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“Things could be sweet or bitter, known only to those who taste them; Roads could be smooth

or treacherous, understood only by those who traverse them."
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Abstract

Machine learning (ML) algorithms are being increasingly applied to decision-

making processes with far-reaching impacts extending to employment, access to

credit, and education. While ML algorithms have shown great predictive power

in various business applications, there are rising questions about the economic

and social consequences of algorithmic decision-making, and increasing calls for

algorithmic transparency. In my dissertation, I study the impact of AI/ML on

economic systems on several important aspects: transparency, competition, and

collusion.

Chapter 1, co-authored with Professor Param Vir Singh, Yan Huang, and Ste-

fanus Jasin, examines the economic implications of algorithmic transparency in a

hiring context. Specifically, it answers the following research question: Should

firms that apply machine learning algorithms in their decision-making make their

algorithms transparent to the users they affect? Despite the growing calls for

algorithmic transparency, most firms have kept their algorithms opaque, citing

potential gaming by users that may negatively affect the algorithm’s predictive

power. We develop an analytical model to compare firm and user surplus with

and without algorithmic transparency in the presence of strategic users. We

identify a broad set of conditions under which making the algorithm transparent

actually benefits the firm. By contrast, users may not always be better off under

algorithmic transparency. These results hold even when the predictive power of

the opaque algorithm comes largely from correlational features and the cost for

users to improve them is minimal. These results suggest that firms should not

always view manipulation by users as bad. Rather, they should use algorithmic

transparency as a lever to motivate users to invest in more desirable features.
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Chapter 2, co-authored with Professor Param Vir Singh and Yan Huang, studies

strategic information revelation in the algorithmic lending space, and its impact

on competition and welfare. Financial lenders’ opaque use of algorithms to screen

unsecured credit applicants, coupled with high borrower uncertainty and search

costs, can lead to sub-optimal credit decisions by many borrowers. Although

some lenders facilitate informed decision-making for borrowers by providing per-

sonalized pre-approval probabilities, not all lenders do so. In this study, we

examine how competition among lenders influences their decision to disclose

approval odds to borrowers via pre-approval tools. Our findings suggest that

competitive pressures, particularly in cases where lenders’ algorithms are accurate,

can undermine disclosure incentives. Lenders strategically employ asymmetric

disclosure of pre-approval outcomes to reduce competition and differentiate their

products. We demonstrate that borrower surplus is maximized when both lenders

provide pre-approval tools and minimized when neither lender does so. However,

mandating all lenders to provide personalized pre-approval outcomes may not

necessarily enhance borrower surplus.

Chapter 3, co-authored with Professor Param Vir Singh, Yan Huang, and Kan-

nan Srinivasan, studies algorithmic pricing and its impact on competition and

collusion. The increasingly popular automated pricing strategies in e-commerce

can be broadly categorized into two forms: simple rule-based algorithms, such

as undercutting the lowest price, and more sophisticated artificial intelligence

(AI) powered algorithms, like reinforcement learning (RL). RL algorithms are

particularly appealing for pricing due to their ability to autonomously learn an

optimal policy and adapt to changes in competitors’ strategies and market condi-

tions. Despite the common belief that RL algorithms hold a significant advantage

vi



over rule-based strategies, our extensive experiments, conducted under both a

canonical Logit demand environment and a more realistic non-sequential search

structural demand model, demonstrate that when competing against RL pricing

algorithms, simple rule-based algorithms can lead to higher prices and benefit all

sellers, compared to scenarios where multiple RL algorithms compete against each

other. Theoretical analysis in a simplified setting yields consistent results. Our

research sheds new light on the effectiveness of automated pricing algorithms and

their interactions in competitive markets, providing practical insights for retailers

in selecting appropriate pricing strategies.
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Chapter 1

Algorithmic Transparency With Strategic

Users

1.1 Introduction

Machine learning algorithms are being increasingly applied to decision-making processes with

far-reaching impacts extending to employment, access to credit, and education (Schellmann

and Bellini, 2018, Fu et al., 2021a). However, firms typically keep these algorithms as closely

guarded secrets, on par with KFC or Coca-Cola’s recipes. As a result, these algorithms stay

opaque to the people whom they affect and lack clear explanations for the decisions they

make.

Our study is motivated by the growing calls from different parts of society to require

firms to make their algorithms transparent. According to American privacy law expert

Marc Rotenberg: “At the intersection of law and technology – knowledge of the algorithm

is a fundamental right, a human right.”1 The European Union’s General Data Protection

Regulation (GDPR) dictates that, whenever personal data is subject to automated decision

making, people have “the right to obtain human intervention on the part of the controller” or

1See “Algorithmic Transparency: End Secret Profiling," https://epic.org/algorithmic-transparency/

1



the right to explanation.2

While making algorithms transparent is desirable, it can open a door to gaming, which

potentially adversely affects the algorithms’ predictive power. If strategic agents were to

know the information about a classifier (i.e., how observed attributes affect the classification

outcome), they may manipulate their attributes to receive a more desirable classification,

hurting the predictive power of the algorithm. In financial and economic policy making, this

problem is widely known as Goodhart’s Law, which proclaims that “when a measure becomes

a target, it ceases to be a good measure" (Goodhart, 1984). A similar notion is captured

in the Lucas critique (Lucas et al., 1976). In fact, Fair Isaac Corporation keeps its exact

credit scoring formula secret to make it more difficult for consumers to game the algorithm

(Citron and Pasquale, 2014a). Similarly, Google continues to modify its secret search ranking

algorithm to keep businesses and people from gaming the system (Segal, 2011).

Motivated by the calls for algorithmic transparency and the threat of manipulation by

agents to transparent algorithms, we investigate how algorithmic transparency may affect

firms and agents. First, from the perspective of the firm (the decision-maker), we ask, is

there any advantage in making its algorithm transparent even when there is the potential of

manipulation by the agents? Second, we ask, would the agents be better off or worse off if

firms make their algorithms transparent (i.e., if the agents receive more information about

the factors affecting algorithmic decisions)? Third, we ask, how are the results affected by the

predictive power of those features that are more susceptible to gaming by the agents? Finally,

we ask, how does the market composition in terms of desirable and undesirable agents affect

these results? In this paper, we develop and analyze a game-theoretic model to answer these

questions.

We explicitly model the agents as strategic and the algorithm designer (the firm) is aware

of the potential for manipulation. Hence, the firm can react to gaming by the agents. For

example, consider a setting where the firm collects data, trains an algorithm that maps a set

2See “Algorithmic transparency and the right to explanation: Transparency is only the first step,"
https://www.apc.org/en/blog/algorithmic-transparency-and-right-explanation-transparency-only-first-step
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of observed features to a classification outcome, and publishes a decision rule. If agents desire

to be positively classified, they would manipulate their values of the features to achieve it.

However, the firm would be aware that the behavior of the agents has changed. It will then

update the model and the decision rule. The agents’ behavior would change once again. Over

time, the firm will iterate to a fixed point – this decision rule would be the best response to

the agents’ strategic behavior.

More specifically, in this paper, we consider a job hiring scenario where a risk-neutral

firm offers a fixed wage and wants to recruit only highly productive agents. There are two

types of agents, High talent (H ) and Low talent (L). The H type agents are more productive

compared to the L type agents. While the type of each agent is fixed, it is not observed by

the firm ex-ante. The firm, however, does have access to a number of observed features (i.e.,

the observables), which it uses to infer the agents’ types (i.e., using historical data and an

algorithm) and to determine a decision rule for hiring the agents.

We model two types of observables, causal and correlational. Typically, in machine

learning models, the designer focuses primarily on model accuracy, not causality. However,

any features that are captured by the machine learning model can still be classified as either

causal or correlational. For simplicity, we consider only two features; one is causal and the

other is correlational. There are several characteristics of these features that are important for

our model. By definition, the causal feature impacts the productivity of the agent, whereas

the correlational feature does not. The difference between ‘causal’ and ‘correlational’ features

is similar to the difference between ‘improvement’ and ‘gaming’, two terms commonly used

in the strategic classification literature (Kleinberg and Raghavan, 2019, Alon et al., 2020,

Haghtalab et al., 2020). Putting an effort to change the value of a causal feature in the

decision maker’s favorable direction is called an ‘improvement’ because this is beneficial to

the decision maker or the society. By contrast, putting effort on to change the value of a

correlational feature does not benefit the firm and is a waste from the perspective of social

welfare.

3



The agents can game (alter) both features by incurring a cost. As is typically assumed in

most signaling game models (Spence, 1973), the H type agents have a cost advantage on the

causal feature over the L type agents. As for the cost of improving the correlational feature,

in the main model, we assume that this cost is independent of the agents’ type and its value

is marginally above zero.3

The assumptions behind the cost structures of the causal and correlational features

warrant some discussion. When an H type agent has a significant cost advantage over an

L type agent on the causal feature, it will trivially lead to a separating equilibrium where

only the H type agents get high values on the causal feature. In the case where the cost

advantage of the H type agents on the causal feature is not too large, the firm would want to

include the correlational feature in the machine learning model and in the decision rule. In

this case, the correlational feature would provide an additional value in separating the two

types. It is easy to see that the correlational feature is the one that is more susceptible to

gaming. If the agents game it, this feature can lose its predictive power. This is precisely the

reason that is typically purported for opposing algorithmic transparency. If the cost to alter

the correlational feature is very high, or if the H type agents have an advantage on it, either

gaming will not happen or gaming will be more favorable to the H type agents. In such a

case, making the algorithm transparent would be either better or at least as good as keeping

it opaque for the firm. Our interest is in investigating whether algorithmic transparency can

be better for the firm as opposed to keeping the algorithm opaque even when the H type

agents have no cost advantage on the correlational feature and the cost to manipulate the

correlational feature is minimal, which makes the algorithm particularly highly susceptible to

gaming.

We solve the game between the firm and the agents in two scenarios, an opaque algorithm

scenario and a transparent algorithm scenario. In both scenarios, we use perfect Bayesian

equilibrium (PBE) as the solution concept. In the opaque scenario, the agents move first.

3For completeness, we also discuss the setting where the cost is significantly larger than zero in Appendix
A.2.1.
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In this scenario, we assume that the agents are aware of the causal feature but have little

knowledge of the correlational feature. Consequently, the agents can only improve the causal

feature. The agents know that the firm uses a correlational feature, but they do not know

what that feature is. However, it is common knowledge that the feature has predictive power

that can help the firm separate the H type agents from the L type agents. This assumption

is reasonable: If a feature has no predictive power in separating the two types of agents, the

machine learning algorithm would simply discard it.

In the transparent scenario, the firm moves first and publishes its algorithm. The agents

observe this algorithm and know what features are considered by the algorithm including

their respective weights. In this scenario, the agents can game both the causal and the

correlational features. They also know how the correlational feature correlates with their

types before any gaming occurring. Finally, the firm decides who to hire based on the agents’

ending feature values.

It is worth noting that although we assume the agents and the firm move sequentially in

both the opaque and transparent scenarios, we do not model these processes as Stackelberg

leadership models in our main analysis. The reasons are as follows. In a Stackelberg model,

the first mover typically anticipates that any deviation from the current strategy will trigger

the second mover to react accordingly. However, when the first mover consists of many

uncoordinated agents, this condition will be violated. Specifically, in the opaque scenario,

given that the agents are non-cooperative, the unilateral deviation of a single agent will not

change the follower’s (i.e., the firm’s) strategy.4 As for the transparent scenario, there is a

single first mover (i.e., the firm), and it is possible for the firm to commit to the published

algorithm. Consequently, a Stackelberg model is a valid model in this scenario. However,

a Stackelberg model provides an advantage to the first mover. As a result, the firm may

prefer the transparent algorithm over the opaque algorithm simply because of the first mover

4Similar assumptions have been made in many papers in the job market signaling literature. When
constructing the equilibrium, those papers assume that there is no profitable deviation for any single worker
(agent) given the firm’s strategy, i.e., a single worker’s deviation in education will not change the firm’s belief
and wage menu (Spence, 1973, Alós-Ferrer and Prat, 2012, Daley and Green, 2014).
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advantage that the transparent algorithm provides. To clearly explain the mechanisms of

the firm’s preference between algorithmic transparency and opacity and show that the firm

could still prefer the transparent algorithm over the opaque algorithm even in absence of the

first mover advantage, we will first focus our analysis in this paper on the case where the

firm either does not have the commitment power or the firm only reveals which features it

uses but not the full details of its hiring strategy (akin to ‘partial transparency’). Later, in

Section 1.5, we will discuss the case where the firm has commitment power and reveals the

full details to the agents (akin to ‘full transparency’). Overall, we will show that the key

insights from the non-Stackelberg model will only be strengthened in the Stackelberg model.

In addition to analyzing the models discussed above, as briefly described in Section 1.6

and further elaborated in Appendix A.2, we also analyze three extensions by relaxing some

of the assumptions made in the main model. These extensions include: (1) the case where

the cost of improving the correlational feature is significantly larger than zero, (2) the case

where the wage is endogenously chosen by the firm, and (3) the case where the agents have

incorrect beliefs about the predictive power of the correlational feature. Our analysis for these

three extensions shows that the results from the main analysis are robust to these alternative

assumptions and modeling choices. Specifically, the main results of our paper will not change

qualitatively in extension (3), and they will only be strengthened in extensions (1) and (2).

Key results and insights

Our first result in this paper challenges the conventional wisdom that making algorithms

transparent will always hurt the firm economically. We identify a broad set of conditions under

which making the algorithm transparent is actually beneficial for the firm. The key intuition

behind this result is driven by how the H type and L type agents respond to algorithmic

transparency. Since investment on the causal feature is costly and since the H type agents

have an advantage on the correlational feature (we assume that an H type agent has a

higher probability of being ‘high’ on the correlational feature, otherwise the firm will have no

incentive to use this feature in the first place), the H type agents would invest in improving
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the causal feature only to the extent that it, along with the correlational feature, helps them

separate themselves from the L type agents. When the algorithm is made transparent, the L

type agents game the correlational feature. As a result, the L type agents become similar

to the H type agents on that feature, and the predictive power of the correlational feature

decreases. Hence, the H type agents have to invest more in the causal feature to separate

themselves from the L type agents. When the H type agents have a significant cost advantage

over the L type agents on the causal feature, this leads to full separation, which benefits

the firm. When the H type agents only have a marginal cost advantage over the L type

agents on the causal feature, the L type agents will also invest significantly in the causal

feature. In this case, both the H type and L type agents become more productive because of

their higher investment in the causal feature. Although the firm cannot separate the two

types of agents in this case, when the impact of the causal feature on productivity is above a

certain threshold, the average productivity of the hired agents is significantly higher than in

the opaque scenario. In other words, making the algorithm transparent allows the firm to

motivate the agents to invest in improving features that are valuable to the firm.

Our second result in this paper is that the agents are not always better off under the

transparent scenario. This might appear counter-intuitive at first: Since the agents would have

access to more information under the transparent scenario, one would think that they should

be better off under the transparent scenario. However, we show that there are conditions

under which the agents are worse off in the transparent scenario. Interestingly, in most cases

where the firm prefers the transparent scenario, the agents would prefer the opaque scenario,

and vice versa. But we also identify a set of conditions where both the firm and the agents

prefer the transparent scenario. The intuition for our second result is similar to that for

the first result. The firm prefers the transparent scenario in situations where transparency

motivates the agents to invest highly in the causal feature. When the cost of investment is

high and the H type agents have a significant advantage, only the H type agents will invest

in the causal feature. In this situation, although only the H type agents are hired, they are
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worse off due to the high cost that they incur. When the investment cost is moderate and the

H type agents have a marginal cost advantage over the L type agents, both types of agents

invest in the causal feature, and both are hired. The agents are better off because they have

to incur only a moderate cost for being hired. Simultaneously, the firm is also better off since

the average productivity of the hired agents is higher when the impact of the causal feature

on productivity is above a certain threshold.

Our third result shows that it is possible for the firm to prefer algorithmic transparency

when the correlational feature has high predictive power and prefers opaque algorithm when the

correlational feature has low predictive power. This result also appears to be counter-intuitive

since one would naturally expect that, as the predictive power of the correlational feature

increases, the firm would be better off keeping the algorithm opaque. We find that this is not

always the case. The key intuition behind this result is as follows: When the correlational

feature is good at separating the H type agents from the L type agents, the H type agents

have little incentive to invest in the causal feature in the opaque scenario. However, under

transparency, the H type agents lose this advantage and have to invest in the causal feature

to separate themselves from the L type agents. As a result, the firm can hire more productive

agents under transparency.

Our fourth result is that, when the fraction of the H type agents on the market is higher,

the firm may have a stronger preference for the transparent algorithm under certain conditions.

More specifically, the fraction of H type agents affects the firm’s surplus significantly but does

not have a large enough impact to alter the firm’s decision for/against transparency when the

cost for improving the causal feature is either too high or too low, or the H type agents have

a large cost advantage over the L type agents. However, when the cost for improving the

causal feature and the cost advantage of the H type agents are both moderate, the firm has

a stronger preference for algorithmic transparency as the fraction of the H type agents on

the market increases. In this cost range, both the H type and L type agents would improve

the causal feature. While the firm is unable to separate the two types and hires both types,
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the number of the L type agents that are hired becomes smaller as the fraction of the H type

agents on the market increases.

This paper makes several contributions. It is one of the first to provide an analytical

model that systematically compares a firm’s decision for algorithmic transparency versus

opacity in the presence of strategic agents. We show that, counter to conventional wisdom,

the firm can be better off under algorithmic transparency. Moreover, in most cases where the

firm prefers algorithmic transparency, the agents will be worse off. Agents underinvest in

the causal feature when the algorithm is opaque. Consequently, the firm depends heavily

upon the correlational feature to separate different types of agents from one another. Our

analysis and results show that the firm should not always worry about the potential loss

of the predictive power of the correlational feature in its machine learning model under

transparency. Rather, it can use algorithmic transparency as a lever to motivate the agents to

invest more in the causal feature. The firm would typically be reluctant to adopt algorithmic

transparency when their machine learning model derives large predictive power from the

correlational feature. However, we show that the firm should recognize that investment in

the causal feature by agents is endogenous. The H type agents are less likely to invest in the

causal feature when the correlational feature is sufficient to separate them from the L type.

This is the situation where the firm should be willing to sacrifice the predictive power of the

correlational feature. We have demonstrated our results in the setting where (1) the firm is

certain it will lose the predictive power of the correlational feature and (2) the firm does not

have a first mover advantage under algorithmic transparency. Intuitively, one would think

that algorithmic transparency would be bad for the firm when these two conditions hold.

However, we show that, once we consider the endogenous investment in the causal feature,

the firm would be better off making the algorithm transparent.

Organization of the paper

The rest of the paper is organized as follows. We discuss how we build upon and contribute

to the literature in Section 1.2. The details of our main model are presented in Section 1.3.
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In Section 1.4, we present the analysis of the main model. In Section 1.5, we discuss the

model of Stackelberg competition. In Section 1.6, we describe three extensions of the main

model. We conclude the paper in Section 1.7. Unless otherwise noted, all the proofs can be

found in Appendix A.4.

1.2 Literature

Algorithmic transparency is a relatively new topic, but it is closely related to the literature

on information asymmetry. Following the canonical job market signaling model developed by

Spence (1973), a rich stream of research has focused on the interaction between a decision

maker and strategic agents under asymmetric information. Some of this research is focused

on the agents’ side and study how agents strategically reveal their type under various market

conditions (e.g., the stream of signaling game literature). Other research is focused on the

decision makers’ side, studying how they can design an optimal algorithm to extract agents’

private information (e.g., the stream of strategic classification literature). Our work on

algorithmic transparency is built upon and contributes to both these streams of literature.

In both the opaque and transparent scenarios, the interaction between the firm and the

agents can be adapted into the signaling game framework, where individuals (senders) first

send signals, and the firm (receiver) then makes hiring decisions based on the observed signals

(Spence, 1973, Daley and Green, 2014, Engers, 1987, Weiss, 1983). Signaling game models

often focus on specifying the equilibrium outcome under various market conditions. Receivers

are assumed to be in a competitive environment and earns zero profit in the equilibrium.

All the surplus is extracted by senders. The equilibrium concept typically used in signaling

game models is the perfect Bayesian equilibrium (PBE), where three conditions are satisfied:

senders use optimal strategies facing the wage offer, receivers give wage offers such that they

will obtain zero profit, and the receivers’ beliefs about the senders’ type given the signal are

consistent with the truth. Similar to the signaling games, we also specify the equilibrium

outcome under various market conditions in both the transparent and opaque scenarios.
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However, in our model, the firm offers a fixed wage and focuses on designing the algorithm to

increase its chances of hiring the most productive agents, which contrasts with the signaling

games where all agents are hired and the firm’s objective is to decide how much salary to

offer to each agent.

On the firm side, our model setup bears more similarity to the strategic classification

problems – offering a fixed wage, the firm decides whether to hire the agents based on their

signal (Kleinberg and Raghavan, 2019, Frankel and Kartik, 2019, Bonatti and Cisternas,

2019). In other words, the firm is trying to classify agents based on whether their expected

productivity exceeds the wage or not. This classification setting makes it possible for us to

analyze the economic impact of algorithmic transparency on the decision maker (firm) by

comparing its equilibrium payoff in the opaque and transparent scenarios. Moreover, we

do not assume the signal (education level for example) to always be pure money-burning.

Instead, we allow the causal feature to positively impact productivity and specify conditions

regarding this positive effect under which algorithmic transparency benefits the decision

maker. In that aspect, our work is also closely related to the strategic classification literature

that assumes the existence of both causal and non-causal features.

Signaling Games. The signaling game literature studies how agents strategically reveal

their type to a principle in a situation of information asymmetry. Traditional signaling models

typically assume that costly actions are the only channels through which agents can signal

their type (Spence, 1973). In these models, standard assumptions such as the Spence-Mirrlees

single-crossing condition ensure the existence of separating equilibria: equilibria that fully

reveal agents’ private information. While the machine learning models are trying to solve the

same problem (i.e., trying to identify the type of agents under information asymmetry), they

differ from decision makers in the classical signaling models in the following way. A machine

learning model uses multiple features to learn an agent’s type. Each feature is essentially an

action taken by the agent that signals her type. Some of these features are costly to improve,

while others are not.
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Our paper is related to recent signaling game papers that have also considered multiple

actions as channels through which an agent can signal her type (Alós-Ferrer and Prat, 2012,

Daley and Green, 2014, Engers, 1987, Frankel and Kartik, 2019). In these papers, the agents

are always aware of the actions that are used as signals by the decision maker. In contrast,

in our model’s opaque scenario, the agents know that a correlational feature is being used by

the firm, but they do not know exactly what feature that is.

In our model, agents can use causal and/or correlational features to signal their type. The

causal feature is similar to the costly signal typically captured in the traditional signaling

game literature. A key difference is that we allow it to not only act as a signal of an agent’s

type but also have an impact on the agent’s productivity, similar to Weiss (1983). For

example, if agents of the same type have different levels of education, in our model, the firm

would receive different payoffs from hiring them. The correlational feature that we model

bears some similarities to the information in cheap talk games (Crawford and Sobel, 1982).

This feature is almost costless to share, and it affects the eventual payoff of both the firm and

the agents where their incentives are not perfectly aligned. In cheap talk games, the agent

strategically manipulates this information, whereas, in our model, the agent does not know

about this feature and cannot manipulate it in the opaque scenario.

Similar to our paper, a few recent papers have modeled the tradeoffs that an agent faces

in the presence of multiple signals. For example, Daley and Green (2014) modeled a scenario

where a student can send a costly signal (e.g., joint degree completion) to the recruiter or

rely on a type-correlated noisy signal (e.g., grades). They characterized the results based

on the informativeness of the noisy signal. The noisy signal is similar to the correlated

feature in our model, and its informativeness is also modeled similarly to how we capture the

predictive power of the correlated feature. A key finding of the paper is that, when grades

are informative, H type individuals are less eager to send costly signals because they can now

rely on grades to signal their type, while L type individuals are more willing to send a costly

signal to de-emphasize the ‘grades’ dimension. Consequently, a separating equilibrium on the
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costly signal dimension is harder to sustain. Our model also shares some similarities with this

paper in that we also consider the possibility that the existence of an extra noisy signal will

change individuals’ decision on the more costly signal. However, there are key differences in

our model’s assumptions and results. Unlike the ‘grades’ dimension, whose value is impossible

to manipulate, in our model, the firm can give individuals the opportunity to game the

correlational feature by making the algorithm transparent. On the one hand, manipulation

will make this dimension less informative. On the other hand, individuals’ behavior on the

more costly signaling dimension will also change and could lead to a separating equilibrium

in many cases.

Strategic Classification. Strategic classification literature considers the problem of

designing optimal classification algorithms when facing strategic users who may manipulate

the input to the system at a cost (Hardt et al., 2016). Canonical strategic classification

models deem that the user’s manipulation always hurts the decision maker. Guided by this

belief, a large stream of research on strategic classification is focused on developing algorithms

that are robust to gaming (Meir et al., 2012, Cummings et al., 2015). Recently, several papers

have argued that this gaming itself can be beneficial to the decision maker; thus, instead of

focusing on manipulation-proof algorithms, these papers focus on designing algorithms that

incentivize individuals to invest in desirable features (Kleinberg and Raghavan, 2019, Alon

et al., 2020, Haghtalab et al., 2020). These papers are the ones we want to highlight since our

paper also points out the difference between ‘gaming’ and ‘improvement’: gaming is bad for

the decision maker because it deteriorates the information contained in the relevant features,

but ‘improvement’ could be beneficial to the decision maker since it will causally impact the

target variable.

Kleinberg and Raghavan (2019) studied the principle-agent problem where the agents’

features (e.g., final exam score) can be improved in two ways: by investing effort in a desirable

way (e.g., spending time on course material) or by investing effort in an undesirable way (e.g.,

cheating). The effectiveness of each kind of effort on the feature is called the effort profile.
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The decision maker can observe the agents’ performance on the features but cannot observe

in which way the agents achieve their scores. Alon et al. (2020) examined a similar setting

but extended Kleinberg and Raghavan (2019)’s model into a multi-agent scenario. Instead

of assuming all individuals share the same effort profile, they focused on designing optimal

algorithms that can work for different groups of individuals who may have different effort

profiles. Our work is different from theirs with respect to one important aspect: while they

assumed that a feature can be improved in either a causal or non-causal way, our model

assumes that there are pure causal features and pure correlational features. Causal features

(e.g., education level) can be improved only in a ‘causal’ way (such that the value of the

target variable will also increase). Correlational features (e.g., whether an applicant wears

glasses or not) can be improved only by gaming. If there was a ‘causal’ way to improve the

correlational feature, then the firm’s willingness to publish the correlational feature would

be stronger and might come from the potential productivity-enhancing effect of individuals’

improvement on the correlational feature. We show that even in the case where gaming on

the pure correlational feature has no positive effect on productivity, the firm may still want

to publish it. Furthermore, none of the papers above has studied how firms choose between

opaque and transparent algorithms.

Another two papers we want to highlight are Frankel and Kartik (2019) and Bonatti and

Cisternas (2019). These two economics papers showed that the decision maker could be ex-

ante better off by committing to some ex-post sub-optimal strategies such as down-weighting

some relevant features. Our paper is related to these papers in the sense that ‘publishing the

algorithms’ could also be seen as a way to down-weight the correlational feature. However,

there are critical differences between these papers and ours in terms of mechanisms. In their

papers, ex-post sub-optimal behavior such as ‘under-utilizing’ some informative features

might be preferred by the decision maker because individuals may have less incentive to

manipulate these features if they anticipate that the features will be down-weighed. The

decision maker loses some predictive accuracy due to under-utilizing those features, but the
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observed values for those features now better represent individuals’ natural behavior instead

of gaming behavior. Consequently, not fully exploiting the information contained in relevant

features might be optimal ex-ante. Our paper, however, shows that even if such ‘feature

down-weighting’ cannot reduce individuals’ gaming, it may still benefit the decision maker.

In our paper, the purpose of ‘down-weighting’ the correlational feature is not to reduce or

eliminate gaming behavior, but rather to increase the competition intensity regarding the

causal features on which the H type agents hold a cost advantage.

1.3 Model

In this section, we develop a parsimonious model that captures how the firm and agents

act under opaque and transparent scenarios. We consider the hiring setting discussed above

with two types of agents: high-talent (H type) agents and low-talent (L type) agents. For

simplicity, we normalize the total number of agents to 1 and assume that a θ portion of them

are of H type and the remaining 1− θ portion are of L type.

Talent level is directly related to job performance and, ideally, the firm would like to hire

only H type agents. However, the firm cannot directly observe an agent’s type until she is

hired and works at the firm for a while. Consequently, the firm can only use some observable

agent features to differentiate the two types of agents. We classify these features into two

types: causal features and correlational features. For simplicity, we assume that the firm

only uses one causal feature (which is common knowledge to the firm and the agents, e.g.,

education level) and one correlational feature (which is unknown to the agents unless the firm

decides to reveal it). Both features take on a discrete value of 0 (low) or 1 (high). Each agent

can be characterized by one of four possible combinations (or states) in the two-dimensional

feature space:

• State A (low causal, high correlational);

• State B (high causal, high correlational);

• State C (low causal, low correlational); and
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• State D (high causal, low correlational).

The firm’s hiring strategy can therefore be represented by four hiring probabilities for the

four states. In the remainder of this paper, we will refer to these probabilities as PA, PB, PC ,

and PD, respectively.

We assume that it is costly for the agents to improve the common-knowledge causal

feature, and that H type agents have a cost advantage on this feature. Specifically, we assume

that CH (the cost of improving the causal feature for the H type agents) is smaller than

CL (the cost of improving the causal feature for the L type agents). In contrast, the cost to

improve the correlational feature is assumed to be the same for the H type and L type agents

and is very small (i.e., marginally above zero). It is worth noting that, although the cost of

improving any given correlational feature is small, there are many of them, and agents do

not know which correlational feature will be used in the algorithm unless the firm decides to

reveal it.

To model the situation where the firm has an incentive to include the correlational feature

into its decision making, we further assume that a λ portion of the H type agents and a

1 − λ portion of the L type agents have value 1 on the firm’s chosen correlational feature.

Moreover, λ ∈ [ 0.5, 1], which indicates a positive correlation between an agent’s value on the

correlational feature and her type. Such a correlation can be viewed as a result of H and

L type agents working to improve their correlational features. That is, even when agents

do not know which correlational feature the firm is using, they may attempt to manipulate

as many correlational features as possible because they incur little cost to do so. λ (1− λ)

can then be interpreted as the probability of H (L) type agents hitting the feature that is

actually used by the firm. The different probabilities of hitting the right correlational feature

are another key difference between the two types of agents. The true value of λ is known to

the firm. We assume that the agents also have a correct belief about λ in the main model.

This assumption will be relaxed in Appendix A.2.3 where we allow the agents to have an

‘incorrect belief’ about λ.
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We will study two scenarios, an opaque scenario and a transparent scenario. In order to

focus on the more interesting and realistic cases, we make the following assumptions regarding

the strategy sets of the agents:

1. In the opaque scenario, the agents will only focus on whether to improve their causal

feature. This assumption is motivated by the fact that, in reality, while causal features

are usually common knowledge between the firm and the agents (e.g., everyone knows

that education level plays an important role in hiring decisions), correlational features

are less so. In the opaque scenario, the firm does not reveal which correlational feature

it will use in its algorithm to the agents. Consequently, the best that an agent can do is

to make a guess, and that process leads to a λ (1− λ) portion of the H (L) type agents

having value 1 on the firm’s chosen correlational feature, as explained above. From a

theoretical perspective, we note that this assumption is without loss of generality and

is useful to simplify our analysis.

2. In the transparent scenario, all agents will improve their correlational features.5 Once

the firm reveals the correlational feature that it will use in its algorithm, the probability

that an individual agent hits the right feature becomes 1. Since the cost of improving

the correlational feature is minimal, as long as it increases an agent’s probability of

being hired, they will improve this feature. It is worth noting that assuming all agents

will improve the correlational feature used in the algorithm does not cause a loss of

generality. This is so because, under the scenario where all agents achieve a “high” state

on the disclosed correlational feature, this feature completely loses its predictive power

and, therefore, will drop out of the prediction algorithm. If it can be shown that the

firm can still be better off by making its algorithm transparent in such an extreme case

of “agent gaming,” it sends a strong message that algorithmic transparency can indeed

be economically beneficial. This assumption will be relaxed in Appendix A.2.1 where

5It’s worth noting that although the correlational feature will be dropped if everyone improves it, the level
of transparency actually increases. The reason is that agents know exactly the state they are in and thus are
more certain about their chances of being hired.
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we allow gaming cost of the correlational feature to be significantly greater than zero.

Our main result is strengthened after the relaxation of this assumption.

1.3.1 The Firm’s Utility

As previously mentioned, the causal feature (for consistency, hereafter, we will use education

level as an example of a causal feature) has a direct influence on the agents’ performance,

while the correlational feature does not. Thus, an agent’s performance is determined by both

her type (T ∈ {H,L}) and her education level (Education ∈ {0, 1}). Here, we follow Weiss

(1983) and allow education to not only act as a signal of an agent’s type but also contribute

to the productivity of the agent. We use α and β to denote the marginal effects of type and

education, respectively. For convenience, we normalize the performance of an uneducated L

type agent to 0. The mathematical expression of an agent’s performance is given by:

W (T,Education) = α× 1(T = H) + β × 1(Education = 1). (1.1)

We can also express an agent’s performance as a function of both her type and her

state at the end of the game. For example, in the opaque scenario, we can write an agent’s

performance as a function of T ∈ {H,L} and S ∈ {A, B, C, D} as follows:

W T
S = α× 1(T = H) + β × (1(S = B) + 1(S = D)). (1.2)

In the transparent scenario, since all agents are “high” on the correlational feature, they only

differ on the causal feature (i.e., education). This means that we can reduce the number of

possible states from four to two, i.e., state E (low education) and state F (high education).

Using these state definitions, we can write an agent’s performance as follows:

W T
S = α× 1(T = H) + β × 1(S = F ). (1.3)

18



Once the agents are hired, their performance will contribute to the firm’s payoff, and

the firm will pay them a fixed reward R (i.e., job compensation). In the main model, we

assume that the reward R is the same for both transparent and opaque scenarios, and that

its value is exogenously given. In Appendix A.2.2, we will endogenize R and allow the firm

to potentially use different rewards for the transparent and opaque scenarios. We will show

that our main insights still hold.

Let nT
S denote the number of T type agents whose final states are S, and let nS = nH

S +nL
S

denote the total number of agents whose final states are S. nH
S and nL

S are determined by

agents’ strategy on the causal feature, qH and qL, which will be defined in Section 1.3.2.

Furthermore, let γe
S = nH

S /nS. The firm’s expected total payoff (for narrative convenience, we

use ‘payoff’ to refer to ‘expected payoff’ hereafter) under hiring strategies (or probabilities)

P = (PA, PB, PC , PD) in the opaque scenario, or P = (PE, PF ) in the transparent scenario,

can be mathematically expressed as

Πfirm(P, qH , qL) =
∑
S

PS ·
[
nH
S (W

H
S −R) + nL

S(W
L
S −R)

]
=

∑
S

PS · nS ·
[
γe
S(W

H
S −R) + (1− γe

S)(W
L
S −R)

]
. (1.4)

1.3.2 The Agents’ Utility

In the opaque scenario, the agents do not know which correlational feature will be used by

the firm’s algorithm; therefore, they will only focus their decisions on whether to improve the

causal feature (i.e., education). Since agents do not know their values on the correlational

feature, agents of the same type have same information and use the same strategy. Let uT

denote the expected utility (for narrative convenience, we use ‘utility’ to refer to ‘expected

utility’ hereafter) of a T type agent. uT can be expressed as a function of the firm’s hiring

strategy P and the agent’s decision on the probability of improving the causal feature
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qT ∈ [0, 1].6

In the opaque scenario, we have:

uH(P, qH) = qH · (λPBR + (1− λ)PDR− CH) + (1− qH) · (λPAR + (1− λ)PCR) (1.5)

uL(P, qL) = qL · ((1− λ)PBR + λPDR− CL) + (1− qL) · ((1− λ)PAR + λPCR) (1.6)

In the transparent scenario, all agents will have “high” values on the correlational feature,

and their decisions are the probabilities on improving the causal feature. The utility of a T

type agent in the transparent scenario is:

uH(P, qH) = qH · (PFR− CH) + (1− qH) · PER (1.7)

uL(P, qL) = qL · (PFR− CL) + (1− qL) · PER (1.8)

1.3.3 Game Sequence and Equilibrium Concept

The game between the firm and the agents is played as follows. In the first stage, the firm

makes a decision on transparency (i.e., opaque or transparent), and this decision is known

to all agents. If the firm chooses “opaque,” the remainder of the game proceeds as follows:

The agents first choose their strategies to improve their features, and then the firm makes

its hiring decisions based on the observed agent features. If, on the other hand, the firm

chooses “transparent,” the remainder of the game proceeds as follows: The firm first discloses

the algorithm to the agents; next, the agents choose their strategies; and, finally, the firm

decides whom to hire based on the observed agent features. Recall from Section 3.1 that,

in the main model, we focus our analysis on the case where the firm either does not have

commitment power, or reveals only the features it uses but not its hiring probabilities.7 We
6We allow the strategies to be either pure or mixed so qT could be any value between 0 and 1
7In Section 1.5, we will discuss the case where the firm has commitment power and reveals both the
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use perfect Bayesian equilibrium (PBE) as the equilibrium concept. The PBE is characterized

by (1) a set of type-specific probability distributions q∗T (P ) ∈ argmaxqT uT (P, qT ) describing

the optimal (possibly mixed) strategy in improving the causal feature for each type agents

given the firm uses a hiring strategy P , (2) a set of state-specific probability distribution

P ∗ ∈ argmaxP Πfirm(P, qT ), describing the firm’s optimal hiring strategy, and (3) a belief

system µ(T |S) describing the firm’s belief of each agent’s type given her state calculated via

Bayes rule whenever applicable.

1.3.4 Additional Parametric Assumptions

In Section 1.4, we will solve the game using backward induction. For each combination of

(CH , CL), we will derive the payoff for the firm in both the opaque and transparent scenarios.

We will then specify the range of values of the parameters under which the firm is better or

worse off when choosing to be transparent instead of opaque. We will show our results in the

CH-CL space.

We make the following three additional assumptions regarding the relationships among

the parameters to allow us to focus on non-trivial and more interesting cases.

0 < β < R < α.

Assumption 1 says that the performance of an individual H type agent always exceeds

the salary R regardless of her education level, whereas the performance of an individual L

type agent is always smaller than R. This condition ensures that the firm only wants to hire

the H type agents.

(θλ+ (1− θ)(1− λ))R

θλ
< α <

R

θ
.

Recall that α denotes the performance advantage of H type agents over L type agents.

features it uses and its hiring strategy.
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Assumption 2 ensures that α falls in a certain range that guarantees that the firm will have an

incentive to include the correlational feature in its algorithm even when all agents’ education

levels are 0. The derivations of the lower bound and the upper bound of α can be found in

Appendix A.3.1. Intuitively, if α is too small, the firm will not hire anyone when all agents’

education levels are 0. If, on the other hand, α is too large, the firm will hire everyone even

when all agents’ education levels are 0. In either case, the correlational feature is useless for

the firm. We refer to the lower (upper) bound of α as α (ᾱ) hereafter.

R− θα < β < R− θ(1− λ)α

θ(1− λ) + (1− θ)λ
.

Assumption 1.3.4 says that the marginal effect of education on performance (β) falls in

a certain range that guarantees the firm will have an incentive to include the correlational

feature in the hiring algorithm. The derivations and interpretations of the lower and upper

bound of β can be found in Appendix A.3.1. Intuitively, if β is too small, the firm will not

hire any agent even when everyone has a high level of education in the transparent scenario,

which leads to trivial results. If, on the other hand, β is too large, the firm will hire everyone

with a high level of education irrespective of their values on the correlational feature in the

opaque scenario, which could not justify the firm’s incentive to use the correlational feature

in the first place. We refer to the lower (upper) bound of β as β(β̄) hereafter.8

A summary of notations can be found in Table B.1 in Appendix A.1.

1.4 Analysis

Let γb
S denote the proportion that H type agents represent among all the agents in state

S at the beginning of the game.9 Per our discussions in Section 1.3, a θ portion of agents

are of H type and the remaining 1− θ portion are of L type. Moreover, a λ portion of the

H type agents and a 1− λ portion of the L type agents have value 1 on the firm’s chosen

8We provide discussion on the relaxation of Assumption 1.3.4 in Appendix A.3.2.
9If there are no agents in state S, we manually set γb

S = 0. The same applies to γe
S .
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correlational feature. Therefore,

γb
A =

λθ

λθ + (1− λ)(1− θ)
;

γb
C =

(1− λ)θ

(1− λ)θ + λ(1− θ)
;

γb
B = γb

D = 0.

Recall, per our definition in Section 1.3.1, γe
S denotes the proportion that H type agents

represent among all the agents in state S at the end of the game.

1.4.1 Opaque Scenario

Per our discussions in Section 1.3, in the opaque scenario, agents move first and will only

decide on whether to improve the causal feature (i.e., education). Given the agents’ strategies,

based on Equation 1.4, the firm will be indifferent between hiring and not hiring agents with

a final state S if γe
S(W

H
S −R) + (1− γe

S)(W
L
S −R) = 0, or equivalently,

γe
S =

R−WL
S

WH
S −WL

S

. (1.9)

By Equation 1.2, the above fraction equals R
α

when S ∈ {A,C} and equals R−β
α

when

S ∈ {B,D}. Let γth0 =
R
α

and γth1 =
R−β
α

(by Assumption 1, we have 0 < γth1 < γth0 < 1).

Quantities γth0 and γth1 are important in the analysis, especially in determining whether a

certain outcome (i.e., a combination of the agents’ strategies and the firm’s strategy) can be

sustained in the equilibrium.

There is a total of nine possible classes of outcomes for agents’ strategies. Five of them

have the potential to be sustained in an equilibrium but the other four do not. The first five

cases are: case 1 (neither H type nor L type agents improve education, i.e., qH = qL = 0);

case 2 (only H type agents improve education, i.e., qH = 1, qL = 0); case 3 (both H type and

L type agents improve education, i.e., qH = qL = 1); case 4 (H type agents improve education
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with some probability, and L type agents do not improve education, i.e., qH ∈ (0, 1), qL = 0);

and case 5 (H type agents improve education, and L type agents improve education with some

probability, i.e., qH = 1, qL ∈ (0, 1)). Aside from the above five cases, there are four other

cases: case 6 (only L type agents improve education, i.e., qH = 0, qL = 1); case 7 (L type

agents improve education with some probability but H type agents do not improve education,

i.e., qH = 0, qL ∈ (0, 1)); case 8 (L type agents improve education, but H type agents improve

education only with some probability, i.e., qH ∈ (0, 1), qL = 1); and case 9 (both H type and

L type agents improve education with some probability, i.e., qH ∈ (0, 1), qL ∈ (0, 1)). It is

not difficult to see that cases 6 through 9 cannot be sustained in an equilibrium. For cases 6

through 8, the L type agents have a higher value on education than the H type agents, and

the firm will have an incentive to set higher hiring probabilities in states A and C than in

states B and D. However, under this hiring strategy, the L type agents will have no incentive

to improve education in the first place. As for case 9, the fact that both the H type and

L type agents are using mixed strategies indicates that they are both indifferent between

improving and not improving education. Since the cost of improving education for the L type

agents is greater than that for the H type agents, to compensate for this higher cost, the L

type agents must have a higher chance of being hired by the firm than the H type agents

in the equilibrium. However, the firm has no incentive to use such a hiring strategy. We

conclude that although there are nine possible classes of outcomes for the agents’ strategies,

only five of them (cases 1 through 5) can potentially be equilibrium outcomes.

Out of the five feasible cases, the actual equilibrium strategies of the agents and the firm

depend on the values of (CH , CL). The following lemma summarizes the agents’ equilibrium

strategies for different values of (CH , CL) and the corresponding payoff for the firm. The

proof can be found in Appendix A.4.1. Since we assume that the H type agents have a cost

advantage to improve the causal feature (i.e., CH < CL), the region above the diagonal line

in Figure 1 is infeasible.

