(i,t),t

}
t
|si = s, hmt0

)
the values

(
ψmh(ϕ′|ϕ), ψfh(ϕ′|ϕ), ph(ã|ϕ̃), pmh(a|ϕ), pfh(a|ϕ)

)
.

7.3 Special case

7.3.1 Unmatched individuals

Under Assumption 1, qsl|si simplifies to

qsl|si =

∏
t∈T (i,l) ψ

m(ϕl,t, sl|ϕit)p(ail,t|ϕit, ϕl,t)∑
s

∏
t∈T (i,l) ψ

m(ϕl,t, s|ϕit)p(ail,t|ϕit, ϕl,t)

Then, the expected likelihood for households in (i, ∅)t0becomes

max
p,ψ

E{si,{sl∗}l∗∈L (i)}N

i=1

[
lnP

({
ãil(i,t),t, ϕ̃il(i,t),t

}(N,T )

(i,t)=(1,1)
,
{
si, {sl∗}l∗∈L (i)

}N
i=1

)
|
{
ãil(i,t),t, ϕ̃il(i,t),t

}(N,T )

(i,t)=(1,1)

]
(21)

= max
p,ψ

∑
i

∑
s

qis

ln p(xi1|si) + ln p(ai1|xi1, si) +
∑
t>1

∑
sl(i,t)

qsl(i,t)|si lnP (ϕl∗,t, ãil∗,t|ϕit)


Where
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P (ϕl∗,t, ãil∗,t|ϕit) = ψm(ϕl(i,t∗),t|ϕit)p(ãil(i,t∗)t|ϕil(i,t),t)

The derivation of (21) is in C.1.
In C.2, we derve the solution to (21), which provides nonparametric estimators for p and ψ.

7.3.2 Matched pairs

If transition costs do not depend on the origin spouse, the expression for qsl|si simplifies

qsl|s̃ij =

∏
t∈T (i,l) P (sl, ϕl,t, ãil,t|ϕit)∑

s′l

∏
t∈T (i,l) P (s′l, ϕl,t, ãil,t|ϕit)

And the expected likelihood for households in (i, j)t0becomes

max
p,ψ

E

[
lnP

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

,
{
si, sj , {sl∗}l∗∈L (i)\j {sr∗}r∗∈R(j)\i

}
(i,j)

)
|
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

]

=max
p,ψ

∑
(i,j)t0

∑
s̃

qijs̃


lnπ (s̃ij) + ln p

(
ãij1, ϕ̃ij1|s̃ij

)
+
∑
t∈T (i,j)\{t=1} lnP

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
+
∑
l∗∈L (i)\j

∑
sl∗

∑
t∈T (i,l∗) lnP (ϕl∗,t, ãil∗,t|ϕit) qsl∗ |s̃ij+∑

r∗∈R(j)\i
∑
sr∗

∑
t∈T (j,r∗) lnP (ϕr∗,t, ãr∗j,t|ϕj,t) qsr∗ |s̃ij

 (22)

Where the conditional expectation in the first line is taken over
{
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)

.

The derivation of (22) is in C.3 and in C.4, we derive the solution to C.3.

7.3.3 Joint likelihood

Clearly the likelihood of the data will include both one- and two-person households.
Then, the expected joint likelihood of all histories in the data takes the form.

max
p,ψ

Es̃ij ,sl(i,t),sr(j,t)

[
ln P̊

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

|
{
s̃ij , sl(i,t), sr(j,t)

}
ij,t

)
|
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

]

= max
p,ψ

∑
{(i,j)t0}

∑
s̃

qijs̃

(
ln p(x̃ij,1|s̃ij) + ln p(ãij1|x̃ij,1, s̃ij)

+
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃ lnP
(
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,tij,t|s̃ij , sl(i,t), sr(j,t)

) )
(23)

+
∑

{(i,∅)t0}

ln pm(xi1|si) + ln pm(ai1|xi1, si) +
∑
s

qis
∑
t

∑
sl(i,t)

ql(i,t)s lnP
(
ãil(i,t),t, ϕit, ϕl(i,t),t|si, sl(i,t)

)
+

∑
{(∅,j)t0}

ln pf (xj1|sj) + ln pf (aj1|xj1, sj) +
∑
s

qjs
∑
t

∑
sr(j,t)

qr(j,t)s lnP
(
ãr(j,t)j,t, ϕjt, ϕr(j,t),t|sj , sr(j,t)

)

In C.5, we derive the solution to (23). These solutions are used to update the values of (ψmh(ϕ′|ϕ), ψfh(ϕ′|ϕ), ph(ã|ϕ̃),
pmh(a|ϕ), pfh(a|ϕ)).

At the end of the EM algorithm, we obtain values for (ψm∗(ϕ′|ϕ), ψf∗(ϕ′|ϕ), p∗(ã|ϕ̃), pm∗(a|ϕ), pf∗(a|ϕ)) that can be used
in one last maximization 23 over the space of the structural parameters and using the values of (ψmh−1(ϕ′|ϕ), ψfh−1(ϕ′|ϕ),
ph−1(ã|ϕ̃), pmh−1(a|ϕ), pfh−1(a|ϕ)) in the right-hand side of 18,19, and 20 to construct the likelihood. Alternatively, 23

can be performed over the space of structural parameters from the beginning, in which case (ψm∗(ϕ′|ϕ), ψf∗(ϕ′|ϕ), p∗(ã|ϕ̃),
pm∗(a|ϕ), pf∗(a|ϕ)) are updated by plugging the solution into 18,19, and 20 at each EM iteration. Either way, the result of
such maximization will yield the structural parameters estimator.
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8 Monte Carlo exercise.

In this section we specify a toy matching model to illustrate the estimation procedure and the small sample performance
of our estimator. We build on the standard bus engine replacement model (Rust (1987); Arcidiacono and Miller (2011)),
characterized by a renewal action that resets the engine mileage regardless of the previously accumulated mileage, but we
allow buses to operate either individually or in pairs. We consider a stationary environment with a two-dimensional state
space X = {(x1, x2) : x1 ∈ X1, x2 ∈ X2} with X1 = {0 : 1 : 25} being the accumulated engine mileage and X2 = {0.25, 0.75}
being an observable characteristic that affects mileage accumulation, such as bus route length, which is individual-specific and
fixed in time. Unobserved types fall into the binary set S = {0, 1}. At any state, the choice set is A (ϕ) = A = {a1, a2, a3}.
Utilities are specfied as

uf∅t (a|ϕ) = um∅t (a|ϕ) =


0 if a = a1

α0 + α1x1 + α2s+ 2α3 if a = a2

α0 + α1x1 + α2s+ 3α3 if a = a3

uft ((ait, ajt)|ϕit, ϕjt) = uf∅t (ajt|ϕjt)
umt ((ait, ajt)|ϕit, ϕjt) = um∅t (ait|ϕit)

κm(ϕ|ϕi) = κf (ϕ|ϕj) =

{
0 if ϕ = ∅
κ otherwise

And the Pareto weights are calibrated as λ
(
ϕ̃ij,t

)
= λ = 0.5. The individual transition probabilities of x1are governed

by

f(x′1|x1, x2, a) =


x2 exp (−x2(x′1)) if x′1 ≥ 0 and a = 1

x2 exp (−x2(x′1 − x1)) if x′1 ≥ x1 and a = 2

2x2 exp (−2x2(x
′
1 − x1)) if x′1 ≥ x1 and a = 3

0 otherwise

f(x′1i, x
′
1j |x1i, x2i, x1j , x2j , (ai, aj)) = f(x′1i|x1i, x2i, ai)f(x′1j |x1j , x2j , aj)

Because action a3 reduces the probability that x′1 will be far from x1 compared to action a2, we can interpret a3 as
a maintenance intervention on the engine that falls short of total engine replacement, while a2 can be interpreted as no
maintainance being done on the engine at all. Action a1 is the renewal action, so it can be interpreted as total engine
replacement. Under this specification, the model is characterized by one-period finite dependence, i.e. at each period and
each stage for any x1t there exists at least two sequences of first- and second-stage choices such that the distribution of x1t+1

is identical whether an agent enacts one sequence of choice or the other. In D we show that because of this property, the

differences vmt (a|ϕit)−vmt (0|ϕit), vmt
(
ã|ϕ̃il(i,t),t

)
−vmt

(
0, 0|ϕ̃il(i,t),t

)
, and V ft (ϕr(j,t)t, ϕj,t)−V

f
0t(ϕj,t) only depend on objects

subscripted by t and t+ 1 but no further. This greatly simplifies the computation of the structural moments discussed in 6,
which would otherwise require telescoping continuation values all the way until period T .

We do not estimate transition probabilities and instead use the true transition probabilities to form the structural moments.
We solve the model by backwards induction with β = 0.6 and T = 20 while we retain only the first 10 periods of simulated
data, to approximate a infinite-horizon setting. Each simulation is comprised of 5000 households, formed initially by either
a single agent or a pair. Hence, the number of individuals in each simulation is between 5000 and 10000. We simulate data
and estimate the model 50 times. Denote the vector of true values of the structural parameters with b0 = [κ, α0, α1, α2, α3].

At each simulation, we initialize the vector of structural estimates at b̂0 = b0 + u where u ∼ U(−0.5, 0.5) and the posteror
probabilities (q0is,q

0
ijs̃,q

0
sl|si ,q

0
sr|sj ). We calibrate the exogenous distribution of types conditional on sex πm(1) = 0.4 and

πf (1) = 0.4.

b0 κ α0 α1 α2 α3

True value -4 2 -0.15 1 -1
mean estimate -3.986 2.048 -0.144 1.103 -1.051

s.d. 0.282 0.038 0.002 0.042 0.012

Table 1: Monte Carlo simulation results.

Our Monte Carlo results support our proofs of identification and demonstrate that the model can be estimated in a
relatively short time given the availability of the appropriate hardware. The mean estimation time was 129 seconds with a
standard deviation of 20 seconds. We programmed the routine in the Julia language and found that performing calculations
through array operators on our dedicated graphic card accelerated the completion of each simulation by two orders of
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magnitude. Though, this approach is memory intensive and requires loading entire arrays on the dedicated GPU memory,
which limits the size of the state space we can adopt.

9 Conclusion

In this article we develop a model of dynamic matching with endogenous separations and re-matching and an identification
and estimation strategy that allows for time-invariant individual unobserved heterogeneity on both sides of the matching
market. Our identification results are limited to stationary environments and rely on a specific sampling procedure, namely
that the unit of sampling be the match itself. Our contribution is twofold. First, we provide a framework to empirically study
matching markets that is computationally relatively inexpensive, by expanding on the literature on matching as a dynamic
discrete choice setting and leveraging the CCP-based techniques proper of the DDC literature. Second, the tractability of
this framework enables us to provide proofs that clarify the sources of identification of the structural parameters. This model
can be used to study household formation and other matching markets where persistent unobserved heterogeneity is relevant.
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Appendix

A Derivation of V f(ϕ̃)

For convenience, I define A 2 = A
(
ϕmit , ϕ

f
jt

)
, λ = λ

(
ϕmit , ϕ

f
jt

)
and to save space I define vfã (ϕ̃) = vf (ã|ϕ̃), vmã (ϕ̃) = vm(ã|ϕ̃)
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V f (ϕ̃)

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)1{λvfã (ϕ̃) + (1− λ)vmã (ϕ̃) + εã ≥ λvfk (ϕ̃) + (1− λ)vmk (ϕ̃) + εk, ∀k ∈ A 2\{j}}g(ε⃗)dε⃗

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

1{λvfã (ϕ̃) + (1− λ)vmã (ϕ̃) + εã ≥ λvfk (ϕ̃) + (1− λ)vmk (ϕ̃) + εk}g(ε⃗)dε⃗

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

1{λ[vfã (ϕ̃)− vfk (ϕ̃)] + (1− λ)[vmã (ϕ̃)− vmk (ϕ̃)] + εã ≥ εk}g(ε⃗)dε⃗

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

1{mãk(ϕ̃) + εã ≥ εk}g(ε⃗)dε⃗

=
∑
ã∈A 2

∫ ∫
...

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

1{mãk(ϕ̃) + εã ≥ εk}g(ε1)g(ε2)...g(εã)...g(εA)dε1dε2...dεã...dεA

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∫
...

