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A Dissertation

Submitted to the Tepper School of Business

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy in Operations Management

Dissertation Committee:

Soo-Haeng Cho (Chair)

Sridhar Tayur

Selman Erol

Alan Scheller-Wolf

James Best

May 2023





Abstract

In this dissertation, I investigate contemporary matching and allocation problems in various set-

tings. In the first chapter, I provide remedies to overcome size-based disparities in the current liver

allocation system. In the second chapter, I study the existence of popularity bias in the recom-

mendation systems of online dating platforms. In the third chapter, I investigate how introducing

protective measures to combat infectious diseases contribute to an increase in infection rates.

The first chapter studies the problem of achieving a fairer liver allocation system where there are

disparities in organ access based on transplant patients’ height and gender. Shorter candidates and

women have higher average waiting times and mortality rates while waiting for a liver transplant

because they can receive transplants from a smaller pool of available deceased donors than other

candidates (e.g., tall patients, men). In order to address this problem, I model the liver transplant

waitlist as a multiclass, heterogeneous multiserver overcrowded queueing system and use its first-

order fluid approximation to solve for the objective of minimizing pre-transplant mortality over a

finite time horizon with explicit equity constraints for all static patient classes, i.e., height. I solve

the resulting optimal control problem to obtain the optimal policy of allocating deceased-donor

livers, and I solve its discretized version with parameter estimates. I show that the optimal policy,

the Equity Adjusted Mortality Risk policy, ranks patients according to their static patient classes

and medical urgency to allocate deceased-donor livers. The shadow prices of the constraints in

the optimal control problem can be mapped into the Model for End-Stage Liver Disease (MELD)

exception points widely used in practice by the United Network for Organ Sharing System (UNOS).

I provide these exception points to disadvantaged patient classes dynamically to move them to

higher positions in the liver transplant waitlist to increase their chances of receiving a transplant.

My simulations show that disadvantaged patient groups can significantly benefit from receiving
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MELD exception points without decreasing the efficiency of the current liver allocation system. My

work provides a remedy to reduce disparities in access to liver transplantation within the MELD-

based allocation; hence, my framework of providing exception points can be used by policymakers

to address inequity in practice.

The second chapter studies the existence of popularity bias in an online dating platform’s rec-

ommendations and its consequences on users’ likelihood of finding dating partners. Generating

recommendations of compatible dating partners is challenging for online dating platforms because

uncovering users’ idiosyncratic preferences is complex. Thus, platforms tend to recommend popu-

lar users to others more frequently than unpopular users. From the data collected from a major

online dating platform, I empirically find that a user’s chance of being recommended by the plat-

form’s algorithm increases significantly with the user’s popularity. Motivated by this empirical

evidence, I study an online dating platform’s incentive that generates popularity bias by modeling

the platform’s recommendations and users’ subsequent interactions with a three-stage matching

game. I also build a machine learning-based predictive model that estimates users’ behavior and

run simulations of the platform to validate our theoretical results. My analysis shows that the

recommendations that maximize the platform’s revenue and those that maximize the number of

successful matches between users are not necessarily at odds, even though the former leads to a

higher bias against unpopular users. Unbiased recommendations result in significantly lower rev-

enue for the platform and fewer matches when users’ implicit cost of evaluating incoming messages

is low. Popular users help the platform generate more revenue and a higher number of successful

matches as long as these popular users do not become ”out of reach.” My result indicates that

an online dating platform can increase revenue and users’ chances of finding dating partners si-

multaneously with a certain degree of bias against unpopular users. Online dating platforms can

use my theoretical results to understand user behavior and my predictive model to improve their

recommendation systems (e.g., by selecting a set of users leading to the highest probabilities of

matching or other revenue-generating interactions).

The third chapter investigates the unintended consequences of introducing protective measures

to combat infectious diseases. Higher availability and efficacy of protective measures against in-

fectious diseases, such as vaccines, increase individuals’ propensity to socialize. Consequently, the
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number of visits to central points of interest (e.g., schools, gyms, grocery stores) and the rate of in-

teractions with the agents employed therein (e.g., teachers, trainers, cashiers) increase. This opens

more channels for the virus to transmit through the central agent or location, unlike in standard

SIR models. This leads to a manifestation of network hazard. The infection rates can increase

as protective measures become more effective and available. I confirm the testable predictions of

the theory with the foot traffic data from 2019-2022 and historical COVID-19 vaccination and

community transmission rates.
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Chapter 0

Introduction

Matching and allocation problems have gained significant attention in the fields of operations

management, economics, and computer science over the past few decades, as they deal with the

allocation of scarce resources and the efficient and fair distribution of goods and services. These

problems arise in various contexts, including labor markets, school choice, organ donation, and many

others. This dissertation aims to contribute to the existing literature by studying the problems of

fair allocation of deceased-donor livers, the existence and effects of popularity bias in online dating

platforms’ recommendation systems, and the network effects of introducing protective measures to

combat infectious diseases.

Chapter 1 investigates the problem of achieving a fair liver allocation system where there are

disparities in access to transplantation based on patients’ height and gender. The historical data

shows that shorter patients have a lower probability of receiving a deceased-donor liver transplant,

and women, as they are of smaller stature in general, experience longer waiting times until trans-

plantation. The reason is that disadvantaged patients can receive liver transplants from a smaller

pool of available organs due to patient-donor size incompatibility. Currently, transplant patients are

ranked based on medical urgency with respect to their Model for End-Stage Liver Disease (MELD)

scores, which overlooks the aforementioned compatibility factor. We provide MELD score excep-

tion points to disadvantaged patients in order to move them to higher positions in the transplant

waitlists to improve equity in the current liver allocation system.

We model the liver transplant waitlist as a multiclass, i.e., patient groups based on height,
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overcrowded, i.e., the number of patients is significantly higher than the number of donors, queue-

ing system with heterogenous servers, i.e., deceased donors with different liver sizes. In order to

maintain tractability, we take its first-order fluid approximation and solve the resulting optimal

control problem with the objective of minimizing pre-transplant mortality of patients with an ex-

plicit fairness constraint to ensure equity in access to transplantation. We show that the optimal

policy, named Equity Adjusted Mortality Risk Policy, adjusts the MELD-based ranking in favor of

the disadvantaged patient groups so that all patient groups have equal access to transplantation.

Implementing the Equity Adjusted Mortality Risk Policy in the current liver allocation sys-

tem brings practical challenges. In order to address this challenge, we provide a computational

framework to provide MELD score exception points for disadvantaged patient groups. Using these

exception scores, disadvantaged patients’ likelihood of receiving a deceased-donor liver transplant

increase, and short-term mortality risk decrease. We test our exception points on a simulation

of the national liver allocation system to examine how they affect various fairness and efficiency

metrics of different patient groups as well as the overall system. Our simulations show that shorter

transplant candidates’ quality-adjusted life years and the likelihood of receiving a transplant in-

crease while their mortality risk and the average waiting time until transplantation decrease. We

also show that the overall efficiency of the current liver allocation system is not affected by the

introduction of MELD exception points to shorter patients.

Chapter 2 studies the incentives for an online dating platform to employ recommendation algo-

rithms favoring popular users and examines whether removing such popularity bias in the platform’s

recommendations would improve users’ chances of finding compatible dating partners. Since gen-

erating recommendations of compatible dating partners is challenging for online dating platforms,

they tend to recommend popular users more frequently than unpopular users, i.e., their algorithms

are prone to popularity-based bias. Our empirical analysis of a major online dating platform’s rec-

ommendations reveals that the users’ chances of being recommended by the platform’s algorithm

increase significantly with their popularity among other users. This popularity bias results in con-

gestion for popular users because popular users receive an excessively high number of messages,

and it decreases unpopular users’ chances of finding dating partners.

In order to address this problem, we model the platform’s decision of recommending users and

users’ subsequent interactions with a three-stage matching game where users are divided into two
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tiers, namely, popular and unpopular. We solve the platform’s problem of maximizing expected

revenue with recommendations and maximizing the expected number of matches between users. We

use an unbiased platform as our benchmark for fairness to compare popular and unpopular users’

matching probabilities, the platform’s expected revenues, and the expected number of matches for

three platforms. We empirically validate our model’s assumptions using the extensive data collected

from a major online dating platform in South Korea. We also utilize this data to predict users’

future behavior on the platform which allows us to run simulations of the revenue-maximizing,

match-maximizing, and unbiased platforms to test our theoretical results.

We show that the platform’s revenue-maximizing and match-maximizing recommendations are

not necessarily at odds when popular users are not selective in accepting messages. As popular users

become more selective, the degree of bias in the match-maximizing platform’s recommendations

decreases significantly whereas it stays high in the revenue-maximizing platform’s recommendations.

Another factor that affects the degree of bias in a platform’s recommendations is the congestion

effect. When the congestion effect is high, both the revenue-maximizing and the match-maximizing

platform’s recommendations include popular and unpopular users more equally. Our simulations

show that the match-maximizing recommendations are less biased against unpopular female users

than the revenue-maximizing recommendations; however, both lead to a similar degree of bias

against unpopular male users. Finally, we show that a platform can increase its revenue and users’

chances of finding dating partners simultaneously with a certain degree of bias against unpopular

users.

Chapter 3 describes a precautionary scenario on how unregulated levels of social activity respond

to the high availability and efficacy of protective measures in combating infectious diseases. While

protective measures such as vaccines are important tools in controlling the spread of infectious

diseases such as COVID-19, they do not eliminate the risk of transmission entirely. However,

individuals may feel more comfortable engaging in social activities such as going o restaurants,

gyms, and grocery stores as they employ protective measures. This increase in social activity

increases the risk of transmission in closed spaces. Also, individuals who work in central locations

such as teachers, cashiers, and trainers can get infected and spread the infection to many visitors

during their asymptomatic period. This is a manifestation of network hazard as the network of

individuals becomes more concentrated for the virus to spread through the centers.
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We consider a central location or agent such as a restaurant or a gym as the central node in

a network and allow other agents to decide to form connections with the center to obtain certain

benefits. As protective measures become more available and effective in reducing the transmission

risk, more agents form connections with the center because the net utility of forming a connection,

i.e., the difference between the utility of connection and the disutility of being infected, for each

agent increases. As a direct result of this increased concentration in the network, we show that

largely available and more effective protective measures have the direct effect of reducing aggregate

infections; however, the indirect effect via increased contact through the center can potentially

offset the direct positive effect in aggregate. The correlated nature of infections can also cause a

disproportionately large number of simultaneous infections. Such superspreader events are partic-

ularly important to understand given the limited hospital capacities. Using monthly time-series

data of visits to points of interest such as grocery stores, restaurants, and coffee shops, and the

publicly available COVID-19 data, we find that the predictions of our model are observed in the

data.

Chapter 4 concludes this dissertation, with a summary of our contributions and ideas for future

research directions.
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Chapter 1

Dynamic Exception Points for Fair

Liver Allocation

1.1 Introduction

Liver transplantation is the only viable treatment for End-Stage Liver Disease (ESLD) and acute

liver failure. Causes of ESLD include viral hepatitis, cirrhosis, non-alcoholic fatty liver disease,

and hepatocellular carcinoma (HCC); it is the 12th leading cause of death in the United States

(Cox-North et al. 2013). Patients with ESLD and acute liver failure join the transplant waiting list

managed by the United Network for Organ Sharing System (UNOS) since the number of patients

highly exceeds the number of available organs for transplantation. As of November 16, 2021,

11,864 patients are waiting for a liver transplant in the United States; 13,019 patients joined the

liver transplant waiting list, but only 9,701 livers were donated in 2020. Due to the shortage of

organ supply, the median waiting time until receiving a liver transplant is over three years for an

adult, consequently, more than 40,000 patients died while waiting for a liver offer during 1995-2020.1

Given the severity of ESLD and the patients’ long waiting times until receiving a liver transplant,

fairness in the allocation of the limited supply of organs becomes an important issue to be addressed

by policymakers. In their three general principles of organ allocation, UNOS places fairness along

with efficiency and respect for patients’ autonomy in making their decisions of accepting/rejecting

1Please see https://unos.org/data/transplant-trends for the recent transplant trends in the US.
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Table 1.1: Historical Data on Disparities in Access to Liver Transplant

Height (cm) Likelihood of Transplant (%)

≤ 150 81
151 - 165 89
166 - 185 93

(a) Based on patients’ height

Median Time Until
Gender Transplantation (months)

Men 3.6
Women 4.1

(b) Based on patients’ gender

Notes. The data from the UCSF Liver Center is presented. Likelihood of Transplant (%) column

reports the patients’ likelihood of receiving a transplant relative to the patients with height ≥ 185 cm.

organs.2 Within this context, we observe from the historical data that there are disparities in access

to transplantation based on patients’ height and gender. The data from the University of California

San Francisco (UCSF) Liver Center, see Table 1.1(a) and 1.1(b), shows that shorter patients have

a lower likelihood of receiving a liver transplant, and as expected, women experience longer waiting

times until transplantation because they are of smaller stature in general.

These disparities in organ access stem from the fact that disadvantaged patients can receive liver

transplants from a smaller pool of available organs due to organ size incompatibility. Implantation

of a large liver into a small recipient brings surgical difficulties (Reddy et al. 2013), and unmatched

metabolic demand of recipient as well as physiologic mismatch aggravates the damage to liver graft,

inevitably leading to graft failure (Fukazawa and Nishida 2016). The pool of adult donor livers has

relatively few small livers nationally because most deceased-donor livers come from men; therefore

smaller stature transplant candidates (e.g., women and Hispanic patients) are disadvantaged on

the transplant waiting lists (Bernards et al. 2022).

In the current paradigm, the aforementioned donor-recipient compatibility factors are over-

looked in ranking patients in the transplant waitlists because deceased-donor livers are allocated

on the basis of medical urgency. A transplant patient has a Model for End-Stage Liver Disease

(MELD) score that estimates a patient’s chance of surviving their liver disease during the next three

months. Figure 1.1 shows the relationship between ESLD patients’ laboratory MELD score and

their 90-day dropout risk. The MELD score of a patient is solely based on a patient’s results from

four blood tests3; it is updated more frequently as a patient’s disease progresses (ranges from once

2“Ethical Principles in the Allocation of Human Organs” can be accessed at https://optn.transplant.
hrsa.gov/resources/ethics/ethical-principles-in-the-allocation-of-human-organs/.

3MELD = 3.78 x ln[serum bilirubin (mg/dL)] + 11.2 x ln[INR] + 9.57 x ln[serum creatinine (mg/dL)]
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Figure 1.1: 90-Day Mortality Risk of ESLD Patients

Notes. The logistic regression coefficients can be found in Appendix A.1.

a week to once a year), and a higher MELD score indicates that a patient needs a liver transplant

more urgently. When a deceased-donor liver becomes available, UNOS sequentially offers this liver

to compatible patients who are ranked by their MELD scores after considering their geographical

proximity to the donor. The number of offers is limited due to the cold-ischemia time of a liver

(i.e., the time before a liver loses its functionality); the liver is discarded if a patient (or a surgeon)

does not accept the organ on time.

The MELD score is an excellent predictor of survival for more than 70% patients on the trans-

plant waitlists (Godfrey et al. 2019); however, some patients’ severity of illness or risk of compli-

cations are not captured by their laboratory MELD scores. Transplant candidates whose MELD

scores under-predict their short-term mortality risk apply for a MELD score exception to be placed

in a higher position on the transplant waitlist. These exception scores are widely used in MELD-

based allocation of deceased-donor livers; Hepatocellular Carcinoma (HCC) is the most common

reason for MELD score exceptions along with 17 groups of diagnoses (Asrani and Kamath 2015).

Despite their practical use by policymakers in order to overcome disparities in access to transplan-

tation, the number of exception points allowed for diagnoses other than HCC has not been clearly

defined (Massie et al. 2011).

In this chapter, we address the inequity in access to transplantation in the current liver allocation

system where disadvantaged patient groups (e.g., short candidates, women) experience a longer

time until transplantation and have a lower probability of receiving a liver transplant. For this,
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we model the liver transplant waitlist as a multiclass overcrowded queueing system (patient groups

based on height) with heterogeneous servers (deceased donors with different liver sizes) and take its

first-order fluid approximation for tractability. We solve the resulting optimal control problem of

minimizing pre-transplant mortality of patients over a finite time horizon with an explicit fairness

constraint that equalizes the likelihood of receiving a transplant for all patient groups. We show

that the optimal policy, Equity Adjusted Mortality Risk Policy, ranks patients with respect to their

medical urgency, as in the current MELD-based allocation, but adjusts this ranking in favor of the

disadvantaged patient groups so that all patient groups have equal access to transplantation.

In addition to our theoretical results, we provide a computational framework to provide MELD

score exceptions for disadvantaged patient groups to achieve a fairer MELD-based liver allocation

system in practice. For this purpose, we show that the shadow prices of the optimal control

problem can be mapped into the MELD score exceptions for disadvantaged patient groups. Unlike

the non-HCC MELD score exceptions used in practice, our proposed exception points are closely

tied to the patients’ short-term mortality risk while waiting for a transplant. Using these exception

scores, we move disadvantaged patients to higher positions on the transplant waitlist to increase

their likelihood of receiving a liver transplant. We test our exception points on a simulation of

the national liver allocation system to analyze their performance on various fairness (e.g., average

time until receiving a transplant, likelihood of transplantation) and efficiency (e.g., pre-transplant

mortality, number of wasted organs, quality-adjusted life years) metrics over different patient groups

as well as the entire system.

Our simulations show that ≤ 156 cm transplant candidates’ (mostly female and Hispanic pa-

tients) likelihood of receiving a liver transplant improves significantly. As a result, their likelihood

of death while waiting for a liver transplant decreases. Our computational framework ensures that

all patient groups’ access to transplantation converges to each other. We also show that ≤ 156 cm

transplant candidates’ quality-adjusted life years increase with our MELD exception points while

their number of death on the transplant waiting list and the average waiting time until transplan-

tation decrease. Overall, disadvantaged patient groups can greatly benefit from receiving MELD

exception points without decreasing the efficiency of the current liver allocation system.

The rest of this chapter is organized as follows. In §1.2, we review the related literature and

discuss our contributions. §1.3 presents the fluid model, the resulting optimal control problem,
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and the optimal policy of allocating deceased-donor livers. Motivated by our optimal policy, we

show how we provide MELD exception points to disadvantaged patient groups in §1.4. In §1.5,

we present the results from our simulation study to discuss how equity and efficiency metrics are

affected by introducing MELD exception points. We conclude this chapter and discuss potential

research directions in §1.6.

1.2 Related Literature

This paper is broadly related to the literature on two-sided matching queues, where heterogeneous

supply types (donor organs with different blood types and sizes) are matched with only a subset

of demand types (patients with different blood types and heights). Under such compatibility

constraints, Gurvich and Ward (2015) study the problem of minimizing finite-horizon cumulative

holding costs of items, and Ashlagi et al. (2019) study the waiting time performance of various

dynamic control policies in two-sided matching queues. Similarly, Nazari and Stolyar (2019) propose

an optimal matching policy that maximizes the long-run average matching rewards while keeping

queues stable, and Hu and Zhou (2022) design the optimal matching policies that maximize total

discounted rewards. Afeche et al. (2022) find the optimal design of service compatibility topologies

given the trade-off between customers’ waiting time delays and maximizing match rewards. The

main difference in transplant queueing systems is that the patients change classes while waiting for

a transplant (e.g., health deterioration), leading us to use the first-order fluid approximation of the

queueing system to minimize pre-transplant mortality in finite horizon under equity constraints.

The organ (e.g., kidney, liver, heart) allocation systems have been studied extensively by

economists and operations researchers. In their early work, David and Yechiali (1985) consider

a patient’s problem of accepting a kidney offer as a time-dependent stopping problem to maximize

their expected reward from transplantation. Righter (1989) models the kidney allocation process

as a stochastic assignment problem with the objective of maximizing the total expected reward.

Similarly, Ahn and Hornberger (1996) and Howard (2002) solve a transplant patient’s problem of

accepting/rejecting a kidney offer, and Alagoz et al. (2004, 2007) and Sandıkçı et al. (2008) consider

a patient’s problem for a liver offer. In a series of papers, Su and Zenios (2004, 2005, 2006) study

how patient choice impacts the kidney allocation mechanisms. From a geographical perspective,
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Kong et al. (2010) solve the problem of maximizing the efficiency of the liver allocation system, and

Ata et al. (2017) address the region-based inequity in access to kidney transplantation. Bertsimas

et al. (2013) propose a data-driven method for designing national policies for kidney allocation

with the objectives of fairness and efficiency. Dai et al. (2020) analyze the welfare consequences

of introducing the donor-priority rule, which grants registered organ donors priority in receiving

organs in case they need transplants in the future.

Within this extensive literature, our paper contributes to the stream that focuses on the optimal

design of organ allocation policies using the first-order fluid approximation of the transplant sys-

tem. Zenios et al. (2000) find the best kidney allocation policy with the trade-off between clinical

efficiency (i.e., QALY) and equity in access to transplantation, Akan et al. (2012) design optimal

liver allocation policies where the trade-off is between medical urgency (i.e., the total number of

patient deaths) and efficiency, and Hasankhani and Khademi (2021) propose optimal policies of

allocating hearts with the trade-off between efficiency and equity. Given the prevalence of medical

urgency in the current liver allocation system (i.e., MELD-based allocation), we restrict our focus

to improving equity in access to liver transplantation while keeping medical urgency as our objec-

tive. In addition to proposing the optimal policy of allocating deceased-donor livers, differently

from this stream of literature, we show that the shadow prices of the optimal control problem can

be used to estimate transplant patients’ short-term mortality risk; hence, we utilize our fluid model

to introduce MELD exception points that can be used by policymakers to improve equity within

the current MELD-based system.

Medical scientists study the problem of providing novel MELD exception points to patients with

HCC whose mortality risks are under-predicted by their MELD scores. Toso et al. (2012) use a pro-

portional hazard model, Vitale et al. (2014) run multivariable regressions, and Marvin et al. (2015)

use a Cox regression model to estimate the short-term mortality risk of patients with HCC to provide

MELD exception points. While this literature lacks studies to provide model-based MELD excep-

tion points to non-HCC patients (e.g., patients with cystic fibrosis, hepatopulmonary syndrome,

etc.), our computational framework of providing MELD exception points can be generalized with

non-HCC patients who apply for MELD exception points. Bernards et al. (2022) provide static

MELD exception points to short patients regardless of their laboratory MELD scores. Our model

takes the dynamics of the liver transplant waitlist (e.g., patients’ health evolution, patient/donor
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arrivals, mortality, etc.) into account, endogenously calculates transplant patients’ short-term mor-

tality risk that can be directly mapped into MELD score exceptions, and provide different MELD

exception points to disadvantaged patients based on candidates’ laboratory MELD scores.

Using the publicly available data from the Scientific Registry of Transplant Recipients (SRTR),

we test our proposed MELD exception points in the simulation of the national liver allocation

system to evaluate their impact on various efficiency and equity metrics for different patient groups

as well as the overall system. Ruth et al. (1985) and Pritsker et al. (1995) are among the early

papers that analyze the kidney and liver allocation systems via simulation, respectively. Kreke et al.

(2002) and Shechter et al. (2005) incorporate the patients’ disease evolution, and Kim et al. (2015)

develop a machine learning-based model to incorporate transplant patients’ accept/reject decisions

into the simulations of the liver allocation system. Davis et al. (2013) and Sandıkçı et al. (2019)

develop discrete-event simulations of the national kidney allocation system to evaluate potential

policy changes in allocating kidneys. We incorporate the discretized version of our fluid model with

Liver Simulated Allocation Model (LSAM) developed by SRTR to provide MELD exception points

to disadvantaged patient groups in order to increase their access to deceased-donor livers.

1.3 A Fluid Model and Analysis

We model the liver transplant waitlist as a multiclass overcrowded queueing system with heteroge-

neous servers. Given the complex dynamics of this problem (patients’ health evolution, mortality,

etc.), we use the first-order fluid approximation of the queueing system to solve the resulting op-

timal control problem in the finite horizon. We introduce our fluid model with the objective of

minimizing patients’ pre-transplant mortality in the system in §1.3.1, propose our optimal policy,

and discuss the interpretation of the shadow prices of the optimal control problem in §1.3.2. Table

A.2 summarizes our notation. Proofs of our results can be found in Appendix A.3.

1.3.1 Model

We construct a stylized fluid model to characterize the liver allocation process and to track the

dynamics of the system. An overview of this section is as follows. We first describe ESLD patients

and their dynamics while waiting for a liver transplant. Next, we describe the deceased-donor livers
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being harvested for the transplant patients, control variables that correspond to the allocation of

donor livers to patients and the state of the system. Finally, we formulate our objective function as

minimizing pre-transplant mortality in finite horizon with fairness constraints for different patient

classes to ensure equity in access to transplantation.

We divide the ESLD patients who wait for a liver transplant into different classes along two

dimensions: static patient characteristics such as height, and dynamic patient characteristics that

represent their health status, i.e., laboratory MELD score. The former dimension is denoted by

i ∈ I := {1, 2, ..., I} where I is the total number of patient groups, and the latter dimension is

denoted by j ∈ J := {1, 2, ..., J} where J is the total number of laboratory MELD scores.4 MELD

score of a patient may change over time, implying that the patients’ dynamic class might change

in our model. The diagram of the class structure of the ESLD patients can be found in Appendix

A.4.

Patients of class ij arrive at the liver transplant waitlist with rate λij(t) for t ≥ 0, and the

number of class ij patients waiting for transplantation at time t is denoted by xij(t); initially, there

are xij(0) patients in class ij. As we mentioned earlier, patients’ health status (i.e., MELD score)

changes while waiting for a transplant. In many cases, a patient’s health condition deteriorates,

leading to an increase in their MELD scores; however, it is also possible for some patients (e.g.,

patients with primary biliary cirrhosis) to experience a temporary recovery when they first join the

waitlist leading to a decrease in their MELD scores. To be specific, we denote the rate at which

a patient’s MELD score changes from j to j′ with αjj′ for (j, j
′) ∈ J × J without any structural

assumptions. The rate at which a patient with MELD score j dies while waiting for a transplant is

denoted by dj . The patients with higher MELD scores are more likely to die; therefore, we assume

that dj > dj′ for j > j′.

A type k deceased-donor liver arrives at the liver transplant system with rate µk(t) for k ∈ K :=

{1, ...,K} and t ≥ 0. The type of a liver is defined by its blood type and size. We denote the rate at

which type k livers are dynamically allocated to class ij patients by uijk(t) for i ∈ I, j ∈ J , k ∈ K

and t ≥ 0. The static type of a patient (i.e., height), denoted by i, must be compatible with the

liver type k (i.e., size) so that a type k deceased-donor liver can be offered to class ij patients for

4In practice, there are 35 dynamic patient classes, i.e., J = 35, because MELD score takes integer values between
6 and 40.
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all j ∈ J . We ensure this with an incompatibility constraint on the control variables, specifically,

uijk(t) = 0 for (i, k) ∈ INF, all j ∈ J and t ≥ 0 where INF contains the incompatible patient type

- donor liver type pairs.

Patients have the option to reject offered livers due to the expectation of receiving a better

organ offer in the future. We denote the probability of a class ij patient accepting a type k liver

by pijk. In our model, a deceased-donor liver can be offered to multiple patients on the waitlist. If

a type k liver is offered to n patients of class ij, the probability of the liver being rejected by all

patients, i.e., the organ is wasted, becomes (1− pijk)
n. As a result, the probability of a type k liver

being transplanted when it is offered to n class ij patients, πn
ijk, becomes πn

ijk = 1− (1− pijk)
n.

The state of the system is denoted by x(t) that keeps track of the number of patients in

each patient class at time t, i.e., x(t) = (x11(t), ..., xij(t), ..., xIJ(t))
T for t ≥ 0. Similarly, we

denote the IJ-dimensional vector of control variables for each liver type k by uk(t) where uk(t) =

(u11k(t), ..., uijk(t), ..., uIJk(t))
T for k ∈ K and t ≥ 0. A feasible control u(t) needs to satisfy three

sets of constraints: (i) the total allocation of type k livers cannot exceed the supply of livers of the

same type, (ii) the allocation of deceased-donor livers for the incompatible patient - donor type

pairs must be zero, and (iii) the allocation of livers for the compatible patient - donor type pairs

must be non-negative. Therefore, we define the set of feasible controls, Φ(t), as follows:

u(t) ∈ Φ(t) := {u(t) : e · uk(t) ≤ µk(t); uijk(t) = 0 ∀j ∈ J , (i, k) ∈ INF; uk(t) ≥ 0} (1.1)

where e is an IJ-dimensional vector of ones.