Lemma 1 The equilibrium outcome depends on the values of (CH , CL), and this dependence
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is shown in Figure 1.1. The payoffs for the firm are given by

ΠfirmO1
= λθα− (λθ + (1− λ)(1− θ))R

ΠfirmO2
= θ(α + β)− θR

ΠfirmO3
= λθ(α + β) + (1− λ)(1− θ)β − (λθ + (1− λ)(1− θ))R

ΠfirmO4
= θ(α + β −R)

(
1− R(1− θ)(1− λ)

(α−R)θλ

)
ΠfirmO5

=
2λ− 1

λ
θ(α + β −R),

where ΠfirmOi
denotes the firm’s total payoff in case i.

Figure 1.1: Equilibrium outcome in the opaque scenario

Note: In Lemma 1, we only specify agents’ equilibrium strategies and the firm’s corresponding

equilibrium payoffs. For a full description of the PBE, including the firm’s equilibrium strategy

and the firm’s beliefs, please refer to Appendix A.4.1.

1.4.2 Transparent Scenario

In the transparent scenario, the firm moves first by announcing both the correlational feature

that it uses and the probability of hiring for each state (i.e., PE and PF ). Similar to the

opaque scenario, there is a total of nine possible outcomes for the agents’ strategies (we use
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the same numbering of the nine cases as in the opaque scenario). To determine whether a

certain outcome can be sustained as an equilibrium, we use the fact that the firm is indifferent

between hiring and not hiring agents with final state S iff γe
S =

R−WL
S

WH
S −WL

S
. The fraction on the

right-hand side of the equality equals γth0 when S = E and equals γth1 when S = F .

Consistent with the opaque scenario, cases 6 through 9 cannot be sustained in an

equilibrium. Moreover, according to Assumption 1.3.4, if everyone is at state F, the firm will

hire all agents. In case 5, some L type agents are at state E, which gives the firm even more

incentive to hire agents in state F. However, again, to be an equilibrium, the mixed strategy

outcome in case 5 requires the firm to be indifferent between hiring and not hiring agents

from state F. Therefore, neither case 4 nor case 5 can be sustained in an equilibrium in the

transparent scenario. Altogether, this leaves us with only the first three cases as possible

equilibrium outcomes. The following lemma summarizes the agents’ equilibrium strategies

for different values of (CH , CL), as well as the corresponding payoff for the firm. The proof

can be found in Appendix A.4.2.

Lemma 2 The equilibrium outcome depends on the values of (CH , CL), and this dependence

is shown in Figure 1.2. The payoffs for the firm are given by

ΠfirmT1
= 0

ΠfirmT2
= θ(α + β −R)

ΠfirmT3
= θ(α + β) + (1− θ)β −R,

where ΠfirmTi
denotes the firm’s total payoff in case i.

Note: In Lemma 2, we only specify agents’ equilibrium strategies and the firm’s corresponding

equilibrium payoffs. For a full description of the PBE, including the firm’s equilibrium strategy

and the firm’s beliefs, please refer to Appendix A.4.2.
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Figure 1.2: Equilibrium outcome in the transparent scenario

1.4.3 The Firm’s Decision on Algorithmic Transparency

The firm can make a decision on algorithmic transparency by comparing the payoffs in the

transparent and opaque scenarios. In this subsection, we will show how the firm is not always

worse off making its algorithm transparent instead of opaque. We divide the blue region in

Figures 1.1 and 1.2 into seven smaller regions: N1, N2, and N3 and C1, C2, C3, and C4

(see Figure 1.3).

Figure 1.3: Comparison of agents’ equilibrium behavior in the transparent and opaque scenarios

We first consider what happens in regions N1 through N3. Note that, in these regions,
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agents play the same equilibrium strategies on the causal feature in the opaque and transparent

scenarios. For example, region N1 corresponds to case 1 in both the opaque and transparent

scenarios, where neither type of agents improve their education. We now discuss the payoff

comparison in these regions:

• In region N1, agents play the strategies in case 1 in both the opaque and transparent

scenarios.10 Mathematically, ΠfirmO1
> ΠfirmT1

= 0. Therefore, the firm will always

prefer to be opaque in this region.

• In region N2, agents play the strategies in case 2 in both the opaque and transparent

scenarios. Since ΠfirmO2
= ΠfirmT2

, in this region, the firm is indifferent between being

opaque or being transparent.

• In region N3, agents play the strategies in case 3 in both the opaque and transparent

scenarios. We can rewrite ΠfirmT3
as follows:

ΠfirmT3
= θ(α + β)(λ+ (1− λ)) + (1− θ)β(λ+ (1− λ))

−R(θλ+ (1− θ)(1− λ) + (1− θ)λ+ (1− λ)θ).

Since ΠfirmO3
= λθ(α + β) + (1− λ)(1− θ)β − (λθ + (1− λ)(1− θ))R, we have:

ΠfirmT3
− ΠfirmO3

= (1− λ)θ(α + β −R)− λ(1− θ)(R− β)

= θ(1− λ)α− (θ(1− λ) + (1− θ)λ)(R− β) < 0.

where the inequality follows Assumption 1.3.4. This means that the firm will always

prefer to be opaque in this region.

We conclude that, in regions N1 through N3, being transparent is never strictly better

than being opaque. This is quite intuitive since, in these regions, agents play the same

strategies on the causal feature in both the opaque and transparent scenarios. Hence, the

10It is worth mentioning that although agents’ strategies on the causal feature are the same in the opaque
and transparent scenarios, the firm’s payoff is different because of the existence of the correlational feature.
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firm can only be worse off revealing its algorithm due to the loss in the predictive power

of the correlational feature. Specifically, in regions N1 and N3, when the firm chooses to

be opaque, the predictive power of the algorithm only comes from the correlational feature

because the H type and L type agents play the same strategy on the causal feature. This

suggests that the firm will incur a significant loss due to the reduction in the algorithm’s

prediction accuracy when the algorithm is made transparent.

We now discuss the payoff comparison in regions C1 through C4. In what follows, we

first provide a summary of the payoff comparison result in each region, and then discuss the

intuition.

• In region C1, the agents’ strategies and the firm’s payoff change from opaque scenario 1

to transparent scenario 3. ΠfirmT3
> ΠfirmO1

iff

β > β1 = λθ(α−R)− (1− λ)(1− θ)R +R− θα. (1.10)

Thus, in this region, the firm will prefer to be transparent when β > β1.

• In region C2, the agents’ strategies and the firm’s payoff change from opaque scenario

4 to transparent scenario 3. ΠfirmT3
> ΠfirmO4

iff

β > β2 = R− αR(1− λ)

(α−R)λ+R(1− λ)
. (1.11)

Thus, in this region, the firm will prefer to be transparent when β > β2.

• In region C3, the agents’ strategies and the firm’s payoff change from opaque scenario

5 to transparent scenario 3. ΠfirmT3
> ΠfirmO5

iff

β > β3 =
λθα− θα− 2λθR + θR + λR

λ− 2θλ+ θ
. (1.12)

In this region, the firm will prefer to be transparent when β > β3. It is interesting
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to note, however, that β3 equals β̄ defined in Assumption 1.3.4 (see below for an

explanation of why this is the case). Since the value of β cannot exceed β̄ (according

to Assumption 1.3.4), this means that the firm will never prefer to be transparent in

this region.

• In region C4, the agents’ strategies and the firm’s payoff change from opaque scenario 1

to transparent scenario 2. ΠfirmT2
> ΠfirmO1

regardless of β. Thus, in this region, the

firm will always prefer to be transparent.

According to Assumption 2, the value of α falls in the following interval:

(θλ+ (1− θ)(1− λ))R

θλ
< α <

R

θ
.

Within the above interval, β1 and β3 are decreasing in α, and β2 is increasing in α. Moreover,

β1 = β2 when α = α and β2 = β3 when α = ᾱ (α and ᾱ are defined in Assumption 2). Thus,

we have β1 < β2 < β3. To understand why we have increasing thresholds for β as we move

from regions C1 to C3 and why there is no threshold for β in region C4, we must look at

how the firm’s decision to be transparent changes the agents’ strategies in different regions.

To facilitate our discussions, we first define the concept of “degree of separation." Suppose

that there are nH0 H type agents and nL0 L type agents who do not improve education and

nH1 H type agent and nL1 L type agents who improve education. We define the degree of

separation (Dos) between the H type and L type agents as follows:

Dos = 1− min(nH0, nL0) + min(nH1, nL1)

nH0 + nL0 + nH1 + nL1

.

Note that, if either all agents improve education or no one improves education, then Dos

reaches its minimum value: Dosmin = max(θ, 1− θ). If all H type agents improve education

and no L type agents improve education, then Dos reaches its maximum value: Dosmax = 1.

If either H type or L type agents use a mixed strategy, the value of Dos is somewhere in
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between. The key observation here is that, the higher the value of Dos, the easier it is for

the firm to differentiate H type agents from L type agents using the causal feature.

We now discuss how the firm’s decision to be transparent changes agents’ strategies in

regions C1 through C4. Note that transparency intensifies agents’ competition on the causal

feature and that this intensified competition has the following two effects.

1. The degree of separation between H type and L type agents on their causal feature

changes. As an illustration, consider region C4. In this region, when the firm switches

from being opaque to being transparent, agents’ strategies also switch from opaque

scenario 1 to transparent scenario 2. Under opaque scenario 1, neither the H type nor

the L type agents improve education, whereas under transparent scenario 2, only the

H type agents improve education. This means that the H type agents are now more

separated from the L type agents on the causal feature (i.e., there is a higher degree of

separation). Similarly, it can also be verified that, in regions C2 and C3, the two types

of agents become less separated and, in region C1, there is no change in the degree of

separation.

2. Agents’ average value on the causal feature becomes higher and their work performance

increases (according to Equation 1.2). To see this, consider region C1. In this region,

when the firm switches from being opaque to being transparent, agents’ strategies also

switch from opaque scenario 1 to transparent scenario 3. Although the change in agents’

strategies does not affect the degree of separation, since both types of agents improve

education, the average level of education for both agent types increases. Similarly,

in region C2, the average level of education and, thus, the performance level of both

types of agents increase. In region C3, only the average performance of the L type

agents increases, whereas in region C4, only the average performance of the H type

agents increases. We can see that, in regions C1 through C4, the agents’ overall

average performance always increases when the firm switches from being opaque to

being transparent.
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Since the firm always loses useful information from the correlational feature that helps

it differentiate between the two types of agents when switching from the opaque to the

transparent algorithm, the firm’s decision on algorithmic transparency will depend on whether

the above two effects (i.e., the change in the degree of separation and the increase in the agents’

average performance) can offset the negative effect of information lost on the correlational

feature. In region C1, even though the degree of separation does not change, both the H

type and L type agents improve education, and the firm can benefit from the increase in

the average agents’ performance. Whether this benefit offsets the negative effect of the

information loss on the correlational feature depends on the value of β. If β is large enough

(i.e., β > β1), then being transparent is preferred over being opaque. In region C2, the degree

of separation decreases as the agents’ distribution on the causal feature changes from partial

separation to pooling. However, the average performance of the H type and L type agents

increases, which suggests that, if β is large enough, the firm can still be better off making

the algorithm transparent. The condition on β in this case is stricter than in region C1 (i.e.,

β > β2 > β1). This is so because the marginal effect of education must now be large enough

to offset not only the previously mentioned negative effect of the loss of information on the

correlational feature, but also the worse degree of separation on the causal feature.

In region C3, the firm’s decision to be transparent affects fewer agents compared to in

region C2. Switching from the opaque to the transparent algorithm incentivizes all L type

agents and some H type agents to improve education in region C2, but it only incentivizes

some L type agents to improve education in region C3. Since fewer agents are affected by

the firm’s switching from the opaque to the transparent algorithm in region C3 compared

with region C2, and since the increase in the agents’ average performance is proportional

to the number of agents being affected, a larger β is needed in region 3 to achieve the same

level of average performance found in region C2. This is why β3 > β2.

To see why β3 = β̄ (as defined in Assumption 1.3.4), note that in region C3 all H type

agents have already improved education in the opaque scenario, and, only some L type
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agents will switch from not improving to improving education when the algorithm is made

transparent. According to Assumption 1, the individual productivity of the L type agents

cannot exceed R, which means that the firm will not benefit from hiring any L type agents

even if their education levels are high. Consequently, making the algorithm transparent has

a negative effect on the firm’s payoff since the degree of separation on the causal feature

decreases. This negative effect is partially offset by some L type agents’ increased investment

on the causal feature. The net effect is negative and its magnitude is decreasing in β. When

β reaches β̄, the net effect becomes 0. To see why, consider a range of β values that are

very close to β̄, according to Equation A.4 in Appendix A.4.1, nearly all L type agents have

improved education in the opaque scenario; thus, the degree of separation is already near

zero. Therefore, making the algorithm transparent has little negative effect on the degree of

separation. Additionally, the positive effect of the increased investment on the causal feature

is also close to zero. When β = β̄, both effects are zero.

In region C4, the degree of separation increases when the firm switches from being opaque

to being transparent. In fact, the agents’ distribution on the causal feature changes from

pooling to perfect separation. In other words, the firm now can perfectly separate the H

type agents from the L type agents based on the causal feature alone without needing the

correlational feature. This effect in itself is sufficient to offset the negative effect of information

lost on the correlational feature. This is the reason why, in this region, the firm prefers to be

transparent regardless of the value of β.

The following theorem summarizes our findings about the firm’s decision on transparency:

Theorem 1 In regions N1 through N3, being transparent is never strictly better than being

opaque. In regions C1 through C4, depending on the value of β, the firm may prefer being

transparent to being opaque. Specifically, in region C1, the firm will prefer to be transparent if

β > β1; in region C2, the firm will prefer to be transparent if β > β2; in region C3, the firm

will never prefer to be transparent; and, in region C4, the firm will prefer to be transparent

regardless of the value of β.
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1.4.4 The Effect of the Predictive Power of the Correlational Feature

(λ) and the Fraction of High-Talent Agents (θ)

We have shown that the firm will be strictly better off making the algorithm transparent if

the (CH , CL) pair lands either in region C4, or in regions C1 or C2 with some additional

conditions on β. In region C4, the transparent algorithm is preferred regardless of β, λ, and

θ since removing the correlational feature changes the agents’ behavior on the causal feature

from pooling to perfect separation, and perfect separation is the case where the firm receives

the maximum profit. In regions C1 and C2, the main force that makes the transparent

algorithm preferable is the agents’ increased average level on the causal feature. As long as

β exceeds the threshold β1(β2), the increased level on the causal feature will have a large

enough positive effect on work performance to make the firm better off. We now examine

how the thresholds on β changes when λ or θ changes.

Taking the derivate of the expressions of β1 and β2 in Equations 1.10 and 1.11 with respect

to λ yields the following:

∂β1

∂λ
= −2θR + θα +R. (1.13)

∂β2

∂λ
=

αR(α−R)

(2λR−R− αλ)2
. (1.14)

Both of these derivatives are greater than 0 in the parameter ranges that we consider (i.e.,

those given by Assumptions 1, 2, and 1.3.4). This means that, within each region, as λ becomes

larger, a higher value of β is needed to make the transparent algorithm preferable. This is

because a larger λ implies that more information is contained in the correlational feature, so

a higher causal effect is needed to offset the loss of information from the correlational feature

under the transparent algorithm. However, the effect of λ on algorithmic transparency is not

this straightforward since, apart from the equilibrium payoff, λ can also determine the kind

of strategy combination that can be sustained as an equilibrium given a (CH , CL) pair (i.e.,
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the regions’ shapes in Figure 1.3 will change as λ changes). Consider the region just beneath

the dividing line of regions N2 and C4: as λ increases, it changes from belonging to region

N2 to belonging to C4. This means that the firm will prefer the opaque algorithm when

faced with a small λ but prefer a transparent algorithm when faced with a large λ. Although

it appears counter-intuitive, it can be explained as follows. When λ is small, making the

algorithm transparent is not effective enough to change the agents’ behavior on the causal

feature. However, when λ is large, the agents’ investment on the causal feature will increase

drastically, and the firm is able to hire agents who are on average more productive under the

transparent scenario than under the opaque scenario.

The following proposition summarizes our findings about how λ affects the firm’s decision

on transparency:

Proposition 1 An increase in λ has the following effects on the firm’s decision on trans-

parency:

1. The area of regions C1, C2, and C4 increases, which means that the transparent

algorithm is preferred under more (CH ,CL) value pairs.

2. Within regions C1 and C2, the conditions on β to make the transparent algorithm

preferred to the opaque algorithm become stricter (i.e. a larger β is needed).

We now discuss the impact of θ on algorithmic transparency. Taking the derivative of the

expressions of β1 and β2 in Equations 1.10 and 1.11 with respect to θ yields:

∂β1

∂θ
= −2λR + λα +R− α. (1.15)

∂β2

∂θ
= 0. (1.16)

It can be shown that ∂β1

∂θ
is smaller than 0 in the parameter ranges that we consider. This

means that, in region C1, as the proportion of the H type agents increases, the conditions on

β to make algorithmic transparency more desirable become milder. Since ∂β1

∂θ
= 0, in region

C2, θ has no influence on the firm’s decision on algorithmic transparency. The intuition
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behind these results are as follows. There are two possible negative effects – the loss of the

correlational feature and a reduced degree of separation on the causal feature – and one

possible positive effect of algorithmic transparency – the increase in agents’ investment on

the causal feature. In region C1, after the firm switches from the opaque to the transparent

algorithm, neither the degree of separation on the causal feature (from pooling at 0 to pooling

at 1) nor the increase in agents’ investment in the causal feature (all agents in the market,

irrespective of their types, increase their causal feature from 0 to 1) changes with θ. The

negative effect of the loss of the correlational feature is smaller when θ is high, because there

are fewer L type agents in the market who can be mistakenly hired by the firm due to the

loss of the correlational feature. Thus, a smaller β is needed to offset this negative effect. In

region C2, a higher θ mitigates the two negative effects (again, there are fewer L type agents

on the market, and the increase in the number of L type agents being mis-classified and

hired by the firm due to the reduced degree of separation on the causal and the loss of the

correlational feature will be smaller), but also reduces the positive effect (fewer agents increase

their investment in the causal feature as the firm switches to the transparent algorithm).

Overall, θ does not affect the value of β needed to make the transparent algorithm preferable.

The following proposition summarizes our findings about how θ affects the firm’s decision

on transparency:

Proposition 2 In region C1, a higher θ will increase the firm’s incentive to make the

algorithm transparent. In other regions, θ has no impact on the firm’s decision on algorithmic

transparency.

1.4.5 Agents’ Welfare

In Section 1.4.3, we have specified conditions under which the transparent algorithm will

yield a strictly higher payoff to the firm than the opaque algorithm. We will next investigate

the impact of algorithmic transparency on the agents’ welfare.

The total payoff across all agents in the equilibrium is summarized in the following lemma.
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Lemma 3 For each equilibrium outcome shown in Figure 1.1 (for the opaque scenario) and

Figure 1.2 (for the transparent scenario), the corresponding total payoff for all agents is given

by

ΠagentsO1
= (λθ + (1− λ)(1− θ))R

ΠagentsO2
= θ(R− CH)

ΠagentsO3
= (λθ + (1− λ)(1− θ))R− CHθ − CL(1− θ)

ΠagentsO4
=

(λθ + (1− λ)(1− θ))(R− CH)

λ

ΠagentsO5
=

(2Rλ−R− CHλ− CLλ+ CL)θ

λ

ΠagentsT1
= 0

ΠagentsT2
= θ(R− CH)

ΠagentsT3
= R− CHθ − CL(1− θ),

where ΠagentsOi
denotes the agents’ total payoff in case i of the opaque scenario and ΠagentsTi

denotes the agents’ total payoff in case i of the transparent scenario.

As previously discussed, Figure 1.3 shows how the agents’ behavior changes on the causal

feature when the algorithm is made transparent. First, we consider the three regions where

the agents’ behavior on the causal feature does not change (regions N1, N2, and N3). In

directly comparing the agents’ payoff in the equilibrium, we have the following observations:

• In region N1, the agents play the strategies in case 1 in both the opaque and transparent

scenarios. ΠagentsO1
> ΠagentsT1

. Therefore, the agents will receive a higher total payoff

under the opaque algorithm in this region.

• In region N2, the agents play the strategies in case 2 in both the opaque and transparent

scenarios. Since ΠagentsO2
= ΠagentsT2

, in this region, the agents are indifferent to whether

the algorithm is opaque or transparent.
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• In region N3, the agents play the strategies in case 3 in both the opaque and transparent

scenarios. ΠagentsO3
< ΠagentsT3

. Therefore, the agents will receive a higher payoff under

the transparent algorithm in this region.

In regions N1, N2, and N3, the agents’ behavior on the causal feature does not change.

Since improving the correlational feature is assumed to be costless, the agents’ total cost

stays the same before and after the algorithm is made transparent. The only thing that

varies is the benefit they can obtain under the firm’s hiring strategy. In region N1, more

agents will be hired under the opaque algorithm (a λ portion of the H type agents and a

1− λ portion of the L type agents are hired under the opaque algorithm but no one will be

hired under the transparent algorithm). In region N3, more agents will be hired under the

transparent algorithm (a λ portion of the H type agents and a 1− λ portion of the L type

agents are hired under the opaque algorithm and everyone will be hired under the transparent

algorithm). In region N2, the same number of agents will be hired regardless of whether the

algorithm is opaque or transparent (only the H type agents will be hired).

Next, we consider the four regions where agents’ behavior on the causal feature changes

after the algorithm is made transparent (regions C1, C2, C3, and C4). By directly comparing

the agents’ payoffs in the equilibrium, we obtain the following observations:

• In region C1, the agents’ strategies and their total payoff change from opaque scenario

1 to transparent scenario 3. ΠagentsT3
≤ ΠagentsO1

iff

CHθ + CL(1− θ) ≥ (1− λθ − (1− λ)(1− θ))R. (1.17)

The smallest possible value for the left-hand side (LHS) of the inequality is reached

when a (CH ,CL) pair lands at the lower left corner in region C1, or in other words,

when CH = (1− λ)R and CL = λR. It can further be shown that this smallest value

equals the right-hand side (RHS). Thus, Equation 1.17 is satisfied for any (CH ,CL) pair

in region C1. In this region, the transparent algorithm will give the agents a lower total
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payoff compared with the opaque algorithm.

• In region C2, the agents’ strategies and their total payoff change from opaque scenario

4 to transparent scenario 3. ΠagentsT3
≥ ΠagentsO4

iff

1− λ

λ
CH − CL ≥ (

1

λ
− 2)R. (1.18)

The smallest possible value for the LHS of the inequality is reached when a (CH ,CL) pair

lands at the lower right corner in region C2, or in other words, when CH = (1− λ)R

and CL = λR. It can further be shown that this smallest value equals the RHS.

Thus, Equation 1.18 is satisfied for any (CH ,CL) pair in region C2. In this region,

the transparent algorithm will give agents a higher payoff compared with the opaque

algorithm.

• In region C3, the agents’ strategies and their total payoff change from opaque scenario

5 to transparent scenario 3. ΠagentsT3
≥ ΠagentsO5

iff

(2θ − θ

λ
− 1)CL ≥ (2θ − θ

λ
− 1)R. (1.19)

Since 2θ − θ
λ
− 1 ≤ 0, and CL ≤ R in region C3, Equation 1.19 is satisfied for any

(CH ,CL) pair in region C3. In this region, the transparent algorithm will give agents a

higher payoff compared with the opaque algorithm.

• In region C4, the agents’ strategies and their total payoff change from opaque scenario

1 to transparent scenario 2. ΠagentsT2
≤ ΠagentsO1

iff

θ(R− CH) ≤ (λθ + (1− λ)(1− θ))R. (1.20)

The largest possible value for the LHS is reached when a (CH ,CL) pair lands at the

lower bound of region C4, or in other words, when CH = (1− λ)R. It can be shown
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that this largest value is smaller than the RHS. Thus, Equation 1.20 is satisfied for any

(CH ,CL) pair in region C4. In this region, the transparent algorithm will give agents a

lower payoff compared with the opaque algorithm.

The following theorem summarizes our findings regarding the agents’ welfare under the

opaque and transparent algorithms.

Theorem 2 Whether the agents are better off under either the opaque or the transparent

algorithm depends on the values of (CH ,CL), and this dependence is shown in Figure 1.4. In

regions N3, C2 and C3, the agents’ welfare is higher under the transparent algorithm. In

regions N1, C1 and C4, the agents’ welfare is higher under the opaque algorithm. In region

N2, the agents’ welfare is not affected by algorithmic transparency.

Figure 1.4: Comparison of agents’ welfare in the transparent and opaque scenarios

The intuition behind Theorem 2 can be explained as follows. The pattern here is that the

agents as a whole will prefer the opaque algorithm when CH and CL are large. They will

prefer the transparent algorithm when CH and CL are small, and will be indifferent when CL

is large but CH is small. Making the algorithm transparent may force the agents to invest

in the causal feature. Of course, they can also benefit from the increased investment in the

causal feature (i.e., a higher chance of being hired). The cost of this investment increases

with CH and CL, but the benefit does not vary with CH and CL. Consequently, the agents
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will be worse (better) off under the transparent algorithm if CH and CL are large (small).

Comparing Theorem 1 with Theorem 2, we find that the firm’s and agents’ interests

conflict in some regions. For example, in regions N3 and C3, the transparent algorithm will

give the agents a higher payoff, but the firm prefers the opaque algorithm. In region C4, the

opaque algorithm will give the agents a higher payoff but the firm prefers the transparent

algorithm. In regions C1 and C2, whether there is a conflict of interest between the firm and

the agents depends on the value of β.

In region C2, if the condition of β > β2 is satisfied, both the firm and the agents would

prefer the transparent algorithm over the opaque algorithm. As for the total welfare, it is not

difficult to see that in region N1, the opaque algorithm will result in a higher total welfare

than the transparent algorithm, because both the firm and the agents prefer the opaque

algorithm in the region. In region N2, the total welfare is the same under the opaque and

transparent algorithms. In region N3, the firm prefers the opaque algorithm while the agents

prefer the transparent algorithm. It turns out that the transparent algorithm will result in

a higher total payoff. In regions C1-C4, the total welfare could be higher either under the

opaque algorithm or under the transparent algorithm, depending on the values of β, CH , and

CL.

1.5 The Stackelberg Model

Our analysis in Section 1.4 has focused on the setting where the firm does not have commitment

power. As noted in Section 3.1, this is useful to highlight the insight that the firm could

still prefer the transparent algorithm to the opaque algorithm even in the absence of the

‘first mover advantage’. In this section, we consider the case of ‘full transparency’ where

the firm publishes all details of the hiring algorithm, including the features being used and

the hiring strategy, and the firm has commitment power on the published algorithm. In

this case, the Stackelberg model would be a more appropriate model when analyzing the
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transparent scenario. Our main objective in this section is to show that the key insights in

the previous section will only be further strengthened when the firm switches from using

partial transparency to using full transparency.

We start with discussing the firm’s equilibrium payoffs. The exact payoffs for all cases are

summarized in Lemma 4.

Lemma 4 The equilibrium outcome depends on the values of (CH , CL), and this dependence

is shown in Figure 1.5. The corresponding total payoffs for the firm are given by

ΠfirmFT1
= 0

ΠfirmFT2
= θ(α + β −R)

ΠfirmFT3
= θ(α + β) + (1− θ)β −R

ΠfirmFTS
=

CLθ(α + β −R)

R
,

where ΠfirmFTi
denotes the firm’s total payoff in case i, i ∈ {1, 2, 3, S}.

Figure 1.5: Equilibrium outcome in the transparent scenario in the Stackelberg model

Compared with the payoffs discussed in Lemma 2, we can see that the firm always gets

a weakly higher payoff in the full transparency scenario than in the partial transparency

scenario. This is so because, in the full transparency scenario, the firm can always commit to
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the equilibrium hiring strategy in the partial transparency scenario and achieve the same

payoff as in the partial transparency scenario, which sets a lower bound on the firm’s payoff.11

Given that the firm’s payoff is weakly higher in the full transparency scenario than in the

partial transparency scenario, naturally, the conditions under which full transparency is

preferred over opacity are less strict than the conditions under which partial transparency

is preferred over opacity. In particular, it can be shown that there are conditions under

which the firm prefers full transparency, but not partial transparency, over opacity. These

conditions are summarized in Proposition 3.

Proposition 3 The firm prefers full transparency but not partial transparency over opacity

if any of the following conditions is satisfied:

• Value pair (CL

R
, CH

R
) falls in region C1 and β ≤ β1;

• Value pair (CL

R
, CH

R
) falls in region C2 and β ≤ β2 and CL > CC2

L ;

• Value pair (CL

R
, CH

R
) falls in region C3 and CL > CC3

L ;

• Value pair (CL

R
, CH

R
) falls in region N3 and CL > CN3

L ;

where CC2
L = R− R2(1−θ)(1−λ)

(α−R)θλ
, CC3

L = (2λ−1)Rθ
λ

, CN3
L = Rλθ + R(1−λ)(1−θ)(β−R)

θ(α+β−R)
.

In Section 1.4.4, we discussed how the values of θ and λ affect the firm’s preference on

algorithmic transparency under partial transparency. Most of the results in Section 1.4.4 will

not change qualitatively when full transparency is considered. The detailed discussions and

analysis can be found in Appendix A.3.3. In what follows, we briefly discuss the key findings:

1. In general, when λ is large, the conditions under which the transparent algorithm is

preferred over the opaque algorithm become stricter. However, there are also (CH , CL)

pairs under which the firm switches from never preferring transparency to possibly

preferring transparency (depending on the values of the other parameters) when λ gets

11To be more specific, in the full transparency scenario, if the firm commits to the equilibrium hiring
strategy in the partial transparency scenario, P ∗, the agents’ best response would be q∗T . The resulting firm’s
payoff is the same as the firm’s equilibrium payoff in the partial transparency scenario. If there exists a
hiring strategy that can lead to a payoff greater than the firm’s equilibrium payoff in the partial transparency
scenario, the firm will choose that hiring strategy. Therefore, the firm’s payoff is weakly higher in the full
transparency scenario than in the partial transparency scenario.

43



larger. This finding is consistent with that under the partial transparency model.

2. In general, when θ increases, there will be more (CH , CL) pairs under which the firm

will prefer the transparent algorithm over the opaque algorithm. This finding is unique

under full transparency since, under partial transparency, θ does not affect the firm’s

decision on algorithmic transparency in most regions. This difference is due to the fact

that in some regions, the firm can get a higher payoff under full transparency than

under partial transparency, and the payoff difference is increasing in θ. In other words,

when θ is large, the firm’s payoff in the full transparency scenario will increase by a

larger amount compared to the partial transparency scenario, which gives the firm more

incentive to make the algorithm transparent.

Next, we discuss how agents’ welfare is affected by full transparency. Lemma 5 summarizes

the agents’ equilibrium payoff in the full transparency scenario.

Lemma 5 In the full transparency scenario, for each equilibrium outcome shown in Figure

1.5 the corresponding total payoff for agents is given by

ΠagentsFT1
= 0

ΠagentsFT2
= θ(R− CH)

ΠagentsFT3
= R− CHθ − CL(1− θ)

ΠagentsFTS
= θ(CL − CH),

where ΠagentsFTi
denotes the agents’ total payoff in case i of the full transparency scenario.

Comparing the agents’ payoff in the full transparency scenario with that in the partial

transparency scenario, we can see that agents’ welfare becomes strictly lower in region S and

stays the same in all other regions. The finding is interesting as it shows that, as the level

of transparency in the algorithm increases (i.e., from partial to full transparency), the firm

may become better off while the agents may become worse off. It strengthens our conclusion

in Section 1.4.5 that, in most cases when the firm prefers transparency, the agents will be
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worse off under the transparent algorithm. The results presented in this section are consistent

with recent research in both economics and computer science, which shows that compared to

the case where the decision maker does not have commitment power, under the Stackelberg

competition where the decision maker has commitment power, the decision maker can receive

a higher payoff but at a cost of decreasing agents’ welfare (Frankel and Kartik, 2019, Milli

et al., 2019).

1.6 Extensions

In this section, we analyze several model extensions that relax some of the assumptions in

our main model described in Section 1.3. Due to space limitation, we focus our discussion on

the impact of algorithmic transparency on the firm, and briefly report the key findings here.

The detailed discussions and proofs can be found in Appendix A.2. Overall, the results show

that relaxing those assumptions does not alter the main results and insights of the study.

First, we relax the assumption that the cost of improving the correlational feature is

close to zero. We consider the case where the cost of improving the correlation feature is

substantial: ch for the H type agents and cl for the L type agents where cl ≥ ch > 0. We find

that under this condition, the firm’s equilibrium payoff in the transparent scenario weakly

increases while the firm’s equilibrium payoff in the opaque scenario is not affected. Thus

the main result of the paper, under certain conditions, algorithmic transparency benefits the

firm, is strengthened. Second, we address the fixed wage assumption by allowing the firm

to strategically choose the wage. After solving this extended model, we find that the firm

in the transparent scenario is able to set a lower wage than in the opaque scenario without

needing to worry about worsening the degree of separation between the two types of agents

on the causal feature. Since the agents’ productivity (affected by α and β) is assumed to be

unaffected by wage, the firm will benefit more from endogenizing the wage in the transparent

scenario than in the opaque scenario; thus, the firm’s preference for the transparent algorithm
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will be strengthened. Lastly, we show that even when the agents severely underestimate or

overestimate the prediction power of the correlational feature, λ, the regions in which the

firm prefers the transparent algorithm will not vanish.

1.7 Conclusion

1.7.1 Summary of Results

In this paper, we studied how firm and agent welfare is affected by algorithmic transparency.

We allowed the agents to be strategic such that they can invest in their causal and correlational

features to increase their chances of being hired in response to the firm’s algorithm. We also

investigated how the predictive power of the correlational feature, the market composition

in terms of the fraction of H type agents, and the impact of the causal feature on agent

productivity affect the firm’s decision to make their algorithm transparent or opaque.

As a first result, we identified a broad set of conditions under which the firm would be

better off with algorithmic transparency than opacity. Our second result is that the agents

may not always be better off under algorithmic transparency. Our third result is that, even

when the correlational feature has high predictive power in the opaque scenario, the firm

could still be better off making the algorithm transparent. Our final result is that, when

the fraction of H type agents on the market is high, the firm would be better off by making

its algorithm transparent. We also provided several extensions to our main model. After

relaxing several assumptions and considering several model alternatives, we found that the

main insights of the paper do not change.

1.7.2 Implications for Managers

Our paper shows that managers using machine learning models for decision making could be

better off by making their algorithms transparent. Algorithmic transparency does not always
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mean a loss of predictive power. In some cases, it can in fact lead to greater predictive power.

In other cases, while it may reduce predictive power, it can still make managers better off by

improving the desirability of the whole market. Our results are particularly promising for

managers, as they are now facing growing calls to make their algorithms transparent.

We identified a set of conditions where managers should prefer algorithmic transparency.

There are three factors that managers should consider: (a) access to a good set of causal

features; (b) the predictive power of the correlational features; (c) the market composition in

terms of the fraction of H type (desirable) agents.

We provide some guidance on what makes a good causal feature here. The causal feature

serves two purposes: (a) a signaling purpose – H type agents have a cost advantage on

this feature, and thus, it can help separate H type agents from L type agents; and (b) a

human capital purpose - the feature itself contributes to the productivity of the agents. To

serve the signaling purpose well, the identified causal feature should be neither too costly

nor too cheap to improve. If it is too costly, no one will improve it. By contrast, if it is

too cheap, everyone will improve it. In terms of the human capital purpose, the higher the

feature’s impact on productivity, the better it is. Even when this causal feature is unable to

completely separate the H type agents from the L type agents, if it is moderately costly and

contributes to productivity, the firm could still be better off. Typically algorithm designers

are not focused on causality or identifying causal features. Our results indicate that they

should. The recent stream of research in computer science that examines causal inference in

machine learning models bodes well for them in this regard.

The second factor that managers should consider is the predictive power of the correlated

features. Intuitively, managers may think of keeping their algorithms opaque when the

correlational features provide significant predictive power. Our results show that this thinking

is incorrect. We show that firms are more likely to be better off by making their algorithms

transparent when correlational features provide significant predictive power in the opaque

counterpart. Though incorrectly, managers would be particularly concerned about making
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the algorithms transparent when the marginal effect of the causal feature in separating the

H type agents from the L type agents is small in the presence of correlational features in

an opaque algorithm. However, they should realize that the effect of the causal feature is

suppressed largely due to the strategic behavior of the agents when the algorithm is opaque.

All agents, but more importantly, the H type agents, underinvest in the causal feature when

they know the correlational feature can separate them from the L type agents: the higher the

predictive power of the correlational feature, the lower the incentive of the agents to invest in

the causal feature. When the algorithm is made transparent, in the new equilibrium, the

agents have a higher incentive to invest in the causal feature, making the firm better off.

The third factor managers should consider is the market composition in terms of the

fraction of the H type agents. If the causal feature is unable to separate the H type agents

from the L type agents, algorithmic transparency could still benefit the firm if the cost of

improving the causal feature is moderate and the market is composed of more H type agents.

Overall, our results suggest that managers should not view manipulation by agents as bad.

Rather, they should embrace it and use algorithmic transparency as a lever for motivating

agents to invest in more desirable actions.

Managers can infer what parameter range (especially the (CH , CL) combination) their

specific context falls in, which affects whether algorithmic transparency improves the firm’s

payoff, from the nature of the job opening they try to fill and the causal features they

choose to consider, as well as the historical data they have about the past hiring outcomes.

For example, compared to holding a bachelor’s degree, if the causal feature considered is

holding a graduate degree, the cost of improving the causal feature would be higher for both

types of agents, and the H type agents’ cost advantage would likely be higher. In addition,

agents’ strategies observed in the historical data, which most likely corresponds to the opaque

scenario, can help managers pin down which condition (region shown in Figure 1.1) they are

facing and predict agents’ strategies under the transparent algorithm. The value of θ can be

estimated from the historical data, and the value of λ is given by the algorithm trained on
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historical data under algorithmic opacity.

1.7.3 Implications for Public Policy

There are two key arguments typically put forth in support of algorithmic transparency. First,

making algorithms transparent could highlight any hidden biases in algorithms and make

them accountable (Citron and Pasquale, 2014a). Second, the users who are affected by an

algorithm’s decision making have the right to see which factors affect decisions made about

them. Our paper has implications related to this second argument.

Recent legislation like the General Data Protection Regulation has afforded individuals

a right to explanation under which firms have to provide an explanation regarding how a

decision has been made by their algorithms (Goodman and Flaxman, 2017). Our results show

that such a regulation may not improve consumer welfare. When agents know which features

in an algorithm affect important decisions about them, they can improve those features.

Consequently, algorithmic transparency is generally viewed as helping the agents at the cost

of the firm. However, our results show that the agents may not benefit from algorithmic

transparency as expected. When algorithms are opaque, they derive their accuracy from

both causal and correlational features. Therefore, the H type agents do not need to invest in

the costly causal feature to separate themselves from the L type agents. In the transparent

scenarios, in many cases, the agents have to invest in the costly causal feature to achieve

similar or even less separation with no change in their wage.

1.7.4 Generalizability of the Results

While our model focuses on the job hiring scenario which is an example of a screening problem,

our model and results are generalizable to other screening problems. Specifically, problems

comprising of two types of economic agents who have asymmetric information and who are

attempting to engage in a transaction. The “screener" (i.e. agent with less information,

e.g. the firm in our case) attempts to gain further insight or knowledge into the private
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information of the other agents (i.e. hidden type of the agent in our case). ML/AI algorithms

are proving useful in helping the firms “screen" the applicants better. Job hiring is only

one example of a screening problem. Other example include, insurance markets (e.g. car

insurance, health insurance) or credit lending markets.

1.7.5 Future Research Directions

Firms have typically kept their algorithms opaque to protect them from gaming by agents.

In this study, we show that this strategy may not be the best, and the firm could be better

off by making its algorithm transparent in the presence of strategic users. However, there are

three other reasons as to why firms may still not want to make their algorithm transparent –

interpretability, privacy and competition. With access to big data and large computational

power, machine learning models have become complicated to the extent that they are rendered

uninterpretable. While recent research has made advances in developing interpretable machine

learning models, Bertsimas et al. (2019) show that model interpretability comes at a cost

of accuracy. As a result, when considering the issue of algorithmic transparency, it may be

interesting to consider the tradeoff between interpretability and accuracy. Similarly, when a

firm makes its algorithm transparent, this can lead to privacy concerns. Others may be able

to infer information about agents when they are selected by a transparent algorithm. In these

cases, algorithmic transparency may impose a privacy cost on agents. Future research can

investigate algorithmic transparency in the presence of privacy concerns. Finally, it would be

interesting to investigate whether and how algorithmic transparency may affect the intensity

of competition among firms. We believe these are interesting avenues for future research.
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Chapter 2

Algorithmic Lending, Competition, and

Strategic Information Disclosure

2.1 Introduction

Financial lenders use proprietary machine learning (ML) algorithms to evaluate credit risk

for unsecured financial products, but these algorithms are not disclosed to borrowers who

are directly impacted by their outcomes (Citron and Pasquale, 2014b). Furthermore, the

approval outcomes for a consumer may differ between lenders, with one lender approving the

application while another may deny it (Shaffer, 1998, Carmichael, 2017). This disparity can

result in significant uncertainty for consumers when determining which lender to approach in

the unsecured financial product market. A recent survey conducted by Experian revealed that

40% of respondents reported being denied a credit card (Experian, 2020). Additionally, 69%

of surveyed consumers “wished they could know in advance if their credit card application

would be approved”.

Financial lenders can reduce borrower uncertainty by offering pre-approval tools to

borrowers.1 The utilization of algorithms for screening renders it a relatively low-cost measure

1The use of pre-approval tools by lenders can offer potential borrowers a clearer understanding of their
chances of approval, thereby reducing uncertainty. Nonetheless, the effectiveness of pre-approval tools is
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to provide pre-approval outcomes to prospective borrowers. In this scenario, according to

the unraveling theory, lenders should reveal pre-approval outcomes freely to borrowers as it

would encourage the potential borrowers who would be eventually approved by the lender

to apply. Nonetheless, there exists a significant discrepancy in the provision of pre-approval

outcomes to borrowers by financial lenders. Our analysis of several lenders’ websites shows a

discrepancy in the availability of pre-approval tools for credit cards.2 We found that lenders

do not offer pre-approval tools for credit cards at all times, and only a few lenders provide

such tools at any given time.

We investigate how competition among lenders affects their incentives to provide free

pre-approval checking tools to borrowers. We answer why even when lenders are symmetric,

asymmetric revealing of the pre-approval outcome is an equilibrium outcome. We further

examine how the accuracy of the lenders’ algorithms, the accuracy of the borrowers’ beliefs on

the approval outcomes, and the riskiness of the market affect the lenders’ decisions to reveal

the pre-approval outcomes. Finally, we investigate how a policy that mandates pre-approval

provision affects borrower surplus.

Formally, we analyze a multi-stage game in which duopoly lenders use ML algorithms to

approve or reject borrowers who apply for their unsecured financial products. We analyze the

lenders’ equilibrium behavior in revealing pre-approval outcomes. The borrowers are modeled

as H type (non-defaulters) and L type (defaulters). The borrowers decide which lender to

apply to or they can choose not to apply to either. The two lenders are symmetric in their

algorithms’ accuracy and offer financial products that are identical in terms of non-price

features (e.g. loan amount, and credit limit, etc.). The lenders first simultaneously decide (1)

whether to provide pre-approval checking tools to borrowers or not, and then simultaneously

subject to certain limitations. During the pre-approval process, borrowers grant the lender permission to
conduct a soft inquiry on their credit report. While soft inquiries do not provide lenders with as comprehensive
credit information as hard inquiries, they do not negatively impact a borrower’s credit score. Although
pre-approval cannot guarantee formal approval of a borrower’s application, it greatly reduces borrowers’
uncertainty. For simplicity, we assume that if the lender provides the pre-approval tool, the pre-approval
outcome aligns with the final decision

2For example, on March 15, 2023, Citi Bank, Chase and PNC were not offering the pre-approval tools for
their credit cards whereas American Express, Capital One and Discover Card were.
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decide (2) the price/interest rate that they will charge for their financial product. We use the

sub-game perfect Nash equilibrium (SPNE) as our solution concept. Our most important and

non-intuitive finding is the asymmetric equilibrium in revelation even when the two lenders

are symmetric. In particular, we find that when the lenders’ algorithms are accurate, the

SPNE is asymmetric. One lender chooses to reveal the pre-approval outcomes to borrowers,

while the other lender chooses not to reveal them. Only when the algorithms’ accuracy is

sufficiently low, both lenders will reveal the pre-approval outcomes.