∫ ∏
k∈A 2\ã

1{mãk(ϕ̃) + εã ≥ εk}g(ε1)g(ε2)...g(εA)dε1dε2...dεAg(εã)dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

∫
1{mãk(ϕ̃) + εã ≥ εk}g(εk)dεkg(εã)dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

G(mãk(ϕ̃) + εã)g(εã)dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã)

∏
k∈A 2\ã

exp

{
− exp

(
−mãk(ϕ̃) + εã − µ

ν

)}
g(εã)dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã) exp

−
∑

k∈A 2\ã

exp

(
−mãk(ϕ̃) + εã − µ

ν

) g(εã)dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã) exp

−
∑

k∈A 2\ã

exp

(
−mãk(ϕ̃) + εã − µ

ν

) 1

ν
exp{−εã − µ

ν
− exp(−εã − µ

ν
)}dεã , plugging p.d.f. of εã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã) exp

−
∑

k∈A 2\ã

exp

(
−mãk(ϕ̃) + εã − µ

ν

)
− exp

(
−εã − µ

ν

) exp(−εã − µ

ν
)
1

ν
dεã

=
∑
ã∈A 2

∫
(vfã (ϕ̃) + εã) exp

− exp

(
−εã − µ

ν

) ∑
k∈A 2\ã

exp

(
−mãk(ϕ̃)

ν

)
+ 1

 exp(−εã − µ

ν
)
1

ν
dεã

=
∑
ã∈A 2

∫ ∞

−∞
vfã (ϕ̃)e

−e−
εã−µ

ν (1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )e−
εã−µ

ν
1

ν
dεã︸ ︷︷ ︸

(1)

+

∫ ∞

−∞
εãe

−e−
εã−µ

ν (1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )e−
εã−µ

ν
1

ν
dεã︸ ︷︷ ︸

(2)
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Using the same change of variable, t = e−
εã−µ

ν =⇒ dt = − 1
ν e

− εã−µ

ν , εã → ∞ =⇒ t→ 0, and εã → −∞ =⇒ t→ ∞, term
(1) becomes ∫ ∞

−∞
vfã (ϕ̃)e

−e−
εã−µ

ν (1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )e−
εã−µ

ν
1

ν
dεã

= vfã (ϕ̃)

∫ 0

∞
e−t(1+

∑
k∈A2\ã e

−mãk(ϕ̃)
ν )(−1)dt

= vfã (ϕ̃)

∫ ∞

0

e−t(1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )dt

= vfã (ϕ̃)
−e−t(1+

∑
k∈A2\ã e

−mãk(ϕ̃)
ν )

1 +
∑
k∈A 2\ã e

−mãk(ϕ̃)

ν

∣∣∣∣t=∞

t=0

=
vfã (ϕ̃)

1 +
∑
k∈A 2\ã e

−mãk(ϕ̃)

ν

=
vfã (ϕ̃)

1 +
∑
k∈A 2\ã e

−
λ[v

f
ã
(ϕ̃)−v

f
k
(ϕ̃)]+(1−λ)[vm

ã
(ϕ̃)−vm

k
(ϕ̃)]

ν

= vfã (ϕ̃)
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + (1− λ)vmk (ϕ̃)])

1
ν

Of course, noticing that we are taking expectation, we can simply say that (1) is

vfã (ϕ̃)Pr
([
λvfã (ϕ̃) + (1− λ)vmã (ϕ̃) + εã ≥ λvfk (ϕ̃) + (1− λ)vmk (ϕ̃) + εk

]
, ∀k ∈ A 2\{j}

)
= vfã (ϕ̃)

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃)])

1
ν

We apply the same change of variable for (2) while realizing that t = e−
εã−µ

ν ⇒ −ν ln t+ µ = εã:∫ ∞

−∞
εãe

−e−
εã−µ

ν (1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )e−
εã−µ

ν
1

ν
dεã

=

∫ 0

∞
−(ν ln t− µ) e−t(1+

∑
k∈A2\ã e

−mãk(ϕ̃)
ν )(−1)dt

=

∫ 0

∞
(ν ln t− µ) e−t(1+

∑
k∈A2\ã e

−mãk(ϕ̃)
ν )dt

Let’s denote M ≡ (1 +
∑
k∈A 2\ã e

−mãk(ϕ̃)

ν ):∫ 0

∞
(ν ln t− µ) e−tMdt

=

∫ ∞

0

−(ν ln t− µ) e−tMdt

=

∫ ∞

0

−
(
ν ln tM − ν lnM − µ

)
e−tMdt

=

∫ ∞

0

−ν ln(tM)e−tMdt+

∫ ∞

0

ν lnMe−tMdt+ µ

∫ ∞

0

e−tMdt
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We use the change of variable y = tM =⇒ dy = Mdt =⇒ dt = 1
M dy and denote γ Euler’s constant. Note that the

derivation of −
∫∞
0

(ln y)e−ydy = γ involves Γ′(1) = γ.

=

∫ ∞

0

− ν

M
(ln y)e−ydy − ν lnM

e−tM

M

∣∣∣∣∞
0

+ µ× (1/M)

= γ
ν

M
+
ν lnM

M
+

µ

M

=
1

M
(νγ + ν lnM + µ)

=
1

1 +
∑
k∈A 2\ã e

−mãk(ϕ̃)

ν

νγ + ν ln
(
1 +

∑
k∈A 2\ã

e−
mãk(ϕ̃)

ν

)
+ µ


=

1

1 +
∑
k∈A 2 exp{−(λ[vfã (ϕ̃)− vfk (ϕ̃)] + (1− λ)[vmã (ϕ̃)− vmk (ϕ̃)])/ν}

νγ + ν ln
(
1 +

∑
k∈A 2\ã

e−
mãk(ϕ̃)

ν

)
+ µ


=

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃))

1
ν

νγ + ν ln
(
1 +

∑
k∈A 2\ã

e−
mãk(ϕ̃)

ν

)
+ µ

 , then multiply ãnd divide inside the log:

=
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃))

1
ν

(
νγ + ν ln

∑
k∈A 2 exp(λv

f
k (ϕ̃) + (1− λ)vmk (ϕ̃))

1
ν

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν

+ µ

)

=
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃))

1
ν

(
νγ + ν ln

( ∑
k∈A 2

exp(λvfk (ϕ̃) + (1− λ)vmk (ϕ̃))
1
ν

)
−

ν ln
(
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν

)
+ µ

)

=
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃)])

1
ν

(
νγ + ν ln

( ∑
k∈A 2

exp(λvfk (ϕ̃) + (1− λ)vmk (ϕ̃))
1
ν

)
− λvfã (ϕ̃)− (1− λ)vmã (ϕ̃) + µ

)

Knitting (1) and (2) together, we have∫ ∞

−∞
(vfã (ϕ̃) + εã)e

−e−
εã−µ

ν (1+
∑

k∈A2\ã e
−mãk(ϕ̃)

ν )e−
εã−µ

ν
1

ν
dεã

=
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λv
f
k (ϕ̃) + (1− λ)vmk (ϕ̃))

1
ν

×vfã (ϕ̃)︸ ︷︷ ︸
(1)

+ νγ + ν ln

( ∑
k∈A 2

exp(λvfk (ϕ̃) + (1− λ)vmk (ϕ̃))
1
ν

)
− λvfã (ϕ̃)− (1− λ)vmã (ϕ̃) + µ︸ ︷︷ ︸

(2)



Summing this result across all ã ∈ A 2 and noticing that the first factor is a probability, we finally get Ṽ f1 (ϕ̃):

Ṽ f (ϕ̃) =
∑
ã∈A 2

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

×(
vfã (ϕ̃) + νγ + ν ln

( ∑
k∈A 2

exp(λ[vfk (ϕ̃)] + vmk (ϕ̃)])
1
ν

)
− λvfã (ϕ̃)− (1− λ)vmã (ϕ̃) + µ

)
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From this, we can derive the expression for Ṽ f (ϕ̃) involving conditional valuation functions and CCPs:

Ṽ f (ϕ̃) =
∑
ã∈A 2

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

×(
vfã (ϕ̃) + νγ + ν ln

(
exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))

1
ν

∑
k∈A 2 exp(λv

f
k (ϕ̃) + (1− λ)vmk (ϕ̃)])

1
ν

exp(λvfã (ϕ̃)− (1− λ)vmã (ϕ̃))
1
ν

)
−

λvfã (ϕ̃)− (1− λ)vmã (ϕ̃) + µ

)

=
∑
ã∈A 2

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

×(
vfã (ϕ̃) + νγ + ν ln

(∑
k∈A 2 exp(λ[v

f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

exp(λvfã (ϕ̃)− (1− λ)vmã (ϕ̃))
1
ν

)
+ µ

)

=
∑
ã∈A 2

exp(λvfã (ϕ̃) + (1− λ)vmã (ϕ̃))
1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

×(
vfã (ϕ̃) + νγ − ν ln

(
exp(λvfã (ϕ̃)− (1− λ)vmã (ϕ̃))

1
ν∑

k∈A 2 exp(λ[v
f
k (ϕ̃)] + vmk (ϕ̃)])

1
ν

)
+ µ

)

=
∑
ã∈A 2

p(ã|ϕ̃)

(
vfã (ϕ̃) + νγ − ν ln p(ã|ϕ̃) + µ

)

=
∑
ã∈A 2

p(ã|ϕ̃)

(
vfã (ϕ̃)− ν ln p(ã|ϕ̃)

)
+ µ+ νγ

The expression for Ṽ m1 (ϕ̃) is similar.
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B Derivation of the likelihood

B.1 Unmatched individuals.

I focus on households that are comprised of single individuals first and in particular those formed by a single male individual i. The same identification argument
applies to single female, mutadis mutandis. The sample likelihood for male individual i is

L(i, ∅)t0 = P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=1

|hmt0
)

=
∑
si

P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=1

, si|hmt0
) P (ai1, xi1, si|hmt0 )
P (ai1, xi1, si|hmt0 )

π(si, ∅)
π(si, ∅)

=
∑
si

P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=2

|ai1, xi1, si, hmt0
)
P (ai1, xi1, si, h

m
t0 )
π(si, ∅)
π(si, ∅)

=
∑
si

π(si, ∅)pm(ai1, xi1|si, hmt0 )P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=2

|ai1, xi1, si, hmt0
)

=
∑
si

π(si, ∅)pm(ai1, xi1|si, hmt0 )
∑
sl(i,2)

P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=2

, sl(i,2)|ai1, xi1, si, hmt0
)

=
∑
si

π(si, ∅)pm(ai1, xi1|si)
∑
sl(i,2)

P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=2

, sl(i,2), ai1, xi1, si

)
P (ai1, xi1, si)

P
(
ãil(i,2), xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P
(
ãil(i,2), xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
=
∑
si

π(si, ∅)pm(ai1, xi1|si)
∑
sl(i,2)

P
(
ãil(i,2),2, xl(i,2)2, sl(i,2), xi2|ai1, xi1, si

)
P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=3

|ãil(i,2),2, xl(i,2)2, sl(i,2), xi2,����ai1, xi1, si

)
Where ai1and xi1cancel because of conditional independence. Now, decompose P

(
ãil(i,2), xl(i,2)2, sl(i,2), xi2|ai1, xi1, si

)
P
(
ãil(i,2), xl(i,2)2, sl(i,2), xi2|ai1, xi1, si

)
=
P
(
ãil(i,2),2, xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P (ai1, xi1, si)

P (xi2, ai1, xi1, si)

P (xi2, ai1, xi1, si)

=
P
(
ãil(i,2),2, xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P (xi2, ai1, xi1, si)

P (xi2|ai1, xi1��, si) type doesn’t matter for transitions

=
P
(
ãil(i,2),2, xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P (xi2, ai1, xi1, si)

P
(
xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P
(
xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)f (xi2|ai1, xi1)
=
P
(
ãil(i,2),2, xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P
(
xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

) P
(
xl(i,2)2, sl(i,2), xi2, ai1, xi1, si

)
P (xi2, ai1, xi1, si)

f (xi2|ai1, xi1)

= P
(
ãil(i,2),2|xl(i,2)2, sl(i,2), xi2,����ai1, xi1, si

)
P
(
xl(i,2)2, sl(i,2)|xi2,((((ai1, xi1,si

)
f (xi2|ai1, xi1)

= p
(
ãil(i,2),2|xl(i,2)2, sl(i,2), xi2, si

)
ψm

(
xl(i,2)2, sl(i,2)|xi2, si

)
f (xi2|ai1, xi1)

L(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si)
∑
sl(i,2)

P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2)|ai1, xi1, si

)
P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=3

|ãil(i,2),2, xi2, si, xl(i,2)2, sl(i,2)
)
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P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=3

|ãil(i,2),2, xi2, si, xl(i,2)2, sl(i,2)
)

=
∑
sl(i,3)

P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=3

, sl(i,3)|ãil(i,2),2, xi2, si, xl(i,2)2, sl(i,2)
)

=
∑
sl(i,3)

P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=3

, sl(i,3)|ãil(i,2),2, xi2, xl(i,2)2, sl(i,2), si
) P

(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2),3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2),3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
=
∑
sl(i,3)

P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

|ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3,
(((((((((((
ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

) P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2), si

)
=
∑
sl(i,3)

P
({

ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

|ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3, si
)
P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3|ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
Now decompose P

(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3|ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3|ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
=
P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2), si

) P
(
xi3, xl(i,2)3, ãil(i,2),2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
xi3, xl(i,2)3, ãil(i,2),2, xi2, xl(i,2)2, sl(i,2), si

)
= P

(
ãil(i,3),3, xl(i,3)3, sl(i,3)|xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
xi3, xl(i,2)3|ãil(i,2),2, xi2, xl(i,2)2,����sl(i,2), si

)
= P

(
ãil(i,3),3, xl(i,3)3, sl(i,3)|xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
f
(
xi3, xl(i,2)3|ãil(i,2),2, xi2, xl(i,2)2

)
=
P
(
ãil(i,3),3, xl(i,3)3, sl(i,3), xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

) P
(
xl(i,3)3, sl(i,3), xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
xl(i,3)3, sl(i,3), xi3, xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)f (xi3, xl(i,2)3|ãil(i,2),2, xi2, xl(i,2)2)
= P

(
ãil(i,3),3|xl(i,3)3, sl(i,3), xi3,

(((((((((((((((
xl(i,2)3, ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
P
(
xl(i,3)3, sl(i,3)|xi3, xl(i,2)3,(((((((((

ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si
)

= p
(
ãil(i,3),3|xl(i,3)3, sl(i,3), xi3, si

)
P
(
xl(i,3)3, sl(i,3)|xi3, xl(i,2)3,(((((((((

ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si
)

With

P
(
xl(i,3)3, sl(i,3)|xi3, xl(i,2)3, sl(i,2), si

)
=

{
0 if l(i, 2) = l(i, 3) and sl(i,2) ̸= sl(i,3)

ψm
(
xl(i,3)3, sl(i,3)|xi3, xl(i,2)3, sl(i,2), si

)
otherwise

More generally

P
(
xl(i,t)t, sl(i,t)|xit−1, xl(i,t−1)t, sl(i,t−1), si

)
=

{
0 if ∃ t∗ < t s.t. l(i, t∗) = l(i, t) and sl(i,t) ̸= sl(i,t∗)

ψm
(
xl(i,t)t, sl(i,t)|xit−1, xl(i,t−1)t, sl(i,t−1), si

)
otherwise

So if we suppose that i stays matched with the same person from t = 2 to t = 3.