Given a feasible control u, the system state evolves as follows:

ẋ(t) = λ(t)−
K∑
k=1

P kuk(t)− (d+ β − γ)x(t), t ≥ 0, (1.2)

where P k is an IJ × IJ dimensional diagonal matrix with entries πijk for i ∈ I, j ∈ J and each

liver type k ∈ K. λ(t) is the IJ-dimensional vector of arrival rates of patients, λij(t), at time t.

The square matrix of d has shape IJ × IJ , and includes the death rate of patients for each MELD

score, dj , in its diagonal entries. Similarly, the square matrices β and γ, obtained from matrix α,

include the health transition of patients at each MELD score. The former, β, contains the health
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transition rate of patients out of each MELD score to other MELD scores, i.e., it has
∑

j ̸=j′ αjj′

and αjj = 0 in its diagonal entries for each j ∈ J . The latter, γ has a shape IJ × IJ , includes the

health transition rate of patients into each MELD score from other MELD scores, i.e., it has αj′j

for each j ∈ J in block diagonal matrices of shape J × J . Finally, we require that the number of

patients in each class must be non-negative, that is,

x(t) ≥ 0 for t ≥ 0. (1.3)

Our aim is to come up with MELD exception points for disadvantaged patient groups to ensure

their equal access to transplantation. For this reason, we focus on equalizing the likelihood of

transplantation measure across all patient classes with respect to their static characteristics. The

following constraint ensures that the ratio of the total amount of allocated deceased-donor livers

to the total arrival rate of each static patient class must be the same:

∫ T

0

K∑
k=1

e · uki (t)dt =
1

ρ
λiT for i ∈ I, (1.4)

where 1/ρ is the average likelihood of transplantation, λiT is the total arrival rate of patients of

class i, equals to
∫ T
0

∑
j λij(t) over the finite time horizon, and

∫ T
0

∑K
k=1 e · uki (t)dt gives the total

amount of allocated livers to class i patients. In reality, disadvantaged patient classes experience a

lower likelihood of transplantation, i.e., the value of 1/ρi for disadvantaged patient class i is lower

than the value of 1/ρi′ for i′ ∈ I, so we ensure that the likelihood of transplantation is equal for

all patients by enforcing the same value, 1/ρ, independent of static patient classes.

We reflect the current liver allocation policy that prioritizes medical urgency (MELD-based

allocation) with our objective function of minimizing pre-transplant mortality of patients while

waiting for a liver transplant. Since patients with higher MELD scores have a higher mortality

rate, this objective ensures that they are prioritized over patients with lower MELD scores in

receiving liver transplant offers. As a result, the problem of minimizing pre-transplant mortality

of patients while waiting for a transplant with the equity constraint becomes choosing an organ
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allocation policy u so as to

minimize

∫ T

0
(e · d) · x(t)dt subject to (1.1) - (1.4) (P)

with the initial state of the system x(0) = x0.

1.3.2 Equity Adjusted Mortality Risk Policy

In this section, we first present the optimal policy of allocating deceased-donor livers to ESLD

patients under fairness constraints by introducing the shadow prices from the dual problem for-

mulation (D) of our optimal control problem (P). Next, we describe the implementation of the

optimal policy, Equity Adjusted Mortality Risk Policy, from a policymaker’s perspective. Finally,

we provide the interpretation of the shadow prices from the dual problem that lays the groundwork

for our computational framework of providing MELD exception points to disadvantaged patient

groups.

The likelihood of transplant constraint (1.4) in the primal problem (P) requires the integration of

the control variable u(t), which makes the constraint nonlinear in u(t). We linearize this constraint

by introducing another state variable w(t) where wk
i (t) =

∫ t
0 u

k
i (τ)dτ , ẇ

k
i (t) = uki (t)dt, w

k
i (0) = 0

for i ∈ I, k ∈ K and t ≥ 0. As a result, the nonlinear constraint (1.4) is replaced by a terminal

condition as:
K∑
k=1

e · wk
i (T ) =

1

ρ
λiT for i ∈ I. (1.5)

We adopt the general method introduced by Rockafellar and Wets (2009) to derive the dual control

problem (D). In the dual formulation, the state vector yij(t) is the shadow price that corresponds

to the ijth system evolution constraint (1.2) in the primal problem (P), zki (t) is the ikth shadow

price corresponding to the evolution of the control variable u, i.e., ẇk
i (t) = uki (t)dt, and qi is the

ith shadow price corresponding to the likelihood of transplant constraint for patient class i. Given

the dual state vectors of (D), the structure of the optimal policy is presented in Theorem 1.

Theorem 1. The primal problem (P) of minimizing pre-transplant mortality and the dual problem

(D) have the same objective value. Furthermore, letting u and (y,z) pair be a feasible organ allocation

policies for (P) and (D), the primal control u and the dual control (y,z) are optimal for (P) and
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(D), respectively, if and only if they satisfy the coextremality conditions given below. For i ∈ I,

j ∈ J and t ∈ [0, T ],

ẏij(t) = dij + [y(t)(d+ β − γ)]ij if xij(t) > 0, (1.6)

ż(t) = 0, z(T ) =
q

ρ
λT, (1.7)

uk(t) ∈ arg min
v∈Φ(t)

{(P k · y(t)− z(t))vk} for k ∈ K. (1.8)

Equation (1.8) characterizes the optimal allocation of deceased-donor livers to minimize pre-

transplant mortality in finite horizon. When a liver of type k arrives at time t, a policymaker ranks

patients in class ij with respect to the quantity yij(t)π
n
ijk−zi(t) where the number of parallel organ

offers is n and class ij patients’ probability of accepting the liver offer is πn
ijk. With the objective

function of minimizing pre-transplant mortality, the dual state variable yij(t) gives the potential

increase in the objective function if we were to increase the number of patients in class ij by one, in

other words, it gives us the mortality risk of an additional patient of class ij at the end of the time

horizon. The dual state variable zi(t) gives the potential decrease in the objective function if we

were to increase the likelihood of transplant of class i patients by 1%, i.e., it gives us the mortality

risk of class i patients that can be avoided by increasing their access to transplantation. Therefore,

the optimal policy, Equity Adjusted Mortality Risk Policy, non-decreasingly orders patients in

terms of their adjusted mortality risk to allocate deceased-donor livers to the ESLD patients.

In the current liver allocation system, transplant patients are prioritized with respect to their

medical urgency, i.e., MELD score, and their access to transplantation is not considered a factor

while allocating deceased-donor livers. This is reflected in the first term of the optimal policy,

yij(t)π
n
ijk, in the absence of fairness constraints for a fixed patient class i. Since patients with

higher MELD scores have a higher mortality risk, i.e., yij(t) < yij′(t) for j < j′ and t ∈ [0, T ], and

have a higher probability of accepting incoming liver offers, i.e., πn
ijk < πn

ij′k for j < j′, a policy

maker offers a transplant organ to patients of class i starting from the patients with the highest

MELD score. Adding the fairness constraints to the primal problem (P) brings a new term, zi(t),

that allows for the case where a disadvantaged patient with relatively better health status, i.e.,

lower laboratory MELD score, might be prioritized to increase their access to transplantation.
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1.4 Providing MELD Exception Points

Inspired by the optimal policy of allocating deceased-donor livers to transplant patients under

fairness constraints, we provide the framework of providing MELD score exception points to dis-

advantaged patient groups in this section. First, we establish the connection between the dual

state variables of the optimal control problem and MELD exception points. Then, we provide an

easy-to-implement algorithm to provide exception points by using parameter estimates. Finally,

we demonstrate a numerical example to explain how MELD score exceptions would be provided to

disadvantaged patient groups by the policymakers in practice.

For ease of discussion, we consider patients in two static classes where i represents the regular

class and i′ represents the disadvantaged patient class with a lower likelihood of receiving a liver

transplant. As we have seen in the previous section, the dual state variable that corresponds to the

ijth system evolution constraint (1.2) in the primal problem (P), yij(t), gives us the mortality risk

of a class ij patient at the end of the time horizon for i ∈ I, j ∈ J and t ∈ [0, T ]. We solve (P)

by replacing 1/ρ with 1/ρi for class i patients and 1/ρi′ for class i
′ patients in constraint (4). This

gives us yij(t) for a patient who belongs to the regular class with MELD score j and yi′j(t) for a

patient who belongs to the disadvantaged class with the same MELD score where yij(t) < yi′j(t)

because the likelihood of receiving a transplant for a class i patient, 1/ρi, is greater than for a class

i′ patient, 1/ρi′ . The closest integer to the inverse of the difference between yij(t) and yi′j(t) on the

MELD score - short-term mortality risk curve becomes the MELD score exception point for the

class i′j patient. Figure 1.2 visualizes the MELD exception points for the disadvantaged patients

in class i′ at MELD score j.

The primal optimal control problem (P) is linear with respect to the state variable x and the

control variable u; therefore, the discretized version of it turns out to be a linear program that

can be efficiently solved using parameter estimates. The dual state variable y can also be easily

extracted from the primal problem letting us provide MELD exception points to disadvantaged

patient groups. Given the parameter estimates of the primal problem, Algorithm 1 is easy to use

by a policymaker who aims to increase disadvantaged patient groups’ access to transplantation.

The parameter estimates include the initial state of the system, i.e., the number of patients in each

class x0, the average arrival rate of patients into the transplant waitlist, λ, the average arrival rate
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Figure 1.2: MELD Exception Point on Laboratory MELD - 90-day Mortality Risk Curve

of deceased-donor livers, µ, the transplant acceptance probability of patients in each class, P , the

rate of health transitions of patients in each MELD score, α, the mortality risk of patients, d, the

feasible set of organ allocations, Φ, and the average likelihood of transplantation of each patient

class, 1/ρ. We note that the historical data or the forecasts for a pre-specified time horizon (3

months, 1 year) can be used to estimate parameters such as average arrival rates and the likelihood

of receiving a liver transplant. After the linear program is solved using the estimated parameters,

one can check the dual values of each patient class corresponding to the system dynamics constraints

at each MELD score and give the exception points to the disadvantaged patient groups whose dual

values appear to be higher than other patient groups.

For the numerical demonstration, we use the data from UNOS Region 5, which includes the

states of Arizona, California, Nevada, New Mexico, and Utah, for the years between 2012 and

2017 to estimate transplant patient and deceased-donor arrival rates. We abstract away the blood

type matching and focus only on the size matching to classify patients into different groups with

respect to their heights. As we mentioned earlier, shorter patients can receive transplantation

from a smaller pool of available donors, i.e., only small size deceased-donor livers, compared to

medium-height and tall patients. As in Lai et al. (2010), we consider patients taller than 180 cm

as tall, between 165-180 cm as medium-height, and shorter than 165 cm as short patients. The

primal optimization problem (P) is solved for varying time horizons, and the results from the 1-year

horizon are presented for brevity. Figure 1.3 shows the dual values that are endogenously calculated

from the primal problem, i.e., tall, medium, and short patients’ mortality risk at each MELD score,

and the differences between dual values of all patient class pairs.
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Algorithm 1 Providing MELD Exception Points

Require: x0, λ, µ, P, α, d,Φ, 1/ρ
discretize the time horizon;
solve the resulting Linear Program (LP);
for Patient class pairs (i,i’) do

for MELD score j do
if yi′j > yij then

j′ ← inverse of dj + yi′j − yij on MELD - 90-day mortality risk curve
Exception Pointi′j ← ⌊j′ − j⌋

end if
end for

end for

Figure 1.3(a) shows us that the mortality risk of all patients for low MELD scores, i.e., <

20, are very close to each other regardless of their height because ESLD patients rarely receive

transplantation when their health condition is relatively well. We do not provide exception points

to short patients in this interval. The patients on the transplant waitlist receive deceased-donor liver

offers for MELD scores higher than 20; therefore, we observe the discrepancy between the short,

medium-height, and tall patients’ mortality risks for higher MELD scores due to the differences

in their access to transplantation. Using the differences in the mortality risk of patients in Figure

1.3(b), we provide MELD score exception points to short patients. For MELD scores between 21

and 34, the difference between the mortality risk of tall and short patients grants +1 exception point

to short patients to artificially move them to higher positions in the transplant waitlist. For MELD

scores between 35 and 38, short patients are granted +2 exception points because the difference

between the mortality risks corresponds to a higher MELD score difference on the laboratory MELD

score - short-term mortality risk curve. Medium-height patients do not qualify for MELD score

exceptions because the difference between their mortality risk and tall patients’ is not high enough

for them to be granted. These exception points improve short patients’ access to transplantation

to decrease their mortality risk while waiting for a liver transplant.

1.5 Simulation Results

In this section, we present the results from the simulations of the national liver allocation system to

study how various efficiency and equity metrics are affected by our proposed MELD score exception
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Figure 1.3: Estimated Mortality Risk of Transplant Patients in Region 5
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(b) Mortality risk differences
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points to disadvantaged patient groups. First, we introduce the simulation model and describe the

system dynamics that are updated over the course of the simulation. Second, we explain how our

computational procedure is incorporated into the simulations to compute MELD exception points.

Then, we present the simulation results on equity with our proposed exception points and compare

the potential improvement over the current policy and static exception points. Improving the equity

of a system comes at the cost of losing efficiency in general; therefore, we present the simulation

results on efficiency metrics for each patient group as well as the overall system. Finally, we discuss

how our proposed MELD exception points affect the trade-off between efficiency and equity.

We use the Liver Simulated Allocation Model (LSAM), a computer simulation program devel-

oped by the Scientific Registry of Transplant Recipients (SRTR), to simulate the allocation of livers

to candidates on the Organ Procurement and Transplantation Network (OPTN) waiting list. A

more detailed description of the simulation model and its validation can be found in SRTR (2019).

The liver allocation system comprises 11 regions and 58 donor service areas (DSA). When trans-

plant candidates arrive at a particular DSA, they are assigned a laboratory MELD score, blood

type, Status 1 exception (for critically ill patients), and HCC exception. In addition to the afore-

mentioned exception points that LSAM provides, we provide MELD exception points to patients

based on their height and laboratory MELD score. During the simulation, transplant candidates’

laboratory MELD scores are updated, reflecting the changes in their health status, and they are
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removed from the waitlist due to death or other reasons (e.g., being medically unsuitable for trans-

plantation). After a deceased donor arrives, the liver is assigned a blood type with the donor’s

height information, and it is offered to blood type and size-compatible candidates in accordance

with the current allocation policies. The patient preferences module computes the acceptance prob-

ability of each transplant candidate when a deceased-donor liver becomes available, and the organ

is discarded if it is rejected by all candidates who receive an offer. Lastly, the transplant statistics

module computes the related performance metrics of the overall system that we discuss later in

this section.

We run LSAM simulations of the current policy and our proposed policy for a 5-year horizon

with three replications. In our simulation study, we focus on providing MELD score exception

points based on transplant recipients’ height. Extending the example based on three height groups

in §1.4, we divide transplant patients into five height tiers (≤ 150 cm, 151-156 cm, 157-165 cm,

166-175 cm, ≥ 176 cm) that align with the medical literature on liver transplantation (Bernards

et al. 2022). In order to capture more granular differences in the most disadvantaged patients,

the shortest patients are split into smaller tiers compared to tall patients. The data of transplant

candidates and donors are collected from LSAM input files for the study period of July 1, 2011, to

June 30, 2016. The average results are presented in this section for brevity.

The interaction between the simulation of the national liver allocation system and our optimiza-

tion model is visualized in Figure 1.4. For a 1-year period, our simulation runs with the UNOS’

current policy of allocating livers based on medical urgency to estimate each patient group’s like-

lihood of receiving a liver transplant. Along with the estimated rates of patient and donor liver

arrivals, and waiting list dynamics, these parameters are used in our optimization model to endoge-

nously compute the mortality risk of patients that result in MELD score exception points for short

patients in Algorithm 1. These exception points are then fed into the simulation to evaluate the

changes in the performance metrics. Suppose there are still discrepancies between different patient

classes regarding their likelihood of transplantation. In that case, we repeat the steps we have

described so far until each patient group’s likelihood of transplantation converges to each other

close enough.

We define size-based compatibility in deceased-donor liver transplantation with respect to the

transplant recipients’ and donors’ heights by using the Body Surface Area Index (BSAi) thresholds
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Figure 1.4: Optimization Model and Simulation Diagram

in Fukazawa and Nishida (2016). Body Surface Area Index (BSAi) of a patient-donor pair is

the ratio of a donor’s Body Surface Area (BSA)5, correlated to the liver size, to a recipient’s

BSA, correlated to the available abdominal volume. A donor liver is considered ”small-for-size”

where BSAi < 0.78, and ”large-for-size” where BSAi > 1.24. In order to calculate an average

compatibility metric based on available data, we analyze the BSA distribution of deceased donors

and transplant recipients. Given BSARecipient, we first calculate what percent of BSADonor falls

into the compatibility interval, i.e., 0.78*BSARecipient < BSADonor < 1.24*BSARecipient. For each

height tier of recipients, we replace BSARecipient with BSARecipient LB (BSARecipient UB) in the lower

(upper) bound of the interval where BSARecipient LB (BSARecipient UB) is the 5th (95th) percentile

of the BSA of transplant patients. Since using BSARecipient LB and BSARecipient UB gives optimistic

estimates for compatibility, we also calculate what percent of BSARecipient falls into the compatibility

interval given BSADonor, i.e., 0.78/BSADonor < 1/BSARecipient < 1.24/BSADonor. This time, we

replace BSADonor with BSADonor UB (BSADonor LB) in the lower (upper) bound of the interval

where BSADonor UB (BSADonor LB) is the 95th (5th) percentile of the BSA of donors. The minimum

compatibility percentage obtained from the first set of intervals and the second set of intervals is

taken as the size-based compatibility metric in the optimization model. The resulting compatibility

percentages and the histogram of donor and recipient BSAs can be found in Appendix A.5.

In order to examine the effect of MELD score exception points on the equity of liver transplan-

tation, we measure the likelihood of receiving a transplant, the likelihood of death while waiting for

a transplant, and the ratio of the likelihood of transplant to the sum of the likelihood of death and

transplant metrics of each patient group. We compare the performance of our policy with three

5BSA = 0.007184 * Height0.725 * Weight0.425
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benchmarks; current UNOS policy without exception points, (1,1,0) policy that grants +1 point

to ≤ 150 cm patients, and +1 point to 151-156 cm patients with no exception points to remaining

patients, and (2,1,0) policy that grants +2 points to ≤ 150 cm patients and +1 point to 151-156 cm

patients with no exception points to remaining patients. We consider (1,1,0) and (2,1,0) policies

as static policies because the exception points are granted to disadvantaged patients regardless of

their laboratory MELD score, and they do not change during the simulation. As we have seen as an

example in §1.4, our exception points depend on patients’ MELD scores that are updated regularly,

and they may change during the simulation if disadvantaged patients’ likelihood of receiving a liver

transplant changes.

The results on equity with the current UNOS policy, (1,1,0) and (2,1,0) static policies, and

our policy are presented in Table 1.2. As discussed in §1.1, ≤ 150 cm and 151-156 cm candidates

have a significantly lower likelihood of receiving a deceased-donor liver transplant (35.9% and

37.5%, respectively) compared to 157-165 cm (39.2%), 166-175 cm (40.1%), and ≥ 176 cm (41.0%)

candidates with the current policy. Also, the likelihood of death while waiting for a liver transplant

is higher for ≤ 150 cm and 151-156 candidates (10.7% and 10.6%, respectively) compared to 157-

165 cm (9.6%), 166-175 cm (9.2%), and ≥ 176 cm (8.6%) candidates. Consequently, ≤ 150 cm and

151-156 cm candidates have lower transplant over death plus transplant percentage (77.0 % and

77.9%, respectively) compared to 157-165 cm (80.3%), 166-175 cm (81.3%), and ≥ 176 cm (82.7%)

candidates.

(1,1,0) and (2,1,0) static policies improve ≤ 150 cm and 151-156 cm candidates’ access to liver

transplantation; ≤ 150 cm and 151-156 cm candidates’ likelihood of transplant increases to 38.1%

and 39.5% with (1,1,0) policy, and to 39.5% and 39.4% with (2,1,0) policy, respectively. These

two policies result in a decrease in ≤ 150 cm and 151-156 cm candidates’ likelihood of death while

waiting for a transplant; ≤ 150 cm and 151-156 cm candidates’ likelihood of death drops to 10.5%

and 10.1% with (1,1,0) policy, and to 10.2% and 10.1% with (2,1,0) policy, respectively. Our

dynamic policy further improves ≤ 150 cm and 151-156 cm candidates’ access to transplantation

compared to (1,1,0) and (2,1,0) policies; Table 1.2 shows that ≤ 150 cm and 151-156 cm patients’

likelihood of transplant increases to 39.7% and 39.7%, respectively. We also observe a further

decrease in 151-156 cm candidates’ likelihood of death (9.9%) with our policy compared to (1,1,0)

and (2,1,0) policies. Overall, all candidate groups’ likelihood of transplant percentages converges

23



Table 1.2: Simulation Results on Equity

Likelihood of Transplant (%)
Height (cm) Current Policy (1,1,0) Policy (2,1,0) Policy Our Policy

≤ 150 35.9 38.1 39.3 39.7
151-156 37.5 39.5 39.4 39.7
157-165 39.2 38.9 39.3 39.6
166-175 40.1 39.7 39.7 39.7
≥ 176 41.0 40.4 40.2 40.0

Likelihood of Death (%)

≤ 150 10.7 10.5 10.2 10.2
151-156 10.6 10.1 10.1 9.9
157-165 9.6 9.8 9.8 9.8
166-175 9.2 9.1 9.2 9.2
≥ 176 8.6 8.8 8.8 8.9

Transplant/(Death + Transplant) (%)

≤ 150 77.0 78.4 79.4 79.7
151-156 77.9 79.6 79.6 80.0
157-165 80.3 79.9 80.0 80.2
166-175 81.3 81.4 81.2 81.2
≥ 176 82.7 82.1 82.0 81.8

to each other with our policy ensuring equal access to deceased-donor liver transplantation.

The MELD score exception points for disadvantaged patient groups improve equity in access to

liver transplantation. Since improving the equity of a system comes at the cost of losing efficiency

in general, we use various efficiency metrics to assess the effect of proposed MELD score exception

points on the performance of the liver allocation system. In particular, we use the expected quality-

adjusted life years of each patient group (QALY), the number of wasted livers from each donor group

(NWL), the number of patients died while waiting for a liver transplant (NPD), and the average

waiting time of each patient group until receiving a transplant (AWT).

The percentage improvements in the efficiency metrics over the current UNOS policy are pre-

sented in Table 1.3. As expected, ≤ 150 cm and 151-156 cm candidates benefit from receiving

MELD exception points because all performance metrics improve for them. In particular, QALY

and AWT objectives for ≤ 150 cm (16.8% and 11.2%, respectively) and 151-156 cm candidates

(7.1% and 3.4%, respectively) improve substantially. The decrease in these two objectives is low
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Table 1.3: Simulation Results on Efficiency

% improvement over the current allocation
Height (cm) QALY NPD AWT NWL

≤ 150 16.8 5.9 11.2 4.1
151-156 7.1 2.1 3.4 1.2
157-165 -1.1 -1.0 -0.1 0.2
166-175 -0.7 -2.2 -0.3 -0.4
≥ 176 -1.9 -3.1 -3.9 -1.1

Total 0.2 -0.1 0.9 -0.6

Notes. QALY: quality-adjusted life years, NPD: number of patients died while waiting for a transplant,

AWT: average waiting time until transplant, NWL: number of wasted livers. % improvement takes a

positive value when the QALY objective increases, NPD, AWT, and NWL objectives decrease.

for 157-165 cm (-1.1% and -0.1%, respectively) and 166-175 cm (-0.7% and -0.3, respectively) can-

didates compared to ≥ 176 cm candidates (-1.9% and -3.9%, respectively). Similarly, the NPD

objective for ≤ 150 cm (5.9%) and 151-156 cm (2.1%) candidates improve even though this im-

provement is not as big as QALY and AWT objectives. This objective becomes worse for 157-165

cm (-1.0%), 166-175 cm (-2.2%), and ≥ 176 cm (-3.1%) candidates. On the supply side, NWL

objective improves for ≤ 150 cm (4.1%), 151-156 cm (1.2%), and 157-165 cm (0.2%) donors with

a decrease in 166-175 cm (-0.4%) and ≥ 176 cm (-1.1%) donors. Overall, our simulations show

that the performance of the liver allocation system improves for QALY and AWT objectives (0.2%

and 0.9%, respectively). In contrast, with our policy, NPD and NWL objectives worsen slightly

(-0.1 and -0.6%, respectively). These results suggest that we can improve equity by introducing

MELD exception points to disadvantaged candidates without sacrificing the efficiency of the liver

transplant system.

Finally, Table 1.4 presents the change in various equity and efficiency metrics with respect to the

patients’ gender and race. The shortest stature candidates (≤ 150 cm and 151-156 cm) who receive

MELD exception points in our policy represent a disproportionately female and Hispanic proportion

of the liver transplant candidate population. Female candidates have a lower probability of receiving

a liver transplant and a higher likelihood of death while waiting for a transplant (38.9% and 9.6%,

respectively) compared to male candidates (40.3% and 8.8%, respectively) with the current policy.

Hispanic candidates also have lower rates of liver transplant (38.3%), longer waiting times until
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Table 1.4: Simulation Results on Recipients’ Gender and Race

Current Policy Our Policy
Gender LT (%) AWT Death (%) LT (%) AWT Death (%)

Women 38.9 257 9.6 39.8 256 9.4
Men 40.3 277 8.8 39.9 274 8.9

Race/Ethnicity

Caucasian 39.4 271 9.1 39.2 275 9.2
Hispanic 38.3 296 10.9 38.7 289 10.6
African American 46.4 216 7.6 46.3 218 7.5
Asian 40.1 288 5.7 40.6 269 5.9

receiving a transplant (296 days), and higher rates of death (10.9%) in comparison to non-Hispanic

candidates (e.g., Caucasian candidates have a transplant rate of 39.4%, an average waiting time of

271 days, and a dropout rate of 9.1%). Our policy almost equalizes female and male candidates’

likelihood of liver transplantation (39.8% and 39.9%, respectively) while lowering female candidates’

average waiting time until transplantation (from 257 to 256 days), and the likelihood of death

(from 9.6% to 9.4%). Hispanic (38.7%) and Asian candidates’ (40.6%) transplant rate increases,

average waiting time until transplantation decreases (289 and 269 days, respectively), and Hispanic

candidates’ likelihood of death (10.6%) decreases with our MELD exception points. Altogether,

our simulations demonstrate that disadvantaged candidates (female and Hispanic) greatly benefit

from our policy, and more equal rates of liver transplantation and death across the entire transplant

candidate population are obtained with MELD exception points.

1.6 Conclusion

The shortage of donor liver supply results in long waiting times for ESLD patients, which raises

concerns over fairness in different patient groups’ access to transplantation. In this regard, we

study the problem of achieving a fairer liver allocation system where there are disparities in ac-

cess to transplantation based on patients’ height and gender. Shorter patients and women have

higher average waiting times and mortality rates compared to other patient groups because they

can receive liver transplants from a smaller pool of available deceased donors. To address this

problem, (i) we develop a fluid model of the liver transplant system with fairness constraints, (ii)
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derive the optimal policy of allocating deceased-donor livers to transplant patients, (iii) provide a

computational framework to provide MELD score exception points to disadvantaged patient groups

to increase their access to transplantation, and (iv) run simulations of the national liver allocation

system to assess the effect of our proposed MELD exception points on the efficiency and equity of

the current policy of allocating livers which is based on transplant patients’ medical urgency.

Our analysis shows that the Equity Adjusted Mortality Risk policy, which ranks transplant

patients in terms of their medical urgency but adjusts this ranking to ensure all patient groups

have equal access to transplantation, is optimal in allocating deceased-donor livers. Without the

fairness constraints, we show that the optimal policy coincides with the UNOS’ current policy

of allocating donor livers based on ESLD patients’ medical urgency, i.e., ranking patients with

respect to their laboratory MELD scores. The dual state variables are endogenously calculated

while solving the primal optimal control problem of minimizing pre-transplant mortality. We show

that these dual variables are a proxy for transplant patients’ short-term mortality risk, which can

be mapped into laboratory MELD scores. With an easy-to-implement algorithm, we utilize them to

provide MELD exception points to disadvantaged patient groups because their short-term mortality

risks are higher than other patient groups. These exception points move disadvantaged patients to

higher positions in the transplant waitlist to improve their access to transplantation.

We run simulations of the national liver allocation system to test the effect of introducing

MELD exception points over various efficiency and equity objectives. Our simulations show that

disadvantaged patients can greatly benefit from receiving MELD score exceptions without decreas-

ing the efficiency of the overall liver transplant system. While prior research focuses on optimizing

the organ allocation rules that require fundamental policy changes, our work provides a remedy

within the current liver allocation system where transplant patients are prioritized based on medi-

cal urgency. In addition to the static patient characteristics we have discussed in our work (height,

gender, race), our methodology can be generalized with any factor that creates discrepancies in

organ access. Also, our shadow price approach can be used to compare medical urgency across

organs for patients who need dual organ transplants (a new liver and another new organ during

the same surgical procedure) since these patients are listed on both organ waiting lists.