Non-revelation of pre-approval by lenders can cause borrowers to make inaccurate assump-

tions about their eligibility, leading to qualified borrowers choosing not to apply. If both

lenders reveal their algorithms, they can correct the inaccurate assumptions of borrowers and

benefit from market expansion. However, it may intensify competition on interest rates as

borrowers can make informed decisions and choose the lender offering the most favorable

terms. In contrast, if only one lender discloses its algorithm, that lender can benefit from

obtaining borrowers who wrongly believe that the competing lender would reject them. In

contrast to the symmetric revealing scenario, in the asymmetric revealing case, a considerable

number of consumers who only expect the revealing lender to approve their application are

of H type. This subset of consumers is particularly appealing to the revealing lender as it

can extract a larger surplus from them without facing competition. The revealing lender

must balance between extracting surplus from the price-insensitive borrower segment who

believe that only the revealing lender will approve them and attracting the price-sensitive

borrower segment that thinks both lenders will approve them when deciding on the interest

rate. Consequently, the revealing lender charges a higher interest rate than it would have if

it only focused on the borrower segment that thinks both lenders will approve them. This

allows the revealing lender to extract greater surplus by raising interest rates. Consequently,

the softening of competition allows the non-disclosing lender to also extract surplus from the

latter borrower segment.

The findings of our study demonstrate a novel association between lenders’ pre-approval
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revealing strategies and the level of product differentiation that emerges endogenously as

a result of lenders’ revealing decisions. Specifically, our research shows that lenders can

strategically use asymmetric revealing to differentiate themselves and mitigate competition.

By asymmetrically revealing their algorithms, lenders create asymmetry in interest rates

for products with identical non-price characteristics, which ultimately diversifies borrowers’

preferences. In the asymmetric equilibrium, the lender who reveals always receives a higher

equilibrium payoff than the non-revealing lender. Therefore, when conditions support asym-

metric equilibrium, a lender should take the opportunity to reveal its algorithm first. We also

provide discussions on how various modeling parameters, including accuracy of the lenders’

algorithms, accuracy of borrowers’ prior beliefs of approval, and the riskness of the market,

affect the existence of the asymmetric revealing outcome.

From a societal welfare perspective, lenders’ provision of accurate approval odds enhances

credit market efficiency by helping borrowers avoid suboptimal application decisions. How-

ever, our additional analysis suggests that regulating lenders to provide pre-approval tools

may have some drawbacks. Specifically, lenders have less incentive to invest in algorithmic

accuracy under the "both reveal" case because the increased accuracy intensifies competi-

tion. Conversely, this is not the case in the asymmetric revealing equilibrium. Therefore,

policymakers should be cautious when considering regulations on algorithmic transparency,

as mandatory transparency may reduce lenders’ incentive to invest in algorithmic screening

technologies. In the long term, this could hinder the allocation of financial resources to more

creditworthy borrowers. While borrower surplus is maximized when both lenders provide

accurate approval odds given a fixed algorithm accuracy, this may not hold true when the

accuracy of the algorithms is endogenously determined by lenders.

The rest of this paper is organized as follows: §2 provides relevant literature and explain

our contributions to it, §3 introduces the general setup of our model, §4 contains the bulk of

the analysis, §5 discusses an important extension to the main model, and §6 concludes.
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2.2 Contributions to Literature

In this section, we provide a literature review and highlight how our study contributes to the

existing literature. Our paper is closely related to previous research on strategic information

provision under competition. The unraveling theory suggests that a seller with private

information about their product will reveal all information when the cost of disclosure is

negligible and credibility is high (Grossman, 1981, Milgrom, 1981). However, this theory

contradicts what is observed in the real world. Previous studies have explored competition as

a factor that may prevent full disclosure of information. These studies typically model firms

as vertically and/or horizontally differentiated in quality, with borrowers uncertain about

the quality of the products (Kuksov and Lin, 2010, Board, 2009, Levin et al., 2009, Gu and

Xie, 2013, Hotz and Xiao, 2013, Guo and Zhao, 2009). Firms make a strategic decision on

quality revelation or fit revelation based on whether such revelation would intensify or soften

competition. Our study is related to this stream of research, but instead of product fit or

product quality, it focuses on the strategic revelation of approval odds, which is important

information for borrowers seeking a financial product. We show how competitive forces lead

to an asymmetric equilibrium where one lender strategically reveals accurate approval odds

while the other does not.

The finding of asymmetric information disclosure is not new in the literature. Nevertheless,

our research distinguishes itself from existing studies through the novel context of our model,

the underlying mechanisms we investigate, and the distinct implications we draw. Unlike prior

papers, which mainly focus on the disclosure of product fit and quality in conventional goods,

our analysis is tailored to financial products such as credit cards and unsecured personal loans.

These products are unique due to an inherent approval phase, which introduces significant

uncertainty for consumers. This aspect enables an exploration into the strategic disclosure

of approval odds and its subsequent impact on market competition and consumer welfare.

Moreover, the driving force behind our findings of asymmetric disclosure diverges significantly
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from the mechanisms posited in earlier works. While prior literature finds that firms with

asymmetric quality may choose different revealing strategies to signal themselves (Guo and

Zhao, 2009), our study identifies new insights and a novel mechanism and demonstrates that

the revelation of pre-approval outcomes creates endogenous differentiation even when firms

are initially identical. Lastly, our research extends beyond the existing literature, which often

examines how outcome disclosures are influenced by product quality (Gu and Xie, 2013),

disclosure sequence (Guo and Zhao, 2009) search costs (Ghosh and Galbreth, 2013) and

consumer risk/loss preferences (Zhang and Li, 2021). We study how such disclosure decisions

are contingent upon critical factors such as the accuracy of lenders’ predictive algorithms,

accuracy of borrowers’ prior belief on approval, and the inherent risk of the market. Our

unique analytical framework thus offers fresh perspectives on the strategic pre-approval

revelation in financial markets.

Our paper also contributes to the current literature on credit market competition by

examining the potential of asymmetric information disclosure regarding pre-approval outcomes

in reducing interest rate competition. While past research has predominantly focused on

information asymmetry in lenders’ evaluation of borrowers’ creditworthiness (Hauswald and

Marquez, 2003, 2006), our study emphasizes the opposite direction’s asymmetry, where

borrowers are uncertain about their approval odds. Previous studies have explored several

information acquisition and exchange approaches that directly impact screening algorithm

performance. In contrast, our investigation centers on lenders’ disclosure of algorithmic

decisions to borrowers, which may indirectly moderate competition intensity without altering

the screening algorithm’s effectiveness. Other related studies suggest that lenders can reduce

competition through specialized screening (Hauswald and Marquez, 2006), coordination

(Bouckaert and Degryse, 2004) or product differentiation (Villas-Boas and Schmidt-Mohr,

1999). In light of this, our research explores a novel approach to mitigating competition by

examining asymmetric pre-approval disclosure.

Our research contributes to the existing literature on firms’ product differentiation
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strategies in the context of heterogeneous consumer preferences (Tirole and Jean, 1988,

Hauser, 1988, Moorthy, 1988). Despite assuming identical products in our model, we observe

that borrowers exhibit preference heterogeneity ex ante due to their belief that they have a

greater chance of loan approval for one product over the other. Our findings demonstrate

that asymmetric disclosure of the algorithmic decision-making process can strategically

differentiate products and diversify borrower preferences. Consequently, asymmetric pre-

approval revelation by symmetric lenders leads to differentiated products and attenuates

competition.

2.3 Model

We consider a duopoly credit market with two competing lenders that sell financial products

to borrowers. We start by describing borrowers and lenders, then we explain the sequence of

decisions.

2.3.1 Borrowers

We model two types of borrowers, high-quality (non-defaulter) and low-quality (defaulter),

denoted as H type and L type, respectively. We use θ to denote the portion of H type

borrowers in the market.3 Borrowers are considering to apply for a financial product (e.g., an

unsecured personal loan or a credit card). We assume that the amount of the loan is fixed,

and we normalize it to 1. A borrower’s utility from applying conditional on her type and the

approval outcome is as follows:

U =


Mh −m− b if she is H type and gets approved

Ml −m− b if she is L type and gets approved

−m, if she gets rejected

3We model borrowers as either defaulters or non-defaulters, but our model can be easily generalized to the
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where Mh(Ml)4 is the overall benefit that a H(L) type borrower can get from the financial

product (e.g., the monetary value and/or convenience brought by a credit card). b is the price

of the financial product (e.g., the interest rate of the loan or the fee of the credit card)5, and

−m is the cost of applying (e.g., a hard inquiry on credit record and time/effort spent on the

application process). The utility a borrower will receive if she does not apply is normalized

to zero. We assume each borrower has a unit demand 6, and to keep the model simple, we do

not model borrowers’ multi-stage application (i.e., get rejected by one lender then apply for

the other lender)7. Here you need to explain more meaningfully, how you address the referee

comment that the person may apply to multiple credit cards. Added an extension, problem

solvedTo facilitate discussion, hereafter, we will use unsecured personal loans as an example

of the financial product.

2.3.2 Lenders

There are two symmetric lenders8 in the market, providing homogeneous loans to borrowers.

That is, the loans have identical non-price features but may come with different interest

rates. Each lender has its own screening algorithm. We assume that the algorithms of the

two lenders are independent9 but have the same level of accuracy10, and the algorithms are

equally accurate in predicting the positive and negative cases (i.e., the true positive rate

equals the true negative rate). Mathematically, the accuracy of the lenders’ algorithms is

characterized by Pb ∈ (1
2
, 1]11: the algorithm predicts a H type applicant as H type with

case where the H type borrowers default with a probability of ϵ1 while the L type default with a probability
of 1− ϵ2, where ϵ1 < 0.5 and ϵ2 < 0.5.

4In many other models, Mh is assumed to be larger than Ml, since L type borrowers have to incorporate
the dis-utility associated with the reputation loss once they default. However, this assumption is not necessary
in our setting.

5Hereafter, we use the term ‘price’ and the term ‘interest rate’ interchangeably
6We can think of this as that the marginal benefit of getting a second financial product decreases sharply.
7In Appendix B.2.1, we allow for this multi-stage application in a model extension
8This symmetric lender assumption will be relaxed in the model extension, see Appendix B.2.2
9This independence assumption will be relaxed in the model extension, see Appendix B.2.4.

10This equal-accuracy assumption will be relaxed in the model extension, see Appendix B.2.3
11Hereafter, we use subscript b or B to denote all the lender side parameters since we use ‘Bank’ as an

example for the lender.
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probability Pb, and a L type applicant as L type with probability Pb.

The value of a non-defaulter to a lender equals the price set by the lender: b, and the value

of a defaulter to a lender equals the negative of the loan amount, which has been normalized

to −1. The utility that a lender receives if it approves nH H type applicants and nL L type

applicants is given by

Π = nHb− nL (2.1)

2.3.3 Borrowers’ Belief

The borrowers’ application behavior (whether to apply and which lender to apply to) depends

on their beliefs about the approval chance. Such beliefs may not align with the truth: the

lender’s algorithms are opaque, instead of knowing whether they will be approved directly

from the lenders’ algorithm, borrowers can only infer the approval chance from various other

channels such as online forums, past experiences, or communication with other borrowers.

While positively correlated with actual outcomes, these beliefs are not entirely precise. We

use a parameter Pc to capture this accuracy of borrowers’ belief on approval outcomes12:

specifically, among all the applicants who will be approved by a lender, only Pc portion

of them believe they will be approved before applying, the rest of them (1 − Pc portion)

incorrectly believe they will be rejected. Symmetrically, among all the applicants who will be

rejected by a lender, only Pc portion of them believe they will be rejected before applying, the

rest of them (1− Pc portion) incorrectly believe they will be approved. You should explain

here how this belief system aligns with people knowing their own type. E.g. A H type knows

his type and that the bank is accurate with Pb. The H type should think that the probability

of approval by the bank is Pb. However, you are saying that the H type will think that his

probability of approval is Pc. There is something missing in logic here. Under this belief

12Hereafter, we use subscript c or C to denote all the borrower-side parameters
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system, borrowers of both types are subject to the same probability of having incorrect beliefs

about the approval outcomes. Because H type borrowers are more likely to be approved than

L type borrowers, H type borrowers are more likely to believe they will be approved than L

type borrowers. Providing the pre-approval tool will help reduce this incorrect belief: In our

model, we assume if the lender provides the pre-approval tool, the borrowers will know the

approval outcomes exactly before applying, in other words, borrowers’ beliefs on approval

will be consistent with the actual approval outcomes.

2.3.4 Game Sequence

The sequence of stages in the game between the two lenders and the borrowers is as follows.

• STAGE 1: Pre-approval Revealing Stage Each lender chooses whether or not

to provide the pre-approval checking tool simultaneously. Each lender’s decision is

observed by the other lender and the borrowers.

• STAGE 2: Pricing Stage Each lender chooses an interest rate b (b ∈ [0, b])13 for its

financial product.

• STAGE 3: Applying Stage Borrowers observe the internet rates set by both lenders

and observe the pre-approval decision(s) from the lender(s) who provides the pre-

approval tool. Borrowers choose which lender to apply to or choose not to apply to

either.

• STAGE 4: Approving Stage The lenders receive applications and use their algorithms

to approve or reject borrowers. The payoffs to the lenders and the borrowers are then

determined.

It is worth highlighting that lenders lack the ability to monitor the outcomes of competing

lenders. Consequently, the lender is unable to differentiate between borrowers who will receive

approvals from the competing lender and those who will be declined by the competing lender.

13b is the maximum interest rate that can be set by the lenders, for example, required by the law.
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We use sub-game perfect Nash equilibrium (SPNE) as our solution concept. We solve for

the SPNE using backward induction. We proceed with the analysis in the next section. A

summary of notations can be found in Appendix B.1.

2.3.5 Illustration

Before the detailed analysis of the equilibrium of the game. We show the key intuition

through an illustration.

In the absence of the pre-approval tool, the mismatch between borrowers’ beliefs and

the actual approval outcome creates inefficiency in the application process – some qualified

borrowers choose not to apply and some non-qualified borrowers apply but are rejected.

Providing the pre-approval tool will reduce applicants’ sub-optimal applying behavior. In

the competitive scenario, it will also affect the competitive level of the market: If a borrower

believes she will be approved by both lenders, the two lenders have to compete for this

borrower, we say this borrower is in the lenders’ common segment. By contrast, if a borrower

believes she will only be approved by lender 1 but not lender 2, we say this borrower is in

lender 1’s captive segment. Intuitively, if borrowers in the common segment are attractive

(larger size and higher portion of H type borrowers), competition will be intensified. If

borrowers in the captive segment are of high quality, competition will be softened. The

lenders’ pre-approval revelation decision will determine the composition of the size and

quality of lenders’ common and captive segments, consequently affecting the intensity of the

competition.

Figure 2.1 shows a visual representation of the composition of different segments under

different revealing scenarios. We use circles of different shades of gray to represent the

borrowers’ quality loosely, the black dots represent borrowers who are qualified under both

lenders’ algorithms, they are very likely to be H types given that both lenders’ algorithms

predict them as H types independently. The gray dots represent borrowers who are qualified

under only one of the two lenders’ algorithms, these borrowers are less likely to be H types.
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(a) Both Reveal (b) Neither Reveal (c) Asymmetric

Figure 2.1: Illustration

The four regions in each sub-figure are divided based on borrowers’ beliefs on the approval outcome,
for example, the upper left segment represents borrowers who believe will be approved by both
lenders, this is also the common segment for both lenders. The upper right segment represents
borrowers who believe will only be approved by lender 1, this is lender 1’s captive segment. The black
dots represent borrowers who are qualified under both lenders’ algorithms, the gray dots represent
borrowers who are qualified under only one of the two lenders’ algorithms, the white dots represent
borrowers who are not qualified under either lenders’ algorithms.

The white dots represent borrowers who are not qualified under either of the two lenders’

algorithms. When both lenders reveal the pre-approval outcomes (as shown in figure 2.1a),

the common segment becomes very attractive since it only contains borrowers who will be

approved by both lenders (black dots). The competition is very intense in this case. When

neither lender reveals the pre-approval outcomes (as shown in figure 2.1b), the common

segment becomes less attractive since it mixes in many borrowers who will only be approved

by one lender (gray dots) but incorrectly believe will be approved by both lenders. However,

the captive segment becomes more attractive, since it mixes in some high-quality borrowers

who will be approved by both lenders (black dots) but believe will only be approved by

lender 1 or 2. Consequently, lenders have less incentive to compete for the common segment

but instead focus on capturing the captive segment, the competition is softened. In the

asymmetric revealing case (as shown in figure 2.1c), the captive segment is attractive for the

revealing lender since it mixes in some high-quality borrowers who will be approved by both

lenders (black dots) but believe will only be approved by the revealing lender. Differently,
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the non-revealing lender’s captive segment is less attractive: all borrowers who believe will be

rejected by the revealing lender will indeed be rejected, given that the revealing lender reveals

the pre-approval outcomes. The revealing lender has incentives to focus on captive segments

while the non-revealing lender can focus on the common segment, thus the competition is

softened.

2.4 Analysis

Now we move to the detailed analysis.

2.4.1 Additional Assumptions

To avoid invalid and uninteresting equilibrium, we focus on the following parameter ranges:

Assumption 1

bθ − (1− θ) ≥ 0.

Assumption 1 says that granting loans to borrowers is ex ante efficient under interest rate b.

This assumption ensures that lenders can get non-negative equilibrium payoffs under mixed

strategy settings in all sub-games.14

Assumption 2

Mh −m− b > 0

Ml −m− b > 0

The two conditions in Assumption 2 ensure that a borrower will not choose the outside option

(i.e., not to apply for either lender) if she believes that she will be approved by at least one

lender. This is to avoid uninteresting cases where b is so high that no one ends up applying
14Similar assumptions have been made in several papers, for example, in (Hauswald and Marquez, 2003)

and (Hauswald and Marquez, 2006), to ensure that lenders will not have the incentive to engage in ruinous
competition to obtain negative profits in equilibrium.
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regardless of the belief about the approval outcomes.

2.4.2 Analysis: Approving Stage

We begin our analysis from the last stage, the Approving Stage. The lenders’ decisions in

this stage are trivial: They make the approving decisions based on their specific screening

algorithm’s prediction. Specifically, they will approve (reject) borrowers who are predicted

by their own algorithm as H (L) type.

2.4.3 Analysis: Applying Stage

After seeing the interest rates set by the two lenders, as well as the pre-approval decisions

(if applicable), borrowers in this stage decide whether to apply and if so which lender to

apply to. It is straightforward to see that borrowers will only consider the lender that they

think will approve them. Specifically, (1) if a borrower believes that she will be rejected by

both lenders, she will choose not to apply to either lender; (2) if a borrower believes that she

will be approved by only one of the lenders, she will apply to that lender; (3) if a borrower

believes that she will be approved by both lenders, she will apply to the lender who charges

a lower interest rate.

2.4.4 Analysis: Pricing Stage

In this stage, the two lenders anticipate borrowers’ applying strategies in Stage 3, and choose

pricing strategies that depend on the revealing outcome of Stage 1. We begin the analysis by

solving each sub-game that results from lenders’ pre-approval revelation choices in Stage 1.

There are three possible outcomes (sub-games) in Stage 1:

• R-R: Both lenders reveal the pre-approval outcomes.

• N-N: Neither lender reveals the pre-approval outcomes.

• R-N: One lender reveals the pre-approval outcomes, while the other does not.
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We analyze the cases (sub-games) R-R, N-N, and R-N in succession.

Common Segment vs Captive Segment

Borrowers make decisions to apply to a lender based on the expected predictions they

anticipate from each lender. These expectations result in four distinct borrower segments:

HH, HL, LH, and LL. The HH segment represents borrowers who believe they will be approved

(predicted as H type) by both lenders, while the HL segment represents borrowers who believe

they will be approved by Lender 1 but rejected by Lender 2. Similarly, the LH segment

represents borrowers who believe they will be rejected by Lender 1 but approved by Lender 2,

and the LL segment represents borrowers who believe they will be rejected by both lenders.

One thing to keep in mind is that these segments are not created based on the actual approval

decision, but based on the borrowers’ belief of approval.

The distribution of H and L type borrowers across the four segments varies across the

three sub-games: R-R, N-N, and R-N. Table 2.1 provides an illustration of the distribution

of H and L type borrowers across the four segments in the R-R case. In this table, the

top and bottom expressions in each cell indicate the number of H and L type borrowers,

respectively, in the corresponding segment. To calculate the number of H type borrowers in a

segment, we use the probability that each lender independently predicts the H type borrower

correctly, denoted as Pb, and the fraction of H type borrowers in the population, denoted as

θ. Specifically, P 2
b θ is the number of H type borrowers that fall in the HH segment. The

number of H and L type borrowers in the other segments can be calculated similarly as

reported in Table 2.1.

Given our assumption that Pb > 1/2, we observe that the HH segment mostly consists of

H type borrowers while the LL segment mostly consists of L type borrowers. Consequently,

lenders view borrowers in the HH segment as the least risky and hence most valuable, whereas

those in the LL segment are perceived as the most risky and least valuable.

It follows that borrowers who believe to receive a classification of HH would be indifferent
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Table 2.1: Common Segment vs Captive Segment for the R-R case

Note: From Lender 1’s perspective, the upper left cell is the common segment while the lower left is its
captive segment; From Lender 2’s perspective, the upper left cell is the common segment while the upper
right cell is its captive segment. The top line in each cell denotes the number of H type borrowers and the
bottom line in each cell denotes the number of L type borrowers in the corresponding segment.

between two lenders charging the same interest rate. As a result, lenders would compete

with each other in a Bertrand fashion to attract borrowers from this segment, which we refer

to as the common segment, as the probability of such borrowers applying to either lender

is non-zero. On the other hand, borrowers in the HL (LH ) segment will exclusively apply

to Lender 1 (2) under the belief that only Lender 1 (2) will approve their application. We

refer to these segments as the captive segment for Lender 1 (2). Therefore, while lenders

would compete to lure borrowers from the common segment, no competition would arise for

borrowers in the captive segment.

R-R: Both reveal

In the R-R case, both lenders provide the pre-approval tools. A borrower knows exactly

whether she will be approved by each lender or not. To make the discussion easier, we use

the following notations: We refer to the predictions of a borrower(k)’s type by Lender 1’s and

Lender 2’s algorithms as Y 1
k,b and Y 2

k,b, respectively. In the R-R case, lenders’ predictions are

directly passed on to borrowers through the pre-approval tool. A is the set of all borrowers

in the market. We define the following sets which correspond to borrowers in the segments
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defined in Section 2.4.4:

Arr
hh = {k ∈ A|Y 1

k,b = H,Y 2
k,b = H}

Arr
hl = {k ∈ A|Y 1

k,b = H,Y 2
k,b = L}

Arr
lh = {k ∈ A|Y 1

k,b = L, Y 2
k,b = H}

Arr
ll = {k ∈ A|Y 1

k,b = L, Y 2
k,b = L}

That is, Arr
hh is the set of borrowers who are predicted as H type by both lenders, Arr

hl is

the set of borrowers who are predicted as H type by Lender 1 and predicted as L type by

Lender 2, etc. Let N rr
xy denote the number of borrowers and V rr

xy denote the fraction of H type

borrowers in the set Arr
xy where x, y ∈ {h, l}. The values of N rr

xy and V rr
xy can be calculated

from Table 2.1. Since neither lender will approve borrowers in Arr
ll , we omit the calculations

of N rr
ll and V rr

ll below.

N rr
hl = Pb(1− Pb)θ + Pb(1− Pb)(1− θ)

V rr
hl =

Pb(1− Pb)θ

N rr
hl

= θ

N rr
hh = P 2

b θ + (1− Pb)
2(1− θ)

V rr
hh =

P 2
b θ

N rr
hh

> θ

The most profitable segment for two lenders is Arr
hh, as their algorithms predict that the

borrowers in this segment are of H type. This prediction increases the posterior probability

of these borrowers being H type, and thus the lenders compete intensely for this segment.

On the other hand, the profitability of Arr
hl and Arr

lh , the captive segments of the respective

lenders, is lower, resulting in less competition. However, the profitability of Arr
hh intensifies

competition, while the profitability of Arr
hl moderates it. It is worth noting that lenders do
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not have access to their competitors’ algorithms or predictions, and cannot differentiate

between borrowers in the common and their own captive segment. This implies that lenders

cannot treat borrowers in the common and their own captive segment differently (e.g., charge

different interest rates).

The optimal interest rate, b, for the lenders is derived in this context. Lenders are

indifferent to the borrowers in Arr
hh if they offer the same interest rates. Borrowers in Arr

hl and

Arr
lh only apply to their respective lender. Lenders set their interest rates simultaneously, and

a pure strategy equilibrium does not exist due to the incentive to undercut the competitor’s

interest rate to attract borrowers in Arr
hh. Therefore, a mixed strategy equilibrium is studied,

where both lenders use the same mixed strategy of randomizing their b with a probability

distribution characterized by a cumulative density function F rr(b).15 The equilibrium strategy

is summarized in Lemma 6, and the proof can be found in Appendix B.3.1.

Lemma 6 The CDF of the distribution of lender’s equilibrium pricing (interest rate setting)

strategy is shown as follows:

F rr(b) =


0 if b < brr

bPbθ−Pbθ−Pb(−bPbθ+bθ−Pbθ+Pb+θ−1)+Pb+θ−1

bPb
2θ+Pb

2θ−Pb
2−2Pbθ+2Pb+θ−1

if brr ≤ b < b

1 if b ≥ b

Where brr =
Pbθ(−bPb+b−Pb+2)+Pb(Pb−2)−θ+1

Pbθ

Each lender’s equilibrium payoff is:

Πrr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)

An interesting observation from Lemma 6 is that lenders’ equilibrium profit will decrease

15In the real world, such a strategy can be interpreted as lenders offering different interest rates for periods
of a varying length, promotional interest rates or cash back rewards of a varying amount, which effectively
changes b (Varian, 1980).
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as the algorithms’ accuracy increases. Taking derivative of lenders’ equilibrium payoff with

respect to Pb, we get

∂Πrr

∂Pb

= (bθ + θ − 1)(1− 2Pb) ≤ 0 (2.2)

As Pb increases, the common segment becomes more profitable, which intensifies competition.

As competition increases, the equilibrium interest rate gets lower, which decreases the profit

from both the common and the captive segments.

N-N: Neither Reveal

In the N-N case, borrowers do not have access to the pre-approval tools. Thus not every

borrower has the correct belief of the approval outcome. In Table 2.2, we summarize the

distribution of H and L type borrowers in different segments based on the lenders’ predictions

and the borrowers’ beliefs of the predictions. As shown in Table 2.2, there are 16 segments.

Each segment is defined by the combination of the lenders’ predictions and the borrowers’

beliefs of the predictions in the following sequence – Lender 1’s prediction, borrowers’ beliefs

of Lender 1’s prediction, Lender 2’s prediction and borrowers’ beliefs of Lender 2’s prediction.

For example, the segment HLHL includes all borrowers whom Lender 1 predicts as H type,

but believe Lender 1 predicts them as L type, Lender 2 predicts as H type, but believe Lender

2 predicts them as L type. In Table 2.2, the number of H (L) type borrowers that belong to

a segment are shown in the top (bottom) row in the corresponding cell. The calculations are

straightforward. For example, to calculate the number of H type borrowers in HLHL, we

multiply the following: (i) Pb, the probability of Lender 1 predicting the H type correctly,

(ii) 1− Pc, the portion of the borrowers have incorrect belief of the Lender 1’s prediction,

(iii) Pb, the probability of Lender 2 predicting the H type correctly, (iv) Pc, the portion of

the borrowers have incorrect belief of the Lender 2’s prediction, and (v) θ, the fraction of

borrowers who are H type in the population.

Without loss of generality, we discuss the results from Lender 1’s perspective. Since the
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Table 2.2: Common Segment vs Captive Segment for the N-N case

Note: From Lender 1’s perspective, the cells (Row 1, Column 1) and (Row 3, Column 1) combined are the
common segment while the cell (Row 2, Column 1) and (Row 4, Column 1) combined are its captive segment.
From Lender 2’s perspective, cell (Row 1, Column 1) and (Row 1, Column 3) combined are the common
segment while cells (Row 1, Column 2) and (Row 1, Column 4) combined are its captive segment. The top
line in each cell denotes the number of H type borrowers while the bottom line in each cell denotes the
number of L type borrowers.

lender would not approve a borrower whom its own algorithm classifies as L type, Lender

1 will not approve any borrower who falls under columns 3 and 4 in Table 2.2. Further,

borrowers who believe they will not be approved by a lender would not apply to that lender.

Hence, the only relevant borrowers for Lender 1 are the ones who fall under Column 1.

We define the following sets to capture the borrowers in Column 1 of Table 2.2 for ease of

explanation. Note that Y 1
k,c (Y 2

k,c) denotes an borrower(k)’s belief of predictions for Lender 1

(2).

Ann
hh = {k ∈ A|Y 1

k,c = H ∧ Y 2
k,c = H ∧ Y 1

k,b = H}

Ann
hl = {k ∈ A|Y 1

k,c = H ∧ Y 2
k,c = L ∧ Y 1

k,b = H}

Specifically, Ann
hh denotes the set of borrowers who are predicted as H type by Lender 1
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and who believe will be predicted as H type by Lender 1. This is the common segment since

borrowers in this segment do not have a specific preference for either lender. In Table 2.2,

the cell (Row 1, Column 1) and (Row 3, Column 1) together constitute Ann
hh . Ann

hl denotes the

set of borrowers who are predicted as H type by Lender 1, and who believe will be approved

by Lender 1 but rejected by Lender 2. This is the captive segment for Lender 1 since the

borrowers in this segment will always apply to Lender 1. In Table 2.2, the cells (Row 2,

Column 1) and (Row 4, Column 1) together constitute Ann
hl . Further, we use Nnn

xy to denote

the number of borrowers and V nn
xy to denote the fraction of H type borrower in the set Ann

xy

where x, y ∈ {h, l}. The values of these quantities can be easily calculated from Table 2.2

and are reported in the Appendix B.3.2.

In comparison to the R-R case, the level of competition among lenders in the N-N case

is relatively lower. The degree of competition is affected by the relative profitability of the

common and captive segments. Mathematically, this can be represented as Nnn
hh − Nnn

hl <

N rr
hh − N rr

hl and V nn
hh − V nn

hl < V rr
hh − V rr

hl . Consequently, in contrast to the R-R case where

the Arr
hh segment is highly profitable relative to the Arr

hl segment, the difference between the

profitability of the Ann
hh and Ann

hl segments is diminished in the N-N case. This is due to a

higher probability of H type borrowers erroneously assuming that they will only be approved

by one of the lenders as a result of mis-specified beliefs. As a result, they become part of

the captive segment for lenders in the N-N case, thus making the captive segment more

attractive.

We next solve for the optimal strategies in setting b for the two lenders in the N-N

sub-game. As in the R-R case, a pure strategy equilibrium in interest rates does not exist in

the N-N case either. Therefore, we study the mixed strategy equilibrium, and focus on the

symmetric Nash equilibrium, i.e., the two lenders use the same mixed strategy. We use a

probability distribution with a CDF F nn(b) to characterize lenders’ pricing strategy in the

N-N case.

Lemma 7 The CDF of the distribution of lender’s equilibrium pricing strategy in b is as
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follows:

F nn(b) =


0 if b < bnn

bNnn
hh V nn

hh +bNnn
hl V nn

hl +Nnn
hh V nn

hh −Nnn
hh +Nnn

hl V nn
hl −Nnn

hl (bV nn
hl +V nn

hl −1)−Nnn
hl

Nnn
hh (bV nn

hh +V nn
hh −1)

if bnn ≤ b < b

1 if b ≥ b

Where bnn = bNhlVhl−NhhVhh+Nhh

NhhVhh+NhlVhl

Each lender’s equilibrium payoff is:

Πnn = Nnn
hl

(
bV nn

hl + V nn
hl − 1

)

The proof of Lemma 7 can be found in Appendix B.3.2.

R-N: Asymmetric Revealing

In the context of the R-N case, one of the lenders provides pre-approval tool to borrowers,

enabling borrowers to receive predictions that accurately reflect the true approval outcomes

for that particular lender. Conversely, the other lender chooses not to provide the pre-approval

tools, which results in borrowers relying on their mis-specified beliefs. Since the two lenders

are symmetric, without loss of generality, we will assume that Lender 1 is the lender that

provides the pre-approval tool, while Lender 2 is the lender that does not.

Similar to what we have done for the R-R and N-N case, in Table 2.3, we show the

distribution of H and L type borrowers across different segments based on the lenders’

predictions and borrowers’ beliefs of the predictions. As can be seen in Table 2.3, there are

8 segments. Each segment is defined by the combination of the lenders’ predictions and

borrowers’ beliefs of lenders’ predictions in the following sequence – Lender 1’s prediction,

Lender 2’s prediction and the borrowers’ beliefs of Lender 2’s prediction. For example, the

segment HLH includes all borrowers whom Lender 1 predicts as H type, Lender 2 predicts
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as L type, and who believe Lender 2 predicts them as H type. In Table 2.3, the number

of H(L) type borrowers that belong to a segment is shown in the top (bottom) line in the

corresponding cell.

Table 2.3: Common Segment vs Captive Segment for the R-N case

Note: From Lender 1’s perspective, the cells (Row 1, Column 1) and (Row 3, Column 1) together are the
common segment, while the cells (Row 2, Column 1) and (Row 4, Column 1) together are its captive segment.
From Lender 2’s perspective, the cell (Row 1, Column 1) is the common segment, while the cell (Row 1,
Column 2) is its captive segment. The top line in each cell denotes the number of H type borrowers while
the bottom line in each cell denotes the number of L type borrowers.

The only relevant borrower segments for Lender 1 are the ones that fall under Column 1;

the only relevant borrower segments for Lender 2 are those that fall in Row 1. We define the

following sets to capture the borrowers in Column 1 and/or Row 1 of Table 2.3 for ease of

explanation.

A1
hh = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = H}

A2
hh = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = H ∧ Y 2

k,b = H}

A1
hl = {k ∈ A|Y 1

k,b = H ∧ Y 2
k,c = L}

A2
lh = {k ∈ A|Y 1

k,b = L ∧ Y 2
k,c = H ∧ Y 2

k,b = H}
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Specifically, A1
hh denotes the set of borrowers who will be approved by Lender 1 and

believe will be approved by both Lender 1 and Lender 2. A2
hh denotes the set of borrowers

who will be approved by Lender 2 and believe will be approved by both Lender 1 and Lender

2. These are the common segment for Lender 1 and Lender 2 respectively since borrowers in

these sets do not have a preference between the two lenders. In Table 2.3, the cells (Row

1, Column 1) and (Row 3, Column 1) together constitute A1
hh, the cell (Row 1, Column 1)

corresponds to A2
hh. A1

hl denotes the set of borrowers who will be approved by Lender 1 and

believe will only be approved by Lender 1. This is the captive segment for Lender 1. A2
lh

denotes the set of borrowers will be approved by Lender 2 and believe will only be approved

by Lender 2. In Table 2.3, the cells (Row 2, Column 1) and (Row 4, Column 1) together

constitute A1
hl, and the cell (Row 1, Column 2) corresponds to A2

lh.

Again, Nk
xy denotes the number of borrowers, and V k

xy denotes the fraction of H type

borrowers in set Ak
xy where x, y ∈ {h, l} and k ∈ {1, 2}. Lenders set interest rates, b1 and

b2 simultaneously to compete. As before, a pure strategy equilibrium in interest rates does

not exist. We study the mixed strategy equilibrium. We use the CDFs F1(b) and F2(b)

to characterize Lender 1’s (revealing lender) and Lender 2’s (non-revealing lender) pricing

strategies respectively. The lenders’ equilibrium strategies are summarized in Lemma 8; the

proof as well as the values for Nk
xy and V k

xy can be found in Appendix B.3.3.

Lemma 8 The CDF for the revealing lender’s equilibrium pricing strategy in b is

F1(b) =


0 if b < brn

bN2
hhV

2
hh+bN2

lhV
2
lh−k2+N2

hhV
2
hh−N2

hh+N2
lhV

2
lh−N2

lh

N2
hh(bV 2

hh+V 2
hh−1)

if brn ≤ b < b

1 if b ≥ b

The CDF for the non-revealing lender’s equilibrium pricing strategy in b is
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F2(b) =


0 if b < brn

bN1
hhV

1
hh+bN1

hlV
1
hl−k1+N1

hhV
1
hh−N1

hh+N1
hlV

1
hl−N1

hl

N1
hh(bV 1

hh+V 1
hh−1)

if brn ≤ b < b

1 if b ≥ b

Where brn =
bN1

hlV
1
hl−N1

hhV
1
hh+N1

hh

N1
hhV

1
hh+N1

hlV
1
hl

The equilibrium payoffs to the revealing lender and the non-revealing lender are

Π1
rn =N1

hl

(
bV 1

hl + V 1
hl − 1

)
Π2

rn =((1 + b)(N2
hhN

1
hlV

2
hhV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh) +N1

hhN
2
hh(V

2
hh − V 1

hh)

−N1
hhN

2
lh(−V 1

hh + V 2
lh)−N2

hhN
1
hlV

1
hl −N1

hlN
2
lhV

1
hl)/(N

1
hhV

1
hh +N1

hlV
1
hl)

Mathematically, we have F1(b) ≤ F2(b), ∀b ∈ [0, b]. This implies that the revealing lender

sets a higher interest rate than the non-revealing lender in general. Figure 2.2 illustrates the

CDFs of the two lenders’ strategies in the R-N case, together with the lenders’ equilibrium

strategies in the N-N and R-R cases. As is shown in the figure, the interest rate set in the

R-R case is the lowest, indicating intense competition between the two lenders in that case.

Lender 1 derives benefits from two factors. Firstly, since it provides the pre-approval tool,

any borrower of type H who will be approved by its algorithm will not mistakenly believe

that Lender 1 will reject it. Secondly, since Lender 2 does not provide the approval tool,

many borrowers of type H who will be approved by both lenders may incorrectly believe that

only Lender 1 will approve them. In contrast, for Lender 2, the captive segment consists only

of borrowers whom Lender 1’s algorithm will reject. Therefore, the posterior probability of

Lender 2’s captive segment borrowers belonging to type H is lower. This makes the captive

segment significantly more attractive for Lender 1 as compared to Lender 2. The reduced

intensity of competition faced by Lender 1 as a result of this makes it possible for them
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Figure 2.2: Lenders’ equilibrium pricing strategies in each sub-game; Pb = 0.8, Pc = 0.8, θ = 0.7,
b = 0.5

to charge a higher interest rate. The high interest rate charged by Lender 1 also leads to

softened competition for Lender 2, which can potentially benefit from this scenario.

In Figure 2.3, we present the equilibrium payoff breakdown for each lender in the R-N

case across different borrower segments. Since the lenders are playing mixed strategies, the

profit breakdown is plotted as a function of b, assuming that the competing lender is using

the equilibrium mixed strategy. The solid lines in the figure decrease with increasing b, as

setting a higher value of b makes the focal lender’s product less competitive in the common

segment (A1
hh or A2

hh). In contrast, the dashed lines increase with increasing b, as borrowers

in segments A1
hl or A2

lh are captive, and the profit generated from them is proportional to

b. It is noteworthy that compared to the non-revealing lender, a larger proportion of the

revealing lender’s profit is generated from its captive segment.

It is not difficult to check that Π2
rn

Π1
rn

= Pc ≤ 1. This means the revealing lender gets a

higher profit in equilibrium than the non-revealing lender, and the difference in the two

lenders’ profits decreases in Pc. As Pc increases, borrowers’ beliefs of the approval outcome

without the pre-approval tool become more accurate. Hence, the R-N case starts resembling

more like the R-R case where the competition on interest rates is high driving profit down.

76



Figure 2.3: Lenders’ equilibrium profit break down in the R-N case

Note: The solid lines represent the profit generated from common segment borrowers; the dashed lines
represent the profit generated from captive segment borrowers; Pb = 0.8, Pc = 0.8, θ = 0.7, b = 0.5

2.4.5 Analysis: Pre-approval Revealing Stage

The Payoff Matrix and the Pre-approval Revealing Equilibrium

So far, we have solved all possible sub-games after Stage 2. We now solve for the equilibrium

in Stage 1. The “pre-approval revealing game” that the two lenders are facing in Stage 1 is

shown in the following table,

Lender 2
Not Reveal Reveal

Lender 1 Not Reveal (Πnn,Πnn) (Π1
rn,Π

2
rn)

Reveal (Π2
rn,Π

1
rn) (Πrr,Πrr)

where Πrr, Πnn, Π1
rn and Π2

rn denote lenders’ equilibrium payoffs under different sub-games,

as defined in Lemmas 6, 7, and 8.

We prove that Π1
rn > Πnn always holds (see Appendix B.3.4), which rules out N-N as an

equilibrium outcome. One of the lenders in the N-N case always has the incentive to deviate

and reveal the pre-approval to benefit from the many more H type borrowers who would

apply to it both in the common and the captive segments when the competing lender chooses
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not to reveal.

The relationship between Π2
rn and Πrr is contingent on the value of Pb. Specifically, when

Pb is relatively high, Π2
rn is greater than Πrr. In the R-R case, this implies that the common

segment is more attractive than the captive segment, leading to intense competition and

reduced profits for both lenders. However, in the R-N case, the non-revelation by lender 2’s

softens the competition, allowing lender 1 to focus on the attractive captive segment and

charge higher interest rates to extract surplus. This is particularly beneficial when Pb is high.

Hence, lender 2 would choose to adhere to the R-N case when Pb is high, as it has more

incentive to avoid intensified competition.

Conversely, when Pb is low, the captive segment in the R-R case is composed of many H

type borrowers, making the common segment only marginally attractive. Consequently, the

competition is less intense in the R-R case. Hence, the benefits of the R-N case in softening

competition are minimal when Pb is low. However, when Pb is low, the benefit of correcting

borrowers’ inaccurate beliefs about their approval odds is higher, making deviation from the

R-N case more attractive for lender 2.

We summarize the pre-approval revealing equilibrium in Stage 1 in the following proposi-

tion.

Proposition 4 The pre-approval revealing equilibrium is determined by lenders’ algorithm’s

accuracy, Pb, as follows:

1. If lenders’ algorithm’s accuracy Pb is sufficiently low, i.e., Pb < P 0
b , then Π2

rn < Πrr, and

the revealing equilibrium is symmetric such that both lenders choose to reveal the pre-approval

outcomes.

2. If lenders’ algorithm’s accuracy Pb is sufficiently high, i.e., Pb ≥ P 0
b , then Π2

rn ≥ Πrr,

and the revealing equilibrium is asymmetric such that only one lender chooses to reveal the

pre-approval outcomes.

The threshold P 0
b above is a function of Pc and θ:
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P 0
b =

bPcθ + bθ + 3Pcθ − 3Pc + θ − 1 +
√
∆

4bPcθ + 2bθ + 4Pcθ − 4Pc + 2θ − 2

∆ =b
2
Pc

2θ2 + 2b
2
Pcθ

2 + b
2
θ2 − 2bPc

2θ2 + 2bPc
2θ + 4bPcθ

2 − 4bPcθ + 2bθ2

− 2bθ + Pc
2θ2 − 2Pc

2θ + Pc
2 + 2Pcθ

2 − 4Pcθ + 2Pc + θ2 − 2θ + 1

The proof can be found in Appendix B.3.4. The dependence of revealing equilibrium on

Pb and Pc is shown in figure 2.4, which graphically illustrates Proposition 4. It can be seen

that an asymmetric equilibrium will occur unless the accuracy of lenders’ algorithm is very

low.