L(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si)
∑
sl(i,2)

 P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2)|ai1, xi1, si

)
×

f
(
xi3, xl(i,2)3|ãil(i,2),2, xi2, xl(i,2)2

)
ψm

(
xl(i,2)3, sl(i,2)|xi3, xl(i,2)3, sl(i,2), si

)
p
(
ãil(i,3),3|xl(i,3)3, sl(i,2), xi3, si

)
×

P
({
ãil(i,t),t, x̃il(i,t),t

}T
t=4

|ãil(i,3),3, xl(i,2)3, sl(i,2), xi3, xl(i,2)3, si
)


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Now suppose i marries another person in t = 4

L(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si)


∑
sl(i,2)

P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2)|ai1, xi1, si

)
×P

(
ãil(i,3),3, xl(i,3)3 = xl(i,2)3, sl(i,3) = sl(i,2), xi3, xl(i,2)3|ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
×P

({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

|ail(i,3), xi3, xl(i,2)3, sl(i,2), si
)



=
∑
si

π(si, ∅)pm(ai1, xi1|si)


∑
sl(i,2)

P
(
ãil(i,2),2, xi2, xl(i,2)2, sl(i,2)|ai1, xi1, si

)
×P

(
ãil(i,3),3, xl(i,3)3 = xl(i,2)3, sl(i,3) = sl(i,2), xi3, xl(i,2)3|ãil(i,2)2, xi2, xl(i,2)2, sl(i,2), si

)
×
∑
sl(i,4)

P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

, sl(i,4)|ail(i,3), xi3, xl(i,2)3, sl(i,2), si
)


And continue telescoping

Importantly, notice that the dependence of P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

, sl(i,4)|ail(i,3), xi3, xl(i,2)3, sl(i,2), si
)
on sl(i,2) prevents us from factoring∑

sl(i,4)
P
({
ãil(i,t),t, x̃il(i,t),t, xl(i,t−1),t

}T
t=4

, sl(i,4)|ail(i,3), xi3, xl(i,2)3, sl(i,2), si
)
out of the summation over sl(i,2) .

B.2 Matched pairs

Now we focus on households that are comprised of two matched individuals at the moment of sampling. The likelihood for household (i, j) is

L(i, j)t0 = P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=1

)
=

=
∑
s̃ij

P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=1

, s̃ij

) P (ãij1, x̃ij1, s̃ij)

P (ãij1, x̃ij1, s̃ij)

π (s̃ij)

π (s̃ij)

=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=2

|ãij1, x̃ij1, s̃ij
)

P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=2

|ãij1, x̃ij1, s̃ij
)

=
∑
sl(i,2)

∑
sr(j,2)

 P
(
{x̃il(i,t),t,x̃r(j,t)j,t,xl(i,t−1),t,xr(j,t−1),t,ãil(i,t),t,ãr(j,t)j,t}T

t=3
,ãil(i,2),2,ãr(j,2)j,2,xl(i,2)2,xr(j,2)2,sl(i,2),sr(j,2),x̃ij2,ãij1,x̃ij1,s̃ij

)
P (ãij1,x̃ij1,s̃ij)

×
P(ãil(i,2),2,ãr(j,2)j,2,xl(i,2)2,xr(j,2)2,sl(i,2),sr(j,2),x̃ij2,ãij1,x̃ij1,s̃ij)
P(ãil(i,2),2,ãr(j,2)j,2,xl(i,2)2,xr(j,2)2,sl(i,2),sr(j,2),x̃ij2,ãij1,x̃ij1,s̃ij)


=
∑
sl(i,2)

∑
sr(j,2)

(
P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

|ãil(i,2)2, ãr(j,2)j,2, xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2,����ãij1, x̃ij1, s̃ij

)
×

P
(
ãil(i,2)2, ãr(j,2)j,2, xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2|ãij1, x̃ij1, s̃ij

) )
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Now decompose P
(
ãil(i,2)2, ãr(j,2)j,2, xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2|ãij1, x̃ij1, s̃ij

)
P
(
ãil(i,2)2, ãr(j,2)j,2, xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2|ãij1, x̃ij1, s̃ij

)
=
P
(
ãil(i,2)2, ãr(j,2)j,2, xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
P (ãij1, x̃ij1, s̃ij)

P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
= P

(
ãil(i,2)2, ãr(j,2)j,2|xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2|ãij1, x̃ij1, s̃ij

)
= P

(
ãil(i,2)2, ãr(j,2)j,2|xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

) P (xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij)
P (ãij1, x̃ij1, s̃ij)

P (x̃ij2, ãij1, x̃ij1, s̃ij)

P (x̃ij2, ãij1, x̃ij1, s̃ij)

= P
(
ãil(i,2)2, ãr(j,2)j,2|xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2)|x̃ij2,����ãij1, x̃ij1, s̃ij

)
P
(
x̃ij2|ãij1, x̃ij1,��̃sij

)
= P

(
ãil(i,2)2, ãr(j,2)j,2|xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2), x̃ij2, ãij1, x̃ij1, s̃ij

)
P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2)|x̃ij2, s̃ij

)
f (x̃ij2|ãij1, x̃ij1)

P
(
xl(i,2)2, xr(j,2)2, sl(i,2), sr(j,2)|x̃ij2, s̃ij

)
=

{
0 if l(i, 2) = j (which implies r(j, 2) = i) and sl(i,2) ̸= sj or sr(j,2) ̸= si

ψm
(
xl(i,2),2 = xj2, sl(i,2) = sj |x̃ij1, s̃ij

)
ψf
(
xr(ij,2),2 = xi2, sr(j,2) = si|x̃ij1, s̃ij

)
otherwise

Now, suppose that i and j stay matched in period 2. Then,

L(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)P
(
ãij,2, sl(i,2) = si, sr(j,2) = sj , x̃ij2|ãij1, x̃ij1, s̃ij

)
× P

({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

|ãij,2, x̃ij2, s̃ij
)

Now suppose i and j divorce at t = 3 and immediately remarry other people

L(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)×(
P
(
ãij,2, xl(i,2)2 = xj2, xr(j,2)2 = xi2, sl(i,2) = si, sr(j,2) = sj , x̃ij2|ãij1, x̃ij1, s̃ij

)
×∑

sl(i,3)

∑
sr(j,3)

P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

, sl(i,3), sr(j,3)|ãij,2, x̃ij2, s̃ij
) )

P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

, sl(i,3), sr(j,3)|ãij,2, x̃ij2, s̃ij
)

=
P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=4

, sl(i,3), sr(j,3), ãil(i,3),3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
P (ãij,2, x̃ij2, s̃ij)

×
P
(
sl(i,3), sr(j,3), ãil(i,3),3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
P
(
sl(i,3), sr(j,3), ãil(i,3),3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
=P

({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=4

|sl(i,3), sr(j,3), ãil(i,3),3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3,�����ãij,2, x̃ij2, s̃ij

)
× P

(
sl(i,3), sr(j,3), ãil(i,3)3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3|ãij,2, x̃ij2, s̃ij

)
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Decompose P
(
sl(i,3), sr(j,3), ãil(i,3)3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3|ãij,2, x̃ij2, s̃ij

)
P
(
sl(i,3), sr(j,3), ãil(i,3)3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3|ãij,2, x̃ij2, s̃ij

)
=
P
(
sl(i,3), sr(j,3), ãil(i,3)3, ãr(j,3)j,3, xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
P (ãij,2, x̃ij2, s̃ij)

P
(
sl(i,3), sr(j,3), xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
P
(
sl(i,3), sr(j,3), xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij

)
= P

(
ãil(i,3)3, ãr(j,3)j,3|sl(i,3), sr(j,3), xl(i,3)3, xr(j,3)3, xi3, xj3,�����ãij,2, x̃ij2, s̃ij

) P (sl(i,3), sr(j,3), xl(i,3)3, xr(j,3)3, xi3, xj3, ãij,2, x̃ij2, s̃ij)
P (ãij,2, x̃ij2, s̃ij)

P (xi3, xj3, ãij,2, x̃ij2, s̃ij)

P (xi3, xj3, ãij,2, x̃ij2, s̃ij)

= p
(
ãil(i,3)3|sl(i,3), xl(i,3)3, xi3, xj3, si

)
p
(
ãr(j,3)j,3|sr(j,3), xl(i,3)3, xr(j,3)3, xj3, sj

)
P
(
sl(i,3), sr(j,3), xl(i,3)3, xr(j,3)3|xi3, xj3,�����ãij,2, x̃ij2, s̃ij

)
P
(
xi3, xj3|ãij,2, x̃ij2,��̃sij

)
= p

(
ãil(i,3)3|sl(i,3), xl(i,3)3, xi3, xj3, si

)
p
(
ãr(j,3)j,3|sr(j,3), xl(i,3)3, xr(j,3)3, xj3, sj

)
ψm

(
sl(i,3), xl(i,3)3|xi3, si

)
ψf
(
sr(j,3), xr(j,3)3|xj3, sj

)
f (xi3, xj3|ãij,2, x̃ij2)

= P
(
xl(i,3),3, ãil(i,3),3|xi,3

)
P
(
xr(j,3),3, ãr(j,3)j,3|xj,3

)
f (xi3, xj3|ãij,2, x̃ij2)

Now instead suppose that i and j divorce at t = 3 and i immediately remarries but j remains single.

L(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)

(
P
(
ãij,2, xl(i,2)2 = xj2, xr(j,2)2 = xi2, sl(i,2) = si, sr(j,2) = sj , x̃ij2|ãij1, x̃ij1, s̃ij

)
×∑

sl(i,3)
P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

, sl(i,3)|ãij,2, x̃ij2, s̃ij
) )

P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=3

, sl(i,3)|ãij,2, x̃ij2, s̃ij
)

=
P
({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=4

, ãil(i,3),3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, aj,3, ãij,2, x̃ij2, s̃ij
)

P (ãij,2, x̃ij2, s̃ij)
×

P
(
ãil(i,3),3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, aj,3, ãij,2, x̃ij2, s̃ij

)
P
(
ãil(i,3),3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, aj,3, ãij,2, x̃ij2, s̃ij

)
=P

({
x̃il(i,t),t, x̃r(j,t)j,t, xl(i,t−1),t, xr(j,t−1),t, ãil(i,t),t, ãr(j,t)j,t

}T
t=4

|ãil(i,3),3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, aj,3,�����ãij,2, x̃ij2, s̃ij

)
×

P
(
ãil(i,3),3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, aj,3|ãij,2, x̃ij2, s̃ij

)
Decompose P

(
ãil(i,3),3, aj,3, sl(i,3), xl(i,3),3, xi,3, xj,3|ãij,2, x̃ij2, s̃ij

)
P
(
ãil(i,3),3, aj,3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3|ãij,2, x̃ij2, s̃ij

)
=
P
(
ãil(i,3),3, aj,3, sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, ãij,2, x̃ij2, s̃ij

)
P (ãij,2, x̃ij2, s̃ij)

P
(
sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, ãij,2, x̃ij2, s̃ij

)
P
(
sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3, ãij,2, x̃ij2, s̃ij

) P (xi,3, xj,3, ãij,2, x̃ij2, s̃ij)

P (xi,3, xj,3, ãij,2, x̃ij2, s̃ij)

= P
(
ãil(i,3),3, aj,3|sl(i,3), xl(i,3),3, xr(j,3),3 = ∅, xi,3, xj,3,�����ãij,2, x̃ij2, s̃ij

)
P
(
sl(i,3), xl(i,3),3, xr(j,3),3 = ∅|xi,3, xj,3,�����ãij,2, x̃ij2, s̃ij

)
P
(
xi,3, xj,3|ãij,2, x̃ij2,��̃sij

)
= p

(
ãil(i,3),3|sl(i,3), si, xl(i,3),3, xi,3

)
pf (aj,3|xj,3, sj)ψm

(
sl(i,3), xl(i,3),3|xi,3, si

)
ψf (∅|xj,3, sj) f (x̃ij,3|ãij,2, x̃ij2)
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Ultimately, the likelihood can be written as

L(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
T∏
t=2

f(x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)×∑
sl∗(i,2)

∑
sr∗(j,2)

∑
sl∗(i,3)

∑
sr∗(j,3)

...
∑

sl∗(i,|L (i)|)

∑
sr∗(j,|R(j)|)

∏
l∗∈L (i)\j

∏
t∈T (i,l∗)

P
(
xl∗,t, ãil∗,t|x̃il(i,t−1)t

) ∏
r∗∈R(j)\i

∏
t∈T (j,r)

P
(
xr∗,t, ãr∗j,t|x̃r(j,t−1)j,t

)
×

∏
t∈T (i,j)\{t=1}

P
(
xr(j,t),t = xi,t, xl(i,t),t = xj,t, ãij,t|x̃r(j,t−1)j,t, x̃il(i,t−1),t

)
×

∏
t∈T (i,∅)

P
(
xl,t = ∅, ai,t|x̃il(i,t−1)t

) ∏
t∈T (j,∅)

