
On Combinatorial and Stochastic Optimization

Rudy Zhou

April 11, 2023

Abstract

In this dissertation, we study four problems in combinatorial and stochastic optimization. The
first two chapters give improved approximation algorithms for classic combinatorial optimization
problems. The final two chapters consider combinatorial optimization under stochastic uncertainty.
For these problems, we give improved approximations as well as characterize the power of adaptivity.

In the first chapter, we consider generalizations of the k-median problem. In these problems,
the goal is to open facilities to serve clients (subject to some constraints) to minimize the total
connection cost of each served client to its nearest open facility. We improve the best-known approx-
imations for k-median with outliers and knapsack median to 6.994 + ϵ and 6.387 + ϵ, respectively.

In the second chapter, we consider online throughput maximization. In this problem, jobs arrive
online with sizes and deadlines, and the goal is to schedule jobs preemptively on m machines to
maximize the number of jobs completed by their deadline. We give the first deterministic O(1)-
competitive algorithm for this problem for any number of machines m > 1. This concludes a
20-year line of research since the m = 1 case was settled.

In the third chapter, we consider load balancing with stochastic jobs. In this problem, the goal is to
assign each job to a machine, which increases the load of the machine by a random size with known
distribution, to minimize the expected max load over all machines. First, we give non-adaptive
offline and online algorithms that are O(logm

log logm)-approximate and O(logm)-approximate, respec-
tively, in the most general unrelated machines setting. Both of these algorithms are asymptotically
tight for non-adaptive algorithms. In fact, these results hold for much more general stochastic
resource allocation problems. Finally, we show how to leverage adaptivity in the special case of
related machines load balancing to improve the above approximations.

In the fourth chapter, we consider minimizing the total completion time of stochastic jobs on m
identical machines. In this problem, the goal is to schedule the jobs to minimize the expected
total completion time of all jobs. We give a Õ(

√
m)-approximation for the special case of Bernoulli

jobs. This is the first approximation for this problem that is both independent of the job-size
distributions and sublinear in the number of machines m, even for more restrictive special cases.

Contents

1 Introduction 1

1.1 Clustering . 2

1.2 Scheduling . 4

1.2.1 Online Scheduling . 5

1.2.2 Stochastic Scheduling . 6

2 Generalized k-Median Problems 11

2.1 Introduction . 11

2.1.1 Technical Overview . 12

2.2 Auxiliary LP for Iterative Rounding . 14

2.2.1 Defining F -balls . 14

2.2.2 Constructing LPiter . 15

2.2.3 Properties of LPiter . 16

2.3 Basic Iterative Rounding Phase . 17

2.3.1 The Algorithm . 17

2.3.2 Sketch of Analysis . 17

2.4 Iterative Operation for Structured Extreme Points 19

2.4.1 Chain Decomposition . 19

2.4.2 Iterative Operation for Chain Decompositions 19

2.4.3 Sketch of Analysis . 20

2.5 Pseudo-Approximation Algorithm for GKM . 21

2.5.1 Analysis of PseudoApproximation . 21

2.5.2 Putting it all Together: Pseudo-Approximation for GKM 25

2.6 From Pseudo-Approximation to Approximation . 25

2.6.1 Overview . 26

2.6.2 Approximation Algorithm for Knapsack Median 26

2.6.3 Approximation Algorithm for k-Median with Outliers 30

1

2.7 Post-Processing for k-Median with Outliers . 32

2.7.1 Computing Partial Solutions . 32

2.7.2 Recursive Post-Processing Algorithm . 34

2.7.3 Analysis of OutliersPostProcess . 35

2.7.4 Proof of Theorem 2.7.1 . 36

2.8 Chain Decompositions of Extreme Points . 41

2.8.1 Proof of Theorem 2.8.1 . 42

2.9 Conclusion . 43

3 Online Throughput Maximization 45

3.1 Introduction . 45

3.1.1 Scheduling Policies . 45

3.1.2 Algorithms and Technical Overview . 46

3.2 Structure of Optimal Schedule . 48

3.3 SRPT is Competitive with Non-Viable Jobs . 50

3.4 SRPT and MLax are Competitive with Viable Jobs 52

3.4.1 Proof of Lemma 3.4.2 . 53

3.4.2 Proof of Lemma 3.4.3 . 55

3.5 Putting it all together . 56

3.6 Conclusion . 57

4 Stochastic Load Balancing 58

4.1 Introduction . 58

4.1.1 Technical Overview . 60

4.2 Configuration Balancing with Stochastic Requests 61

4.2.1 Structure theorem . 61

4.2.2 Offline Setting . 65

4.2.3 Online Setting . 66

4.3 Unrelated Load Balancing and Virtual Circuit Routing 69

4.3.1 Unrelated Load Balancing with Stochastic Jobs 69

4.3.2 Routing with Stochastic Demands . 70

4.4 Load Balancing on Related Machines . 73

4.4.1 Machine Smoothing . 73

4.4.2 Offline Setting . 74

4.4.3 Online Load Balancing on Related Machines 76

2

4.5 Clairvoyance Gap for Load Balancing on Related Machines 77

5 Stochastic Completion Time Minimization 80

5.1 Introduction . 80

5.1.1 Technical Overview . 80

5.1.2 Comparison to prior work . 83

5.2 Subset Selection . 83

5.3 Batch Free Time Minimization . 85

5.3.1 Free Time Basics . 85

5.3.2 Final Algorithm . 86

5.4 Analysis of the StochFree Algorithm . 87

5.4.1 Weighted free time . 88

5.4.2 Warm up: Õ(m)-approximation . 90

5.4.3 Bounding the unclogged machines . 90

5.4.4 Bounding small-in-the-past jobs . 93

5.4.5 Bounding big-in-the-past jobs . 94

5.4.6 Coin Game . 95

5.4.7 Putting it all together . 99

5.5 Conclusion . 100

6 Conclusion 102

Bibliography 104

A Appendix for Generalized k-Median Problems 109

A.1 Missing Proofs from § 2.2: Construction of LPiter . 109

A.2 Missing Proofs from § 2.6 . 110

A.3 Missing Proofs from Analysis of OutliersPostProcess 112

A.4 Proof of Theorem 2.6.11: k-Median with Outliers Pre-Processing 114

A.4.1 Preliminaries . 114

A.4.2 Sparsification . 115

A.4.3 Putting it all Together: Proving Theorem 2.6.11 115

B Appendix for Stochastic Load Balancing 119

B.1 Maximal Inequalities . 119

B.2 Machine smoothing analysis . 121

3

C Appendix for Stochastic Completion Time Minimization 123

C.1 Sensitivity of number of machines . 123

C.2 Exchange Argument . 124

C.3 Justification for Assumption 5.3.2 . 126

C.4 Concentration arguments . 128

Chapter 1

Introduction

Personally, the goal of this dissertation is to document some of the problems in combinatorial
optimization that captured my imagination during my PhD. I was drawn to these problems because
they are deceptively simple We are given some elementary objects to play with: items with sizes,
users with preferences, or tasks to do. We are also given a goal: pack all of the items in the smallest
space possible, find the allocation of goods that makes the users the most happy, or schedule all
tasks to optimize some quality-of-service metric. The underlying objects are so simple that it seems
at first that there is no further mathematical structure other than what is given. However, when
one explores further, one realizes that the interaction between the objects and the goal creates a
rich underlying structure. For me, this is where the beauty of this area lies.

More technically, in a combinatorial optimization problem, the goal is to make decisions involving
discrete objects to optimize an objective function. In this dissertation, we design algorithms for
two fundamental classes of problems: clustering and scheduling. In the former, we are given a
discrete collection of data points, we wish to summarize the data by partitioning the data points
into clusters. We can measure the quality of the clustering via an objective function. In the latter,
we are given a collection of jobs and machines, and we wish to schedule jobs on machines, top
optimize some objective capturing the quality of a schedule. These problems have been central to
developing our theoretical toolkit and understanding of combinatorial optimization.

It is of interest to develop algorithms for such problems that provide good-quality solutions in terms
of objective value with small runtime. However, a common theme is that for many problems (for
both complexity- and information-theoretic reasons), we cannot hope for the best-of-both worlds: a
algorithm that runs quickly (e.g. in polynomial time) and also outputs an optimal solution. There
are multiple ways to deal with this roadblock, but the one we focus on in this dissertation is by
relaxing the latter condition. Thus, we no longer require an optimal solution, but rather a solution
whose objective value is provably comparable to the optimal. In particular, we are interested in
algorithms with bounded approximation ratio, which is the maximum over all instances between
the objective value of the algorithm and the optimal solution on that instance. This brings us to the
subarea of approximation algorithms for combinatorial optimization problems. For an introduction
to this area, see [WS11].

Approximations algorithms have been a great success. Studying problems through the lens of ap-
proximation algorithms gives us a more fine-grained understanding of the structure and difficulty
of combinatorial optimization problems through improved approximation algorithms and inapprox-
imability results. Along the way, the community has developed a broad algorithmic toolkit that

1

has shaped the way we design algorithms today through techniques such as convex relaxations and
randomization.

One goal of this dissertation is to develop new algorithmic techniques leading to improved ap-
proximation algorithms for fundamental clustering and scheduling problems. A parallel goal is to
understand how much information do we really need to solve these problems. For concreteness,
what if we do not have complete information about the jobs in a scheduling problem? What if
the jobs arrive over time in a real-time system? What if we are uncertain of how long each job
will take and only have access to a stochastic prediction? This leads to the neighboring areas of
online algorithms and stochastic optimization. In an online algorithm, the elementary objects of
our combinatorial optimization problem are not known up-front but rather arrive sequentially (e.g.
over time), and our algorithm must construct a solution incrementally as these objects arrive. In
stochastic optimization, some features of the elementary objects are unknown (e.g. the duration of
each job in a scheduling problem), and our algorithm must construct a solution given only stochastic
information about these features (e.g. the distribution of each job duration.) These simple modi-
fications can completely change the character of a problem. As a result, both of these areas have
developed their own unique toolkits and problems with a vibrant interplay among classical approx-
imation, online algorithms, and stochastic optimization. For an introduction to online algorithms,
see [Alb03, PST04]. See [KRT00, DGV08] for foundational papers in stochastic optimization.

Next, we will introduce the areas of clustering and scheduling in more detail, define the particular
problems that we study, and state our results.

1.1 Clustering

Clustering is a fundamental problem in combinatorial optimization, where we wish to partition
a set of data points into clusters such that points within the same cluster are more similar than
points across different clusters. There are three main ingredients in a clustering problem: a notion
of similarity among points, an objective function to measure the quality of the clustering, and
constraints to capture other desirable properties of the clustering.

We focus on metric clustering. where the similarity is defined by a distance metric – for every pair
of points, we are given a number representing the distance between those two points. The smaller
this number is, the more similar the points are. We can define a clustering of these points into, say
k clusters, by specifying k candidate points as cluster centers. Then each data point is assigned to
its closest cluster center.

Within metric clustering, there are many possible objectives to consider such as the k-center (min-
imizing the maximum distance from every data point to its cluster center), k-median (minimizing
the sum of distances from every data point to its cluster center), and k-means objectives (min-
imizing the sum of squared distances). Like the names suggest, we have the constraint that we
can choose at most k cluster centers to capture the idea that we would like to summarize the data
points with few clusters.

In Chapter 2, we study generalizations of the k-median problem. In this problem, we are given
a set F of facilities, a set C of clients, a metric d on F ∪ C, and a parameter k ∈ N. The goal
is to choose a set S ⊂ F of k facilities to open to minimize the sum of connection costs of each
client to its closest open facility. That is, to minimize the objective

∑
j∈C d(j, S), where we define

d(j, S) = mini∈S d(i, j).

The k-median problem is well-studied from the perspective of approximation algorithms, and many

2

new algorithmic techniques have been discovered while studying it. Examples include linear pro-
gram rounding [BPR+17, LS16], primal-dual algorithms [JV01], local search [AGK+04], and large
data techniques [LG18, MKC+15, GLZ17, GMM+03, IQM+20]. Currently, the best approximation
ratio for k-median is 2.671 [CGLS23], and there is a lower bound of 1 + 2/e assuming P ̸= NP
[JMS02].

We are interested in generalizations that impose more complex constraints on the open facilities
and served clients [CKMN01, KKN+15]. One such generalization is the knapsack median problem.
In knapsack median, each facility has a non-negative weight, and we are given budget B ≥ 0. The
goal is to choose a set of open facilities of total weight at most B (instead of having cardinality
at most k) to minimize the same objective function. That is, the open facilities must satisfy
a knapsack constraint. Another commonly-studied generalization is k-median with outliers, also
known as robust k-median. Here we open k facilities S, as in basic k-median, but we no longer have
to serve all the clients; now, we are only required to serve at least m clients C ′ ⊂ C of our choice.
Formally, the objective function is now

∑
j∈C′ d(j, S).

Knapsack median and k-median with outliers are much more difficult than the k-median problem.
Algorithmic techniques that have been successful in approximating k-median often lead to only a
pseudo-approximation for these generalizations—that is, they violate the knapsack constraint or
serve fewer than m clients [BPR+18, CKMN01, FKRS19, IQM+20]. Obtaining “true” approxima-
tion algorithms requires new ideas beyond those of k-median. The best approximation ratio for
both problems is 7.081+ ϵ due to the beautiful iterative rounding framework of Krishnaswamy, Li,
and Sandeep [KLS18]. The first and only other true approximation for k-median with outliers is a
local search algorithm due to Ke Chen [Che08].

Our Results

Our main result is improved approximation algorithms for knapsack median and k-median with
outliers. We obtain both results by considering a more general problem, which we call generalized
k-median (GKM). As in k-median, our goal is to open facilities to minimize the connection costs
of served clients. In GKM, the open facilities must satisfy r1 given knapsack constraints, and the
served clients must satisfy r2 given coverage constraints. We define r = r1 + r2.

For GKM, we show how to round the natural linear program (LP) relaxation to ensure all except
O(r) of the variables are integral, and the objective function is increased by at most a 6.387-factor.
It is not difficult to show that the iterative rounding framework in [KLS18] can be extended to show
a similar result. Indeed, a 7.081-approximation for GKM with at most O(r) fractional facilities is
implicit in their work. The improvement in this work is the smaller loss in the objective value.

Our improvement relies on analyzing the extreme points of certain set-cover-like LPs. These extreme
points arise at the intermediate steps of our iterative rounding, and by leveraging their structural
properties, we obtain our improved pseudo-approximation for GKM. This work reveals some of the
structure of such extreme points, and it shows how this structure can lead to improvements.

Using this “pseudo-approximation” for GKM, we can obtain solutions to knapsack median and
k-median with outliers with O(1) fractional facilities. Thus, the remaining work is to round a
constant number of fractional facilities to obtain an integral solution. To achieve this goal, we
apply known sparsification techniques [KLS18] to pre-process the instance, and then develop new
post-processing algorithms to round the final O(1) fractional facilities.

We show how to round these remaining variables for knapsack median at arbitrarily small loss,
giving a 6.387+ϵ-approximation, improving on the best 7.081+ϵ-approximation. For k-median with

3

outliers, a more sophisticated post-processing is needed to round the O(1) fractional facilities. This
procedure loses more in the approximation ratio. In the end, we obtain a 6.994+ ϵ-approximation,
modestly improving on the best known 7.081 + ϵ-approximation.

See Chapter 2 for more details. This is joint work with Anupam Gupta and Benjamin Moseley,
appearing in the conference International Colloquium on Automata, Languages [GMZ21], and Pro-
gramming (ICALP) 2021 and in submission to the journal Mathematics of Operations Research.

1.2 Scheduling

In a scheduling problem, we are given a collection of jobs and machines, and our goal is to produce
a schedule (what job to assign to each machine and at what time) whose quality is measured by
an objective function. Minimally, each job has some processing requirement (or size), but there is
a vast landscape of scheduling problems, where the properties of the jobs, machines, and objective
differ.

We begin with perhaps the most basic scheduling problem: load balancing. We are givenm identical
machines and n jobs. Each job j has size xj such that assigning job j to a machine increases that
machine’s load by xj . The goal is to assign each job to some machine to minimize the load of the
most-loaded machine (the makespan).

From here, we can obtain new problems by generalizing the machine environment. For example,
in related machines, each machine i has a speed si such that assigning job j to machine i increases
machine i’s load by

xj

si
(i.e. running a job on a machine that is twice as fast takes half as long).

More generally, in unrelated machines, assigning job j to machine i increases machine i’s load by
a machine-dependent size xij .

Another dimension we can vary is the objective function. Going back to identical machines, we
can consider minimizing the total completion time rather than the makespan. Each job j still has
size xj (the same on any machine). However, now we consider the time aspect of the schedule
rather than just the load incurred by an assignment. On each machine, we schedule a sequence of
jobs (the first job to run on this machine, the second, and so on). Each job in this sequence has
a completion time cj , which is exactly the sum of all job sizes up to and including this job in the
sequence. The goal is to schedule all jobs to minimize the total completion time

∑
j cj .

Further, we can impose different constraints on the scheduling system. In the above problems, we
had to schedule every job and once we scheduled a job, we committed to running it to completion.
It could be the case that every job j has a release date rj and deadline dj in addition to its size, so
the job is only available to be scheduled in the time interval [rj , dj], but our scheduler additionally
has the ability to preempt (pause a job to run another) and migrate (resume a job later on a
different machine). With these constraints, it may not be possible to complete every job, so we can
consider the objective of maximizing the number of completed jobs (the throughput).

From such ingredients, we can construct more and more complicated scheduling problems. However,
in this dissertation we focus on the foundational scheduling problems described above. Instead, the
main dimension we vary is how much information we have about the jobs. We consider settings
where the jobs arrive online or we only have stochastic information about their processing require-
ments. The main question we consider is how much we lose when considering restricted information
in both of these models.

4

1.2.1 Online Scheduling

Instead of having access to all jobs immediately, in online scheduling we initially have no knowledge
of future jobs (not even their existence). Then, either jobs arrive sequentially one-by-one (the list
model), or the jobs arrive over time at their release dates (the over time model). Each job must be
scheduled upon arrival before the next arrives. The key question in online scheduling (and online
algorithms more generally) is how much do we lose in terms of objective value by giving up the
information of all jobs up-front? The typical way to measure this loss is via the competitive ratio,
which – for a particular problem and online algorithm – is the maximum ratio over all instances
of the objective value of the algorithm versus the objective value of the optimal offline algorithm
that knows the entire instance up-front. The ideal goal is to design online algorithms with as small
competitive ratio as possible or show that any online algorithm must have large competitive ratio.

In this dissertation, we consider the online throughput maximization problem. Recall that in
throughput maximization, the goal is to preemptively schedule jobs with sizes, release time, and
deadlines on m identical machines to maximize the number of jobs that complete by their deadline.
In the online version of the problem, the jobs arrive online at their release times at which the
scheduler becomes aware of the job and its size and deadline.

More precisely, let J be a collection of jobs such that each j ∈ J has a release time rj , a processing
time (or size) xj , and a deadline dj . At each moment of time, the scheduler can specify up to m
released jobs to run, and the remaining processing time of the jobs that are run is decreased at a
unit rate. Thus we allow the scheduler to preempt jobs (pause a running job to work on another)
and migrate job (continue working on a job on a different machine later). A job is completed if its
remaining processing time drops to zero by the deadline of that job. The objective is to maximize
the number of completed jobs. We measure the performance of our algorithm by the competitive
ratio, compared to the optimal offline schedule (Opt) that is aware of all jobs in advance.

A key concept is the laxity of a job j, which is ℓj = (dj − rj)− xj , that is, the maximum amount
of time we can not run job j and still possibly complete it.

This problem is well understood for the m = 1 machine case. No O(1)-competitive deterministic
algorithm is possible [BKM+92], but there is a randomized algorithm that is O(1)-competitive
against an oblivious adversary [KP03], and there is a scalable (O(1+ ϵ)-speed O(1/ϵ)-competitive)
deterministic algorithm [KP00]. The scalability result in [KP00] was extended to the case of m > 1
machines in [LMNY13].

Whether an O(1)-competitive algorithm exists for m > 1 machines has been open for twenty years.
Previous results for the multiple machines setting require resource augmentation or assume that
all jobs have high laxity [LMNY13, EMS20].

Our Results

Our main result is an O(1)-competitive deterministic algorithm for online throughput maximization
on m > 1 machines. This is the first constant-competitive algorithm that makes no assumptions
on the jobs and does not require resource augmentation. Further, on a single machine there is
no constant competitive deterministic algorithm, yet a randomized algorithm exists with constant
competitive ratio. Our work shows that once more than one machine is considered, then determin-
ism is sufficient to get a O(1)-competitive online algorithm. We summarize our results and prior
work in Table 1.1.

The main issue issue in removing these assumptions is determining which machine to assign a job

5

Deterministic Randomized
Speed
Augmentation

m = 1 ω(1) O(1) O(1 + ϵ)-speed O(1/ϵ)-competitive
[BKM+92] [KP03] [KP00]

m > 1 O(1) O(1) O(1 + ϵ)-speed O(1/ϵ)-competitive
[Chapter 3] [Chapter 3] [LMNY13]

Table 1.1: Competitiveness Results

to. If an online algorithm could determine which machine each job was assigned to in Opt, we
could obtain an O(1)-competitive algorithm for m > 1 machines by a relatively straight-forward
adaptation of the results from [KP03]. However, if the online algorithm ends up assigning some
jobs to different machines than Opt, then comparing the number of completed jobs is challenging.
Further, if jobs have small laxity, then the algorithm can be severely penalized for small mistakes
in this assignment. One way to view the speed augmentation (or high laxity assumption) analyses
in [LMNY13, EMS20] is that the speed augmentation assumption allows one to avoid having to
address this issue in the analyses.

We overcome this issue by running three different algorithms in parallel, each on a subset of the
machines (using migration if multiple sub-algorithms run the same job). Conceptually, we partition
the optimal schedule in to three types of jobs: jobs with high laxity, jobs with low laxity that are
pre-empted and completed later, and jobs with low laxity that are run to completion with no
pauses. Each of the three sub-algorithms is responsible for one of the types of jobs, so even though
our algorithm operates online and cannot determine in general which class a job belongs to upon
arrival, we ensure that at least one sub-algorithm will make the right decision for this job.

See Chapter 3 for more details. This is a joint work with Benjamin Moseley, Kirk Pruhs, and
Clifford Stein, appearing in the conference Integer Programming and Combinatorial Optimization
(IPCO) 2022 [MPSZ22] and in submission to the journal Mathematical Programming.

1.2.2 Stochastic Scheduling

Another way to restrict our algorithm is to consider a stochastic model of jobs sizes. Instead of
knowing the size of a job exactly, we assume each job size is a random variable drawn from a
known distribution. Initially, the scheduler knows only the job size distributions, but as it begins
scheduling jobs, it can observe the realized size of jobs as they are processed. Thus, the scheduler
can adaptively make scheduling decisions depending on all previously-observed information.

Stochastic scheduling has a long history in operations research and computer science. Earlier works
focused on understanding the performance of simple policies and restricted job size distributions
[WP80, WVW86, GI99]. More recently, there is interest in designing algorithms for these prob-
lems with bounded approximation ratio that work for any job size distributions [KRT00, MSU99,
GKNS21]. Along the way, a complementary question is how adaptive do our algorithms need to
be? In principle, we could design an algorithm that is non-adaptive: it bases its decisions only
on the job size distributions and does not use the realized sizes at all. How much do we lose by
restricting ourselves this way?

As I hope you will see reading this dissertation – answering these questions requires new and
interesting algorithmic techniques. To showcase this, we study perhaps two of the most fundamental

6

scheduling problems: load balancing (or makespan minimization) and minimizing total completion
time. For both problems, we develop a novel techniques, which give us a stronger understanding of
how the optimal adaptive policy behaves and enable us to design improved algorithms that break
through barriers where previous approaches were stuck.

Load Balancing

We consider the following stochastic model of load balancing (on unrelated machines). Instead of
knowing the size of job j on machine i, xij , for every machine i and job j exactly, we assume that
the size of each job is a random variable Xij ∼ Dij with known distribution Dij . Further, the Xij ’s
are independent across jobs j. Our algorithm can assign jobs adaptively: once it decides to assign
job j to machine i, it learns the realized size Xij and can base subsequent assignments on this
information. The goal is to minimize the expected makespan.

If jobs are deterministic, a 2-approximation is known and unless P = NP , the problem is hard to
approximate better than 3

2 [LST90].

We are interested in algorithms for stochastic load balancing that approximate the optimal adaptive
policy. Previous works mainly focus on designing non-adaptive algorithms (a fixed job-to-machine
assignment using only knowledge of the Dij ’s) that approximate the optimal non-adaptive policy.
There are non-adaptive O(1)-approximations known for identical machines [KRT00] and unrelated
machines [GKNS21] in this setting.

In contrast, we are interested in approximating the stronger optimal adaptive policy. The adaptivity
gap (the ratio between the expected makespan of the optimal adaptive and non-adaptive policies)
can be Ω

(logm
log logm

)
even for the simplest case of identical machines [GKNS21]. Thus, previous

work on approximating the optimal non-adaptive policy does not immediately give any non-trivial
approximation guarantees for our setting. The only prior work that gives some guarantees is for
special cases where non-clairvoyant algorithms (those that do not even need to observe the job size
until after it is scheduled) can perform well; in particular, there is a 2-approximation for identical
machines [Gra69] (the size of a job does not depend on the machine) and O(logm)-approximation
for restricted assignment [ANR95] (identical machines, but each job can only be assigned on some
subset of machines).

Further, we consider an additional dimension of uncertainty, namely the knowledge of the job set.
In the offline setting, the set of jobs and the distributions of their sizes are known up-front, and
they can be selected and assigned to the machines irrevocably in any order. In the online setting,
jobs are not known in advance and they are revealed one-by-one (online-list model). The algorithm
learns the job size distributions upon its arrival, and must assign this job without knowledge of
future arrivals. Afterwards the next request arrives.

Our Results

As our first main result, we present non-adaptive algorithms for offline and online stochastic load
balancing. We design non-adaptive algorithms that achieve a O(logm

log logm

)
-approximation offline and

a O(logm)-approximation online, both compared to the optimal offline adaptive policy.

These results are asymptotically tight as shown by the lower bound of Ω
(logm
log logm

)
on the adaptivity

gap [GKNS21] and the lower bound of Ω(logm) on the competitive ratio of any deterministic
online algorithm, even for deterministic requests [ANR95]. In particular, our work implies that the
adaptivity gap for stochastic load balancing is Θ

(logm
log logm

)
.

7

Also, note that in the online setting our algorithm assigns the jobs in fixed order (based on their
arrival order), while the offline benchmark is able to assign the jobs in an adaptively-chosen order.
In the deterministic setting, this distinction makes no difference (the offline benchmark is a fixed
job-to-machine assignment with no notion of order). However, this is non-trivial in the stochastic
setting: What is the advantage of adaptively choosing the order rather than using a fixed order to
assign the jobs? Our result shows that this advantage is bounded by a O(logm)-factor.

In fact, the above results hold for a much more general resource allocation problem, which we
call configuration balancing (also sometimes called generalized load balancing). One special case of
particular interest is stochastic virtual circuit routing (or congestion minimization). Thus, for these
problems we also give asymptotically tight non-adaptive approximations to the optimal adaptive
policy.

To improve on the above results, we need to use adaptivity. We show how to leverage adaptivity in
the special case of stochastic load balancing on related machines. In this case, we have Xij =

Xj

si
,

where Xj is the random size of job j and si is the speed of machine i. We give an adaptive
O(1)-approximation offline and O(log logm)-approximation online for stochastic load balancing on
related machines.

Because there are good non-clairvoyant algorithms for the simple cases of identical machines and
restricted assignment, perhaps the next case to consider is related machines. We give a non-
clairvoyant O(

√
m)-approximation for related machines load balancing, and further this is asymp-

totically tight 1. Thus, using distributional information is necessary to do better than O(
√
m).

All of the above results rely on comparing our non-adaptive policies to a natural assignment LP
formulation for stochastic configuration balancing – the most general problem we consider. The
main technical challenge is showing that the LP solution is a good proxy for the optimal adaptive
policy. We achieve this indirectly by showing that there exists a near-optimal adaptive policy with
certain desirable properties that makes it “more” non-adaptive, and that our LP is a good proxy
for this near-optimal policy.

See Chapter 4 for more details. This is a joint work with Franziska Eberle, Anupam Gupta, Nicole
Megow, and Benjamin Moseley, appearing in the conference Integer Programming and Combina-
torial Optimization (IPCO) 2023 [EGM+22].

Completion Time

The second problem we consider in the stochastic model is minimizing the total completion time.
We go back to the identical machines setting, so each job j has a size Xj ∼ Dj such that the
Xj ’s are independent across jobs. In this problem, the scheduler proceeds over time rather than
constructing a static assignment.

Formally, for each idle machine, an adaptive scheduling policy must choose which job to schedule
next on this machine—or it may choose to idle the machine for some time period. In making
this decision, it is allowed to use any information it has gained from previously-scheduled jobs. In
particular, the policy knows the sizes Xj of all completed jobs j, and if a job j has currently been
run for τ time the policy knows that the jobs size is distributed as (Xj | Xj ≥ τ). Our goal is to
minimize

∑
j E[Cj], the sum of expected completion times Cj of the jobs.

1This is actually my favorite result that I have ever proved; it is very simple but also surprising and asymptotically
optimal! Unfortunately it is relegated to an appendix of the original paper, because it is somewhat tangential. Oh
well. See § 4.5 for details.

8

While the deterministic problem can be solved optimally (using the shortest processing time pol-
icy) [BJS74], the stochastic setting has long been notorious. Early results for stochastic completion
time minimization focused on giving optimal policies only for restricted classes of instances, e.g.,
the case where all job distributions were exponentials, or where the jobs could be stochastically
ordered [WP80, WVW86]. Then, starting with the ground-breaking work of Möhring, Schulz,
and Uetz [MSU99], approximation algorithms were given that worked for all stochastic instances.
However, almost all such algorithms have approximation ratios with at least linear dependence on

the squared coefficient of variation ∆ := maxj
Var(Xj)
(EXj)2

[MSU99, SU05, Sch08, SSU16a, GMUX20].

Since this squared coefficient of variation could be very large in general, we want to obtain approx-
imations which are distribution-independent, and in particular, do not depend on the coefficient of
variation.

The only distribution-independent approximations for stochastic completion time minimization
have approximation ratios at least linear in m [IMP15a, EFMM19]. In fact, nothing better than
an O(m) approximation is known even for instances consisting of only two types of jobs: identical
unit-sized deterministic jobs and identically distributed Bernoulli jobs Xj ∼ s · Ber(p) [EFMM19].
For general job distributions, the best known approximation is O(m poly log n) [IMP15a].

There are significant roadblocks to obtaining such distribution-independent guarantees: the known
algorithmic toolkit for deterministic jobs relies on greedy policies and linear program-based algo-
rithms [HSSW97, PST04, Pin08]. For the former, the natural Shortest Expected Processing Time
(SEPT) policy has an approximation ratio no better than Ω(n1/4) [IMP15a]. Moreover, even for
instances consisting of only two types of jobs—identical unit-sized deterministic jobs and identical
Bernoulli jobs Xj ∼ s · Ber(p), no index policy (which assigns each job an “index” depending only
on its size distribution, and then schedules the jobs in order of their indices) can have bounded ap-
proximation ratio [EFMM19]. Approaches based on linear programming also do not seem to extend
to the stochastic setting: the most expressive time-indexed linear program commonly used for such
settings has an integrality gap of Ω(∆) [SSU16b]. Finally, we know that adaptivity gap—the gap
between the optimal adaptive and fixed-assignment policies2—is Ω(∆) [SSU16b]. Taken together,
these lower bounds rule out most of the tools that work for the setting of deterministic jobs.

Further, there are barriers to obtaining approximations that are sublinear in m: these previous
works use “volume” lower bounds, which rely on the fact that the processing capacity ofmmachines
is m times larger than that of a single machine. Indeed, the objective is extremely sensitive to the
number of machines m: decreasing the number of machines from m to m

2 can change the optimal
adaptive policy’s objective value by an exponential in m factor. (This is in stark contrast to the
deterministic setting, where the optimal solution’s objectives for m and m

2 machines differ by at
most a constant factor.) See Appendix C.1 for proofs of these two claims. This gives a sense for why
lower bounds on the optimal objective value based on the number of machines m do not generalize
well to the stochastic setting, except with a loss of a factor of m.

In summary, the main question we ask is:

Can we break through both the ∆- and m-barriers for the basic problem of completion
time minimization for stochastic jobs?

Despite the difficulty in obtaining improved approximations for this problem, it is possible that the
problem has a constant-factor approximation!

2Such a policy non-adaptively assigns jobs to machines and runs each machines’ jobs in a fixed order.

9

Our Results

In Chapter 5, we consider the case of (non-identical) Bernoulli jobs, i.e., with independent process-
ing times Xj ∼ sj · Ber(pj) for size sj ≥ 0 and probability pj ∈ [0, 1]. Our main result is the first
algorithm that is both distribution-independent and has an approximation ratio sublinear in m.
In particular, we give a Õ(

√
m)-approximation for the special case of Bernoulli jobs. We use the

notation Õ(·) to hide poly log n-factors.

Further, our algorithm is a list schedule, meaning our algorithm produces a list (i.e., an ordering) of
all the jobs, and whenever a machine is free, it schedules the next job according to this ordering. As
in the case for online load balancing, our algorithm considers jobs in a fixed order, while the optimal
adaptive policy can adaptively order the jobs. Thus, again we can bound the advantage of fixed
order versus adaptive order policies by Õ(

√
m) for minimizing the completion time of Bernoulli

jobs.

Bernoulli jobs already are a significant generalization of the setting of [EFMM19], and our re-
sult improves (up to poly log n-factors) the O(m)-approximation of [EFMM19] and the Õ(m)-
approximation of [IMP15a] for this special case of Bernoulli jobs.

See Chapter 5 for more details. This is a joint work with Anupam Gupta and Benjamin Moseley,
appearing in the conference Symposium on Discrete Algorithms (SODA) 2023 [GMZ23].

10

Chapter 2

Generalized k-Median Problems

2.1 Introduction

In this chapter, we develop improved approximations for generalizations of the k-median problem
via iterative LP rounding algorithms. Our main technical insight is to leverage novel structural
properties of the LP solutions at the intermediate steps of our algorithm to refine previous iterative
rounding approaches.

The concrete problem we study is the generalized k-median (GKM) problem. We recall that in this
problem, we have collections F of facilities, C of clients, and a metric d on F ∪ C. The goal is to
choose a subset of facilities to open and subset of clients to serve to minimize the total connection
cost of each served client to their nearest open facility. The open facilities must satisfy r1 knapsack
constraints, and the served clients must satisfy r2 coverage constraints, where we define r = r1+r2.
Specifically, each knapsack constraint specifies a cost to open each facility and a budget. The
total cost of the opened facilities must be at most the budget. Similarly, each coverage constraint
specifies a profit to serve each client and a quota. The total profit of the served clients must be at
least the quota.

Our first result is an improved pseudo-approximation for GKM.

Theorem 2.1.1 (Pseudo-Approximation Algorithm for GKM). There exists an polynomial time
randomized algorithm PseudoApproximation that takes as input an instance I of GKM and
outputs a feasible solution to LP1 with at most O(r) fractional facilities and expected cost at most
6.387 · Opt(I).

Using the above pseudo-approximation, we can obtain improved “true” approximations for two
special cases of particular interest: knapsack median and k-median with outliers.

Theorem 2.1.2 (Approximation Algorithm for Knapsack Median). There exists a polynomial
time randomized algorithm that takes as input an instance I of knapsack median and parameter
ϵ ∈ (0, 1/2) and in time nO(1/ϵ), outputs a feasible solution to I of expected cost at most (6.387 +
ϵ) · Opt(I).

Theorem 2.1.3 (Approximation Algorithm for k-Median with Outliers). There exists a polynomial
time randomized algorithm that takes as input an instance I of k-median with outliers and parameter
ϵ ∈ (0, 1/2) and in time nO(1/ϵ), outputs a feasible solution to I of expected cost at most (6.994 +
ϵ) · Opt(I).

11

2.1.1 Technical Overview

To illustrate our techniques, we first introduce a natural LP relaxations for GKM. The problem
admits an integer program formulation, with variables {xij}i∈F,j∈C and {yi}i∈F , where xij indicates
that client j connects to facility i and yi indicates that facility i is open. Relaxing the integrality
constraints gives the linear program relaxation LP1.

(LP1) : minx,y
∑

i∈F
∑

j∈C d(i, j)xij (LP2) : miny
∑

i∈F
∑

j∈C:i∈Fj
d(i, j) yi∑

i∈F xij ≤ 1 ∀j ∈ C y(Fj) ≤ 1 ∀j ∈ C
xij ≤ yi ∀i ∈ F, j ∈ C
Wy ≤ b Wy ≤ b∑

j∈C aj(
∑

i∈F xij) ≥ c
∑

j∈C ajy(Fj) ≥ c

xij , yi ∈ [0, 1] ∀i ∈ F, j ∈ C yi ∈ [0, 1] ∀i ∈ F

LP1 is the k-median LP with the extra side constraints. The constraint Wy ≤ b corresponds to
the r1 knapsack constraints on the facilities y, where W ∈ Rr1×F

+ and b ∈ Rr1
+ . These r1 packing

constraints can be thought of as a multidimensional knapsack constraint over the facilities, and
ensure that “few” facilities are opened. Next,

∑
j∈C aj(

∑
i xij) ≥ c corresponds to the r2 coverage

constraints on the clients, where aj ∈ Rr2
+ for all j ∈ C and c ∈ Rr2

+ . These coverage constraints
ensure that “enough” clients are served. E.g., having one packing constraint

∑
i∈F yi ≤ k and one

covering constraint
∑

j∈C
∑

i∈F xij ≥ m ensures that at least m clients are covered by at most k
facilities; this is the k-median with outliers problem.

Reducing the variables in the LP

We get LP2 by eliminating the x variables from LP1, thereby reducing the number of constraints.
The idea from [KLS18] is to prescribe a set Fj ⊆ F of permissible facilities for each client j such
that xij is implicitly set to yi1(i ∈ Fj). The details of this reduction and the procedure for creating
Fj are given in Proposition 2.2.1. Using this procedure, LP2 is also a relaxation for GKM. Note
that in LP2, we use the notation y(F ′) =

∑
i∈F ′ yi for F

′ ⊂ F .

Now consider solving LP2 to obtain an optimal extreme point ȳ. There must be |F | linearly inde-
pendent tight constraints at ȳ, and we call these constraints the basis for ȳ. The tight constraints
of interest are the y(Fj) ≤ 1 constraints; in general, there are at most |C| such tight constraints,
and we have little structural understanding of the Fj-sets.

Prior Rounding Framework

Consider the family of Fj-sets corresponding to tight constraints, so F = {Fj | j ∈ C, ȳ(Fj) = 1}.
If F is a family of disjoint sets , then the tight constraints of LP2 form a face of a partition matroid
polytope intersected with at most r side constraints (the knapsack and coverage constraints.) Using
ideas from, e.g., [KLS18, GRSZ14], we can show that ȳ has O(r) fractional variables.

Indeed, the goal of the iterative rounding framework in [KLS18] is to control the set family F to
obtain an optimal extreme point where F is a disjoint family. To achieve this goal, they iteratively
round an auxiliary LP based on LP2, where they have the constraint y(Fj) = 1 for all clients j in
a special set C∗ ⊂ C. Roughly, they regulate what clients are added to C∗ and delete constraints
y(Fj) ≤ 1 for some clients. The idea is that a client j whose constraint is deleted must be close to

12

Fj
Fj′

Fj′′

j’s final
facility

client j client j′

if j′ ∈ C∗

then j cannot
be added

successive deletions
and additions to C∗

Fj and Fj′ share a facility and
intersect

j’s distance to a facility

Fj
Fj′

j’s final
facility

client j client j′

successive deletions
and additions to C∗

j’s shorter distance to a facility

half ball-chasing

quarter ball-chasing

Figure 2.1: Half and quarter ball chasing

some client j′ in C∗. Since y(Fj′) = 1 we can serve j with the facility for j′; the cost is small if j′’s
facility is close to j.

To get intuition, assume each client j can pay the farthest distance to a facility in Fj , and call
this the radius of Fj . (Precisely, clients may not be able to afford this distance, but we use this
assumption to highlight the ideas behind our algorithmic decisions.) For simplicity, assume every
Fj-set is a ball whose radius is a power of two. Over time, this radius shrinks if some y-variables
in Fj are set to zero. Consider applying the following iterative steps until none are applicable, in
which case C∗ corresponds to the tight constraints: (1) delete a constraint for j /∈ C∗ if the radius
of Fj is at least that of some Fj′ for j

′ ∈ C∗ and Fj ∩ Fj′ ̸= ∅. (2) add j /∈ C∗ to C∗ if y(Fj) ≤ 1 is
tight and for every j′ ∈ C∗ such that Fj ∩Fj′ ̸= ∅ it is the case that Fj′ has a radius strictly larger
than Fj . If added then remove all j′ from C∗ where j’s radius is half or less of the radius of j′ and
Fj ∩ Fj′ ̸= ∅.
The performance is bounded by how much a client j with a deleted constraint pays to get to a
facility serving a client in C∗. After removing j’s constraint, the case to worry about is if j’s closest
client j′ ∈ C∗ is later removed from C∗. This happens only if j′′ is added to C∗, with Fj′′ having
half the radius of Fj′ . Thus every time we remove j’s closest client in C∗, we guarantee that j’s
cost only increases geometrically. The approximation ratio is proportional to the total distance
that j must travel and can be directly related to the distance of “ball-chasing” though these Fj

sets. When we remove a client j from C∗ due to j′ ∈ C∗ such that Fj′ ∩ Fj ̸= ∅ and j′ has radius
at most half of j, we call this a half-chasing step. See Figure 2.1.

New Framework via Structured Extreme Points

The target of our framework is to ensure that the radius decreases in the ball-chasing at a faster
rate, in particular one-quarter. This gives closer facilities for clients whose constraints are deleted.
See Figure 2.1. To achieve this quarter-chasing step, we can simply change half to one-quarter in
step (2) above.

Making this change immediately decreases the approximation ratio; however, the challenge is that
F is no longer disjoint. Indeed, it can be the case that j, j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ if their

13

radii differ by only a one half factor. Instead, our quarter ball-chasing algorithm maintains that F
is not disjoint, but has a bipartite intersection graph.

The main technical challenge is obtaining an extreme point with O(r) fractional variables, which
is no longer guaranteed as when F was disjoint. Indeed, if F has bipartite intersection graph, then
the tight constraints form a face of the intersection of two partition matroid polytopes intersected
with at most r side constraints. In general, we cannot upper bound the number of fractional
variables arising in the extreme points of such polytopes. However, such extreme points have a
nice combinatorial structure: the intersection graph can be decomposed into O(r) disjoint paths.
We exploit this “chain decomposition” of extreme points to discover clients j that can be removed
from C∗ even if there is not a j′ ∈ C∗ where Fj′ has one quarter of the radius of Fj . We continue
this procedure until we are left with only O(r) fractional variables.

The main technical contribution of this work is showing how the problem can be reduced to struc-
tural characterization of extreme points corresponding to bipartite matching. This illustrates some
of the structural properties of polytopes defined by k-median-type problems. We hope that this
helps lead to other structural characterizations of these polytopes and ultimately improved algo-
rithms.

Organization

In § 2.2, we introduce the auxiliary LP for GKM that our iterative rounding algorithm operates on.
We note that this is the same LP used in the algorithm of [KLS18]. Then § 2.3–§ 2.5 give the pseudo-
approximation for GKM. In particular, § 2.3 describes the basic iterative rounding phase, where
we iteratively update the auxiliary LP such that F∗ = {Fj | j ∈ C∗} has a bipartite intersection
graph. In § 2.4, we characterize the structure of the resulting extreme points and use it to define
a new iterative operation, which allows us to reduce the number of fractional variables to O(r).
Finally, in § 2.5, we combine the operations from § 2.3 and § 2.4 to obtain our pseduo-approximation
algorithm for GKM.

We then obtain true approximations for knapsack median and k-median with outliers: in § 2.6, we
describe our framework to turn pseudo-approximation algorithms into true approximations for both
problems, and apply it to knapsack median. Then in § 2.7, we consider k-median with outliers.

2.2 Auxiliary LP for Iterative Rounding

In this section, we construct the auxiliary LP, LPiter, that our algorithm will use. We note that
we use the same relaxation used in [KLS18]. Recall the two goals of iterative rounding, outlined
in § 2.1.1; we want to maintain a set of clients C∗ ⊂ C such that {Fj | j ∈ C∗} has bipartite
intersection graph, and C∗ should provide a good set of open facilities for the clients that are not in
C∗. Thus, we want to define LPiter to accommodate moving clients in and out of C∗, while having
the LP faithfully capture how much we think the clients outside of C∗ should pay in connection
costs.

2.2.1 Defining F -balls

Our starting point is LP1. First, we construct LP2 by finding appropriate Fj-sets for each j ∈ C.
We can find such sets by solving LP1 and splitting the y-variables such that xij ∈ {0, yi} for all
clients j and facilities i. The proof of the next proposition is standard; see Appendix A.1 for proof.

14

Proposition 2.2.1. There exists a polynomial time algorithm that given GKM instance I, dupli-
cates facilities and outputs sets Fj ⊆ F for j ∈ C such that Opt(LP2) ≤ Opt(I).

In § 2.1.1, we assumed the radii of the Fj sets were powers of two. To formalize this idea, we
discretize the distances to powers of τ > 1 (up to some random offset.) The choice of τ is to
optimize the final approximation ratio. The main ideas of the algorithm remain the same if we
discretize to powers of, say 2, with no random offset. Our discretization procedure is the following:

Fix some τ > 1 and sample the random offset α ∈ [1, τ) such that loge α is uniformly distributed in
[0, loge τ). Without loss of generality, we may assume that the smallest non-zero inter-point distance
is 1. Then we define the possible discretized distances, L(−2) = −1, L(−1) = 0, . . . , L(ℓ) = ατ ℓ for
all ℓ ∈ N.

For each p, q ∈ F ∪ C, we round d(p, q) up to the next largest discretized distance. Let d′(p, q)
denote the rounded distances. Observe that d(p, q) ≤ d′(p, q) for all p, q ∈ F ∪C. See Appendix A.1
for proof of the following proposition, which we use to bound the cost of discretization.

Proposition 2.2.2. For all p, q ∈ F ∪ C, we have E[d′(p, q)] = τ−1
loge τ

d(p, q)

Now using the discretized distances, we can define the radius level of Fj for all j ∈ C by ℓj =
min
ℓ≥−1
{ℓ | d′(j, i) ≤ L(ℓ) ∀i ∈ Fj}. One should imagine that Fj is a ball of radius L(ℓj) in terms of

the d′-distances. Thus, we will often refer to Fj as the F -ball of client j. Further, to accommodate
“shrinking” the Fj sets, we define the inner ball of Fj by: Bj = {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}. Note
that we defined L(−2) = −1 so that if ℓj = −1, then Bj = ∅.