Figure 2.4: Algorithm revealing equilibrium depending on Pb and Pc when θ = 0.8, b = 0.5

Figure 2.5 further illustrates the equilibrium profits under the pricing equilibrium in the

three possible sub-games resulting from the two lenders’ revealing decisions (i.e., R-R, N-N,

and R-N). SPNE profits are denoted in black, and off-equilibrium profits are denoted in gray.

By deviating from the symmetric N-N case to the R-N case, the revealing lender is able to

get a higher profit. On the other hand, the non-revealing lender does not become worse off

because of the softened competition on b.
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Figure 2.5: Equilibrium profits in each pre-approval revealing sub-games when Pc = 0.7, θ = 0.8,
b = 0.5

Note. SPNE profits are denoted in black, and off-equilibrium profits are denoted in gray. When Pb < P 0
b (the

vertical line in the figure), the SPNE is both lenders revealing the pre-approval tools in Stage 1 and setting
interest rates according to Lemma 6 in Stage 2, and the corresponding equilibrium profits for the two lenders
are represented by the black portion of the “R-R case” line. When Pb ≥ P 0

b , the SPNE is one lender revealing
the pre-approval tool and the other not revealing in Stage 1, and the revealing and non-revealing lenders
setting interest rates according to Lemma 8. The corresponding equilibrium profit for the revealing lender is
represented by the black portion of the “R-N case Lender 1” line and that for the non-revealing lender is
represented by the black portion of the “R-N case Lender 2” line.

Effects of Pc and θ on revealing SPNE

The effects of Pc and θ on SPNE are summarized in Proposition 5.

Proposition 5 P 0
b decreases with Pc and increases with θ.

The proof can be found in Appendix B.3.5. Proposition 5 states that the threshold that

Pb needs to exceed for asymmetric revealing equilibrium to be sustained decreases with Pc.

When Pc is high, the borrowers’ beliefs of the approval outcome are pretty accurate, only a

small fraction of borrowers will hold incorrect beliefs. Consequently, there is little benefit

from correcting borrowers’ incorrect beliefs about their approval outcomes. Hence, even at

smaller values of Pb where there is little difference between the competition intensity in the

R-N and the R-R cases, lender 2 would not deviate from R-N to R-R case.

Moreover, when θ, the portion of H type borrowers in the population, increases, the
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threshold on Pb that is required to sustain asymmetric equilibrium increases. In comparison

to the intensity of competition, the benefit of correcting borrowers’ incorrect beliefs about

approval outcomes is affected at a greater rate by θ. This is because, a greater fraction of

borrowers who incorrectly think they will be denied by the non-revealing lender are likely

to be H type when θ is high. As a result, a higher value of θ encourages the non-revealing

lender in the R-N case to reveal its algorithm and switch to the R-R case.

2.4.6 Borrower Surplus and Social Welfare

We next examine borrowers’ surplus under each sub-game resulting from lenders’ decisions

on pre-approval revelation in Stage 1. We proceed by first calculating total surplus of lenders

and borrowers, and then subtracting the lenders’ equilibrium payoff. Since the interest rates

set by the lender do not directly affect total surplus,16 our approach to calculating borrower

surplus avoids integration over b. Previously, we have divided borrowers into several segments

according to the lenders’ predictions and borrowers’ beliefs on the predictions. Some segments

of borrowers never apply to either of the lenders, and those borrowers generate zero total

surplus to the system. Some segments of borrowers will apply but will not be approved, and

those borrowers generate a negative surplus because there is a cost associated with being

rejected. Other segments of borrowers will apply and will be approved, and whether they

generate a positive total surplus to the system or not depends on their types.

The comparison of total surplus and borrower surplus in the three pre-approval revealing

cases is summarized in Proposition 6.

Proposition 6 Both total surplus and borrower surplus are the highest in the R-R case,

followed by the R-N case, and the lowest in the N-N case. That is, TSrr > TSrn > TSnn,

16The reason is as follows. Borrowers who do not apply to either lender generate no surplus to the society;
those who apply and are rejected each generate a negative surplus of −m; those who apply and are approved
also generates a fixed amount of surplus, which depends on their type but not on b, because the interest
payments are surplus transferred from borrowers to lenders. Also, the number of borrowers in each of the
segments is not affected by b either, because as long as a borrower believes she will be approved by at least
one lender, she will apply regardless of the interest rate.
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and CSrr > CSrn > CSnn.

The full derivation and expressions of total surplus and borrower surplus can be found

in Appendix B.3.6. Here we focus on discussing the comparison between the R-N case and

the R-R case because these are the two cases that can be sustained in the equilibrium. We

first look at why TSrr > TSrn > TSnn. In the R-R case, there are no mis-specified beliefs

by borrowers regarding their approval outcomes. In contrast, borrowers’ beliefs about their

approval odds in the N-N case are the least accurate. The incorrect beliefs regarding approval

outcomes lead borrowers to make sub-optimal application decisions, e.g. borrowers who will

be approved choose not to apply whereas borrowers who will be rejected choose to apply.

The number of such non-optimal decisions is the lowest in the R-R case and highest in

the N-N case. These non-optimal decisions create a negative social surplus. A borrower

who applies but gets rejected will create −m social surplus, and a borrower who would be

approved but does not apply will result in an opportunity cost to social surplus with a size of

θ(Mh −m) + (1− θ)(Ml −m− 1).17 Hence, the social surplus is the highest in the R-R case,

followed by the R-N case and then the N-N case.

As for borrower surplus, when comparing CSrn with CSrr, notice that (1) the number of

borrowers who are approved in the R-R case is larger than in the R-N case; (2) the number of

borrowers who are rejected in the R-R case is smaller than in the R-N case; (3) the interest

rate set in the R-R case is on average lower than in the R-N case. (This is the case because

F rr(b) > F1(b), F
rr(b) > F2(b), ∀b ∈ [0, b].) In other words, in the R-R case, more borrowers

are approved, fewer borrowers are rejected, and the interest rates set by the lenders are lower

compared with the R-N case. Consequently, borrowers’ welfare is higher in the R-R case

than in the R-N case. The borrower surplus in the N-N case, CSnn, is the smallest among

the three. The reason is that there are a large number of borrowers who make sub-optimal

applying decisions because of the large market friction in terms of borrowers’ beliefs of the

17This value is always positive. Rewrite the expression as [θb+ (1− θ)(b− 1)] + [θ(Mh −m− b) + (1−
θ)(Ml −m− b)]. The first part is greater than 0 under Assumption 1, and the second part is greater than 0
following the first inequality in Assumption 2.
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approval. Even when one lender sets a higher interest rate in the R-N case than it would do

in the N-N case, moving from N-N to R-N will still benefit borrowers.

2.5 Mandating Algorithm Revelation

As discussed previously, both borrower surplus and social surplus are the highest in the

R-R case. However, when Pb is high, only one lender would want to reveal the pre-approval

outcomes. Does it imply that mandatory disclosure could be socially desirable from the

policy makers’ perspective? We tackle this question by showing the other side of the story –

the effect of mandatory revealing on lenders’ incentive to improve their algorithms. While

in the previous analysis, we assume that the lenders’ algorithm accuracy Pb is exogenous,

in this extension we consider it a decision that lenders have to make prior to Stage 1 in the

current model.

In this extension, we study two scenarios: a mandatory scenario where lenders are required

to reveal the pre-approval outcomes, and a voluntary scenario where such requirements are

absent. We will focus on the parameter range where the two lenders make asymmetry revealing

decisions voluntarily, because outside of this range, mandatory revealing is redundant. In

other words, we assume that Pb > P 0
b , where P 0

b is defined in Proposition 4. We assume

there are advances in technology that could help lenders increase their algorithms’ accuracy

from Pb to P ∗
b without any cost, and study lenders’ incentives to take on this opportunity in

both scenarios. Intuitively, it may appear that a lender should always improve its algorithm’s

accuracy when such improvement is costless. However, we will demonstrate that this is not

the case. Below, we start with the mandatory scenario. The lenders’ equilibrium strategies

in upgrading their algorithms in this scenario are summarized in Proposition 7.

Proposition 7 In the mandatory revealing scenario, there is a unique symmetric mix-

strategy equilibrium in upgrading screening algorithms, where each lender chooses to upgrade

its algorithm with probability PM = 1−Pb

P ∗
b

.
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The proof of Proposition 7 can be found in Appendix B.3.7. An interesting observation

is that PM decreases in Pb and P ∗
b , which means that when lenders’ algorithms’ accuracy

is relatively high, lenders will have little incentive to further increase it. The reason is that

when lenders’ algorithms’ accuracy is high, competition is especially intense in the R-R case.

Any further increase in algorithms’ accuracy would make the common segment even more

profitable compared to the captive segment thus further intensify the competition on the

interest rate, which would drive down lenders’ equilibrium profits. Since the mandatory

revealing policy is only relevant in the case where Pb is relatively large (i.e., Pb > P 0
b ), lenders

will have a relatively small incentive to improve their screening algorithms if revealing is

made mandatory.

We next consider the voluntary scenario. The lenders’ equilibrium strategies in upgrading

their algorithm in the voluntary scenario are shown in Proposition 8

Proposition 8 In the voluntary revealing scenario, the revealing lender always chooses to

upgrade its algorithm, while the non-revealing lender chooses to upgrade the algorithm if

θ ≤ θ0 or Pc ≤ P 0
c , where


θ0 =

2PbP
∗
b Pc−PbP

∗
b −2PbPc+Pb+2P ∗

b
2Pc−P ∗

b
2−3P ∗

b Pc+2P ∗
b +Pc

−2PbPc+Pb+P ∗
b
2(2Pc−1)(b+1)+P ∗

b ((b+1)(2PbPc−Pb−Pc)+2−2Pc)+Pc

P 0
c =

Pb+P ∗
b

2Pb+2P ∗
b −1

The proof of Proposition 8 can be found in Appendix B.3.8. Proposition 8 says that in the

voluntary scenario, both lenders will adopt the higher accuracy algorithm unless both θ and

Pc are high, in which case only the revealing lender chooses to upgrade the algorithm. We

show in the appendix that upgrading the algorithm is a dominant strategy for the revealing

lender. The intuition is as follows: In Section 2.4, we have shown that in the R-N case, the

non-revealing lender chooses to focus on capturing the common segment because borrowers

in the common segment are the ones who will be approved by the revealing lender, so these

borrowers are of high quality on average. At the same time, the revealing lender chooses to
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focus on its captive segment because although these borrowers believe will be rejected by

the non-revealing lender, many of them are actually of high quality and will be approved

by the non-revealing lender. Consequently, the competition is softened. If the revealing

lender increases its algorithm’s accuracy, the non-revealing lender’s common segment will

become even better because of the fact that the revealing lender’s approval says more when

the screening algorithm is accurate. At the same time, the revealing lender can rely more

on its own prediction, thus it will have more incentive to exploit its captive segment, and

therefore, competition will be further softened. By contrast, the increase in the non-revealing

lender’s algorithm will intensify the competition, because it will increase the quality of the

revealing lender’s common segment and the non-revealing lender’s captive segment. Thus

the non-revealing lender has to consider the relative effect sizes of improved screening ability

and increased competition due to an increase in its algorithm’s accuracy. When θ ≤ θ0,

the market is risky in the sense that there is large fraction of L type borrowers, and there

are significant benefits from a better screening ability. Similarly, when Pc ≤ P 0
c , the direct

impact of an increase in the accuracy of the non-revealing lender’s algorithm on intensifying

the competition is fairly weak. As a result, the non-revealing lender would choose to increase

its algorithm’s accuracy only when θ ≤ θ0 or Pc ≤ P 0
c .

Our analysis above suggests that the implications of policy makers’ decisions on regulating

algorithm revelation are not as straightforward as they appear intuitively. Since increasing

the accuracy of screening algorithms can help allocate fund to more creditworthy borrowers,

failing to do so may potentially hurt borrower surplus. The following proposition specifies a

sufficient condition under which mandatory algorithm revealing will hurt consumer surplus.

Proposition 9 Mandatory algorithm revealing will hurt borrower surplus if θ ≤ θ0 and

Pc > Pc, Where θ0 is defined in Proposition 8, and
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Pc =
−B +

√
B2 − 4AC

2A

A =2bP ∗
b
2θ − bP ∗

b θ + 2P ∗
b
2θ − 2P ∗

b
2 − 3P ∗

b θ + 3P ∗
b + θ − 1

B =mθ + (P ∗
b
2 − Pb)

(
bθ + 3m− 2Mhθ + 2Mlθ − 2Ml − θ + 1

)
+ P ∗

b (m− 2mθ)

C =1−Mhθ + 2Pb
2
(
−bθ − θ + 1

)
+ 2Pb

(
bθ + θ − 1

)
− θ

+ P ∗
b
2
(
−bθ − 2m+Mhθ −Mlθ +Ml

)
+ 2P ∗

b (m+Mlθ −Ml)

+ (−m+Mhθ −Mlθ +Ml + θ − 1) (Pb
4 − 2Pb

3 + Pb
2)/P ∗2

b

Proposition 9 suggests that mandating revealing of screening algorithms could hurt

consumer surplus when Pc is high but θ is low. First, the condition on θ is to ensure that the

lenders have an incentive to increase accuracy in the R-N case, according to Proposition 8.

The intuition behind the Pc related condition will become clear once we layout the upside

and downside of such a mandatory revealing policy. On the upside, mandatory revealing

will reduce market friction by eliminating borrowers’ misspecified beliefs on approval. On

the downside, it will impede lenders from adopting more accurate algorithms. The benefit

from the upside is decreasing in Pc since the benefit of revealing the algorithm is low if

borrowers’ assumptions of approval are already accurate. Moreover, the loss due to the

downside is increasing in Pc: when borrowers’ assumptions of approval are more accurate (i.e.,

Pc is higher), borrowers sub-optimal applying behavior is reduced, and the benefit of lenders

adopting more advanced algorithms becomes larger since any improvement in screening

accuracy will directly improve the chances that credit is allocated to the more deserving H

type borrowers.

86



2.6 Conclusions

2.6.1 Summary of Results

The use of ML algorithms and data driven decision making by financial lenders seems win-win

for both the lenders and the borrowers – lenders are able to better screen borrowers for their

credit worthiness and deserving borrowers are more likely to get approved for credit (Fu

et al., 2021b, Wei et al., 2016, Chan et al., 2022, Netzer et al., 2019). However, as lenders get

better at screening the borrowers, the later continue to face considerable uncertainty in their

chances of getting approved for credit by a lender (Citron and Pasquale, 2014b, Fu et al.,

2020).

This paper explores the factors influencing lenders’ decisions to provide approval odds

to borrowers through the pre-approval tools. Despite the advantages of using machine

learning algorithms and data-driven decision-making, borrowers face significant uncertainty

in their chances of credit approval as lenders improve their screening processes. Our analysis

reveals that lenders strategically use asymmetric revealing of pre-approval outcomes to soften

competition and focus on different borrower segments, particularly when their algorithms’

accuracy is high, the borrowers’ belief of approval is also accurate, or the market is risky with

a significant portion of low-creditworthiness borrowers.

The asymmetric revealing equilibrium creates product differentiation, where the revealing

lender focuses more on its captive segment and charges higher interest rates, while the

non-revealing lender focuses on the common segment and charges lower rates. The borrower

surplus and total surplus are the highest when both lenders reveal their algorithms and the

lowest when neither does. However, mandating lenders to provide accurate approval odds

may not necessarily improve borrower surplus as it reduces lenders’ incentive to improve

algorithm accuracy compared to voluntary revelation.
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2.6.2 Managerial Implications

Our analysis yields several key findings that offer insights for future research and practice

on algorithm revelation in financial lending. Firstly, the decision to provide personalized

pre-approval outcomes is complex, as it can intensify or soften competition depending on

the circumstances. Our model suggests that the accuracy of lenders’ algorithms, accuracy

of borrowers’ belief of approval, as well as the market composition, mediate these effects.

Additionally, our results indicate that at least one lender should always provide pre-approval

tools, while both lenders should reveal their pre-approval outcomes in certain conditions.

This highlights the promise of market forces leading to partial algorithmic transparency.

Secondly, the competitive implications of algorithm/pre-approval revelation are more

severe in markets with highly accurate lenders’ algorithms. This can lead to self-debilitating

competition on interest rates, and lenders should avoid providing personalized pre-approval

tools if their competitor is already doing so. Thirdly, the prior beliefs of borrowers regarding

their approval odds can moderate the effects of algorithm/pre-approval revelation. When the

borrowers’ belief is less accurate, the market expansion effect from providing approval tools

is stronger, and both lenders can benefit from revealing their pre-approval outcomes.

Fourthly, asymmetric pre-approval revelation can generate product differentiation, soften-

ing competition among financial lenders. When conditions for an asymmetric equilibrium are

met, the revealing lender is better off than the non-revealing lender, and the non-revealing

lender need not worry about being hurt by the asymmetric action of the competing lender. Fi-

nally, lenders’ algorithms’ accuracy allows for differentiation in financial products, even those

with similar non-price features. While high accuracy reduces loss due to misclassification, it

also intensifies competition, and lenders should carefully consider its impact.
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2.6.3 Implications for Public Policy

Lenders’ provision of pre-approval tools can enhance the efficiency of credit markets from

a social welfare perspective by helping borrowers avoid non-optimal application decisions

that waste resources. However, this does not imply that policy makers should always enforce

lenders to disclose pre-approval outcomes to borrowers. It is suggested that policy makers

understand the strategic reasons behind lenders’ reluctance to reveal such information and

consider the potential impact of mandatory pre-approval revealing on lender competition.

When lenders are compelled to reveal the pre-approval outcomes, they may have less

incentive to invest in screening technologies, as shown in our analysis. Thus, when considering

regulations on mandatory information disclosure, policy makers should consider how such

regulations may impact subsequent competition and the incentive for lenders to invest in

algorithmic screening technologies.

In general, policy makers should be especially cautious about mandatory pre-approval

revealing in relatively risky markets and when the borrowers’ beliefs of the approval are

accurate. In those cases, the benefit of reduced market friction may be outweighed by the

loss due to lack of adoption of better screening technologies by lenders.

2.6.4 Limitations

There are are several factors that our model does not account for, providing opportunities

for future research. For instance, we only consider lenders’ competition on interest rate,

we do not model their competition on other dimensions such as financial product features.

Furthermore, we do not consider algorithmic gaming by borrowers or other channels through

which borrowers can apply for loans, such as intermediary platforms. Investigating how these

factors impact pre-approval revelation strategies would be interesting for future research.

Despite these limitations, our paper provides valuable insights into algorithmic lending and

the strategies lenders employ to reveal approval odds to borrowers. Our model explains the
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observed asymmetric information revealing behavior in credit markets and introduces a new

dimension of strategy to leverage competition, which previous models have not captured.

Overall, our paper contributes to a better understanding of the interplay between competition

and information revelation strategies.

2.6.5 Funding and Competing Interests

All authors certify that they have no affiliations with or involvement in any organization or

entity with any financial interest or non-financial interest in the subject matter or materials

discussed in this manuscript. The authors have no funding to report.
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Chapter 3

Algorithms, Artificial Intelligence and

Simple Rule-Based Pricing

3.1 Introduction

In recent years, the rapid advancement of information technology has revolutionized the

landscape of pricing methods, with the emergence of software solutions that enable the

automatic setting and adjustment of prices. These automated pricing algorithms have gained

significant traction and widespread adoption, particularly in the context of online shopping

platforms.

Simple rule-based algorithms, an important type of automated pricing algorithms, operate

according to predetermined protocols defined by human agents and have gained significant

popularity on e-commerce websites. Most major e-commerce marketplaces, including Amazon,

eBay, Shopify, Walmart, and Google Shopping, provide simple rule-based pricing algorithms

as free pricing tools to individual sellers. These algorithms typically allow sellers to set

prices that are below, equal to, or above the lowest price in the predefined market, taking

into account user-specified listing conditions and fulfillment methods.1 For sellers requiring

1See https://sellercentral.amazon.com/gp/help/external/200836360?ref=efph_200836360_
cont_201186860&language=en_US.
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greater flexibility, such as the ability to match prices of specific competitors or alternate

between different strategies based on market conditions, more complicated rule-based pricing

solutions are available through various third-party repricer services, including ChannelEngine,

RepricerExpress, Aura, and Informed.co.

Despite their convenience and ease of use, simple rule-based algorithms can sometimes lead

to problematic situations. A notable example occurred several years ago when algorithmic

pricing first started to gain traction. A book priced at over $23 million attracted significant

attention, and upon investigation, it was discovered that two sellers were using automated

pricing algorithms that pegged to each other, causing the prices to spiral out of control

rapidly. Indeed, simple rule-based algorithms may prove suboptimal in many cases, potentially

triggering "a race to the bottom" and harming sellers’ long-term profitability.

In recent years, more sophisticated AI-based pricing algorithms have appeared, such as

those based on reinforcement learning (RL). Different from the simple rule-based algorithms,

these AI algorithms feature self-learning capabilities that enable them to autonomously

identify optimal price points that maximize long-term profits through iterative pricing

experiments. RL algorithms have recently been employed to solve various business problems,

including display advertisement measurement (Tunuguntla, 2021), sequential coupon targeting

(Liu, 2022, Wang et al., 2021), ad sequencing (Rafieian, 2022), and ad recommendations

(Aramayo et al., 2022). Unsurprisingly, these algorithms have demonstrated significantly

better performance compared to traditional methods. In the pricing domain specifically,

researchers from Alibaba, the Chinese e-commerce giant, found that employing reinforcement

learning-based pricing algorithms led to substantially improved profits for thousands of

products, outperforming expert manual pricing (Liu et al., 2019). While none of the major

platforms currently provide AI-based pricing algorithms as a built-in feature, some third-party

repricer services have begun offering these sophisticated pricing methods to businesses.

Despite the AI-based algorithms being in the early stages of adoption in practice, they

have garnered significant attention from researchers in various fields, including Economics,
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Law, and Marketing. Among the research questions explored, one of the most crucial issues

is whether these intelligent algorithms can lead to collusion. The findings from these studies

suggest that in repeated price competitions within simulated market environments, RL

algorithms have demonstrated a remarkable ability to learn sophisticated pricing strategies

that soften competition and enable the maintenance of supra-competitive prices in competitive

markets (Calvano et al., 2020, Hansen et al., 2021, Klein, 2021, Johnson et al., 2020, Asker

et al., 2022). This has raised concerns about the potential for algorithmic collusion and

its implications for market efficiency, consumer welfare, and regulatory frameworks. As

AI-based pricing algorithms become more prevalent, understanding their impact on market

dynamics and developing appropriate governance mechanisms will be critical to ensuring fair

competition and protecting consumer interests.

While almost all the research work focus on the competition between AI pricing algorithms,

disproportional less attention has been paid to the simple rule-based algorithm. However,

simple rule-based algorithms are actually very prevalent on online marketplaces. Analyzing a

sample of 1,600 best-selling items on Amazon, Chen et al. (2016) find that more than one-third

of sellers were using simple rule-based pricing strategies in 2015. A 2017 E-Commerce sector

inquiry found that 50% of retailers in the European Union track their online competitors’

prices, and 70% of them automatically adjust their prices according to simple rules. With

such a prevalence of simple rule-based algorithms, it is natural to wonder how a simple rule-

based algorithm would perform when competing with AI-based algorithms. Surprisingly, this

topic remains understudied in the literature, despite the widespread use of simple rule-based

algorithms. Our work is among the first to systematically examine this problem, focusing on

the equilibrium behavior and dynamics when algorithms of different levels of sophistication

interact. This problem is of great importance in understanding sellers’ strategic choices when

faced with competitors adopting newly emerged, sophisticated pricing technologies

Specifically, the central research question of this study is whether a seller should adopt

a simple rule-based pricing algorithm or an RL pricing algorithm when competing against
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rivals using RL pricing algorithms. This question is internally important, as it determines

the final equilibrium of algorithm choice and the prevalence of each type of pricing algorithm

in the long run.

Our study adopts a three-pronged strategy to address the research questions at hand. The

first approach, follows the established economics literature that examines competition among

pricing algorithms in simulated market environments, with a specific focus on the canonical

Logit demand model as demonstrated in previous works such as Calvano et al. (2020), Klein

(2021), and Asker et al. (2022). The second approach leverages a more sophisticated structural

demand model that takes into account realistic model parameters and consumer behavior

during search and purchase processes. In our third approach, we employ theoretical analysis

with simplifying assumptions to identify boundary conditions that determine when Q-learning

algorithms and rule-based algorithms may dominate each other.

In the baseline case, we use the Undercut Lowest Price (UL) algorithm as an example

of a simple rule-based pricing algorithm, as it is one of the most commonly applied in

practice. This algorithm operates by setting the price slightly below the lowest price offered

by competitors in the market. For the RL pricing algorithm, we employ the Q-learning

algorithm, which is a basic yet popular choice in the field of reinforcement learning.

To compare the behavior and performance of these algorithms, we consider two distinct

scenarios: the Q-Q scenario and the Q-R scenario. In the Q-Q scenario, both the focal seller

and the competing seller adopt Q-learning algorithms. In the Q-R scenario, the focal seller

uses a simple rule-based algorithm (UL), while the competing seller employs a Q-learning

algorithm. In each scenario, we allow the algorithms to interact repeatedly, simulating

the ongoing competition in a market environment. We record and compare the market

outcomes across three key aspects: 1), Equilibrium price and profit: 2), Learning dynamics.

3), Deviation and punishment strategies:

Our research findings reveal a compelling result: the focal seller achieves higher profits in

the Q-R scenario compared to the Q-Q scenario. We attribute this outcome to the distinct
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learning dynamics present in each scenario and the specific properties of the simple rule-based

strategy. In the Q-Q scenario, both Q-learning algorithms engage in simultaneous learning

through exploration, which leads to non-stationarity in the environment. This non-stationarity

makes it more challenging for either algorithm to learn the most profitable collusive strategy.

Conversely, in the Q-R scenario, the environment becomes stable because the strategy of

the simple rule-based algorithm is fixed. This stability enables the competitor’s Q-learning

algorithm to learn the optimal policy more easily. Interestingly, the Q-learning algorithm’s

optimal learning also benefits the simple rule-based algorithm, which is pegged to it. The

simple rule-based algorithm, in this case, represents a variant of the well-known "Tit for

Tat" strategy, which has proven to be a formidable strategy in repeated games. Our study

also sheds light on the off-equilibrium strategies learned by the Q-learning algorithm in

different scenarios. In the Q-Q scenario, we observe that the algorithms learn a multi-period

punishment strategy. In contrast, the Q-learning algorithm in the Q-R scenario, learns an

"always cooperate" strategy.

Importantly, our findings remain consistent and robust when considering various other

factors. We have examined the impact of different algorithm parameters, and different market

structures, including scenarios with product differentiation, and demand uncertainty. We

have also tested the robustness of our findings by considering alternative simple rule-based

pricing algorithms beyond UL.

The findings from our structural modeling and theoretical modeling approaches consistently

support our main conclusions. The analysis based on the structural demand model suggests

that a focal seller can achieve a significant profit increase of approximately 9% by adopting a

simple rule-based algorithm. Our theoretical analysis reveals that the focal seller stands to

gain more by adopting a simple rule-based algorithm if the discount factor is sufficiently high.

Our findings have significant managerial implications. In markets where competitors

are adopting advanced pricing technologies, it may be more practical and profitable for a

seller to employ a simpler rule-based pricing strategy instead of attempting to match the

95



sophistication of their competitors. Furthermore, our research has important implications for

policymakers concerned with the potential for tacit collusion facilitated by pricing algorithms.

While much attention has been focused on the collusive risks associated with the widespread

adoption of sophisticated pricing algorithms, our findings suggest that policymakers should

also pay close attention to markets where the majority of pricing algorithms employed are

simple and rule-based.

The rest of the paper is organized as follows: In Section 3.2, we discuss relevant literature.

Section 3.3 expounds on the model setup and Section 3.4 presents the results of the experiments

conducted in the oligopoly logit market environment. Section 3.5 outlines the structural

demand model and the corresponding results. Section 3.6 proposes a theoretical framework.

Finally, in Section 3.7, we provide a discussion and conclusion of our findings.

3.2 Relevant Literature

This study contributes to the growing literature on algorithmic pricing and collusion, which

investigates how and why pricing algorithms might increase market prices. Several potential

channels have been discussed, including the ability of algorithms to predict future demand

levels, affecting incentives to deviate to lower prices during periods of high predicted demand

and discouraging collusion (Miklós-Thal and Tucker, 2019, O’Connor and Wilson, 2021).

Studies focusing on learning algorithms have demonstrated the ability of self-learning intelli-

gent algorithms (i.e., RL) to learn to charge supra-competitive prices without coordination or

communication, a phenomenon known as tacit collusion. Explanations for this phenomenon

include the generation of prices correlated with other algorithms, leading to overestimation of

price sensitivity (Hansen et al., 2021), and the learning of punishment strategies by intelligent

algorithms with memory to thwart deviation and sustain supra-competitive prices (Calvano

et al., 2020).

Despite their widespread use, simple rule-based algorithms have not received much
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attention in the literature. Our paper is among the first to systematically examine the pricing

dynamics and equilibrium in competitive markets that include both RL and simple rule-based

algorithms, particularly focusing on the strategic selection of algorithms by sellers based on

the level of sophistication of the pricing algorithms. Our study makes at least two notable

contributions to the algorithmic pricing literature. First, we highlight a factor that has been

largely overlooked but could lead to increased market prices: the use of simple rule-based

algorithms may result in higher equilibrium prices compared to more sophisticated RL pricing

algorithms, especially in competitive scenarios involving other RL algorithms. Secondly, our

analysis extends beyond merely examining the outcomes and equilibrium prices, we delve

deeper into the learning dynamics and identify the underlying mechanisms that lead to

different pricing results. We offer new perspectives on algorithmic collusion by demonstrating

how the presence of multiple self-learning algorithms can introduce non-stationarity into the

market environment in the learning process, making it more difficult to search for optimal

strategies. Conversely, we explore how simple rule-based pricing algorithms can contribute to

a more stationary market environment, allowing for the emergence of near-monopoly pricing

strategies among intelligent algorithms.

While empirical studies on algorithmic pricing are relatively rare, some notable exceptions

exist. For example, Assad et al. (2020) found that the adoption of algorithmic pricing by

German gasoline retailers could have increased margins by up to 38%. Similarly, Brown

and MacKay (2021) showed that the adoption of pricing algorithms significantly alters

pricing patterns, and Chen et al. (2016) provided empirical evidence of the impact of pricing

algorithms on market pricing behaviors.

The empirical examination of RL pricing algorithms is particularly challenging, with most

of the literature relying on simulations using the canonical logit demand model (Calvano

et al., 2020, Hansen et al., 2021, Johnson et al., 2020, Asker et al., 2022). Methodologically,

our study extends the analysis by estimating a more realistic structural demand model and

conducting counterfactuals based on this model, in addition to the typical logit demand
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model simulations.

Our analytical framework extends the existing, yet limited, theoretical models of RL

algorithms in the literature, which often assume ’stateless’ algorithms for simplification

(Hansen et al., 2021, Banchio and Mantegazza, 2023). We consider the multiplicity of states

in our model, providing a richer representation of pricing strategies.

3.3 Competition With Pricing Algorithms

3.3.1 The Market

We study the oligopoly price competition in a repeated game setting. The market consists of

I consumers (i = 1, 2, ..., I), where each consumer demands at most one product. There are

J differentiated products in the market provided by J sellers (j = 1, 2, ...J). Each seller sells

their own product (with a constant marginal cost mcj) in each and every period without

capacity constraints. At the beginning of each time period (t = 0, 1, ...), the sellers set

prices for their products (ptj) simultaneously, and the price history from previous periods is

common knowledge. At the end of each period, a per-period profit is realized for each seller

rtj = (ptj −mcj)D
t
j, where Dt

j is the per-period demand for seller j determined by a demand

function Dt
j(p

t
j, p

t
−j).

For model tractability, we use discretized prices throughout the paper. We use pNash
j

and pMono
j to denote the Bertrand-Nash price (competitive price) and monopoly price of the

stage game for seller j, respectively. We then construct a set of equally spaced grid points

A = {pj,k}, k ∈ {1, .., K} where pj,1 = pNash
j , pj,K = pMono

j , and pj,2 to pj,K−1 are evenly spaced

in between. The space between two consecutive price grids ∆pj = (pMono
j − pNash

j )/(K − 1).

We use K = 10 throughout the paper unless specified otherwise.
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3.3.2 The Algorithm

Rule-Based Algorithm

There are three main types of rule-based pricing, depending on how price changes are triggered.

The first type is Competitor-based pricing, where price changes are triggered by competitors’

actions. This is the most common strategy used in practice – most large e-commerce platforms

and almost all large third-party repricing platforms provide such tools. For example, the

‘Target Low Price’2 tool provided by Amazon allows sellers to adjust prices to match the

lowest price in the market. On informed.co, sellers can specify the competitors they want to

compete with, by either star rating, fulfillment methods, or item condition (whether new or

used). Sellers can then choose to always set prices equal to these competitors’ prices or lower

than them by a fixed amount or percentage. The seller can also choose a minimum price to

make sure the price never goes below that price.3 These repricers can react to competitors’

price changes almost instantaneously, for example, according to AlphaRepricer, it can reprice

a product every two minutes4, which means that any change in competitors’ prices will trigger

a reaction within two minutes. The second type of rule-based algorithm is Sales-based pricing,

where price changes are triggered by the change in sales volume in the past. For example,

Amazon provides sellers with tools to automatically decrease the price if its sales volume

drops below a certain threshold in a certain period of time.5 The third type of rule-based

algorithm is Time-based pricing, where price changes are triggered by the time of the day

or day of the week. For example, using RepricerExpress – a third party repricing solution –

sellers can stop repricing or raise their price at a pre-specified time of the day.6 Table 3.1

2This ‘Target Low Price’ mechanism should not be confused with the ‘Match Price Policy’ or ‘Match
Price Guarantee’ provided by retailers like Walmart and Target. The latter guarantees that exactly the same
product cannot be found elsewhere at a lower price. The former is a tool that individual sellers can use to
adjust prices according to competitors’ prices, where the matches are not necessarily defined by multiple
sellers selling identical products, and prices are not necessarily matched exactly.

3https://help.informed.co/en/articles/2319357-build-your-own
4https://alpharepricer.com/blogs/why-is-alpha-repricer-better-than-other-repricers/
5https://sellercentral.amazon.com/gp/help/external/FRJDFLFPWZSAG67
6https://support.repricer.com/sleep-mode
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summarizes the commonly used rule-based pricing algorithms.

Table 3.1: Rule-based Algorithm Type
Algorithm Type Provider Example

Amazon, RepricerExpress, Informed.co, Match Low Price
Competitor-based BQool, ChannelAdvisor, SellerEngine, (Always set price equal to the

SellerActive, Aura, AlphaRepricer lowest price in the market)
Sales-based Amazon, SellerEngine,SellerActive Sales Velocity Pricing
Time-based RepricerExpress Sleep-mode Pricing

In this paper, we focus on the most commonly applied rule-based algorithm in the

competitive market– the competitor-based pricing algorithm. Its popularity comes from the

fact that it can react to opponent sellers’ price changes almost instantaneously to prevent loss.

By contrast, the sales-based pricing algorithm adjusts price only after the effect of opponent

sellers’ price change has been reflected in one’s own sales. Most third-party repricing software

gives sellers options to customize the competitor-based repricing rule, including choosing

which seller they wish to compete with, choosing to match price exactly or undercut, and

whether or not to set a minimum price to prevent loss. In the benchmark case, we focus

on a widely used competitor-based pricing algorithm: Undercut Lowest Price (UL), where

prices are adjusted to undercut the lowest price among competitors by a fixed amount or

fixed percentage. In Section 3.4.2, we study three variants of UL: Undercut Lowest Price with

a Minimum Price, Target Lowest Price, Target Lowest Price with a Minimum Price.

Specifically in our setting, the simple rule-based algorithm will always undercut the last

period lowest price among competitors by one price grid. The policy function of the simple

rule-based algorithm ΦR is specified in Equation 3.1

ΦR : ptj = min(pt−1
−j )−∆pj,∀t (3.1)

Q-learning Algorithm

Following the emerging literature on algorithmic pricing in economics (e.g. Calvano et al.

(2020), Asker et al. (2022), Johnson et al. (2020), Waltman and Kaymak (2008)), we use
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Q-learning as a representative example of AI-powered learning algorithm. There are several

reasons for this choice. First, Q-learning is a model-free reinforcement learning algorithm,

which means that it does not need any knowledge of the environment. It is well suited for

pricing applications since market conditions and demand functions are often unknown to

sellers. Second, Q-learning is one of the most popular RL algorithms used by computer

scientists: the implementation is simple and the number of hyper-parameters to tune is

significantly smaller compared with neural network based algorithms. Third, the logic behind

Q-learning is clear, which makes it possible for us to study its learning dynamics.

A Q-learning algorithm can learn the optimal strategy in a stationary Markov decision

process: in period t, given the state (st ∈ S), a Q-learning seller j takes an action (ptj ∈ A).

A reward (rtj) is realized and the current state transits to a new state in the next period

(st+1 ∈ S) according to some time-invariant state transition rule. The goal of the Q-learning

algorithm is to maximize the long-term discounted cumulative reward (E[
∑

t δ
trtj]), where

δ < 1 is the discount factor. The algorithm is forward-looking since it does not simply take

the action that maximizes the current period reward. Instead, it also takes into account the

effect of the current period action on future period payoffs through state transitions. The

value to seller j given a state can be represented by the Bellman’s value function

Vj(s
t) = max

p∈A
{E[rtj|st, p] + δE[V (st+1)|st, p]} (3.2)

For the Q-learning agent, the long-term value of taking action ptj at state st is represented by

a ‘state-action value function’ – Q-function

Qj(s
t, ptj) = E(rtj|st, ptj) + δVj(s

t+1)

= E(rtj|st, ptj) + δE[max
p∈A

Q(st+1, p)|st, ptj]
(3.3)

If the state space (S) and action space (A) are finite, the Q-values can be stored in a |S|× |A|

table. Given this Q-table, after observing state st, the algorithm will take the action in set A
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that maximizes the Q-value. The core of the Q-learning algorithm is to learn the Q-values,

which can be achieved by interacting with the environment repeatedly and updating the

Q-table constantly. Specifically, at time t an action ptj is taken, the Q-value Qj(s
t, ptj) will be

updated as follows, while the Q-values for other state-action combinations remain unchanged:

Qj(s
t, ptj) = (1− α)Q(st, ptj) + α(rtj + δmax

p∈A
(Qj(s

t+1, p))) (3.4)

where the additional parameter α is the learning rate. Intuitively, the update rule moves

the current Q-value α “steps” towards the current-period reward plus the discounted value of

the next period state.

Since Q-learning uses a table to store Q-values. Thus it can only work in finite action

space. We use the price grid constructed earlier as the action space for seller j: Aj =

{pj,kj}, kj ∈ {1, .., 10}. Throughout the paper, we allow the Q-learning algorithm to have

a single-period memory. That is, the state consists of the last-period prices of all sellers.

Specifically, S = {(p1,k1 , p2,k2 , ..., pJ,kJ ), k1, k2, ..., kJ ∈ {1, .., 10}. The size of the state space

|S| = 10J . Although seemingly restricted, the number of potential strategies with one-period

memory is actually extremely large. Specifically, there are in total 1010J potential strategies

for the Q-learning algorithm to choose from.

Like other learning algorithms, Q-learning faces the exploration-exploitation trade-off.

On the one hand, it tries to pick the optimal action based on the current knowledge; on

the other hand, it needs to explore other options that have not been visited to learn about

their potential. A commonly used exploration strategy is called the ϵ-greedy strategy. It

takes the greedy action with probability 1− ϵ and randomly picks an action from the action

space with probability ϵ. In practice, ϵ is often set to decrease over time, which allows the

algorithm to explore intensively at first, then take the greedy action once the learning process

is completed. Unless otherwise mentioned, in this paper we set ϵ to decay exponentially over

time: ϵ(t) = e−ωt, where ω is a parameter that controls how fast ϵ decays.

The Q-learning algorithm needs a stopping rule. In the paper, given the size of the state
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space and the action space, we set each session length to 500,000 iterations. Our ex-post check

shows more than 99% of the sessions are stabilized when the session ends (i.e., the optimal

actions do not change for all states). With regards to initialization, given that the learning

algorithm possesses no prior knowledge of the competitor’s strategy, we follow Calvano et al.

(2020) and initialize the Q-value of taking action p in state s as the long-term profit by

charging price p assuming the competitor selects the price randomly.

Once the learning is finished, the Q-learning algorithm’s pricing policy ΦQ can be specified

as in Equation 3.5:

ΦQ : ptj = argmax
p

Q(st, p),∀t (3.5)

3.3.3 Competition

We begin with the case of 2 sellers in the market (J = 2). We study two competitive scenarios:

1) when both sellers use a Q-learning algorithm (Q-Q scenario hereafter) and 2) when a seller

uses a simple rule-based algorithm to compete with a Q-learning algorithm (Q-R scenario

hereafter). Without loss of generality, we assume seller 1 always uses a Q-learning algorithm,

and seller 2, the focal seller, uses Q-learning in the Q-Q scenario and the simple rule-based

algorithms in the Q-R scenario. Algorithm 1 and Algorithm 2 provide the details of the

competition in the Q-Q and Q-R scenarios in pseudo-code form, respectively.

3.4 Market Environment 1: Logit Demand Model

Our initial focus is on the market setting in which the demand model adheres to the canonical

logit demand model. We use aj to denote the product quality of the product j, We use µ to

denote the level of horizontal differentiation among the products. The demand function is as

follows:7

7We normalize the number of consumers to 1.
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Algorithm 1 Q-learning seller v.s. Q-learning seller
Parameters: α ∈ (0, 1], δ ∈ (0, 1), ω ∈ (0,∞)
Initialize Q1(s, p), Q2(s, p), for all s ∈ S, p ∈ A
Initialize t = 1
Initialize s1 while not converge do

end
ϵ← e−ωt

pt1 ←

{
argmaxp Q1(s

t, p) with probability 1− ϵ

a random action with probability ϵ

pt2 ←

{
argmaxp Q2(s

t, p) with probability 1− ϵ

a random action with probability ϵ

Calculate rt1, rt2
st+1 ← (pt1, p

t
2)

Q1(s
t, pt1)← (1− α)Q1(s

t, pt1) + α(rt1 + δmaxp∈A(Q1(s
t+1, p)))

Q2(s
t, pt2)← (1− α)Q2(s

t, pt2) + α(rt2 + δmaxp∈A(Q2(s
t+1, p)))

t← t+ 1

Algorithm 2 Q-learning seller v.s. Simple rule-based seller
Parameters: α ∈ (0, 1], δ ∈ (0, 1), ω ∈ (0,∞), ∆p
Initialize Q1(s, p), for all s ∈ S, p ∈ A
Initialize t = 1
Initialize s1 while not converge do

end
ϵ← e−ωt

pt1 ←

{
argmaxp Q1(s

t, pt1) with probability 1− ϵ

a random action with probability ϵ

pt2 ← st(1)−∆p
Calculate rt1, rt2
st+1 ← (pt1, p

t
2)

Q1(s
t, pt1)← (1− α)Q1(s

t, pt1) + α(rt1 + δmaxp∈A(Q1(s
t+1, p)))

t← t+ 1

Dt
j =

exp(
aj−ptj

µ
)∑

j exp(
aj−ptj

µ
) + exp(a0

µ
)

(3.6)

where a0 is a parameter that captures the demand for the outside good. As mentioned before,

the marginal cost of product j is ci, the profit for the seller j in period t is rtj = (ptj −mcj)D
t
j .

In the baseline model, we focus on the case where J = 2 and the two sellers are symmetric
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(i.e., mc1 = mc2, a1 = a2). We assume that the demand function is unknown to either party,

this assumption highlights an advantage of using a sophisticated learning algorithm over a

simple rule-based algorithm: The optimal price cannot be calculated ex ante, but can be

learned through repeated interactions.