P
(
xr,t = ∅, aj,t|x̃r(j,t−1)j,t

)
If i and j never remarry each other after divorcing, then we can factor their individual histories like so:

L(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
T∏
t=2

f(x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)×∏
t∈T (i,j)\{t=1}

P
(
xr(j,t),t = xi,t, xl(i,t),t = xj,t, ãij,t|x̃ij,t

)
×

∑
sl∗(i,2)

∑
sl∗(i,3)

...
∑

sl∗(i,|L (i)|)

∏
l∗∈L (i)\j

∏
t∈T (i,l)

P
(
xl,t, ãil,t|x̃il(i,t−1)t

) ∏
t∈T (i,∅)

P
(
xl,t = ∅, ai,t|x̃il(i,t−1)t

)
×

∑
sr∗(j,2)

∑
sr∗(j,3)

...
∑

sr∗(j,|R(j)|)

∏
r∗∈R(j)\i

∏
t∈T (j,r)

P
(
xr,t, ãrj,t|x̃r(j,t−1)j,t

) ∏
t∈T (j,∅)

P
(
xr,t = ∅, aj,t|x̃r(j,t−1)j,t

)
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B.3 Simplified likelihood for unmatched individuals

L(i, ∅)t0 =
∑
si

π(si, ∅)pm(ai1, xi1|si)
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

) ∑
{sl∗}l∗∈L (i)

T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕ̃il(i,t−1)t

) ∏
l∗∈L (i)\j

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t

)

=
∑
si

π(si, ∅)pm(ai1, xi1|si)
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

) ∑
{sl∗}l∗∈L (i)

T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕit

) ∏
l∗∈L (i)\j

T∏
t∈T (i,l∗)

P (ϕl∗,t, ãil∗,t|ϕit)

=
∑
si

π(si, ∅)pm(ai1, xi1|si)
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

) T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕit

) ∏
l∗∈L (i)\j

∑
sl∗

T∏
t∈T (i,l∗)

P (ϕl∗,t, ãil∗,t|ϕit)

=
∑
si

π(si, ∅)pm(ai1, xi1|si)
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

) T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕit

) ∏
l∗∈L (i)\j

∑
sl∗

T∏
t∈T (i,l∗)

P
(
ϕl∗,t, ãil∗,t| {ϕit}t∈T (i,l∗)

)

=

∑
si
π(si, ∅)pm(ai1, ϕi1|si)

∏T
t=2 f

(
ϕ̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)∏T
t∈T (i,∅) P

(
ai,t, ϕl(i,t) = ∅|ϕit

)∏
l∗∈L (i)\j

∑
sl∗

P
(
{ϕl∗,t, ãil∗,t}t∈T (i,l∗) | {ϕit}t∈T (i,l∗)

)
Because events are conditionally independent across time

=
∑
si

π(si, ∅)pm(ai1, ϕi1|si)
T∏
t=2

f
(
ϕ̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

) T∏
t∈T (i,∅)

P
(
ai,t, ϕl(i,t) = ∅|ϕit

) ∏
l∗∈L (i)\j

P
(
{xl∗,t, ãil∗,t}t∈T (i,l∗) | {ϕit}t∈T (i,l∗)

)

=

∑
si
π(si, ∅)pm(ai1, ϕi1|si)

∏T
t=2 f

(
ϕ̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)∏T
t∈T (i,∅) P

(
ai,t, ϕl(i,t) = ∅|ϕit

)∏
l∗∈L (i)\j

∏T
t∈T (i,l∗) P (xl∗,t, ãil∗,t|ϕit)

Because there is no correlation across choices due to independence of first-stage wrt previous spouse characteristics

=
∑
si

π(si, ∅)pm(ai1, xi1|si)
T∏
t=2

f
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
P
(
ãil(i,t),t, xl(i,t),t|ϕit

)
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B.4 Simplified likelihood for matched pairs

L̊(i, j)t0 =
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i


∏
l∗∈L (i)\j

∏
t∈T (i,l∗) P

(
ϕl∗,t, ãil∗,t|ϕ̃il(i,t−1)t

)∏
r∗∈R(j)\i

∏
t∈T (j,r∗) P

(
ϕr∗,t, ãr∗j,t|ϕ̃r(j,t−1)j,t

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕ̃r(j,t−1)j,t, ϕ̃il(i,t−1),t

)
×∏

t∈T (i,∅) P
(
ϕl,t = ∅, ai,t|ϕ̃il(i,t−1)t

)∏
t∈T (j,∅) P

(
ϕr,t = ∅, aj,t|ϕ̃r(j,t−1)j,t

)


=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i


∏
l∗∈L (i)\j

∏
t∈T (i,l) P (ϕl∗,t, ãil∗,t|ϕit)

∏
r∗∈R(j)\i

∏
t∈T (j,r) P (ϕr∗,t, ãr∗j,t|ϕj,t)∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)


=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j

∑
sl∗

∏
t∈T (i,l∗) P (ϕl∗,t, ãil∗,t|ϕit)

∏
r∗∈R(j)\i

∑
sr∗

∏
t∈T (j,r∗) P (ϕr∗,t, ãr∗j,t|ϕj,t)×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)



=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j

∑
sl∗

∏
t∈T (i,l∗) P

(
ϕl∗,t, ãil∗,t| {ϕit}t∈T (i,l∗)

)∏
r∗∈R(j)\i

∑
sr∗

∏
t∈T (j,r∗) P

(
ϕr∗,t, ãr∗j,t| {ϕj,t}t∈T (j,r∗)

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)



=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j

∑
sl∗

P
(
{ϕl∗,t, ãil∗,t}t∈T (i,l∗) | {ϕit}t∈T (i,l∗)

)∏
r∗∈R(j)\i

∑
sr∗

P
(
{ϕr∗,t, ãr∗j,t}t∈T (j,r∗) | {ϕj,t}t∈T (j,r∗)

)∏
t∈T (i,j)\{t=1} P

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)∏
t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)

∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)



=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j P

(
{xl∗,t, ãil∗,t}t∈T (i,l∗) | {ϕit}t∈T (i,l∗)

)∏
r∗∈R(j)\i P

(
{xr∗,t, ãr∗j,t}t∈T (j,r∗) | {ϕj,t}t∈T (j,r∗)

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)


=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j

∏
t∈T (i,l∗) P (xl∗,t, ãil∗,t|ϕit)

∏
r∗∈R(j)\i

∏
t∈T (j,r∗) P (xr∗,t, ãr∗j,t|ϕj,t)×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)


=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)


∏
l∗∈L (i)\j

∏
t∈T (i,l∗) P (xl∗,t, ãil∗,t|ϕit)

∏
r∗∈R(j)\i

∏
t∈T (j,r∗) P (xr∗,t, ãr∗j,t|ϕj,t)×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
×∏

t∈T (i,∅) P (ϕl,t = ∅, ai,t|ϕit)
∏
t∈T (j,∅) P (ϕr,t = ∅, aj,t|ϕj,t)


=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
∏

t/∈T (i,j)\{t=1}

P
(
xl(i,t),t, ãil(i,t),t|ϕit

)
P
(
xr(i,t),t, ãr(i,t)j,t|ϕj,t

) ∏
t∈T (i,j)\{t=1}

P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
∏

t/∈T (i,j)\{t=1}

P
(
xl(i,t),t, ãil(i,t),t, xr(i,t),t, ãr(i,t)j,t|ϕit, ϕj,t

) ∏
t∈T (i,j)\{t=1}

P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
=
∑
s̃ij

π (s̃ij) p (ãij1, x̃ij1|s̃ij)
T∏
t=2

P
(
xl(i,t),t, ãil(i,t),t, xr(i,t),t, ãr(i,t)j,t|ϕit, ϕj,t

)
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C EM log-likelihood

C.1 Derivation of (21)

max
p,ψ

E{si,{sl∗}l∗∈L (i)}(i,∅)t0

[
lnP

({
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)
,
{
si, {sl∗}l∗∈L (i)

}N
i=1

)
|
{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

]
= max

p,ψ

∑
{si,{sl∗}l∗∈L (i)}(i,∅)t0

P

({
si, {sl∗}l∗∈L (i)

}
(i,∅)t0

|
{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

)
lnP

({
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)
,
{
si, {sl∗}l∗∈L (i)

}
(i,∅)t0

)

= max
p,ψ

∑
{si,{sl∗}l∗∈L (i)}(i,∅)t0

P

({
si, {sl∗}l∗∈L (i)

}
(i,∅)t0

|
{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

)∑
i

lnP
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)

= max
p,ψ

∑
i

∑
{si,{sl∗}l∗∈L (i)}(i,∅)t0

P

({
si, {sl∗}l∗∈L (i)

}
(i,∅)t0

|
{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

)
lnP

({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)

= max
p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

lnP
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)
︸ ︷︷ ︸

For any i you can factor lnP out of the summations that are not relevant to i

∑
i′ ̸=i

∑
si′

∑
{sl∗}l∗∈L(i′)

lnP

({
si, {sl∗}l∗∈L (i)

}
(i,∅)t0

|
{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

)
︸ ︷︷ ︸

The remaining sums only act on the posterior probabilities that are not relevant to i

= max
p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

lnP
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)
P
(
si, {sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)

)
= max

p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

lnP
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)
P
(
si, {sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t

)
= max

p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

lnP
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, si, {sl∗}l∗∈L (i)

)
P
(
{sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si

)
P
(
si|
{
ãil(i,t),t, x̃il(i,t),t

}
t

)
= max

p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

ln
[
P
({
ãil(i,t),t, x̃il(i,t),t

}T
t=1

, {sl∗}l∗∈L (i) |si
)
π (si, ∅)

]
P
(
{sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si

)
qsi

= max
p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)

 ln
(
π (si, ∅) pm(ai1, xi1|si)F

(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)∏T
t∈T (i,∅) P

(
ai,t, ϕl(i,t) = ∅|ϕit

)∏
l∗∈L (i)

∏T
t∈T (i,l∗) P (ϕl∗,t, ãil∗,t|ϕit)

)
×

P
(
{sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si

)
qsi



= max
p,ψ

∑
i

∑
si

∑
{sl∗}l∗∈L (i)


 ((((((lnπ (si, ∅)+ ln pm(ai1, xi1|si)

((((((((((((((((((((

+ lnF
(
x̃il(i,t−1),t|x̃il(i,t−1),t−1, ãil(i,t−1)t−1

)
+
∑
t∈T (i,∅) lnP

(
ai,t, ϕl(i,t) = ∅|ϕit

)
+
∑
l∗∈L (i)

∑
t∈T (i,l∗) lnP (ϕl∗,t, ãil∗,t|ϕit)

×

P
(
{sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si

)
qsi



27



= max
p,ψ

∑
i

∑
si

qsi

ln pm(ai1, xi1|si) +
∑

t∈T (i,∅)

lnP
(
ai,t, ϕl(i,t) = ∅|ϕit

)
+

∑
{sl∗}l∗∈L (i)

∑
t∈T (i,l∗)

lnP (ϕl∗,t, ãil∗,t|ϕit)P
(
{sl∗}l∗∈L (i) |

{
ãil(i,t),t, x̃il(i,t),t

}
t
, si

)
= max

p,ψ

∑
i

∑
si

qsi

ln pm(ai1, xi1|si) +
∑

t∈T (i,∅)

lnP
(
ai,t, ϕl(i,t) = ∅|ϕit

)
+

∑
l∗∈L (i)

∑
sl∗

P
(
sl∗ |

{
ãil(i,t),t, x̃il(i,t),t

}(N,T )

(i,t)=(1,1)
, si

) ∑
t∈T (i,l∗)

lnP (ϕl∗,t, ãil∗,t|ϕit)


= max

p,ψ

∑
i

∑
si

qsi

ln pm(ai1, xi1|si) +
∑

t∈T (i,∅)

lnP
(
ai,t, ϕl(i,t) = ∅|ϕit

)
+

∑
l∗∈L (i)

∑
sl∗

qsl∗ |si
∑

t∈T (i,l∗)

lnP (ϕl∗,t, ãil∗,t|ϕit)


= max

p,ψ

∑
i

∑
si

qsi

ln p(xi1|si) + ln pm(ai1|xi1, si) +
∑

t∈T (i,∅)

lnP
(
ai,t, ϕl(i,t) = ∅|ϕit

)
+

∑
l∗∈L (i)

∑
sl∗

qsl∗ |si
∑

t∈T (i,l∗)

lnP (ϕl∗,t, ãil∗,t|ϕit)


= max

p,ψ

∑
i

∑
si

qsi

ln pm(ai1, xi1|si) +
∑

t∈T (i,∅)

lnP
(
ai,t, ϕl(i,t) = ∅|ϕit

)
+

∑
l∗∈L (i)

∑
sl∗

qsl∗ |si
∑

t∈T (i,l∗)

lnP (ϕl∗,t, ãil∗,t|ϕit)


= max

p,ψ

∑
i

∑
s

qis

ln p(xi1|si) + ln p(ai1|xi1, si) +
∑
t>1

∑
sl(i,t)

qsl(i,t)|si lnP (ϕl∗,t, ãil∗,t|ϕit)


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C.2 Derivation of the solution to (21)

Take the first order conditions with respect to p(ã|x, x′, s, s′)∑
i

∑
s qis

∑
t>1 qsl(i,t)|si1

(
ãil(i,t),t = ã, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
p(ã|xi, xl, s, s′)

= 0

so for any ã′ ̸= ã we have

∑
i

∑
s qis

∑
t qsl(i,t)|si1

(
ãil(i,t),t = ã, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
p(ã|x, x′, s, s′)