2.2.2 Constructing LPiter

Our auxiliary LP will maintain three sets of clients: Cpart, Cfull, and C∗. Cpart consists of all
clients, whom we have not yet decided whether we should serve them or not. Then for all clients
in Cfull and C∗, we decide to serve them fully. The difference between the clients in Cfull and C∗

is that for the former, we remove the constraint y(Fj) = 1 from the LP, while for the latter we
still require y(Fj) = 1. Thus although we commit to serving Cfull, such clients rely on C∗ to find
an open facility to connect to. Using the discretized distances, radius levels, inner balls, and these
three sets of clients, we are ready to define LPiter:

min
y

∑
j∈Cpart

∑
i∈Fj

d′(i, j)yi +
∑

j∈Cfull∪C∗

(
∑
i∈Bj

d′(i, j)yi + (1− y(Bj))L(ℓj)) (LPiter)

s.t. y(Fj) ≤ 1 ∀j ∈ Cpart

y(Bj) ≤ 1 ∀j ∈ Cfull

y(Fj) = 1 ∀j ∈ C∗

Wy ≤ b∑
j∈Cpart

ajy(Fj) ≥ c−
∑

j∈Cfull∪C∗

aj

0 ≤ y ≤ 1

Note that we use the rounded distances in the definition of LPiter rather than the original distances.
Keeping this in mind, if Cpart = C and Cfull, C

∗ = ∅, then LPiter is the same as LP2 up to the
discretized distances, so the following proposition is immediate.

15

Proposition 2.2.3. Suppose Cpart = C and Cfull, C
∗ = ∅. Then E[Opt(LPiter)] ≤ τ−1

loge τ
Opt(LP2).

We now take some time to parse the definition of LPiter. Initially, all clients are in Cpart. For
clients in Cpart, we are not sure yet whether we should serve them or not. Thus for these clients, we
simply require y(Fj) ≤ 1, so they can be served any amount, and in the objective, the contribution
of a client from Cpart is exactly its connection cost (up to discretization) to Fj .

The clients in Cfull correspond to the “deleted” constraints in § 2.1.1. Importantly, for j ∈ Cfull,
we do not require that y(Fj) = 1; rather, we relax this condition to y(Bj) ≤ 1. Recall that we
made the assumption that every client can pay the radius of its Fj set in § 2.1.1. To realize this
idea, we require that each j ∈ Cfull pays its connection costs to Bj in the objective. Then, to serve
j fully, j must find (1 − y(Bj)) units of open facility to connect to beyond Bj . Now j truly pays
its radius, L(ℓj), for this (1− y(Bj)) units of connections in LPiter, so we can do “ball-chasing” to
C∗ to find these facilities. In this case, we say that we re-route the client j to some destination.

For clients in C∗, we require y(Fj) = 1. Note that the contribution of a j ∈ C∗ to the objective of
LPiter is exactly its connection cost to Fj . The purpose of C∗ is to provide destinations for Cfull.

Finally, because we have decided to fully serve all clients in Cfull and C∗, regardless of how much
they are actually served in their F -balls, we imagine that they every j ∈ Cfull ∪ C∗ contributes aj
to the coverage constraints, which is reflected in LPiter.

2.2.3 Properties of LPiter

Throughout our algorithm, we will modify the data of LPiter - we will move clients between
Cpart, Cfull, and C∗ and modify the F -balls and radius levels. However, we still want the data
of LPiter to satisfy some consistent properties, which we call our Basic Invariants.

Definition 2.2.4 (Basic Invariants). We call the following properties our Basic Invariants:

1. Cpart ∪ Cfull ∪ C∗ partitions C.

2. For all j ∈ C, we have d′(j, i) ≤ Lℓj for all i ∈ Fj .

3. For all j ∈ C, we have Bj = {i ∈ Fj | d′(j, i) ≤ Lℓj−1}.

4. For all j ∈ C, we have ℓj ≥ −1.

5. (Distinct Neighbors) For all j1, j2 ∈ C∗, if Fj1 ∩ Fj2 ̸= ∅, then |ℓj1 − ℓj2 | = 1. In words, if the
F -balls of two clients in C∗ intersect, then they differ by exactly one radius level.

We want to emphasize Basic Invariant (5), which we call the Distinct Neighbors Property. This is
our relaxation of the condition that {Fj | j ∈ C∗} is disjoint, which is the invariant used in [KLS18].
The Distinct Neighbors Property implies that the sub-collections of F -balls in C∗ with even- and
odd-radius levels are both disjoint. Using this observation, the next proposition is immediate.

Definition 2.2.5 (Intersection Graph). Let F = {Fj | j ∈ C∗} be a set family indexed by C∗. The
intersection graph of F is the undirected graph with vertex set C∗ such that two vertices j and j′

are connected by an edge if any only if Fj ∩ Fj′ ̸= ∅.

Proposition 2.2.6. Suppose LPiter satisfies the Distinct Neighbors Property. Then the intersection
graph of F = {Fj | j ∈ C∗} is bipartite. In particular, each facility is in at most two F -balls for
clients in C∗.

16

We summarize the relevant properties of LPiter in the following lemma. The algorithm described
by the lemma is exactly the steps we took in this section. By our construction of the F - and B-balls
and the fact Cpart = C, it is immediate that LPiter satisfies all Basic Invariants.

Lemma 2.2.7. There exists a polynomial time algorithm that takes as input a GKM instance I
and outputs LPiter with Cpart = C, Cfull = ∅, and C∗ = ∅ such that E[Opt(LPiter)] ≤ τ−1

loge τ
Opt(I)

and LPiter satisfies all Basic Invariants.

2.3 Basic Iterative Rounding Phase

We now describe the iterative rounding phase of our algorithm. This phase has two main goals:
(a) to simplify the constraint set of LPiter, and (b) to decide which clients to serve and how. To
make these two decisions, we repeatedly solve LPiter to obtain an optimal extreme point, and then
use the structure of tight constraints to update LPiter, and reroute clients accordingly.

2.3.1 The Algorithm

Our algorithm repeatedly solves LPiter to obtain an optimal extreme point ȳ, and then performs
one of the following three possible updates, based on the tight constraints:

1. If some facility i is set to zero in ȳ, we delete it from the instance.

2. If constraint ȳ(Fj) ≤ 1 is tight for some j ∈ Cpart, then we decide to fully serve client j by
moving j to either Cfull or C

∗. Initially, we add j to Cfull then run Algorithm 2 to decide if
j should be in C∗ instead.

3. If constraint ȳ(Bj) ≤ 1 is tight for some j ∈ Cfull, we shrink Fj by one radius level (so j’s
new F -ball is exactly Bj .) Then we possibly move j to C∗ by running Algorithm 2 for j.

These steps are made formal in Algorithm 1 (IterativeRound) and Algorithm 2 (ReRoute).
IterativeRound relies on the subroutine ReRoute, which gives our criterion for moving a client
to C∗. This criterion for adding clients to C∗ is the key way in which our algorithm differs from
that of [KLS18]. In [KLS18], the criterion used ensures that {Fj | j ∈ C∗} is a family of disjoint
sets. In contrast, we allow F -balls for clients in C∗ to intersect, as long as they satisfy the Distinct
Neighbors Property (5).

The modifications made by IterativeRound do not increase Opt(LPiter), so upon termination of
our algorithm, we have an optimal extreme point ȳ to LPiter such that LPiter is still a relaxation
of GKM and no non-negativity constraint, Cpart-constraint, or Cfull-constraint is tight for ȳ.

2.3.2 Sketch of Analysis

Recall the goals from the beginning of the section: procedure IterativeRound achieves goal (a)
of making {Fj | j ∈ C∗} simpler while maintaining the Distinct Neighbors Property. Since we
moved facilities between C∗ and Cfull, achieving goal (b) means deciding which facilities to open,
and guaranteeing that each client has a “close-by” open facility. (Recall from § 2.2 that C∗ is the
set of clients such that their Fj-balls are guaranteed to contain an open facility, and Cfull are the
clients which are guaranteed to be served but using facilities opened in C∗.)

To achieve goal (b), we observe that ReRoute always gives quarter-chasing steps. That is, if we
move a client j from C∗ to Cfull, then we are guaranteed a neighboring client j′ ∈ C∗ with radius

17

Algorithm 1: IterativeRound

Input: LPiter satisfying all Basic Invariants
Result: Modifies LPiter and outputs an optimal extreme point of LPiter

0.1 repeat
0.2 Solve LPiter to obtain optimal extreme point ȳ.
0.3 if there exists a facility i ∈ F such that ȳi ≥ 0 is tight then
0.4 Delete i from F .
0.5 end
0.6 else if there exists a client j ∈ Cpart such that y(Fj) ≤ 1 is tight then
0.7 Move j from Cpart to Cfull.
0.8 ReRoute(j)

0.9 end
0.10 else if there exists a client j ∈ Cfull such that ȳ(Bj) ≤ 1 is tight then
0.11 Update Fj ← Bj and decrement ℓj by 1.
0.12 Update Bj ← {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}.
0.13 ReRoute(j)

0.14 end
0.15 else
0.16 Output ȳ and Terminate.
0.17 end

0.18 until termination

Algorithm 2: ReRoute

Input: Client j ∈ Cfull

Result: Decide whether to move j to C∗ or not
1.1 if ℓj ≤ ℓj′ − 1 for all j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ then
1.2 Move j from Cfull to C∗.
1.3 For all j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ and ℓj′ ≥ ℓj + 2, move j′ from C∗ to Cfull.

1.4 end

18

level at least two smaller than j. Thus, each time we re-route j to a further destination (i.e. if j′ is
subject to another quarter-chasing step), the extra distance j must travel decreases geometrically.
In the end, we can show that j will have an open facility within O(1) times its radius.

2.4 Iterative Operation for Structured Extreme Points

In this section, we have two goals: (a) we show that the extreme points of LPiter obtained from
IterativeRound are highly structured, and admit a chain decomposition. Then, (b) we exploit
this chain decomposition to define a new iterative operation that is applicable whenever ȳ has
“many” (i.e. more than O(r)) fractional variables. We emphasize that this characterization of the
extreme points is what enables the new iterative rounding algorithm.

2.4.1 Chain Decomposition

A chain is a sequence of clients in C∗ where the F -ball of each client j contains exactly two
facilities—one shared with the previous ball and other with the next.

Definition 2.4.1 (Chain). A chain is a sequence of clients (j1, . . . , jp) ⊆ C∗ satisfying:

� |Fjq | = 2 for all q ∈ [p], and

� Fjq ∩ Fjq+1 ̸= ∅ for all q ∈ [p− 1].

Our chain decomposition is a partition of the fractional C∗-clients given in the next theorem, which
is our main structural characterization of the extreme points of LPiter. We say that a client j is
fractional if all facilities in Fj are fractional; we denote the fractional clients in C∗ by C∗

<1.

Theorem 2.4.2 (Chain Decomposition). Suppose LPiter satisfies all Basic Invariants. Let ȳ be an
extreme point of LPiter such that no Cpart-, Cfull-, or non-negativity constraint is tight. Then there
exists a partition of C∗

<1 into at most 3r chains, along with a set of at most 2r violating clients
(clients that are not in any chain.)

The proof relies on analyzing the extreme points of a set-cover-like polytope with r side constraints;
we defer it to § 2.8 and proceed instead to define the new iterative operation.

2.4.2 Iterative Operation for Chain Decompositions

Consider an optimal extreme point ȳ of LPiter that admits a chain decomposition as in Theo-
rem 2.4.2. We show that if the number of fractional variables in ȳ is sufficiently large, there exists
a useful structure, which we call a candidate configuration.

Definition 2.4.3 (Candidate Configuration). Let ȳ be an optimal extreme point of LPiter. A
candidate configuration is a pair of two clients (j, j′) ⊂ C∗

<1 such that:

1. Fj ∩ Fj′ ̸= ∅

2. ℓj′ ≤ ℓj − 1

3. Every facility in Fj and Fj′ is in at exactly two F -balls for clients in C∗

4. |Fj | = 2 and |Fj′ | = 2

19

Lemma 2.4.4. Suppose LPiter satisfies all Basic Invariants, and let ȳ be an optimal extreme point
of LPiter such that no Cpart-, Cfull-, or non-negativity constraint is tight. If |F<1| ≥ 15r, then
there exist a candidate configuration in C∗

<1.

Proof. We claim that in order for C∗
<1 to have a candidate configuration, it suffices to have a chain

of length at least four in C∗
<1. To see this, let (j1, j2, j3, j4, . . .) ⊂ C∗

<1 be a chain of length at
least four. Then Fj2 ∩ Fj3 ̸= ∅, and by the Distinct Neighbors Property, either ℓj3 = ℓj2 − 1 or
ℓj2 = ℓj3 − 1.

We only consider the former case, because both cases are analogous. Thus, if ℓj3 = ℓj2 − 1, then we
claim that (j2, j3) forms a candidate configuration. We already have the first two properties of a
candidate configuration. Now we verify the last two. Because j2 and j3 are part of a chain, we have
|Fj2 | = 2 and |Fj3 | = 2. Further, j2 has neighbors j1 and j3 along the chain. By Proposition 2.2.6,
each facility in Fj2 is in at most two F -balls for clients in C∗. In particular, one of the facilities
in Fj2 is shared by Fj1 and Fj2 , and the other must be shared by Fj2 and Fj3 . Thus, each facility
in Fj2 is in exactly two F -balls for clients in C∗. An analogous argument holds for Fj3 , so (j2, j3)
satisfies all properties of a candidate configuration, as required.

Now suppose |F<1| ≥ 15r. Applying Lemma 2.8.4, we have:

|F<1| ≤ dim(C∗
<1) + r ≤ |C∗

<1|+ r,

which implies |C∗
<1| ≥ 14r. Finally, by Theorem 2.4.2, C∗

<1 admits a chain decomposition into at
most 3r chains and a set of at most 2r violating clients. Then at least 12r of the clients in C∗

<1

belong to the 3r chains. By averaging, there must exist a chain with size at least 12r
3r = 4, as

required.

Our new iterative operation is easy to state: Find a candidate configuration (j, j′) and move j from
C∗ to Cfull.

Algorithm 3: ConfigReRoute

Input: An optimal extreme point ȳ to LPiter s.t. there exists an candidate configuration
Result: Modify LPiter

2.1 Let (j, j′) ⊂ C∗
<1 be any candidate configuration.

2.2 Move j from C∗ to Cfull.

2.4.3 Sketch of Analysis

The first two properties of candidate configurations are used to re-route j to j′. Observe a key
difference between ReRoute and ConfigReRoute: In the former, we always guarantee quarter-
chasing steps. On the other hand, in ConfigReRoute, we only guarantee a neighboring client of
at least one radius level smaller, which corresponds to a half-chasing step. This raises the worry that
if all re-routings are due to ConfigReRoute, any potential gains by ReRoute are not realized
in the worst case. However we show that, roughly speaking, the last two properties of candidate
configurations guarantee that the half-chasing steps of ConfigReRoute happen at most half the
time.

In particular, suppose client j is re-routed via ConfigReRoute to j′ , which is exactly one radius
level smaller. If j′ is later re-routed via ReRoute, then we can re-route j to j′ and then this
new destination. This gives one half- and one quarter-chasing step. The concern is if j′ is later

20

re-routed via ConfigReRoute, which would give j two half-chasing steps in a row. By analyzing
the interactions between ReRoute and ConfigReRoute, we show that there must exist a j′′

that gives j a quarter-chasing step. See Figure 2.2.

Again, we defer the analysis of the re-routing cost of ConfigReRoute to Theorem 2.5.2, where we
analyze the interactions between ConfigReRoute and ReRoute, and present our final pseudo-
approximation algorithm next.

2.5 Pseudo-Approximation Algorithm for GKM

The pseudo-approximation algorithm for GKM combine the iterative rounding algorithm Itera-
tiveRound from § 2.3 with the re-routing operation ConfigReRoute from § 2.4 to construct
a solution to LPiter.

Theorem 2.1.1 (Pseudo-Approximation Algorithm for GKM). There exists an polynomial time
randomized algorithm PseudoApproximation that takes as input an instance I of GKM and
outputs a feasible solution to LP1 with at most O(r) fractional facilities and expected cost at most
6.387 · Opt(I).

Algorithm 4: PseudoApproximation

Input: LPiter satisfying all Basic Invariants
Result: Modifies LPiter and outputs an optimal extreme point of LPiter

3.1 repeat
3.2 Run IterativeRound to obtain an optimal extreme point ȳ of LPiter

3.3 if there exists a candidate configuration then
3.4 Run ConfigReRoute
3.5 end
3.6 else
3.7 Output ȳ and Terminate
3.8 end

3.9 until Termination

2.5.1 Analysis of PseudoApproximation

There are two main components to analyzing PseudoApproximation. First, we show that the
output extreme point has O(r) fractional variables, which follows from Lemma 2.4.4. Second, we
bound the re-routing cost, which follows from the sketches in § 2.3 and § 2.4. In particular, for
each client, we can charge each of its half-chasing steps to a quarter-chasing step. This improves
on [KLS18], where every re-routing is via half-chasing steps. Optimizing the choice of τ (the
discretization factor) gives our final approximation ratio.

Lemma 2.5.1. PseudoApproximation is a polynomial time algorithm that maintains all Basic
Invariants, weakly decreases Opt(LPiter), and outputs an optimal extreme point of LPiter with at
most 15r fractional variables.

Proof. First we show that PseudoApproximation maintains all Basic Invariants. It is clear that
both IterativeRound and ConfigReRoute maintain that Cpart∪Cfull∪C∗ partitions C. Next,
we only update the F -balls in IterativeRound by shrinking the F -ball and B-ball by one radius

21

level or deleting a facility. Further, we only shrink Fj if ȳ(Bj) = 1, so it cannot be the case that
we shrink a Fj when ℓj = −1, because this would imply Bj = ∅. We conclude, the first four Basic
Invariants, which ensure that the F - and B-balls have the correct semantics, are maintained. For
the Distinct Neighbors Property, by definition of ReRoute, if we move a client to C∗, it intersects
no C∗-ball of weakly smaller radius level, and we subsequently remove any C∗-balls that are at
least two radius levels larger. Thus, any remaining C∗-ball that intersects the newly-added ball has
radius level exactly one larger.

Next we show that PseudoApproximation terminates in polynomial time. It is clear that Con-
figReRoute runs in polynomial time. For IterativeRound, it suffices to show that the number
of iterations of IterativeRound is polynomial. In each iteration, we make one of three actions.
We either delete a facility from F , move a client from Cpart to Cfull or shrink a F -ball by one radius
level for a client in j ∈ Cfull.

We can delete each facility from F at most once, so we make at most |F | deletions. Each client can
move from Cpart to Cfull at most once, because we never move clients back from Cfull to Cpart,
so we do this operations at most |C| times. Finally, observe that ℓj ≥ −1 for all j ∈ C over all
iterations. We conclude that we can shrink each F -ball only polynomially many times.

For the runtime of PseudoApproximation, it suffices to show that the number of calls to Itera-
tiveRound and ConfigReRoute is polynomial. In every iteration of PseudoApproximation,
either we terminate or we are guaranteed to move a client from C∗ to Cfull in ConfigReRoute.
Each client can be removed from C∗ only polynomially many times, because each time a client is
removed, in order to be re-added to C∗, it must be the case that we shrunk the F -ball of that
client. However, again because ℓj ≥ −1 for all j ∈ C, we can shrink each F -ball only polynomially
many times.

To see that Opt(LPiter) weakly decreases, it is easy to check that each iteration of IterativeRound
and ConfigReRoute maintains the feasibility of the extreme point of LPiter computed in that
iteration and does not change the objective value.

Finally, upon termination of IterativeRound, we have an optimal extreme point where no non-
negativity-, Cfull−, or C∗-constraint is tight, so Lemma 2.4.4 implies that when PseudoApprox-
imation terminates, we have an optimal extreme point with at most 15r fractional variables (fa-
cilities.)

We now bound the re-routing cost by analyzing how C∗ evolves throughout PseudoApproxima-
tion. This is one of the main technical contributions of our paper, and it is where our richer C∗-set
and relaxed re-routing rules are used. [KLS18] prove an analogous result about the re-routing cost
of their algorithm. In the language of the following theorem statement, they show that α = τ+1

τ−1 for
the case β = 1. We improve on this factor by analyzing the interactions between ReRoute and
ConfigReRoute. Interestingly, analyzing each of ReRoute and ConfigReRoute separately
would not yield any improvement over [KLS18] in the worst case, even with our richer set C∗.
It is only by using the properties of candidate configurations and analyzing sequences of calls to
ReRoute and ConfigReRoute that we get an improvement.

Theorem 2.5.2 (Re-Routing Cost). Upon termination of PseudoApproximation, let S ⊂ F
be a set of open facilities and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Then for all

j ∈ Cfull ∪ C∗, d(j, S) ≤ (2 + α)L(ℓj), where α = max(β, 1 + 1+β
τ , τ

3+2τ2+1
τ3−1

).

We will need the following discretized version of the triangle inequality.

22

j j′

j′′

Figure 2.2: A chain of balls in C∗, where squares indicate facilities. First j is removed from C∗ as part of
candidate configuration (j, j′), so j′ has strictly smaller radius than j. Then j′′ is added to C∗, which has
strictly smaller radius than j′. This gives j a destination that is at least two radius levels smaller.

Proposition 2.5.3. Let j, j′ ∈ C such that Fj and Fj′ intersect. Then d(j, j′) ≤ L(ℓj) + L(ℓj′).

Proof. Let i ∈ Fj ∩ Fj′ . Then using the triangle inequality we can bound:

d(j, j′) ≤ d(j, i) + d(i, j′) ≤ d′(j, i) + d′(i, j′) ≤ L(ℓj) + L(ℓj′).

The next lemma analyzes the life-cycle of a client that enters C∗ at some point in PseudoAp-
proximation. Our improvement over [KLS18] comes from this lemma.

Lemma 2.5.4. Upon termination of PseudoApproximation, let S ⊂ F be a set of open facilities
and β ≥ 1 such that d(j, S) ≤ βL(ℓj) for all j ∈ C∗. Suppose client j is added to C∗ at radius
level ℓ during PseudoApproximation (it may be removed later.) Then upon termination of

PseudoApproximation, we have d(j, S) ≤ αL(ℓ), where α = max(β, 1 + 1+β
τ , τ

3+2τ2+1
τ3−1

).

Proof. Consider a client j added to C∗ with radius level ℓ. If j remains in C∗ until termination,
the lemma holds for j because α ≥ β. Thus, consider the case where j is later removed from C∗ in
PseudoApproximation. Note that the only two operations that can possibly cause this removal
are ReRoute and ConfigReRoute. We prove the lemma by induction on ℓ = −1, 0, If
ℓ = −1, then j remains in C∗ until termination because it has the smallest possible radius level
and both ReRoute and ConfigReRoute remove a client from C∗ only if there exists another
client with strictly smaller radius level.

Similarly, if ℓ = 0, we note that ReRoute removes a client from C∗ only if there exists another
client with radius level at least two smaller, which is not possible for j. Thus, if j does not remain
in C∗ until termination, there must exist some j′ that is later added to C∗ with radius level at most
ℓ− 1 = −1 such that Fj ∩ Fj′ ̸= ∅. We know that j′ remains in C∗ until termination since it is of
the lowest radius level. Thus:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(0) + L(−1) + βL(−1) = L(0).

Now consider ℓ > 0 where j can possibly be removed from C∗ by either ReRoute or Confi-
gReRoute. In the first case, j is removed by ReRoute, so there exists j′ that is added to C∗

such that ℓj′ ≤ ℓ− 2 and Fj ∩ Fj′ ̸= ∅. Applying the inductive hypothesis to j′, we can bound:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓ) + L(ℓ− 2) + αL(ℓ− 2) ≤ (1 +
1 + α

τ2
)L(ℓ).

23

It is easy to verify by routine calculations that 1 + 1+α
τ2
≤ α given that α ≥ τ3+2τ2+1

τ3−1
.

For our final case, suppose j is removed by ConfigReRoute. Then there exists j′ ∈ C∗ such that
Fj ∩ Fj′ ̸= ∅ and ℓj′ ≤ ℓ− 1. Further, |Fj′ | = 2. If j′ remains in C∗ until termination, then:

d(j, S) ≤ d(j, j′) ≤ L(ℓ) + L(ℓ− 1) + βL(ℓ− 1) ≤ (1 +
1 + β

τ
)L(ℓ).

Otherwise, j′ is removed by ReRoute at an even later time because some j′′ is added to C∗ such
that ℓj′′ ≤ ℓj′ − 2 and Fj′ ∩ Fj′′ ̸= ∅. Applying the inductive hypothesis to j′′, we can bound:

d(j, S) ≤ d(j, j′) + d(j′, j′′) + d(j′′, S) ≤ (1 +
2

τ
+

1 + α

τ3
)L(ℓ).

where α ≥ τ3+2τ2+1
τ3−1

implies 1 + 2
τ + 1+α

τ3
≤ α.

Now, we consider the case where j′ is later removed by ConfigReRoute. To analyze this case,
consider when j was removed by ConfigReRoute. At this time, we have |Fj′ | = 2 by definition
of Candidate Configuration. Because Fj ∩ Fj′ ̸= ∅, consider any facility i ∈ Fj ∩ Fj′ . When j is
removed from C∗ by ConfigReRoute, we have that i is in exactly two F -balls for clients in C∗,
exactly Fj and Fj′ . However, after removing j from C∗, i is only in one F -ball for clients in C∗ -
namely Fj′ .

Later, at the time j′ is removed by ConfigReRoute, it must be the case that |Fj′ | = 2 still, so
Fj′ is unchanged between the time that j is removed and the time that j′ is removed. Thus the
facility i that was previously in Fj ∩ Fj′ must still be present in Fj′ . Then this facility must be in
exactly two F -balls for clients in C∗, one of which is j′. It must be the case that the other F -ball
containing i, say Fj′′ , was added to C∗ between the removal of j and j′.

Note that the only operation that adds clients to C∗ is ReRoute, so we consider the time between
the removal of j and j′ when j′′ is added to C∗. Refer to Figure 2.2. At this time, we have j′ ∈ C∗,
and Fj′ ∩ Fj′′ ̸= ∅ because of the facility i. Then it must be the case that j′′ has strictly smaller
radius level than j′, so ℓj′′ ≤ ℓj′ − 1 ≤ ℓ− 2. To conclude the proof, we note that Fj ∩ Fj′′ ̸= ∅ due
to the facility i, and apply the inductive hypothesis to j′′:

d(j, S) ≤ d(j, j′′) + d(j′′, S) ≤ (1 +
1 + α

τ2
)L(ℓ,)

which is at most αL(ℓ).

Now using the above lemma, we can prove Theorem 2.5.2.

Proof of Theorem 2.5.2. Consider any client j that is in Cfull ∪ C∗ upon termination of Pseu-
doApproximation. It must be the case that ReRoute(j) was called at least once during Pseu-
doApproximation. Consider the time of the last such call to ReRoute(j). If j is added to C∗

at this time, note that its radius level from now until termination remains unchanged, so applying
Lemma 2.5.4 gives that d(j, S) ≤ αL(ℓj), as required. Otherwise, if j is not added to C∗ at this
time, then there must exist some j′ ∈ C∗ such that Fj ∩ Fj′ ̸= ∅ and ℓj′ ≤ ℓj . Then applying
Lemma 2.5.4 to j′, we have:

d(j, S) ≤ d(j, j′) + d(j′, S) ≤ L(ℓj) + L(ℓj′) + αL(ℓj′) ≤ (2 + α)L(ℓj).

24

2.5.2 Putting it all Together: Pseudo-Approximation for GKM

In this section, we prove Theorem 2.1.1. In particular, we use the output of PseudoApproxima-
tion to construct a setting of the x-variables with the desired properties.

Proof of Theorem 2.1.1. Given as input an instance I of GKM, our algorithm is first to run the
algorithm guaranteed by Lemma 2.2.7 to construct LPiter from LP1 such that E[Opt(LPiter)] ≤
τ−1
loge τ

Opt(I) and LPiter satisfies all Basic Invariants. Note that we will choose τ > 1 later to
optimize our final approximation ratio. Then we run PseudoApproximation on LPiter, which
satisfies all Basic Invariants, so by Lemma 2.5.1, PseudoApproximation outputs in polynomial
time LPiter along with an optimal solution ȳ with O(r) fractional variables.

Given ȳ, we define a setting x̄ for the x-variables: for all j ∈ Cpart, connect j to all facilities in Fj by
setting x̄ij = ȳi for all i ∈ Fj . For all j ∈ C∗, we have ȳ(Fj) = 1, so connect j to all facilities in Fj .
Finally, to connect every j ∈ Cfull to one unit of open facilities, we use the following modification
of Theorem 2.5.2:

Proposition 2.5.5. When PseudoApproximation terminates, for all j ∈ Cfull ∪ C∗, there
exists one unit of open facilities with respect to ȳ within distance (2 + α)L(ℓj) of j, where α =

max(1, 1 + 2
τ ,

τ3+2τ2+1
τ3−1

).

The proof of the above proposition is analogous to that of Theorem 2.5.2 in the case β = 1, so we
omit it. To see this, note that for all j ∈ C∗, we have ȳ(Fj) = 1. This implies that each j ∈ C∗ has
one unit of fractional facility within distance L(ℓj). Following an analogous inductive argument as
in Lemma 2.5.4 gives the desired result.

By routine calculations, it is easy to see that α = τ3+2τ2+1
τ3−1

for all τ > 1. Now, for all j ∈ Cfull, we
connect j to all facilities in Bj . We want to connect j to one unit of open facilities, so to find the
remaining 1 − ȳ(Bj) units, we connect j to an arbitrary 1 − ȳ(Bj) units of open facilities within
distance (2 + α)L(ℓj) of j, whose existence is guaranteed by Proposition 2.5.5. This completes the
description of x̄.

It is easy to verify that (x̄, ȳ) is feasible for LP1, because ȳ satisfies all knapsack constraints,
and every client’s contribution to the coverage constraints in LP1 is exactly its contribution in
LPiter. Thus it remains to bound the cost of this solution. We claim that LP1(x̄, ȳ) ≤ (2 +
α)Opt(LPiter), because each client in Cpart and C∗ contributes the same amount to LP1 and LPiter

(up to discretization), and each client j ∈ Cfull has connection cost at most 2 + α times its
contribution to LPiter.

In conclusion, the expect cost of the solution (x̄, ȳ) to LP1 is at most:

(2 + α)E[Opt(LPiter)] ≤
τ − 1

loge τ

(
2 +

τ3 + 2τ2 + 1

τ3 − 1

)
Opt(I).

Choosing τ > 1 to minimize τ−1
loge τ

(2+ τ3+2τ2+1
τ3−1

) gives τ = 2.046 and τ−1
loge τ

(2+ τ3+2τ2+1
τ3−1

) = 6.387.

2.6 From Pseudo-Approximation to Approximation

In this section, we leverage the pseudo-approximation algorithm for GKM defined in § 2.5 to
construct improved approximation algorithms for two special cases of GKM: knapsack median and
k-median with outliers.

25

Recall that knapsack median is an instance of GKM with a single arbitrary knapsack constraint
and a single coverage constraint that states we must serve every client in C. Similarly, k-median
with outliers is an instance of GKM with a single knapsack constraint, stating that we can open
at most k facilities, and a single coverage constraint, stating that we must serve at least m clients.
Note that both special cases have r = 2.

We restate our main results for these two problems:

Theorem 2.1.2 (Approximation Algorithm for Knapsack Median). There exists a polynomial
time randomized algorithm that takes as input an instance I of knapsack median and parameter
ϵ ∈ (0, 1/2) and in time nO(1/ϵ), outputs a feasible solution to I of expected cost at most (6.387 +
ϵ) · Opt(I).

Theorem 2.1.3 (Approximation Algorithm for k-Median with Outliers). There exists a polynomial
time randomized algorithm that takes as input an instance I of k-median with outliers and parameter
ϵ ∈ (0, 1/2) and in time nO(1/ϵ), outputs a feasible solution to I of expected cost at most (6.994 +
ϵ) · Opt(I).

2.6.1 Overview

The centerpiece for both of our approximation algorithms is the pseudo-approximation algorithm
PseudoApproximation for GKM. For both of these special cases, we can obtain via PseudoAp-
proximation a solution to LPiter with only O(1) fractional facilities and bounded re-routing cost.
Now our remaining task is to turn this solution with O(1) fractional facilities into an integral one.

Unfortunately, the basic LP relaxations for knapsack median and k-median with outliers have an
unbounded integrality gap. To overcome this bad integrality gap, we use known sparsification tools
to pre-process the instance [KLS18]. Our main technical contribution in this section is a post-
processing algorithm that rounds the final O(1) fractional variables at a small cost increase for the
special cases of knapsack median and k-median with outliers.

2.6.2 Approximation Algorithm for Knapsack Median

To illustrate our approach, we give the pre- and post-processing algorithms for knapsack median,
which is the simpler of the two variants. Our pre-processing instance modifies the data of the input
instance, so the next definition is useful to specify the input instance and pre-processed instance.

Definition 2.6.1 (Instance of Knapsack Median). An instance of knapsack median is of the form
I = (F,C, d, w,B), where F is a set of facilities, C is a set of clients, d is a metric on F ∪C, w ∈ RF

+

is the weights of the facilities, and B ≥ 0 is the budget.

Note that for knapsack median, the two side constraints in LPiter are the knapsack constraint,∑
i∈F

wiyi ≤ B, and the coverage constraint,
∑

j∈Cpart

y(Fj) ≥ |C| − |Cfull ∪ C∗|.

We utilize the same pre-processing as in [KLS18]. Roughly, given a knapsack median instance I, we
first handle the expensive parts of the optimal solution using enumeration. Once we pre-open the
facilities and decide what clients should be assigned there for this expensive part of the instance,
we are left with a sub-instance, say I ′. In I ′ - the “cheap” part of the input instance - the our goal
is to open some more facilities to serve the remaining clients. When we construct LPiter for this
sub-instance, we initialize additional invariants which we call our Extra Invariants.

26

To state our Extra Invariants, we need to define the P -ball centered at p with radius r for any
P ⊂ F ∪ C, p ∈ F ∪ C, and r ≥ 0, which is the set:

BP (p, r) = {q ∈ P | d(p, q) ≤ r}.

Definition 2.6.2 (Extra Invariants for Knapsack Median). Let ρ, δ ∈ (0, 1/2), U ≥ 0, S0 ⊂ F ,
and R ∈ RC

+ be given. Then we call the following properties our Extra Invariants:

1. For all i ∈ S0, there exists a dummy client j(i) ∈ C∗ such that Fj(i) = {i′ ∈ F | i′ collocated with i}
with radius level ℓj(i) = −1. We let C0 ⊂ C be the collection of these dummy clients.

2. For all i ∈ F that is not collocated with some i′ ∈ S0, we have
∑

j|i∈Fj

d(i, j) ≤ 2ρU

3. For all j ∈ C, we have L(ℓj) ≤ τRj

4. For all j ∈ C and r ≤ Rj , we have: |BC(j, δr)|r ≤ ρU.

Extra Invariant (1) guarantees that we open the set of guessed facilities S0 in our final solution.
Then for all non-guessed facilities, so the set F \ S0, Extra Invariant (2) captures the idea that
these facilities are “cheap.” Taken together, Extra Invariants (3) and (4) capture the idea that all
remaining clients are “cheap.”

The next theorem describes our pre-processing algorithm for knapsack median, which is a convenient
re-packaging of the pre-processing used in [KLS18]. The theorem essentially states that given ρ, δ,
and U , we can efficiently guess a set C \C ′ of clients and S0 of facilities that capture the expensive
part of the input instance I. Then when we construct LPiter for the cheap sub-instance, we can
obtain the Extra Invariants, and the cost of extending a solution of the sub-instance to the whole
instance is bounded with respect to U , which one should imagine is Opt(I).

Theorem 2.6.3 (Pre-Processing for Knapsack Median). Let I = (F,C, d, w,B) be an instance
of knapsack median. Then, given as input instance I, parameters ρ, δ ∈ (0, 1/2), and an upper
bound U on Opt(I), there exists an algorithm that runs in time nO(1/ρ) and outputs nO(1/ρ)-many
sub-instances of the form I ′ = (F,C ′ ⊂ C, d,w,B) along with the data for LPiter on I ′, a set of
facilities S0 ⊂ F , and a vector R ∈ RC′

+ such that:

1. LPiter satisfies all Basic and Extra Invariants

2. loge τ
τ−1 E[Opt(LPiter)] +

1−δ
1+δ

∑
j∈C\C′

d(j, S0) ≤ U

The proof is implicit in [KLS18]. For completeness, we prove the analogous theorem for k-median
with outliers, Theorem 2.6.11, in Appendix A.4.

We will show that if LPiter satisfies the Extra Invariants for knapsack median, then we can give a
post-processing algorithm with bounded cost. It is not difficult to see that PseudoApproxima-
tion maintains the Extra Invariants as well, so we use the Extra Invariants in our post-processing.

Proposition 2.6.4. PseudoApproximation maintains all Extra Invariants for knapsack me-
dian.

27

Now we move on to describing our post-processing algorithm. Suppose we run the pre-processing
algorithm guaranteed by Theorem 2.6.3 to obtain LPiter satisfying all Basic- and Extra Invariants.
Then we can run PseudoApproximation to obtain an optimal extreme point of LPiter with O(1)
fractional facilities, and LPiter still satisfies all Basic- and Extra Invariants.

It turns out, to round these O(1) fractional facilities, it suffices to open one facility in each F -ball for
clients in C∗. Then we can apply Theorem 2.5.2 to bound the re-routing cost. The main difficulty
in this approach is that we must also round some fractional facilities down to zero to maintain the
knapsack constraint.

Note that closing a facility can incur an unbounded multiplicative cost in the objective. To see this,
consider a fractional facility i that is almost open, so ȳi ∼ 1. Then suppose there exists j ∈ Cfull

such that i ∈ Bj and d(j, i) ≪ L(ℓj). Then j’s contribution to the objective of LPiter is ∼ d(j, i).
However, if we close i, then j’s contribution increases to L(ℓj)≫ d(j, i).

To bound the cost of closing facilities, we use the Extra Invariants. In particular, we use the next
technical lemma, which states that if we want to close down a facility i, and every client j that
connects to i has a back-up facility to go to within distance O(1)L(ℓj), then closing i incurs only
a small increase in cost. For proof, see Appendix A.2.

Lemma 2.6.5. Suppose LPiter satisfies all Basic and Extra Invariants for knapsack median, and
let S ⊂ F and α ≥ 1. Further, consider a facility i /∈ S ∪ S0 and set of clients C ′ ⊂ C such that
for all j ∈ C ′, we have i ∈ Fj and there exists some facility in S within distance αL(ℓj) of j. Then∑
j∈C′

d(j, S) = O(ρδ)U .

Further, the coverage constraint for knapsack median,
∑

j∈Cpart

y(Fj) ≥ |C| − |Cfull ∪ C∗| = |Cpart|

implies that y(Fj) = 1 for all j ∈ Cpart. Thus the next proposition is immediate.

Proposition 2.6.6. Upon termination of PseudoApproximation on a knapsack median in-
stance, we have Cpart = ∅.

To summarize, the goal of our post-processing algorithm is to find an integral setting of the O(1)
fractional facilities in the output of PseudoApproximation such that the knapsack constraint
is satisfied and there is an open facility in each F -ball for clients in C∗.

Lemma 2.6.7. Upon termination of PseudoApproximation on a knapsack median instance,
let ȳ be the outputted extreme point of LPiter, and suppose LPiter satisfies all Basic- and Extra
Invariants. Then there exists an integral setting of the fractional facilities such that the knapsack
constraint is satisfied, there is an open facility in each F -ball for clients in C∗, and every facility
in S0 is open.

Proof. Consider the following LP:

LP = min
y
{
∑
i∈F

wiyi | y(Fj) = 1 ∀j ∈ C∗, yi = 1 ∀i ∈ F=1, y ∈ [0, 1]F }.

The first constraint states that we want one open facility in each F -ball for clients in C∗, and the
second states that our solution should agree on the integral facilities in ȳ.

Because LPiter satisfies all Basic Invariants, the intersection graph of {Fj | j ∈ C∗} is bipartite
by Proposition 2.2.6. Then the feasible region of LP is a face of the intersection of two partition

28

matroids (each side of the biparitition of {Fj | j ∈ C∗} defines one parititon matroid), and thus
LP is integral.

To conclude the proof, we observe that ȳ is feasible for LP, so Opt(LP) ≤
∑
i∈F

wiȳi ≤ B. Thus

there exists an integral setting of facilities that opens one facility in each F -bal for all clients in C∗,
agrees with all of ȳ’s integral facilities, and has total weight at most B. Finally, by Extra Invariant
(1), C0 ⊂ C∗, so we open every facility in S0.

Thus, in light of Lemma 2.6.7, our post-processing algorithm is to enumerate over all integral
settings of the fractional variables to find one that satisfies the knapsack constraint, opens one
facility in each F -ball for clients in C∗, and opens S0. Combining our post-processing algorithm
with PseudoApproximation gives the following theorem.

Theorem 2.6.8. There exists a polynomial time algorithm that takes as input LPiter for knapsack
median instance I satisfying all Basic- and Extra Invariants and outputs a feasible solution to I
such that the solution opens all facilities in S0 and has cost at most (2+α)Opt(LPiter)+O(ρ/δ)U ,

where α = τ3+2τ2+1
τ3−1

.

Proof. Our algorithm is to runPseudoApproximation on LPiter and then run our post-processing
algorithm, which is to enumerate over all integral settings of the fractional variables, and then out-
put the feasible solution that opens S0 of lowest cost (if such a solution exists.)

Let ȳ be the optimal extreme point of LPiter output by PseudoApproximation, which has O(1)
fractional variables by Lemma 2.5.1. Because ȳ has O(1) fractional variables, our post-processing
algorithm is clearly efficient, which establishes the runtime of our overall algorithm.

Note that upon termination, LPiter still satisfies all Basic- and Extra Invariants. Then by Lemma 2.6.7,
there exists an integral setting of the fractional variables that is feasible, opens S0, and opens a
facility in each F -ball for clients in C∗. It suffices to bound the cost of this solution. Let S ⊂ F
denote the facilities opened by this integral solution, so d(j, S) ≤ L(ℓj) for all j ∈ C∗. Applying
Theorem 2.5.2 with β = 1, we obtain that d(j, S) ≤ (2 + α)L(ℓj) for all j ∈ Cfull ∪ C∗, where

α = max(1, 1 + 2
τ ,

τ3+2τ2+1
τ3−1

). It is easy to check that α = τ3+2τ2+1
τ3−1

for all τ > 1.

To bound the cost of the solution S relative to Opt(LPiter), we must bound the cost of closing the
O(1)-many facilities in F<1 \ S. We recall that by Proposition 2.6.6, we have C = Cfull ∪ C∗, so
all clients must be fully connected in LPiter.

First we consider any client j ∈ C that is not supported on any facility in F<1 \ S. Such a client
is not affected by closing F<1 \ S, so if Fj is empty, then d(j, S) ≤ (2 + α)L(ℓj), which is at most
(2+α) times j’s contribution to LPiter. Otherwise, Fj contains an integral facility in S to connect
to, so d(j, S) is at most j’s contribution to LPiter.

It remains to consider the clients whose F -balls contain a facility in F<1 \ S. Because there are
only O(1)-many facilities in F<1 \ S, it suffices to show that for each i ∈ F<1 \ S, the additive cost
of connecting all clients supported on i is at most O(ρ/δ)U . Here we apply Lemma 2.6.5 to the set
of clients C ′ = {j ∈ C | i ∈ Fj} to obtain

∑
j∈C′

d(j, S) = O(ρ/δ)U .

To summarize, the cost of connecting the clients not supported on F<1 \ S is at most (2 +
α)Opt(LPiter), and the cost of the remaining clients is O(ρ/δ)U , as required.

Now our complete approximation for knapsack median follows from combining the pre-processing
with the above theorem and tuning parameters.

29

Proof of Theorem 2.1.2. Let ϵ′ > 0. We will later choose ϵ′ with respect to the given ϵ to obtain the
desired approximation ratio and runtime. First, we choose parameters ρ, δ ∈ (0, 1/2) and U ≥ 0 for
our pre-processing algorithm guaranteed by Theorem 2.6.3. We take ρ = ϵ′2 and δ = ϵ′. We require
that U is an upper bound on Opt(I). Using a standard binary search idea, we can guess Opt(I) up to
a multiplicative (1+ϵ′)-factor in time nO(1/ϵ′), so we guess U such that Opt(I) ≤ U ≤ (1+ϵ′)Opt(I).
With these choices of parameters, we run the algorithm guaranteed by Theorem 2.6.3 to obtain
nO(1/ϵ′) many sub-instances such that one such sub-instance is of the form I ′ = (F,C ′ ⊂ C, d,w,B),
where LPiter for I ′ satisfies all Basic- and Extra Invariants, and we have:

loge τ

τ − 1
E[Opt(LPiter)] +

1− ϵ′

1 + ϵ′

∑
j∈C\C′

d(j, S0) ≤ U (2.1)

Then for each sub-instance output by the pre-processing, we run the algorithm guaranteed by
Theorem 2.6.8 to obtain a solution to each sub-instance. Finally, out of these solutions, we output
the one that is feasible for the whole instance with smallest cost. This completes the description of
our approximation algorithm for knapsack median. The runtime is nO(1/ϵ′), so it remains to bound
the cost of the output solution and to choose the parameters ϵ′ and τ .

To bound the cost, it suffices to consider the solution output on the instance I ′ where LPiter

satisfies all Basic- and Extra Invariants and Equation 2.1. By running the algorithm guaranteed
by Theorem 2.6.8 on this LPiter, we obtain a feasible solution S ⊂ F to I ′ such that S0 ⊂ S, and
the cost of connecting C ′ to S is at most (2 + α)Opt(LPiter) + O(ϵ′)U , where α = τ3+2τ2+1

τ3−1
. To

extend this solution on the sub-instance to a solution on the whole instance I, we must connect
C \C ′ to S. Because S0 ⊂ S, applying Equation 2.1 allows us to upper bound the expected cost of
connecting C to S by:

(2 + α)E[Opt(LPiter)] +O(ϵ′)U +
∑

j∈C\C′

d(j, S0) ≤ (2 + α)
τ − 1

loge τ

1 + ϵ′

1− ϵ′
U +O(ϵ′)U.

Now choosing τ > 1 to minimize (2+ τ3+2τ2+1
τ3−1

) τ−1
loge τ

gives τ = 2.046 and τ−1
loge τ

(2+ τ3+2τ2+1
τ3−1

) = 6.387.

Thus the expected cost of this solution is at most 6.3871+ϵ′

1−ϵ′U +O(ϵ′)U , where U ≤ (1 + ϵ′)Opt(I).
Finally, by routine calculations, we can choose ϵ′ = θ(ϵ) so that expected cost is at most (6.387 +
ϵ)Opt(I), as required. Note that the runtime of our algorithm is nO(1/ϵ′) = nO(1/ϵ).

2.6.3 Approximation Algorithm for k-Median with Outliers

Our approximation algorithm for k-median with outliers follows the same general steps as our
algorithm for knapsack median. We state the analogous Extra Invariants for k-median with outliers
and pre-processing algorithm here. The only differences between the Extra Invariants for knapsack
median and k-median with outliers is in the final Extra Invariant.

Definition 2.6.9 (Instance of k-Median with Outliers). An instance of k-median with outliers is
of the form I = (F,C, d, k,m), where F is a set of facilities, C is a set of clients, d is a metric on
F ∪ C, k is the number of facilities to open, and m is the number of clients to serve.

Note that for k-median with outliers, the two side constraints in LPiter are the knapsack constraint,
y(F) ≤ k, and the coverage constraint,

∑
j∈Cpart

y(Fj) ≥ m− |Cfull ∪ C∗|.

30

Definition 2.6.10 (Extra Invariants for k-Median with Outliers). Let ρ, δ ∈ (0, 1/2), U ≥ 0,
S0 ⊂ F , and R ∈ RC

+ be given. Then we call the following properties our Extra Invariants:

1. For all i ∈ S0, there exists a dummy client j(i) ∈ C∗ such that Fj(i) = {i′ ∈ F | i′ colocated with i}
with radius level ℓj(i) = −1. We let C0 ⊂ C be the collection of these dummy clients.

