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Abstract

The multi-armed bandit is by now the de facto model for exploration vs. exploitation
problems arising in recommender systems. Yet, there still exists a wide gap between the
bandit models studied in theory and the problems faced in the real world. The purpose of
this dissertation is to bridge this gap.

In Chapter 1, we study the classic stochastic linear bandit problem under the restriction
that each arm may be selected for limited number of times. This simple constraint, which we
call disposability, captures a common restriction that occurs in recommendation problems from
a diverse array of applications ranging from personalized styling services to dating platforms.
We show that the regret for this problem is characterized by a previously-unstudied function
of the reward distribution among optimal arms. Algorithmically, our upper bound relies on an
optimism-based policy which, while computationally intractable, lends itself to approximation
via a fast alternating heuristic initialized with a classic similarity score. Experiments show
that our policy dominates a set of benchmarks which includes algorithms known to be
optimal for the linear bandit without disposability, along with natural modifications to these
algorithms for the disposable setting.

In Chapter 2, we introduce a new notion of meta-learning in the linear bandit setting:
a sequence of 𝑁 ‘episodes’ is played, each episode consisting of a linear bandit played
for 𝑇 periods with a separate unknown parameter vector in dimension 𝑑. Distinct from
previous work, the unknown vectors across the episodes are assumed to lie in a (unknown)
𝑚-dimensional linear subspace, (where typically 𝑠 ! 𝑇 ! 𝑑). The notion of meta-learning
then corresponds to learning this subspace, and meta-regret is measured with respect to the
optimal achievable reward when this subspace (but not the exact episodic vectors) is known.
This setting subsumes the usual meta-learning analogue of the standard finite-armed bandit,
and naturally models applications such as the two-sided cold start problem in recommender
systems. We propose an algorithm for this problem which achieves 𝑂̃p𝑑 ` 𝑠

?
𝑑𝑁𝑇 q meta-

regret, which we show is order-optimal in 𝑁, 𝑇 , and 𝑑 by proving a corresponding lower
bound of Ωp𝑑`

?
𝑠𝑑𝑁𝑇 `𝑁𝑠

?
𝑇 q). Surprisingly, our algorithm is entirely greedy (i.e. makes

no attempt to explore) at the meta-learning level, consisting of a classic optimism-based
algorithm applied to projections onto greedily-selected 𝑠-dimensional subspaces. Experiments
show that our algorithm significantly outperforms natural benchmark algorithms.

In Chapter 3, we further generalize the meta-linear bandit to allow for arbitrary user
arrivals. We propose an algorithm that recovers the underlying lower-dimensional subspace by
solving a convex relaxation of a novel rank-minimization problem, followed by an optimism-
based decision that leverages recent results in uncertainty quantification for matrix completion
algorithms. We test our algorithm against various benchmarks from the literature on real-
world data from NetEase, a music streaming platform, finding that our algorithm dominates
all benchmarks.
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Chapter 1

Introduction

During the last few decades, with the rise of Youtube, Amazon, Netflix and many other

such web services, recommender systems have taken more and more place in our lives. From

e-commerce (suggest to buyers articles that could interest them) to online advertisement

(suggest to users the right contents, matching their preferences), recommender systems are

today unavoidable in our daily online journeys. In a very general way, recommender systems

are algorithms aimed at suggesting relevant items to users (items being movies to watch, text

to read, products to buy or anything else depending on industries). Recommender systems

are really critical in some industries as they can generate a huge amount of income when

they are efficient or also be a way to stand out significantly from competitors.

Aside from the real world applications, recommender system algorithms have found a

solid voice among academics, especially in machine learning community. Bandit algorithms

and matrix completion methods take the lead when it comes to the most popular methods

developed to solve these problems. For a survey on these methods, see the following surveys:

[69], [15], [62].

This thesis focuses on a particular issue faced within academia and machine learning

practitioners: despite the abundance of work done to perfect recommender systems, there

still exists a wide gap between the bandit models studied in theory and the problems faced in

the real world. We, hereby, introduce 3 different settings where we give algorithms to solve

each issue faced by practitioners from an academic point of view.
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1.1 Chapter 1: Disposable Linear Bandits

Consider the stochastic linear bandit problem: given a set of ‘arms’ 𝑎1, . . . , 𝑎𝑘 P R𝑑, the task

is to select a single arm in each of a sequence of time periods so as to maximize the total

reward gained. The rewards are random, but there exists some (unknown) 𝜃˚ P R𝑑 such that

the mean reward when an arm 𝑎𝑖 is chosen is equal to x𝑎𝑖, 𝜃
˚y. Algorithms known to be

theoretically optimal (in a sense we will review later on) for this problem successfully balance

the trade-off between arms that are known to yield high reward, with arms that may reveal

more information about the unknown 𝜃˚.

These algorithms are now a core component of most modern recommender systems, as the

linear bandit model provides an extremely close fit to a common problem in recommender

systems: the cold-start problem. Succinctly, this is the problem of making recommendations

to newer users whose amount of activity is insufficient to accurately estimate their preferences.

To map the cold-start problem to the linear bandit model: the 𝑎𝑖’s encode the ‘features’

for each item, which have been previously estimated using past data, and 𝜃˚ encodes the

unknown features of the new user. The linear form of the mean reward matches the underlying

preference model of a variety of recommendation algorithms including those based on matrix

factorization.

The key problem we seek to address is for a particular subset of recommender systems

in which the number of recommendations of an item made to a person may not exceed a

certain limit, a property we will refer to as disposability. One natural example of disposability

in practice is personalized styling services (e.g. Stitch Fix, BeautyFIX, Trunk Club) which

by and large operate by sending personalized ‘boxes’ of items to users. Users can choose to

purchase any subset of the box, and these companies do not re-send an item to the same user.

Thus motivated, we study the linear bandit problem under the additional rule that each

arm may be selected at most a certain amount for each user. Our primary observation is

that this disposability constraint impacts both (a) the performance of algorithms known to

be optimal when disposability is not imposed, and (b) the nature of algorithms that achieve

meaningful theoretical (regret) guarantees. Our specific contributions are as follows:

1. We prove a minimax lower bound of Ωp𝜑𝑑
?
𝑇 q on the regret of the disposable linear
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bandit problem which suggests that disposability should allow for lower regret than

the standard linear bandit. In particular, while the dependence on the dimensionality

𝑑 and time horizon 𝑇 remains the same as in the standard linear bandit, a new term

𝜑 P r0, 1s loosely captures the ‘spread’ of the optimal set of arms.

2. We propose an optimism-based algorithm, which generalizes the optimal upper confi-

dence bound algorithm (called LinUCB) for the standard linear bandit. We prove an

upper bound of 𝑂p
?
𝛾𝜌𝑑

?
𝑇 q on its regret, where 𝛾 and 𝜌 are parameters that again

encodes a notion of the spread of the optimal arm set. Noting that our algorithm

involves a computationally hard optimization formulation, we propose a fast alternating

heuristic. While this heuristic is not guaranteed to find the true optimum, we observe

that it performs well in practice when combined with a clever initialization based on

similarity scores.

3. We evaluate our algorithm’s performance on a recommendation task based on data

from a large online dating platform. Compared to a number of benchmarks, including

LinUCB and a natural modification of Thompson sampling, our algorithm (solved via

the preceding heuristic) achieves as much as 10% lower regret against all competitors.

1.2 Chapter 2: Meta Linear Bandits

Stochastic linear bandits is an online learning model that associates each action with a

feature vector and assumes the mean reward is the inner product between the feature vector

and an unknown parameter vector [1], [24], [25]. There are numerous applications that

make use of this framework, such as serial webpage recommendations, pricing, or various

other problems about modeling user behavior. Generally speaking, the idea is to learn these

unknown parameters of users within a time frame called horizon.

Previous work on linear bandits has focused primarily on the case where the horizon is

much larger than the dimension of the space. The main reason for this is that the minimax

lower bounds are linear as opposed to sublinear in horizon in the worst case when the opposite

is true, and the desired rate of learning may not happen in an adversarial setting. However,
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many real world applications deal with high dimensional settings in which the horizon may

not be as large as these algorithms require. The framework we propose is what sheds some

light into this problem: we can learn from the combination of different games where the

dimension is much larger and the underlying structure of these distinct parameters is low-rank.

In other words, on a higher level we also learn about the lower dimensional space from which

the parameters come from. We place this idea in the meta learning with bandits literature.

Consider an online system where we see a series of users coming in, staying for a fixed

amount of rounds, receiving recommendations, observing rewards and leaving. The platform

can consider the rewards as implicit, such as the time spent, or explicit such as the binary

’click-no click’ proxy measure. The problem the platform is concerned with is that, given

that these users have unknown feature vectors coming from a lower dimensional subspace,

what kind of approach can we take to learn more and/or better about the current and future

users so as to maximize the cumulative reward? The problem reveals itself to be 2-fold: the

individual parameter learning part, which is what most of bandit literature is focused on,

and the meta learning part on a higher layer, which is learning the underlying structure these

parameters come from.

Paper Bandit Type Meta Regime Assumptions
[39] Linear bandits Sparsity High dimensional
[21] Linear Bandits Bias Common distribution
[8] Linear Bandits Distribution prior Knowledge of Prior

This paper Linear Bandits Low dimensional subspace High dimensional

Meta bandits are a part of meta learning, the ’learning-to-learn’ setting where the agent

has extra information on the structure behind the incoming parameters to the system and

learns the parameters to that of the structure as well. In the bandit world, the algorithms also

try to learn the underlying information about these parameters so as to use it to discover the

parameters themselves. We see different regimes of meta learning within bandits literature

such as models with a prior knowledge on the distribution over these parameters [21], or over

the arms [49], meta learning over different bandit models [83], sparsity [39], low rank reward

matrix where the parameters are tensors [57]. We give a more structured explanation in

the above table. Our work fills the gap where the parameters come from an unknown lower
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dimensional subspace and the dimension we operate on can be much larger than the horizon.

In meta learning, we also define an oracle with the knowledge of this underlying structure.

For instance, if these parameters come from a common distribution, then the oracle has

the exact knowledge on the parameters of this distribution. In a sparse setting, it is the

knowledge on which dimensions are active dimensions. In our case, it is the knowledge of the

lower dimensional space, or more formally, the knowledge of the spanning vectors which span

the 𝑠´dimensional linear subspace. The meta level algorithm performances are compared to

that of oracle which acts as the baseline.

Our Contributions Our work fills in the gap in the literature where we see a high dimensional

multi-episode setting with a meta level regime of low rank design. We highlight the main

contributions below.

1. Algorithm: Having introduced the new concept of meta linear bandits in high di-

mensional regime, we propose an algorithm Projected LinUCB that relies on greedy

projections on the meta level, and lower dimensional optimistic UCB-based algorithms

on the episodic level.

2. Theory: We give a lower bound of Ωp𝑑 `
?
𝑠𝑑𝑁𝑇 ` 𝑁𝑠

?
𝑇 q based on a special case:

sparse linear bandits. We further give upper bounds on the algorithm 𝑂̃p𝑑 ` 𝑠
?
𝑑𝑁𝑇 q.

3. Experiments: We conduct experiments on both synthetic and real world data, and see

that compared to other regimes, our method outperforms well known algorithms in

current literature.

The algorithm we propose does not use an optimism based principle on meta level. Instead,

it utilizes a greedy approach. The interesting part is that the drawbacks of greedy algorithms,

such as getting stuck in a suboptimal solution and over-exploit while under exploring, does

not apply to the low rank setting we work on. The reason is that, the meta level exploration

still exists even though the algorithm is greedy, through the noise on the episodic level and

the way that meta level approximation works: re-estimating the parameters in 𝑑´dimensions.
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1.3 Chapter 3: Bilinear Bandits with Arbitrary Arrivals

Consider an online recommendation problem, where users arrive in a platform, such as a

streaming service or media or arbitrarily, and such platform wants to make a well-informed

decision on which item to show to the incoming user based on the limited data access they

have. This is a common recommendation phenomenon faced by many platforms, and hence

the models and algorithms to solve this problem are very widely studied. They are solved

mostly by using matrix completion methods, or certain bandit algorithms.

We are focusing on the linear bandit setting where the rewards are noisy with a mean

that is linear in the unknown user vectors. More precisely, stochastic linear bandits is an

online learning model that associates each action with a feature vector and assumes the mean

reward is the inner product between the feature vector and an unknown parameter vector [1],

[24], [25]. There are numerous applications that make use of this framework, such as serial

webpage recommendations, pricing, or various other problems about modeling user behavior.

Generally speaking, the idea is to learn these unknown parameters of users within a time

frame called horizon.

