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Chapter 1

Hierarchical Bayesian Persuasion:
Importance of Vice Presidents
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1.1 Abstract

In this paper, I study strategic information transmission in a hierarchy. Information is

transmitted through a chain of agents to a decision maker whose action a�ects all agents’

payo�s. Each agent in the chain can conceal all or part of the information she receives.

I prove that it is possible to focus on simple equilibria, where only the �rst agent ever

conceals information. This allows me to formulate the hierarchical communication as a

direct one between the initial sender and the decision maker subject to recursively de-

�ned incentive compatibility constraints imposed by the intermediaries. In the binary-

action case, regardless of the number of intermediaries, at most four agents determine

the amount of information communicated to the decision maker. In this case, the results

in this paper underscore the importance of choosing a pivotal vice president for maxi-

mizing the payo� of the decision maker, who is better o� by appointing a like-minded

but stubborn vice president. Moreover, I provide necessary and su�cient conditions for

ine�cient equilibria.

1.2 Introduction

On January 28, 1986, the space shuttle Challenger exploded shortly after takeo�, killing

all seven crew members aboard. In a meeting the night before the launch, NASA engi-

neers had recommended against the launch. Their supervisor, however, challenged this

recommendation, overruled their decision, and approved the launch. The engineers’ con-

cerns had not been communicated beyond a certain management level, mainly because

of the management structure at NASA, which proved to be fatal in this scenario:

Failures in communication [...] resulted in a decision to launch 51-L based on

incomplete and sometimes misleading information, a con�ict between engi-

neering data and management judgments, and a NASA management struc-

ture that permitted internal �ight safety problems to bypass key Shuttle man-

agers. [...] in the launch preparation for 51-L relevant concerns of Level III

4



NASA personnel and element contractors were not [...] adequately commu-

nicated to the NASA Level I and II management responsible for the launch.
1

Organizations, such as NASA, rely on hierarchies to transmit the information vital for

improved decision making. However, it is very common that decision makers do not

know what is happening on the ground. This is because too much information is �ltered

along the hierarchy, possibly because of the strategic interests of the middle managers.

Communication failures can lead to suboptimal decisions as in the Challenger disas-

ter. How can decision makers (e.g., the CEO of NASA) avoid such failures and facilitate

the most e�ective communication? In this paper, I address this question by studying

communication in a hierarchical organization. To that end, it is important to understand

how the hierarchy con�guration (i.e., the rank and preferences of each middle manager)

a�ects the information communicated to the decision maker.

I �nd that the decision maker can enhance information communication and avoid

ine�ciencies by appointing a like-minded vice president who is more stubborn than the

decision maker. More precisely, the decision maker is better o� by choosing a vice presi-

dent who ex ante has similar action preferences but requires more information to change

her mind. Such a vice president acts as a gatekeeper who would pass to the decision

maker only the messages that are su�ciently informative for decision making purposes.

This characteristic of the vice president motivates the middle managers to conceal less

information if they are willing to persuade the decision maker toward an action other

than the status quo.

Therefore, here I investigate the outcome of intermediated communication from a

low-ranked agent to the decision maker (e.g., CEO or president). I model this kind of

hierarchical communication in the framework of Bayesian persuasion developed by Ka-

menica and Gentzkow (2011). There is a chain of agents from an initial sender to the �nal

receiver (i.e., the decision maker). The initial sender, who is the only agent with direct ac-

cess to the state, intends to persuade the decision maker to take some action by choosing

how much of her information to reveal. However, the agent does not have direct access

1
Report of the Presidential Commission on the Space Shuttle Challenger Accident, Chapter V
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to the decision maker and can reveal information only to the next agent in the chain; the

next agents in the chain (i.e., the intermediaries) do the same successively. Therefore,

each intermediary can conceal all or part of the information she receives from the previ-

ous agent but cannot reveal more information than what she receives, because she does

not have direct access to the state. The sequential nature of the game and the assumption

that each intermediary, when choosing her revelation strategy, observes only the revela-

tion strategies of the preceding agents and not the information revealed by them justi�es

using the subgame perfect equilibrium as the solution concept.

First, I prove a version of the revelation principle for this setting: It is without loss

of generality to focus on a simple class of equilibria, where, on the equilibrium path, all

intermediaries pass all the information they receive to the next agent in the hierarchy.

This implies that the initial sender chooses how much information will be revealed to

the decision maker, as in the single-sender scenario in Kamenica and Gentzkow (2011),

subject to that choice being incentive compatible for all the intermediaries. This helps

me formulate the problem of �nding the equilibrium outcome recursively, which implies

that solving a hierarchical persuasion game is equivalent to solving a single-sender per-

suasion game subject to recursively de�ned incentive compatibility constraints. Consid-

ering the restriction to simple equilibria, one may wonder if the incentive compatibility

constraints can be summarized in the condition that no intermediary prefers to conceal

more information. I show that although this simple condition is su�cient for incentive

compatibility, it is not necessary.

Then, I focus on the binary-action case where the decision maker will choose be-

tween the status quo action and the alternative action. The status quo action is the de-

cision maker’s uninformed action, i.e., the action he takes without any information. In

the special case where the state space is also binary, I fully characterize the equilibrium

outcome. In this case, the preferences of the agents can be summarized along two dimen-

sions: stance and stubbornness. Stance divides the agents into conformists and contrarians

depending on whether they prefer the same action as the decision maker in each state or
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not.
2

An agent is more stubborn if more information is required to dissuade that agent

from her uninformed action (i.e., the action she prefers without any information). These

observations let me categorize all the possible hierarchy con�gurations into four types:

1. If there exists an agent who would provide no information in a single-sender game

with the decision maker or there exist two agents with highly opposed preferences,
3

no information will be communicated to the decision maker.

2. If all the agents are of the same stance as the decision maker, full information will be

communicated to the decision maker.

Otherwise, the rank and preferences of the most stubborn agent among those who

have the same stance and uninformed action as the decision maker,
4

called the pivotal

agent, determine the outcome.

3. If there exists an agent of opposite stance who is higher ranked (i.e., closer to the

decision maker) than the pivotal agent, no information will be communicated to the

decision maker.

4. If the pivotal agent is higher ranked than all the agents of opposite stance, some infor-

mation will be communicated to the decision maker. The more stubborn the pivotal

player is, the more information will be communicated to the decision maker.

The non-monotonicity of the pivotal agent’s preferences over decision maker’s in-

formation drives this result: If the decision maker is su�ciently informed (i.e., more

than a threshold) when taking the alternative action, a more informed decision maker

is preferred; otherwise, an uninformed one is preferred.
5

In other words, the pivotal

2
For simplicity, here I consider agents who always prefer the same action (i.e., extremists) as the con-

trarians. In Section 1.7, I will look at these extremists more closely.

3
Two agents are said to have highly opposed preferences if there exists no belief under which they both

prefer the alternative action.

4
The uninformed action of these agents is the status quo.

5
This is the case for all the agents who have the same stance and uninformed action as the decision

maker. Since the pivotal agent is the most stubborn one, her threshold is higher than those of the other

agents.
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agent would pass information only if given that information, the decision maker would

take the action preferred by the pivotal agent. Therefore, in the last type of hierarchy de-

scribed above, the game is equivalent to one where the pivotal agent is making decisions.

More generally, regardless of the hierarchy con�guration, the decision maker prefers to

delegate the decision rights to the pivotal agent.

The more stubborn the pivotal player is, the higher is her informativeness threshold

below which she prefers an uninformed decision maker. This characteristic motivates all

the lower-ranked agents to conceal less information if they are willing to persuade the

decision maker to take the alternative action. However, in the presence of higher-ranked

agents of opposite stance, the pivotal agent would preemptively provide no information

because those agents would prevent the decision maker from being su�ciently informed.

In this case, the equilibrium is ine�cient because there are more informative outcomes

that are preferred by all the agents.

The above categorization of hierarchy con�gurations has an implication for the choice

of vice president. If the decision maker could add an intermediary of his choice at the

end of the hierarchy (i.e., the vice president), the decision maker would optimally choose

this intermediary such that in the new longer hierarchy, the vice president is the pivotal

agent. The optimal choice of the vice president is (almost) independent of the hierarchy

con�guration and eliminates any ine�ciencies in communication. The intuition behind

the important role of a pivotal vice president in enhancing information communication

along a hierarchy is as follows:

• The vice president is the closest agent to the decision maker. Because agents move

sequentially, every agent is better o� by taking into account the preferences of the

higher-ranked agents in the hierarchy. Therefore, all the agents are better o� taking

into account the preferences of the vice president.

• A pivotal vice president has the same stance and uninformed action as the decision

maker. Thus, an agent who intends to persuade the decision maker to take the alter-

native action must �rst persuade the vice president. Otherwise, the vice president will

not pass any information to the decision maker, being sure that the decision maker will
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take the action favored by the vice president (i.e., the status quo).

• A pivotal vice president is very stubborn. This implies that more information is re-

quired to change her mind and persuade her to prefer the alternative action.

Next, I let the state space be the interval [0, 1] keeping the action space binary. Focus-

ing on simple equilibria implies that, without loss of generality, the game can be consid-

ered a binary-state, binary-action one from the intermediaries’ point of view. By choosing

how much information to reveal, the initial sender implicitly pins down the preferences of

the intermediaries in this subgame whose outcome was described above. In general, solv-

ing for the optimal choice of the initial sender is not straightforward. I fully characterize

the equilibrium outcome in the special case where the prior is uniform, the di�erential

payo� from the actions is linear in the state, and one of the actions yields zero payo� to

the initial sender. The linearity assumption implies that the agents’ preferences depend

only on the posterior mean.

The results in this special case are very similar to those in the binary-state case. De�n-

ing a binary-state game corresponding to the original game, I show that no information

is communicated to the decision maker in the original game if the same occurs in this

binary-state game. Therefore, the conditions resulting in the no-information equilibrium

outcome in the binary-state case remain valid in this more general case. However, if these

conditions do not hold, the relative preferences of two speci�c agents in the hierarchy de-

termine the e�ciency of the equilibrium and whether any information is communicated

to the decision maker. Every equilibrium outcome is equivalent to one which simply

distinguishes between two intervals [0, x] and [x, 1], where x is determined by the pref-

erences of the initial sender and two other agents called the pivotal agents. These two

pivotal agents are the most stubborn agents among those who prefer the same action as

the decision maker in the extreme states (i.e., states 0 and 1).

One implication of this result is that if the decision maker could add an intermedi-

ary of his choice at the end of the hierarchy (i.e., the vice president), the decision maker

would optimally choose this intermediary such that, in the new longer hierarchy, the

vice president is one of the pivotal agents. The optimal choice of vice president depends
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on the hierarchy con�guration and eliminates any ine�ciency in communication. More-

over, if the decision maker could add two intermediaries of his choice at the end of the

hierarchy, the decision maker would optimally choose these intermediaries such that, in

the new longer hierarchy, they are the pivotal agents. The order of these two intermedi-

aries does not matter. Moreover, the decision maker’s optimal choice of intermediaries

is (almost) independent of the hierarchy con�guration and eliminates any ine�ciencies

in communication.

1.2.1 Related Literature

This paper contributes to the literature on information design and Bayesian persuasion;

see Aumann et al. (1995), Kamenica and Gentzkow (2011), and Bergemann and Morris

(2016a,b) as well as surveys by Bergemann and Morris (2019) and Kamenica (2019). I

apply these tools to a setting with multiple senders who move sequentially, to study how

information revelation depends on the order and preferences of the senders.

Ambrus et al. (2013) study the same problem under cheap talk communication, whereas

I model it in the framework of Bayesian persuasion. In fact, the authors extend the clas-

sic model of Crawford and Sobel (1982) to investigate intermediated communication and

show that the set of pure-strategy equilibrium outcomes does not depend on the or-

der of intermediaries and intermediation cannot improve information in these equilibria.

Studying cheap talk intermediation networks more complex than the hierarchical ones,

Laclau et al. (2020) investigate when it is possible to robustly implement all equilibrium

outcomes of the direct communication game on a communication network. In my set-

ting, I �nd that the equilibrium outcome depends on the order of intermediaries and

intermediation can improve information in equilibrium.

I also contribute to the literature on information transmission within organizations.

Dessein (2002), Rantakari (2008), and Alonso et al. (2008) consider a decision maker who is

trying to elicit information from the agents. All these papers use the cheap talk model of

communication, whereas I use Bayesian persuasion. In particular, considering the single-

sender scenario, Dessein (2002) identi�es cases in which the decision maker optimally
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delegates control to an intermediary rather than keeping authority or delegating to the

sender. I show that regardless of the number of intermediaries, when facing a binary

decision, the decision maker prefers to delegate the decision rights to the pivotal agent.

Mathevet and Taneva (2020) consider a designer who disseminates information to the

agents. Their concept of vertical communication is similar to my hierarchical communi-

cation model. They use the cheap talk model of communication along the hierarchy after

the designer commits to a signal structure for communicating with the most-informed

agent in the hierarchy. Moreover, the authors assume that each agent in the hierarchy

takes an action which a�ects the utilities of all the agents, whereas in my model, only

the �nal receiver (i.e., the decision maker) is taking an action.

Kamenica and Gentzkow (2016) and Gentzkow and Kamenica (2017) study Bayesian

persuasion with multiple senders, assuming that every sender has direct access to the

state and can choose a signal that is arbitrarily correlated with those of the other senders.

The authors focus on pure-strategy simultaneous-move equilibria and show that greater

competition (e.g., adding senders) tends to increase the amount of information revealed.

Their result does not hold in my setting, where the initial sender is the only one with di-

rect access to the state and senders move sequentially designing their experiments before

observing any signal realizations;
6

adding senders may increase or decrease the amount

of information revealed.

The most closely related papers to mine are those by Li and Norman (2021) and Wu

(2021), who study the sequential version of the Bayesian persuasion game with multi-

ple senders considered by Kamenica and Gentzkow (2016) and Gentzkow and Kamenica

(2017). The rich signal space considered by Li and Norman (2021) and the model con-

sidered by Wu (2021) imply that every sender has direct access to the state and observes

not only the experiments designed by the preceding senders but also the corresponding

signal realizations, when designing her own experiment, and the receiver observes all

designed experiments and all signal realizations; that is, each sender may decide only

6
Li and Norman (2018) show that adding senders can result in loss of information if any of the follow-

ing assumptions is violated: (i) information can be arbitrarily correlated, (ii) senders reveal information

simultaneously, or (iii) senders play pure strategies.
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whether to provide more information. In contrast, in my setting, the initial sender is

the only one with direct access to the state and each sender observes only the experi-

ments designed by the preceding senders; that is, each sender may decide only whether

to provide less information.

Li and Norman (2021) show that it is without loss of generality to restrict attention to a

�nite set of vertex beliefs. The authors introduce the notion of one-step equilibria, which

is the same as simple equilibria in my setting, and formulate the incentive compatibility

constraints of the intermediaries to characterize those equilibria. Investigating consulta-

tion with multiple experts, they show that adding a sender (i.e., expert) who moves �rst

cannot reduce informativeness in equilibrium; although this question is not relevant in

my setting, the opposite holds. In fact, in my setting, which models communication in

hierarchical organizations, it is more relevant to study the e�ect of adding a sender who

moves last (i.e., the vice president); my results suggest that adding an appropriate such

sender can increase informativeness and e�ciency in equilibrium.

Wu (2021) uses recursive concavi�cation to characterize the full set of subgame per-

fect equilibrium paths. The author also introduces the notion of silent equilibria, which is

the same as simple equilibria in my setting. Kuang et al. (2019) consider the binary-state,

binary-action case of the sequential models considered in Li and Norman (2021) and Wu

(2021), where all senders except for the initial one care about their reputations measured

by whether the receiver’s action is consistent with their recommendation. One of their

results implies the importance of the vice president from the initial sender’s point of view,

whereas in my setting, the vice president is important from the receiver’s point of view.

In simultaneous and independent work, Arieli et al. (2022) also study the hierarchical

Bayesian persuasion problem. The authors characterize the initial sender’s optimal value

using constrained concavi�cation, whereas I focus on the receiver’s welfare. The notion

of constrained concavi�cation is similar to my recursive formulation. However, the con-

cavi�cation method is not easy to work with; my characterization of recursive incentive

compatibility constraints transforms the problem into a simpler and more tractable one.

Doing so allows me to derive interesting results in the binary-action case and provide
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insights about the importance of vice presidents in hierarchical organizations.

The rest of the paper is organized as follows. In section 1.3, I illustrate the importance

of vice presidents via a simple example. Section 1.4 sets up the model. In section 1.5, I

prove that it is without loss of generality to focus on the set of simple equilibria., where

the initial sender is the only agent who may conceal information. Section 1.6 includes the

recursive formulation of incentive compatibility constraints, restates the hierarchical per-

suasion problem as a single-sender one, and investigates a simple su�cient condition for

the incentive compatibility conditions. In section 1.7, I fully characterize the equilibrium

in the binary-state, binary-action case, and in a special case of the general binary-action

case, and discuss the e�ciency of equilibria and importance of vice presidents. Section

1.8 concludes the paper. Some of the proofs are relegated to the appendix.

1.3 A Simple Example

Consider a hierarchy of three agents, as shown in Figure 1.1, consisting of the initial

sender (agent 1), an intermediary (agent 2), and the receiver (R). All the agents share a

uniform prior belief about the binary state of the world ω ∈ {0, 1}. First, agent 1 designs

an experiment to send a signal s1 ∈ {0, 1} to agent 2 about the state ω. Then, agent

2, observing the experiment chosen by agent 1 but not the signal realization, designs

another experiment to send a signal s2 ∈ {0, 1} to the receiver about signal s1. Finally,

the receiver observes the experiments designed by the agents and the signal realization

s2, and chooses a binary action a ∈ {0, 1}.

Agent 1 Agent 2
Receiver

a

ω s1 s2

Figure 1.1: A hierarchy consisting of three agents

Suppose that with full information about the state, agent 1 and the receiver would

prefer the action that matches the state. However, in the absence of full information,

13



• agent 1 would prefer action a = 1 if and only if she believes that the state is ω = 1

with probability greater than µ1, where 0 < µ1 < 0.5;

• the receiver would prefer action a = 1 if and only if he believes that the state is

ω = 1 with probability greater than µR = 0.3;

Moreover, suppose agent 2 would prefer action a = 0 regardless of the state.

Agent 1 prefers to provide the receiver with as much information as possible (i.e.,

send signal s1 = 0 in state ω = 0 and signal s1 = 1 in state ω = 1). Agent 2, however,

prefers to send signal s2 = 0 as often as possible (i.e., always send signal s2 = 0 when

s1 = 0 and sometimes send signal s2 = 0 when s1 = 1). Agent 2 does this as long as,

after receiving signal s2 = 0, the receiver believes the state is ω = 1 with probability less

than or equal to µR = 0.3.

• Case 1: Suppose µ1 = 0.4. In equilibrium, as shown in Figure 1.2a, the receiver

would believe that the state is ω = 1 for sure after observing signal s2 = 1 and that

the state is ω = 1 with probability µR = 0.3 after observing signal s2 = 0.

• Case 2: Suppose µ1 = 0.2. In equilibrium, as shown in Figure 1.2b, agent 1 will

provide no information to agent 2. This is because if agent 1 provides any infor-

mation, Case 1 will follow, and she prefers action a = 1 even if she believes that

the state is ω = 1 with probability µR = 0.3. Therefore, no information will be re-

vealed to the receiver. Note that this equilibrium is ine�cient, because both agent

1 and agent 2 prefer the receiver to take action a = 0 in some cases.

Suppose the receiver adds an agent (agent 3) between himself and agent 2, as shown

in Figure 1.3, with the following characteristics:

• with full information about the state, agent 3 would prefer the action that matches

the state;

• in the absence of full information, agent 3 would prefer action a = 1 if and only if

she believes that the state is ω = 1 with probability greater than µ3 = 0.1.
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0 0.5µ1 1µR

s2 = 0 s2 = 1

(a) In the absence of agent 3 (Case 1: µ1 > µR)

0 0.5µ1 1µR

no info

(b) In the presence of agent 3 (Case 2: µ1 < µR)

0 0.5 1µRµ3

s3 = 0 s3 = 1

(c) In the presence of agent 3

Figure 1.2: The blue dots represent the possible beliefs of the receiver in equilibrium.

Agent 1 Agent 2 Agent 3
Receiver

a

ω s1 s2 s3

Figure 1.3: A hierarchy consisting of four agents: Compared to Figure 1.1, the receiver has chosen

to add agent 3 between himself and agent 2.

In this longer hierarchy, �rst agent 1 and agent 2 design their experiments. Then

agent 3, observing the experiments designed by agent 1 and agent 2 but not the signal

realizations, designs an experiment to send a signal s3 = {0, 1} to the receiver about

signal s2. Note that the receiver will now observe signal s3 instead of signal s2.

If agent 2 sends signal s2 = 0 as often as she did in the absence of agent 3, agent 3

would prefer action a = 1 regardless of signal realization s2. This is because, whatever

signal realization s2 turns out to be, agent 3 believes that the state is ω = 1 with proba-

bility greater than µ3 = 0.1. Therefore, agent 3 will send no information to the receiver,

who will then take action a = 1. This is the worst thing that could happen to agent 2,
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who always prefers action a = 0. Therefore, agent 2 has to back down and send signal

s2 = 0 less often when s1 = 1. In equilibrium, as shown in Figure 1.2c, agent 3 would

believe that the state is ω = 1 for sure after observing signal s2 = 1 and that the state

is ω = 1 with probability µ3 = 0.1 after observing signal s2 = 0. Agent 3 would then

reveal all her information to the receiver.

Therefore, in the presence of agent 3, more information is revealed to the receiver

in equilibrium. In fact, this would have been the case for any choice of µ3 such that

0 < µ3 < min (µ1, µR). Note, however, that if agent 3 were added between agent 1 and

agent 2, the equilibrium would have been the same as the one in the absence of agent 3.

Observation: The decision maker can increase the amount of information she re-

ceives and eliminate any ine�ciency in communication by appointing a vice president

who ex ante has similar action preferences but is more stubborn than the decision maker

(i.e., µ3 < µR).

1.4 Model

There are n players (she) interested in the action taken by a receiver R (he). Each player

can try to in�uence the receiver’s action by sending a message to the next player in a

hierarchical manner. Players’ and receiver’s payo�s depend on the state of the world

ω ∈ Ω and the action taken by the receiver a ∈ A where the action space A is assumed

to be �nite. In other words, each player’s (and receiver’s) utility is given by a function

ui(ω, a), where i = 1, . . . , n, R. All the players are expected utility maximizers.

The players and the receiver are uncertain about the state of the world ω, and their

common prior belief is represented by a probability density function f .
7

However, they

can obtain information in a hierarchical manner, as shown in Figure 1.4. Each player

i = 1, . . . , n, successively sends a signal si ∈ Si to player i + 1, where n + 1 = R; in

other words, each player i, successively, designs (commits to) an experiment over Si−1,

7
If prior belief is a �nite-support distribution, then I assume f represents the probability mass function

and replace all integrals with sums. The corresponding cumulative distribution function is represented by

F .
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where S0 = Ω, including a signal space Si and a signal structure πi : Si−1 → ∆(Si). In

the remainder of the paper, I denote an experiment (S, π) simply by its signal structure

π. Let Π and Πi denote the set of all experiments over Ω and Si, respectively.

Player 1

π1

Player 2

π2

Player n
πn

Receiver

a

ω s1 s2 sn−1 sn· · ·

Figure 1.4: A hierarchy consisting of n players and the receiver

When designing her experiment, each player i = 1, . . . , n observes the experiments

designed by the preceding players {πj}i−1
j=1, but not the signal realizations. After each

player has designed an experiment, �rst the state of the world ω, and then, successively,

signals s1, . . . , sn are realized according to the designed experiments. The receiver ob-

serves the experiments designed by all the players and a signal sn sent by player n; he

updates his belief accordingly and chooses an action a ∈ A to maximize his expected

utility. Note that player 1 is the only player with direct access to the state, and player n

is the only player with direct access to the receiver.

In summary, the game consists of three stages. In the �rst stage, each player, suc-

cessively, designs an experiment given the experiments chosen by the preceding players

in order to maximize her expected utility. In the second stage, the state of the world is

realized and the communication takes place in a hierarchical manner according to the

designed experiments. In the last stage, the receiver updates his belief according to the

designed experiments and the received signal, and decides what action to take to maxi-

mize his expected utility.

For ease of exposition, I assume S1,S2, . . . ,Sn are all �nite. As will be seen in Corol-

lary 2, this assumption is without loss of generality, because A is �nite. Therefore, each

πi for i = 1, . . . , n is a �nite-support conditional distribution, and πi represents the con-

ditional probability mass function.
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1.5 Simple Equilibria

Given the experiments designed by all the players (π1, . . . , πn) and the signal sn received

from playern, the receiver’s expected utility and, thus, optimally chosen action a∗ depend

only on his posterior belief represented by the probability density function µ.
8

Assumption 1. If the receiver is indi�erent among a set of actions Aµ given his posterior

belief µ, he will take player n’s favorite action, i.e., Eµun(ω, a∗(µ)) ≥ Eµun(ω, a), ∀a ∈
Aµ.9

Therefore, I can represent the receiver’s optimal strategy by a∗ : ∆(Ω) → A. Given

the posterior belief of the receiver µ, let vi(µ) = Eµui(ω, a∗(µ)) for i = 1, 2, . . . , n, R

represent the expected utility of a player or of the receiver.

The distribution of the signal observed by player i, that is, si−1, depends on the ex-

periments designed by all the preceding players. The aggregate experiment observed by

player i is denoted by πi : Ω→ ∆(Si−1) where

πi(si−1|ω) =
∑
s′1

. . .
∑
s′i−2

π1(s′1|ω)π2(s′2|s′1) . . . πi−1(si−1|s′i−2). (1.1)

For ease of exposition, I write πi ≡ π1 ◦ . . .◦πi−1. After observing the preceding players’

designed experiments, player i’s expected utility, and thus her optimally chosen exper-

iment, depend only on πi, not the individual experiments designed by the preceding

players (π1, . . . , πi−1). Note that by designing an experiment, each player simply garbles

the aggregate experiment designed by the preceding players, that is, πi+1 ≡ πi ◦πi is less

Blackwell-informative than πi.

Given the receiver’s optimal strategy a∗, every pro�le of experiments designed by

the players (π1, . . . , πn) induces a conditional distribution over the actions taken by the

receiver π : Ω→ ∆(A) called the outcome of the game. Without loss of generality, let us

8
If the posterior belief is a �nite-support distribution, then I assume µ represents the probability mass

function.

9
I use this assumption to ensure that in the next section player n’s problem in (1.9) is well-de�ned.
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assume Sn = A and the receiver’s optimal action is equal to the signal sn sent by player

n10
: a∗(µsn) = sn, ∀sn ∈ Sn. Therefore, the outcome of the game is given by

π(a|ω) =
∑
s′1

. . .
∑
s′n−1

π1(s′1|ω)π2(s′2|s′1) . . . πn(a|s′n−1), ∀a ∈ A, ∀ω ∈ Ω, (1.2)

which is the aggregate experiment observed by the receiver. For ease of exposition, I

write π ≡ π1 ◦ . . . ◦ πn11
. It is now clear that the receiver’s posterior belief is given by

the probability density function µ, where

µ(ω|sn; π1, . . . , πn) =
f(ω)π(sn|ω)∫

Ω
f(ω′)π(sn|ω′)dω′

. (1.3)

Furthermore, every outcome of the game π induces a distribution of posteriors for the

receiver τπ. I sometimes refer to τπ as the outcome of the game. Since Sn = A is �nite, τπ

is a �nite-support distribution, and I let τπ represent the probability mass function. Note

that the above assumption implies that each signal sn sent by player n induces a distinct

posterior belief for the receiver µsn . Therefore,

τπ(µa) =

∫
Ω

∑
s′1

. . .
∑
s′n−1

f(ω)π1(s′1|ω)π2(s′2|s′1) . . . πn(a|s′n−1)dω =

∫
Ω

f(ω)π(a|ω)dω.

(1.4)

De�nition 1 (Subgame Perfect Equilibria). A subgame perfect equilibrium of the game

σ∗ = (π∗1, σ
∗
2, . . . , σ

∗
n) is de�ned by an experiment π∗1 ∈ Π for player 1 and a function

(strategy) σ∗i : Π→ Πi−1 for each player i = 2, . . . , n such that

• given {σ∗j}nj=2, π∗1 maximizes Ev1(µ), and

• for i = 2, . . . , n, given {σ∗j}nj=i+1, σ∗i (π
i) maximizes Evi(µ), ∀πi ∈ Π.

10
This is the case because of Assumption 1. The proof is the same as that of Proposition 1 in Bergemann

and Morris (2019).

11
Note that π = πn+1

.
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For a subgame perfect equilibrium of the game, let π∗i denote the experiment chosen

by player i on the equilibrium path. The corresponding equilibrium outcome and equi-

librium distribution of posteriors for the receiver are denoted by π∗ ≡ π∗1 ◦ . . . ◦ π∗n and

τ ∗, respectively.

Now, I state the �rst result which is reminiscent of the revelation principle.

Proposition 1 (Simple Equilibria). Under Assumption 1, for every subgame perfect equi-

librium of the game σ∗ with equilibrium outcome π∗, there exists an outcome-equivalent

subgame perfect equilibrium σ∗∗ where player 1’s experiment is given by π∗∗1 = π∗ and all

other players use the following strategy:

σ∗∗i (πi) =

{
I if πi = π∗

σ∗i (π
i) Otherwise

(1.5)

where I represents the full-revelation experiment, i.e., π ◦ I = π, ∀π ∈ Π.

This equilibrium is simple in the sense that on the equilibrium path, all the players except

for the �rst one pass all the information they receive to the next player.

Proof. If I prove that the strategy pro�le σ∗∗ is indeed an equilibrium strategy pro�le, then

it is straightforward to see that this is outcome-equivalent to the equilibrium strategy

pro�le σ∗.

Given the experiments chosen by the preceding players and the strategies of the

succeeding players (π1, . . . , πi−1, σi+1, . . . , σn), by choosing experiment πi, player i es-

sentially chooses the outcome of the game, where her choice set is a feasible subset

of Π. More explicitly, her choice set includes all outcomes of the game π such that

π ≡ π1 ◦ . . . ◦ πi−1 ◦ πi ◦ σi+1(πi+1) ◦ . . . ◦ σn(πn) for some πi ∈ Πi−1.

• Consider player n. The only change in her strategy compared to σ∗n is when she

encounters a pro�le of experiments chosen by the preceding players such that πn =

π∗. In this case, she can induce any outcome π less Blackwell-informative than

π∗ = π∗1 ◦ . . . ◦ π∗n. In the equilibrium corresponding to σ∗, when she can induce

20



any outcome π less Blackwell-informative than π∗1 ◦ . . . ◦ π∗n−1, including π∗, she

chooses to induce π∗. Obviously, the choice set is now smaller but includes the

optimal choice of a larger choice set;
12

therefore, it is still optimal for player n to

induce π∗; that is, σ∗∗n (π∗) = I is optimal.

• Consider player i for i = 2, . . . , n− 1. The only change in her strategy compared

to σ∗i is when she encounters a pro�le of experiments chosen by the preceding

players such that πi = π∗. In this case, she can induce any outcome π such that

π = π∗1 ◦ . . . ◦ π∗i−1 ◦ πi ◦ σ∗∗i+1(πi+1) ◦ . . . ◦ σ∗∗n (πn) by choosing πi, where πi is

strictly less Blackwell-informative than π∗i ◦ . . . ◦ π∗n; she can also induce π = π∗.

In the equilibrium corresponding to σ∗, when she can induce any outcome π of the

form π∗1 ◦ . . . ◦ π∗i−1 ◦ πi ◦ σ∗i+1(πi+1) ◦ . . . ◦ σ∗n(πn) by choosing πi, she chooses to

induce π∗. Obviously, the choice set is now smaller but includes the optimal choice

of a larger choice set; therefore, it is still optimal for player i to induce π∗; that is,

σ∗∗i (π∗) = I is optimal.