=

∑
i

∑
s qis

∑
t qsl(i,t)|si1

(
ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
p(ã′|x, x′, s, s′)

Multiply both sides by p(ã|x, x′, s, s′)p(ã′|x, x′, s, s′)

p(ã′|xit, xlt, s, s′)
∑
i

∑
s

qis
∑
t

qsl(i,t)|si1
(
ãil(i,t),t = ã, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
=p(ã|xit, xlt, s, s′)

∑
i

∑
s

qis
∑
t

qsl(i,t)|si1
(
ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
Then, sum across all ã′, p(ã′|xit, xlt, s, s′) on the LHS sums up to 1 and

∑
ã′ 1

(
ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
on the RHS sums up to 1

(
xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
, hence

p(ã|xit, xlt, s, s′) =
∑
i

∑
s qis

∑
t qsl(i,t)|si1

(
ãil(i,t),t = ã, xit = xi, xl(i,t) = x′, si = s, sl(i,t) = s′

)∑
i

∑
s qis

∑
t qsl(i,t)|si1

(
xit = x, xl(i,t) = x′, si = s, sl(i,t) = s′

)
Similarly, the foc for pm(a|x, s) ∑

i

∑
s

qis
∑
t

1 (ait = a, si = s, xit = x)

pm(a|x, s)
= 0

Then, for any a′ we have∑
i

∑
s

qis
∑
t

1 (ait = a, si = s, xit = xi)

pm(a|x, s)
∑
i

∑
s

qis
∑
t

1 (ait = a′, si = s, xit = xi)

pm(a′|x, s)

Multiply both sides by pm(a|x, s)pm(a′|x, s) and sum across a′ to obtain

pm(a|x, s) =
∑
i

∑
s qis

∑
t 1 (ait = a, si = s, xit = xi)∑

i

∑
s qis

∑
t 1 (si = s, xit = xi)

The same estimator can be constructed for pf (a|x, s)
Similarly, the FOC for ψm(ϕ′, sl|ϕi, si)∑

i qis
∑
t qsl(i,t)|si1

(
ϕit = ϕ, ϕl(i,t) = ϕ′

)
ψm(ϕ′, sl|ϕ′, si)

= 0

Again, equate to any ϕ′′∑
i qis

∑
t qsl(i,t)|si1

(
ϕit = ϕ, ϕl(i,t) = ϕ′

)
ψm(ϕ′, sl|ϕ, si)

=

∑
i qis

∑
t qsl(i,t)|si1

(
ϕit = ϕ, ϕl(i,t) = ϕ′′

)
ψm(ϕ′′, sl|ϕ, si)

Multiply both sides by ψ(ϕ′, sl|ϕ, si)ψ(ϕ′′, sl|ϕ, si) and sum across ϕ′′ to obtain

ψ(ϕ′, sl|ϕi, si) =
∑
i qis

∑
t qsl(i,t)|si1

(
ϕit = ϕ, ϕl(i,t) = ϕ′′

)∑
i qis

∑
t qsl(i,t)|si1 (ϕit = ϕ)

The FOC for p(x|s) is ∑
i

∑
s qis1 (xi1 = x, si = s)

p(x|s)
= 0
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Equate to any x′, multiply both sides by p(x′|s)p(x|s) ad sum across x′.

∑
i

∑
s qis1 (xi1 = x, si = s)

p(x|s)
=

∑
i

∑
s qis1 (xi1 = x′, si = s)

p(x′|s)
p(x′|s)

∑
i

∑
s

qis1 (xi1 = x, si = s) =
∑
i

∑
s

qis1 (xi1 = x′, si = s) p(x|s)∑
i

∑
s

qis1 (xi1 = x, si = s) =
∑
i

∑
s

qis1 (si = s) p(x|s)∑
i

∑
s qis1 (xi1 = x, si = s)∑
i

∑
s qis1 (si = s)

= p(x|s)
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C.3 Derivation of (22)

max
p,ψ

E{
si,sj ,{sl∗}l∗∈L (i)\j{sr∗}r∗∈R(j)\i

}
(i,j)t0

[
lnP

({
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

,
{
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)t0

)
|
{
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

]

=max
p,ψ

∑
{
si,sj ,{sl∗}l∗∈L (i)\j{sr∗}r∗∈R(j)\i

}
(i,j)t0


P

({
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)t0

|
{
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

)
×

lnP

({
x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

,
{
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)t0

)


=max
p,ψ

∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

 P

({
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)t0

|
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

)
×∑

ij lnP
({

ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

)


=max
p,ψ

∑
ij

∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

 P

({
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

}
(i,j)t0

|
{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

)
×

lnP
({

ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

)


=max
p,ψ

∑
ij



∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

lnP
({

ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

)
︸ ︷︷ ︸

For any (ij) you can factor out the lnP out of the summations that are not relevant to (ij)

×

∑
i′j′ ̸=ij

∑
si′ ,sj′

∑
{sl∗}l∗∈L (i′)\j′

∑
{sr∗}r∗∈R(j′)\i′

P

({
si′ , sj′ , {sl∗}l∗∈L (i′) {sr∗}r∗∈R(j′)\i

}
(i′,j′)t0

|
{
ϕ̃i′l(i′,t),t, ϕ̃r(j′,t)j′,t, ãi′l(i′,t),t, ãr(j′,t)j′,t

}
i′j′,t

)
︸ ︷︷ ︸

The remaining sums only act on the posterior probabilities that are not relevant to ij



=max
p,ψ

∑
ij

∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

 lnP
({

ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

)
×

P
(
si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t

) 

=max
p,ψ

∑
ij

∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i


lnP

({
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj , {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i

)
×

P
(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj

)
P
(
si, sj |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t

)


=max
p,ψ

∑
ij

∑
si,sj

∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

 ln
[
P
({

ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, {sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |s̃ij

)
π (s̃ij)

]
×

P
(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
t
, si, sj

)  qs̃ij

=max
p,ψ

∑
ij

∑
s̃

qijs̃
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i


ln

 π (s̃ij) p
(
ãij1, ϕ̃ij1|s̃ij

)
F (x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)×∏

l∗∈L (i)\j
∏
t∈T (i,l∗) P

(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)∏
r∗∈R(j)\i

∏
t∈T (j,r∗) P

(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)


×P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)


=max
p,ψ

∑
ij

∑
s̃

qijs̃
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i


ln

 π (s̃ij) p
(
ãij1, ϕ̃ij1|s̃ij

)
F (x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)×∏

l∗∈L (i)\j
∏
t∈T (i,l∗) P

(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)∏
r∗∈R(j)\i

∏
t∈T (j,r∗) P

(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
×∏

t∈T (i,j)\{t=1} P
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)


×P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

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=max
p,ψ

∑
(i,j)

∑
s̃

qijs̃
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i



 ����lnπ (s̃ij) + ln p
(
ãij1, ϕ̃ij1|s̃ij

)
+

((((((((((((((((((((((((((((

lnF (x̃il(i,t−1),t, x̃r(j,t−1)j,t|x̃il(i,t),t, x̃r(j,t)j,t, ãil(i,t−1)t−1, ãr(j,t−1)j,t−1)

+
∑
l∗∈L (i)\j

∑
t∈T (i,l∗) lnP

(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)
+
∑
r∗∈R(j)\i

∑
t∈T (j,r∗) lnP

(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
+
∑
t∈T (i,j)\{t=1} lnP

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)

×

P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)



=max
p,ψ

∑
(i,j)

∑
s̃

qijs̃



(
ln p

(
ãij1, ϕ̃ij1|s̃ij

)
+
∑
t∈T (i,j)\{t=1} lnP

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

))

×

(((((((((((((((((((((((((((((((((((((((((((((

(∑
{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

))


+
∑
(i,j)

∑
s̃

qijs̃
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

∑
t∈T (i,l∗)

lnP
(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)
P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

+
∑
(i,j)

∑
s̃

qijs̃
∑

{sl∗}l∗∈L (i)\j

∑
{sr∗}r∗∈R(j)\i

∑
t∈T (j,r∗)

lnP
(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

=max
p,ψ

∑
(i,j)

∑
s̃

qijs̃

ln p
(
ãij1, ϕ̃ij1|s̃ij

)
+

∑
t∈T (i,j)\{t=1}

lnP
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
+
∑
(i,j)

∑
s̃

qijs̃
∑

l∗∈L (i)\j

∑
sl∗

∑
t∈T (i,l∗)

lnP
(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)
︸ ︷︷ ︸

again, for any l∗you can factor this out of the summations

that are not relevant to l∗

∑
r∗∈R(j)\i

∑
sr∗

P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)
︸ ︷︷ ︸

the remaining sums only affect the posterior probability

+
∑
(i,j)

∑
s̃

qijs̃
∑

r∗∈R(j)\i

∑
sr∗

∑
t∈T (j,r∗)

lnP
(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

) ∑
l∗∈L (i)\j

∑
sl∗

P

(
{sl∗}l∗∈L (i) {sr∗}r∗∈R(j)\i |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

=max
p,ψ

∑
(i,j)

∑
s̃

qijs̃

ln p
(
ãij1, ϕ̃ij1|s̃ij

)
+

∑
t∈T (i,j)\{t=1}

lnP
(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
+
∑
(i,j)

∑
s̃

qijs̃
∑

l∗∈L (i)\j

∑
sl∗

∑
t∈T (i,l∗)

lnP
(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)
P

(
sl∗ |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

+
∑
(i,j)

∑
s̃

qijs̃
∑

r∗∈R(j)\i

∑
sr∗

∑
t∈T (j,r∗)

lnP
(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
P

(
sr∗ |

{
ϕ̃il(i,t),t, ϕ̃r(j,t)j,t, ãil(i,t),t, ãr(j,t)j,t

}
ij,t

, si, sj

)

=max
p,ψ

∑
(i,j)

∑
s̃

qijs̃

 ln p
(
ãij1, ϕ̃ij1|s̃ij

)
+
∑
t∈T (i,j)\{t=1} lnP

(
ϕr(j,t),t = ϕi,t, ϕl(i,t),t = ϕj,t, ãij,t|ϕj,t, ϕi,t

)
+
∑
l∗∈L (i)\j

∑
sl∗

∑
t∈T (i,l∗) lnP

(
sl∗,ϕl∗,t, ãil∗,t|ϕit

)
qsl∗ |s̃ij

+
∑
r∗∈R(j)\i

∑
sr∗

∑
t∈T (j,r∗) lnP

(
sr∗ , ϕr∗,t, ãr∗j,t|ϕj,t

)
qsr∗ |s̃ij


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C.4 Derivation of the solution to (22)

Take the first order conditions with respect to p(ã|x, x′, s, s′)

∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)
p(ã|x, x′, s, s′)

= 0

so for any ã ̸= ã′ we have

∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)


p(ã|x, x′, s, s′)

=

∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′

)
+1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã′, xjt = x′, xl(i,t) = x

)
−1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, l(i, t) = j

)


p(ã′|x, x′, s, s′)

Multiply both sides by p(ã|x, x′, s, s′)p(ã′|x, x′, s, s′)

p(ã′|x, x′, s, s′)

∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)


=p(ã|x, x′, s, s′)

∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã′, xjt = x′, xl(i,t) = x

)
−1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, l(i, t) = j

)


Then, sum across all ã′, p(ã′|x, x′, s, s′) on the LHS sums up to 1 and

∑
ã′

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã′, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã′, xit = x, xl(i,t) = x′, l(i, t) = j

)
on the RHS sums up to

1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′, l(i, t) = j

)
Hence,
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p(ã|xit, xlt, s, s′) =

∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)


∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′, l(i, t) = j

)


Similarly, the foc for pm(a|x, s) ∑
(i,j)

∑
s̃

qijs̃
∑
t

1 (ait = a, si = s, ϕit = ϕi)

pm(a|x, s)
= 0

Then, for any a′ we have ∑
(i,j)

∑
s̃

qijs̃
∑
t

1 (ait = a, si = s, ϕit = ϕi)

pm(a|x, s)
∑
(i,j)

∑
s̃

qijs̃
∑
t

1 (ait = a′, si = s, ϕit = ϕi)

pm(a′|x, s)

Multiply both sides by pm(a|x, s)pm(a′|x, s) and sum across a′ to obtain

pm(a|x, s) =
∑

(i,j)

∑
s̃ qijs̃

∑
t 1 (ait = a, si = s, ϕit = ϕi)∑

(i,j)

∑
s̃ qijs̃

∑
t 1 (si = s, ϕit = ϕi)

The same estimator can be constructed for pf (a|x, s)
In a model where pm(a|x, s) = pf (a|x, s) = p(a|x, s) we have∑

(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1 (si = s, ait = a, xit = x) + 1 (sj = s, ajt = a, xjt = x)

p(a|x, s)
= 0

For any a′ we have ∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1 (si = s, ait = a, xit = x) + 1 (sj = s, ajt = a, xjt = x)

p(a|x, s)

=
∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1 (si = s, ait = a′, xit = x) + 1 (sj = s, ajt = a′, xjt = x)

p(a′|x, s)

Multiply both sides by p(a|x, s)p(a′|x, s) and sum across a′ gives

p(a|x, s) =
∑

(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃ [1 (si = s, ait = a, xit = x) + 1 (sj = s, ajt = a, xjt = x)]∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃ [1 (si = s, xit = x) + 1 (sj = s, xjt = x)]

Similarly, the FOC for ψm(ϕ′, sl|ϕ, si)∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′

)
ψm(ϕ′, sl|ϕ, si)