We discuss the potential considerations that are beyond the scope of this chapter. First, we

solely focus on the allocation of deceased-donor livers; therefore, we do not consider living donor
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liver transplantation in our theoretical and computational analysis. The reasons for this are: (i)

living donor liver transplants constitute a small portion (5.5% in 2020) of liver transplants in the

US, and (ii) most living donors donate a portion of their healthy livers to their family members

or friends without participating in the national liver allocation system. Second, our model and

analysis do not incorporate split liver transplants (SLT), which can potentially reduce disparities

in organ access due to the size mismatch between the donor and the recipient. The practice of

splitting deceased-donor livers provides liver transplants for two recipients (in general, one adult

and one pediatric patient); however, only 3.8% of all deceased-donor livers are used for SLTs from

2010 to 2015 (Tang et al. 2021). Given their rising trends in the last few years, how to incorporate

living donor liver transplants and SLTs into the MELD-based liver allocation system remains an

interesting research question to study further in the future.
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Chapter 2

Popularity Bias in Online Dating

Platforms

2.1 Introduction

Since the launch of commercial dating sites such as Match.com in the 1990s, online dating has

become a popular way of meeting and developing relationships with platforms serving billions of

people around the world (Vogels 2020). The rise of online dating services gives people access to

more potential dating partners than they could meet in traditional ways (e.g., through friends or

other social activities). In the United States, three out of ten adults have used a dating site or app

at some point, and over half of Americans say relationships that begin on a dating site or app are

just as successful as those that begin in person (Anderson et al. 2020). Recently, the use of dating

apps has increased substantially as people have sought to connect virtually during the Covid-19

pandemic (Wu 2021).

A great variety of online dating platforms exist today (see, e.g., the comparison of online dating

services on Wikipedia). Early online dating services allowed users to browse, search, and contact

other users freely, but those decentralized systems have been gradually replaced by online dating

services that provide recommendations of compatible dating partners to their users. Matchmaking

technologies have become an important value proposition for these new service platforms. For

instance, the matchmaking website eHarmony claims to have a “scientific approach to matching
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highly compatible singles” based on “29 dimensions of compatibility,” and OkCupid states that

they “do a lot of crazy math stuff to help people connect faster” (Wu et al. 2018).

However, generating recommendations of compatible dating partners is challenging for online

dating platforms because uncovering users’ idiosyncratic preferences is difficult. Thus, platforms

tend to recommend popular users (those who are attractive, well-educated, well-employed, etc.)

to others more frequently than unpopular users, even though users might be interested in them.

In other words, their algorithms are prone to popularity-based bias (or popularity bias for short).

For example, using data we collected over a 15-month period from a major online dating platform

in South Korea, we find that a user’s chance of being recommended by the platform’s algorithm

increases significantly with the increase in the user’s average attractiveness score as generated by

other users. This popularity bias in a platform’s recommendations results in congestion for popular

users due to the excessively high number of messages received, and it lowers unpopular users’

chances of finding compatible dating partners.

The challenge of building a high-performing recommendation algorithm is not the sole reason

why we observe popularity bias in online dating platforms. The vast majority of platforms earn

revenue not when users find a successful match but when users are in the process of searching for

dating partners. For instance, some platforms generate revenues from showing ads to users while

they view recommended profiles (e.g., Tinder, Bumble), some charge their users weekly/monthly

subscription fees for the privileged opportunity to show interest to other users (e.g., eHarmony,

Match.com), and others require their users to make in-app purchases to initiate contact (e.g., Coffee

Meets Bagel, Noondate). As a result, a platform’s objective is to keep users engaged on the platform

rather than maximize users’ chances of finding compatible dating partners. Recommending popular

users more frequently can potentially increase user engagement on the platform (i.e., more likes

and messages sent); however, it does not ensure a higher matching probability for users.

Motivated by the empirical evidence of popularity bias on a major online dating platform, this

paper studies the incentives for an online dating platform to adopt recommendation algorithms

favoring popular users and examines whether removing such popularity bias in the platform’s

recommendations would improve match outcomes for its users. We model the platform’s decision

and users’ subsequent interactions as a three-stage matching game, and we consider a platform with

two tiers of users, namely, popular and unpopular. Popular users are more selective in sending and

30



accepting messages because they are more likely to have better options both on the platform and

outside of it. We solve the platform’s problem of maximizing revenue and maximizing the number of

matches. We use an unbiased platform (in which popular and unpopular users find equal chances to

be recommended to others) as our benchmark for fairness to compare popular and unpopular users’

matching probabilities, and we evaluate the expected revenues and expected number of matches

for three platforms (revenue-maximizing, match-maximizing, and unbiased).

We empirically validate our theoretical model’s assumptions using the extensive data collected

from a major online dating platform. The data consists of individual attributes of approximately

243,000 users and over 30 million interactions among them over 15 months. The user attributes

include detailed information about users’ demographics and preferences, and the interaction data

capture the following user decisions: (1) seeking more information about other users recommended

by the platform (referred to as “open”), (2) expressing interest to the recommended users by

sending messages (referred to as “send”), and (3) accepting the messages received from other users

(referred to as “accept”). In addition to validating our model assumptions, we utilize this data

to predict users’ future behavior on the platform, i.e., we estimate the probability of interaction

between any pair of users. Our predictions are free of assumptions that we use in our theoretical

model; therefore, the estimated probabilities allow us to run simulations of the revenue-maximizing,

match-maximizing, and unbiased recommendations to test our theoretical results.

Our theoretical analysis shows that the degree of popularity bias in the platform’s recom-

mendations is affected by how selective popular users are in sending and accepting messages

compared to unpopular users. We find that the revenue-maximizing recommendations and the

match-maximizing recommendations are not necessarily at odds when popular users are not too

selective in sending and accepting messages. Similar to the revenue-maximizing recommendations,

the match-maximizing recommendations need to ensure a high number of messages are sent in

order to maximize the number of successful matches between users. As popular users become

more selective on the platform, the bias in the match-maximizing recommendations decreases sig-

nificantly, whereas the bias in the revenue-maximizing recommendations remains high. The user

interaction data indicates that popular female users are much more selective than unpopular female

users, whereas popular and unpopular male users are similarly selective in sending and accepting

messages. As a result, our simulations show that the match-maximizing recommendations are less
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biased against unpopular female users than the revenue-maximizing recommendations; however,

both the match-maximizing recommendations and the revenue-maximizing recommendations lead

to a similar degree of bias against unpopular male users.

We note here that the degree of heterogeneity in users’ popularity is a double-edged sword for

the platform’s success, both in terms of revenue and the number of successful matches. Even though

popular users might help the platform increase revenue and the number of successful matches, they

might also become too selective and may be perceived by others as “out of reach” so that other

users are reluctant to initiate contact.

Another factor that affects the degree of bias in the platform’s recommendations is the con-

gestion effect related to users’ incoming messages. We find that when the congestion effect is

low, unbiased recommendations result in a significantly lower number of messages and successful

matches on the platform than the revenue-maximizing and match-maximizing recommendations.

As the congestion effect increases, both the revenue-maximizing and match-maximizing recom-

mendations include popular and unpopular users more equally. Our simulations indicate that the

platform can increase its revenue and users’ chances of finding dating partners simultaneously with

a certain degree of bias against unpopular users.

The rest of this chapter is organized as follows. In §2.2, we review the related literature and

discuss our contributions. In §2.3, we describe our empirical setting and analysis, and in §2.4, we

present our theoretical model and analysis. In §2.5, we describe how we estimate users’ interaction

decisions, discuss our method’s predictive performance, and present our simulation results. In §2.6,

we present our two-period model and conclude this chapter in §2.7.

2.2 Related Literature

This paper is broadly related to the literature on online matching platforms. While there are a

variety of online matching platforms (e.g., ride-sharing platforms such as Uber and Lyft, house

rental platforms such as Airbnb, and freelancing platforms such as TaskRabbit and UpWork), our

focus in this paper is on online dating platforms, which have received relatively less attention from

operations researchers (see, e.g., Chen et al. (2020), Benjaafar and Hu (2020), Qi et al. (2020)

and references therein). Chen et al. (2020) emphasize the importance of incorporating subjective,
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idiosyncratic, and personalized user preferences to develop recommendation systems and identify

research opportunities to investigate how online dating platforms should design their communication

and recommendation mechanisms to improve matches. While incorporating users’ idiosyncratic

preferences, our work identifies why we observe popularity bias in a revenue-maximizing online

dating platform’s recommendation algorithm and how such bias affects users’ chances of finding

dating partners.

Online dating has been studied by researchers in diverse disciplines including economics, infor-

mation systems, marketing, operations, sociology, and strategy. The literature related to online

dating goes back to the extensive body of work that studies matching and sorting patterns in

marriage markets, starting with Gale and Shapley (1962). Adachi (2003) shows that the stable

equilibrium matching predicted by Gale and Shapley can be seen as the limit outcome of a two-

sided search and matching model with negligible search costs. Noting that the environment Adachi

(2003) studies is akin to that of online dating, Hitsch et al. (2010b) show that the observed corre-

lations in user attributes in online dating largely agree with the correlations in the Gale-Shapley

predicted stable matches in marriages. They use a discrete choice model in analyzing data from a

major online dating service provider and estimate the probability that a user will contact another

user after browsing their profile. In another study, Hitsch et al. (2010a) further examine how var-

ious user attributes, such as race, physical attributes, and education levels, affect the estimated

probabilities. Their analysis is further extended by several researchers: Lin and Lundquist (2013)

examine how race, gender, and education affect initial messages exchanged by any two users; Ong

and Wang (2015) measure gender differences in preferences for mate income; Bruch et al. (2016)

examine how age, height, and body mass index affect the probabilities of users’ initial browsing

and later contact decisions; and Lee (2016) studies the effect of online dating services on marital

sorting.

Another stream of empirical research in online dating draws causal inference regarding the

impact of a particular platform feature (or function) on users’ decisions or matching outcomes. This

line of work uses randomized field experiments, and researchers have investigated an anonymous

search feature (Bapna et al. 2016), member-get-member referral programs (Belo and Li 2018), and

optional phone verification of users (Shi and Viswanathan 2023), among other features. In a similar

vein, Fong (2020) uses causal inference to study how market size and competition size affect users’
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selectivity in searching and matching with other users.

While the above stream of research studies online dating services in which users can browse,

search, and interact with other users (e.g., Match.com), a growing number of new online dating

platforms (e.g., Bumble, Coffee Meets Bagel, eHarmony, OkCupid, Tinder) play a more active role

by recommending users to each other (Wu and Padmanabhan 2019). This increasingly popular

platform role has been recognized by a few recent analytical papers. For instance, Halaburda

et al. (2018) develop a stylized model of online dating and explain how a recommendation-based

platform can successfully compete with search-based platforms by limiting the number of choices

it offers users while charging higher prices. Wu et al. (2018) note a potential conflict of interest

between online dating platforms and their users since users may leave the platforms after finding

their matches, reducing the platforms’ revenue. They study this conflict in a game-theoretic model

and offer insights into how various factors (e.g., competition, consumer patience) may undermine

a platform’s incentive to offer the best recommendations to its users. Kanoria and Saban (2021)

model a dynamic two-sided matching market in which each user has an opportunity to see a random

candidate (from one of two vertical quality tiers) who arrives according to a Poisson process. They

find that simple platform interventions can improve matching outcomes, such as hiding quality

information or preventing users on one side of the market from sending a message. Our study adopts

similar assumptions; the utility that users receive from their matches includes a common evaluation

by all users (average attractiveness) and an idiosyncratic element specific to each user pair, and

one side of the platform includes two tiers of users (high-tier and low-tier). Rios et al. (2022)

propose a family of heuristics to improve match rates in online dating platforms through assortment

optimization. Finally, Bojd and Yoganarasimhan (2022) empirically examine how users’ popularity

information affects other users’ decisions to initiate contact in a live dating game where a mobile

dating app assigns four men (women) to four women (men), users rank-order their preferences, and

the app provides matches to them with a stable match algorithm.

In line with this recent stream of research, we study online dating platforms in which users’

interactions follow platforms’ recommendations. Yet diverging from previous studies, we examine

how a platform’s objective and its users’ behavior shape the platform’s recommendations. We

consider the platform, acting through its recommendation system, as the primary decision-maker

that influences which users can interact with each other. Given the platform’s recommendations,
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users make interaction decisions, anticipating the probability of their interest being reciprocated by

others. We assume that popular users are more attractive to others but more selective in sending

and accepting messages and that users, regardless of popularity, become more selective in accepting

messages if they receive too many of them due to the time and effort necessary to evaluate each po-

tential dating partner (Hauser and Wernerfelt 1990, Iyengar and Lepper 2000, Pronk and Denissen

2020). We show that the degree of popularity bias in an online dating platform’s recommendations

can vastly increase when the platform focuses on maximizing (short-term) revenue rather than

users’ chances of finding successful matches (which may help build the platform’s reputation and

increase long-term revenue). We run simulations of the platform to validate our theoretical results

by developing a novel predictive model that estimates users’ likelihood of interaction.

Finally, our paper is also related to prior work that studies the connection between a platform’s

objective and its bias in recommendations in non-dating contexts. For example, Lambrecht and

Tucker (2019) show that an algorithm that optimizes cost-effectiveness in ad delivery promotes

job opportunities in STEM (science, technology, engineering, and math) fields to men more than

women because it is more expensive to show ads to younger women. Ciampaglia et al. (2018)

find that popularity bias hinders the quality of content recommendations in cultural markets (e.g.,

social media, music streaming services) because popularity metrics lead users to make cognitively

cheaper but less accurate choices in terms of quality. We contribute to this body of literature by

showing the existence of popularity bias in a two-sided matching platform’s recommendations and

its consequences for users’ likelihood of finding successful matches.

2.3 Empirical Setting and Data

In this section, we describe the data we collected from a major online dating platform in South

Korea (subsequently referred to as “the platform”) and run a regression model to empirically check

the presence of popularity bias in the platform’s recommendation algorithm. The data from the

platform contains all active users during the fifteen months of our study period, amounting to

198,857 male users and 39,939 female users. The platform provided completely anonymized user

data to protect users’ privacy. This data can be divided into two components: user attributes and

interactions.
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User attributes, summarized in Appendix B.1, consist of information on each user, including

demographic information (age, education, religion), physical characteristics (height, weight), profile

information (profile completion score, Facebook connected, whether or not a real name is verified),

attractiveness score, and user-stated search filter settings for age, drinking, height, weight, religion,

and smoking. The profile completion score is a number the platform calculates based on the degree

of completion of a user’s profile and survey questions. Each user also has an attractiveness score

which is the average value of the scores (between 1 and 5) the user received from the other users

recommended by the platform in the past. This information provides a richer empirical setting

than that studied by Hitsch et al. (2010a), who used attractiveness scores of users’ photos that were

constructed based on evaluations provided by 100 university students in a lab environment. We

refer to male and female users whose attractiveness scores are higher than the average attractiveness

score for their gender as popular users and the remaining users as unpopular users. In addition to

these individual user attributes, we construct pairwise attributes that apply to pairs of users, such

as height difference, age difference, and religion match. Appendix B.2 provides summary statistics

for each of the user attributes.

Unlike the user attributes, the interaction data relates to pairs of users and is generated by

the users’ decisions on the platform. The platform’s operating sequence is shown in Figure 2.1.

Every day the platform recommends two female (male) users to each male (female) user. The

recommendation is given in the form of a card that contains only the recommended user’s basic

information, such as age, area of residence, and one profile photo. After receiving the cards from

the platform, users may interact with each other in the following three ways – for illustration,

suppose the platform sends Bob’s card to Alice.

1. Open: Alice chooses whether or not to open Bob’s card based on Bob’s basic information

shown on the card. When she opens the card, Alice can see Bob’s detailed profile.

2. Send : Assuming Alice opened Bob’s card, Alice chooses whether or not to send a message to

Bob.

3. Accept : Assuming Alice sent a message to Bob, Bob chooses whether or not to accept Alice’s

message. Once Bob accepts Alice’s message, the pair can exchange messages or chat freely.
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Figure 2.1: Sequence of Decisions in the Online Dating Platform

Table 2.1 summarizes the user interaction data. As one might expect, male users tend to

express interest more actively than female users: male users’ likelihood of opening cards, 30.0%,

is substantially higher than that of female users, 8.4%. We observe similar patterns for sending

and accepting messages. Users’ likelihood of sending messages after opening cards is significantly

lower than that of opening cards for both male and female users. This may be due to the additional

information users obtain after opening recommended users’ cards. Interestingly, we observe that for

both male and female users, the likelihood of accepting messages is higher than that of opening cards

or sending messages. This means that users are more likely to be receptive to the interest shown

by other users than they are to seek more information or initiate interactions by sending messages.

Table 2.1 also informs us of how popular and unpopular male and female users behave differently

when opening cards, sending, and accepting messages. Popular male users are more likely to open

cards and send messages than unpopular male users, whereas popular and unpopular female users’

likelihoods are similar. We observe a different pattern for accepting messages. Popular male and

female users’ likelihood of accepting messages is significantly lower than those of unpopular male

and female users.

To empirically check the presence of popularity bias in the platform’s recommendations, we

run a negative binomial regression. The regression model evaluates the effect of various user

attributes on the platform’s recommendations (referred to as “number of recommendations”) over

a 15-month period. The results in Table 2.2 indicate that a user’s average attractiveness score is a

statistically significant factor in how many times the platform exposes a user’s profile to other users.

The incidence rate ratio (IRR) in the second column of Table 2.2 gives us the percentage change

in the dependent variable (number of recommendations) for a unit increase in an independent

variable for numerical factors (e.g., average attractiveness, age). For instance, the IRR of average
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Table 2.1: Summary of User Interaction Data

Decision Size Likelihood (%) Likelihood (%) Likelihood (%)

Male Users Open 18,288,720 30.0 Popular 32.7 Unpopular 28.9
Send 5,483,418 7.9 10.8 6.7
Accept 6,085 40.6 38.7 45.2

Female Users Open 4,149,030 8.4 Popular 8.6 Unpopular 8.1
Send 349,481 1.7 1.6 1.9
Accept 435,180 9.2 7.8 13

Notes. The Size column reports the number of observed transactions, and the Likelihood (%) columns

report the percentage of the interaction being observed.

attractiveness indicates that a user’s chance of being recommended by the platform’s algorithm

increases by 64% for every unit increase in a user’s average attractiveness score. Because a higher

attractiveness score implies greater popularity among users, this result suggests the presence of

popularity bias in the platform’s recommendations. Combined with popular users’ lower likelihood

of accepting messages, this popularity bias potentially decreases the number of successful matches on

the platform. Additional comments on the platform’s recommendations are presented in Appendix

B.4.

We also find that other individual user attributes presented in Table 2.2 are statistically sig-

nificant in predicting the number of times a user’s profile is recommended to the other users on

the platform. For instance, female users are recommended more (gender = 1 for female) simply

because of the imbalance between the number of male and female users, and the platform recom-

mends users more frequently if their names are verified (verified = 1). For categorical and binary

variables (e.g., gender, verified, region), the IRR indicates the percentage change in the number

of recommendations compared to their base level (e.g., gender = 0). For example, the platform

recommends smoking users 18.5% less than non-smoking users and verified users 26.6% more than

unverified users.

2.4 A Two-Sided Matching Game

Motivated by the empirical evidence presented in §2.3, in this section, we develop a theoretical

model to examine the underlying mechanism that leads to popularity bias in the platform’s rec-

ommendations. Our model is a two-sided matching game with three stages. In the first stage, the
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Table 2.2: Regression Result on Platform’s Recommendations

Coefficients Incidence Rate Ratio

(Intercept) 2.245∗∗∗

(0.016)
Average Attractiveness 0.494∗∗∗ 1.638

(0.003)
Gender 2.325∗∗∗ 10.232

(0.009)
Verified 0.236∗∗∗ 1.266

(0.005)
Age −0.0144∗∗∗ 1.014

(0.001)
Platform Tenure 0.091∗∗∗ 0.913

(0.002)
Region 0.0103∗∗∗ 1.010

(0.001)
Religion 0.026∗∗∗ 1.026

(0.002)
Smoking −0.205∗∗∗ 0.815

(0.006)

Notes. Dependent variable: Number of recommendations. Number of observations = 238,796. Standard
errors are in parentheses. *** p < 0.001; ** p < 0.01; * p < 0.05. Incidence Rate Ratio = log

(
(µ0 + 1)/µ0

)
where µ0 denotes the mean value of the independent variable.

platform recommends a set of male (female) users to female (male) users. In the second stage, upon

receiving the recommendations from the platform, users decide whether to send a message showing

interest to the recommended user. In the third stage, users decide whether to accept the messages

they received in the second stage. For instance, if the platform recommends user A to user B, a

match between users A and B occurs if user B sends a message to user A in the second stage and

user A accepts the message from user B in the third stage. These three stages are consistent with

the sequence of decisions depicted in Figure 2.1, except that our model abstracts away from users’

open decisions for traceability. We describe the details of our model in §2.4.1 and solve for the

platform’s optimal recommendations in §2.4.2. Appendix B.5 summarizes our notation. Proofs of

our results can be found in Appendix B.6.

2.4.1 Model

We refer to the users on the platform as men (denoted by m) and women (denoted by w). Women

on the platform are divided into two tiers: low (denoted by l) and high (denoted by h). The high
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tier represents attractive women with high average attractiveness scores due to good appearance,

education, employment, etc. The low tier represents relatively less attractive women with lower

average attractiveness scores. We choose to construct only two tiers on one side of the platform

in order to maintain tractability in characterizing users’ behavior and the platform’s strategy, and

this approach suffices to show the existence of popularity bias. The matching game is played only

once, so we fix the number of users in each tier. Let Nm, Nh, and N l denote the number of men,

high-tier women, and low-tier women, respectively, on the platform. The number of women on the

platform is denoted by Nw = Nh + N l. For simplicity, we assume an equal number of high-tier

and low-tier women on the platform, i.e., Nh = N l, and an equal number of men and women, i.e.,

Nm = 2Nh = 2N l. The high and low tiers are determined by specifying a threshold for the overall

average attractiveness score; scores above the threshold constitute the high tier, and scores below

constitute the low tier. We thus divide the users into two tiers of the same size.

In the first stage, the platform recommends n users from one side to each user on the other

side, where n is fixed and much smaller than the number of users on the platform; that is,

n << Nm, Nh, N l. The platform chooses a proportion of high-tier or low-tier women in men’s

recommendations. Specifically, the platform determines xh and xl where xh (xl) denotes the pro-

portion of high-tier (low-tier) women in men’s recommendations. This gives us xh ∈ [0, 1] where

xh + xl = 1. For example, suppose that n = 3 and the platform chooses two high-tier women

and one low-tier woman to recommend to men. This gives us xh = 2/3 and xl = 1/3. Given

the platform’s decision, each woman is equally likely to be recommended within their tier. Our

model’s primary variables of interest are xh and xl; we characterize the optimal recommendation

ratios given the platform’s objective and investigate how changes in these decision variables influ-

ence users’ behavior and expected utility on the platform. Furthermore, the platform’s decision

variables xh and xl help us examine whether popularity bias exists against a certain user tier on

the platform. We say that the platform is unbiased when xh = xl = 1/2 because the platform has

an equal chance of recommending any user in either tier (high or low). There is bias against high-

tier women if the platform includes a higher proportion of low-tier women than high-tier women

in men’s recommendations, i.e., xh < 1/2. Similarly, there exists bias against low-tier women if

xl < 1/2. As a measure of how strong bias is, we define the degree of bias as the Euclidean distance

between the platform’s chosen recommendations (xh and xl) and its unbiased recommendations.
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In the second stage of the game, users receive recommendations from the platform and decide

whether to send a message to each recommended user. A user sends a message to a recommended

user when his or her expected match value exceeds the sum of the utility of remaining single (or

the utility of outside options) and the cost of sending a message. We explain each of these model

elements next.

First, if a pair of users match at the end of the game, each user earns a match value. Let vij

denote the match value user i earns when matched with user j. This match value depends on two

components: the average attractiveness of the tier that user j belongs to, qj , and idiosyncratic

utility, uij , specific to pair (i, j), so that vij = qj + uij . If user j is a woman from the high tier,

then qj = q ∈ (0, 1). We normalize qj to be 0 for low-tier women and all men on the platform.

Idiosyncratic utility uij is distributed independently and identically with Uniform(0,1). This ensures

that vij ∈ [q, 1 + q] if user j is a high-tier woman and that vij ∈ [0, 1] if user j is a low-tier woman

or any man on the platform. Although a woman in the high tier is more likely to provide a higher

match value than a woman in the low tier, this is not always true due to idiosyncratic utility. The

distribution of idiosyncratic utility is known to all users on the platform, but the value of uij , along

with qj , can only be learned privately by user i when the platform recommends user j to user i.

A similar assumption is made by Kanoria and Saban (2021). We note that idiosyncratic utility is

not necessarily symmetric, i.e., uij may not equal uji for i and j. This captures the fact that two

users may receive different utilities from the same match.

Second, users have options to find dating partners outside of the online dating platform (e.g.,

through family and friends or social activities). Such outside options would affect how selective

users are on the platform: users with better outside options tend to apply higher standards in

sending and accepting messages. Let θi denote the value of user i’s outside options, which can also

be interpreted as user i’s utility from remaining single on the platform; a higher value of θi means

user i is more selective in sending or accepting messages. We model heterogeneity of users’ outside

options by assuming θi is a random variable with Uniform(αqi,1) where α ∈ [0, 1] is a constant

that captures high-tier women’s degree of selectivity in sending and accepting messages. When

α = 0, θi is distributed with Uniform(0,1), suggesting that both high-tier and low-tier women are

equally selective. When α > 0, high-tier women tend to have better outside options and to be

more selective in sending and accepting messages than low-tier women. By modeling random θi,
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our model allows low-tier users to be more selective than high-tier users, and it allows users in the

same tier to have different values of outside options.

Finally, a user incurs a cost, denoted by r ∈ [0, 1], when sending a message to a recommended

user, and this cost is collected as revenue by the platform. This cost element is included to reflect

most online dating platforms’ revenue structure (e.g., users make in-app purchases to send likes to

other users on platforms such as Coffee Meets Bagel and Noondate). Taken together, user i sends

a message to user j, who was recommended by the platform in the first stage, if and only if

E[vij ] = P[user j accepting user i’s message in the third stage](qj + uij) ≥ θi + r. (2.1)

We denote the probability of a man sending a message to a high-tier (low-tier) woman as pmh (pml )

and the probability of a high-tier (low-tier) woman sending a message to a man as phm (plm).

In the third stage of the game, users see incoming messages and decide whether to accept or

reject them. As is common in practice, we assume that a user does not incur any explicit cost in

accepting a message and users can accept multiple messages (e.g., Bumble, Coffee Meets Bagel,

Noondate); our model can be easily extended to the case where accepting a message has an explicit

cost for users. If user i sends a message to user j in the second stage of the game, user j earns

match value vji when she accepts user i’s message in the third stage. For user j to accept user i’s

message, vji must be greater than or equal to the utility of remaining single, θj , and the bar of

accepting a message, denoted by γj , on the platform. It is well established in the literature that a

user’s probability of rejecting a message increases as the user receives more messages (Iyengar and

Lepper 2000, Pronk and Denissen 2020). We also verify this assumption in our data (see Appendix

B.4). This increasing probability is due to the increase in the user’s effort, which includes the effort

to screen all incoming messages and decide whether to accept or reject each of them (Hauser and

Wernerfelt 1990). We assume γj is a linear function of the total number of messages user j receives

in the third stage, so for a high-tier woman j, γj = βxhp
m
h , where β ∈ [0, 1] is the congestion effect.

(Recall that xh determines the number of men to whom the platform recommends user j and pmh

is the probability of a high-tier woman receiving messages from men.) Similarly, γj = βxlp
m
l for a

low-tier woman j, and γj = β/2(phm + plm) for man j. β = 0 corresponds to the case where there is

no congestion effect, and as β increases, a user’s bar of accepting a message increases. The value
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of β is common to all users, and for the sake of analytical traceability, we assume it is known to all

users and to the platform. Taken together, user j accepts user i’s message sent in the second stage

if and only if

vji ≥ θj + γj . (2.2)

We denote the probability of a high-tier (low-tier) woman accepting a man’s message as ahm (alm)

and the probability of a man accepting a high-tier (low-tier) woman’s message as amh (aml ). When

user j accepts user i’s message, a match occurs, and user i (user j) receives match value vij (vji).