2. For all i ∈ F that is not collocated with some i′ ∈ S0, we have
∑

j|i∈Fj

d(i, j) ≤ ρ(1 + δ)U

3. For all j ∈ C, we have L(ℓj) ≤ τRj

4. For every t > 0 and p ∈ F ∪ C, we have:

|{j ∈ BC(p,
δt

4 + 3δ
) | Rj ≥ t}| ≤ ρ(1 + 3δ/4)

1− δ/4

U

t
.

Again, the pre-processing of [KLS18] gives the next theorem. For proof, see Appendix A.4.

Theorem 2.6.11 (Pre-Processing for k-Median with Outliers). Let I = (F,C, d, k,m) be an in-
stance of k-median with outliers with optimal solution (S∗, C∗). Then, given as input instance I,
parameters ρ, δ ∈ (0, 1/2), and an upper bound U on Opt(I), there exists an algorithm that runs
in time nO(1/ρ) and outputs nO(1/ρ)-many sub-instances of the form I ′ = (F,C ′ ⊂ C, d, k,m′ =
m−|C∗ \C ′|) along with the data for LPiter on I ′, a set of facilities S0 ⊂ F , and a vector R ∈ RC′

+

such that:

1. LP ′
iter satisfies all Basic and Extra Invariants

2. loge τ
(τ−1)(1+δ/2)E[Opt(LPiter)] +

1−δ
1+δ

∑
j∈C∗\C′

d(j, S0) ≤ U

It is easy to check that PseudoApproximation maintains all Extra Invariants for k-median with
outliers as well, and we have an analogous technical lemma to bound the cost of closing facilities.
For proof of the lemma, see Appendix A.2.

Proposition 2.6.12. PseudoApproximation maintains all Extra Invariants for k-median with
outliers.

Lemma 2.6.13. Suppose LPiter satisfies all Basic and Extra Invariants for k-median with outliers,
and let S ⊂ F and α ≥ 1. Further, consider a facility i /∈ S ∪ S0 and set of clients C ′ ⊂ C such
that for all j ∈ C ′, we have i ∈ Fj and there exists some facility in S within distance αL(ℓj) of j.
Then

∑
j∈C′

d(j, S) = O(ρδ)U .

Now we focus on the main difference between the two algorithms: the post-processing. In particular,
the coverage constraint of k-median with outliers introduces two difficulties in rounding the final
O(1) fractional facilities: (a) we are no longer guaranteed that Cpart = ∅, and (b) we must satisfy
the coverage constraint.

The difficulty with (a) is that now rounding a facility up to one can also incur an unbounded
multiplicative cost in the objective. To see this, consider a fractional facility i that is almost closed,
so ȳi ∼ 0. Consider rounding this facility up to one. Then for a client j ∈ Cpart that fractionally

31

connects to i in the solution ȳ, if we fully connect j to i, this costs d(j, i)≫ d(j, i)ȳi. The solution
here is to use Extra Invariant (2) to bound the additive cost of opening facilities.

The more troublesome issue is (b). Note that the same approach that we used to prove that
there exists a good integral setting of the O(1) fractional variables in Lemma 2.6.7 does not work
here because putting the coverage constraint in the objective of the LP could result in a solution
covering the same client multiple times. Our solution to (b) is a more sophisticated post-processing
algorithm that first re-routes clients in Cpart. After re-routing, we carefully pick facilities to open
that do not double-cover any remaining Cpart-clients. We defer the details of our post-processing
algorithm for § 2.7. For now, we present the guarantees of our pseudo-approximation combined
with post-processing:

Theorem 2.6.14. There exists a polynomial time algorithm that takes as input LPiter for k-
median with outliers instance I satisfying all Basic- and Extra Invariants and outputs a feasible set
of facilities S ⊃ S0 such that the cost of connecting m clients to S is at most (2 + α)Opt(LPiter) +

O(ρ/δ)U , where α = max(3 + 2τ−c, 1 + 4+2τ−c

τ , τ
3+2τ2+1
τ3−1

) for any constant c ∈ N.

Combining the pre-processing of Theorem 2.6.11 with Theorem 2.6.14 and tuning parameters gives
our final approximation algorithm for k-median with outliers. The proof of Theorem 2.1.3 is
analogous to Theorem 2.1.2, so we defer it to Appendix A.2.

2.7 Post-Processing for k-Median with Outliers

In this section we develop the post-processing algorithm for k-median with outliers that is guaran-
teed by Theorem 2.6.14. The structure of our algorithm is recursive. First, we give a procedure to
round at least one fractional facility or serve at least one client. Then we recurse on the remaining
instance until we obtain an integral solution.

2.7.1 Computing Partial Solutions

In this section, we show how to round at least one fractional facility or serve at least one client.
We interpret this algorithm as computing a partial solution to the given k-median with outliers
instance.

The main idea of this algorithm is to re-route clients in Cpart. In particular, we maintain a subset
C̄ ⊂ C∗ such that for every client in C̄, we guarantee to open an integral facility in their F -ball.
We also maintain a subset Ccovered ⊂ Cpart of Cpart-clients that we re-route; that is, we guarantee
to serve them even if no open facility is in their F -balls. Crucially, every client in Cpart \ Ccovered

is supported on at most one F -ball for clients in C̄. Thus, we do not have to worry about double-
covering those clients when we round the facilities in F (C̄).

The partial solution we output consists of one open facility for each client in C̄ (along with the
facilities that happen to be integral already), and we serve the clients in Cfull, C

∗, Ccovered, and the
Cpart-clients supported on our open facilities. See Algorithm 5 (ComputePartial) for the formal
algorithm to compute partial solutions. Note that c ∈ N is a parameter of ComputePartial.

We note that to define a solution for k-median with outliers, it suffices to specify the set of open
facilities S, because we can choose the clients to serve as the m closest clients to S. Thus when we
output a partial solution, we only output the set of open facilities.

We summarize the performance of ComputePartial with the next theorem, which we prove in
§ 2.7.4. In the next section, we use Theorem 2.7.1 to define our recursive post-processing algorithm.

32

Algorithm 5: ComputePartial

Input: LPiter and ȳ output by PseudoApproximation on a k-median with outliers
instance such that C∗

<1 ̸⊂ C0

Output: Output a partial solution S ⊂ F and modify LPiter

4.1 Initialize Ccovered = ∅ and C̄ = {j ∈ C∗
<1 | Fj ∩ S0 = ∅}

4.2 for all clients j̄ ∈ C̄ in increasing order of ℓj̄ do

4.3 For all j ∈ C̄ such that j ̸= j̄ and Fj ∩ Fj̄ ̸= ∅, remove j from C̄

4.4 while there exists a client j′ ∈ Cpart \ Ccovered such that Fj′ intersects Fj̄ and Fj for

some other j ∈ C̄ do
4.5 if ℓj′ ≤ ℓj̄ − c then

4.6 Remove j from C̄
4.7 end
4.8 else
4.9 Add j′ to Ccovered

4.10 end

4.11 end

4.12 end
4.13 For all i ∈ F , we define wi = |{j ∈ Cpart \ Ccovered | i ∈ Fj}|
4.14 Construct the set S̄ ⊂ F (C̄) by greedily picking the facility i ∈ Fj with largest wi for each

j ∈ C̄
4.15 Define the set Cpart(S̄) = {j ∈ Cpart | Fj ∩ S̄ ̸= ∅}
4.16 Define the partial set of facilities by S = (S̄ ∪ F=1) \ S0 and the partial set of clients by

C ′ = Cpart(S̄) ∪ Ccovered ∪ Cfull ∪ (C∗ \ C0)
4.17 Update LPiter by deleting S and F (C̄) from F , deleting all clients in C ′ from C,

decrementing k by |S|, and decrementing m by |C ′|
4.18 Output the partial solution S

33

Theorem 2.7.1. Let LPiter and ȳ be the input to ComputePartial. Then let S be the partial
solution output by ComputePartial and LP 1

iter be the modified LP. Then LP 1
iter satisfies all

Basic- and Extra Invariants and we have:

Opt(LP 1
iter) +

1

2 + α

∑
j∈C′

d(j, S ∪ S0) ≤ Opt(LPiter) +O(
ρ

δ
)U,

where α = max(3 + 2τ−c, 1 + 4+2τ−c

τ , τ
3+2τ2+1
τ3−1

).

We want LP 1
iter to satisfy all Basic- and Extra Invariants so we can continue recursing on LP 1

iter.
The inequality given by Theorem 2.7.1 allows us to extend a solution computed on LP 1

iter with the
partial solution S.

2.7.2 Recursive Post-Processing Algorithm

To complete our post-processing algorithm, we recursively apply ComputePartial until we have
an integral solution.

The main idea is that we run PseudoApproximation to obtain an optimal extreme point with
O(1) fractional variables. Then using this setting of the y-variables, we construct a partial solution
consisting of some open facilities along with the clients that they serve. However, if there are still
fractional facilities remaining, we recurse on LPiter (after the modifications by ComputePartial.)
Our final solution consists of the union of all recursively computed partial solutions. See Algorithm 6
(OutliersPostProcess.)

Algorithm 6: OutliersPostProcess

Input: LPiter for a k-median with outliers instance satisfying all Basic- and Extra
Invariants

Output: Solution S ⊂ F

5.1 Run PseudoApproximation to obtain extreme point ȳ to LPiter

5.2 if ȳ is integral then
5.3 Output the solution F=1

5.4 end
5.5 else if C∗

<1 ⊂ C0 then
5.6 By Lemma 2.7.2, ȳ has at most two fractional variables, say a, b ∈ F .
5.7 Without loss of generality, we may assume |{j ∈ Cpart | a ∈ Fj}| ≥ |{j ∈ Cpart | b ∈ Fj}|
5.8 Output the solution F=1 ∪ {a}
5.9 end

5.10 else
5.11 Run ComputePartial to obtain partial solution S′ and update LPiter

5.12 Run ComputePartial on updated LPiter to obtain partial solution S′′

5.13 Output solution S′ ∪ S′′

5.14 end

For proof of the next lemma, see Appendix A.3.

Lemma 2.7.2. If C∗
<1 ⊂ C0, then ȳ has at most two fractional variables.

34

2.7.3 Analysis of OutliersPostProcess

In this section, we show that OutliersPostProcess satisfies the guarantees of Theorem 2.6.14.
All missing proofs can be found in Appendix A.3. We let ȳ be the output of PseudoApproxima-
tion in the first line of OutliersPostProcess and α = max(3 + 2τ−c, 1 + 4+2τ−c

τ , τ
3+2τ2+1
τ3−1

).
First, we handle the base cases of OutliersPostProcess.

The easiest base is when ȳ is integral. Here, we do not need the Extra Invariants - all we need is
that every client j ∈ Cfull ∪ C∗ has an open facility within distance (2 + α)L(ℓj).

Lemma 2.7.3. If ȳ is integral, then the output solution F=1 is feasible, contains S0, and connecting
m clients costs at most (2 + α)Opt(LPiter).

Now, in the other base case, ȳ is not integral, but we know that C∗
<1 ⊂ C0. By Lemma 2.7.2,

we may assume without loss of generality ȳ has exactly two fractional facilities, say a, b ∈ F<1.
Further, we may assume that the k-constraint is tight, because opening more facilities can only
improve the objective value. It follows that ȳa + ȳb = 1. For the sake of analysis, we define the
sets Cpart(a) = {j ∈ Cpart | a ∈ Fj} and Cpart(b) = {j ∈ Cpart | b ∈ Fj} where we may assume
|Cpart(a)| ≥ |Cpart(b)|.
It remains to bound the cost of the solution F=1 ∪ {a}. One should imagine that we obtain this
solution from ȳ by closing down the facility b and opening up a. First we handle the degenerate
case where a ∈ S0. In this case, a and b must both be co-located copies of a facility in S0, so
opening one or the other does not change the cost. Thus, we may assume without loss of generality
that a /∈ S0. Here, we need to Extra Invariants to bound the cost of opening a and closing b

Lemma 2.7.4. Suppose a /∈ S0. Then the output solution F=1 ∪ {a} is feasible, contains S0, and
connecting m clients costs at most (2 + α)Opt(LPiter) +O(ρδ)U.

This completes the analysis of the base cases. To handle the recursive step, we apply Theorem 2.7.1.

Proof of Theorem 2.6.14. First, we show that OutliersPostProcess terminates in polynomial
time. It suffices to show that the number of recursive calls to ComputePartial is polynomial.
To see this, note that for each recursive call, it must be the case that C∗

<1 ̸⊂ C0. In particular,
there exists some non-dummy client in C∗ \ C0. Thus, we are guaranteed to remove at least once
client from C in each recursive call.

Now it remains to show that the output solution is feasible, contains S0, and connecting m clients
costs at most (2 + α)Opt(LPiter) +O(ρδ)U . Let ȳ be the extreme point computed by PseudoAp-
proximation in the first line of OutliersPostProcess. If ȳ is integral or C∗

<1 ⊂ C0, then we
are done by the above lemmas.

Then it remains to consider the case where C∗
<1 ̸⊂ C0. Let LPiter denote the input to Out-

liersPostProcess and LP 1
iter the updated LPiter at the end of ComputePartial as in the

statement of Theorem 2.7.1. We note that Theorem 2.7.1 implies that LP 1
iter satisfies all Basic

and Extra Invariants, so LP 1
iter is a valid input to OutliersPostProcess. Then we may assume

inductively that the recursive call to OutliersPostProcess on LP 1
iter outputs a feasible solution

S′′ to LP 1
iter such that S0 ⊂ S′′ and the cost of connecting m1 clients from C1 to S′′ is at most

(2 + α)Opt(LP 1
iter) +O(ρδ)U .

Further, let S′ be the partial solution output by ComputePartial on LPiter. Now we combine the
solutions S′ and S′′ to obtain the solution output by OutliersPostProcess. First, we check that

35

S′∪S′′ is is feasible. This follows, because |S′′| ≤ k1 ≤ k−|S′| by definition of ComputePartial.
Also, S0 ⊂ S′′ by the inductive hypothesis.

It remains to bound the cost of connecting m clients to S′ ∪ S′′. Consider serving the m1

closest clients in C1 with S′′ and C ′ with S′ ∪ S0. Because m1 = m − |C ′|, this is enough
clients. Connecting the m1 closest clients in C1 to S′′ costs at most (2 + α)Opt(LP 1

iter) + O(ρδ)U
by the inductive hypothesis. Now we use the guarantee of Theorem 2.7.1, which we recall is:
Opt(LP 1

iter) +
1

2+α

∑
j∈C′

d(j, S′ ∪ S0) ≤ Opt(LPiter) + O(ρδ)U. Thus, the total connection cost is at

most: (2 + α)Opt(LP 1
iter) + O(ρδ)U +

∑
j∈C′

d(j, S′ ∪ S0) ≤ (2 + α)Opt(LPiter) + O(ρδ)U. Note that

the additive O(ρδ)U terms which we accrue in each recursive call are still O(ρδ)U overall. This is
because we keep recursing on a subset of the remaining fractional facilities – which is always O(1)
– and we open/close each fractional facility at most once over all recursive calls. Thus, we can
bound the additive cost of each opening/closing by O(ρδ)U .

2.7.4 Proof of Theorem 2.7.1

We let LPiter and ȳ denote the input to ComputePartial and LP 1
iter the updated LP that is

output at the end ComputePartial. We begin with three properties of ComputePartial that
will be useful throughout our analysis.

The first is immediate by definition of ComputePartial.

Proposition 2.7.5. Upon termination of ComputePartial, the set family {Fj | j ∈ C̄} is
disjoint, and every client j ∈ Cpart \ Ccovered, Fj intersects at most one F -ball for clients in C̄.

Proposition 2.7.6. ComputePartial initializes and maintains the invariants that Ccovered ⊂
Cpart and C̄ ⊂ {j ∈ C∗

<1 | Fj ∩ S0 = ∅}

Proof. We initialize Ccovered = ∅ and only add clients from Cpart to Ccovered. Similarly, we initialize
C̄ = {j ∈ C∗

<1 | Fj ∩ S0 = ∅} and only remove clients from C̄.

Lemma 2.7.7. Every j̄ ∈ C̄ that is reached by the For loop remains in C̄ until termination.

Proof. Assume for contradiction that there exists j̄ that is reached by the For loop, but j̄ does
not remain in C̄ until termination. Note that j̄ cannot be removed from C̄ in the iteration that it
is considered in the For loop. Thus there must exist a later iteration for client, say j in which j̄
is removed from C̄. In the iteration for client j, there are only two possible ways that j̄ is removed
from C̄. Either Fj ∩Fj̄ ̸= ∅ or there exists a client j′ ∈ Cpart \Ccovered such that Fj′ intersects both
Fj and Fj̄ and ℓj′ ≤ ℓj − c.

In the former case, because we consider j̄ before j, it must be the case that we removed j from C̄
in j̄’s iteration. This is a contradiction. Similarly, in the second case if such a j′ exists, then in j̄’s
iteration, we either remove j from C̄ or add j′ to Ccovered. In either case, this is a contradiction.

Now we are ready to prove both properties of Theorem 2.7.1. It is not difficult to see that LP 1
iter

satisfies all Basic- and Extra Invariants by construction.

Lemma 2.7.8. LP 1
iter satisfies all Basic- and Extra Invariants.

Proof. By assumption, the input to ComputePartial, LPiter, satisfies all Basic and Extra Invari-
ants. To obtain LP 1

iter from LPiter, we delete some clients and facilities. Thus the only change to
the F - and B-balls for clients in C1 is that we possibly remove some facilities from their F - and

36

B-balls; importantly, the radius levels, ℓj for all clients j, remain the same. Thus, it is easy to see
that LP 1

iter satisfies all Basic Invariants.

Similarly, for all remaining clients j, we have not changed ℓj or Rj , so the only Extra Invariant
that requires some care to verify is Extra Invariant (1). However, we recall that to obtain C∗1,
we delete all clients in C∗ \ C0 from the instance, so C∗1 = C0. This is because C0 ⊂ C∗ by the
assumption that LPiter satisfies all Extra Invariants.

Now it remains to show Opt(LP 1
iter) +

1
2+α

∑
j∈C′

d(j, S ∪ S0) ≤ Opt(LPiter) +O(ρδ)U . To do this, we

partition C into C1 and C ′ = Cpart(S̄)∪Ccovered∪Cfull ∪ (C∗ \C0). For each client in C1, we show
that its contribution to the objective of LP 1

iter is at most its contribution to LPiter. Then for each
client j ∈ C ′, either d(j, S ∪ S0) is at most 2 + α times j’s contribution to Opt(LPiter) or we can
charge j’s connection cost to an additive O(ρδ)U term.

First, we focus on C1. For these clients, it suffices to show that ȳ (restricted to F 1) is feasible
for LP 1

iter. This is because for all j ∈ C1, either j ∈ C1
part ⊂ Cpart or j ∈ C0. The clients in C0

contribute zero to the cost of LP 1
iter and LPiter. This is because both LPiter and LP 1

iter satisfy
Extra Invariant (1), so every dummy client j(i) ∈ C0 is co-located with one unit of open facility
corresponding to i ∈ S0.

Thus it remains to consider the clients j ∈ C1
part. We recall that C1

part ⊂ Cpart and F 1
j ⊂ Fj for all

j ∈ C1, so each j ∈ C1
part costs less in LP 1

iter than in LPiter.

To complete the cost analysis of C1, we go back to prove feasibility. The main difficulty is showing
that the coverage constraint is still satisfied. Recall that we construct S̄ by greedily opening the
facility in each F -ball for clients in C̄ that covers the most Cpart \Ccovered-clients. Proposition 2.7.5
ensures that this greedy choice is well-defined (because {Fj | j ∈ C̄} is disjoint), and that we do
not double-cover any Cpart \ Ccovered-clients.

Then by definition of greedy, we show that our partial solution covers more clients than the fractional
facilities we delete. This proposition is the key to showing that the coverage constraint is still
satisfied.

Proposition 2.7.9. Upon termination of ComputePartial, we have |Cpart(S̄)| ≥
∑
j∈C̄

∑
i∈Fj

wiȳi.

Proof. For each j ∈ C̄, let i(j) ∈ S̄ be the unique open facility in Fj . By definition of Cpart(S̄), for
all j ∈ Cpart(S̄) we have Fj ∩ S̄ ̸= ∅. Further, by Proposition 2.7.5, Fj intersects exactly one F -ball
among clients in C̄, so each i(j) for j ∈ C̄ covers a unique set of clients. This implies the equality:
|Cpart(S̄)| =

∑
j∈C̄

wi(j). Combining this equality with the facts that for all j ∈ C̄, we have ȳ(Fj) = 1

and wi(j) ≥ wi for all i ∈ Fj gives the desired inequality:

|Cpart(S̄)| =
∑
j∈C̄

wi(j) ≥
∑
j∈C̄

wi(j)ȳ(Fj) ≥
∑
j∈C̄

∑
i∈Fj

wiȳi.

Finally, we can complete the analysis of C1. It is easy to check that constraints except for the
coverage constraint are satisfied. To handle the coverage constraint, we use Proposition 2.7.9.

Lemma 2.7.10. ȳ restricted to F 1 is feasible for LP 1
iter.

37

Proof. We note that C1 = C\(Cpart(S̄)∪Ccovered∪Cfull∪(C∗\C0)) and F 1 = F \(F=1∪F (C̄)\S0).
Then we have C1

part = Cpart \ (Cpart(S̄) ∪ Ccovered), C
1
full = ∅, and C∗1 = C0.

It suffices to show that all C1
part-constraints, C

∗1-constraint, the k-constraint, and the coverage
constraint are satisfied by ȳ restricted to F 1.

Consider any j ∈ C1
part. We observe that the F 1

j ⊂ Fj for all j ∈ C1
part and C1

part ⊂ Cpart.Then

ȳ(F 1
j) ≤ ȳ(Fj) ≤ 1 for all j ∈ C1

part.

Now for any j ∈ C∗1 = C0, it suffices to show that we do not delete any copies of i ∈ S0 when
going from from F to F 1, but this is immediate because S0 ⊂ F , and we do not delete any facility
from S0 to obtain F 1. Thus, every C∗1-constraint is satisfied.

For the k-constraint, we have ȳ(F) ≤ k. We want to show ȳ(F 1) ≤ k − |S|. By definition
|S̄| =

∑
j∈C̄

ȳ(Fj) = ȳ(F (C̄)), where the final equality follows because {Fj | j ∈ C̄} is a disjoint

collection by Proposition 2.7.5. Then we compute: ȳ(F 1) = ȳ(F) − ȳ(F (C̄)) − |F=1 \ S0| ≤
k − |S̄| − |F=1 \ S0| = k − |S| , as required.
Finally, for the coverage constraint, we want to show:∑

j∈C1
part

ȳ(F 1
j) ≥ m1 − |C1

full ∪ C∗1|,

where C1
part = Cpart \ (Cpart(S̄)∪Ccovered), m

1 = m− |Cpart(S̄)∪Ccovered ∪Cfull ∪ (C∗ \C0)|, and
C1
full = ∅ and C∗1 = C0, so |C1

full ∪ C∗1| = |C0|. Thus we can re-write the coverage constraint as:∑
j∈C1

part

ȳ(F 1
j) ≥ m− |Cpart(S̄) ∪ Ccovered ∪ Cfull ∪ C∗|.

Recall that the coverage constraint of LPiter implies:
∑

j∈Cpart

ȳ(Fj) ≥ m− |Cfull ∪C∗|. By splitting

this inequality into the contribution by C1
part and Cpart \ C1

part = Cpart(S̄) ∪ Ccovered, we obtain:∑
j∈Cpart

ȳ(Fj) ≥ m− |Cfull ∪ C∗|

∑
j∈C1

part

ȳ(Fj) +
∑

j∈Cpart(S̄)∪Ccovered

ȳ(Fj) ≥ m− |Cfull ∪ C∗|

∑
j∈C1

part

ȳ(Fj) +
∑

j∈Cpart(S̄)

ȳ(Fj) ≥ m− |CcoveredCfull ∪ C∗|

, where in the final inequality we use the fact that ȳ(Fj) ≤ 1 for all j ∈ Ccovered ⊂ Cpart. Now, we
recall that F 1

j = Fj \F (C̄) for all j ∈ C1
part, because C

1
part ⊂ Cpart. We can re-write:

∑
j∈C1

part

ȳ(Fj) =∑
j∈C1

part

(ȳ(F 1
j) + ȳ(Fj ∩ F (C̄)). To show that the coverage constraint is satisfied, it suffices to show:∑

j∈Cpart1

ȳ(Fj ∩ F (C̄)) +
∑

j∈Cpart(S̄)

ȳ(Fj) ≤ |Cpart(S̄)|. To see this, observe that the first sum is over

all clients in Cpart \Ccovered supported on some facility in F (C̄) \ S̄ but none in S̄ (otherwise these
clients would be in Cpart(S̄).) The second sum is over all clients in Cpart \ Ccovered supported

38

on some facility in S̄. Thus, recalling that wi = |{j ∈ Cpart \ Ccovered | i ∈ Fj}|, we have:∑
j∈Cpart1

ȳ(Fj ∩F (C̄))+
∑

j∈Cpart(S̄)

ȳ(Fj) =
∑
j∈C̄

∑
i∈Fj

wiȳi ≤ |Cpart(S̄)|, where in the final inequality we

apply Proposition 2.7.9.

For the final property, we must upper bound the connection cost of C ′ = Cpart(S̄) ∪ Ccovered ∪
Cfull ∪ (C∗ \ C0) to S ∪ S0. We bound the connection cost in a few steps. First, we bound the
re-routing cost of Cfull ∪ C∗. Second, we show that every j ∈ Ccovered has a ”back-up” facility
within O(1)L(ℓj). This is used to bound the additive cost of connecting Ccovered. Finally, for the
clients in Cpart(S̄), we guarantee to open a facility in their F -balls, so we also bound their additive
cost.

The next lemma and corollary allow us to bound the cost of Cfull ∪ C∗.

Lemma 2.7.11. Upon termination of ComputePartial, for all j ∈ C∗, we have d(j, S ∪ S0) ≤
(3 + 2

τc)L(ℓj).

Proof. There are a few cases to consider. First, if j ∈ C∗
=1, then the lemma is trivial because by

definition there exists an integral facility in Fj . Otherwise, if j ∈ C∗
<1, but Fj ∩ S0 ̸= ∅, then again

the lemma is trivial.

Thus it remains to consider clients j ∈ {j ∈ C∗
<1 | Fj ∩ S0 = ∅}. We note that such a client j is

initially in C̄. If j remains in C̄ until termination, then we are done, because we are guaranteed to
open a facility in Fj for all j ∈ C̄ (this is exactly the set S̄ of facilities.)

For the final case, we suppose client j is removed from C̄ in the iteration where we consider j̄ ∈ C̄.
Then either Fj ∩ Fj̄ ̸= ∅ or there exists j′ ∈ Cpart \ Ccovered such that Fj′ intersects both Fj and
Fj̄ and ℓj′ ≤ ℓj̄ − c. Note that because the For loop considers clients in increasing order of radius
level, we have ℓj ≥ ℓj̄

In the former case, by the Distinct Neighbors Property, we have ℓj ≥ ℓj̄ + 1. Further, by
Lemma 2.7.7, we know that j̄ remains in C̄ until termination, so d(j̄, S) ≤ L(ℓj̄). Then we can

upper bound: d(j, S) ≤ d(j, j̄) + d(j̄, S) ≤ L(ℓj) + L(ℓj̄) + L(ℓj̄) ≤ (1 + 2
τ)L(ℓj) < 3L(ℓj), where in

the final inequality, we use the fact that τ > 1.

In the latter case, we again have d(j̄, S) ≤ L(ℓj̄). Then we can bound the distance from j to S by
first going from j to j′, then from j′ to j̄, and finally from j̄ to S, where ℓj′ ≤ ℓj̄ − c and ℓj̄ ≤ ℓj :

d(j, S) ≤ d(j, j′) + d(j′, j̄) + d(j̄, S) ≤ L(ℓj) + L(ℓj′) + L(ℓj′) + L(ℓj̄) + L(ℓj̄) ≤ (3 +
2

τ c
)L(ℓj).

Corollary 2.7.12. Upon termination of ComputePartial, for all j ∈ Cfull ∪ C∗, we have

d(j, S ∪ S0) ≤ (2 + α)L(ℓj), where α = max(3 + 2τ−c, 1 + 4+2τ−c

τ , τ
3+2τ2+1
τ3−1

)

Proof. Apply Theorem 2.5.2 with β = 3 + 2τ−c.

Similarly, the next lemma ensures that Ccovered can also be re-routed.

Lemma 2.7.13. Upon termination of ComputePartial, for all j ∈ Ccovered, we have d(j, S̄) ≤
(1 + 2τ c)L(ℓj).

39

Proof. Because j ∈ Ccovered, it must be the case that we put j in Ccovered in some iteration of the
For loop where we consider client j̄ ∈ C̄. Thus we have ℓj ≥ ℓj̄ − c + 1 and Fj ∩ Fj̄ ̸= ∅. Also,
by Lemma 2.7.7, j̄ remains in C̄ until termination, so d(j̄, S̄) ≤ L(ℓj̄). Using these facts, we can
bound: d(j, S) ≤ d(j, j̄) + d(j̄, S) ≤ L(ℓj) + L(ℓj̄) + L(ℓj̄) ≤ (1 + 2τ c−1)L(ℓj).

Using the above lemmas, we are ready to bound the connection cost of our partial solution. Note
that we bound the cost of serving C ′ not with S, which is the partial solution we output, but rather
with S ∪ S0. Thus, we are implicitly assuming that S0 will be opened by the later recursive calls.

We recall that C ′ = Cpart(S̄) ∪ Ccovered ∪ Cfull ∪ (C∗ \ C0) and S ∪ S0 = F=1 ∪ S̄ ∪ S0.

To begin, we bound the cost of connecting Cpart(S̄) to S̄. By definition, every client j ∈ Cpart(S̄)
has some facility from S̄ in its F -ball. Further, S̄ ⊂ F (C̄) by definition, and F (C̄) ∩ S0 = ∅ using
Proposition 2.7.5. Thus we can apply Extra Invariant (2) to each facility in S̄. Further, we know
that |S̄| = O(1), because there are only O(1) fractional facilities, and every facility in S̄ is fractional
by definition. Then we can bound:

∑
j∈Cpart(S̄)

d(j, S̄) ≤
∑
i∈S̄

∑
j∈Cpart(S̄)|i∈Fj

d(j, i) ≤ O(ρ)U , where we

apply Extra Invariant (2) for each i ∈ S̄. Thus, we have shown that the connection cost of Cpart(S̄)
is at most an additive O(ρ)U .

Now we move on to the rest of C ′, that is - the clients in Ccovered, Cfull and C∗ \C0. For the clients
in Ccovered, we know by Lemma 2.7.13 that every client j ∈ Ccovered has an open facility in S̄ at
distance at most (1 + 2τ c)L(ℓj). Further, by definition of Ccovered, each j ∈ Ccovered is supported
on a fractional facility not in S0. To see this, note that for all j ∈ Ccovered, there exists j̄ ∈ C̄ such
that Fj ∩ Fj̄ ̸= ∅, and Fj̄ ∩ S0 = ∅.
Then we can use Lemma 2.6.13 for each fractional facility i /∈ S0 to bound the cost of connecting
all Ccovered-clients supported on i to S̄. For each such fractional facility i /∈ S0, the connection cost
of these clients is at most O(ρδ)U . By summing over all O(1)-many fractional i /∈ S0, we connect
all of Ccovered at additive cost at most O(ρδ)U .

Finally, we handle the clients in Cfull ∪ (C∗ \C0). For convenience, we denote this set of clients by

Ĉ. Using Lemma 2.7.11, every j ∈ Ĉ has a facility in S∪S0 at distance at most (2+α)L(ℓj). There
are a few cases to consider. For the first case, we consider the clients {j ∈ Ĉ | Fj \ (S0 ∪F=1) ̸= ∅},
that is the set of Ĉ-clients whose F -balls contain some cheap, fractional facility. By an analogous
argument as for Ccovered, we can apply Lemma 2.6.13 to each fractional i /∈ S0 to bound the cost
of connecting {j ∈ Ĉ | Fj \ (S0 ∪ F=1) ̸= ∅} to S ∪ S0 by O(ρδ)U .

Then it remains to consider the clients j ∈ Ĉ such that Fj ⊂ F=1 ∪ S0. For such a client j, if
Fj = ∅, then j’s contribution to the objective of LPiter is exactly L(ℓj), so connecting j to S ∪ S0

costs at most (2 + α) times j’s contribution to the objective of LPiter.

Similarly, if Fj happens to contain a facility in F=1∪S0, then we can simply connect j to the closest
such facility in Fj . Note that F=1 ∪ S0 ⊂ S ∪ S0, so j’s connection cost in this case it as most its
contribution to the objective in LPiter. In conclusion, the connection cost of {j ∈ C̄ | Fj ⊂ F=1∪S0}
is at most (2+α)Opt(LPiter). Summing the costs of these different groups of clients completes the
proof.

40

2.8 Chain Decompositions of Extreme Points

In this section, we prove a more general version of Theorem 2.4.2 that applies to set-cover-like
polytopes with r side constraints. In particular, we consider polytopes of the form:

P = {y ∈ RF | y(Fj) = 1 ∀j ∈ C∗, 0 ≤ y ≤ 1, Ay ≤ b}

, where F , C∗, and the F -balls are defined as in LPiter, and Ay ≤ b is an arbitrary system of r
linear inequalities. We note that other than the Cpart-, and Cfull-constraints, P generalizes the
feasible region of LPiter by taking the system Ay ≤ b to be the r1 knapsack constraints and r2
coverage constraints.

Although we phrase P in terms of facilities and clients, one can interpret P as a set cover polytope
with side constraints as saying that we must choose elements in F to cover each set in the family
F = {Fj | j ∈ C∗} subject to the constraints Ay ≤ b. The main result of this section is that if F
has bipartite intersection graph, there exists a chain decomposition of the extreme points of P.
Note that P can also also be interpreted as the intersection of two partition matroid polytopes or
as a bipartite matching polytope both with r side constraints. Our chain decomposition theorem
shares some parallels with the work of Grandoni, Ravi, Singh, and Zenklusen, who studied the
structure of bipartite matching polytopes with r side constraints [GRSZ14].

Theorem 2.8.1 (General Chain Decomposition). Suppose we have a polytope: P = {y ∈ RF |
y(Fj) = 1 ∀j ∈ C∗, 0 ≤ y ≤ 1, Ay ≤ b}, such that F is a finite ground set of elements (facilities),
{Fj ⊂ F | j ∈ C∗} is a set family indexed by C∗ (clients), and Ay ≤ b is a system of r linear
inequalities. Further, let ȳ be an extreme point for P such that no non-negativity constraint is tight.
If F has bipartite intersection graph, then C∗

<1 admits a partition into 3r chains along with at most
2r violating clients (clients that are not in any chain.)

We will use the following geometric fact about extreme points of polyhedra:

Claim 2.8.2. Let P be a polyhedron in Rn. Then x ∈ Rn is an extreme point of P if and only
if there exist n linearly independent constraints of P that are tight at x. We call such a set of
constraints a basis for x.

Theorem 2.4.2 follows almost immediately from Theorem 2.8.1.

Proof of Theorem 2.4.2. Let ȳ be an extreme point of LPiter such that no Cpart-, Cfull-, or non-
negativity constraint is tight, and suppose LPiter satisfies the Distinct Neighbors Now consider the
polytope:

P = {y ∈ RF | y(Fj) = 1 ∀j ∈ C∗, 0 ≤ y ≤ 1, Ay ≤ b},

, where Ay ≤ b consists of the r1 knapsack constraints and r2 coverage constraints of LPiter. We
claim that ȳ is an extreme point of P. To see this, note that ȳ is an extreme point of LPiter, so fix
any basis for ȳ using tight constraints of LPiter. By assumption, this basis uses no Cpart-, Cfull-,
or non-negativity constraint. In particular, it only uses constraints of LPiter that are also present
in P, so this basis certifies that ȳ is an extreme point of P.
Further, by Proposition 2.2.6, the set family {Fj | j ∈ C∗} has bipartite intersection graph. Then
we can apply Theorem 2.8.1 to ȳ and polytope P, which gives the desired result.

41

2.8.1 Proof of Theorem 2.8.1

Now we go back to prove the more general chain decomposition theorem: Theorem 2.8.1. Through-
out this section, let P = {y ∈ RF | y(Fj) = 1 ∀j ∈ C∗, 0 ≤ y ≤ 1, Ay ≤ b} be a polytope satisfying
the properties of Theorem 2.8.1. In particular, the intersection graph of F = {Fj | j ∈ C∗} is bi-
partite. Further, let ȳ be an extreme point of P such that no non-negativity constraint is tight for
ȳ.

The crux is the next lemma, which allows us to bound the complexity of the intersection graph
with respect to the number of side constraints r. The lemma follows by constructing an appropriate
basis for ȳ.

Definition 2.8.3. For any subset C ′ ⊂ C∗, let dim(C ′) denote the maximum number of linearly
independent C ′-constraints, so the constraint set {y(Fj) = 1 | j ∈ C ′}.

Lemma 2.8.4. Let ȳ be an extreme point of P such that no non-negativity constraint is tight.
Then the number of fractional facilities in ȳ satisfies |F<1| ≤ dim(C∗

<1) + r (r is the number of
constraints of Ay ≤ b.)

Proof. We construct a basis ȳ. First, for each integral facility i ∈ F=1, we add the integrality
constraint ȳi ≤ 1 to our basis. Thus we currently have |F=1| constraints in our basis.

It remains to choose |F<1| further linearly independent constraints to add to our basis. Note that we
have already added all tight integrality constraints to our basis, and no non-negativity constraint is
tight. Then the only remaining constraints we can add are the C∗-constraints and the r constraints
of Ay ≤ b. Every C∗

=1-constraint is linearly dependent with the tight integrality constraints, which
we already chose. It follows, the only possible constraints we can choose are the C∗

<1-constraints
and the r constraints of Ay ≤ b so |F<1| ≤ dim(C∗

<1) + r.

Now, to find a chain decomposition of C∗
<1, first we find the violating clients. We note that every

F -ball contains at least two facilities. The violating clients will be those clients whose F -balls
contain strictly more than two facilities, so we let V = {j ∈ C∗

<1 | |Fj | > 2} be the set of violating
clients. We show that V has the desired size by a standard counting argument.

Proposition 2.8.5. |V | ≤ 2r

Proof. Note that the F -balls for clients in C∗
<1 are supported on only factional facilities, and each

such ball contains at least two fractional facilities. Further, because F has bipartite intersection
graph, each fractional facility is in at most two F -balls for clients in V . Combining these observa-
tions give:

|V | ≤
∑
j∈C∗

(|Fj | − 2) ≤ 2|F<1| − 2|C∗|.

Applying Lemma 2.8.4 completes the proof:

|V | ≤ 2(dim(C∗
<1) + r)− 2|C∗

<1| ≤ 2r.

It remains to partition C∗
<1 \ V into the desired chains. Importantly, for all j ∈ C∗

<1 \ V , we have
|Fj | = 2. To find our chains, we consider the intersection graph of C∗

<1, so the intersection graph
of the set family {Fj | j ∈ C∗

<1}. We let G denote this graph. Note that G is a subgraph of the
standard intersection graph, so it is also bipartite by assumption.

42

We consider deleting the vertices V from G, which breaks G into some connected components, say
H1, . . . ,Hℓ. Let Vk denote the vertex set of Hk, so we have that Vk ∪ · · · ∪ Vk partitions C∗

<1 \ V .
Further, for all k ∈ [ℓ], every F -ball for clients in Vk contains exactly two facilities, and every
facility is in at most two F -balls. Translating these statements into properties of the intersection
graph, we can see that every vertex of Hk has degree at most two, and Hk is connected, so we
can conclude that each Hk is a path or even cycle (we eliminate the odd cycle case because the
intersection graph is bipartite.) Thus, each Vk forms a chain.

To complete the proof, it remains to upper bound ℓ, the number of chains. To do so, we first split
the inequality given by Lemma 2.8.4 into the contribution by each Hk. Importantly, we observe
that the F (Vk)’s are disjoint for all k because the Vk’s correspond to distinct connected components.
Then we have:∑

k∈[ℓ]

|F (Vk)| ≤ |F<1| ≤ dim(C∗
<1) + r ≤

∑
k∈[ℓ]

dim(Vk) + dim(V) + r ≤
∑
k∈[ℓ]

dim(Vk) + 3r.

The way to interpret this inequality is that each chain Vk has a budget of dim(Vk) fractional
facilities to use in its chain, but we have an extra 3r facilities to pay for any facilities beyond each
Vk’s allocated budget. We will show that each chain uses at least one extra facility from this 3r
surplus, which allows us to upper bound ℓ by 3r.

Proposition 2.8.6. For all k ∈ [ℓ], we have |F (Vk)| > dim(Vk).

Proof. There are two cases to consider based on if Hk is a path or even cycle. Suppose Hk is a path,
say j1 → · · · → jp. We first handle the degenerate case where there exists q ∈ [p − 1] such that
|Fjq ∩Fjq+1 | = 2. Because each F -ball for these clients has size exactly two, the path Hk has length
exactly two and both clients have exactly the same F -ball. Thus, |F (Vk)| = 2, but dim(Vk) = 1.

Otherwise, we may assume for all q ∈ [p− 1], we have |Fjq ∩ Fjq+1 | = 1. Then each non-leaf client
shares one facility with the previous client on the path and one with the next, and each leaf client
has one facility all to itself. With these observations, we can bound:

dim(Vk) ≤ |Vk| =
1

2

∑
j∈Vk

|Fj | =
1

2
(2|F (Vk)| − 2) = |F (Vk)| − 1.

It remains to consider the case where Hk is an even cycle. Then each facility in F (Vk) is in exactly
two F -balls, where each such ball contains exactly two facilities. Thus we have |Vk| = 1

2

∑
j∈Vk

|Fj | =

1
2(2|F (Vk)|) = |F (Vk)|. It remains to show dim(Vk) < |Vk|. This follows because the constraints
{y(Fj) = 1 | j ∈ Vk} are not linearly independent. To see this, note that Hk is an even cycle ,
so consider the linear combination of constraints where odd-indexed clients along the cycle have
coefficient 1 and even-indexed ones have coefficient −1.

With the above proposition, we complete the proof by bounding ℓ:
∑
k∈[ℓ]

dim(Vk)+3r ≥
∑
k∈[ℓ]
|F (Vk)| ≥∑

k∈[ℓ]
dim(Vk) + ℓ⇒ 3r ≥ ℓ.

2.9 Conclusion

In this chapter, we gave improved approximation algorithms for knapsack median and k-median
with outliers. Conceptually, our work refines the typical iterative rounding framework. Typically,
iterative rounding algorithms have the following form:

43

1. Solve LP relaxation for problem

2. If solution is (near) integral, then we are done

3. Else modify the LP and re-solve

However, our iterative rounding algorithms work as follows:

1. Solve LP relaxation for problem

2. If solution is (near) integral, then we are done

3. Else if solution is highly-structured, then modify the LP – exploiting the structure
– and re-solve

4. Else modify the LP and re-solve

The particular structure we use is the chain decomposition, which enable our new iterative op-
eration. By exploiting the structure of extreme points before we terminate with a near-integral
solution, we are able to find a better solution than the typical iterative rounding framework. We
hope that – beyond k-median problems – this conceptual innovation will inspire improved itera-
tive rounding algorithms for other combinatorial optimization problems. In fact, our quarter-ball
chasing technique has already been applied to other clustering problems [Den22].

Some concrete open problems are:

� Can we use such an iterative rounding framework to improve the best known k-median ap-
proximation, which is 2.671 due to [CGLS23] (without any side constraints)?

� Recently, there has been interest in colorful k-clustering problems, where the clients are
partitioned into, say ℓ, color classes and we must serve at least some quota of clients from
each color class [BIPV19]. For the k-center objective, there is a O(1)-approximation for this
colorful version of the problem [AAKZ22, GJS23]. Note that the colorful k-median problem is
a special case of GKM with one coverage constraint per color class; thus, we can obtain a O(1)
approximate solution with O(ℓ) fractional facilities. Can we obtain a O(1)-approximation for
colorful k-median by rounding the final O(ℓ) fractional facilities?

� One natural avenue to improve our approach is to consider eighth-ball chasing (rather than
quarter-ball chasing) – i.e. we only delete a client when we have a neighboring ball that is at
least eight times smaller. In principle, this could lead to improved re-routing cost and thus
approximation ratio, but at the cost of more complex set structures arising at the LP extreme
points. Can we understand the structure of such extreme points and exploit them to obtain
further improvements?

44

Chapter 3

Online Throughput Maximization

3.1 Introduction

We give the first constant-competitive online algorithm for throughput maximization. We recall
that the goal is to preemptively schedule jobs that arrive online at their release date rj with sizes
xj and deadlines dj on m identical machines to maximize the number of jobs that complete by
their deadline.

Our main result is the following theorem.

Theorem 3.1.1. For all m > 1, there exists a deterministic O(1)-competitive algorithm for
throughput maximization on m machines.

3.1.1 Scheduling Policies

We give some basic definitions and notations about scheduling policies.

A job j is feasible at time t (with respect to some schedule) if it can still be feasibly completed, so
xj(t) > 0 and t+ xj(t) ≤ dj , where xj(t) is the remaining processing time of job j at time t (with
respect to the same schedule.) We define the laxity of a job j, as ℓj = (dj − rj) − xj , that is, the
maximum amount of time we can not run job j and still possibly complete it.

A schedule S of jobs J is defined by a map from time/machine pairs (t, i) to a job j that is run on
machine i at time t, with the constraint that no job can be run one two different machines at the
same time. We conflate S with the scheduling policy as well as the set of jobs completed by the
schedule. Thus, the objective value achieved by this schedule is |S|.
A schedule is non-migratory if for every job j there exists a machine i such that if j is run at time
t then j is run on machine i. Otherwise the schedule is migratory.

If S is a scheduling algorithm, then S(J,m) denotes the schedule that results from running S on
instance J on m machines. Similarly, Opt(J,m) denotes the optimal schedule on instance J on m
machines. We will sometimes omit the J and/or the m if they are clear from context. Sometimes
we will abuse notation and let Opt denote a nearly-optimal schedule that additionally has some
desirable structural property.

45

LMNY

SRPT

MLax

FinalAlg

...

...

...

m
3

m
3

m
3

Job j

ℓ j
>
x j

ℓj ≤ xj

ℓ
j ≤

x
j

Figure 3.1: Summary of FinalAlg. A job will be given to LMNY if its laxity is sufficiently high. Otherwise,
it will be migrated between SRPT and MLax.

3.1.2 Algorithms and Technical Overview

A simple consequence of the results in [KP01] and [KP03] is an O(1)-competitive randomized
algorithm in the case that m = O(1). Thus we concentrate on the case that m is large. We
also observe that since there is an O(1)-approximate non-migratory schedule [KP01], changing the
number of machines by an O(1) factor does not change the optimal objective value by more than an
O(1) factor. This is because we can always take an optimal non-migratory schedule on m machines
and create a new schedule on m/c machines whose objective value decreases by at most a factor of
c, by keeping the m/c machines that complete the most jobs.