Previous work on linear bandits has focused primarily on the case where this horizon is

much larger than the dimension of the space. The main reason for this is that the minimax

lower bounds are linear as opposed to sublinear in horizon in the worst case when the opposite

is true, and the desired rate of learning may not happen in an adversarial setting. However,

many real world applications deal with high dimensional settings in which the horizon may

not be as large as these algorithms require. The framework we propose is what sheds some

light into this problem: we can learn about users more efficiently across different games when

the dimension is much larger and the underlying structure of these distinct parameters is

low-rank. In other words, on a higher level we also learn about the lower dimensional space

from which the parameters come from. We place this idea in the meta learning with bandits

literature.

Meta bandits are a part of meta learning, where the agent has extra information on the

structure behind the incoming parameters to the system and learns the parameters to that of

the structure as well. In the bandit world, the algorithms also try to learn the underlying
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information about these parameters so as to use it to discover the parameters themselves. We

see different regimes of meta learning within the bandit literature such as models with a prior

knowledge on the distribution over these parameters [21], or over the arms [49], meta learning

over different bandit models [83], sparsity [39], low rank reward matrix where the parameters

are tensors [57]. Our work fills the gap where the parameters come from an unknown lower

dimensional subspace and the dimension we operate on can be much larger than the horizon.

The bandit model described above has strong correspondence in real-world recommender

system applications. Consider an online system where we see a series of users coming in,

staying for a fixed amount of rounds, receiving recommendations, observing rewards and

leaving. The platform can consider the rewards as implicit, such as the time spent, or explicit

such as the binary ’click-no click’ proxy measure. The problem the platform is concerned with

is that, given that these users have unknown feature vectors coming from a lower dimensional

subspace, what kind of approach can we take to learn more and/or better about the current

and future users so as to maximize the cumulative reward. The problem reveals itself to be

2-fold: the individual parameter learning part, which is what most of bandit literature is

focused on, and the meta learning of the subspace on a higher layer, which is learning the

underlying structure these parameters come from.

There are certain caveats in solving a cold start problem by employing a bandit algorithm,

which in fact is the common and the most advanced method, is that the arm (or item in this

case) knowledge come from previously made observations, i.e. old data. Although matrix

completion methods are quite pristine, once the latent space changes from dataset to dataset,

the knowledge transfer does suffer from some loss. We are trying to solve a particular type of

problem caused by this: arms have high dimensional estimated vectors, or the arms are new

themselves which would result in a high dimensional setting, and that the true dimension is

much lower than the ambient dimension.

The problem we are concerned with falls under a more realistic setting where 𝑑 " 𝑇 𝑗,

where 𝑇 𝑗 is the amount of times a user 𝑗 has appeared in the system. In a high dimensional

setting, well known classical algorithms do not ’start working’ until a certain amount of

observations have been made, and play a randomly selected arm (or show a randomly selected

item in this context), which hurt the overall performance of the recommender system.
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To overcome this issue, we require a further common assumption: the user vectors come

from a lower dimensional subspace. Notice that this assumption is not a newly-made one,

since the entire matrix completion literature feeds from the assumption that the reward

matrix has low rank structure. This, consequently, means the matrix whose rows are the user

vectors in the system, has a low rank structure as well.

Contributions The contributions we make in this paper is 3-fold:

1. Model: We model this problem by using high dimensional meta linear bandits with

arbitrary arrivals. The 𝑑´dimensional user vectors lay in a lower 𝑠´dimensional

subspace. The rewards are bilinear in these unknown user vectors.

2. Algorithm: We propose a novel iterative algorithm based on a convex relaxation of

a rank minimization problem. We then solve this problem by approximating it using

SoftImpute, and further borrow from optimism based principles from matrix completion

literature.

3. Experiments: We test our algorithm against well known methods from literature on a

real-world data set from NetEase music streaming platform, containing over 50 million

impressions. Our algorithm outperforms the benchmarks on various settings we test on.

We further analyze the effect of the relationship between the ambient dimension and

underlying rank.

18



Chapter 2

Disposable Linear Bandits

2.1 Introduction

Today’s personalized online world comes with new types of problems of its own. Consider

dynamic, user-centric systems such as dating websites, media platforms that provide movies,

music and shows, online news articles or any kind of online advertisement. Such systems

feed on the number of clicks or the amount of time a user spends on the platform, which

necessitates a careful design of the underlying architecture that recommends products to users.

Currently, the algorithmic systems behind such platforms work by learning the characteristics

of items and users mathematically after a number of trials, and exploiting that information

to further suggest products users might be interested in, consequently increasing the time

users spend on the platform.

The key problem we address in this paper is for a particular subset of these platforms, in

which each product has an individual budget bounding how many times that product can be

recommended to one person. After the product expires, the system cannot recommend the

product/person again. We refer to this property as disposability throughout the paper. The

following two examples serve to illustrate this property in applications:

1. Personalized Styling Services: A new crop of online retailers has emerged in the last

ten years offering extremely personalized assortments; examples including Stitch Fix,

BeautyFIX, and Trunk Club. By and large, these companies work by offering, either
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one-time or on a subscription basis, personalized “boxes” containing mostly clothing,

jewelry, shoes, cosmetics, etc. These boxes are tailored to each user based on detailed

information from an initial questionnaire, along with input from both human and

algorithmic stylists. Upon receiving a box, users can choose to purchase any subset or

the items, or even send the whole box back. These companies cannot re-send an item

to a user, and so feedback on an item (whether or not it was purchased) is one-time.

This item-selection process is a strict example of what we call disposability.

2. Online Dating Platforms: The success of any dating platform almost always depends

on the quality of its recommendations, whether its revenue is tied to engagement or

the number of successful “matches”. Modern dating apps such as Tinder or Bumble, in

an attempt to appeal to younger audiences, have introduced an additional dimension

to the search process: users are shown other users’ profiles in sequence. This means

that recommendations are disposable with a single-use budget, as users prefer not to

be shown the same person twice.

The current literature does not address the problem of disposable recommendations

thoroughly. Instead, available methods rely on repetitive, trial-and-error recommendations,

which as we have just described, often do not match real-world implementations of these

systems. Therefore, the question we seek to answer is how should recommendations be

made under the disposability constraint?

We will study this problem in the framework of bandit problems. In this class of problems,

the primary trade-off is between so-called exploration and exploitation. For example on a

news site, a manager reading business-related news might be suggested to read more articles

about finance or politics, since other users with a similar personal history on this site have

previously preferred such news over, say, celebrity or lifestyle articles. As the platform wants

to maximize the news that this user consumes, it recommends items with a higher certainty

of being clicked on. This is called exploitation: the process of exploiting known information

and making the best move. However, users can be interested in a variety of topics or items,

which the platform has no information beforehand. That brings us to exploration part of

these algorithms. More often than not, the website gives users a suggestion of something
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quite different from her past browsing pattern. This is only to explore what people might

enjoy or not enjoy further, rather than the already available information.

In a standard bandit setting, algorithms usually recommend items multiple times in

the process of estimating user preferences. These problems are very well-studied, and the

literature now has close-to-optimal algorithms; we describe these further in Section 2.2. We

give a generalization to the most common order-optimal algorithm that also extends well to

the disposable setting.

Summary of Contributions: To summarize the points made earlier, this paper considers

the problem of finding an effective algorithm to recommend items to users over time, with

the goal of maximizing the cumulative reward, and with the restriction that an item may not

be recommended more than a certain number of times, i.e. budget. We model this problem

in the framework of stochastic linear multi-armed bandits, and after adding the restriction of

disposability, call this problem Disposable Linear Bandits. Our primary observation is that

this disposability constraint impacts both (a) the performance of algorithms known to be

optimal when disposability is not imposed, and (b) the nature of algorithms that achieve

meaningful theoretical (regret) guarantees. Our specific contributions are as follows:

1. We prove a minimax lower bound of Ωp𝜑𝑑
?
𝑇 q on the regret of the disposable linear

bandit problem which suggests that disposability should allow for lower regret than

the standard linear bandit. In particular, while the dependence on the dimensionality

𝑑 and time horizon 𝑇 remains the same as in the standard linear bandit, a new term

𝜑 P r0, 1s loosely captures the ‘spread’ of the optimal set of arms.

2. We propose an optimism-based algorithm, which generalizes the optimal upper confi-

dence bound algorithm (called LinUCB) for the standard linear bandit. We prove an

upper bound of 𝑂p
?
𝛾𝑑

?
𝑇 q on its regret, where 𝛾 is a parameter that again encodes

a notion of the spread of the optimal arm set. Noting that our algorithm involves a

computationally hard optimization formulation, we propose a fast alternating heuristic.

While this heuristic is not guaranteed to find the true optimum, we observe that it

performs well in practice when combined with a clever initialization based on similarity

scores.
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3. We evaluate our algorithm’s performance on a recommendation task based on syntheti-

cally generated data. Compared to a number of benchmarks, including LinUCB and a

natural modification of Thompson sampling, our algorithm (solved via the preceding

heuristic) achieves as much as 10% lower regret against all competing algorithms.

The remainder of this paper is organized as follows. We conclude this section with a review

of relevant literature. Section 2.2 introduces the problem formally and gives a hindsight of the

existing LinUCB algorithm for linear bandits. In Section 3, we extend this LinUCB algorithm

to an ideal case for disposable linear bandits, which is computationally hard to solve. That

brings us to Section 4. In this section we provide a heuristic called Alternating Heuristic,

which is the main contribution of this paper. In Section 5, we implement this heuristic

along with LinUCB Algorithm, Thompson Sampling Adaptation and Greedy Algorithm on

simulated data. Implementing the benchmarks and our method, we demonstrate that our

method outperforms all other benchmarks. Section 6 concludes this paper with possible

extensions for future work.

2.1.1 Literature Review

Our work is motivated, and draws upon, two large streams of literature: one on recommender

systems and collaborative filtering, and one on bandit-type problems.

Recommender Systems: Especially after The Netflix Prize, a competition for finding the

best collaborative filtering algorithm to predict user ratings, recommender systems in both

academia and technology companies have gained immense popularity and been worked on

extensively, almost to a perfection state.

There are mainly two types of filtering recommender systems use, content based filtering

and collaborative filtering. Content based filtering recommends items based on a comparison

between the content of the items and the user profile. This type of filtering is commonly used

for spam detection, combined with various machine learning methods like Naive Bayes and

Support Vector Machines such as in [36], [51] and [61].

Collaborative filtering, from which our work also feeds on as presented in Section 2.5,

makes use of the idea that similar people will also prefer similar products. Similarity of users
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is analyzed by Latent Semantic Analysis, details of which is explained thoroughly in [27].

Detecting possible changes in people’s behaviors and adjusting the model accordingly were

also studied by time-discounted models in [13] and [66]. Another standard method to use

is Nearest Neighbor algorithm which takes the closest points to an item/user in space of

features and makes inferences based on that information. [65] gives a brief overview of this

methodology.

Companies, however, mostly use a hybrid approach that combine user-user and user-item

information to get better performance. [60] shows that in some cases hybrid approach

out-performs the case that one of the methods is used solely. In [34], they propose a scalable

method switching between these different methods.

The problem of recommendation becomes more complicated when a new user is in the

network. Even though the platform already has preferences of other users estimated, the

strategy of recommending an item to this new user becomes an issue from an engineering

perspective, which is called the cold-start problem in recommender systems literature. Cold-

start problem is the problem in data-based automated systems, such as recommendation

platforms, that the system does not have enough information/data about a user or an item,

to make any inferences about it. Some folks focused especially on algorithms improving this

cold-start problem. [14] , [74], [56] and many more that we do not include here, propose

different heuristics and algorithms combined with collaborative filtering methods that improve

this problem.

Bandits: Another method used to learn about preferences is Multi-Armed Bandits. The

classical multi-armed bandit problem, the problem where a player has to make sequential

decisions about which action to take given the past observations, was introduced by [64].

The problem is well studied for a couple of decades now, pioneered and put together by [35],

who introduced the all-time famous Gittins Index. The known best algorithm for the classic

simple MAB is the Upper Confidence Bound (UCB) algorithm by [48].

In the intersection of recommender systems and MAB literature, a natural approach is

that the items to be recommended are modeled as arms of the bandits and each user is

the player. How to use certain MAB techniques for recommendations are studied before,

such as in [16], [80]. In recommendations setting, however, learning a user’s preference is
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most sought-after, so linear bandits, first introduced in [6], is an intuitively better method

to capture the multi-dimensional relationship between the items and the users. The flavor

of linear bandits is different from the classic MAB in the sense that rather than trying to

estimate the arms with no prior information, we try to learn the player’s characteristic vector

by trying out new arms whose information is available. It is called linear MAB since the

reward function is linear in player’s feature vector. Linear multi-armed bandits have their

own UCB algorithm with a similar logic to that of simple bandits, which is called LinUCB,

LinReL, or OFUL. We call the algorithm LinUCB throughout this paper, and is explained

more in detail in Section 2.3.