• Consider player 1. By choosing π1, she can either choose any outcome π such that

π = π1 ◦ σ∗∗2 (π2) ◦ . . . ◦ σ∗∗n (πn) 6= π∗, or choose π = π∗. In the equilibrium

corresponding to σ∗, when she can induce any outcome π of the form π1 ◦σ∗2(π2)◦
. . . ◦ σ∗n(πn) by choosing π1, she chooses to induce π∗. Obviously, the choice set is

the same; therefore, it is still optimal for player 1 to induce π∗; that is, π∗∗1 = π∗ is

optimal.

�

I can apply the same argument o� the equilibrium path as well. Given a subgame per-

fect equilibrium of the game σ∗, let σ∗i (hj, πj, . . . , πi−1) represent the equilibrium strategy

of player i ≥ j following a history of the game hj = (π1, . . . , πj−1) (alternatively, in the

subgame starting from player j). Similarly, let π∗i (hj) denote the experiment chosen by

player i ≥ j on the equilibrium path of the continuation game (alternatively, subgame).

12
Blackwell information ranking is transitive.
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Corollary 1. Under Assumption 1, for every subgame perfect equilibrium of the game σ∗

with equilibrium outcome π∗, there exists an outcome-equivalent subgame perfect equilib-

rium σ∗∗ where following any history of the game hj = (π1, . . . , πj−1) (alternatively, in

the subgame starting from player j), player j’s strategy is given by σ∗∗j (hj) = π∗j (hj) ◦
π∗j+1(hj) ◦ . . . ◦ π∗n(hj) and all succeeding players use the following strategy:

σ∗∗i (hj , πj , . . . , πi−1) =


I if πj ◦ πj+1 ◦ . . . ◦ πi−1 =

π∗j (hj) ◦ π∗j+1(hj) ◦ . . . ◦ π∗n(hj)

π∗i (hi) ◦ π∗i+1(hi) ◦ . . . ◦ π∗n(hi) Otherwise
(1.6)

where hi = (hj, πj, . . . , πi−1).

This equilibrium is simple in the sense that following any history of the game, all the

players except for the �rst one to play pass all the information they receive to the next player.

Being able to focus on simple equilibria implies that on the equilibrium path, the �rst

player recommends to the receiver which action to take, all the other players pass that

recommendation to the next player, and the receiver takes the recommended action.
13

Corollary 2. Under Assumption 1, it is without loss of generality to assume S1 = . . . =

Sn = A.

1.6 IncentiveCompatibilityConstraints andRecursive

Formulation

Given Proposition 1, in order to �nd the equilibrium outcome of the game π∗ or, equiv-

alently, the equilibrium distribution of posteriors for the receiver τ ∗, I can focus on the

“simple" equilibria where the �rst player chooses the outcome and the others pass the in-

formation to the next player. However, the chosen outcome must be Bayes plausible, and

13
Similarly, following any history of the game, the �rst player to play recommends to the receiver which

action to take, and so on.
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it must be incentive compatible for the other players to pass that information to the next

player. In this section, I �rst formally characterize these conditions and then formulate

the problem as a set of recursive optimization problems.

Consider a pair of experiments π, π′ ∈ Π and their corresponding distributions of

posteriors τ, τ ′ ∈ ∆(∆(Ω)). Experiment π is more Blackwell-informative than experi-

ment π′ if and only if τ ′ is smaller than τ in the convex order: τ ′ ≤cx τ . This means for

all convex functions φ : ∆(Ω)→ R14
,

∑
µ∈supp(τ ′)

φ(µ)τ ′(µ) ≤
∑

µ∈supp(τ)

φ(µ)τ(µ) (1.7)

Now, I formally characterize the necessary conditions for the equilibrium outcome of

the game:

• The equilibrium outcome of the game τ ∗must be Bayes plausible, i.e.,

∑
µ µτ

∗(µ) =

f .
15

Let Γ0 denote the set of Bayes-plausible distributions of posteriors.

• As mentioned before, by designing an experiment, the last player simply garbles the

aggregate experiment designed by the preceding players. Therefore, in addition to

the above condition, the last player should not prefer any outcome less Blackwell-

informative than the equilibrium outcome π∗. Equivalently, she should not prefer

any distribution of posteriors τ ′ that is smaller than the equilibrium distribution of

posteriors τ ∗ in the convex order, i.e.,

τ ∗ ∈ Γ0,
∑
µ

τ ′(µ)vn(µ) ≤
∑
µ

τ ∗(µ)vn(µ), ∀τ ′ ≤cx τ ∗. (1.8)

Let Γn ⊆ Γ0 denote the set of distributions of posteriors τ satisfying (1.8)
16

.

Accordingly, I can de�ne a value function representing the highest attainable ex-

pected utility of player n as a function of the distribution of posteriors τn corre-

14
In the remainder of the paper, for ease of exposition, I write

∑
µ instead of

∑
µ∈supp(τ).

15
The proof is the same as that of Proposition 1 in Bergemann and Morris (2019).

16
Note that τ∗ ∈ Γ0 and τ ′ ≤cx τ∗ imply that τ ′ ∈ Γ0.
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sponding to the aggregate experiment πn designed by the preceding players:

Vn(τn) = max
τ ′≤cxτn

∑
µ

τ ′(µ)vn(µ). (1.9)

This implies that Γn = {τ ∈ Γ0|
∑

µ τ(µ)vn(µ) = Vn(τ)}.

• Again, by designing an experiment, the second-to-last player simply garbles the

aggregate experiment designed by the preceding players. Moreover, the only out-

comes the second to last player can induce are those in Γn. Therefore, in addition

to (1.8), the second to last player should not prefer any “induceable" outcome less

Blackwell-informative than the equilibrium outcome π∗. Equivalently, she should

not prefer any distribution of posteriors τ ′ ∈ Γn that is smaller than the equilibrium

distribution of posteriors τ ∗ in the convex order, i.e.,

τ ∗ ∈ Γn,
∑
µ

τ ′(µ)vn−1(µ) ≤
∑
µ

τ ∗(µ)vn−1(µ), ∀τ ′ ∈ Γn s.t. τ ′ ≤cx τ ∗. (1.10)

Let Γn−1 ⊆ Γn denote the set of distributions of posteriors τ satisfying (??).

Accordingly, given Vn, I can de�ne a value function representing the highest attain-

able expected utility of player n− 1 as a function of the distribution of posteriors

τn−1
corresponding to the aggregate experiment πn−1

designed by the preceding

players:

Vn−1(τn−1) = max
τ ′≤cx τn−1

∑
µ

τ ′(µ)vn−1(µ) subject to∑
µ

τ ′(µ)vn(µ) = Vn(τ ′).
(1.11)

This implies that Γn−1 = {τ ∈ Γn|
∑

µ τ(µ)vn−1(µ) = Vn−1(τ)}.

• Continuing like this, now consider player i for i = 2, . . . , n − 2. Yet again, by de-

signing an experiment, player i simply garbles the aggregate experiment designed
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by the preceding players. Moreover, the only outcomes player i can induce are

those in Γi+1. Therefore, in addition to τ ∗ ∈ Γi+1, player i should not prefer any

“induceable" outcome less Blackwell-informative than the equilibrium outcome π∗.

Equivalently, she should not prefer any distribution of posteriors τ ′ ∈ Γi+1 that is

smaller than the equilibrium distribution of posteriors τ ∗ in the convex order, i.e.,

τ ∗ ∈ Γi+1,
∑
µ

τ ′(µ)vi(µ) ≤
∑
µ

τ ∗(µ)vi(µ), ∀τ ′ ∈ Γi+1 s.t. τ ′ ≤cx τ ∗. (1.12)

Let Γi ⊆ Γi+1 denote the distributions of posteriors τ satisfying (1.12).

Accordingly, given Vi+1, I can de�ne a value function representing the highest at-

tainable expected utility of player i as a function of the distribution of posteriors τ i

corresponding to the aggregate experiment πi designed by the preceding players:

Vi(τ
i) = max

τ ′≤cx τ i

∑
µ

τ ′(µ)vi(µ) subject to∑
µ

τ ′(µ)vi+1(µ) = Vi+1(τ ′).
(1.13)

This implies that Γi = {τ ∈ Γi+1|
∑

µ τ(µ)vi(µ) = Vi(τ)}.

Now, I formally formulate the problem as a set of recursive optimization problems.

Proposition 2 (Equilibrium Distribution of Posteriors). Under Assumption 1, the equilib-

rium distribution of posteriors for the receiver is given by

τ ∗ ∈ argmax
τ∈Γ2

∑
µ

τ(µ)v1(µ). (1.14)

Solving a hierarchical persuasion game is equivalent to solving a single-sender persua-

sion game subject to recursively-de�ned incentive compatibility constraints.

Proof. As mentioned before, Proposition 1 allows me to focus on the “simple" equilibria

where the �rst player chooses the outcome τ ∗ and the others pass the information to the
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next player, as long as τ ∗ is Bayes plausible and it is incentive compatible for the other

players to pass the information to the next player. Based on the discussion so far, these

conditions are equivalent to τ ∗ ∈ Γ2. �

1.6.1 Can Incentive Compatibility Constraints be Simpli�ed?

When formulating the incentive compatibility constraints, I mentioned that the last player

should not prefer any outcome less Blackwell-informative than the equilibrium outcome,

whereas player i = 2, . . . , n−1 should not prefer any induceable outcome less Blackwell-

informative than the equilibrium outcome. One may wonder whether it is possible to

simplify the incentive compatibility constraints and say player i = 2, . . . , n should not

prefer any outcome less Blackwell-informative than the equilibrium outcome. To that

end, let Γ̃ denote the Bayes-plausible distributions of posteriors τπ such that no player

(not considering player 1) prefers any outcome less Blackwell-informative than π:

Γ̃ = {τ ∈ Γ0|
∑
µ

τ(µ)vi(µ) ≥
∑
µ

τ ′(µ)vi(µ), ∀τ ′ ≤cx τ, ∀i = 2, . . . , n}. (1.15)

The next proposition illustrates that while this simple condition implies incentive

compatibility and is thus a su�cient condition, it is stricter than needed and thus not a

necessary condition.

Proposition 3. Under Assumption 1, Γ̃ ⊆ Γ2, but Γ̃ 6= Γ2.

Proof. See Appendix C. �

1.7 Binary-Action Games

I now consider a common special case where the action space is binary: A = {0, 1}.
Based on Corollary 2, it is without loss of generality to assume S1 = . . . = Sn =

{0, 1}. Thus, player 1’s experiment can be written as π1 : Ω → [0, 1], where π1(·)
represents the conditional probability of sending signal 1. Similarly, player i’s experiment
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can be written as πi : {0, 1} → [0, 1] for i = 2, . . . , n. Following Proposition 1 and

Corollary 2, every subgame perfect equilibrium of the game is outcome-equivalent to the

one where the �rst player recommends to the receiver what action to take and all the

other players pass that recommendation to the next player.

Player 1 chooses an experiment π1, or, equivalently, a Bayes-plausible distribution of

posteriors τ1 ∈ ∆(∆(Ω)), where supp(τ1) = {q0, q1}.17
From this point on, the game is a

binary-state, binary-action one. In other words, given the experiment chosen by player

1, the game played by players 2, 3, . . . , n is a binary-state one where the state space is

given by Ω̂ = supp(τ1).

I now consider the binary-state, binary-action game.

1.7.1 Binary-State Binary-Action Games

Let Ω = A = {0, 1}. Each player’s and receiver’s utility is represented by four numbers:

u00
i = ui(ω = 0, a = 0), u10

i = ui(ω = 1, a = 0), u01
i = ui(ω = 0, a = 1), and

u11
i = ui(ω = 1, a = 1) for i = 1, . . . , n, R. Let p ∈ (0, 1) and µ ∈ [0, 1] represent the

common prior belief and receiver’s posterior belief that ω = 1, respectively, and let µi

represent the posterior belief at which player i is indi�erent between the two actions:

(1− µi)u00
i + µiu

10
i = (1− µi)u01

i + µiu
11
i ⇒ µi =

u00
i − u01

i

(u00
i − u01

i ) + (u11
i − u10

i )
. (1.16)

All I need to know about player i is her indi�erence posterior belief µi
18

and her

preferred action at state ω = 119
. As a result, players can be categorized into di�erent

types, as follows:

1. 0-Extremists: If µi > 1 or µi < 0 and player i prefers a = 0 at ω = 1, she will

always prefer a = 0.

17
If player 1 chooses to provide no information, q0 = q1 and this leads to the no-information outcome.

18
For simplicity, I assume µi 6∈ {0, p, 1} and µi 6= µj if i 6= j.

19
The argument behind this claim can be found in Appendix A.
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2. 1-Extremists: If µi > 1 or µi < 0 and player i prefers a = 1 at ω = 1, she will

always prefer a = 1.

3. Conformists: If 0 < µi < 1 and player i prefers a = 1 at ω = 1, she will prefer

a = 0 if µ < µi and a = 1 if µ > µi, as shown in Figure 1.5a.

(a) If 0 < µi < p, player i is said to be biased
20

toward a = 1; the lower µi, the

higher the bias, as shown in Figure 1.6.

(b) If p < µi < 1, player i is said to be biased toward a = 0; the higher µi, the

higher the bias.

4. Contrarians: If 0 < µi < 1 and player i prefers a = 0 at ω = 1, she will prefer

a = 0 if µ > µi and a = 1 if µ < µi, as shown in Figure 1.5b.

(a) If 0 < µi < p, player i is said to be biased toward a = 0; the lower µi, the

higher the bias, as shown in 1.6.

(b) If p < µi < 1, player i is said to be biased toward a = 1; the higher µi, the

higher the bias.

0 1µi

prefers a = 0 prefers a = 1

(a) Conformist

0 1µi

prefers a = 1 prefers a = 0

(b) Contrarian

Figure 1.5: Action preferences of conformists and contrarians

20
A player is biased toward action a if she prefers that action given the common prior belief p.

28



For example, consider the following utility function

ui(ω, a) = −(a− ω)2 − αia, (1.17)

where αi represents player i’s willingness (bias) to take action a = 0. Then, µi = 1+αi
2

.

In this example, if αi > 1, player i is a 0-extremist, and if αi < −1, she is a 1-extremist;

otherwise, she is a conformist, because she would prefer to match the state.

Similarly, consider the following utility function

ui(ω, a) = (a− ω)2 − αi(1− a), (1.18)

where αi represents player i’s willingness (bias) to take action a = 1. Then, µi = 1+αi
2

.

In this example, if αi > 1, player i is a 1-extremist, and if αi < −1, she is a 0-extremist;

otherwise, she is a contrarian, because she would prefer not to match the state.

0 1µi µj p

Figure 1.6: The lengths of the blue and red segments represent the biases of players i and j,
respectively. Player i is higher biased than player j.

If the receiver is a 0-extremist or a 1-extremist, he will always take action a = 0 or

a = 1, respectively, regardless of the experiments chosen by the players, and thus all the

players are indi�erent among all experiments.

Suppose the receiver is a conformist who is biased toward a = 1, i.e., 0 < µR < p.

De�ne the following sets of players:

• A = {i : i is a conformist with 0 < µi < µR}

• B = {i : i is a conformist with p < µi < 1}

• C = {i : i is a contrarian with µR < µi < 1}

• D = {i : i is a contrarian with 0 < µi < µR}
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• E0 = {i : i is a 0-extremist}

• E1 = {i : i is a 1-extremist}

The next proposition implies that the relative location of two speci�c players is rele-

vant in determining the equilibrium outcome of the binary-state, binary-action game:

• LetA∗ represent the player with the highest bias among those inA: µA∗ = mini∈A µi.
21

If A = ∅, let A∗ = R. Figure 1.7 illustrates an example.

0 1p

A∗

Figure 1.7: The blue dots represent the indi�erence beliefs of all the conformists in the hierarchy

including the receiver. The ones to the right of p correspond to the conformists biased toward

a = 0 and those to the left of p correspond to the conformists biased toward a = 1.

• If D ∪ E0 6= ∅, let E∗ represent the player closest to the receiver among those in

D ∪ E0: E∗ = maxi∈D∪E0 i. Figure 1.8 illustrates an example.

1 2 3 4 5 6 7 R

E∗

Figure 1.8: The red circles represent players in D ∪ E0 of a hierarchy with n = 7.

Proposition 4. Let Ω = A = {0, 1} and suppose the receiver is a conformist who is biased

toward a = 122 and Assumption 1 holds. If there exists a 1-extremist or a contrarian with

µi > µA∗ ,23 the equilibrium is characterized by the no-information outcome.24 Otherwise,
21

Equivalently, A∗ is the player with the highest bias toward a = 1 among conformists, including the

receiver.

220 < µR < p.

23C ∪ E1 6= ∅ or ∃i ∈ D such that µi > µA∗ .

24
The no-information outcome is characterized by supp(τ∗) ⊂ (µR, 1] if a∗(µR) = 0 or supp(τ∗) ⊂

[µR, 1] if a∗(µR) = 1, which is determined by Assumption 1. However, under the assumption that Sn = A,

the no-information outcome is equivalent to supp(τ∗) = p.
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a. if all the players are conformists,25 the equilibrium outcome τ ∗ is characterized by

supp(τ ∗) = {0, 1} (full-information outcome).

b. if there are players who are not conformists and A∗ < E∗, the equilibrium is charac-

terized by the no-information outcome.

c. if there are players who are not conformists and A∗ > E∗, the equilibrium outcome

τ ∗ is characterized by supp(τ ∗) = {µA∗ , 1}.26

In equilibrium, if all the players are conformists, the receiver gets full information. Oth-

erwise,27 the location of the pivotal player A∗ determines whether the receiver gets any in-

formation, and if so, her bias µA∗ determines the amount of information communicated

to the receiver, as shown in Figure 1.9; the higher the bias of A∗, the more information is

communicated.

Proof. See Appendix A. �

1 2 3 4 5 6 7 R

A∗E∗

0 1pµA∗

Figure 1.9: A hierarchy with n = 7 and its equilibrium distribution of posteriors: The blue dots

represent the support of the equilibrium distribution of posteriors.

Another speci�c player will be of importance in the discussion of the next results:

Let D∗ represent the player with the lowest bias among those in D with µi < µA∗ :

µD∗ = maxi∈D:µi<µA∗ µi. If {i ∈ D : µi < µA∗} = ∅, let µD∗ = 0.

25D ∪ E0 = ∅.
26

Note that Assumption 1 is needed here if A∗ = R; otherwise, there would be no equilibrium.

27
This is the case except for some rather uninteresting cases resulting in no information for the receiver,

as explained in what follows.
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The no-information equilibrium outcome could emerge because of three reasons:

1. Existence of players who would provide no information in a single-sender game:

This is the case if there exists a 1-extremist or a contrarian with µi > µR, i.e.,

C ∪E1 6= ∅. 1-extremists always prefer action a = 1; by providing no information,

they make sure that the receiver, who is biased toward action a = 1, takes action

a = 1. If the equilibrium is not the no-information outcome, it means sometimes

the receiver takes action a = 0. However, the set of beliefs at which a contrarian

with µi > µR prefers action a = 0 and the set of beliefs at which the receiver takes

action a = 0 are disjoint, as shown in Figure 1.10. Therefore, no information is

provided in equilibrium.

0 1µiµR

i prefers a = 1 i prefers a = 0

a∗(µ) = 0 a∗(µ) = 1

Figure 1.10: The blue segments do not overlap, that is, there does not exist a posterior belief at

which both player i and the receiver prefer a = 0.

2. Existence of players with highly opposed preferences: Assuming C ∪E1 = ∅, this

is the case if there exists i ∈ D such that µi > µA∗ . As mentioned before, if the

equilibrium is not the no-information outcome, it means sometimes the receiver

takes action a = 0. However, the set of beliefs at which a contrarian with µi >

µA∗ prefers action a = 0 and the set of beliefs at which A∗ prefers action a = 0

are disjoint, as shown in Figure 1.11. Therefore, no information is provided in

equilibrium.

3. Location of the pivotal player: Assuming C ∪ E1 = ∅ and that there exists no

i ∈ D such that µi > µA∗ , this is the case if A∗ < E∗, i.e., E∗ is closer to the

receiver than is the pivotal player A∗, as shown in Figure 1.12. The reason is that
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0 1µRµiµA∗

i prefers a = 1 i prefers a = 0

A∗ prefers a = 0 A∗ prefers a = 1

Figure 1.11: The blue segments do not overlap, that is, there does not exist a posterior belief at

which both player i and A∗ prefer a = 0.

when designing her experiment, E∗, whose preferences are somewhat opposed to

those of A∗, considers only the incentive compatibility constraints of the succeed-

ing players, not those of the preceding players, such as A∗. Knowing this, A∗ pre-

emptively provides no information, because she understands that the presence of

E∗ closer to the receiver guarantees an outcome in which A∗ prefers action a = 1.

This equilibrium is ine�cient, because all the players prefer every outcome τ with

min (supp(τ)) ∈ [µD∗ , µA∗ ].

1 2 3 4 5 6 7 R

A∗ E∗

Figure 1.12: The blue circles represent the conformists while the red ones represent players in

{i ∈ D : µi < µA∗} ∪ E0 of a hierarchy with n = 7.

The next corollary shows that the con�guration 3 above is the only one that causes

ine�ciency in communication.

Corollary 3. Let Ω = A = {0, 1} and suppose the receiver is a conformist who is biased

toward a = 1 and Assumption 1 holds. The equilibrium is ine�cient if and only if the

conditions in part (b) Proposition 4 hold.

One question that may arise is if the receiver, who could be the CEO of a �rm or

the president of a government, can get more information and thus increase his payo� by
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assigning a vice president and if so, how. The next corollary shows that the answer is

a�rmative.

Corollary 4. Let Ω = A = {0, 1} and suppose the receiver is a conformist who is biased

toward a = 1 and Assumption 1 holds. If the receiver could add a player of his choice at

the end of the hierarchy, he would choose a conformist biased toward a = 1 with higher

bias than A∗ but lower bias thanD∗.28 The receiver’s utility would then be increasing in the

bias of the added player and the new equilibrium would be e�cient. Moreover, the receiver

would not bene�t from adding more players.

1 2 3 4 5 6 7 VP R

A∗ E∗ new A∗

Figure 1.13: Adding a vice president to a hierarchy with n = 7

The intuition behind this result is as follows:

• The vice president is the closest player to the receiver. Because players move se-

quentially, every player is better o� by taking into account the preferences of the

players closest to the receiver ( i.e., those who are higher-ranked). Therefore, all

the players are better o� taking into account the preferences of the vice president.

• If the receiver follows the prescription in the corollary, the vice president ex ante

has similar action preferences to those of the receiver; they are both conformists

biased toward a = 1. This implies that a player who intends to persuade the re-

ceiver to take action a = 0 must �rst persuade the vice president toward action

a = 0. Otherwise (i.e., if min supp(τ) > µV P ), the vice president will not pass

any information to the receiver, being sure that the receiver will take the action

favored by the vice president (i.e., a = 1).

28µD∗ < µi < µA∗ .
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• By behaving as prescribed in the corollary, the receiver makes the vice president

the new pivotal player, as shown in Figure 1.13; the vice president is the conformist

with the highest bias toward a = 1. This implies that more information is required

to persuade the vice president toward action a = 0.

• As mentioned before, the higher the bias of the pivotal player, the more information

is communicated.

To generalize Proposition 4 to other types of receiver, I call conformist the opposite

type of contrarian and vice versa. Similarly, I call bias toward a = 1 the opposite of bias

toward a = 0 and vice versa. Also, when two players are of opposite type and bias, I

compare their biases in the same way as if they were of the same type and bias.

De�ne the following sets of players:

• A = {i : i is of the same type and bias as the receiver but with higher bias}

• B = {i : i is of the same type as the receiver but with opposite bias}

• C = {i : i is of opposite type to the receiver but with the same bias or lower

opposite bias}

• D = {i : i is of opposite type to the receiver but with higher opposite bias}

• E0 = {i : i is an extremist of opposite bias to the receiver}

• E1 = {i : i is an extremist of the same bias as the receiver}

As in Proposition 4, the relative location of two speci�c players is relevant in deter-

mining the equilibrium outcome of the binary-state, binary-action game:

• Let A∗ represent the player with the highest bias among those in A; if A = ∅, let

A∗ = R.

• If D ∪ E0 6= ∅, let E∗ represent the player closest to the receiver among those in

D ∪ E0: E∗ = maxi∈D∪E0 i.
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Proposition 5. Let Ω = A = {0, 1} and suppose the receiver is not an extremist and

Assumption 1 holds. If C ∪ E1 6= ∅ or if there exists i ∈ D such that i is less biased than

A∗, the equilibrium is characterized by the no-information outcome.29 Otherwise,

a. if D ∪ E0 = ∅,30 the equilibrium outcome τ ∗ is characterized by supp(τ ∗) = {0, 1}
(full-information outcome).

b. ifD∪E0 6= ∅31 andA∗ < E∗, the equilibrium is characterized by the no-information

outcome.

c. if D ∪ E0 6= ∅ and A∗ > E∗, the equilibrium outcome τ ∗ is characterized by

supp(τ ∗) = {µA∗ , a}, where a = a∗(p) if the receiver is a conformist and a =

1− a∗(p) if he is a contrarian.32

In equilibrium, if all the players are of the same type as that of the receiver, he gets full

information. Otherwise,33 the location of the pivotal player A∗ determines whether the re-

ceiver gets any information, and if so, her bias µA∗ determines the amount of information

communicated to the receiver; the higher the bias of A∗, the more information is communi-

cated.

Proof. The proof is similar to that of Proposition 4 presented in Appendix A. �

Another speci�c player will be of importance in the discussion of the next results:

LetD∗ represent the player with the lowest bias among those inD with higher bias than

A∗. If {i ∈ D : i has higher bias than A∗} = ∅, let µD∗ = 1 − a∗(p) if the receiver is a

conformist and µD∗ = a∗(p) if he is a contrarian.

29
The no-information outcome is characterized by (i) supp(τ∗) ⊂ (µR, 1] or supp(τ∗) ⊂ [µR, 1], or (ii)

supp(τ∗) ⊂ [0, µR) or supp(τ∗) ⊂ [0, µR], whichever includes p; open or closed interval is determined by

Assumption 1. However, under the assumption that Sn = A, the no-information outcome is equivalent to

supp(τ∗) = p.

30
All the players are of the same type as the receiver.

31
There are players who are not of the same type as the receiver.

32
Note that Assumption 1 is needed here if A∗ = R; otherwise, there would be no equilibrium.

33
This is the case except for some rather uninteresting cases resulting in no information for the receiver,

as explained in what follows.
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The no-information equilibrium outcome could emerge because of three reasons:

1. Existence of players who would provide no information in a single-sender game:

This is the case if there exists an extremist of the same bias as the receiver or a

player of the opposite type to that of the receiver but with the same bias or lower

opposite bias µR < µi < 1, i.e., C ∪ E1 6= ∅.

2. Existence of players with highly opposed preferences: Assuming C ∪E1 = ∅, this

is the case if there exists i ∈ D such that i is less biased than A∗.

3. Location of the pivotal player: Assuming C ∪ E1 = ∅ and that there exists no

i ∈ D such that i is more biased than A∗, this is the case if A∗ < E∗, i.e., E∗ is

closer to the receiver than is the pivotal player P . This equilibrium is ine�cient,

because all the players prefer every outcome τ with min (supp(τ)) ∈ [µD∗ , µA∗ ] or

max (supp(τ)) ∈ [µA∗ , µD∗ ], whichever is a well-de�ned interval. The equilibrium

is ine�cient if and only if this condition holds.

Corollary 5. Let Ω = A = {0, 1} and suppose the receiver is not an extremist and As-

sumption 1 holds. The equilibrium is ine�cient if and only if the conditions in part (b) of

Proposition 5 hold.

Corollary 6. Let Ω = A = {0, 1} and suppose the receiver is not an extremist and As-

sumption 1 holds. If the receiver could add a player of his choice at the end of the hierarchy,

he would choose one of the same type and bias as himself but with higher bias than A∗ and

lower bias than D∗. The receiver’s utility would then be increasing in the bias of the added

player and the new equilibrium would be e�cient. Moreover, the receiver would not bene�t

from adding more players.

1.7.2 General Binary-Action Games

Let Ω = [0, 1]. Given the experiment π1 chosen by player 1, Proposition 5 characterizes

the equilibrium outcome of the binary-state, binary-action subgame starting from player
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2. By choosing π1, player 1 not only chooses the state space of the following subgame

supp(τ1) = {q0, q1} but also, implicitly, the four numbers representing the utilities of the

subsequent players,
34

and thus their types.

In the general binary-action game, for each player, there is a utility function corre-

sponding to each action: ui(ω, 0) and ui(ω, 1). Let ∆ui(ω) = ui(ω, 1) − ui(ω, 0) and

suppose ∆ui(ω) = αiω + βi for some αi, βi ∈ R. For example, it could be the case that

ui(ω, 0) = 0 and ui(ω, 1) = αiω + βi. Let ωi = − βi
αi

represent the state, or, equivalently,

the posterior mean, at which i is indi�erent between the two actions.

Generally, as mentioned before, player 1 chooses a Bayes-plausible distribution of

posteriors τ1 ∈ ∆(∆(Ω)) with supp(τ1) = {q0, q1}. From this point on, the game is a

binary-state, binary-action one. In the special case where ∆ui(ω) = αiω + βi, because

action preferences depend only on the posterior mean, I can assume, with some abuse

of notation, that player 1 chooses a distribution of posterior means τ1 ∈ ∆(Ω),
35

where

supp(τ1) = {m0,m1}36
, and τ1 is a mean preserving contraction of F (implying Eτ1 [ω] =

EF [ω] = m).
37

For example, if F is the uniform distribution over [0, 1], a distribution of

posterior means τ with supp(τ) = {m0,m1} gives a mean preserving contraction of F

(with the Bayes-plausible probabilities, i.e., τ(m0)m0 + (1− τ(m0))m1 = m) if and only

if m1 −m0 ≤ 0.5.
38

Generally, the shape of the utility functions ui and choice of the �rst player τ1 deter-

mine the type of each subsequent player (conformist, contrarian, or extremist) in the

following binary-state, binary-action subgame. In the special case where ∆ui(ω) =

αiω + βi, all I need to know about player i = 2, . . . , n is her indi�erence posterior mean

34ulki = Eql [ui(ω, k)], ∀l, k ∈ {0, 1}
35

Because τ1 is a �nite-support distribution, τ1 represents the probability mass function.

36
Recall that in the binary-state, binary-action games, each player was represented by the posterior

belief µi (or equivalently, posterior mean) at which she was indi�erent between the two actions. In this

special case, in the binary-state, binary-action game starting from player 2, µi = ωi−m0

m1−m0
. Clearly, µi > µj

if and only if ωi > ωj .
37

Clearly, 0 ≤ m0 ≤ m ≤ m1 ≤ 1. In the special case where ∆ui(ω) = αiω + βi, with some abuse of

notation, the outcome τ represents a distribution of posterior means.

38
Note that, generally, if the pair (m0,m1) gives a mean preserving contraction of F , any pair (m′0,m

′
1)

also gives a mean preserving contraction of F if and only if m0 ≤ m′0 ≤ m ≤ m′1 ≤ m1.
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ωi
39

and the sign of αi (or equivalently, her preferred action at ω = 1).
40

If ωi < 0 or

ωi > 1, player i is called an absolute extremist; that is, regardless of τ1 chosen by player

1, player i will be an extremist in the subgame starting from player 2. Otherwise, αi > 0

(< 0) implies that player i is a conformist (contrarian). However, given τ1, and thus, m0

and m1, each conformist or contrarian may turn into an extremist in the subgame start-

ing from player 2, as shown in Figure 1.14: this happens if ωi < m0 or ωi > m1; also,

whenever τ1 turns an a-biased
41

conformist or contrarian into an extremist, she will be-

come an a-extremist. The new extremists are related as follows: if player i with ωi < m

(ωi > m) turns into an extremist, all players j with ωj < ωi (ωj > ωi) turn into extremists

as well.