Given the platform’s strategy, denoted by xh and xl, users’ decisions in the second and third

stages of the game are interrelated. Suppose many users decide to send messages to the same subset

of users in the second stage of the game. In that case, each user’s matching probability decreases

because the users who receive a high number of messages in the third stage face a high congestion

effect. The same holds for high-tier women’s degree of selectivity: high-tier women tend to provide

a higher match value than low-tier women, so men are more likely to send messages to high-tier

women. However, high-tier women are likely to have better outside options; hence, they are more

selective in accepting messages in the third stage. On a dating platform where users receive only a

few recommendations from the platform and the messages are costly signals, users are well aware

of these two effects in sending messages (Fong 2020, Bojd and Yoganarasimhan 2022). We provide

empirical evidence for this assumption using the data from a major online dating platform in

Appendix B.4.

To analyze our three-stage matching game, we start by computing users’ probabilities of ac-

cepting messages in the third stage. The following lemma gives these probabilities.

Lemma 2.1. Given the platform’s decision on xh and xl in the first stage and the users’ prob-

abilities pmk and pkm of sending messages in the second stage (where k ∈ {h, l}), users’ prob-

abilities of accepting messages in the third stage are amk = max

{
0,

1 + 2qk − β
∑

k p
k
m

2

}
and

akm = max

{
0,

1− αqk − 2βxkp
m
k

2

}
.

Lemma 2.1 shows that the platform’s decision to recommend high-tier and low-tier women, xk,

affects women’s acceptance probabilities, akm. This is because the platform’s decision determines

how many men receive a woman’s profile, which affects the number of men who send messages in the
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second stage of the game. As the user’s probabilities pmk and pkm of sending messages in the second

stage increase, the user’s probabilities of accepting messages, amk and akm, decrease in the presence

of a positive congestion effect, β. High-tier women’s average attractiveness term, qk, increases

the chance of their messages being accepted by men, amh , but it decreases the probability that

high-tier women will accept men’s messages, ahm because high-tier women are more selective than

low-tier women. Higher α increases high-tier women’s selectivity, thus reducing their probability

of accepting messages, ahm. Higher β increases the congestion effect for all users, reducing all users’

probabilities of accepting messages (i.e., both amk and akm).

We next analyze the game’s second stage and compute the users’ probability of sending mes-

sages. The following lemma gives these probabilities.

Lemma 2.2. Given the platform’s decision on xh and xl in the first stage, the probabilities of users

sending messages in the second stage, pmk and pkm for k ∈ {h, l}, are pmh =
(2q + 1)(1− αq)− 4r

2(2q + 1)βxh + 4
,

pml =
1− 4r

2(2q + 1)βxl + 4
, phm =

(4 + β)(2q) + β(1− 4r)

8(2 + β)
and plm =

(1− 4r)(8(2 + β)− β2)− β(4 + β)2q

8(4 + β)(2 + β)

for sufficiently small r.

In Lemma 2.2, we focus on the case where all users have positive probabilities of sending

messages, which happens for a sufficiently small cost of sending a message, r. Upon receiving the

recommendations from the platform, men observe the number of high-tier and low-tier women in

their recommendations, hence xh and xl, respectively. Recall from Lemma 2.1 that both high-tier

and low-tier women become less likely to accept messages in the third stage as they receive more

messages from men in the second stage of the game when there is a positive congestion effect, β.

A higher value of xh (xl) implies that each high-tier (low-tier) woman is recommended to more

men, intensifying competition for high-tier (low-tier) women in the third stage. This competition

leads men to be more reluctant to send messages in the second stage of the game, i.e., pmh (pml )

decreases in xh (xl) and β. Similarly, Lemma 2.1 shows that high-tier women are more likely to

reject messages when they are more selective, α > 0 because they have better outside options.

Thus, men’s probability of sending messages to high-tier women, pmh , is decreasing in high-tier

women’s selectivity, α.
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2.4.2 The Platform’s Problem

Having characterized users’ decisions to send and accept messages in the second and third stages

of the game, we now turn to the platform’s decisions on xh and xl. We consider two different cases:

the platform that maximizes its revenue in §2.4.2.1 and the platform that maximizes the expected

number of matches in §2.4.2.2.

2.4.2.1 Revenue-Maximizing Platform

As described in §2.3, the platform collects revenue from the messages that users send to others in

the second stage of the game. To maximize the expected revenue, the platform solves the following

problem:

max
xh,xl

nrNm(pmh xh + pml xl) + nrNhphm + nrN lplm

xh + xl = 1

0 ≤ xh, xl ≤ 1,

(R)

where the first term in the objective function, nrNm(pmh xh + pml xl), is the platform’s expected

revenue from the messages that men send to high-tier and low-tier women, and the second and

third terms, nrNhphm and nrN lplm, are the platform’s expected revenue from the messages that

high-tier and low-tier women, respectively, send to men.

The following lemma gives the revenue-maximizing platform’s optimal proportion of high-tier

and low-tier women in men’s recommendations.

Lemma 2.3. The revenue-maximizing platform constructs the proportion of high-tier women in

men’s recommendations as x∗h =
1

1 +

√
h3√
h2

+
4(
√
h2 −

√
h3)

h1(
√
h2 +

√
h3)

and the proportion of low-tier women

in men’s recommendations as x∗l = 1− x∗h, where h1 = 2(2q + 1)β, h2 = (2q + 1)(1− αq)− 4r and

h3 = 1− 4r.

Lemma 2.3 shows that the proportion of high-tier women in the revenue-maximizing platform’s

recommendations, x∗h, increases in h2 while decreasing in h3. From Lemma 2.2, we observe that a

man’s probability of sending a message to a high-tier (low-tier) woman, pmh (pml ), is proportional

to h2 (h3). Thus, as expected, the revenue-maximizing platform recommends high-tier (low-tier)

women more when men are more likely to send a message to a high-tier (low-tier) woman. More
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interestingly, we note that a higher value of h1 reduces the impact of the difference between h2 and

h3 in x∗h (as captured by
√
h2−

√
h3). Since h1 is proportional to the congestion effect, β, it shows

the role of the congestion effect in the degree of popularity bias, as discussed next.

The following proposition gives the condition under which the revenue-maximizing platform

becomes biased against high-tier or low-tier women in its recommendations.

Proposition 2.1. (a) The revenue-maximizing platform is biased against low-tier women when

α <
2

2q + 1
, against high-tier women when α >

2

2q + 1
, and unbiased when α =

2

2q + 1
.

(b) The congestion effect, β, reduces the bias (if bias exists) in the revenue-maximizing platform’s

recommendations.

Proposition 2.1(a) shows that the bias in the revenue-maximizing platform’s recommendations

depends on the average attractiveness difference between high-tier and low-tier women, q, and the

degree of high-tier women’s selectivity in accepting messages, α. Given the average attractiveness

difference q, when high-tier women are not too selective in accepting messages (i.e., α is low), the

revenue-maximizing platform recommends high-tier women more than low-tier women. The reason

is as follows. Recall from Lemma 2.2 that as high-tier women become more selective in accepting

messages (i.e., α increases), men find it more difficult to match with high-tier women and become

less likely to send messages (i.e., pmh decreases in α). When high-tier women become too selective in

accepting messages (i.e., α > 2/(2q+1)), men’s probability of sending messages to low-tier women

becomes higher than their probability of sending messages to high-tier women (i.e., pmh < pml ); this

leads the revenue-maximizing platform to recommend low-tier women more than high-tier women.

We also note from the condition that the revenue-maximizing platform is less likely to be biased

against low-tier women when the average attractiveness difference, q, is larger. This is because

men become discouraged from sending messages to high-tier women when high-tier women are

too attractive (i.e., 2/(2q + 1) is decreasing in q). This leads the revenue-maximizing platform to

recommend high-tier users less, reducing bias against low-tier women.

Proposition 2.1(b) shows that the bias in the revenue-maximizing platform’s recommendations

decreases as the congestion effect, β, increases. This decrease in bias occurs both when the platform

is biased against low-tier women, i.e., α < 2/(2q+1), and when the platform is biased against high-

tier women, i.e., α > 2/(2q+1). When high-tier women are not too selective in accepting messages,
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i.e., α < 2/(2q + 1), we know that men are more likely to send messages to high-tier women,

pmh > pml . An increase in the congestion effect, β, decreases men’s probability of sending messages

to high-tier women, pmh , more than their probability of sending messages to low-tier women, pml .

As a result, the platform chooses to recommend low-tier women more, i.e., xl increases and the

bias against low-tier women decreases. We can explain the case when α > 2/(2q + 1) similarly.

Therefore, the high congestion effect, β, reduces popularity bias by preventing one tier of women

(high- or low-tier) from receiving an overabundance of messages.

2.4.2.2 Match-Maximizing Platform

In this section, we consider the platform that aims to maximize the expected number of successful

matches. The match-maximizing platform solves the following problem:

max
xh,xl

Nmn(xhp
m
h ahm + xlp

m
l alm) +Nhnphmamh +N lnplmaml

xh + xl = 1

0 ≤ xh, xl ≤ 1,

(M)

where the first term, Nmn(xhp
m
h ahm + xlp

m
l alm), gives the expected number of matches when men

send messages to high-tier and low-tier women in the second stage and when these high-tier and

low-tier women accept the men’s messages in the third stage. The second and third terms in the

objective function, Nhnphmamh and N lnplmaml , give the expected number of matches when high-

tier and low-tier women send messages to men in the second stage and the expected number of

matches when men accept high-tier and low-tier women’s messages in the third stage of the game,

respectively.

The match-maximizing platform faces a more complex problem than the revenue-maximizing

platform because the messages sent in the second stage of the game need to be reciprocated by

their recipients in order to yield successful matches at the end of the game. If the platform’s

recommendations induce users to send messages to only a subset of users (which might maximize

the number of messages sent), many messages may not be reciprocated.

The following proposition characterizes the condition under which the match-maximizing plat-

form chooses biased recommendations against low-tier or high-tier women.
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Proposition 2.2. The match-maximizing platform is biased against low-tier women when (h1 +

8)
(
h2(1− αq)− h3

)
− 4β(h22 − h23) > 0, against high-tier women when (h1 + 8)

(
h2(1− αq)− h3

)
−

4β(h22 − h23) < 0, and is unbiased when (h1 + 8)
(
h2(1− αq)− h3

)
− 4β(h22 − h23) = 0, where h1, h2,

and h3 are defined in Lemma 2.3.

The condition given in Proposition 2.2 is intricate, so we look at each term closely. The first

term, (h1 + 8)
(
h2(1 − αq) − h3

)
, has three parts: (h1 + 8), h2(1 − αq), and h3. We note from

Lemma 2.3 that h1 is positive and increases in q and β; h2 is proportional to men’s probability of

sending messages to high-tier women, pmh , and h3 is proportional to men’s probability of sending

messages to low-tier women, pml . The term (1 − αq) captures high-tier women’s selectivity in

accepting messages, as high-tier women’s probability of accepting messages, ahm, shown in Lemma

2.1, includes this term. Putting all of this together, we can interpret the first term of the condition

as the difference between the probabilities of men’s messages being reciprocated by high-tier women

and by low-tier women in the third stage of the game. When this difference is positive (negative),

i.e., h2(1− αq)− h3 > 0 (h2(1− αq)− h3 < 0), men are more likely to match with high-tier (low-

tier) women; therefore, the match-maximizing platform has the incentive to recommend high-tier

(low-tier) women more in order to generate a higher number of successful matches.

The second term of the condition given in Proposition 2.2, 4β(h22 − h23), ensures that women

in one tier do not receive a significantly higher number of messages than those in the other tier

for a positive congestion effect, β; this prevents congestion in the third stage of the game. We

know from Lemma 2.1 that a high-tier (low-tier) woman’s probability of accepting a message, ahm

(alm), decreases by βxhp
m
h (βxlp

m
l ) as the number of messages high-tier (low-tier) women receive,

xhp
m
h (xlp

m
l ), increases for β > 0. On top of that, Lemma 2.2 shows that a man’s probability

of sending messages to high-tier (low-tier) women, pmh (pml ), decreases as xh (xl) increases. Since

men’s probability of matching with high-tier (low-tier) women is a multiplication of ahm (alm) and

pmh (pml ), and h2 (h3) is proportional to pmh (pml ), we obtain the quadratic difference, (h22 − h23), in

the second term of the condition. This term means that the match-maximizing platform does not

recommend high-tier (low-tier) women excessively for β > 0, even if men are more likely to send

a message to high-tier (low-tier) women, i.e., h2 > h3 (h3 > h2), in order not to overwhelm them

with an influx of messages.
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Combining the two terms of the condition given in Proposition 2.2, we observe that the match-

maximizing platform is biased against low-tier (high-tier) women when men are more likely to

match with high-tier (low-tier) women while ensuring that high-tier (low-tier) women do not receive

a significantly higher number of messages than low-tier (high-tier) women to avoid congestion in

the third stage of the game.

Due to the complexity of the model, there is no closed-form solution for the match-maximizing

platform’s optimal proportion of high-tier and low-tier women in men’s recommendations. Thus,

we conduct an extensive numerical experiment to generate further insights into the effect of high-

tier women’s selectivity (α) and the congestion (β) due to the platform’s recommendations. First,

observe from Figure 2.2 that the optimal proportion x∗h of high-tier women in men’s recommen-

dations is decreasing in both α and β for the match-maximizing platform. This is consistent with

the revenue-maximizing platform discussed above. Second, as expected, Figure 2.2 shows that the

revenue-maximizing platform recommends high-tier users more than the match-maximizing plat-

form for all values of α and β, causing a higher bias against low-tier women. When α is low (e.g.,

α ∈ [0, 0.2]), we observe from Figure 2.2(a) that both types of platforms recommend high-tier

women much more than low-tier women. This is because men are more likely to send messages to

high-tier women, and high-tier women are not very selective in accepting messages when α is low;

therefore, recommending high-tier women more frequently results in a higher number of messages

sent and successful matches between users. As values of α increase (e.g., α ∈ [0.4, 0.8]), Figure

2.2(a) shows that the bias against low-tier women in the match-maximizing platform’s recommen-

dations decreases more than the bias in the revenue-maximizing platform’s recommendations. As

high-tier users become highly selective with a high value of α, they reject more messages; thus, the

match-maximizing platform recommends high-tier users less than the revenue-maximizing platform,

which is solely interested in the number of messages sent. Lastly, we observe from Figure 2.2(b)

that both types of platforms are biased against low-tier women when the users’ congestion effect,

β, is low (e.g., β ∈ [0, 0.5]). In this region, the platform increases both the number of messages and

the number of successful matches by recommending high-tier women more.
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Figure 2.2: Numerical Experiment Results of Platform’s Recommendations

(a) High-tier women’s selectivity (α)
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Notes. RM represents the revenue-maximizing platform, and MM represents the match-maximizing

platform. In (a), each point on the plot for α ∈ {0, 0.05, 0.1, ..., 0.95, 1} is the average of the optimal xh over

1,331 scenarios with β, q, r ∈ {0, 0.1, ..., 0.9, 1}. In (b), each point on the plot for β ∈ {0, 0.05, 0.1, ..., 0.95, 1}
is the average of the optimal xh over 1,331 scenarios with α, q, r ∈ {0, 0.1, ..., 0.9, 1} .

2.5 Predictive Model

We utilize different types of interaction data (i.e., users may open cards, send messages, and accept

messages) to estimate each user interaction type. The platform’s interaction data can be viewed

through the lens of matrix recovery, where a matrix contains one type of interaction (i.e., open,

send, or accept) between users. In each matrix, any given user has interacted with only a small

subset of other users, and we seek to predict the user’s likelihood of interacting with any other

user. Collaborative filtering (CF) models are the most commonly used technique for this purpose.

Their underlying principle is that people like items (i.e., users, in the context of online dating)

that are similar to other items they like, and they like items that other people with similar tastes

like. However, instead of recovering each matrix individually with CF, we seek to recover a three-

dimensional tensor, i.e., we seek to fill in missing entries in such a tensor. A three-dimensional

tensor in our model contains three types of interactions between users (open, send, and accept),

where each slice of the tensor arises from one type of interaction data.
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Our estimation procedure has two steps. In the first step, we adapt conventional matrix factor-

ization (e.g., see Koren et al. 2009, Alhejaili and Fatima 2020) to the interaction data tensor and

identify latent features, referred to as CF features, that are attributed to each user. Assuming that

each user is associated with some unknown vector of latent features, we can ascribe to each male

and female user a set of latent (i.e., unknown) features. While the first step estimates CF features

using all slices of the interaction data tensor, the second step estimates each type of interaction

based on the corresponding interaction data slice, the CF features identified in the first step, and the

user attribute data (including both individual and pairwise attributes). Note that the CF features

and the user attributes are common for all interaction types. For this second step, we employ a

random forest model while using the model by Farias and Li (2019) and a neural network model as

our benchmarks. We have chosen the random forest model because it allows us to utilize pairwise

user attributes in addition to CF features and individual user attributes in making predictions. It

also allows us to interpret the importance of input features in prediction results. We present our

method’s technical details in Appendix B.7.

To test the accuracy of our model in predicting interactions, we randomly partition the inter-

action data: 70% is used for training the model and 30% for testing. Since the interaction data

is binary, we evaluate performance vis-à-vis a binary classification task, i.e., the task of classifying

entries as being equal to 0 or 1. We report the area under the receiver operating characteristic

(ROC) curve as a summary statistic in Table 2.3. The ROC curve of a continuous-valued classifier

represents the classifier’s trade-off between the true positive rate (defined as the number of true

positives divided by the sum of the number of true positives and the number of false negatives) and

the true negative rate (defined as the number of true negatives divided by the sum of the number

of false positives and the number of true negatives). The area under the ROC curve (AUC) is the

most commonly used measure of overall accuracy for prediction models. Its value is always between

0 and 1, and a higher value signifies greater accuracy. In general, an AUC of 0.5 suggests no dis-

crimination, 0.7 to 0.8 is considered acceptable, and 0.8 to 0.9 is considered excellent; in practice,

it is very unusual to observe an AUC greater than 0.9 (e.g., Hosmer et al. 2013). The AUC also has

an important statistical property: it is equivalent to the probability that the classifier will rank a

randomly selected positive sample higher than a randomly selected negative sample (e.g., Fawcett

2006).
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Table 2.3: Accuracy of Prediction

Area under the ROC Curve (AUC)
(1) (2) (3) (4) (5)

Decision Bilinear Random Forest Random Forest Random Forest Neural Network
(CF) (CF) (CF+I) (CF+I+P) (CF+I+P)

Male Users Open 0.79 0.85 0.85 0.85 0.86
Send 0.75 0.88 0.89 0.90 0.88
Accept 0.60 0.70 0.70 0.72 0.71

Female Users Open 0.74 0.90 0.91 0.91 0.91
Send 0.62 0.77 0.83 0.83 0.81
Accept 0.77 0.81 0.85 0.85 0.84

Notes. “Bilinear” refers to the (bilinear) model of Farias and Li (2019), which can utilize only CF

features; “(CF)” means only CF features are used; “(CF+I)” means both CF features and individual

attributes are used; and “(CF+I+P)” means CF features, individual attributes, and pairwise attributes are

used for predictions.

We observe the following from the results reported in Table 2.3:

1. Comparing the AUC results of columns (1) and (2), we observe that the random forest model

outperforms the bilinear model of Farias and Li (2019) on all three types of interaction

decisions for both male and female users. The difference is an AUC of 0.11 on average across

the six decisions, and it is often substantial: e.g., 0.16 for male users’ decisions to open.

2. Comparing the AUC results of columns (2) and (3) against column (4), we see incremental

improvements in using individual and pairwise user attributes in the random forest model.

These values are related to the amount of interaction data available. For example, the differ-

ence is small in male users’ decisions to open and send and in female users’ decisions to open,

for which we observed a large number of interactions (see Table 2.1), whereas the difference

is relatively larger in other decisions due to the smaller number of observed interactions.

3. Column (4) shows that the random forest model with all data yields high values of AUC for

all three types of interaction decisions for both male and female users. All AUCs exceed 0.8

except male users’ decisions to accept, for which only a small amount of interaction data is

available (see Table 2.1). As mentioned above, an AUC above 0.8 is considered excellent in

practice.

4. Comparing the AUC results of columns (4) and (5), we observe that the random forest model
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performs slightly better than the neural network model, except in the case of male users’

opening decisions. Neural networks are known to be a superior model for speech recognition

and image and text classification, but their superiority is, in general, not observed in binary

classification tasks like ours (Fernández-Delgado et al. 2014). Male users’ opening decisions

have by far the highest number of observations (see Table 2.1) among all user decisions,

helping the neural network achieve a higher AUC score than the random forest model.

Based on the results above, we use the predicted probabilities from the random forest with all

data (i.e., CF+I+P in Table 2.3) for our simulations. The simulation results are presented in the

next section. In addition, in Appendix B.8, we analyze how various user attributes affect users’

interaction decisions based on the predicted probabilities.

2.5.1 Simulations of the Platform

Using the estimated probabilities of users’ decisions from our predictive model, we run simulations

of the revenue-maximizing platform, the match-maximizing platform, and the unbiased platform

over a 15-month period. Our goal is to validate our theoretical findings and gain further insights

into how the platform’s objective affects users’ chances of finding successful matches.

We simulate the sequence of decisions described in Figure 2.1 closely. The platform recommends

two male (female) users to each female (male) user every day. The platform determines these

recommendations based on its objective. Since the platform earns revenue when users open cards

and send messages, the revenue-maximizing platform ranks users based on the probability of open

× send and recommends two users with the highest probability of prompting these actions. The

match-maximizing platform aims to maximize the total number of successful matches between users;

thus, it ranks users with respect to the probability of open × send × accept and recommends two

users with the highest probability of prompting these actions. The unbiased platform recommends

two users randomly. After simulating the platform’s recommendations, we simulate users’ open,

send, and accept decisions using random draws based on the estimated probabilities from our

predictive model. We randomly select a subset of users and then run simulations of the activity on

the platform for 15 months.
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Table 2.4: Platform’s Simulated Recommendations

Female to Male Recommendations Male to Female Recommendations
RM MM Unbiased RM MM Unbiased

Number of Successful Interactions
Open 1,900,235 1,828,208 1,680,854 1,066,400 1,062,056 740,816
Send 561,462 453,686 242,881 99,870 97,799 36,089
Accept 81,295 111,845 35,887 44,793 45,443 16,316

Likelihood of Successful Interactions (%)
Open 47.5 45.7 42.0 26.7 26.6 18.5
Send 14.0 11.3 6.0 2.5 2.4 0.9
Accept 44.9 46.5 45.2 14.5 24.6 14.8

Percentage of Users in Recommendations
High-Tier 0.69 0.52 0.45 0.68 0.66 0.43
Low-Tier 0.31 0.48 0.55 0.32 0.34 0.57

Notes. Female to male recommendations (male to female recommendations) means that the

platform recommends female (male) users to male (female) users, male (female) users decide whether to

open cards and send messages, and male (female) users decide whether to accept messages if female (male)

users decide to open cards and send messages. RM represents the revenue-maximizing platform, and MM

represents the match-maximizing platform. Unbiased represents the platform that recommends users

randomly.

We measure the bias in recommendations by examining the percentage of high-tier users rec-

ommended by the platform. Among female (male) active users, 45% (43%) have attractiveness

scores higher than the average attractiveness scores of female (male) users on the platform and

are hence labeled as high-tier, and the remaining users are labeled as low-tier. If the platform’s

recommendations consist of more than 45% (43%) high-tier female (male) users, we conclude that

the platform is biased against low-tier female (male) users.

Table 2.4 presents our simulation results. Comparing the “female to male recommendations”

columns with the “male to female recommendations” columns in Table 2.4, we find that the former

generates a significantly higher number of successful interactions because male users are more

active in opening cards and sending messages. This is expected and consistent with the actual user

interaction patterns of the platform, as shown in Table 2.1.

54



Obtaining users’ likelihood of successful interactions, as shown in Table 2.4, allows us to eval-

uate the performance of the platform’s recommendations under different objectives (i.e., revenue-

maximizing, match-maximizing, or unbiased). By comparing the recommendations of the revenue-

maximizing platform with those of the match-maximizing platform, we can verify the results from

the numerical experiment shown in Figure 2.2 that the recommendations of these two platforms are

not necessarily at odds. For instance, in the case of male-to-female recommendations, we observe

that both the revenue-maximizing recommendations (68%) and the match-maximizing recommen-

dations (66%) consist of significantly more popular male users than the unbiased recommendations

(43%). The reason why both objectives lead to a bias against unpopular users is that the revenue-

maximizing recommendations maximize the number of messages sent in the second stage of the

game, and the match-maximizing recommendations need to ensure a high number of messages sent

to maximize the number of successful matches in the third stage of the game. From Figure 2.2(a),

we know that this holds when popular users are not highly selective in sending and accepting mes-

sages compared to unpopular users, i.e., when α is low. The platform’s data suggest that the value

of α for popular male users is fairly low: popular male users are only 19% more selective than

unpopular male users in sending and accepting messages (i.e., the chance of popular male users

sending and accepting messages is only 19% less than that of unpopular users).

In contrast, the data show that the value of α for popular female users is high: popular female

users are 70% more selective than unpopular female users in sending and accepting messages, so

they are much more selective than popular male users. According to Figure 2.2(a), as popular

users become more selective in sending and accepting messages (i.e., as α increases), the bias

in the match-maximizing recommendations decreases significantly, whereas the bias in revenue-

maximizing recommendations remains high. Consistent with our theory, we observe from Table 2.4

that the revenue-maximizing recommendations (69%) consist of popular female users considerably

more than the match-maximizing recommendations (52%). This is because the revenue-maximizing

recommendations continue to recommend popular users more in order to maximize the number of

messages sent in the second stage of the game. When popular users are significantly more selective

than unpopular users, popular users reject many of these messages, resulting in a low number of

successful matches on the platform.
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The unbiased recommendations result in a significantly lower number of both messages and suc-

cessful matches than the revenue-maximizing and match-maximizing recommendations, especially

when the congestion effect, β, is low. We observe from Figure 2.2(b) that when β is low, the plat-

form is better off providing biased recommendations against low-tier women in order to maximize

revenue (from users’ messages sent) or the number of successful matches. Our simulation demon-

strates that the unbiased recommendations result in 60% and 55% fewer messages sent by users

and 59% and 66% fewer successful matches than the revenue-maximizing recommendations and

the match-maximizing recommendations, respectively. This suggests that online dating platforms

can increase their revenue and users’ chances of finding partners simultaneously if they employ a

certain degree of bias against unpopular users.

2.6 Extension: Two-Period Model

We present the two-period matching game in this section. In our two-period model, users who

match in the first period leave the platform, and users who do not match in the first period stay on

the platform for the second period. In addition to the users who stay on the platform, new users

join the platform in the second period depending on the match rate observed in the first period. If

the platform achieves a high match rate in the first period, more users decide to join the platform

in the second period due to the platform’s strong reputation in successfully matching its users. We

call this the reputation effect.

In order to maintain tractability, we make certain simplifications in the model while keeping

the main dynamics of our matching game intact. In our two-period model, only men receive

recommendations from the platform and decide whether to send messages to the recommended

women. After men’s decisions, women receive messages from men and decide whether to reciprocate

men’s messages to match with them successfully. This simplification aligns with our data which

show that more than 82% of conversations are initiated by men on the platform (Bapna et al.

(2016) show that men are 75% more likely to initiate contact on online dating platforms).

Similar to our one-period model, there are N men and N women on the platform in the first

period. The platform recommends one woman to each man. This recommendation is a high-tier

(low-tier) woman with probability xh(1) (xl(1)). Users’ decisions of sending and accepting messages
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on both the first and the second periods are the same as in our one-period model. Men on the

platform receive a high-tier (low-tier) woman’s profile with probability xh(1) (xl(1)), send a message

to the recommended woman with probability pmh (pml ), and their message is reciprocated by the

high-tier woman with probability ahm (alm). As a result, the expected match rate on the platform

in the first period becomes M = xh(1)p
m
h ahm + xl(1)p

m
l alm.

In the second period, new users join the platform depending on the match rate observed in the

first period. If the platform is more successful in matching its users, more users decide to join due to

the platform’s strong reputation. We capture this effect as follows: ζN number of men and women

join the platform in the second period where ζ is a function of the match rate, M , observed in the

first period. We assume that this function is of linear form, i.e., ζ(M) = ηM , where η captures

the platform’s potential growth rate in the second period. As the value of η increases, the platform

can expand its user base more in the second period if it provides a higher match rate in the first

period.

Given the match rate, M , in the first period, the number of men on the platform in the second

period, Nm
(2), becomes the sum of the number of men who left unmatched in the first period,

N(1 −M), and the number of men who join the platform in the second period, Nζ(M) = NηM .