The studies we presented so far is merely the tip of the iceberg, and unlike this paper’s

focus, they are concerned with the bandits that are not restricted by disposable constraints.

However, the disposable bandit idea, or similar ones, have been looked at in a few settings

before. In [20], multi-armed bandits are used to model an assortment problem of fast-fashion

retailers. In [30], the arms are irrevocable in the sense that at each time step the player can

either keep playing the arm or decide to discard it. The player is allowed to play multiple arms

up to a known cap. The authors solve the case by providing a heuristic, packing heuristic,

which makes use of a ranking that depends on the remaining time and potential value. This

case is different than ours, since our model has strict and deterministic budgets on arms and

pulling multiple arms simultaneously is not feasible. In [23], the authors study the case that

each arm has a stochastic remaining lifetime. They are inspired by online advertisements

where ads have limited time to be shown. This is a different method since the availability

time is not deterministic.

Introduced by [10] and then extended to the contextual version by [9], blocking bandits

represent the case for which the arms become unavailable for a deterministic amount of time

after they are played. Our case of disposable bandits with budgets of 1, however, cannot

be seen as a special case of this model by simply making the unavailable time infinity. We

emphasize two points here, one is in the case that a classic bandit is disposed after playing,

since no information about that arm can be exploited later, every policy is the same with

random policy. Therefore, this method is not a useful option. Second is that we do not face

this issue since in the linear bandit problem, we have the information about arms upfront
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and the parameter we estimate remains the same in between rounds.

A seemingly very similar approach that was studied in bandits is budgeted bandits.

Budgeted bandits have been studied in both classic MAB and linear models in [76], Thompson

Sampling on budgeted bandits in [75], cost-aware cascading bandits [31]. In all of these

models, however, the budget is a common budget on all of the resources that arms might

consume, whereas in our case, we consider independent budgets on arms. In [70, 26], the

model is a classical MAB model except that each arm has an individual certain budget. Here

we note that this actually is a type of disposable bandit where we have unit basis vectors

as arms, the dimension is the total number of arms, and given that we clone each arm as

many times as its given budget. Bandits-with-Knapsacks, as studied in [7, 3], are the types

of bandits that consume a set of resources each time they are played.

Bandits that deteriorate or vanish by time have been studied in [30, 23, 54, 68]. In [30],

the agent can either keep playing an arm or decide to discard it, which is a very different

problem than ours, since we require discarding an arm immediately after the budget is

exhausted. [23] has a stochastic time until when an arm is exhausted. [54] bandits have

a decaying reward function depending on the number of times an arm is pulled. [45] has

varying arm-sets over time, however, the structure differ significantly from ours, since we do

not allow an unavailable action to be available again in the future, i.e. the available arm set

is shrinking over time.

Finally, in operations literature, bandits with certain constraints have been used to model

a variety of concepts and combinations of models: bandits with global constraints [4] where

the model has concave objective functions and convex constraints, interactive marketing

problems [11], restless bandits in which the state of arms change over time [12]. However,

the methods and modeling technique used in these papers are fundamentally different from

our model and hence, cannot be generalized or specialized into disposable linear bandits.

2.2 Model and Problem

The classical 𝐾-armed bandit problem is a famous reinforcement learning problem in which

a player, at each discrete time step, pulls a single arm from the 𝐾 possible choices, receives a
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noisy reward which depends on that arm, and updates her information for future moves. The

overall goal of the player is to maximize total reward earned at the end of the time horizon.

The type of bandit problems we focus on are called linear bandits. The setup of linear

bandits is the same as above: at each time 𝑡 “ 1, . . . , 𝑇 , the player chooses an arm from a

finite set of 𝐾 arms 𝐴 Ă R𝑑 known by the player in advance, and receives a stochastic reward

𝑟𝑡 P R. The reward function in the most simple 𝑘-armed bandit problems are Bernoulli

random variables, whereas in linear bandits, the reward function is linear in some unknown

𝜃˚ P R𝑑. More precisely, the reward observed after playing an arm 𝑎 follows a linear function

with mean-0 noise, i.e.

𝑟𝑡 “ x𝑎, 𝜃˚y ` 𝜂𝑡

where 𝜂𝑡 is a 𝜎2 sub-Gaussian noise:

Erexpp𝜆𝜂𝑡qs ď expp𝜆2𝜎2{2q @𝜆 P R.

In our framework, 𝜃˚ will represent the player’s own feature vector, and is the object we try

to estimate dynamically. We assume the following bounds on arms and 𝜃s: }𝑎} ď 𝐿 for all

𝑎 P 𝐴 and }𝜃˚} ď 𝐿 .

We call the decision-making process of the player a policy. A policy 𝜋 is any function that

takes the previously observed outcomes, i.e. the arms that were played and the corresponding

rewards, and maps it to an arm index to be played in the following period. More precisely, a

policy at time 𝑡 is a function of the form

𝜋𝑡 : R𝑡´1 ˆ 𝐴𝑡´1 ÞÑ t1, . . . , 𝐾u

So the arm index that a policy chooses at each time step 𝑡 is 𝜋𝑡 “ 𝜋𝑡p𝑟
𝜋
1 , . . . , 𝑟

𝜋
𝑡´1, 𝑎1, . . . , 𝑎𝑡´1q,

however, we will denote the arm chosen by this policy at time 𝑡 as 𝑎𝜋𝑡 for convenience.

The type of linear bandits we introduce is called Disposable Linear Bandits, or disposable

bandits for short. Disposability is the case for which we have, for each arm 𝑖, an upper bound

on the times we can play that arm, i.e.
𝑇
ř

𝑡“1

1t𝜋𝑡 “ 𝑖u ď 𝑏𝑖, for a given 𝑏𝑖 P Z`. Throughout

the rest of this paper, to work on a more general case, we will take 𝑏𝑖 “ 1 for all arms w.l.o.g.

The reasoning is that we can clone each arm 𝑎𝑖, 𝑏𝑖 many times and we can make the new

budget for each of those arms 1, i.e. we discard each arm after playing it. Then, the game
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is naturally the same with the multi-budget case, only with more number of arms, some of

which are identical to each other.

Due to disposability, now that we discard each arm after playing, we will also require that

𝐾 ě 𝑇 , but it is usually safe to assume that 𝐾 " 𝑇 regardless of the model we choose. As

an example, on a dating platform, there may be thousands of people to be recommended to

a user, but the user may only see a hundred recommendations over the entire time they use

the platform.

Regret: The player’s goal is to maximize the total expected reward earned over the 𝑇 time

steps, i.e. E
”

ř𝑇
𝑡“1 𝑟

𝜋
𝑡

ı

, but rather than measure this quantity directly, in bandit problems we

usually instead optimize a quantity called regret. The regret of an algorithm is the difference

between the total expected reward if the best actions were taken had 𝜃˚ been known, versus

the total expected reward of the algorithm. Therefore the goal is to minimize cumulative

regret, defined as:

𝑅𝜋
𝑇 ” E

„

max
|𝐷|“𝑇

ř

𝑎P𝐷

x𝜃˚, 𝑎y ´
ř𝑇
𝑡“1 𝑟

𝜋
𝑡

ȷ

,

where 𝐷 represents the decision set consisting of arms that can be played. The first term

inside the expectation maximizes reward over all possible 𝑇 -subsets of arms, and the second

term is the reward of policy 𝜋.

Special Cases: Here we present two special cases: stochastic linear bandits and bandits

with budgets as introduced in [70]. In disposable linear bandits, once we have 𝑏𝑖 “ 𝑇 for all

𝑖 “ 1, . . . , 𝐾, the problem reduces to the classical linear bandit problem since one can play

each arm 𝑇 times in both cases, hence, disposability does not change the structure and the

constraints of the game in this case.

𝑘-armed bandits with budgets, on the other hand, are the regular 𝑘´armed bandits in

which each arm has a deterministic budget 𝑏𝑖, capping the number of times that arm can

be played. Although not obvious at first, the problem is a special case of disposable linear

bandits when 𝜃˚ “ r1s𝐾 and the arms are the unit basis vectors 𝑎𝑖 “ 𝑒𝑖 with budget 𝑏𝑖. So

each time the player plays an arm, he receives on expectation a reward of 𝜃˚
𝑗 , if she played the

arm 𝑒𝑗. Hence, the problem becomes estimating independent mean rewards of arms, which,

clearly, is the classic multi armed bandit model.
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2.2.1 Existing Approaches/Methods

Before we present the well-known algorithm for linear bandits in detail, we give how to

construct a confidence region in 𝑑´dimension for an unknown 𝜃 P R𝑑, given a history of noisy

linear outcomes for this parameter.

Construction of Confidence Sets Let 𝜂1, . . . , 𝜂𝑛 be a sequence of independent 1-subgaussian

random variables and 𝑎𝜋1 , . . . , 𝑎
𝜋
𝑡 P R𝑑 be a fixed sequence with 𝑠𝑝𝑎𝑛p𝑎𝜋1 , . . . , 𝑎

𝜋
𝑡 q “ 𝑅𝑑 and

𝑟1, . . . , 𝑟𝑡 be given by 𝑟𝜋𝑖 “ x𝑎𝜋𝑖 , 𝜃
˚y ` 𝜂𝑡 for some 𝜃˚ P R𝑑. Let 𝜃𝑡`1 denote the least squares

estimate of 𝜃˚, based on the observed outcomes up until and including time 𝑡. Then,

𝜃𝑡`1 “ pp𝑎𝜋1:𝑡q
𝑇𝑎𝜋1:𝑡 ` 𝜆𝐼q

´1
p𝑎𝜋1:𝑡q

J𝑟𝜋1:𝑡 (2.1)

where 𝜆 ą 0 is a regularization parameter, 𝑎𝜋1:𝑡 is the matrix with rows p𝑎𝜋1 qJ, p𝑎𝜋2 qJ, . . . p𝑎𝜋𝑡 qJ

and similarly 𝑟𝜋1:𝑡 “ p𝑟𝜋1 , . . . , 𝑟
𝜋
𝑡 qJ.

Below we give the lemma that helps us construct a confidence set around this estimator

𝜃. We first introduce the notation use. Let 𝑉 P R𝑑ˆ𝑑 and 𝑢 P R𝑑, then, the 𝑉 ´ norm of a

vector, } ¨ }𝑉 , is defined as:

}𝑢}𝑉 :“
?
𝑢J𝑉 𝑢

In our bandit setting, we will denote the matrix that keeps past information about the

arms played up until time 𝑡 as 𝑉𝑡:

𝑉𝑡 “ 𝑉0 `
𝑡´1
ř

𝑖“1

𝑎𝜋𝑖 p𝑎𝜋𝑖 qJ

where 𝑉0 is a positive definite matrix, mostly 𝑉0 “ 𝜆𝐼 for some 𝜆 ą 0. Hence, we can

re-write the MLE estimator of 𝜃˚ as 𝜃𝑡`1 “ 𝑉 ´1
𝑡 p𝑎𝜋1:𝑡q

J𝑟𝜋1:𝑡. We point that 𝜃˚ lies in a region

concentrated around this 𝜃, a confidence set, with some high probability. More precisely, [1]

proved the following theorem on the construction of the confidence sets for 𝜃˚.

Lemma 2.2.1 ([1], Theorem 2). (Confidence Ellipsoid) Let 𝑉0 “ 𝜆𝐼, 𝜆 ą 0, and define

𝑟𝑡 “ x𝑎𝑡, 𝜃
˚y ` 𝜂𝑡 and assume that }𝜃˚} ď 𝑆. Then, for any 𝛿 ą 0, with probability at least

1 ´ 𝛿, for all 𝑡 ě 0, 𝜃˚ lies in the set
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Θ𝑡 “

#

𝜃 P R𝑑 : }𝜃𝑡 ´ 𝜃}𝑉𝑡´1 ď

d

2 log

ˆ

detp𝑉𝑡q1{2 detp𝜆𝐼q´1{2

𝛿

˙

` 𝜆1{2𝑆

+

Also, if for all 𝑡 ě 1, }𝑎𝑡} ď 𝐿, then with probability at least 1 ´ 𝛿, for all 𝑡 ě 0, 𝜃˚ lies in

the set

Θ𝑡 “

#

𝜃 P R𝑑 : }𝜃𝑡 ´ 𝜃}𝑉𝑡´1 ď

d

𝑑 log

ˆ

1 ` 𝑡𝐿2{𝜆

𝛿

˙

` 𝜆1{2𝑆

+

The confidence set defined above turns out to be an ellipsoid. We take the quantity that

upper bounds }𝜃𝑡 ´ 𝜃}𝑉𝑡´1 as a constant, 𝛽𝑡, and get

Θ𝑡 “ t𝜃 P R𝑑 : }𝜃𝑡 ´ 𝜃}
2
𝑉𝑡´1

ď 𝛽𝑡u (2.2)

We say that with probability 1 ´ 𝛿, the true 𝜃˚ lies in this confidence ellipsoid Θ𝑡 given

above. Now, we make use of these sets to apply the optimism principle on linear bandits in

the following.