0 1mωim0 m1

prefers a = 0 prefers a = 1

(a) Player i remains a conformist with µi = ωi−m0
m1−m0

.

0 1mωi m0 m1

prefers a = 0 prefers a = 1

(b) Player i turns into a 1-extremist.

Figure 1.14: The distribution of posterior means τ1 chosen by player 1 with supp(τ1) = {m0,m1}
may turn a conformist biased toward a = 1 into a 1-extremist in the subgame starting from player

2.

Consider the binary-state, binary-action game starting from player 2, where Ω =

{0, 1} and µi = ωi, for all i = 2, . . . , n, R.
42

I call this game the reduced binary-state

game corresponding to the general binary-action game.

39
For simplicity, I assume ωi 6∈ {0,m, 1} where m = EF [ω] and ωi 6= ωj if i 6= j.

40
This is similar to the claim I made in the binary-state, binary-action case, because the subgame starting

from player 2 is a binary-state, binary action one.

41
Bias is de�ned similar to the binary-state, binary-action case: A player is biased toward action a if she

prefers that action given the common prior mean m.

42
Note that the only extremists of this game are the absolute extremists of the original game.
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Lemma 1. Let ∆ui(ω) = αiω + βi for i = 2, . . . , n, R. If the equilibrium outcome of the

reduced binary-state game corresponding to the binary-action game is the no-information

outcome, the same holds for the original binary-action game.43

Proof. See Appendix B. �

In general, the optimal choice of player 1 is not clear based only on ∆u1(ω). To make

analysis tractable, let us assume u1(ω, 0) = 0.
44

Consider the binary-state, binary-action

game where Ω = {0, 1} and µi = ωi, for all i = 1, . . . , n, R. I call this game the binary-

state game corresponding to the general binary-action game.

Lemma 2. Let ∆ui(ω) = αiω + βi for i = 1, . . . , n, R and u1(ω, 0) = 0. If the equi-

librium outcome of the binary-state game corresponding to the binary-action game is the

no-information outcome, the same holds for the original binary-action game45.

Proof. See Appendix B. �

Again, if the receiver is an absolute extremist, he will always take action a = 0 or

a = 1 regardless of the experiments chosen by the players, and thus all the players are

indi�erent among all experiments.
46

Suppose receiver is a conformist who is biased toward a = 1, i.e., αR > 0 and 0 <

ωR < m. De�ne the sets of players (not including player 1) A,B,C,D,E0, E1 as in

Proposition 4 by replacing µi and µR with ωi and ωR, respectively. Similarly, de�ne A∗

and E∗.

43
Lemma 1 can be written more generally as follows: If the equilibrium outcome of the reduced binary-

state game starting from player i ≥ 2 is the no-information outcome, the same holds for the binary-action

game starting from player j < i.
44

This implies that u1(ω, 1) = α1ω + β1.

45
Lemma 2 can be written more generally as follows: If the equilibrium outcome of the binary-state

game starting from player i with ui(ω, 0) = 0 is the no-information outcome, the same holds for the

binary-action game starting from player j ≤ i.
46

This is clearly true for any binary-action game regardless of the assumptions made in this section.
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The next proposition implies that the relative location and relative bias of three spe-

ci�c players in addition to player 1 and E∗ are relevant in determining the equilibrium

outcome of the binary-action game in the special case where u1(ω, 0) = 0 and the prior

belief F is uniform:

• Let P represent the conformist with the highest bias toward a = 1:
47 ωP =

mini:αi>0,0<ωi<1 ωi.

• LetB∗ represent the player with the highest bias among those inB: ωB∗ = maxi∈B ωi.

If B = ∅, let ωB∗ = m.

• Let B∗P represent the player with the highest bias among those in B and closer

to the receiver than is P : ωB∗P = maxi∈B:i>P ωi. If {i ∈ B : i > P} = ∅, let

ωB∗P = m.

Figure 1.15 illustrates an example.

1 2 3 4 5 6 7 R

B∗ P B∗P

Figure 1.15: The blue circles represent the conformists while the red ones represent extremists

and contrarians of a hierarchy with n = 7.

Proposition 6. Let Ω = [0, 1], A = {0, 1}, ∆ui(ω) = αiω + βi for i = 1, . . . , n, R,

u1(ω, 0) = 0 and the prior belief F be the uniform distribution over [0, 1]. Suppose the

receiver is a conformist who is biased toward a = 1,48 Assumption 1 holds, and the no-

information outcome is not the equilibrium outcome of the corresponding binary-state game.

47
This implies P = 1 or P = A∗.

48αR > 0 and 0 < ωR < m.
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The equilibrium is characterized by the no-information outcome49 unless ωB∗P −ωP ≤ 0.5;50

in this case,

a. if there are players who are not conformists,51 supp(τ ∗) = {ωP , ωP + 0.5};

b. if all the players are conformists and ωB∗ − ωP > 0.5, supp(τ ∗) = {ωP , ωP + 0.5};

c. if all the players are conformists and ωB∗−ωP ≤ 0.5,52 supp(τ ∗) = {m0,m0 +0.5},
wherem0 = min {ωP ,max (ωB∗ − 0.5, 0.5ω1)}.53

Assuming the equilibrium outcome of the corresponding binary-state game is not the

no-information outcome, the receiver gets some information if and only if ωB∗P −ωP ≤ 0.5,

i.e., there is not a conformist whose preferences are somewhat opposed to those of the pivotal

player P and is closer to the receiver than is the pivotal player P . In this case, the biases of

player 1 and of the pivotal players P and B∗ determine the information communicated to

the receiver, as shown in Figure 1.16. Every equilibrium is outcome-equivalent to one which

simply distinguishes between the two intervals [0, x] and [x, 1] for some x ∈ [0, ωP ].

Proof. I �rst state two lemmas which are proved in Appendix B:

Lemma 3. LetΩ = [0, 1],A = {0, 1} and∆ui(ω) = αiω+βi for i = 2, . . . , n, R. Suppose

the receiver is a conformist who is biased toward a = 1, Assumptions 1 holds, and the no-

information outcome is not the equilibrium outcome of the reduced binary-state game.54

Given player 1’s choice of distribution of posterior means τ1 with supp(τ1) = {m0,m1},
49

The no information outcome is characterized by supp(τ∗) ⊂ (ωR, 1] if a∗(ωR) = 0 or supp(τ∗) ⊂
[ωR, 1] if a∗(ωR) = 1, which is determined by Assumption 1. However, under the assumption that Sn = A,

the no-information outcome is equivalent to supp(τ∗) = m.

50
That is, there would be no new 0-extremists closer to the receiver than is P if information is provided:

ωi ≤ ωP + 0.5 for all players i > P .

51
That is, there are players who are absolute 0-extremists or contrarians with 0 < ωi < ωP .

52
That is, there would be no new 0-extremists if information is provided: ωi ≤ ωP + 0.5 for all the

players.

53
Equivalently, m0 = max {ωB∗ − 0.5,min (ωP , 0.5ω1)}.

54
This implies that (not including player 1) there exists no absolute 1-extremist or contrarian withωA∗ <

ωi < 1, and A∗ is closer to the receiver than are all absolute 0-extremists and contrarians with 0 < ωi <
ωA∗ .
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0 1m

ωB∗P

ωP ωP + 0.5

(a) There are players who are not conformists.

0 1m

ωB∗ωB∗P

ωP ωP + 0.5

(b) All players are conformists and ωB∗ − ωP > 0.5.

0 1m

ωB∗ωB∗ − 0.5 0.5ω1

ωP ωP + 0.5

(c) All players are conformists, ωB∗ − ωP ≤ 0.5, and

0.5ω1 > ωP .

0 1m ωB∗ωB∗ − 0.5

0.5ω1 ωP

(d) All players are conformists, ωB∗ − ωP ≤ 0.5, and

0.5ω1 < ωB∗ − 0.5.

0 1m 0.5ω1 + 0.50.5ω1

ωB∗ − 0.5 ωP

(e) All players are conformists, ωB∗ − ωP ≤ 0.5, and

ωB∗ − 0.5 < 0.5ω1 < ωP .

Figure 1.16: The equilibrium outcome if ωB∗P −ωP ≤ 0.5: The blue dots represent the support of

the equilibrium distribution of posteriors.

the equilibrium of the following subgame starting from player 2 is characterized by the

no-information outcome unless:

a. (i) all the remaining players are conformists,55 (ii)m0 ≤ ωA∗ andm1 ≥ ωB∗ , in which

case, the equilibrium outcome τ ∗ of the following subgame starting from player 2 is

55C ∪D ∪ E0 ∪ E1 = ∅.
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characterized by supp(τ ∗) = {m0,m1} (full-information outcome);56

b. (i) all the remaining players are conformists but m1 < ωB∗ , or there are players (not

including player 1) who are not conformists, (ii) m0 ≤ ωA∗ , (iii) A∗ is closer to the

receiver than are all the new 0-extremists, i.e., conformists with ωi > m1, in which

case, the equilibrium outcome τ ∗ of the following subgame starting from player 2 is

characterized by supp(τ ∗) = {µA∗m1 + (1− µA∗)m0 = ωA∗ ,m1}.57

Lemma 4. Let Ω = [0, 1], A = {0, 1}, ∆ui(ω) = αiω + βi for i = 1, . . . , n, R and

u1(ω, 0) = 0. Suppose the receiver is a conformist who is biased toward a = 1. The pref-

erences of di�erent types of player 1 over outcomes τ with supp(τ) = {m0,m1} are as
follows:

• If player 1 is an absolute 1-extremist or a contrarian (α1 < 0) with ωR < ω1 < 1, she

would prefer the no-information outcome to all other outcomes.58

• If player 1 is an absolute 0-extremist, she would prefer outcomes with higher m1 and

higherm0 as long as the outcome is not the no-information outcome.

• If player 1 is a contrarian (α1 < 0) with 0 < ω1 < ωR, she would prefer outcomes with

higher m0 and m1, as long as m0 ≥ ω1 and the outcome is not the no-information

outcome.59 She would also prefer the no-information outcome to all outcomes with

m0 < ω1.
56

Note that if A∗ 6= R and m0 = ωA∗ , another possible equilibrium is the no-information outcome.

Similarly, if m1 = ωB∗ , in other possible equilibria, player 1’s choice of distribution of posterior means

(m0,m1) would reach the receiver as (m′, ωB∗), where m0 ≤ m′ ≤ ωA∗ . However, such outcomes will be

ruled out as equilibrium in the original game starting from player 1.

57
Note that Assumption 1 is needed here if A∗ = R; otherwise, there would be no equilibrium.

58
Thus, the equilibrium outcome τ∗ is characterized by supp(τ∗) ⊂ (µR, 1] if a∗(µR) = 0 or

supp(τ∗) ⊂ [µR, 1] if a∗(µR) = 1, which is determined by Assumption 1 (no-information outcome). How-

ever, under the assumption that Sn = A, the no-information outcome is equivalent to supp(τ∗) = m.

Note that u1(ω, 0) = 0 is not necessary for this part.

59
In this case, if m0 = ω1, she would be indi�erent about m1.
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• If player 1 is a conformist with 0 < ω1 < ωR, she would prefer outcomes with lower

m0 and higher m1 as long as m0 ≤ ω1.60 She would also prefer the no-information

outcome only to outcomes withm0 > ω1.

• If player 1 is a conformist (α1 > 0) with ωR < ω1 < m, she would prefer lower m0

and higherm1 as long as the outcome is not the no-information outcome.

• If player 1 is a conformist (α1 > 0) with m < ω1 < 1, she would prefer higher m1

and (i) lowerm0 ifm1 ≥ ω1, (ii) higherm0 ifm1 < ω1, as long as the outcome is not

the no-information outcome.61

Now, I can prove Proposition 6. Note that there are no absolute 1-extremists or con-

trarians with ωP < ωi < 1 and P > E∗. As mentioned before, if F is the uniform

distribution over [0, 1], a distribution of posterior means τ with supp(τ) = {m0,m1}
gives a mean preserving contraction of F (with the Bayes-plausible probabilities, i.e.,

τ(m0)m0 + (1− τ(m0))m1 = m) if and only if m1 −m0 ≤ 0.5.

Suppose ωB∗P − ωP > 0.5.

• If P = A∗ = R, every possible choice of m0 and m1 by player 1 either is the no-

information outcome or turnsB∗P into a 0-extremist, which leads to no-information

outcome, by Lemma 3.

• If P = 1, every possible choice of m0 and m1 by player 1 with m0 ≤ ω1 turns

B∗P into a 0-extremist, which leads to the no-information outcome, by Lemma 3.

Moreover, by Lemma 4, player 1 would prefer the no-information outcome to every

possible choice of m0 and m1 with m0 > ω1, which is not the no-information

outcome. Therefore, the only possible equilibrium outcome is the no-information

outcome.

60
In this case, if m0 = ω1, she would be indi�erent about m1.

61
In this case, if m1 = ω1, she would be indi�erent among all m0 as long as the outcome is not the

no-information outcome.
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• If P = A∗ 6= 1, every possible choice of m0 and m1 by player 1 either turns P

into a 1-extremist or turns B∗P into a 0-extremist, both of which lead to the no-

information outcome, by Lemma 3.

Suppose ωB∗P − ωP ≤ 0.5. Before proceeding, note that given any outcome (other

than the no-information outcome) with m1 = m0 + 0.5, the expected utility of player 1

is given by

Eτ [u1(ω, a∗(ω)] =
m−m0

m1 −m0

(α1m1 + β1)

= 2(0.5−m0)(α1m0 + 0.5α1 + β1)

where I used the fact that EF [ω] = m. Taking the derivative

∂Eτ [u1(ω, a∗(ω)]

∂m0

= −2α1m0 − β1

shows that it is equal to zero atm0 = −β1
2α1

= 0.5ω1, where the expected utility of player 1

is maximized if she is a conformist (α1 > 0) and minimized if she is a contrarian (α1 < 0).

Moreover, the expected utility of player 1 is increasing in m0 if she is a 0-extremist.

• Suppose there are players who are not conformists, that is, there are players who

are absolute 0-extremists or contrarians with 0 < ωi < ωP . Note that P 6= 1

because otherwise, P < E∗ and the no-information outcome is the equilibrium

outcome of the corresponding binary-state game.

Suppose the only non-conformist is player 1. By Lemma 3, every possible choice

of m0 and m1 by player 1 with m0 ≤ ωP and m1 ≥ ωB∗ leads to the outcome

τ with supp(τ) = {m0,m1}; since by Lemma 4, player 1 would prefer outcomes

with higher m0, she chooses m0 = ωP . Similarly, every possible choice of m0 and

m1 by player 1 with m0 ≤ ωP and ωB∗P ≤ m1 < ωB∗ leads to the outcome τ with

supp(τ) = {ωP ,m1}; all other possible choices of m0 and m1 by player 1 lead to

the no-information outcome. Since by Lemma 4, player 1 would prefer outcomes
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with higher m1, she chooses m1 = m0 + 0.5. Therefore, the equilibrium outcome

would be m0 = ωP and m1 = ωP + 0.5 since ωP + 0.5 ≥ ωB∗P .

Suppose there are non-conformists among the players other than player 1. By

Lemma 3, every possible choice of m0 and m1 by player 1 with m0 ≤ ωP and

m1 ≥ ωB∗P leads to the outcome τ with supp(τ) = {ωP ,m1}; all other choices

of m0 and m1 by player 1 lead to the no-information outcome. Since by Lemma

4, player 1 would prefer outcomes with higher m1, she chooses m1 = m0 + 0.5.

Therefore, the equilibrium outcome would be m0 = ωP and m1 = ωP + 0.5 since

ωP + 0.5 ≥ ωB∗P .

• Suppose all the players are conformists and ωB∗−ωP > 0.5. Every possible choice

ofm0 andm1 by player 1 withm0 ≤ ωP turnsB∗ into a 0-extremist, and by Lemma

3, leads to the outcome τ with supp(τ) = {ωP ,m1} as long asm1 ≥ ωB∗P ; all other

possible choices of m0 and m1 by player 1 lead to the no-information outcome.

Since by Lemma 4, player 1 would prefer outcomes with higher m1, she chooses

m1 = m0 + 0.5. Therefore, the equilibrium outcome would be m0 = ωP and

m1 = ωP + 0.5, since ωP + 0.5 ≥ ωB∗P .

• Suppose all the players are conformists and ωB∗ − ωP ≤ 0.5. By Lemma 3, every

possible choice ofm0 andm1 by player 1 withm0 ≤ ωP andm1 ≥ ωB∗ leads to the

outcome τ with supp(τ) = {m0,m1}. Similarly, every possible choice of m0 and

m1 by player 1 with m0 ≤ ωP and ωB∗P ≤ m1 < ωB∗ leads to the outcome τ with

supp(τ) = {ωP ,m1}; all other possible choices of m0 and m1 by player 1 lead to

the no-information outcome. Since by Lemma 4, player 1 would prefer outcomes

with higher m1, she chooses m1 = m0 + 0.5. Her expected utility is maximized at

m0 = 0.5ω1 if 0.5ω1 ≤ ωP and 0.5ω1 + 0.5 ≥ ωB∗ ; if the �rst one is violated, she

chooses m0 = ωP , and if the second one is violated, she chooses m0 = ωB∗ − 0.5

since her expected utility is decreasing inm0 in the interval [0.5ω1, ωP ]. Therefore,

the equilibrium outcome would be m0 = min {ωP ,max (ωB∗ − 0.5, 0.5ω1)} and

m1 = m0 + 0.5.
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Another speci�c player will be of importance in the next results: LetD∗∗ represent the

player with the lowest bias among those in D with ωi < ωP : ωD∗∗ = maxi∈D:ωi<ωP ωi.

If {i ∈ D : ωi < ωP} = ∅, let ωD∗∗ = 0. If player 1 is a contrarian with 0 < ω1 < ωP , let

ωD∗ = max (ωD∗∗ , ω1); otherwise, let ωD∗ = ωD∗∗ .

The no-information equilibrium outcome could emerge because of two main reasons:

1. Condition 1: The no-information outcome is the equilibrium outcome of the corre-

sponding binary-state game.

(a) Existence of players who would provide no information in a single-sender

game: This is the case if there exists an absolute 1-extremist or a contrarian

(α1 < 0) with ωR < ωi < 1.

(b) Existence of players with highly opposed preferences: If condition (a) does not

hold, this is the case if there exists a contrarian (α1 < 0) with ωP < ωi < ωR.

(c) Location of the pivotal player P : If conditions (a) and (b) do not hold, this is

the case if P < E∗, i.e., E∗ is closer to the receiver than is the pivotal player

P . This equilibrium is ine�cient since all the players prefer every outcome τ

with min (supp(τ)) ∈ [ωD∗ , ωP ].

2. Condition 2: Location and bias of the pivotal playerP : If condition (1) does not hold,

this is the case if ωB∗P −ωP > 0.5, i.e., there exists a conformist whose preferences

are somewhat opposed to those of the pivotal player P and is closer to the receiver

as shown in Figure 1.17. This equilibrium is ine�cient since all players prefer every

outcome τ with min (supp(τ)) ∈ [ωD∗ , ωP ].

Condition 1(c) and Condition 2 are similar: There exists a player with somewhat

opposed preferences to those of the pivotal player P who is closer to the receiver than

is the pivotal player P . The next corollary shows that this con�guration is the only one

which causes ine�ciency in communication.
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0 1mωP ωB∗P

(a) If ωB∗P − ωP > 0.5, either m0 > ωP or m1 < ωB∗P
for every choice ofm0 andm1 such thatm1−m0 ≤ 0.5.

0 1mωP ωB∗Pm0 m1

(b) If m0 > ωP , P turns into a 1-extremist.

0 1mωP ωB∗Pm0 m1

(c) If m1 < ωB∗P , B∗P turns into a 0-extremist closer to

the receiver than P .

Figure 1.17: If ωB∗P − ωP > 0.5, no-information equilibrium outcome emerges.

Corollary 7. Let Ω = [0, 1], A = {0, 1}, ∆ui(ω) = αiω + βi for i = 1, . . . , n, R,

u1(ω, 0) = 0 and the prior belief F be the uniform distribution over [0, 1]. Suppose the

receiver is a conformist who is biased toward a = 1 and Assumption 1 holds. The equilibrium

is ine�cient if and only if Condition 1(c) or Condition 2 holds.

Similar to the binary-state case, as the next corollary shows, the receiver can get more

information and thus increase her payo� by assigning a suitable vice-president.

Corollary 8. Let Ω = [0, 1], A = {0, 1}, ∆ui(ω) = αiω + βi for i = 1, . . . , n, R,

u1(ω, 0) = 0 and the prior belief F be the uniform distribution over [0, 1]. Suppose the

receiver is a conformist who is biased toward a = 1 and Assumption 1 holds. If the re-

ceiver could add a player of his choice at the end of the hierarchy, depending on the hi-

erarchy con�guration, he would choose either a conformist biased toward a = 1 with

ωn+1 = min {ωP ,max (0.5ωR, ωD∗)},62 or a conformist biased toward a = 0 with ωn+1 =

min (0.5ωR, ωP ) + 0.5. The new equilibrium would be e�cient.63

Notice that from the receiver’s point of view, supp(τ) = {0.5ωR, 0.5ωR + 0.5} is

62
Equivalently, ωn+1 = max {ωD∗ ,min (0.5ωR, ωP )}.

63
To determine the new equilibrium outcome using Proposition 6, if there are two players with indi�er-

ence belief ωP , I consider the closest one to the receiver as the pivotal player P .
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equivalent to the full-information outcome. In the following discussion, I assume ωD∗ =

0, for simplicity.

If the players have su�ciently opposed preferences,
64

, based on Proposition 6, the

receiver can try to achieve full information by choosing a vice president with ωn+1 =

0.5ωR who is the pivotal player P in the new longer hierarchy. However, this is possible

only if ωP ≥ 0.5ωR; otherwise, the receiver’s choice does not change the pivotal player

P in the new longer hierarchy. If ωP < 0.5ωR, the receiver can still avoid possible

ine�ciencies by choosing a vice president with ωn+1 = ωP .

However, if all the players have somewhat similar preferences,
65

based on Proposition

6, the receiver can try to achieve full information in two di�erent ways:

• The receiver can choose a vice president with ωn+1 = 0.5ωR who is the pivotal

playerP in the new longer hierarchy. However, this is e�ective only if min (supp(τ ∗)) ≥
0.5ωR. Otherwise, either ωP < 0.5ωR and the receiver’s choice does not change

the pivotal player P in the new longer hierarchy, or max (ωB∗ − 0.5, 0.5ω1) <

0.5ωR ≤ ωP and the receiver’s choice does not change the outcome.

• The receiver can choose a vice president with ωn+1 = min (0.5ωR, ωP ) + 0.5 who

is the pivotal player B∗ in the new longer hierarchy. However, this is e�ective

only if min (supp(τ ∗)) = max (ωB∗ − 0.5, 0.5ω1) < 0.5ωR. Otherwise, either

ωB∗ − 0.5 > 0.5ωR and the receiver’s choice does not change the pivotal player

B∗ in the new longer hierarchy, or ωB∗ − 0.5 ≤ 0.5ωR ≤ 0.5ω1 and the receiver’s

choice does not change the outcome.

Corollary 9. Let Ω = [0, 1], A = {0, 1}, ∆ui(ω) = αiω + βi for i = 1, . . . , n, R,

u1(ω, 0) = 0 and the prior belief F be the uniform distribution over [0, 1]. Suppose the

receiver is a conformist who is biased toward a = 1 and Assumption 1 holds. If the receiver

could add two players of his choice at the end of the hierarchy, he would choose a conformist

biased toward a = 1 with ωn+1 = min {ωP ,max (0.5ωR, ωD∗)} and a conformist biased
64

That is, either all are not conformists or if they are conformists, ωB∗ − ωP > 0.5.

65
That is, all are conformists and ωB∗ − ωP ≤ 0.5.
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toward a = 0 with ωn+1 = min (0.5ωR, ωP ) + 0.5. The order does not matter and the new

equilibrium would be e�cient. Moreover, the receiver would not bene�t from adding more

players.

Similar to the binary-state case, Proposition 6, as well as Corollary 8 and Corollary 9,

can be generalized to other types of the receiver.

1.8 Conclusion

In this paper, I have investigated the outcome of intermediated communication in hierar-

chical organizations through the lens of Bayesian persuasion. I have shown that a version

of the revelation principle holds, that is, it is without loss of generality to assume the only

sender who may conceal information along the hierarchy is the initial one. I then used

this simpli�cation to show that hierarchical Bayesian persuasion is equivalent to single-

sender Bayesian persuasion between the initial sender and the �nal receiver subject to

recursively-de�ned incentive compatibility constraints dictated by the preferences of the

intermediaries.

Applying these results to the case that the decision maker faces a binary decision

underscores the importance of vice presidents in hierarchical organizations. I have shown

that, in such cases, regardless of the number of intermediaries, a few of them are relevant

in determining the outcome.

Given the above result, an interesting question that could be addressed in future re-

search is whether it is possible to pinpoint a few relevant intermediaries if the decision is

not binary. Another question to be addressed is the e�ect of private information on the

outcome.

Moreover, this paper can be considered as a �rst step toward analyzing Bayesian

persuasion in networks such as social media. The main di�culty of such an extension

lies in analyzing the optimal experiment of a sender who is not aware of the prior of the

receiving end.
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1.9 Appendix A: Binary-State, Binary-Action Games

Bayes-plausibility implies that for any outcome of the game, or equivalently, any dis-

tribution of posteriors for the receiver τ with supp(τ) = {q0, q1}, Eτ [q] = p. Without
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loss of generality, let q0 ≤ q1 which implies 0 ≤ q0 ≤ p ≤ q1 ≤ 1, τ(q1) = p−q0
q1−q0 , and

τ(q0) = q1−p
q1−q0 . Note that in the binary-state, binary-action case, being smaller in the con-

vex order boils down to being a mean preserving contraction. The set of binary-support

distributions of posteriors which are mean preserving contractions of τ includes all τ ′

with supp(τ ′) = {q′0, q′1} such that q0 ≤ q′0 ≤ p ≤ q′1 ≤ q1 and Eτ ′ [q′] = p. In other

words, τ is more Blackwell-informative, the lower q0 is and the higher q1 is, as shown in

Figure 1.18.

0 1q0 q′0 p q′1 q1

more info more info

Figure 1.18: Comparison of outcomes

Suppose the receiver is a conformist who is biased toward a = 1. Also, for ease of

exposition, suppose receiver takes a = 1 at µ = µR. Given an outcome τ with q0 < µR,

the expected utility of a player is given by

Eτ [v(q)] =
p− q0

q1 − q0

[q1u
11 + (1− q1)u01] +

q1 − p
q1 − q0

[q0u
10 + (1− q0)u00]. (1.19)

Moreover, given any outcome τ with q0 ≥ µR, the expected utility of a player is simply

given by

Eτ [v(q)] =
p− q0

q1 − q0

[q1u
11 + (1− q1)u01] +

q1 − p
q1 − q0

[q0u
11 + (1− q0)u01]

=

(
p− q0

q1 − q0

q1 +
q1 − p
q1 − q0

q0

)
u11 +

(
p− q0

q1 − q0

(1− q1) +
q1 − p
q1 − q0

(1− q0)

)
u01

= pu11 + (1− p)u01,

(1.20)

which is the same as the expected utility of a player given the outcome τ with supp(τ) =

{p}, where no information is communicated to the receiver. This makes sense since the

receiver would always take action a = 1 if q0 ≥ µR, and thus I call all such outcomes the
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no-information outcome.

1. Consider a 1-extremist. She would prefer to persuade the receiver to take action

a = 1 as often as possible. Therefore she would prefer any outcome τ with q0 ≥ µR,

i.e., the no-information outcome, to all other outcomes
66

.

2. Consider a 0-extremist. She would prefer to persuade the receiver to take action

a = 0 as often as possible. The receiver would only take action a = 0 if his

posterior belief is q0 and q0 < µR. Since
∂τ(q0)
∂q0

> 0 and
∂τ(q0)
∂q1

> 0, she would

prefer outcomes with higher q1 and higher q0 as long as q0 < µR. Clearly, her least

preferred outcomes are those with q0 ≥ µR, i.e., the no-information outcome.

3. Consider a non-extremist. She would prefer any outcome τ with q0 ≥ µR to an-

other outcome with q0 < µR if and only if she prefers action a = 1 at q0, as shown

below:

pu11 + (1− p)u01 >
p− q0

q1 − q0

[q1u
11 + (1− q1)u01] +

q1 − p
q1 − q0

[q0u
10 + (1− q0)u00]

q0(q1 − p)(u11 − u10) > (1− q0)(q1 − p)(u00 − u01)

(1− q0)u01 + q0u
11 > (1− q0)u00 + q0u

10.

(1.21)

66
Her preferences over the outcomes τ with q0 < µR do not matter since she prefers the no-information

outcome to all such outcomes.
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To see her preferences among outcomes τ with q0 < µR, note that

∂Eτ [v(q)]

∂q0

= − q1 − p
(q1 − q0)2

[q1u
11 + (1− q1)u01 − q0u

10 − (1− q0)u00]

+
q1 − p
q1 − q0

(u10 − u00)

= − q1 − p
q1 − q0

(u00 − u01) +
q1 − p

(q1 − q0)2
[q1(u11 − u10)

− (1− q0)(u00 − u01)]

= − q1 − p
(q1 − q0)2

[(1− q1)u01 + q1u
11 − (1− q1)u00 − q1u

10],

(1.22)

which is negative if and only if she prefers action a = 1 at q1. Similarly, note that

∂Eτ [v(q)]

∂q1

= − p− q0

(q1 − q0)2
[q1u

11 + (1− q1)u01 − q0u
10 − (1− q0)u00]

+
p− q0

q1 − q0

(u10 − u00)

=
p− q0

q1 − q0

(u11 − u10)− p− q0

(q1 − q0)2
[q1(u11 − u10)− (1− q0)(u00 − u01)]

=
p− q0

(q1 − q0)2
[(1− q0)u00 + q0u

10 − (1− q0)u01 − q0u
11],

(1.23)

which is positive if and only if she prefers action a = 0 at q0. The above observa-

tions imply the following:

(a) If player i is a conformist biased toward a = 1, she would prefer any outcome

τ with q0 ≥ µR only to those with µi < q0 < µR since she prefers action

a = 1 at q0 only if q0 > µi
67

. Among outcomes τ with q0 ≤ µi, she prefers

ones with lower q0 and higher q1 since she prefers action a = 1 at q1 and

action a = 0 at q0 if q0 < µi.

(b) If player i is a conformist biased toward a = 0, she would prefer any outcome

67
Note that if µi > µR, no outcome with µi < q0 < µR exists.
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τ with q0 < µR to all those with q0 ≥ µR since she prefers action a = 0 at q0.

Among outcomes τ with q0 < µR, she prefers ones with higher q1 since she

prefers action a = 0 at q0; also, she prefers ones with lower q0 if q1 ≥ µi and

higher q0 if q1 < µi.

(c) If player i is a contrarian biased toward a = 1, she would prefer any outcome

τ with q0 ≥ µR to all outcomes with q0 < µR since she prefers action a = 1

at q0
68

.

(d) If player i is a contrarian biased toward a = 0, she would prefer any outcome

τ with q0 ≥ µR only to those with q0 < min (µi, µR) since she prefers action

a = 1 at q0 only if q0 < µi. Among outcomes τ with µi ≤ q0 < µR, she

prefers ones with higher q0 and higher q1 since she prefers action a = 0 at q1

and action a = 0 at q0 if q0 > µi
69

.