These observations about the structure of near-optimal schedules allow us to design a O(1)-
competitive algorithm that is a combination of various deterministic algorithms. In particular,
on an instance J , our algorithm, FinalAlg, will run a deterministic algorithm, LMNY, on m/3
machines on the subinstance Jhi = {j ∈ J | ℓj > xj} of high laxity jobs, a deterministic algorithm
SRPT on m/3 machines on the subinstance Jlo = {j ∈ J | ℓj ≤ xj} of low laxity jobs, and a
deterministic algorithm MLax on m/3 machines on the subinstance Jlo of low laxity jobs. Note
that we run SRPT and MLax on the same jobs. To achieve this, if both algorithms decide to run
the same job j, then the algorithm in which j has shorter remaining processing time actually runs
job j, and the other simulates running j. See Figure 3.1.

We will eventually show that for all instances, at least one of these three algorithms is O(1)-
competitive, from which our main result will follow. Roughly, each of the three algorithms is
responsible for a different part of Opt.

Our main theorem about FinalAlg is the following:

Theorem 3.1.2. For any m ≥ 48, FinalAlg is a O(1)-competitive deterministic algorithm for
Throughput Maximization on m machines.

We now discuss these three component algorithms of FinalAlg.

46

LMNY

The algorithm LMNY is the algorithm from [LMNY13] with the following guarantee.

Lemma 3.1.3. [LMNY13] For any number of machines m, and any job instance J , LMNY is an
O(1)-competitive deterministic algorithm on the instance Jhi.

SRPT

The algorithm SRPT is the standard shortest remaining processing time algorithm, modified to
only run jobs that are feasible.

Definition 3.1.4 (SRPT). At each time, run the m feasible jobs with shortest remaining process-
ing time. If there are less than m feasible jobs, then all feasible jobs are run.

We will show that SRPT is competitive with the low laxity jobs completed in Opt that are not
preempted in Opt.

MLax

The final, most challenging, component algorithm of FinalAlg is MLax, which intuitively we
want to be competitive on low-laxity jobs in Opt that are preempted.

To better understand the challenge of achieving this goal, consider m = 1 and an instance of
disagreeable jobs. A set of jobs is disagreeable if, for any two jobs j and k, if j has an earlier
release date than k, it also has a later deadline than k. Further, suppose all but one job in Opt is
preempted and completed at a later time.

To be competitive, MLax must preempt almost all the jobs that it completes, but cannot afford to
abandon too many jobs that it preempts. Because the jobs have low laxity, this can be challenging
as it can only preempt each job for a small amount of time, and its hard to know which of the
many options is the “right” job to preempt for. This issue was resolved in [KP03] for the case of
m = 1 machine, but the issue gets more challenging when m > 1, because we also have to choose
the “right” machine for each job.

We now describe the algorithm MLax. Let α be a sufficiently large constant (chosen later.) MLax
maintains m stacks (last-in-first-out data structures) of jobs (one per machine), H1, . . . ,Hm. The
stacks are initially empty. At all times, MLax runs the top job of stack Hi on machine i. We
define the frontier F to be the set consisting of the top job of each stack (i.e. all currently running
jobs.) It remains to describe how the Hi’s are updated.

There are two types of events that cause MLax to update the Hi’s: reaching a job’s pseudo-release
time (defined below) or completing a job.

Definition 3.1.5 (Viable Jobs and Pseudo-Release Time). The pseudo-release time (if it exists)

r̃j of job j is the earliest time in [rj , rj +
ℓj
2] such that there are at least 7

8m jobs j′ on the frontier
satisfying αxj′ ≥ ℓj .

We say a job j is viable if r̃j exists and non-viable otherwise.

At job j’s pseudo-release time (note r̃j can be determined online by MLax), MLax does the
following:

47

a) If there exists a stack whose top job j′ satisfies αxj ≤ ℓj′ , then push j onto any such stack.

b) Else if there exist at least 3
4m stacks whose second-top job j′′ satisfies αxj ≤ ℓj′′ and further

some such stack has top job j′ satisfying ℓj > ℓj′ , then on such a stack with minimum ℓj′ ,
replace its top job j′ by j.

While the replacement operation in step b) can be implemented as a pop and then push, we view
it as a separate operation for analysis purposes. To handle corner cases in these descriptions, one
can assume that there is a job with infinite size/laxity on the bottom of each Hi.

When MLax completes a job j that was on stack Hi, MLax does the following:

c) Pop j off of stack Hi.

d) Keep popping Hi until the top job of Hi is feasible.

Analysis Sketch

There are three main steps in proving Theorem 3.1.2 to show FinalAlg is O(1)-competitive:

� In § 3.2, we show how to modify the optimal schedule to obtain certain structural properties
that facilitate the comparison with SRPT and MLax.

� In § 3.3, we show that SRPT is competitive with the low-laxity, non-viable jobs. Intuitively,
the jobs that MLax is running that prevent a job j from becoming viable are so much smaller
than job j, and they provide a witness that SRPT must also be working on jobs much smaller
than j.

� In § 3.4, we show that SRPT and MLax together are competitive with the low-laxity, viable
jobs. First, we show that SRPT is competitive with the number of non-preempted jobs in
Opt. We then essentially show that MLax is competitive with the number of preempted jobs
in Opt. The key component in the design of MLax is the condition that a job j won’t replace
a job on the frontier unless at there are at least 3

4m stacks whose second-top job j′′ satisfies
αxj ≤ ℓj′′ . This condition most differentiates MLax from m copies of the Lax algorithm in
[KP03]. This condition also allows us to surmount the issue of potentially assigning a job to
a “wrong” processor, as jobs that satisfy this condition are highly flexible about where they
can go on the frontier.

We combine these results in § 3.5 to complete the analysis of FinalAlg.

3.2 Structure of Optimal Schedule

The goal of this section is to introduce the key properties of (near-)optimal scheduling policies that
we will use in our analysis.

By losing a constant factor in the competitive ratio, we can use a constant factor fewer machines
than Opt, which justifies FinalAlg running each of three algorithms on m

3 machines. The proof
is an extension of results in [KP01].

Lemma 3.2.1. For any collection of jobs J , number of machines m, and c > 1, we have |Opt(J, mc)| =
Ω(1c |Opt(J,m)|).

48

Proof. It is shown in [KP01] that for any schedule on m machines, there exists a non-migratory
schedule on at most 6m machines that completes the same jobs. Applied to Opt(J,m), we obtain
a non-migratory schedule S on 6m machines with |S| = |Opt(J,m)|. Keeping the m

c machines that
complete the most jobs in S gives a non-migratory schedule on m

c machines that completes at least
1
6c |S| jobs.

A non-migratory schedule on m machines can be expressed as m schedules, each on a single machine
and on a separate set of jobs. To characterize these single machine schedules, we introduce the
concept of forest schedules. Let S be any schedule. For any job j, we let fj(S) and cj(S) denote the
first and last times that S runs the job j, respectively. Note that S does not necessarily complete
j at time cj(S).
Definition 3.2.2 (Forest Schedule). We say a single-machine schedule S is a forest schedule if for
all jobs j, j′ such that fj(S) < fj′(S), S does not run j during the time interval (fj′(S), cj′(S))
(so the (fj(S), cj(S))-intervals form a laminar family.) Then S naturally defines a forest (in the
graph-theoretic sense), where the nodes are jobs run by S and the descendants of a job j are the
the jobs that are first run in the time interval (fj(S), cj(S)).
A non-migratory m-machine schedule is a forest schedule if all of its single-machine schedules are
forest schedules.

With these definitions, we are ready to construct the near-optimal policies to which we will compare
SRPT and MLax. The proof relies on modifications to Opt introduced in [KP03].

Lemma 3.2.3. Let J be a set of jobs satisfying ℓj ≤ xj for all j ∈ J . Then for any times

r̂j ∈ [rj , rj +
ℓj
2] and constant α ≥ 1, there exist non-migratory forest schedules S and S ′ on the

jobs J such that:

1. Both S and S ′ complete every job they run.

2. Let Ji be the set of jobs that S runs on machine i. For every machine i and time, if there
exists a feasible job in Ji, then S runs such a job.

3. For all jobs j ∈ S, we have fj(S) = r̂j.

4. If job j′ is a descendant of job j in S, then αxj′ ≤ ℓj

5. |{leaves of S ′}|+ |S| = Ω(|Opt(J)|).
Proof. We modify the optimal schedule Opt(J) to obtain the desired properties. First, we may
assume that Opt(J) is non-migratory by losing a constant factor (Lemma 3.2.1.) Thus, it suffices
to prove the lemma for a single machine schedule, because we can apply the lemma to each of the
single-machine schedules in the non-migratory schedule Opt(J). The proof for the single-machine
case follows from the modifications given in Lemmas 22 and 23 of [KP03]. We note that [KP03]

only show how to ensure fj(S) = tj for a particular tj ∈ [rj , rj +
ℓj
2], but it is straightforward to

verify that the same proof holds for any tj ∈ [rj , rj +
ℓj
2].

Intuitively, the schedule S captures the jobs in Opt that are preempted and S ′ captures the jobs in
Opt that are not preempted (i.e. the leaves in the forest schedule.)

To summarize, we may assume by losing a constant factor that Opt is a non-migratory forest
schedule. Looking ahead, we will apply Lemma 3.2.3 to the non-viable and viable jobs separately.
In each case, we will use a combination of SRPT and MLax to handle jobs in S and SRPT for
those in S ′.

49

3.3 SRPT is Competitive with Non-Viable Jobs

The main result of this section is that SRPT is competitive with the number of non-viable, low-
laxity jobs of the optimal schedule (Theorem 3.3.1). We recall that a job j is non-viable if for every

time in [rj , rj +
ℓj
2], there are at least 1

8m jobs j′ on the frontier of MLax satisfying αxj′ < ℓj .

Theorem 3.3.1. Let J be a set of jobs satisfying ℓj ≤ xj for all j ∈ J . Then for α = O(1)
sufficiently large and number of machines m ≥ 16, we have |SRPT(J)| = Ω(|Opt(Jnv)|), where Jnv
is the set of non-viable jobs with respect to MLax(J).

In the remainder of this section, we prove Theorem 3.3.1. The main idea of the proof is that for
any non-viable job j, MLax is running many jobs that are much smaller than j (by at least an
α-factor.) These jobs give a witness that SRPT must be working on these jobs or even smaller
ones.

The following technical lemma - stating that SRPT is competitive with the leaves of any forest
schedule - is needed in the proof as well as in § 3.4. Intuitively this follows because whenever some
schedule is running a feasible job, then SRPT either runs the same job or a job with shorter
remaining processing time. We will use this lemma to handle the non-viable jobs that are not
preempted.

Lemma 3.3.2. Let J be any set of jobs and S be any forest schedule on m machines and jobs
J ′ ⊂ J that only runs feasible jobs. Let L be the set of leaves of S. Then |SRPT(J)| ≥ 1

2 |L|.

Proof. It suffices to show that |L \ SRPT(J)| ≤ |SRPT(J)|. The main property of SRPT gives:

Proposition 3.3.3. Consider any leaf ℓ ∈ L \ SRPT(J). Suppose S starts running ℓ at time t.
Then SRPT completes m jobs in the time interval [fℓ(S), fℓ(S) + xℓ].

Proof. At time fℓ(S) in SRPT (J), job ℓ has remaining processing time at most xℓ and is feasible
by assumption. Because ℓ /∈ SRPT(J), there must exist a first time t′ ∈ [fℓ(S), fℓ(S)+xℓ] where ℓ
is not run by SRPT(J). At this time, SRPT(J) must be running m jobs with remaining processing
time at most xℓ−(t′−fℓ(S)). In particular, SRPT(J) must complete m jobs by time fℓ(S)+xℓ.

Using the proposition, we give a charging scheme: Each job ℓ ∈ L \ SRPT(J) begins with 1
credit. By the proposition, we can find m jobs that SRPT(J) completes in the time interval
[fℓ(S), fℓ(S) + xℓ]. Then ℓ transfers 1

m credits each to m such jobs in SRPT.

It remains to show that each j ∈ SRPT(J) gets at most 1 credit. Note that j can only get credits
from leaves ℓ such that cj(SRPT) ∈ [fℓ(S), fℓ(S) + xℓ]. There are at most m such intervals (at
most one per machine), because we only consider leaves, whose intervals are disjoint if there are on
the same machine.

Now we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Let S,S ′ be the schedules guaranteed by Lemma 3.2.3 on the set of jobs
Jnv with r̂j = rj for all j ∈ Jnv. We re-state the properties of these schedules for convenience:

1. Both S and S ′ complete every job they run.

2. Let Ji be the set of jobs that S runs on machine i. For every machine i and time, if there
exists a feasible job in Ji, then S runs such a job.

50

3. For all jobs j ∈ S, we have fj(S) = rj .

4. If job j′ is a descendant of job j in S, then αxj′ ≤ ℓj

5. |{leaves of S ′}|+ |S| = Ω(|Opt(Jnv)|).

By Lemma 3.3.2, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it remains to show the following:

Lemma 3.3.4. For α = O(1) sufficiently large, |SRPT(J)| = Ω(|S|)

Proof. We first show that for the majority of jobs j in S’s forest, we run j itself on some machine
for at least a constant fraction of the time interval [rj , rj +

ℓj
2].

Proposition 3.3.5. For at least half of the nodes j in S’s forest, there exists a closed interval
Ij ⊂ [rj , rj +

ℓj
2] of length at least

ℓj
8 such that S runs j on some machine during Ij.

Proof. We say a node j is a non-progenitor if j has less than 2z descendants at depth z from j for
all z ≥ 1. Because S satisfies (1), at least half of the nodes in S’s forest are non-progenitors. This
follows from Lemma 7 in [KP03].

Now consider any non-progenitor node j. Because S is a forest, S is only running j or its descendants
on some machine in times [rj , rj +

ℓj
2]. Further, because j is a non-progenitor and S satisfies (1)

and (4), we can partition [rj , rj +
ℓj
2] = [rj , a]∪ (a, b)∪ [b, rj + ℓj

2] such that [rj , a] and [b, rj +
ℓj
2] are

times where S is running j, and (a, b) are times where S is running descendants of j. By taking α

sufficiently large, we have |(a, b)| ≤ ℓj
4 . This follows from Lemma 6 in [KP03]. It follows, at least

one of [rj , a] or [b, rj +
ℓj
2] has length at least

ℓj
8 . This gives the desired Ij .

Let S ′′ ⊂ S be the collection of jobs guaranteed by the proposition, so |S ′′| ≥ 1
2 |S|. It suffices to

show that |SRPT(J)| = Ω(|S ′′|). Thus, we argue about MLax(J) in the interval Ij (guaranteed
by Proposition 3.3.5) for some j ∈ S ′′.

Proposition 3.3.6. Consider any job j ∈ S ′′. For sufficiently large α = O(1), MLax(J) starts
running at least m

16 jobs during Ij such that each such job j′ satisfies [fj′(MLax(J)), fj′(MLax(J))+
xj′] ⊂ Ij.

Proof. We let I ′ be the prefix of Ij with length exactly
|Ij |
2 ≥

ℓj
16 . Recall that j ∈ S

′′ is non-viable.

Thus, because I ′ ⊂ Ij ⊂ [rj , rj +
ℓj
2], MLax(J) is always running at least 1

8m jobs j′ satisfying
αxj′ < ℓj during I ′.

We define J ′ to be the set of jobs that MLax(J) runs during I ′ satisfying αxj′ < ℓj . We further
partition J ′ into size classes, J ′ =

⋃
z∈N J ′

z such that J ′
z consists of the jobs in J ′ with size in

(
ℓj

αz+1 ,
ℓj
αz].

For each machine i, we let T i
z be the times in I ′ that MLax(J) is running a job from J ′

z on machine
i. Note that each T i

z is the union of finitely many intervals. Then because MLax(J) is always
running at least 1

8m jobs j′ satisfying αxj′ ≤ ℓj during I ′, we have:∑
z∈N

∑
i∈[m]

|T i
z | ≥

m

8
|I ′|.

By averaging, there exists some z with
∑

i∈[m]|T i
z | ≥ m

8
|I′|
2z+1 .

51

Fix such a z. It suffices to show that there exist at least m
16 jobs in J ′

z that Lax starts in I ′.

This is because every job j′ ∈ J ′
z has size at most

ℓj
αz and |Ij \ I ′| ≥ ℓj

16 . Taking α ≥ 16 gives that
fj′(Lax) + xj′ ∈ Ij .

Note that every job in J ′
z has size within a α-factor of each other, so there can be at most one

such job per stack at any time. This implies that there are at most m jobs in J ′
z that don’t start

in I ′ (i.e. the start before I ′.) These jobs contribute at most m
ℓj
αz to

∑
i∈[m]|T i

z |. Choosing α large

enough, we can ensure that the jobs in J ′
z that start in I ′ contribute at least m

16
ℓj
αz to

∑
i∈[m]|T i

z |.
To conclude, we note that each job in J ′

z that starts in I ′ contributes at most
ℓj
αz to the same sum,

so there must exist at least m
16 such jobs.

Using the above proposition, we define a charging scheme to show that |SRPT(J)| = Ω(|S ′′|).
Each job j ∈ S ′′ begins with 1 credit. By the proposition, we can find m

16 jobs j′ such that
[fj′(MLax(J)), fj′(MLax(J)) + xj′] is contained in the time when S runs j. There are two cases
to consider. If all m

16 jobs we find are contained in SRPT(J), then we transfer 16
m credits from

j to each of the m
16 -many jobs. Note that here we are using m ≥ 16. Otherwise, there ex-

ists some such j′ that is not in SRPT(J). Then SRPT(J) will complete at least m jobs in
[fj′(MLax(J)), fj′(MLax(J))+xj′]. We transfer 1

m credits from j to each of the m-many jobs. To
conclude, we note that each j′ ∈ SRPT(J) gets O(1

m) credits from at most O(m) jobs in S ′′.

We showed that SRPT is competitive with the low-laxity, non-viable jobs in Opt. It remains to
consider the low-laxity, viable jobs, which we handle in the next section.

3.4 SRPT and MLax are Competitive with Viable Jobs

We have shown that SRPT is competitive with the non-viable, low-laxity jobs. Thus, it remains
to account for the viable, low-laxity jobs. We recall that a job j is viable if there exists a time in
[rj , rj +

ℓj
2] such that there are at least 7

8m jobs j′ on the frontier satisfying αxj′ ≥ ℓj . The first
such time is the pseudo-release time, r̃j of job j. For these jobs, we show that SRPT and MLax
together are competitive with the viable, low-laxity jobs of the optimal schedule.

Theorem 3.4.1. Let J be a set of jobs satisfying ℓj ≤ xj for all j ∈ J . Then for α = O(1)
sufficiently large and number of machines m ≥ 8, we have |SRPT(J)|+|MLax(J)| = Ω(|Opt(Jv)|),
where Jv is the set of viable jobs with respect to MLax(J).

Proof of Theorem 3.4.1. Let S,S ′ be the schedules guaranteed by Lemma 3.2.3 on the set of jobs
Jv with r̂j = r̃j for all j ∈ Jv. We re-state the properties of these schedules for convenience:

1. Both S and S ′ complete every job they run.

2. Let Ji be the set of jobs that S runs on machine i. For every machine i and time, if there
exists a feasible job in Ji, then S runs such a job.

3. For all jobs j ∈ S, we have fj(S) = r̃j .

4. If job j′ is a descendant of job j in S, then αxj′ ≤ ℓj

5. |{leaves of S ′}|+ |S| = Ω(|Opt(Jv)|).

52

By Lemma 3.3.2, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it suffices to show that |SRPT(J)|+
|MLax(J)| = Ω(|S|). We do this with two lemmas, whose proofs we defer until later. First, we
show that MLax pushes (not necessarily completes) many jobs. In particular, we show:

Lemma 3.4.2. |SRPT(J)|+#(pushes of MLax(J)) = Ω(|S|)

The main idea to prove Lemma 3.4.2 is to consider sequences of preemptions in Opt. In particular,
suppose Opt preempts job a for b and then b for c. Roughly, we use viability to show that the
only way MLax doesn’t push any of these jobs is if in between their pseudo-release times, MLax
pushes Ω(m) jobs.

Second, we show that the pushes of MLax give a witness that SRPT and MLax together actually
complete many jobs.

Lemma 3.4.3. |SRPT(J)|+ |MLax(J)| = Ω(#(pushes of MLax(J))).

The main idea to prove Lemma 3.4.3 is to upper-bound the number of jobs thatMLax pops because
they are infeasible (all other pushes lead to completed jobs.) The reason MLax pops a job j for

being infeasible is because while j was on a stack, MLax spent at least
ℓj
2 units of time running

jobs higher than j on j’s stack. Either those jobs are completed by MLax, or MLax must have
have done many pushes or replacements instead. We show that the replacements give a witness
that SRPT must complete many jobs.

Combining these two lemmas completes the proof of Theorem 3.4.1.

Now we go back and prove Lemma 3.4.2 and Lemma 3.4.3.

3.4.1 Proof of Lemma 3.4.2

Recall that S is a forest schedule. We say the first child of a job j is the child j′ of j with the
earliest starting time fj′(S). In other words, if j is not a leaf, then its first child is the first job
that pre-empts j. We first focus on a sequence of first children in S.

Lemma 3.4.4. Let a, b, c ∈ S be jobs such that b is the first child of a and c is the first child of b.
Then MLax(J) does at least one of the following during the time interval [r̃a, r̃c]:

� Push at least m
8 jobs,

� Push job b,

� Push a job on top of b when b is on the frontier,

� Push c.

Proof. Because S is a forest schedule, we have r̃a < r̃b < r̃c. It suffices to show that if during
[r̃a, r̃c], MLax(J) pushes strictly fewer than m

8 jobs, MLax(J) does not push b, and if MLax(J)
does not push any job on top of b when b is on the frontier, then MLax(J) pushes c.

First, because MLax(J) pushes strictly fewer than m
8 jobs during [r̃a, r̃c], there exists at least 7

8m
stacks that receive no push during this interval. We call such stacks stable. The key property of
stable stacks is that the laxities of their top- and second-top jobs never decrease during this interval,
because these stacks are only changed by replacements and pops.

53

Now consider time r̃a. By definition of pseudo-release time, at this time, there exist at least 7
8m

stacks whose top job j′ satisfies αxj′ ≥ ℓj . Further, for any such stack, let j′′ be its second-top job.
Then because b is a descendant of a in S, we have:

αxb ≤ ℓa ≤ αxj′ ≤ ℓj′′ .

It follows that there exist at least 3
4m stable stacks whose second-top job j′′ satisfies αxb ≤ ℓj′′ for

the entirety of [r̃a, r̃c]. We say such stacks are b-stable.

Now consider time r̃b. We may assume b is not pushed at this time. However, there exist at least
3
4m that are b-stable. Thus, if we do not replace the top of some stack with b, it must be the case
that the top job j′ of every b-stable stack satisfies ℓ′j ≥ ℓb. Because these stacks are stable, their
laxities only increase by time r̃c, so MLax(J) will push c on some stack at that time.

Otherwise, suppose we replace the top job of some stack with b. Then b is on the frontier at r̃b.
We may assume that no job is pushed directly on top of b. If b remains on the frontier by time r̃c,
then MLax(J) will push c, because αxc ≤ ℓb. The remaining case is if b leaves the frontier in some
time in [r̃b, r̃c]. We claim that it cannot be the case that b is popped, because by (2), S could not
complete b by time r̃c, so MLax(J) cannot as well. Thus, it must be the case that b is replaced
by some job, say d at time r̃d. At this time, there exist at least 3

4m stacks whose second-top job
j′′ satisfies αxd ≤ ℓj′′ . It follows, there exist at least m

2 b-stable stacks whose second-top job j′′

satisfies αxd ≤ ℓj′′ at time r̃d. Note that because m ≥ 8, there exists at least one such stack, say i,
that is not b’s stack. In particular, because b’s stack has minimum laxity, it must be the case that
the top job j′ of stack i satisfies ℓj′ ≥ ℓb. Finally, because stack i is stable, at time r̃c we will push
c.

Now using the above lemma, we give a charging scheme to prove Lemma 3.4.2. First note that
by Lemma 3.3.2, we have |SRPT(J)| = Ω(#(leaves of S)). Thus, it suffices to give a charging
scheme such that each job a ∈ S begins with 1 credit, and charges it to leaves of S and completions
of MLax(J) so that each job is charged O(1) credits. Each job a ∈ S distributes its 1 credit as
follows:

� (Leaf Transfer) If a is a leaf or parent of a leaf of S, say ℓ, then a charges ℓ for 1 credit.

Else let b be the first child of a and c the first child of b in S

� (Push Transfer) If MLax(J) pushes b or c, then a charges 1 unit to b or c, respectively.

� (Interior Transfer) Else if job b is on the frontier, but another job, say d, is pushed on top of
b, then a charges 1 unit to d.

� (m-Push Transfer) Otherwise, by Lemma 3.4.4, MLax(J) must push at least m
8 jobs during

[r̃a, r̃c]. In this case, a charges 8
m units to each of these m

8 such jobs.

This completes the description of the charging scheme. It remains to show that each job is charged
O(1) credits. Each job receives at most 2 credits due to Leaf Transfers and at most 2 credits due
to Push Transfers and Interior Transfers. As each job is in at most 3m intervals of the form [r̃a, r̃c],
each job is charged O(1) from m-Push Transfers.

54

3.4.2 Proof of Lemma 3.4.3

Recall in MLax, there are two types of pops: a job is popped if it is completed, and then we
continue popping until the top job of that stack is feasible. We call the former completion pops
and the later infeasible pops. Note that it suffices to prove the next lemma, which bounds the
infeasible pops. This is because #(pushes of MLax(J)) = #(completions pops of MLax(J)) +
#(infeasible pops of MLax(J)). To see this, note that every stack is empty at the beginning and
end of the algorithm, and the stack size only changes due to pushes and pops.

Lemma 3.4.5. For α = O(1) sufficiently large, we have:

|SRPT(J)|+ |MLax(J)|+#(pushes of MLax(J)) ≥ 2 ·#(infeasible pops of MLax(J)).

Proof. We define a charging scheme such that the completions of SRPT(J) and MLax(J) and the
pushes executed by MLax(J) pay for the infeasible pops. Each completion of SRPT(J) is given 2
credits, each completion of MLax(J) is given 1 credit, and each job that MLax(J) pushes is given
1 credit. Thus each job begins with at most 4 credits. For any z ≥ 0, we say job j′ is z-below j (at
time t) if j′ and j are on the same stack in MLax(J) and j′ is z positions below j on that stack at
time t. We define z-above analogously. A job j distributes these initial credits as follows:

� (SRPT-transfer) If SRPT(J) completes job j and MLax also ran j at some point, then j
gives 1

2z+1 credits to the job that is z-below j at time fj(MLax(J)) for all z ≥ 0.

� (m-SRPT-transfer) If SRPT(J) completes job j at time t, then j gives 1
2z+1

1
m credits to the

job that is z-below the top of each stack in MLax(J) at time t for all z ≥ 0.

� (MLax-transfer) If MLax(J) completes a job j, then j gives 1
2z+1 credits to the job that is

z-below j at the time j is completed for all z ≥ 0.

� (Push-transfer) If MLax(J) pushes a job j, then j gives 1
2z+1 credits to the job that is z-below

j at the time j is pushed for all z ≥ 0.

It remains to show that for α = O(1) sufficiently large, every infeasible pop gets at least 4 credits.
We consider any job j that is an infeasible pop of MLax(J). At time r̃j when j joins some stack

in MLax(J), say H, j’s remaining laxity was at least
ℓj
2 . However, as j later became an infeasible

pop, it must be the case that while j was on stack H, MLax(J) was running jobs that are higher

than j on stack H for at least
ℓj
2 units of time.

Let I be the union of intervals of times that MLax(J) runs a job higher than j on stack H (so j

is on the stack for the entirety of I.) Then we have |I| ≥ ℓj
2 . Further, we partition I based on the

height of the job on H that MLax(J) is currently running. In particular, we partition I =
⋃

z≥1 Iz,
where Iz is the union of intervals of times that MLax(J) runs a job on H that is exactly z-above
j.

By averaging, there exists a z ≥ 1 such that |Iz| ≥ ℓj
2z+1 . Fix such a z. We can write Iz as the

union of disjoint intervals, say Iz =
⋃s

u=1[au, bu]. Because during each sub-interval, MLax(J) is
running jobs on H that are much smaller than j itself, these jobs give a witness that SRPT(J)
completes many jobs as long as these sub-intervals are long enough. We formalize this in the
following proposition, whose proof is omitted in this extended abstract.

Proposition 3.4.6. In each sub-interval [au, bu] of length at least 4
ℓj
αz , job j earns at least

1
2z+3

bu−au
ℓj/αz

credits from SRPT-transfers and m-SRPT-transfers.

55

On the other hand, even if the sub-intervals are too short, the job j still gets credits from MLax-
transfers and Push-transfers when the height of the stack changes. We formalize this statement in
the following proposition, whose proof is omitted in this extended abstract.

Proposition 3.4.7. For every sub-interval [au, bu], job j earns at least 1
2z+2 credits from MLax-

transfers and Push-transfers at time bu.

Now we combine the above two propositions to complete the proof of Lemma 3.4.5. We say a
sub-interval [au, bu] is long if it has length at least 4

ℓj
αz (i.e. we can apply Proposition 3.4.6 to it)

and short otherwise. First, suppose the aggregate length of all long intervals it at least 4 · 2z+3 ℓj
αz .

Then by Proposition 3.4.6, job j gets at least 4 credits from the long intervals. Otherwise, the
aggregate length of all long intervals is less than 4 · 2z+3 ℓj

αz . In this case, recall that the long and

short intervals partition Iz, which has length at least
ℓj

2z+1 . It follows, the aggregate length of the

short intervals is at least
ℓj

2z+1−4·2z+3 ℓj
αz . For α = O(1) large enough, we may assume the aggregate

length of the short intervals is at least 4 · 2z+2 4ℓj
αz . Because each short interval has length at most

4
ℓj
αz , there are at least 4 ·2z+2 short intervals. We conclude, by Proposition 3.4.7, job j gets at least

4 credits from the short intervals. We conclude, in either case job j gets at least 4 credits.

3.5 Putting it all together

In this section, we prove our main result, Theorem 3.1.1, which follows from the next meta-theorem:

Theorem 3.5.1. Let J be any set of jobs. Then for number of machines m ≥ 16, we have
|LMNY(Jhi)| + |SRPT(Jlo)| + |MLax(Jlo)| = Ω(|Opt(J)|), where Jhi = {j ∈ J | ℓj > xj} and
Jlo = {j ∈ J | ℓj ≤ xj} partition J into high- and low-laxity jobs.

Proof. We have |LMNY(Jhi)| = Ω(|Opt(Jhi)| by Lemma 3.1.3. Also, we further partition Jlo =
Jv ∪ Jnv into the viable and non-viable jobs with respect to MLax(Jlo). Then Theorem 3.3.1 and
Theorem 3.4.1 together give |SRPT(Jlo)|+ |MLax(Jlo)| = Ω(|Opt(Jv)|+ |Opt(Jnv)|). To complete
the proof, we observe that J = Jhi ∪ Jv ∪ Jnv partitions J , so |Opt(Jhi)|+ |Opt(Jv)|+ |Opt(Jnv)| =
Ω(|Opt(J)|).

The proof of Theorem 3.1.2, which gives our performance guarantee for FinalAlg is immediate:

Proof of Theorem 3.1.2. By combining Theorem 3.5.1 and Lemma 3.2.1, the objective value achieved
by FinalAlg is:

Ω(|LMNY(Jhi,
m

3
)|+ |SRPT(Jlo,

m

3
)|+ |MLax(Jlo,

m

3
)|) = Ω(|Opt(J, m

3
)|)

= Ω(|Opt(J,m)|).

Finally, we obtain our O(1)-competitive deterministic algorithm for all m > 1 (recall FinalAlg is
O(1)-competitive only when m ≥ 48) by using a two-machine algorithm when m is too small:

Proof of Theorem 3.1.1. Our algorithm is the following: If 1 < m < 48, then we run the determinis-
tic two-machine algorithm from [KP03] which is O(1)-competitive with the optimal single-machine
schedule. Thus by Lemma 3.2.1, this algorithm is also O(m) = O(1)-competitive for all m < 48.
Otherwise, m ≥ 48, so we run FinalAlg.

56

3.6 Conclusion

We considered throughput maximization on multiple machines without any high-laxity or speed
augmentation assumption. Our final competitive ratio is a large unspecified constant (obtained by
choosing α = O(1) sufficiently large.)

Conceptually, our work overcomes barriers faced by previous approaches, which were mainly in the
case of low laxity jobs that are pre-empted by the optimal solution and completed later. Our new
sub-algorithm for this case, MLax, uses carefully-crafted definitions for pseudo-release times and
the replacement rule to ensure that at least a constant-factor of the machines are utilized effectively.

The main open question is if there exists a simpler algorithm and analysis for online throughput
maximization on multiple machines. The “carefully crafted” definition of MLax makes its design
and analysis arguably fragile and unnatural.

Further, is migration necessary to achieve constant-competitiveness? Note that two out of three of
our component algorithms (LMNY and Lax) are non-migratory. Naively, SRPT is migratory, and
we also use migration because Lax and SRPT share the low-laxity jobs. We leave it as an open
question to develop a non-migratory constant-competitive algorithm for throughput maximization
on multiple machines.

57

Chapter 4

Stochastic Load Balancing

4.1 Introduction

We first define the configuration balancing problem, which generalizes many resource allocation
problems including load balancing. In this problem, there are m resources (machines) and n
requests (jobs). Every request j has qj possible configurations xj(1), . . . , xj(qj) ∈ Rm

≥0. We must
choose one configuration cj ∈ [qj] per request, which adds xj(cj) to the load vector on the resources.
The goal is to minimize the makespan, i.e., the load of the most-loaded resource.

In the stochastic version, configuration balancing with stochastic requests, we assume each config-
uration c of request j is a random vector Xj(c) ∼ Dj(c) with known distribution Dj(c) such that
the Xj(c)’s are independent across different requests j. However, the actual realized vector of a
configuration c of request j is only observed after irrevocably selecting this particular configura-
tion for request j. The objective is to minimize the expected maximum load (i.e., the expected
makespan)

E
[
max

i

n∑
j=1

Xij(cj)
]
,

where cj is the configuration chosen for request j. We assume that we have oracle access to the
Dj(c)’s; in particular we assume that in constant time, we can compute any needed statistic of the
distribution Dj(c).

As in stochastic load balancing, we also consider the online setting, where requests are not known
in advance and they are revealed one-by-one (online-list model). Upon arrival, each request reveals
its Dj(c)’s, from which the algorithm must choose one irrevocably before the next request arrives.

For these general offline and online problem, we give asymptotically tight approximations.

Theorem 4.1.1. For configuration balancing with stochastic requests there is a randomized offline
algorithm that computes a non-adaptive policy that is a O

(logm
log logm

)
-approximation and a deter-

ministic online algorithm that is a O(logm)-approximation when comparing to the optimal offline
adaptive policy. Both algorithms run in polynomial time in the number of resources and the total
number of configurations over all requests.

Note that stochastic load balancing is a special case – the resources are the m machines, and each
job has m possible configurations – one corresponding to assigning that job to each machine. Thus,
we can efficiently represent all configurations. This gives the following corollary for stochastic load

58

balancing, where additionally we can make the offline algorithm deterministic by exploiting the
simpler LP in this special case.

Theorem 4.1.2. There exist efficient deterministic algorithms that compute a non-adaptive pol-
icy for load balancing on unrelated machines with stochastic jobs that achieve an Θ

(logm
log logm

)
-

approximation offline and an Θ(logm)-approximation online when comparing to the optimal offline
adaptive policy.

Further, if the machines are related (Xij =
Xj

si
for machine speed si), we give improved adaptive

approximations. Interestingly, our adaptive algorithms begin with a similar non-adaptive assign-
ment of jobs to machines, but we deviate from the assignment adaptively to obtain our improved
algorithms.

Theorem 4.1.3. For load balancing on related machines with stochastic jobs, there exist efficient
deterministic algorithms that compute an adaptive offline O(1)-approximation and an adaptive on-
line O(log logm)-approximation when comparing to the optimal offline adaptive policy.

We also quantify the power and limitation of non-clairvoyant algorithms for load balancing on
related machines (i.e. if our algorithm did not use the distributional information at all). Recall
that a non-clairvoyant algorithm has no prior knowledge of the job sizes and must decide where
to schedule a job using only the information about current machine loads and speeds. After an
algorithm’s decision upon assigning a job, an adversary chooses the realized size of the job, which
the algorithm then observes for subsequent decisions. We refer to a non-clairvoyant online algorithm
as a non-clairvoyant algorithm that learns about the existence of jobs (of unknown size) online one
by one.

Theorem 4.1.4. For load balancing on related machines, there exists an efficient non-clairvoyant
online algorithm that O(

√
m)-approximates the optimal clairvoyant algorithm. Further, any non-

clairvoyant algorithm is at least Ω(
√
m)-approximate.

Thus the clairvoyance gap – the maximum ratio between the makespan of an optimal non-clairvoyant
algorithm and the optimal makespan achievable by a clairvoyant offline algorithm – is Θ(

√
m) 1.

Another special case of configuration balancing that is of particular interest is virtual circuit routing
(or congestion minimization). In this problem, there is a directed graph G = (V,E) on m edges
with edge capacities ce > 0 for e ∈ E, and n requests, each request consisting of a source-sink pair
(sj , tj) in G and a demand xj ≥ 0. The goal is to route each request j from sj to tj via some
directed path, increasing the load/congestion of each edge e on the path by

xj

ce
, while the objective

is to minimize the load of the most-loaded edge.

In the stochasic version, the demands Xj ∼ Dj are random with known distributions. This is
again a special case of configuration balancing with stochastic requests where the resources are
the edges, and each request has a configuration for each possible routing path. Note that in
general there are exponentially many configurations, so Theorem 4.1.1 does not immediately imply
efficient algorithms for stochastic routing. However, we can exploit the particular structure of the
configurations to efficient optimize over the configurations for stochastic virtual circuit rounding,
and obtain the same result.

1Again, I will advertise this result. If there is one proof you read in this entire dissertation, I think it should be
this one. See § 4.5.

59

Theorem 4.1.5. For virtual circuit routing with stochastic requests, there exist an efficient random-
ized offline algorithm computing a non-adaptive policy that is a Θ

(logm
log logm

)
-approximation and an

efficient deterministic online algorithm that computes an Θ(logm)-approximation when comparing
to the optimal offline adaptive policy.

Note that even for deterministic requests, virtual circuit routing is hard to approximate better than
O(logm

log logm) unless NP ⊆ ZPTIME(nlog logn) [CGKT07], and there is a lower bound of Ω(log n) for

online algorithms [AAF+97]. Thus, Theorem 4.1.5 implies that stochastic requests are not harder
to approximate than deterministic requests.

4.1.1 Technical Overview

We illustrate the main idea behind our non-adaptive policies, which compare to the optimal offline
adaptive policy. Throughout this paper, we let Opt denote the optimal adaptive policy as well
as its makespan. As in many other stochastic optimization problems, our goal is to give a good
deterministic proxy for the makespan of a policy. Then, our algorithm will optimize over this
deterministic proxy to obtain a good solution. First, we observe that if all configurations were
bounded with respect to E[Opt] in every entry, then selecting configurations such that each resource
has expected load O(E[Opt]) gives the desired O

(logm
log logm

)
-approximation by standard concentration

inequalities for independent sums with bounded increments. Thus, in this case the expected load
on each resource is a good proxy. However, in general, we have no upper bound on Xij(c), so
we cannot argue as above. We turn these unbounded random variables into bounded ones in a
standard way by splitting each request into truncated and exceptional parts.

Definition 4.1.6 (Truncated and Exceptional Parts). Let τ ≥ 0 be a fixed threshold. For a
random variable X, its truncated part (with respect to threshold τ) is XT := X · 1X<τ . Similarly,
its exceptional part is XE := X · 1X≥τ . Note that X = XT +XE .

It is immediate that the truncated parts XT
ij(c) are bounded in [0, τ]. Taking τ = O(E[Opt]), we

can control their contribution to the makespan using concentration. It remains to find a good
proxy for the contribution of exceptional parts to the makespan. This is one of the main technical
challenges of our work as we aim to compare against the optimal adaptive policy. We will see that
adaptive policies have much better control over the exceptional parts than non-adaptive ones.

Concretely, let cj be the configuration chosen by some fixed policy for request j. Note that cj itself
can be a random variable in {1, . . . , qj}. We want to control the quantity

E
[
max

i

n∑
j=1

XE
ij (cj)

]
.

Because we have no reasonable bound on the XE
ij (cj)’s, for non-adaptive policies, we can only upper

bound the expected maximum by the following sum

E
[
max
1≤i≤m

n∑
j=1

XE
ij (cj)

]
≤

n∑
j=1

E
[
max
1≤i≤m

XE
ij (cj)

]
. (4.1)

We call the right hand side total (expected) exceptional load. The above inequality is tight up to con-
stants for non-adaptive policies, so it seems like the total expected exceptional load is a good proxy
to use for our algorithm. However, it is far from tight for adaptive policies as the example shows.

60

Example 4.1.7. We define an instance of load balancing on related machines, where each machine i
has a speed si and each job j has processing time Xj such that Xij =

Xj

si
. Our instance has one

“fast” machine with speed 1 and m − 1 “slow” machines each with speed 1
τm , where τ > 0 is

the truncation threshold. There are m jobs: a stochastic one with processing time τ ·Ber
(
1
τ

)
and

m − 1 deterministic jobs with processing time 1
m . The optimal adaptive policy schedules first the

stochastic job on the fast machine. If its realized size is 0, then it schedules all deterministic jobs
on the fast machine. Otherwise its realized size is τ and we schedule one deterministic job on each
slow machine. This gives E[Opt] =

(
1 − 1

τ

)(
m−1
m

)
+ 1

τ · τ = Θ(1). However, the total expected
exceptional load (with respect to threshold τ) is

∑
i,j E

[
XE

ij · 1j→i

]
= 1

τ (mτ) = m, where j → i
denotes that job j is assigned to machine i, i.e., configuration i is chosen for j.

In the example, the optimal adaptive policy accrues a lot of exceptional load, but this does not
have a large effect on the makespan. Concretely, (4.1) can be loose by a Ω(m)-factor for adaptive
policies. Thus, it seems that the total exceptional load is a bad proxy in terms of lower-bounding
Opt. However, we show that, by comparing our algorithm to a near-optimal adaptive policy rather
than the optimal one, the total exceptional load becomes a good proxy in the following sense. This
is the main technical contribution of our work, and it underlies all of our algorithmic techniques.

Theorem 4.1.8. For configuration balancing with stochastic requests, there exists an adaptive
policy with expected maximum load and total expected exceptional load at most 2 · E[Opt] with
respect to any truncation threshold τ ≥ 2 · E[Opt]. Further, any configuration c selected by this
policy satisfies E

[
maxiXi(c)

]
≤ τ .

The proof of the above relies on carefully modifying the “decision tree” representing the optimal
adaptive policy. In light of Theorem 4.1.8, the deterministic proxies we consider are the expected
truncated load on each resource and the total expected exceptional load. All of our algorithms
then proceed by ensuring that both quantities are bounded with respect to E[Opt]. In the offline
case, we round a natural assignment-type linear program (LP), and in the online case, we use a
potential function argument. All of these algorithms actually output non-adaptive policies.

For the special case of related-machines load balancing, we also compute a non-adaptive assignment
but instead of following it exactly, we deviate using adaptivity and give improved solutions.

4.2 Configuration Balancing with Stochastic Requests

In this section, we prove our main results for the most general problem we consider: configuration
balancing. We give a O

(logm
log logm

)
-approximation offline and a O(logm)-approximation online. Both

of our algorithms are non-adaptive. Before describing the algorithms, we give our main structure
theorem that enables all of our results. Roughly, we show that instead of comparing to the optimal
adaptive policy, by losing only a constant factor in the approximation ratio, we can compare to a
near-optimal policy that behaves like a non-adaptive one (with respect to the proxy objectives we
consider – namely, the total expected exceptional load).

4.2.1 Structure theorem

The goal of this section is to show that there exists a near-optimal policy as guaranteed by The-
orem 4.1.8. To this end, we modify the optimal policy by “restarting” whenever an exceptional
request is encountered. Additionally, we ensure that this modified policy never selects a configura-
tion c for a request j with E

[
maxiXij(c)

]
> τ .

61

We let J denote the set of requests. For any subset J ′ ⊆ J , we let Opt(J ′) denote the optimal
adaptive policy (and its maximum load) on the set of requests J ′. Note that Opt(∅) = 0. Our
(existential) algorithm to construct such a policy will begin by running the optimal policy Opt(J)
on all requests. However, once a exceptional request is encountered or the next decision will choose
a configuration with too large expected max, we cancel Opt(J) and instead recurse on all remaining
requests, ignoring all previously-accrued loads. The main idea of our analysis is that we recurse
with small probability. We now proceed formally.

Theorem 4.1.8. For configuration balancing with stochastic requests, there exists an adaptive
policy with expected maximum load and total expected exceptional load at most 2 · E[Opt] with
respect to any truncation threshold τ ≥ 2 · E[Opt]. Further, any configuration c selected by this
policy satisfies E

[
maxiXi(c)

]
≤ τ .

Proof. We prove the theorem by induction on the number of requests n ∈ N. The base case n = 0
is trivial. Now we consider n > 0. Let J be the set of n requests. Our algorithm to construct the
desired policy S(J) is the following. Throughout, we fix a truncation threshold τ ≥ 2 · E[Opt].

Algorithm 7: Policy S(J)

7.1 R← J // remaining requests

7.2 if R = ∅ then
7.3 return empty policy // finish

7.4 while R ̸= ∅ do
7.5 j ← first / next request considered by Opt(J)
7.6 cj ← configuration chosen for request j by Opt(J)
7.87.8 if E

[
maxiXij(cj)

]
> τ then // maximum too large

7.9 break
7.10 else
7.11 choose cj for request j // S(J) follows Opt(J)

7.12 R← R \ {j} // update remaining requests

7.147.14 if maxiXij(cj) ≥ τ then // exceptional configuration observed

7.15 break

7.16 run S(R) // recurse with remaining requests

Let R be the random set of requests we recurse on after stopping Opt(J). We first show that indeed
|R| < |J |, so we can apply induction. Suppose we did not follow Opt(J) to completion because a
chosen configuration becomes exceptional (7.14); denote this event by E . In this case, there is at
least one request for which we have chosen a configuration. Hence, we have |R| < |J |, and therefore
there is a policy S with the required properties by induction.

Suppose now that Opt(J) chooses a configuration cj for request j that is too large (7.8); denote
this event by L. We have to show that |R| < |J | holds as well. Suppose for the sake of contra-
diction that j was the first request considered by Opt(J). As Opt is w.l.o.g. deterministic, this
implies E[Opt] ≥ E

[
maxiXij(cj)

]
> 2E[Opt], a contradiction. Hence, the desired policy S exists

by induction.

The maximum load of this policy is at most Opt(J) + S(R), where we set R = ∅ if no decision

62

results in an exceptional or too large configuration when running Opt(J). In expectation, we have

E[S(R)] =
∑
J ′⊊J

E[S(R) | R = J ′]P[R = J ′] =
∑
J ′⊊J

E[S(J ′)]P[R = J ′] ≤ 2
∑
J ′⊊J

E[Opt(J ′)]P[R = J]

≤ 2 · E[Opt(J)]P[R ̸= ∅].

In the second equality, we use the fact that the realizations of the remaining requests in R are
independent of the event R = J ′. The first inequality uses the inductive hypothesis. The last
inequality uses J ′ ⊆ J , so E[Opt(J ′)] ≤ E[Opt(J)], and Opt(∅) = 0.