Algorithm Parameters

For Q-learning algorithm hyper-parameters we choose α = 0.15, ω = 1.5 × 10−5. As for

parameters for the demand function, in the baseline model, we set a1 = a2 = 2, a0 = 0,

mc1 = mc2 = 1, and µ = 0.25. We use these configurations for the experiment unless

otherwise mentioned8.

3.4.1 Experiment Outcomes: Baseline Setting

In this section, we present the results obtained from the experiment and compare the

effectiveness of the Q-learning and the simple rule-based algorithms in the Q-Q and Q-R

scenarios respectively on three aspects: 1) equilibrium prices and profits, 2) learning process

and dynamics, and 3) the punishment strategies learned by the algorithms.

Price and Profit Comparison

For both the Q-Q scenario and Q-R scenario, we run the experiment 100 times using the

baseline parameters. The prices charged by seller 2 (averaging over the last 1000 periods)

and the corresponding single period profit for seller 2 (averaging over the last 1000 periods)

are reported in Table 3.2. The values within parentheses represent the standard deviations

across the 100 runs.

The results for the Q-Q scenario are similar to those shown in Calvano et al. (2020).

Specifically, the two Q-learning algorithms learn to charge supra-competitive price (Bertrand-

Nash price is 1.47), however, the price they converge to (around 1.79) is significantly lower

8In Section 3.4.2, we will extend the baseline model by varying the value of α, ω, a0, and µ
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Q-learning Algorithm Rule-based Algorithm
Price 1.787(0.070) 1.870(0.000)
Profit 0.320(0.021) 0.361(0.000)

Table 3.2: Price and Profit Comparison for Focal Seller (Baseline)

Note: The column corresponding to Q-learning algorithm (Rule-based algorithm) represents the
results for the focal seller in the Q-Q (Q-R) scenario.

Figure 3.1: Learning dynamics

Note: In the figure, the points on the solid lines represent the moving average (window size = 1000)
of the average price across the 100 experiments at any t (number of iterations). The upper and
lower bound of the shaded area represent the maximum and the minimum value within the moving
window.

than the monopoly price (1.92). By contrast, in the Q-R scenario, the Q-learning algorithms

quickly learn to charge a price close to the monopoly price, which benefits the simple rule-based

algorithm adopter compared with the Q-Q scenario.

Learning Dynamic Comparison

After observing the distinctions in equilibrium price and profits in the two scenarios, we next

compare their learning dynamics. From the 100 experiments in each scenario, we keep track

of the prices charged by the algorithms in each period and report in Figure 3.1 the average

price charged by the two sellers as a function of the number of iterations.

Learning Speed and Experiment Loss
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We first compare the number of iterations needed for convergence between the Q-Q and

Q-R scenarios. In the Q-Q scenario, roughly 350,000 iterations are needed for convergence.

In the Q-R scenario, by contrast, only 40,000 iterations are needed. We next compare the

loss incurred during the experimentation process. We take the equilibrium profit after prices

converge as benchmark. In each period during experimentation, we compute the difference

between the profit seller 2 gets and the benchmark profit, and we sum them up to measure

the total loss in each scenario. It turns out that seller 2’s experiment loss is on average 2.74

times higher in the Q-Q scenario compared with the Q-R scenario.

Learning Dynamics

Next, we examine the differences in learning processes between the two scenarios by

utilizing the phase plot to illustrate the strategies employed by each seller. Specifically,

we analyze the evolution of the strategy phase plots over time. The figure consists of four

subfigures, each representing the strategy phase graph at a distinct learning stage, as indicated

at the top of each sub-figure. The x-axis and y-axis in each phase graph represent the 10

different prices that can be chosen by seller 1 and seller 2, respectively. The 100 nodes in the

graph represent the 100 states, which correspond to the price pair selected in the last period.

For instance, the lower left node denotes the state in which both sellers chose Bertrand-Nash

price in the previous period, while the upper right node represents the state where both sellers

opted for the Monopoly price. The node size reflects the frequency at which a particular

price pair is selected. Initially, all nodes are of equal size, as both algorithms choose prices

randomly, resulting in all price pairs being selected equally frequently. The arrows in the

graph denote the greedy strategies employed by the algorithms. That is, given a state, the

arrow points to the price pair selected based on the Q values of the two algorithms. We

observe that initially, all nodes point to the third-lowest node, which is the best response

price when the competitor selects a price randomly.

When the learning starts, the algorithms transit from selecting prices randomly to favoring

lower prices as the exploration rate diminishes. As the learning progresses to 39%, nodes
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Figure 3.2: Learning Dynamics in the Q-Q scenario

located in the lower left corner are larger on average, indicating a higher frequency of selecting

low-price pairs, which aligns with our expectations. Concurrently, as the competitor shifts

from random price selection to favoring lower prices, the true Q values for states corresponding

low prices decline. It is noteworthy that the Q values associated with low prices are updated

more frequently and drop at a quicker rate than those for medium and high prices (since

a Q-value is updated only when the corresponding action is taken, which happens more

frequently for low prices). Eventually, the Q values for low prices dip below the Q values for
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medium prices, prompting the algorithms’ greedy strategies to switch from selecting low to

medium prices. At the 51% mark, as shown in the third sub-figure, the large nodes move

upward, indicating that the algorithms begin to coordinate on medium prices. At this stage,

Q values for medium prices are updated more frequently, although they do not plummet

as steeply as the Q values for low prices because the competitor adopts a less competitive

strategy at this stage. Consequently, the Q values for medium prices never drop below those

for high prices. As depicted in the final sub-figure, the upward trend eventually plateaus,

resulting in both sellers repeatedly charging medium prices in the equilibrium.

The phase plots for the Q-R scenario are presented in Figure 3.3. In the Q-R scenario,

the simple rule-based algorithm’s strategy is fixed and the environment for the Q-learning

algorithm is stable. The competitor faced by the Q-learning seller is not required to engage

in random exploration, as observed in the Q-Q scenario. This advantageous feature enables

the Q-learning algorithm to learn to coordinate on the highest price with remarkable speed.

Deviation and Punishment Strategy Comparison

To understand the mechanism driving the competition outcome discussed in the previous

section, we study the strategies learned by the algorithms. For each experiment, we retrieve

the two sellers’ converged Q-tables to derive the sellers’ strategies (i.e., what action to take

in each state (s), which is argmaxa∈A Q(s, a)). We then force seller 1 to deviate from the

learned strategy in one period. Seller 2 continues to play according to its learned strategy in

this period, and in the subsequent period, both sellers play their learned strategies. We find

that in most of the sessions, the two sellers will come back to the pre-deviation price within

10 moves (periods). We then plot the impulse-response functions derived from this exercise

for all 100 experiment sessions 9. Specifically, shown in Figure 3.4a are the prices charged by

the two sellers after the forced deviation of seller 1 in the Q-Q scenario. A similar plot is

shown in Figures 3.4b and 3.4c for the Q-R scenario.

9In this experiment we focus on the sessions that do not lead to price cycles
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Figure 3.3: Learning Dynamics in the Q-R scenario

We then take a closer look at the punishment strategies learned by the Q-learning

algorithm in the Q-Q and Q-R scenarios. We use a directed graph to represent the limit

strategies. Specifically, each node represents a state (a price pair), and each edge represents

the state transition given the two firms’ strategies. For example, an arrow pointing from

node A to node B means that at the state specified in node A, the two algorithms’ strategies

will generate a price pair as specified in node B. The square is the absorbing state where

there are no arrows pointing out. The shade of the nodes denotes the profit gain, darker

110



(a) Q-Q scenario

(b) Q-R scenario

(c) Q-R scenario

Figure 3.4: Deviation-Punishment scheme

The plot shows how prices evolve according to both sellers’ limit strategies after an exogenous price
cut for one of the sellers in 3 different scenarios. Figure (a): In the Q-Q scenario, seller 1 cuts the
price by 5 grids in period 1. Figure (b): In the Q-R scenario, seller 1 (Q-learning algorithm) cuts the
price by 5 grids in period 1. Figure (c): In the Q-R scenario, seller 2 (Simple rule-based algorithm)
cuts the price by 5 grids in period 1.
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nodes mean more collusive price pairs. The nodes’ size represents the node’s importance in

the graph(as measured by betweenness centrality).

Figure 3.5: Graph of Strategies in Q-Q scenario

This is a visual representation of the strategies depicted through a directed graph. The square
represents an absorbing node. All other nodes are represented by circles. The shades reflect the
profit gain, with darker nodes indicating higher profit gains. The size of each node corresponds to
its importance in the graph, as measured by betweenness centrality. In each graph, a blue line is
used to highlight a specific deviation-punishment-reconcile path

In the Q-Q scenario, a deviation from the equilibrium state by seller 1 results in a return

to the absorbing node rather than remaining stuck in another node. Thus, the punishment

strategy in this scenario is not a grim trigger strategy. The graph illustrates a deviation-

punishment-reconciliation path, represented by a blue line, which requires the two sellers

to pass through several progressively darker nodes to return to the absorbing node. This
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Figure 3.6: Graph of Strategies in Q-R scenario

strategy effectively punishes the deviating seller for multiple periods and eases the punishment

over time representing a stick and carrot strategy.

The strategy graph in the Q-R scenario exhibits a distinct pattern: no matter which

node the seller deviates to, it comes back to the equilibrium state almost immediately. The

Q-learning algorithm employed in this scenario learns an ‘always cooperate’ strategy. The

rationale for this is that the simple rule-based algorithm does not facilitate reconciliation

unless the Q-learning algorithm brings the price back to the original level. The Q-learning

algorithm picks this up from the past experience of deviation. Consequently, the algorithm

increases the price immediately after a deviation to reduce the length of the punishment

period and mitigate losses.
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3.4.2 Experiment Outcomes: Alternative Settings

While the main intuition is shown in the baseline setting, we also work on several alternative

settings to show the robustness of our results. In this section, we show how changes in 1),

algorithm parameters, 2), demand structure and 3), different types of rule-based algorithms

affect our main result. We put the study on multiple sellers and more advanced RL pricing

algorithms in Appendix C.1.

Alternative Algorithm Settings

In the main model, algorithm parameters were initially set to their default values. This

section extends the analysis by examining a broader spectrum of parameter values to assess

the robustness of our findings. Specifically, we adjust three critical parameters within the

Q-learning algorithm that are pivotal to its performance: the learning rate (α), the exploration

decay rate (β), and the discount factor (δ).

For the learning rate α, although a typical value used in the Q-learning algorithm is 0.15,

we investigate a range of values from 0.01 to 0.3 while keeping β and δ fixed at 1.5× 10−5

and 0.95, respectively.

Regarding the exploration decay rate β, we examine values ranging from 0.1× 10−5 to

2.8× 10−5 while maintaining α at 0.15. To provide a better understanding of this parameter

range, consider the following examples: with β = 0.1× 10−5, after 250,000 iterations (half

of the total number of iterations), the algorithm continues to explore (i.e., choose random

actions) with a probability of 78%. Conversely, at the other extreme, with β = 2.8× 10−5,

the exploration probability has diminished to nearly 0 (ϵ = 0.1%).

As illustrated in Figure ??, the equilibrium profit for seller 2 in the QR scenario consistently

surpasses the equilibrium profit for seller 2 in the QQ scenario across the explored parameter

ranges. Figure ?? elaborates on the various permutations of α and β within the explored

range, reinforcing our conclusion that the superior performance of the simple rule-based
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(a) Learning Rate (b) Exploration Decay Rate

Figure 3.7: Seller 2’s profit by using Q-learning algorithm and rule-based algorithm under different
values of (a) α and (b) ω.

Note: The boxes in the figure represent the distributions of the seller 2’s profits from 100 experiments.
The box extends from the first quartile to the third quartile, with a line at the median. The whiskers
extend from the box by 0.5× the inter-quartile range (IQR).

algorithm over the Q-learning algorithm is not contingent upon specific parameter settings.

Figure 3.8: Percentage profit increase in seller 2’s profit when choosing Simple Rule-based algorithm
over Q-learning algorithm.

Note: Each cell represents a permutation of α and ω. The values, represented by the shades of the
color, show the percentage difference in profit percentage profit increase in seller 2’s profit when
choosing the Simple Rule-based algorithm over the Q-learning algorithm.

We also explore how the discount factor δ alters the result. δ reflects the sellers’ or the
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algorithms’ time preference. We study how the patience of the seller affect the decision of

choice of algorithms. In particular, while in the main model, we fix δ = 0.95, here we explore

a wider range of values. Figure ?? illustrates the result of comparison.

Figure 3.9: Seller 2’s profit by using Q-learning algorithm and rule-based algorithm under different
values of δ.

Note: The boxes in the figure represent the distributions of the seller 2’s profits from 100 experiments.
The box extends from the first quartile to the third quartile, with a line at the median. The whiskers
extend from the box by 0.5× the inter-quartile range (IQR).

While the simple rule-based algorithm consistently outperforms Q-learning algorithms

when the discount factor δ is large, this strict dominance vanishes when δ is small. In such

cases, both the QQ and QR scenarios result in competitive equilibrium. This observation is

logical, as supra-competitive prices are sustained by punishment strategies.

Without a sufficient level of patience, as represented by a lower δ value, the punishment

strategies (whether deployed by the simple rule-based algorithm or the Q-learning algorithm)

fail to effectively encourage the Q-learning competitor to learn cooperative behavior. Conse-

quently, the Q-learning algorithm is less likely to converge to a collusive outcome when the

discount factor is small, leading to competitive pricing in both the QQ and QR scenarios.

Different Rule Based Pricing Algorithms

We now examine the performance of other rule-based algorithms when they compete with

the Q-learning algorithm. Specifically, we consider the following 3 types of competitor-based
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algorithms and 2 fixed price strategies: 1) Undercut Lowest Price with a Minimum Price

(ULM): The agent using ULM always charges one price grid below the competitor’s last-

period price but will never go below a user-defined minimum price pmin
10. 2) Target Lowest

Price (TL): This algorithm will match the competitor’s last-period price. 3) Target Lowest

Price with a Minimum Price (TLM): The agent using TLM always match the competitor’s

last-period price but will never go below a user-defined minimum price pmin. 4) Fixed Low

Price (FL): The agent naively sets a fixed low price plow
11. 5) Fixed High Price (FH): The

agent naively sets a fixed high price phigh
12.

(a) Price Comparison (b) Profit Comparison

Figure 3.10: (a) Price and (b) Profit comparison between QQ and QR scenario when seller 2 uses
different Simple Rule-based algorithms.

Figure ?? presents a comparison of different rule-based algorithms versus a Q-learning

algorithm in terms of both equilibrium price and equilibrium profit when the competitor

employs a Q-learning algorithm. In the price comparison (Figure 3.10a), the dotted blue line

represents the mean value of seller 2’s equilibrium price when choosing a Q-learning algorithm.

The bars indicate the equilibrium prices when selecting different rule-based algorithms, with

red bars representing the focal seller (seller 2) and gray bars representing the competing seller

(seller 1).

10In this section, we set pmin to the 4th price grid
11In this section, we set plow to the 3rd price grid
12In this section, we set phigh to the 8th price grid
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By comparing the red bars, we observe that all the rule-based algorithms considered

here, except for the fixed low price (FL) strategy, result in a higher equilibrium price for

the focal seller compared to the Q-learning algorithm. Furthermore, when examining the

gray bars, we find that the competitor’s prices in the three competitor-based algorithms

are higher than those in the Q-learning algorithm, while the two fixed price strategies lead

to lower competitor prices compared to the Q-learning algorithm. Consequently, as shown

in Figure 3.10b, the three competitor-based algorithms achieve higher equilibrium profits

than the Q-learning algorithm, whereas the two non-competitor-based algorithms yield lower

equilibrium profits compared to the Q-learning algorithm.

The effectiveness of the simple rule-based algorithm lies not in its simplicity but in

its ability to peg prices to the competitor’s prices. When the competitor is a learning

algorithm, it can effectively learn this pegging pattern and raise prices to reduce the intensity

of competition. This simple pegging strategy resembles the tit-for-tat strategy developed in

evolutionary game theory and exhibits a significant level of sophistication.

Alternative Market Structure

Horizontal Differentiation (Changes in µ):

According to the demand function specified in Equation 3.6, the degree of horizontal

differentiation between the products is captured by the parameter µ. As µ approaches

0, the products become perfect substitutes, and as µ increases, the cross price elasticity

of demand decreases, resulting in products that are more independent of each other. In

the baseline scenario, we set µ = 0.25, and now we consider five different values of µ

(µ ∈ 0.1, 0.2, 0.3, 0.4, 0.5). It is important to note that when µ changes, both the Bertrand-

Nash price and the monopoly price will change accordingly.

Figure 3.11a presents the results of seller 2’s profit under different levels of horizontal

differentiation. As µ decreases (i.e., the degree of horizontal differentiation decreases), seller

2’s equilibrium profit in the Q-Q scenario drops. This is because when the two products
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become more similar, being undercut by competitors will result in lower short-term profits.

Consequently, the algorithm will initially assign lower Q-values to high prices and higher

Q-values to low prices, making it more challenging to coordinate on medium or high prices

later on. However, this pattern is reversed in the Q-R scenario. In this case, the Q-learning

algorithm is always able to charge the highest price, and the lower the value of µ, the higher

the profit that a simple rule-based algorithm can achieve by consistently undercutting its

competitor. Overall, the results demonstrate that the rule-based algorithm outperforms the

Q-learning algorithm consistently across different levels of horizontal differentiation.

(a) Horizontal differentiation (b) Demand Uncertainty

Figure 3.11: Seller 2’s profit by using Q-learning algorithm and rule-based algorithm under different
values of (a) µ and (b) ∆a0.

Note: The boxes in the figure represent the distributions of the seller 2’s profits from 100 experiments.
The box extends from the first quartile to the third quartile, with a line at the median. The whiskers
extend from the box by 0.5× the inter-quartile range (IQR).

Uncertainty in Demand (Changes in a0):

To introduce additional demand uncertainty, we allow the quality of the ’outside good’

to fluctuate from period to period. Specifically, in each period, the quality of the outside

good (a0) can take on either the value −∆a0 or ∆a0, each with a 50% probability. We

conduct experiments with five different values of ∆a0 (∆a0 ∈ 0, 0.125, 0.25, 0.375, 0.5) in this

study. Similar to the previous case, when ∆a0 changes, both the Bertrand-Nash price and

the monopoly price adjust accordingly.
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Figure 3.11b presents the results of seller 2’s profit under different levels of demand

uncertainty. The findings consistently show that the rule-based algorithm provides seller 2

with a higher equilibrium profit across all cases, regardless of the level of demand uncertainty

introduced by the fluctuating quality of the outside good.

3.5 Market Environment 2: A Structural Demand Model

In addition to the stylized logit demand model, we also study more realistic demand models

and see how algorithms behave under these alternative demand structures. In particular, in

this section, we will work on a more sophisticated consumer non-sequential search demand

model where model parameters are estimated from real-world data.

The non-sequential search model is constructed and estimated using transaction-level

data from JD.com, a prominent Chinese e-commerce platform. The model consists of five

vertically differentiated sellers and a unit mass of heterogeneous consumers. These consumers

engage in a two-stage decision-making process: first, they decide which product to click on,

and then they decide which product among the clicked ones to purchase.

Appendix C.2 provides details on the structure of the model. The incorporation of this

non-sequential search model allows for a more realistic representation of consumer behavior

in an online marketplace setting, capturing the inherent complexity of the decision-making

process and the presence of multiple differentiated sellers.

Counterfactual: Algorithmic Pricing

Using the estimated model parameters, we study the competition of pricing algorithmic via

counterfactuals. Specifically, based on the choice of the algorithms of the 5 sellers, we study

two counterfactual scenarios: In counterfactual scenario 1, seller 1 uses a Q-learning pricing

algorithm. Seller 3, 4, and 5 use a simple rule-based pricing algorithm13. In counterfactual

13Here again we use the ‘Undercut Lowest Price’ as a representative for simple rule-based algorithm
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scenario 2, sellers 1 and 3 use Q-learning pricing algorithms. sellers 4 and 5 use simple

rule-based algorithms. In both counterfactual scenarios, we compare seller 2’s equilibrium

price/profit when the seller chooses between a Q-learning algorithm and a simple rule-based

algorithm.

For both the simple rule-based and Q-learning pricing algorithms, we set the size of the

price grids to 10 (i.e., there are 10 equally-spaced possible price levels), and these price grids

are seller specific. Each seller’s price grid ranges from its Nash equilibrium prices (competitive

price) to its monopoly prices. When a seller uses a simple rule-based algorithm, the algorithm

undercuts the lowest price of all Q-learning sellers by one price level (e.g., if Q-learning

seller 1 uses its 7th price level, and Q-learning seller 2 uses its 5th price level, the simple

rule-based algorithm will set price to its 4th price level). We set other hyper-parameters,

including learning rate α, exploration decay rate β, and discount factor δ, to those used in

the the baseline case (in Section 3.4). We simulate the market dynamics in each of the two

counterfactual scenarios under each of Seller 2’s possible algorithm choices (rule-based and

Q-learning) 100 times.

The learning dynamics of the algorithms in the two scenarios are shown in Figures 3.12

and 3.13, and the mean and variance of prices and profits in the two scenarios are reported

in Tables 3.3 and 3.4. In counterfactual scenario 1 (2), the focal seller’s profit will increase

by 4.9% (3.9%) by using a simple rule-based algorithm instead of a Q-learning algorithm. In

the last column of the two tables, we also report the price and profit of our focal seller if

it uses the ‘optimal’ simple rule-based pricing algorithm, in which the algorithm undercut

competitors’ prices by the number of price levels which results in the highest equilibrium

profit. When using the ‘optimal’ rule-based strategy, the focal sellers’ profit will increase by

9.02% (6.8%) in comparison to that from using a Q-learning algorithm.

In counterfactual scenario 1, seller 2, along with other sellers who employ simple rule-based

algorithms, is able to drive the price of seller 1’s product to near-monopoly levels. Seller

2 benefits from the relatively high average market price and consistently prices lower than
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(a) Seller 2: Q-learning (b) Seller 2: Simple rule-based

Figure 3.12: Learning dynamics: Counterfactual Scenario 1

(a) Seller 2: Q-learning (b) Seller 2: Simple rule-based

Figure 3.13: Learning dynamics: Counterfactual Scenario 1
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Seller 2: Q-learning Simple rule-based Rule-based(optimal)
Price 57.6(1.2) 59.6(0.0) 56.8(0.0)
Profit 58052.9(1141.7) 60917.6(3.6) 63291.6(4.7)

Table 3.3: Price and Profit Comparison for Seller 2 (Counterfactual scenario 1)

Seller 2: Q-learning Simple Rule-based Rule-based(optimal)
Price 56.9(0.6) 57.2(1.0) 55.7(1.0)
Profit 57994.8(1018.8) 60248.3(690.3) 61920.2(1212.6)

Table 3.4: Price and Profit Comparison for Seller 2 (Counterfactual scenario 2)

its main competitor, seller 1. However, if seller 2 were to adopt the Q-learning algorithm

concurrently with seller 1, the non-stationarity introduced by simultaneous exploration would

hinder both sellers from raising prices to monopoly levels, resulting in lower profits for seller

2.

In counterfactual scenario 2, the utilization of the Q-learning algorithm by both seller 1

and seller 3 creates a non-stationary environment. If seller 2 also implements the Q-learning

algorithm, it would further exacerbate the non-stationarity, making it more challenging

to search for a joint optimal price. This is because facing two competitors that explore

randomly, as opposed to one, lowers the best response price. Consequently, the Q-learning

algorithms assign higher Q-values to lower prices and lower values to high prices initially,

making it difficult for the algorithm to move from low to middle or high prices. The graphical

representation in Figure 3.13a demonstrates this issue, where initially, the prices sharply

decline and struggle to rebound to the middle or high level. However, utilizing a simple

rule-based algorithm by seller 2 can assist seller 1 and seller 3 in realizing the disadvantage

of being stuck at a low price quickly. If they continue to charge low prices and, in addition,

seller 2 charges an even lower price as a significant competitor, the two sellers would be

incentivized to explore the high price region. This effect is evident in Figure 3.13b, where the

initial price drop is much smaller than in Figure 3.13a, and the sellers increase the price to a

much higher level in the later learning stage.
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3.6 Theoretical Analysis

In the previous sections, we showed, through extensive simulations using the logit demand

model and counterfactual analysis using an estimated demand model from real-world data,

that simple rule-based algorithms provide higher profit compared to Q-learning algorithms

to a seller when competing against others who use Q-learning algorithms. However, do

these results hold under all conditions? To address this issue, we approach the problem

theoretically and identify boundary conditions when simple rule-based algorithms would

dominate Q-learning algorithms.

Modeling the RL pricing algorithm theoretically is challenging. The main source of

complication is the stochastic and dynamic nature of RL algorithms. The updating process

depends on the actions taken and the actions themselves may be determined by random draws.

We develop a theoretical framework that captures the RL pricing dynamics to help understand

how different equilibrium outcomes are reached in different competitive scenarios. In essence,

the framework transforms the discrete-time learning problem into a continuous-time version,

which allows us to characterize the Q-leaning dynamics using a system of differential equations.

This framework enables us to study theoretically how the ‘simultaneous exploration issue’

affects algorithms’ ability to coordinate on high prices and how stationarity brought by the

rule-based algorithm solves this issue.

We put the details of the general theoretical framework in Appendix C.4. Here we present

the result under a simple configuration. First, we limit the size of the price grid (m) to 2:

A = pl, ph. Second, we assume both sellers fully explore (ε = 1 when t ≤ t0) then fully exploit

(ϵ = 0 when t > t0). Third, we use a simple linear demand function Di(pi, p−i) = 1−pi+ bp−i,

where b ∈ (0, 1) capture the cross-price elasticity of the two goods.

Considering that the size of the price grid is 2, we set pl to the Bertrand-Nash price and
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ph to the monopoly price of the stage game:

pl =
1

2− b
, ph =

1

2− 2b
(3.7)

The stage game payoff matrix to seller 1 is shown in Table 3.5, where seller 1 is the row

player and seller 2 is the column player.

pl ph

pl rll =
1

(b− 2)2
rlh =

−b2 + 2b− 2

2(b3 − 5b2 + 8b− 4)

ph rhl =
3b− 2

4 (b3 − 4b2 + 5b− 2)
rhh =

1

4(1− b)

Table 3.5: The Payoff Matrix of the Stage Game

The pricing strategies of sellers are determined by learned Q-values, and once learning

has concluded, Q-values are examined to identify the equilibrium outcome. By examining

the mapping of sellers’ states to actions, we can identify the absorbing state(s) based on

sellers’ strategies. In the event that the Q-values for setting ph are higher than those for

setting pl in any given state, the state (ph, ph) becomes the absorbing state, and both sellers

will charge ph in equilibrium. We put the details on the learning process (how Q-values

evolve) in Appendix C.4 and present the main result here. In the remainder of this section,

we use Q(pk1 ,pk2 )−pk0
(t),∀k1, k2, k3 ∈ {l, h} denote seller’s learned Q-values at time t that

corresponding to charging price pk0 in state (pk1 , pk2).

Lemma 9 The equilibrium outcome in the Q-Q scenario is determined by δ and b, as follows:

1. If δ < b
2−b

, limt→∞Q(pi,pj)−pl(t) > limt→∞Q(pk1 ,pk2 )−ph(t),∀k1, k2 ∈ {l, h}, both sellers

charge pl repeatedly as t→∞.

2. If b
2−b
≤ δ <

√
b

2−b
, limt→∞Q(pl,pl)−pl(t) ≤ limt→∞Q(pl,pl)−ph(t), limt→∞ Q(ph,ph)−pl(t) >

limt→∞ Q(ph,ph)−ph(t), both sellers alternate between pl and ph as t→∞.

3. If δ ≥
√

b
2−b

, limt→∞Q(pl,pl)−pl(t) < limt→∞Q(pl,pl)−ph(t), limt→∞ Q(ph,ph)−pl(t) ≤

limt→∞ Q(ph,ph)−ph(t), both sellers charge ph repeatedly as t→∞.
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The proof of Lemma 9 is available in Appendix C.4.1. Lemma 9 highlights that both

algorithms will cooperate only when they attach great importance to the future (δ is high)

and when the two products are not too similar (b is low). The reasoning behind this is that

the focal seller will benefit more from charging pl than ph since, in all states, the competitor

randomly chooses between pl and ph. As exploration decreases, both sellers frequently charge

pl, causing the Q-values assigned to pl in state (pl, pl) to drop. If the Q-value for pl never falls

below that of ph, neither seller has the incentive to increase the price, and both sellers become

stuck in state (pl, pl). This situation arises when the initial value for ph is extremely low, or

equivalently when b is high and δ is low, making pricing above the competitor unprofitable in

the short term. As soon as both sellers switch to charging ph in state (pl, pl), they alternate

between state (pl, pl) and state (ph, ph), and the Q-value assigned to charging pl in state

(ph, ph) decreases. If the Q-value for pl drops below that of ph in state (ph, ph), both sellers

will learn to charge ph repeatedly. This happens when the initial value for ph is high, or when

b is low and δ is high, making pricing above the competitor profitable in the short term, or

making the seller less concerned about short-term profits.

As for the Q-R scenario, we assume seller 1 uses a Q-learning algorithm, while seller 2

uses a simple rule-based algorithm and always set a price that equals seller 1’s last period

price. The Q-dynamics can be derived similarly (see Appendix C.4 for details). Using the

same simple configurations as in Q-Q scenario, the final learning outcome is summarized in

Lemma 10:

Lemma 10 The equilibrium outcome in the Q-R scenario is determined by δ and b, as

follows:

1. If δ < 1
2
, limt→∞Q(pi,pj)−pl(t) > limt→∞Q(pi,pj)−ph(t),∀i, j ∈ {l, h}, both sellers charge pl

repeatedly as t→∞.

2. If 1
2
≤ δ, limt→∞Q(ph,ph)−pl(t) ≤ limt→∞Q(ph,ph)−ph(t), both sellers charge ph repeatedly as

t→∞.

The proof for Lemma 10 can be found in Appendix C.4.2.
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By comparing the learning outcomes in the Q-Q and the Q-R scenario, Theorem 3

summarizes conditions under which sellers get higher equilibrium payoff in the Q-R scenario

than in the Q-Q scenario.

Theorem 3 Both sellers get weakly higher equilibrium profit in the Q-R scenario than in the

Q-Q scenario if δ ≥ 1
2
.

The proof can be found in Appendix C.4.3. Theorem 3 tells us that when facing a

competitor who adopts a Q-learning pricing algorithm, the focal seller should adopt a simple

rule-based algorithm unless the discount factor is smaller than a threshold 0.5. Although this

threshold may not seem too small, it should be noted that the length between time periods is

also small14. In practice, it is highly unlikely that any sellers will encounter a discount factor

smaller than this value, which is why the previous experimental results consistently show

that a simple rule-based algorithm outperforms a Q-learning algorithm.

3.7 Discussion and Conclusion

This study investigates the issue of algorithmic pricing competition, which has gained

significant attention in recent times. Specifically, this paper aims to answer a crucial question:

what kind of pricing algorithm should a seller use when competing with opponents who

employ sophisticated learning algorithms? Our findings indicate that a simple rule-based

algorithm can remarkably increase the seller’s profit, even in the presence of competitors

using sophisticated learning algorithms. Notably, implementing complex learning algorithms

on online marketplaces can be both costly and risky, as it entails a prolonged exploration

period, during which losses are likely to occur. Such a scenario may pose significant challenges

for small sellers, who may not be well-equipped to bear the risks, thus raising concerns that

they may be at a disadvantage compared to the pre-algorithmic pricing era. Nevertheless,

our results suggest that such concerns are largely unfounded, as the use of a simple rule-

14For example, if the length between time periods is 4 hours, it transfers to a daily discount factor of 0.015.
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based algorithm can yield better outcomes for a seller than utilizing a sophisticated learning

algorithm when competing with competitors using advanced algorithms.

In the legal and policymaking spheres, algorithmic tacit collusion has been a topic of

intense discussion since 2015, with policymakers expressing concern that independent learning

algorithms have the potential to charge supra-competitive prices even in the absence of

communication and coordination among sellers. Our analysis contradicts the conventional

wisdom that more advanced algorithms are better equipped to collude and sustain higher

prices. Instead, we find that the use of a sophisticated learning algorithm by one seller, in

conjunction with simple rule-based algorithms used by others, can result in the sustainment

of higher prices. Policymakers concerned with algorithmic collusion should, therefore, direct

their attention toward this specific scenario, as it presents a unique challenge that demands

tailored interventions.
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Appendix A

Appendix for Chapter 1

A.1 Notation Summary

Notation Meaning
α The marginal effect of type on performance
β The marginal effect of the causal feature on performance
λ The portion of H type agents who are high on the correlational feature
θ The portion of H type agents in the population
CH H type agents’ cost of improving on the causal feature
CL L type agents’ cost of improving on the causal feature
R The job compensation paid by the firm once an agent is hired
State A Low on the causal and high on the correlational feature in the opaque scenario
State B High on the causal and high on the correlational feature in the opaque scenario
State C Low on the causal and low on the correlational feature in the opaque scenario
State D High on the causal and low on the correlational feature in the opaque scenario
State E Low on the causal feature in the transparent scenario
State F High on the causal feature in the transparent scenario

Table A.1: Notation summary

A.2 Discussions of Extensions of the Main Model

In this section, we analyze several extensions by relaxing some of the assumptions in our main

model in Section 1.3. Due to space limitation, we will focus our discussions on the impact of
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algorithmic transparency on the firm, and the main goal is to show that relaxing some of

the assumptions does not alter the main results and insights of the study. Specifically, in

Appendix A.2.1, we relax the assumption that the cost of improving the correlational feature

is zero; in Appendix A.2.2, we relax the assumption that the wage is fixed and exogenously

given; in Appendix A.2.3, we consider the case where agents have incorrect belief of λ. Unless

otherwise noted, all the proofs of the results in this section can be found in Appendix A.4.

A.2.1 Gaming is Costly

In the main model, we have assumed that the cost of improving the correlation feature

(gaming) is minimal regardless of the true type of the agent (we refer to this as the ‘costless’

setting). We now consider the case where the cost of improving the correlational feature is ch

for H type agents and cl for L type agents with cl ≥ ch > 0 (we refer to this as the ‘costly’

setting). This captures the situation where the correlational feature is not easy to game. For

example, a Ph.D. program admission office might use the number of international conferences

an applicant has attended in the past as a correlational feature, or a firm may use AI to

analyze applicants’ behavior (e.g., pace or pitch of speaking) in the interview and use these

verbal clues as correlational features. All these features require a certain amount of effort to

game.

In the following, we first discuss the case where ch = cl = c (we call this the ‘no-advantage’

case) and then we discuss the case where ch < cl (we call this the ‘advantage’ case). Note that

the change in the cost of improving the correlational feature has no impact on our analysis

for the opaque scenario since, in the opaque scenario, the agents cannot manipulate their

values on the correlational feature. As for the transparent scenario, we will show that the

firm will get a weakly higher payoff in the ‘costly’ setting than in the ‘costless’ setting.

Recall that, in the ‘costless’ setting, all agents will eventually have value 1 on the

correlational feature under the transparent algorithm; thus, States A and C collapse into

a single State E whereas States B and D collapse into a single State F according to the
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discussions in Section 1.3.2. In the ‘costly’ setting, some agents may decide not to improve

their correlational feature even when the algorithm is transparent; therefore, agents’ possible

ending states are A, B, C, and D as in the opaque scenario.

The firm’s equilibrium payoffs for the ‘no-advantage’ case are given below. Note that we

divide the regions in the same way for Lemmas 6 and 7 below. However, the firm’s payoff in

each region is different depending on the relative size of c with respect to R.

Lemma 11 In the ‘costly’ setting, when c ≥ R, the equilibrium outcome depends on the

values of (CH , CL), and this dependence is shown in Figure A.1. The corresponding total

payoffs for the firm are given by

Πex1
1a = λθ(α−R)− (1− λ)(1− θ)R

Πex1
2a = θ(α + β −R)

Πex1
3a = Πex1

3b = Πex1
3c = λθ(α + β −R) + (1− λ)(1− θ)(β −R),

where Πex1
i denotes the firm’s total payoff in region i. All payoffs are non-negative.

Lemma 12 In the ‘costly’ setting, when c < R, the equilibrium outcome depends on the

values of (CH , CL), and this dependence is shown in Figure A.1. The corresponding total

payoffs for the firm are given by

Πex2
1a = 0

Πex2
2a = θ(α + β −R)

Πex2
3a = θ(α + β −R) + (1− θ)(β −R)

Πex2
3b = θ(α + β −R) + (1− λ)(1− θ)(β −R)

Πex2
3c = λθ(α + β −R) + (1− λ)(1− θ)(β −R),

where Πex2
i denotes the firm’s total payoff in region i. All payoffs are non-negative.

By directly comparing the firm’s total payoffs in Lemmas 11 and 12 with those in Lemma
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Figure A.1: Equilibrium outcome in the ‘costly’ setting

2, it is not difficult to see that the firm is weakly better off in the ‘costly’ setting than in

‘costless’ setting. We formally summarize this observation in Proposition 10.

Proposition 10 For the ‘no-advantage’ case, the firm gets weakly better payoffs in the ‘costly’

setting than in the ‘costless’ setting regardless of CH , CL, and c.

In general, as c increases, the conditions under which algorithmic transparency is preferred

become less strict (note that, for each region, the payoff in the ‘costly’ setting is at least as

large as the payoff in the ‘costless’ setting). The intuition is as follows: If c is substantial, the

firm might be able to exploit the information on the correlational feature without worrying

about agents gaming the feature even when the algorithm is transparent. To be more

specific, the firm can treat the agents in states {A, B} and states {C, D} differently without

worrying that the agents in states {C, D} will move to states {A, B}, reducing the degree

of separation. Since the average productivity of agents in states {A, B} is higher than the

average productivity of the whole population, the firm can always get a higher payoff in the

‘costly’ setting than in the ‘costless’ setting by hiring a larger number of agents in states {A,

B} than in states {C, D}.

We next study the ‘advantage’ case, where the cost of improving on correlational feature

for H type agents stays at ch = c while the cost for L type agents increases to cl > c.
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Proposition 11 summarizes the main findings:

Proposition 11 The firm gets weakly better payoffs in the ‘advantage’ setting than in the

‘no advantage’ setting regardless of CH , CL, ch and cl.

The intuition of the above result is straightforward: Increasing cl could discourage L type

agents from gaming when the algorithm is transparent, and this is always beneficial to the

firm since agents in states A and B are on average more productive than agents in states C

and D, and the firm always hire more agents from the former states (i.e. PA ≥ PC , PB ≥ PD).

Discouraging L type agents from gaming will further increase the difference in agents’ quality

(i.e., the proportion of H type agents) between states {A, B} and states {C, D} which, in

turn, helps the firm to hire more H type agents while avoiding more L type agents.

To summarize, when the cost of improving the correlational feature is not zero, it can

only strengthen the firm’s incentive to choose a transparent algorithm for any value of CH

and CL.

A.2.2 Endogenous Wage

In the main model, we have shown that, when the wage R is fixed, the firm will be better

off in making the algorithm transparent under certain conditions. A natural question is

whether this result is primarily driven by the fixed wage assumption, that is, whether the

result is driven by the fact that agents’ overall education and productivity increase in the

transparent scenario and the firm can take full advantage of this increase without incurring

any additional cost. If, in the opaque scenario, the firm can lower the wage while still keeping

the agents’ strategies unchanged, it can offset some of the firm’s loss due to agents’ lower

education level. In such a case, the equilibrium profit in the opaque scenario will become

higher because the cost of hiring gets lower. Consequently, the opaque algorithm may become

more attractive than the transparent algorithm and our result might be altered. Our objective

in this subsection is to show that the above argument is only partly true: If we allow the firm

to adjust the wage, while it is true that the equilibrium payoff in the opaque scenario can
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be increased by lowering the wage, the firm can further lower the wage in the transparent

scenario while making sure that it does not worsen the agents’ degree of separation on the

causal feature. As a result, making the algorithm transparent would still be preferable under

certain conditions.

In the main model, the firm is restricted to pay the same wage R regardless of the decision

on algorithmic transparency. In this extension we allow the firm to use RO in the opaque

scenario and RT in the transparent scenario, where RO and RT are smaller than R,1 and

we denote the optimal RO and RT as RO∗ and RT∗ respectively. We further assume that

RO ≥ R where R = max(θα, β + θ(1−λ)α
θ(1−λ)+(1−θ)λ

), consistent with Assumptions 2 and 1.3.4.

The purpose of this extension is not to fully solve for the equilibrium in the endogenous wage

setting, but to show that the major insights from our main model still hold even if the firm is

allowed to strategically lower the wage R.

In this discussion, we will only restrict our attention to the regions that have been

previously identified to favor transparent scenario (i.e., regions C1, C2, and C4 defined in

Section 1.4.3). Specifically, we assume the firm will prefer the transparent algorithm if the

wage is fixed at R0, where (CL

R0
, CH

R0
) lands in regions C1, C2, and C4 defined in Section 1.4.3.

We then let the firm lower the wage from R0 to RO∗ and RT∗ in the opaque and transparent

scenarios, respectively. We denote the firm’s payoff under RO∗ (RT∗) where R0 is in region

Ci in the opaque (transparent) scenario as ΠO
Ci (ΠT

Ci), i ∈ {1, 2, 4}.

Proposition 12 ΠO
Ci ≤ ΠT

Ci, ∀i ∈ {1, 2, 4}.

Proposition 12 tells us that, for the cases that we have previously identified to favor

the transparent scenario, the transparent scenario will still be preferred when the firm is

allowed to strategically lower the wage. The intuition behind this proposition is as follows:

In the opaque scenario, H type agents hold an advantage on the correlational feature and

this will impede them from improving the causal feature. Only when the wage is high will

they be incentivized to improve the causal feature and separate themselves from L type

1Here we only consider the firm’s decision on lowering R. The case where the firm strategically raises R is
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agents. Such an advantage does not exist after the algorithm is made transparent so a lower

wage is sufficient to separate different types of agents. Consequently, the firm is able to set

a lower wage in the transparent scenario than in the opaque scenario without worrying of

decreasing agents’ Dos on the causal feature or decreasing the average value on the causal

feature. Since agents’ productivity (captured by α and β) is assumed to be unaffected by

wage, the firm will benefit more from endogenizing the wage (due to lower a wage expense)

in the transparent scenario than in the opaque scenario; thus, the firm’s incentive to choose a

transparent algorithm will be strengthened.

A.2.3 Agents Have Incorrect Belief of λ

In the main model we have assumed that agents have a correct belief of λ. We now relax this

assumption and consider two possibilities: (1) Agents overestimate λ as λO and (2) Agents

underestimate λ as λU . We assume that

0.5 < λU < λ < λO < 1.

Furthermore, similar to Assumptions 2 and 1.3.4, we assume

(θλU + (1− θ)(1− λU))R

θλU

< α.

and
θ(1− λU)α

θ(1− λU) + (1− θ)λU

< R− β.

The above conditions ensure that, in agents’ (incorrect) belief, the firm will have the incentive

to include the correlational feature in the algorithm.

Note that the agents’ belief about λ is only relevant in the opaque scenario. In the

transparent scenario, the agents’ equilibrium strategies are the same as discussed in Section

similar but less straightforward.
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1.4.2. In the opaque scenario, for both possibilities (1) and (2), it is the agents’ belief of λ,

not the true λ, that will determine their strategies on the causal feature. However, the true

λ will determine the firm’s payoff given the agents’ strategies. There are still five cases as

defined in Section 1.4.1. However, as shown in Figure A.2, the boundaries of these cases are

now determined by λO or λU . Within each case, the firm’s payoff function stays the same

as in Section 1.4.1. The comparison between the opaque and transparent scenarios can be

performed in a similar way as in Section 1.4: We can divide the area below the 45-degree line

into seven regions, N1 to N3 and C1 to C4, as shown in Figure A.3.