The above arguments imply that all I need to know about a player is her type, i.e., her

indi�erence posterior belief µi and her preferred action at state ω = 1.

Proof of Proposition 4: Following 1, 3(c), and 3(d), if there exists a 1-extremist or a

contrarian with µi > µR, the equilibrium outcome would be the no-information outcome

since such a player would prefer the no-information outcome to all other outcomes.

Following 3(a) and 3(d), if A 6= ∅ and there exists a contrarian with µA∗ < µi < µR,

the equilibrium outcome would be the no-information outcome since A∗ would only

prefer the outcomes with q0 ≤ µA∗ to the no-information outcome while player i would

only prefer the outcomes with µi ≤ q0 < µR to the no-information outcome. Note that

these two sets of outcomes are disjoint.

Following 3(a) and 3(b), if all players are conformists, the equilibrium outcome would

be the full-information outcome where q0 = 0 and q1 = 1 since this is the most-preferred

outcome for all the players.

68
Her preferences over the outcomes τ with q0 < µR do not matter since she prefers the no-information

outcome to all such outcomes.

69
Note that if µi > µR, no outcome with µi < q0 < µR exists.
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Let D∗ represent the player with the lowest bias among those in D with µi < µA∗ :

µD∗ = maxi∈D:µi<µA∗ µi. If {i ∈ D : µi < µA∗} = ∅, let µD∗ = 0.

Let A∗E represent the player with the highest bias among those in A and closer to the

receiver than E∗: µA∗E = mini∈A:i>E∗ µi. If {i ∈ A : i > E∗} = ∅, let A∗E = R.

Following 2, 3(a), 3(b), and 3(d), if there exists no 1-extremists or contrarians withµi >

µA∗ , but there are players who are not conformists, that is, 0-extremists or contrarians

with µi < µA∗ , the equilibrium outcome would either be the no-information outcome or

one with µD∗ ≤ q0 ≤ µA∗ and q1 = 1.

• IfA∗ < E∗, following 2 and 3(d), the best response ofE∗ to any outcome induced by

the preceding players with µD∗ ≤ q0 ≤ µA∗ and q1 = 1 is to induce the outcome

with q0 = µA∗E and q1 = 1. However, following 3(a), A∗ would prefer the no-

information outcome to such an outcome since by de�nition µA∗ < µA∗E . Thus, the

only possible equilibrium outcome would be the no-information outcome.

• If E∗ < A∗, following 2 and 3(d), the best response of any player in D ∪ E0 to

any outcome induced by the preceding players with µD∗ ≤ q0 ≤ µA∗ and q1 = 1

is to induce the outcome with q0 = µA∗ and q1 = 1 since A∗ = A∗E . The best

response of all conformists to any outcome induced by the preceding players with

µD∗ ≤ q0 ≤ µA∗ and q1 = 1 is to pass on that information. Moreover, all the

players prefer any outcome with µD∗ ≤ q0 ≤ µA∗ to the no-information outcome.

Thus, the equilibrium outcome would be the one with q0 = µA∗ and q1 = 1.

�

1.10 Appendix B: General Binary-Action Games

In what follows, the sets A, B, C , D, E0, and E1 as well as players A∗ and E∗ are the

same as those in section 1.7.2; that is, the de�nitions do not include player 1.

Proof of Lemma 1: I prove the result for the case that receiver is a conformist biased

toward a = 1, i.e., αR > 0 and 0 < ωR < m. The other cases can be proved similarly.
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As mentioned before, no-information outcome is the equilibrium outcome of the re-

duced binary-state game corresponding to the original binary-action game only if one of

the following conditions holds:

1. There exists a 1-extremist or a contrarian with ωR < ωi < 1 in the reduced game.

Note that the only 1-extremists in the reduced game are the absolute 1-extremists

in the original game. In the original game, any choice of m0 and m1 by player 1

does not change the type of absolute 1-extremists; it can only turn conformists or

contrarians biased toward a = 1 into 1-extremists. This implies that contrarians

with m < ωi < 1 either remain unchanged or are turned into 1-extremists. As a

result, if there exists a 1-extremist or a contrarian with m < ωi < 1 in the reduced

game, there would exist one in the subgame starting from player 2 in the original

game as well, regardless of the choice of player 1, which leads to no-information

outcome by Proposition 4.

Any choice of m0 and m1 by player 1 that turns a contrarian with ωR < ωi < m

into an extremist satis�es m0 > ωR; the assumption that Sn = A implies m0 =

m1 = m, which implies the no-information outcome. As a result, if there exists a

contrarian with ωR < ωi < m in the reduced game, either player 1 chooses the

no-information outcome, or there would exist one in the subgame starting from

player 2 in the original game as well, which leads to no-information outcome by

Proposition 4.

2. A 6= ∅ and there exists a contrarian with ωA∗ < ωi < ωR in the reduced game.

Consider any choice of m0 and m1 by player 1 in the original game. If m0 ≤ ωA∗ ,

A 6= ∅ and contrarians with ωA∗ < ωi < ωR remain unchanged with ωA∗ < ωi. If

m0 > ωA∗ , all conformists in A turn into 1-extremists; therefore, A∗ turns into a

1-extremist. As a result, if A 6= ∅ and there exists a contrarian with ωA∗ < ωi < m

in the reduced game, either (i) A 6= ∅ and there would exist such a contrarian, or

(ii) there would exist a 1-extremist in the subgame starting from player 2 in the

original game, both of which lead to no-information outcome by Proposition 4.
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3. D ∪ E0 6= ∅ and A∗ < E∗ in the reduced game.

Note that the only 0-extremists in the reduced game are the absolute 0-extremists

in the original game. In the original game, any choice of m0 and m1 by player 1

does not change the type of absolute 0-extremists; it can only turn conformists or

contrarians biased toward a = 0 into 0-extremists. This implies that contrarians

with ωi < ωA∗ either remain unchanged or are turned into 0-extremists. Therefore,

for any choice of m0 and m1 by player 1, E∗ in the subgame starting from player 2

in the original game is the same as E∗ in the reduced game.

If m0 > ωA∗ , A
∗

turns into a 1-extremist. If m0 < ωA∗ , A
∗

in the subgame starting

from player 2 in the original game is the same as A∗ in the reduced game, and thus

A∗ < E∗.

As a result, if A∗ < E∗ in the reduced game, either there would exist a 1-extremist,

or A∗ < E∗ in the subgame starting from player 2 in the original game, both of

which lead to no-information outcome by Proposition 4. �

Bayes-plausibility implies that for any outcome of the game, or equivalently, any

distribution of posterior means for the receiver τ with supp(τ) = {m0,m1}, Eτ [ω] = m.

Without loss of generality, let m0 ≤ m1 which implies 0 ≤ m0 ≤ m ≤ m1 ≤ 1,

τ(m1) = m−m0

m1−m0
, and τ(m0) = m1−m

m1−m0
. Note that in the binary-action case, being smaller

in the convex order boils down to being a mean preserving contraction. The set of binary-

support distributions of posterior means which are mean preserving contractions of τ

includes all τ ′ with supp(τ ′) = {m′0,m′1} such that m0 ≤ m′0 ≤ m ≤ m′1 ≤ m1 and

Eτ ′ [ω] = m. In other words, τ is more Blackwell-informative, the lower m0 is and the

higher m1 is.

Proof of Lemma 4: For ease of exposition, suppose receiver takes a = 1 at ω = ωR
70

.

Given an outcome τ with m0 < ωR, the expected utility of player 1 with u1(ω, 0) = 0

70
This removes the necessity of Assumption 1.
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and u1(ω, 1) = α1ω + β1 is given by

Eτ [u1(ω, a∗(ω)] =
m−m0

m1 −m0

(α1m1 + β1). (1.24)

Moreover, given any outcome τ with m0 ≥ ωR, the expected utility of player 1 with

u1(ω, 0) = 0 and u1(ω, 1) = α1ω + β1 is simply given by

Eτ [u1(ω, a∗(ω)] =
m−m0

m1 −m0

[α1m1 + β1] +
m1 −m
m1 −m0

[α1m0 + β1]

= α1

(
m−m0

m1 −m0

m1 +
m1 −m
m1 −m0

m0

)
+ β1

= α1m+ β1,

(1.25)

which is the same as her expected utility given the outcome τ with supp(τ) = {m},
where no information is communicated to the receiver. This makes sense since the re-

ceiver would always take action a = 1 if m0 ≥ ωR, and thus I call all such outcomes the

no-information outcome.

1. Suppose player 1 is an absolute 1-extremist. She would prefer to persuade the

receiver to take action a = 1 as often as possible. Therefore she would prefer any

outcome τ withm0 ≥ ωR, i.e., the no-information outcome, to all other outcomes
71

.

2. Suppose player 1 is an absolute 0-extremist. She would prefer to persuade the

receiver to take action a = 0 as often as possible. The receiver would only take

action a = 0 if his posterior mean is m0 and m0 < ωR. Since
∂τ(m0)
∂m0

> 0 and

∂τ(m0)
∂m1

> 0, she would prefer outcomes with higher m1 and higher m0 as long as

m0 < ωR. Clearly, her least preferred outcomes are those with m0 ≥ ωR, i.e., the

no-information outcome.

3. Suppose player 1 is a non-extremist. She would prefer any outcome τ with m0 ≥
ωR to another outcome withm0 < ωR if and only if she prefers action a = 1 atm0,

71
Her preferences over the outcomes τ withm0 < ωR do not matter since she prefers the no-information

outcome to all such outcomes.
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as shown below:

α1m+ β1 >
m−m0

m1 −m0

(α1m1 + β1)

β1m1 − α1m0m > β1m− α1m1m0

(m1 −m)(α1m0 + β1) > 0.

(1.26)

To see her preferences among outcomes τ with m0 < ωR, note that

∂Eτ [u1(ω, a∗(ω)]

∂m0

= − m1 −m
(m1 −m0)2

(α1m1 + β1), (1.27)

which is negative if and only if she prefers action a = 1 at m1. Similarly, note that

∂Eτ [u1(ω, a∗(ω)]

∂m1

= − m−m0

(m1 −m0)2
(α1m1 + β1) +

m−m0

m1 −m0

α1

= − m−m0

(m1 −m0)2
(α1m0 + β1),

(1.28)

which is positive if and only if she prefers action a = 0 at m0. The above observa-

tions imply the following:

(a) If player 1 is a conformist biased toward a = 1, she would prefer any outcome

τ with m0 ≥ ωR only to those with ω1 < m0 < ωR since she prefers action

a = 1 atm0 only ifm0 > ω1
72

. Among outcomes τ withm0 ≤ ω1, she prefers

ones with lower m0 and higher m1 since she prefers action a = 1 at m1 and

action a = 0 at m0 if m0 < ω1.

(b) If player 1 is a conformist biased toward a = 0, she would prefer any outcome

τ with m0 < ωR to all those with m0 ≥ ωR since she prefers action a = 0

at m0. Among outcomes τ with m0 < ωR, she prefers ones with higher m1

since she prefers action a = 0 at m0; also, she prefers ones with lower m0 if

m1 ≥ ω1 and higher m0 if m1 < ω1.

72
Note that if ω1 > ωR, no outcome with ω1 < m0 < ωR exists.
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(c) If player 1 is a contrarian biased toward a = 1, she would prefer any outcome

τ withm0 ≥ ωR to all outcomes withm0 < ωR since she prefers action a = 1

at m0
73

.

(d) If player 1 is a contrarian biased toward a = 0, she would prefer any outcome

τ with m0 ≥ ωR only to those with m0 < min (ω1, ωR) since she prefers

action a = 1 at m0 only ifm0 < ω1. Among outcomes τ with ω1 ≤ m0 < ωR,

she prefers ones with higherm0 and higherm1 since she prefers action a = 0

at m1 and action a = 0 at m0 if m0 > ω1
74

.

�

Proof of Lemma 2: I prove the result for the case that receiver is a conformist biased

toward a = 1, i.e., αR > 0 and 0 < ωR < m. The other cases can be proved similarly.

No-information outcome is the equilibrium outcome of the binary-state game cor-

responding to the original binary-action game only if one of the following conditions

holds:

1. The equilibrium outcome of the reduced binary-state game corresponding to the

original binary-action game is the no-information outcome. In this case, by Lemma

1, the equilibrium outcome of the original game is the no-information outcome as

well.

2. Player 1 is an absolute 1-extremist or a contrarian with ωR < ω1 < 1 in the corre-

sponding binary-state game. Following 1, 3(c), and 3(d) in the proof of Lemma 4, the

equilibrium outcome of the original game would be the no-information outcome

since player 1 would prefer the no-information outcome to all other outcomes.

3. A 6= ∅ and player 1 is a contrarian with ωA∗ < ω1 < ωR in the corresponding

binary-state game. In the original game, following 3(d) in the proof of Lemma 4,

73
Her preferences over the outcomes τ withm0 < ωR do not matter since she prefers the no-information

outcome to all such outcomes.

74
Note that if ω1 > ωR, no outcome with ω1 < m0 < ωR exists.
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player 1 would only prefer the outcomes withω1 ≤ m0 < ωR to the no-information

outcome. However, any choice of m0 and m1 by player 1 with m0 ≥ ω1, turns A∗

into a 1-extremist in the subgame starting from player 2 in the original game, which

leads to no-information outcome by Proposition 4. Therefore, the only possible

equilibrium outcome in the original game would be the no-information outcome.

4. D∪E0 6= ∅, E∗ < A∗75
, and ω1 < ωA∗ in the corresponding binary-state game. By

Proposition 4, for any choice ofm0 andm1 by player 1, the equilibrium outcome of

the subgame starting from player 2 would be either the no-information outcome or

τ with supp(τ) = {µA∗m1 + (1− µA∗)m0,m1} = {ωA∗ ,m1}. However, following

3(a) in the proof of Lemma 4, player 1 would prefer the no-information outcome

since ω1 < ωA∗ . Thus, the only possible equilibrium outcome in the original game

would be the no-information outcome.

�

Proof of Lemma 3: Since the no-information outcome is not the equilibrium out-

come of the reduced binary-state game, not considering player 1, there exists no absolute

1-extremists or contrarians with ωA∗ < ωi, and A∗ is closer to the receiver than all abso-

lute 0-extremists and contrarians with ωi < ωA∗ .

As mentioned before, given player 1’s choice of distribution of posterior means τ1

with supp(τ1) = {m0,m1}, Proposition 4 characterizes the equilibrium outcome of the

binary-state, binary-action subgame starting from player 2. Based on Proposition 4, the

equilibrium of the subgame starting from player 2 is characterized by no-information

outcome unless:

1. all players are conformists: In this case, the equilibrium outcome τ of the binary-

state, binary-action game starting from player 2 with Ω̂ = {m0,m1} is character-

ized by supp(τ) = {0, 1} (full-information outcome).

75
If A∗ < E∗, the equilibrium outcome of the reduced binary-state game corresponding to the original

binary-action game is the no-information outcome, and thus condition 1 holds.
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All players in the binary-state, binary-action game starting from player 2 are con-

formists if and only if in the original game (i) all of them are conformists, and (ii)

none of them turn into extremists given the choice of player 1, i.e., m0 ≤ ωA∗ and

m1 ≥ ωB∗ . If this is the case, τ implies that the the equilibrium outcome τ ∗ of the

subgame starting from player 2 is characterized by supp(τ ∗) = {0 ·m1 + 1 ·m0, 1 ·
m1 + 0 ·m0} = {m0,m1}.

2. all players are not conformists but the non-conformist players are either 0-extremists

or contrarians with ωi < ωA∗ : In this case, the equilibrium outcome τ of the binary-

state, binary-action game starting from player 2 with Ω̂ = {m0,m1} is character-

ized by supp(τ) = {µA∗ , 1}76
.

All players in the binary-state, binary-action game starting from player 2 satisfy

the above condition if and only if in the original game (i) all of them are conformists

but at least one conformist biased toward a = 0 turns into a 0-extremist given the

choice of player 1, i.e., m1 < ωB∗ , or there are players who are not conformists, (ii)

none of the conformists biased toward a = 1 turn into 1-extremists given the choice

of player 1, i.e., m0 ≤ ωA∗ , and (iii) A∗ is closer to the receiver than all the new 0-

extremists, i.e., conformists biased toward a = 0 with ωi > m1. If this is the case, τ

implies that the the equilibrium outcome τ ∗ of the subgame starting from player 2 is

characterized by supp(τ ∗) = {µA∗ ·m1+(1−µA∗)·m0, 1·m1+0·m0} = {µA∗ ,m1}.

�

1.11 Appendix C: Proof of Proposition 3

The �rst direction is straightforward. If τ ∈ Γ̃, it implies that τ ∈ Γ0 and for every

i = 2, . . . , n, ∑
µ

τ(µ)vi(µ) ≥
∑
µ

τ ′(µ)vi(µ),∀τ ′ ≤cx τ, (1.29)

76
As mentioned before, µA∗ = m−m0

m1−m0
.
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which, in turn, implies that for every i = 2, . . . , n,

∑
µ

τ(µ)vi(µ) ≥
∑
µ

τ ′(µ)vi(µ), ∀τ ′ ∈ Γi+1 s.t. τ ′ ≤cx τ ∗, (1.30)

where Γn+1 = Γ0. This can be used to show recursively that τ ∈ Γn, τ ∈ Γn−1, . . . , τ ∈
Γ2. Therefore, Γ̃ ⊆ Γ2.

The following simple counterexample proves the other direction. However, it is based

on the notation, concepts, and results introduced in section 1.7.1 and Appendix A. Con-

sider a binary-state, binary-action game and let n = 3. Suppose player 2 is a 0-extremist

while receiver and player 3 are conformists who are biased toward a = 1 with player 3

being higher biased, i.e, 0 < µ3 < µR < p. Note that the receiver takes action a = 1 at

µ = µR according to Assumption 1.

First of all, the set of Bayes plausible distributions of posteriors is given by

Γ0 = {τ |supp(τ) = {q0, q1}, 0 ≤ q0 ≤ p ≤ q1 ≤ 1,Eτ [q] = p}. (1.31)

As mentioned in Appendix B, in the binary-state binary-action case, being smaller in

the convex order boils down to being a mean preserving contraction. The set of binary-

support distributions of posteriors which are mean preserving contractions of τ includes

all τ ′ with supp(τ ′) = {q′0, q′1} such that q0 ≤ q′0 ≤ p ≤ q′1 ≤ q1 and Eτ ′ [q′] = p. In other

words, τ is more Blackwell-informative, the lower q0 is and the higher q1 is.

Starting with player 3, and considering (1.8),

Γ3 = {τ ∈ Γ0|0 ≤ q0 ≤ µ3 or µR ≤ q0 ≤ p}. (1.32)

Now, continuing to player 2, and considering (??),

Γ2 = {τ ∈ Γ0|q0 = µ3 or µR ≤ q0 ≤ p}. (1.33)
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However,

Γ̃ = {τ ∈ Γ0|µR ≤ q0 ≤ p}. (1.34)

This is due to the fact that while player 2 prefers experiments with q0 = µ3 to all less

Blackwell-informative ones in Γ3, i.e., those with µR ≤ q0 ≤ p, there exist less-Blackwell

informative experiments in Γ0, namely those with µ3 < q0 < µR, which she prefers even

more. �
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Chapter 2

Indicator Choice in
Pay-for-Performance

with Ali Shourideh and Ariel Zetlin-Jones
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2.1 Abstract

We study the classic principal-agent model when the signal observed by the principal is

chosen by the agent. We fully characterize the optimal information structure from an

agent’s perspective in a general moral hazard setting with limited liability. Due to en-

dogeneity of the contract chosen by the principal, the agent’s choice of information is

non-trivial. We show that the agent’s problem can be mapped into a geometrical game

between the principal and the agent in the space of likelihood ratios. We use this repre-

sentation result to show that coarse contracts are su�cient: The agent can achieve her

best with binary signals. Additionally, we can characterize conditions under which the

agent is able to extract the entire surplus and implement the �rst-best e�cient allocation.

Finally, we show that when e�ort and performance are one-dimensional, under a general

class of models, threshold signals are optimal. Our theory can thus provide a rationale

for coarseness of contracts based on the bargaining power of the agent in negotiations.

2.2 Introduction

The use of pay-for-performance contracting is a cornerstone of modern employment con-

tracts. Executive compensation is often indexed in part to company performance metrics

including growth in the company’s stock price. Employment contracts for top athletes

frequently involve performance bonuses for speci�c outcomes such as goals scored for

soccer players or the number of touch-downs for players in the NFL. When employment

contracts feature such performance pay incentives, employers and employees must agree

to a set of performance indicators during contract negotiations.
1

Given this observation,

what are the incentives of employees and employers to negotiate on performance indi-

cators? If the employees have a role in choosing the performance metrics, what metrics

1
Bebchuk and Fried (2004) discuss the various issues with the negotiations process between the CEOs

and boards and possible issues arising from choosing particular performance indicators, i.e., vesting stocks.

In soccer, news outlets often describe the process in which players and soccer clubs agree on what perfor-

mance measure to use. See for example this article in Daily Mail which describes several soccer players in

the Premier League negotiating over the relevant performance indicator as a base for pay.
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would they choose? Finally, how does the choice of indicators interact with the ultimate

productive e�ciency of the �rm?

In this paper, we answer these questions by considering the problem of indicator

design in the textbook moral hazard problem with limited liability. More speci�cally, we

consider the standard principal-agent problem of Holmström (1979) in which an agent

has quasi-linear preferences and must be paid a non-negative wage. The performance

technology is one that maps costly e�ort, e, by the agent into a distribution of some

performance measure x. Before the principal o�ers a compensation contract, the agent

chooses an indicator, a possibly random signal s of xwhere the principal can only o�er a

contract that is contingent on the indicator, s. Once the indicator is chosen, the principal

and the agent play the textbook moral hazard game.
2

In this environment, one might conjecture that more information would lead to more

e�cient outcomes. While this is true under certain circumstances – see the informa-

tiveness principle of Holmström (1979), and its extension by Chaigneau et al. (2019) –

information can often be detrimental to the agent. To see the intuition for this observa-

tion, suppose that the performance technology is degenerate at x = e and thus the agent

can use her e�ort as the indicator. Then, revealing all information by choosing s = x = e

would give the principal the ability to fully capture all the surplus generated by the e�ort.

On the other hand, choosing a fully uninformative indicator leads to no surplus for the

agent as the principal is unable to incentivize the agent to contribute e�ort when signals

are fully uninformative. This points to a trade-o� in the problem of indicator design by

the agent.

In this model, we show three main results: �rst, we provide a geometric interpretation

of the indicator design game in the space of likelihoods; the probability of a particular

performance/signal realization for an arbitrary e�ort relative to the e�ort that the agent

would like to implement. Under this interpretation, the agent’s indicator design problem

is equivalent to a geometric game where the agent chooses a convex set (of likelihood

2
Throughout the paper, we assume that the agent commits to the indicator s while she cannot commit

to the e�ort level e. A justi�cation for this assumption is that employment contracts are often enforced by

courts and thus hard to break.
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ratios) and the principal chooses a point within that set. Our geometric interpretation

provides a tractable formulation to understand how the agent’s choice of indicator in�u-

ences the resulting compensation scheme o�ered by the principal. Second, we provide

conditions under which the agent is able to choose the indicator in such a way to imple-

ment the �rst-best e�cient e�ort and capture all the surplus created by her e�ort. Finally,

we consider a speci�c case where performance measure x has a continuous distribution

in real numbers and show that under certain conditions optimal indicator structure takes

the form of monotone or hump-shaped thresholds signals.

The reason that the agent is sometimes able to capture all of the surplus and imple-

ment the e�cient outcome can be easily understood when performance technology is

fully informative, i.e., x = e. In this case, suppose the agent chooses an indicator with

two realizations: high and low. By choosing the probability of high and low indicators

appropriately for every x = e, the agent is able to force the principal’s hand. Note that

if the principal wants to implement a given e�ort level ê, he must compensate the agent

following a realization of the high signal. The amount of compensation the principal

must deliver is increasing as the cost of the desired e�ort level ê rises relative to the cost

of any other e�ort and is increasing in the likelihood of observing a high signal from

some other e�ort relative to that of observing a high signal from e�ort ê. By choosing

the signal probabilities appropriately, the agent is then able to make the o�-path likeli-

hood of the high signal su�ciently large so that the principal must give up all the surplus

in order to implement the desired e�ort level ê.

In general, our geometric interpretation allows us to show that the agent can imple-

ment any desired e�ort level with a “coarse” information structure that has at most two

signal realizations. Additionally, this interpretation allows us to provide conditions under

which even when the performance technology is stochastic, it is possible for the agent

to capture all the surplus and implement the �rst-best outcome. Our su�cient condition

amounts to checking whether a particular point in the likelihood space belongs to con-

vex hull of the likelihood functions implied by the performance technology. This type of

su�cient condition is easy to evaluate using existing convex hull algorithms.
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Beyond our technical contributions, our results shed light on the debate on the e�-

ciency of incentive contracts in executive compensation. Bebchuk and Fried (2004) have

argued that the standard agency model of shareholder maximization is at odds with the

data since negotiations often happen between the CEO and the board whose incentives

are not necessarily aligned with that of the shareholders – in fact they claim that CEOs

and compensation committees often trade favors at a cost to shareholders. In our model,

and consistent with Bebchuk and Fried (2004)’s interpretation, we endow the agent with

full bargaining power over the choice of performance pay indicators. While the agent

captures all of the gains from trade under this assumption, her choices also maximize

total surplus. In contrast, standard models of moral hazard with exogenous performance

technology often feature ine�ciencies in the sense that providing incentives to the agent

often entails reductions in total surplus. In this sense, we �nd that optimal design of

performance pay indicators may help to reduce ine�ciencies within the �rm. Further

investigation of the data on negotiations and choice of indicators would be a good test of

our theory.

2.2.1 Related Literature

Our paper is related to several strands of the literature on contracting and information

design.

With respect to the moral hazard literature, our key innovation is to consider the

problem of choosing indicators whereupon contracts are based on showing that this can

remove all ine�ciencies. In the classical model, Innes (1990) and Poblete and Spulber

(2012) consider moral hazard with limited liability and a risk-neutral agent, and show

that simple debt contracts are optimal. Carroll (2015) as well as Walton and Carroll

(2022) consider the moral hazard problem with limited liability, where the principal has

non-Bayesian uncertainty about the production technology and wishes to maximize her

worst-case payo�.
3

3
It is needless to say that a rather large body of work has considered models with risk-averse agents

and risk-neutral principals.
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While often information design incentives are ignored in moral hazard, Holmström

(1979) and later Chaigneau et al. (2019) are exceptions. They investigate the comparative

statics of changing the performance technology on the payo�s; by the informativeness

principle, the more informative the output is about the e�ort, the lower wage the principal

needs to pay.

Perhaps, the closest paper to ours is that of Garrett et al. (2020). They consider a

model in which the agent can design the performance technology and cost function –

they refer to this as technology design – and show that the agent-optimal design involves

only binary distributions. In contrast, in our model, the performance technology is �xed

and the agent chooses an indicator of this performance, i.e., an information structure to

garble the principal’s observations. Moreover, our paper has a technical contribution by

reformulating the problem in terms of likelihood ratios.

Georgiadis and Szentes (2020) study moral hazard with limited liability and a risk-

averse agent where the principal continuously observes signals about the agent’s e�ort at

a constant marginal cost. They show that the principal-optimal information-acquisition

strategy is a two-threshold policy. Barron et al. (2020) consider an agent who can cost-

lessly add mean-preserving noise to the output. This is also the case in our model; how-

ever, in our setting, the noisy output is just used for contracting purposes and does not

change the principal’s payo� compared to the original output. Moreover, in our model,

�rst the agent chooses the information structure, then the principal o�ers the contract,

and �nally the agent chooses her e�ort, whereas in Barron et al. (2020), �rst the principal

o�ers a contract and then the agent chooses the e�ort and the information structure.

Another related strand of the moral hazard literature focuses on career concerns in-

troduced by Holmström (1979) and changes in information structure observed by both

the principal and the agent. In this context Holmström (1999) shows that noisy perfor-

mance signals are bene�cial for incentives. Similarly Dewatripont et al. (1999) show that

more informative signals in the sense of Blackwell do not necessarily increase incentives.

In contrast in our model, indicator design or information design can be used as a tool to

reshu�e surplus between the agent and the principal while achieving e�ciency.
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In the context of team production and moral hazard, Halac et al. (2021) show that the

principal can bene�t from private contract o�ers by leveraging rank uncertainty: Each

agent is informed only of her own bonus and a ranking distribution; each agent’s bonus

makes work dominant if higher-rank agents work. Interestingly, in our setting, it is the

agent that can use uncertainty about performance for the principal to improve e�ciency.

We also contribute to the growing literature on incentives in Bayesian Persuasion.

Several papers, including Boleslavsky and Kim (2018), Rosar (2017), Perez-Richet and

Skreta (2022), Ball (2019), Saeedi and Shourideh (2020), and Zapechelnyuk (2020) have

considered the e�ect of incentives in the Bayesian persuasion problem where a third

party designs an information structure, and a “sender” determines the distribution of the

underlying state by exerting a costly e�ort. From a technical perspective, our problem

is di�erent from this class of models. This is partly due to the fact that for the ex-post

incentive to exert e�ort by the agent (after the choice of indicator and contract), the

distribution of the signals – or alternatively in the language of Kamenica and Gentzkow

(2011), the distribution of posteriors – o� the equilibrium path is also relevant. By casting

the problem in the space of likelihood functions – as opposed to beliefs as in Kamenica

and Gentzkow (2011) – we can characterize its solution using the geometric game. This

technique can be used in other information design problems in which on- and o�-path

beliefs are involved.

The rest of the paper is organized as follows: Section 2.3 describes the key insight

about full surplus extraction and �rst-best implementation in a simple example. Section

2.4 describes the basic model. Section 2.5 describes the geometric interpretation of the in-

dicator choice game between the principal and the agent. Section 2.6 provides a su�cient

condition for e�cient surplus extraction by the agent. Section 2.7 describes optimality

of threshold signals. Section 2.8 concludes.
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2.3 A Simple Example

In this section, we use a basic environment to illustrate the main mechanisms at work in

our model. Consider the basic textbook model of moral hazard. A principal (he) is hiring

an agent (she) to perform a task whose output x ∈ {0, 1} is collected by the principal.

The agent chooses how much e�ort to put in to perform the task. She can either choose

the low e�ort eL or a costly high e�ort eH whose cost is given by c > 0.

Choosing the high e�ort leads to output x = 1 with certainty while choosing the low

e�ort leads to output x = 1 with probability p < 1 and x = 0 with probability 1− p. We

assume that the total surplus under high e�ort 1− c is higher than that under low e�ort

p and thus it is e�cient to implement the high e�ort.

In this standard principal-agent model with moral hazard, principal observes the out-

put but not the e�ort of the agent. He can compensate the agent for each output real-

ization but cannot make these payments negative, i.e., he is subject to limited liability. If

the principal sets wage w when output is high, then the agent’s incentive compatibility

constraint is

w − c ≥ p · w.

Hence, as long as w ≥ c
1−p , the principal can implement the high e�ort. If the principal

is to choose w = c
1−p , then his payo� is 1− c

1−p > 0 while the agent’s payo� is
c

1−p − c =
p

1−pc > 0. Moreover, for the principal to prefer implementing the high e�ort to low, we

must have that 1− c
1−p ≥ p or c ≤ (1− p)2

.

Now suppose that the agent can control principal’s information about the output.

Speci�cally, suppose that before the contracting stage, the agent can design a device

that can potentially hide the output of the project. More speci�cally, suppose that the

agent can choose an information structure or a Blackwell experiment that probabilisti-

cally maps output x ∈ {0, 1} to a signal S = {L,H} which is observed by the principal.

The principal observes the signal s = H with probability πH when x = 1 is realized and

observes s = H with probability πL if x = 0 is realized, where πL < πH .