Note that on the event R ̸= ∅, we have that Opt(J) chooses a configuration that becomes exceptional
or that is too large in expectation. By definition of the policy S, the events E and L are disjoint.
By definition of E , we have Opt(J) · 1E ≥ τ · 1E . Observe that the event L implies that there is a
request j∗ with configuration c∗ chosen by Opt(J) with E

[
maxiXij∗(c

∗)
]
≥ τ . Since the realization

of maxiXij∗(c
∗) is independent of the choice c∗, this implies E[Opt | L] ≥ E[maxiXij∗(c

∗) | L] =
E[maxiXij∗(c

∗)] ≥ τ . Thus,

E[Opt(J)] ≥ P[E]E[Opt(J) | E] + P[L]E[Opt(J) | L] ≥ P[E]τ + P[L]τ ≥ 2P[R ̸= ∅]E[Opt(J)].

Rearranging yields P[R ̸= ∅] ≤ 1
2 . Hence, we can bound the expected makespan of policy S(J) by

E[Opt(J)] + E[S(R)] ≤ E[Opt(J)] + 2E[Opt(J)]P[R ̸= ∅] ≤ 2E[Opt(J)].

The computation for the total expected exceptional load is similar. We let j → c denote the event
that our policy chooses configuration c for request j. Then, we can split the exceptional load into
two parts based on whether a configuration is chosen by Opt(J) or S(R)

n∑
j=1

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1j→c =

n∑
j=1

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1

j
J−→c

+

n∑
j=1

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1

j
R−→c

,

where we let j
J−→ c and j

R−→ c denote the events that configuration c is chosen for request
j by Opt(J) up to the first too large configuration or up to and including the first exceptional
configuration, or by S(R), respectively.

We first bound the former term, corresponding to the configurations chosen in Opt(J). In case
of event L or if Opt(J) is run to completion, we have

∑
j,c

(
maxiX

E
ij (c)

)
· 1

j
J−→c

= 0. Oth-

erwise, let j∗ → c∗ be the first (and only) exceptional configuration chosen by Opt(J). Then,∑
j,c

(
maxiX

E
ij (c)

)
· 1

j
J−→c

= maxiX
E
ij∗(c

∗) ≤ Opt(J). Combining and taking expectations yields

E
[n∑

j=1

qj∑
c=1

max
i

XE
ij (c) · 1

j
J−→c

]
≤ E[Opt(J)].

For the latter term, we condition again on the events R = J ′ and apply the inductive hypothesis.
All exceptional parts are defined with respect to the fixed threshold τ ≥ 2·E[Opt(J)] ≥ 2·E[Opt(J ′)]
for J ′ ⊂ J . Therefore,

E
[n∑

j=1

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1

j
R−→c

]
=

∑
J ′⊊J

E
[∑
j∈J ′

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1

j
R−→c

∣∣∣R = J ′
]
· P[R = J ′]

63

=
∑
J ′⊊J

E
[∑
j∈J ′

qj∑
c=1

(
max

i
XE

ij (c)
)
· 1

j
J′−→c

]
· P[R = J ′]

≤ 2
∑
J ′⊊J

E[Opt(J ′)] · P[R = J ′]

≤ 2 · E[Opt(J)] · P[R ̸= ∅] ≤ E[Opt(J)].

Note that we define j
J ′
−→ c to be the event that the policy S(J ′) chooses configuration c for

request j. In conclusion, by combining our bounds for these two terms we have

E
[n∑

j=1

qj∑
c=1

(
max

i
Xij(c)

E
)
· 1j→c

]
≤ 2E[Opt(J)].

To conclude, our constructed policy has expected maximum truncated load and total expected
exceptional load both at most 2 · E[Opt] (by the above calculations), and it never chooses a con-
figuration with E

[
maxiXi(c)

]
> τ (because we stop running Opt(J) right before it chooses such a

configuration, and by induction we subsequently do not as well.)

Having this near-optimal policy at hand, the upshot is that we can bound our subsequent algo-
rithms with respect to the following LP relaxation (LPC) for configuration balancing with stochastic
requests. The variable ycj denotes selecting configuration c for request j. We take our threshold
between the truncated and exceptional parts to be τ . Using the natural setting of the y-variables
defined by the policy guaranteed by Theorem 4.1.8, it is straight-forward to show that the following
LP relaxation is feasible, formalized in Lemma 4.2.1.∑qj

c=1 ycj = 1 ∀ j ∈ [n]∑n
j=1

∑qj
c=1 E[XT

ij(c)] · ycj ≤ τ ∀ i ∈ [m]∑n
j=1

∑qj
c=1 E[maxiX

E
ij (c)] · ycj ≤ τ

ycj = 0 ∀ j ∈ [n],∀ c ∈ [qj] : E[maxiXij(c)] > τ
ycj ≥ 0 ∀ j ∈ [n],∀ c ∈ [qj]

(LPC)

Lemma 4.2.1. (LPC) has a feasible solution for any τ ≥ 2 · E[Opt].
Proof. Consider the adaptive policy guaranteed by Theorem 4.1.8, and let the events j → c be with
respect to this policy. We consider the natural setting of the y-variables given this policy: for all j
and c ∈ [qj], we take ycj = P(j → c). It is clear that

∑qj
c=1 ycj = 1 for all j and 0 ≤ ycj ≤ 1 for

all j and for all c ∈ [qj]. Moreover, as by Theorem 4.1.8 the policy does not select a configuration c
with E

[
maxiXi(c)

]
> τ , the pruning constraints ycj = 0 if E

[
maxiXi(c)

]
> τ are also satisfied.

It remains to verify the exceptional and truncated load constraints. For the exceptional constraint,
we observe

n∑
j=1

qj∑
c=1

E
[
max

i
XE

ij (c)
]
· ycj =

n∑
j=1

qj∑
c=1

E
[
max

i
XE

ij (c) · 1j→c

]
≤ 2 · E[Opt] ≤ γ,

where in the first step we use the fact that the decision to choose configuration c for request j is
independent of its realization, and in the second we use the properties of the policy. Similarly, for
the truncated constraint for each i,

n∑
j=1

qj∑
c=1

E
[
XT

ij(c)
]
· ycj =

n∑
j=1

qj∑
c=1

E
[
XT

ij(c) · 1j→c

]
≤ 2 · E[Opt] ≤ τ.

64

4.2.2 Offline Setting

Our offline algorithm is based on the natural randomized rounding of (LPC). For the truncated
parts, we use the following maximal inequality to bound their contribution to the makespan. See
Appendix B.1 for proof. The independence is only required for the random variables constituting
a particular sum Si, but is not necessary for random variables appearing in different sums.

Lemma 4.2.2. Let S1, . . . , Sm be sums of independent random variables, that are bounded in [0, τ]
for some τ > 0, such that E[Si] ≤ τ for all 1 ≤ i ≤ m. Then, E[maxi Si] = O

(logm
log logm

)
τ .

To bound the contribution of the exceptional parts, we use (4.1) (i.e. the total expected exceptional
load.) Using binary search for the correct choice of τ and re-scaling the instance down by the current
value of τ , it suffices to give an efficient algorithm that either

� outputs a non-adaptive policy with expected makespan O
(logm
log logm

)
, or

� certifies that E[Opt] > 1.

This is because for τ ∈
(
E[Opt], 2 · E[Opt]

]
, the re-scaling guarantees E[Opt] ∈ [12 , 1) on the scaled

instance, in which case the algorithm achieves expected makespan O
(logm
log logm

)
= O

(logm
log logm

)
·E[Opt].

To that end, we use natural independent randomized rounding of (LPC). That is, if (LPC) has a
feasible solution y∗, for request j, we choose configuration c as configuration cj independently with
probability y∗cj ; see Algorithm 8. If the configurations are given explicitly as part of the input,

Algorithm 8: Offline Configuration Balancing with Stochastic Requests

8.1 try to solve (LPC) with τ = 2
8.2 if (LPC) is feasible then
8.3 let y∗ be the outputted feasible solution
8.4 for each request j do
8.5 independently sample c ∈ [qj] with probability y∗cj
8.6 choose sampled c as cj

8.7 else
8.8 return “E[Opt] > 1”

then (LPC) can be solved in polynomial time and, thus, Algorithm 8 runs in polynomial time.
Hence, the desired O

(logm
log logm

)
-approximate non-adaptive policy for configuration balancing with

stochastic requests (Theorem 4.1.1) follows from the next lemma.

Lemma 4.2.3. If (LPC) can be solved in polynomial time, Algorithm 8 is a polynomial-time ran-
domized algorithm that either outputs a non-adaptive policy with expected makespan O

(logm
log logm

)
,

or certifies correctly that E[Opt] > 1.

Proof. We need to show that Algorithm 8 either outputs a non-adaptive policy with expected
makespan O

(logm
log logm

)
or certifies that E[Opt] > 1. There are two cases.

If (LPC) is feasible for τ = 2, then we output a (randomized) non-adaptive policy. We show this
policy has expected makespan O

(logm
log logm

)
. We let j → c denote the event that our algorithm

chooses configuration c for request j. Thus, the truncated load on resource i can be written as

Li =

n∑
j=1

(qj∑
c=1

XT
ij(c) · 1j→c

)
.

65

Note that the random variables
∑qj

c=1X
T
ij(c) · 1j→c are independent for different j because the Xij

are and we sample the configuration cj independently for each j. Further, they are bounded in
[0, 2] by truncation. With the constraints of (LPC), we can bound the expectation by

E[Li] =
n∑

j=1

qj∑
c=1

E
[
XT

ij(c) · 1j→c

]
=

n∑
j=1

qj∑
c=1

E
[
XT

ij(c)
]
· y∗cj ≤ 2,

where we used the independence of 1j→c and Xij(c) in the second equality. By Lemma 4.2.2,

E[maxi Li] = O
(logm
log logm

)
. Using (4.1) we upper bound the total expected exceptional load by

E
[

max
1≤i≤m

n∑
j=1

qj∑
c=1

XE
ij (c)·1j→c

]
≤

n∑
j=1

qj∑
c=1

E
[
max
1≤i≤m

XE
ij (c)·1j→c

]
=

n∑
j=1

qj∑
c=1

E
[
max
1≤i≤m

XE
ij (c)

]
·y∗cj ≤ 2.

Combining our bounds for the truncated and exceptional parts completes the proof. The expected
makespan of our algorithm is given by

E
[
max
1≤i≤m

n∑
j=1

qj∑
c=1

Xij(c) · 1j→c

]
≤ E

[
max
1≤i≤m

Li

]
+ E

[
max
1≤i≤m

n∑
j=1

qj∑
c=1

XE
ij (c) · 1j→c

]
= O

(logm

log logm

)
.

In the other case (LPC) is infeasible, so the contrapositive of Lemma 4.2.1 gives E[Opt] > 1.

4.2.3 Online Setting

We now consider online configuration balancing where n stochastic requests arrive online one-
by-one, and for each request, one configuration has to be irrevocably selected before the next
request appears. We present a non-adaptive online algorithm that achieves a competitive ratio
of O(logm), which is best possible due to the lower bound of Ω(logm) on the competitive ratio of
any deterministic algorithm for online load balancing on unrelated machines [ANR95].

First, by a standard guess-and-double scheme, we may assume we have a good guess of E[Opt].

Lemma 4.2.4. Given an instance of online configuration balancing with stochastic requests, sup-
pose there exists an online algorithm that, given parameter λ > 0, never creates an expected
makespan more than α·λ, possibly terminating before handling all requests. Further, if the algorithm
terminates prematurely, then it certifies that E[Opt] > λ. Then, there exists an O(α)-competitive al-
gorithm for online configuration balancing with stochastic requests. Further, the resulting algorithm
preserves non-adaptivity.

We omit the proof, which is analogous to its virtual-circuit-routing counterpart in [AAF+97].

We will build on the same technical tools as in the offline case. In particular, we wish to compute a
non-adaptive assignment online with small expected truncated load on each resource and small total
expected exceptional load. To achieve this, we generalize the greedy potential function approach of
[AAF+97]. Our two new ingredients are to treat the exceptional parts of a request’s configuration
as a resource requirement for an additional, artificial resource and to compare the potential of our
solution directly with a fractional solution to (LPC).

Now we describe our potential function, which is based on an exponential/soft-max function. Let λ
denote the current guess of the optimum as required by Lemma 4.2.4. We take τ = 2λ as our

66

truncation threshold. Given load vector L ∈ Rm+1, our potential function is

ϕ(L) =

m∑
i=0

(3/2)Li/τ .

For i = 1, . . . ,m, we will ensure the ith entry of L is the expected truncated load on resource i.
We use the 0th entry as a virtual resource that is the total expected exceptional load. For any
request j, we let Lij be the ith entry of the expected load vector after handling the first j requests.
We define Li0 := 0 for all i. Let Lj be the expected load vector after handling the first j requests.

Algorithm 9 works as follows: Upon arrival of request j, we try to choose the configuration cj ∈ [qj]
that minimizes the increase in potential. Concretely, we choose cj to minimize

(
(3/2)(L0j−1+E[maxi∈[m] X

E
ij (cj)])/τ +

m∑
i=1

(3/2)(Lij−1+E[XT
ij(cj)])/τ

)
− ϕ(Lj−1).

Algorithm 9: Online Configuration Balancing with Stochastic Requests

9.1 ℓ← log3/2(2m+ 2)

9.2 λ← current guess of E[Opt]
9.3 τ ← 2λ truncation threshold
9.4 upon arrival of request j do

9.69.6 cj ← argminc∈[qj]

(
(3/2)(L0j−1+E[maxi∈[m] X

E
ij (c)])/τ+

∑m
i=1(3/2)

(Lij−1+E[XT
ij(c)])/τ

)
−ϕ(Lj−1)

9.7 if Lij−1 + E[XT
ij(cj)] ≤ ℓτ for all i ∈ [m] and L0j−1 + E[maxi∈[m]X

E
ij (cj)] ≤ ℓτ then

9.8 choose cj for j
9.9 Lij ← Lij−1 + E[XT

ij(cj)] for all i ∈ [m]

9.10 L0j ← L0j−1 + E[maxi∈[m]X
E
ij (cj)]

9.11 else
9.12 return “E[Opt] > λ”

To analyze this algorithm, we compare its makespan with a solution to (LPC). This LP has an
integrality gap of Ω

(logm
log logm

)
, which follows immediately from the path assignment LP for virtual

circuit routing [LRS98]. Hence, a straightforward analysis of Algorithm 9 comparing to a rounded
solution to (LPC) gives an assignment with expected truncated load per machine and total expected
exceptional load O

(
logm · logm

log logm) · E[Opt]. The O
(logm
log logm

)
factor is due to the aforementioned

integrality gap while the second factor O(logm) is due to the use of the potential function. To get
a tight competitive ratio of O(logm), we avoid the integrality gap by comparing to a fractional
solution to (LPC), and we use a slightly different maximal inequality for the regime where the mean
of the sums is larger than the increments by at most a O(logm)-factor. The particular maximal
inequality is the following, which we prove in Appendix B.1.

Lemma 4.2.5. Let S1, . . . , Sm be sums of independent random variables bounded in [0, τ] such
that E[Si] ≤ O(logm)τ for all 1 ≤ i ≤ m. Then, E[maxi Si] ≤ O(logm)τ .

Now we give our main guarantee for Algorithm 9, which implies the desired O(logm)-competitive
online algorithm for configuration balancing with stochastic requests.

67

Lemma 4.2.6. Suppose the minimizing configuration in Line 9.6 can be found in polynomial time.
Then Algorithm 9 runs in polynomial time. Further, Algorithm 9 is a deterministic, non-adaptive
algorithm that correctly solves the subproblem of Lemma 4.2.4 for α = O(logm).

Proof. The running time of Algorithm 9 is clear. It remains to show that the algorithm creates
expected makespan at most O(logm)λ or correctly certifies E[Opt] > λ if it terminates prematurely.

We first show the former. By definition, upon termination of the algorithm after, say n′ requests,
the expected truncated load on each resource and total expected exceptional load are both at most
O(logm) · λ. Let the configuration choices cj be with respect to our algorithm. We can split the
makespan into the contributions by the truncated and exceptional parts.

E
[

max
1≤i≤m

n′∑
j=1

Xij(cj)

]
≤ E

[
max
1≤i≤m

n′∑
j=1

XT
ij(cj)

]
+ E

[
max
1≤i≤m

n′∑
j=1

XE
ij (cj)

]
.

Each truncated part is bounded in [0, 2λ] and each resource has expected truncated load at
most O(logm)λ. By Lemma 4.2.5, we can bound the contribution of the truncated parts by

E
[
max1≤i≤m

∑n′

j=1X
T
ij(cj)

]
= O(logm)λ. For the exceptional parts, applying (4.1) gives

E
[

max
1≤i≤m

n∑
j=1

XE
ij (cj)

]
≤ E

[n∑
j=1

max
1≤i≤m

XE
ij (cj)

]
≤ O(logm)λ.

Combining both bounds gives that the expected makespan is at most O(logm)λ, as required.

It remains to show that if E[Opt] ≤ λ, then the algorithm successfully assigns all requests. We do so
by bounding the increase in the potential function. Note that if E[Opt] ≤ λ, then (LPC) is feasible for
our choice of τ = 2λ by Lemma 4.2.1. Thus, let (ycj) be a feasible solution to (LPC). For simplicity,
let x0j(c) := E[max1≤i≤mXE

ij (c)] be the exceptional part of configuration c and xij(c) := E[XT
ij(c)]

its truncated part on resource i.

For each request j, as Algorithm 9 chooses a configuration cj minimizing the increase in Φ,

ϕ(Lj−1 + xj(cj))− ϕ(Lj−1) ≤ ϕ(Lj−1 + xj(c))− ϕ(Lj−1)

for all configurations c ∈ [qj]. As
∑qj

c=1 ycj = 1 by feasibility of (ycj), this implies

ϕ(Lj−1 + xj(cj))− ϕ(Lj−1) ≤
qj∑
c=1

ycjϕ(Lj−1 + xj(c))− ϕ(Lj−1). (4.2)

We recall that L0 = 0 ∈ Rm+1. We bound the increase in potential incurred by Algorithm 9:

ϕ(Ln)− ϕ(L0) =

n∑
j=1

m∑
i=0

(3/2)Lij−1/τ
(
(3/2)xij(cj)/τ − 1

)

≤
n∑

j=1

qj∑
c=1

ycj

m∑
i=0

(3/2)Lij−1/τ
(
(3/2)xij(c)/τ − 1

)

≤
m∑
i=0

(3/2)Lin/τ
n∑

j=1

qj∑
c=1

ycj

(
(3/2)xij(c)/τ − 1

)
,

68

where the first inequality holds due to (4.2), and the second inequality holds because the load on
machine i only increases over time. Standard estimates of ez give (3/2)z − 1 ≤ (1/2)z for z ∈ [0, 1].
As ycj is feasible, we know that xij(c) ≤ τ for all c with ycj > 0. Hence,

ϕ(Ln)− ϕ(L0) ≤
m∑
i=0

(3/2)Lin/τ
n∑

j=1

qj∑
c=1

ycj
xij(c)

2τ

Using that ycj is feasible and satisfies
∑n

j=1

∑qj
c=1 xij(c)·ycj ≤ τ for resource i = 0 by the exceptional

constraint and for all resources i = 1, . . . ,m by the truncated constraints, we get

ϕ(Ln)− ϕ(L0) ≤ (1/2)

m∑
i=0

(3/2)Lin/τ = (1/2)ϕ(Ln).

After rearranging, we have ϕ(Ln) ≤ 2ϕ(L0) = 2(m + 1) by choice of L0. Taking logarithms and
using that log3/2(z) is monotonically increasing, we conclude that max0≤i≤m Lin ≤ log3/2(2m+2)τ.
Note that we chose ℓ = log3/2(2m+ 2) implying that Algorithm 9 never fails if E[Opt] ≤ λ.

Summary

Our main theorem for configuration balancing follows from the above two algorithms.

Theorem 4.1.1. For configuration balancing with stochastic requests there is a randomized offline
algorithm that computes a non-adaptive policy that is a O

(logm
log logm

)
-approximation and a deter-

ministic online algorithm that is a O(logm)-approximation when comparing to the optimal offline
adaptive policy. Both algorithms run in polynomial time in the number of resources and the total
number of configurations over all requests.

Proof. Note that the configurations are given explicitly, implying that both, Algorithms 8 and 9,
run in polynomial time. Hence, Lemma 4.2.3 gives the O(logm

log logm)-approximate offline algorithm
and Lemmas 4.2.4 and 4.2.6 give the O(logm)-approximate online algorithm.

4.3 Unrelated Load Balancing and Virtual Circuit Routing

In this section, we apply our algorithms for configuration balancing to stochastic load balancing on
unrelated machines (Theorem 4.1.2) as well as stochastic virtual circuit routing (Theorem 4.1.5).

4.3.1 Unrelated Load Balancing with Stochastic Jobs

We recall that in load balancing on unrelated machines with stochastic jobs, we have m machines
and n jobs such that the size of job j on machine i is a random variable Xij . These Xijs are
independent across jobs. This is a special case of configuration balancing with stochastic requests
by taking m resources (corresponding to the m machines) and n requests such that each request
j has m possible configurations, one for each machine choice job j has. Precisely, we define the
configurations c = 1, . . . ,m for job j by setting

Xij(c) =

{
Xcj if i = c,

0 otherwise.
(4.3)

Theorem 4.1.2. There exist efficient deterministic algorithms that compute a non-adaptive pol-
icy for load balancing on unrelated machines with stochastic jobs that achieve an Θ

(logm
log logm

)
-

approximation offline and an Θ(logm)-approximation online when comparing to the optimal offline
adaptive policy.

69

Proof. Each request has m possible configurations, so the total size of the resulting configura-
tion balancing instance is polynomial. Thus, we may assume the configurations are given explic-
itly. Hence, Theorem 4.1.1 immediately gives a randomized O(logm

log logm)-approximation offline and
O(logm)-approximation online for load balancing on unrelated machines with stochastic jobs.

However, to obtain a deterministic offline algorithm, we can de-randomize Algorithm 8 for this
special case because here, (LPC) is equivalent to the generalized assignment LP considered by
Shmoys and Tardos, which has a constant-factor rounding algorithm [ST93].

4.3.2 Routing with Stochastic Demands

Virtual circuit routing is another special case of configuration balancing: Given any instance of
the former, which consists of a directed graph with m edges and n source-sink pairs, the resulting
configuration balancing instance has m resources, one for each edge, and n requests, one for each
source-sink pair, such that there is one configuration per source-sink path in the graph.

Note that unlike load balancing, where a request has at most m configurations, for routing, a
request can have exponentially many configurations. Thus, to obtain polynomial-time algorithms
for routing, we cannot explicitly represent all configurations. In particular, to prove Theorem 4.1.5
in the offline setting, we need to show how to solve (LPC) efficiently in the special case of routing,
and to prove Theorem 4.1.5 in the online setting, we need to show how to find the configuration
(i.e. the path) that minimizes the increase in the potential Φ.

Offline Routing: Solving (LPC)

We first re-write (LPC) for routing. Recall that τ is the truncation threshold. For a request j,
let Ej be the set of all edges with E[Xej] ≤ τ and let Pj be the collection of all sj-tj paths in the
auxiliary graph Gj = (V,Ej). For each request j and path P ∈ Pj , the variable yPj denotes the
decision to route request j along path P . Thus, we want to solve the following path assignment LP.

∑
P∈Pj

yPj = 1 ∀ j ∈ [n]∑n
j=1

∑
P∈Pj

E[XT
ej] · yPj ≤ τ ∀ e ∈ E∑n

j=1

∑
P∈Pj

E[maxe∈P XE
ej] · yPj ≤ τ

yPj ≥ 0 ∀ j ∈ [n], P ∈ Pj

(LPP)

To see that (LPP) is equivalent to (LPC), note that the pruning constraints of the latter ensure
that any configuration/path P with E

[
maxe∈P Xej

]
> τ will not be selected. Re-writing gives

E
[
maxe∈P Xej

]
= E

[
maxe∈P

1
ce
Xj

]
= maxe∈P E[Xej]. Thus, the pruning constraint ensures that

no edge with E[Xej] > τ will be selected. This is exactly encoded by the set of feasible paths Pj .
Note that (LPP) has an exponential number of variables. For classical congestion minimization
problems, the path-assignment LP formulation is equivalent to a flow formulation [LRS98], which
can be solved optimally in polynomial time using results about flows in networks. In our case,
however, we additionally have the third constraint (the exceptional load constraint) in the LP,
which does not allow for a straight-forward equivalent flow formulation. Therefore, we use LP
duality in order to solve it efficiently: We give a separation oracle for its dual LP. For obtaining
the dual, we add the trivial objective to maximize 0T y to (LPP). Hence, the dual of (LPP) is

70

min
∑

j aj +
∑

e be · τ + c · τ
s.t. aj +

∑
e∈P be · E[XT

ej] + c · E[maxe∈P XT
ej] ≥ 0 ∀j ∈ [n], P ∈ Pj
be ≥ 0 ∀ e ∈ E
c ≥ 0.

(DP)

For solving (DP), consider a request j and a path P ∈ Pj . The expected exceptional part of

routing j along P is E
[
maxe∈P XE

ej

]
= maxe∈P E

[(
Xj/ce

)E]
, which is the expected exceptional

part of the smallest-capacity edge ēj along the path. Given this edge ēj , a particular choice of the
dual variables is feasible for the first constraint of (DP) if and only if

min
P∈Pj :mine∈P ce≥cēj

(∑
e∈P

be · E
[
XT

ej

]
+ c · E

[
max
e∈P

XT
ej

])
≥ −aj ∀ j.

Hence, for each request j, it remains to find a path P ∈ Pj that is minimal w.r.t. edge weights
be ·E[XT

ej]. By letting every edge ē be the smallest-capacity edge and removing any smaller-capacity
edges from the graph, this becomes a shortest sj-tj path problem.

Algorithm 10: Separation oracle for (DP)

10.1 (a, b, c)← current solution of (DP)
10.2 if be < 0 for some e ∈ E or c < 0 then
10.3 return the violated non-negativity constraint
10.4 else
10.5 for j and edge ē ∈ Ej do
10.6 Eē ← {e ∈ Ej : ce ≥ cē}
10.7 Gē ← (V,Eē)
10.8 Pjē ← shortest sj-tj path in Gē w.r.t. edge weights be · E[XT

ej]

10.9 if
∑

e∈Pjē
be · E[XT

ej] + c · E[maxe∈Pjē X
T
ej] < −aj then

10.10 return the separating hyperplane
∑

e∈Pjē
be · E[XT

ej] + c · E[maxe∈Pjē X
T
ej] ≥ −aj

10.11 return “feasible”

Lemma 4.3.1. Algorithm 10 is a polynomial time separation oracle for (DP).

Proof. Since shortest paths can be found in polynomial time [Bel58], Algorithm 10 indeed runs in
polynomial time. Further, if there is an edge e ∈ E with be < 0 or if c < 0, then Algorithm 10
correctly outputs the violated constraint.

It remains to consider the case when b, c ≥ 0. In this case, we need to show for each request j that
we find some ē ∈ E such that Pjē achieves minP∈Pj

(∑
e∈P be · E[XT

ej] + c · E[maxe∈P XT
ej]

)
.

Consider any request j such that the minimum is achieved by some sj-tj path P ∗. Let e∗ be the
smallest-capacity edge along P ∗. We claim for the correct guess ē = e∗, Pjē achieves the minimum.
To see this, observe that P ∗ is a sj-tj path in the graph Gē, so the algorithm will choose Pjē

with
∑

e∈Pjē
be · E[XT

ej] ≤
∑

e∈P ∗ be · E[XT
ej] by definition of the edge weights. Further, we have

c ·E[maxe∈Pjē X
T
ej] ≤ c ·E[maxe∈P ∗ XT

ej], because the latter maximum is achieved by edge ē, and by
definition of the residual graph, Pjē cannot use any edges with smaller capacity than ē. Combining
these two bounds shows that Pjē achieves the minimum. This in turn implies that Algorithm 10
returns a constraint violated by (a, b, c) if such a constraint exists.

71

Online Routing: Minimizing Increase in Φ

For online virtual circuit routing, we assume that a sequence of source sink-pairs (sj , tj) for j =
1, . . . , n arrive online. To implement Algorithm 9 efficiently, given a load vector L = (L0, . . . , Lm)
and source-sink pair (sj , tj) with random demand Xj ≥ 0, we need to choose a sj-tj path in G
that minimizes the increase in Φ with respect to some fixed truncation threshold τ . Recall that
we index the edges of G by 1, . . . ,m, while L0 is the load of an additional, artificial resource that
captures the total expected exceptional load.

As in the offline setting, the expected exceptional part of the configuration corresponding to choos-
ing a particular sj-tj path is the expected exceptional part of the smallest-capacity edge along the
path. Thus, the increase in potential due to choosing a path P is(

(3/2)(L0+(maxe∈P E[XE
ej])/τ − (3/2)L0/τ

)
+

∑
e∈P

(
(3/2)(Le+E[XT

ej])/τ − (3/2)Le/τ
)
.

The first term is the increase due to the exceptional part (the smallest-capacity edge along P), and
the remaining terms are the per-edge contributions due to the truncated parts. Analogously to the
previous section, we only consider edges in Ej = {e ∈ E : E[Xej] ≤ τ}, guess the smallest-capacity
edge, and solve a shortest sj-tj path problem to find the minimizing path; see Algorithm 11.

Algorithm 11: Minimizing increase in Φ for virtual circuit routing

11.1 L← current load vector
11.2 for ē ∈ Ej do
11.3 Eē ← {e ∈ Ej : ce ≥ cē}
11.4 Gē ← (V,Eē)

11.5 Pjē ← shortest sj-tj path in Gē w.r.t. edge weights
(
(3/2)(Le+E[XT

ej])/τ − (3/2)Le/τ
)

11.6 Pj ← argminPjē increase in Φ

Lemma 4.3.2. Given a request j and load vector L, Algorithm 11 returns in polynomial time a
path Pj that minimizes the increase in Φ.

Proof. It is clear that Algorithm 11 runs in polynomial time. To see that it also finds a path that
minimizes the increase in Φ, let P ∗

j be such an optimal path with smallest-capacity edge e∗. For
the correct guess ē = e∗, P ∗

j is a sj-tj path in the graph Gē. Thus, Algorithm 11 chooses Pjē

such that the per-edge contributions due to the truncated parts of Pjē are at most those due to
P ∗
j by definition of the edge weights. Further, the exceptional part of Pjē is at most that of P ∗

j ,
because Pjē does not use any edges with capacity smaller than cē by definition of the graph Gē.
We conclude that Pjē is also a sj-tj path that minimizes the increase in Φ.

Summary

Combining the above two algorithms for the offline and online cases allow us to efficiently optimize
over the possibly exponentially many configurations in stochastic virtual circuit routing.

Theorem 4.1.5. For virtual circuit routing with stochastic requests, there exist an efficient random-
ized offline algorithm computing a non-adaptive policy that is a Θ

(logm
log logm

)
-approximation and an

efficient deterministic online algorithm that computes an Θ(logm)-approximation when comparing
to the optimal offline adaptive policy.

72

Proof. For offline virtual circuit routing, Lemma 4.3.1 guarantees that (LPP) can be solved optimally
in polynomial time by LP duality. Thus, Lemma 4.2.3 implies that Algorithm 8 runs in polynomial
time and achieves a maximum congestion of O

(logm
log logm

)
E[Opt].

For the online problem, Lemma 4.3.2 guarantees that, for each request j, a path Pj that minimizes
the increase in the potential function Φ is found in polynomial time. Thus, Lemma 4.2.3 implies that
Algorithm 9 runs in polynomial time and guarantees a maximum congestion of O(logm)E[Opt].

4.4 Load Balancing on Related Machines

In this section, we improve on Theorem 4.1.2 in the special case of related machines, where each
machine i has a speed parameter si > 0 and each job j an independent size Xj such that Xij =

Xj

si
.

Recall that we gave a non-adaptive O
(logm
log logm

)
-approximation for unrelated machines. However,

the adaptivity gap is Ω
(logm
log logm

)
even for load balancing on identical machines where every machine

has the same speed. Thus, to improve on Theorem 4.1.2, we need to use adaptivity.

The starting point of our improved algorithms is the same non-adaptive assignment for unrelated-
machine load balancing. However, instead of non-adaptively assigning a job j to the specified
machine i, we adaptively assign j to the least loaded machine with similar speed to i. In the
first part, we formalize this idea and then we focus on offline and online load balancing on related
machines.

4.4.1 Machine Smoothing

In this section, we define a notion of smoothed machines. We show that by losing a constant factor
in the approximation ratio, we may assume that the machines are partitioned into at most O(logm)
groups such that machines within a group have the same speed and the size of the groups shrinks
geometrically. Thus, by “machines with similar speed to i,” we mean machines in the same group.

Formally, we would like to transform an instance I of load balancing on m related machines with
stochastic jobs into an instance Is with so-called “smoothed machines” and the same set of jobs
with the following three properties:

(i) The machines are partitioned into m′ = O(logm) groups such that group k consists of mk

machines with speed exactly sk such that s1 < s2 < · · · < sm′ .

(ii) For all groups 1 ≤ k < m′, we have mk ≥ 3
2mk+1.

(iii) Opt(Is) = O(Opt(I)).

To this end, we suitably decrease machine speeds and delete machines from the original instance I.
Our algorithm is the following.

We show that this algorithm creates the desired smoothed machines instance.

Lemma 4.4.1. Given an instance I of load balancing with m related machines and stochastic jobs,
Algorithm 12 efficiently computes an instance Is of smoothed machines with the same set of jobs
satisfying Properties (i) to (iii).

Proof sketch (full proof in Appendix B.2). It is clear that the algorithm is efficient and outputs Is
satisfying (i) and (ii). For showing (iii), we analyze the increase of the cost of Opt due to each step.
For Step 12.6, we schedule the jobs assigned by Opt to deleted machines on the fastest machine,

73

Algorithm 12: Machine Smoothing

12.1 smax ← maxi si
12.2 for i = 1 to m do
12.3 si ← si/smax

12.4 if si ≤ 1
m then

12.612.6 delete machine i

12.7 else

12.912.9 si ← 2⌊log si⌋

12.10 partition machines by speeds such that group k has mk machines of speed sk
12.11 index the groups in order of increasing speed
12.12 for k = 1 to ⌈logm⌉ do
12.13 if mk < 3

2mk+1 then
12.1512.15 delete group k

increasing its load by at most (m − 1) 1
mOpt. Step 12.9 increases Opt by at most a factor 2. For

Step 12.15, we schedule all jobs assigned by Opt to a deleted machine on machines of the next faster
remaining group, following a fixed mapping of the deleted machines to the remaining machines.
Because of (ii), we can bound the increase in load on each remaining machine by O(Opt).

To summarize, by losing a constant-factor in our final approximation ratio, we may assume we are
working with an instance of smoothed machines. Looking ahead, if our non-adaptive policy assigns
job j to machine i, then we instead adaptively assign j to the least-loaded machine in the group
containing machine i. We will use the properties of smoothed machines to show that this leads to
a O(1)-approximation offline and O(log logm)-approximation online.

A similar idea for machine smoothing has been employed by Im et al. [IKPS18] for deterministic
load balancing on related machines. In their approach, they ensure that the total processing power
of the machines in a group decreases geometrically rather than the number of machines.

4.4.2 Offline Setting

In this section, we give our O(1)-approximate adaptive policy for load balancing on related machines
with stochastic jobs. Our algorithm has three parts: machine smoothing (Algorithm 12), non-
adaptive assignment (Algorithm 8), and adaptively turning a job-to-machine assignment into a
coarser job-to-group assignment. Precisely, our algorithm is the following.

Algorithm 13: Offline Related Load Balancing

13.1 smooth machines with Algorithm 12
13.2 create configuration balancing instance as in (4.3)
13.3 obtain assignment of jobs to machines by Algorithm 8
13.4 for j ∈ J do
13.5 i← machine of j
13.6 schedule j on least loaded machine i′ with si = si′

Note that as in the case of unrelated machine load balancing (Theorem 4.1.2), we can derandomize

74

this algorithm by employing the GAP LP rounding algorithm by [ST93].

We show that this algorithm gives the desired O(1)-approximation. Note that our previous analysis
of Algorithm 8 gave a O(logm

log logm)-approximation. We improve on this using the properties of
smoothed machines and our adaptive decisions. We give a stronger maximal inequality using the
fact that group sizes are geometrically increasing. See Appendix B.1 for proof of the following.

Lemma 4.4.2. Let c1, . . . , cm ∈ N≥1 be constants such that ci ≥ 3
2ci+1 for all 1 ≤ i ≤ m. Let

S1, . . . , Sm be sums of independent random variables bounded in [0, τ] such that E[Si] ≤ ciτ for
all 1 ≤ i ≤ m. Then, E

[
maxi

Si
ci

]
≤ O(τ).

Now we analyze Algorithm 13.

Lemma 4.4.3. For offline load balancing on related machines with stochastic jobs, Algorithm 13
efficiently either outputs an adaptive policy with expected makespan O(1) or certifies E[Opt] > 1.

Proof. It is clear that the algorithm runs in polynomial time. By the contrapositive of Lemma 4.2.1,
if (LPC) is infeasible for τ = 2, then we correctly certify E[Opt] > 1. Thus, it remains to consider
the case where the LP is feasible.

In this case, we obtain a job-to-machine assignment with expected truncated load at most 2 on
every machine and expected exceptional load at most 2. Summing up the truncated loads within
each group, we have that group k has expected truncated load at most 2mk. Again, we split the
makespan of our policy into truncated and exceptional parts

E
[

max
1≤i≤m

∑
j→i

Xij

]
≤ E

[
max
1≤i≤m

∑
j→i

XT
ij

]
+ E

[
max
1≤i≤m

∑
j→i

XE
ij

]
,

where the events j → i are with respect to our final adaptive assignment. We can upper bound
the contribution of the exceptional parts (the latter term) by 2 using (4.1). It remains to bound
the contribution of truncated parts. We do so by considering the makespan on each group. For
group k, we let j → k denote the event that we non-adaptively assign job j to a machine in group k,
and Xkj be the size of job j on any machine in group k (recall that they all have the same speed).
Then,

E
[

max
1≤i≤m

∑
j→i

XT
ij

]
= E

[
max
k

max
i∈Gk

∑
j→i

XT
ij

]
,

where Gk is the collection of all machines in group k. Similar to the analysis of list scheduling
by [Gra69], i.e, by an averaging argument, we obtain

max
i∈Gk

∑
j→i

XT
ij ≤

1

mk

∑
j→k

XT
kj +max

j→k
XT

kj ≤
1

mk

∑
j→k

XT
kj + 2. (4.4)

The expected truncated load on group k is at most 2mk, and we have mk ≥ 3
2mk+1 for all k by

the properties of smoothed machines. Lemma 4.4.2 bounds the expected maximum of (4.4) for
all k by O(1). This upper bounds the expected contribution of the truncated parts by O(1), as
required.

75

4.4.3 Online Load Balancing on Related Machines

In this section, we apply the same framework to the online setting. As main difference, we compute
the non-adaptive assignment online using Algorithm 9. We must be careful, because our online
configuration balancing algorithm loses a logarithmic factor in the number of resources, so to obtain
a O(log logm)-approximation, we aggregate each group (in the smoothed-machines instance) as a
single resource. Thus, our configuration balancing instance will have only O(logm) resources.

We first describe how to construct the configuration balancing instance. Suppose we have smoothed
machines with m′ groups. We define m′ + 1 resources indexed 0, . . . ,m′ such that the 0th resource
is a virtual resource collecting exceptional parts, and the resources 1, . . .m′ index the groups of
smoothed machines and collect the respective truncated parts. Each job j has m′ configurations
c = 1, . . . ,m′ (one per job-to-group assignment) defined by

Xkj(c) =

E
[
XE

kj

]
if k = 0,

1
mk

E
[
XT

kj

]
if k = c,

0 otherwise,

(4.5)

for a fixed truncation threshold τ . Note that these configurations are deterministic. Intuitively, this
definition captures the fact that we will average all jobs assigned to group k over the mk machines
in the group. Now we give our algorithm for the online setting.

Algorithm 14: Online Related Load Balancing

14.1 smooth machines with Algorithm 12
14.2 λ← current guess of E[Opt]
14.3 τ ← 2λ truncation threshold
14.4 upon arrival of request j do
14.5 construct configurations as in (4.5)
14.6 k ← configuration chosen by Algorithm 9
14.7 schedule j on least-loaded machine in group k

Lemma 4.4.4. For online load balancing on related machines with stochastic jobs, Algorithm 14
runs in polynomial time and correctly solves the subproblem of Lemma 4.2.4 for α = O(log logm).

Proof. It is clear that the algorithm runs in polynomial time.

Let OptS be the optimal makespan of the smoothed load balancing instance. We first claim that
the resulting configuration balancing instance has optimal makespan at most O(E[OptS]) for any
truncation threshold τ ≥ 2E[OptS]. To see this, observe that (LPC) for the smoothed load balancing
instance is feasible for τ . Then, (LPC) for the deterministic configuration balancing instance is
obtained from this LP by aggregating the truncated constraints for all machines in the same group
and dividing by mk. Thus, this latter LP is also feasible for the same threshold, and it admits a
constant-factor approximation by Shmoys-Tardos [ST93]. Thus, OptD, the optimal solution of the
deterministic configuration balancing instance defined by (4.5), is at most O(E[OptS]).

Further, by the properties of smoothed machines, the resulting configuration balancing instance
has m′ + 1 = O(logm) resources. As argued in the proof of Theorem 4.1.3, the potential function
guarantees that Algorithm 9 never creates makespan (for the configuration balancing instance)
more than O(log logm)λ if OptD ≤ λ. Hence, by (4.5), the total expected exceptional load and

76

average expected truncated load within each group are at most O(log logm)λ. We translate these
bounds into bounds on the makespan for the load balancing instance.

Similar to Lemma 4.4.3, we can upper bound the contribution of the exceptional parts byO(log logm)λ
using (4.1) and the truncated parts by O(log logm)λ using Lemma 4.4.2. Thus, the expected
makespan of the load balancing instance is at most O(log logm)λ, as required.

Finally, we recall that if Algorithm 9 fails, then OptD > λ, which implies E[OptS] ≥ Ω(λ).

Summary

The proof of our main theorem for related machines follows immediately from Lemma 4.4.3 and
Lemma 4.4.4.

Theorem 4.1.3. For load balancing on related machines with stochastic jobs, there exist efficient
deterministic algorithms that compute an adaptive offline O(1)-approximation and an adaptive on-
line O(log logm)-approximation when comparing to the optimal offline adaptive policy.

4.5 Clairvoyance Gap for Load Balancing on Related Machines

In this section, we prove the lower- and upper bounds of Theorem 4.1.4:

Theorem 4.1.4. For load balancing on related machines, there exists an efficient non-clairvoyant
online algorithm that O(

√
m)-approximates the optimal clairvoyant algorithm. Further, any non-

clairvoyant algorithm is at least Ω(
√
m)-approximate.

To show this result, we first give a lower bound on the clairvoyance gap and then complement it
by an upper bound achieved by a non-clairvoyant online list scheduling algorithm.

Lemma 4.5.1. The clairvoyance gap for scheduling on related machines is Ω(
√
m).

Proof. Consider an instance with m machines, one fast machine with speed 1 and m − 1 slow
machines with speed 1√

m
. There are m jobs, one big job with size 1 and m − 1 small jobs with

size 1√
m
. There is a schedule of makespan 1, which is achieved by assigning the big job to the fast

machine and one small job per slow machine.

We show that any non-clairvoyant algorithm has makespan Ω(
√
m) which implies the lemma. To

that end, we define the following adversarial strategy: the adversary reveals only small jobs (unless
it runs out of small jobs, in which case the final job is big) until the first time that the algorithm
decides to use a slow machine. Then the adversary makes this job big. If an algorithm only uses
the fast machine, then it has makespan 1+ (m− 1) · 1√

m
= Ω(

√
m). Otherwise, the algorithm must

use a slow machine, which receives the big job from the adversary, which also gives makespan
√
m.

Hence, any non-clairvoyant algorithm incurs a makespan Ω(
√
m).

In the next lemma, we show an upper bound on the clairvoyance gap. We refer to list scheduling
as the algorithm that assigns the next job to the currently least-loaded machine. Here, the load of
a machine is the total processing time of jobs that have been assigned to the machine. We use list
scheduling only on a subset of machines that are “fast enough” and leave the remaining machines
idle. More precisely, we list schedule the jobs in the order of their arrival on the machines with
speeds within a factor 1√

m
of the fastest.

Lemma 4.5.2. The clairvoyance gap for related machine scheduling is O(
√
m).

77

Proof. For convenience, we re-scale the instance such that the speed of the fastest machine is 1.
Hence, our algorithm uses all machines i with si ∈

[
1√
m
, 1
]
; we call such machines fast and the re-

maining ones slow. Clearly, list scheduling on the fast machines is both, online and non-clairvoyant.
It remains to bound the competitive ratio. To this end, we observe

Cmax ≤
∑

j∈J pj∑
i:si≥1/

√
m si

+
maxj∈J pj

mini:si≥1/
√
m si

,

where the first term bounds the starting time and the second term bounds the processing time of
any job. We bound both terms separately by comparing to the optimal solution Opt, where Opt
denotes the optimal schedule as well as its makespan. Clearly, maxj∈J pj ≤ Opt, which implies that
the second term is at most

√
m · Opt.

For the first term, note that the total size of jobs that Opt schedules on fast machines is at
most m′ · Opt, where m′ is the number of fast machines. The total size of jobs that Opt schedules
on slow machines is at most m · 1√

m
·Opt =

√
m ·Opt as there are at most m slow machines. Further,

the total speed of the fast machines is at least 1 (because the fastest machine has speed 1) and also
at least m′ 1√

m
. Therefore,∑
j∈J pj∑

i:si≥1/
√
m si

≤ m′ · Opt+
√
m · Opt

max{1,m′/
√
m}

≤
(

m′

m′/
√
m

+

√
m

1

)
· Opt = O(

√
m) · Opt,

concluding the proof.

Conclusion

We considered the configuration balancing problem under uncertainty. In contrast to the (often
overly optimistic) clairvoyant settings and the (often overly pessimistic) non-clairvoyant settings,
we consider the stochastic setting where each request j presents a set of random vectors, and we
need to (adaptively) pick one of these vectors, to minimize the expected maximum load over the m
resources. We give logarithmic bounds for several general settings (which are existentially tight),
and a much better O(1) offline and O(log logm) online bound for the related machines setting.

The main theme in this work is that the optimal adaptive policy may do unintuitive things: Without
seeing Example 4.1.7, it seems like the optimal adaptive policy cannot possible accrue large total
exceptional load – after all, as soon as a single configuration becomes exceptional, then Opt has
missed its expected makespan target. To overcome this, we argue that there exists a near-optimal
adaptive policy that is more well-behaved and thus more amenable to our classical toolkit from
deterministic combinatorial optimization: LP rounding and potential functions.

The main open problem is to improve on the O(logm
log logm)-approximation for offline stochastic load

balancing on unrelated machines using adaptivity beyond the related machines setting. One par-
ticularly simple open setting is stochastic edge orientation: We are given an undirected graph G
and probablility parameter p. The goal is to orient every edge of Gp – the random subraph where
every edge of G appears independently with probability p – to minimize the expected maximum
in-degree over every vertex of G. However, our algorithm does not observe Gp directly; rather, our
algorithm adaptively queries edges of G, upon which we learn if the edge is in Gp or not. If it is,
then at this point we must irrevocably orient it. This problem is a special case of stochastic load
balancing by taking one job per edge in G such that the resulting job can only be assigned to the
two endpoints (machines) of that edge. Note that this special case avoids the adaptivity gap lower

78

bound of Ω(logm
log logm) due to [GKNS21], because in that lower bound, all jobs can be assigned to all

machines.