The platform then decides the probability of men receiving the recommendation of a high-tier

(low-tier) woman xh(2) (xl(2)) in the second period. The platform’s second-period decision is not

necessarily the same as in the first period. For instance, we can consider the first period as the

platform’s early stage, during which the platform aims to grow, and the second period as the

platform’s mature stage, where the platform already reaches a certain user base. Depending on

the platform’s objective, the platform would choose different recommendations, which eventually

affect users’ chances of finding suitable partners.

In the first period, the platform solves the problem of maximizing the number of messages sent

in two periods given that the platform chooses the optimal recommendations, x∗h(2) and x∗l(2), in

the second period. The first-period problem for the platform is as follows:

max
xh(1),xl(1)

xh(1)Npmh (xh(1)) + xl(1)Npml (xl(1)) + x∗
h(2)N

m
(2)p

m
h (x∗

h(2)) + x∗
l(2)N

m
(2)p

m
l (x∗

l(2))

xh(1) + xl(1) = 1

0 ≤ xh(1), xl(1) ≤ 1,

(R1)
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Figure 2.3: Change in Platform’s First-Period Recommendations with Growth Rate
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Notes. One-Period RM and MM represent the revenue-maximizing and match-maximizing platform’s

recommendations in our base model, respectively. Two-Period RM represents the revenue-maximizing

platform’s first-period recommendations in our two-period model. For η ∈ {0, 0.5, 1, ..., 9.5, 10}, each point

on the plot is the average of the optimal xh over 14,641 scenarios with α, β, q, r ∈ {0, 0.1, ..., 0.9, 1}.

Lemma 2.4. The objective function of R1 is concave in xh(1) and there is a unique optimal solution

x∗h(1) and x∗l(1) such that x∗h(1) + x∗l(1) = 1.

Lemma 2.4 shows that the platform’s first-period recommendation decision takes unique values

of xh(1) and xl(1) for each growth rate, η, in the second period. These values are depicted in

Figure 2.3. In our two-period model, the revenue-maximizing platform’s first-period decision is

the same as in the one-period model when the platform does not grow in the second period, i.e.,

η = 0. The reason is that there is no incentive for the platform to provide a high match rate

in the first period when there will not be new users who join the platform in the second period

to increase the platform’s revenue in two periods. This leads to a higher popularity bias against

unpopular users. As η increases, more users join the platform in the second period if the platform

provides a good match rate in the first period. Therefore, the revenue-maximizing platform’s first-

period recommendations become closer and eventually converge to the match-maximizing platform’s

recommendations in the one-period model. This decreases the popularity bias against unpopular
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users. These results show that the platform prioritizes its short-term revenue if it already is in a

mature stage with a large user base; however, it chooses to provide recommendations that lead to

successful matches when there is room for growth in subsequent periods.

2.7 Conclusion

Online dating has experienced rapid growth in recent years. Even though online dating platforms

provide users with a tremendous opportunity to connect with others, questions regarding fairness

in their recommendation algorithms remain. To address these questions, we study popularity bias

in an online dating platform’s recommendations and examine how such bias affects users’ likelihood

of finding compatible dating partners and how bias is related to a platform’s ability to generate

revenue. While prior research focuses on how to design a platform to maximize users’ chances of

finding successful matches, we show that the platforms’ and users’ objectives are not in perfect align-

ment. The data from a major online dating platform demonstrates that the platform’s algorithm

recommends popular users more despite their relatively lower likelihood of accepting messages. To

address this problem, we model the platform and the users’ decisions with a three-stage matching

game, utilize the data to develop a novel predictive model to estimate users’ decisions, and use

the estimated decisions to run simulations of the platform. Our predictive model achieves high

accuracy in predicting users’ decisions; therefore, it has great potential to increase the platform’s

revenue and the number of successful matches between users.

Our analysis shows that a recommendation approach maximizing the platform’s revenue and an

approach maximizing the number of successful matches are not necessarily at odds, even though the

revenue-maximizing recommendations lead to greater bias against unpopular users. We show that

as popular users become more selective in accepting messages, the revenue-maximizing recommen-

dations remain biased against unpopular users, whereas the match-maximizing recommendations

become more inclusive of unpopular users. Thus, popular users help the platform increase revenue

and the number of successful matches as long as they do not become “out of reach” (i.e., as long

as they do not become too selective in accepting messages, discouraging other users from initiating

contact).
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Our empirical analysis shows the implicit cost of congestion in users’ decision to accept mes-

sages; users tend to become more selective in accepting messages as they receive more messages

from other users. We demonstrate that if this implicit cost becomes significantly high, both the

revenue-maximizing and the match-maximizing recommendations then include popular and un-

popular users more equally. However, our simulations suggest that when this cost is low, unbiased

recommendations generate significantly less revenue for the platform and a lower number of suc-

cessful matches.

This paper contributes to the literature on online matching platforms by studying fairness and

bias in recommendation systems, building a novel predictive model to estimate user decisions, and

bringing our theoretical and empirical models together to validate our results. Although we focus

on a specific dating platform, our model and analysis can be applied to other matching platforms

(e.g., freelancing platforms) where the platform makes recommendations to its users and users are

heterogeneous (e.g., experienced/inexperienced workers).

Lastly, we discuss the potential considerations that are beyond the scope of this paper. First,

various platforms in this business employ different revenue mechanisms. Our industry partner

collects fees when users open recommended users’ cards and when they send those users messages,

but not when users accept incoming messages. Thus, we believe that the platform can potentially

increase total fees by recommending users that are most likely to prompt recipients to open the

cards and send messages. In contrast, some platforms such as Tinder and Bumble generate revenue

by showing users ads while they engage on the platform, while eHarmony and Match.com collect

a fixed subscription fee per period. These platforms might consider recommending users with the

highest match probabilities as the best strategy; however, this strategy does not align with the

primary objective of such platforms, which is to keep users engaged. As noted by Wu et al. (2018),

the main challenge for online dating platforms is that users may leave the platform after finding

their matches, reducing the platform’s revenue. Second, a platform needs to consider various other

strategic motives (e.g., engaging newly registered or inactive users by recommending the most

attractive users to them). The question of how a platform should set its objective and constraints

considering various trade-offs is an interesting topic for future study. The results presented by

this paper as well as our predictive model, which accurately estimates users’ interaction decisions,

would likely benefit such future research endeavors.
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Chapter 3

Network Hazard and Superspreaders

3.1 Introduction

The outbreak of COVID-19 has had a significant impact on global health and the economy. The

virus, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first

identified in Wuhan, China in December 2019 and quickly spread to become a pandemic. The

World Health Organization (WHO) declared COVID-19 a Public Health Emergency of International

Concern in January 2020 and a pandemic in March 2020. As of 2022, the virus has infected over 600

million people and caused over 6 million deaths worldwide.1 The rapid spread of COVID-19 and

mixed public reactions to advised protective measures highlighted a need for better preparedness for

and control of epidemics and pandemics. In particular, behavioral factors are not widely understood

in the spread of coronavirus and may play a greater role in efforts to control epidemic and pandemic

levels (Gupta et al. 2022).2

Within this context, our theory describes a precautionary scenario on how the unregulated lev-

els of social activity respond to the high availability and efficacy of preventative measures. While

vaccines are an important tool in controlling the spread of COVID-19, it is essential to recognize

that they do not eliminate the risk of transmission entirely (Polack et al. 2020). As more indi-

viduals become vaccinated, they may feel more comfortable interacting with others in high-risk

1See https://covid19.who.int/ for WHO Coronavirus (COVID-19) Dashboard.
2Some examples of behavioral factors include how individuals interpret and respond to public health messages, how

social norms and cultural practices shape behavior, or how economic and political factors influence the implementation
of control measures (Berg and Lin 2020).

61



settings, such as restaurants, schools, gyms, and grocery stores, or attending family gatherings

(Usherwood et al. 2021). The increased number of visitors and rates of activity can potentially

push the viral load in closed spaces above threshold levels conducive to infections (Henriques et al.

2021). Additionally, agents employed in these central locations, such as waiters, teachers, trainers,

or cashiers can get infected and spread the virus during their asymptomatic period to many visitors.

We consider a central location or agent as a central node in a network and allow other agents to

choose to form connections with the center to obtain certain benefits. Although largely available

and more effective vaccines have the direct effect of reducing aggregate infections, the indirect ef-

fect via increased contact with centers and infections through the center can potentially offset the

direct positive effect, in aggregate. We show that the increased interaction with connectors leads

to a manifestation of network hazard (Erol 2019), as the network becomes more concentrated for

the virus to spread through the centers. On top of increasing aggregate infection rates, the corre-

lated nature of infections by virtue of being transmitted by the center causes a disproportionately

large number of simultaneous infections. Such superspreader events are particularly important to

understand in the face of limited hospital capacity and ventilators.

We use monthly time-series data of visits to various types of businesses such as grocery stores,

restaurants, coffee shops, etc. over the period of 2019-2022 from the geospatial data company

SafeGraph. This monthly foot traffic data is combined with the publicly available COVID-19

vaccination rate and community transmission rate datasets by the Centers for Disease Control and

Prevention (CDC) for the same time period and geographical areas. We find that the testable

predictions our model are observed in the data. As vaccination rates increase, there are more visits

to the points of interest as well as higher rates of infections.

The rest of this chapter is organized as follows. In §3.2, we review the related literature and

discuss our contributions. In §3.3, we present our network model and analysis. We describe our

data and empirical results in §3.4 and conclude this chapter in §3.5.
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3.2 Related Literature

The spread of COVID-19 in closed environments, such as households and workplaces, and the

effectiveness of preventative measures, such as mask use, social distancing and ventilation, in con-

trolling its transmission has been studied in epidemiology, mathematics, and physics.3 Abo and

Smith (2020) compare the efficacy of various protective measures including physical distancing

and vaccination. This literature does not factor in society’s endogenous behavior. We utilize this

literature in specifying functional forms.

The effect of COVID-19 on retail operations, supply chain management, and public health

policy design has been studied in operations research. Delasay et al. (2022) and Shumsky et al.

(2021) study the impact of social distancing and other measures on consumer behavior and foot

traffic.4 Additionally, research has played an important role in shaping public health policy by

developing models to help with designing infection control policies (Kaplan 2020), forecasting local

outbreaks (Chang and Kaplan 2023), and evaluating transmission risks in service facilities (Kang

et al. 2022).

While the early literature on COVID-19 explored the mechanics of transmissions, the urgent

need for incorporating human behaviors and social processes into mathematical epidemiological

models gave rise to a growing literature. El Ouardighi et al. (2022) investigate the role of popular

discontent and growing social fatigue in policymaker’s non-therapeutic interventions (e.g., mobility

restrictions, securing social interactions) during a pandemic. Wu (2021) model an individual’s

decision of whether to engage in social distancing as a social dilemma game played against his/her

population. Usherwood et al. (2021) predict COVID-19 trends in the United States accounting

for the population’s level of caution and sense of safety, which increases as more individuals take

the vaccination (Liu and Wu 2022). In economics, Kaplan et al. (2020), Acemoglu et al. (2021),

3See Buonanno et al. (2020), Bazant et al. (2021), Bazant and Bush (2021), Henriques et al. (2021), Ooi et al.
(2021), Salmenjoki et al. (2021), Shang et al. (2022). These works emphasize the importance of limiting cumulative
exposure time which is the product of the number of occupants and their time in an enclosed space. This quantity
depends on the type of respiratory activity (e.g., singing, talking, etc.) and the infectiousness of the respiratory
aerosols, and it increases as the rate of ventilation, air filtration, size of the room, and face mask use increase.
Kapoor et al. (2022) estimate the transmission probability of COVID-19 in enclosed spaces using an artificial neural
network with real-time collected data.

4On the supply chain front, Han et al. (2022) investigate the impact of the pandemic on e-commerce operations,
Khan et al. (2021) discuss its impact on medical supply chains, Mak et al. (2022) model and analyze two-dose
vaccine distribution, Nikolopoulos et al. (2021) provide predictive analytics tools for forecasting and planning during
a pandemic.
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Fernández-Villaverde and Jones (2022) incorporate policy analysis into detailed SIR models using

the expected arrival time of a vaccine. Our work contributes to this literature on two dimensions.

First, we factor in agents that choose socialization rates in response to vaccine availability and

efficacy in our theoretical and empirical analysis. Second, we bring the novel notion of network

hazard, that is originally introduced in the context of financial networks, to the literature on

epidemics to shed some light on superspreaders.

We use foot traffic data from cell phone records provided by SafeGraph. Cronin and Evans

(2020) examine the role of state and local restrictions on foot traffic in different essential (e.g.,

retail) and nonessential (e.g., entertainment) industries. Goolsbee and Syverson (2021) measure

how much of the decrease in economic activity resulted from government-imposed restrictions versus

people voluntarily staying home to avoid infection. Our primary episode of focus is the recovery of

foot traffic starting with the availability of vaccines.

3.3 Model

There is a unit mass of agents and one center. Each agent can choose to connect with the center to

obtain some benefits. Agents who connect with the center are called connected agents. The center

accepts all connections. The center can be a person or a group of people either with a high value

from connections or with a commitment to meet all demands from the connections. Examples are

teachers in schools, doctors in hospitals, cashiers in grocery stores, trainers in gyms, etc. The center

can also be the physical space where people gather such as schools, hospitals, grocery stores, gyms,

bars , and restaurants, etc.

There is an infectious disease. Agents can contact the disease and get infected. The contacts

can happen exogenously, called external contact, at a given rate. The corresponding infections are

called external infections. Agents who have not contacted the disease externally can still contact

the disease if they are connected and some internally infected agents are also connected. Such

contact is called internal contact and the corresponding infections are internal infections.5 When a

5Note that agents who contacted the disease externally but did not get infected are assumed to not get infected
internally. For example, an agent who contacted the virus exogenously but did not get infected builds immunity
and does not get infected out of endogenous contact either. Alternatively, all interactions happen repeatedly in
a short timespan wherein infected agents are asymptomatic and agents’ infection statuses are determined nearly
simultaneously with their contact statuses. Since such agents do not get infected internally, we assume without loss
of generality that they do not contact the disease externally either.
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center is a person, infected connected agents infect the center, which can then create contact with

other connected agents. When the center is a physical space, the mass of infected connected agents

determine the viral density in the air at the center, which determines the contact probability of

other connected agents (Henriques et al. (2021)). Overall, the mass of connected infected agents

increases the internal contact probability. There is also a protective measure against infections, such

as a vaccine, which we simply call protection.6 Using protection decreases the infection probability

by a factor. We call an agent protected if the agent uses protection.

Formally, connecting to the center grants value v < 1 to each connected agent. If an agent is

infected, it incurs a cost of 1. Each agent has an exogenous contact probability κ. Denoting χ the

(endogenous) mass of connected infected agents, a connected agent who has not been contacted

exogenously has probability Φ(χ) of contacting the virus endogenously, where Φ is an increasing

function. An agent who contacts the virus gets infected with probability ι, which is scaled down by

e < 1 if the agent is protected, down to eι. We call e−1 is the efficacy of protection. For simplicity,

we take ι = 1.

We denote p the mass of protected agents. Using protection can be a choice or it can be man-

dated depending on the specific case at hand. We take p to be exogenous and assume that each

agent has p probability of being protected. This way, we aim to capture the gradual availabil-

ity of vaccines in the US during the COVID-19 pandemic. Agents know their protection status

when making their connection choice, but contact and infections are unobservable. This is, the

interactions happen during the asymptomatic interval of the disease.

Equilibrium Agents, when making their connection decisions, compare the value of the con-

nection to the center with the internal contact probability and the cost of associated potential

infection. In particular, a protected agent compares v and e(1 − κ)Φ(χ) whereas an unprotected

agent compares v and (1−κ)Φ(χ). This implies that protected agents have a higher expected value

from connecting. Then, infection probabilities are given by Table 3.1.

The mass of agents who get infected through external contact is θ ≡ (pe+ 1− p)κ. Denote

µp ≤ p the endogenous mass of connected protected agents and µu ≤ 1− p the endogenous mass of

connected unprotected agents. The following cases characterize equilibria.

6The model can be generalized to include masks in case of airborne diseases. In the case of STIs, protection can
also be condoms.
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Table 3.1: Infection Probabilities of Agents

Not Connected Connected

Protected eκ e (κ+ (1− κ)Φ(χ))

Not Protected κ κ+ (1− κ)Φ(χ)

1. No agent is connected: µp = µu = 0. This case is characterized by χ = 0, e(1− κ)Φ(χ) ≥ v.

This is, even the protected agents prefer not to connect even if no other agent is connected.

In this case, the mass of internal infections is zero as there are no connections.

2. Some protected agents are connected, no unprotected agents are connected: µp ∈ (0, p),

µu = 0. This case is characterized by χ = µpeκ, e(1− κ)Φ(χ) = v. This is, protected agents

connect to the center up to the point of being indifferent, at which point unprotected agents

prefer not to connect. In this case, the mass of endogenously infected agents is µp(1−κ)eΦ(χ).

Denoting Ψ(x) ≡ xΦ(x), which is strictly increasing, the mass is given by µp(1− κ)eΦ(χ) =

1−κ
κ Ψ(χ) = 1−κ

κ Ψ(Φ−1( v
e(1−κ))).

The mass of internal infections is constant in p, as the marginal connected agent has fixed

internal infection probability. More importantly, internal infections are increasing in e−1.

This is, for more effective protection, there are more internal infections. This is an instance of

network hazard. Agents do not internalize the infection probability and comfortably connect

more when protection is better. In equilibrium, total infections increase.

3. All protected agents are connected, no unprotected agents are connected: µp = p, µu =

0. This case is characterized by χ = eκp, (1 − κ)Φ(χ) ≥ v ≥ e(1 − κ)Φ(χ). This is,

protected agents connect to the center up to the point of being indifferent, at which point

unprotected agents prefer not to connect. In this case, the mass of endogenously infected

agents is p(1− κ)eΦ(χ) = 1−κ
κ Ψ(χ) = 1−κ

κ Ψ(epκ).

The mass of internal infections is decreasing in e−1, but, importantly, increasing in p. This is,

for more widespread protection, there are more internal infections. This is also an instance of

network hazard. When protection is good enough that protected agents prefer to connect, if

protection gets more widespread, the mass of connected agents increases, increasing the mass

of internal infections.
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4. All protected agents are connected, some unprotected agents are connected: µp = p, µu ∈

(0, 1− p). This case is characterized by χ = eκp+κµc, v = (1−κ)Φ(χ). This is, unprotected

agents connect to the center up to the point of being indifferent, at which point protected

agents prefer to connect. In this case, the mass of endogenously infected agents is p(1 −

κ)eΦ(χ) + µc(1− κ)Φ(χ) = 1−κ
κ Ψ(χ) = 1−κ

κ Ψ(Φ−1( v
1−κ)).

This is constant in both p and e−1. The marginal connected agent is unprotected; hence,

neither the extent of protection in the society, p, nor the efficacy of protection, e, matters for

the infection probability of the marginal agents.

5. All agents are connected: µp = p, µu = 1 − p. This case is characterized by χ = peκ +

(1 − p)κ = θ, v ≥ (1 − κ)Φ(χ). This is, even the unprotected agents prefer to connect

despite all agents being connected. In this case, the mass of endogenously infected agents is

p(1− κ)eΦ(χ) + (1− p)(1− κ)Φ(χ) = 1−κ
κ Ψ(χ) = 1−κ

κ Ψ(θ).

As θ is is decreasing in both p and e−1, so is the mass of internally infected agents.

Note that internal infections are given by 1−κ
κ Ψ(χ) which is isomorphic to χ. We summarize these

cases in the following table of connected external infections χ.

These cases are parametrically exhaustive and hence characterize the equilibrium. For a fixed p,

starting with e = 1, meaning completely ineffective protection, and gradually increasing the efficacy

e−1, we see that internal infections start increasing after the cutoff e−1 = (1−κ)Φ(0)
v between case 1

and case 2. During the phase of case 2, more protected agents connect as a function of the efficacy

of protection. At the cutoff e−1 = κpΨ−1( vκp
1−κ)

−1 between case 2 and case 3, all protected agents

are connected and further improvements in efficacy decrease internal infections. This is portrayed

in Figure 3.1(a).

Notice the dilemma here. As long as protected agents are not fully connected (case 2), the

efficacy of protection increases internal infections. This is network hazard. Only after all protected

agents are connected, the efficacy of protection starts reducing internal infections (case 3). However,

when all protected agents and some unprotected agents are connected (case 4), the efficacy of

protection does not affect internal infections. Therefore, network hazard hurts connected protected

agents (case 2) but not the connected unprotected agents (case 4) although, in some sense, better

protection is supposed to benefit protected agents compared to unprotected agents.
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Table 3.2: Summary of Cases of Equilibrium

Case Parametric Condition Connected External Infections Network Hazard

1 e(1− κ)Φ(0) ≥ v 0

2 e(1− κ)Φ(eκp) > v > e(1− κ)Φ(0) Φ−1
(

v
e(1−κ)

)
Increasing in e−1

3 (1− κ)Φ(eκp) ≥ v ≥ e(1− κ)Φ(eκp) peκ Increasing in p

4 (1− κ)Φ(κ(ep+ 1− p)) > v > (1− κ)Φ(eκp) Φ−1
(

v
1−κ

)
5 v ≥ (1− κ)Φ(κ(ep+ 1− p)) κ(ep+ 1− p)

Next, consider a fixed e−1. As we start with p = 0 meaning no availability of protection,

and gradually increase p, we see that internal infections start increasing after the cutoff p =

1
eκΦ

−1( v
e(1−κ)) between case 2 and case 3. During the phase of case 3, all protected agents choose

to be connected and no unprotected agents do so. In some sense, a protected population who

are all exposed to each other through their connection to the center is being scaled up, and so

the internal infections increase. At the cutoff p = 1
eκΦ

−1( v
1−κ) between case 3 and case 4, some

unprotected agents finally find it optimal to connect, and the mass of unprotected agents further

increases in protection availability. The marginal unprotected agent has a constant probability of

internal infection so the internal infections are constant after this point. This is portrayed in Figure

3.2(a).

A similar dilemma appears here. Whenever there are non-trivial rates of internal infection

across protected agents, larger availability of protection increases the mass of internal infections.

Only after protection rate is big enough that it becomes optimal for all protected agents to connect

and unprotected agents start connecting, the internal infection rate stops increasing. Therefore,

larger availability of protection hurts the protected population due to externalities, which is another

instance of network hazard.

Finally, note the complementarity between e−1 and p. The network hazard region for e−1, i.e.,

case 2, is between (1−κ)Φ(0)
v and κpΨ−1( vκp

1−κ)
−1 which is wider for larger p. This is, if protection

is more widespread, the adverse consequences of more effective protection are more prevalent.

Similarly, the network hazard region for p, i.e., case 3, is between 1
eκΦ

−1( v
e(1−κ)) and

1
eκΦ

−1( v
1−κ).

If the protection is more effective, the adverse consequences of more widespread protection manifest

during higher availability.

The total mass of infections, τ ≡ θ + 1−κ
κ Ψ(χ), is of interest as well. After all, higher efficacy
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Figure 3.1: Internal and Total Infections in Efficacy of Protection

(a) Internal Infections
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Notes. The parameter values are v = 0.1, κ = 0.1, α = 50, p = 0.5.

e−1 and more availability p reduces external infections θ. Comparative statics in this case requires

specifying a form for the transmission function Φ to pin down tradeoffs between internal and

external infections. Referring to Henriques et al. (2021), Φ is described by Φ(χ) = 1− e−αχ where

α > 0 is a constant that depends on a host of exogenous factors.

The adverse consequences of increased p and e−1 on internal infections appear for e−1 in case

2 and for p in case 3. In the other cases, internal infections are decreasing in e−1 and p, so the

total infections also decrease. Therefore, we focus on e−1 in case 2 and p in case 3 to study total

infections. Case 2 is given by eκp > χ = −α−1 ln
(
1− v

e(1−κ)

)
and some algebra yields

dτ

de−1
= −κpe2 + v

ακ

(
v

e(1− κ)− v
+ χα

)

Notice that p can be as small as χ
eκ under case 2 so dτ

de−1 can be as large as χ
(
v
α − e

)
+ v2

ακ(e(1−κ)−v) .

Thus, for relatively large e−1, in particular v > αe,7 we have dτ
de−1 > 0. This is, the total infections

can increase as protection efficacy e−1 increases, particularly if protection is not too widespread

but it is highly effective. This is portrayed in Figure 3.1(b).

Next, consider p in case 3. Case 3 is given by v
e(1−κ) > Φ(χ) = Φ(eκp) > v

1−κ , and some algebra

7This does not contradict parametric specification of case 2.
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Figure 3.2: Internal and Total Infections in Availability of Protection

(a) Internal Infections
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Notes. The parameter values are v = 0.1, κ = 0.1, α = 50, 1− e = 0.85.

yields

dτ

dp
= (1− κ)eΦ(eκp)− κ(1− e) + (1− κ)κe2pΦ′ (eκp)

Similarly, p can be chosen to make Φ(eκp) arbitrarily close to v
e(1−κ) , in which case v can be chosen

arbitrarily large. In this case, dτ
dp > v − κ(1− e) which is positive. Hence, the total infections can

increase as protection availability p increases, particularly when protection is already widespread

and the value of connections is large. This case is particularly relevant to our empirical analysis as

we discuss in the next section. This is portrayed in Figure 3.2(b).

In summary, our analysis indicates that there are two cases of network hazard. First, when some

protected individuals are connected but unprotected individuals are not connected with the center,

the efficacy of protection increases the endogenous infection probability in the network because

more protected individuals decide to form connections with the center. This increases the number of

internal infections through the center due to negative externalities. The total number of infections,

including both internal and external, might increase when the protection is highly effective but not

widespread. Second, when all protected individuals are connected but unprotected individuals are

not connected, the efficacy of protection decreases the infection probability expectedly. However,

the availability of protective measures increases the infection probability because more protected

individuals prefer to connect when the protection is good enough, which in turn, increases the
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internal infections. Similarly, the total number of infections might increase when protection is

already widespread which we observe in our empirical analysis. Only after the efficacy and the

availability of protection are sufficiently large that all protected individuals connect, the internal

infections decrease because the marginal connected agents’ infection probability does not depend

on protection efficacy.

3.4 Data and Empirical Analysis

We first present the historical changes in the COVID-19 community transmission rate and the vac-

cination rate in Allegheny County in Figure 3.3. After the first cases were recorded in March/April

2020, the first serious community transmission in Allegheny County occurred in December 2020/Jan-

uary 2021. With the increasing rate of vaccinations and the ability to socialize in outdoor settings,

the number of cases decreased significantly in June/July 2021 to start increasing again in Septem-

ber 2021. The most dramatic increase in the number of cases for the complete pandemic timeline

occurred in December 2021/January 2022 when the vaccination rate almost reached 70% in the

county. Compared to the same time period previous year when the vaccinations had just started,

the number of new cases per 100,000 people quadrupled during this time. This is a manifestation

of network hazard where individuals forgo social distancing and engage in high-risk activities more

with the comfort of being vaccinated, which in turn results in a significantly higher number of cases

in the county.

The other testable prediction of our theory is the rate of social activities. As more doses of the

vaccine become available, the number of visits to various central points of interest should increase

as individuals are less concerned with infection. To test this, we construct a monthly, county-level

time series data of visits to various types of businesses using cell phone location data from the

geospatial data company SafeGraph. Couture et al. (2022) show that smartphone data cover a

significant fraction of the US population and are broadly representative of the general population

in terms of residential characteristics and movement patterns. Our data ranges from March 2019

to February 2022, divided into three-year-long episodes which allows us to net out seasonal effects.

The pre-pandemic episode is the one-year episode from March 2019 to February 2020 serving as

our benchmark. March 2020 is when the first cases of COVID-19 in the US were observed and
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Figure 3.3: Infection Transmission Level vs. Vaccination Rate in Allegheny County

Notes. New cases per 100,000 persons in the past 7 days is calculated by adding the number of
new cases in the last 7 days divided by the population in Allegheny county and multiplying by 100,000.
Vaccination Rate (%) represents the percentage of people who have completed a primary series (have a
second dose of a two-dose vaccine or one dose of a single-dose vaccine) in Allegheny County.
Vaccination rates are by definition increased over time. The drop at the end of 2021 is likely a glitch in data
collection.

WHO declared COVID-19 to be a pandemic. The pre-vaccine episode is the one-year period from

March 2020 to February 2021.8 The post-vaccine episode is the one-year period from March 2021

to February 2022 covering the gradually increasing availability of vaccines up to the point of the

Russian invasion of Ukraine. From March 2022 onwards there have been major macroeconomic

changes and we observe significant declines in the number of visits to points of interest from March

2022 to December 2022, likely unrelated to COVID-19.