LinUCB Algorithm The consensus best algorithm is called LinUCB [55], or similarly OFUL

algorithm from [1]. OFUL stands for “optimism in the face of uncertainty in linear bandits,”

and the algorithm applies a principle that has proven to be effective in versions of bandit

problems. This principle, or meta-strategy, works as follows

Among all available actions, choose the one with highest upside potential.

This principle should be contrasted with the greedy strategy, which at a high level chooses the

action with highest expected potential. In the setting of linear bandits, the greedy algorithm

calculates the least-squares estimator 𝜃 calculated as in (2.1), and behaves as if 𝜃˚ “ 𝜃. In

contrast, LinUCB uses past observations to form a confidence set/uncertainty set Θ𝑡, and

optimistically acts as if 𝜃˚ is equal to the best possible 𝜃 P Θ𝑡 that will give the maximum

possible reward with one of the arms.

The LinUCB algorithm balances exploration and exploitation in a natural way. It is

certainly exploiting in the sense that the arm it plays is optimal with respect to some

“reasonable” estimate of 𝜃˚, i.e. one that lies in the confidence set. It is also exploring, as
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it has the tendency to play arms in directions that have been previously observed the least.

This is because the confidence set will be “wider” in those directions, and so the principle of

optimism translates to favoring choices of 𝜃 lying in the wider parts, or equivalently, arms in

those same directions.

So, at each time step 𝑡, LinUCB plays the following arm:

𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑡 “ argmax
𝑎P𝐴𝐿𝑖𝑛𝑈𝐶𝐵

𝑡

max
𝜃PΘ𝑡´1

x𝑎, 𝜃y

where 𝐴𝐿𝑖𝑛𝑈𝐶𝐵
𝑡 is the set of available arms at time 𝑡 under policy LinUCB. We emphasize

that the set of available arms in classic linear bandits remains the same through the game i.e.

𝐴1 “ ¨ ¨ ¨ “ 𝐴𝑇 , however, in disposable setting, 𝐴𝑡 shrinks down each time since the arms are

discarded.

The LinUCB algorithm chooses the arm that maximizes a linear function over an ellipsoid,

of which we know the closed form [1]:

𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑡 “ argmax
𝑎P𝐴𝐿𝑖𝑛𝑈𝐶𝐵

𝑡

!

x𝜃, 𝑎y `

b

𝛽𝑡𝑎J𝑉 ´1
𝑡´1𝑎

)

.

In the formula of 𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑡 , we can interpret the first term, x𝜃𝑡, 𝑎y as the exploiting greedy

term, and the second one as the exploratory LinUCB term. In practice, 𝛽 is the quantity

we tune, and in our experiments also we take it as a constant tuning parameter throughout

time, as also in [55].

Existing Regret Guarantees The classic linear bandit problem demonstrates a lower bound

of Ωp𝑑
?
𝑇 q on the cumulative regret for any algorithm. The LinUCB algorithm has an upper

bound of 𝑂̃p𝑑
?
𝑇 q, where 𝑂̃ hides the logarithmic factors, making the LinUCB algorithm

order-optimal. The proof for these bounds can be found in Theorem 19.2 and Theorem 24.1

in [52].

As per the generalized algorithm we propose that can also deal with this disposability

problem, although we still have
?
𝑇 in the regret bounds, we manage to decrease the

dimension 𝑑 by a factor that depends on the reward distribution of the arm-set. We give the

corresponding bounds in the following section.
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2.3 Algorithm and Regret Guarantees

Now, we introduce the generalized version of LinUCB which takes into account the remaining

moves (or budgets of arms) every period. The algorithm still feeds from the optimism

principle, hence, it is an ideal generalization to the disposable linear bandit problem.

The algorithm works as follows. At each step, given the confidence set Θ𝑡´1 for 𝜃˚, instead

of a single arm, the algorithm finds a subset of arms which will give the cumulative potentially

highest reward at the end of remaining 𝑇 ´ 𝑡 ` 1 periods. It then plays an arm from that set

uniformly at random and re-calculates the confidence set of 𝜃.

Algorithm 1: Generalized LinUCB
Input: 𝜆 ą 0

Initialization: 𝑉0 “ 𝜆𝐼, 𝜃 “ r0s𝑑

Calculate Θ0 according to (2.2).

for 𝑡 “ 1, 2, . . . 𝑇 do
𝑆UCBG
𝑡 “ argmax

|𝑆|“𝑇´𝑡

𝑆Ă𝐴UCBG
𝑡

max
𝜃PΘ𝑡´1

ř

𝑎P𝑆

𝑎J𝜃

Play the arm 𝑎UCBG
𝑡 chosen uniformly at random from 𝑆UCBG

𝑡

Observe reward: 𝑟𝑡p𝑎
UCBG
𝑡 q “ x𝑎UCBG

𝑡 , 𝜃˚y ` 𝜂𝑡.

Calculate 𝑉𝑡 “ 𝑉𝑡´1 ` 𝑎UCBG
𝑡 p𝑎UCBG

𝑡 q𝑇

Calculate Θ𝑡 according to (2.2).

Remove arm 𝑎UCBG
𝑡 from the future arm sets 𝐴UCBG

𝑡`1 , . . . , 𝐴UCBG
𝑇 .

end

There are two cases to analyze which back up the argument that this is a valid gener-

alization of LinUCB. The first one is that this algorithm would behave exactly the same

with LinUCB if it was implemented in a non-disposable setting. The only difference is that

we do not remove the played arm from the possible action set. The set of optimal actions

in non-disposable setting is playing the best arm, 𝐴𝜋
1 p1q, 𝑇 times in total. Reminding that

linear bandits are the special case of disposable bandits in which there are 𝑇 copies or each

arm, we give the following:

𝑆UCBG
𝑡 “ argmax

|𝑆|“𝑇´𝑡`1

𝑆Ă𝐴UCBG
𝑡

max
𝜃PΘ𝑡´1

ř

𝑎P𝑆

𝑎J𝜃
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Since we have at least 𝑇 ´ 𝑡 ` 1 copies of each arm at time 𝑡, the set 𝑆UCBG
𝑡 consists of

the copies of one arm that maximizes the potential reward over the confidence set. Choosing

any arm from this set will result in the same arm, hence we can write:

𝑎UCBG
𝑡 “ argmax

𝑎P𝐴UCBG
𝑡

max
𝜃PΘ𝑡´1

x𝑎, 𝜃y “ 𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑡

Indeed, 𝐴𝑈𝐶𝐵𝐺
𝑡 is equivalent to 𝐴𝐿𝑖𝑛𝑈𝐶𝐵

𝑡 , since 𝐴𝑈𝐶𝐵𝐺
1

Another point to be made is that in disposable setting, this algorithm behaves LinUCB-

like in the last period, at time 𝑇 , hence |𝑆𝑈𝐶𝐵𝐺𝑇 | “ 1. Therefore, the summation term will

disappear as follows.

𝑆𝑈𝐶𝐵𝐺𝑇 “ argmax
|𝑆|“1,
𝑆Ă𝐴𝑇

max
𝜃PΘ𝑡

ř

𝑎𝑡P𝑆

𝑎J
𝑡 𝜃 “ argmax

𝑎𝑇 P𝐴𝑇

max
𝜃PΘ

𝑎J
𝑡 𝜃 “ 𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑇

Finally, in the following subsections, we give the upper bound on UCBG, and a lower

bound on disposable bandits.

2.3.1 Regret Analysis of Generalized UCB

Next we analyze the regret bound on this algorithm and show that as opposed to 𝑂p𝑑
?
𝑇 q of

standard linear bandits, UCBG enjoys a 𝑂p𝑑
?
𝛾 𝑇 q upper bound, where 𝛾 ď 1 is a quantity

capturing the reward difference among the best arm set through time. We say that averaged

arm 𝐴 is the vector averaged over all arms in the arm set 𝐴.

𝐴 “
1

|𝐴|

ÿ

𝑎P𝐴

𝑎 (2.3)

Using this notion, we introduce the following concept that appear in the upper bound.

Shrinkage Factor Let 𝐴𝜋
𝑡 p𝑘q denote the 𝑘𝑡ℎ best available arm at time 𝑡 under policy 𝜋.

Then, we define 𝛾𝜋𝑡 at any given time 𝑡 as the ratio between the rewards of the best arm and

the average over the best arm-set:

𝛾𝜋𝑡 “
x𝐴𝜋

𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚y

x 1
𝑇´𝑡`1

𝑇´𝑡`1
ř

𝑖“1

𝐴𝜋
𝑡 p𝑖q, 𝜃˚y

(2.4)
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Notice that 𝛾𝜋𝑡 ď 1 for all 𝑡, and 𝛾𝜋𝑇 “ 1 for any setting. We further define the concept of 𝜌𝑖

as follows:

}𝑆} ď 𝜌𝑖 for all 𝑆 Ă 𝐴, |𝑆| “ 𝑇 ´ 𝑖 ` 1 (2.5)

We state that 𝜌𝑇 “ 1 for any policy, since all single arms have norm 1 in our model.

Theorem 2.3.1. Suppose the following assumptions hold:

1. 𝛽𝑡, as defined in Theorem 2.2.1, is non-decreasing and 𝛽𝑇 ě 1.

2. Expected rewards are bounded, i.e. 0 ď 𝑟𝑡 ď 1.

3. For each 𝑡 “ 1, . . . , 𝑇 , with probability 1 ´ 𝛿, 𝜃˚ P Θ𝑡, where Θ𝑡 is as in (2.2).

Then for arms 𝑎 P R𝑑 for all 𝑎 P 𝐴𝑡, and 𝑡 “ 1, . . . , 𝑇 , with probability 1 ´ 𝛿, the regret of

generalized UCB satisfies

𝑅UCBG
𝑇 “ 𝑂

´

𝑑
a

𝛾𝜌 𝑇
¯

where 𝛾𝜌 “ 1
𝑇

𝑇
ř

𝑡“1

𝛾𝑡𝜌𝑡 and 𝛾𝑡 at time 𝑡 is as defined in Equation (2.4) and similarly, 𝜌𝑡 is as

defined in Equation (2.5) .

Proof. The crux of the proof depends on the idea that we do not punish playing those arms

that the optimal algorithm would play at some time. So we give the following lemma, which

provides another way of bookkeeping for regret: The instantaneous pseudo regret is the

positive part of the difference between the 𝑇 ´ 𝑡 ` 1𝑠𝑡 best arm among the available arms at

time 𝑡 and the arm algorithm plays.

Lemma 2.3.2. In the disposable bandit setting, the traditional definition of regret can be

re-written as

𝑇
ÿ

𝑖“1

x𝐴1p𝑖q, 𝜃
˚
y ´

𝑇
ÿ

𝑡“1

x𝑎𝑡, 𝜃
˚
y “

𝑇
ÿ

𝑡“1

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝜋𝑡 , 𝜃
˚
yq

`

Proof. Proof of Lemma 2.3.2

We need to show that the right hand side quantity,
ř𝑇
𝑡“1 px𝐴𝜋

𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚y ´ x𝑎𝜋𝑡 , 𝜃
˚yq

`

is equal to the total regret, where 𝐴𝜋
𝑡 p𝑇 ´𝑡`1q denotes the p𝑇 ´𝑡`1q𝑠𝑡 best arm among the re-
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maining arms at time 𝑡 under policy 𝜋. Let us call the quantity px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚y ´ x𝑎𝜋𝑡 , 𝜃

˚yq
`

at time 𝑡, pseudo regret, denoted by 𝑄𝑡.

We analyze three different cases:

Case 1: Suppose the policy 𝜋 does not play any of the optimal arms. In this case,

the expected reward of a played arm will always be less than that of the 𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q.

Hence, the immediate pseudo regret, 𝑄𝑡 is the same as the traditional immediate regret, i.e.

𝑄𝑡 “ x𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚y ´ x𝑎𝜋𝑡 , 𝜃

˚y. So we omit the plus sign here. This yields the equality:

𝑇
ÿ

𝑡“1

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝜋𝑡 , 𝜃
˚
yq

`
“

𝑇
ÿ

𝑡“1

x𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

“

𝑇
ÿ

𝑡“1

x𝐴𝜋
1 p𝑡q, 𝜃˚

y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

where the last equality follows from the fact that the set of 𝑇 best arms does not change

throughout time, since the policy 𝜋 always played a worse-off arm.