Another open question is closing the gap for online related-machines load balancing. It would be
particularly interesting to show a super-constant lower bound for any online algorithm for stochastic
load balancing on related machines, because this would separate the deterministic (where a O(1)-
competitive algorithm is known [BCK00]) and stochastic settings.

79

Chapter 5

Stochastic Completion Time
Minimization

5.1 Introduction

We consider the problem of scheduling n stochastic jobs on m identical machines to minimize the
expected total completion time of the jobs. Each job j is an independent random variable Xj ∼ Dj

with known distribution Dj . Now the completion time Cj of job j is a random variable, which
depends on the random job sizes (and on any random decisions our algorithm may make). Our
goal is to minimize

∑
j E[Cj].

Our main result is the first algorithm for this problem that is both distribution-independent and
has an approximation ratio sublinear in m for the special case of Bernoulli jobs (Xj ∼ sj · Ber(pj)
for size sj ≥ 0 and probability pj ∈ [0, 1]).

Theorem 5.1.1. There exists an efficient deterministic algorithm for completion time minimiza-
tion for Bernoulli jobs that computes a list schedule that Õ(

√
m)-approximates the optimal adaptive

policy.

We remark that a consequence of our techniques is a simple Õ(m)-approximation for Bernoulli
jobs, matching (up to poly log n-factors) the result of [IMP15a] in this special case (see § 5.4.2 for
details.)

5.1.1 Technical Overview

Our algorithm design will be informed by a proxy objective function, which we call the weighted
free time. We first observe that to bound the completion time of a job, it suffices to bound its
starting time, Sj . This is because on identical machines, we have Cj = Sj +Xj , where

∑
j Xj is a

lower-bound on the optimal total completion time. The key idea of our proxy objective is to relate
the per-job starting times to a more global quantity, which we call the free time.

Definition 5.1.2 (Free Time). Consider any fixed schedule. The ith free time of the schedule,
which we denote by F (i) is the first time when i jobs have been started and at least one machine
is free to start the (i+ 1)st job.

For schedules that do not idle machines, the ith free time is the load of the least-loaded machine
after starting i jobs. By definition of free time, there are Θ(n/2k) jobs with starting times in

80

[F (n−n/2k−1), F (n−n/2k)] for all k = 1, . . . , log n (all logarithms are base 2 in this paper.) Thus
we have:

∑
j

Sj =

logn∑
k=1

Θ(n/2k)F (n− n/2k). (5.1)

We call this final expression,
∑logn

k=1 n/2k · F (n− n/2k), the weighted free time of the schedule. We
can view this objective as defining log n work checkpoints for our algorithm. These checkpoints are
the time that we have n/21 jobs left to start (i.e. F (n−n/21)), n/22 left to start (i.e. F (n−n/22)),
and so on. Roughly, the goal of our algorithm is to ensure that at each work checkpoint, our free
time is comparable with the optimal schedule’s free time at the same checkpoint.

We can now illustrate the reason for considering free times rather than the completion time directly.
Indeed, let C(i) be the time that we complete i jobs (and note the difference with Cj , which is the
time at which we finish a specific job j). We analogously have

∑
j Cj = Θ(

∑
k n/2

k ·C(n−n/2k)).

However, one difficulty of stochastic jobs is we cannot easily control what are the first n−n/2k jobs
to complete. On the other hand, for free times, we have complete control over what n− n/2k jobs
we decide to start first, which then contribute to F (n− n/2k). This suggests two natural informal
subproblems for our algorithm design:

� Subset Selection: Compute nested sets of jobs J1 ⊂ J2 ⊂ . . . such that for all k, Jk is
comparable to the first n−n/2k jobs of the optimal adaptive policy (i.e. the jobs contributing
to F (n− n/2k) for Opt.)

� Batch Free Time Minimization: Given nested sets of jobs J1 ⊂ J2 ⊂ . . . , schedule the
Jk’s such that our free time after scheduling Jk is comparable to F (n − n/2k) for Opt. Our
schedule must satisfy the batch constraint that we schedule Jk (i.e. start every job in Jk)
before Jk+1 \ Jk for all k.

The main technical challenge in both subproblems is the interaction between the free time and
the batch constraint. Since our final algorithm will be a list schedule, the Jk-sets are chosen non-
adaptively. However, the optimal policy chooses its first n− n/2k jobs adaptively, so it is not clear
that there even exist good sets Jk. Our first contribution is that we can indeed efficiently find good
Jk sets non-adaptively by delaying slightly more jobs than Opt.

Theorem 5.1.3 (Subset Selection, Informal). Given Bernoulli jobs, we can efficiently find nested
sets of jobs J1 ⊂ · · · ⊂ Jlogn such that |Jk| = n− Õ(n/2k) and Jk is a subset of the first n− n/2k

jobs of the optimal adaptive policy for all realizations.

Our subset selection algorithm is a simple greedy algorithm: to construct Jk, for each possibly
Bernoulli size parameter (which we may assume there are O(log n) of by standard discretization
techniques) we remove the n/2k jobs with largest probability parameters. Thus, for each size, we
keep the “smallest possible” jobs. The analysis relies on the following structural characterization
of the optimal adaptive policy for Bernoulli jobs.

Lemma 5.1.4. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the
optimal adaptive completion time schedule for these jobs starts the jobs with this size parameter in
increasing order of their probabilities for all realizations of the job sizes.

81

In light of Theorem 5.1.3, it remains to compute good list schedule of the Jk’s subject to the batch
constraint. Our free time minimization algorithm is also greedy: For each batch Jk \ Jk−1, we
list-schedule them in increasing order of size parameter.

Theorem 5.1.5 (Batch Free Time Minimization, Informal). Given the nested sets of Bernoulli
jobs J1 ⊂ · · · ⊂ Jlogn guaranteed by Theorem 5.1.3, list scheduling them in increasing order of size

parameter (subject to the batch constraint) is Õ(
√
m)-approximate for weighted free time.

Combining Theorems 5.1.3 and 5.1.5 gives our desired Õ(
√
m)-approximation for completion time

minimization for Bernoulli jobs. We now give an overview of our analysis.

For a moment, suppose that we could list-schedule the batches output by Theorem 5.1.3, J1 ⊂
. . . Jlogn, optimally subject to the batch constraint (i.e. for each Jk \Jk−1, we compute an ordering
of the jobs and start the jobs in this order for all k = 1, . . . , log n) to minimize the weighted free
time. At first glance, it might seem like we are done, because Jk is always a subset of Opt’s
first n − n/2k jobs, so we are only scheduling fewer jobs than Opt at every work checkpoint.
However, this reasoning fails because of the batch constraint. Indeed, let us contrast the classic
makespan minimization problem (schedule deterministic jobs to minimize the load of the most-
loaded machine) with its free time analogue (schedule n deterministic jobs to minimize the nth free
time). While an arbitrary list schedule is O(1)-approximate for makespan, it is Ω(m)-approximate
for nth free time:

Lemma 5.1.6. For all m > 1, there exists a set of n jobs J and a list-schedule of J whose nth free
time Ω(m)-approximates the optimal nth free time.

Proof. Consider m “small” jobs of size 1 and m − 1 “big” jobs of size m. The optimal free time
schedule is to first schedule one small job on each machine, and then one big job on m−1 machines.
Thus the optimal nth free time is 1. Now consider the list-schedule of all big jobs before small jobs.
Then each big job is scheduled on a separate machine, and all m small jobs are scheduled on the
remaining machine. This gives nth free time m.

The instances from the above lemma suggest that we should schedule small jobs before bigger ones
so that the big jobs do not clog up the machines and delay the starting times of the small jobs.
Implicitly, this is why previous work loses a m-factor: While Opt has m machines to schedule small
jobs before the machines are clogged by big ones, it can be the case that Alg first clogs all but one
machine with big jobs and then schedules all small jobs on a single machine. For our algorithm,
because of the batch constraint, it could be the case that Opt does some small jobs in Jk \ Jk−1

much earlier than our algorithm when fewer machines are clogged by big jobs. This is the main
technical challenge that we overcome to obtain our improvement.

Concretely, consider scheduling Jk subject to the batch constraint. For this subproblem, we say a
job is big if its realized size is larger than Opt’s (random) n−n/2kth free time. Scheduling such jobs
effectively turns off a machine for the remainder of the schedule. We call such machines clogged.
One should imagine that afterwards we are averaging the volume of the remaining small jobs over
one less machine. Our first insight is a stronger lower bound on the rate that Opt clogs machines
using Lemma 5.1.4. We let J∗

k be the adaptively-chosen set of the first n − n/2k jobs started by
Opt. Because Jk′ ⊂ J∗

k′ for every batch k′ for every realization of job sizes, the number of big jobs
in J ′

k is at most the number of big jobs in J∗
k′ . This implies that our algorithm clogs machines at

a slower rate than Opt for every realization.

82

Similarly, Lemma 5.1.4 also implies that the total size of small jobs in Jk′ is at most the total size
of small jobs in J∗

k′ for every k′ ≤ k. However, this does not guarantee that the total size of small
jobs in Jk′ \ Jk′−1 is at most that in J∗

k′ \ J∗
k′−1, so although our algorithm has more unclogged

machines, we may also be trying to average more small jobs over these machines. Our second
insight is a delicate charging argument that characterizes how the free times of previous batches
affect the current one. Roughly, we argue that for our particular batches, while moving a small
job to an earlier batch allows us to average it over more unclogged machines, this also delays the
free time of all later batches. This ensures that there is not much benefit to moving small jobs to
earlier batches. To achieve this, we initiate a systematic study of the free time.

5.1.2 Comparison to prior work

PriorO(∆)-approximations rely on bounding with respect to an LP solution, e.g. [MSU99, SSU16b].
These have an integrality gap of Ω(∆). On the other hand, our algorithm is combinatorial and
avoids this gap by comparing directly to the optimal adaptive policy.

The distribution-independent approximation of [IMP15a] also partitions jobs into batches (as in
our subset selection problem). Roughly, they guarantee that their batches are “better” than the
optimal solution’s jobs “in expectation.” However, we will show that our algorithm’s batches are
better than the optimal solution’s jobs for every realization (using our structural characterization
of the optimal policy Lemma 5.1.4.)

Further, their algorithm schedules jobs within batches in arbitrary order (i.e. they give a trivial
solution to the subproblem we call free time minimization). It seems likely that a loss of Ω(m) is
necessary if one considers an arbitrary list schedule because of the lower bound in Lemma 5.1.6.
To overcome this, we choose a particular list schedule (i.e. in increasing order of size parameter),
which we show is Õ(

√
m)-approximate. To summarize, using a deeper technical understanding, we

give more refined guarantees for both subset selection and free time minimization than [IMP15a].

The only other work is [EFMM19], which considers even more restricted instances: those with only
two types of jobs, identical deterministic and identical Bernoulli. Their algorithm is to schedule
either all deterministic jobs first or all Bernoullis first (depending on the relative number of each
type of jobs.) Our subset selection algorithm vastly generalizes this idea to arbitrary Bernoulli jobs
with varying size and probability parameters. Further, while our algorithm in Theorem 5.1.5 runs
an index policy within each Jk \ Jk−1-batch, we overcome the lower bound on index policies due
to [EFMM19] because our subset selection algorithm constructs the batches by taking into account
the relative number of different types of jobs—not only the distributions of individual jobs.

5.2 Subset Selection

The goal of this section is to solve the subset selection subproblem for Bernoulli jobs: we want to
find nested sets of jobs J1 ⊂ · · · ⊂ Jlogn such that Jk is comparable to the first n − n/2k jobs of
the optimal adaptive completion time schedule. Formally, let J∗

k be the random set consisting of
the first n−n/2k jobs scheduled by the optimal completion time schedule. Our main theorem here
is the following:

Theorem 5.2.1 (Subset Selection). Let L be the number of distinct Bernoulli size parameters.
There is an algorithm ChooseJobs that outputs sets Jk satisfying:

(i) J1 ⊂ · · · ⊂ Jlogn ⊂ J
(ii) |Jk| ∈ [n− L · n/2k, n− n/2k]

83

b

TL TR

p̄b pb

T T ′ a

TR(a → b)

p̄a pa
q̄ q

TL(a → b)

b

p̄b pb

TL(−a) TR(−a)

Figure 5.1: Original decision tree T and modified decision tree T ′

(iii) Jk ⊂ J∗
k for all k and all realizations.

We show later how to use standard rescaling and discretization techniques to assume L = O(log n)
while losing only an extra constant factor in our final approximation ratio.

It is convenient to think of the n/2k jobs that the optimal schedule excludes from J∗
k rather than

the jobs it chooses to start. Similarly, we specify our algorithm’s set of jobs also by the exclusions.
The next lemma gives our structural characterization for the optimal adaptive completion time
schedule for Bernoulli jobs, which allows us to characterize which jobs the optimal schedule chooses
to exclude.

Because jobs are Bernoullis, upon scheduling a job j, the scheduler immediately learns the realized
size of Xj because it is either 0 or sj . Thus, the optimal schedule can be represented by a decision
tree, where each node is labeled by a job j, corresponding to the decision to schedule j on the
currently least loaded machine, and has a left- and right child, corresponding to the realized size
of j being 0 or sj , respectively. Every root-leaf path on this tree gives an ordering to schedule the
jobs for a particular realization of job sizes.

Lemma 5.1.4. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the
optimal adaptive completion time schedule for these jobs starts the jobs with this size parameter in
increasing order of their probabilities for all realizations of the job sizes.

Proof Sketch. Our proof is an exchange argument. Consider the optimal decision tree (as described
above), and suppose there exists a root-leaf path that schedules job Xb ∼ s · Ber(pb) before Xa ∼
s · Ber(pa) with pa ≤ pb. Then there exists a subtree T rooted at b such that a is scheduled on
every root-leaf path in this subtree.

We now show how to modify T to start a before b while not increasing the expected completion
time. Let TL and TR be the left- and right subtrees (corresponding to the root job b coming up
size 0 or s) of T , respectively. We define TL(a→ b) to be TL with the job a replaced by job b and
TL(−a) to be TL, but at a’s node, we do not schedule anything and instead go to a’s left child. The
subtrees TR(a→ b) and TR(−a) are defined analogously. See Figure 5.1 for the modified tree T ′.

We choose the parameter q so that the probability that T ′ enters TL(a→ b) or TL(−a) is exactly p̄b.
This is our replacement for the event that T enters TL. A calculation now shows that the expected
completion time weakly decreases from T to T ′. (See the proof in Appendix C.2 for details.)

84

By definition Opt can exclude only n/2k jobs from J∗
k . On the other hand, our algorithm will

exclude n/2k jobs of each Bernoulli size simultaneously. Lemma 5.1.4 suggests that we might as
well exclude the jobs with largest pj ’s. In particular, our algorithm to choose sets of jobs that are
comparable to the J∗

k ’s is the following:

ChooseJobs: For each k = 1, . . . , log n, let Jk be the set of jobs constructed as follows:

i. Initialize Jk = J .
ii. For each Bernoulli size s, remove from Jk the n/2k jobs of size s with largest pj ’s.
iii. Output Jk.

Proof of Theorem 5.2.1. It is immediate that the sets J1, . . . , Jlogn are nested and have the desired
size. It remains to show that Jk ⊂ J∗

k . Note that Opt excludes at most n/2k jobs of the largest
probabilities of each size by Lemma 5.1.4. This holds for all realizations. On the other hand, we
exclude n/2k jobs of largest probability of all sizes simultaneously.

Morally, Theorem 5.2.1 states that we know the jobs that Opt starts to achieve F ∗(n − n/2k) for
all k (up to a L-factor.) This suggests that we should first schedule J1 to get free time comparable
to F ∗(n− n/21), and then J2 \ J1 to get free time comparable to F ∗(n− n/22), and so on.

The goal of the next section is to show how to schedule the Jk’s subject to this batch constraint
(we must schedule all jobs in Jk−1 before any in Jk \ Jk−1 for all k) such that our weighted free
time is comparable to that of Opt. Note that in general, even though Jk ⊂ J∗

k for all k, the
optimal completion time schedule may not satisfy the batch constraint—this is precisely is the
main technical challenge that we have to overcome in the next section.

5.3 Batch Free Time Minimization

We now turn to the batch free time minimization problem. Our starting point is the nested sets of
jobs J1 ⊂ · · · ⊂ Jlogn ⊂ J output by ChooseJobs. Recall that J∗

k is the random set of the first
n− n/2k jobs scheduled by the optimal completion time policy Opt.

5.3.1 Free Time Basics

To motivate our final algorithm, we explore some basic properties of the free time. We first recall
the lower bound instance from Lemma 5.1.6: there are m small jobs of size 1 and m − 1 big jobs
of size m. The optimal nth free time is 1 by first scheduling all small jobs and then all big jobs.
Observe that the final m− 1 big jobs do not contribute to the optimal nth free time. This gave the
intuition that we should schedule small jobs before big ones clog up the machines. This intuition
turns out to be correct, which we formalize in the next lemma.

Lemma 5.3.1. List-scheduling deterministic jobs in increasing order of size is a 4-approximation
for nth free time.

Proof. Let J be the set of input jobs and Opt the optimal nth free time. We partition J into
small and big jobs: a job is big if its size is strictly greater than Opt, and is small otherwise.
This definition means that Opt can schedule at most one big job per machine. Moreover, there
are strictly less than m big jobs, otherwise Opt would need to schedule at least one big job per
machine, which contradicts the optimal nth free time.

85

On the other hand, our algorithm starts all small jobs before all big jobs. We claim that the nth
free time of our algorithm, which we denote by F (J), is at most the makespan of our algorithm
after only scheduling the small jobs, which we denote by M(S). To see this, consider the time right
before we start the first big job. All machines have loads within [M(S) − Opt,M(S)] (the lower
bound follows by noting that we list-scheduled only jobs of size at most Opt up until this point.)
Thus, we schedule the at most m− 1 remaining big jobs each on separate machines. All of the big
jobs are started by time M(S), and there exists a machine that schedules no big job, which is free
by M(S) as well. It follows, F (J) ≤M(S).

Now, because every list-schedule is 2-approximate for makespan, we have M(S) ≤ 2MOpt(S), where
MOpt(S) is the makespan of the small jobs under Opt (i.e. when Opt finishes its final small job.) To
complete the proof, we relate MOpt(S) with Opt. It suffices to show MOpt(S) ≤ 2Opt. To see this,
consider time Opt in the optimal schedule. At this time, all machines are either free or working on
their final job. In particular, any machine working on a small job completes by time Opt+Opt.

While we do not apply Lemma 5.3.1 directly for our algorithm, the ideas in the analysis will be
crucial. In particular, a key concept in our analysis is to differentiate between small and big jobs.
Roughly, when we consider Jk, a job is small if its size is at most F ∗(n− n/2k) and big otherwise.
We are concerned about the volume (total size) of the small jobs and number of big jobs. However,
because of the batch constraint, we cannot ensure that all small jobs are scheduled before all big
jobs in general.

As we schedule batches J1, J2 \ J1, . . . , Jk \ Jk−1, more and more machines are getting clogged by
big jobs. For the purposes of scheduling Jk, these machines are effectively turned off. Thus, as
we proceed through the batches, we are averaging the volume of small jobs over fewer and fewer
machines. The goal of our algorithm will be to ensure that we do small jobs as early as possible
(subject to the batch constraint) so that we have the most unclogged machines available.

5.3.2 Final Algorithm

With the goal of § 5.3.1 in mind, we are ready to describe our final algorithm, which is the Õ(
√
m)-

approximation guaranteed by Theorem 5.1.1. Although we cannot ensure that within a batch, jobs
are scheduled in increasing order of realized size as in the analysis of Lemma 5.3.1, because our jobs
are Bernoullis, we can ensure that all jobs that come up heads (have realized size sj) are scheduled
in increasing order of realized size. Here, we crucially use the fact that our jobs are Bernoullis, so
if the come up tails (have size 0), they do not affect the free time. For the rest of the description,
we make the following assumption, which we justify in Appendix C.3.

Assumption 5.3.2. We assume that there are L = O(log n) distinct Bernoulli size parameters sj ,
each at most n8.

By losing a constant factor in the final approximation ratio, we may assume Assumption 5.3.2 for
the rest of the analysis.

Lemma 5.3.3. Let m ≥ 2. Suppose there exists an algorithm for completion time minimization for
Bernoulli jobs on m machines satisfying Assumption 5.3.2 that outputs a list schedule with expected
completion time at most α

(
EOpt+O(1)

)
. Then there exists a O(α)-approximate algorithm for the

same problem without the assumption. Further, the resulting algorithm is also a list schedule, and
it preserves efficiency and determinism.

86

The proof uses standard rescaling and discretization ideas, but it is more involved because of the
stochastic jobs; we justify it in Appendix C.3. Our final algorithm is now the following:

StochFree: Given input collection J of Bernoulli jobs:

i. Run ChooseJobs to obtain nested sets of jobs J1 ⊂ · · · ⊂ Jlogn ⊂ J

ii. List-schedule each batch Jk \ Jk−1 in increasing order of Bernoulli size parameter sj for all
batches k = 1, . . . , log n.

iii. List-schedule all remaining jobs J \ Jlogn in arbitrary order.

It is clear that StochFree outputs a list schedule in polynomial time and is deterministic. Our
main approximation guarantee for StochFree is the following.

Theorem 5.3.4 (Batch Free Time Minimization). Given Bernoulli jobs, if m ≥ 2 and Assump-
tion 5.3.2 holds, then StochFree outputs a list schedule with expected completion time at most
Õ(
√
m) ·

(
E[Opt] +O(1)

)
, where Opt is the optimal adaptive policy.

Note that composing Theorem 5.3.4 with Lemma 5.3.3 gives the desired Õ(
√
m) without the as-

sumption for all m ≥ 2. For the remaining case of m = 1, scheduling the jobs in increasing order
of their expected processing times is an optimal policy [Rot66]. This gives the desired Õ(

√
m)-

approximation for all m, and completes the proof of Theorem 5.1.1. In the remainder of the paper,
we analyze StochFree (Theorem 5.3.4.)

5.4 Analysis of the StochFree Algorithm

The goal of this section is to prove Theorem 5.3.4, given Assumption 5.3.2. Our proof has four
conceptual steps.

i. Bound the weighted free time of Alg by averaging the volume of small jobs within each batch
over the unclogged machines—those that have not yet scheduled a big job. (§ 5.4.1)

ii. Show that StochFree is Õ(m)-approximate for all m ≥ 2. This serves as a warm-up to
the improved Õ(

√
m)-approximation, and it allows us to focus on the remaining case where

m = Ω(1) is sufficiently large. (§ 5.4.2)

iii. Control the rate that machines become clogged by a large job. We show that the rate that
machines become clogged for Alg is slow enough so that Opt cannot benefit much by putting
small volume in earlier batches than Alg. (§ 5.4.3)

iv. Finally, bound the contribution of the volume of small jobs to the free time. Here we handle
the main challenge, which is that Opt may schedule small volume “in the past” compared to
Alg. (§ 5.4.4-§ 5.4.6)

87

5.4.1 Weighted free time

First, we pass from total completion time to our proxy objective of weighted free time. We let Opt
denote the optimal adaptive completion time policy as well as its completion time. Recall that J∗

k

is the first n− n/2k jobs scheduled by this policy achieving free time F ∗(n− n/2k). Analogously,
we let Alg denote the completion time of our algorithm, and F (Jk) the free time of our algorithm
after scheduling Jk.

Lemma 5.4.1. We have Alg = O(log n)(
∑

k n/2
k · F (Jk) + Opt) and Opt = Ω(

∑
k n/2

k · F ∗(n −
n/2k)).

Proof. We rewrite Alg =
∑

j Cj =
∑

j Sj +
∑

j Xj . First, note that
∑

j Xj ≤ Opt. It remains to
bound

∑
j Sj . Recall that in StochFree, first we list-schedule Jlogn subject to the batch constraint

and then J \Jlogn. We first handle the starting times of Jlogn. For all k, note that Jk \Jk−1 consists
of at most O(L) · n/2k jobs with starting times in [F (Jk−1), F (Jk)] by Theorem 5.2.1. Thus we
have

∑
j∈Jlogn

Sj = O(L) · (
∑

k n/2
k ·F (Jk)) = O(log n) · (

∑
k n/2

k ·F (Jk)) using Assumption 5.3.2.

For the jobs in J \ Jlogn, by Theorem 5.2.1, there are at most O(L) = O(log n) such jobs. Each
of these jobs completes by the makespan of Alg’s schedule. Further, Alg is a list schedule, which is
2-approximate for makespan, so the makespan of Alg is at most twice the makespan of Opt. The
makespan of Opt is a lower bound on Opt (because some job must complete at this time.) We
conclude,

∑
j∈J\Jlogn

Sj = O(log n)Opt. Combining our bounds for Jlogn and J \ Jlogn gives the
desired result for Alg.

The bound on Opt follows from (5.1).

We refer to
∑

k n/2
k ·F (Jk) as Alg’s weighted free time and

∑
k n/2

k ·F ∗(n− n/2k) as Opt’s. The
remainder of the analysis will focus on bounding Alg’s weighted free time with respect to Opt’s.
Our main result is the following:

Theorem 5.4.2. If m = Ω(1) is sufficiently large, then the weighted free time of Alg satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[Opt]

)
+O(1).

Note that Theorem 5.4.2 along with Lemma 5.4.1 implies the desired guarantee in Theorem 5.3.4
for the case m = Ω(1) sufficiently large.

We now introduce some notations. For all k, we call Ik = Jk \ Jk−1 the kth batch of jobs. Recall
that the Jk’s are nested, so the batch constraint says we schedule in order I1, . . . , Ilogn. We define
I∗k = J∗

k \ J∗
k−1 analogously. For any set of jobs, J ′ and τ ≥ 0, we define J ′(= τ) to be the random

subset consisting of all jobs in J ′ with realized size exactly τ . We define J ′(> τ) and J ′(≤ τ)
analogously. Further, for a set of jobs J ′, we let Vol(J ′) =

∑
j∈J ′ Xj be the volume of J ′. Finally,

we say job j is τ -big for τ ≥ 0 if Xj > τ . Otherwise j is τ -small.

As in the analysis for minimizing the free time for a single batch of deterministic jobs (Lemma 5.3.1),
the key concept is to differentiate between small and big jobs. To this end, for all k we define the
random threshold τk = 2 ·max(EF ∗(n−n/2k), F ∗(n−n/2k)). Morally, one should imagine that τk
is F ∗(n−n/2k), but there is an edge case where F ∗(n−n/2k) < EF ∗(n−n/2k) and a multiplicative
factor for concentration. When bounding F (Jk), we will take τk to be our threshold between small-
and big jobs. This threshold has the following crucial property that Alg always has at least as many
unclogged machines as Opt. In particular, Alg always has at least one unclogged machine.

88

Proposition 5.4.3. For all k, the following holds per-realization: |Jk(> τk)| ≤ |J∗
k (> τk)| < m.

Proof. The first inequality follows from Theorem 5.2.1, because Jk(> τk) ⊂ J∗
k (> τk) per-realization.

For the second inequality, note that τk ≥ F ∗(n−n/2k), so by definition of free time, Opt schedules
strictly less than m jobs bigger than τk to achieve F ∗(n− n/2k).

Using this threshold, we re-write F (Jk) by averaging the volume of small jobs over the unclogged
machines (the ones with no big job.)

Lemma 5.4.4. For all k, the following holds per-realization:

F (Jk) ≤ F (Jk−1) +
Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+ 2τk.

Proof. First, we note by Proposition 5.4.3 that the denominator m − |Jk−1(> τk)| ≥ 1. Then
consider time F (Jk−1). There are at least m − |Jk−1(> τk)| machines that have not scheduled a
τk-big job in Jk−1. At this time, each machine is either free or working on its final job in Jk−1. In
particular, each machine that has not scheduled a τk-big job in Jk−1 is free to start working on Ik
by time F (Jk−1) + τk, and there are at least m− |Jk−1(> τk)| such machines.

We need the following monotonicity property of list schedules.

Lemma 5.4.5. Consider a set of deterministic jobs and a fixed list schedule of those jobs. Then
increasing the initial load or decreasing the number of machines weakly increase the free time of the
schedule.

Proof. Let J be the set of jobs. Consider initial load vectors ℓ, ℓ′ ∈ Rm, where the ith entry of each
vector denotes the initial load on machine i. Now suppose ℓ ≤ ℓ′, entry-wise. It suffices to show
that F (J, ℓ) ≤ F (J, ℓ′), where F (J, ℓ) is the free time achieved by our list-schedule with initial load
ℓ. This suffices, because we can decrease the number of machines by making the initial loads of
some machines arbitrarily large so that they will never be used.

We prove F (J, ℓ) ≤ F (J, ℓ′) by induction on the number of jobs, |J |. In the base case, |J | = 0, so
the claim is trivial because ℓ ≤ ℓ′. For |J | > 0, let j be the first job in the list, which is scheduled,
without loss of generality, on the first machine for both initial loads ℓ and ℓ′. Then:

F (J, ℓ) = F (J \ {j}, ℓ+ sje1) ≤ F (J \ {j}, ℓ′ + sje1) = F (J, ℓ′),

where e1 is the first standard basis vector, so we have ℓ + sje1 ≤ ℓ′ + sjei1 entry-wise. Then we
assumed inductively that F (J \ {j}, ℓ+ sje1) ≤ F (J \ {j}, ℓ′ + sje1).

By Lemma 5.4.5, we can upper-bound F (Jk) by list-scheduling Ik with initial load F (Jk−1)+ τk on
m−|Jk−1(> τk)|machines that have not scheduled a τk-big job in Jk−1. Recall that Alg list-schedules
Ik in increasing order of size parameter, so - ignoring jobs that come up tails with realized size 0 -
we schedule all τk-small jobs in Ik before any τk-big one. Further, |Ik(> τk)| < m − |Jk−1(> τk)|
by Proposition 5.4.3, so there exists some machine that schedules only τk-small jobs in Ik. This
machine is free by time F (Jk) ≤ F (Jk−1) + τk +

Vol(Ik(≤τk))
m−|Jk−1(>τk)| + τk.

Using Lemma 5.4.4 and the exponentially decreasing weights, we can re-write Alg’s weighted free
time as: ∑

k

n/2k · F (Jk) = O

(∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+
∑
k

n/2k · τk
)

(5.2)

By definition of τk, the second sum is O(E
∑

k n/2
k ·F ∗(n−n/2k)) in expectation, which is exactly

Opt’s weighted free time. It remains to bound the first sum.

89

5.4.2 Warm up: Õ(m)-approximation

Before proceeding with the proof of Theorem 5.4.2, we observe that Equation (5.2) along with our
basic weighted free time properties is enough to give a Õ(m)-approximation. Interestingly, this
gives a simple proof that nearly matches the previously best-known guarantees for Bernoulli jobs.

Lemma 5.4.6. Given Bernoulli jobs, if m ≥ 2 and Assumption 5.3.2 holds, then StochFree
outputs a list schedule whose expected completion time Õ(m)-approximates the optimal adaptive
policy.

Proof. Starting from (5.2):∑
k

n/2k · F (Jk) = O

(∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+

∑
k

n/2k · τk
)
,

we note that Ik ⊂ J∗
k by Theorem 5.2.1 and m− |Jk−1(> τk)| ≥ 1 by Proposition 5.4.3. Thus, we

can bound:
Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
≤ Vol(J∗

k (≤ τk)).

We claim that Vol(J∗
k (≤ τk)) = O(m) · τk. To see this, observe that by averaging the volume

of J∗
k (≤ τk) over the m machines, after scheduling J∗

k , each machine in Opt has load at least
Vol(J∗

k (≤τk))
m − τk. This gives F ∗(n − n/2k) ≥ Vol(J∗

k (≤τk))
m − τk. Noting that τk ≥ F ∗(n − n/2k)

completes the proof that Vol(J∗
k (≤ τk)) = O(m) · τk.

Applying this to our above expression gives Vol(Ik(≤τk))
m−|Jk−1(>τk)| = O(m) · τk, so Alg’s weighted free time

satisfies: ∑
k

n/2k · F (Jk) = O(m) · (
∑
k

n/2k · τk).

Taking expectations and applying Lemma 5.4.1 completes the proof.

The loss ofm in the above proof was because Alg averages the small volume over at least 1 unclogged
machine, but Optmay average the same volume over at mostmmachines. Intuitively, this reasoning
is why previous work loses a m-factor as well.

Further, this is the main technical challenge that we will overcome to get our improvement. Indeed,
even though Jk ⊂ J∗

k for all k, it is not true that Ik ⊂ Ik∗ . This means that while we are averaging
Vol(Ik(≤ τk)) over m − |Jk−1(> τk)| machines (which is at least as many machines as Opt has
for batch k), it can be the case that Opt actually did jobs in Ik in much earlier batches. In the
remainder of our analysis, we do a more fine-grained analysis of the rate that Alg and Opt clog
machines, and when they choose to do the same small volume. This allows us to break through
the linear dependence in m.

5.4.3 Bounding the unclogged machines

In this section, we are interested in controlling the quantity m− |Jk−1(> τk)|, which is the number
of machines we have left to schedule Ik (the unclogged machines.) Note that there are two sources
of randomness: the realizations of jobs in Jk−1 and the threshold τk.

Our strategy is to control m − E|Jk−1(> τ)| for a fixed threshold τ . Then because |Jk−1(> τ)| is
a sum of independent {0, 1}-valued random variables, a Chernoff-union bound argument allows us
to control m− |Jk−1(> τ)| as well.

90

However, we will see that concentration alone is not enough; this is because there is an unbounded
difference between |Jk−1(> τ)| = m and |Jk−1(> τ)| < m − 1. In the former case, all machines
are clogged by big jobs, whose size we cannot upper bound. Thus, we cannot make any progress
towards reaching time F (Jk) (by starting more jobs.) In the latter, we have at least one machine, so
we can still make some progress towards F (Jk). The situation to keep in mind is when E|Jk−1(> τ)|
is close to m, so concentration around the mean will fail to preserve this hard constraint that we
need at least one unclogged machine. To remedy this, we will combine concentration arguments
with the per-realization properties of StochFree.

We begin with the concentration arguments, so we wish to understand m−E|Jk−1(> τ)|. We first
use the properties of ChooseJobs to bound E|Jk−1(> τ)|:

Proposition 5.4.7. For all fixed thresholds τ and batches k, we have E|Ik(> τ)| ≥ 1
2Eτ |Ik−1(> τ)|.

Proof. By summing over the relevant sizes, it suffices to prove E|Ik(= s)| ≥ 1
2E|Ik−1(= s)| for any

Bernoulli size parameter s. We may assume E|Ik−1(= s)| > 0 or else the proposition is trivial.

Then when ChooseJobs constructs Jk−1, it includes at least one job with size parameter s. It
follows, there exist n/2k−1 remaining jobs in J \ Jk−1 with size parameter s. When constructing
Jk, ChooseJobs will include n/2k of these remaining jobs. In conclusion, Ik−1 has at most n/2k−1

jobs with size parameter s, while Ik has at least n/2k. The result follows because ChooseJobs
includes jobs in increasing order of pj .

Proposition 5.4.7 allows us to relate the expected number of machines left (with respect to fixed
threshold τ) at batch k with the number of machines left at k′ ≤ k:

Lemma 5.4.8. For all fixed thresholds τ and batches k′ ≤ k, we have m′ − E|Jk−1(> τ)| ≥
2−(k−k′+1) · (m′ − E|Jk′−1(> τ)|), where m′ ≥ E|Jk(> τ)|.

Proof. Wemay assume E|Ik(> τ)| > 0 or else the lemma is trivial, because by definition of Choose-
Jobs, if E|Ik(> τ)| = 0, then E|Jk−1(> τ)| = 0 and E|Jk′−1(> τ)| = 0.

In particular, we may assume m′ − E|Jk−1(> τ)| ≥ E|Ik(> τ)| > 0. Then we compute:

m′ − E|Jk′−1(> τ)|
m′ − E|Jk−1(> τ)|

= 1+
E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|

m′ − E|Jk−1(> τ)|
≤ 1+

E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|
E|Ik(> τ)|

.

Repeatedly applying Proposition 5.4.7 to the numerator gives:

1 +
E|Ik′(> τ)|+ · · ·+ E|Ik−1(> τ)|

E|Ik(> τ)|
≤ 1 + (2k−k′ + · · ·+ 21) ≤ 2k−k′+1.

To see the utility of Lemma 5.4.8, suppose E|Jk(> τ)| = m. Then roughly the lemma says in
expectation, we lose at most half of our remaining machines between each batch. However, in the
weighted free time the coefficient n/2k (corresponding to the number of jobs delayed by the current
batch) also halves between each batch. Thus, although we are losing half of our machines, only
half as many jobs are affected by this loss.

First, we bound the expectation of |Jk(> τ)| when τ is sufficiently large (i.e. for all possible
realizations of τk.) The proof uses a Chernoff bound along with the definition of big jobs; see
Appendix C.4 for proof.

91

Lemma 5.4.9. Let m = Ω(1) be sufficiently large. Then there exists a constant c ≥ 0 such that
for all batches k and thresholds τ > 2EF ∗(n− n/2k), we have E|Jk(> τ)| ≤ m+ c

√
m.

Now, because E|Jk(> τ)| = O(m), we can bound the deviation of |Jk(> τ)| by Õ(
√
m) with high

probability.

We define the notation |Jk(> τ)|
±∆
≈ E|Jk(> τ)| to denote the event

| |Jk(> τ)| − E|Jk(> τ)| | ≤ ∆.

The proof of the next lemma is a Chernoff-union argument; see Appendix C.4 for proof.

Lemma 5.4.10. Let ∆ = O(
√
m log n) and m = Ω(1) be sufficiently large. Then with probability

at least 1− 1
poly(n) , the following events hold:

{|Jk(> τ)|
±∆
≈ E|Jk(> τ)| ∀ batches k and thresholds τ > 2EF ∗(n− n/2k)}. (5.3)

Combining Lemma 5.4.8 and Lemma 5.4.10, we can show the number of remaining machines is
concentrated as well. Here we also need to bring in the per-realization properties of StochFree
to handle the case where concentration is not enough to ensure that we have at least one remaining
machine. This is the main result of this section. Recall that we defined τk = 2max(EF ∗(n −
n/2k), F ∗(n− n/2k)), so in particular τk ≥ 2EF ∗(n− n/2k).

Lemma 5.4.11. Suppose Event (5.3) holds. Then for all pairs of batches k′ ≤ k, we have m −
|Jk−1(> τk)| ≥ (3∆)−12−(k−k′+1)(m− |Jk′−1(> τk)|), where ∆ = O(

√
m log n).

Proof. Consider fixed batches k′ ≤ k, and let µk = E|Jk(> τk)| and µk′ = E|J ′
k(> τk)|. Note that

τk ≥ 2EF ∗(n− n/2k) ≥ 2EF ∗(n− n/2k
′
), so Event (5.3) gives |Jk(> τk)|

±∆
≈ µk and |Jk′(> τk)|

±∆
≈

µk′ . Further, we may choose ∆ = O(
√
m log n) large enough so that µk ≤ m + ∆. Using these

approximations with Lemma 5.4.8 gives:

m− |Jk(> τk)| = m+∆− |Jk(> τk)| −∆

≥ m+∆− µk − 2∆

≥ 2−(k−k′+1)(m+∆− µk′)− 2∆

≥ 2−(k−k′+1)(m− |Jk(> τk)|)− 2∆.

Finally, by Proposition 5.4.3, m− |Jk(> τk)| ≥ 1, so rearranging gives:

3∆(m− |Jk(> τk)|) ≥ m− |Jk(> τk)|+ 2∆ ≥ 2−(k−k′+1)(m+ |Jk(> τk)|).

To summarize, we showed that up to a multiplicative Õ(
√
m)-factor, the number of unclogged

machines with respect to threshold τk at worst halves in each batch up to k.

92

5.4.4 Bounding small-in-the-past jobs

Recall that our goal is to bound
∑

k n/2
k · Vol(Ik(≤τk))

m−|Jk−1(>τk)| . To this end, consider fixed k. Because

Ik ⊂ J∗
k = ∪k′≤kI

∗
k (by Theorem 5.2.1), we can write:

Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
=

∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
+

∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

Thus, we split Ik depending on which batch Opt decided to schedule that job in. Further, we split
Ik ∩ I∗k′ (i.e. the jobs our algorithm does in batch k that Opt did in the past batch k′ ≤ k) into the
jobs that are small-in-the-past (size at most τk′) and big-in-the-past (size greater than τk′ and at
most τk.)

The goal of this section is to bound the small-in-the-past jobs. This formalizes the idea that the
rate at which we lose machines, guaranteed by Lemma 5.4.11, is offset by the number of jobs Opt is
delaying, captured by the exponentially decreasing weights n/2k. More precisely, if Opt decides to
do a small job from Ik in an earlier batch, say I∗k′ , then Opt is averaging this small volume over at

most a Õ(
√
m) · 2k−k′-factor more unclogged machines. However, the weight of this term in Opt’s

weighted free time increased by a 2k−k′-factor as well, corresponding to the number of jobs delayed
by batch k′. Thus, up to a Õ(

√
m)-factor, there is no benefit to doing the small-in-the-past jobs

any earlier. We show the following.

Lemma 5.4.12. Suppose Event (5.3) holds. Then the small-in-the-past jobs satisfy:∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= Õ(

√
m) ·

∑
k

n/2k · τk.

Proof. Because there are O(log n) batches, it suffices to show for fixed k and k′ ≤ k that we have

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= O(∆) · 2k−k′τk′ ,

where ∆ = O(
√
m log n). Summing over all k and k′ ≤ k would give the desired result.

We upper bound the numerator using Ik ∩ I∗k′ ⊂ I∗k′ and apply Lemma 5.4.11 to the denominator.
This gives:

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
= O(∆) · 2k−k′ Vol(I∗k′(≤ τk′))

m− |Jk′−1(> τk)|
= O(∆) · 2k−k′ Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

.

In the final step, we used Jk′−1 ⊂ J∗
k′−1 (by Theorem 5.2.1) and τk ≥ τk′ .

Finally, we show
Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

= O(τk′).

Recall that τk′ > F ∗(n−n/2k′), so Opt schedules at most one τk′-big job per machine in J∗
k′ . Further,

Opt schedules I∗k′(≤ τk′) only on the m − |J∗
k′−1(> τk′)| machines that have not yet scheduled a

τk′-big job yet. By averaging, after scheduling I∗k′(≤ τk′), every such machine in Opt has load at
least

Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

− τk′ .

93

One of these machines must achieve the free time F ∗(n− n/2k
′
), because every other machine has

already scheduled a τk′-big job. This implies

F ∗(n− n/2k
′
) ≥

Vol(I∗k′(≤ τk′))

m− |J∗
k′−1(> τk′)|

− τk′ .

Rearranging and using τk′ > F ∗(n− n/2k
′
) give the desired result.

Thus, the contribution of the small-in-the-past jobs to Alg’s weighted free time is comparable to
Opt’s weighted free time, up to a Õ(

√
m)-factor.

5.4.5 Bounding big-in-the-past jobs

The goal of this section is to bound the big-in-the-past jobs, that is:∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

For convenience, we define Ikk′ = Ik∩I∗k′(> τk′ ,≤ τk). Note that we cannot apply volume arguments
as in § 5.4.4, because the big-in-the-past jobs are τk′-big. Instead, we will use the fact that Opt
schedules at most one Ikk′-job per machine.

There are two types of jobs in j ∈ Ikk′ : We say j is blocked if Opt later schedules a τk-big job
in Jk−1 on the same machine as j (recall that Jk−1 ⊂ J∗

k−1 by Theorem 5.2.1.) Otherwise, j is
unblocked. Further, a machine is blocked/unblocked if the Ikk′-job scheduled on that machine is
blocked/unblocked. Thus we can partition Ikk′ = Bkk′ ∪ Ukk′ into blocked and unblocked jobs,
respectively.

By splitting the volume of jobs into unblocked and blocked, we can rewrite:∑
k

n/2k·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
=

∑
k

n/2k·
∑
k′≤k

Vol(Ukk′)

m− |Jk−1(> τk)|
+
∑
k

n/2k· Vol(Bkk′)

m− |Jk−1(> τk)|
.

Intuitively, the unblocked jobs are not problematic because there can be at most m− |Jk−1(> τk)|
such jobs.

Lemma 5.4.13. The unblocked jobs satisfy
∑

k n/2
k ·
∑

k′≤k
Vol(Ukk′)

m−|Jk−1(>τk)| ≤ O(log n) ·
∑

k n/2
k ·τk.

Proof. Because there are O(log n) batches, it suffices to show for fixed k and k′ ≤ k that

Vol(Ukk′)

m− |Jk−1(> τk)|
≤ τk.

We recall that every job in Ukk′ is τk-small, so:

Vol(Ukk′)

m− |Jk−1(> τk)|
≤ τk ·

|Ukk′ |
m− |Jk−1(> τk)|

.

We note that every job in Ukk′ is τk′-big, and Opt schedules these jobs in batch I∗k′ . Thus, there is at
most one Ukk′-job per unblocked machine. Further, there are at most m− |Jk−1(> τk)| unblocked
machines, because each τk-big job in Jk−1 must be scheduled on a separate machine of Opt (because

Jk−1 ⊂ J∗
k by Theorem 5.2.1.) We conclude,

|Ukk′ |
m−|J∗

k−1(>τk)| ≤ 1, as required.

94

It remains to handle the blocked jobs. Again, the central issue is that Opt does blocked jobs in an
earlier batch before some machines get clogged. On the other hand, ChooseJobs puts these jobs
in a later batch when we have fewer machines.

Unlike our previous arguments, for the blocked jobs we will charge the volume of these jobs to the
completion time of Opt directly. Because these jobs are blocked, Opt must schedule a τk-big job
later on the same machine. In particular, Opt must have kept scheduling Bernoulli jobs with size
parameter at least τk until one comes up heads. We will charge Bkk′ to the completion time of all
of these coin flips.

As before, we consider a fixed threshold τ and later union bound over all relevant thresholds. In
this section, for any batch k and threshold τ , we define pkτ ∈ [0, 1] to be the largest probability
parameter across all jobs j in Jk−1 with sj > τ (if no such job exists, then we follow the convention
pkτ = 0.) Note that pkτ is deterministic for fixed τ . We first relate the number of remaining
machines with the expected number of heads in the kth batch.

Proposition 5.4.14. Consider any batches k, k′ ≤ k and threshold τ ≥ 2EF ∗(n− n/2k). Suppose
Event (5.3) holds. Then we have m− |Jk−1(> τ)| ≥ pkτ · n/2k −O(∆), where ∆ = O(

√
m log n).

Proof. First, if pkτ = 0, then |Jk−1(> τ)| = 0, so the proposition is trivial. Thus, we may assume
pkτ > 0. In particular, ChooseJobs included at least one job j ∈ Jk−1 with sj > τ and pj = pkτ .
It follows, ChooseJobs will include n/2k further jobs in Ik with size parameter larger than τk
and probability parameter at least pkτ . Thus, we have E|Ik(> τ)| ≥ pkτ · n/2k. Rewriting E|Ik(>
τ)| = E|Jk(> τ)| −E|Jk−1(> τ)| and applying Lemma 5.4.9 and Event (5.3) to the first and second
expectations, respectively gives:

pkτ · n/2k ≤ E|Ik(> τ)| = E|Jk(> τ)| − E|Jk−1(> τ)| ≤ (m+O(
√
m))− (|Jk−1(> τ)| −O(∆)).

Rearranging gives the desired result.

To see the utility of Proposition 5.4.14, we assume for a moment that τk is deterministic and

ignore the additive O(∆) term in the proposition. Then we could rewrite n/2k · Vol(Bkk′)
m−|Jk−1(>τk)| ≲

1
pkτ
·Vol(Bkk′).