Since the principal can only observe the signal designed by the agent, he will com-
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pensate her only when s = H . If this compensation is w, then the agent’s incentive

compatibility constraint is

πH · w − c ≥ (πHp+ (1− p)πL) · w.

Hence, the principal is able to implement high e�ort when

w ≥ c

(πH − πL) (1− p)
.

When minimizing the wage, the expected cost of compensating the agent for the

principal is πHw = c(
1− πL

πH

)
(1−p)

. Therefore, as long as p ≤ 1− c(
1− πL

πH

)
(1−p)

, the principal

�nds it pro�table to implement the high e�ort. This inequality can be rewritten as

c

(1− p)2 ≤ 1− πL
πH

.

This, in turn, implies that when
c

(1−p)2 ≤ 1, the agent can �nd a signal structure (πL, πH)

such that the above holds with equality. Under such an information structure, the payo�

of the principal is p, what he can achieve without any costly e�ort, and the agent captures

the rest of the surplus, 1 − p − c. In other words, giving the agent the ability to choose

an information structure enables her to guarantee the highest value of the surplus under

an e�cient level of e�ort. Intuitively, the change of the information structure allows the

agent to induce an arbitrary high value of the wage by increasing the likelihood πL/πH ,

and capture the entire surplus.

The above example illustrates that agent’s freedom to choose the information struc-

ture, based on which she will be paid, can be extremely powerful. A few natural questions

arise: When can the agent capture the e�cient level of surplus? What information struc-

ture should be used by the agent to achieve her desired outcome? In what follows, we

provide a characterization of the optimal signal structure for the agent as well as her

ability to extract surplus from the principal.
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2.4 Model

Our general model builds upon the textbook moral hazard problem. Consider a principal

employing an agent to perform a task whose output is represented by x ∈ X , where X

is �nite. The agent chooses e�ort e ∈ E = {e1, · · · , em} to perform the task, where

E is �nite. The agent’s e�ort choice induces a probability distribution f(x|e) over the

outcome space X , where

∑
x f(x|e) = 1,∀e ∈ E. We refer to f (·|·) as the performance

technology. E�ort is costly to the agent; the cost of exerting e�ort e is given by c(e) for

some real-valued function c : E → R+.

Throughout the analysis, we assume that e1 ∈ E represents the e�ort with the lowest

cost; for simplicity, let c(e1) = 0. The principal’s payo� from realization of output x is

given by g(x) for some real-valued function g : X → R. The principal cannot observe

the agent’s e�ort and thus cannot o�er a contract contingent on the agent’s e�ort; he

can only o�er contracts contingent on observable outcomes.

The point of departure from the textbook moral hazard model is that the agent may

in�uence the principal’s information about the output by choosing an information struc-

ture (S, π). Here, S is a signal space and π(·|x) : X → ∆(S) is a stochastic mapping

from the output space X to the signal space, where

∑
s π(s|x) = 1, ∀x ∈ X . The prin-

cipal only observes the signal s ∈ S generated from this information structure and can

thus only o�er a contract contingent on this signal realization. Therefore, the principal’s

choice of contract can be represented by a real-valued function w : S → R+ where w(s)

is the wage paid to the agent when signal s is realized. One interpretation of this contrac-

tual restriction is that the task output is not observable to the principal but the agent may

veri�ably disclose information about the output. An alternative interpretation is that the

output is observable but the agent has the option to choose the performance measure

based on which she will be paid.

Note that as in the simple example, we have assumed that agent enjoys limited lia-

bility, i.e., the contract o�ered to her by the principal guarantees a non-negative wage

regardless of the e�ort she puts in. The principal’s payo� uP is equal to the payo� from

output less the wages paid to the agent. The agent’s payo� uA is equal to the wage she
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receives from the principal minus the cost of her e�ort. Both the principal and the agent

are assumed to maximize expected utility. Notice that principal can always implement

the zero-cost e�ort, i.e. e1, by o�ering w(s) = 0, ∀s ∈ S. Therefore, his outside option

is to implement e1 and obtain uP =
∑

x g(x)f(x|e1).

The timing of the game is as follows:

• Agent chooses an information structure (S, π). To ease the exposition, we assume

the signal space S is �nite and simply represent the information structure by π.
4

• Observing the information structure (S, π) chosen by the agent, the principal o�ers

the agent a contract w : S → R+ contingent on the realized signal.

• Observing the contract w o�ered by the principal (and the information structure

(S, π) she has chosen), the agent chooses how much e�ort e to exert.

• Given the e�ort e chosen by the agent, output x is realized according to f(x|e) and

then signal s ∈ S is realized according to π(s|x).

• Payo�s are realized where agent’s payo� is uA = w(s)− c(e), and the principal’s

payo� is uP = g(x)− w(s).

To summarize, the game is played sequentially in three stages. In the �rst stage, the agent

chooses the information structure π to (partially) inform the principal about the realized

output. In the second stage, the principal o�ers the agent a contract w contingent on the

signal realization. In the last stage, the agent chooses her e�ort e.

The equilibrium concept is the standard subgame perfect equilibrium (SPE). The agent’s

strategy (π, σe(π,w)) consists of a choice of information structure π and a choice of e�ort

σe(π,w) as a function of π and the contract w o�ered by the principal. The principal’s

strategy σw(π) is the contract he o�ers to the agent as a function of the information

structure π chosen by the agent.

De�nition 1. An SPE of the game σ∗ = (π∗, σ∗e(π,w), σ∗w(π)) consists of a strategy for

the agent (π∗, σ∗e(π,w)) and a strategy for the principal σ∗w(π) such that:

4
Later, we show this restriction to �nite signal spaces is without loss of generality.
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• σ∗e(π,w) maximizes the agent’s expected utility for every information structure π

and every principal’s choice of contract w.

• σ∗w(π) maximizes the principal’s expected utility for every agent’s choice of infor-

mation structure π given agent’s equilibrium e�ort strategy σ∗e(π,w).

• π∗ maximizes the agent’s expected utility given principal’s equilibrium strategy

σ∗w(π) and her own equilibrium e�ort strategy σ∗e(π,w).

We let p(·|e) : E → ∆(S) represent the resulting stochastic mapping from the e�ort

space E to the signal space S induced by a given information structure (S, π) and the

underlying probability distribution of outcomes given e�ort. Note, for any level of e�ort

e and any signal realization s, p(s|e) =
∑

x f(x|e)π(s|x) and

∑
s p(s|e) = 1, ∀e ∈ E.

Conditional on a given information structure (S, π), both the principal and the agent use

the stochastic mapping p (·|·) to evaluate their expected payo�s.

We now formulate the problems the principal and the agent solve beginning with

the agent’s choice of e�ort. The agent’s expected utility is UA =
∑

s p(s|e)w(s) − c(e).

Therefore, the agent’s problem in the last stage of the game (where π and w have previ-

ously been chosen in the preceding stages) is

max
e

∑
s

p(s|e)w(s)− c(e). (IC-A)

The principal’s expected utility isUP =
∑

x g(x)f(x|e)−
∑

s p(s|e)w(s) if he chooses

to implement e�ort e. It is convenient to de�ne E[g(x)|e] =
∑

x g(x)f(x|e). For a given

desired e�ort level e, the principal chooses a wage schedule that solves

min
w

∑
s

p(s|e)w(s) s.t.∑
s

p(s|e)w(s)− c(e) ≥
∑
s

p(s|ê)w(s)− c(ê), ∀ê ∈ E,

w(s) ≥ 0, ∀s ∈ S.

(2.1)
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The constraints represent the agent’s incentive compatibility and a set of limited liability

constraints. Notice that we have not imposed a participation constraint for the agent.

This is because the assumption c(e1) = 0 together with limited liability implies that

setting e = e1 guarantees a non-negative payo� for the agent. Let W (e, π) represent the

optimal value in (??). This is the minimum expected wage the principal must pay the

agent to implement e�ort e given the information structure π chosen by the agent.

Given W (e, π), the problem of the principal is to choose an e�ort level to maximize

her expected utility, or,

max
e

E [g (x) |e]−W (e, π). (2.2)

It is possible to express the above as an incentive compatibility constraint and thus

write the agent’s problem in the �rst stage of the game as

max
e,π

W (e, π)− c(e)

subject to the principal’s incentive compatibility constraint

E [g (x) |e]−W (e, π) ≥ E [g (x) |ê]−W (ê, π), ∀ê ∈ E. (IC-P)

2.4.1 Remarks on the Environment

It is useful to discuss various interpretations of the model as well as our key assumptions.

Performance Measure as Information Structure

In the textbook model of moral hazard, the principal cannot observe the agent’s e�ort. He

therefore uses some imperfect signal of e�ort to incentivize the agent. If he can observe

the output, he o�ers an output-contingent contract; this makes the output the perfor-

mance measure for the agent. In our model, the principal does not observe the output

but does observe a signal, which may be correlated with e�ort, and he o�ers a signal-

contingent contract. As a result, the signal is the relevant performance measure for the

agent. By choosing the information structure, the agent in�uences the set of observables
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that will ultimately dictate her compensation, which we interpret as the agent choosing

her performance measure.

We make the assumption that the principal cannot o�er output-contingent contracts.

As we have described, while a conventional interpretation of this assumption is that

the principal cannot observe the output directly, an alternative interpretation is that this

restriction arises during the negotiations between the agent and the principal in choosing

contractual performance measures.

Commitment

We assume that the agent commits to an information structure in the �rst stage of the

game. Our interpretation of the information structure as a contractual performance mea-

sure provides a natural justi�cation of the commitment assumption. When signing a

contract, all parties are aware of and agree on the probabilistic nature of the chosen per-

formance measure as a function of the output. The contractible nature of the performance

measure makes the commitment assumption necessary.

Comparison to the Literature on Bayesian Persuasion

As in the Bayesian persuasion literature, we can write the problem in terms of the distri-

bution of posteriors induced by the information structure. In the Bayesian persuasion, ev-

ery choice of information structure induces a distribution of posteriors, where the whole

distribution matters: not only the support, but also the probabilities. In our setting, every

choice of information structure induces a set of distributions of posteriors, one for each

choice of e�ort. These distributions are related through their supports: given the support

of one distribution, the supports of the others are pinned down. As we will discuss in

section 2.5, the key su�cient statistic about the choice of information structure is the dis-

tribution of the likelihood ratios and these are determined by the supports of the above

distributions. Therefore, in our model, only the support of the distribution of posteriors

matters.
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2.5 A Geometric Analysis of the Game

We now characterize the equilibrium outcomes of the game. To do so, we �rst describe the

set of e�ort levels that are implementable by some information structure. We then show

a “coarse”-ness result. That is, we show that it is without loss of generality to restrict

the agent’s choice of information structures to binary structures, where the set of signals

has only two discrete points. Using such information structures, in the next section, we

derive su�cient conditions such that the �rst-best level of e�ort is implementable. When

these su�cient conditions are satis�ed, we show that the agent chooses an information

structure that implements the �rst-best e�ort level and extracts the entire surplus.

While it is possible to work with zero probability events and de�ne likelihood ratios

– by describing how division by 0 is de�ned – in order to avoid complications, we make

the following assumption:

Assumption 1. The performance technology is full support, i.e., ∀x ∈ X, ∀e ∈ E, f (x|e) >
0.

This assumption implies that all the likelihood ratios below are well-de�ned.

Implementable E�ort. To characterize the set of implementable e�ort levels, we use

backward induction and �rst re-cast the problem of the principal geometrically. Speci�-

cally, we show that the likelihood ratios for each signal realization s for any e�ort level e

relative to the desired implementable level e∗ are su�cient statistics to solve the princi-

pal’s problem. In other words, we argue that any desired e�ort level to implement e∗ and

any information structure (S, π) give rise to a (geometric) space of possible likelihood

ratios and that the principal’s optimal choice of compensation schemes may be reduced

to choosing a point in this space of likelihood ratios.

More formally, we de�ne an implementable e�ort level e∗ as follows:

De�nition 2. An e�ort level e∗ is implementable if there exists an information structure

(S, π) such that e∗ is a solution to the principal’s problem (2.2).

Given this de�nition, an implementable e�ort level e∗ must satisfy the two incentive

compatibility constraints in (IC-P) and (IC-A) for the principal and the agent, where the
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agent’s incentive compatibility constraint must hold for all possible histories including

those following a deviation by the principal that involves recommending an alternative

level of e�ort.

Let e∗ represent some e�ort level the agent would like to implement (in the �rst stage

of the game). To motivate the relevance of likelihood ratios, consider the agent’s interim

incentive compatibility constraint when the principal only pays the agent following a

signal realization s:

p (s|e∗)w (s)− c (e∗) ≥ p (s|ê)w (s)− c (ê) ,∀ê ∈ E.

These constraints imply that for any e�ort level êwhere signal s is less likely than under

e∗, i.e., p (s|ê) < p (s|e∗), the wage must satisfy

w (s) ≥ c (e∗)− c (ê)

p (s|e∗)− p (s|ê)
, (2.3)

and if s is more likely under ê than under e∗ then

c (ê)− c (e∗)

p (s|ê)− p (s|e∗)
≥ w (s) . (2.4)

The �rst set of constraints (2.3) imply that the expected wage must satisfy

p (s|e∗)w (s) ≥ max
ê:p(s|e∗)>p(s|ê)

c (e∗)− c (ê)

1− p(s|ê)
p(s|e∗)

.

In other words, the expected cost of implementing e∗ for the principal (and its implicit

bene�t for the agent) is determined by the likelihood of signal s. The second set of con-

straints (2.4) place an upper bound on the wages the principal may deliver while respect-

ing incentives of the agent. As we show below, this restriction can also be formulated in

terms of likelihood ratios.

The above illustration only holds under the assumption that the principal only com-

pensates the agent following a single signal s. We now show a more general version of
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this analysis for arbitrary compensation schemes. To this end, consider an arbitrary wage

schedule w (s) chosen by the principal – for any e�ort ei ∈ E chosen by the principal

on- or o�- equilibrium path . We may write the expected wage paid to the worker as

∑
s

w (s) p (s|ei) =
∑
s

w (s) p (s|e∗) p (s|ei)
p (s|e∗)

=
∑
s

w (s) p (s|e∗) ·
∑
s

w (s) p (s|e∗)∑
sw (s) p (s|e∗)

p (s|ei)
p (s|e∗)

=
∑
s

w (s) p (s|e∗) ·
∑
s

αs
p (s|ei)
p (s|e∗)

,

where

∑
s αs = 1. Since the weights αs do not depend on ei, we may write the agent’s

interim incentive compatibility constraint as

∑
s

w (s) p (s|e∗) ·
∑
s

αs
p (s|ei)
p (s|e∗)

− c (ei) ≥
∑
s

w (s) p (s|e∗) ·
∑
s

αs
p (s|ej)
p (s|e∗)

− c (ej) .

Therefore, if we de�ne `i = 1−
∑

s αsp (s|ei) /p (s|e∗), this incentive constraint may be

written as

∑
s

w (s) p (s|e∗) · [`j − `i] ≥ c (ei)− c (ej) ,∀j = 1, · · · , |E| . (2.5)

Writing the incentive constraint in this manner reveals that the choice of likelihood ra-

tios, `j’s, is su�cient to characterize payo�s of the principal and the agent and that the

choice of contractw (s) by the principal may be decomposed into a choice of

∑
sw (s) p (s|e∗)

as well as the choice of {αs}, or alternatively, `j’s. In other words, if we represent the

likelihood ratio pro�le with the following vector

l =
(
`1, · · · , `|E|

)
,

then l ∈ convex hull

({(
1− p(s|e1)

p(s|e∗) , · · · , 1−
p(s|e|E|)
p(s|e∗)

)}
s∈S

)
= co (p). Thus the choice
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of the principal can be summarized by the overall level of the compensation

∑
s p (s|e∗)w (s) =

w together with an element of the set co (p). We thus have the following lemma:

Lemma 1. Consider an implementable e�ort e∗ and its associated information structure

p = {p (·|·)}. Then the cost to the principal from implementing any e�ort ei is given by

W (ei,p) = min
l∈co(p)∩Ωi

(1− `i) · max
j:`j≥`i

c(ei)− c(ej)
`j − `i

, (2.6)

where

Ωi =

{
l ∈ R|E| : max

j:`j≥`i

c (ei)− c (ej)

`j − `i
≤ min

j:`j<`i

c (ei)− c (ej)

`j − `i

}
. (2.7)

The above lemma states that the problem of the principal can be reduced to choosing

an e�ort level as well as a point in the convex hull of likelihood ratios – its intersection

with the convex cone in (2.7). Note that not all likelihood ratio pro�les l are feasible in

the sense that there may be no compensation scheme that satis�es the agent’s interim

incentive compatibility constraint. As in our motivating example above, the likelihood

ratios must permit a wagew(s) that lies between the lower and upper bounds in (2.7). The

convex cone Ωi de�nes the set of likelihood ratio pro�les that admit incentive compatible

compensation schemes.

These results reveal that by choosing an information structure, the agent e�ectively

determines the convex hull co (p) and then the principal chooses a point that is in the

intersection of co (p) and the convex cone Ωi. This result by itself does not make the

analysis more tractable as it does not immediately describe the set of feasible convex hulls

co(p). The following proposition provides such a characterization. Note that, similar to

co (p), the convex hull co (f) is the convex hull created by the points{(
1− f (x|e1)

f (x|e∗)
, · · · , 1−

f
(
x|e|E|

)
f (x|e∗)

)}
x∈X

.

Proposition 1. For any information structure (S, π) with |S| < ∞, its associated co (p)

is a subset of co (f) that contains the origin 0 = (0, · · · , 0). Additionally, for any convex
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subset C of co (f) that contains the origin and has a �nite set of extreme points, there exists

an information structure (S, π) such that co (p) = C .

Proof. Let (S, π) be an information structure. Then,

p(s|ei)
p(s|e∗)

=

∑
x f(x|ei)π(s|x)∑
x f(x|e∗)π(s|x)

=
∑
x

f(x|e∗)π(s|x)∑
x f(x|e∗)π(s|x)

f(x|ei)
f(x|e∗)

=
∑
x

βs (x)
f(x|ei)
f(x|e∗)

,∀i = 1, · · · , |E| ,

where

∑
x βs (x) = 1; βs (x) is the principal’s posterior probability of x after observing

s. The above implies that(
1− p(s|e1)

p(s|e∗)
, · · · , 1−

p(s|e|E|)
p(s|e∗)

)
=
∑
x

βs (x)

(
1− f(x|e1)

f(x|e∗)
, · · · , 1−

f(x|e|E|)
f(x|e∗)

)
.

Hence, the left hand side of the above is a member of co (f) for all s ∈ S. As a result

co (p) ⊂ co (f). Moreover, we have

∑
s

p(s|e∗)
(

1− p(s|ei)
p(s|e∗)

)
= 1−

∑
s

p(s|ei) = 0,∀i = 1, · · · , |E| .

This implies that the convex set co(p) includes the origin.

Now consider an arbitrary convex set C ⊂ co (f) that contains the origin with each

of its members being of the form z =
(
z1, · · · , z|E|

)
. Let S be the set of extreme points

of C . Then, since 0 ∈ C , by Caratheodory theorem – see Rockafellar (1970) – there must

exist {τz}z∈S such that

∑
z∈S τz = 1 and

0 =
∑
z∈S

τzzi, ∀i = 1, · · · , |E| . (2.8)

By de�nition of co (f), we must have zi ≤ 1 for all z ∈ C . Moreover, since z ∈ co (f),

there must exist a subset Y ⊂ X whose members are linearly independent together with
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βz (x) such that

∑
x∈Y

βz (x) = 1, βz (x) ≥ 0, zi =
∑
x∈Y

βz (x)

[
1− f (x|ei)

f (x|e∗)

]
,∀i = 1, · · · , |E| .

Replacing the above in (2.8) leads to

0 =
∑
x∈Y

∑
z∈S

τzβz (x)

[
1− f (x|ei)

f (x|e∗)

]
,∀i = 1, · · · , |E| .

Since the points in Y are linearly independent and we also know that

0 =
∑
x∈Y

f (x|e∗)
[
1− f (x|ei)

f (x|e∗)

]
,∀i = 1, · · · , |E| ,

we must have that

f (x|e∗) =
∑
z

τzβz (x) .

Let us de�ne

π (z|x) =
βz (x) τz∑
z∈S βz (x) τz

=
βz (x) τz
f (x|e∗)

.

Then under π (z|x), we have

1− p (z|ei)
p (z|e∗)

= 1−
∑

x
βz(x)τz
f(x|e∗) f (x|ei)∑

x
βz(x)τz
f(x|e∗) f (x|e∗)

= 1−
∑

x βz (x) τz
f(x|ei)
f(x|e∗)

τz
∑

x βz (x)

= 1−
∑
x

βz (x)
f (x|ei)
f (x|e∗)

= zi,∀i = 1, · · · , |E| ,

which concludes the proof. �

Proposition 1 implies that any convex subset of co (f) that contains the origin can be

chosen by the agent as co (p). This implies that instead of a choice of p, we can focus
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on a choice of a convex subset of co (f) that contains the origin. Thus the agent-optimal

information structure that implements e∗ can be thought of as the equilibrium of the

following game:

• Stage 1. The agent chooses a �nite set of points L inside the convex set co (f) such

that the convex hull of these points conv (L) includes the origin.

• Stage 2. The principal chooses an e�ort level ei ∈ E and a point ` ∈ conv (L)∩Ωi

to maximize E [g (x) |ei]− (1− `i) ·maxj:`j>`i
c(ei)−c(ej)
`j−`i .

• Stage 3. The choice of principal in stage 2 coincides with e∗.

The following example illustrates the construction of co (f) and the equilibrium response

of the principal.

Example 1. Suppose that X = {x1 = 0, x2 = 1, x3 = 2} and E = {e1, e2, e3}, where

c (e1) = 0, c (e2) = 0.1, and c (e3) = 0.3. The performance technology is given by

f =


0.35 0.50 0.15

0.05 0.50 0.45

0.10 0.15 0.75

 ,
where fij = f (xj|ei). Moreover, the principal’s payo� from realization of output x is

equal to x, that is, g(x) = x. This yields

E [g(x)|e1] = 0.8, E [g(x)|e2] = 1.4, E [g(x)|e3] = 1.65.

Therefore, the �rst-best is to implement e�ort e3. If we set e∗ = e3, then since 1 −
f (x|e3) /f (x|e∗) = 0, we can embed the set co (f) in R2

. The gray area in Figure 2.1

represents this set with ai being the point associated with xi ∈ X .

To understand the geometry of the game between the principal and the agent, con-
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sider a signal structure with 4 realizations given by S = {s1, s2, s3, s4} and

π =


0.5 0.2 0.1 0.2

0.2 0.3 0.3 0.2

0.05 0.05 0.1 0.8

 ,
where πij = π(sj|xi). We can use p (s|e) =

∑
x∈X π (s|x) f (x|e) to construct the likeli-

hood ratios. The green area in Figure 2.1 illustrates the convex set co(p).

To better illustrate the incentives in the geometric game between the principal and

the agent, suppose the agent reveals x to the principal. As we have illustrated above, the

choice of contract by the principal is equivalent to the choice of a point in the convex set

co (f).

To think about the incentives of the principal, if the principal is to implement e3, he

chooses l ∈ co (f) to minimize its cost given by

max

{
c (e3)− c (e2)

`2

,
c (e3)− c (e1)

`1

}
= max

{
0.2

`2

,
0.3

`1

}
The lower contour sets associated with the above cost function are convex cones in the

shape of positive orthants – the shaded blue area highlighted in the right panel of Figure

2.1. For this example, the above cost function is minimized at l∗. On the other hand, if

the principal is to implement e2, he chooses l ∈ co (f) to minimize the cost given by

(1− `2) 0.1
`1−`2 when `1 ≥ `2. This cost is minimized at a3. For e3 to be implementable,

the principal’s payo� associated with e2 – implied by the principal choosing a3 – should

be lower than his payo� associated with e3– implied by the principal choosingl∗. The set

of likelihood ratios that satisfy this condition are highlighted by the blue shaded area in

the right panel of Figure 2.1. Note that l∗ is not contained in this area. As a result, by

choosing to reveal x to the principal, the agent is unable to implement e3. One can show

that e2 is implementable under full revelation of x.
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a3

a2

a1

`2

`1

a3

a2

a1

l∗

`2

`1

Figure 2.1: The geometric representation of information structures in the space of likelihood

ratios. The left panel shows an example with 4 signals; the right panel shows the incentives of

the principal when the agent reveals x.

2.5.1 Binary Information Structures

We now exploit our geometric interpretation to show that we may restrict the agent to

choose information structures with at most two signals without loss of generality.

Proposition 2. If e∗ is implementable by some information structure (S, π) and delivers

expected wageW (e∗, π) to the agent, then e∗ is also implementable by a binary information

structure
(
Ŝ, π̂

)
with |Ŝ| = 2 andW (e∗, π̂) = W (e∗, π).

Proof. Suppose the e�ort level e∗ is implementable by (S, π) and consider the optimiza-

tion problem in (2.6). Let l∗ ∈ co (p) be the optimal choice for the principal when choos-

ing e∗. Given the de�nition of co (p) and the geometric game described above, there must

exist {αs}s∈S such that αs ≥ 0,

∑
s∈S αs = 1 and

`∗i = 1−
∑
s∈S

αs
p (s|ei)
p (s|e∗)

,∀i = 1, · · · , |E| .
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Let the information structure

(
Ŝ, π̂

)
be de�ned as Ŝ = {L,H} and

π̂ (H|x) =
∑
s

βsπ (s|x) , π̂ (L|x) = 1− π̂ (H|x) ,

where

βs =
αs/p (s|e∗)∑
s αs/p (s|e∗)

.

The probability function given this information structure satis�es

1− p̂ (H|ei)
p̂ (H|e∗)

= 1−
∑

x π̂ (H|x) f (x|ei)∑
x π̂ (H|x) f (x|e∗)

,

= 1−
∑

s∈S
αs

p(s|e∗)
∑

x π (s|x) f (x|ei)∑
s∈S

αs
p(s|e∗)

∑
x π (s|x) f (x|e∗)

= 1−
∑

s∈S
αs

p(s|e∗)p (s|ei)∑
s∈S

αs
p(s|e∗)p (s|e∗)

= 1−
∑
s∈S

αs
p (s|e∗)

p (s|ei) = `∗i ,∀i = 1, · · · , |E| .

The above implies that if the principal is to choose e∗, l∗ is feasible under the new in-

formation structure

(
Ŝ, π̂

)
, i.e., l∗ ∈ co (p̂). Hence, in order to establish our claim, it is

su�cient to show that for any alternative ei 6= e∗, W (ei, π̂) ≥ W (ei, π). To show this,

it is su�cient to show that(
1− p̂ (L|e1)

p̂ (L|e∗)
, · · · , 1−

p̂
(
L|e|E|

)
p̂ (L|e∗)

)
∈ co (p)

This would imply that co (p̂) is a subset of co (p) since co (p̂) is the line that connects

the above point to l∗.
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We have

1− p̂ (L|ei)
p̂ (L|e∗)

= 1−
∑

x (1− π̂ (H|x)) f (x|ei)∑
x (1− π̂ (H|x)) f (x|e∗)

= 1−
∑

x

∑
s (1− βs) π (s|x) f (x|ei)∑

x

∑
s (1− βs)π (s|x) f (x|e∗)

= 1−
∑

s (1− βs) p (s|ei)∑
s (1− βs) p (s|e∗)

= 1−
∑
s

(1− βs) p (s|e∗)∑
s (1− βs) p (s|e∗)

p (s|ei)
p (s|e∗)

,

which establishes the claim. This concludes the proof. �

We can describe the intuition behind the above proof graphically. Consider an imple-

mentable e�ort e∗ and suppose that its associated information structure is as depicted in

Figure 2.2; the green area represents the convex hull corresponding to this information

structure, co (p). Suppose that point b is the point of optimality for the principal in co (p)

if he were to implement e∗. The red line represents the new information structure π̂ –

since there are only two signal realizations, this has to be a line. If the principal is to

implement e∗, since b ∈ co (p̂) and b is chosen under π, b remains optimal. Moreover,

since co (p̂) ⊂ co (p), for any other e�ort ei 6= e∗, minimized cost under π̂ must be at

least as high as that under π. This, in turn, implies that e∗ is implementable under π̂ and

implements the same outcome as under π.

The above observations imply that if the principal prefers to implement e�ort e∗ un-

der the information structure π, he would prefer the same under the binary information

structure π̂ and the expected wage he has to pay to achieve this is the same under both in-

formation structures. In what follows, we will use this result to characterize the optimal

information structures.

Example 1 (Continued). Recall Example 1 in which we argued that the principal –

under full revelation – chooses to implement e2 and thus his choice is ine�cient (since

total surplus under e2 is lower than that under e3.)

It still remains to be seen whether e3 is implementable and how well the agent can
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a4

a3

a2

a1

b

`2

`1

Figure 2.2: The intuition for the construction of a two-point signal

do by choosing an information structure. By Proposition 2, we can focus on information

structures that only have two support points. Note that since the expected output under

e1 is E [g(x)|e1] = 0.8 and its cost is 0, the principal can always guarantee E [g(x)|e1] =

0.8.

Now consider the point l̂ satisfying

0.2

ˆ̀
2

=
0.3

ˆ̀
1

= 0.85

At this point, the payo� to the principal of implementing each e�ort level is given by

e3 : 1.65−max

{
0.2

ˆ̀
2

,
0.3

ˆ̀
1

}
= 0.8

e2 : 1.40−
(

1− ˆ̀
2

)
· 0.1

ˆ̀
1 − ˆ̀

2

= 1.40− 0.65 = 0.75

e1 : 0.8− 0 = 0.8

This implies that at l̂, e3 maximizes the payo� of the principal. Thus if l̂ ∈ co (f), we
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l̂
a3

a2

a1

`2

`1

Figure 2.3: Agent-optimal information structure in Example 1

can choose an information structure that implements e3. In this example, this is indeed

the case. Figure 2.3 depicts the point l̂ as well as a two-point information structure that

implements it; the red line going through l̂. If we set S = {L,H} and

π (H|x) =


27
83
, if x = x1

15
83
, if x = x2

41
83
, if x = x3

, π (L|x) = 1− π (H|x) ,

it can readily be checked that (S, π) is associated with the one depicted in Figure 2.3.

The above example illustrates the agent’s power the choice of the information struc-

ture provides. By choosing the aforementioned information structure, not only the agent

is able to implement e3, i.e., the e�cient level of e�ort, but also she is able to capture the

entire surplus. In what follows, we show that under some conditions on the performance

technology, this is always possible.
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2.6 E�cient Surplus Extraction

In this section, we provide su�cient conditions on the performance technology f (·|·)
and cost function c (·) so that the agent is able to implement the �rst-best e�ort and

extract the entire surplus.

Let e∗ be the �rst-best level of e�ort that satis�es

e∗ ∈ arg max
e∈E

E [g(x)|e]− c (e) .

Suppose that the agent wishes to implement e∗ and capture the entire surplus given by

E [g(x)|e∗] − c (e∗) − E [g(x)|e1]. For this to occur, we need to choose co (p) and l∗ ∈
co (p) that satisfy

E [g(x)|e1] = E [g (x) |e∗]− max
i:`∗i≥0

c (e∗)− c (ei)

`∗i

≥ max
ej∈E,l∈co(p)∩Ωj

E [g (x) |ej]− (1− `j) max
i:`i>`j

c (ej)− c (ei)

`i − `j

Consider the likelihood vector l∗ that satis�es the following property:

E [g (x) |e∗]− E [g(x)|e1] =
c (e∗)− c (ei)

`∗i
,∀i = 1, · · · , |E| .