(a) Equilibrium outcome under belief λU (b) Equilibrium outcome under belief λO

Figure A.2: Equilibrium outcome when agents have an incorrect belief of λ

Similar to our results in Section 1.4, in regions N1 to N3, the firm will prefer the opaque

algorithm. In region C4, the firm will prefer the transparent algorithm. In region C1 to

C3, whether the firm prefers the transparent or opaque algorithm depends on the value of β.

Generally speaking, when agents overestimate λ, under a wider range of conditions, the firm

will prefer the transparent algorithm. This is reasonable: Overestimating the predictive power

of the unknown correlational feature further prevents agents from competing on the causal

feature in the opaque scenario. As previously discussed, making the algorithm transparent

intensifies agents’ competition on the causal feature, which benefits the firm. This benefit is

larger when agents overestimate λ. Our result also shows that even if agents underestimate
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(a) Agents underestimate λ as λU (b) Agents overestimate λ as λO

Figure A.3: The comparison between transparent and opaque scenario when agents have incorrect
belief on λ

λ, there are still cases in which the transparent algorithm is preferred by the firm.

A.3 Omitted Discussions

A.3.1 Derivation of the Lower and Upper Bound of α and β

In this paper we assume α, the marginal effect of agents’ type being H on their productivity,

to be in a certain range to eliminate uninteresting scenarios:

(θλ+ (1− θ)(1− λ))R

θλ
< α <

R

θ
.

In the opaque scenario, when there is no agent who improves the causal feature, we

want the firm to hire some agents based on the information in the correlational feature

instead of not hiring anyone. (Not hiring anyone in this case is uninteresting because it

will trivially drive everyone to improve the causal feature.) Thus we want α to be large

enough to incentivize the firm to hire agents who have value 1 on the correlational feature.

In the transparent scenario, when there is no agent who improves the causal feature, all
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the agents are mixed together in the feature space: they all have the same values on both

the causal and correlational features. The firm will either hire everyone or not hire anyone,

depending one whether the average productivity of all the agents exceeds the salary or not.

We want α to be small enough that the firm will not hire anyone in this case. (Hiring

everyone in this case is uninteresting because no one will have the incentive to improve on

the causal feature regardless of the cost of improving.) Specifically, rewrite the left inequality

as θλα+ (1− θ)(1− λ)× 0 > (θλ+ (1− θ)(1− λ))R. In the initial distribution of the opaque

scenario (i.e., where everyone has a value of 0 on the causal feature), there are θλ H type

agents and (1− θ)(1− λ) L type agents who have value 0 on the causal feature and value 1

on the correlational feature. The inequality means that their total productivity (left hand

side) should be larger than the total salary paid to them (right hand side). In other words,

the firm has an incentive to hire all of these agents. If this is not the case, then the firm

will not hire any agents with value 0 on the causal feature even if they have value 1 on the

correlational feature, which will trivially incentivize the agents to improve the causal features.

The right inequality means that in the transparent scenario where the correlational feature is

gamed, if everyone has value 0 on the causal feature, the firm will not hire anyone.

In this paper we also assume β, the marginal effect of education on the agent’s productivity,

to be in a certain range to eliminate uninteresting scenarios:

R− θα < β < R− θ(1− λ)α

θ(1− λ) + (1− θ)λ
.

Rewrite the left inequality as θ(α+ β) + (1− θ)β > (θ + (1− θ))R. In the transparent

scenario, when everyone games on the correlational feature and everyone improves the causal

feature, there are θ H type agents and 1− θ L type agents who have value 1 on both features.

The inequality means that their total productivity (left-hand side) is larger than the total

salary paid to them (right-hand side). In other words, the firm will have an incentive to hire

all of them. If this is not the case, then in the transparent scenario, no one will improve on

the causal feature and the firm will end up hiring nobody. As for the right part inequality,
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rewrite it as θ(1− λ)(α + β) + (1− θ)λβ < (θ(1− λ) + (1− θ)λ)R. In the opaque scenario,

when no one games on the correlational feature but everyone improves the causal feature,

there are θ(1− λ) H type agents and (1− θ)λ L type agents who have value 1 on the causal

feature but value 0 on the correlational feature. This inequality means that these agents’

total productivity (left-hand side) is smaller than the total wage paid to them (right-hand

side). In other words, the firm will have no incentive to hire anyone of them. If this is not

the case, then in the opaque scenario, improving the causal feature will guarantee an agent

to be hired regardless of her value on the correlational feature, which will again, lead to an

uninteresting equilibrium.

A.3.2 Discussion on the case where β does not satisfy Assumption

1.3.4

In Assumption 1.3.4, we restrict β in a certain range to avoid uninteresting cases. We now

discuss how the relaxation of this assumption will affect our result. Specifically, we consider

two cases (1) the case where β ≥ R − θ(1−λ)α
θ(1−λ)+(1−θ)λ

(i.e., β exceeds the upper bound (β̄)

defined in Assumption 1.3.4) and (2) the case where β ≤ R− θα (i.e., β is below the lower

bound (β) defined in Assumption 1.3.4), this includes the case β = 0.

We first consider a case where β ≥ R − θ(1−λ)α
θ(1−λ)+(1−θ)λ

. The dependence of equilibrium

outcomes on parameters in the transparent scenario is the same as shown in the original

model. However, the dependence of equilibrium outcomes on parameters in the opaque

scenario has changed, as shown in Figure A.4. The meaning of different cases are defined in

Section 1.4.1.

Compared with the opaque scenario in our original model, relaxing this assumption will

eliminate the two partial separating equilibria. As a result, the firm will be indifferent between

transparent and opaque algorithm in the region denoted as case 3 in Figure A.4 (i.e., the case

where all agents get education and the firm hires everyone). In other regions, the preference

of transparency is exactly the same as our original model. This is a degenerate case of our
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Figure A.4: Equilibrium outcome in the opaque scenario when β ≥ R− θ(1−λ)α
θ(1−λ)+(1−θ)λ

original model.

We now consider a case where β ≤ R− θα. The dependence of equilibrium outcomes on

parameters in the opaque scenario is the same as shown in the original model. However, the

dependence of equilibrium outcomes on parameters in the transparent scenario has changed,

as shown in Figure A.5.

Figure A.5: Equilibrium outcome in the transparent scenario when β ≤ R− θα

Compared with the transparent scenario in our original model, the previous pure strategy

equilibrium case 3 will be replaced by a partial separating equilibrium case 5. As a result,

the firm will get weakly higher payoff in the region denoted as case 5 in Figure A.5, since in
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case 5 some L type agents do not get education and thus are separated apart from H type

agents. The firm’s incentive to choose transparent algorithm weakly increases in this region.

In other regions, the preference of transparency is exactly the same as our original model.

A.3.3 Discussion on the Effect of θ and λ on Decision on Algorithmic

Transparency Under the Stackelberg Model

The effect of θ and λ on the firm’s choice on opacity and full transparency is summarized in

Proposition 13.

Proposition 13 An increase in λ has the following effects on the firm’s decision on trans-

parency:

1. The area of regions C1, C2, and C4 increases, which means that the transparent

algorithm is preferred under more (CH ,CL) value pairs.

2. Within regions C2, the conditions on β to make the transparent algorithm preferred to

the opaque algorithm become stricter (i.e. a larger β is needed).

3. Within regions C2, C3, and N3 the conditions on CL to make the transparent algorithm

preferred to the opaque algorithm become stricter (i.e. a larger CL is needed).

An increase in θ has the following effects on the firm’s decision on transparency:

1. Within region C2, the conditions on β to make the transparent algorithm preferred to

the opaque algorithm is not affected.

2. Within regions C2, C3, and N3 the conditions on CL to make the transparent algorithm

preferred to the opaque algorithm become stricter (i.e. a larger CL is needed).

Proposition 13 can be proved by checking
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∂CC2
L

∂λ
> 0,

∂CC2
L

∂θ
> 0

∂CC3
L

∂λ
> 0,

∂CC3
L

∂θ
> 0

∂CN3
L

∂λ
> 0,

∂CN3
L

∂θ
> 0,

In general, as β and λ increase, the transparent algorithm becomes more attractive

compared with the opaque algorithm. This is because when β and CL increase, the firm’s

equilibrium payoff in the full transparency scenario increases sharply, while the equilibrium

payoff in the opaque scenario is less affected by these two parameters.

A.4 Mathematical Appendix (Proofs of All Results)

A.4.1 Proof of Lemma 1

In the proof, we will proceed as follows: First, we identify different regions in the CH-CL

space in which a certain class of strategies can be sustained as an equilibrium; then we analyze

the corresponding payoffs for the firm and agents.

In the opaque scenario, agents move first and then the firm moves after observing

individuals’ actions. Even though the players in this game move sequentially, we can show

that the PBE of this game coincides with the Bayesian Nash Equilibrium (BNE) of the

corresponding simultaneously move game. The reasons are as follows: The strategies of all the

agents will influence the firm’s choice of algorithms. However, the influence of a single agent’s

action on the firm’s strategy can be neglected. Once an equilibrium is reached, an agent (first

mover) assesses the profitability of a deviation by assuming that the firm’s (second mover)

strategy will not change accordingly. In other words, all the PBEs that can be sustained in

this scenario are actually the BNEs of the corresponding simultaneous move game.
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Opaque scenario 1. We first look at the case where neither H type nor L agents improve

education (i.e., qH = qL = 0). In this case, γe
S = γb

S. The firm’s beliefs are: µ(T = H|S) =

γe
S,∀S ∈ A,C, µ(T = H|S) = 1,∀S ∈ B,D. The firm’s best response is: PA = PB = PD =

1, PC = 0.2 For this strategy combination to be a PBE, the following conditions need to be

satisfied:

CH ≥ (1− λ)R (H type agents will not deviate)

CL ≥ λR (L type agents will not deviate)

γe
A ≥ γth0 (The firm will not deviate on PA)

γe
C ≤ γth0 (The firm will not deviate on PC).

(The first two conditions ensures that the H type and L type agents are better off (in terms

of utility) not improving education, and the last two conditions ensure that the firm is better

off (in terms of total payoffs) not deviating from its current PA and PC .) The first two

conditions specify the regions in CH-CL space that this combination of strategies can be

sustained as an equilibrium (Figure A.6 shows this region). The last two conditions are the

direct consequences of Assumption 2:

λθ

λθ + (1− λ)(1− θ)
≥ R

α
= γth0

(1− λ)θ

(1− λ)θ + λ(1− θ)
≤ θ ≤ R

α
= γth0.

The total payoffs for the firm and each type of agents are given by:

ΠfirmO1
= λθα− (λθ + (1− λ)(1− θ))R

ΠHO1
= θλR

ΠLO1
= (1− θ)(1− λ)R.

where we use ΠHO1
and ΠLO1

to denote the total payoff of H type and L type agents,

2Any PB ∈ [0, 1] and PD ∈ [0, 1] can be sustained since they are off the equilibrium path. Here we pick
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respectively. (In the remaining of the proof, we will use ΠHOi
and ΠLOi to denote the total

payoff of H type and L type agents under case i, respectively.)

Figure A.6: Opaque scenario 1

Opaque scenario 2. In this case, only H type agents improve education but L type agents

do not (i.e., qH = 1,qL = 0), and we have: γe
B = γe

D = 1 and γe
A = γe

C = 0. The firm’s beliefs

are: µ(T = H|S) = 0,∀S ∈ A,C, µ(T = H|S) = 1,∀S ∈ B,D. The firm’s best response

is PA = PC = 0, PB = PD = 1. For this strategy combination to be a PBE, the following

conditions on the parameters need to be satisfied:

CH ≤ R (H type agents will not deviate)

CL ≥ R (L type agents will not deviate)

γe
B ≥ γth1, γ

e
D ≥ γth1 (The firm will not deviate on PB and PD)

γe
A ≤ γth0, γ

e
C ≤ γth0 (The firm will not deviate on PA and PC).

The first two conditions specify the regions (see Figure A.7) where this combination of

strategies can be sustained as an equilibrium. The last two constraints are trivially satisfied.

The total payoffs for the firm and each type of agents are given by:

the maximum value of PB and PD to make sure the equilibrium could survive the intuitive criterion.
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ΠfirmO2
= θ(α + β)− θR

ΠHO2
= θ(R− CH)

ΠLO2
= 0.

Figure A.7: Opaque scenario 2

Opaque scenario 3. In this case, both H type and L type agents improve education (i.e.,

qH = qL = 1). The values of γe’s are given below:

γe
A = γe

C = 0

γe
B =

λθ

λθ + (1− λ)(1− θ)

γe
D =

(1− λ)θ

(1− λ)θ + λ(1− θ)
.

The firm’s beliefs are: µ(T = H|S) = 0,∀S ∈ A,C, µ(T = H|S) = γe
S,∀S ∈ B,D. The

firm’s best response is to set PA = PC = PD = 0, PB = 1. For this strategy combination to
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be a PBE, we need the following conditions:

CH ≤ λR (H type agents will not deviate)

CL ≤ (1− λ)R (H type agents will not deviate)

γe
B ≥ γth1 (The firm will not deviate on PB)

γe
D ≤ γth1 (The firm will not deviate on PD).

The first two conditions specify the regions (see Figure A.8) where this combination of

strategies can be sustained as an equilibrium. The last two conditions are direct consequences

of Assumption 1 and 2. The total payoffs for the firm and each type of agents are given by:

ΠfirmO3
= λθ(α + β) + (1− λ)(1− θ)β − (λθ + (1− λ)(1− θ))R

ΠHO3
= θλR− θCH

ΠLO3
= (1− θ)(1− λ)R− (1− θ)CL.

Figure A.8: Opaque scenario 3

Opaque scenario 4. In this case, H type agents improve education with probability qH and
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L type agents do not improve education (i.e., qL = 0). The values of γe’s are given below:

γe
A =

θ(1− qH)λ

θ(1− qH)λ+ (1− θ)(1− λ)

γe
C =

θ(1− qH)(1− λ)

θ(1− qH)(1− λ) + (1− θ)λ

γe
B = γe

D = 1.

The firm’s beliefs are: µ(T = H|S) = γe
S,∀S ∈ A,C, µ(T = H|S) = 1,∀S ∈ B,D. The

firm’s best response is to use PA = p4, PC = 0, PB = PD = 1. For this strategy combination

to be a PBE, the following conditions should hold:

CH = (1− λp4)R (H type agents are indifferent)

CL ≥ (1− (1− λ)p4)R (L type agents will not deviate)

γe
A = γth0 (The firm is indifferent on PA)

γe
C ≤ γth0 (The firm will not deviate on PC).

The last condition is satisfied following Assumption 2:

γe
C =

θ(1− qH)(1− λ)

θ(1− qH)(1− λ) + (1− θ)λ
≤ (1− λ)θ

(1− λ)θ + λ(1− θ)
≤ R

α
= γth0.

The first condition could be used to express p as a function of the other parameters and,

similarly, the third condition can be used to express qH as a function of the other parameters.

Specifically, we have:

p4 =
1

λ

(
1− CH

R

)
(A.1)

qH = 1− R(1− θ)(1− λ)

(α−R)θλ
. (A.2)

Given the fact that p and qH are values between 0 and 1, we can calculate the range for CH
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and CL in which this combination of strategies can be sustained as an equilibrium (see Figure

A.9):

(1− λ)R ≤ CH ≤ R

R− CH

R− CL

≤ λ

1− λ
.

where the first inequality follows from the first condition and the second inequality follows

from the second condition.

Figure A.9: Opaque scenario 4

The total payoffs for the firm and each type of agents are given by:

ΠfirmO4
= θqH(α + β)− θqHR

ΠHO4
= θ(R− CH)

ΠLO4
= p4(1− θ)(1− λ)R.

Opaque scenario 5. In this case, H type agents improve education and L type agents
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improve education with probability qL (i.e., qH = 1). We have:

γe
A = γe

C = 0

γe
B =

θλ

θλ+ (1− θ)qL(1− λ)

γe
D =

θ(1− λ)

θ(1− λ) + (1− θ)qLλ
.

The firm’s beliefs are: µ(T = H|S) = 0,∀S ∈ A,C, µ(T = H|S) = γe
S,∀S ∈ B,D. The

firm’s best response is to use PA = PC = 0, PB = 1, PD = p5. For this strategy combination

to be a PBE, the following conditions should hold:

CH ≤ (λ+ p5(1− λ))R (H type agents will not deviate)

CL = ((1− λ) + p5λ)R (L type agents are indifferent)

γe
B ≥ γth1 (The firm will not deviate on PB)

γe
D = γth1 (The firm will not deviate on PD).

The second condition can be used to express p as a function of the other parameters while the

last condition can be used to express qL as a function of the other parameters. Specifically,

p5 =
CL −R

λR
+ 1 (A.3)

qL =
(α + β −R)θ(1− λ)

(1− θ)λ(R− β)
. (A.4)

The third condition is satisfied following Equations 2 and 1.3.4:

γe
B =

θλ

θλ+ (1− θ)qL(1− λ)
≥ γth0.

Given the fact that p and qL are values between 0 and 1, we can calculate the range for CH
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and CL in which this combination of strategies can be sustained as an equilibrium:

(1− λ)R ≤ CL ≤ R

R− CH

R− CL

≥ 1− λ

λ
.

Figure A.10: Opaque scenario 5

The total payoffs for the firm and each type of agents are given by:

ΠfirmO5
= θλ(α + β −R) + (1− θ)qL(1− λ)(β −R)

=
2λ− 1

λ
θ(α + β −R)

ΠHO5
= (θλ+ θ(1− λ)p5)R− θCH

ΠLO5
= 0.

Dealing with multiple equilibria. Per our analysis of the above five cases, there are

several regions where multiple equilibria exist. According to the dynamics of the game, in

the opaque scenario, the agents move first and the firm moves next. Thus, we first narrow

down to the equilibria that survive the intuitive criterion (Cho and Kreps, 1987) and then
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select the equilibrium outcome which gives the largest total utilities for each agent type.3 (In

theory, finding such an equilibrium is not always possible; fortunately, it is possible in our

case.)

• In the region where Case 4 and Case 5 overlap, Case 4 always gives higher payoffs to

both H type and L type agents:

ΠHO4
= θ(R− CH) > (θλ+ θ(1− λ)p5)R− θCH = ΠHO5

ΠLO4
= p4(1− θ)(1− λ)R > 0 = ΠLO5

.

The inequalities hold since p4 =
R−CH

λR
and p5 =

CL−R
λR

+ 1 are values between 0 and 1.

• In the region where Case 4 and Case 1 overlap, Case 1 always gives higher payoffs to

both H type and L type agents:

ΠHO1
= θλR ≥ θ(R− CH) = ΠHO4

ΠLO1
= (1− θ)(1− λ)R ≥ p4(1− θ)(1− λ)R = ΠLO4

.

The inequalities hold since CH

R
≥ 1 − λ in the overlapped region and p4 = R−CH

λR
is

between 0 and 1.

• In the region where Case 1 and Case 2 overlap, Case 1 always gives higher payoffs to

both H type and L type agents:

ΠHO1
= θλR ≥ θ(R− CH) = ΠHO2

ΠLO1
= (1− θ)(1− λ)R ≥ 0 = ΠLO2

.

The first inequality holds since CH

R
≥ 1− λ in the overlapped region.

• In the region where Case 1 and Case 5 overlap, Case 1 always gives higher payoffs to

3We select the equilibrium that gives the largest total utility for each agent type, which shares the same
spirit of the undefeated criterion introduced by Mailath et al. (1993). (See also (Schmidt and Buell, 2017))
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both H type and L type agents:

ΠHO1
≥ ΠHO4

≥ ΠHO5

ΠLO1
≥ ΠLO4

≥ ΠLO5
.

The first inequality holds since CH

R
≥ 1− λ in the overlapped region.

A.4.2 Proof of Lemma 2

Similar to the proof of the opaque scenario, we proceed by analyzing the same five cases

analyzed in the opaque scenario. We show that only the equilibrium outcomes corresponding

to cases 1 to 3 are sustainable. Recall that in Lemma 2 we study the case where the firm does

not have commitment power, thus the firm’s action in the first stage (announcing the hiring

probabilities) is not binding. Similar to what we have done in Lemma 1, we can show the

PBEs of this game coincide with the BNEs of the corresponding simultaneous move game.

Transparent scenario 1. We first look at the case where neither H type nor L type agents

improve education (i.e., qH = qL = 0). In this case, γe
E = θ and γe

F = 0. The firm’s beliefs

are: µ(T = H|E) = θ, µ(T = H|F ) = 1. The firm’s best response is: PE = 0, PF = 1. For

this strategy combination to be a PBE, the following conditions should be satisfied:

CH ≥ R (H type agents will not deviate)

CL ≥ R (L type agents will not deviate)

γe
E ≤ γth0 (The firm will not deviate deviate on PE).

The last condition is the direct consequence of Assumption 2:

γe
E = θ <

R− β

α
<

R

α
= γth0.
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The first two conditions specify the regions in CH-CL space that this combination of strategies

can be sustained as an equilibrium (Figure A.11 shows this region). The total payoffs for the

firm and each type of agents are given by:

ΠfirmT1
= 0

ΠHT1
= 0

ΠLT1
= 0.

where we use ΠHT1
and ΠLT1

to denote the total payoff of H type and L type agents,

respectively. (In the remaining of the proof, we will use ΠHTi
and ΠLTi

to denote the total

payoff of H type and L type agents under transparent case i, respectively.)

Figure A.11: Transparent scenario 1

Transparent scenario 2. In this case, only H type agents improve education but L type

agents do not (i.e., qH = 1, qL = 0), and we have: γe
E = 0 and γe

F = 1. The firm’s beliefs are:

µ(T = H|E) = 0, µ(T = H|F ) = 1. The firm’s best response is PE = 0, PF = 1. For this

strategy combination to be a PBE, the following conditions on the parameters need to be

153



satisfied:

CH ≤ R (H type agents will not deviate)

CL ≥ R (L type agents will not deviate)

γe
E ≤ γth0 (The firm will not deviate on PE)

γe
F ≥ γth1 (The firm will not deviate on PF ).

The last two conditions are trivially satisfied (by Assumption 1, we have 0 < γth1 < γth0 < 1).

The first two conditions specify the regions in CH-CL space that this combination of strategies

can be sustained as an equilibrium (Figure A.12 shows this region). The total payoffs for the

firm and each type of agents are given by:

ΠfirmT2
= θ(α + β −R)

ΠHT2
= θ(R− CH)

ΠLT2
= 0.

Figure A.12: Transparent scenario 2

Transparent scenario 3. In this case, both H type and L type agents improve education
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(i.e., qH = qL = 1), and we have: γe
E = 0 and γe

F = θ. The firm’s beliefs are: µ(T = H|E) = 0,

µ(T = H|F ) = θ. The firm’s best response is PE = 0, PF = 1. For this strategy combination

to be a PBE, the following conditions on the parameters need to be satisfied:

CH ≤ R (H type agents will not deviate)

CL ≤ R (L type agents will not deviate)

γe
F ≥ γth1 (The firm will not deviate on PF ).

The third condition is a direct consequence of Assumption 1.3.4. The first two conditions

specify the regions in CH-CL space that this combination of strategies can be sustained as an

equilibrium (Figure A.13 shows this region). The total payoffs for the firm and each type of

agents are given by:

ΠfirmT3
= θ(α + β) + (1− θ)β −R

ΠHT3
= θ(R− CH)

ΠLT3
= (1− θ)(R− CL).

Figure A.13: Transparent scenario 3
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Transparent scenario 4. In this case, H type agents improve education with probability

qH and L type agents do not improve education (i.e., qL = 0). The values of γe’s are given

below:

γe
E =

(1− qH)θ

(1− qH)θ + (1− θ)

γe
F = 1.

The firm’s beliefs are: µ(T = H|E) = γe
E, µ(T = H|F ) = 1.The firm’s best response is

PE = p, PF = 1. For this strategy combination to be a PBE, the following conditions on the

parameters need to be satisfied:

CH = (1− p)R (H type agents are indifferent)

CL ≥ (1− p)R (L type agents will not deviate)

γe
E = γth0 (The firm is indifferent on PE).

Since qH ∈ [0, 1], 0 < γe
E < θ. The last condition requires 0 < R

α
< θ, or equivalently α > R

θ
.

In the range of α that we are considering (i.e., (θλ+(1−θ)(1−λ))R
θλ

< α < R
θ
, by Assumption 2),

this combination of strategies cannot be sustained as an equilibrium.

Transparent scenario 5. In this case, H type agents improve education and L type agents

improve education with probability qL (i.e., qH = 1). The values of γe’s are given below:

γe
E = 0

γe
F =

θ

θ + (1− θ)qL
.

The firm’s beliefs are: µ(T = H|E) = 0, µ(T = H|F ) = γe
F . The firm’s best response is

PE = 0, PF = p. For this strategy combination to be a PBE, the following conditions on the
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parameters need to be satisfied:

CH ≤ pR (H type agents will not deviate)

CL = pR (L type agents are indifferent)

γe
F = γth1 (The firm is indifferent on PF ).

Note that, the second condition implies p = CL

R
. Given that p ∈ [0, 1], any value of CL ∈ [0, R]

is valid. As for the last condition, qL ∈ [0, 1] implies θ < γe
F < 1. However, by Assumption

1.3.4, β > R− θα, which implies γth1 = R−β
α

< θ. Thus, the last condition cannot be satisfied

and, therefore, this combination of strategies cannot be sustained as an equilibrium.

A.4.3 Proof of Lemma 3

The proof of Lemma 3 is straightforward: ΠagentsOi
= ΠHOi

+ ΠLOi
∀i ∈ {1, 2, 3, 4, 5},

ΠagentsTi
= ΠHTi

+ ΠLTi
∀i ∈ {1, 2, 3}, where ΠHOi

, ΠLOi
, ΠHTi

, ΠLTi
are defined in Ap-

pendix A.4.1 and A.4.2.

A.4.4 Proof of Lemma 4 and Lemma 5

We start from the equilibrium strategy in the partial transparency case and see whether

there exists an ex-post sub-optimal strategy that the firm can commit to that can further

increase the firm’s payoff. In region 1 of Figure 1.5, any commitment on hiring strategy will

not change agents’ behavior on the causal feature, because in this region, neither type of

agents will improve education due to the large values of CH and CL. Therefore, the firm will

not commit to an ex-post sub-optimal strategy. The equilibrium payoff in this region is equal

to that in the partial transparency case ΠFT1 = 0. In region 2, the firm has no incentive to

commit to an ex-post sub-optimal strategy because the H type and L type agents are already

perfectly separated on the causal feature, and the firm has achieved the maximum payoff.

Thus the equilibrium payoff in this region is ΠFT2 = θ(α+ β −R). However, in region 3, the
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firm may have an incentive to commit to a strategy that is ex-post sub-optimal. Given a

(CH , CL) combination in this region, the firm could announce hiring probabilities PE = 0 and

PF = CL

R
.4 Observing this hiring strategy, H type agents improve education but L type agents

choose not to. The firm then follows the pre-announced hiring strategy and hires CL

R
portion

of H type agents in State F , and this will result in a payoff of ΠStackelberg =
CLθ(α+β−R)

R
. This

payoff is greater than the equilibrium payoff when the firm does not have the commitment

power (i.e., ΠfirmT3
= θ(α + β) + (1 − θ)β − R in Lemma 2) if and only if CL

R
≥ p0 where

p0 =
θα+β−R
θ(α+β−R)

. The region in which the condition CL

R
≥ p0 holds is denoted as region S in

Figure 1.5.

As for the agents welfare, it is easy to check that in region S, all H type agents improve

education but only CL

R
fraction of them will be hired, thus ΠagentsFTS

= θ(CL−CH). In other

regions, agents welfare stays the same as in the partial transparency case because neither

agents’ nor the firm’s strategy changes.

A.4.5 Proof of Lemma 11 and Lemma 12

We start with the ‘no-advantage case’. We first consider the case where c ≥ R. In this

case, no agents will improve the correlational feature. If CH > R and CL > R, the firm

sets PA = 1, PB = PC = PD = 0, no agents will move, and the equilibrium payoff to the

firm is given by Πex1
1a = λθ(α − R) − (1 − λ)(1 − θ)R. If CH ≤ R and CL > R, the firm

sets PA = PC = 0, PB = PC = 1, all H type agents improve the causal feature, and the

equilibrium payoff to the firm is Πex1
2a = θ(α + β −R). If CH ≤ R and CL ≤ R, the firm sets

PB = 1, PA = PC = PD = 0, all agents in state A move to state B, and the equilibrium payoff

to the firm is Πex1
3a = Πex1

3b = Πex1
3c = λθ(α + β −R) + (1− λ)(1− θ)(β −R).

We next consider the ‘no-advantage case’ with c < R. We identify an equilibrium for

each of the 5 regions denoted in Figure A.1. In region 1a, the firm sets PA = c
R
, PC = 0,

PB ∈ [0, 1], PD ∈ [0, 1], a fraction of agents in State C move to State A to make the firm

4Here we only consider the case where θ < R
α+β , the results in for the case where θ ≥ R

α+β could be derived
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indifferent between hiring and not hiring in State A. The equilibrium payoff to the firm is

given by Πex2
1a = 0. In region 2a, the firm sets PA = PC = 0, PB = PD = 1, all H type agents

improve the causal feature, and the equilibrium payoff to the firm is Πex2
2a = θ(α+ β −R). In

region 3a, the firm sets PA = PC = 0, PB = PD = 1, all agents improve the causal feature,

and the equilibrium payoff to the firm is Πex2
3a = θ(α+ β −R) + (1− θ)(β −R). In region 3b,

the firm sets PA = PC = PD = 0, PB = 1, H type agents in State A and C move to State B,

and the equilibrium payoff to the firm is Πex2
3b = θ(α+ β − R) + (1− λ)(1− θ)(β − R). In

region 3c, the firm sets PA = PC = PD = 0, PB = 1, H type agents in State A move to State

B, and the equilibrium payoff to the firm is Πex2
3c = λθ(α + β −R) + (1− λ)(1− θ)(β −R).

By comparing the equilibrium payoffs in the ‘costly’ and the ‘costless’ setting, we have

Πex1
1a > ΠfirmT1, Πex1

2a = ΠfirmT2, Πex1
3a = Πex1

3b = Πex1
3c > ΠfirmT3. Moreover, Πex2

1a = ΠfirmT1,

Πex2
2a = ΠfirmT2, Πex2

3a = ΠfirmT3, Πex2
3b > ΠfirmT3, Πex2

3c > ΠfirmT3. Thus, the firm will receive

a weakly better payoff than in the ‘costless’ setting for any combination of CH , CL, and c.

A.4.6 Proof of Proposition 3

We first identify the conditions under which the firm will prefer the fully transparent algorithm

over the opaque algorithm; this can be done by comparing the firm’s equilibrium payoff in

each scenario (shown in Lemma 1 and Lemma 4). The conditions are summarized in Theorem

4.

Theorem 4 The firm will prefer the fully transparent algorithm over the opaque algorithm if

and only if any of the following conditions is satisfied:

• Value pair (CL

R
, CH

R
) falls in region C1.

• Value pair (CL

R
, CH

R
) falls in region C4.

• Value pair (CL

R
, CH

R
) falls in region C2 and either β > β2 or CL > CC2

L .

• Value pair (CL

R
, CH

R
) falls in region C3 and CL > CC3

L .

• Value pair (CL

R
, CH

R
) falls in region N3 and CL > CN3

L .

similarly.

159



where CC2
L = R− R2(1−θ)(1−λ)

(α−R)θλ
, CC3

L = (2λ−1)Rθ
λ

, CN3
L = Rλθ + R(1−λ)(1−θ)(β−R)

θ(α+β−R)
.

Now we prove Theorem 4. Recall that, in Appendix A.4.4, we have shown that the firm’s

equilibrium payoffs are the same in the partial transparency scenario and the full transparency

scenario if the value pair (CL

R
, CH

R
) falls in region N1, N2, and C4. Thus, in these regions, the

firm’s preference of transparency will not change when we switch from partial transparency to

full transparency. If the value pair instead falls in regions C1, C2, C3, and N3, the firm may

get a strictly higher payoff when we consider full transparency instead of partial transparency

since these regions might overlap with region S. Consequently, in these regions, the firm’s

decision on algorithmic transparency might be altered if we study full transparency instead of

partial transparency. First, notice that the left boundary of region S is CL

R
= p0 =

θα+β−R
θ(α+β−R)

.

It is not difficult to check that p0 ∈ [0, 2− 1
λ
] and region C1 will be included in region S since

the left boundary of region C1 is CL

R
= λ and λ ≥ 2− 1

λ
. Within region C1, the firm’s payoff

is constant in the opaque scenario (ΠC1
O = λθα− (λθ + (1− λ)(1− θ))R) but increases in CL

in the full transparency scenario. The minimum payoff for the firm in the full transparency

scenario in region C1 is reached at the left boundary and its value is minΠC1
FT = λθ(α+β−R).

Since minΠC1
FT−ΠC1

O = λθβ+(1−λ)(1−θ)R > 0, the firm will always prefer full transparency

over opacity in region C1. For region C2, β > β2 is a sufficient condition for the firm to prefer

partial transparency over opacity and, thus, is also a sufficient condition for the firm to prefer

full transparency over opacity since the firm’s payoff is weakly higher in the full transparency

scenario than in the partial transparency scenario. Another sufficient condition on CL > CC2
L

could be found by letting ΠC2
FT = ΠC2

O . Adding together, (β > β2 or CL > CC2
L ) constitutes a

necessary and sufficient condition for the firm to prefer transparency over opacity in region

C2. The necessary and sufficient conditions for the firm to prefer transparency in region C3

and N3 can be found similarly and the details are omitted here.
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A.4.7 Proof of Proposition 11

Our discussion on the ‘advantage’ case where cl > ch is built on the previous case where

ch = cl = c shown in Lemma 11 and Lemma 12. We show that an increase in cl can weakly

increase the firm’s payoff in the transparent scenario. We will show this case by case in

Figure A.1. In region 1a, increasing cl will not impact agents’ behavior on the causal feature.

It can only affect L type agents’ incentive to game the correlational feature, and this is

always beneficial to the firm since the two types of agents will become more separated on

the correlational feature compared with the ‘no advantage’ case. In regions 2a, since L type

agents will not improve on the correlational feature even in the ’no-advantage’ case, increasing

cl will not affect the equilibrium outcome and the payoff for the firm. In region 3a, before cl

reaches R, it would have no impact on the equilibrium outcome. If cl increases to a value

greater than R, the firm will be better off compared with the ‘no advantage’ case since L

type agents in State C will not be willing to move to State B and thus H type and L type

agents can be better separated apart. In regions 3b and 3c, increasing cl will have no impact

on the equilibrium outcome since L type agents in State C will not improve the causal feature

even in the ‘no advantage’ case. To summarize, the firm gets weakly better payoffs in the

‘advantage’ setting than in the ‘no advantage’ setting.

A.4.8 Proof of Proposition 12

To make our discussion concrete, we assume the firm starts from a fixed wage R0 and

can strategically lower the wage to RO and RT in the opaque and transparent scenario,

respectively. On the one hand, the firm has an incentive to decrease R to reduce the cost of

hiring; on the other hand, the degree of separation among the agents on the causal feature

may become worse if R is too small. The firm sets R by considering the trade-off between

these two effects. We assume that RO and RT satisfy the conditions in Assumptions 1-1.3.4.
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(a) Endogenous R in the opaque scenario (b) Endogenous R in the transparent scenario

Figure A.14: Illustration on how the firm chooses optimal wage

Specifically, RO > R and RT > R, where R = max(θα, β + θ(1−λ)α
θ(1−λ)+(1−θ)λ

)5. This assumption

helps us avoid several uninteresting scenarios such as the case where the firm sets RO or RT

at a very low level such that it does not care about the true type of an applicant. Below, we

analyze the firm’s optimal choice of RO and RT and compare the equilibrium payoff in the

opaque and transparent scenarios.

We start with the opaque scenario. Recall that, in Section 1.4.1, we divided the CH-CL

space into different regions according to agents’ strategies on the causal feature. Now, since

RO can be decreased by the firm, the (x, y) coordinates of any point (CL

RO
, CH

RO
) in Figure

A.14a can be increased proportionally. For example, the yellow point in Figure A.14a will

be moving along the yellow line, and the two ends of the line are defined as (CL

R0
, CH

R0
) and

(CL

R
, CH

R
). As discussed before, we restrict our attention to the case where the firm prefers the

transparent scenario under the fixed wage setting (R0); in other words, we only consider the

case where the left end of the line (CL

R0
, CH

R0
) lands in region C1, C2, and C4. We first study

the case where the left end of the line lies in region C1 or C4. In this case, reducing RO will

not change agents’ behavior on the causal feature (i.e., the whole yellow line lies in region

‘case 1’ defined in Section 1.4.1). Consequently, the firm will set RO∗ = R, and using the

payoff function we have derived in Section 1.4.1, we have that the firm’s equilibrium payoff
5This assumption can be relaxed and it will not affect the intuition provided by the analysis
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is ΠO
C1 = ΠO

C4 = λθα − (λθ + (1 − λ)(1 − θ))R. We next move to the case where (CL

R0
, CH

R0
)

lands in region C2. In this case, if RO is set lower than CL

λ
, the yellow point will cross the

boundary of case 1 and case 4 so agents’ strategies on the causal feature will be altered. The

optimal point is either at the boundary of case 1 and case 4 or at the right end of the yellow

line, depending on which of them gives the firm a higher payoff. That is,

RO∗ =


CL

R0
if R < CL

R0
and ΠfirmO4

(CL

R0
) ≥ ΠfirmO1

(R)

R if R ≤ CL

R0
or ΠfirmO4

(CL

R0
) < ΠfirmO1

(R)

where ΠfirmO1
(R) and ΠfirmO4

(R) are the firm’s payoff functions as defined in Section 1.4.1:

ΠfirmO1
(R) = λθα − (λθ + (1 − λ)(1 − θ))R, ΠfirmO4

(R) = θ(α + β − R)
(
1− R(1−θ)(1−λ)

(α−R)θλ

)
.

The firm’s optimal payoff in region C2 can then be shown as

ΠO
C2 =


λθα− (λθ + (1− λ)(1− θ))RO∗ if RO∗ ≤ CL

R0

θ(α + β −RO∗)
(
1− RO∗(1−θ)(1−λ)

(α−RO∗)θλ

)
otherwise

We next move to the transparent scenario. Figure A.14b illustrates how RT ∈ [R,R0]

affects the agents’ behavior on the causal feature in the transparent scenario. Similar to our

discussions in the opaque scenario, we only consider the case where (CL

R0
, CH

R0
) falls in C1, C2,

and C4. We first consider the case where R ≥ CH . It is straightforward to see that, in this

case, RT∗ = R regardless of which region (CL

R0
, CH

R0
) is in. Next, we consider the case where

R < CH : it can be shown that in this case RT∗ = CH regardless of which region (CL

R0
, CH

R0
) is

in. The intuition is as follows: If the yellow line crosses the border between case 1 and case 2,

the optimal point will be exactly on the border because a further decrease in RT will change

the agents’ strategies on the causal feature from perfect separation to polling, and the latter
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will result in a zero payoff. The firm’s optimal payoff can then be shown as

ΠT
C1 = ΠT

C2 = ΠT
C4 =


θ(α + β −RT∗) if RT∗ ≤ CL

θ(α + β) + (1− θ)β −RT∗ otherwise

We next compare the optimal wage and the maximum profit in the opaque and the

transparent scenarios. It is straightforward to see RT∗ ≤ RO∗ if R ≥ CH . Comparing the

optimal payoff functions, we have ΠT
Ci ≥ ΠO

Ci,∀i ∈ 1, 2, 4. There is an intuitive explanation

behind this result: If we force the firm to choose RO∗ (a sub-optimal choice) in the transparent

scenario, the firm can still get a better payoff than choosing RO∗ (the optimal choice)

in the opaque scenario, which means that the firm will get an even better payoff when

choosing RT∗ in the transparent scenario. We next consider the case R < CH . In this

case, when RT∗ = CH and RO∗ = R, RT∗ ≤ RO∗ does not hold, and therefore, the above

logic does not work. We need to directly compare the firm’s payoff in the transparent

and the opaque scenarios. Note that in this case ( CL

RT ∗ ,
CH

RT ∗) falls in region C4, which

belongs to transparent scenario 2; ( CL

RO∗ ,
CH

RO∗) falls in region N1, which belongs to opaque

scenario 1. Using the firm’s payoff function shown in Lemma 1 and Lemma 2, we get

ΠT
Ci = θ(α + β − RT∗) and ΠO

Ci = λθα − (λθ + (1 − λ)(1 − θ))R. Since RT∗ < β + θα

(according to Assumption 1.3.4) and RO∗ = R ≥ θα (according to Assumption 2), the

following inequalities must hold: ΠT
Ci = θ(α + β −RT∗) > θ(α + β − (β + θα)) = αθ(1− θ),

and ΠO
Ci = λθα− (λθ+(1−λ)(1− θ))R < λθα− (λθ+(1−λ)(1− θ))θα = αθ(1− θ)(2λ− 1).

Considering the fact that 2λ− 1 ≤ 1, we have ΠT
Ci > ΠO

Ci, ∀i ∈ 1, 2, 4.
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Appendix B

Appendix for Chapter 2

B.1 Notation Summary

B.2 Model Extension

B.2.1 Multiple Applications

In the main model, we restrict each borrower to apply to at most one lender for simplification.

In this appendix, we consider the possibility that a lender with a unit demand may apply to

multiple lenders sequentially. This scenario arises when, for example, a borrower believes

she will be approved by both lenders and applies to lender 1, but is rejected by lender 1 due

to incorrect beliefs. She then proceeds to apply to lender 2. Considering the multi-stage

application process is more complicated, but it is worth examining to assess the robustness

of our result. Specifically, in this extension, borrowers have the opportunity to re-apply to

another lender if they are rejected by one lender.

Notice that this adjustment does not change the analysis for the R-R scenario, since the

approval decisions that borrowers receive are always consistent with their beliefs. In the N-N

scenario, this adjustment will change borrowers’ behavior and the lenders’ equilibrium pricing

strategy accordingly. In particular, given our assumption of binary beliefs, borrowers who
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Notation Meaning
Pb Accuracy of lenders’ algorithms
Pc Accuracy of borrowers’ beliefs in absence of pre-approval tools
θ Percentage of H type borrowers in the population
m Borrowers’ cost of applying
Mh Utility of being approved for a H type borrower
Ml Utility of being approved for a L type borrower
b Interest rate set by the lenders
b Maximum interest rate can be set by the lenders
Y i
k,b Lender i’s prediction of borrower k’s type

Y i
k,c borrower k’s belief of lender i’s approval decision

N rr
hh(Nnn

hh ) The number of borrowers in a lender’s common segment in the
R-R (N-N) case

N rr
hl (Nnn

hl ) The number of borrowers in a lender’s captive segment in the
R-R (N-N) case

V rr
hh (V nn

hh ) The percentage of H type borrowers in a lender’s common segment
in the R-R (N-N) case

V rr
hl (V nn

hl ) The percentage of H type borrowers in a lender’s captive segment
in the R-R (N-N) case

N1
hh(N2

hh) The number of borrowers in Lender 1(2)’s common segment in the
R-N case

N1
hl(N2

lh) The number of borrowers in Lender 1(2)’s captive segment in the
R-N case

V 1
hh(V 1

hh) The percentage of H type borrowers in Lender 1(2)’s common segment
in the R-N case

V 1
hl(V 2

lh) The percentage of H type borrowers in Lender 1(2)’s captive segment
in the R-N case

Table B.1: Notation summary
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believe they will not be approved by either lender will not apply in the first place. Similarly,

borrowers who believe they will be approved by only one of the two lenders but end up

being rejected will not apply to the other lender either. The possibility of re-application

only arises for borrowers who believe they will be approved by both lenders but end up

being rejected by one of them. From lender 1’s perspective, this refers to the HHLH (Row 3,

Column 1) and LHLH (Row 3, Column 3) segments depicted in Table 2.2. Moreover, the

LHLH segment does not affect lender 1’s pricing strategy since they will not be approved

by lender 1 eventually. The only segment that affects lenders’ equilibrium strategies is the

HHLH segment: now, even when a lender’s price is higher than the competitor’s, it will still

attract the HHLH segment eventually. Consequently, competition is less intense compared

to the main model. The lenders’ equilibrium profits are shown in Lemma 13.