Case 2: The algorithm always plays one of the optimal arms, though not necessarily in

a particular order. Then, px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚y ´ x𝑎𝜋𝑡 , 𝜃

˚yq
`

“ 0 for all 𝑡 “ 1, . . . , 𝑇 since

𝐴𝜋
𝑡 p𝑇 ´ 𝑡` 1q will always have less expected reward than the arm algorithm has chosen. Since

there is also zero traditional cumulative regret, the two quantities are equivalent.

Case 3: The algorithm plays some of the best arms. The quantity px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q ´ 𝑎𝜋𝑡 , 𝜃

˚yq
`

will be 0 for those instances the policy 𝜋 plays a better arm than 𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, i.e.

x𝑎𝜋𝑡 , 𝜃
˚
y ą x𝐴𝜋

𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚
y.

For all other instances, px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q ´ 𝑎𝜋𝑡 , 𝜃

˚yq
`

ě 0, hence we can omit the plus sign

for these. Ultimately, we make the following replacement in the formula for the times an

algorithm plays a strictly better arm, so that we can omit the plus sign completely.

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q ´ 𝑎𝜋𝑡 , 𝜃

˚
yq

`
“ 0 “ x𝑎𝜋𝑡 ´ 𝑎𝜋𝑡 , 𝜃

˚
y

Let 𝑇1 be the set of instances that the policy 𝜋 plays a strictly better arm than 𝐴𝜋
𝑡 p𝑇 ´ 𝑡` 1q,
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and 𝑇2 “ r𝑇 sz𝑇1.

𝑇
ÿ

𝑡“1

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝑡, 𝜃
˚
yq

`
“

ÿ

𝑡P𝑇1

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝜋𝑡 , 𝜃
˚
yq

`

`
ÿ

𝑡P𝑇2

px𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝜋𝑡 , 𝜃
˚
yq

“
ÿ

𝑡P𝑇1

px𝑎𝜋𝑡 , 𝜃
˚
y ´ x𝑎𝜋𝑡 , 𝜃

˚
yq `

ÿ

𝑡P𝑇2

x𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´ x𝑎𝜋𝑡 , 𝜃
˚
y

“
ÿ

𝑡P𝑇1

x𝑎𝜋𝑡 , 𝜃
˚
y `

ÿ

𝑡P𝑇2

x𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

Now all we need to show is that the sets t𝑎𝜋𝑡 |𝑡 P 𝑇1u and t𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q|𝑡 P 𝑇2u do not

have any elements in common. Notice that both sets are subsets of t𝐴1p𝑡q|𝑡 P r𝑇 su. Let

𝑏𝑡, under policy 𝜋, be the rank of arm 𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, i.e. 𝐴𝜋

1 p𝑏𝑡q “ 𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q. Then,

naturally 𝑏1 “ 𝑇 . For an intermediate 𝑏𝑡`1, there are two cases to consider: when the policy

𝜋 plays a strictly better arm than 𝐴𝜋
1 p𝑏𝑡q and when it plays a worse arm. Let 𝑡 denote the

first time 𝜋 plays a strictly better arm. At time 𝑡 ` 1, 𝐴𝜋
𝑡`1

p𝑇 ´ 𝑡 ` 1q “ 𝐴𝜋
𝑡`1

p𝑇 ´ 𝑡q again

since among the remaining arms, the p𝑇 ´ 𝑡q𝑡ℎ arm is the p𝑇 ´ 𝑡 ` 1q𝑠𝑡 arm at time 𝑡 due to

𝜋 playing and disposing a good arm. Then 𝑏𝑡`1 “ 𝑏𝑡. So in the case that an algorithm plays

a better arm, say 𝑘 times consecutively, then 𝑏𝑡 will be the same for the next 𝑘 times also. If

the policy 𝜋 plays a worse arm at time 𝑡, then at time 𝑡 ` 1, 𝑏𝑡`1 will be the next available

arm with the largest rank strictly smaller than 𝑏𝑡. We define set Π𝑡 as the set of the ranks of

those arms policy 𝜋 has played until and including time 𝑡.

Π𝑡 “ t𝜋1, . . . , 𝜋𝑡u

Then we write the following recursive relationship:

𝑏𝑡`1 “

$

’

&

’

%

𝑏𝑡 if 𝑡 P 𝑇1

max tt1, . . . , 𝑏𝑡 ´ 1uzΠ𝑡u if 𝑡 P 𝑇2
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In summary, the sequence 𝑏𝑡 repeats itself if policy 𝜋 plays one of the good arms at time

𝑡, causing 𝑏𝑡`1 “ 𝑏𝑡. Otherwise, it picks the next one among the available arms.

Now what is left is to show that the following rank sequence for 𝑡 “ 1, . . . , 𝑇 is indeed

t1, . . . , 𝑇 u up to permutation.

𝑐𝑡 “

$

’

&

’

%

𝜋𝑡 if 𝑡 P 𝑇1

𝑏𝑡 if 𝑡 P 𝑇2

(2.6)

Naturally 𝑐𝑡 ď 𝑇 for all 𝑡, since for 𝑡 P 𝑇1 , we have 𝑐𝑡 “ 𝜋𝑡 ă 𝑏𝑡 ď 𝑇 and for 𝑡 P 𝑇2, we

have 𝑐𝑡 “ 𝑏𝑡 ď 𝑇 . Now, finally, we show that 𝑐𝑡 never repeats itself, i.e. for a given time 𝑖,

𝑐𝑖 ‰ 𝑐𝑗 for 𝑗 ă 𝑖 w.l.o.g.

• Case 𝑐𝑖 “ 𝜋𝑖: In other words, 𝜋𝑖 ă 𝑏𝑖. If a previous 𝑐𝑗 is 𝜋𝑗, then due to disposability,

𝜋𝑖 ‰ 𝜋𝑗, hence, 𝑐𝑖 ‰ 𝑐𝑗. If a previous 𝑐𝑗 “ 𝑏𝑗, then, we use the non-increasing property

of the sequence 𝑏𝑡 and write 𝑏𝑗 ě 𝑏𝑖 ą 𝜋𝑖, leading to 𝜋𝑖 ‰ 𝑏𝑗 and therefore 𝑐𝑖 ‰ 𝑐𝑗.

• Case 𝑐𝑖 “ 𝑏𝑖: In other words, 𝜋𝑖 ě 𝑏𝑖. At time 𝑗, 𝑐𝑗 is either 𝑏𝑗 or 𝜋𝑗. If 𝑗 P 𝑇1, we

have 𝑐𝑗 “ 𝜋𝑗 and 𝜋𝑗 ă 𝑏𝑗. It is easy to see that 𝑏𝑖 can never be equal to 𝜋𝑗 since 𝑏𝑡 is

defined on available arms and 𝑖 ą 𝑗, so 𝜋𝑗 is not among the available arms at time 𝑖. If

𝑗 P 𝑇2 then we have 𝑐𝑗 “ 𝑏𝑗 and 𝜋𝑗 ě 𝑏𝑗 ě 𝑏𝑖. From the definition of 𝑏, we know that

for 𝑗 P 𝑇2, 𝑏𝑗`1 ď 𝑏𝑗 ´ 1 and that 𝑖 ě 𝑗 ` 1, hence 𝑏𝑖 ď 𝑏𝑗`1 ă 𝑏𝑗, showing 𝑏𝑖 ‰ 𝑏𝑗.

We have shown that 𝑐𝑡 as defined in (2.6) has 𝑇 unique ranks. Now what is left is to

re-write the final expression we have for the new book-keeping method:

ÿ

𝑡P𝑇1

x𝑎𝜋𝑡 , 𝜃
˚
y `

ÿ

𝑡P𝑇2

x𝐴𝜋
𝑡 p𝑇 ´ 𝑡 ` 1q, 𝜃˚

y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y “

ÿ

𝑡P𝑇1

x𝐴𝜋
1 p𝑐𝑡q, 𝜃

˚
y `

ÿ

𝑡P𝑇2

x𝐴𝜋
1 p𝑐𝑡q, 𝜃

˚
y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

“

𝑇
ÿ

𝑡“1

x𝐴𝜋
1 p𝑐𝑡q, 𝜃

˚
y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

“

𝑇
ÿ

𝑡“1

x𝐴𝜋
1 p𝑡q, 𝜃˚

y ´

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃
˚
y

where the last equality follows from the fact that re-ordering of the arm sequence of a policy

will not change the cumulative expected reward.

■
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Brief Analysis of Upper Bound: UCBG upper bound behaves similarly with LinUCB,

except to a fraction of
?
𝛾𝜌, a quantity that depends on the reward difference among the

arm set. Relating back to linear bandits vs disposable linear bandits in which we have 𝑇

copy of each arm, one can see that 𝛾𝜌 “ 1 in the special case of linear bandits, matching

the known upper bound 𝑂̃p𝑑
?
𝑇 q and indeed, reassuring that this is a generalization of UCB

algorithm. Intuitively we can say that since we do not punish the times that the algorithm

plays an arm among 𝐴1p1 : 𝑇 q, which has a set reward difference of the factor 𝛾𝑡𝜌𝑡, the regret

we observe also shrinks accordingly.

Corollary 2.3.3. For a set of distinct arms for which the following holds for all 𝑖, 𝑗:

x𝑎𝑖, 𝑎𝑗y ď 𝛾

we have a looser general upper bound of 𝑂p𝑑
?
𝑇𝛾q. One can interpret 𝛾 as the quantity that

captures how close at maximum two arms are in the arm set we are given.

The corollary follows from the fact that 𝛾 is an upper bound on any reward ratio between

any 2 arms: hence 𝛾 ě 𝛾𝑖𝜌𝑖 for all 𝑖 “ 1, . . . , 𝑇 , and leading to 𝛾 ě 𝛾𝜌.

2.3.2 Lower Bound

In this subsection we analyze an instance for which we prove a lower bound of Ωp𝜑𝑑
?
𝑇 q,

where 𝜑 is defined to be the ratio between the lowest and highest mean rewards among the

set of 𝑇 optimal arms. More specifically, taking 𝐴1p𝑖q as the 𝑖𝑡ℎ reward-wise best arm at the

beginning of the game, we define 𝜑 as:

𝜑 “
x𝐴1p𝑇 q, 𝜃˚y

x𝐴1p1q, 𝜃˚y
(2.7)

Proposition 2.3.4. Assume that 2𝑑 ě 𝑇 , and let the arm set be 𝒜 “ t´1, 1u𝑑. For any

algorithm, there exists 𝜃 P Θ “ t´
a

1{𝑇 ,
a

1{𝑇 u𝑑 such that we have the following lower
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bound on regret:
𝑇
ÿ

𝑡“1

𝑅𝑡p𝒜, 𝜃q ě 𝐶𝜑𝑑
?
𝑇 ,

where 𝐶 is a universal constant.

Proof. The idea behind this new lower bound, however, is that we compare the mistakes that

have to be done by the ebst algorithm and any other algorithm. Since the best algorithm

has a set of good actions it takes, the rewards of which changes according to the set, the

final regret we can get also decreases by a factor that depends on the range of rewards in the

optimal decision set.

The proof is similar to that of the lower bound for non-disposable linear bandits (e.g.

Theorem 24.1 in [52]). Recall the setup: we assume that 2𝑑 ě 𝑇 , and let the arm set be

𝒜 “ t´1, 1u𝑑. Finally, define the set Θ “ t´
a

1{𝑇 ,
a

1{𝑇 u𝑑, from which 𝜃 will be chosen.

The noise will be assumed to come from the standard Gaussian distribution.

For any 𝜃 P Θ, let 𝑘 be defined as

𝑘 “ max
𝑡

𝑑
ÿ

𝑗“1

1tsignp𝑎𝜋˚
𝑡 ,𝑗

q ‰ signp𝜃𝑗qu

where the notation 𝑎𝑖,𝑗 denotes the 𝑗-th coordinate of 𝑎𝑖. In words, 𝑘 is the number of

dimensions along which the worst arm among (any choice of) 𝐴˚ differs from 𝜃 in sign. Note

that, by symmetry, 𝑘 is equal for all 𝜃 P Θ, so 𝑘 is only a function of 𝑑 and 𝑇 . Since there

exists an arm which matches 𝜃 in all dimensions in sign, 𝜑 (as defined in (2.7)) is equal to

𝜑 “ 𝑑´𝑘
𝑑

.