In words, this is a point in which the agent is indi�erent among all the e�orts – see the

reformulation of (IC-A) in (2.5). Moreover, the principal’s payo� is his outside option

and thus if the principal chooses to implement e∗ and chooses l∗ ∈ co (p), the agent

captures the entire surplus. In the following proposition, we show that if l∗ ∈ co (f), we

can construct an information structure – and its associated co (p) – in which l∗ is the

best choice for the principal and e∗ is the best level of e�ort.

Theorem 1. Suppose that l∗ ∈ co (f). Then e∗ is implementable and there exists an infor-

mation structure (S, π) for which the agent’s payo� is UA = E [g (x) |e∗]− E [g (x) |e1]−
c (e∗) and the principal’s payo� is UP = E [g (x) |e1], i.e., the agent can capture the entire
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surplus.

Proof. First, we note that by Lemma 2 in Appendix A, 0 ∈ co (f) is an interior point of

this convex set, where interiority is de�ned in an appropriatley de�ned subspace of Rm
.

We de�ne the following convex hull (and by Proposition 1, its associated information

structure):

co (p) = {λl∗ + (1− λ) (−αl∗) : ∀λ ∈ [0, 1]} ,

where α > 0 is such that −αl∗ ∈ co (f). Such an α always exists due to 0 being an

interior point. Since co (p) is a line through l∗ and the origin, all of its members must

satisfy

∀i, j, `i
`j

=
c (e∗)− c (ei)

c (e∗)− c (ej)
=
`∗i
`∗j
⇒ `i

`1

=
c (e∗)− c (ei)

c (e∗)
, ∀i. (2.9)

This implies that the cost of choosing any point l ∈ co (p) to implement any e�ort ej ∈ E
is given by

(1− `j) max
i:`i≥`j

c (ej)− c (ei)

`i − `j
=

(
1− c (e∗)− c (ej)

c (e∗)
`1

)
c (e∗)

`1

=
c (e∗)

`1

+ c (ej)− c (e∗) .

Since choice of l under ej must be a member of the cone Ωj , we must have `j ≤ `1

and this combined with (2.9) implies that `1 ≥ 0. Thus the above expression is minimized

at l∗. Hence, the highest payo� of the principal from choosing ej is given by

E [g (x) |ej]− c (ej)−
c (e∗)

`∗1
+ c (e∗) =

E [g (x) |ej]− c (ej) + c (e∗)− E [g (x) |e∗] + E [g(x)|e1]

The above is maximized at ej = e∗, which implies that e∗ can be implemented with

the chosen information structure. Moreover, the payo� of the principal is given by

E [g (x) |e1]. This concludes the proof. �

The proof of the above theorem emphasizes the power of the agent when l∗ ∈ co (f).
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By being able to control the information structure, the agent can control the wage that

is needed for the principal to implement his desired e�ort. By choosing l∗, the agent is

forcing the principal to fully compensate the agent for her cost of e�ort. This implies

that the payo� of the principal becomes total surplus shifted by a constant. Hence, it is

optimal to choose the �rst best level of e�ort.

While Theorem 1 provides su�cient conditions for implementability of the �rst-best

e�ort and full surplus extraction, it is not immediately evident what it imposes on the

structure of the model. In what follows, we try to shed light on this.

Almost Perfect Performance Technology. Suppose that the performance technol-

ogy satis�es the following property

X = E ⊂ R+, e1 = 0,

f (ej|ej) = 1− (m− 1) ε,∀j = 1, · · · ,m,

f (ei|ej) = ε,∀i 6= j,

where 1/ (m− 1) > ε > 0. In words, the above performance technology puts probability

ε on ei 6= ej if ej is chosen. As ε converges to 0, it converges to a setting where observing

x ∈ X fully reveals e, i.e., a perfect performance technology. Note that for ε small enough,

the �rst-best level of e�ort is given by

ej ∈ arg max
e∈E

e− c (e)

Suppose that in the above ej > e1 = 0. Moreover, as ε converges to 0, the point l∗

converges to

`∗i =
c (ej)− c (ei)

ej
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Finally, note that for any ε, the set co (f) is the convex hull of the following likelihood

ratios:

1− f (ek|ei)
f (ek|ej)

=



1− ε
1−(m−1)ε

, if k = j, k 6= i

0, if k = i = j

0, if k 6= j, k 6= i

m− 1
ε
, if k 6= j, k = i

As ε converges to 0, the above set gets larger and the point associated with k = j con-

verges to 1, · · · , 1︸ ︷︷ ︸
j−1 times

, 0, 1, · · · , 1

 ,

while the points associated with k 6= j converge to0, · · · , 0︸ ︷︷ ︸
k−1 times

,−∞, 0, · · · , 0

 .

This implies that as ε converges to 0, co (f) → (−∞, 1]j−1 × {0} × (−∞, 1]m−j . This

is depicted in Figure 2.4. Since `∗i ≤
c(ej)

ej
< 1, for ε small enough, we must have that

l∗ ∈ co (f). We thus have the following corollary to Theorem 1:

Corollary 1. Let f (·|·) be an almost perfect performance technology satisfying

X = E ⊂ R+, e1 = 0,

f (ej|ej) ≤ 1− (m− 1) ε,∀j = 1, · · · ,m,

f (ei|ej) ≥ ε,∀i 6= j.

Then there exists ε such that for all ε ≤ ε, the agent can implement the �rst-best level of

e�ort and capture the entire surplus.
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l∗

`2

`1

Figure 2.4: Almost Perfect Performance Technology for m = 3. The grey and green shaded areas

represent co (f) as ε becomes smaller. As ε → 0, co (f) converges to the shaded quarter-space

south-west of (1, 1).

2.7 Continuous E�ort and Output

In this section, we consider a version of the model from Section 2.4 where the e�ort space

and the output space are continuous. Applying a �rst-order approach, we derive su�-

cient conditions such that the optimal indicator structure takes the form of monotone or

hump-shaped threshold signals. In other words, we derive conditions such that the opti-

mal information structure is characterized by an indicator with at most two thresholds.

Consider a principal employing an agent to perform a task whose output is repre-

sented by a real number x ∈ X = [0, 1]. The agent chooses e�ort e ∈ E = [0, 1] to

perform the task. The agent’s e�ort choice induces a probability distribution f(x|e) over

the output space X , whose density function f(x|e) is assumed to be twice di�erentiable

with respect to e for every x ∈ X . E�ort is costly to the agent; the cost of e�ort e is given

by c(e) for some real-valued function c : E → R+ where c′(e) ≥ 0, c′′(e) > 0, ∀e ∈ E.

For simplicity, let c(0) = 0. The timing and payo� functions of the game are other-

wise the same as in the model in Section 2.4. To proceed, we assume that the �rst-order
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approach is valid for all the optimization problems faced by the agent and the principal.

We characterize this continuous version of the game in the same manner as the dis-

crete case. Given the result in Proposition 2, one can use an approximation argument to

show that optimal signal is binary, i.e., S = {L,H}. As a result, let p (e) : E → [0, 1]

represent the probability of s = H induced by a given information structure (S, π) and

the underlying probability distribution of outcomes given e�ort f(x|e). Note, for any

level of e�ort e, p (e) =
∫ 1

0
f (x|e) π (H|x) dx. Di�erentiating the stochastic mapping p

with respect to e yields

p′ (e) =

∫ 1

0

fe (x|e)π (H|x) dx, ∀e ∈ E.

The agent’s problem in the last stage of the game, given an information structure and

a compensation scheme, is

max
e∈E

p (e)w (H) + [1− p (e)]w (L)− c (e)

The �rst-order condition characterizing the agent’s optimal e�ort is

p′ (e) [w (H)− w (L)] = c′(e).

For any desired level of e�ort, the principal chooses a compensation scheme that

solves

min
w

p (e)w (H) + (1− p (e))w (L)

s.t p′ (e) [w (H)− w (L)] = c′ (e) ,

w (H) , w (L) ≥ 0.

(2.10)

If λ(e, π) denotes the Lagrange multiplier on the agent’s incentive compatibility con-
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straint in (2.10), then

λ(e, π) = min

{
p (e)

p′ (e)
,−1− p (e)

p′ (e)

}
.

Exactly as in the discrete case, the above reveals that the agent’s choice of information

structure, which induces a set of likelihood ratios dependent on the stochastic mapping

p, determines the principal’s shadow cost of incentivizing a given e�ort level.

If we de�ne the expected payo� to the principal from a given e�ort level e asE [g(x)|e] =

g(x)f(x|e)dx, then the principal’s optimal choice of e�ort solves

max
e

E [g (x) |e]− λ (e, π) c′ (e)

with associated optimality condition

∂E [g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0.

Using the above sequence of optimality conditions, we obtain the following optimiza-

tion problem that describes the agent’s choice of e�ort and information structure in the

�rst stage of the game:

max
e,π

λ(e, π)c′(e)− c(e) s.t.

∂E[g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0,

1

λ(e, π)
= max

{ ∫ 1

0
f(x|e)π(x)dx∫ 1

0
fe(x|e)π(x)dx

,−
1−

∫ 1

0
f(x|e)π(x)dx∫ 1

0
fe(x|e)π(x)dx

}
.

(2.11)

The following assumption allows us to provide a sharp characterization of the optimal

information structure:

Assumption 2. Given any e�ort e ∈ E, the likelihood fe(x|e)
f(x|e) is strictly monotone in output

x and its derivative ∂
∂e

fe(x|e)
f(x|e) is a convex function of the likelihood fe(x|e)

f(x|e) .

Several distribution functions satisfy Assumption 2. Examples include power distri-
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butions: f (x|e) = exe−1
, and truncated exponential distributions: f (x|e) = d

dx
ex−1
e−1

.

Our main characterization of the optimal information structure is as follows:

Proposition 3. Suppose that Assumption 2 holds. Then, the equilibrium information struc-

ture is characterized by at most two thresholds in the output space. If the equilibrium infor-

mation structure has a single threshold, say x∗, then π (H|x) = 1 if and only if x ≥ x∗. If

the equilibrium information structure has two thresholds, say (x∗1, x
∗
2) then π (H|x) = 1 if

and only if x ∈ [x∗1, x
∗
2].

Proof. See Appendix B. �

Given an e�ort choice, the agent’s optimal choice of information structure requires

the agent to choose the probability of being paid at any output such that there is no net

marginal bene�t from a marginal change in this probability. Generally, it is not possible

to satisfy this condition for all the output levels. The agent ends up choosing the ex-

treme probabilities for every output, depending on whether her net marginal bene�t is

increasing or decreasing in the probability of being paid at that output level. Assump-

tion 2 ensure that the output intervals at which the agent uses either of the extreme

probabilities are structured such that the optimal information structure takes the form of

monotone or hump-shaped thresholds signals.

Example 2. Let f(x|e) = 3ex3e−1
. As mentioned earlier, this distribution satis�es As-

sumption 2. If the e�ort cost is c(e) = e2

2
, the equilibrium information structure is char-

acterized by x∗ = 0.45 where π (H|x) = 1 if and only if x ≥ x∗. The principal pays

the agent w = 0.1048 if he receives the high signal; otherwise, he pays nothing. This

choice implements e�ort e∗ = 0.2725 yielding the following payo�s: UP = 0.3450,

UA = 0.0677. For comparison, the �rst-best e�ort is e = 0.4708. In this case, and oppo-

site to that of section 2.6, the agent is unable to implement the e�cient outcome.
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2.8 Conclusion

In this paper, we have developed the theoretical tool in the design of contracts in principal-

agent settings. Part of the contract design is what indicators should be used as contingen-

cies for payments. Despite the importance of this question and its relevance for analysis

of contracting decisions, this part of the contracting procedure is less explored.

Our paper has two broad implications. First, our methodology of thinking about like-

lihood ratios can be applied to other settings in which considerations of communication

o� the equilibrium path are important. In our setup, unlike other models of communica-

tion and information design, the design of information structure for the equilibrium level

of e�ort a�ects o�-path communication and the ability of the principal and the agent to

capture surplus. This can arise in other settings with strategic information transmission

and our method can be useful for that.

Second, our paper ties the choice of indicators in contracting to the bargaining power

of the parties. In the textbook moral hazard problem, principal makes a take-it-or-leave

it o�er. As a result, a version of the informativeness principle often holds; the principal

wishes to use all the information available, if possible, as contingency for payments. In

contrast, in our model, the agent has di�erent incentives for choice of indicators. There

are some casual observations that are in line with this explanation. For example, con-

tracts in NFL are often extremely detailed and payments to football players are highly

contingent on various measures of individual and team outcomes. In contrast, contracts

found in the English Premier League are not as detailed. They are often contingent on

very coarse personal outcomes such as the number of goals scored reaching a particular

threshold. In light of our theory, the level of competition in English/European soccer (in

the form of increased player bargaining power) compared to a lack thereof in NFL could

be behind this observation. Future work can hopefully shed light on the importance of

this channel in the data.
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2.9 Appendix A: Interiority of the Origin

Lemma 2. Let T represent the lowest-dimensional linear subspace in R|E| that contains
co (f). If f(·|e∗) is full-support, then the origin is an interior point of co (f) with respect to

T .

Proof. Notice that the origin can be written as a convex combination of the points de�n-

ing co (f) with weights f(x|e∗):

∑
x

f(x|e∗)
(

1− f(x|ei)
f(x|e∗)

)
=
∑
x

f(x|e∗)−
∑
x

f(x|ei) = 1− 1 = 0, ∀i,

where f(x|e∗) > 0, ∀x ∈ X by the full-support assumption. Therefore, the origin is

always included in the convex set co (f). Suppose by contradiction that the origin is not

an interior point of co (f) with respect to T . By the supporting hyperplane theorem, there

exists a hyperplane in the linear subspace T that contains the origin and co (f) is entirely

contained in one of the two closed half-spaces bounded by the hyperplane. However,

since f(x|e∗) > 0, ∀x ∈ X , this is possible only if co (f) is entirely contained in this

hyperplane. This is a contradiction because T is the lowest-dimensional linear subspace

in R|E| that contains co (f). �

2.10 Appendix B: Proof of Proposition 3

Proof. Let π(x) = π(H|x), ∀x ∈ X . Without loss of generality, for any desired imple-

mentable e�ort level e, we impose

∫
X
fe(x|e)π(x)dx ≥ 0. Consequently, we have

λ(e, π) =

∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

≥ 0.
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We may then write the agent’s problem in (2.11) as

max
e,π

λ(e, π)c′(e)− c(e) s.t.

∂E[g(x)|e]
∂e

− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e) = 0,

λ(e, π) =

∫
X
f(x|e)π(x)dx∫

X
fe(x|e)π(x)dx

,

λ(e, π) ≥ 0, 0 ≤ π(x) ≤ 1, ∀x ∈ X.

(2.12)

We write the Lagrangian corresponding to (2.12), momentarily ignoring the inequality

constraints:

L(e, π, η) = λ(e, π)c′(e)− c(e) + η

[
∂E[g(x)|e]

∂e
− ∂λ(e, π)

∂e
c′(e)− λ(e, π)c′′(e)

]
.

For every output x̃ ∈ X , the agent’s optimal information structure in (2.12) must satisfy

∂L(e, π, η)

∂π(x̃)
= 0, if 0 < π(x̃) < 1,

∂L(e, π, η)

∂π(x̃)
≥ 0, if π(x̃) = 1, (2.13)

∂L(e, π, η)

∂π(x̃)
≤ 0, if π(x̃) = 0.

With some algebra, we get

∂L(e, π, η)

∂π(x̃)
= f(x̃|e)

[
A1(e, π, η)− A2(e, π, η)

fe(x̃|e)
f(x̃|e)

+ A3(e, π, η)
fee(x̃|e)
f(x̃|e)

]
(2.14)

where A1, A2, A3 are some functions independent of x̃. Note that since

fee(x|e)
f(x|e)

=
∂

∂e

fe(x|e)
f(x|e)

+

(
fe(x|e)
f(x|e)

)2

,
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we can write (2.14) as

∂L(e, π, η)

∂π(x̃)
= f(x̃|e)

[
A1(e, π, η)− A2(e, π, η)

fe(x̃|e)
f(x̃|e)

+

A3(e, π, η)

(
fe(x̃|e)
f(x̃|e)

)2

+ A3(e, π, η)
∂

∂e

fe(x̃|e)
f(x̃|e)

]
. (2.15)

Since
fe(x|e)
f(x|e) is monotone, the function in (2.15) inherits the curvature of

∂
∂e

fe(x|e)
f(x|e) . That

is,
1

f(x|e)
∂L(e,π,η)
∂π(x)

is a convex or concave function of
fe(x|e)
f(x|e) depending on the sign of

A3(e, π, η). As a result, the sign of
∂L(e,π,η)
∂π(x)

changes at most twice over the interval X .

Note that if
∂L(e,π,η)
∂π(x)

is always positive or always negative (for a given e�ort level

e), then the information structure is fully uninformative. Such information structures

cannot be incentive compatible as they provide no incentives for the agent to conduct any

e�ort level e > e1. Consequently, the equilibrium information structure has either one or

two thresholds. In either case, it follows immediately from (2.13) that if the equilibrium

information structure has a single threshold, say x∗, then π(x) = 1 if and only if x ≥ x∗.

If the equilibrium information structure has two thresholds, say (x∗1, x
∗
2), then π(x) = 1

if and only if x ∈ [x∗1, x
∗
2]. �
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Chapter 3

Pricing and Mergers in Complex
Networks: The Case of Natural Gas
Pipelines

with Maryam Saeedi and Ali Shourideh
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3.1 Abstract

Natural gas is a large and growing share of U.S. energy consumption; based on data

from U.S. Energy Information Administration (EIA), in 2021, it accounted for 32% of the

primary energy consumption, 38% of the electricity generation, and about half of home

heating in the U.S. The transportation of natural gas from producer to consumer, how-

ever, is relatively unexamined by economists. Using an extensive panel of daily data on

natural gas �ows through interstate pipelines from 2005 to 2016, and applying machine

learning methods, we are able to obtain an overall view of the natural gas �ows in the net-

work. Speci�cally, we can identify the �ow between every pair of states, which can help

us in analyzing this networked market in more depth in future work. In this paper, we

take the �rst steps of analyzing this networked market by studying two-part price sched-

ules used by local distributing companies (LDCs) and performing demand estimation to

derive price-elasticity of demand in di�erent sectors: residential, commercial, industrial,

and electric utility. Our results suggest that while demand in all these sectors is relatively

inelastic with respect to the average price, electric utility is the most elastic sector and

industrial sector is the most inelastic one. We then investigate one of the largest mergers

among natural gas interstate pipelines. Our results suggest that this merger had a sig-

ni�cant e�ect on natural gas transportation prices even though the two pipelines were

not in the same physical market. Furthermore, using an extensive panel of daily data

on temperature, natural gas prices, and inventories at various locations across the U.S.,

from 2009 to 2015, we are able to investigate the role of storage in the natural gas market,

quantify its e�ect on natural gas prices at di�erent geographical locations across the U.S.,

and evaluate the network e�ect in this market. We test the standard rational expectations

competitive storage model, which is widely used in the literature, to estimate natural gas

demand as well as storage costs. We then quantify the e�ect of temperature, storage, and

pipeline congestion on natural gas prices. Our results suggest that storage and temper-

ature are the main factors explaining the price shocks in the natural gas market where

abundant storage dampens the e�ect of cold winter weather on natural gas prices. Fi-

nally, we investigate the network e�ect in the natural gas market, evaluating the e�ect of

110



changes in the temperature of one geographical region on all other regions. Our results

suggest that a change or shock in one geographical region can have a signi�cant e�ect

on prices even in the farthest regions. This observation can be rationalized by the change

of natural gas route in the pipeline network from low-demand regions to high-demand

regions.

3.2 Introduction

There is a lack of research on regulation and antitrust policy in complex networked mar-

kets where upstream and downstream markets are not easily distinguishable. An example

of such a market is the U.S. natural gas market comprising of gas producers, interstate

and intrastate pipeline operators, and local distributing companies (LDCs). How does

a merger among interstate pipelines a�ect the natural gas transportation price? The

answer to this question is critical to antitrust decision-making as policymakers are con-

cerned about the welfare implications if most of the changes in the price paid by shippers

are passed onto �nal end use consumers.

The natural gas transportation industry has seen considerable consolidation over the

last 25 years. However, traditional methods of merger analysis cannot be used o� the

shelf. In such markets, it is not straightforward to de�ne the relevant market or to identify

which market participant (producers, pipelines, storage operators, traders, or shippers)

enjoys market power. Consequently, it is an intricate task to determine which pipeline

or storage mergers should be allowed, or which pipeline or storage operators should be

allowed to o�er market-based rates.

Part of the complexity stems from the fact that a particular portion can be used in

multiple routes. A pipeline that goes from Louisiana to New York can be used to ship gas

along a longer route, such as from Texas to Boston. Merging pipelines would increase

concentration along all possible route-markets in which that pipeline could participate.

Mergers can look vertical, if a Louisiana-NYC pipeline merges with NYC-Boston, but they

can also look horizontal if two separate Louisiana-NYC pipelines merge. Furthermore, a
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merger anywhere in the network of pipelines can in�uence prices even in distant parts

of the network due to shifting routes as traders minimize cost of transport.

The price e�ects of a merger are the result of changes in market power and e�ciency.

On the one hand, the decrease in competition and increase in market power through a

merger lead to an increase in price; on the other hand, any possible e�ciency gains

lead to a decrease in price. A retrospective study of a consummated merger can provide

empirical evidence on the price e�ects of a merger, showing the net e�ect of these two

forces and o�ering guidance for future merger analysis. As the natural gas market is

relatively unexamined by economists, in this paper, we take the �rst steps of analyzing

this complex networked market.

3.2.1 An Overview of Natural Gas Market

Natural gas is one of the principal sources of energy for many of our day-to-day needs and

activities and plays a central role in determining our overall economic well-being, from

heating and cooling our homes and businesses to determining the cost and composition

of goods and services produced in the economy. In the U.S., natural gas is a large and

growing share of energy consumption; based on data from EIA, in 2021, it accounted

for 32% of the primary energy consumption, 38% of the electricity generation, and about

half of home heating in the U.S. Due to its environmental cleanliness compared to coal,

along with advances in unconventional sources of supply due to fracking, natural gas is

projected to continue to grow as a share of U.S. energy consumption.

Natural gas is mostly transported using pipelines. As a result, its price can be di�erent

at di�erent parts of the world or even within a country as a function of distance to the

wellhead. In other words, natural gas has a localized market. Natural gas hubs, which

tend to be at the heart of gas infrastructure network, are used as central pricing points

for the network’s natural gas. In some cases, �nancial derivative contracts are priced o�

gas delivered at these points as well. Natural gas prices are a function of market supply

and demand. Figure 3.1 illustrates the trends in natural gas spot prices at three major

markets around the world.

112



Figure 3.1: Trends in natural gas spot prices at major global markets (Source: EIA website)

The natural gas market, speci�cally the transportation of natural gas from ultimate

producer to consumer is relatively unexamined by economists. However, this market has

undergone a process of market deregulation over the last decades. For instance, price

controls on wellhead prices were a major feature of the U.S. natural gas market for much

of the post-war period but were terminated in 1989.

The most constructive e�ort led by market participants and the Federal Energy Reg-

ulatory Commission (FERC) to further deregulate and revitalize the natural gas industry

emerged in the format of the FERC Open Access Rule Orders 436 and 500. The concept

of Orders 436 and 500 was to allow pipelines to continue buying gas from producers and

selling to end users in the traditional manner, but to also allow producers and end users to

enter into contracts with the pipelines to obtain capacity on these transmission systems

for their own use. Furthermore, orders 436 and 500 led to the development of various

transportation tari� structures by the pipelines, which identify di�erent levels of trans-

portation service. As a result, shippers, which are title holders which transport natural
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gas on pipelines, could choose between more or less reliable transportation service, as

well as transportation service for varying lengths of time, depending on how much they

were willing to pay for that service. For example, transportation service for one month

which could be interrupted at the pipeline’s discretion (“interruptible service”) would be

less expensive than transportation service for one year which could not be interrupted

by the pipeline (“�rm service”).

The next step to achieving a more open market environment came on July 31, 1991

when the FERC issued a Notice of Proposed Rule-making (NOPR), and after a lengthy

comment and review process, the Mega-NOPR became FERC Final Order 636. The Fi-

nal Order 636 brought together the open-access concepts in Orders 436 and 500 and, in

general, outlined the “unbundling” of services provided by the interstate pipelines. Un-

bundling is the process of identifying and separating the various services provided by

a pipeline and allowing these services to be contracted for, independent of one another.

Bundling, on the other hand, is the term used for “rolling-in” all costs incurred by a

pipeline for all available services, and charging all shippers equally, regardless of the ser-

vices actually used by the shippers. Unbundled service calls for the segregation of each

service provided by a pipeline, allowing for independent selection and purchase of those

services.

Moreover, in states with active “retail choice programs” such as Georgia, Maryland,

New York, Ohio, Pennsylvania, and Virginia, customers have a choice between buying

natural gas from their LDC and buying natural gas from independent natural gas mar-

keters. The LDC provides and is reimbursed for transportation services but marketers

perform the �nancial transactions, procuring natural gas in the wholesale market and

then selling it to �nal customers.

Due to changing market dynamics and requests from shippers, interstate pipelines

were permitted to allow for capacity release among their �rm transportation shippers

in April of 1992. Capacity release refers only to �rm transportation capacity and is the

option whereby a �rm shipper can assign its �rm transportation capacity on a pipeline

to a third party. Although deals can be negotiated exclusively between shippers, the pre-
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ferred method of releasing capacity is through a closed bidding process on the pipeline’s

EBB (electronic bulletin board) wherein the buyer submits a percentage of maximum

�rm transportation rate bid to the seller of the �rm capacity. The buyer with the highest

percentage bid will be assigned that �rm capacity.

Most of the natural gas consumed in the U.S. comes from domestic production. As

Figure 3.2 illustrates, U.S. dry natural gas production increased from 2006 to 2015, and

U.S. natural gas spot prices and consumer prices generally decreased during the same

period. However, in 2016, production declined for the �rst time since 2005, and prices

increased toward the end of the year.

Figure 3.2: Monthly U.S. dry natural gas production and monthly average spot price at the Henry

Hub (Source: EIA website)

Because of limited alternatives for natural gas consumption or production in the near

term, even small changes in supply or demand over a short period can result in large price

movements that bring supply and demand back into balance. Three major supply-side

factors a�ect prices: amount of natural gas production, level of natural gas in storage,

volumes of natural gas imports and exports. Three major demand-side factors a�ect

prices: variations in winter and summer weather, level of economic growth, availability
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and prices of competing fuels.

The strength of the economy in�uences natural gas markets. During periods of eco-

nomic growth, increases in demand for goods and services from the commercial and

industrial sectors may increase natural gas consumption. Economic-related increases in

consumption can be particularly strong in the industrial sector, which uses natural gas

as a fuel and a feedstock for making many products.

During cold months, natural gas demand for heating by residential and commercial

consumers generally increases overall natural gas demand and can put upward pressure

on prices. If unexpected cold or severe weather occurs, the e�ect on prices intensi�es

because supply is often unable to react quickly to short-term increases in demand. The

e�ect of weather on natural gas prices may be greater if the natural gas transportation

(pipeline) system is already operating at full capacity. Natural gas supplies in storage

may help to cushion the impact of high demand during cold weather.

To balance seasonal swings in use, natural gas is placed in storage. The level of nat-

ural gas in underground storage �elds has a large in�uence on overall supply. Storage

helps to meet seasonal and sudden increases in demand, which domestic production and

imports might not otherwise meet. When demand is lower, storage absorbs excess do-

mestic production and, sometimes, imports. Natural gas storage levels tend to be highest

sometime between the end of October and mid-November and lowest at the end of win-

ter. EIA’s Weekly Natural Gas Storage Report shows that most injections occur between

April and October and most withdrawals occur between November and March.

High summer temperatures can have direct and indirect e�ects on natural gas prices.

Warm temperatures increase the demand for air conditioning, which generally increases

the electric utility sector’s demand for natural gas. During high demand periods, natural

gas prices on the spot market may increase sharply if natural gas supply sources are

relatively low or constrained. Increases in natural gas consumption by the electric utility

sector during the summer may lead to smaller-than-normal injections of natural gas into

storage and to lower available storage volumes in the winter, which could have an e�ect

on prices.
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Some large-volume fuel consumers such as electric utilities and industrial consumers

(e.g., iron, steel, and paper mills) can switch between natural gas, coal, and petroleum,

depending on the cost of each fuel. When the cost of the other fuels fall, demand for

natural gas may decrease, which may reduce natural gas prices. When the cost of com-

peting fuels rise relative to the cost of natural gas, switching from those fuels to natural

gas may increase natural gas demand and prices. In 2016, more electricity was generated

from natural gas than coal for the �rst time on record, and natural gas was the largest

source of overall electricity generation.

3.2.2 Our Contributions

After obtaining an overall view of the natural gas �ows in the network by identifying

the �ow between every pair of states, we take the �rst steps of analyzing this complex

networked market.

First, we focus on natural gas distribution in the U.S. This is a clear natural monopoly

with high �xed costs and low marginal costs. We perform demand estimation to derive

price-elasticity of demand in di�erent sectors: residential, commercial, industrial, and

electric utility. Our results suggest that while demand in all these sectors is relatively

inelastic with respect to the average price, electric utility is the most elastic sector and

industrial sector is the most inelastic one.

Second, we investigate the merger of Kinder Morgan Inc. and El Paso Corp., one of

the largest mergers among interstate pipelines. Our results suggest that this merger had

a signi�cant e�ect on natural gas transportation prices even though the two pipelines

were not in the same physical market.

Third, we estimate the natural gas inverse demand function as well as storage costs

using the standard rational expectations competitive storage model, which is widely used

in the literature.

Fourth, we investigate and quantify the e�ect of temperature, storage, and pipeline

congestion on natural gas prices at di�erent geographical locations across the U.S. by

running some linear regressions. Our results suggest that storage and temperature are
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the main factors explaining the price shocks in the natural gas market where abundant

storage dampens the e�ect of cold winter weather on natural gas prices.

Finally, we investigate the network e�ect in the natural gas market, evaluating the

e�ect of changes or shocks in one geographical region on all other regions by modifying

the above-mentioned linear regressions. Our results suggest that a change or shock in one

geographical region can have a signi�cant e�ect on prices even in the farthest regions.

This observation can be rationalized by the change of natural gas route in the pipeline

network from low-demand regions to high-demand regions.

The rest of the paper is organized as follows. Section 2 describes the data sets used in

this paper. Section 3 brie�y describes the e�orts made to build the layout of the interstate

pipeline network. Section 4 studies the two-part price schedule used by LDCs, while Sec-

tion 5 derives the price-elasticity of demand for natural gas in di�erent sectors. Section

6 investigates the e�ects of a large merger between two interstate pipelines on natural

gas transportation prices. Section 7 brie�y describes the rational expectations competi-

tive storage model and summarizes the demand estimation results. Section 8 lays out a

few linear regressions quantifying the e�ect of temperature, storage, and pipeline con-

gestion on natural gas prices, while Section 9 derives the network e�ects using similar

regressions. Section 10 concludes the paper and discusses the future work.

3.3 Data

The main data set, which essentially motivated this paper, includes a panel of daily data

on more than 11,000 points in the network of interstate pipelines; these are points where

a pipeline is connected to a facility such as a gathering system, gas processing plant,

compressor, throughput meter, storage, power plant, industrial end user, LDC, or an-

other interstate or intrastate pipeline. The information for each point includes pipeline

name, location latitude and longitude, facility type, capacity, scheduled �ow, and avail-

able capacity. Our sample includes data from from January 2006 through December 2016.

This is the data set used in section III for constructing the pipeline network, and will be
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used further in future work.

The data sets we use in section IV for studying LDCs’ two-part price schedule include

the number of natural gas consumers for residential, commercial, and industrial sectors

by state at the annual level, the natural gas volumes delivered to end use consumers

by sector and state at the monthly level, and average price of natural gas delivered to

consumers by sector and state at the monthly level. All these data come from the U.S.