= 0
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Again, equate to any ϕ′′ ∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′

)
ψm(ϕ′, sl|ϕ, si)

=

∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′′

)
ψm(ϕ′′, sl|ϕ, si)

Multiply both sides by ψm(ϕ′, sl|ϕ, si)ψm(ϕ′′, sl|ϕ, si) and sum across ϕ′′ to obtain

ψm(ϕ′′, sl|ϕ, si)
∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′

)
= ψm(ϕ′, sl|ϕ, si)

∑
(i,j)

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′′

)
ψm(ϕ′, sl|ϕ, si) =

∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕit = ϕ, ϕl(i,t) = ϕ′

)∑
(i,j)

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, sl(i,t) = sl, ϕl(i,t) = ϕ′′

)
An analogous estimator can be constructed for ψf (ϕr, sr|ϕj , sj).
The FOC with respect to p(x̃|s̃) is ∑

(i,j)

∑
s̃ qijs̃1 (x̃ij,1 = x̃, s̃ij = s̃)

p(x̃|s̃)
= 0

Again, equate to any other x̃′, multiply both sides by p(x̃|s̃)p(x̃′|s̃) and then sum across x̃′∑
(i,j)

∑
s̃ qijs̃1 (x̃ij,1 = x̃, s̃ij = s̃)

p(x̃|s̃)
=

∑
(i,j)

∑
s̃ qijs̃1 (x̃ij,1 = x̃′, s̃ij = s̃)

p(x̃′|s̃)
p(x̃′|s̃)

∑
(i,j)

∑
s̃

qijs̃1 (x̃ij,1 = x̃, s̃ij = s̃) = p(x̃|s̃)
∑
(i,j)

∑
s̃

qijs̃1 (x̃ij,1 = x̃′, s̃ij = s̃)

∑
(i,j)

∑
s̃

qijs̃1 (x̃ij,1 = x̃, s̃ij = s̃) = p(x̃|s̃)
∑
(i,j)

∑
s̃

qijs̃1 (s̃ij = s̃)

p(x̃|s̃) =
∑

(i,j)

∑
s̃ qijs̃1 (x̃ij,1 = x̃, s̃ij = s̃)∑

(i,j)

∑
s̃ qijs̃1 (s̃ij = s̃)
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C.5 Derivation of the solution to (23)

The estimator for p(ã|x, x′, s, s′) is derived as

∑
{i:l(i,1)=j}

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)


p(ã|x, x′, s, s′)
+

∑
{i′:l(i,1)=0} qi′s

∑
t

∑
s′ ql(i′,t)s′1

(
si = s, sl(i,t) = s′, ãi′l(i′,t),t = ã, xi′t = x, xl(i′,t) = x′

)
p(ã|x, x′, s, s′)

= 0

Equate the FOC for ã and any ã′, the multiply both sides by p(ã|x, x′, s, s′)p(ã′|x, x′, s, s′) and sum across ã′ to obtain

p(ã|x, x′, s, s′) =

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, ãr(j,t)j,t = ã, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, ãil(i,t),t = ã, xit = x, xl(i,t) = x′, l(i, t) = j

)


+
∑

{i′:l(i,1)=0} qi′s
∑
t

∑
s′ ql(i′,t)s′1

(
si = s, sl(i,t) = s′, ãi′l(i′,t),t = ã, xi′t = x, xl(i′,t) = x′

)
∑

{i:l(i,1)=j}
∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃

 1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′

)
+

1
(
sr(j,t) = s, sj = s′, xjt = x′, xl(i,t) = x

)
−

1
(
si = s, sl(i,t) = s′, xit = x, xl(i,t) = x′, l(i, t) = j

)


+
∑

{i′:l(i,1)=0} qi′s
∑
t

∑
s′ ql(i′,t)s′1

(
si = s, sl(i,t) = s′, xi′t = x, xl(i′,t) = x′

)
The estimator for pm(a|x, s) is derived from the FOC∑

{i:l(i,1)=j}

∑
s̃

qijs̃
∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1 (si = s, ait = a, xit = x, l(i, t) = 0)

pm(a|x, s)
+

∑
{i′:l(i,1)=0} qi′s

∑
t 1 (si = s, ai′,t = a, xi′t = x, l(i, t) = 0)

pm(a|x, s)
= 0

Then, for any a′ ∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1(si=s,ait=a,xit=x,l(i,t)=0)

pm(a|x,s) +∑
{i′:l(i,1)=0} qi′s

∑
t 1(si=s,ai′,t=a,xi′t=x,l(i

′,t)=0)
pm(a|x,s)

=

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃
1(si=s,ait=a′,xit=x,l(i,t)=0)

pm(a′|x,s) +∑
{i′:l(i,1)=0} qi′s

∑
t 1(si=s,ai′,t=a

′,xi′t=x,l(i
′,t)=0)

pm(a′|x,s)

Again, multiply both sides by pm(a|x, s)pm(a′|x, s) and sum across a′ to obtain

pm(a|x, s) =
∑

{i:l(i,1)=j}
∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1 (si = s, ait = a, xit = x, l(i, t) = 0) +
∑

{i′:l(i,1)=0} qi′s1 (si′ = s, ai′t = a, xi′t = x, l(i′, t) = 0)∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1 (si = s, xit = x, l(i, t) = 0) +
∑

{i′:l(i,1)=0} qi′s
∑
t 1
(
si = s, sl(i,t) = s′, xi′t = x, xl(i′,t) = x′, l(i′, t) = 0

)
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A similar estimator can be constructed for pf (a|x, s). If pm(a|x, s) = pf (a|x, s) = p(a|x, s), then the estimator for p(a|x, s) becomes:∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

[
1(si=s,ait=a,xit=x,l(i,t)=0)

p(a|x,s) +
1(sj=s,ajt=a,xjt=x,r(j,t)=0)

p(a|x,s)

]
+∑

{i′:l(i,1)=0} qi′s
∑

t 1(si=s,ai′,t=a,xi′t=x,l(i
′,t)=0)

p(a|x,s) +
∑

{j′:r(j′,1)=0} qj′s
∑

t 1(sj′=s,aj′,t=a,xj′t=x,r(j
′,t)=0)

p(a|x,s)

= 0

For any a′ we have ∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

[
1(si=s,ait=a,xit=x,l(i,t)=0)

p(a|x,s) +
1(sj=s,ajt=a,xjt=x,r(j,t)=0)

p(a|x,s)

]
+∑

{i′:l(i,1)=0} qi′s
∑

t 1(si=s,ai′,t=a,xi′t=x,l(i
′,t)=0)

p(a|x,s) +
∑

{j′:r(j′,1)=0} qj′s
∑

t 1(sj′=s,aj′,t=a,xj′t=x,r(j
′,t)=0)

p(a|x,s)

=

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

[
1(si=s,ait=a′,xit=x,l(i,t)=0)

p(a′|x,s) +
1(sj=s,ajt=a′,xjt=x,r(j,t)=0)

p(a′|x,s)

]
+∑

{i′:l(i,1)=0} qi′s
∑

t 1(si=s,ai′,t=a
′,xi′t=x,l(i

′,t)=0)
p(a′|x,s) +

∑
{j′:r(j′,1)=0} qj′s

∑
t 1(sj′=s,aj′,t=a

′,xj′t=x,r(j
′,t)=0)

p(a′|x,s)

Multiply both sides by p(a|x, s)p(a′|x, s) and sum across a′ to obtain:

p(a|x, s) =

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

[
1 (si = s, ait = a, xit = x, l(i, t) = 0)+
1 (sj = s, ajt = a, xjt = x, r(j, t) = 0)

]
+∑

{i′:l(i,1)=0} qi′s
∑
t 1 (si = s, ai′,t = a, xi′t = x, l(i′, t) = 0)

+
∑

{j′:r(j′,1)=0} qj′s
∑
t 1 (sj′ = s, aj′,t = a, xj′t = x, r(j′, t) = 0)∑

{i:l(i,1)=j}
∑
s̃ qijs̃

∑
t

[
1 (si = s, xit = x, l(i, t) = 0)+
1 (sj = s, xjt = x, r(j, t) = 0)

]
+∑

{i′:l(i,1)=0} qi′s
∑
t 1 (si = s, xi′t = x, l(i′, t) = 0)+∑

{j′:r(j′,1)=0} qj′s
∑
t 1 (sj′ = s, xj′t = x, r(j′, t) = 0)

An analogous estimator can be constructed for ψm(ϕ′, s′|ϕ, s).∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1(si=s,ϕit=ϕ,sl(i,t)=s
′,ϕl(i,t)=ϕ

′)
ψm(ϕ′,s′|ϕ,s) +∑

{i′:l(i,1)=0}
∑

s qi′s
∑

t

∑
s′ qsl(i,t)|si1(si=s,ϕit=ϕ,sl(i,t)=s

′,ϕl(i,t)=ϕ
′)

ψm(ϕ′,s′|ϕ,s)

= 0

For any ϕ′′ we have ∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1(si=s,ϕit=ϕ,sl(i,t)=s
′,ϕl(i,t)=ϕ

′)
ψm(ϕ′,s′|ϕ,s) +∑

{i′:l(i,1)=0}
∑

s qi′s
∑

t

∑
s′ qsl(i,t)|si1(si=s,ϕit=ϕ,sl(i,t)=s

′,ϕl(i,t)=ϕ
′)

ψm(ϕ′,s′|ϕ,s)

=

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1(si=s,ϕit=ϕ,sl(i,t)=s
′,ϕl(i,t)=ϕ

′′)
ψm(ϕ′′,s′|ϕ,s) +∑

{i′:l(i,1)=0}
∑

s qi′s
∑

t

∑
s′ qsl(i,t)|si1(si=s,ϕit=ϕ,sl(i,t)=s

′,ϕl(i,t)=ϕ
′′)

ψm(ϕ′′,s′|ϕ,s)

Multiply both sides by ψm(ϕ′′, s′|ϕ, s)ψm(ϕ′, s′|ϕ, s) and sum across ϕ′′ to obtain

ψm(ϕ′′, s′|ϕ, s) =

∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, ϕit = ϕ, sl(i,t) = s′, ϕl(i,t) = ϕ′

)
+∑

{i′:l(i,1)=0}
∑
s qi′s

∑
t

∑
s′ qsl(i,t)|si1

(
si = s, ϕit = ϕ, sl(i,t) = s′, ϕl(i,t) = ϕ′

)∑
{i:l(i,1)=j}

∑
s̃ qijs̃

∑
t

∑
sl(i,t),sr(j,t)

qsl(i,t)sr(j,t)|s̃1
(
si = s, ϕit = ϕ, sl(i,t) = s′

)
+∑

{i′:l(i,1)=0}
∑
s qi′s

∑
t

∑
s′ qsl(i,t)|si1

(
si = s, ϕit = ϕ, sl(i,t) = s′

)
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The FOCs for p(x̃ij,1|s̃ij) and p(xi′1|si′) are similarly derived.
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D Finite dependence

Stage 2, single agent. The choice sequences {a1, ∅, a1}(replace engine, then operate individually, then replace engine
again) and {a, ∅, a1} a = a2, a3 (no maintenance or partial maintenance, then operate individually, then replace engine)
establish one-period finite dependence.

vmt (a|ϕit)− vmt (a1|ϕit)
=um (a|ϕit)−�����

um (a1|ϕit) + βEϕit+1|a,ϕit
Um (ϕit+1)− βEϕit+1|a1,ϕit

Um (ϕit+1)

=um (a|ϕit) + βEϕit+1|a,ϕit
[V m(∅|ϕit+1) +((((((κm(∅|ϕit+1)− ν lnψm(∅|ϕit+1)����+µ+ νγ]

− βEϕit+1|a1,ϕit
[V m(∅|ϕit+1) +((((((κm(∅|ϕit+1)− ν lnψm(∅|ϕit+1)����+µ+ νγ]

=um (a|ϕit) + βEϕit+1|a,ϕit
[vm(a1|ϕit+1)− ν ln pm(a1|ϕt+1)����+µ+ νγ − ν lnψm(∅|ϕit+1)]

− βEϕit+1|a1,ϕit
[vm(a1|ϕit+1)− ν ln pm(a1|ϕt+1)����+µ+ νγ − ν lnψm(∅ϕit+1)]

=um (a|ϕit) + βEϕit+1|a,ϕit

[
((((((
um (a1|ϕit+1) + βEϕt+2|a1,ϕit+1

Um(ϕt+2)− ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)
]

− βEϕit+1|a1,ϕit

[
((((((
um (a1|ϕit+1) + βEϕt+2|a1,ϕit+1

Um(ϕt+2)− ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)
]

=um (a|ϕit) +(((((((((
βEϕt+2|a1U

m(ϕt+2) + βEϕit+1|a,ϕit
[−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)]

−
(((((((((
βEϕt+2|a1U

m(ϕt+2)− βEϕit+1|a1,ϕit
[−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)]

=um (a|ϕit) + βEϕit+1|a,ϕit
[−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)]− βEϕit+1|a1,ϕit

[−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕit+1)]

Where Eϕit+1|a,ϕit

(
Eϕt+2|a1,ϕit+1

Um(ϕt+2)
)
= Eϕit+1|a1,ϕit

(
Eϕt+2|a1,ϕit+1

Um(ϕt+2)
)
= Eϕt+2|a1U

m(ϕt+2) holds because
action a1 is a renewal action.