To relate this expression with Opt, we note that Opt schedules a τk-big job on top of each job in
Bkk′ . In particular, Opt must schedule enough Bernoulli jobs j with sj > τk until at one comes up
heads on each such machine. Each such job also satisfies pj ≤ pkτk , so - roughly - in Opt we expect
each blocked job to delay at least 1

pkτ
jobs in order for that machine to become blocked. This would

give 1
pkτk
·Vol(Bkk′) ≲ Opt, as required.

5.4.6 Coin Game

It remains to formalize this idea using a martingale argument. We begin by defining an (artificial)
game, which will model the process of a machine becoming blocked.

Definition 5.4.15 (Coin Game). The game is played with n coins and m machines by a single
player. The coins are independent such that coin j comes up heads with probability pj . Initially,
all machines are available. At each turn, the player can either choose to flip a previously unflipped
coin on an available machine or to end the game. In the former case, if the coin comes up heads,
then the machine becomes unavailable. The game ends when the player chooses to, or if we run
out of unflipped coins or available machines.

95

Now we are ready to interpret Opt as implicitly playing a coin game to block machines.

Definition 5.4.16 (Induced Coin Game). Consider pairs of batches k′ ≤ k and thresholds τ ′ ≤ τ .
Then the (k′, k, τ ′, τ)-induced coin game (with respect to policy Opt) is a distribution over coin
games defined as follows:

• The machines are the ones of Opt whose final job in J∗
k′ has size exactly τ ′.

• For every job in j ∈ Jk−1 \ J∗
k′ with sj > τ , we have a coin with the same probability

parameter.

The player of the coin game simulates Opt as follows. Starting from after Opt schedules J∗
k′ , if Opt

subsequently schedules a job on a machine that is still available (in the coin game), then the player
flips the corresponding coin (if such a coin exists) on the same machine. The player decides to stop
when it runs of out coins or all machines are unavailable.

One should imagine that the machines in the induced coin game are exactly those that can become
blocked. Thus, a machine becoming unavailable in the coin game corresponds to it becoming
blocked in Opt, and the total number of flipped coins records how many jobs were delayed by τ ′.

Using a martingale argument, we relate the number of machines that become unavailable with the
number of flipped coins. The next lemma formalizes the idea that to block a machine, we expect
Opt to flip 1

pkτk
coins per blocked machine. Recall that for any batch k and threshold τ , we define

pkτ to be the largest probability parameter across all jobs j in Jk−1 with sj > τ .

Lemma 5.4.17. With probability 1− 1
poly(n) , the following event holds:

{#(unavailable machines) ≤ pkτ ·#(flipped coins)+∆ ∀ (k′, k, τ ′, τ)- induced coin games}, (5.4)

where ∆ = O(
√
m log n).

Proof. Because there are O(log n) batches and L = O(log n) relevant thresholds, by union-bounding
over all pairs of batches and thresholds, it suffices to show that a fixed (k′, k, τ ′, τ)-induced coin
game satisfies:

P(#(unavailable machines) ≤ pkτ ·#(flipped coins) + ∆) = 1− 1

poly(n)
.

We will define a martingale to count the number of unavailable machines. For all t ≥ 0, let
At be the (adaptively chosen) set of the first t coins flipped by the player. If the player stops
before flipping t coins, then we define At = At−1. Now consider the sequence of random variables
Mt =

∑
j∈At

Cj−
∑

j∈At
pj for all t ≥ 0, where Cj ∼ Ber(pj) is the distribution of coin j. Note that∑

j∈At
Cj is exactly the number of heads in the first t coin flips, which is the number of unavaiable

machines.

We claim that Mt is a martingale. Consider any t ≥ 0. There are two cases. If At = At−1, then
Mt = Mt−1, so trivially E[Mt | Mt−1, . . . ,M0] = Mt−1. Otherwise, At = At−1 ∪ {j} for some
adaptively chosen coin j. It suffices to show the martingale property conditioned on the next coin
being j for any fixed coin j:

E[Mt |Mt−1, . . . ,M0, At = At−1 ∪ {j}] = E[Mt−1 + Cj − pj |Mt−1, . . . ,M0, At = At−1 ∪ {j}]
= Mt−1 + pj − pj = Mt−1,

as required.

To bound the deviation of Mt, we apply Freedman’s inequality [Fre75] to the martingale difference
sequence of Mt.

96

Proposition 5.4.18 (Freedman’s inequality). Consider a real-valued martingale sequence {Xt}t≥0

such that X0 = 0 and |Xt| ≤M almost surely for all t. Let Yt =
∑t

s=0 E[X2
s | Xs−1, . . . , X0] denote

the quadratic variation process of {Xt}t. Then for any ℓ ≥ 0, σ2 > 0 and stopping time τ , we have:

P(|
τ∑

t=0

Xt| ≥ ℓ and Yτ ≤ σ2) ≤ 2 · exp
(
− ℓ2/2

σ2 +Mℓ/3

)
.

We let Xt denote the martingale difference sequence of Mt, which is defined as X0 = 0 and
Xt = Mt −Mt−1 for all t > 0. Because Mt is a martingale, Xt is as well. Furthermore, we have
|Xt| ≤ 1 almost surely for all t. For any t ≥ 0, we let jt be the (adaptively chosen) tth coin flip.
Then we can bound the quadratic variation process by:

Yt =
t∑

s=0

E[X2
s | Xs−1, . . . , X0] =

t∑
s=0

E[(Cjs − pjs)
2 | Xs−1, . . . , X0]

≤
t∑

s=0

E[C2
js | Xs−1, . . . , X0]

=
t∑

s=0

E[Cjs | Xs−1, . . . , X0].

Note that the Cj1 + . . . Cjt ≤ m almost surely, because the induced coin game has at most m
machines, and any adaptive policy can flip at most one heads per machine. Thus, we have Yt ≤ m
for all t.

Now let T be the stopping time when the induced coin game ends, so T is exactly the number of
flipped coins. Then Freedman’s inequality gives:

P(|
T∑
t=0

Xt| ≥ ∆) = P(|
T∑
t=0

Xt| ≥ ∆ and YT ≤ m) ≤ 2 · exp(− ∆2/2

m+∆/3
).

Taking ∆ = O(
√
m log n) gives P(|

∑T
t=0Xt| ≥ ∆) ≤ 1

poly(n) .

Finally, we observe that #(unavailable machines) =
∑

j∈AT
Cj . Further, we have pkτ ·#(flipped coins) ≥∑

j∈AT
pj , because every coin j corresponds to a job in Jk−1 with sj > τ , so pj ≤ pkτ for all coins.

Thus, we conclude:

P(#(unavailable machines) > pkτ ·#(flipped coins) + ∆) ≤ P(|
T∑
t=0

Xt| > ∆) ≤ 1

poly(n)
.

Combining Proposition 5.4.14 and Lemma 5.4.17, we can bound the blocked jobs:

Lemma 5.4.19. Suppose Events (5.3) and (5.4) hold. Then the blocked jobs satisfy:∑
k

n/2k ·
∑
k′≤k

Vol(Bkk′)

m− |Jk−1(> τk)|
= Õ(

√
m)(

∑
k

n/2k · τk + Opt).

97

Proof. Because there are O(log n) batches k, it suffices to show for fixed k, k′ ≤ k that n/2k ·
Vol(Bkk′)

m−|Jk−1(>τk)| = O(∆ log n)(n/2k · τk + Opt) for ∆ = O(
√
m log n). We consider two cases.

First, on the event that pkτk = 0, we have m− |Jk−1(> τk)| = m. Recall that every job in Bkk′ is
τk′-big and in I∗k′ , so there is at most one such job per machine in Opt. Then we can bound:

n/2k · Vol(Bkk′)

m− |Jk−1(> τk)|
≤ n/2k · τk

m

m
= n/2k · τk.

Otherwise, we have pkτk > 0. Here we related the blocked jobs to the induced coin games:

Vol(Bkk′) =
∑
τ ′≤τk

τ ′ · |{j ∈ Bkk′ | Xj = τ ′}|

=
∑
τ ′≤τk

τ ′ ·#(unavailable machines in (k′, k, τ ′, τk)-induced coin game)

≤
∑
τ ′≤τk

τ ′ · (pkτk ·#(flipped coins in (k′, k, τ ′, τk)-induced coin game) + ∆)

≤ O(log n) · pkτk · Opt+O(∆ log n) · τk.

where the first inequality follows from Event (5.4). The second follows because there are O(log n)
relevant thresholds τ ′ ≤ τk, and every flipped coin in the (k′, k, τ ′, τk)-induced coin game corre-
sponds to Opt scheduling a job on a machine that already scheduled some job with size τ ′, so every
such job has completion time at least τ ′. It follows:

n/2k · Vol(Bkk′)

m− |Jk−1(> τk)|
≤ n/2k ·O(log n)

pkτk
m− |Jk−1(> τk)|

· Opt+ n/2k ·O(∆ log n)
τk

m− |Jk−1|
.

By Proposition 5.4.14, we can bound the first term by:

n/2k ·O(log n)
pkτk

m− |Jk−1(> τk)|
· Opt = O(log n)

m− |Jk−1(> τk)|+O(∆)

m− |Jk−1(> τk)|
· Opt

= O(∆ log n) · Opt.

We can bound the second term by:

n/2k ·O(∆ log n)
τk

m− |Jk−1(> τk)|
= O(∆ log n) · n/2k · τk.

Combining both bounds completes the proof.

We summarize our bounds for the unblocked and blocked jobs by the next lemma, which follows
immediately from Lemma 5.4.13 and Lemma 5.4.19.

Lemma 5.4.20. Suppose Events (5.3) and (5.4) hold. Then the big-in-the-past jobs satisfy:∑
k

n/2k ·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
= Õ(

√
m) ·

(∑
k

n/2k · τk + Opt

)
.

98

5.4.7 Putting it all together

We are ready to prove Theorem 5.3.4 and Theorem 5.4.2, which we restate here for convenience.

Theorem 5.3.4 (Batch Free Time Minimization). Given Bernoulli jobs, if m ≥ 2 and Assump-
tion 5.3.2 holds, then StochFree outputs a list schedule with expected completion time at most
Õ(
√
m) ·

(
E[Opt] +O(1)

)
, where Opt is the optimal adaptive policy.

Theorem 5.4.2. If m = Ω(1) is sufficiently large, then the weighted free time of Alg satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[Opt]

)
+O(1).

Theorem 5.4.2 follows from partitioning Alg’s weighted free time into the contribution due to small-
in-the-past and big-in-the-past jobs (which we further partitioned into unblocked and blocked jobs.)

Proof of Theorem 5.4.2. We assume m = Ω(1) is sufficiently large. Then we complete the proof
of Theorem 5.4.2 by combining our bounds for the small-in-the-past- and big-in-the-past jobs. We
bound Alg’s weighted free time by Lemma 5.4.4:∑

k

n/2k · F (Jk) = O(
∑
k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
+
∑
k

n/2k · τk).

We recall τk = 2 · max(EF ∗(n − n/2k), F ∗(n − n/2k)), so Eτk = O(EF ∗(n − n/2k)). Thus, in
expectation, the second sum is at most:

E
∑
k

n/2k · τk = O(E
∑
k

n/2k · F ∗(n− n/2k)).

It remains to bound the first sum, which we split into the contribution due to small-in-the-past
and big-in-the-past jobs:∑
k

n/2k· Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
=

∑
k

n/2k·
∑
k′≤k

Vol(Ik ∩ I∗k′(≤ τk′))

m− |Jk−1(> τk)|
+
∑
k

n/2k·
∑
k′≤k

Vol(Ik ∩ I∗k′(> τk′ ,≤ τk))

m− |Jk−1(> τk)|
.

On Events (5.3) and (5.4), we can apply Lemma 5.4.12 to the first term and Lemma 5.4.20 to the
second to obtain: ∑

k

n/2k · Vol(Ik(≤ τk))

m− |Jk−1(> τk)|
= Õ(

√
m)(

∑
k

n/2k · τk + Opt).

Again, in expectation, this contributes Õ(
√
m)(E

∑
k n/2

k ·F ∗(n−n/2k)+EOpt) to Alg’s expected
weighted free time.

Finally, we consider the event that Event (5.3) or Event (5.4) does not hold. Recall that by
Lemma 5.4.10 and Lemma 5.4.17, this happens with probability at most 1

poly(n) because m = Ω(1)

is sufficiently large. Further, on this event, we can trivially upper bound
∑

k n/2
k · Vol(Ik(≤τk))

m−|Jk−1(>τk)| =

poly(n), because there are n jobs each with size at most poly(n) almost surely. Thus, the contri-
bution of this event to the overall expectation is O(1). We conclude, Alg’s expected weighted free
time is at most Õ(

√
m)(E

∑
k n/2

k · F ∗(n− n/2k) + EOpt) +O(1).

99

To complete the proof of Theorem 5.4.2, we relate the weighted free time to the completion time.
We also use our warm-up Õ(m)-approximation when m is too small to apply Theorem 5.3.4.

Proof of Theorem 5.3.4. First, suppose m = Ω(1) is sufficiently large. Then by Theorem 5.4.2,
Alg’s weighted free time satisfies:

E
[∑

k

n/2k · F (Jk)

]
= Õ(

√
m) ·

(
E
[∑

k

n/2k · F ∗(n− n/2k)

]
+ E[Opt]

)
+O(1).

Applying Lemma 5.4.1 to relate weighted free time to completion time gives:

E[Alg] = Õ(1) · E
[∑

k

n/2k · F (Jk)

]
+ Õ(E[Opt]) = Õ(

√
m) ·

(
E[Opt] +O(1)

)
.

This gives the desired guarantee if m = Ω(1).

Otherwise, if m = O(1), Lemma 5.4.6 immediately gives that StochFree is Õ(m) = Õ(1)-
approximate, so E[Alg] = Õ(E[Opt]).

This completes the analysis of StochFree. Since the proof had several conceptual parts, let us a
give a quick summary.

Summary

Recall that our analysis began by passing from completion time to our new proxy objective:
weighted free time in § 5.4.1. As we mentioned earlier, a key benefit of working with free times
rather than completion times was that we could completely control what jobs we started to achieve
the ith free time, whereas we have far less control over the first i jobs to finish. This allowed us
to make the contribution of each job to the weighted free time more modular: either the job con-
tributed to the small volume in a batch, or it contributed to the clogged machines—see (5.2). We
then controlled the rate at which Alg and Opt clog up machines in § 5.4.3. Then in § 5.4.4-§ 5.4.6
we compared the times at which Alg and Opt chose to do the same volume of small jobs. Since
these were the only two ways in which a job affected the weighted free time, we could combine
these two ideas in § 5.4.7 to complete our analysis.

5.5 Conclusion

We gave an improved approximation for stochastic completion times, which does not depend on
the job size variances, and has a sublinear dependence on the number of machines m.

Similar to Chapter 4, the key idea enabling our algorithm is a deeper technical understanding of
adaptive policies. However, unlike in the case of load balancing, we cannot rely on tried-and-true
techniques such as index policies and LP rounding due to known lower bounds for this problem.
Instead, we introduce a variety of new ideas such as batched free times and the techniques to
analyze them.

The most compelling open question is extending our techniques to more general job size distribu-
tions than Bernoulli jobs. Observe that the weighted free time is a valid proxy objective for any
job size distributions, not just Bernoulli jobs, so extending our result to general stochastic jobs
requires us to solve subset selection and batch free time minimization for these settings.

Second, we also do not have a good grasp on the complexity of this problem: is the stochastic
problem provably hard to solve/approximate? Typically, for stochastic combinatorial optimization

100

problems such as load balancing and knapsack, we do not have a toolkit to show hardness other than
stating that they generalize their deterministic counterparts, which are already hard. This approach
does not tell us anything for minimizing completion times, however, because the deterministic
version can be solved optimally in polynomial time.

101

Chapter 6

Conclusion

In this dissertation, we studied four fundamental problems combinatorial optimization. In the first
two chapters, Chapter 2 and Chapter 3, we refined two classical approaches: iterative LP rounding
and amortization arguments, leading to improved approximations for k-median-type problems and
online throughput maximization. In the final two chapters, Chapter 4 and Chapter 5, we moved
our focus to stochastic combinatorial optimization. These problems are not as well understood as
their deterministic counterparts, and the respective technical toolkit is less developed. In Chap-
ter 4, with some work, we were able to connect stochastic load balancing with classical LP rounding
and potential function approaches by defining an appropriate deterministic proxy for the stochas-
tic problem. However, in Chapter 5, the classical tools provably do not work when considering
stochastic completion time minimization. Thus, we had to develop a variety of new ideas such as a
new proxy objective and novel probabilistic arguments combining per-realization and concentration
guarantees to break through previous barriers.

We already covered concrete open problems regarding each problem in the conclusions of their
respective chapters. Instead I want to look ahead to the more speculative directions that inspire
my future work. The main question that I am interested in is:

How much information do we really need to solve a particular optimization problem?

We already saw some examples of this question: in online scheduling, how much do we lose by
learning about the jobs incrementally over time rather than having access to all of the information
up front (competitive analysis)? In stochastic scheduling, how much do we lose by only using the
initial distributional information to guide our algorithm rather than adaptively responding to the
realized job sizes (adaptivity gaps)? Some other aspects of this question that I am interested in
are the following:

� In our stochastic algorithms, we assumed we had oracle access to the given distributions.
In particular, our load balancing algorithms required truncated means (due to a guess-and-
double argument) for a wide range of truncation values. This effectively means our algorithm
needs arbitrary CDF access (or a prohibitively large number of samples to estimate very
unlikely truncation values). Algorithms for other stochastic problems often need similarly rich
information about the distributions including upper tails and exponential moments [KRT00,
IMP15b, Mol19, GKNS21]. How well can algorithms perform with, say very limited sample
access to the distributions, or limited statistics about the distributions (means, low degree
moments, etc.)?

102

� We have focused on improved upper bounds for stochastic scheduling, but what about lower
bounds? Can we give any evidence that, say stochastic load balancing, is any harder than
its deterministic counterpart? Perhaps the ideal result would be a hardness of approximation
result of the form “Unless (some complexity assumption), stochastic load balancing is hard
to approximate within a factor (some factor larger than 3

2)
1”. However, this goal seems far

away given our current understanding of these problems.

Note that many adaptivity gap lower bounds and hard examples for stochastic optimization
problems rely on very simple discrete distributions (usually Bernoulli or two-point distribu-
tions). For such distributions, we can often represent an adaptive policy as a decision tree,
where each node corresponds to a decision of the policy and the child edges correspond to the
possible realizations of that decision. With this observation, can we show a lower bound on
the size of any decision tree representing a (near) optimal adaptive policy? Could we show
this indirectly by arguing that such a decision tree must compute some hard-to-compute func-
tion? This is just one very speculative approach, but I think the general question is exciting
and completely open.

� Another idea that we briefly touched on is non-clairvoyant algorithms. For example, we
considered load balancing on related machines, where we do not even know the job sizes at all
until they have been scheduled. It seems that nothing should be possible in this setting, but
surprisingly we can give non-trivial performance guarantees. I am curious how far we can push
this idea of algorithms with very limited information or feedback about the problem. Can
we study other combinatorial optimization problems where we remove seemingly necessary
information about the problem, and still give non-trivial algorithms?

More generally, I’m interested in simple (elegant?) optimization problems with restricted informa-
tion.

This concludes my dissertation. I hope my more technically-inclined readers learned something
interesting and my less technically-inclined readers have a better sense of what I do all day.

1This is because 3
2
is the known hardness for deterministic load balancing on unrelated machines unless P = NP

[LST90]

103

Bibliography

[AAF+97] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line
routing of virtual circuits with applications to load balancing and machine scheduling.
J. ACM, 44(3):486–504, 1997.

[AAKZ22] Georg Anegg, Haris Angelidakis, Adam Kurpisz, and Rico Zenklusen. A technique for
obtaining true approximations for k-center with covering constraints. Math. Program.,
192(1):3–27, 2022.

[AGK+04] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems.
SIAM J. Comput., 33(3):544–562, 2004.

[Alb03] Susanne Albers. Online algorithms: a survey. Math. Program., 97(1-2):3–26, 2003.

[ANR95] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assign-
ments. J. Algorithms, 18(2):221–237, 1995.

[BCK00] Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balancing for related
machines. J. Algorithms, 35(1):108–121, 2000.

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

[Ben62] George Bennett. Probability inequalities for the sum of independent random variables.
JASA, 57(297):33–45, 1962.

[BIPV19] Sayan Bandyapadhyay, Tanmay Inamdar, Shreyas Pai, and Kasturi R. Varadarajan.
A constant approximation for colorful k-center. In 27th Annual European Symposium
on Algorithms, ESA, 2019.

[BJS74] John L. Bruno, Edward G. Coffman Jr., and Ravi Sethi. Scheduling independent tasks
to reduce mean finishing time. Commun. ACM, 17(7):382–387, 1974.

[BKM+92] Sanjoy K. Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind Raghu-
nathan, Louis E. Rosier, Dennis E. Shasha, and Fuxing Wang. On the competitiveness
of on-line real-time task scheduling. Real Time Systems, 4(2):125–144, 1992.

[BPR+17] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k -median and positive correlation in budgeted
optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.

104

[BPR+18] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Joachim Spoerhase, Aravind
Srinivasan, and Khoa Trinh. An improved approximation algorithm for knapsack me-
dian using sparsification. Algorithmica, 80(4):1093–1114, 2018.

[CGKT07] Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness
of routing with congestion in directed graphs. In Proceedings of STOC, pages 165–178.
ACM, 2007.

[CGLS23] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn.
Breaching the 2 LMP approximation barrier for facility location with applications to
k -median. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, pages 940–986. SIAM, 2023.

[Che08] Ke Chen. A constant factor approximation algorithm for k-median clustering with
outliers. In SODA, pages 826–835, 2008.

[CKMN01] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms
for facility location problems with outliers. In Proceedings of the Twelfth Annual Sym-
posium on Discrete Algorithms, pages 642–651, 2001.

[Den22] Shichuan Deng. On clustering with discounts. Inf. Process. Lett., 177:106272, 2022.

[DGV08] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic
knapsack problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[EFMM19] Franziska Eberle, Felix A. Fischer, Jannik Matuschke, and Nicole Megow. On index
policies for stochastic minsum scheduling. Oper. Res. Lett., 47(3):213–218, 2019.

[EGM+22] Franziska Eberle, Anupam Gupta, Nicole Megow, Benjamin Moseley, and Rudy Zhou.
Configuration balancing for stochastic requests. CoRR, abs/2208.13702, 2022.

[EMS20] Franziska Eberle, Nicole Megow, and Kevin Schewior. Optimally handling commitment
issues in online throughput maximization. In European Symposium on Algorithms,
2020.

[FKRS19] Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R.
Salavatipour. Approximation schemes for clustering with outliers. ACM Trans. Al-
gorithms, 15(2):26:1–26:26, 2019.

[Fre75] David A. Freedman. On tail probabilities for Martingales. The Annals of Probability,
3(1):100–118, 1975.

[GI99] Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In 40th
Annual Symposium on Foundations of Computer Science, FOCS, pages 579–586, 1999.

[GJS23] Paritosh Garg, Linus Jordan, and Ola Svensson. Semi-streaming algorithms for sub-
modular matroid intersection. Math. Program., 197(2):967–990, 2023.

[GKNS21] Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic
load balancing on unrelated machines. Math. Oper. Res., 46(1):115–133, 2021.

105

[GLZ17] Sudipto Guha, Yi Li, and Qin Zhang. Distributed partial clustering. In Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pages
143–152. ACM, 2017.

[GMM+03] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. TKDE, 15(3):515–528,
2003.

[GMUX20] Varun Gupta, Benjamin Moseley, Marc Uetz, and Qiaomin Xie. Greed works - online
algorithms for unrelated machine stochastic scheduling. Math. Oper. Res., 45(2):497–
516, 2020.

[GMZ21] Anupam Gupta, Benjamin Moseley, and Rudy Zhou. Structural iterative rounding
for generalized k-median problems. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP, 2021.

[GMZ23] Anupam Gupta, Benjamin Moseley, and Rudy Zhou. Minimizing completion times
for stochastic jobs via batched free times. In Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1905–1930. SIAM, 2023.

[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematics, 17(2):416–429, 1969.

[GRSZ14] Fabrizio Grandoni, R. Ravi, Mohit Singh, and Rico Zenklusen. New approaches to
multi-objective optimization. Math. Program., 146(1-2):525–554, 2014.

[HSSW97] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to min-
imize average completion time: Off-line and on-line approximation algorithms. Math.
Oper. Res., 22(3):513–544, 1997.

[IKPS18] Sungjin Im, Nathaniel Kell, Debmalya Panigrahi, and Maryam Shadloo. Online load
balancing on related machines. In Proceedings of STOC, pages 30–43. ACM, 2018.

[IMP15a] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Stochastic scheduling of heavy-tailed
jobs. In 32nd International Symposium on Theoretical Aspects of Computer Science,
STACS, 2015.

[IMP15b] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Stochastic scheduling of heavy-tailed
jobs. In Ernst W. Mayr and Nicolas Ollinger, editors, Proceedings of STACS, volume 30,
pages 474–486, 2015.

[IQM+20] Sungjin Im, Mahshid Montazer Qaem, Benjamin Moseley, Xiaorui Sun, and Rudy
Zhou. Fast noise removal for k-means clustering. In The 23rd International Conference
on Artificial Intelligence and Statistics, AISTATS, pages 456–466, 2020.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for
facility location problems. In Proceedings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, pages 731–740, 2002.

[JV01] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility loca-
tion and k -median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

106

[KKN+15] Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal,
and Barna Saha. Facility location with matroid or knapsack constraints. Math. Oper.
Res., 40(2):446–459, 2015.

[KLS18] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-
median and k-means with outliers via iterative rounding. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 646–659,
2018.

[KP00] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47(4):617–643, 2000.

[KP01] Bala Kalyanasundaram and Kirk Pruhs. Eliminating migration in multi-processor
scheduling. Journal of Algorithms, 38(1):2–24, 2001.

[KP03] Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. Journal
of Algorithms, 49(1):63–85, 2003.

[KRT00] Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty
connections. SIAM J. Comput., 30(1):191–217, 2000.

[LG18] Shi Li and Xiangyu Guo. Distributed k-clustering for data with heavy noise. In
Advances in Neural Information Processing Systems, pages 7838–7846, 2018.

[LMNY13] Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online
scheduling for deadline-sensitive jobs. In ACM Symposium on Parallelism in Algorithms
and Architectures, pages 305–314. ACM, 2013.

[LRS98] Tom Leighton, Satish Rao, and Aravind Srinivasan. Multicommodity flow and circuit
switching. In HICSS (7), pages 459–465. IEEE Computer Society, 1998.

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM
J. Comput., 45(2):530–547, 2016.

[LST90] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

[MKC+15] Gustavo Malkomes, Matt Kusner, Wenlin Chen, Kilian Weinberger, and Benjamin
Moseley. Fast distributed k-center clustering with outliers on massive data. In NIPS,
pages 1063–1071, 2015.

[Mol19] Marco Molinaro. Stochastic p load balancing and moment problems via the l-function
method. In Proceedings of SODA, pages 343–354. SIAM, 2019.

[MPSZ22] Benjamin Moseley, Kirk Pruhs, Clifford Stein, and Rudy Zhou. A competitive algo-
rithm for throughput maximization on identical machines. In Integer Programming
and Combinatorial Optimization, IPCO, 2022.

[MSU99] Rolf H. Möhring, Andreas S. Schulz, and Marc Uetz. Approximation in stochastic
scheduling: the power of lp-based priority policies. J. ACM, 46(6):924–942, 1999.

[Pin08] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer Publishing
Company, Incorporated, 3rd edition, 2008.

107

[PST04] Kirk Pruhs, Jiŕı Sgall, and Eric Torng. Online scheduling. In Joseph Y.-T. Leung, ed-
itor, Handbook of Scheduling - Algorithms, Models, and Performance Analysis. Chap-
man and Hall/CRC, 2004.

[Rot66] Michael H. Rothkopf. Scheduling with random service times. Management Science,
12(9):707–713, 1966.

[Sch08] Andreas S. Schulz. Stochastic online scheduling revisited. In Boting Yang, Ding-Zhu
Du, and Cao An Wang, editors, Proceedings of COCOA, volume 5165 of LNCS, pages
448–457. Springer, 2008.

[SSU16a] Martin Skutella, Maxim Sviridenko, and Marc Uetz. Unrelated machine scheduling
with stochastic processing times. Math. Oper. Res., 41(3):851–864, 2016.

[SSU16b] Martin Skutella, Maxim Sviridenko, and Marc Uetz. Unrelated machine scheduling
with stochastic processing times. Math. Oper. Res., 41(3):851–864, 2016.

[ST93] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized
assignment problem. Math. Program., 62:461–474, 1993.

[SU05] Martin Skutella and Marc Uetz. Stochastic machine scheduling with precedence con-
straints. SIAM J. Comput., 34(4):788–802, 2005.

[WP80] Gideon Weiss and Michael Pinedo. Scheduling tasks with exponential service times
on non-identical processors to minimize various cost functions. Journal of Applied
Probability, 17(1):187–202, 1980.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[WVW86] R. R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with stochastically or-
dered processing times on parallel machines to minimize expected flowtime. Journal
of Applied Probability, 23(3):841–847, 1986.

108

Appendix A

Appendix for Generalized k-Median
Problems

A.1 Missing Proofs from § 2.2: Construction of LPiter

Proof of Proposition 2.2.1. Let I be the given instance of GKM and (x∗, y∗) be an optimal solution
to LP1.

Observe that if x∗ij ∈ {0, y∗i } for all i ∈ F, j ∈ C, then we can define Fj = {i ∈ F | x∗ij > 0} for all
j ∈ C. It is easy to verify in this case that y∗ is feasible for LP2 and achieves the same objective
value in LP2 as (x∗, y∗) achieves in LP1, which completes the proof.

Thus our goal is to duplicate facilities in F and re-allocate the x- and y-values appropriately until
x∗ij ∈ {0, y∗i } for all i ∈ F, j ∈ C. To prevent confusion, let F denote the original set of facilities,
and let F ′ denote the modified set of facilities, where make n = |C| copies of each facility in F , so
for each i ∈ F , we have copies i1, . . . , in ∈ F ′.

Now we define x′ ∈ [0, 1]F
′×C and y′ ∈ [0, 1]F

′
with the desired properties. For each i ∈ F , we

assume without loss of generality that 0 ≤ xi1 ≤ xi2 ≤ · · · ≤ xin ≤ yi. We define x′i11, . . . , x
′
inn

and
y′i1 , . . . , y

′
in

recursively:

Let y′i1 = xi1 and x′i1j = xij for all j ∈ [n].

Now for k > 1, let y′ik = xik − xi(k−1) and x′ikj =

{
0 , j < k

y′ik , j ≥ k
for all j ∈ [n].

It is easy to verify that (x′, y′) is feasible for LP1 (after duplicating facilities) and x′ij ∈ {0, y′i} for
all i ∈ F ′, j ∈ C, as required. Further, it is clear that this algorithm is polynomial time.

Proof of Proposition 2.2.2. If d(p, q) = 0, then the claim is trivial. Suppose d(p, q) ≥ 1. We can
rewrite d(p, q) = τ ℓ+f for some ℓ ∈ N, f ∈ [0, 1). Also, for convenience we define β = logτ α.
Because loge α is uniformly distributed in [0, loge τ), it follows that β is uniformly distributed in
[0, 1).

It follows, d(p, q) is rounded to ατ ℓ = τ ℓ+β exactly when β ≥ f , and otherwise d(p, q) is rounded
to τ ℓ+β+1 when β < f . Thus we compute:

109

E[d′(p, q)] =
∫ f

β=0
τ ℓ+β+1 dβ +

∫ 1

β=f
τ ℓ+β dβ =

1

loge τ
(τ ℓ+β+1|fβ=0 + τ ℓ+β|1β=f)

=
1

loge τ
(τ ℓ+f+1 − τ ℓ+1 + τ ℓ+1 − τ ℓ+f) =

1

loge τ
(τ ℓ+f+1 − τ ℓ+f) =

τ − 1

loge τ
d(p, q).

A.2 Missing Proofs from § 2.6

Proof of Lemma 2.6.5. We let i∗ ∈ S be the closest facility to i in S. We show that the cost of
connecting C ′ to i∗ is at most O(ρδ)U . To do so, we partition C ′ into two sets of clients: those that
are far from i relative to d(i, i∗), and those that are close to i. In particular, let γ > 0 be a constant
that we choose later. Then we partition C ′ into C ′

far and C ′
close, where:

C ′
far = {j ∈ C ′ | d(j, i) ≥ γd(i, i∗)},

and
C ′
close = {j ∈ C ′ | d(j, i) > γd(i, i∗)}.

First we bound the connection cost of C ′
far to i∗ using the fact that i /∈ S0, so Extra Invariant (2)

says that
∑

j|i∈Fj

d(i, j) ≤ 2ρU . Thus we compute:

∑
j∈C′

far

d(j, i∗) ≤ (1 +
1

γ
)

∑
j∈C|i∈Fj

d(j, i) ≤ (1 +
1

γ
)O(ρ)U

Now suppose C ′
close ̸= ∅. Fix any j∗ ∈ C ′

close. Then for all j ∈ C ′
close, we have d(j, j∗) ≤ d(j, i) +

d(j∗, i) ≤ 2γd(i, i∗). It follows that C ′
close ⊂ BC(j

∗, 2γd(i, i∗)). Our strategy is to use Extra
Invariant (4) |BC(j

∗, δr)|r ≤ ρU, for all r ≤ Rj∗ . Thus we want 2γd(i, i∗) ≤ δRj∗ . To lower
bound Rj∗ with respect to d(i, i∗), we use our assumption that there exists some ī ∈ S such that
d(j∗, ī) ≤ αL(ℓj∗), where L(ℓj∗) ≤ τRj∗ by Extra Invariant (4). Thus we have:

d(j∗, ī) ≤ ατRj∗ .

Further, using the triangle inequality and the fact that i∗ is the closest facility to i in S, we have:

d(j∗, ī) ≥ d(i, ī)− d(i, j∗) ≥ d(i, i∗)− d(i, j∗) ≥ (1− γ)d(i, i∗).

Combining these two inequalities gives the lower bound Rj∗ ≥ 1−γ
ατ d(i, i∗).

Now we are ready to choose γ. Recall that we want 2γd(i, i∗) ≤ δRj∗ , so it suffices to choose γ such
that: 2γd(i, i∗) ≤ δ 1−γ

ατ d(i, i∗). Routine calculations show that we can take γ = Θ(δ) to satisfy this
inequality. Now with this choice of γ, we can bound:∑

j∈C′
close

d(j, i∗) ≤ (1 + γ)|C ′
close|d(i, i∗) ≤ (1 + γ)|BC(j

∗, δRj∗)|d(i, i∗)

≤ (1 + γ)
ρU

Rj∗
d(i, i∗) ≤ ρU

Rj∗
O(1)Rj∗ = O(ρ)U

To conclude the proof, the connection cost of C ′
far is at most (1 + 1

γ)O(ρ)U = O(ρδ)U and the

connection cost of C ′
close is at most O(ρ)U . Summing these costs gives the desired result.

110

Proof of Lemma 2.6.13. We let i∗ ∈ S be the closest facility to i in S. We show that the cost of
connecting C ′ to i∗ is at most O(ρδ)U . To do so, we partition C ′ into two sets of clients: those that
are far from i relative to d(i, i∗), and those that are close to i. In particular, let γ > 0 be a constant
that we choose later. Then we partition C ′ into C ′

far and C ′
close, where:

C ′
far = {j ∈ C ′ | d(j, i) ≥ γd(i, i∗)} and C ′

close = {j ∈ C ′ | d(j, i) > γd(i, i∗)}

First we bound the connection cost of C ′
far to i∗ using the fact that i /∈ S0, so Extra Invariant (2)

says that i is cheap. Thus we compute:∑
j∈C′

far

d(j, i∗) ≤ (1 +
1

γ
)

∑
j∈C|i∈Fj

d(j, i) ≤ (1 +
1

γ
)O(ρ)U

Now suppose C ′
close ̸= ∅. Importantly, all of these clients are within distance γd(i, i∗) of i, so we have

C ′
close ⊂ BC(i, γd(i, i

∗)). Our strategy to bound the connection cost of C ′
close is to leverage Extra

Invariant (4), so in particular we want to use the fact |{j ∈ BC(i,
δt

4+3δ) | Rj ≥ t}| ≤ ρ(1+3δ/4)
1−δ/4

U
t for

any t > 0. We want to choose γ, t > 0 such that γd(i, i∗) ≤ δt
4+3+δ and Rj ≥ t for all j ∈ C ′

close. To

see why this is useful, for such γ and t, we have C ′
close ⊂ {j ∈ BC(i,

δt
4+3δ) | Rj ≥ t}. Then we can

bound:∑
j∈C′

close

d(j, i∗) ≤
∑

j∈C′
close

(1 + γ)d(i, i∗) = (1 + γ)|C ′
close|d(i, i∗)

≤ (1 + γ)|{j ∈ BC(i,
δt

4 + 3δ
) | Rj ≥ t}|d(i, i∗) ≤ (1 + γ)(

ρ(1 + 3δ/4)

1− δ/4

U

t
)d(i, i∗)

Now we go back and specify our choice of γ and t, which will allow us to complete the bound of
the connection costs. First we lower bound Rj in terms of d(i, i∗) for any j ∈ C ′

close. We recall that
by assumption there exists some ī ∈ S such that d(j, ī) ≤ αL(ℓj), where L(ℓj) ≤ τRj by Extra
Invariant (4). Thus we have: d(j, ī) ≤ ατRj . Further, using the triangle inequality and the fact that
i∗ is the closest facility to i in S, we have: d(j, ī) ≥ d(i, ī)−d(i, j) ≥ d(i, i∗)−d(i, j) ≥ (1−γ)d(i, i∗).
Combining this inequality with the upper bound on d(j, ī) gives that Rj ≥ 1−γ

ατ d(i, i∗) for all

j ∈ C ′
close. Then we define t = 1−γ

ατ d(i, i∗). This gives us Rj ≥ t for all j ∈ C ′
close. Now we can

choose γ > 0 satisfying: γd(i, i∗) ≤ δt
4+3δ ⇒ γ ≤ δ

4+3δ
1−γ
ατ . Taking γ = δ

12ατ = Θ(δ) suffices.

Using these choices of γ and t, we can bound
∑

j∈C′
far

d(j, i∗) = O(ρδ)U , and
∑

j∈C′
close

d(j, i∗) ≤ (1 +

γ)(ρ(1+3δ/4)
1−δ/4 U)(ατ

1−γ) = O(ρ)U. Summing these two costs gives the desired result.

Proof of Theorem 2.1.3. Let ϵ′ > 0. We will later choose ϵ′ with respect to the given ϵ to obtain the
desired approximation ratio and runtime. First, we choose parameters ρ, δ ∈ (0, 1/2) and U ≥ 0 for
our pre-processing algorithm guaranteed by Theorem 2.6.3. We take ρ = ϵ′2 and δ = ϵ′. We require
that U is an upper bound on Opt(I). Using a standard binary search idea, we can guess Opt(I) up to
a multiplicative (1+ϵ′)-factor in time nO(1/ϵ′), so we guess U such that Opt(I) ≤ U ≤ (1+ϵ′)Opt(I).
With these choices of parameters, we run the algorithm guaranteed by Theorem 2.6.11 to ob-
tain nO(1/ϵ′) many sub-instances such that one such sub-instance is of the form I ′ = (F,C ′ ⊂
C, d, k,m′ = m − |C∗ \ C ′|), where LPiter for I ′ satisfies all Basic- and Extra Invariants, and we
have:

111

loge τ

(τ − 1)(1 + ϵ′/2)
E[Opt(LPiter)] +

1− ϵ′

1 + ϵ′

∑
j∈C∗\C′

d(j, S0) ≤ U (A.1)

Then for each sub-instance output by the pre-processing, we run the algorithm guaranteed by
Theorem 2.6.14 to obtain a solution to each sub-instance. Finally, out of these solutions, we output
the one that is feasible for the whole instance with smallest cost. This completes the description
of our approximation algorithm for k-median with outliers. The runtime is nO(1/ϵ′), so it remains
to bound the cost of the output solution and to choose the parameters ϵ′ and τ and c.

It suffices to consider the solution output on the instance I ′ where LPiter satisfies all Basic- and
Extra Invariants and (A.1). By running the algorithm guaranteed by Theorem 2.6.14 on this LPiter,
we obtain a feasible solution S ⊂ F to I ′ such that S0 ⊂ S, and the cost of connecting m′ clients
from C ′ to S is at most (2+α)Opt(LPiter)+O(ϵ′)U , where α = max(3+2τ−c, 1+ 4+2τ−c

τ , τ
3+2τ2+1
τ3−1

).
To extend this solution on the sub-instance to a solution on the whole instance I, we must connect
m−m′ = |C∗\C ′| clients from C\C ′ to S. Because S0 ⊂ S, applying (2.1) allows us to upper bound
the expected cost of connectingm clients to S by: (2+α)E[Opt(LPiter)]+O(ϵ′)U+

∑
j∈C∗\C′

d(j, S0) ≤

(2 + α) τ−1
loge τ

(1+ϵ′)2

1−ϵ′ U +O(ϵ′)U .

Now choosing τ > 1 to minimize α′ = (2 + max(3, 1 + 4
τ ,

τ3+2τ2+1
τ3−1

)) τ−1
loge τ

(note that we ignore the

2τ−c terms), we obtain τ = 1.2074 and α′ = 6.947. We can choose c ≥ 1 sufficiently large with
respect to τ such that 2τ−c is sufficiently small to guarantee (2 + α) τ−1

loge τ
≤ 6.947 + ϵ′

Thus the expected cost of this solution is at most (6.947 + ϵ′) (1+ϵ′)2

1−ϵ′ U + O(ϵ′)U , where U ≤ (1 +
ϵ′)Opt(I). Finally, by routine calculations, we can choose ϵ′ = θ(ϵ) so that expected cost is at most
(6.947 + ϵ)Opt(I), as required. Note that the runtime of our algorithm is nO(1/ϵ′) = nO(1/ϵ).

A.3 Missing Proofs from Analysis of OutliersPostProcess

Proof of Lemma 2.7.2. Without loss of generality, we may assume that no facilities in S0 are co-
located with each other, so {Fj | j ∈ C0} is a disjoint family. This implies that {Fj | j ∈ C∗

<1} is
also a disjoint family. Now we construct a basis for ȳ. For every integral facility i ∈ F=1, we add
the constraint yi ≤ 1 to our basis. To complete the basis, we need to add |F<1| further linearly
independent tight constraints.

We recall that upon termination of PseudoApproximation, no Cpart-, Cfull-, or non-negativity
constraint is tight for ȳ, so the only constraints we can choose are the C∗-constraints, the k-
constraint, or the coverage constraint. We claim that we cannot add any C∗

=1-constraint to our
basis, because such a constraint is supported only on integral facilities, whose constraints we already
added to the basis. However, we can add every C∗

<1-constraint to our basis, because their supports
are disjoint and they contain no integral facilities. Thus, our partial basis consists of all tight
integrality constraints and all C∗

<1-constraints.

Now we consider adding the k-constraint to our basis. Importantly, the k-constraint is linearly
independent with the current partial basis only if there exists at least one fractional facility not
supported on any F -ball for clients in C∗

<1. Further, we may assume the k-constraint is tight (oth-
erwise we cannot add it anyways), so there must be at least two fractional facilities not supported
on any F -ball for clients in C∗

<1

112

However, we note that each F -ball for clients in C∗
<1 contains at least two fractional facilities.

Because these F -balls are disjoint, we have |F<1| ≥ 2|C∗
<1|. If we cannot add the k-constraint to

our basis, then we are done. This is because the coverage constraint is the only further constraint we
can add the the basis, so we can bound |F<1| ≤ |C∗

<1|+1. This implies implies |F<1| ≤ 1
2 |F<1|+1⇒

|F<1| ≤ 2 using the previous inequality.

Otherwise, we add the k-constraint to our basis, which implies |F<1| ≥ 2|C∗
<1| + 2 because of

the two fractional facilities outside F (C∗
<1) and |F<1| ≤ |C∗

<1| + 2 because the k-constraint and
coverage constraint contribute are the only further constraints we can add. Again combining these
two inequalities gives |F<1| ≤ 2.

Proof of Lemma 2.7.3. Let S = F=1 be the set of open facilities. It is immediate that |S| ≤
k. Further, LPiter satisfies all Extra Invariants, so C0 ⊂ C∗. Because ȳ is integral, it is clear
that we open S0. Thus it remains to show that the connecting m clients to S has cost at most
(2 + α)Opt(LPiter).

It suffices to show that connecting Cfull and C∗ to S is enough clients and achieves the desired
cost. Because ȳ is integral and by definition of PseudoApproximation, we have that no Cpart-,
Cfull-, or non-negativity constraint is tight for ȳ. It follows, Fj = ∅ for all j ∈ Cpart and Bj = ∅
for all j ∈ Cfull.

Then the coverage constraint of LPiter implies:
∑

j∈Cpart

ȳ(Fj) ≥ m−|Cfull∪C∗| ⇒ |Cfull∪C∗| ≥ m,

so this solution connects enough clients.

To bound the cost, we compare the cost of each client with its contribution to the objective of LPiter.
For all j ∈ C∗ we have ȳ(Fj) = 1, so d(j, S) ≤

∑
i∈Fj

d′(j, i)ȳi, which is exactly j’s contribution to

LPiter.

For all j ∈ Cfull, we note that ȳ(Bj) = 0, so j’s contribution to LPiter is exactly L(ℓj). We can
apply Theorem 2.5.2 with β = 1 and set of facilities S to show that d(j, S) ≤ (2 + α)L(ℓj) for all
j ∈ Cfull. To conclude, the connection cost of each client is at most (2 + α) times its contribution
to LPiter, a required.

Proof of Lemma 2.7.4. Let S = F=1 ∪{a} be the output solution. First, note that |S| ≤ k because
ȳa+ ȳb = 1, and those are the only two fractional variables. Second, because a /∈ S0, it must be the
case that b /∈ S0, because a, b are the only fractional facilities, and by Extra Invariant (1), there is
one unit of open facility co-located at each i ∈ S0. Note that this implies that S0 ⊂ F=1 ⊂ S.

Now there are two cases, either a, b ∈ Fj for some j ∈ C∗, or a, b /∈ F (C∗). Note that in either
case, we close b and open a, so we still maintain the property that ȳ(Fj) = 1 for all j ∈ C∗. Thus,
can apply Theorem 2.5.2 with β = 1 and set of facilities S to show that d(j, S) ≤ (2 + α)L(ℓj) for
all j ∈ Cfull ∪ C∗.

We consider connecting the clients Cpart(a) ∪ Cfull ∪ C∗ to S. First, we show that this is at least
m clients. We observe that a and b are the only fractional facilities in ȳ, and no Cpart-constraint is
tight. It follows that for all j ∈ Cpart, we have Fj = {a}, {b}, or ∅, so we can rewrite the coverage
constraint as:

|Cpart(a)|ȳa + |Cpart(b)|ȳb ≥ m− |Cfull ∪ C∗|

Then because ȳa + ȳb = 1 and |Cpart(a)| ≥ |Cpart(b)| by assumption, we conclude that |Cpart(a)| ≥
m− |Cfull ∪ C∗|, as required.