Department of Energy, Energy Information Administration (EIA) website. For residential

and commercial sectors, we use data from January 1990 through December 2016. For

industrial sector, we use data from January 2001 to December 2016 as data for industrial

consumers are only available from 2001.

The data sets we use in section V for demand analysis include the data used in sec-

tion IV as well as receipts and average cost of fossil-fuels including coal and natural

gas delivered to electric utility sector for electricity generations by state at the monthly

level. For electric utility sector, we use data from March 2003 to December 2016. These

data also come from the U.S. Department of Energy, Energy Information Administration

(EIA) website. Prices, which are available by state, month, and customer class, include

all charges paid by end users including transportation costs as well as all federal, state,

and local taxes. All dollar values in this section have been normalized to re�ect July 2018

prices.

The data sets we use in section VI for merger analysis include data on the ownership

history of interstate pipelines and the daily natural gas spot prices at di�erent hubs in

the U.S. from 1999 through 2015. The data on spot prices come from the Intercontinental

Exchange (ICE).

The data sets we use in subsequent sections include daily natural gas spot prices at 83

hubs across the U.S. and Canada from 1999 through 2015, daily natural gas inventories at

69 storage locations across the U.S. from 2009 through 2015, average daily temperature

by state, monthly natural gas production by state from 1997 through 2018, annual state

in-�ow capacity from other states from 1994 through 2018, and monthly futures prices for

delivery at the Henry Hub in Louisiana up to four months from the trade date from 1994
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through 2018. The data on spot prices come from the Intercontinental Exchange (ICE),

the data on temperature come from National Oceanic and Atmospheric Administration

(NOAA), U.S. Department of Commerce, and the rest of the data sets come from the U.S.

Energy Information Administration (EIA) website. Therefore, our regressions are run

over the range of data from 2009 to 2015. All dollar values in this section have been

normalized to re�ect July 2018 prices.

Using daily average temperature, we calculate daily heating and cooling degree days:

Each day’s heating (cooling) degree days is the number of degrees that day’s average

temperature is below (above) 65 degrees Fahrenheit, which is the temperature below

(above) which buildings need to be heated (cooled). Heating (Cooling) degree days is

set euql to zero if the average temperature is above (below) 65 degrees Fahrenheit. This

is mainly important for the residential and commercial customers that use natural gas

primarily for space heating.

In the next sections, we perform our estimations sometimes based on state-wise data,

and sometimes based on regional data. When performing state-wise analysis, we will

derive each state’s inventory by aggregating all inventories in that state; also, we will

derive each state’s price data by taking the average of all hub prices which are a�ected

by natural gas prices in that state.

To perform regional analysis, we �rst have to de�ne some geographical regions; this

can be done in several di�erent ways. For example, EIA used to divide the U.S. into three

storage regions: Producing, Consuming East, and Consuming West. It later modi�ed

this division into 5 storage regions: East, Midwest, South Central, Mountain, and Paci�c.

On the other hand, EIA divides the U.S. into six pipeline regions: Northeast, Midwest,

Central, Southeast, Southwest, and West. We will use this last six-region division in the

regional analysis of the subsequent sections. Table 3.1 represents the states included in

each region.

When performing regional analysis, we will derive each region’s inventory and pro-

duction by aggregating all inventories and productions of the corresponding states; also,

we will derive each region’s price data by taking the average of all hub prices which are
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Table 3.1: U.S. pipeline regions

Region States

Northeast

Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey,

New York, Pennsylvania, Rhode Island, Vermont, Virginia, West Virginia

Midwest Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin

Central

Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota,

Utah, Wyoming

Southeast

Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina,

Tennessee

Southwest Arkansas, Louisiana, New Mexico, Oklahoma, Texas

West Arizona, California, Idaho, Nevada, Oregon, Washington

used in deriving the prices of the corresponding states. However, each region’s in-�ow

capacity is derived by aggregating the in-�ow capacity of the corresponding states from

all states not in that region.

3.4 Data Cleaning and Network Construction

In this section, our goal is to obtain an overall view of the natural gas �ows in the network,

and more speci�cally, identify the natural gas �ow between every pair of states. To this

end, we clean our main data set including a panel of daily information about more than

11,000 points in the network of interstate pipelines.

We �rst retrieved the state and county where each point in the data set is located,

and then using this information and applying machine learning methods, we could trace

the �ow of natural gas along each pipeline. As some of the largest pipelines have a very

complex layout and it is possible that a pipeline travels in and out of a state or county

several times over its route, characterizing the gas �ow direction is not trivial from the

information of a few nodes on that pipeline. In other words, the order in which gas tra-

verses these points on a pipeline cannot be easily retrieved. We managed to characterize

this order using machine learning techniques.

Considering each state (or county if needed) as a single node in the network of in-

terstate pipelines, we calculated the daily �ow of natural gas between each pair of nodes

(states) using the above-mentioned processed data. This information can help in analyz-
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ing the market from a network point of view. We will discuss the lines of research that

can be followed using the resulting data set and network layout in Section VII.

3.5 LDCs’ Two-part Price Schedule

There are two main consumers of natural gas: (i) LDCs which mostly serve residential,

commercial, and industrial customers, and (ii) electric utilities. LDCs are regulated by

state utility commissions which set price schedules for each customer class using tradi-

tional rate-of-return techniques. Regulators create price schedules to equate total rev-

enues from all customer classes with total operating costs plus an allowed rate of return

on the �rm’s capital expenditures.

In natural gas distribution, the dominant price schedule is a two-part tari�. First,

LDCs charge customers a �xed fee, typically levied monthly, that does not depend on the

level of consumption. This fee varies by customer class; typically, industrial and com-

mercial customers pay a higher monthly fee than residential customers. In some cases,

the �xed fee also varies within customer class based on the level of consumption. Second,

customers pay a per-unit charge for each unit of natural gas that is consumed. This price

includes a commodity charge for natural gas purchased on their behalf by the LDC. Com-

modity costs change throughout the year with the LDCs’ procurement costs. In addition

to commodity costs, most companies also charge customers a per unit “transportation

charge” per unit of natural gas consumed. This fee also varies by customer class; typ-

ically, residential customers pay a higher transportation charge than commercial and

industrial customers.

EIA provides the number of natural gas consumers for residential, commercial, and

industrial sectors by state at the annual level, the natural gas volumes delivered to end

use consumers by sector and state at the monthly level, and average price of natural gas

delivered to consumers by sector and state at the monthly level. For residential and com-

mercial sectors, we use data from January 1990 through December 2016. For industrial

sector, we use data from January 2001 to December 2016 as data for industrial consumers
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are only available from 2001. Computing the monthly revenue of LDCs by sector and

state (Revenue = Average Price * Consumption) and following the regression equation:

Rstate,t = α ∗Nstate,t + β ∗ Cstate,t + εstate,t,

we regress the monthly revenue from each sector’s sales in each state, R, on the cor-

responding number of consumers, N , and monthly gas consumption, C , forcing the in-

tercept of the regression equation to zero. The estimated coe�cients, α and β, can be

interpreted respectively as the �xed and per-unit charges in the two-part price sched-

ule in each state and each sector. In other words, α is the average amount paid in �xed

monthly fees and β is the average per-unit price. Tables 3.2 and 3.3 present the results

of estimating the two-part price schedule used by LDCs in every state for residential and

commercial sectors, respectively. Taking the average over all states, for residential con-

sumers, the average monthly �xed charge is $11.11, and the average per-unit charge is

$8.05. Similarly, for commercial consumers, the average monthly �xed charge is $22.39,

and the average per-unit charge is $7.63. As was expected, commercial consumers which

have a higher level of consumption face higher �xed charges and lower per-unit charges.

The results of estimating the two-part price schedule used by LDCs for industrial sec-

tors are less accurate including more negative �xed charges which is due to the fact that

both �xed and per-unit charges also vary within customer class in every state depending

on the level of consumption. This can also be the case for residential and commercial

consumers based on the state regulations. However, for the residential sector, the �xed

charge is negative only for the state of Maine. The results of estimating the two-part price

schedule used by LDCs in every state for industrial sector can be found in Appendix.

The above analysis assumes that, for all sectors and in all states, both �xed and per-

unit charges have not changed over the period under study. However, typically changes

in commodity costs are passed on relatively quickly to �nal customers; in fact, every few

years, LDCs �le a rate case with FERC to increase their rates. Running the previous re-

gression separately for every year or every three years (assuming LDCs �le a rate case

every three years), lets us observe the changes in �xed and per-unit charges by LDCs
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Table 3.2: Two-part tari� estimates ($/Mcf) for the residential sector by state

State Fixed Charge Per-unit Charge R2
State Fixed Charge Per-unit Charge R2

AL 13.38 8.70 0.68 NE 11.28 5.90 0.74

AZ 12.34 8.96 0.75 NV 10.36 8.13 0.81

AR 11.97 7.07 0.71 NH 7.40 11.25 0.77

CA 5.76 7.56 0.65 NJ 6.61 8.96 0.78

CO 10.52 5.88 0.76 NM 13.32 5.69 0.66

CT 11.79 11.16 0.87 NY 12.32 9.86 0.81

DE 13.91 9.66 0.77 NC 11.62 9.43 0.84

FL 12.38 10.08 0.59 ND 12.52 5.68 0.74

GA 19.85 8.71 0.64 OH 15.91 7.01 0.69

ID 3.10 8.10 0.86 OK 15.55 5.97 0.70

IL 16.40 6.13 0.71 OR 8.13 9.35 0.80

IN 12.41 6.67 0.76 PA 15.02 8.60 0.77

IA 13.94 6.23 0.73 RI 12.97 10.51 0.78

KS 12.80 6.59 0.71 SC 10.01 9.37 0.84

KY 12.97 6.65 0.71 SD 9.51 6.56 0.77

LA 9.94 6.72 0.68 TN 8.25 7.96 0.80

ME -2.05 14.17 0.88 TX 12.24 6.23 0.73

MD 12.65 9.12 0.79 UT 5.45 7.04 0.82

MA 2.28 11.98 0.82 VT 21.09 9.76 0.71

MI 14.84 6.14 0.68 VA 13.03 9.54 0.83

MN 7.59 7.04 0.77 WA 10.33 8.66 0.75

MS 7.06 7.23 0.72 WV 9.47 7.93 0.77

MO 17.53 6.65 0.70 WI 5.86 7.89 0.80

MT 9.03 6.23 0.71 WY 12.84 5.77 0.68

over the period under study. Tables 3.4 and 3.5 present respectively the results of esti-

mating two-part tari�s used by LDCs in Pennsylvania for the residential sector from 1990

through 2016 assuming LDCs �le a rate case every year and every three years. Figures

3.3 and 3.4, corresponding to Tables 3.4 and 3.5, indicate how �xed and per-unit charges

in the residential sector have changed in Pennsylvania over the period under study. The

results of estimating two-part tari�s used by LDCs in Pennsylvania for the residential

sector from 1990 through 2016, assuming LDCs �le a rate case every two years, can be

found in Appendix.

As can be observed from these tables and �gures, the per-unit charge, which includes

the commodity cost for natural gas, was increasing from 1990 to 2008, but started de-

creasing after that. This trend can be explained by the increasing Shale gas production
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Table 3.3: Two-part tari� estimates ($/Mcf) for the commercial sector by state

State Fixed Charge Per-unit Charge R2
State Fixed Charge Per-unit Charge R2

AL 51.69 8.45 0.56 NE -13.77 6.32 0.69

AZ 34.26 7.72 0.44 NV 68.97 6.95 0.57

AR 9.53 7.27 0.70 NH 25.70 10.95 0.79

CA 36.36 6.87 0.33 NJ -69.01 9.53 0.69

CO 42.04 5.21 0.64 NM 47.25 5.27 0.55

CT 34.63 8.40 0.76 NY -35.42 8.83 0.67

DE 37.18 10.48 0.78 NC 20.12 8.49 0.70

FL -198.20 12.47 0.46 ND 39.42 5.64 0.72

GA 25.83 8.05 0.63 OH 29.60 7.05 0.70

ID 14.79 7.10 0.77 OK 68.93 5.96 0.60

IL 93.06 6.06 0.64 OR 26.66 7.67 0.66

IN 42.18 6.39 0.72 PA 39.20 8.55 0.75

IA 29.93 6.09 0.70 RI 39.76 9.88 0.77

KS 78.43 4.99 0.49 SC -8.49 9.45 0.64

KY 43.17 6.84 0.66 SD 30.62 5.80 0.71

LA -3.97 8.01 0.55 TN 36.65 7.39 0.68

ME -125.45 14.47 0.91 TX 49.73 5.52 0.40

MD -37.68 9.73 0.78 UT 4.84 6.45 0.81

MA 33.94 9.65 0.74 VT 63.32 7.18 0.73

MI 76.98 5.72 0.68 VA 16.53 8.29 0.71

MN 9.75 6.70 0.72 WA 62.99 7.13 0.57

MS 8.05 7.28 0.56 WV 84.12 7.25 0.57

MO 49.16 6.86 0.68 WI -1.74 7.32 0.76

MT 29.00 6.88 0.78 WY 34.02 5.72 0.69

in the U.S. which resulted in lower prices.

Peoples natural gas company, which provides natural gas service to retail gas cus-

tomers in Pennsylvania, currently charges a �xed charge of $13.95 per residential meter

per month (which is close to our estimates) and a transportation charge of $3.133 per Mcf

(1000 cubic feet) which is close to our estimates of per-unit charge in Pennsylvania once

we add up the natural gas commodity cost (around $4) and taxes as well. Note that this

transportation charge causes departure from marginal cost pricing by LDCs; Davis and

Muehlegger (2010) estimate that these distortions impose hundreds of millions of dollars

of annual welfare loss.
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Table 3.4: Two-part tari� estimates ($/Mcf) for the residential sector in Pennsylvania

assuming LDCs �le a rate case every year

Year Fixed Charge Per-unit Charge

1990 7.24 5.78

1991 7.20 5.93

1992 7.89 5.76

1993 8.84 5.90

1994 9.28 6.45

1995 9.32 6.13

1996 11.77 6.14

1997 9.46 7.26

1998 8.67 7.26

1999 8.81 7.22

2000 9.19 7.45

2001 12.83 9.87

2002 12.01 7.91

2003 16.52 8.94

2004 14.84 10.41

2005 13.54 12.49

2006 4.39 15.78

2007 14.21 12.73

2008 19.80 13.49

2009 4.38 14.13

2010 13.60 10.97

2011 13.24 10.54

2012 13.21 9.85

2013 15.74 9.46

2014 16.17 9.71

2015 10.72 9.58

2016 15.85 7.78

R2
0.96
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Figure 3.3: Trend in two-part tari� charges ($/Mcf) in Pennsylvania assuming LDCs �le a rate

case every year

3.6 Demand Analysis

Use of natural gas has two seasonal peaks with consumption patterns predominantly

driven by weather. The largest peak occurs during the winter, when cold weather in-

creases the demand for natural gas space heating in the residential and commercial sec-

tors. The smaller peak occurs in the summer, when air conditioning use increases de-

mand for electric power, an increasing portion of which is provided by natural gas-�red

generators.

The electric power sector, which surpassed the industrial sector in 2008 and the com-

bined residential and commercial sectors in 2015, has become the largest consumer of

natural gas in the U.S. Consumption of natural gas in the power sector peaks in the sum-

mer when demand for electricity is highest. A smaller peak occurs during the winter,
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Table 3.5: Two-part tari� estimates ($/Mcf) for the residential sector in Pennsylvania

assuming LDCs �le a rate case every three years

Year Fixed Charge Per-unit Charge

1990-1992 7.45 5.82

1993-1995 8.97 6.18

1996-1998 11.01 6.73

1999-2001 10.69 8.11

2002-2004 13.49 9.22

2005-2007 12.86 13.27

2008-2010 12.81 12.84

2011-2013 13.93 9.96

2014-2016 12.95 9.25

R2
0.97

Figure 3.4: Trend in two-part tari� charges ($/Mcf) in Pennsylvania assuming LDCs �le a rate

case every three years

while the spring and fall seasons have the lowest consumption of natural gas for electric

power.

128



Increased deliveries of natural gas to the electric power sector have accounted for

much of the growth in total natural gas deliveries. As the share of natural gas used for

power generation has increased, so has the interdependence between natural gas supply

and infrastructure and electric power generator operations. Residential and commercial

natural gas use peaks during the winter as these consumers use natural gas primarily for

space heating. Industrial users of natural gas exhibit the least seasonality.

In this paper, we omit electric utility consumers from LDCs’ customers since these

facilities consume su�ciently large amounts of natural gas such that it is often pro�table

to build a dedicated line directly to an interstate pipeline, contract with suppliers directly,

and bypass the LDC. Firm contracts and interruptible contracts are two broad types of

contracts for purchasing natural gas. Transactions between power plants and natural

gas suppliers generally include a supply component, which involves an agreement with

a fuel producer or marketer to supply the commodity, and a delivery component, which

involves an agreement with a pipeline operator to transport the fuel from the producer

to the generator. For any transaction, one or both of these components can be �rm or

interruptible.

Firm contracts provide power plant operators with an agreed-upon capacity for the

producer or pipeline to supply natural gas, establishing a high priority for fuel requested

by the power plant. The supply or delivery of natural gas cannot be curtailed under a �rm

contract except under unforeseeable circumstances. Firm contracts are most prevalent

in the West and South regions of the United States. In contrast, interruptible contracts

are lower-priority fuel supply and transportation arrangements. Under these contracts,

the �ow of natural gas to a power plant may be stopped or curtailed if �rm contract

holders use the available capacity or if other interruptible customers outbid the power

plant. These contracts are generally set up for short periods, often for next-day delivery.

Interruptible contracts are less expensive than �rm contracts, re�ecting the higher risk

of disrupted fuel receipts. Interruptible contracts are most common in the Northeast; in

2016, more natural gas in this region was purchased using interruptible contracts than

�rm contracts.
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Most natural gas-�red power plants in the continental U.S. ful�ll all of their fuel re-

quirements through �rm contracts that obligate the natural gas producer and the pipeline

operator to send the natural gas to the power plant when requested. These power plants

reported receiving 71% of the natural gas purchased by power plants in 2016. About 16%

of natural gas used for power generation in 2016 was purchased by plants that reported

using only interruptible contracts, in which the natural gas supplier or pipeline operator

has the option of interrupting the fuel supply for contractually stipulated reasons. The

remaining 13% of natural gas was purchased by plants through some mix of �rm and

interruptible contracts throughout the year.

Now, we perform demand estimation for natural gas by classifying consumption into

residential, commercial, industrial, and electric utility sectors, and estimating the price-

elasticity of demand for each sector.

In addition to the data for residential, commercial, and industrial sectors explained in

the previous sector, EIA also provides receipts and average cost of fossil-fuels including

coal and natural gas delivered to electric utility sector for electricity generations by state

at the monthly level. For residential and commercial sectors, we use data from January

1990; for industrial sector, we use data from January 2001 to December 2016; and for

electric utility sector, we use data from March 2003 to December 2016. Prices, which

are available by state, month, and customer class, include all charges paid by end users

including transportation costs as well as all federal, state, and local taxes. All dollar values

in the article have been normalized to re�ect July 2018 prices.

The analysis which follows is performed at the monthly level. Although there is daily

variation in prices, short-run variation in natural gas prices is mitigated by the ability of

natural gas suppliers to store natural gas. In the U.S., total natural gas storage capacity

exceeds eight trillion cubic feet, enough to meet total consumption for several months.

With access to storage, natural gas suppliers are able to arbitrage within-month price

di�erences.

For each customer class, we regress the log of monthly consumption on the log of

average natural gas prices, state*month-of-year �xed e�ects and state*year �xed e�ects.
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The state*month-of-year �xed e�ects allow for unique state-speci�c seasonal patterns

in natural gas consumption and state*year �xed e�ects allow demand in each state to

change �exibly with long-run trends in income or housing growth. With state*month-

of-year and state*year �xed e�ects, we estimate our coe�cients o� of deviations from

mean seasonal patterns in each state.

In addition, we include demand shifters appropriate for each customer class’ use of

natural gas. For all sectors, we include same-month demeaned heating and cooling degree

days. Each month’s heating (cooling) degree days is the sum of the number of degrees

that each day’s average temperature is below (above) 65 degrees Fahrenheit, which is the

temperature below (above) which buildings need to be heated (cooled). This is mainly

important for the residential and commercial customers that use natural gas primarily for

space heating; we could choose to omit heating and cooling degree days for industrial

customers who use natural gas for production. Furthermore, we include the spot price

of West Texas Intermediate (WTI) crude oil in the demand equation as some industrial

customers have the ability to switch between fuel oil and natural gas. Finally, for electric

utility sector, we include the spot price of WTI crude oil as well as average cost of coal

delivered to electric utility sector in each state in the demand equation as some power

plants, based on their type, can use either petroleum, coal, or natural gas as fuel.

We present our demand elasticity estimates in Table 3.6. We estimate that demand

for natural gas in all sectors is relatively inelastic. The elasticity point estimates for res-

idential, commercial, industrial, and electric utility users are -0.5132, -0.2407, -0.0996,

and -0.6424, respectively. In addition, we �nd that the cross-price elasticity of industrial

demand with respect to the crude oil price is 0.0661.

Our results con�rm that the demand curve is indeed sloping downward and suggest

that while demand in all these sectors is relatively inelastic with respect to the average

price, electric utility is the most elastic sector and industrial sector is the most inelastic

one.

To check the robustness of our estimation results, we run the same regression several

times with a few changes made every time. First, for residential and commercial demand,
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Table 3.6: Price-elasticity of demand by sector

Residential Commercial Industrial Electric Utility

Log(Price) −0.5132∗∗∗ −0.2407∗∗∗ −0.0996∗∗∗ −0.6424∗∗∗

(0.0104) (0.0101) (0.0099) (0.0468)

Log(WTI Crude Oil Price) 0.0661∗∗∗ -0.0621

(0.0091) (0.0657)

Log(Coal Price) -0.0650

(0.1561)

Heating Degree Days 0.0007∗∗∗ 0.0006∗∗∗ 0.0002∗∗∗ 0.0007∗∗∗

(0.0000) (0.0000) (0.0000) (0.0001)

Cooling Degree Days −0.0002∗∗∗ -0.0001 0.0000 0.0029∗∗∗

(0.0000) (0.0000) (0.0000) (0.0003)

State*Year FE Yes Yes Yes Yes

State*Month-of-year FE Yes Yes Yes Yes

R2
0.9925 0.9891 0.9910 0.9231

we use the WTI crude oil spot price as an instrument for natural gas prices. We present

these demand elasticity estimates in Table 3.7.

Table 3.7: Price-elasticity of demand by sector: WTI as instrument

Residential Commercial Industrial Electric Utility

Log(Price) −0.3198∗∗∗ −0.2171∗∗∗ −0.0996∗∗∗ −0.6424∗∗∗

(0.0329) (0.0335) (0.0099) (0.0468)

Log(WTI Crude Oil Price) 0.0661∗∗∗ -0.0621

(0.0091) (0.0657)

Log(Coal Price) -0.0650

(0.1561)

Heating Degree Days 0.0007∗∗∗ 0.0006∗∗∗ 0.0002∗∗∗ 0.0007∗∗∗

(0.0000) (0.0000) (0.0000) (0.0001)

Cooling Degree Days −0.0003∗∗∗ -0.0001 0.0000 0.0029∗∗∗

(0.0000) (0.0000) (0.0000) (0.0003)

State*Year FE Yes Yes Yes Yes

State*Month-of-year FE Yes Yes Yes Yes

R2
0.9913 0.9887 0.9910 0.9231

Furthermore, we can interact demeaned heating and cooling degree days with prices

to allow the elasticity to vary with temperature. We present these demand elasticity es-

timates in Table 3.8. We estimate that the elasticity of customers is negatively correlated

with heating degree days, i.e., consumers respond less to exogenous shifts in price during

cold months.
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Table 3.8: Price-elasticity of demand by sector: elasticity changing with temperature

Residential Commercial Industrial Electric Utility

Log(Price) −0.5133∗∗∗ −0.2428∗∗∗ −0.1020∗∗∗ −0.5870∗∗∗

(0.0103) (0.0101) (0.0099) (0.0468)

Log(WTI Crude Oil Price) 0.0693∗∗∗ −0.1252∗

(0.0092) (0.0655)

Log(Coal Price) -0.1065

(0.1550)

Heating Degree Days −0.0023∗∗∗ −0.0002 −0.0003∗∗ 0.0005∗∗∗

(0.0001) (0.0001) (0.0001) (0.0002)

Cooling Degree Days −0.0022∗∗∗ 0.0010∗∗∗ -0.0002 0.0003

(0.0004) (0.0004) (0.0003) (0.0004)

Log(Price)*Heating Degree Days 0.0003∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0001)

Log(Price)*Cooling Degree Days 0.0002∗∗∗ −0.0001∗∗∗ 0.0000 0.0015∗∗∗

(0.0000) (0.0000) (0.0000) (0.0002)

State*Year FE Yes Yes Yes Yes

State*Month-of-year FE Yes Yes Yes Yes

R2
0.9928 0.9891 0.9911 0.9246

For residential, commercial, and industrial sectors, we can also instrument for natu-

ral gas prices using heating and cooling degree days in all other states. These demand

elasticity estimates can be found in Appendix. We have also done the same experiments

separately for each state, but the results are omitted for brevity.

As can be seen in Tables 3.6, 3.7, and 3.8, the qualitative results do not change; i.e.,

while demand in all these sectors is relatively inelastic with respect to the average price,

electric utility is the most elastic sector and industrial sector is the most inelastic one.

3.7 Merger Analysis

The merger of Kinder Morgan Inc. (KMI) and El Paso Corp. (El Paso) which was an-

nounced on October 16, 2011 and completed on May 24, 2012, created the U.S. largest

natural gas pipeline company. The combined company was operating about 67,000 miles

of natural gas pipelines (see the blue and red lines in Figure 3.5), or about 22% the U.S.

natural gas pipeline network at the time of merger completion.

El Paso’s natural gas pipeline network complements Kinder Morgan’s natural gas
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Figure 3.5: U.S. natural gas pipeline network, November 2011 (Source: EIA website)

system. By adding El Paso’s network to its own for 21.1 billion dollars, KMI increased its

access to natural gas markets in the Southwest, Southeast, Northwest, and Northeast.

In this section, we lay out an econometric strategy to show that this merger had

a signi�cant e�ect on natural gas transportation prices, and measure the e�ect of this

merger on transportation prices. The natural gas price at Henry Hub in Louisiana is

the benchmark price for natural gas traded in the U.S. and is considered re�ective of the

commodity value without transportation costs. Therefore, we use the di�erence in hub

prices as a measure of the cost of natural gas transportation along pipelines between the

hubs. On the other hand, by acquiring El Paso, KMI increased its market power in the

region around the Chicago Citygate Hub. Thus, we focus on the di�erence in hub prices

at the Henry Hub and the Chicago Citygate Hub.

To measure the e�ect of this merger on transportation prices, we run a linear re-

gression of di�erential hub prices (Henry-Chicago) on a set of explanatory variables that

are relevant for understanding the price impact: lag of di�erential hub prices, a dummy
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variable indicating the merger completion date, volume of transactions at the Chicago

Citygate Hub (to capture demand at this hub), Shale’s share of U.S. oil production (to

capture the local supply), and WTI crude oil spot price. The Intercontinental Exchange

(ICE) provides data on spot prices at di�erent hubs in the U.S. from 1999 through 2015.

In this section, we use daily spot prices at Henry Hub and Chicago Citygate Hub from

October 16, 2010 through October 15, 2011 (the day before the merger announcement

date) and from May 24, 2012 (merger completion date) to May 23, 2013. The results of

this regression are presented in the second column of Table 3.9. The price e�ects of a

merger are the result of changes in market power and e�ciency. The regression analysis

shows that, for the hub pairs which are located on the route of the merged pipelines, the

e�ect of merger on the cost of transportation is statistically signi�cant and the net e�ect

of the two forces mentioned above, causes prices to increase. To check the robustness of

our results, we performed the same regression with di�erent pairs of hubs located on the

route of KMI. The qualitative results did not change.

In order to realize whether the e�ect of merger on transportation prices realized after

merger announcement or merger completion, we run the previous regression by adding

a dummy variable indicating the merger announcement date and use data from October

16, 2010 to May 23, 2013. The results of this regression are presented in the third column

of Table 3.9. As can be observed from Table 3.9, the increase in transportation prices

occurred after the merger completion.

The main implication of this exercise is that in complex networked market, such as

the natural gas market, mergers can have a signi�cant e�ect on natural gas transportation

prices even though the two merging companies are not in the same physical market.

3.8 Demand and Storage Cost Estimation

In this section, we estimate the natural gas inverse demand function as well as storage

costs using the standard rational expectations competitive storage model. We �rst brie�y

describe the rational expectations competitive storage model and how it can be used for
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Table 3.9: E�ects of merger on natural gas transportation prices

Merger Completion Merger Announcement and Completion

Merger Announcement Indicator 0.0107

(0.0103)

Merger Completion Indicator 0.0397∗∗ 0.0232∗∗

(0.0163) (0.0096)

Hub Di�erential Lag 0.6837∗∗∗ 0.7049∗∗∗

(0.0331) (0.0283)

Chicago Citygate Hub Volume 0.0004∗∗∗ 0.0003∗∗∗

(0.0001) (0.0001)

Shale Ratio −0.3548∗∗ −0.3131∗∗

(0.1617) (0.1553)

WTI Crude Oil Price 0.0003 0.0001

(0.0005) (0.0004)

Year FE Yes Yes

R2
0.72 0.72

estimation, and then summarize the demand estimation results.

3.8.1 Rational Expectations Competitive Storage Model

Following Deaton and Laroque (1992), consider the following simpli�ed model of natural

gas. In each period of time, say a month, there is an exogenous production z following a

stochastic process characterized by a transition function Λ(z, Z), which gives the prob-

ability that the production in year t + 1 is less than or equal to Z when the production

in period t is z. The production shocks come from outside the model, are determined by

the conditions of production, and are what ultimately drive the behaviour of prices. We

assume z follows a �rst-order linear auto-regressive process.

There are two kinds of actors in the market: �nal consumers and risk-neutral specu-

lators. The consumers have inverse demand functions that we take to be linear, so that

if there was no storage and the production z was consumed in each period, price would

be given by

P (z) = a+ bz, (3.1)

where a and b < 0 are parameters. Given equation (1), and if consumers were the only

demanders in the market, we could directly infer the behaviour of prices from the be-
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haviour of the production. In particular, prices will follow an AR(1) if the production

follows an AR(1).

Inventory holders demand the commodity in order to transfer it into the next period,

and will do so whenever they expect to make a pro�t over the storage and interest costs.

The technology of storage takes the simple form of proportional deterioration during

storage, so that if I units are stored, (1 − δ)I units are available at the beginning of the

next period; speculators also have to pay a real interest rate r per period on the value

of commodities stored. De�ne x, the availability or amount on hand as the sum of the

production and inherited inventories, so that

xt = (1− δ)It−1 + zt. (3.2)

The crucial non-linearity in this speci�cation is introduced by the requirement that in-

ventories be non-negative. Given this, together with the assumptions that speculators

are risk neutral and have rational expectations, current and expected future prices must

satisfy

pt = max

[
P (x),

1− δ
1 + r

Etpt+1

]
. (3.3)

The second term in brackets is the expected value of one unit stored, after allowing for

storage costs, conditioned on the speculator’s current information, assumed to be the

current production and the current availability. The �rst term is the price that would

hold if current availability were sold to consumers, and this will be the actual price if it

is greater than the net expected future price. This is the situation in which speculators

would hold negative inventories were it possible to do so. If the net expected price is

greater than the price when no inventories are held, speculators exploit the arbitrage

opportunities and drive up the current price until current price and their expectation of

the net future price are equal.