Lemma 13 With borrowers’ multi-stage applications, the lenders’ equilibrium payoff in the

N-N scenario is:

Πnn−MA = Nnn
hl

(
bV nn

hl + V nn
hl − 1

)
+Nnn

x

(
bV nn

x + V nn
x − 1

)
= Πnn +Nnn

x

(
bV nn

x + V nn
x − 1

)
Where Nnn

hl and V nn
hl are defined in Section 2.4.4, Πnn is the equilibrium payoff in the main

case, and Nnn
x = Pb(1 − Pb)Pc(1 − Pc) and V nn

x = θ are the number of borrowers and the

fraction of H type borrowers in the HHLH segment, respectively.

Comparing Lemma 13 with Lemma 7, we observe that both lenders’ equilibrium profits

are higher than those in the main model: the existence of this HHLH segment softens the

competition.

In the R-N scenario, following similar logic, the HLH segment in Table 2.3 will be affected:

they will apply to lender 1 after the initial rejection from lender 2 (not the other way around

since if they first apply to lender 1, they will get approved). The lenders’ equilibrium profits

in this case are summarized in Lemma 14.
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Lemma 14 With borrowers’ multi-stage applications, the lenders’ equilibrium payoff in the

R-N scenario is:

Π1
rn−MA = Π1

rn +N rn
x

(
bV rn

x + V rn
x − 1

)
Π2

rn−MA = Π2
rn +N rn

x (bV rn
x + V rn

x − 1)(N2
hhV

2
hh +N2

lhV
2
lh)/(N

1
hhV

1
hh +N1

hlV
1
hl)

Where N1
hh, V 1

hh, N1
hl, V 1

hl, N2
lh, and V 2

lh are defined in Section 2.4.4, Π1
rn and Π2

rn are the

equilibrium payoff for the R-N scenario in the main model. And N rn
x = Pb(1− Pb)(1− Pc)

and V rn
x = θ are the number of borrowers and the fraction of H type borrowers in the HLH

segment, respectively.

It’s straightforward to see that the equilibrium payoffs for the two lenders here are strictly

higher than those in the main model (i.e., Π1
rn−MA > Π1

rn and Π2
rn−MA > Π2

rn), showing that

the inclusion of segment HLH softens the competition.

By comparing the equilibrium outcomes in each case, the lenders’ decisions on pre-approval

revelation are summarized in Proposition 14.

Proposition 14 Anticipating borrowers’ multi-stage applications, the condition on Pb for

the asymmetric pre-approval revealing equilibrium is less strict compared with the main case

in Proposition 4.

The proof is straightforward. Notice that N-N will again never be sustained in equilibrium,

given 1) Π1
rn > Πnn (from Proposition 4) and 2) Π1

rn−MA − Π1
rn > Πnn−MA − Πnn (which

can be derived by comparing Lemma 13 and 14). Now, whether the equilibrium is R-R or

R-N depends on the non-revealing lender’s equilibrium payoff in each case. The equilibrium

payoff in the R-R scenario is the same as in the main case, as discussed before. However, the

equilibrium payoff in the R-N scenario is higher than that in the main case: Π2
rn−MA > Π2

rn

(the extra term in the expression of Π2
rn−MA is strictly positive). Thus, for any parameter

configurations that will sustain R-N as an equilibrium in the main case, they will also sustain

R-N as an equilibrium in this extended model. The main results of our paper are strengthened
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(a) SPNE in the main model (b) SPNE in the extended model

Figure B.1: Pre-approval revealing equilibrium (depending on Pb and Pc) comparison between the
main model and the extended model. Other parameters are set at: θ = 0.8, b = 0.5. In region R-R,
both lenders reveal. In region R-N, only one lender reveals

when considering multi-stage applications.

A visual comparison of the SPNE in the main case and in this extension is shown in

Figure B.1.

B.2.2 Vertically Differentiated Products

In this appendix, we relax the assumption of symmetric lenders and consider the case

where lender 1’s quality is higher than lender 2’s. This can be thought of as lender 1’s

financial product having better non-price features or the overall service being of higher quality.

Specifically, we use M1
h (M2

h) to denote the overall benefit that an H type borrower can get

from lender 1(2)’s product, and similarly use M1
l (M2

l ) to denote the overall benefit that

an L type borrower can get from lender 1(2)’s product. For ease of discussion, we assume

M1
h −M2

h = M1
l −M2

l = δb, where δb > 0.

With asymmetric lenders, solving for the equilibrium pricing strategy and equilibrium

price is more complicated, as we cannot simply focus on the symmetric mixed strategy

equilibrium as in Appendix B.3.1 and B.3.2. The detailed derivations are omitted; instead,

we directly report the equilibrium outcomes. Since the two lenders are not symmetric, we

have to study 4 subgames: the R-R case where both lenders reveal the pre-approval outcomes,
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the N-N case where neither lender reveals, the R-N case where only lender 1 reveals, and the

N-R case where only lender 2 reveals.

The equilibrium profits for each of the 4 subgames are shown in Lemma 15, 16, 17, 18,

respectively.

Lemma 15 With vertically differentiated products, if both lenders reveal the pre-approval

outcomes (R-R case), lender 1 and 2’s equilibrium payoffs are:

Π1
rr−V D = max(1[F 1A

rr (b) ≤ 1] · Π1A
rr , 1[F

2B
rr (b) < 1] · Π1B

rr ))) (B.1)

Π2
rr−V D = max(1[F 1A

rr (b) ≤ 1] · Π2A
rr , 1[F

2B
rr (b) < 1] · Π2B

rr ))) (B.2)

Where

Π1A
rr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1 + δbθ(1− Pb))

)
Π2A

rr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1− δbPbθ

)
Π1B

rr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1 + δbPbθ)

)
Π2B

rr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1 + δbθ(Pb − 1)

)
F 1A
rr (b) =

Pbθ (b− δb)− Pbθ − Pb

(
−bPbθ + bθ − δbPbθ − Pbθ + Pb + θ − 1

)
+ Pb + θ − 1

Pb
2θ (b− δb) + Pb

2θ − Pb
2 − 2Pbθ + 2Pb + θ − 1

F 2B
rr (b) =

Pbθ (b+ δb)− Pbθ − Pb

(
−bPbθ + bθ + δbPbθ − Pbθ + Pb + θ − 1

)
+ Pb + θ − 1

Pb
2θ (b+ δb) + Pb

2θ − Pb
2 − 2Pbθ + 2Pb + θ − 1

Lemma 16 With vertically differentiated products, if neither lenders reveal the pre-approval

outcomes (N-N case), lender 1 and 2’s equilibrium payoffs are:

Π1
nn−V D = max(1[F 1A

nn (b) ≤ 1] · Π1A
nn, 1[F

2B
nn (b) < 1] · Π1B

nn))) (B.3)

Π2
nn−V D = max(1[F 1A

nn (b) ≤ 1] · Π2A
nn, 1[F

2B
nn (b) < 1] · Π2B

nn))) (B.4)
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Where

Π1A
nn = Nhl

(
bVhl + δbVhl + Vhl − 1

)
Π2A

nn = bNhlVhl − δbNhhVhh +NhlVhl −Nhl

Π1B
nn = bNhlVhl + δbNhhVhh +NhlVhl −Nhl

Π2B
nn = Nhl

(
bVhl − δbVhl + Vhl − 1

)
F 1A
nn (b) =

−bNhlVhl + δbNhhVhh +NhhVhh (b− δb) +NhhVhh −Nhh +NhlVhl (b− δb)

Nhh (Vhh (b− δb) + Vhh − 1)

F 2B
nn (b) =

−bNhlVhl − δbNhhVhh +NhhVhh (b+ δb) +NhhVhh −Nhh +NhlVhl (b+ δb)

Nhh (Vhh (b+ δb) + Vhh − 1)

Lemma 17 With vertically differentiated products, if only lender 1 reveals the pre-approval

outcomes (R-N case), lender 1 and 2’s equilibrium payoffs are:

Π1
rn−V D = max(1[F 1A

rn (b) ≤ 1] · Π1A
rn , 1[F

2B
rn (b) < 1] · Π1B

rn ))) (B.5)

Π2
rn−V D = max(1[F 1A

rn (b) ≤ 1] · Π2A
rn , 1[F

2B
rn (b) < 1] · Π2B

rn ))) (B.6)
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Where

Π1A
rn =N1

hl

(
bV 1

hl + δbV 1
hl + V 1

hl − 1
)

Π2A
rn =(bN2

hhN
1
hlV

2
hhV

1
hl + bN1

hlN
2
lhV

1
hlV

2
lh − δbN1

hhN
2
hhV

1
hhV

2
hh − δbN1

hhN
2
lhV

1
hhV

2
lh

−N1
hhN

2
hhV

1
hh +N1

hhN
2
hhV

2
hh −N1

hhN
2
lhV

1
hh +N1

hhN
2
lhV

2
lh +N2

hhN
1
hlV

2
hhV

1
hl

−N2
hhN

1
hlV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh −N1

hlN
2
lhV

1
hl)/(N

1
hhV

1
hh +N1

hlV
1
hl)

Π1B
rn =(bN1

hhN
2
lhV

1
hhV

2
lh + bN1

hlN
2
lhV

1
hlV

2
lh + δbN1

hhN
2
hhV

1
hhV

2
hh + δbN2

hhN
1
hlV

2
hhV

1
hl

+N1
hhN

2
hhV

1
hh −N1

hhN
2
hhV

2
hh +N1

hhN
2
lhV

1
hhV

2
lh −N1

hhN
2
lhV

2
lh −N2

hhN
1
hlV

2
hh

+N2
hhN

1
hlV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh −N1

hlN
2
lhV

2
lh)/(N

2
hhV

2
hh +N2

lhV
2
lh)

Π2B
rn =N2

lh

(
bV 2

lh − δbV 2
lh + V 2

lh − 1
)

F 1A
rn (b) =((N2

hhV
2
hh +N2

lhV
2
lh) (b− δb+ 1)−N2

hh −N2
lh − Π2A

rn )/(N
2
hh

(
V 2
hh (b− δb+ 1)− 1

)
)

F 2B
rn (b) =((N1

hhV
1
hh +N1

hlV
1
hl) (b+ δb+ 1)−N1

hh −N1
hl − Π1B

rn )/(N
1
hh

(
V 1
hh (b+ δb+ 1)− 1

)
)

Lemma 18 With vertically differentiated products, if only lender 2 reveals the pre-approval

outcomes (N-R case), lender 1 and 2’s equilibrium payoffs are:

Π1
nr−V D = max(1[F 1A

nr (b) ≤ 1] · Π1A
nr , 1[F

2B
nr (b) < 1] · Π1B

nr ))) (B.7)

Π2
nr−V D = max(1[F 1A

nr (b) ≤ 1] · Π2A
nr , 1[F

2B
nr (b) < 1] · Π2B

nr ))) (B.8)
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Where

Π1A
nr =(bN2

hhN
1
hlV

2
hhV

1
hl + bN1

hlN
2
lhV

1
hlV

2
lh + δbN1

hhN
2
hhV

1
hhV

2
hh + δbN1

hhN
2
lhV

1
hhV

2
lh

−N1
hhN

2
hhV

1
hh +N1

hhN
2
hhV

2
hh −N1

hhN
2
lhV

1
hh +N1

hhN
2
lhV

2
lh +N2

hhN
1
hlV

2
hhV

1
hl

−N2
hhN

1
hlV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh −N1

hlN
2
lhV

1
hl)/(N

1
hhV

1
hh +N1

hlV
1
hl)

Π2A
nr =N1

hl

(
bV 1

hl − δbV 1
hl + V 1

hl − 1
)

Π1B
nr =N2

lh

(
bV 2

lh + δbV 2
lh + V 2

lh − 1
)

Π2B
nr =(bN1

hhN
2
lhV

1
hhV

2
lh + bN1

hlN
2
lhV

1
hlV

2
lh − δbN1

hhN
2
hhV

1
hhV

2
hh − δbN2

hhN
1
hlV

2
hhV

1
hl

+N1
hhN

2
hhV

1
hh −N1

hhN
2
hhV

2
hh +N1

hhN
2
lhV

1
hhV

2
lh −N1

hhN
2
lhV

2
lh −N2

hhN
1
hlV

2
hh

+N2
hhN

1
hlV

1
hl +N1

hlN
2
lhV

1
hlV

2
lh −N1

hlN
2
lhV

2
lh)/(N

2
hhV

2
hh +N2

lhV
2
lh)

F 1A
nn =((N2

hhV
2
hh +N2

lhV
2
lh) (b+ δb+ 1)−N2

hh −N2
lh − Π1A

nr )/(N
2
hh

(
V 2
hh (b+ δb+ 1)− 1

)
)

F 2B
nr =((N1

hhV
1
hh +N1

hlV
1
hl) (b− δb+ 1)−N1

hh −N1
hl − Π2B

nr )/(N
1
hh

(
V 1
hh (b− δb+ 1)− 1

)
)

The equilibrium outcomes in all the subgames constitute the payoff metric that two

lenders face in the pre-approval revealing stage:

Lender 2
Not Reveal Reveal

Lender 1 Not Reveal (Π1
nn−V D,Π

2
nn−V D) (Π1

nr−V D,Π
2
nr−V D)

Reveal (Π1
rn−V D,Π

2
rn−V D) (Π1

rr−V D,Π
2
rr−V D)

The comparison of each term in the payoff matrix is not straightforward, here we nu-

merically show the equilibrium outcome under each parameter pair. Consistent with the

parameters used in Figure 2.4, in Figure B.2, we use θ = 0.8 and b = 0.5, and vary Pb, Pc,

and δb.

Compare Figure B.2 with Figure 2.4, the result on asymmetric equilibrium stays unchanged

qualitatively: at least one of the two lenders will reveal the pre-approval outcome, and both

will reveal only if Pb is relatively small.
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(a) δb = 0.025 (b) δb = 0.05 (c) δb = 0.1

Figure B.2: Pre-approval revealing equilibrium depending on Pb, Pc, and δb when θ = 0.8, b = 0.5.
In region R-R, both lenders reveal. In region R-N, lender 1 reveals. In region N-R, lender 2 reveals.
In region R-N/N-R, there exists two asymmetric equilibrium

B.2.3 Asymmetric Lender Accuracy

In this section, we relax the symmetric algorithm accuracy assumption and allow the two

lenders’ algorithms to have different predictive accuracy. Denote lender 1’s algorithm’s

accuracy as Pb1, lender 2’s as Pb2. We assume Pb1 ≥ Pb2 without loss of generality. Specifically,

we use a parameter η to capture the difference in the two lenders’ algorithm accuracy:

Pb2 = 0.5 + η(Pb1 − 0.5) where η ∈ (0, 1]. As mentioned in Appendix ??, with asymmetric

lenders, solving for the equilibrium pricing strategy is more complicated, since we cannot

simply focus on the symmetric mixed strategies. We study 4 subgames in this extension: R-R

case where both lenders reveal the pre-approval outcomes. N-N case where neither lender

reveals. R-N case where only lender 1 reveals. N-R case where only lender 2 reveals.

We omit the detailed derivations of equilibrium strategies in each subgame and directly

show the results visually. Consistent with the parameters used in Figure 2.4, in Figure B.3,

we use θ = 0.8 and b = 0.5, and vary Pb1, Pc, and η.

Compare Figure B.3 with Figure 2.4, the result on asymmetric equilibrium stays unchanged

qualitatively: at least one of the two lenders will reveal the pre-approval outcome, and both

will reveal only if Pb is relatively small. However, as the difference between the two lenders’
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(a) η = 0.95 (b) η = 0.90 (c) η = 0.80

Figure B.3: Pre-approval revealing equilibrium depending on Pb1, Pc, and η when θ = 0.8, b = 0.5.
In region R-R, both lenders reveal. In region R-N, lender 1 reveals. In region N-R, lender 2 reveals.
In region R-N/N-R, there exists two asymmetric equilibrium

algorithm accuracy increases (i.e., as η decreases), the region where only the high-accuracy

lender (i.e., lender 1) reveals emerges and enlarges. To explain this, let’s recap the logic for the

existence of asymmetric equilibrium: the non-revealing lender does not want to reveal because

it will lead to head-head competition with the other lender. However, if the non-revealing

lenders’ accuracy is high, its concerns about the intensified competition in the R-R case will

be reduced thanks to its advantage in accuracy. The high accuracy non-revealing lender will

have the incentive to reveal, eliminating the N-R case being an equilibrium. Moreover, this

happens only when Pb is not very large, otherwise, the competition intensity in the R-R case

will be so high that even the high-accuracy lender wants to avoid it. In such a case, we will

get both N-R and R-N as an equilibrium (the dark grey regions in each graph).

B.2.4 Correlated Predictions

In this subsection, we relax the independence assumption and allow the two lenders’ predictions

on borrowers’ types to be positively correlated. Specifically, we use a parameter ρ to capture

the amount of correlation between the two lenders: the probability that both lenders predict

an H-type borrower as H-type is P 2
b +ρ(Pb−P 2

b ), the probability that both lenders predict an

H-type borrower as L-type is (1−Pb)
2+ ρ(1−Pb− (1−Pb)

2), the probability that lender 1(2)
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(a) ρ = 0 (b) ρ = 0.2 (c) ρ = 0.4

Figure B.4: Pre-approval revealing equilibrium depending on Pb, Pc, and ρ when θ = 0.8, b = 0.5.
In region R-R, both lenders reveal. In region R-N/N-R, there exists two asymmetric equilibrium

predicts an H-type borrower as H-type but lender 2(1) predicts as L-type is Pb(1−Pb)(1− ρ).

When ρ = 0, it degenerates to the independence case we studied in the main model.

Again, we omit the detailed derivations of equilibrium strategies in each subgame and

directly show the results visually. Consistent with the parameters used in Figure 2.4, in

Figure B.4, we use θ = 0.8 and b = 0.5, and vary Pb1, Pc, and ρ.

Relaxing the independence assumption strengthens our main results. As the correlation

between the two lenders’ predictions increases, asymmetric revealing equilibria appear in

larger regions. The logic is clear: as the correlation of predictions increases, the two lenders

tend to favor the same group of borrowers, intensifying the competition. If these borrowers

know they will be approved by both lenders upfront, it will make things even worse for the

two lenders. That’s why with correlated predictions, the two lenders have a higher incentive

to avoid the R-R case, making the asymmetric case more favorable.

B.3 Mathematical Appendix

B.3.1 Proof of Lemma 6

Let F rr(b) denote the CDF of both lender’s equilibrium mixed strategy for the pricing decision.
Facing Lender 2’s mixed strategy characterized by F rr(b), Lender 1’s expected profit is:
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E[Πrr
1 ](b) =(1− F rr(b))(N rr

hh(V
rr
hhb− 1 + V rr

hh ) +N rr
hl (V

rr
hl b− 1 + V rr

hl ))

+ F rr(N rr
hl (V

rr
hl b− 1 + V rr

hl ))
(B.9)

The first line in Equation (B.9) corresponds to the case where Lender 1 sets a lower interest
rate b than Lender 2 and thus Lender 1 gets segments Arr

hh and Arr
hl . The second line

corresponds to the case where Lender 1 sets a higher b than Lender 2 and thus Lender 1 gets
only segment Arr

hl .
To make sure that Lender 1 is using the same mixed strategy characterized by F rr(b),

Lender 1 has to be indifferent in setting any b on the support of F rr(b), mathematically,

E[Πrr
1 ](b) = k (B.10)

where k is a constant. The maximum b that can be set by the lenders is b, i.e.,

F rr(b) = 1 (B.11)

Using Equations (B.9), (B.10), and (B.11), we can solve for F rr(b). The mixed strategy
equilibrium in this sub-game is as shown in Lemma 6.

B.3.2 Proof of Lemma 7

From Table 2.2, we can calculate:

Nnn
hh = P 2

c P
2
b θ + Pc(1− Pc)Pb(1− Pb) + P 2

c (1− Pb)
2(1− θ)

V nn
hh =

P 2
c P

2
b θ + Pc(1− Pc)Pb(1− Pb)θ

Nnn
hh

> θ

Nnn
hl = Pc(1− Pc)P

2
b θ + Pc(1− Pc)(1− Pb)

2(1− θ) + P 2
c Pb(1− Pb)

V nn
hl =

P 2
b Pc(1− Pc)θ + P 2

c Pb(1− Pb)θ

Nnn
hl

> θ

(B.12)

Facing Lender 2’s pricing strategy characterized by the CDF F nn(b), Lender 1’s expected
profit is:

E[Π1](b) =(1− F nn(b))(Nnn
hh (V

nn
hh b− (1− V nn

hh ))b) +Nnn
hl (V

nn
hl b− (1− V nn

hl )))

+ F nn(b)Nnn
hl (V

nn
hl b− (1− V nn

hl ))
(B.13)

The first line corresponds to the case where Lender 1 sets a lower b than Lender 2, and
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thus Lender 1 gets segments Ann
hh and Ann

hl . The second line corresponds to the case where
Lender 1 sets a higher b than Lender 2, and thus Lender 1 only gets the Ann

hl segment.

In a symmetric equilibrium, Lender 1 is using the same mixed strategy characterized by
F nn(b), therefore, Lender 1 has to be indifferent in setting any b on the support of F nn(b).
Mathematically,

E[Π1](b) = k (B.14)

where k is a constant. The maximum b that can be set by the lenders is b, i.e.,

F nn(b) = 1 (B.15)

Combining Equations (B.13), (B.14), and (B.15), we can solve for F nn(b). The mixed
strategy equilibrium in this sub-game is summarized in Lemma 7.

B.3.3 Proof of Lemma 8

From Table 2.3, we can calculate:

N1
hh =Pb

2Pcθ + Pbθ (−Pb + 1) (−Pc + 1) + Pb (−Pb + 1) (−Pc + 1) (−θ + 1)

+ Pc(−Pb + 1)2 (−θ + 1)

N2
hh =Pb

2Pcθ + Pc(−Pb + 1)2 (−θ + 1)

N1
hl =Pb

2θ (−Pc + 1) + PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1)

+ (−Pb + 1)2 (−Pc + 1) (−θ + 1)

N2
lh =PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1)

V 1
hh =

Pb
2Pcθ + Pbθ (−Pb + 1) (−Pc + 1)

Pb
2Pcθ + Pbθ (−Pb + 1) (−Pc + 1) + Pb (−Pb + 1) (−Pc + 1) (−θ + 1) + Pc(−Pb + 1)2 (−θ + 1)

V 2
hh =

Pb
2Pcθ

Pb
2Pcθ + Pc(−Pb + 1)2 (−θ + 1)

V 1
hl =

Pb
2θ (−Pc + 1) + PbPcθ (−Pb + 1)

Pb
2θ (−Pc + 1) + PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1) + (−Pb + 1)2 (−Pc + 1) (−θ + 1)

V 2
lh =

PbPcθ (−Pb + 1)

PbPcθ (−Pb + 1) + PbPc (−Pb + 1) (−θ + 1)
(B.16)

If b1 > b2, Lender 1 will only get the A1
hl segment, and Lender 2 will get the A2

hh and A2
lh

segments. If b1 < b2, Lender 1 will get the A1
hh and A1

hl segments, and Lender 2 will get only
the A2

lh segment of borrowers. We do not need to consider the case where b1 = b2 since this

178



will happen with probability 0 under the mixed strategy setting.1

Lender 1’s expected payoff can be written as:

E[Πrn
1 ] = (1− F2(b))

(
N1

hh

(
V 1
hhb− 1 + V 1

hh

)
+N1

hl

(
V 1
hlb− 1 + V 1

hl

))
+ F2(b)N

1
hl

(
V 1
hlb− 1 + V 1

hl

) (B.17)

Lender 2’ expected payoff can be written as:

E[Πrn
2 ] = (1− F1(b))

(
N2

hh

(
V 2
hhb− 1 + V 2

hh

)
+N2

lh

(
V 2
lhb− 1 + V 2

lh

)
)
)

+ F1(b)N
2
lh

(
V 2
lhb− 1 + V 2

lh

) (B.18)

Facing the competitor’s strategy, Lender 1 (Lender 2) should be indifferent in any b in
the support of F1(b) and F2(b). Mathematically:

E[Πrn
1 ](b) = k1 (B.19)

E[Πrn
2 ](b) = k2 (B.20)

Additionally, consider the maximum b that can be set by both firm is b, we have

F1(b) = 1 (B.21)

F2(b) = 1 (B.22)

Another condition that need to be satisfied is that the CDF F1(b) should be greater than
or equal to 0 in any region where a positive probability is assigned to F2(b). Similarly, the
CDF F2(b) should be greater than or equal to 0 in any region where a positive probability
is assigned to F1(b). The logic is that setting b1 = min(b2) ensures that Lender 1 gets
the common segment with probability 1, so Lender 1 has no incentive to further reduce
b1. Similarly, setting b2 = min(b1) ensures that Lender 2 gets the common segment with
probability 1 so Lender 2 has no incentive to further reduce b2. This requires:

F1(b) = 0 (B.23)

F2(b) = 0 (B.24)

Solving Equations (B.17) - (B.24), we get each lender’s equilibrium strategy in the R-N
sub-game. The mixed strategy equilibrium in this sub-game is summarized in Lemma 8.

1It can be shown that there is no mass point on b2’s distribution.
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B.3.4 Proof of Proposition 4

We first prove that Π1
rn > Πnn. Expand and rewrite Πnn and Π1

rn as

Πnn = −Pc

(
bPbθ (Pb (Pc − 1) + Pc (Pb − 1)) + PbPc (Pb − 1) (θ − 1) + (Pb − 1)2 (Pc − 1) (θ − 1)

)
Π1

rn = −bPbθ (Pb (Pc − 1) + Pc (Pb − 1))− PbPc (Pb − 1) (θ − 1)− (Pb − 1)2 (Pc − 1) (θ − 1)

It is straightforward to see that Π1
rn > PcΠ

1
rn = Πnn.

We next prove that Π2
rn > Πrr if and only if Pb > P 0

b : Expand and rewrite the two terms
as:

Π2
rn = −Pc

(
bPbθ (Pb (Pc − 1) + Pc (Pb − 1)) + PbPc (Pb − 1) (θ − 1) + (Pb − 1)2 (Pc − 1) (θ − 1)

)
Πrr = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
We first prove that the two functions, Π2

rn and Πrr cross at most once. Take the first
derivative w.r.t. Pb. The goal is to show ∂Π2

rn

∂Pb
≥ ∂Πrr

∂Pb
for any value of Pb.

∂Π2
rn

∂Pb

= Pc

(
−4bPbPcθ + 2bPbθ + bPcθ − 4PbPcθ + 4PbPc + 2Pbθ − 2Pb + 3Pcθ − 3Pc − 2θ + 2

)
∂Πrr

∂Pb

= −2bPbθ + bθ − 2Pbθ + 2Pb + θ − 1

Since it is difficult to compare these two values directly, we go one step further and take the
second derivative.

∂2Π2
rn

∂P 2
b

= 2Pc

(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
∂2Πrr

∂P 2
b

= −2bθ − 2θ + 2

We next prove that ∂2Π2
rn

∂P 2
b
≤ ∂2Πrr

∂P 2
b

: rewrite ∂2Π2
rn

∂P 2
b

= 2Pc(2Pc − 1)(1 − θ − b), so we have
∂2Π2

rn

∂P 2
b
/∂2Πrr

∂P 2
b

= Pc(2Pc − 1) ≤ 1. Now since ∂2Π2
rn

∂P 2
b
≤ ∂2Πrr

∂P 2
b

, we only need to show ∂Π2
rn

∂Pb
≥ ∂Πrr

∂Pb

holds at the right most point, that is, ∂Π2
rn

∂Pb
|Pb=1 ≤ ∂Πrr

∂Pb
|Pb=1. Expand and rewrite these two

terms:
∂Π2

rn

∂Pb

|Pb=1 = Pc(−3bPcθ + 2bθ − Pcθ + Pc)

∂Πrr

∂Pb

|Pb=1 = −bθ − θ + 1
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The latter is invariant in Pc while the former is a quadratic function of Pc. Specifically, the
former first increases and then decreases in Pc, and therefore, the minimum value is reached
at either Pc = 0.5 or at Pc = 1 Since ∂Π2

rn

∂Pb
|Pb=1,Pc=0.5 = (bθ − θ + 1)/4 > 0 > ∂Π2

rn

∂Pb
|Pb=1 and

∂Π2
rn

∂Pb
|Pb=1,Pc=1 = −2bθ − 2θ + 2 = ∂Π2

rn

∂Pb
|Pb=1, ∂Π2

rn

∂Pb
|Pb=1 ≥ ∂Π2

rn

∂Pb
|Pb=1 for any value of Pc.

Combine the facts that ∂2Π2
rn

∂P 2
b
≤ ∂2Πrr

∂P 2
b

and ∂Π2
rn

∂Pb
|Pb=1 ≥ ∂Π2

rn

∂Pb
|Pb=1, we get ∂Π2

rn

∂Pb
≥ ∂Π2

rn

∂Pb
,∀Pb.

This is sufficient to ensure that the two curves intersect at most once. We then plug the
expression of P 0

b into Π2
rn and Πrr and get

Π2
rn|Pb=P 0

b
= Πrr|Pb=P 0

b

Thus we have Π2
rn > Πrr if and only if Pb > P 0

b

B.3.5 Proof of Proposition 5

We first prove that ∂P 0
b

∂Pc
< 0. Rewrite the expression of P 0

b by collecting the Pc terms as:

P 0
b =

Pc

(
bθ + 3θ − 3

)
+ bθ + θ − 1 +

√
Pc

2
(
bθ − θ + 1

)2
+ 2Pc

(
bθ + θ − 1

)2
+
(
bθ + θ − 1

)2
4Pc

(
bθ + θ − 1

)
+ 2

(
bθ + θ − 1

)
(B.25)

Let x = bθ − θ + 1 and y = bθ + θ − 1. Rewrite Equation B.25 as:

P 0
b =

Pc(2y−x)
y

+ 1 +
√

P 2
c x

2

y2
+ 2Pc + 1

2(2Pc + 1)
(B.26)

Now take the derivative w.r.t. Pc. Note that Pc is not contained in either x or y.

∂P 0
b

∂Pc

=
x2Pc − x

√
x2Pc

2 + 2y2Pc + y2 − 2y2Pc − y2

2y
√

x2Pc
2 + 2y2Pc + y2 (2Pc + 1)2

(B.27)

Also notice that according to Assumption 1, y > 0. Furthermore, x = y+2(1−θ) > y > 0.
It is easy to see that the denominator of the right-hand site expression in Equation B.27 is
greater than 0. Rewrite the numerator as x(

√
x2P 2

c −
√

x2Pc
2 + 2y2Pc + y2) + y2(−2Pc − 1),

and we can see both terms in the numerator are negative. Thus, we have ∂P 0
b

∂Pc
< 0.

We next prove that ∂P 0
b

∂θ
> 0. Rewrite the expression of P 0

b while collecting the terms
involving θ as

P 0
b =

θ(bPc + b+ 3Pc + 1)− 3Pc − 1 +
√
∆′

θ(2bPc + b+ 2Pc + 1)− 2Pc − 1
(B.28)
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where ∆′ = θ2(b
2
(P 2

c + 2Pc + 1) + 2b(−P 2
c + 2Pc + 1) + (P 2

c + 2Pc + 1)) + θ(−2b(−P 2
c + 2Pc +

1)− 2(P 2
c + 2Pc + 1)) + P 2

c + 2Pc + 1. Rewrite ∆′ as

∆′ = (θbPc − θPc + Pc)
2 + (2Pc + 1)(bθ + θ − 1)2 (B.29)

Note that for the second term ∂((2Pc+1)(bθ+θ−1)2)
∂θ

= 2(2Pc + 1)(bθ + θ − 1)(b + 1) > 0

according to Assumption 1. Combine the fact that the partial derivative of the denominator
in Equation B.28 w.r.t. θ equals 2bPc + b+ 2Pc + 1, which is greater than 0, we have

∂P 0
b

∂θ
=

∂ θ(bPc+b+3Pc+1)−3Pc−1+
√
∆′

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

>
∂

θ(bPc+b+3Pc+1)−3Pc−1+
√

(θbPc−θPc+Pc)2

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

=
∂ θ(bPc+b+3Pc+1)−3Pc−1+(θbPc−θPc+Pc)

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

=
∂ θ(2bPc+b+2Pc+1)−2Pc−1

θ(2bPc+b+2Pc+1)−2Pc−1

∂θ

= 0

Thus ∂P 0
b

∂θ
> 0.

B.3.6 Proof of Proposition 6

In this proof, we first compare total surplus in each of the sub-games resulting from the
two lenders’ algorithm revealing decisions, and then subtract the lenders’ equilibrium payoff
from the total surplus and compare the borrower (consumer) surplus. We calculate the total
surplus by adding together the social surplus generated by borrowers from different segments.
When a H type borrower gets the loan, a (TSh = Mh − m) amount of social welfare is
generated. When a L type borrower gets the loan, a (TSl = Ml −m− 1) amount of social
welfare is generated (i.e., the lender loses 1, the loan amount, while the borrower loses m, the
negative impact on the credit score). When a borrower is rejected, a −m amount of social
surplus is generated. To calculate the social surplus generated in each sub-game, we need to
find out the number of H type borrowers who are approved (NH,a), the number of L type
borrowers who are approved (NL,a), and the number of borrowers who are rejected (Nr). We
do not care about the borrowers who do not apply since they will generate 0 surplus to the
social welfare. For the R-R case, there are 4 segments of borrowers: HH HL LH and LL.
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Borrowers in the HH HL and LH segments will apply and will be approved. Thus we have
N rr

H,a = N rr
hhV

rr
hh + 2N rr

hl V
rr
hl , N rr

L,a = N rr
hh(1− V rr

hh ) + 2N rr
hl (1− V rr

hl ), and N rr
r = 0. (We use the

superscript rr, nn, and rn to denote the R-R, N-N, and R-N case respectively.) The total
surplus generated in the R-R case is

TSrr = N rr
H,aTSh +N rr

L,aTSl (B.30)

Similarly, in the N-N case, we have

TSnn = Nnn
H,aTSh +Nnn

L,aTSl +Nnn
r (−m) (B.31)

where

Nnn
H,a = PbPcθ (−2PbPc + Pb + Pc + 1)

Nnn
L,a = Pc (Pb − 1) (θ − 1) (2PbPc − Pb (Pc − 1)− Pc (Pb − 1) + 2 (Pb − 1) (Pc − 1))

N rr
r = Pb

2(−3Pc
2 + 5Pc − 2) + 4PbPcθ(Pc − 1) + PbPc(Pc − 3) + 2Pb − 2Pcθ(Pc − 1)

In the R-N case, we have

TSnn = N rn
H,aTSh +N rn

L,aTSl +N rn
r (−m) (B.32)

where

N rn
H,a = Pbθ (−PbPc + Pc + 1)

N rn
L,a = (Pb − 1) (θ − 1) (2PbPc − Pb (Pc − 1)− Pc (Pb − 1) + (Pb − 1) (Pc − 1))

N rn
r = (Pc − 1)

(
Pb

2 (θ − 1)− θ(Pb − 1)2
)

Next, we show that TSrr > TSrn > TSnn. The comparison is straightforward but
cumbersome and thus the details are omitted here. The intuition is as follows. Note that
Nnn

r > N rn
r > N rr

r and Nnn
H,a + Nnn

L,a < N rn
H,a + N rn

L,a < N rr
H,a + N rr

L,a. In other words, in
the N-N case, the number of borrowers who are approved is the lowest and the number of
borrowers who are rejected is the highest. In the R-R case, the number of borrowers who are
approved is the highest and the number of borrowers who are rejected is the lowest. The R-N
case is between the two extremes. Since rejected borrowers will generate a negative social
surplus, and accepted borrowers on average will generate a positive social surplus, we have
TSrr > TSrn > TSnn.

We next subtract the lenders’ equilibrium profits from the social surplus to compute
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borrower surplus:

CSrr = TSrr − 2Πrr (B.33)

CSnn = TSnn − 2Πnn (B.34)

CSrn = TSrn − Π1
rn − Π1

rn (B.35)

where TSrr, TSnn, and TSrn are defined in Equations B.30, B.31, and ?? respectively. Πrr,
Πnn, and Πrn are defined in Lemma 6, 7, and 8 respectively. We can plug the expression
of total surplus and lenders’ profit into these expressions and compare them, and we will
get CSrr > CSrn > CSnn. Again, the comparison is straightforward but cumbersome, so
we omitted the details here. The intuition of CSrr > CSrn is simple: (1) The number of
borrowers who are approved in the R-R case is larger than in the R-N case. (2) F rr(b) > F1(b)

and F rr(b) > F2(b), which means on average borrowers face lower interest rates in the R-R
case than in the R-N case. Points (1) and (2) above ensure that borrowers’ welfare in the
R-R case is higher than in the R-N case. We next discuss why CSrn > CSnn. Comparing the
difference in total surplus and the difference in lenders’ profit in the N-N and R-N cases, we
have TSrn − TSnn > Π1

rn +Π2
rn − 2Πnn = Π1

rn −Πnn (Note that Π2
rn = Πnn), which means

the lenders only take a portion of the increased surplus, and the remaining is left to the
borrowers.

B.3.7 Proof of Proposition 7

We consider sub-games resulting from the lenders’ decisions on algorithm upgrade (NU -
NU ,NU -U ,U -NU ,U -U), where NU stands for “not upgrade” and the algorithm’s accuracy
stays at Pb, and U stands for “upgrade” and the algorithm’s accuracy rises to P ∗

b . The
equilibrium payoff in the two symmetric cases, NU -NU and U -U , have already been calculated
and shown in Lemma 6. Since the two lenders’ decisions on revealing is symmetric under
mandatory revealing, the lenders’ equilibrium payoff in NU -U case mirrors the payoff in the
U -NU case. Compared with the NU -NU case, in the NU -U case, the only things that will
change are the number of borrowers in each segment. Similar to the analysis in Appendix
B.3.1, we can find the lenders’ equilibrium payoff when their algorithms’ accuracy are Pb

and P ∗
b respectively. The payoff matrix of the “algorithm upgrading” game is shown in the

following table:

184



Lender 2
Not Upgrade Upgrade

Lender 1 Not Upgrade (Πrr
NU-NU ,Π

rr
NU-NU) (Πrr

NU -U ,Π
rr
U -NU)

Upgrade (Πrr
U -NU ,Π

rr
NU-U) (Πrr

U -U ,Π
rr
U -U)

Where

Πrr
NU-NU = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr

U -U = P ∗
b

(
−bP ∗

b θ + bθ − P ∗
b θ + P ∗

b + θ − 1
)

Πrr
NU-U = Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr

U -NU = P ∗
b

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
We focus on the symmetric mixed strategy equilibrium and assume both lenders choose to
upgrade with probability PM . The following equation must hold to ensure both lenders are
indifferent between upgrading or not:

(1− PM)ΠNU-NU + PMΠ1
NU-U = (1− PM)Π2

NU-U + PMΠU -U (B.36)

Solve Equation B.36 and we get PM = 1−Pb

P ∗
b

.

B.3.8 Proof of Proposition 8

Assume in this case Lender 1 reveals its algorithm but Lender 2 does not. We solve for
lenders equilibrium payoff in sub-games followed by every combination of the two lenders’
upgrading decisions, the payoff matrix of the game is shown in the following table:

Lender 2
Not Upgrade Upgrade

Lender 1 Not Upgrade (Πrn1
NU -NU ,Π

rn2
NU−NU) (Πrn1

NU -U ,Π
rn2
U−NU)

Upgrade (Πrn1
U -NU ,Π

rn2
NU−U) (Πrn1

U -U ,Π
rn2
U−U)

where
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

Πrn1
NU -NU = −bPbθ (Pb (Pc − 1) + Pc (Pb − 1))− (Pb + Pc − 1) (θ − 1) (Pb − 1)

Πrn2
NU-NU = Pc(Pb

2
(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
+ Pb

(
bPcθ + (θ − 1)(3Pc − 2)

)
−Pcθ + Pc + θ − 1)

Πrn1
U -NU = −bP ∗

b θ (Pb (Pc − 1) + Pc (Pb − 1))− PbPc (P
∗
b − 1) (θ − 1)

− (Pb − 1) (P ∗
b − 1) (Pc − 1) (θ − 1)

Πrn2
NU-U = Pc(Pb

2
(
P ∗
b

(
−2bPcθ + bθ − 2Pcθ + 2Pc + θ − 1

)
+ 2Pcθ − 2Pc − θ + 1

)
+Pb

(
P ∗
b

(
bPcθ + Pcθ − Pc − θ + 1

)
− Pcθ + Pc

)
+ P ∗

b (θ − 1))/P ∗
b

Πrn1
NU-U = −bPbθ (P

∗
b (Pc − 1) + Pc (P

∗
b − 1))− P ∗

b Pc (Pb − 1) (θ − 1)

− (Pb − 1) (P ∗
b − 1) (Pc − 1) (θ − 1)

Πrn2
U -NU = Pc(Pb(P

∗
b
2(−2bPcθ + bθ + (θ − 1)(1− 2Pc)) + P ∗

b (bPcθ + (θ − 1)(Pc − 1))

+θ − 1) + P ∗
b
2 (2Pcθ − 2Pc − θ + 1) + P ∗

b (−Pcθ + Pc))/Pb

Πrn1
U -U = −bP ∗

b θ (P
∗
b (Pc − 1) + Pc (P

∗
b − 1))− P ∗

b Pc (P
∗
b − 1) (θ − 1)

−(P ∗
b − 1)2 (Pc − 1) (θ − 1)

Πrn2
U -U = Pc(−2bP ∗

b
2Pcθ + bP ∗

b
2θ + bP ∗

b Pcθ − 2P ∗
b
2Pcθ + 2P ∗

b
2Pc + P ∗

b
2θ − P ∗

b
2

+3P ∗
b Pcθ − 3P ∗

b Pc − 2P ∗
b θ + 2P ∗

b − Pcθ + Pc + θ − 1)

We first prove that Lender 1 has a dominate strategy “U” by showing Πrn1
U -NU > Πrn1

NU-NU

and Πrn1
U -U − Πrn1

NU-U .

Πrn1
U -NU − Πrn1

NU-NU = (Pb − P ∗
b )

(
bθ (Pb (Pc − 1) + Pc (Pb − 1)) + (θ − 1) (PbPc + (Pb − 1) (Pc − 1))

)
Since Pb < P ∗

b , Pb < 1, Pc < 1 and θ < 1, Πrn1
U -NU − Πrn1

NU -NU > 0. Further,

Πrn1
U -U − Πrn1

NU-U = (Pb − P ∗
b ) (bθ (P

∗
b (Pc − 1) + Pc (P

∗
b − 1)) + (θ − 1) (P ∗

b Pc + (P ∗
b − 1) (Pc − 1)))

Again, since Pb < P ∗
b , P ∗

b < 1, Pc < 1 and θ < 1, Πrn1
U -U − Πrn1

NU-U > 0.

As Lender 1 always chooses to upgrade the algorithm, Lender 2 makes the upgrading
decision by comparing Πrn2

NU -U with Πrn2
U -U . Let δ = Πrn2

U -U −Πrn2
NU-U . It is easy to check that δ is

linearly decreasing in θ. Since δ|θ=θ0 , δ > 0 when θ < θ0. Notice that θ0 is decreasing in Pc,
and θ0|Pc=P 0

c
= 1, which means θ0 > 1 when Pc < P 0

c . Thus θ < θ0 will always hold.
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B.3.9 Proof of Proposition 9

In the mandatory revealing scenario, both lenders choose to upgrade the algorithm with
probability PM , that is, with probability P 2

M both lenders’ algorithms’ accuracy will be P ∗
b ,

with probability (1−PM )2 both lenders’ algorithms’ accuracy will be Pb, and with probability
2PM(1− PM) one lender’s accuracy will be Pb and the other’s will be P ∗

b . Borrower surplus
is thus the expected total surplus minus the lenders’ expected profit, as shown in Equation
B.37.