113

Now it remains to show that the cost of connecting Cpart(a) to a plus the cost of connecting
Cfull∪C∗ to S is at most αOpt(LPiter)+O(ρδ)U . First we handle Cpart(a). By assumption, a /∈ S0,
so by Extra Invariant (2), we can bound:

∑
j∈Cpart(a)

d(j, a) ≤
∑

j∈C|a∈Fj

d(j, a) = O(ρ)U

For the clients in Cfull ∪C∗ that are not supported on b, closing b does not affect their connection
cost; in particular, each such client either has an integral facility in its F -ball to connect to (because
we open a and all other facilities are integral), or its F -ball is empty, and there exists an integral
facility within (2 + α)L(ℓj) to connect to. In both cases, each client’s connection cost is at most
(2 + α) times its contribution to the objective of LPiter.

The only remaining cost to bound is the clients in Cfull ∪ C∗ that are supported on b. Let C ′ =
{j ∈ Cfull ∪ C∗ | b ∈ Fj} be these clients. We show that the cost of connecting all of C ′ to S is
at most O(ρδ)U using Lemma 2.6.13. Because every client in j ∈ Cfull ∪ C∗ has an open facility
in S within distance (2 + α)L(ℓj), Lemma 2.6.13 is applicable to C ′ with set of facilities S and
i = b /∈ S ∪ S0.

To summarize, the connection costs of Cpart(a) and C ′ are at most O(ρδ)U , and the connection cost
of all remaining clients in Cfull ∪C∗ that are not supported on b is at most (2 + α)Opt(LPiter), so
the total connection cost, which is the sum of these terms, it at most the desired bound.

A.4 Proof of Theorem 2.6.11: k-Median with Outliers Pre-Processing

The goal of this section is to prove Theorem 2.6.11 using theorems from [KLS18]. Note that we
follow exactly the same pre-processing steps; the only difference is that we summarize the results
of their pre-processing in a single theorem.

The knapsack pre-processing in Theorem 2.6.3 follows from the pre-processing steps in [KLS18] as
well.

A.4.1 Preliminaries

We define the notions of extended instances and sparse extended instances for k-median with out-
liers. These definitions are useful to capture the properties of our pre-processing.

Extended instances are used to handle the fact that in our pre-processing, we will guess some
facilities to pre-open. Then S0 is the set of guessed facilities.

Definition A.4.1 (Extended Instance for k-Median with Outliers). An extended instance for k-
median with outliers is of the form I = (F,C, d, k,m, S0), where F , C, d, k, and m are defined as
in a standard k-median with outliers instance (see Definition 2.6.9), and S0 ⊂ F .

As in k-median with outliers, the goal is to choose a set of at most k open facilities S ⊂ F and at
least m clients C ′ ⊂ C to serve to minimize the connection costs of the served clients to the open
facilities, so

∑
j∈C′

d(j, S). However, we add the additional constraint that the set of open facilities

must include S0.

Further, sparse extended instances give our properties for what it means for the facilities and clients
to be “cheap” (see the second and third properties in the next definition, respectively.)

Definition A.4.2 (Sparse Extended Instance for k-Median with Outliers). Let I ′ = (F,C ′, d, k,m′, S0)
be an extended k-median with outliers instance and ρ, δ ∈ (0, 12), U ≥ 0 be parameters. We say
that I ′ is (ρ, δ, U)-sparse with respect to solution (S∗, C∗′) if the following three properties hold:

114

1. the cost of the solution (S∗, C∗′) to I ′ is at most U

2. for all i ∈ S∗ \ S0, we have
∑

j∈C∗′|d(j,S∗)=d(j,i)

d(j, i) ≤ ρU

3. for all p ∈ F ∪ C ′, we have |BC′(p, δd(p, S∗))|d(p, S∗) ≤ ρU

A.4.2 Sparsification

In this section, we pass from the input k-median with outliers instance to a sparse extended sub-
instance by guessing the expensive parts of the input instance. Then on this sparse extended
sub-instance, we can strengthen LP1. The following theorems are directly from [KLS18], so we
omit the proofs in this paper. The first theorem states that we can efficiently compute a sparse
extended sub-instance at the cost of a small increase in approximation ratio.

Theorem A.4.3. Let I = (F,C, d,m, k) be an instance of k-median with outliers with optimal
solution (S∗, C∗) and ρ, δ ∈ (0, 1/2) be parameters. Then there exists a nO(1/ρ)-time algorithm
that given I, ρ, δ, and an upper bound U on the cost of the optimal solution (S∗, C∗)1, outputs
nO(1/ρ)-many extended k-median with outliers instances of the form I ′ = (F,C ′, d,m′, k, S0) such
that C ′ ⊂ C, m′ = |C∗ ∩ C ′|, and S0 ⊂ S. Further, one such instance I ′ is (ρ, δ, U)-sparse with
respect to the solution (S∗, C∗ ∩ C ′) and satisfies:

1− δ

1 + δ

∑
j∈C∗\C′

d(j, S0) +
∑

j∈C∗∩C′

d(j, S∗) ≤ U (A.2)

Once we have our sparse extended sub-instance, say I ′, we use these sparsity properties to compute
the R-vector, which is needed for our Extra Invariants.

Theorem A.4.4. Let I ′ = (F,C ′, d,m′, k, S0) be an extended k-median with outliers instance and
ρ, δ ∈ (0, 1/2) and U ≥ 0. Suppose I ′ is (ρ, δ, U)-sparse instance with respect to solution (S∗, C∗′)
to I ′ such that (S∗, C∗′) has cost U ′ on I ′. Then there exists a polynomial time algorithm that
takes as input I ′, ρ, δ, and U and outputs R ∈ RC′

+ satisfying:

1. For every t > 0 and p ∈ F ∪ C ′, we have: |{j ∈ BC′(p, δt
4+3δ) | Rj ≥ t}| ≤ ρ(1+3δ/4)

1−δ/4
U
t

2. There exists a solution to I ′ of cost at most (1 + δ/2)U ′ such that if client j is connected to
facility i, then d(j, i) ≤ Rj and for any facility i /∈ S0, the total cost of clients connected to i
in this solution is at most ρ(1 + δ/2)U

A.4.3 Putting it all Together: Proving Theorem 2.6.11

Combining the algorithms guaranteed by these above two theorems, we show how to construct
LPiter with the desired properties.

Suppose we are given a k-median with outliers instance I = (F,C, d,m, k), parameters ρ, δ ∈ (0, 12),
and an upper bound U of Opt(I). First we run the algorithm guaranteed by Theorem A.4.3 to
obtain nO(1/ρ)-many extended k-median with outliers instances. Then for each instance, we run
the algorithm guaranteed by Theorem A.4.4 to obtain a vector R for each such instance.

1Note that we are given U , but not the solution (S∗, C∗)

115

By Theorem A.4.3, let I ′ = (F,C ′ ⊂ C, d,m′ = m− |C∗ \ C ′|, k, S0) be the instance output by the
first algorithm such that I ′ is (ρ, δ, U)-sparse with respect to the solution (S∗, C∗∩C ′) and satisfies
(A.2). This sub-instance will be the one that is guaranteed by Theorem 2.6.11, so from here we
need to compute the R-vector, and construct LPiter with the desired properties.

Note that the cost of solution (S∗, C∗ ∩ C ′) to I ′ is exactly U ′ =
∑

j∈C∗∩C′
d(j, S∗). It follows, on

this instance I ′, the algorithm guaranteed by Theorem A.4.4 outputs a vector R ∈ RC′
+ such that

for every t > 0 and p ∈ F ∪ C ′, we have: |{j ∈ BC′(p, δt
4+3δ) | Rj ≥ t}| ≤ ρ(1+3δ/4)

1−δ/4
U
t , and there

exists a solution, say (S̄, C̄) to I ′ of cost at most (1 + δ/2)U ′ such that if j is connected to facility
i, then d(j, i) ≤ Rj and for any facility i ∈ S̄ \ S0, the total cost of clients connected to i in this
solution is at most ρ(1 + δ/2)U .

It remains to construct LPiter. To do so, first we construct a strengthened LP for the instance I ′
such that (S̄, C̄) is feasible for the strengthened LP, which we call LP ′

1:

min
x,y

∑
i∈F,j∈C′

d(i, j)xij (LP ′
1)

s.t. xij ≤ yi ∀i ∈ F, j ∈ C ′ yi = 1 ∀i ∈ S0∑
i∈F

xij ≤ 1 ∀j ∈ C ′ xij = 0 ∀i ∈ F, j ∈ C ′ s.t. d(i, j) > Rj∑
i∈F

yi ≤ k
∑
j∈C′

d(i, j)xij ≤ ρ(1 + δ/2)Uyi ∀i /∈ S0∑
j∈C′,i∈F

xij ≥ m xij = 0 ∀i /∈ S0, j ∈ C ′ s.t. d(i, j) > ρ(1 + δ/2)U

0 ≤ x, y ≤ 1

The left column of constraints are the same as LP1 and the right column of constraints are extra
constraints that are valid for the solution (S̄, C̄) to our sub-instance I ′. Because these constraints
are valid for the solution (S̄, C̄), the following proposition is immediate.

Proposition A.4.5. Opt(LP ′
1) ≤ (1 + δ/2)U ′.

We want to give a similar construction as in § 2.2, where we construct LPiter satisfying all Basic
Invariants from LP1. We note that the main difference in our procedure here when compared to
§ 2.2 is how we eliminate the x-variables. To compute the F -balls for LP ′

1, we must carefully
duplicate facilities to capture the constraints:

∑
j∈C′

d(i, j)xij ≤ ρ(1 + δ/2)Uyi ∀i /∈ S0. We pass

from LP ′
1 to LP2 with the next lemma.

Lemma A.4.6. There exists a polynomial time algorithm that takes as input LP ′
1, duplicates

facilities in F , and outputs a vector ȳ ∈ [0, 1]F and sets Fj ⊂ BF (j, Rj) for all j ∈ C ′ such that:

1. ȳ(Fj) ≤ 1 for all j ∈ C ′

2. ȳ(F) ≤ k

116

3.
∑
j∈C′

ȳ(Fj) ≥ m

4.
∑
j∈C

∑
i∈Fj

d(i, j)ȳi ≤ Opt(LP ′
1)

5. For all i ∈ S0, there is one unit of open facility co-located with i in ȳ

6. For every facility i not co-located with a facility in S0, we have
∑

j∈C′|i∈Fj

d(i, j) ≤ 2ρ(1+δ/2)U

Applying the algorithm guaranteed by the above lemma to LP ′
1, we can obtain the Fj-sets. Using

these F -balls, we proceed similarly as in § 2.2. Thus, next we randomly discretize the distances to
powers of τ > 1 (up to a random offset) to obtain d′(p, q) for all p, q ∈ F ∪ C. Again, the possible
discretized distances are L(−2) = −1, L(−1) = 0, . . . , L(ℓ) = ατ ℓ for all ℓ ∈ N, and d′ satisfies
Proposition 2.2.2.

Then we define the radius levels and inner balls in the exact same way, so: ℓj = min
ℓ≥−1
{ℓ | d′(j, i) ≤

L(ℓ) ∀i ∈ Fj} and Bj = {i ∈ Fj | d′(j, i) ≤ L(ℓj − 1)}
To complete the data of LPiter for I ′, we need to define the sets Cpart, Cfull, and C∗. Here we
must slightly modify the construction of § 2.2 to accommodate the set of pre-opened facilities, S0.
To satisfy Extra Invariant (1), we create a set C0 of dummy clients such that for each i ∈ S0, there
exists a dummy client j(i) ∈ C0 that is co-located with i such that Fj(i) has radius level −1 and
consists of all co-located copies of i. Thus, we define Cpart = C ′, Cfull = ∅, and C∗ = C0.

This completes the description of LPiter for sub-instance I ′. To complete our algorithm, we output
each I ′ along with LPiter, S0, and R.

To summarize, our algorithm is to first run the algorithm guaranteed by Theorem A.4.3 to obtain
nO(1/ρ)-many sub-instances. For each sub-instance, we compute R using Theorem A.4.4, construct
LP ′

1, construct the F -balls using Lemma A.4.6, and define the rest of the data of LPiter as in § 2.2.
The runtime of our algorithm is immediate, so it suffices to show that one of the outputs has the
desired properties.

In particular, we consider the sub-instance I ′ = (F,C ′ ⊂ C, d,m′ = m − |C∗ \ C ′|, k, S0) output
by the algorithm guaranteed by Theorem A.4.3 such that I ′ is (ρ, δ, U)-sparse with respect to the
solution (S∗, C∗ ∩C ′) and satisfies (A.2). For the remainder of this section, we consider the LPiter

constructed for this specific sub-instance. To complete the proof, we verify that LPiter satisfies the
two desired properties.

Proposition A.4.7. LPiter satisfies all Basic and Extra Invariants.

Proof. It is easy to verify that LPiter satisfies all Basic Invariants by construction. For the Extra
Invariants, we handle them one-by-one.

Extra Invariant (1) holds by construction of LPiter. To show Extra Invariant (2), we again apply
Lemma A.4.6, which states that the F -balls have the desired property.

To show Extra Invariant (3), we note that in Lemma A.4.6, the F -balls are constructed such that
Fj ⊂ BF (j, Rj), for all j ∈ C ′. Thus, for all j ∈ C ′ and i ∈ Fj , we have d(i, j) ≤ Rj . Then
by definition of the radius levels, we have L(ℓj) ≤ τRj , as required. Finally, Extra Invariant (4)
follows from the guarantee of Theorem A.4.4.

Proposition A.4.8. loge τ
(τ−1)(1+δ/2)E[Opt(LPiter)] +

1−δ
1+δ

∑
j∈C∗\C′

d(j, S0) ≤ U

117

Proof. We first show that E[Opt(LPiter)] ≤ τ−1
loge τ

Opt(LP ′
1). We have Cpart = C ′, Cfull = ∅, and

C∗ = C0. Note that the dummy clients in C∗ contribute zero to the objective of LPiter, because
they are co-located with one unit of open facility in their F -balls. Thus Lemma A.4.6 implies that
there exists a feasible solution ȳ to LPiter of cost at most Opt(LP ′

1) up to the discretization of the
distances. The cost of discretization is bounded by Proposition 2.2.2, and immediately gives the
extra τ−1

loge τ
-factor. The factor of τ−1

loge τ
is due to the cost of discretization, which is bounded by

Proposition 2.2.2.

Now we relate Opt(LP ′
1) to U ′ =

∑
j∈C∗∩C′

d(j, S∗), which satisfies (A.2) by the guarantees of Theo-

rem A.4.3. Combining (A.2) with Proposition A.4.5, we can obtain our final bound:

loge τ

(τ − 1)(1 + δ/2)
E[Opt(LPiter)] +

1− δ

1 + δ

∑
j∈C∗\C′

d(j, S0) ≤
1

1 + δ/2
Opt(LP ′

1) +
1− δ

1 + δ

∑
j∈C∗\C′

d(j, S0)

≤
∑

j∈C∗∩C′

d(j, S∗) +
1− δ

1 + δ

∑
j∈C∗\C′

d(j, S0)

≤ U

118

Appendix B

Appendix for Stochastic Load
Balancing

B.1 Maximal Inequalities

In this section, we state some useful probabilistic inequalities. Further, we give the proofs of
Lemmas 4.2.2, 4.2.5, and 4.4.2.

Lemma B.1.1 (Bernstein’s inequality). Let the random variables X1, . . . , Xn be independent with
Xi − E[Xj] ≤ b for each 1 ≤ j ≤ n. Let S =

∑n
j=1Xj and let σ2 =

∑n
j=1 σ

2
j be the variance of S.

Then, for any t > 0,

P[S > E[S] + t] ≤ exp

(
− t2

2σ2(1 + bt/3σ2)

)
.

Lemma B.1.2 (Bennett’s inequality [Ben62]). Let X1, . . . , Xn be independent random variables
with zero mean such that Xj ≤ a for all j. Let S =

∑
j Xj and σ2 =

∑
j E[X2

j]. Then, for all t ≥ 0,

P(S > t) ≤ exp

(
−σ2

a2

((
1 +

at

σ2

)
log

(
1 +

at

σ2

)
− at

σ2

))
.

Lemma B.1.3 (Chernoff-Hoeffding type inequality; Theorem 1.1 in [DP09]). Let S =
∑n

j=1Xj

where Xj, 1 ≤ j ≤ n, are independently distributed in [0, 1]. If t > 2eE[S], then

P[S > t] ≤ 2−t.

Having these inequalities at hand, we are now ready to prove Lemmas 4.2.2, 4.2.5, and 4.4.2, that
bound the expected maximum of sums of independent variables.

Lemma 4.2.2. Let S1, . . . , Sm be sums of independent random variables, that are bounded in [0, τ]
for some τ > 0, such that E[Si] ≤ τ for all 1 ≤ i ≤ m. Then, E[maxi Si] = O

(logm
log logm

)
τ .

Proof. By re-scaling, it suffices to prove the lemma for τ = 1. Consider one such sum, say
S =

∑
j Xj , where the Xjs are independent and bounded in [0, 1]. We use Bennett’s inequal-

ity (Lemma B.1.2) to bound the upper tail of S. Applying Bennett’s inequality to S − E[S] with
a = 1 and σ2 =

∑
j E

[
(Xj − E[Xj])

2
]
≤

∑
j E[X2

j] ≤
∑

j E[Xj] ≤ 1 gives for any t ≥ 0:

P[S > 1 + t] ≤ P[S > E[S] + t]

119

≤ exp

(
−
(
σ2 + t

)
log

(
1 +

t

σ2

)
+ t

)
≤ exp

(
− t log(1 + t) + t

)
=

et

(1 + t)t
,

where we use 0 ≤ σ2 ≤ 1 in the third inequality. In particular, for ℓ = O
(logm
log logm

)
large enough,

we have for any t ≥ 0:

P[S > 1 + ℓ+ t] ≤ eℓ+t

(1 + ℓ+ t)ℓ+t
≤ eℓ

ℓℓ
· e

t

ℓt
= O

(
1

m

)
· e−t.

This tail bound holds for all S1, . . . , Sm. Union-bounding over all m sums gives:

E
[
max

i
Si

]
=

∫ ∞

0
P
[
max

i
Si > t

]
· dt

≤ (1 + ℓ) +

∫ ∞

0
P
[
max

i
Si > 1 + ℓ+ t

]
· dt

≤ (1 + ℓ) +
∑
i

∫ ∞

0
P[Si > 1 + ℓ+ t] · dt

= (1 + ℓ) +m ·O
(

1

m

)∫ ∞

0
e−t · dt = O(ℓ) = O

(
logm

log logm

)
.

Lemma 4.2.5. Let S1, . . . , Sm be sums of independent random variables bounded in [0, τ] such
that E[Si] ≤ O(logm)τ for all 1 ≤ i ≤ m. Then, E[maxi Si] ≤ O(logm)τ .

Proof. Let C ≥ 0 be a constant such that E[Si] ≤ Cτ logm for all 1 ≤ i ≤ m and fix t > 2eCτ logm,
where e is the Euler constant. Fixing i ∈ [m], we know that the random variables constituting Si

are independent and bounded by τ . Hence, using the Chernoff-Hoeffding bound in Lemma B.1.3,
we have P[Si > t] < 2−t. Therefore,

E
[
max
1≤i≤m

Si

]
=

∫ ∞

0
P
[
max
1≤i≤m

Si > t
]
dt

≤ O(logm)τ +

∫ ∞

2eCτ logm
P
[
max
1≤i≤m

Si > t
]
dt

≤ O(logm)τ +
m∑
i=1

∫ ∞

2eCτ logm
P
[
Si > t

]
dt

≤ O(logm)τ +m

∫ ∞

2eCτ logm
2−tdt

= O(logm)τ,

where the third line uses a union bound over all i ∈ [m].

Lemma 4.4.2. Let c1, . . . , cm ∈ N≥1 be constants such that ci ≥ 3
2ci+1 for all 1 ≤ i ≤ m. Let

S1, . . . , Sm be sums of independent random variables bounded in [0, τ] such that E[Si] ≤ ciτ for
all 1 ≤ i ≤ m. Then, E

[
maxi

Si
ci

]
≤ O(τ).

120

Proof. By re-scaling, we can assume τ = 1. Fix one sum, say S =
∑

j Xj . The Xjs are independent

with Xj/c ≤ 1
c and Xj/c− E

[
Xj/c

]
≤ 1

c . Therefore,

Var
[
S/c

]
=

∑
j

Var
[
Xj/c

]
≤ /c

∑
j

E
[
Xj/c

]
≤ 1

c
,

where we used the independence of the Xj and the fact that
∑

j E[Xj] ≤ c. We fix some t ≥ 1.
Bernstein’s inequality (Lemma B.1.1) guarantees

P
[
S

c
≥ 2 + t

]
≤ exp

(
− t2

2/c+ 2t/3

)
≤ exp

(
− c

t2

2 + 2t/3

)
≤ exp

(
− c

3
t

)
,

where we used that c ≥ 1. Using a union bound, we obtain

P
[
max
1≤i≤m

Si/ci ≥ 2 + t
]
≤

m∑
i=1

exp

(
− ci

3
t

)

≤
m∑
i=1

exp

(
− (3/2)m−icm

t

3

)

≤
m∑
i=1

exp

(
− (3/2)m−i t

3

)

≤
m∑
i=1

(
2

3

)m−i

e−t/3

≤ 3e−t/3,

where we used ci ≥ 3
2ci+1 in the second inequality and cm ≥ 1 in the third inequality. For the

fourth inequality, we fix t ≥ 3 and use that, for s ≥ 1 and x ≥ 0, we have exp
(
−s

(
3
2

)x) ≤ (
2
3

)x
e−s.

Hence, we conclude the proof with

E
[
max
1≤i≤m

Si/ci
]
≤ (2 + 6) +

∫ ∞

5
P
[
max
1≤i≤m

Si/ci > 2 + t
]
dt ≤ 8 + 3

∫ ∞

5
e−t/5dt = 8 + 15/e = O(1).

B.2 Machine smoothing analysis

Lemma 4.4.1. Given an instance I of load balancing with m related machines and stochastic jobs,
Algorithm 12 efficiently computes an instance Is of smoothed machines with the same set of jobs
satisfying Properties (i) to (iii).

Proof. It is clear that the algorithm is efficient and outputs Is satisfying (i) and (ii). It remains to
show (iii). To do so, we show that each step increases Opt by only a constant factor.

Recall that Opt is an adaptive policy, so when Opt decides to schedule job j on machine i, it
immediately learns the realized value of Xij , or equivalently Xj = si · Xij on related machines.
Hence, we may assume that the next scheduling decision of Opt is completely determined by the
previously realized Xjs. In particular, if Opt decides to schedule j on machine i, then we can
modify Opt by scheduling j on some other machine i′ and leaving the subsequent decisions (which
in general depend on Xj) unchanged. Similarly, if we modify the speed of machine i, then this does
not affect subsequent scheduling decisions.

121

(12.6) Let Opt = Opt(I) denote the initial optimal policy. Consider the following adaptive policy
for the instance after step 12.6: If Opt schedules j on i such that i is not deleted, then we
also schedule j on i. Otherwise, Opt schedules j on i such that i is deleted for being too slow.
Then we schedule j on the fastest machine.

For every realization of job sizes, the modified policy only increases the load of the fastest
machine. We delete at most m−1 machines each having speed at most 1

m . Thus, we schedule
all jobs assigned to these machines on a machine that is at least m times faster. The increase
in load on the fastest machine is thus at most (m− 1) · Opt

m ≤ Opt.

After deleting all slow machines, all machine speeds are in
(
1
m , 1

]
.

(12.9) We decrease the speed of each machine by at most a factor 2, so the makespan of the optimal
policy increases by at most a factor 2.

Further, after rounding down the machine speeds, there are at most ⌈logm⌉ distinct speeds
and thus groups.

(12.15) First, we note that we keep at least one group, namely the fastest one. Consider any group k
that is deleted, and let k′ > k be the fastest subsequent group that is kept. Because we delete

all groups between k and k′, we have mk <
(
3
2

)k′−k ·mk′ . Further, because all groups have

distinct speeds that differ by at least a factor 2, we also have sk′ ≥ 2k
′−k · sk.

Let Opt be the optimal policy after step 12.9. We re-assign the jobs that Opt schedules

on group k to group k′ as follows. Because mk <
(
3
2

)k′−k · mk′ , we fix a mapping from
the machines in group k to those of k′ such that each machine in k′ is mapped to by at

most
(
3
2

)k′−k
machines in k. Then, when Opt schedules a job on a machine in group k, we

instead schedule it on the machine it maps to in group k′. This completes the description of
our modified policy.

To bound the makespan, consider any machine i in a kept group k′. We upper-bound the
increase in load on i due to re-assignments from slower deleted groups. For any deleted

group k < k′, at most
(
3
2

)k′−k
machines from group k map to i. Each such machine in group k

under policy Opt has load at most Opt. However, recall that i is at least a 2k
′−k-factor faster

than any machine in group k, so the increase in load on machine i due to deleted machines from

group k < k′ is at most
(
3
2

)k′−k · 2−(k′−k) ·Opt =
(
3
4

)k′−k ·Opt. Summing over all k < k′, the

total increase in load on a machine in group k′ is at most
∑

k<k′
(
3
4

)k′−k ·Opt = O(Opt).

122

Appendix C

Appendix for Stochastic Completion
Time Minimization

C.1 Sensitivity of number of machines

For a fixed collection of jobs, and any number of machines m, we let Opt(m) be the optimal
completion time for these jobs on m machines.

Lemma C.1.1. For any number of machines m sufficiently large, there exists a collection of
identical Bernoulli jobs with EOpt(m2) = eΩ(m) · EOpt(m).

Proof. We fix a number of machines m. Define L = ecm for a constant c > 0. Then consider
the collection of 7

8mL Bernoulli jobs distributed as Ber(1L). Note that because jobs are identically
distributed, we may assume Opt list schedules jobs in arbitrary order.

We first claim that EOpt(m) = O(m). To see this, let H ∼ Binom(78mL, 1
L) be the number of

jobs that come up heads. On the event H ≤ m, each machine schedules some number of jobs
with realized size zero and then at most one job with realized size 1. Thus, on this event we have
Opt(m) ≤ H. Further, by Chernoff (Proposition C.4.1), we have:

P(H > m) ≤ P(H ≥ E[H] +
m

8
) = e−Θ(m).

We conclude, the contribution of the event H ≤ m to EOpt(m) is at most EH = 7
8m, and the

contribution of the event H < m is at most poly(mL) · P(H > m) = poly(mecm) · e−Θ(m) = O(1)
for c sufficiently small. This gives EOpt(m) ≤ 7

8m+O(1) = O(m).

On the other hand, we have EOpt(m2) = Ω(mL). Let H ′ ∼ Binom(34mL, 1
L) be the number of heads

among the first 3
4mL jobs. Analogously by Chernoff we have P(H ′ < m

2) ≤ e−Θ(m). Thus, on the
event H ′ ≥ m

2 (which happens with probability (1−o(1)), after scheduling the first 3
4mL jobs, each

of the m
2 machines has a job of realized size 1. It follows, the remaining Ω(mL) unscheduled jobs

all have completion times at least 1. Thus, we can lower bound EOpt(m2) = Ω(mL) · (1 − o(1)).
Taking m sufficiently large gives the desired gap.

Lemma C.1.2. For any collection of deterministic jobs and any m ≥ 2, we have Opt(m2) ≤
3 · Opt(m).

123

Proof. Consider the schedule achieving Opt(m), and let Cm
j be the completion time of job j in this

schedule. We construct a schedule on m
2 machines with completion time at most 3 · Opt(m). Our

algorithm is to list schedule the jobs on m
2 machines in increasing order of Cm

j .

Let Cj be the completion time of job j in this schedule. We claim that Cj ≤ 3Cm
j for all jobs j,

which gives the desired result. Assume for contradiction that this is not the case, so let j be the first
job with Cj > 3Cm

j . It must be the case that up until time 2Cm
j , all m

2 machines are busy running
jobs j′ with Cm

j′ ≤ Cm
j . The total size of such j′ jobs is strictly larger than m

2 · 2C
m
j = m · Cm

j .
However, Opt(m) must complete all such j′ jobs by time Cm

j . This is a contradiction.

C.2 Exchange Argument

Lemma 5.1.4. Consider a collection of Bernoulli jobs. Then for each possible size parameter, the
optimal adaptive completion time schedule for these jobs starts the jobs with this size parameter in
increasing order of their probabilities for all realizations of the job sizes.

Proof. We suppose there exist jobs a, b such that Xa ∼ s·Ber(pa) and Xb ∼ s·Ber(pb) with pa ≤ pb
such that the optimal completion time policy schedules b before a in some realization. Consider the
decision tree corresponding to this policy (described in § 5.2.) Thus, we assume this tree schedules
b before a is some realization (i.e. some root-leaf path.) It follows, there exists a subtree rooted
at b such that a is scheduled on each root-leaf path of this subtree. We denote this subtree by T .
Entering this subtree, the machines have some fixed initial loads and T schedules a fixed set of jobs
J .

We will modify the subtree T so that we start a before b on each root-leaf path. Further, this
will not increase the expected completion time of the overall schedule. We construct the modified
subtree T ′ as follows. Let the left- and right subtrees (corresponding to the root job b coming up
size 0 or s) of T be TL and TR, respectively. T ′ is rooted at job a. In T ′, the right subtree of a is
TR, but with job a replaced by job b. We denote this modifed subtree by TR(a → b). On the left
subtree of a, first, independently of all jobs, we flip a coin that comes up heads with probability q.
We will choose q later. If the coin is tails, then we schedule subtree TL with job a replaced by job
b, so TL(a → b). Otherwise, if the coin is heads, then we schedule b. The left- and right subtrees
of b are TL and TR, except the job a is replaced by a dummy job that is always zero. In particular,
this job does not contribute to the completion time, but upon reaching this node we will always
follows the left subtree. We denote these subtrees by TL(−a), TR(−a), respectively. This completes
the description of T ′. See Figure C.1 for the modified tree T ′.

Note that T ′ schedules the same jobs as T and always starts a before b. It remains to choose q such
that the expected completion time of T ′ is the same as T . We choose q such that the probability
of entering TR(a→ b) or TR(−a) is exactly pb. We conflate the name of a subtree (e.g. TR(a→ b))
with the event that we enter the subtree. Thus, we want P(TR(a→ b)∨TR(−a)) = pb. The former
probability is exactly pa+ p̄aqpb, where we define p̄ = 1−p for a probability p. This gives q = pb−pa

p̄apb
.

Thus, we have chosen q such that P(TR(a → b) ∨ TR(−a)) = pb and P(TL(a → b) ∨ TL(−a)) = p̄b.
One should imagine that these two events are our replacements for the original tree T entering TR

and TL.

In both subtrees TL(a → b) and TL(−a), we replace the original job a from TL with b and a zero
job, respectively. Let X̃a denote the size of the the replacement job, which is supported on {0, s}.
We compute the distribution of X̃a:

P(X̃a = s | TL(a→ b) ∨ TL(−a)) =
P(TL(a→ b))

P(TL(a→ b) ∨ TL(−a))
pb =

p̄aq̄

p̄b
pb = pa.

124

b

TL TR

p̄b pb

T T ′ a

TR(a → b)

p̄a pa
q̄ q

TL(a → b)

b

p̄b pb

TL(−a) TR(−a)

Figure C.1: Original and modified decision trees

It follows, conditioned on TL(a→ b)∨TL(−a), our replacement job for a has the same distribution
as a. An analogous computation for the right subtree gives:

P(X̃a = s | TR(a→ b) ∨ TR(−a)) =
P(TR(a→ b))

P(TR(a→ b) ∨ TL(−a))
pb =

pa
pb

pb = pa,

so the distribution of our replacement job conditioned on TR(a → b) ∨ TR(−a) has the same
distribution as a as well.

To summarize, we have constructed a tree T ′ that starts a before b. T ′ enters TL(a→ b) or TL(−a)
with probability p̄b: exactly the same as the probability that T enters TL. Further, T ′ enters
TL(a→ b) or TL(−a) with the same initial loads as T entering TL, because both correspond to all
previous jobs in the subtree having size 0. Finally, upon entering TL(a→ b) or TL(−a), the job we
replace a with has the same distribution as a. The analogous properties hold for the right subtree
as well. We conclude, for any job j ∈ J \{a, b}, the expected completion time of j in T ′ is the same
as in T (subject to the same initial loads.)

It remains to show that the expected completion time of a and b weakly decreases from T to T ′.
We define ℓ′ ∼ TL to be the load of the least-loaded machine upon reaching the node a in subtree
TL (we define ℓ′ ∼ TR analogously.) This is well-defined, because a is scheduled on every root-leaf
path in TL. Note that ℓ′ does not depend on the job scheduled at node a. It follows, the expected
completion time of a and b in T ′ are:

ET ′ Ca = ℓ+ spa

ET ′ Cb = P(TL(a→ b))(Eℓ′∼TL
ℓ′+spb)+P(TL(−a))ℓ+P(TR(−a))(ℓ+s)+P(TR(a→ b))(Eℓ′∼TR

ℓ′+spb).

Now we simplify the completion time of b. First, we consider the terms corresponding to the left
subtree. We have P(TL(a → b)) = p̄b

pa
pb
, P(TL(a → b)) + P(TL(−a)) = p̄b, and ℓ′ ≥ ℓ for ℓ′ ∼ TL.

Combining these three observations:

P(TL(a→ b))(Eℓ′∼TL
ℓ′ + spb) + P(TL(−a))ℓ = P(TL(a→ b))Eℓ′∼TL

ℓ′ + p̄bspa + P(TL(−a))ℓ
≤ p̄b(Eℓ′∼TL

ℓ′ + spa).

Now we consider the right subtree. Analogously, we have P(TR(a → b)) = pa, P(TR(a → b)) +
P(TR(−a)) = pb, and ℓ′ ≥ ℓ for ℓ′ ∼ TR. We compute:

P(TR(−a))(ℓ+ s) + P(TR(a→ b))(Eℓ′∼TR
ℓ′ + spb) = (pb − pa)(ℓ+ s) + paEℓ′∼TR

ℓ′ + spb + paspb

125

≤ pb(Eℓ′∼TR
ℓ′ + pas) + (pb − pa)s.

Combining our expressions for the left- and right-subtrees gives our final bound on the completion
time of a and b:

ET ′ Ca + ET ′ Cb ≤ ℓ+ spb + p̄b(Eℓ′∼TL
ℓ′ + spa) + pb(Eℓ′∼TR

ℓ′ + pas) = ET Cb + ET Ca.

C.3 Justification for Assumption 5.3.2

Lemma 5.3.3. Let m ≥ 2. Suppose there exists an algorithm for completion time minimization for
Bernoulli jobs on m machines satisfying Assumption 5.3.2 that outputs a list schedule with expected
completion time at most α

(
EOpt+O(1)

)
. Then there exists a O(α)-approximate algorithm for the

same problem without the assumption. Further, the resulting algorithm is also a list schedule, and
it preserves efficiency and determinism.

Proof. Let A be the algorithm assumed by the lemma. We will run A on a subinstance of jobs
satisfying Assumption 5.3.2. Suppose we have a collection J of Bernoulli jobs of the form Xj ∼
sj ·Ber(pj) for arbitrary size parameters sj .

First, we round up all size parameters to the nearest power of 2. This at most doubles Opt. Then,
we rescale all sj ’s uniformly so that

∑
j EXj = 1. Note that now we have EOpt ≥

∑
j EXj = Ω(1).

Finally, we partition J = S ∪M ∪ L into small, medium, and large jobs, respectively such that S
consists of the jobs j with sj <

1
n2 , M the jobs j with 1

n2 ≤ sj < n8, and L the jobs j with sj ≥ n8.
Thus, M is a collection of Bernoulli jobs satisfying Assumption 5.3.2.

Our algorithm to schedule J is the following:

i. List-schedule all large jobs L in arbitrary order.
ii. List-schedule all small jobs S in arbitrary order.
iii. Run A to schedule the medium jobs M .

It is clear that this algorithm is efficient, deterministic, and outputs a list schedule as long as A
does as well. It remains to bound the total completion time of this schedule, which we denote by
Alg. We let B be the event that some large job comes up heads (i.e. has realized size at least n8.)

On the event B̄, every large job comes up tails, so they contribute 0 to Alg. Then we list-schedule
the small jobs with initial load 0 on every machine. The total completion time of all jobs in S can
be crudely upper-bounded by the max load after S times the number of jobs, which is at most
1
n · n = O(EOpt).

After this, we schedule the medium jobs using A. After scheduling S, all machines are free by time
1
n . Let A be the total completion time of running A on jobs M starting at time 0. We need the
following monotonicity property of list schedules, which is analogous to Lemma 5.4.5

Lemma C.3.1. Consider a set of deterministic jobs and a fixed list schedule of those jobs. Then
increasing the initial load or decreasing the number of machines weakly increase the total completion
time of the schedule.

Proof. Let J be the set of jobs. Consider initial load vectors ℓ, ℓ′ ∈ Rm, where the ith entry of each
vector denotes the initial load on machine i. Now suppose ℓ ≤ ℓ′, entry-wise. It suffices to show

126

that C(J, ℓ) ≤ C(J, ℓ′), where C(J, ℓ) is the total completion time achieved by our list-schedule
with initial load ℓ. This suffices, because we can decrease the number of machines by making the
initial loads of some machines arbitrarily large so that they will never be used.

We prove C(J, ℓ) ≤ C(J, ℓ′) by induction on the number of jobs, |J |. In the base case, |J | = 0, so
the claim is trivial because C(J, ℓ) = 0 and C(J, ℓ′) = 0. For |J | > 0, let j be the first job in the
list, which is scheduled, without loss of generality, on the first machine for both initial loads ℓ and
ℓ′. Then:

C(J, ℓ) = (ℓ1 + sj) + C(J \ {j}, ℓ+ sje1) ≤ (ℓ′1 + sj) + C(J \ {j}, ℓ′ + sje1) = C(J, ℓ′),

where e1 is the first standard basis vector, so we have ℓ + sje1 ≤ ℓ′ + sjei1 entry-wise. Then we
assumed inductively that C(J \ {j}, ℓ+ sje1) ≤ C(J \ {j}, ℓ′ + sje1).

By the above lemma, we can upper-bound the total completion time of A on jobs M by starting
once all machines are free after scheduling S, so at time 1

n . This increases the completion time of
each job by 1

n . To summarize, on the event that every large job comes up tails, we have:

EAlg · 1B̄ ≤
1

n
· n+

1

n
· n+ EA = O(EOpt) + α(EOpt+O(1)) = O(α) · EOpt,

where we used the guarantee of A and EOpt = Ω(1).

It remains to consider the event where some large job comes up heads. In this case, we will not
use the guarantee of A. Instead, we will upper bound Alg by the cost of an arbitrary list schedule.
We define S1 = maxj∈J Xj and S2 to be the size of the second-largest job in J . On the event
B ∩ {S2 ≤ 1

n2S1}, we note that no job is scheduled after the largest job with size S1 on the same
machine (using m ≥ 2.) Noting all other jobs have size at most 1

n2S1, we can upper bound Alg by:

Alg ≤ S1 + n · 1
n
S1 ≤ 2S1 ≤ 2Opt,

so we have EAlg · 1B,S2≤ 1
n2 S1

= O(EOpt).

Finally, we bound EAlg · 1B,S2>
1
n2 S1

. We partition B = ∪∞k=0Bk, where Bk = {maxj∈J Xj ∈
[2kn8, 2k+1n8)}. On the event Bk ∩ {S2 > 1

n2S1}, there are at least two jobs of size at least 2kn6.
Recall that

∑
j∈J EXj = 1, so in particular EXj ≤ 1 for all j ∈ J . Thus by Markov’s inequality,

P(Xj ≥ 2kn6) ≤ 2−kn−6 for all j ∈ J . By union-bounding over all pairs of jobs in J :

P(Bk, S2 >
1

n2
S1) ≤ P(∃ two jobs in J with size at least 2kn6) ≤ O(n2)(2−kn−6)2.

Further, on the event Bk ∩ {B,S2 > 1
n2S1}, every job has size at most 2k+1n8, so we have Alg ≤

n · n2k+1n8 = 2k+1n10. Thus, for each k, we have:

EAlg · 1Bk,S2>
1
n2 S1

≤ 2k+1n10 · P(Bk, S2 >
1

n2
S1)

= 2k+1n10 ·O(n2)(2−kn−6)2 = O(2−k).

To complete the proof, we partition B = ∪∞k=0Bk to bound EAlg · 1B,S2>
1
n2 S1

:

EAlg · 1B,S2>
1
n2 S1

=
∞∑
k=0

EAlg · 1Bk,S2>
1
n2 S1

= O(
∞∑
k=0

2−k) = O(EOpt).

127

C.4 Concentration arguments

We need the following standard Chernoff bound.

Proposition C.4.1 (Chernoff bound). Let X = X1+ . . . Xn be a sum of independent, {0, 1}-valued
random variables and µ = EX. Then we have:

� P(X ≤ (1− δ)µ) ≤ exp
(
− δ2µ

2

)
for all 0 ≤ δ ≤ 1.

� P(X ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

2+δ

)
for all 0 ≤ δ.

Lemma 5.4.9. Let m = Ω(1) be sufficiently large. Then there exists a constant c ≥ 0 such that
for all batches k and thresholds τ > 2EF ∗(n− n/2k), we have E|Jk(> τ)| ≤ m+ c

√
m.

Proof. Fix c ≥ 0 which we will choose sufficiently large later. Then assume for contradiction that
there exists a batch k and threshold τ > 2EF ∗(n− n/2k) such that E|Jk(> τ)| > m+ c

√
m.

To reach a contradiction, it suffices to show that P(|Jk(> τ)| ≤ m) < 1
2 . This is because on the

complement event |Jk(> τ)| > m (which we assume happens with probability strictly larger than
1
2), we also have |J

∗
k (> τ)| > m by Theorem 5.2.1. This implies F ∗(n−n/2k) > τ ≥ 2EF ∗(n−n/2k).

This would contradict the definition of EF ∗(n− n/2k).

For convenience, let µ = E|Jk(> τ)|. By Chernoff, we have:

P(|Jk(> τ)| ≤ m) = P(|Jk(> τ)| ≤ µ(1− µ−m

µ
)) ≤ exp

(
− (µ−m)2

2µ

)
.

There are two cases to consider. Recall that by assumption, we have µ > m + c
√
m. If µ ≥ 2m,

then P(|Jk(> τ)| ≤ m) ≤ exp (−µ
8) ≤ exp (−m

4) < 1
2 for m = Ω(1) sufficiently large. Otherwise,

m+ c
√
m < µ < 2m. Then P(|Jk(> τ)| ≤ m) ≤ exp (− c2m

2m) < 1
2 for c = O(1) sufficiently large.

Lemma 5.4.10. Let ∆ = O(
√
m log n) and m = Ω(1) be sufficiently large. Then with probability

at least 1− 1
poly(n) , the following events hold:

{|Jk(> τ)|
±∆
≈ E|Jk(> τ)| ∀ batches k and thresholds τ > 2EF ∗(n− n/2k)}. (5.3)

Proof. Note that there are O(log n) choices for k and L = O(log n) relevant choices for τ . Thus,
by a standard union bound argument it suffices to show that for fixed k and τ > 2EF ∗(n− n/2k),
we have:

P(||Jk(> τ)| − E|Jk(> τ)|| > ∆) =
1

poly(n)
.

Now we may assume m is large enough so that E|Jk(> τ)| ≤ m+ c
√
m ≤ (c+ 1)m for sufficiently

large constant c ≥ 0 (guaranteed by Lemma 5.4.9.) Then we can bound the deviation of |Jk(> τ)|
again with a Chernoff bound. Let µ = E|Jk(> τ)|. We take ∆ = O(

√
µ log n) = O(

√
m log n).

There are two cases to consider. If µ < ∆, then the lower tail is trivial:

P(|Jk(> τ)| ≤ µ−∆) ≤ P(|Jk(> τ)| < 0) = 0.

For the upper tail we use Chernoff:

P(|Jk(> τ)| ≥ µ+∆) = P(|Jk(> τ)| ≥ (1 +
∆

µ
)µ) ≤ exp (− ∆2

2µ+∆
) ≤ exp (−∆2

3∆
) =

1

poly(n)
.

128

Otherwise, µ ≥ ∆, so in particular ∆
µ ≤ 1. Then we use Chernoff for both the lower- and upper

tails:

P(|Jk(> τ)| ≤ µ+∆) = P(|Jk(> τ)| ≤ (1 +
∆

µ
)µ) ≤ exp (−∆2

2µ
) =

1

poly(n)
.

P(|Jk(> τ)| ≥ µ+∆) = P(|Jk(> τ)| ≥ (1 +
∆

µ
)µ) ≤ exp (− ∆2

2µ+∆
) ≤ exp (−∆2

3µ
) =

1

poly(n)
.

129

	Introduction
	Clustering
	Scheduling
	Online Scheduling
	Stochastic Scheduling

	Generalized k-Median Problems
	Introduction
	Technical Overview

	Auxiliary LP for Iterative Rounding
	Defining F-balls
	Constructing LPiter
	Properties of LPiter

	Basic Iterative Rounding Phase
	The Algorithm
	Sketch of Analysis

	Iterative Operation for Structured Extreme Points
	Chain Decomposition
	Iterative Operation for Chain Decompositions
	Sketch of Analysis

	Pseudo-Approximation Algorithm for GKM
	Analysis of PseudoApproximation
	Putting it all Together: Pseudo-Approximation for GKM

	From Pseudo-Approximation to Approximation
	Overview
	Approximation Algorithm for Knapsack Median
	Approximation Algorithm for k-Median with Outliers

	Post-Processing for k-Median with Outliers
	Computing Partial Solutions
	Recursive Post-Processing Algorithm
	Analysis of OutliersPostProcess
	Proof of <Label:thmsubpost>

	Chain Decompositions of Extreme Points
	Proof of <Label:thmchaingeneral>

	Conclusion

	Online Throughput Maximization
	Introduction
	Scheduling Policies
	Algorithms and Technical Overview

	Structure of Optimal Schedule
	SRPT is Competitive with Non-Viable Jobs
	SRPT and MLax are Competitive with Viable Jobs
	Proof of <Label:lemlaxpush>
	Proof of <Label:lemlaxsrptcomplete>

	Putting it all together
	Conclusion

	Stochastic Load Balancing
	Introduction
	Technical Overview

	Configuration Balancing with Stochastic Requests
	Structure theorem
	Offline Setting
	Online Setting

	Unrelated Load Balancing and Virtual Circuit Routing
	Unrelated Load Balancing with Stochastic Jobs
	Routing with Stochastic Demands

	Load Balancing on Related Machines
	Machine Smoothing
	Offline Setting
	Online Load Balancing on Related Machines

	Clairvoyance Gap for Load Balancing on Related Machines

	Stochastic Completion Time Minimization
	Introduction
	Technical Overview
	Comparison to prior work

	Subset Selection
	Batch Free Time Minimization
	Free Time Basics
	Final Algorithm

	Analysis of the StochFree Algorithm
	Weighted free time
	Warm up: O"0365O(m)-approximation
	Bounding the unclogged machines
	Bounding small-in-the-past jobs
	Bounding big-in-the-past jobs
	Coin Game
	Putting it all together

	Conclusion

	Conclusion
	Bibliography
	Appendix for Generalized k-Median Problems
	Missing Proofs from <Label:seciteroverview>: Construction of LPiter
	Missing Proofs from <Label:sectrueapprox>
	Missing Proofs from Analysis of OutliersPostProcess
	Proof of <Label:thmoutpre>: k-Median with Outliers Pre-Processing
	Preliminaries
	Sparsification
	Putting it all Together: Proving <Label:thmoutpre>

	Appendix for Stochastic Load Balancing
	Maximal Inequalities
	Machine smoothing analysis

	Appendix for Stochastic Completion Time Minimization
	Sensitivity of number of machines
	Exchange Argument
	Justification for <Label:asrescale>
	Concentration arguments