The points of interest we consider are restaurants, gas stations, big retail stores, grocery stores,

coffee shops, gyms, and airports.9 We first present annual visits to the points of interest in Table 3.3.

According to our theory, the visits to points of interest should decline from pre-pandemic episode

to pre-vaccine episode, and increase from pre-vaccine episode to post-vaccine episode. This holds

for restaurants, gas stations, coffee shops, gyms, and airports. These points of interest provide

services or experiences that can not be completely replicated at home. In particular, visits to

restaurants and gas stations come back to pre-pandemic levels. Visits to coffee shops, gyms, and

airports increase but do not reach their pre-pandemic levels. This can be related to various factors

8The first administration of a vaccine in PA was in December 2020. The vaccination rate in March 2021 was
around %15.

9Restaurants: McDonald’s and Wendy’s. Gas stations: GetGo, Sunoco, Sheetz. Big retailer stores: Target,
Walmart, Costco. Grocery stores: Giant Eagle, ALDI, Market District. Coffee shops: Starbucks. Gyms: Planet
Fitness, LA Fitness, Ascend. Airports: Pittsburgh International Airport.
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Table 3.3: Annual visits to points of interest

2019 - 2020 2020 - 2021 2021 - 2022

No. of locations Mean SD Mean SD Mean SD

Restaurants 22 11091 865 8518 1334 10448 549

Gas Stations 39 20020 1747 15221 2396 19701 1305

Big Retailers 9 16522 2782 15210 2132 14730 2343

Grocery Stores 21 10586 1477 8671 879 8027 464

Coffee Shops 19 16347 5641 8720 2308 10809 1481

Gyms 7 2441 191 1057 393 1449 151

Airports 1 24688 2938 8235 2916 13444 3541

All Places 118 205355 27835 132596 20353 156133 11650

Notes. Visits are counted starting from March of each year to February of following year.

that have altered consumption habits during the pandemic such as moving to suburbs or buying

exercise equipment. The number of visits to big retailers and grocery stores keeps declining from

pre-vaccine episode to post-vaccine episode. This could be attributed to a shift towards online

shopping after most companies adjusted their infrastructure to accommodate deliveries during the

pandemic. We believe this is beyond the scope of our paper and should be addressed in separate

work. Accordingly, we focus on restaurants, gas stations, coffee shops, gyms, and airports.

Figures 3.4, 3.5, 3.6, 3.7, and 3.8 present the number of visits to these points of interest. Figures

on the left columns overlap pre-pandemic, pre-vaccine, and post-vaccine episodes in annual plots

to highlight seasonal changes in behavior. Our theory predicts an upward shift in visits from the

pre-vaccine episode (orange lines) to the post-vaccine episode (green lines). Such a shift is evident

in figures confirming our prediction.

Figures on the right columns display the entire time series spanning three years. Two points are

marked. The black vertical dashed lines correspond to visits in January 2021. The first dose of a

vaccine was administered on December 15 in Pennsylvania so it is more suitable to start analyzing

the impact of vaccines on visits in the next month. Our theory predicts that visits should gradually

increase starting with the black line. The red vertical dashed lines correspond to visits in January

2022. The evident spike in infection rates in Figure 3.3 spans the month of January 2022 from

start to finish. Our theory predicts that the number of visits should increase up to January 2022.

Such upward trends can be observed in the right columns of Figures 3.4, 3.5, 3.6, 3.7, and 3.8. The

corresponding upward trend in infection rates can be seen in the right column of Figure 3.3 in the

orange line.
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Figure 3.4: Fast food restaurant visits

Figure 3.5: Gas station visits

In summary, our empirical analysis shows that the number of new COVID-19 cases in Allegheny

County quadrupled in January 2022 when the vaccination rate reached 70% compared to January

2021 when only 2% of the population was vaccinated. This is the aforementioned network hazard in

which individuals connect with the centers (e.g., restaurants, coffee shops) more with the comfort

of being vaccinated, which increases the infection rate in the county. This hypothesis holds when

we look at the monthly foot traffic data to the places of interest. Compared to the pre-pandemic

period, the rate of social activities decreases significantly after the start of the pandemic before

individuals started getting vaccinated. With mass vaccinations, we observe an increase in social

activities coupled with a sharp increase in the number of COVID-19 cases which is possibly a

manifestation of network hazard.
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Figure 3.6: Coffee shop visits

Figure 3.7: Gym visits

3.5 Conclusion

The COVID-19 pandemic revealed the importance of incorporating patterns of social interaction

and society’s behavioral characteristics in building mathematical epidemiological models. Within

this context, our work brings the novel idea of network hazard, originally developed to understand

and analyze financial networks, to highlight the potential downside of higher efficacy and availabil-

ity of protective measures in controlling the spread of the virus if contact rates are left unregulated.

While protective measures reduce the risk of transmission, higher availability and efficacy of protec-

tive measures potentially make individuals more comfortable in interacting with central agents or

locations, which in turn, opens more channels for transmission. As imperfect protective measures

are more available and effective, the increased number of contact with central agents and location
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Figure 3.8: Airport visits

increases the risk of transmission through the center, which can offset the direct benefit of improved

protection, in aggregate. Additionally, the correlation of exposures through the central agent or

location can create a fat-tailed infection distribution, causing more frequent superspreaders which

constrict the healthcare system and cause high fatality. We confirm the testable predictions of our

theory by using two data sets regarding Allegheny County. First, we use CDC’s publicly available

data on vaccination rates and infection rates. Second, we measure the changes in the number of

visits to central points of interest using foot traffic data covering a three-year-long episode from

pre-pandemic to post-pandemic episodes.

Our work contributes to the literature on epidemiological models by incorporating a model of

individuals’ social behavior and shedding light on superspreaders and massive infections. Future

work can incorporate a combination of protective measures and policies, such as masks and social

distancing mandates. The use of protective measures is also a choice variable in various settings,

which is an important avenue for future work in the light of polarized views of the public in the US.

In a dynamic version of our framework, several other questions can be addressed. The evolution

of the virus and its several variants would generate complex patterns of infection rates. Finally,

agents would react to the news of updated infection rates which can add a robustness check to our

broader theory.
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Chapter 4

Conclusions

In this dissertation, we study three contemporary matching and allocation problems that arise in

organ allocation, two-sided matching platforms, and combating infectious diseases. We provide

theoretical models and analysis as well as empirical analysis and insights in order to shed light on

these topics. Our work emphasizes the importance of fairness in designing matching and allocation

mechanisms and understanding the behavioral factors in the spread of infectious diseases. We

provide recommendations to policymakers to promote equity and efficiency in allocating scarce

resources and enhance the benefits of current mechanisms for society.

In chapter 1, we study the problem of achieving a fairer liver allocation system where there

are disparities in access to transplantation based on patients’ height and gender. To address

this, we develop a fluid model of the current liver transplant system with fairness constraints,

present the optimal policy of allocating deceased-donor livers to transplant patients, provide a

computational framework to provide MELD exceptions points to disadvantaged to increase their

access to transplantation, and assess the effect of proposed exception points on the efficiency and

equity of the current liver allocation system.

Our analysis shows that the Equity Adjusted Mortality Risk policy, which adjusts patients’

medical-urgency-based rankings to ensure equity in access to transplantation, is optimal in allo-

cating deceased-donor livers. We show that the dual of the optimal control problem provides a

proxy for estimating patients’ short-term mortality risk which can be mapped into their laboratory

MELD scores. With an easy-to-implement algorithm, we utilize this to provide MELD exception

points to disadvantaged patients. Our simulations show that disadvantaged patients can greatly
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benefit from MELD score exceptions without decreasing the overall efficiency of the current liver

allocation system.

We discuss the potential research directions that can be derived from this chapter. First, this

chapter solely focuses on the allocation of deceased-donor livers; therefore, despite their small por-

tion in the total number of liver transplants in the US, incorporating living donor liver transplants

into our model and simulations can potentially provide further insights. Second, split liver trans-

plantation (SLT) is a rising trend in the transplant community. How to incorporate SLTs into the

MELD-based liver allocation system remains an interesting research question to study further in

the future.

In chapter 2, we study the existence of popularity bias in an online dating platform’s recommen-

dations and examine how such bias affects users’ chances of finding compatible dating partners on

the platform. We model the platform and the users’ decisions with a three-stage matching game,

utilize the data from a major online dating platform to develop a novel predictive model to estimate

users’ decisions on the platform and use the estimated decisions to run simulations of the platform.

Our analysis shows that the platform’s revenue-maximizing and match-maximizing recommen-

dations are not necessarily at odds, even though the former leads to greater bias against unpopular

users. We show that the bias in the platform’s recommendations is affected by how selective pop-

ular users are on the platform and the congestion effect. As popular users become more selective

in accepting messages, the degree of bias in the match-maximizing platform’s recommendations

decreases whereas it stays high in the revenue-maximizing platform’s recommendations. As the

congestion effect increases, both revenue-maximizing and match-maximizing platforms’ recommen-

dations include popular and unpopular users more equally. Additionally, our novel predictive model

achieves very high accuracy in estimating users’ decisions; therefore, it allows us to test and verify

our theoretical results on the user interaction data.

There are interesting research directions to follow from this chapter. First, online dating plat-

forms employ different revenue models such as fee-for-service and fixed subscription fees per period.

A platform’s revenue model potentially affects its strategy in providing recommendations to its

users. Therefore, one can investigate the effect of the platform’s revenue model on its bias in rec-

ommendations. Second, a platform needs to consider various strategic motives to expand its user

base and keep existing users engaged on the platform. The question of how a platform should set
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its objective considering various trade-offs can provide further insights into understanding current

online dating platforms.

In chapter 3, we highlight the unintended consequences of higher efficacy and availability of

protective measures in combating infectious diseases with the novel idea of network hazard. While

protective measures reduce the risk of transmission, individuals feel more comfortable engaging in

high-risk activities with higher availability and efficacy of protective measures. This potentially

opens more channels for transmission and increases the probability of having superspreader events.

We model this problem as a network of agents with a central location where agents choose to

form a connection with the center to obtain benefits. Higher availability and efficacy of protective

measures decrease each agent’s risk of infection, leading more agents to form connections with the

center. However, a higher density of connections with the center increases the risk of transmission

through the center. This is a manifestation of network hazard.

Our analysis shows that there are two cases of network hazard. First is when some individuals

who employ protective measures connect but unprotected individuals do not connect with the

center. In this case, the infection probability through the center increases with the efficacy of

protection because more protected individuals decide to form connections with the center. Second

is when all protected individuals are connected but unprotected individuals are not connected. The

availability of protective measures increases internal infection probability because more protected

individuals choose to connect with the center when the efficacy of protection is good enough. Our

empirical analysis shows that the number of COVID-19 infections quadrupled in January 2022 when

the vaccination rate reached 70% compared to January 2021 when this number was only 2%. This

is a case of network hazard where monthly foot traffic data show that significantly higher number

of individuals engaged in social activities in late 2021 and early 2022 compared to late 2020 and

early 2021.

We discuss the potential future research directions that can be followed from this chapter. First,

we can investigate the effect of the combination of protective measures and mandates enforced by

the local authorities in the spread of the virus. Second, individuals react to the news of updated

infection rates differently which can be incorporated into the dynamic version of our model. Finally,

the evolution of the virus and the different infection patterns of new virus variants can provide

further insights as to how policymakers should approach the next pandemics and epidemics.
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Appendix A

Additional Material for Chapter 1

A.1 Estimation of ESLD Patients’ 90-Day Mortality Risk

The logistic regression coefficients used for predicting the 90-day mortality risk of ESLD patients

can be seen in Table A.1.

Table A.1: Logistic regression coefficients for predicting 90-day mortality risk

A.2 Summary of Notation

Symbol Definition

i Index for the static class of the patient

j Index for the health status of the patient, i.e., MELD score

k Index for the type of the donor liver

t Time index

n Number of organ offers to patients

Continued on next page
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Table A.2 – continued from previous page

Index Definition

I Set of static classes of patients

J Set of the health status of patients, i.e., MELD scores

K Set of liver types

Φ Feasible set of allocations

β Matrix of patients’ health transition rates out of MELD scores

γ Matrix of patients’ health transition rates into MELD scores

ρ Inverse of the average likelihood of transplantation

λij Arrival rate of class ij patients

µk Arrival rate of type k livers

P k Matrix of patients’ probability of accepting liver offers

xij Number of class ij patients in the system

αjj′ Transition rate of a patient’s health status from j to j′

dj Mortality rate of a patient in health status j

uijk The rate of allocating type k livers to class ij patients

INF Set of incompatible patient type - liver type pairs

pijk Probability of a class ij patient accepting an offered liver type of k

πn
ijk Probability of a type k liver being transplanted to a class ij patient

when offered to n patients

A.3 Proofs

Proof of Theorem 1. The primal optimal control problem (P) includes a set of integral constraints

(4) that ensures fairness with respect to the likelihood of transplantation. We introduce a new state

variable wk
i (t) where wk

i (t) =
∫ t
0 u

k
i (τ)dτ , w

k
i (0) = 0 for i ∈ I, k ∈ K and t ≥ 0. As a result, we
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obtain ẇk
i (t) = uki (t)dt and constraint (4) in the primal problem becomes a terminal condition as:

K∑
k=1

e · wk
i (T ) =

1

ρ
λiT for i ∈ I. (A.1)

We follow the road map provided by Rockafellar and Wets (2009) to derive the dual problem of

control associated with (P). We can write our convex integrand L on [0, T ]×RIJ ×RIJ ×RIJ ×RIJ

as follows (for the sake of notation, t is dropped for time dependent variables):

L(t, x, ẋ, w, ẇ) = (e · d) · x+ χRIJ
+
(x) + χRIJ

+
(w) +

K∑
k=1

χRIJ
+
(uk) +

K∑
k=1

χR−(e · uk − µk(t))

+
∑

(i,k)∈INF

χR−(e · uki − ϵ)

if ẋ(t) = λ(t) −
∑K

k=1 P
kuk(t) − (d + β − γ)x(t) and ẇ(t) = u(t), otherwise L(t, x, ẋ, w, ẇ) = ∞.

This way, we append the hard constraints of (P) as penalty expressions to the objective function.

The expressions χRIJ
+
(x) and χRIJ

+
(w) ensure the non-negativity of the state variables x and w, and

the expression
∑K

k=1 χRIJ
+
(uk) ensures the non-negativity of the control variable u. The constraint

related to the allocation of organs not exceeding the supply is expressed by the penalty term∑K
k=1 χR−(e · uk − µk(t)) and the infeasible allocations is expressed by

∑
(i,k)∈INF χR−(e · uki − ϵ).

We note that the infeasible allocations are restricted within ϵ. The system dynamics equations are

incorporated in L by requiring ẋ(t) to be equal to λ(t)−
∑K

k=1 P
kuk(t)− (d+ β − γ)x(t) and ẇ(t)

to be equal to u(t).

Next, we define the functional l on RIJ × RIJ × RIJ taking values on R ∪ {∞} for the initial

state of the problem and terminal conditions. Initially, there are xij(0) patients in class ij and

w(0) is equal to 0 because we have not allocated any organs yet. As the terminal condition, x(T ) is

not restricted because we minimize pre-transplant mortality on [0, T ] and we have e ·w(T ) = λT/ρ

to ensure that all patient classes have an equal likelihood of receiving an organ transplant. The

functional l is defined as l(x0, w0, wT ) = l0(x0, w0)+lT (wT ) where l0(x0, w0) = χ{(x(0),0)}(x0, w0) and

lT (wT ) = χ{λT/ρ}(wT ). The functional l0 and lT dictate the initial and terminal state conditions,
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respectively. As a result, the primal problem (P) becomes a problem of minimizing

∫ T

0
L(t, x(t), ẋ(t), w(t), ẇ(t))dt+ l(x0, w0, wT ).

In our next step, we compute the conjugates to the functions L and l. Let L∗ denote the

conjugate to L. To be specific,

L∗(t, s, p, r, q) = sup
z∈RIJ ,y∈RIJ ,v∈RIJ ,m∈RIJ

{z · s+ y · p+ v · r +m · q − L(t, z, y, v,m)}

for s, p, r, q ∈ RIJ . We can express L∗ more explicitly as follows. Note that L(t, z, y, v, k) <∞ only

if z ≥ 0, v ≥ 0 and there exists some uk ∈ RIJ
+ such that y = λ(t) −

∑K
k=1 P

kuk − (d + β − γ)z,

mk = uk, e ·uk ≤ µk(t), u
k
i ≤ ϵ for (i, k) ∈ INF and uk ≥ 0 for k ∈ K. For s, p, r, q ∈ RIJ , we write

L∗ as

L∗(t, s, p, r, q) = sup
z∈RIJ

+ ,u(t)∈Φ(t),v∈RIJ

{
z · s+ p ·

(
λ(t)−

K∑
k=1

P kuk − (d+β − γ)z
)
+ v · r

+ q · uk − (e · d) · z

}

by replacing y with λ(t)−
∑K

k=1 P
kuk − (d+ β − γ)z, mk with uk for feasible uk and noting that

L(t, z, y, v, k) = (e · d) · z. We rearrange the terms as follows

L∗(t, s, p, r, q) = sup
z∈RIJ

+

{z · (s− p(d+ β − γ)− e · d)}+ p · λ(t) + sup
v∈RIJ

{v · r}

+ sup
u(t)∈Φ(t)

K∑
k=1

{−p · P kuk + q · uk}

because we can take the supremum for z, v and uk separately for each k. We have supz∈RIJ
+
{z · (s−

p(d+β−γ)−e·d)} = χRIJ
−
{s−p(d+β−γ)−e·d} since supz∈RIJ

+
{z ·(s−p(d+β−γ)−e·d)} becomes

∞ if (s − p(d + β − γ) − e · d)ij > 0 for i ∈ I and j ∈ J . Also, we obtain supu(t)∈Φ(t)

∑K
k=1{−p ·

P kuk + q · uk} = infu(t)∈Φ(t)

∑K
k=1{(p · P k − q)uk}. Therefore, L∗ can be written as follows

L∗(t, s, p, r, q) = χRIJ
−
{s− p(d+ β − γ)− e · d}+ p · λ(t) + sup

v∈RIJ

{v · r}+ inf
u(t)∈Φ(t)

K∑
k=1

{(p · P k − q)uk}.
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Using the conjugate L∗ of the primal integrand L, we calculate the dual integrand M . For t ∈ [0, T ]

and s, p, r, q ∈ RIJ , the dual integrand M is given by M(t, p, s, q, r) = L∗(t, s, p, r, q). That is, for

t ∈ [0, T ], we have

M(t, y(t), ẏ(t), z(t), ż(t)) = L∗(t, ẏ(t), y(t), ż(t), z(t))

= χRIJ
−
{ẏ(t)− y(t)(d+ β − γ)− e · d}+ y(t) · λ(t) + sup

v∈RIJ

{v · ż(t)}

+ inf
u(t)∈Φ(t)

K∑
k=1

{(y(t) · P k − z(t))uk},

where χRIJ
−
{ẏ(t) − y(t)(d + β − γ) − e · d} ensures that ẏ(t) ≤ y(t)(d + β − γ) + d for t ∈ [0, T ].

Finally, we need to derive the terminal conditions associated with the dual problem. For this, we

define the functional m on RIJ × RIJ × RIJ as follows:

m(y0, z0, zT ) = l∗0(y0, z0) + l∗T (−zT )

where l∗0 and l∗T are the conjugates of l0 and lT . We calculate l∗0 as follows: l∗0(y0, z0) = supx,w{y ·

x + z · w − l0(x,w)} = supx∈{x(0)},w=0{y · x} = x(0) · y. Similarly, l∗T (−zT ) = supw{w · z} =

supw=λT/ρ{−w · z} = −zλT/ρ. The dual problem of control become to minimize

∫ T

0
M(t, y(t), ẏ(t), z(t), ż(t))dt+m(y0, z0, zT )

that is equivalent to minimizing

∫ T

0
[y(t)λ(t) + f(t, y(t), z(t))]dt+ x(0) · y(0)− z(T )λT

ρ

subject to

y(t) = y(0) +

∫ t

0
ẏ(s)ds

z(t) =

∫ t

0
ż(s)ds

ż(t) = 0

ẏ(t) ≤ y(t)(d+ β − γ) + d

(D)
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where f(t, y(t), z(t)) = inf
∑K

k=1{(y(t) ·P k − z(t))uk : u(t) ∈ Φ(t)}. To conclude that the objective

function values of the primal problem (P) and the dual problem (D) are equal to each other by

using Theorem 4 of Rockafellar and Wets (2009), we need to show that the primal problem (P) is

feasible and bounded. It is bounded because e · uk(t) ≤ µk(t) for k ∈ K and t ≥ 0. Given that the

primal problem is bounded, ż(t) = 0 to ensure that the dual problem is bounded as well. To show

that there is a feasible u satisfying the constraints of P, we need an additional assumption on the

likelihood of transplant constraint. The average likelihood of transplantation, 1/ρ, must be small

enough so that there exists u such that e ·uk(t) ≤ µk(t), w(t) =
∫ t
0 u(τ)dτ and w(T ) = λT/ρ. With

this additional assumption, we conclude that the primal problem (P) is also feasible ensuring that

the objective function values of (P) and (D) are equal to each other.

We need to derive the coextremality conditions for the primal - dual problem pair to complete

the proof. By Theorem 5 of Rockafellar and Wets (2009), let u be a feasible organ allocation for

(P) with the corresponding state trajectories x and w, and let y and z be a feasible control for

(D), the control u is optimal for (P) and y and z are optimal for (D), if and only if they satisfy the

following coextremality conditions:

(y(0), z(0),−z(T )) ∈ ∂l(x(0), w(0), w(T )) and

(ẏ(t), y(t), ż(t), z(t) ∈ ∂L(t, x(t), ẋ(t), w(t), ẇ(t)) for almost every t ∈ (0, T )

where ∂L and ∂l are the subgradients of the convex integrand L and the functional l, defined above.

First, we calculate the subgradient of L from its epigraphical normals. For h : Rn → [−∞,+∞]

and any point x̄ at which h is finite, we have ∂h(x̄) = {v : (v,−1) ∈ Nepi h(x̄, h(x̄))} where epi h

denotes the epigraph of h defined as epi h := {(x, γ) ∈ Rn × R : γ ≥ h(x)}, and Nepi h(x̄, h(x̄)) is

the set of vectors to the set epi h at (x̄, h(x̄) in the general sense as in Definition 6.3 of Rockafellar

& Wets (1997). For t ∈ [0, T ], the epigraph of the integrand L is defined as follows: epi L(t) consists

of points (x, ẋ, w, ẇ, γ) ∈ R4IJ+1 such that

ẋ = λ(t)−
K∑
k=1

P kuk − (d+ β − γ)x, ẇk = uk, x ≥ 0, w ≥ 0, γ ≥ (e · d) · x,

e · uk(t), uk ≥ 0 for k ∈ K, uki (t) ≤ ϵ for (i, k) ∈ INF,

85



since the points (x, ẋ, w, ẇ) ∈ R4IJ where L(t, x, ẋ, w, ẇ) = ∞ are such that the vertical line

(x, ẋ, w, ẇ)× R misses epi L(t). Then, we can write

∂L(t, x̄, ¯̇x, w̄, ¯̇w) =
{
(v1, v2, v3, v4) ∈ R4IJ : (v1, v2, v3, v4,−1) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)}
.

First, note that for t ∈ [0, T ], epi L(t) is a convex set and the point
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
is

an element of epi L(t) for (x̄, ¯̇x, w̄, ¯̇w) ∈ R4IJ . Let v denote an arbitrary element of R4IJ+1 where

the first IJ components of v is denoted as v1, the subsequent IJ components by v2, v3 and v4,

and the last component by vγ . That is, v = [v1, v2, v3, v4]T where v1, v2, v3, v4 ∈ RIJ and vγ ∈ R.

Then, we use Theorem 6.9 of Rockafellar and Wets (2009) which gives

Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
=

{
v ∈ R4IJ+1 :

[(
x, ẋ, w, ẇ, γ

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v ≤ 0,∀(x, ẋ, w, ẇ, γ) ∈ epi L(t)

}
.

(A.2)

We next establish the following properties of Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
for t ∈ [0, T ] which

will asist us in finding the subgradients of L.

Property 1. For t ∈ [0, T ], if v = (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
, then

v1 ≤ v2(d+ β − γ)− vγd. Moreover, v1ij = −vγdij + [v2(d+ β − γ)]ij when x̄ij > 0.

To verify Property 1, we first show that any v = (v1, v2, v3, v4, vγ)T such that v1ij > −vγdij +

[v2(d+β−γ)]ij for some ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Suppose not. Then, we

could find an element (x̃, ˜̇x, w̃, ˜̇w, γ̃) of epi L(t) such that it is equal to
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w) +

dij(x̃ij − x̄ij)
)
except for x̃ij > x̄ij and ˜̇x = λ(t) −

∑K
k=1 P

kuk − (d + β − γ)x̃. However, in that

case, we obtain

[(
x̃, ˜̇x, w̃, ˜̇w, γ̃

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v = v1ij(x̃ij − x̄ij) + v2 · (˜̇x− ¯̇x) + vγdij(x̃ij − x̄ij)

= (x̃ij − x̄ij)(v
1
ij + vγdij) + v2(d+ β − γ)(¯̇x− x̃)

=
(
v1ij + vγdij − [v2(d+ β − γ)]ij

)
(x̃ij − x̄ij)

> 0,
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contradicting that (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Similarly, we can show

that if x̄ij > 0, then any v = (v1, v2, v3, v4, vγ)T such that v1ij ̸= −vγdij + [v2(d+ β− γ)]ij for some

ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w). Therefore, Property 1 proves the coextremality

condition that for t ∈ [0, T ], ẏ(t) ≤ d + y(t)(d + β − γ) and whenever xij(t) > 0, it must be that

ẏij(t) = dij + [y(t)(d+ β − γ)]ij .

Property 2. For t ∈ [0, T ], if v = (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
, then

v3 ≤ 0. Similar to Property 1, we show that any v = (v1, v2, v3, v4, vγ)T such that v3ij > 0 for some

ij cannot be in Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Suppose not. Then, we could find an element

(x̃, ˜̇x, w̃, ˜̇w, γ̃) of epi L(t) such that it is equal to
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
except for w̃ij > w̄ij .

In that case, we obtain

[(
x̃, ˜̇x, w̃, ˜̇w, γ̃

)
−
(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)]
· v = v3ij(w̃ij − w̄ij)

> 0,

contradicting that (v1, v2, v3, v4, vγ)T ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
. Therefore, Property 2

along with the fact that the primal problem is bounded proves the coextremality condition that for

t ∈ [0, T ], ż(t) = 0.

Property 3. For t ∈ [0, T ] and k ∈ K, if ¯̇x = λ(t) −
∑K

k=1 P
kūk − (d + β − γ)x̄ and ¯̇w = ū

for ūk such that ūk ≥ 0, e · ūk ≤ µk(t), ū
k
i ≤ ϵ for (i, k) ∈ INF and v = (v1, v2, v3, v4, vγ) ∈

Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w), then, ūk ∈ argminz∈Φ(t)

{
(P k · v2 − v4) · zk

}
.

To establish Property 3, we first recall that for any (x, ẋ, w, ẇ, γ) ∈ epi L(t), there exists some

uk ∈ RIJ for k ∈ K such that

ẋ = λ(t)−
K∑
k=1

P kuk − (d+ β − γ)x, ẇk = uk, x ≥ 0, w ≥ 0, uk(t) ∈ Φ(t), and γ ≥ (e · d) · x

For an arbitrary k′ ∈ K, consider now an element
(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
∈ epi L(t) where ẋ =

λ(t)− (d+ β − γ)x̄−
∑K

k ̸=k′ P
kūk − P k′uk

′
, ẇk = ūk for k ̸= k′ and ẇk′ = uk

′
. Then, the following

holds for v = (v1, v2, v3, v4, vγ) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)
:
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[(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
−

(
x̄, ¯̇x, w̄, ¯̇w,L

(
x̄, ¯̇x, w̄, ¯̇w

))]
· v

= v1 · (x̄− x̄) + v2 · (ẋ− ¯̇x) + v3 · (w̄ − w̄) + v4 · (ẇ − ¯̇w) + vγ(−(e · d) · x̄+ (e · d) · x̄)

= v2 · (−P k′uk
′
+ P k′ ūk

′
) + v4 · (uk′ − ūk

′
)

= (P k′ · v2 − v4)(ūk
′ − uk

′
).