CSrr∗ =(1− PM)2
(
TSrr

Pb,Pb
− 2Πrr

Pb,Pb

)
+ PM

2
(
TSrr

P ∗
b ,P

∗
b
− 2Πrr

P ∗
b ,P

∗
b

)
+ 2PM (1− PM)

(
TSrr

Pb,P
∗
b
− Πrr

Pb,Pb
− Πrr

Pb,P
∗
b

) (B.37)

where

TSrr
Pb,Pb

= Pb (2− Pb) (−θ (m−Mh) + (θ − 1) (m−Ml + 1))

TSrr
Pb,P

∗
b
= (θ (m−Mh)− (θ − 1) (m−Ml + 1)) (−PbP

∗
b + Pb (P

∗
b − 1) + P ∗

b (Pb − 1))

TSrr
P ∗
b ,P

∗
b
= P ∗

b (2− P ∗
b ) (−θ (m−Mh) + (θ − 1) (m−Ml + 1))

Πrr
Pb,Pb

= Pb

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr

Pb,P
∗
b
= P ∗

b

(
−bPbθ + bθ − Pbθ + Pb + θ − 1

)
Πrr

P ∗
b ,P

∗
b
= P ∗

b

(
−bP ∗

b θ + bθ − P ∗
b θ + P ∗

b + θ − 1
)

In the voluntary scenario, when θ < θ0, both lenders upgrade their algorithms to an accuracy
of P ∗

b . Thus borrower surplus can be calculated as:

CSrn∗ = TSrn
P ∗
b ,P

∗
b
− Πrn1

P ∗
b ,P

∗
b
− Πrn2

P ∗
b ,P

∗
b

(B.38)

where

TSrn
P ∗
b ,P

∗
b
= −m (Pc − 1)

(
P ∗
b
2 (θ − 1)− θ(P ∗

b − 1)2
)

+P ∗
b θ (m−Mh) (−P ∗

b Pc + P ∗
b (Pc − 1) + 2Pc (P

∗
b − 1))

− (P ∗
b − 1) (θ − 1) (m−Ml + 1) (2P ∗

b Pc − Pc (P
∗
b − 1) + (P ∗

b − 1) (Pc − 1))

Πrn1
P ∗
b ,P

∗
b
= −bP ∗

b θ (P
∗
b (Pc − 1) + Pc (P

∗
b − 1))− P ∗

b Pc (P
∗
b − 1) (θ − 1)

−(P ∗
b − 1)2 (Pc − 1) (θ − 1)

Πrn2
P ∗
b ,P

∗
b
= Pc(−2bP ∗

b
2Pcθ + bP ∗

b
2θ + bP ∗

b Pcθ − 2P ∗
b
2Pcθ + 2P ∗

b
2Pc + P ∗

b
2θ − P ∗

b
2

+3P ∗
b Pcθ − 3P ∗

b Pc − 2P ∗
b θ + 2P ∗

b − Pcθ + Pc + θ − 1)

Define δ = CSrr∗ − CSrn∗. Combining and rearranging terms, we can see that δ is a
quadratic function in Pc: δ = AP 2

c +BPc +C, where A, B, and C are defined in Proposition
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9. We can then check that δ|Pc=0 = C < 0, and δ|Pc=1 = A+ B + C > 0 in the parameter
ranges defined in Assumptions 1 and 2. Thus one of the roots of the quadratic function,
P 0
c = −B+

√
B2−4AC
2A

, must be in range (0, 1). Thus δ > 0 if Pc > P 0
c .
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Appendix C

Appendix for Chapter 3

C.1 Experiment Outcomes: Alternative Settings

C.1.1 More Advanced RL Algorithms

We examine whether our results are robust when we replace the Q-learning algorithm with two

types of more advanced RL algorithms: Deep Q Network (DQN) and Advanced Actor-Critic

Method (A2C). Specifically, we let seller 1 use an advanced RL algorithm, and compare seller

2’s equilibrium price and profit when using the same advanced RL algorithm vs using a

rule-based algorithm to compete. For each advanced algorithm (DQN or A2C), we run the

experiment 100 times and report the mean and standard deviation of equilibrium price and

profit in Table C.1. The result shows that our main result holds regardless of which specific

type of reinforcement learning algorithm is used.

C.1.2 Multiple Players in the Market

In this section, we extend our baseline model to an oligopoly setting (N > 2). We study the

case where there are three sellers in the market and examine when seller 1 and seller 2 use

Q-learning pricing algorithms, how would seller 3’s equilibrium price and equilibrium profit
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Panel A: Deep Q Network (DQN)

DQN Rule-based Algorithm
Price 1.680(0.024) 1.894(0.011)
Profit 2 0.291(0.015) 0.335(0.002)

Panel B: Advanced Actor-Critic Method (A2C)

A2C Rule-based Algorithm
Price 1.586(0.043) 1.844(0.050)
Profit 0.265(0.019) 0.356(0.013)

Table C.1: Simple Rule-based Algorithm Competes with More Advanced Reinforcement Learning
Algorithms (DQN and A2C)

differ when it decides between a Q-learning algorithm and a simple rule-based algorithm.

In this extension, we compare seller 3’s equilibrium price and equilibrium profit across

4 scenarios: when it uses 1) the same Q-learning algorithm as sellers 1 and 2, 2) a simple

rule-based algorithm that undercuts seller 1’s price by one price grid, 3) a simple rule-based

algorithm that undercuts seller 2’s price by one price grid, and 4), a simple rule-based

algorithm that undercuts the lowest price (between sellers 1 and 2) by one price grid.

We run each experiment 100 times and the outcomes are reported in Table C.2.

Q-learning Undercut seller 1 Undercut seller 2 Undercut the lowest
Price 1.464(0.030) 1.663(0.059) 1.667(0.069) 1.654(0.055)
Profit 0.148(0.009) 0.175(0.015) 0.172(0.017) 0.202(0.014)

Table C.2: Equilibrium Outcomes When Seller 3 Uses Different Algorithm

C.2 Structural Demand Model Details

C.2.1 Data

The dataset employed in our study is transaction-level data from a prominent Chinese

e-commerce platform, JD.com. The platform’s operational mechanism involves presenting

consumers with products from multiple sellers in each product category, accompanied by

pertinent details such as prices, ratings, and key product features. Upon selecting a product
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listing by clicking on it, consumers can obtain more comprehensive information. Specifically,

our dataset captures the click and purchase behavior of over 2.5 million consumers within a

specific product category throughout March 2018.

The data contains 4 tables: SKU Table describes the characteristics of all 31,868 SKUs

that belong to a single product category receiving at least one click during March 2018. For

each SKU, it records the unique identifier SKU ID, whether this SKU is from a first-party

seller or a third-party seller. Consumer Table describes the characteristics of each consumer,

including the unique identifier consumer ID and a bunch of consumer demographics like

age, gender, marital status etc. Click Table records the information of all the click events,

including the consumer ID that initiates the click, the SKU ID that she clicks on, and time

of the click. Purchase Table records the information of all the purchase events, including

consumer ID, SKU ID, time of the purchase, purchase quantity, listed prices, and effective

prices.

Instead of studying the competition among all SKUs, we focus on a small subset of them.

The motivation of this choice is two-fold: 1), the sales of these products follow a ‘long-tail

distribution’, where over 96% of SKUs have single-digit daily sales. We aim to concentrate

on the subset of products that have a sizeable volume of sales. 2), we focus on a group of

products that are close substitutes, rather than analyzing the competition between dissimilar

products. For example, we would like to study the competition between electric shavers from

two brands, instead of the competition between an electric shaver and a water flosser. We

thus pre-process the data and identify a small subset in which all SKUs have decent sales

volume and are close substitutes. In Appendix C.3, we provide details on how we determine

if two products are close substitutes and construct the subset.

Our study concentrates on a specific subset of products that exhibit substantial sales

volume and are identified as close substitutes, to derive an accurate demand model. This

category comprises 5 distinct products, and these products have been clicked by more than

25,000 consumers. The basic information of these 5 products and the involved consumers are
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shown in Table C.3 and C.4, respectively. For each purchase, we observe the purchase time

and the original listed price, and the price discount that a consumer gets. Interestingly, we

find the effective price (listed price minus discounts)1 is almost identical for all consumers at

any given time, indicating very little first- or third-degree price discrimination. The most

common age segment is 26-35 years old and the most common education level is a Bachelor’s

degree. There are more females in the sample than males. The sample is approximately

equally split between single and married customers.

P1 P2 P3 P4 P5
Average price (¥) 68.84 52.27 57.94 71.54 69.05
1st/3rd party seller 1st 1st 3rd 3rd 1st
Unique clicks 14,171 15,478 5,351 4,512 4,683
Unique orders 3,942 3,490 1,247 1,179 726

Table C.3: Product Information

Table C.5 provides a summary of the click and purchase behavior of consumers. Several

key observations can be made from this table. First, 20.1% of consumers click on 3 or more

products and 25.5% of consumers click on 2 products before making a purchase decision,

suggesting that a substantial search cost is involved in the search-then-purchase process.

Second, less than 1% of consumers purchase more than one product, indicating that it is

highly unlikely that the product subset we have selected includes complementary items.

C.2.2 Testing Search Models

In this study, we examine two major models that describe consumers’ search-then-purchase

behavior: the sequential search model (McCall, 1970, Weitzman, 1979) and the non-sequential

search model (Stigler, 1961, Mehta et al., 2003, De Los Santos et al., 2012). While consumers’

actual search behavior may fall somewhere between these two models, it’s important to

determine which model is more appropriate based on the context (De Los Santos et al., 2012).

1Here we only consider direct discount but not volume discount since very few consumers buy more than
one product.
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Key Characteristics Count(Percentage)
Number of consumers 25,339
Age
≤ 25 years old 6,335 (25.0%)
26 - 35 years old 11,567 (45.6%)
36 - 45 years old 5,604 (22.1%)
46 - 55 years old 1,107 (4.4%)
≥ 56 years old 726 (2.9%)

Gender
Male 5,657 (22.3%)
Female 19,682 (77.7%)

Marital Status
Single 13,046 (51.5%)
Married 12,293 (48.5%)

Education Level
Less Than High School 912 (3.6%)
High School or Equivalent 8,705 (34.4%)
Bachelor’s Degree 13,620 (53.8%)
Post-graduate Degree 2,102 (8.3%)

Table C.4: Descriptive Statistics of Consumer Characteristics

Key Characteristics Count(Percentage)
Number of consumers 25,339
Choice Set Size
1 13,775 (54.4 %)
2 6,459 (25.5 %)
≥ 3 5,105 (20.1 %)

Number of products purchased
0 14,953 (59.0%)
1 10,192 (40.2%)
≥ 2 194 (0.8%)

Table C.5: Descriptive Statistics of Consumer Clicks and Orders

193



In our scenario, where consumers search for product fit rather than prices, we employ two

empirical metrics to evaluate the search model. Our findings suggest that a non-sequential

search model provides a better fit for our online search and purchase context. We use metrics

such as recall and the conditioned probability of purchase to support our conclusion. We

find that 58% of people show recall behavior and that the order in which products are

searched has no significant impact on their purchase probability. Based on these results, we

construct a structural model under the non-sequential search assumption to describe the

market environment.

C.2.3 A Non-sequential Search Structural Model

In this section, we present a non-sequential search structural model that captures consumer

search and purchase behavior within our empirical context. There are I consumers and J

sellers in the market, each seller (seller j) supplies one product (product j) with marginal

cost mcj. Each consumer demands at most one product. We specify consumer i’s utility of

purchasing product j as:

uij = ηj + βipj + εij (C.1)

where ηj is the product (or seller) fixed effect, pj is the price of product j. βi is individual

specific price sensitivity: βi = Γzi + εβ where zi is a vector of individual characteristics

for consumer i, Γ is a coefficient vector where the kth entry represents the part-worth of

the kth characteristics on βi, and εβ is an unobserved heterogeneity component which is

assumed to follow a normal distribution with mean 0 and variance Σβ. εij is the fit value

between consumer i and product j. We assume εij is i.i.d distributed and follows a Type

I extreme value distribution with a location parameter of zero and a scale parameter σε

(εij ∼ EV T1(0, σε)).

Online marketplaces such as JD.com typically display important product information

such as prices, ratings, number of reviews, and key features through thumbnail images or

194



product listings. This allows users to quickly browse and access this information without

the need to click on individual products. It is assumed that consumers have access to prices

(pj) and product values (i.e., product fixed effects, ηj) for all products upon entering the

market. Further, consumers know the distribution of the fit value (ε) but cannot observe its

realization at this point. To obtain the exact fit value, consumers must conduct a search by

clicking on a specific product and examining the detailed product description, images, videos,

and consumer reviews.

We model a non-sequential search process: in the first stage, consumers form a considera-

tion set which is a subset of all the J products, based on the information available to them

when they enter the market. In the second stage, consumers click on each of the products in

the consideration set, learn the fit values, and decide which product to purchase or not to

purchase at all (i.e., the outside option). Next, we explain these two stages in detail.

First Stage: Form Consideration Sets

Consumers determine their consideration set by balancing the expected benefit of inspecting

all products within it against the search costs involved. On the one hand, having more

products in the consideration set will increase the chances of finding great fit later on.

On the other hand, consumers have to incur larger search costs for larger consideration

sets (e.g., time and effort spent on visiting the product information pages). We use c to

denote the cost of inspecting one product, and for simplicity, we assume the search cost is

homogeneous across consumers and products. We use S to denote the universe of products,

and consumers’ consideration set is denoted as S ⊆ S. Consumer i’s expected utility of

forming a consideration set S is

miS = E[max
j∈S
{uij}]− c|S| (C.2)

We can rewrite uij as uij = δij + εij, where δij = ηj + βipj. If we denote the CDF of the

distribution of εij as F , then the CDF of uij is F (u− δij), and the CDF of maxj∈S{uij} is
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∏
j∈S F (u− δij). Then,

E[max
j∈S
{uij}] =

∫ ∞

−∞
uρ(u)du (C.3)

where is the pdf of maxj∈S{uij} and can be expressed as

ρ(u) =
d

du
[
∏
j∈S

F (u− δij)]

Plug F (u) = exp[− exp[−u]] into Equation C.3, and we get2

E[max
j∈S
{uij}] = γ + log[

∑
j∈S

exp(δij)] (C.4)

where γ is the Euler-Mascheroni constant.3

To smooth the choice set formation probability and allow consumers with similar levels of

price sensitivity facing the similar product price to form different consideration sets, we follow

De Los Santos et al. (2012) and assume that consumers are subject to an assessment error

ζ when assessing the expected net benefit of forming consideration set S, where ζiS follows

another Type I extreme value distribution with a location parameter of zero and a scale

parameter of σζ . Consumer i determine her consideration set by maximizing the expected

2Specifically, let v =
∑

j∈S exp(−u+ δij), then we have dv = −vdu and u = log(
∑

j∈S exp(δij))− log(v)

E[max
j∈S
{uij}] =

∫ ∞

−∞
u
d

du
[exp[−

∑
j∈S

exp(−u+ δij)]]du

=

∫ ∞

−∞

u
∑

j∈S exp(−u+ δij)

exp[−
∑

j∈S exp(−u+ δij)]
du

=

∫ ∞

−∞

uv

exp(v)
du

= −
∫ ∞

0

log(
∑

j∈S exp(δij))

exp(v)
dv +

∫ ∞

0

log(v)

exp(v)
dv

= γ + log[
∑
j∈S

exp(δij)]

3We ignore this constant in the rest of the analysis since the constant term does not affect choice probability.
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utility associated with the consideration set plus the assessment error.

S = argmax
S∈S

[miS + ζiS] (C.5)

Consumer i’s probability of forming a consideration set S follows a logit form:

PiS =
exp[miS/σζ ]∑

S′∈S exp[miS′/σζ ]
(C.6)

Second Stage: Purchase

Upon identifying the consideration set, a consumer proceeds to examine each product within

the set and evaluates their respective fit values before deciding on which product to purchase,

including the outside option. The likelihood of consumer i purchasing product j, conditioned

on the formation of consideration set S, can be expressed as follows:

Pij|S = Pr(uij > uik,∀k ̸= j ∈ S) (C.7)

Note that the fit value εij is revealed to consumer i after she forms a consideration set

and inspects all products within it. From the researchers’ perspective, conditioned on the

consideration set consumer i forms, the probability of the consumer purchasing product j,

denoted as Pij|S, follows a logit form:

Pij|S =
exp[δij]∑

k∈S exp[δik] + exp[δ0]
(C.8)

The joint probability of consumer i forming consideration set S and purchase product j is

PijS = Pij|SPiS (C.9)

The log-likelihood function of observing all consumers’ consideration sets and their purchase

decisions can be specified as
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LL =
∑
i

log P̂ijS =
∑
i

log P̂ij|SP̂iS (C.10)

Where P̂ijS is the likelihood of consumer i selecting the observed consideration set and

making the corresponding purchase decision. Consistent with the conventions of discrete

choice demand models, the coefficients for the observable variables are identified in reference

to the variability of unobserved factors. In order to achieve this, we first standardize the

variance of the random utility component εij to 1, followed by the estimation of the coefficients

for observed variables and the variance of the assessment error term σzeta.

Demand Estimation

We estimate the model using the Hierarchical Bayes approach (Rossi and Allenby, 2003) to

account for observed and unobserved consumer heterogeneity. The parameters to estimate

are: product (seller) fixed effects ηj, search cost c, the variance of the assessment error term

σ2
ζ , individual specific price sensitivity βi, a coefficient vector that connects price sensitivity

with individual characteristics Γ, the variance of the unobserved heterogeneity component

Σβ. The observables are: the price of the product pj, consumer characteristics Z, consumers’

choice sets YS, and consumers’ purchase decisions YP . A hierarchy graph of all parameters

and observables is shown in Figure C.1.

We use Gibbs sampling to estimate the Hierarchical Bayes model. The idea of this

procedure is to recursively draw each variable from the conditional distributions given

other variables4. In each iteration, variables are drawn from the corresponding conditional

distributions in the following order and are updated to form conditional distributions for

4More precisely, given all other variables in its Markov blanket
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Figure C.1: A Hierarchical Graph of the Non-sequential Search Model

In the graph, latent variables (e.g., parameters need to be estimated are represented by white nodes,
and observed outcomes are represented by grey nodes. The directed edges represent the causal
relationship between nodes. Subscripts are omitted.

other variables:

βi | pi, YSi
, YPi

, zi,η, σζ , c,Γ,Σβ, ∀i (C.11)

Γ | Z,β,Σβ (C.12)

Σβ | Z,β,Γ (C.13)

η | p, YS, YP ,β, σζ , c (C.14)

σζ | p, YS, YP ,η,β, c (C.15)

c | p, YS, YP ,η,β, σζ (C.16)

The posterior (conditional) distribution of Γ is a multivariate normal distribution, and

the posterior distribution distribution of Σβ is an Inverse-Wishart distribution. These two

parameters can be drawn directly from the corresponding posterior distributions. However,

the posterior distribution of βi, η, σζ and c does not have closed forms. Thus a Markov

Chain Monte Carlo (MCMC) approach is used to obtain the draws. The exact forms of

these distributions and the details of generating the draws in each iteration are specified in

Appendix C.5. We recursively generate the draws by looping through Equation C.11 to C.16,
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until the distributions are stable. After convergence, we keep running the program for 1000

iterations to obtain statistics of interest such as mean and variance or the variables.

Identification and Results

Before presenting the estimation results, we explain how the parameters in our structural

model can be identified.

As mentioned previously, we normalize the variance of the random utility component

εij in the utility function to 1. The remaining parameters in the consumer utility function,

namely the product (seller) fixed effects (ηj) and consumer price sensitivity (βi), can be

identified from the consumers’ purchase decisions conditioned on their consideration sets,

which are observable in the available data. The systematic variation in purchase probabilities,

conditioned on being considered, across different products help identify ηj. In our dataset,

sellers on average change the price of their product 4 times during the one-month period, and

the average price change is between 10% to 20%. With those price changes, betai can be best

identified if we can observe how each consumer’s purchase behavior changes at different price

points, as the product values remain constant over time. Although repeated purchases from

the same consumers are infrequent in our data, we can leverage multiple consumers from the

same demographic group and with the same characteristics.5 The average impact of price

changes on the probability of each product being purchased conditioned on being searched

enable us to identify the mean price sensitivity of that group (Γzi). The extent of variation

in this effect across consumers within a demographic group helps identify the variance of

the part of price sensitivity that cannot be explained by demographic characteristics (ϵβ).

Additionally, how Γzi vary by zi provides identification of Γ.

Once ηj and the distribution of betai are identified, the search cost per product (c) is

identified from the average size of the consideration set: a smaller average size indicates a

larger value for c. Furthermore, by examining the extent of the variation in the composition of

5(Note that in our data, demographic characteristics happen to be all categorical).
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the consideration set among consumers within the same demographic group, we can identify

the variance of the first-stage assessment error (σζ).

Variable Notation Coeff. SE
Price Coefficient Γ

Intercept -0.074 0.001
Age
≤ 25 years old -0.008 0.001
36 - 45 years old 0.005 0.001
46 - 55 years old 0.007 0.001
≥ 56 years old 0.008 0.002

Is Male 0.003 0.001
Is Married 0.000 0.001
Education Level

Less Than High School 0.008 0.002
High School or Equivalent 0.010 0.001
Post-graduate Degree -0.001 0.001

Seller Fixed Effect η
Seller 1 4.004 0.088
Seller 2 2.970 0.070
Seller 3 2.180 0.079
Seller 4 2.910 0.084
Seller 5 2.326 0.085

Search Cost c 1.208 0.011
Unobserved Heterogeneity Σβ 0.001 0.000
Stochastic term of choice set σζ 0.751 0.009

Table C.6: Estimation Results

The estimation results are shown in Table C.6. On average, 1st party sellers have higher

product (seller) fixed effects than 3rd party sellers. Average search cost is estimated to be

18.5 CNY (2.7 USD), about 25% of product prices. As mentioned earlier, the scale of εij

in the utility function is normalized to 1, and the scale parameter of the choice set–specific

stochastic term (σζ) is estimated to be 0.724, which suggests the impact of optimization error

on the expected net benefit of the choice sets is relatively small. Consumer price sensitivity

tends to decrease with age6, while showing an increasing trend based on consumer education

6Note that in the utility function, we did not include a negative sign before the price term. As a result,
the greater the negativity of βi, the higher the price sensitivity of consumer i becomes.
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level (with Bachelor’s Degree as the baseline group). In general, male consumers exhibit

lower levels of price sensitivity.

Supply Side Estimation

In order to run counterfactual simulations, we need supply-side parameters, such as the

marginal cost of the products. Following the common practice of the supply-side estimation,

we assume sellers maximize their profit by taking into account the demand-side information

and supply-side cost information. Denote seller j’s marginal cost as mcj, seller j’ pricing

strategy as σj (possibly mixed), and seller j’ strategy space as ∆(Φj), then a strategy profile

(σ1,...,σJ) constitutes a Nash equilibrium if it satisfies the following conditions:

Πj(σj, σ−j) ≥ Πj(σ
′

j, σ−j), ∀j, ∀σ′

j ∈ ∆(Φj) (C.17)

where Π(·) is the profit function given all sellers’ strategies. Let Φ+
j ⊂ Φj denote the set of

prices that seller j has set at least once (pure strategies played with positive probabilities),

then the profit function can be expressed as:

Πj(σj, σ−j) = (pj −mcj)D(pj, σ−j), ∀pj ∈ Φ+
j (C.18)

The term D(pj, σ−j) above represents the demand for product j when the focal seller sets

its price at pj and the opponents set their prices according to strategy σ−j, which can be

derived from the previously estimated demand model. The conditions in Equation (C.17)

require that ∀j:

(pj −mcj)D(pj, σ−j) = (p
′

j −mcj)D(p
′

j, σ−j), ∀pj, p
′

j ∈ Φ+
j (C.19)

(pj −mcj)D(pj, σ−j) ≥ (p
′

j −mcj)D(p
′

j, σ−j), ∀pj ∈ Φ+
j , ∀p′

j /∈ Φ+
j (C.20)

Since the exact formula of the demand function D(·) is complicated, we solve for the
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equilibrium prices that satisfy the above conditions numerically when estimating the marginal

costs of the products.

C.3 SKU Subset Selection Details

Unfortunately, we cannot see the detailed product information from the data set so we cannot

manually select a subset of close substitutes. Instead, we use consumers’ clicking data to

infer the subsets which contain close substitutes: if two products are close substitutes, then

consumers are very likely to click on both of them to compare. We say two products are

‘co-clicked’ by a consumer if this consumer clicks on both products within a relatively short

period of time (for example, 5 hours). If two products are ‘co-clicked’ by many consumers,

then these two products are very likely to be close substitutes. With this idea, we first create

an un-directed weighted graph using the 2.5 million click events in the Click Table to describe

the ‘co-click’ relationship among all SKUs. Specifically, each node in the graph represents an

SKU, the weight of each edge in the graph represents the number of consumers who have

co-clicked on these two SKUs. The adjacency matrix of this graph turns out to be very sparse

which means that most SKU pairs are never ‘co-clicked’ by any consumer. Next, we would

like to find a subset of SKUs within which all SKUs are close substitutes (i.e., the weight of all

edges connecting these nodes are high). In graph theory, such activity is called ‘community

detection’, which means detecting local communities in a graph that each member in it has a

close relationship with others (The SKUs within a community are more densely connected

than the SKUs across communities). Considering the size of our graph, we adopt the Louvain

method for community detection (Blondel et al., 2008) to detect local communities which

have algorithm complexity of O(n log n). One potential issue of this method is that if two

products are complementary instead of substitutes, they will also be included in the same

cluster. Later in the paper, we rule out this possibility by showing that very few consumers

end up purchasing more than one product.
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C.4 Theoretical Framework Details

We study the competition of algorithms in oligopoly pricing, which is set within a repeated

game framework. The market consists of n differentiated products, each sold by one of n

sellers. Without any capacity constraints, each seller offers their own product in every period.

Sellers concurrently determine the prices of their respective products in each period, and

previous price history is common knowledge. We assume sellers use a size m discrete price grid

and have one-period memory, and we restrict our attention to the case n = 2. Specifically, the

action space for the Q-learning algorithm is A = {pi}, i ∈ {0, ..,m− 1}. The state contains

the last period prices of all sellers S = {sij = (pi, pj)}, i ∈ {0, ..,m− 1}, j ∈ {0, ..,m− 1}.

In essence, the procedure of learning of the algorithm is the procedure of updating its

Q-table. The size of the Q-table is ∥A∥ × ∥S∥ = m×m2, that is, for each state, there are

m Q-values representing the value of taking each of the m actions. We start with the Q-Q

scenario. Denote ptk as the price charged by seller k at time t, respectively. Denote st as the

state in time t, where st = (pt−1
1 , pt−1

2 ). Seller k receives a reward rk(p
t
1, p

t
2), and the state

transits to st+1 = (pt1, p
t
2) in the next time period. We focus on the case where the two sellers

are symmetric and we derive everything from seller 1’s perspective. We denote the seller

1’s Q-value at time t that corresponds to taking action pi′ in state (pi, pj) as Q1
(pi,pj)−p

i
′ (t)

According to the Q-learning updating rule, at time t, one of the Q-values in the Q-table,

Q1
(pt−1

1 ,pt−1
2 )−pt1

(t) will be updated as follows:

Q1
(pt−1

1 ,pt−1
2 )−pt1

(t+ 1) = (1− α)Q1
(pt−1

1 ,pt−1
2 )−pt1

(t) + α(r1(p
t
1, p

t
2) + δmax

p′i

(Q1
(pt1,p

t
2)−p′i

)) (C.21)

Where δ is the discount factor and α is the learning rate. From the above, we can see

that the reward and state transition depend on both sellers’ actions, which are not always

deterministic (e.g., random exploration is needed in the early stage of learning). We are

interested in how the Q-value evolves in expectation. We now re-formalize Equation C.21 using

the two sellers’ probabilities of taking each action instead of the actions that they actually
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take. Assume that given state s = (pi, pj), seller k takes action ak = pi′ with probability

xk
(pi,pj)−pi′

,∀pi′ ∈ A. Denote the probability that the state (pi, pj) appears as P(pi,pj), then

Qk
(pi,pj)−pi′

will be updated in expectation in the following way:

Q1
(pi,pj)−pi′

(t+ 1) = (1− α)Q1
(pi,pj)−pi′

(t) + αP(pi,pj)x
1
(pi,pj)−pi′

Σj′(x
2
(pi,pj)−pj′

r(pi′ , pj′))

+ δΣj′(x
2
(pi,pj)−pj′

max
pi′′

(Q1
(pi′ ,pj′ )−pi′′

))
(C.22)

The basic logic for Equation C.22 is: Q-values are state and action specific, and we want

to weight the learning rate of a Q-value that corresponds to a certain state and a certain

action with the probability that this specific state occurs and the specific action is taken. In

essence, for the state that is frequently visited and the action that is frequently taken, the

corresponding Q-value will be updated faster than those less frequently visited states and

actions.

Now we transform the discrete-time learning problem into a continuous time version by

compressing the time interval between two consecutive time periods from 1 to ∆t. As ∆t

approaches 0, the Q-leaning dynamics can be captured by the following system of differential

equations:

dQ1
(pi,pj)−pi′

(t)

dt
= αP(pi,pj)x

1
(pi,pj)−pi′

(Σj′(x
2
(pi,pj)−pj′

r1(pi′ , pj′)

+δΣj′(x
2
(pi,pj)−pj′

maxi′′(Q
1
(pi′ ,pj′ )−pi′′

))

−Q1
(pi,pj)−pi′

(t))

∀i, j, i′ ∈ {1, ..m} (C.23)

where xk
(pi,pj)−pi′

,∀k ∈ {1, 2} are determined by the current Q-values and the exploration

strategy. In particular, we use the ϵ greedy exploration strategy here, where the probability

of taking a greedy action (the action with the largest Q-value) given a state is 1− ϵ and the

probability for taking any other actions is ϵ. Then we have:

205



xk
(pi,pj)−pi′

=


ϵ if pi′ = argmaxpQ

k
(pi,pj)−p

ϵ
(m−1)

otherwise
∀i, j, i′ ∈ {1, ..m}, ∀k ∈ {1, 2} (C.24)

P(pi,pj) is the frequency that state (pi, pj) is visited under sellers’ current strategies, and

can be determined by the following system of linear equations
P(pi,pj) = Σi′j′P(pi′ ,pj′ )

x1
(pi′ ,pj′ )−pi

x2
(pi′ ,pj′ )−pj

∀i, j ∈ {1, ..m}

Σi′j′P(pi′ ,pj′ )
= 1

(C.25)

The complete Q-dynamics can be found by solving Equations C.23 to C.25.

C.4.1 Learning Dynamics of The Q-Q scenario (Proof of Lemma 9)

Learning Stage 0: Initialization and Random Exploration

we initialize the Q-values using the discounted payoff that would arise for the focal seller if

the opponent seller chooses the price randomly, which is also the Q-values that the Q-learning

algorithm will learn when both sellers fully explore. For notation simplicity, we use Qij−k(t)

to denote seller 1’s Q-value of taking action pk in state (pi, pj), ∀i, j, k ∈ {l, h}.

Qll−l(0) = Qhh−l(0) = Qlh−l(0) = Qhl−l(0) =
rll + rlh
2(1− δ)

Qll−h(0) = Qhh−h(0) = Qlh−h(0) = Qhl−h(0) =
δ(rll + rlh)

2(1− δ)
+

rhl + rhh
2

(C.26)

Since our initialization is consistent with the Q-values that the Q-learning algorithm will

actually learn, the Q-values don’t change in this stage. At the end of this stage, both sellers’

greedy strategies are to play pl at all of the states.
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Learning Stage 1: The Drop of Qll−l

After the exploration is shut down at t = t0, both sellers start to take their greedy actions:

play pl repeatedly. In this stage, only the stage (pl, pl) is visited so only Qll−l is updated.

According to Equation C.21, the Q-dynamic for Qll−l in this stage is:

dQll−l(t)

dt
= α(rll + δQll−l(t)−Qll−l(t)) (C.27)

With initial condition:

Qll−l(t0) =
rll + rlh
2(1− δ)

(C.28)

Therefore,

Qll−l(t) =
rlh − rll
2(1− δ)

exp(−α(t− t0)(1− δ)) +
rll

1− δ
(C.29)

It’s straightforward to check that Qll−l(t) decreases in t, the intuition is that: the Q-values

learned in stage 0 is for the case when the opponent seller randomly pick between pl and

ph, however, in stage 1, the opponent seller becomes more aggressive in setting the price

(it charges pl repeatedly). Thus, the Q values learned in stage 0 overestimate the true

Q-values that appear in stage 1. As new experiences are gathered, the Q-values are updated

downwards.

A sufficient condition that the two sellers are trapped in the (pl, pl) equilibrium is:

lim
t→∞

Qll−l(t) > Qll−h(t0) (C.30)

The intuition is that if the Q-value for taking pl in state (pl, pl) never drops below the

Q-value for taking ph in state (pl, pl), the two sellers will never reach to other states in the

first place, thus they will end up in state (pl, pl) forever. Take Equations C.39 and C.26 in

Equation C.30, we get the sufficient condition for equilibrium outcome (pl, pl):
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δ <
b

2− b
(C.31)

Learning Stage 2: The Drop of Qhh−l

If Condition C.31 is not met, Qll−l will drop below Qll−h at t1, the two sellers begins to

charge ph in state (pl, pl) but charge pl in state (ph, ph). Thus the state will jump between

(pl, pl) and (ph, ph), the two Q-values, Qll−h and Qhh−l will be updated at the same time. The

Q-dynamics for these two Q-values are:

dQll−h(t)

dt
=

α

2
(rhh + δQhh−l(t)−Qll−h(t))

dQhh−l(t)

dt
=

α

2
(rll + δQll−h(t)−Qhh−l(t))

(C.32)

With initial conditions:

Qll−h(t1) =
δ(rll + rlh)

2(1− δ)
+

rhl + rhh
2

Qhh−l(t1) =
rll + rlh
2(1− δ)

(C.33)

The solutions turn out to be:
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Qll−h(t) =(((1 + δ)(1− δ)(rll + rlh − rhh − rhl) + 2(1− δ)(rhh − rll)) exp(
−(t− t1)(1 + δ)

2
)

+ (1 + δ)((rll + rlh − rhh − rhl)(1− δ) + 2(rhh − rlh)) exp(
−(t− t1)(1− δ)

2
)

− 4(rhh + rllδ))/(4(δ − 1)(δ + 1))

Qhh−l(t) =− ((1 + δ)(1− δ)(rll + rlh − rhh − rhl) + 2(1− δ)(rhh − rll)) exp(
−(t− t1)(1 + δ)

2
)

+ (1 + δ)((rll + rlh − rhh − rhl)(1− δ) + 2(rhh − rlh)) exp(
−(t− t1)(1− δ)

2

− 4(rll + rhhδ)(4(δ − 1)(δ + 1))

(C.34)

A sufficient condition that the two sellers end up with alternating between (pl, pl) and

(ph, ph) in equilibrium is:

lim
t→∞

Qll−h(t) > Qll−l(t1)

lim
t→∞

Qhh−l(t) > Qhh−h(t1)

(C.35)

Take Equations C.34 and C.26 in Equation C.35, we get the sufficient condition for

equilibrium outcome (pl, pl)− (ph, ph):

b

2− b
≤ δ <

√
b

2− b
(C.36)

Learning Stage 3: Rise of Qhh−h

If neither Condition C.31 nor C.36 is met, Qhh−l will drop below Qhh−h at t2, the two sellers

switch to charge ph in state (ph, ph). Then only Qhh−h will be updated afterward. The

Q-dynamics can be shown:
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dQhh−h(t)

dt
= α(rhh + δQhh−h(t)−Qhh−h(t)) (C.37)

With initial condition:

Qhh−h(t2) =
δ(rll + rlh)

2(1− δ)
+

rhl + rhh
2

(C.38)

Therefore the solution:

Qhh−h(t) =
rhh
1− δ

− rhh − rhl + δ(rhh − rll + rhl − rlh)

2(1− δ)
exp(−α(t− t2)(1− δ)) (C.39)

It’s straightforward to check that limt→∞ Qhh−h(t) = rhh
1−δ

> Qhh−l(t2), Therefore, a

sufficient condition for the (ph, ph) equilibrium is:

δ ≥
√

b

2− b
(C.40)

C.4.2 Learning Dynamics of The Q-R scenario (Proof of Lemma 10)

The Q-learning dynamic can be found by solving Equations C.41 to C.43.



dQR
(pi,pj)−pi′

(t)

dt
= αP(pi,pj)x

R
(pi,pj)−pi′

(r(pi′ , pmax(i−1,1))

+δmaxi′′(Q
R
(pi′ ,pmax(i−1,1))−pi′′

))

−QR
(pi,pj)−pi′

(t))

∀i, j, i′ ∈ {1, ..m} (C.41)

xR
(pi,pj)−pi′

=


ϵ if pi′ = argmaxp Q

R
(pi,pj)−p

ϵ
(m−1)

otherwise
∀i, j, i′ ∈ {1, ..m} (C.42)
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
P(pi,pj) = Σi′j′P(pi′ ,pj′ )

xR
(pi′ ,pj′ )−pi

1{pj = pmax(i′−1,1)} ∀i, j ∈ {1, ..m}

Σi′j′P(pi′ ,pj′ )
= 1

(C.43)

However, finding the learning outcome in the Q-R scenario is much simpler. Since seller 2’s

pricing strategy does not alter, the environment is stationary for seller 1, and the Q-learning

algorithm is guaranteed to find the optimal pricing policy. The eventual Q-values can be

found by solving the following system of equations:

Qll−l = rll + δmax(Qll−l +Qll−h)

Qll−h = rhl + δmax(Qhh−l +Qhh−h)

Qhh−l = rlh + δmax(Qll−l +Qll−h)

Qhh−h = rhh + δmax(Qhh−l +Qhh−h)

(C.44)

Depending on the sign of Qll−l −Qll−h and Qhh−l +Qhh−h, we get 3 types of outcomes:

When δ < 0.5, Qll−l > Qll−h,Qhh−l > Qhh−h and (pl, pl) will be the equilibrium outcome.

When 0.5 ≤ δ < 1
2(1−b)

, Qll−l > Qll−h,Qhh−l ≤ Qhh−h and both (ph, ph) and (pl, pl) will be the

equilibrium outcome, according to our equilibrium selection criteria, (ph, ph) is selected since

it Pareto dominates (pl, pl). When δ ≥ 1
2(1−b)

, Qll−l ≤ Qll−h,Qhh−l < Qhh−h and (ph, ph) will

be the equilibrium outcome.

C.4.3 Proof of Theorem 3

The proof is straightforward by comparing Lemma 9 and Lemma 10 thus is omitted here.
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C.5 A Hierarchical Bayes Estimation Algorithm

Following (Netzer et al., 2008), we specify our Hierarchical Bayes estimation algorithm details

in this section. All vectors and matrices are bold. Subscript i denotes consumer i, and N is

the total number of consumers.

In each iteration, variables are drawn from corresponding conditional distributions in

the following order and are updated to form subsequent conditional distributions for other

variables:

βi | p, YSi
, YPi

, zi, η, σζ , c,Γ,Σβ

Γ | Z, β,Σβ

Σβ | Z, β,Γ

η | p, YS, YP , β, σζ , c

σζ | p, YS, YP , η, β, c

c | p, YS, YP , η, β, σζ

(1) Generate βi,∀i

f(βi | pi, YSi
, YPi

, zi, η, σc, c,Γ,Σβ)

∝ N (βi | η, σc, c,Γ,Σβ)L(YSi
, YPi

)

∝ |Σβ|−1/2exp(−1/2(βi − Γ
′
zi)

′
Σ−1

β (βi − Γ
′
zi))L(YSi

, YPi
)

(C.45)

Where L(YSi
, YPi

) is the likelihood function from Equation C.10. We use the Metropolis-

Hasting algorithm to draw new βi from its conditional distribution. In each iteration, a new

vector value βnew
i is drawn from a multivariate normal distribution N (βi, V

2
D) where V 2

D is

chosen adaptively, and we accept the generated new draw with probability
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Pr = min{
exp[−1/2(βnew

i − Γ
′
zi)

′
Σ−1

β (βnew
i − Γ

′
zi)]L(YSi

, YPi
|βnew

i )

exp[−1/2(βi − Γ′zi)
′Σ−1

β (βi − Γ′zi)]L(YSi
, YPi
|βi)

, 1} (C.46)

(2) Generate Γ

The vectorized Γ (denoted as vΓ) follows a multivariate normal distribution

vΓ | Z, β,Σβ = N (un, Vn) (C.47)

Where

Vn = [(Z
′
Z ⊗ Σ−1

β ) + V −1
0 ]−1,

un = Vn[Z
′ ⊗ Σ−1

β β∗ + V −1
0 u0],

Z = (z
′
1, z

′
2, ..., z

′
N) is an N × nz matrix,

βo = (β
′
1, β

′
2, ..., β

′
N) is an N × nβ matrix,

β∗ = vec(βo),

nz = dim(zi),

nβ = dim(βi),

We set prior hyperparameters u0 = {0}nβ·nz, and V0 = 100Inβ·nz.

(3) Generate Σβ

Σβ | Z, β,Γ ∼ W−1
nβ (f0 +N,G−1

0 + ΣN
i=1(βi − Γ

′
Zi)

′
(βi − Γ

′
Zi)) (C.48)

Where W−1 is the inverse Wishart distribution. f0 = nβ + 5 and G0 = Inβ are prior

hyperparameters.

(4) Generate η

The procedure of generating η, σζ , and c is similar to the procedure of generating βi, where

the Metropolis-Hasting algorithm is used to generate draws from the specified probability

distribution. We use diffused priors instead of having prior distribution specified by other
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higher-level variables.

f(η | p, YS, YP , β, σζ , c)

∝ N (η0, Vη0)L(YS, YP )

∝ |Vη0 |−1/2exp(−1/2(η − η0)
′
V −1
η0

(η − η0))L(YS, YP )

(C.49)

In each iteration, a new draw ηnew is generated from the multivariate normal distribution

N (η, Vη) and will be accepted with the following acceptance probability

Pr = min{
exp(−1/2(ηnew − η0)

′
V −1
η0

(ηnew − η0))L(YS, YP |ηnew)
exp(−1/2(η − η0)

′V −1
η0

(η − η0))L(YS, YP |η)
, 1} (C.50)

The diffusion prior hyperparameters are set as follows: η0 = {0}ns, Vη0 = 100Ins.

(5) Generate σζ

f(σζ | p, YS, YP , η, β, c)

∝ N (σζ0 , Vσζ0
)L(YS, YP )

∝ |Vσζ0
|−1/2exp(−1/2(σζ − σζ0)

′
V −1
σζ0

(σζ − σζ0))L(YS, YP )

(C.51)

In each iteration, a new draw σnew
ζ is generated from a normal distribution N (σζ , Vσζ

) and

will be accepted with the following acceptance probability

Pr = min{
exp(−1/2(σnew

ζ − σζ0)
′
V −1
σζ0

(σnew
ζ − σζ0))L(YS, YP |σnew

ζ )

exp(−1/2(σζ − σζ0)
′V −1

σζ0
(σζ − σζ0))L(YS, YP |σζ)

, 1} (C.52)

The diffusion prior hyperparameters are set as follows: σζ0 = 0, Vσζ0
= 30.

(5) Generate c
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f(c | p, YS, YP , η, β, σζ)

∝ N (c0, Vc0)L(YS, YP )

∝ |Vc0|−1/2exp(−1/2(c− c0)
′
V −1
c0

(c− c0))L(YS, YP )

(C.53)

In each iteration, a new draw cnew is generated from a normal distribution N (c, Vc) and will

be accepted with the following acceptance probability

Pr = min{
exp(−1/2(cnew − c0)

′
V −1
c0

(cnew − c0))L(YS, YP |cnew)
exp(−1/2(c− c0)

′V −1
c0

(c− c0))L(YS, YP |c)
, 1} (C.54)

The diffusion prior hyperparameters are set as follows: c0 = 0, Vc0 = 30.
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