Now fix any policy 𝜋 and 𝜃 P Θ, and define 𝑝𝜃,𝑖 to be the likelihood that at least 𝑛{2 arms

selected by this policy differ in sign from 𝜃 along dimension 𝑖, i.e.

𝑝𝜃,𝑖 “ P𝜃

˜

𝑇
ÿ

𝑡“1

1tsignp𝑎𝜋𝑡,𝑖q ‰ signp𝜃𝑖qu ě 𝑛{2

¸

.

Now fix a dimension 𝑖. For any 𝜃 and 𝜃1 such that 𝜃1 “ 𝜃 except 𝜃1
𝑖 “ ´𝜃𝑖, Pinsker’s
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inequality (stated as Lemma 2.3.5 below) implies that:

𝑝𝜃,𝑖 ` 𝑝𝜃1,𝑖 ě
1

2
exp

˜

´
1

2

𝑇
ÿ

𝑡“1

x𝑎𝜋𝑡 , 𝜃 ´ 𝜃1
y
2

¸

“
1

2
𝑒´2 (2.8)

Let the notation
ř

𝜃´𝑖

to denote summation over 𝜃1, . . . , 𝜃𝑖´1, 𝜃𝑖`1, . . . , 𝜃𝑑 P

!

˘
a

1{𝑇
)𝑑´1

.

We obtain the following lower bound for
𝑑
ř

𝑖“1

𝑝𝜃,𝑖:

ÿ

𝜃PΘ

2´𝑑
𝑑
ÿ

𝑖“1

𝑝𝜃,𝑖 “

𝑑
ÿ

𝑖“1

ÿ

𝜃´𝑖

2´𝑑
ÿ

𝜃𝑖P
!

˘
?

1{𝑛
)

𝑝𝜃,𝑖

ě

𝑑
ÿ

𝑖“1

ÿ

𝜃´𝑖

2´𝑑1

2
exp p´2q

“
𝑑

4
exp p´2q .

where the inequality follows from (2.8). This implies that there exists at least one 𝜃 for which

𝑑
ÿ

𝑖“1

𝑝𝜃,𝑖 ě
𝑑

4
exp p´2q . (2.9)

For the remainder of the proof, fix 𝜃˚ to be one such 𝜃.

Now fix any optimal sequence of arms 𝑎𝜋˚
𝑡

such that 𝑎𝜋˚
1 ,𝑖

“ 𝜃˚
𝑖 for all 𝑖 “ 1, . . . , 𝑑, i.e. the

first arm in this sequence is the best. The total regret can be decomposed as follows,

𝑇
ÿ

𝑡“1

𝑅𝑡 “

𝑇
ÿ

𝑡“1

E𝜃
“

x𝑎𝜋˚
𝑡

´ 𝑎𝜋𝑡 , 𝜃
˚
y
‰

“

𝑇
ÿ

𝑡“1

Erx𝑎𝜋˚
1

´ 𝑎𝜋𝑡 , 𝜃
˚
ys ´

𝑇
ÿ

𝑡“1

Erx𝑎𝜋˚
1

´ 𝑎𝜋˚
𝑡
, 𝜃˚

ys,
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which leads to:

𝑇
ÿ

𝑡“1

𝑅𝑡 “ 2

c

1

𝑇

𝑇
ÿ

𝑡“1

𝑑
ÿ

𝑖“1

P psignp𝑎𝜋𝑡,𝑖q ‰ signp𝜃˚
𝑖 qq ´ 2

c

1

𝑇

𝑇
ÿ

𝑡“1

𝑑
ÿ

𝑖“1

1
␣

𝑠𝑖𝑔𝑛p𝑎𝜋˚
𝑡 ,𝑖

q ‰ 𝑠𝑖𝑔𝑛p𝜃˚
𝑖 q
(

ě
?
𝑇

𝑑
ÿ

𝑖“1

P

˜

𝑇
ÿ

𝑡“1

1tsignp𝑎𝜋𝑡,𝑖q ‰ signp𝜃˚
𝑖 qu ě 𝑇 {2

¸

´ 2𝑘
?
𝑇

“
?
𝑇

𝑑
ÿ

𝑖“1

𝑝𝜃,𝑖 ´ 2𝑘
?
𝑇

“ Ωp𝑑𝜑
?
𝑇 q.

The first line is due to our fixing 𝑎𝜋˚
1

to be the best arm, and the second line comes from

applying the definition of 𝑘 as the maximal number of dimensions along which any 𝑎𝜋˚
𝑡

disagrees with 𝜃 in sign. The fourth line comes from (2.9).

Lemma 2.3.5 ([72], Lemma 2.6). Let P and Q be probability measures on the same measurable

space pΩ,ℱq and let 𝐴 P ℱ be an arbitrary event. Then,

𝑃 p𝐴q ` 𝑄p𝐴𝑐
q ě

1

2
expp´KLp𝑃,𝑄qq.

■

Brief Analysis of Lower Bound: The lower bound behaves similarly with that of LinUCB.

Connecting back to the original problem of linear bandits, the special case when we have

𝑇 -many of each arm, we see that 𝜑 ` 𝑡 “ 1 for all 𝑡, or equivalently, 𝑘 “ 0, i.e. the reward of

𝐴1p1q and 𝐴1p𝑇 q are the same, which in turn gives us the same lower bound Ωp𝑑
?
𝑇 q. Also,

notice that if 2𝑑 “ 𝑇 , i.e. we play all arms, 𝑘 “ 𝑑, and lower bound becomes 0, as expected.

2.4 Heuristics

The ideal algorithm UCBG given in Algorithm 1 tries to find the set 𝑆 that maximizes the

function 𝑓p𝜃, 𝑆q “
ř

𝑎P𝑆

𝑎J𝜃 over the confidence ball. In other words, it solves the following
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optimization problem each time:

max
𝜃PΘ𝑡´1

max
|𝑆|“𝑇´𝑡`1

ÿ

𝑎P𝑆

𝑎J𝜃,

However, this amounts to calculating exponentially many subsets, since the algorithm would

have to go over all
`

𝐾
𝑇´𝑡`1

˘

subsets, and calculate the UCBG value of them, making the

application of this algorithm computationally intractable. Hereby, we present a heuristic

approach that was inspired by the UCBG value of an arm, based on the idea that there exists

an arm close to a given 𝜃. This assumption is not unrealistic, since in recommendations, we

usually work with masses of items and therefore, the product space is quite dense.

We start by defining a function of 𝜃, measuring its possible highest reward. In other words,

let 𝑔p𝜃q “ max
|𝑆|“𝑇´𝑡`1

ÿ

𝑎P𝑆

𝑎J𝜃. Then 𝑔 is a function that gives the maximum cumulative inner

product of this 𝜃 and a subset of 𝑇 ´ 𝑡` 1 arms among the current available arm-set. Further,

for any given 𝜃, let 𝑎𝑖p𝜃q be the 𝑖th closest arm to 𝜃 in Euclidean distance. Reminding that

the arms and 𝜃 are on the unit ball, we make the following reduction:

𝑔p𝜃q “ max
|𝑆|“𝑇´𝑡`1

ÿ

𝑎P𝑆

𝑎J𝜃 “

𝑇´𝑡`1
ÿ

𝑖“1

𝑎𝑖p𝜃q
J𝜃

This equation mainly indicates that the subset we seek, which will maximize the cumulative

inner product, is the subset of arms that are closest to 𝜃 in Euclidean distance. We re-write

this expression by singling out the closest arm, 𝑎1p𝜃q.

𝑔p𝜃q “ p𝑎1p𝜃qq
J𝜃 `

𝑇´𝑡`1
ÿ

𝑖“2

p𝑎𝑖p𝜃qq
J𝜃

Now, the main trick of this calculation is to make the substitution 𝑎1p𝜃q « 𝜃. We remind

that the norm of 𝜃 is 1, and make this substitution twice in the following statement.

𝑔p𝜃q « p𝑎1p𝜃qq
J𝜃 `

𝑇´𝑡`1
ÿ

𝑖“2

p𝑎𝑖p𝑎1p𝜃qqq
J𝜃 « p𝑎1p𝜃qq

J𝜃 `

𝑇´𝑡`1
ÿ

𝑖“2

p𝑎𝑖p𝑎1p𝜃qqq
J𝑎1p𝜃q

We emphasize that 𝑎1p𝑎1p𝜃qq “ 𝑎1p𝜃q, hence the second term is actually the summation
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of inner products of the closest arm to 𝜃 with the 𝑇 ´ 𝑡 closest arms to itself. The final

expression we have mainly says that in a dense arm-set, the maximum cumulative reward of

a set of arms for a given 𝜃 is close to that of the single best arm and the summation of the

inner products with the arms around it. We call the second term the similarity score of an

arm 𝑎, denoted 𝑆p𝑎q, and get

p𝑎1p𝜃qq
J𝜃 `

𝑇´𝑡`1
ÿ

𝑖“2

p𝑎𝑖p𝑎1p𝜃qqq
J𝑎1p𝜃q “ 𝑎1p𝜃q

J𝜃 ` 𝑆p𝑎1p𝜃qq

Re-stating that we have unit vectors, this is indeed the cumulative cosine similarity distance

which measures how different two arms are direction-wise. Hence the closer the arms are,

the greater the summation becomes. Now, instead of maximizing this final quantity over the

ellipsoid, we iterate and take the maximum over all arms. Intuitively what this means is

that the set of arms to be chosen should be similar to each other (i.e. cosine similarity) so

that the algorithm explores those arms that it can later exploit, which is crucial due to the

disposable nature of the problem. In other words, we give less weight to explore those with

little similarity to other arms around them, and decide to learn less in those directions.

Before we explain the method in detail, we give the two functions Similarityp𝑣, 𝐴, 𝑠q and

Closestp𝑣, 𝐴, 𝑠q more formally. Similarityp𝑣,𝐴, 𝑠q gives the cumulative similarity score of arm

𝑣 with the set of arms that are closest to it in cosine-similarity measure. Closestp𝑣, 𝑠, 𝐴q, on

the other hand, gives a set of arms with size 𝑠 from 𝐴 with the highest inner products with

vector 𝑣.

Similarityp𝑣,𝐴, 𝑠q “ max
𝑆Ă𝐴,|𝑆|“𝑠

ÿ

𝑎𝑠P𝑆

x𝑣, 𝑎𝑠y

Closestp𝑣, 𝐴, 𝑠q “ argmax
𝑆Ă𝐴,|𝑆|“𝑠

ÿ

𝑎𝑠P𝑆

x𝑣, 𝑎𝑠y

The procedure of Alternating Heuristic is as follows. We first choose an arm 𝑎𝑡 with the

highest UCB ` Similarity index. Intuitively this means find an arm who has a high reward

estimate and a high number of arms close to it. Then we find the set of arms closest to this

arm, 𝑆𝐴𝐻𝑡 . Notice that the 𝜃 that will maximize the optimistic reward for this set is different

from that of 𝑎𝑡. So we find the 𝜃 P Θ𝑡´1 that maximizes p𝑆𝐴𝐻𝑡 q𝑇 𝜃. We use the fact that
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maximizing UCBp𝑆𝐴𝐻𝑡 q is equivalent to maximizing UCBGp𝑆𝐴𝐻𝑡 q “ max
𝜃PΘ𝑡´1

ř

𝑎𝑡P𝑆𝐴𝐻
𝑡

𝑎J
𝑡 𝜃. For a

fixed 𝜃, we can find the arm set to maximize 𝑔p𝜃q by choosing the arms closest to it, which

gives us the set 𝑆𝜃𝑡 . We iterate until the two arm sets, 𝑆𝜃𝑡 and 𝑆𝐴𝐻𝑡 are equivalent. Finally,

choose the arm in 𝑆𝐴𝐻𝑡 with the maximum UCB index to play. Note that in each iteration

we increase the objective function value 𝑓 we try to maximize.We point out that 𝑓 is a

non-concave function, so the heuristic will converge to a set of arms that is locally optimal,

not globally. It is crucial to state that the heuristic always converges for two reasons: we

have a finite set of arms and there always exits an instance for which 𝑓 is maximized.