Stage 2, couple: The choice sequences {ã, ∅, a1}(any action in A 2 such that ai ̸= a1, then operate individually, then
replace engine) and {(a1, a1), ∅, a1} (replace engines in both buses in the couple, then operate individually, then replace
engine) establish one-period finite dependence.

vmt

(
ã|ϕ̃il(i,t),t

)
− vmt

(
(a1, a1)|ϕ̃il(i,t),t

)
=um

(
ã|ϕ̃il(i,t),t

)
−
��������
um
(
a1|ϕ̃il(i,t),t

)
+ βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

Um (ϕit+1)− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t
Um (ϕit+1)

=um
(
ã|ϕ̃il(i,t),t

)
+ βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

[
V m∅ (ϕit+1) +((((((((((

κm(∅|ϕit+1, ϕl(i,t)t+1)− lnψm(∅|ϕ̃il(i,t),t+1)����+µ+ νγ
]

− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t

[
V m∅ (ϕit+1) +((((((((((

κm(∅|ϕit+1, ϕl(i,t)t+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)����+µ+ νγ
]

=um
(
ã|ϕ̃il(i,t),t

)
+ βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

[
vm∅ (a1|ϕit+1)− ν ln pm(a1|ϕt+1)����+µ+ νγ − ν lnψm(∅|ϕ̃il(i,t),t+1)

]
− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t

[
vm∅ (a1|ϕit+1)− ν ln pm(a1|ϕt+1)����+µ+ νγ − ν lnψm(∅|ϕ̃il(i,t),t+1)

]
=um

(
ã|ϕ̃il(i,t),t

)
+ βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

[
((((((
um (a1|ϕit+1) + βEϕ̃t+2|a1,ϕ̃il(i,t),t+1

Um(ϕ̃t+2)− ν ln pm(a1|ϕt+1)− ν lnψm(∅ϕ̃il(i,t),t+1)
]

− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t

[
((((((um (a1ϕit+1) + βEϕ̃t+2|a1,ϕ̃il(i,t),t+1

Um(ϕ̃t+2)− ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)
]

=um
(
ã|ϕ̃il(i,t),t

)
+(((((((((
βEϕ̃t+2|a1U

m(ϕ̃t+2) + βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

[
−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)

]
−(((((((((
βEϕ̃t+2|a1U

m(ϕ̃t+2)− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t

[
−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)

]
=um

(
ã|ϕ̃il(i,t),t

)
+ βEϕ̃il(i,t),t+1|ã,ϕ̃il(i,t),t

[
−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)

]
− βEϕ̃il(i,t),t+1|a1,ϕ̃il(i,t),t

[
−ν ln pm(a1|ϕt+1)− ν lnψm(∅|ϕ̃il(i,t),t+1)

]
Stage 1: The choice sequences

{
ϕr(j,t),t, a1, ∅, a1

}
(match with any bus ϕr(j,t),t, then replace engine, then operate individ-

ually, then replace engine) and {∅, a1, ∅, a1} (operate individually, replace engine, then operate individually, then replace
engine) establish one-period finite dependence.
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Notice that V m(ϕit, ϕj,t) can be written as

V m(ϕr(j,t),t, ϕj,t)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
vm
(
ã|ϕ̃
)
− ν ln p(a|ϕ̃r(j,t)j,t)

)
����+µ+ νγ

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+ βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

Um
(
ϕ̃r(j,t)j,t+1

)
− ν ln p(ã|ϕ̃r(j,t)j,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
− ν ln p(ã|ϕ̃r(j,t)j,t)

+βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
V m∅

(
ϕmj,t+1

)
+
���������
κm
(
∅|ϕ̃r(j,t)j,t+1

)
− lnψm

(
∅|ϕ̃r(j,t)j,t+1

)] )

Then,

V mt (ϕr(j,t)t, ϕj,t)− V m∅t (ϕj,t)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
vm
(
ã|ϕ̃r(j,t)j,t

)
− ν ln p(ã|ϕ̃r(j,t)j,t)

)
����+µ+ νγ

− vm∅t (a
∗, ϕj,t) + ν ln pm(a∗|ϕj,t)����−µ− νγ∀a∗ ∈ A

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
vm
(
ã|ϕr(j,t),t, ϕj,t

)
− ν ln p(ã|ϕ̃r(j,t)j,t)− vm∅ (a∗|ϕj,t) + ν ln pm(a∗|ϕj,t)

)
∀a∗ ∈ A (ϕj,t)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
vm
(
ã|ϕr(j,t),t, ϕj,t

)
− ν ln p(ã|ϕ̃r(j,t)j,t)− vm∅ (a1|ϕj,t) + ν ln pm(a1|ϕj,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+ βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

Um
(
ϕ̃r(j,t)j,t+1

)
−������
um∅ (a1|ϕj,t)− βEϕj,t+1|a1,ϕj,t

Um (ϕj,t+1)

− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕmj,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+

βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
V m∅ (ϕj,t+1) +

���������
κm
(
∅|ϕ̃r(j,t)j,t+1

)
− ν lnψm

(
∅|ϕ̃r(j,t)j,t+1

)
����+µ+ νγ

]
− βEϕj,t+1|a1,ϕj,t

[
V m∅ (ϕj,t+1) +((((((

κm (∅|ϕj,t+1)− ν lnψm (∅|ϕj,t+1)����+µ+ νγ
]

− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln p(a1|ϕj,t)

)
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=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
umt

(
ã|ϕ̃r(j,t)j,t

)
+

βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
vm∅ (a1|ϕj,t+1)− ν ln p(a1|ϕj,t+1)����+µ+ νγ − ν lnψm

(
∅|ϕ̃r(j,t)j,t+1

)]
− βEϕjt+1|a1,ϕjt

[
vm∅ (a1|ϕj,t+1)− ν ln p(a1|ϕj,t+1)����+µ+ νγ − ν lnψm (∅|ϕj,t+1)

]
− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕj,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+

βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
(((((((
um∅ (a1|ϕj,t+1) + βEϕj,t+2|a1,ϕj,t+1

Um (ϕj,t+2)− ν ln pm(a1|ϕj,t+1)− ν lnψm
(
∅|ϕ̃r(j,t)j,t+1

)]
− βEϕj,t+1|a1,ϕj,t

[
(((((((
um∅ (a1|ϕj,t+1) + βEϕj,t+2|a1,ϕj,t+1

Umt+2 (ϕj,t+2)− ν ln pm(a1|ϕj,t+1)− ν lnψm (∅|ϕj,t+1)
]

− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕj,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+

+
(((((((((((
β2Eϕj,t+2|a1U

m
t+2 (ϕj,t+2) + βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
−ν ln pm(a1|ϕj,t+1)− ν lnψm

(
∅|ϕ̃r(j,t)j,t+1

)]
−
(((((((((((
β2Eϕj,t+2|a1U

m
t+2

(
ϕmj,t+2

)
− βEϕj,t+1|a1,ϕj,t

[−ν ln pm(a1|ϕj,t+1)− ν lnψm (∅|ϕj,t+1)]

− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕj,t)

)

=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
um
(
ã|ϕ̃r(j,t)j,t

)
+

βEϕ̃r(j,t)j,t+1|ã,ϕ̃r(j,t)j,t

[
−ν ln pm(a1|ϕj,t+1)− ν lnψm

(
∅|ϕ̃r(j,t)j,t+1

)]
− βEϕm

j,t+1|a1,ϕm
j,t

[−ν ln pm(a1|ϕj,t+1)− ν lnψm (∅|ϕj,t+1)]

− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕj,t)

)
=
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)um
(
ã|ϕ̃r(j,t)j,t

)
+
∑
ã∈A 2

p(ã|ϕ̃r(j,t)j,t)

(
βEϕ̃r(j,t)j,t+1|a,ϕ̃r(j,t)j,t

[
−ν ln pm(a1|ϕj,t+1)− ν lnψm

(
∅|ϕ̃r(j,t)j,t+1

)]
− βEϕj,t+1|0,ϕj,t

[−ν ln pm(a1|ϕj,t+1)− ν lnψm (∅|ϕj,t+1)]− ν ln p(ã|ϕ̃r(j,t)j,t) + ν ln pm(a1|ϕj,t)

)

The last rearrangement conveniently separates nonparametrically identified conditional choice probabilities and functions
of the structural parameters that need to be evaluated for every parameter candidate during estimation.
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E Proofs

E.1 Proof of Lemma 1

For convenience, we define

x̊l,t = 1
(
xl(i,t),t = x0

)
for somex0 ∈ X ∪ ∅

åil,t =

{
1
(
ãil(i,t),t =

(
a0, a

′

0

))
for some

(
a0, a

′

0

)
∈ A 2 if x0 ∈ X

1 (ai,t = a0) for some a0 ∈ A if x0 = ∅

d̊il,t = åil,t × x̊l,t

λd̊φ (s) = Pm
(
d̊il,t = 1|φ, s, hmt0

)
λaφ (s) = Pm

(
ai1 = a

′′

0 , xi1 = φ|s, hmt0
)
= pm(ai1 = a

′′

0 , xi1 = φ|s, hmt0 ) for some a
′′

0 ∈ A

for any observable state φ ∈ X . This reduces agents’ choices to a binary set, without loss of generality.
In the first part of this proof, we apply Kasahara and Shimotsu (2009)directly.

Consider a set of points in the state space {φ∗} ∪ {φo}S−1
o=1 ⊂ Φ. Define

L
(S×S)

=


1 λd̊φ1

(s1) · · · λd̊φS−1
(s1)

...
...

. . .
...

1 λd̊φ1
(sS) · · · λd̊φS−1

(sS)


Dφ∗ = diag

(
λaφ∗ (s1) , ..., λ

a
φ∗ (sS)

)
V = diag

(
π(s1|hmt0 ), ..., π(sS |h

m
t0 )
)

The elements of L, V , and Dφ∗∀φ∗ ∈ Φ are the parameters to be identified.
Now, collect notation for matrices of observables. Only three periods of history {t1, t2, t3} per individual are necessary for

identification. It is required that t1 = 1 and that t2 and t3 be larger than 1 but they need not be consecutive. Then, define
(φ∗, φt2 , φt3) ∈ Φ3 to be a set of points in the state space, one per selected period of data. Then, we define some matrices of
joint probabilities that can be consistently estimated from the data, where the asymptotic convergence occurs as the number
of individual histories in the sample approaches infinity.

F ∗
φ∗,φt2 ,φt3

≡ P̊

(
ail(i,1),1 = a

′′

0 , φ
∗,
{
d̊il,t = 1, φt

}
t=t2,t3

|hmt0

)
≡
∑
s

π(s|hmt0 )λ
a
φ∗ (s)λd̊φt2

(s)λd̊φt3
(s)

Sum across values of
(
ail(i,1), φ

∗). Only the term λaφ∗ (s) depends on them and will sum up to one, yielding:

Fφt2 ,φt3
≡ P̊

({
d̊il,t = 1, φt

}
t=t2,t3

)
≡
∑
s

π(s|hmt0 )λ
d̊
φt2

(s)λd̊φt3
(s)

Similarly, we define the following “marginals” by summing across values of
{
d̊il,t

}
t=t2,t3

or
(
ail(i,1), φ

∗)
F ∗
φ∗,φt2

≡ P̊
(
ail(i,1) = a

′′

0 , φ
∗, d̊il,t2 = 1, φt2

)
=
∑
s

π(s|hmt0 )λ
a
φ∗ (s)λ

d̊il,2
φt2

(s)

F ∗
φ∗,φt3

≡ P̊
(
ail(i,1) = a

′′

0 , φ
∗, d̊il,t3 = 1, φt3

)
=
∑
s

π(s|hmt0 )λ
a
φ∗ (s)λ

d̊il,3
φt3

(s)

Fφt2
≡ P̊

(
d̊il,t2 = 1, φt2

)
=
∑
s

π(s|hmt0 )λ
d̊il,3
φt2

(s)

Fφt3
≡ P̊

(
d̊il,t3 = 1, φt3

)
=
∑
s

π(s|hmt0 )λ
d̊il,3
φt3

(s)

F ∗
φ∗ ≡ P̊

(
ail(i,1) = a

′′

0 , φ
∗
)
=
∑
s

π(s|hmt0 )λ
a
φ∗ (s)
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Using these definition create the matrices

P =


1 Fφ1

. . . FφS−1

Fφ1
Fφ1,φ1

. . . Fφ1,φS−1

...
...

. . .
...

FφS−1
FφS−1,φ1

. . . FφS−1,φS−1



P ∗
φ∗ =


F ∗
φ∗ F ∗

φ∗,φ1
. . . F ∗

φ∗,φS−1

F ∗
φ∗,φ1

F ∗
φ∗,φ1,φ1

. . . F ∗
φ∗,φ1,φS−1

...
...

. . .
...

F ∗
φ∗,φS−1

F ∗
φ∗,φS−1,φ1

. . . F ∗
φ∗,φS−1,φS−1


Now we can write

P = L′V L

Pφ∗ = L′V Dφ∗L

If L is invertible, so is P , then we can define Aφ∗ = P−1Pφ∗ .

Aφ∗ = L−1Dφ∗L

=⇒ Aφ∗L−1 = L−1Dφ∗

Since Dφ∗ is diagonal, we know that the columns of L−1are the right eigenvectors of Aφ∗ up to constant scaling, and the
elements of Dφ∗ are the corresponding eigenvalues. Denote L−1Ξ the right eigenvectors of Aφ∗ for some diagonal matrix Ξ.
Notice that

PL−1Ξ = L′V Ξ

Since the first row of L′ is a vector of ones and V Ξ is a diagonal matrix, the first row of PL−1Ξ will contain the elements
of V Ξ. Now that V Ξ and PL−1Ξ are both known, we can uniquely determine L′:

L′ =
(
PL−1Ξ

)
(V Ξ)

−1

Knowing L′ and hence L, we can uniquely determine V by using the relation P = L′V L, either by inverting both L′ and
L or by noticing that (L′)

−1
P = V L and the first column of L is a vector of ones, so the first row of (L′)

−1
P will contain

the elements of V.
From the values of V and L, we can construct the matrix Pζ∗ for any ζ∗ ∈ Φ the same way Pφ∗ is constructed and use it

to determine Dζ∗ = diag
(
λaζ∗ (s1) , ..., λ

a
ζ∗ (sS)

)
explointing the relation Pζ∗ = L′V Dζ∗L.