Then, we have (P k′ · v2 − v4)(ūk
′ − uk

′
) ≤ 0, only if (P k′ · v2 − v4)uk

′ ≥ (P k′ · v2 − v4)ūk
′
. From

(6), since
(
x̄, ẋ, w̄, ẇ, (e · d) · x

)
is an element of epi L(t), this proves Property 3. Recall that the

subgradient of L is related to the normal cone of its epigraph as ∂L(t, x̄, ¯̇x, w̄, ¯̇w) =
{
(v1, v2, v3, v4) ∈

R4IJ : (v1, v2, v3, v4,−1) ∈ Nepi L(t)

(
x̄, ¯̇x, w̄, ¯̇w,L(t, x̄, ¯̇x, w̄, ¯̇w)

)}
. The coextremality conditions state

that for all t ∈ [0, T ], (ẏ(t), y(t), ż(t), z(t) ∈ ∂L(t, x(t), ẋ(t), w(t), ẇ(t)). That is, for t ∈ [0, T ],

(ẏ(t), y(t), ż(t), z(t),−1) ∈ Nepi L(t)

(
x(t), ẋ(t), w(t), ẇ(t), L(t, x(t), ẋ(t), w(t), ẇ(t))

)
. This implies

that uk(t) ∈ argminv∈Φ(t)

{
(y(t) ·P k−z(t))v

}
, which establishes the coextremality condition. This

concludes the proof of Theorem 1.

A.4 Dynamics of the Liver Allocation System

The diagram of the liver allocation system is presented in Figure A.1. Figure A.2 shows the dynamic

changes in class ij patients’ health condition that is captured by their laboratory MELD score.
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Figure A.1: Diagram of the Liver Allocation System

Notes. Static patient classes are denoted by i ∈ {1, 2, ..., I} and dynamic patient classes are denoted by

j ∈ {6, ..., 40} corresponding to transplant candidates’ laboratory MELD scores. The classes of deceased

donor livers are denoted by k ∈ {1, 2, ...,K}. The solid lines represent the identical donor-recipient matches

and the dashed lines represent the other compatible matches.
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Figure A.2: Dynamics of class ij patients

Notes. λij(t) denotes the arrival rate of class ij patients. dj denotes the mortality rate of patients with

MELD score j. αj′j denotes patients’ health transition rate from MELD score j′ to j, and αjj′ denotes

patients’ health transition rate from MELD score j to j′.

A.5 Sized-Based Compatibility Analysis

As we discussed in §1.5, we created a compatibility matrix for each donor-recipient height class

pair using the BSA analysis. The compatibility percentages can be seen in Table A.3.

Table A.3: Size-Based Compatibility Matrix (%)

Recipient Height (cm)
≤ 150 cm 151-156 cm 157-165 cm 166-175 cm ≥ 176 cm

D
on

or
H
ei
gh

t
(c
m
) ≤ 150 cm 97.8 97.4 97.4 93.2 67.2

151-156 cm 98.2 99.2 98.4 98.4 83.4
157-165 cm 93.6 1 1 1 97.8
166-175 cm 85.9 99.3 1 1 1
≥ 176 cm 40.5 90.7 97.3 1 1

Table A.3 shows that same height tier donor-recipient pairs are the most compatible as expected,

i.e., the diagonal entries of the matrix are either or very close to one. The least compatible donor-

recipient pairs are donors (recipients) with ≤ 150 cm and recipients (donors) with ≥ 176 cm. The

remaining donor-recipient pairs show a high percentage of size-based compatibility (≥ 80%).

BSA histograms and quantiles of each donor and recipient height tier can be found in figures

below.
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Figure A.3: BSA Histogram of ≤ 150 cm Donors

Figure A.4: BSA Histogram of 151-156 cm Donors
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Figure A.5: BSA Histogram of 157-165 cm Donors

Figure A.6: BSA Histogram of 166-175 cm Donors
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Figure A.7: BSA Histogram of ≥ 176 cm Donors

Figure A.8: BSA Histogram of ≤ 150 cm Patients
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Figure A.9: BSA Histogram of 151-156 cm Patients

Figure A.10: BSA Histogram of 157-165 cm Patients
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Figure A.11: BSA Histogram of 166-175 cm Patients

Figure A.12: BSA Histogram of ≥ 176 cm Patients
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Appendix B

Additional Material for Chapter 2

B.1 Description of User Attributes on the Platform

User Attribute Type Additional Details

Age Numerical Age

Average Attractiveness Numerical Average attractiveness score received from other users

Height Numerical Height in centimeters

Num. Photos Numerical Number of profile photos that show a user’s face

Num. Photobooks Numerical Number of non-profile photos included in a photobook

Profile Completion Score Numerical Score indicating the individual’s degree of

profile completion

Platform Tenure Numerical Time since a user joined the platform in days

Drinking Ordinal Frequency of drinking

Smoking Ordinal Frequency of smoking

Weight Ordinal Self-reported categories of body shape: skinny, little skinny,

slim & sporty, average, muscular, little fat, fat

Gender Binary Male, Female

College Binary Whether or not user has filled out college info

Facebook Connected Binary Whether or not connected with Facebook

iPhone Binary Whether or not using iPhone when signing up (versus Android

Phone or web)

Verified Binary Whether or not a real name is verified

Filtering/Search Binary Whether or not a user stated search filtering preferences for a

partner’s age, drinking, height, weight, religion, and smoking

Blood Type Categorical One of: O, A, B, AB, missing

Religion Categorical One of 13 religious designations

Region Categorical One of 8 provinces in South Korea

Notes. “Ordinal” attributes are categorical and ordered, whereas “categorical” attributes are categorical

and unordered. Correlation matrices for user attributes can be found in Appendix B.3.
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B.2 Summary Statistics of User Attributes

Type Male Female

Numerical Mean St.Dev. Min 1Q 2Q 3Q Max Mean St.Dev. Min 1Q 2Q 3Q Max

Age 27.55 5.99 15.0 23.2 26.7 31.2 67.0 25.1 5.5 15.0 21.0 24.1 28.1 66.9

Attractiveness 1.93 0.87 0 1.66 2 2.46 5 3.69 0.99 0 3.50 3.90 4.20 5

Height (cm) 175.60 5.45 0 172 175 179 220 162.17 5.38 0 159 162 165 220

Num. Photobooks 1.19 2.88 0 0 0 1 283 0.84 2.59 0 0 0 1 223

Num. Photos 3.33 1.37 1 2 3 4 7 3.09 1.32 1 2 3 4 7

Platform Tenure 378.25 507.61 1 59 161 412 2165 215.90 299.75 0 51 132 219 2158

Profile Completion Score 60.37 24.33 10.5 36.8 59.6 79.5 123.8 52.4 22.5 13.5 32.5 45.9 69.6 123.8

Ordinal Mean St.Dev. Min 1Q 2Q 3Q Max Mean St.Dev. Min 1Q 2Q 3Q Max

Drinking 3.18 0.86 0 3 3 4 6 2.98 1.00 0 2 3 4 6

Smoking 1.31 0.48 0 1 1 2 2 1.10 0.31 0 1 1 1 2

Weight 3.85 1.46 0 3 3 5 7 4.12 1.79 0 3 3 7 7

Binary Mean Mean

College 0.59 0.47

Facebook Connected 0.31 0.23

iPhone 0.35 0.45

Verified 0.51 0.31

Categorical C1 C2 C3 C4 Rest C1 C2 C3 C4 Rest

Blood Type 33.7 27.7 27.2 11.3 0.1 33.7 27.8 27.1 11.3 0.1

Religion 72.7 15.7 5.9 5.4 0.3 65.0 22.0 7.1 5.5 0.4

Region 27.0 7.4 6.3 5.9 53.3 33.8 7.5 6.7 5.7 46.3

Notes. For numerical and ordinal (i.e., ordered categorical) attributes, 1Q, 2Q, and 3Q refer to the values of the first, second, and third quantiles,

respectively. For categorical (i.e., unordered categorical) attributes, C1 to C4 refer to the percentage of users that make up the first to fourth most

common categories, and Rest refers to the percentage making up the remainder.
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B.3 Correlation Matrices for User Attributes

The correlation matrices for user attributes, divided by gender, are presented in Figure B.1.

Figure B.1: Correlation Matrices for User Attributes

(a) Male (b) Female

B.4 Additional Discussion of Platform’s Recommendations and

Regression Analysis on User Behavior

Our theoretical model assumes that a user’s probability of accepting messages on the platform

decreases as the number of messages they receive increases. To verify this assumption, we run a

regression model analyzing how the number of messages users receive affects their message accep-

tance rate. To eliminate sparsity in this analysis, we consider the subset of users who received

and accepted at least one message. We compute the dependent variable, users’ message acceptance

rate, as the ratio of the number of messages users accept out of the number of messages they

receive from other users on the platform. We use a similar set of covariates capturing individual

user characteristics as we used previously in Table 2.2. We exclude the variable Gender because of

the multicollinearity issue: it has a variance inflation factor (VIF) greater than 5. This is rather

expected because female users receive a significantly higher number of messages than male users,

i.e., a male user receives 0.03 messages on average, whereas a female user receives 10.9.

Table B.1 presents the regression result. Our results indicate that the number of messages

received has a statistically significant and negative coefficient, validating our assumption in the
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Table B.1: Regression Result on Users’ Message Acceptance Rate

Accept Rate

(Intercept) 1.213∗∗∗

(0.0284)
Message Received −0.0023∗∗∗

(0.0001)
Average Attractiveness −0.3094∗∗∗

(0.0017)
Verified −0.0162∗∗∗

(0.0042)
Age −0.0037∗∗∗

(0.0004)
Platform Tenure −0.0037

(0.0017)
Region 0.0017∗∗∗

(0.0002)
Religion −0.0050

(0.0019)
Smoking −0.0044∗∗∗

(0.0007)

Notes. Dependent variable: Accept rate, Number of observations = 45907, Standard errors are in
parentheses. *** p < 0.001; ** p < 0.01; * p < 0.05.

theoretical model. In addition, the coefficient of the variable Average Attractiveness indicates that

higher average attractiveness decreases the message acceptance rate of users, demonstrating that

popular users are more selective than unpopular users in accepting messages on the platform.

Figure B.2 shows the percentage of messages sent with respect to the average attractiveness

difference between the focal user (e.g., a male user) and the user on the other side of the interac-

tion (e.g., a female user). As we discussed earlier, when users receive only a few recommendations

from the platform and there is a cost associated with showing interest, they take the probability of

their interest being reciprocated into account while sending messages. Even though it is difficult

to validate this assumption using the interaction data, we provide some descriptive evidence sup-

porting the idea that users consider both their own attractiveness score and recommended users’

attractiveness while sending messages.

To better explain the graph presented in Figure B.2, we consider the following example: Bob

(with an average attractiveness score of 2.3) receives Alice’s profile as a recommendation from the

platform. Alice’s average attractiveness score is 3.8. The difference between Alice’s and Bob’s

average attractiveness scores is 1.5 (= 3.8 - 2.3). Because the average attractiveness scores of

users range between 1 and 5, attractiveness difference can take values between -4 and 4. Negative

(positive) values correspond to the cases where users with higher (lower) attractiveness scores send
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Figure B.2: Percentage of Messages Sent over Users’ Attractiveness Difference

messages to users with lower (higher) attractiveness scores. As expected, we find that users are very

unlikely to send messages to others with lower attractiveness scores. In Figure B.2, the percentage

of messages sent starts increasing when the attractiveness difference becomes positive, implying that

users tend to initiate contact with users who are, on average, more attractive than them. However,

this trend changes when the attractiveness score difference between users becomes considerably

high (i.e., over 2). This pattern suggests that users are reluctant to send messages to users who are

too attractive for them, i.e., users who are “out of their reach.” One potential explanation for this

behavior is that users do not expect that very attractive users would reciprocate their interest, so

they choose not to send messages to them.

100



B.5 Summary of Notation

Symbol Definition

i, j Index for users on the platform
k Index for men, high-tier women, and low-tier women (∈ {m,h, l})
Nk Number of k-tier users
n Number of users recommended to each user
xk Proportion of women in tier k in men’s recommendations
r Cost of each message to users (∈ [0, 1])
vij Match value that user i receives from matching with user j
qi Average attractiveness of the tier user i belongs to (∈ {q, 0})
uij Idiosyncratic utility that user i receives from matching with user j
θi User i’s utility of remaining single
γi User i’s bar of accepting messages in the third stage
α The magnitude of high-tier women’s degree of selectivity (∈ [0, 1])
β The magnitude of the cost of evaluating incoming messages (∈ [0, 1])
pkk′ Probability of user in tier k sending a message to a user in tier k′ with the opposite

gender
akk′ Probability of user in tier k accepting a message from a user in tier k′

with the opposite gender

B.6 Proofs

Proof of Lemma 2.1. We compute the probability that the match value user j receives from

matching with user i, vji, exceeds the sum of user j’s utility from remaining single, θj , and the

congestion effect that user j incurs from other users’ messages in the third stage of the game, γj .

We first compute the probability of user j accepting user i’s message conditional on user j’s utility

from remaining single, θj : P(vji ≥ θj + γj |θj) = P(qi+uji ≥ θj + γj |θj) = P(uji ≥ θj + γj − qi|θj) =

1 − θj − γj + qi because vji = qi + uji and uji ∼ U [0, 1]. We then compute the unconditional

probability as
∫ 1
αqj

(1−θj−γj+qi)
1

1− αqj
dθj = (θj−

1

2
θ2j −θjγj+θjqi)

1

1− αqj

∣∣∣1
αqj

= 1− 1 + αqj
2

−

βxjp
i
j + qi because γj = βxjp

i
j and θj ∼ U [αqj , 1]. The probability of accepting messages should

be nonnegative, so we rearrange the terms to obtain aij = max

{
0,

1− αqj − 2βxjp
i
j + 2qi

2

}
. We

obtain akm = max

{
0,

1− αqj − 2βxjp
i
j

2

}
because qi = 0 for male users. Similarly, we obtain

amk = max

{
0,

1 + 2qk − β(phm + plm)

2

}
.

Proof of Lemma 2.2. We compute the probability that the expected match value user i receives
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from matching with user j, E[vij ], exceeds user i’s utility from remaining single and the cost

of sending a message, r. We compute the probability of a man i sending a message to a high-

tier woman j, pmh , and derive the rest of the probabilities similarly. For man i and high-tier

woman j, E[vij ] = E[ahm(q + uij)] = ahmq + ahmE[uij ] = ahm(q + 1/2) since uij ∼ U [0, 1]. Therefore,

pmh = P(ahm(q + 1/2) ≥ θi + r) = P(θi ≤ ahm(q + 1/2) − r) = ahm(q + 1/2) − r because θi ∼ U [0, 1]

for man i. ahm =
1− αq − 2βxhp

m
h

2
follows from Lemma 2.1. Rearranging the terms gives pmh =

1− αq − 2βxhp
m
h

2

(
q +

1

2

)
− r. Solving this equation for pmh gives pmh =

(2q + 1)(1− αq)− 4r

2(2q + 1)βxh + 4
.

Similarly, we obtain pml =
1− 4r

2(2q + 1)βxl + 4
.

Proof of Lemma 2.3. To characterize the revenue-maximizing platform’s optimal recommenda-

tion ratios, we solve for the first order conditions of the revenue maximization problem denoted by

R. Substituting xl = 1− xh and taking the first order condition of the objective function gives

dR

dxh
=

(2q + 1)(1− αq)− 4r

2(2q + 1)βxh + 4
− xh

2(2q + 1)β
(
(2q + 1)(1− αq)− 4r

)(
2(2q + 1)βxh + 4

)2
− 1− 4r

2(2q + 1)β(1− xh) + 4
+ (1− xh)

2(2q + 1)β(1− 4r)(
2(2q + 1)β(1− xh) + 4

)2 = 0.

To simplify the algebra, we denote h1 = 2(2q + 1)β, h2 = (2q + 1)(1 − αq) − 4r and h3 =

1 − 4r. The first order condition becomes
dR

dxh
=

h2
h1xh + 4

− xh
h1h2

(h1xh + 4)2
− h3

h1(1− xh) + 4
+

(1− xh)
h1h3

(h1(1− xh) + 4)2
=0. Rearranging the terms gives us

h2

(h1xh + 4)2
=

h3

(h1(1− xh) + 4)2
.

Solving this equation for xh gives x∗h =
h1
√
h2 + 4(

√
h2 −

√
h3)

h1
√
h2 + h1

√
h3

, which can be further simplified

to x∗h given in the proposition.

To verify whether x∗h is indeed the maximizer of the expected revenue, we check the second

order condition of the objective function:

d2R

dx2h
= −2h1h2(h1xh+4)−2+2h21h2xh(h1xh+4)−3−2h1h3(h1(1−xh)+4)−2+2h21h3(1−xh)(h1(1−xh)+4)−3

where the sum of the first two terms is negative because h1xh(h1xh + 4)−1 < 1⇒ 2h21h2xh(h1xh +

4)−1 < 2h1h2 ⇒ 2h21h2xh(h1xh+4)−3 < 2h1h2(h1xh+4)−2 ⇒ −2h1h2(h1xh+4)−2+2h21h2xh(h1xh+

4)−3 < 0. Similarly, h1(1−xh)(h1(1−xh)+4)−1 < 1⇒ 2h21h3(1−xh)(h1(1−xh)+4)−1 < 2h1h3 ⇒

2h21h3(1−xh)(h1(1−xh)+4)−3 < 2h1h3(h1(1−xh)+4)−2 ⇒ −2h1h3(h1(1−xh)+4)−2+2h21h3(1−
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xh)(h1(1− xh) + 4)−3 < 0. Therefore, d2R/dx2h < 0 ensures that x∗h is indeed the maximizer of the

objective function.

Proof of Proposition 2.1. (a) In order to be unbiased and given an equal number of high-tier

and low-tier women on the platform, the revenue-maximizing platform should recommend both

tiers equally, i.e., xh and xl should be 1/2. We know from Lemma 2.3 that the revenue-maximizing

platform’s recommendation ratios are x∗h =
h1
√
h2 + 4(

√
h2 −

√
h3)

h1
√
h2 + h1

√
h3

and x∗l = 1 − x∗h. Therefore,

unbiased recommendations satisfy the following condition:

x∗h =
h1
√
h2 + 4(

√
h2 −

√
h3)

h1
√
h2 + h1

√
h3

=
1

2
.

This equality gives us h2 = h3 where h2 = (2q + 1)(1 − αq) − 4r and h3 = 1 − 4r. Solving this

equality gives us two roots: q = 0 and α = 2/(2q + 1). The first root implies that the platform

uses unbiased recommendations when there is no difference between two tiers in terms of quality,

so that there is only one tier of women on the platform. This is trivial and violates our assumption

that q > 0. The second root gives us the condition given in Proposition 2.1.

Finally, we show that h2 = h3 is a necessary and sufficient condition for x∗h = 1/2. Suppose

h2 > h3. Then, we have (h1 + 8)(
√
h2 −

√
h3) > 0 since h1 > 0. (h1 + 8)(

√
h2 −

√
h3) > 0 ⇒

h1(
√
h2 −

√
h3) + 8(

√
h2 −

√
h3) > 0⇒ h1

√
h2 + 8(

√
h2 −

√
h3)− h1

√
h3 > 0⇒ h1

√
h2 + 8(

√
h2 −

√
h3) > h1

√
h3 ⇒ 2h1

√
h2 + 8(

√
h2 −

√
h3) > h1

√
h2 + h1

√
h3 ⇒ 2(h1

√
h2 + 4(

√
h2 −

√
h3)) >

h1
√
h2 + h1

√
h3 ⇒

h1
√
h2 + 4(

√
h2 −

√
h3)

h1
√
h2 + h1

√
h3

>
1

2
for h1 > 0 and h2 > h3. Therefore, in this case

xh > 1/2. Similarly, we can show that if h2 < h3, then xh < 1/2. Therefore, h2 must be equal to

h3 to obtain x∗h = 1/2.

(b) First, we look at the case where the revenue-maximizing platform is biased against low-tier

women, α < 2/(2q + 1). This gives h2 > h3 and x∗h =

√
h2√

h2 +
√
h3

+
4(
√
h2 −

√
h3)

h1(
√
h2 +

√
h3)

>
1

2
where

h1 = 2(2q + 1)β, h2 = (2q + 1)(1− αq)− 4r, and h3 = 1− 4r. As β increases, h1 increases and x∗h

decreases. Since x∗h > 1/2 in this case, this reduces the bias on the revenue-maximizing platform.

Second, we look at the case where the revenue-maximizing platform is biased against high-tier

women, α > 2/(2q + 1). This gives h2 < h3 and x∗h =

√
h2√

h2 +
√
h3

+
4(
√
h2 −

√
h3)

h1(
√
h2 +

√
h3)

<
1

2
. As β

increases, h1 increases, so
4(
√
h2 −

√
h3)

h1(
√
h2 +

√
h3)

(< 0), hence x∗h, increases. Since x∗h < 1/2 in this case,

this reduces the bias on the revenue-maximizing platform.

Proof of Proposition 2.2. Formulating the Lagrangian of the match-maximizing platform’s

optimization problem (M) gives L(xh, xl, λ) = xhp
m
h ahm + xlp

m
l alm + λ(1− xh − xl). We derive the
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first order conditions:

∂L
∂xh

= pmh ahm + xh
∂pmh
∂xh

ahm + xhp
m
h

∂ahm
∂xh

− λ = 0,

∂L
∂xl

= pml alm + xl
∂pml
∂xl

alm + xlp
m
l

∂alm
∂xl
− λ = 0, and

∂L
∂λ

= 1− xh − xl = 0,

where
∂pmh
∂xh

= − h1h2
(h1xh + 4)2

,
∂pml
∂xl

= − h1h3
(h1xl + 4)2

,
∂ahm
∂xh

= − 4βh2
(h1xh + 4)2

, and
∂alm
∂xl

= − 4βh3
(h1xl + 4)2

for h1 = 2(2q+1)β, h2 = (2q+1)(1−αq)−4r, and h3 = 1−4r. Rewriting the first order conditions

gives

∂L
∂xh

=
h2(1− αq)

2(h1xh + 4)
−

(
2βh22 + (1− αq)h1h2

)
xh

2(h1xh + 4)2
+

βh1h
2
2x

2
h − 4βh22xh

(h1xh + 4)3
− λ = 0,

∂L
∂xl

=
h3

2(h1xl + 4)
− (2βh23 + h1h3)xl

2(h1xl + 4)2
+

βh1h
2
3x

2
l − 4βh23xl

(h1xl + 4)3
− λ = 0, and

∂L
∂λ

= 1− xh − xl = 0.

At xh = x∗h and xl = x∗l , we have ∂L/xh = ∂L/xl, which can be written as:

h2(1− αq)

2(h1x∗
h + 4)

−
(
2βh2

2 + (1− αq)h1h2

)
x∗
h

2(h1x∗
h + 4)2

+
βh1h

2
2x

∗
h
2 − 4βh2

2x
∗
h

(h1x∗
h + 4)3

=
h3

2(h1x∗
l + 4)

− (2βh2
3 + h1h3)x

∗
l

2(h1x∗
l + 4)2

(B.1)

+
βh1h

2
3x

∗
l
2 − 4βh2

3x
∗
l

(h1x∗
l + 4)3

.

To derive the condition under which the match-maximizing platform is unbiased, we examine the

first order conditions of the match-maximizing platform’s problem under which ∂L/∂xh = ∂L/∂xl
for x∗h = x∗l = 1/2. Substituting x∗h = x∗l = 1/2, we obtain

h2(1− αq)

2(h1/2 + 4)
−

(
2βh2

2 + (1− αq)h1h2

)
/2

2(h1/2 + 4)2
+

βh1h
2
2/4− 2βh2

2

(h1/2 + 4)3
=

h3

2(h1/2 + 4)
− (2βh2

3 + h1h3)/2

2(h1/2 + 4)2
(B.2)

+
βh1h

2
3/4− 2βh2

3

(h1/2 + 4)3
.

After simplification, we obtain (h1 + 8)
(
h2(1− αq)− h3

)
− 4β(h22 − h23) = 0.

Suppose the left-hand side of (B.6) is greater than the right-hand side at xh = xl = 1/2, i.e.,

(h1 + 8)
(
h2(1 − αq) − h3

)
− 4β(h22 − h23) > 0. In this case, we want to show that x∗h > 1/2 and

x∗l < 1/2. To this end, we first show that ∂2L/∂x2h < 0 for all xh in the following:
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∂2L
∂x2

h

= −h1h2(1− αq)

2(h1xh + 4)2
− 2βh2

2 + (1− αq)h1h2

2(h1xh + 4)2
+

(2βh2
2 + (1− αq)h1h2)h1xh

(h1xh + 4)3
+

2βh1h
2
2xh − 4βh2

2

(h1xh + 4)3

− 3βh2
1h

2
2x

2
h + 12βh1h

2
2xh

(h1xh + 4)4

= −8h1h2(1− αq) + 16βh2
2

(h1xh + 4)3
< 0,

because αq < 1, β > 0, h1 > 0 and h2 > 0. Similarly, ∂2L/∂x2l = −(16h1h3 + 64βh23)/(h1xl +

4)3 < 0. The discriminant D = (∂2L/∂x2h)(∂2L/∂x2l ) − (∂L/∂xhxl)2 > 0 because ∂2L/∂x2h < 0,

∂2L/∂x2l < 0, and ∂L/∂xhxl = 0. Since L is strictly concave in xh and xl and D > 0, there

is a unique optimal solution (x∗h, x
∗
l ) (where x∗h + x∗l = 1) that satisfies ∂L/∂xh = ∂L/∂xl = 0.

Equivalently, at this optimal solution, the left-hand side of (B.5) is equal to the right-hand side of

(B.5) that is equal to λ. Let us denote the left-hand side of equation (B.5) with f(x∗h) and the right-

hand side with g(x∗l ). We claim that if f(xh)−g(xl) > 0, i.e., (h1+8)
(
h2(1−αq)−h3

)
−4β(h22−h23) >

0 at xh = xl = 1/2, then it must be that f(xh) > f(x∗h) = g(x∗l ) = λ > g(xl). Suppose this does

not hold. Then, it must be that either λ > f(xh) > g(xl) or f(xh) > g(xl) > λ for xh + xl = 1. If

λ > f(xh) > g(xl) for xh + xl = 1, then the optimal x∗h > xh and x∗l > xl because ∂2f/∂x2h < 0

and ∂2g/∂x2l < 0. However, x∗h + x∗l > xh + xl = 1, which contradicts x∗h + x∗l = 1. Similarly, if

f(xh) > g(xl) > λ for xh + xl = 1, then both x∗h < xh and x∗l < xl. This contradicts x∗h + x∗l = 1

because x∗h+x∗l < xh+xl = 1. Therefore, we conclude that f(xh) > λ > g(xl) if f(xh)− g(xl) > 0.

This implies that if (h1+8)
(
h2(1−αq)−h3

)
−4β(h22−h23) > 0 at xh = xl = 1/2, f(1/2) > λ > g(1/2).

Since ∂2f/∂x2h < 0 and ∂2g/∂x2l < 0, f(x∗h) = g(x∗l ) = λ where x∗h > 1/2 and x∗l < 1/2.

Similarly, if (h1 + 8)
(
h2(1− αq)− h3

)
− 4β(h22 − h23) < 0, then x∗h < 1/2 and x∗l > 1/2.

Proof of Lemma 2.4. First, we note that x∗h(2) and x∗l(2) are characterized by Lemma 2.3 be-

cause the platform’s second-period problem is the same as our one period model for the revenue-

maximizing platform. Therefore, x∗h(2), x
∗
l(2), p

m
h (x∗h(2)) and pml (x∗l(2)) are not functions of xh(1) and

they can be treated as constants. As a result, we obtain the sum of the third and fourth terms of

the objective function, x∗h(2)N
m
(2)p

m
h (x∗h(2)) + x∗l(2)N

m
(2)p

m
l (x∗l(2)), is a linear function of Nm

(2). Nm
(2) is

a function of xh(1) because Nm
(2) = N(1 −M) + ηNM where M = xh(1)p

m
h ahm + xl(1)p

m
l alm. This

gives Nm
(2) as a linear function of M . The match rate obtained in the first period M is the same as

the match-maximizing platform’s objective function in our one-period model. We have shown in

Proposition 2.2 that this objective function is concave in xh(1); therefore, M is a concave function of

xh(1). The sum of the first two terms of the objective function, xh(1)Npmh (xh(1)) + xl(1)Npml (xl(1)),

is the same as the revenue-maximizing platform’s problem in our one-period model. We have shown
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in Lemma 2.3 that this function is concave in xh(1). The sum of two concave functions is concave;

therefore, the objective function of R1 is concave in xh(1). Similarly, we have shown in Lemma 2.3

and in Proposition 2.2 that the revenue-maximization problem (R) and match maximization prob-

lem (M) have unique optimal solutions for xh + xl = 1. Therefore, the sum of these two functions,

R1, has a unique optimal solution such that x∗h(1) + x∗l(1) = 1.