Algorithm 2: Alternating Heuristic
Input: 𝜆, 𝛼, 𝑐 ą 0
Initialization: 𝑉 “ 𝜆𝐼, 𝜃0 “ r0s𝑑

for 𝑡 :“ 1, 2, . . . 𝑇 do

𝑎𝑡 “ argmax
𝑎P𝐴𝐴𝐻

𝑡

x𝜃𝑡´1, 𝑎y ` 𝑐
b

𝑎𝑇𝑉 ´1
𝑡´1𝑎 ` 𝛼 Similarityp𝑎,𝐴𝐴𝐻

𝑡 , 𝑇 ´ 𝑡q

𝑆𝐴𝐻𝑡 “ Closestp𝑎𝑡, 𝐴
𝐴𝐻
𝑡 , 𝑇 ´ 𝑡q

𝜃 “ 𝜃UCBp𝑆𝐴𝐻𝑡 q

𝑆𝜃𝑡 “ Closestp𝜃, 𝐴𝐴𝐻
𝑡 , 𝑇 ´ 𝑡q

while 𝑆𝐴𝐻𝑡 ‰ 𝑆𝜃𝑡 do
𝑆𝐴𝐻𝑡 “ Closestp𝑆𝜃𝑡 , 𝐴

𝐴𝐻
𝑡 , 𝑇 ´ 𝑡q

𝜃 “ 𝜃UCBp𝑆𝐴𝐻𝑡 q

𝑆𝜃𝑡 “ Closestp𝜃, 𝐴𝐴𝐻
𝑡 , 𝑇 ´ 𝑡q

end

Play the arm 𝑎𝐴𝐻𝑡 “ argmax
𝑎P𝑆𝜃

𝑡

x𝜃𝑡´1, 𝑎y ` 𝑐
b

𝑎𝑇𝑉 ´1
𝑡´1𝑎

Observe reward: 𝑟𝐴𝐻𝑡 “ x𝑎𝐴𝐻𝑡 , 𝜃˚y ` 𝜂𝑡
𝑉𝑡 “ 𝑉𝑡´1 ` 𝑎𝐴𝐻𝑡 p𝑎𝐴𝐻𝑡 q𝑇

𝑋 “ r𝑋, 𝑎𝐴𝐻𝑡 s

𝑌 “ r𝑌, 𝑟𝐴𝐻𝑡 s

Calculate 𝜃𝑡 “ 𝑉 ´1
𝑡 𝑋𝑇𝑌

Remove arm 𝑎𝐴𝐻𝑡 from the future arm sets 𝐴𝐴𝐻
𝑡`1, . . . , 𝐴

𝐴𝐻
𝑇 .

end

As stated, the alternating procedure we apply to a given subset always increases the

function 𝑓 we try to maximize. However, one caveat could come from the method we use to

initialize the arm set. To address this issue and see what is the best way to initialize the set,

we test three different initialization to compare the objective function and the convergence

rate. Although the data and experiments are explained in detail in Section 2.5, below we
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Figure 2-1: Performance and convergence rate of alternating heuristic with three different
initializations. Results are averaged over 200 instances, all at period 𝑡 “ 5. Performance
(Left): Objective function vs. iteration number. Convergence Rate (Right): Gap fraction to
eventual converged value vs. iteration number.

provide the comparisons of the objective function between those different initial arm sets

given to the Alternating Heuristic. These trends were observed during 𝑡 “ 5, for other

time-step trends refer to the Appendix.

We test 3 different initializations over the arm set. Random: Choose 𝑇 ´ 𝑡 ` 1 arms

randomly and iterate until convergence. As seen naturally from the figures, this takes

more iterations and converges to a lower function value. UCB : Choose 𝑇 ´ 𝑡 ` 1 arms by

argmax
𝑆P𝐴𝑡,|𝑆|“𝑇´𝑡`1

ř

𝑎P𝑆

UCBp𝑎q, i.e. arms with the highest combined UCB values. This method is

significantly better than random initialization, but still has a lower final value than that of

Similarity initialization. Similarity : Choose 𝑇 ´ 𝑡 ` 1 arms by maximizing the similarity

score of one arm, and choosing 𝑇 ´ 𝑡 arms closest to it. This initialization not only have the

highest function value it converges, but also converges faster than random, similar to that of

LinUCB.
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2.5 Experiments

In this section, we describe the procedure we followed to test our heuristic and algorithms on

a real-world data from a popular online dating platform. We cannot disclose the company

name here explicitly for privacy reasons, however, we will explain how the app works and

describe the data in detail. The app works as follows. A user is shown two cards from the

opposite gender each day and he/she can decide to choose one and send a proposal. With

each proposal made, the platform earns a certain amount of money. In the next step, those

who get proposals can either accept or reject the proposal, which initiates the interaction

process. The goal of the platform is, clearly, match as many users as possible.

The data from this platform contains 199K male users and 44K female users. It has the

information of users themselves such as age, gender, location, occupation, physical appearance,

popularity among other users etc. It also has 2-year worth of transactions between users such

as number of messages, the duration of contact, who sent the proposal or who accepted a

proposal etc. For our purposes, we are only interested in the second part since side information

is not included in our scope.

We extract from this data a main matrix of men vs women, where men are the rows

of this matrix 𝑖 “ 1, . . . , 𝐾, and women are the columns 𝑗 “ 1, . . . , 𝐾. We chose same

number of men and women for simplicity purposes. Each entry of this matrix represents the

probability of two people matching. So man 𝑖 and woman 𝑗 matches with probability 𝑀𝑖𝑗,

where 𝑀 P R𝐾ˆ𝐾 is the main matrix we work on, which denotes the reward matrix. We take

the first 5000 most active users for our experimental purposes, hence 𝐾 “ 5000 for the rest

of this section.

Naturally, the matrix is not even close to complete. To solve this issue, we employ Singular

Value Decomposition method to complete it. Consider each entry as a reward that is linear

in men and women’s unknown vectors. So we decompose the matrix 𝑀 as

𝑀 “ ΘJ𝐴

where 𝐴,Θ P R𝐾ˆ𝑑 and Θ𝑗 P R𝑑 represents the vector of each man, similarly 𝐴𝑗 of each

woman. In our data, the dimension is 16, 𝑑 “ 16. Notice that 𝑑 is the rank of the matrix

and it is way smaller than the size, 𝑑 ! 𝐾. By using this, we approximate all 𝐴𝑖 and Θ𝑗
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such that 𝑀𝑖𝑗 “ ΘJ
𝑖 𝐴𝑗. We treat these entries as the true mean reward we would get from

recommending person 𝑗 to person 𝑖, i.e. each Θ𝑖 is a different 𝜃. However, the entries observe

have mean-zero noise 𝜂𝑖𝑗:

𝑅𝑖𝑗 “ xΘ𝑖, 𝐴𝑗y ` 𝜂𝑖𝑗

In the following we give the adaptations for disposable setting for the benchmarks we

compare Alternating Heuristic to: Greedy Algorithm, LinUCB and Thompson Sampling.

2.5.1 Disposable Setting Adaptations

For experimental purposes, we modified the current well-known algorithms by adding the

disposability constraint. The modification is straightforward: after playing an arm, we remove

it from the future arm sets. We remind that we still work with the more general case in

which the arms have a budget of 1, hence, discarded after a single pull.

Greedy Algorithm Greedy algorithm takes the maximum likelihood estimator of 𝜃 and

behaves as if it is the true 𝜃. In Gaussian setting, we give the MLE estimate of 𝜃 as follows:

𝜃𝑡 “ 𝑉 ´1
𝑡 𝑋𝑇𝑌

where X is the matrix with rows p𝑎𝐺𝑟𝑒𝑒𝑑𝑦1 q𝑇 , . . . , p𝑎𝐺𝑟𝑒𝑒𝑑𝑦𝑡´1 q𝑇 , and 𝑌 is the vector of rewards

observed so far, i.e. 𝑟𝐺𝑟𝑒𝑒𝑑𝑦1 , . . . , 𝑟𝐺𝑟𝑒𝑒𝑑𝑦𝑡´1 . Greedy algorithm chooses the arm that will maximize

the inner product with this estimator of 𝜃˚, 𝜃. In disposable setting experiments, we remove

the arm Greedy strategy has played from the available arm set for the rest of the game.

LinUCB Algorithm We use the well-known LinUCB algorithm with a modification that

we remove the arm we play at a time period from the future available arm sets. We tune the

𝑐 value for the following LinUCB index for a given arm:

𝐿𝑖𝑛𝑈𝐶𝐵p𝑎q “ 𝑎𝑇 𝜃 ` 𝑐
?
𝑎𝑇𝑉 ´1𝑎

In the results reported, that value of 𝑐 that gives the smallest regret was chosen for LinUCB.

Thompson Sampling The version of Thompson Sampling we work with use multivariate

Gaussian prior and Gaussian noise with known variance, similar to that studied in [5]. More
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formally, let 𝜃0 „ 𝒩 p𝜇0,Σ0q drawn from the prior on theta, and at each time 𝑡, we make

the following updates on 𝜇𝑡 and Σ𝑡 given that we take action 𝑎𝑡 P R𝑑 and observe reward

𝑟𝑡 “ 𝜃𝑇𝑎𝑡 ` 𝜖𝑡 where 𝜖𝑡 „ 𝒩 p0, 𝜎2q and 𝜃 is drawn from the prior 𝒩 p𝜇0,Σ0q . The updates

of the parameters are as follows:

Σ𝑡 “

ˆ

Σ´1
𝑡´1 `

𝑎𝑡𝑎
𝑇
𝑡

𝜎2

˙´1

𝜃𝑡 “ Σ𝑡

´

Σ´1
𝑡´1𝜃𝑡´1 ` 𝑎𝑡𝑟𝑡{𝜎

2
¯

The derivation for these posteriors can be found in the Appendix. Thompson Sampling

has an adaptation that can be perceived analogous to that of UCBG: among the available

arms choose a set of 𝑇 ´ 𝑡 ` 1 number of arms and choose one among them uniformly at

random. In Thompson Sampling, however, this approach corresponds to choosing an arm,

uniformly at random, among the closest 𝑇 ´ 𝑡` 1 arms to the 𝜃𝑇𝑆𝑡 sampled from the posterior.

2.5.2 Results

We run 2 sets of experiments with a modification on the reward function: when the reward

function has an underlying Gaussian distribution and when it has Bernoulli distribution.

Both means are, naturally, 𝑀𝑖𝑗, where 𝑀 is the resulting completed matrix as explained in

the beginning of this section.

1. Gaussian Reward: The reason we work with Gaussian reward distribution, even though

it is more realistic that the matching rewards come from Bernoulli distribution in

the online setting, is that we know how to work with a Gaussian prior in Thompson

Sampling. The posterior is calculated as given in the previous subsection. The methods

we implement are Thompson Sampling Adaptation, Greedy, LinUCB and Alternating

Heuristic. To give Thompson Sampling the benefit of the doubt, instead of using the set

of 𝑈 we extracted from data, we sample 𝜃 P R𝑑 from the standard multivariate normal

distribution 𝒩 pr0s𝑑, 𝐼𝑑q. However, the arms 𝐴𝑗 P R𝑑, 𝑗 “ 1, . . . , 5000 are as estimated

from data. So, for an arm 𝐴𝑗 the reward we observe becomes 𝑟p𝐴𝑗q “ x𝐴𝑗, 𝜃y ` 𝜂𝑗

where 𝜂𝑗 „ 𝒩 p0, 1q and 𝜃 „ 𝒩 pr0s𝑑, 𝐼𝑑q.

2. Bernoulli Reward: In Bernoulli case, the reward we observe from recommending person
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𝑗 to person 𝑖 has an underlying distribution of 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖p𝑀𝑖𝑗q where 𝑀𝑖𝑗 “ Θ𝑇
𝑖 𝐴𝑗 . The

methods we test are Greedy, LinUCB and Alternating Heuristic.

We run the experiments with 5000 arms and horizon 𝑇 “ 50 for the linear reward with

Gaussian noise case and 𝑇 “ 50, 100, 200 for the Bernoulli reward case with instances, i.e.

different 𝜃 values, and the number of instances ranges from 200 to 2500. Each instance was

averaged over 10 runs. The Gaussian noise has variance 1, 𝜂𝑡 „ 𝒩 p0, 1q. The immediate

pseudo regret was calculated as in Lemma 2.3.2. As seen in Figures 2-3 and 2-4, Alternating

Heuristic performs better in majority of the instances.

Horizon Greedy LinUCB1 LinUCB2 LinUCB3 UCBG1 UCBG2 UCBG3

50 100% 95.99% 94.49% 98.39% 95.99% 93.40% 87.54%
100 100% 90.84% 88.92% 94.53% 87.96% 86.97% 79.13%
200 100% 91.95% 89.91% 102.50% 92.31% 87.94% 82.00%

Table 2.1: Final Regret Comparisons. For all the experiments we have, we choose the tuning
parameter 𝛼 for the heuristic the same as LinUCB’s 𝑐. In experiments, 𝛼, 𝑐 “

`

1
2

˘𝑖 where
𝑖 “ 3, 4, 5. We report the final regret w.r.t. the Greedy method.