We still have to identify λd̊ξ (s) at values of ξ that are not in {φo}S−1
o=1 . For any arbitrary ξ ∈ Φ we can define

Lξ
(S×2)

=


1 λd̊ξ (s1)
...

...

1 λd̊ξ (sS)


Pξ

(2×M)

=

[
1 Fφ1 . . . FφS−1

Fξ Fξ,φ1 . . . Fξ,φS−1

]
Since Pξ can be consistently estimated from the data and Pξ = (Lξ)

′
V L,we can uniquely determine (Lξ)

′
= Pξ (V L)

−1
.

Up until now, we have applied Kasahara and Shimotsu (2009) directly and we have identified λd̊φ (s), λ
a
φ (s), and π(s|hmt0 ).

One can use the same argument to show the identification of pm(ai1 = a
′′

0 , xi1 = φ|s, hmt0 ) for any value of a
′′

0 ∈ A . Next,
determining pm(a|x, s, hmt0 ) is trivial.

pm(a|x, s, hmt0 ) =
∑
z

λax (s) /P (x|s, hmt0 )

Where the distribution P (x|s, hmt0 ) can be obtained from λax (s) via

P (x|s, hmt0 ) =
∑
a

pm(a, x|s, hmt0 ) =
∑
a

λax (s) .

Notice that π(s, ∅) = π(s|hmt0 )P (h
m
t0 ) where P (h

m
t0 ) is nonparametrically identified from the data because hmt0 is observable.
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E.2 Proof of Lemma 2

For convenience, we define

x̊lr,t = 1
(
xl(i,t),t = x0, xr(j,t),t = x

′

0

)
for somex0 ∈ X ∪ ∅, x

′

0 ∈ X ∪ ∅

åilrj,t = 1
(
ãil(i,t),t = a0, ãr(j,t)j,t = a

′

0

)
a0, a

′

0 ∈ A

d̊ilrj,t = åilrj,t × x̊lr,t

λd̊φ̃ (s̃) = P
(
d̊ilrj,t = 1|φ̃, s̃, h̃t0

)
t = 2, ..., T

λãφ̃ (s̃) = P
(
ãij1 = ã0, x̃ij1 = φ̃|s̃, h̃t0

)
= p(ãij1, x̃ij,t|s̃ij , h̃t0) for some ã0 ∈ A (φ̃)

for any observable state φ̃ ∈ Φ2. This reduces agents’ choices to a binary set, without loss of generality.

First part. Apply Kasahara Shimotsu (2009) The Kasahara and Shimotsu (2009) argument flows exactly like in
the one-person household case, with the difference that now there are S2 unobserved types of couples and an expanded choice

set equal to Φ2 ×A2. Consider a set of points in the joint state space of the couple{φ̃o}S
2−1

o=1 ⊂ Φ2. Define

L
(S2×S2)

=


1 λd̊φ̃1

(s̃1) · · · λd̊φ̃S2−1
(s̃1)

...
...

. . .
...

1 λd̊φ̃1
(s̃S2) · · · λd̊φ̃S2−1

(s̃S2)


Dφ̃∗ = diag

(
λãφ̃∗ (s̃1) , ..., λ

ã
φ̃∗ (s̃S2)

)
V = diag

(
π(s1, s1|h̃t0), π(s1, s2|h̃t0), ..., π(sS , sS |h̃t0)

)
Now, collect notation for matrices of observables. For (φ̃∗, φ̃t2 , φ̃t3) ∈ (Φ)

2×3
:

F ∗
φ̃∗,φ̃t2

,φ̃t3
= P̊

(
ãij1 = ã0, φ̃

∗,
{
d̊ilrj,t = 1, φ̃t

}
t=t2,t3

|h̃t0
)

=
∑
s̃

π(s̃)λãφ̃∗ (s̃)λd̊φ̃t2
(s̃)λd̊φ̃t3

(s̃)

Sum across values of (ãilrj,t, φ̃
∗). Only the term λãφ̃∗ (s̃) depends on them and will sum up to one, yielding:

Fφ̃t2 ,φ̃t3
= P̊

({
d̊ilrj,t = 1, φ̃t

}
t=t2,t3

|h̃t0
)

=
∑
s̃

π(s̃)λd̊φ̃t2
λd̊φ̃t3

Similarly, we define the following “marginals” by summing across elements of
{
d̊ilrj,t = 1

}
t=t2,t3

and (ãilrj,t, φ̃
∗).

F ∗
φ̃∗,φ̃t2

= P̊
(
ãij,1 = ã0, φ̃

∗, d̊ilrj,t2 = 1, φ̃t2 |h̃t0
)
=
∑
s̃

π(s̃)λãφ̃∗ (s̃)λd̊φ̃t2
(s̃)

F ∗
φ̃∗,φ̃t3

= P̊
(
ãij1 = ã0, φ̃

∗, d̊ilrj,t3 = 1, φ̃t3 |h̃t0
)
=
∑
s̃

π(s̃)λãφ̃∗ (s̃)λd̊φ̃t3
(s̃)

Fφ̃t2
≡ P̊

(
d̊ilrj,t2 = 1, φ̃t2 |h̃t0

)
=
∑
s

π(s|hmt0 )λ
d̊il,3
φ̃t2

(s)

Fφ̃t3
≡ P̊

(
d̊ilrj,t3 = 1, φ̃t3 |h̃t0

)
=
∑
s

π(s|hmt0 )λ
d̊il,3
φ̃t3

(s)

F ∗
φ̃∗ ≡ P̊

(
ãij,1 = ã0, φ̃

∗|h̃t0
)
=
∑
s̃

π(s̃)λãφ̃∗ (s̃)
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Using these definition create the matrices

P =


1 Fφ̃1

. . . Fφ̃S2−1

Fφ̃1
Fφ̃1,φ̃1

. . . Fφ̃1,φ̃S2−1

...
...

. . .
...

Fφ̃S2−1
Fφ̃S2−1,φ̃1

. . . Fφ̃S−1,φ̃S2−1



Pφ̃∗ =


F ∗
φ̃∗ F ∗

φ̃∗,φ̃1
. . . F ∗

φ̃∗,φ̃S2−1

F ∗
φ̃∗,φ̃1

F ∗
φ̃∗,φ̃1,φ̃1

. . . F ∗
φ̃∗,φ̃1,φ̃S2−1

...
...

. . .
...

F ∗
φ̃∗,φ̃S2−1

F ∗
φ̃∗,φ̃S2−1,φ̃1

. . . F ∗
φ̃∗,φ̃S2−1,φ̃S2−1


Now we can write

P = L′V L

Pφ̃∗ = L′V Dφ̃∗L

If L is invertible, so is P , then we can define Aφ̃∗ = P−1Pφ̃∗ .

Aφ̃∗ = L−1Dφ̃∗L

=⇒ Aφ̃∗L−1 = L−1Dφ̃∗

Since Dφ̃∗ is diagonal, we know that the columns of L−1are the right eigenvectors of Aφ̃∗ up to constant scaling, and the

elements of Dφ̃∗ are the corresponding eigenvalues. Denote L−1Ξ the right eigenvectors of Aφ̃∗ for some diagonal matrix Ξ.
Notice that

PL−1Ξ = L′V Ξ

Since the first row of L′ is a vector of ones, the first row of PL−1Ξ will contain the elements of the diagonal matrixV Ξ.
Now that V Ξand PL−1Ξ are both known, we can uniquely determine L′:

L′ =
(
PL−1Ξ

)
(V Ξ)

−1

Knowing L′ and hence L, we can uniquely determine V by using the relation P = L′V L, either by inverting both L′ and
L or by noticing that (L′)

−1
P = V L and the first column of L is a vector of ones, so the first row of (L′)

−1
P will contain

the elements of V.
From the values of V and L, we can construct the matrix Pζ̃ for any ζ̃

∗ ∈ Φ2 the same way Pφ̃∗ is constructed and use it

to determine Dζ̃∗ = diag
(
λ∗1
ζ̃∗
, ..., λ∗S

2

ζ̃∗

)
explointing the relation Pζ̃∗ = L′V Dζ̃∗L.

We still have to identify λs̃
ξ̃
at values of ξ̃ that are not in {φg}S−1

g=1 . For any arbitrary ξ̃ ∈ Φ2 we can define

Lξ̃
(S×2)

=


1 λ1

ξ̃
...

...

1 λS
2

ξ̃


Pξ̃

(2×M)

=

[
1 Fφ̃1

. . . Fφ̃S2−1

Fξ̃ Fξ̃,φ̃1
. . . Fξ̃,φ̃S2−1

]

Since Pξ̃ =
(
Lξ̃

)′
V L,we can uniquely determine

(
Lξ̃

)′
= Pξ̃ (V L)

−1
.

Now we have identified λd̊φ̃ (s̃), λ
ã
φ̃ (s̃), and π(s̃|h̃t0)

One can use the same argument to show the identification of p(ãij1 = ã0, x̃ij,1|s̃ij , h̃t0) for all values of (ã0, x̃ij1, s̃ij).
p(ã|ϕ̃, h̃t0) is identified from

p(ã|ϕ̃, h̃t0) = p(ã, x̃|s̃, h̃t0)/P (x̃|s̃, h̃t0)
Where the distribution P (x̃|s̃, h̃t0) is obtained from

P (x̃|s̃, h̃t0) =
∑
ã

p(ã, x̃|s̃, h̃t0) =
∑
ã

λãx̃ (s̃)

Finally, notice that π(s, s′) = π(s, s′|h̃t0)P (h̃t0).
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E.3 Proof of 1

Now that p’s are identified, we need to identify the ψ’s. We exploit the following relation concerning the one-person household

P
(
ãil(i,t),t, xl(i,t),t|ϕit, hmt0

)
=

∑
sl(i,t),t

P
(
ãil(i,t),t, xl(i,t),t, sl(i,t),t|ϕit, hmt0

)
(24)

=
∑
sl(i,t),t

ψm(ϕl(i,t),t|ϕit)p(ãil(i,t),t|ϕ̃il(i,t),t)

Where P
(
ãil(i,t),t, xl(i,t),t|ϕit, hmt0

)
is identified in 1 and p(ãij,t|ϕ̃ij,t) is identified in 2.

We define the matrices

P1(xl, si, xi)
(A2−1)×1

=
[
P
(
ã = ã1, xl|xi, si, hmt0

)
P
(
ã = ã2, xl|xi, si, hmt0

)
... P

(
ã = ãA2−1, xl|xi, si, hmt0

) ]T
P1(si, xi)
(A2−1)X×1

=
[
P1(xl = x1, si, xi,zi) P1(xl = x2, si, xi,zi) . . . P1(xl = xX , si, xi,zi)

]T
P1(xi)

(A2−1)XS×1

=
[
P1(si = s1, xi) P1(si = s2, xi) . . . P1(si = sS , xi)

]T
P1

(A2−1)X2S×1
=
[
P1(xi = x1) P1(xi = x2) . . . P1(xi = xX)

]T

P2(sl, xl, si, xi)
(A2−1)×1

=
[
p(ãil = ã1|sl, xl, si, xi) p(ãil = ã2|sl, xl, si, xi) ... p(ãil = ãA2−1|sl, xl, si, xi)

]T
P2(xl, si, xi)

(A2−1)×S
=
[
P2(sl = s1, xl, si, xi) P2(sl = s2, xl, si, xi) ... P2(sl = sS , xl, si, xi)

]

P2(si, xi)
(A2−1)X×SX

=


P2(xl = x1, si, xi) 0 ... 0

0 P2(xl = x2, si, xi) . . . 0
...

...
. . .

...
0 0 0 P2(xl = xX , si, xi)



P2(xi)
(A2−1)SX×S2X

=


P2(si = s1, xi) 0 ... 0

0 P2(si = s2, xi) . . . 0
...

...
. . .

...
0 0 0 P2(si = sS , xi)



P2
(A2−1)SX2×(SX)2

=


P2(xi = x1) 0 ... 0

0 P2(xi = x2) . . . 0
...

...
. . .

...
0 0 0 P2(xi = xX)



P3(xl, si, xi)
S×1

=
[
ψ(sl = s1, xl|si, xi) ψ(sl = s2, xl|si, xi) . . . ψ(sl = sS , xl|si, xi)

]T
P3(si, xi)
SX×1

=
[
P3(xl = x1, si, xi) P3(xl = x2, si, xi) . . . P3(xl = xX , si, xi)

]T
P3(xi)
S2X×1

=
[
P3(si = s1, xi) P3(si = s2, xi) . . . P3(si = sS , xi)

]T
P3

(SX)2×1
=
[
P3(xi = x1) P3(xi = x2) . . . P3(xi = xX)

]T
24 can be written as

P1 = P2P3

If A2 − 1 ≥ S, and there is sufficient variation in P2 so that P
′

2P2 is invertible, we can identify P3.

P3 = (P
′

2P2)
−1P

′

2P1

Notice that P3is obtained as the result of an OLS regression of each column of P1 onto P2.
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