B.7 Technical Details of Our Predictive Model

In this appendix, we provide technical details of our predictive model. We encode the data from

each interaction type (open, send and accept) as a separate matrix, with male users on one axis and

female users on the other axis. To introduce some notation, let us label male users as i = 1, 2, . . . ,m1

and female users as j = 1, 2, . . . ,m2 (m1 = 198, 895 and m2 = 43, 907 in our data). We also label

the different interaction types as k = 1, 2, 3, where k = 1 denotes open, k = 2 denotes send, and

k = 3 denotes accept. For each interaction type k, our interaction data is encoded in a matrix Xk

which has m1 rows and m2 columns. Each entry of these matrices is then either unobserved (e.g.,

Bob did not receive Alice’s card) or takes on a binary value, with 1 indicating that the interaction

occurred (e.g., Bob received Alice’s card and opened it) and 0 indicating that it did not occur (e.g.,

Bob received Alice’s card but did not open it).

Our estimation procedure operates on three matrices (X1, X2 and X3) jointly as a single tensor.

A tensor is a higher-dimensional analogue of a matrix; for example, if we view a matrix as repre-

senting data along two dimensions (its rows and columns), then it is equally natural to represent

data along more than two dimensions in suitable settings. In our setting, the interaction data is

naturally represented as a three-dimensional tensor by stacking the matrices X1, X2, and X3 (see

Figure B.3, left); we let X denote this tensor. We then construct mode-1 and mode-2 unfolding

of X, i.e., flattening the tensor into a matrix. The mode-1 unfolding of X, denoted as X(1), is

the m1 × 3m2 matrix whose columns are the columns of X1, X2, and X3 (see Figure B.3, right).

Similarly the mode-2 unfolding, denoted as X(2), is the m2 × 3m1 matrix whose columns are the

transposed rows of X1, X2, and X3.

Given the interaction data X, our task is to estimate M , which is a fixed tensor of the same

size as X, representing the probabilities of user interactions. Formally,

X = M + ϵ,

where ϵ is a random tensor of the same size as X and represents noise. Let M̂ denote the obtained

estimate of M . The performance of any estimation method is measured by how close (e.g., in terms

106



Figure B.3: User Interaction Data Tensor and Its Mode-1 Unfolding

of mean squared error) this estimate is to the true M .

As explained in §2.5, the estimation procedure proceeds in two steps. In the first step, we adapt

conventional matrix factorization to the interaction data tensor. Matrix factorization is one of

the most successful methods used for model-based collaborative filtering in the literature (e.g., see

Koren et al. 2009, Alhejaili and Fatima 2020). To apply this method to the tensor, we construct

the mode-1 unfolding X(1) and identify latent features of users via singular value decomposition

(SVD). SVD is a well-established technique for identifying latent semantic factors in information

retrieval (e.g., Su and Khoshgoftaar 2009). More precisely, assuming that X(1) admits the singular

value decomposition X(1) = U(1)Σ(1)V
⊤
(1), we set Û to be the columns of U(1) corresponding to the

r1 largest singular values (breaking ties arbitrarily). In this same first step, we also apply a similar

procedure using the mode-2 unfolding X(2), computing a matrix V̂ as the first r2 left singular

vectors of X(2). Letting ui and vi, respectively, be the rows of Û and V̂ , we can interpret this

decomposition nicely as follows. Assuming that each user is associated with some unknown vector

of latent features, we can ascribe to each male user i a set of r1 latent (i.e., unknown) features ui

and similarly to each female user j a set of r2 latent features vj .

In the second step, we estimate a user’s probability of interacting with the other users, i.e.,

Mk
i,j , which is the probability of user i interacting with user j in interaction type k. When using

the CF features identified in the first step, we can write Mk
i,j as follows:

Mk
i,j = fk(ui, vj), k = 1, 2, 3, (B.3)

where fk is a function to be estimated. For this estimation, we test three alternative models: the

model of Farias and Li (2019), a neural network model, and a random forest model.
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One of our benchmark models is the one developed by Farias and Li (2019), who assume that

fk has a bilinear form: M̂k = ÛSkV̂ ⊤. They then solve a least-squares problem to obtain a

closed-form solution for the estimate of Sk as Ŝk = Û⊤XkV̂ and finally compute M̂k as:

M̂k = Û Û⊤XkV̂ V̂ ⊤, k = 1, 2, 3. (B.4)

Although Farias and Li (2019) theoretically derive upper and lower bounds of expected esti-

mation error, their approach has potential limitations in prediction accuracy and interpretability.

First, their model cannot fully utilize the user attribute data in prediction. One might consider

expanding the CF feature space by appending the user attributes, but this is not straightforward

because the values of the user attributes have different scales than the values of the CF features (e.g.,

numerical features such as height, binary features such as verified name, and categorical features

such as region). In addition, their model does not allow us to utilize the pairwise user attributes

such as age difference because pairwise user attributes cannot be used in a product form to make

predictions with the bilinear model. Second, even though their model provides a convenient way to

compute probabilities of interaction in a closed form, it requires the bilinear assumption in making

predictions, and there is no guarantee that this assumption fits the underlying data structure. For

instance, when predicting the probability of interaction between two users with respect to their

ages, the bilinear assumption means that the probability of interaction increases with the product

of two users’ ages, which is unlikely to hold in reality. Last but not least, their model does not

offer any insight into how the CF features and the user attributes affect users’ decisions. In other

words, prediction results have very limited interpretability.

For these reasons, we employ two alternative machine learning techniques, neural network and

random forest, in the second step of our estimation. A neural network is based on a collection of

connected units or nodes called artificial neurons aggregated in layers and connected by the edges

to the neurons in other layers. We first preprocess the data to feed into the model to run the neural

network. We normalize individual user attributes (e.g., average attractiveness, height, weight) and

pairwise attributes (e.g., height difference, age difference), then scale them with respect to CF

features to avoid overfitting. Our base model entails one input layer, one hidden layer, and one

output layer that contains 16, 32, and 2 neurons, respectively. After normalizing the individual

and pairwise user attributes, the first layer takes the CF features as well as the individual and the

pairwise user attributes. It outputs to the hidden layer, which then outputs to the last layer. The

last layer estimates the likelihood of a user interacting with the other users.

We build our neural network model using Keras in Tensorflow. We use the ReLu activation
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function in the input and hidden layers and the Softmax activation function in the output layer

to generate the probabilities of male and female users’ open, send and accept decisions. We use

the Adam optimizer with a learning rate of 0.0001 and a “sparse categorical crossentropy” loss

function. Different batch sizes (10, 20, 30) and epoch numbers (20, 30, 50, 100, 1000) are used

throughout our analysis. We test various network structures with changing numbers of layers and

activation functions, employing techniques to overcome over-fitting (regularization, dropouts, etc.).

The simple network described above results in the highest accuracy and AUC score, as we discuss

in §2.5. This model, however, also lacks interpretability because it is a black-box model that does

not give any insights into the importance of input features.

To overcome this shortcoming of a neural network model, we employ a random forest model

as our final model. Like a neural network model, a random forest model is a supervised learning

algorithm, and it is one of the most popular classification algorithms used in practice. The random

forest consists of many decision trees built upon a random subset of features. This model works

best when features have some predictive power, as in our setting. It generates a score between 0 and

1 to estimate the likelihood of a user interacting with another user. For our random forest model,

we use the RandomForestClassifier class from the ensemble package in the scikit-learn library. The

number of estimators, n estimators, is set to the default value of 100, the number of jobs to run in

parallel, n jobs, 8, and the random state, 0. To avoid over-fitting, we set the minimum number of

samples required to be at a leaf node, min samples leaf, equal to 10.

Using random forests, we estimate users’ probability of interaction without making any struc-

tural assumption about the underlying data structure. Similar to the neural network model, this

model also utilizes CF features as well as individual and pairwise user attributes. The main ad-

vantage of the tree model over the neural network model is its ability to interpret model predic-

tions. Understanding why a machine learning model makes a certain prediction is as crucial as the

prediction’s accuracy. We adopt the SHAP (SHapley Additive exPlanations) framework recently

developed by Lundberg and Lee (2017), which is extensively used in numerous applications. Using

this framework, we shed light on the impact of various user attributes on users’ decisions to interact

with other users. We present the discussion on the effect of user attributes on users’ open, send,

and accept decisions in Appendix B.8.
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B.8 Impact of User Attributes on Users’ Open, Send, and Accept

Decisions

To interpret our prediction results, we compute and analyze importance scores for all user attributes

(i.e., non-CF features) as well as the CF features used to predict users’ decisions. Among many

approaches for calculating the importance of a feature, one recent family of approaches that have

proven to be effective in terms of interpretability are those based on the concept of the Shapley value

from game theory. The link between feature importance and cooperative games was originally noted

by Lundberg and Lee (2017). Loosely, we can view the different features in a prediction task as

cooperating to collect reward in the form of predictive accuracy – the game-theoretic question then

is how to divide this reward in a “fair” manner, and the Shapley value is the unique solution that

satisfies a set of reasonable preconditions for a fair division. Since calculating exact Shapley values

is computationally intractable for even moderate-sized data, the body of work that has followed

has focused on producing tractable approximations. The dominant approach for tree ensembles,

such as our random forest model, is the TreeSHAP algorithm (Lundberg et al. 2020), which we use

here.

SHAP importance scores can be calculated for each attribute, on each pair of users, for each of

our six decisions that we predict (i.e., open, send, and accept decisions for male and female users).

Broadly speaking, the SHAP score approximates the direction and magnitude of each attribute’s

effect on the overall prediction for that pair of users. To summarize the overall importance of each

attribute, we average the magnitudes of the SHAP scores for each attribute across all pairs of users

and all decisions for a random selection of ten thousand pairs of users. The results are reported in

Figure B.4.

Our analysis shows that the CF features have the highest average SHAP importance scores,

about 2.7 greater than all other attributes combined. This result reiterates the importance of

leveraging multiple types of interaction data among users, which has been largely ignored in prior

literature on online dating.

For individual user attributes, as Figure B.4 shows, users’ attractiveness has the highest average

SHAP score among all user attributes, by a wide margin (6.7 times greater than the next highest

user attribute). This attribute represents a user’s popularity as perceived by other users (of the

opposite gender). Obviously, this is an important attribute to predict other users’ interest in a

focal user. What is interesting is that it dominates all other attributes by large margins. This

means that how other users view a user is a determining factor in predicting users’ decisions – even

more important than the user’s own preferences, captured by filtering/search settings (which is the
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Figure B.4: Summary of Average SHAP Importance Scores Across All Six Decisions

Notes. The horizontal scale is logarithmic, so for example, the highest SHAP score (for the collaborative

filtering features) is 104 times greater than the lowest SHAP score (for the religion attribute). Some

attributes are aggregated: photos combines num. photobooks and num. photos, age includes age difference,

height includes height difference, and religion includes religion match.

fifth most important attribute). Profile completion score is the third most important attribute,

followed by attributes that represent physical attributes such as height, age, photos, and weight.

This result indicates that beyond physical attributes users seek other types of information in order

to find potentially compatible partners. Yet attributes that represent users’ credibility, such as

name verified and Facebook connected, turn out to be relatively less important than the other

attributes we have discussed. Lastly, iPhone, smoking, drinking, blood type, college, and religion

appear to have little influence on users’ decisions.

It is worth noting that, whereas prior empirical studies primarily used physical attributes and

education to make predictions, we find that attractiveness and profile completion score are the

most important user attributes that have the highest average importance scores. Note that weight

in our data indicates only body types, not exact weight or body mass index values. Even if the

platform did collect numeric data about weight, there would be no way to verify whether self-

reported weights were true – in fact, this is precisely why the platform does not ask users to enter

numerical weight information. Dishonesty is a pervasive issue on online dating platforms (Anderson

et al. 2020). Similarly, although users can enter the names of their colleges, 43% of users did not
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provide this information. This is why college does not have a high importance score. Finally, we

note that race is not an issue in our data, as most of the population in South Korea is ethnically

homogeneous. Thus, the richness of our data allows us to identify many determinants of same-race

preferences.

To dive deeper into the effect of individual attributes in predicting users’ interactions, we can

analyze the SHAP scores for each of the six decisions (i.e., open, send and accept for male and

female users) separately. Figure B.5 summarizes these SHAP scores for ten thousand randomly-

selected pairs of users for the top ten user attributes (in average magnitude, as defined in the

previous subsection) in each decision. The top ten attributes are ranked in descending order. For

each of the six decisions shown in Figure B.5, the SHAP score of each attribute is plotted as a

single point on the horizontal axis. The horizontal location of each point indicates whether the

SHAP score is associated with a higher or lower prediction; specifically, a positive score means the

attribute is pushing the prediction to 1, whereas a negative score means the attribute is pushing

the prediction to 0. The figure also shows attribute values by color: red means that the value is

high, and blue means that it is low.

Our first observation regarding Figure B.5 is that the attractiveness of the opposite gender is

the most important attribute that determines users’ choices across all six decisions. In all three

decisions of male users (the left column in Figure B.5), the attractiveness of female users is the

most important user attribute overall, and we can observe that higher attractiveness (red) tends to

yield higher predicted probabilities of all three decisions, as expected. The same effect is observed

in all three decisions of female users (the right column in Figure B.5), where the attractiveness of

male users is the most important user attribute, with higher attractiveness (red) leading to higher

predicted probabilities.

Below the attractiveness of the opposite gender, three attributes appear in the top ten user

attributes of all six decisions in Figure B.5: users’ own attractiveness, users’ own completion scores,

and age difference. However, the importance ranks and their impacts on predicted probabilities are

often different across gender and different types of interaction decisions. For example, we observe

in male users’ decisions to open and send (top two subfigures in the left column of Figure B.5) that

“attractiveness male” predominantly shows red data points in positive SHAP scores, whereas in

male users’ decisions to accept (bottom subfigure in the left column of Figure B.5), “attractiveness

male” shows plenty of both red and blue data points in positive SHAP scores. This means that male

users with higher attractiveness scores tend to have higher probabilities of opening and sending,

but they do not necessarily have higher probabilities or accepting.

This result indicates that more attractive male users tend to be more active in showing interest
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Figure B.5: (Color in PDF File) Individual SHAP Importance Scores of the Top 10 User Attributes
for Each of the Six Decisions

Notes. All individual attributes in Appendix B.1 are used separately for male and female users. In

addition, three composite attributes (i.e., height difference, age difference, and religion match) are used.

The filtering/search attribute is further dis-aggregated into specific criteria for age, drinking, height, etc.,

but none of these criteria are of top importance.
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to female users, but they can be more selective in accepting messages from female users. The same

pattern is not observed for female users: female users’ own attractiveness is ranked much lower

(9th) in their decisions to open than their decisions to send or accept (2nd), and female users with

higher attractiveness scores tend to have lower probabilities of sending or accepting (i.e., in female

decisions to send or accept in Figure B.5, blue dots are predominant in positive SHAP scores).

This suggests that female users with higher attractiveness scores tend to be more reluctant to send

messages and accept incoming messages. In almost all decisions (with the exception of female users’

opening decisions), users with higher profile completion scores tend to have higher probabilities of

opening, sending and accepting, indicating that they are more eager to interact with others. We

also observe that male users prefer to interact with younger female users, while the impact of age

difference on female users’ decisions is not unambiguous.

In contrast with the attributes we have discussed so far, there are a few user attributes that

are influential only in male users’ decisions. The number of male users’ photobooks is one of the

top ten user attributes of all three decisions made by male users. In addition, various attributes

(e.g., name verified, smoking, and iPhone) that characterize male users play important roles in

predicting their own decisions. The effect of the number of photobooks and the verification of real

names is similar to that of profile completion scores, as higher values in these attributes imply

that male users are making efforts to provide more information about themselves. Female users’

physical attributes, such as weight and height, also appear in the top ten attributes of some, but

not all, male decisions. Female users’ profile completion scores are important only in male users’

decisions to send. This seems explicable, as male users who can see female users’ detailed profile

information might be more likely to send messages.

There are also a few distinct attributes that are implicated only in female users’ decisions.

Three user attributes, namely, height of male users, height difference, and profile completion score,

are in the top ten user attributes for all three decisions of female users. This is in contrast to the

earlier observation that female users’ physical attributes and profile completion scores are in the

top ten attributes for some decisions of male users, but not all three. As for the impact of height,

we observe that taller male users are, on average, more appealing to female users. Interestingly, the

amount of information male users provide can be a double-edged sword: higher profile completion

scores of male users tend to increase the probability that female users will open their cards but

decrease the probability that female users will send them messages. The latter observation is the

opposite of the observation that in male decisions, higher profile completion scores of female users

tend to increase the probability that male users will send them messages. Finally, compared to

male users’ own attributes, female users’ own attributes seem less important: for example, for male
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users’ accept decisions, seven out of the top ten attributes are related to their own attributes,

whereas for female users’ accept decisions, only four out of the top ten attributes are related to

their own attributes. Lastly, we note that our machine-learning model focuses on prediction rather

than on testing causal hypotheses. In our discussion of directions (not magnitude) above, SHAP

values represent correlation rather than causality, which is better identified by experimental designs

or similar approaches.

B.9 Extension: Match-Maximizing without Double Counting

In the platform’s match-maximizing objective, there are small chances that the same pairs of men

and women are recommended to each other, and send messages to each other. This causes double

counting in the objective function. In order to eliminate this, we revise the match-maximizing

platform’s problem as follows:

max
xh,xl

Nmn(xhp
m
h ahm + xlp

m
l alm) +Nhnphmamh +N lnplmaml − n2xhp

m
h phm − n2xlp

m
l plm

xh + xl = 1

0 ≤ xh, xl ≤ 1,

(M-Ext)

where fourth (n2xhp
m
h phm) and fifth (n2xlp

m
l plm) terms represent the expected number of matches

that result from the same high-tier woman-man and low-tier woman-man pairs messaging each

other in the second stage of the game, respectively.

We note that the last two terms of the objective function in (M-Ext) due to double counting

are negligibly small compared to the other terms in the objective function. This is due to the

fact that the number of users on the platform, Nm, is significantly higher than the number of

recommendations each user receives, n. We can illustrate this with a numerical example. For

Nm = 50, 000, n = 2, α = 0.4, β = 0.2, q = 0.2, xh = 0.4, and xl = 0.6, we obtain pmh = 0.21,

pml = 0.14, phm = 0.11, plm = 0.13, ahm = 0.44, alm = 0.48, amh = 0.62, and aml = 0.55. As a result,

the expected number of matches between men and women is 3901, and the expected number of

double-counted matches is 0.4, which is 0.01% of the objective function value.

The following corollary provides a revised condition given in Proposition 2.2, under which the

match-maximizing platform is biased against popular or unpopular users.

Corollary B.1. The match-maximizing platform is biased against low-tier women when Nmn(h1+

8)
(
h2(1− αq)− h3

)
− 4Nmnβ(h22 − h23) + 4n2(h3p

l
m − h2p

h
m)(h1 + 8) > 0, against high-tier women

when Nmn(h1 + 8)
(
h2(1 − αq) − h3

)
− 4Nmnβ(h22 − h23) + 4n2(h3p

l
m − h2p

h
m)(h1 + 8) < 0, and is
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unbiased when Nmn(h1 +8)
(
h2(1−αq)− h3

)
− 4Nmnβ(h22− h23) + 4n2(h3p

l
m− h2p

h
m)(h1 +8) = 0,

where h1, h2, and h3 are defined in Lemma 2.3.

Proof of Corollary B.1. Formulating the Lagrangian of the match-maximizing platform’s opti-

mization problem (M) gives L(xh, xl, λ) = Nmnxhp
m
h ahm+Nmnxlp

m
l alm−n2xhp

m
h phm−n2xlp

m
l plm+

λ(1− xh − xl). We derive the first-order conditions:

∂L
∂xh

= Nmnpmh ahm +Nmnxh
∂pmh
∂xh

ahm +Nmnxhp
m
h

∂ahm
∂xh

− n2pmh phm − n2xh
∂pmh
∂xh

phm − λ = 0,

∂L
∂xl

= Nmnpml alm +Nmnxl
∂pml
∂xl

alm +Nmnxlp
m
l

∂alm
∂xl
− n2pml plm − n2xl

∂pml
∂xl

plm − λ = 0, and

∂L
∂λ

= 1− xh − xl = 0,

where
∂pmh
∂xh

= − h1h2
(h1xh + 4)2

,
∂pml
∂xl

= − h1h3
(h1xl + 4)2

,
∂ahm
∂xh

= − 4βh2
(h1xh + 4)2

, and
∂alm
∂xl

= − 4βh3
(h1xl + 4)2

for h1 = 2(2q+1)β, h2 = (2q+1)(1−αq)−4r, and h3 = 1−4r. Rewriting the first-order conditions

gives

∂L
∂xh

=
Nmnh2(1− αq)

2(h1xh + 4)
−

Nmn
(
2βh22 + (1− αq)h1h2

)
xh

2(h1xh + 4)2
+

Nmn
(
βh1h

2
2x

2
h − 4βh22xh

)
(h1xh + 4)3

− n2h2p
h
m

h1xh + 4
+

n2xhh1h2p
h
m

(h1xh + 4)2
− λ = 0,

∂L
∂xl

=
Nmnh3

2(h1xl + 4)
− Nmn(2βh23 + h1h3)xl

2(h1xl + 4)2
+

Nmn
(
βh1h

2
3x

2
l − 4βh23xl

)
(h1xl + 4)3

− n2h3p
l
m

h1xh + 4
+

n2xlh1h3p
l
m

(h1xh + 4)2
− λ = 0, and

∂L
∂λ

= 1− xh − xl = 0.

At xh = x∗h and xl = x∗l , we have ∂L/xh = ∂L/xl, which can be written as:

Nmnh2(1− αq)

2(h1x∗
h + 4)

−
Nmn

(
2βh2

2 + (1− αq)h1h2

)
x∗
h

2(h1x∗
h + 4)2

+
Nmn

(
βh1h

2
2x

∗
h
2 − 4βh2

2x
∗
h

)
(h1x∗

h + 4)3
− n2h2p

h
m

h1xh + 4
+

n2xhh1h2p
h
m

(h1xh + 4)2

=
Nmnh3

2(h1x∗
l + 4)

− Nmn(2βh2
3 + h1h3)x

∗
l

2(h1x∗
l + 4)2

+
Nmn

(
βh1h

2
3x

∗
l
2 − 4βh2

3x
∗
l

)
(h1x∗

l + 4)3
− n2h3p

l
m

h1xh + 4
+

n2xlh1h3p
l
m

(h1xh + 4)2
. (B.5)

To derive the condition under which the match-maximizing platform is unbiased, we examine the

first order conditions of the match-maximizing platform’s problem under which ∂L/∂xh = ∂L/∂xl
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for x∗h = x∗l = 1/2. Substituting x∗h = x∗l = 1/2 into (B.5), we obtain

Nmnh2(1− αq)

2(h1/2 + 4)
−

Nmn
(
2βh2

2 + (1− αq)h1h2

)
/2

2(h1/2 + 4)2
+

Nmn
(
βh1h

2
2/4− 2βh2

2

)
(h1/2 + 4)3

− n2h2p
h
m

h1/2 + 4
+

n2h1h2p
h
m/2

(h1/2 + 4)2

=
Nmnh3

2(h1/2 + 4)
− Nmn(2βh2

3 + h1h3)/2

2(h1/2 + 4)2
+

Nmn
(
βh1h

2
3/4− 2βh2

3

)
(h1/2 + 4)3

− n2h3p
l
m

h1/2 + 4
+

n2h1h3p
l
m/2

(h1/2 + 4)2
. (B.6)

Simplifying (B.6), we obtain Nmn(h1 + 8)
(
h2(1 − αq) − h3

)
− 4Nmnβ(h22 − h23) + 4n2(h3p

l
m −

h2p
h
m)(h1 + 8) = 0.

Suppose the left-hand side of (B.6) is greater than the right-hand side at xh = xl = 1/2, i.e.,

Nmn(h1 + 8)
(
h2(1− αq)− h3

)
− 4Nmnβ(h22 − h23) + 4n2(h3p

l
m − h2p

h
m)(h1 + 8) > 0. In this case,

we want to show that x∗h > 1/2 and x∗l < 1/2. To this end, we first show that ∂2L/∂x2h < 0 for all

xh in the following:

∂2L
∂x2

h

= −Nmnh1h2(1− αq)

2(h1xh + 4)2
−

Nmn
(
2βh2

2 + (1− αq)h1h2

)
2(h1xh + 4)2

+
Nmn(2βh2

2 + (1− αq)h1h2)h1xh

(h1xh + 4)3

+
Nmn

(
2βh1h

2
2xh − 4βh2

2

)
(h1xh + 4)3

−
3Nmn

(
βh2

1h
2
2x

2
h + 4βh1h

2
2xh

)
(h1xh + 4)4

+
2n2h1h2p

h
m

(h1xh + 4)2
− 2n2xhh

2
1h2p

h
m

(h1xh + 4)3

= −8Nmnh2(h1(1− αq) + 2βh2)

(h1xh + 4)3
+

2n2h1h2p
h
m(h1xh + 4)(1− xhh1)

(h1xh + 4)3
< 0,

where the first term is negative because αq < 1, β > 0, h1 > 0, h2 > 0, and the second term can be

negative or positive depending on whether xhh1 > 1 or xhh1 < 1. However, the overall expression

is negative because Nm >> n; therefore, the magnitude of the first term is greater than the second

term. Similarly, ∂2L/∂x2l = −16Nmh3(h1+4βh3)/(h1xl+4)3+2n2h1h3p
l
m(1−xlh1)/(h1xh+4)3 < 0.

The discriminant D = (∂2L/∂x2h)(∂2L/∂x2l )− (∂L/∂xhxl)2 > 0 because ∂2L/∂x2h < 0, ∂2L/∂x2l <

0, and ∂L/∂xhxl = 0. Since L is strictly concave in xh and xl and D > 0, there is a unique

optimal solution (x∗h, x
∗
l ) (where x∗h + x∗l = 1) that satisfies ∂L/∂xh = ∂L/∂xl = 0. Equivalently,

at this optimal solution, the left-hand side of (B.5) is equal to the right-hand side of (B.5) that

is equal to λ. Let us denote the left-hand side of equation (B.5) with f(x∗h) and the right-hand

side with g(x∗l ). We claim that if f(xh) − g(xl) > 0, i.e., Nmn(h1 + 8)
(
h2(1 − αq) − h3

)
−

4Nmnβ(h22 − h23) + 4n2(h3p
l
m − h2p

h
m)(h1 + 8) > 0 at xh = xl = 1/2, then it must be that

f(xh) > f(x∗h) = g(x∗l ) = λ > g(xl). Suppose this does not hold. Then, it must be that either

λ > f(xh) > g(xl) or f(xh) > g(xl) > λ for xh + xl = 1. If λ > f(xh) > g(xl) for xh + xl = 1,

then the optimal x∗h > xh and x∗l > xl because ∂2f/∂x2h < 0 and ∂2g/∂x2l < 0. However,

x∗h + x∗l > xh + xl = 1, which contradicts x∗h + x∗l = 1. Similarly, if f(xh) > g(xl) > λ for

xh + xl = 1, then both x∗h < xh and x∗l < xl. This contradicts x∗h + x∗l = 1 because x∗h + x∗l <

xh+xl = 1. Therefore, we conclude that f(xh) > λ > g(xl) if f(xh)−g(xl) > 0. This implies that if
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Nmn(h1+8)
(
h2(1−αq)−h3

)
−4Nmnβ(h22−h23)+4n2(h3p

l
m−h2p

h
m)(h1+8) > 0 at xh = xl = 1/2,

f(1/2) > λ > g(1/2). Since ∂2f/∂x2h < 0 and ∂2g/∂x2l < 0, f(x∗h) = g(x∗l ) = λ where x∗h > 1/2

and x∗l < 1/2.

Similarly, if Nmn(h1+8)
(
h2(1−αq)−h3

)
− 4Nmnβ(h22−h23)+4n2(h3p

l
m−h2p

h
m)(h1+8) < 0,

then x∗h < 1/2 and x∗l > 1/2.

The insights derived from Proposition 2.2 remain the same with the change in the objective

function. We can see this by comparing the condition presented in Proposition 2.2 with the con-

dition derived in Corollary B.1. The first two terms of the condition derived in Corollary B.1 are

the same as in Proposition 2.2 multiplied by Nmn. The third term comes from the double-counted

matches. Given that Nmn >> n2 because Nm >> n, the first two terms determine the sign of the

condition in Corollary B.1.
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Hitsch, G. J., Hortaçsu, A. and Ariely, D. (2010a), ‘What makes you click?—mate preferences in

online dating’, Quantitative marketing and Economics 8, 393–427.
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Sandıkçı, B., Maillart, L. M., Schaefer, A. J., Alagoz, O. and Roberts, M. S. (2008), ‘Estimating

the patient’s price of privacy in liver transplantation’, Operations Research 56(6), 1393–1410.
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