Provided certain conditions are met, most notably that r + δ > 0, there exists a

solution to equation (3) in terms of a price function where f(x, z) is the unique monotone
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decreasing in its �rst argument solution to the functional equation

f(x, z) = max

(
1− δ
1 + r

∫
f(z′ + (1− δ)(x− P−1(f(x, z))), z′)Λ(z, dz′), P (x)

)
. (3.4)

Except in very special cases, this equation does not permit an analytical solution, and

must be solved numerically.

When the production process follows a linear auto-regression

zt+1 = ρzt + εt+1, (3.5)

for −1 < ρ < 1, and the ε’s are i.i.d., specializing from equations (4) to (5) gives

f(x, z) = max

[
G(x, z), P (x)

]
, (3.6)

where G(x, z) is the expected price net of storage costs,

G(x, z) =
1− δ
1 + r

∫
f(ε+ ρz + (1− δ)(x− P−1(f(x, z))), ε+ ρz)dΦ(ε), (3.7)

and Φ is the uni-variate distribution of ε.

Once the functions have been computed, they can be used to characterize the behavior

of the stochastic processes. In particular, note that, by equation (2), availability evolves

according to

xt+1 = (1− δ)(xt − P−1(f(xt, zt))) + zt+1, (3.8)

and the production z, evolves according to the transition function Λ(z, Z) , which in our

case means that it follows the auto-regression (5). We have a bi-variate stochastic process

in the vector (xt, zt), both elements of which are assumed unobserved, and with which

there is the associated observable price given by f(x, z).

In the formulation described above, apart from the distribution of the production

innovations, there are �ve free parameters: the depreciation rate δ, the real interest rate

r, the slope and intercept of the inverse demand function a and b, and the auto-regressive
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coe�cient ρ.

It turns out that, when productions and stocks are assumed unobserved and when the

demand function is linear, it is impossible to recover separately the demand function and

the mean and standard errors of the disturbances. Thus, we normalize the innovation of

the production process to be of mean zero and of variance one; the standard deviation of

the production z is thus 1/
√

1− ρ2
.

For simplicity, we have taken the distribution to be normal and also �xed the real

interest rate at the annual level of 2%.

Our general approach is to use the theory to construct one-period-ahead conditional

expectations and variances of prices, and to match these theoretical conditional moments

to the actual data. There are two elements in this process: the construction of the mo-

ments and the matching to the data. The latter is done using pseudo maximum likelihood

estimation (PMLE) (see Gourieroux et al., 1984). Write the one-period-ahead conditional

mean and variance of price as m(pt) and s(pt), so that

m(pt) = E(pt+1|pt)

s(pt) = V(pt+1|pt) (3.9)

and de�ne (twice the log of) the pseudo-likelihood function by

2 lnL =
T−1∑
t=1

ln lt = −(T − 1) ln(2π)−
T−1∑
t=1

ln s(pt)−
T−1∑
t=1

(pt+1 −m(pt))
2

s(pt)
(3.10)

This function is maximized with respect to the parameters of the model. Equation (10)

would yield the exact likelihood function if prices were normally and heteroscedastically

distributed conditional on lagged price. When there is storage, we would not expect

prices to be normally distributed, even if the productions were normal, but the parameter

estimates will nevertheless be consistent, in spite of the fact that both the conditional

expectation and conditional variance are non-di�erentiable in pt so that the likelihood

may be non-di�erentiable in the structural parameters (see Laroque and Salanie, 1994).
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In order to calculate the conditional means and variances (9), we follow a strategy

as follows. For each price in the data pt, we calculate a set of values of (xt, zt) that are

consistent with that price. For each element of the set, we use the transition function to

calculate the transition probabilities (densities) to each possible (xt+1, zt+1) in period t+1,

and thus to the corresponding price pt+1 = f(xt+1, zt+1). In order to put relative weights

on these various pt+1, we assume that the data in period t are drawn from the unique

invariant limit distribution of the bi-variate process on productions and availability. We

compute this distribution and derive from it the conditional probabilities associated with

each possible (xt, zt) consistent with pt. Weighting the associated values of pt+1 yields

the conditional expectation and variance of pt+1, for insertion in the PML criterion.

3.8.2 Estimation Results

Note that while we assume productions and stocks are unobserved in the PMLE, but

since we actually observe this data, we �rst estimate the auto-regressive coe�cient ρ

using monthly production data from January 2009 through December 2015. This yields

ρ = 0.87.

Then we use the PMLE to estimate the rest of the parameters (a, b, δ) using monthly

price data. The results are shown in Table 3.10. Note that for this estimation, we convert

our daily prices to average monthly prices.

Table 3.10: Demand and storage cost estimates

Region a b δ

United States 4.1382 -0.9557 0.5610

Northeast 5.3163 -1.5740 0.4405

Midwest 4.4570 -1.0632 0.5317

Central 4.2379 -0.9757 0.4360

Southeast 3.7478 -0.8102 0.3158

Southwest 4.0165 -0.8343 0.4214

West 3.9307 -0.7747 0.3724

One downside of the results in Table 3.10 is that the estimated storage costs are much

higher than expected. Because of these unreasonable storage cost estimates, we also
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considered a speci�cation of the storage model with positive constant marginal cost k as

well as proportional deterioration following Ca�ero et al. (2011). Note that considering

the storage cost as a constant proportional deterioration or shrinkage of the stock implies

that the marginal cost of storage is high when stocks are low since the price is decreasing

in stocks. This would change equation (3) to

pt = max

[
P (x),

1− δ
1 + r

Etpt+1 − k
]
, (3.11)

but our estimation results did not change qualitatively and the estimates of the constant

marginal cost k turned out to be negligibly small compared to the estimated δ.

As mentioned above, Deaton and Laroque (1992) did not use data on production or

stocks in their estimation approach; we also just used production data to estimate the

auto-regressive coe�cient. However, we can use monthly production and storage data

as well as monthly data on price of futures contracts for delivery in the following month

to estimate the inverse demand function and storage costs using the standard rational

expectations competitive storage model. Considering equation (3), we can use futures

contract price for the next month delivery F t+1
t as the expectation of price of the next

period, that is, F t+1
t = Etpt+1. Thus, minimizing the mean-squared error

MSE =
T−1∑
t=1

(
pt −max

[
a+ bx,

1− δ
1 + r

F t+1
t

])2

, (3.12)

we can estimate the parameters of the model. However, it turns out the model does not

identify any stock-out and thus parameters a and b cannot be estimated. The storage cost

is estimated to be δ = 0.0135 which is much more reasonable compared to what we got

from the other approach.
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3.9 Natural Gas Price as a Function of Temperature,

Storage, and Pipeline Congestion

In this section, we investigate and quantify the e�ect of temperature, storage, and pipeline

congestion on natural gas prices at di�erent geographical locations across the U.S. by

running some linear regressions.

As mentioned before, during cold months, natural gas demand for heating by residen-

tial and commercial consumers generally increases overall natural gas demand and can

put upward pressure on prices. If unexpected cold or severe weather occurs, the e�ect on

prices intensi�es because supply is often unable to react quickly to short-term increases

in demand. The e�ect of weather on natural gas prices may be greater if the natural gas

transportation (pipeline) system is already operating at full capacity. Natural gas supplies

in storage may help to cushion the impact of high demand during cold weather.

Also, high summer temperatures can have direct and indirect e�ects on natural gas

prices. Warm temperatures increase the demand for air conditioning, which generally in-

creases the electric utility sector’s demand for natural gas. During high demand periods,

natural gas prices on the spot market may increase sharply if natural gas supply sources

are relatively low or constrained. Increases in natural gas consumption by the electric

utility sector during the summer may lead to smaller-than-normal injections of natural

gas into storage and to lower available storage volumes in the winter, which could have

an e�ect on prices.

One extreme example that clearly illustrates the e�ect of temperature and storage on

natural gas prices is the 2013-14 winter de�ned by record high natural gas consumption

and storage withdrawals, as waves of bitterly cold weather repeatedly swept across the

United States. Natural gas markets in the U.S. began the winter season (November 2013 to

March 2014) with a robust gas inventory. As Figure 3.6 illustrates, cold snaps starting in

mid-November 2013 drove up demand for natural gas, particularly from residential and

commercial consumers. Three consecutive months of 10-year record storage withdrawals

(November 2013 through January 2014) pushed inventories to their lowest January levels
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since 2004. Even after storage fell to a 10-year low, the cold snaps continued, pushing the

Henry Hub spot price to $8.00 per million British thermal units (MMBtu) on some days

in February. Sustained colder-than-normal temperatures through March pushed storage

to its lowest level since 2003 and kept prices volatile, despite higher production.

Figure 3.6: Natural gas average weekly supply/demand balance (Source: EIA website)

Temperatures east of the Rockies were persistently cold, record-setting as much for

their sustained nature as for any single event. This cold weather was particularly per-

sistent in the Northeast, the Midwest, and the Mid-continent producing region. Bitterly

cold waves swept through these three regions, as well as regions that traditionally have

milder winter temperatures, like Texas, the Rockies, and the Paci�c Northwest. This

cold weather not only caused spikes in natural gas demand, but it also lessened the per-

formance of the energy supply chain. As Figure 3.7 illustrates, every major region of the

contiguous United States experienced waves of signi�cantly colder-than-normal temper-

atures.

The cold weather had a dramatic e�ect on U.S. natural gas consumption, which rose
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(a) Paci�c (b) Mountain

(c) East North Central (d) Mid-Atlantic

Figure 3.7: Weekly heating degree days, (Source: EIA website)

to a record per-day average during the 2013-14 winter. As Figure 3.8 illustrates, consump-

tion spiked during the cold weather in mid-December, early and late January, the begin-

ning of February, and the beginning of March. U.S. natural gas consumption reached a

same-month record every month from November 2013 to March 2014, according to EIA

data going back to 1995. Cold weather drove consumption up by 9% over 2012-13 winter

levels, with higher consumption occurring across all major sectors, despite higher prices.

As Figure 3.9 illustrates, natural gas markets in the U.S. began this winter season

(November 2013 to March 2014) with relatively high levels of gas inventories. Starting in

mid-November 2013, however, U.S. natural gas consumption increased at a greater rate

than supply, pushing inventories to their lowest levels since 2004, even as high prices
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Figure 3.8: Total daily U.S. natural gas consumption (Source: EIA website)

curtailed electric sector demand in some parts of the country. December saw record

storage withdrawals in the West region, and a record withdrawal in the Lower 48 states

for the week ending on December 13, 2013. Lower 48 gas inventories ended January at

less than 2,000 Bcf for the �rst time since 2005. Heavy withdrawals continued through the

�rst two weeks of February. Inventories, which had already reached their 10-year low by

the end of January, dropped below 1,000 Bcf by the end of March for the �rst time since

2003. November-to-March withdrawals set records in all three storage regions, which

depleted storage heading into April.

U.S. natural gas markets tightened as consumption outstripped supply and led to

record-high storage withdrawals. The national benchmark spot price for natural gas

traded at Henry Hub in Erath, Louisiana, averaged $4.63 per million British thermal

units (MMBtu) during the 2013-14 winter, 33% higher than the winter of 2012-13, and

the highest average winter spot price in four years, according to data from SNL Energy.
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Figure 3.9: U.S. natural gas winter gas inventories (Source: EIA website)

As Figure 3.10a illustrates, the Henry Hub spot price began the 2013-14 winter at less

than $3.50/MMBtu, and increased to more than $5.00/MMBtu by the end of January, as

inventories fell. As withdrawals continued to rise through the beginning of February,

so did the Henry Hub spot price, peaking at $8.15/MMBtu on February 10, according to

SNL data. As Figure 3.10b illustrates, prices responded to sharp daily demand increases

and continued draw-downs from storage by increasing signi�cantly in the northeastern

United States, as occurred in the winter of 2012-13. However, these price spikes were not

con�ned to the Northeast; they also occurred at trading hubs serving consumers in the

central and western United States, as Figures 3.10c and 3.10d illustrates. These observa-

tions emphasize the e�ect of temperature and storage on natural gas prices.

However, in the winter of 2014-15, despite similar cold weather and high consump-

tion, the price increases were not as severe. More speci�cally, despite somewhat colder

weather and higher natural gas consumption in the Northeast in the 2014-15 winter,

natural gas wholesale (spot) prices at Algonquin Citygate, with service to Boston, and

Transcontinental (Transco) Zone 6 NY, with service to New York City, were less volatile

compared to the 2013-14 winter and remained below $30 and $40 per million British ther-
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(a) Henry Hub (b) Eastern US

(c) Central US (d) Western US

Figure 3.10: Natural gas spot prices (Source: EIA website)

mal units (MMBtu), respectively. New England and New York are pipeline-constrained

markets in the Northeast, where prices during peak-demand days during winter often

surge to $20 to $30/MMBtu and reached record levels in January 2014 of $78/MMBtu and

$121/MMBtu, respectively.

Based on EIA’s Natural Gas Weekly Update, in the winter of 2014-15, there was an

increase of natural gas supplied to the New England and New York areas. The increased

natural gas supplies came from three di�erent sources, which include domestic pipeline,

imported lique�ed natural gas (LNG) that is regasi�ed and then sent out from the im-

porting terminal, and pipeline imports from Canada. From the end of 2013-14 winter to

the beginning of 2014-15 winter, two pipeline expansions came online and added about 1

billion cubic feet per day (Bcf/d) of supply to the Northeast. This observation emphasizes
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the e�ect of pipeline congestion on natural gas prices.

Given the above observations, we now try to quantify the e�ect of temperature,

storage, and pipeline congestion on natural gas prices. First, to investigate the e�ect

of temperature and storage on natural gas prices, we regress daily prices pt on storage

level Storaget, the interaction of storage level and winter indicator, heating degree days

HDDt, interaction of heating degree days and winter indicator, cooling degree days

CDDt, interaction of cooling degree days and winter indicator, interaction of storage

level and heating degree days and winter indicator, state(region)*month-of-year �xed ef-

fects and state(region)*year �xed e�ects. The state(region)*month-of-year �xed e�ects

allow for unique state(region)-speci�c seasonal patterns in natural gas consumption and

state(region)*year �xed e�ects allow demand in each state(region) to change �exibly with

long-run trends in income or housing growth. The �rst two columns of Table 3.11 present

the results of estimating the e�ect of temperature and storage on natural gas prices.

The estimation results in the �rst two columns of Table 3.11 suggest that all else the

same, higher storage levels have a negative e�ect on price and this e�ect is even higher

in winter. On the other hand, all else equal, higher heating or cooling degree days have

a positive e�ect on price and this e�ect is even higher in winter; however, the higher the

storage level, the lower is the positive e�ect of heating degree days on price in winter.

We can also investigate the e�ect of pipeline congestion on natural gas prices by

adding the production level Productiont and in-�ow capacity InF lowt to the regressors.

Note that it is reasonable to add both production and in-�ow capacity (as opposed to just

in-�ow capacity) since a region or state may not have a large in-�ow capacity which

leads us to expect high prices for that region or state; however, it is possible that we are

facing a producing region or state and thus lower prices than expected. The last two

columns of Table 3.11 present the results of estimating the e�ect of temperature, storage,

and pipeline congestion on natural gas prices.

The estimation results in the last two columns of Table 3.11 suggest that all else the

same, the in-�ow pipeline capacity decreases price; this can be interpreted as higher

pipeline utilization (higher pipeline congestion) increases price. Last but not least, the
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Table 3.11: E�ect of temperature, storage, and pipeline congestion on natural gas prices

State-wise Regional State-wise Regional

Productiont – – −0.2693∗∗∗ −0.2749∗∗∗

– – (0.0361) (0.0324)

InF lowt – – −0.0521∗∗∗ −0.0692∗∗∗

– – (0.0119) (0.0068)

Storaget −0.0063∗∗∗ −0.0042∗∗∗ −0.0057∗∗∗ −0.0041∗∗∗

(0.0005) (0.0004) (0.0005) (0.0004)

Storaget ∗Winter −0.0069∗∗∗ −0.0043∗∗∗ −0.0072∗∗∗ −0.0041∗∗∗

(0.0006) (0.0006) (0.0005) (0.0006)

HDDt 0.0175∗∗∗ 0.0431∗∗∗ 0.0171∗∗∗ 0.0425∗∗∗

(0.0022) (0.0054) (0.0021) (0.0054)

HDDt ∗Winter 0.0357∗∗∗ 0.0589∗∗∗ 0.0318∗∗∗ 0.0605∗∗∗

(0.0027) (0.0077) (0.0026) (0.0077)

CDDt 0.0285∗∗∗ 0.0615∗∗∗ 0.0280∗∗∗ 0.0616∗∗∗

(0.0028) (0.0070) (0.0027) (0.0069)

CDDt ∗Winter 0.0066 0.2156∗∗∗ 0.0089 0.2210∗∗∗

(0.0201) (0.0525) (0.0192) (0.0523)

Storaget ∗HDDt ∗Winter −0.0001∗∗∗ −0.0000∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)

State*Year FE Yes – Yes –
Region*Year FE – Yes – Yes

State*Month-of-year FE Yes – Yes –
Region*Month-of-year FE – Yes – Yes

R2
0.4053 0.5038 0.4293 0.5075

higher the production in a state or region, the lower the price.

3.10 Network E�ects

In this section, we investigate the network e�ect in the natural gas market, evaluating the

e�ect of changes or shocks in one geographical region on all other regions by modifying

the linear regressions in the previous section.

In the U.S., natural gas is delivered to di�erent parts of the country using pipelines.

All di�erent geographical markets are connected to each other via the large network of

interstate and intrastate natural gas pipelines. Therefore, a change or shock anywhere in

the network of pipelines can in�uence prices even in distant parts of the network due to

the shift in supply, demand and/or pipeline congestion.
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To derive network e�ects, we only work with regional data and make minor modi�-

cations to the regressions in the previous section. In the regressions of the last section, we

concatenated the data of all regions, but now, we run the previous regressions six times,

each time leaving out the data of one region out and instead include the heating degree

days of the excluded region as an extra regressor. Since the heating degree days across

regions are highly correlated, we use instead the deviations of heating degree days from

the seven-year trend (2009–2015) which are much less correlated across states. Tables

3.12 and 3.13 present the results of estimating the network e�ects following the second

and fourth columns of Table 3.11, respectively.

Table 3.12: Network e�ects in natural gas price dynamics

Excluded Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Storaget −0.0071∗∗∗ −0.0038∗∗∗ −0.0043∗∗∗ −0.0040∗∗∗ −0.0038∗∗∗ −0.0036∗∗∗

(0.0005) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005)

Storaget ∗Winter −0.0013∗∗ −0.0042∗∗∗ −0.0045∗∗∗ −0.0034∗∗∗ −0.0059∗∗∗ −0.0046∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0007) (0.0006)

HDDt 0.0428∗∗∗ 0.0316∗∗∗ 0.0253∗∗∗ 0.0409∗∗∗ 0.0361∗∗∗ 0.0309∗∗∗

(0.0047) (0.0068) (0.0062) (0.0061) (0.0060) (0.0062)

HDDt ∗Winter 0.0695∗∗∗ 0.0501∗∗∗ 0.0586∗∗∗ 0.0687∗∗∗ 0.0389∗∗∗ 0.0537∗∗∗

(0.0066) (0.0091) (0.0087) (0.00089) (0.0091) (0.0086)

CDDt 0.0553∗∗∗ 0.0629∗∗∗ 0.0561∗∗∗ 0.0624∗∗∗ 0.0689∗∗∗ 0.0572∗∗∗

(0.0057) (0.0080) (0.0075) (0.0083) (0.0084) (0.0075)

CDDt ∗Winter 0.0579 0.2370∗∗∗ 0.2015∗∗∗ 0.2004∗∗∗ 0.2279∗∗∗ 0.1757∗∗∗

(0.0400) (0.0551) (0.0540) (0.0690) (0.0826) (0.0560)

Storaget ∗HDDt ∗Winter −0.0002∗∗∗ −0.0000 −0.0000∗∗∗ −0.0001∗∗∗ 0.0000 −0.0000∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Excluded HDDdev,t 0.0023 0.0265∗∗∗ 0.0339∗∗∗ 0.0055 0.0316∗∗∗ 0.0427∗∗∗

(0.0024) (0.0033) (0.0039) (0.0041) (0.0051) (0.0043)

Region*Year FE Yes Yes Yes Yes Yes Yes

Region*Month-of-year FE Yes Yes Yes Yes Yes Yes

R2
0.5614 0.4999 0.5186 0.4917 0.4933 0.5059

The estimation results in Tables 3.12 and 3.13 suggest that for four out of the six re-

gions, the deviations of the heating degree days from the seven-year trend have a signif-

icant e�ect on the price of natural gas in the other regions. This e�ect can be interpreted

as network e�ect which makes the analysis of the natural gas market in the U.S. much

more di�cult. Lack of attention to this kind of network e�ects is one of the main pieces

that is missing in the regulation and antitrust policy prevailing in the natural gas market.
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Table 3.13: Network e�ects in natural gas price dynamics

Excluded Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Productiont −0.3395∗∗∗ −0.2266∗∗∗ −0.1695∗∗∗ −0.2737∗∗∗ −0.6911∗∗∗ −0.2625∗∗∗

(0.0258) (0.0337) (0.0341) (0.0344) (0.0692) (0.0339)

InF lowt −0.0471∗∗∗ −0.0692∗∗∗ −0.0684∗∗∗ −0.0237∗∗∗ −0.0144∗ −0.1986∗∗∗

(0.0087) (0.0086) (0.0070) (0.0079) (0.0087) (0.0260)

Storaget −0.0075∗∗∗ −0.0037∗∗∗ −0.0042∗∗∗ −0.0038∗∗∗ −0.0026∗∗∗ −0.0034∗∗∗

(0.0005) (0.0005) (0.0004) (0.0005) (0.0005) (0.0005)

Storaget ∗Winter −0.0006 −0.0040∗∗∗ −0.0042∗∗∗ −0.0032∗∗∗ −0.0065∗∗∗ −0.0044∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0007) (0.0006)

HDDt 0.0422∗∗∗ 0.0311∗∗∗ 0.0255∗∗∗ 0.0404∗∗∗ 0.0357∗∗∗ 0.0305∗∗∗

(0.0046) (0.0068) (0.0062) (0.0061) (0.0060) (0.0062)

HDDt ∗Winter 0.0725∗∗∗ 0.0519∗∗∗ 0.0606∗∗∗ 0.0699∗∗∗ 0.0390∗∗∗ 0.0552∗∗∗

(0.0065) (0.0091) (0.0087) (0.00088) (0.0090) (0.0086)

CDDt 0.0559∗∗∗ 0.0632∗∗∗ 0.0561∗∗∗ 0.0624∗∗∗ 0.0687∗∗∗ 0.0574∗∗∗

(0.0057) (0.0080) (0.0075) (0.0082) (0.0084) (0.0075)

CDDt ∗Winter 0.0540 0.2411∗∗∗ 0.2066∗∗∗ 0.2084∗∗∗ 0.2422∗∗∗ 0.1823∗∗∗

(0.0395) (0.0549) (0.0539) (0.0688) (0.0821) (0.0558)

Storaget ∗HDDt ∗Winter −0.0002∗∗∗ −0.0000∗ −0.0001∗∗∗ −0.0001∗∗∗ −0.0000 −0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Excluded HDDdev,t 0.0017 0.0265∗∗∗ 0.0326∗∗∗ 0.0052 0.0277∗∗∗ 0.0414∗∗∗

(0.0024) (0.0033) (0.0039) (0.0041) (0.0051) (0.0043)

Region*Year FE Yes Yes Yes Yes Yes Yes

Region*Month-of-year FE Yes Yes Yes Yes Yes Yes

R2
0.5708 0.5027 0.5201 0.4957 0.4996 0.5096

3.11 Conclusion and Future Work

In this paper, we took the �rst steps of analyzing complex networked markets by focusing

on the U.S. natural gas market. We studied two-part price schedules used by LDCs and

performed demand estimation to derive price-elasticity of demand in di�erent sectors:

residential, commercial, industrial, and electric utility. Our results suggest that while de-

mand in all these sectors is relatively inelastic with respect to the average price, electric

utility is the most elastic sector and industrial sector is the most inelastic one. Having de-

rived the demand curve, in future work, we will obtain the supply curve and characterize

the market equilibrium.

In addition, we investigated one of the largest mergers among natural gas interstate

pipelines. Our results suggest that this merger had a signi�cant e�ect on natural gas

transportation prices even though the two pipelines were not in the same physical mar-

ket.

Furthermore, we obtained an overall view of the natural gas �ows in the network
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of interstate pipelines. Speci�cally, we identi�ed the �ow between every pair of states,

which can help us in analyzing the natural gas market in more depth in future work from

a network point of view.

We also utilized the standard rational expectations competitive storage model to es-

timate natural gas inverse demand function as well as storage costs. We then quanti�ed

the e�ect of temperature, storage, and pipeline congestion on natural gas price. Our re-

sults suggest that these are the main factors explaining the price shocks in the natural

gas market. Higher storage levels have a negative e�ect on price while higher heating

or cooling degree days have a positive e�ect on price, and these e�ects are even higher

in winter; however, the higher the storage level, the lower is the positive e�ect of heat-

ing degree days on price in winter. Moreover, higher pipeline congestion increases price

while higher production decreases the price.

Finally, we investigated the network e�ect in the natural gas market, evaluating the

e�ect of changes or shocks in one geographical region on all other regions. Our results

con�rm the existence of network e�ects suggesting that deviations of the heating degree

days from the seven-year trend in one region have a signi�cant e�ect on the price of

natural gas in the other regions, even the farthest ones.

Now that we have analyzed the natural gas supply, demand, distribution, storage,

and pricing in the U.S., we have to put all these pieces together and try to investigate

the regulation and antitrust policy of the natural gas networked market. Which market

participants enjoy market power, if any? Which mergers should be allowed and based

on what? Which pipeline or storage operators should be allowed to o�er market-based

rates? These are the questions we will try to address as we continue this line of research.

In future work, in order to characterize which hubs are a�ected by a merger, we

will use the concept of centrality. There are di�erent notions of centrality. Degree cen-

trality measures how connected a node is; closeness centrality measures how easily a

node can reach other nodes; betweenness centrality measures how important a node is

in terms of connecting other nodes; and �nally there is a set of centrality measures (such

as Katz prestige, eigenvector centrality, and Bonacich centrality) that measure neighbors’
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characteristics: how important, central, or in�uential a node’s neighbors are in terms of

connecting other nodes. We will most probably use one of the measures in the last set.

As another research direction, one can write down a model for the pipeline trans-

portation price as the outcome of a bargaining process between the pipelines and the

shippers. This allows us to observe how mergers change the bargaining power of the

di�erent agents in the market. Alternatively, to properly analyze mergers, one can for-

mulate a network game where pipelines non-cooperatively set tari�s and all spot prices,

consumption, and trade �ows are solved simultaneously. This allows us to measure the

impact of a merger in any part of the system on any other part.

Yet another line of research is to follow the literature on price integration in competi-

tive networked markets to estimate the surcharges created by pipeline congestion. In the

presence of market power, the estimated congestion surcharges may capture not only the

shadow price of capacity but also rents associated with transient market power. How-

ever, the surcharge estimates can still highlight the potential value of new transportation

infrastructure or inventory reserves. Moreover, while this literature only uses price data,

since we have access to �ow data, we may be able to disentangle strategic pricing from

real congestion surcharges using this additional data.
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3.12 Appendix

Table 3.14: Two-part tari� estimates ($/Mcf) for the industrial sector by state

State Fixed Charge Per-unit Charge R2
State Fixed Charge Per-unit Charge R2

AL 15243.10 2.95 0.06 NE 1089.83 4.19 0.38

AZ 3107.43 6.68 0.34 NV 32393.28 3.56 0.50

AR 25399.51 3.84 0.26 NH 425.68 9.83 0.62

CA 13708.39 -0.85 0.06 NJ 1705.06 6.07 0.27

CO -2154.82 8.63 0.57 NM -1590.64 6.64 0.21

CT -416.22 9.01 0.38 NY 825.57 7.71 0.34

DE -17321.25 11.64 0.80 NC 10115.80 4.18 0.07

FL 80138.12 1.92 0.25 ND 14166.35 3.01 0.32

GA 21075.03 2.19 0.12 OH 7317.91 5.96 0.16

ID 55521.15 2.22 0.07 OK -12139.72 12.04 0.35

IL 1984.62 5.13 0.18 OR 681.18 7.10 0.30

IN 4413.24 6.19 0.22 PA -6202.84 11.10 0.42

IA 10429.70 5.09 0.36 RI 3845.33 8.85 0.55

KS -330.44 6.41 0.17 SC 49283.89 -4.48 0.13

LA 174101.92 2.54 0.04 TN 14033.02 2.55 0.04

ME -16421.48 11.45 0.75 TX 39844.32 2.19 0.09

MD 2063.94 8.70 0.47 UT -866.29 5.97 0.49

MA 604.62 9.01 0.61 VT -2711.85 7.15 0.51

MI 3215.20 5.26 0.43 VA 14205.53 4.06 0.08

MN -8673.62 7.16 0.55 WA -5528.49 11.71 0.40

MS 37774.07 1.93 0.06 WV 29472.60 4.81 0.22

MO 2025.22 7.57 0.35 WI -2411.45 8.98 0.51

MT 12691.10 4.86 0.40 WY -855.83 5.87 0.19

??
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Table 3.15: Two-part tari� estimates ($/Mcf) for the residential sector in Pennsylvania

assuming LDCs �le a rate case every two years

Period Fixed Charge Per-unit Charge

1990-1991 7.59 5.84

1992-1993 8.81 6.20

1994-1995 10.49 6.14

1996-1997 8.96 7.27

1998-1999 8.88 7.35

2000-2001 11.45 9.01

2002-2003 16.16 9.60

2004-2005 11.96 13.58

2006-2007 17.21 13.08

2008-2009 9.23 12.53

2010-2011 12.72 10.29

2012-2013 15.78 9.61

2014-2015 12.32 8.86

R2
0.94

??

Figure 3.11: Trend in two-part tari� charges ($/Mcf) in Pennsylvania assuming LDCs �le a rate

case every two years
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Table 3.16: Price-elasticity of demand by sector: WTI, heating and cooling degree days

in all other states as instruments

Residential Commercial Industrial

Log(Price) −0.2286∗∗∗ −0.1179∗∗∗ −0.0314∗

(0.0172) (0.0181) (0.0187)

Log(WTI Crude Oil Price) 0.0519∗∗∗

(0.0091)

Heating Degree Days 0.0007∗∗∗ 0.0006∗∗∗ 0.0002∗∗∗

(0.0000) (0.0000) (0.0000)

Cooling Degree Days −0.0003∗∗∗ −0.0001∗∗∗ 0.0000

(0.0000) (0.0000) (0.0000)

state*year FE Yes Yes Yes

state*month-of-year FE Yes Yes Yes

R2
0.9913 0.9887 0.9909

??

Table 3.17: Price-elasticity of demand by sector: WTI, heating and cooling degree days

in all other states as instrument; elasticity changing with temperature

Residential Commercial Industrial

Log(Price) −0.2065∗∗∗ −0.1097∗∗∗ −0.0337∗

(0.0182) (0.0181) (0.0189)

Log(WTI Crude Oil Price) 0.0508∗∗∗

(0.0091)

Heating Degree Days 0.0006∗∗∗ 0.0005 0.0001∗∗∗

(0.0000) (0.0000) (0.0000)

Cooling Degree Days −0.0004∗∗∗ −0.0001∗∗∗ 0.0000

(0.0000) (0.0000) (0.0000)

Log(Price)*Heating Degree Days 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000) (0.0000)

Log(Price)*Cooling Degree Days 0.0000∗∗∗ 0.0000∗∗∗ 0.0000

(0.0000) (0.0000) (0.0000)

state*year FE Yes Yes Yes

state*month-of-year FE Yes Yes Yes

R2
0.9914 0.9887 0.9909

??
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