2.6 Conclusion

In this paper, we addressed online recommendations problem in which there is a budget

on the number of times an item can be recommended to a user. The work is applicable in

industries such as online dating platforms, subscription boxes, ad placements or streaming

platforms. We investigate the most general version for which this budget is strictly 1, making

any recommendation-user pair non-repeatable. In the model we worked on, the reward

function is assumed to be linear and the idea is to estimate the user preferences. We give an

ideal algorithm that generalizes LinUCB, however, it is computationally hard to implement

this generalized algorithm. Instead, stemming from that, we give an alternating heuristic

that depends on the similarities of arms (items). In the experiments we conducted o, we see

that the alternating heuristic outperforms the well-known benchmarks we tested on linear

bandits applied in disposable setting.
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Future work includes algorithms and experiments on the matrix version of the problem,

i.e. man vs woman matrix and employ a matrix completion algorithm and extend the

proposed heuristic and LinUCB of linear bandits to matrix case. In theoretical part, there is

more work to be done in the approximation guarantees that the alternating heuristic might

achieve. Another extension could be using side information of users while making these

recommendations.
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2.6.1 Appendix: Additional Experimental Results

We here present an extension to the results of the experiments that was given in Figure 2-1

and conducted for 𝑡 “ 5. Now we investigate what happens as we move along the time, i.e.

during time steps 𝑡 “ 100 and 𝑡 “ 195. The setup and calculations are identical, and we test

3 different initializations and give the trend of their convergence to the final function value.

Although for 𝑡 “ 5, we observed a substantial difference between the objective function

values of these initializations, in Figure 2-2, we see that the final values do not differ as much

and that the number of steps it takes to converge for these initializations does not vary. We

explain this twist as follows: as we move forward in time, the algorithm learns 𝜃 well enough,

i.e. the confidence ball shrinks enough, such that the difference between different starting

points do not differ that much. However, even though minor, we see that Similarity score

initiation is still better performing initially for both 𝑡 “ 100 and 𝑡 “ 195.

In the experiments the results of which is represented in Table 2.1, we test the reward

function with an underlying Bernoulli distribution. This is a more realistic scenario, if we

consider the dating data from a higher perspective, matrix has 1’s and 0’s for people having

matched or unmatched respectively. Therefore, Bernoulli is a natural way to model matching

probabilities of users in these platforms. In the results, we give the comparison proportional

to Greedy. In all the instances, we used the same tuning parameter of LinUCB with the

similarity score’s parameter for fairness. All 3 of which we can see that, the Alternating

Heuristic performs better than the other instances.

Along with the above experiments, we also give the average percentages with respect to
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Figure 2-2: Objective function vs. iteration number. Performance of alternating heuristic
with three different initialization. Results are averaged over 200 instances. (Left): Observed
when t = 100 . (Right): Observed when t = 195.

Figure 2-3: Alternating Heuristic vs Lin-
UCB final regret. We report 200 instances
for each T with the best parameter for Lin-
UCB.

Figure 2-4: Regret vs Time. The best pa-
rameter for LinUCB and the corresponding
Heuristic parameter was chosen.

different horizons and different reward functions, i.e. Gaussian and Bernoulli.

Horizon Greedy LinUCB1 UCBG1 LinUCB2 UCBG2 LinUCB3 LinUCB3 TS-Adaptation

50 100% 93.29% 85.66% 89.82% 82.56% 96.56% 79.49% 109%

Table 2.2: Final Regret Comparisons for linear mean reward with Gaussian noise

In the experiment, the results of which we present in Table 2.2, the reward function is

Gaussian with mean 𝑀𝑖𝑗 and variance 1. The reasoning behind using Gaussian noise is that

we know how to work with the posteriors of Thompson Sampling when the prior we have

is Gaussian. Also, the adaptation was an easily implementable one. Surprisingly, however,

Thompson Sampling adaptation had a higher regret averaged over the instances than that of
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greedy policy. We do not know why Thompson Sampling would behave differently, it could

be the case that disposable setting has affected the algorithm’s performance. This is subject

to further analysis and investigation in future work.

It is observed from the experiments conducted, even though we do not perfectly tune the

Alternating Heuristic’s similarity parameter, that the heuristic performs significantly better

than the major benchmarks of linear bandits.
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Chapter 3

Meta Linear Bandits

3.1 Introduction

Stochastic linear bandits is an online learning model that associates each action with a

feature vector and assumes the mean reward is the inner product between the feature vector

and an unknown parameter vector [1], [24], [25]. There are numerous applications that

make use of this framework, such as serial webpage recommendations, pricing, or various

other problems about modeling user behavior. Generally speaking, the idea is to learn these

unknown parameters of users within a time frame called horizon.

Previous work on linear bandits has focused primarily on the case where the horizon is

much larger than the dimension of the space. The main reason for this is that the minimax

lower bounds are linear as opposed to sublinear in horizon in the worst case when the opposite

is true, and the desired rate of learning may not happen in an adversarial setting. However,

many real world applications deal with high dimensional settings in which the horizon may

not be as large as these algorithms require. The framework we propose is what sheds some

light into this problem: we can learn from the combination of different games where the

dimension is much larger and the underlying structure of these distinct parameters is low-rank.

In other words, on a higher level we also learn about the lower dimensional space from which

the parameters come from. We place this idea in the meta learning with bandits literature.

Consider an online system where we see a series of users coming in, staying for a fixed

amount of rounds, receiving recommendations, observing rewards and leaving. The platform
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can consider the rewards as implicit, such as the time spent, or explicit such as the binary

’click-no click’ proxy measure. The problem the platform is concerned with is that, given

that these users have unknown feature vectors coming from a lower dimensional subspace,

what kind of approach can we take to learn more and/or better about the current and future

users so as to maximize the cumulative reward? The problem reveals itself to be 2-fold: the

individual parameter learning part, which is what most of bandit literature is focused on,

and the meta learning part on a higher layer, which is learning the underlying structure these

parameters come from.

Paper Bandit Type Meta Regime Assumptions
[39] Linear bandits Sparsity High dimensional
[21] Linear Bandits Bias Common distribution
[8] Linear Bandits Distribution prior Knowledge of Prior

This paper Linear Bandits Low dimensional subspace High dimensional

Meta bandits are a part of meta learning, the ’learning-to-learn’ setting where the agent

has extra information on the structure behind the incoming parameters to the system and

learns the parameters to that of the structure as well. In the bandit world, the algorithms also

try to learn the underlying information about these parameters so as to use it to discover the

parameters themselves. We see different regimes of meta learning within bandits literature

such as models with a prior knowledge on the distribution over these parameters [21], or over

the arms [49], meta learning over different bandit models [83], sparsity [39], low rank reward

matrix where the parameters are tensors [57]. We give a more structured explanation in

the above table. Our work fills the gap where the parameters come from an unknown lower

dimensional subspace and the dimension we operate on can be much larger than the horizon.

In meta learning, we also define an oracle with the knowledge of this underlying structure.

For instance, if these parameters come from a common distribution, then the oracle has

the exact knowledge on the parameters of this distribution. In a sparse setting, it is the

knowledge on which dimensions are active dimensions. In our case, it is the knowledge of the

lower dimensional space, or more formally, the knowledge of the spanning vectors which span

the 𝑠´dimensional linear subspace. The meta level algorithm performances are compared to

that of oracle which acts as the baseline.
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Our Contributions Our work fills in the gap in the literature where we see a high dimensional

multi-episode setting with a meta level regime of low rank design. We highlight the main

contributions below.

1. Algorithm: Having introduced the new concept of meta linear bandits in high di-

mensional regime, we propose an algorithm Projected LinUCB that relies on greedy

projections on the meta level, and lower dimensional optimistic UCB-based algorithms

on the episodic level.

2. Theory: We give a lower bound of Ωp𝑑 `
?
𝑠𝑑𝑁𝑇 ` 𝑁𝑠

?
𝑇 q based on a special case:

sparse linear bandits. We further give upper bounds on the algorithm 𝑂̃p𝑑 ` 𝑠
?
𝑑𝑁𝑇 q.

3. Experiments: We conduct experiments on both synthetic and real world data, and see

that compared to other regimes, our method outperforms well known algorithms in

current literature.

The algorithm we propose does not use an optimism based principle on meta level. Instead,

it utilizes a greedy approach. The interesting part is that the drawbacks of greedy algorithms,

such as getting stuck in a suboptimal solution and over-exploit while under exploring, does

not apply to the low rank setting we work on. The reason is that, the meta level exploration

still exists even though the algorithm is greedy, through the noise on the episodic level and

the way that meta level approximation works: re-estimating the parameters in 𝑑´dimensions.

3.1.1 Previous Work

The major category this work falls under is bandit algorithms. For a more fundamental and

extensive bandit and linear bandit review, see [53], [24].

Classic bandits in meta setting have been studied in [83], [77]. Both of these papers are

concerned about the bandit algorithm selection part as the meta-learning problem and use

bandits on the algorithm selection problem on top. The classical multi-armed bandit problem,

the problem where a player has to make sequential decisions about which action to take given

the past observations, was introduced by [64]. The problem is well studied for a couple of

decades now, pioneered and put together by [35], who introduced the all-time famous Gittins
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Index. The known best algorithm for the classic simple MAB is the Upper Confidence Bound

(UCB) algorithm by [48].

In the intersection of recommender systems and MAB literature, a natural approach is

that the items to be recommended are modeled as arms of the bandits and each user is

the player. How to use certain MAB techniques for recommendations are studied before,

such as in [16], [80]. In recommendations setting, however, learning a user’s preference is

most sought-after, so linear bandits, first introduced in [6], is an intuitively better method

to capture the multi-dimensional relationship between the items and the users. The flavor

of linear bandits is different from the classic MAB in the sense that rather than trying to

estimate the arms with no prior information, we try to learn the player’s characteristic vector

by trying out new arms whose information is available. It is called linear MAB since the

reward function is linear in player’s feature vector. Linear multi-armed bandits have their

own UCB algorithm with a similar logic to that of simple bandits, which is called LinUCB,

LinReL, or OFUL. We call the algorithm LinUCB throughout this paper, and is explained

more in detail in Section 2.3.

In terms of low rank structure among linear bandits, to the best of our knowledge, [49]

is the only paper that introduces a low-rank structure behind the noisy arms observed

throughout the linear bandit game. However, there is no meta setting that a learning

happens and the only uncertainty that they introduce comes from the observed arms being

multidimensional random variables. Another low-rank linear bandit structure studied in

literature is [57]. Their work is quite different from ours, due to the matrix structure of theirs,

and having low rank structure for the single matrix Θ, whereas we are concerned with a more

sequential game where the linear bandits are defined in a 𝑑´dimensional space, rather than a

matrix one. For example, [37] studied low rank bandits with latent structures using robust

tensor power method. [50] imposed low-rank assumptions on the feature vectors to reduce

the effective dimension.

Sparsity is a special case of low rank structure and sparse linear bandits have been studied

in different settings. Linear bandits with sparsity in [53] does not have a high dimensional

regime. High dimensional sparse linear bandits have been studied in [39], but they do not

cover the general case of lower dimensional structure. We also look at a meta regime where
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we observe independent games but the parameters are correlated.

A more relevant model recently introduced is [21], where the authors analyze the case

where an underlying distribution exists behind the 𝜃𝑛 regime, and while recovering the true 𝜃,

they also recover the underlying distribution. What we introduce and argue is a better suited

model is the underlying regime having a lower dimensional structure that we do not observe.

Another important work is [58], [82], where they consider a low rank model only on the

reward matrix onlys, however, we are concerned with the low-rank model among 𝜃s.

3.1.2 Notation

Let 𝐴 Ă R𝑑 denote the set of vectors in 𝑑´dimensional space, where 𝑎1, . . . , 𝑎𝐾 Ă 𝐴 are

the available actions to the agent. We assume that the arm-set spans the entire R𝑑, for,

if not, one can always project arms onto the lower dimensional space and play the game

in that where the set spans the entire space. Let 𝑒𝑖 denote the unit vector for which the

𝑖th dimension is 1 and the rest of the dimensions are 0. If 𝑘 is a positive integer, we use

the notation r𝑘s “ t1, . . . , 𝑘u. We define 𝜆𝑠p𝑀q as the 𝑠𝑡ℎ largest eigen value of matrix M,

and 𝜆´p𝑀q and 𝜆`p𝑀q the smallest and largest positive eigenvalues of 𝑀 , respectively. We

denote the 𝑠´dimensional identity matrix as 𝐼𝑠 and 𝑀 : denotes the pseudo inverse of matrix

𝑀 . }𝑣}𝑀 denotes the 𝑀´matrix norm of a vector and is defined as: }𝑣}𝑀 “
?
𝑣𝑇𝑀𝑣.

3.2 Model

We start by re-introducing the stochastic linear bandits framework for completeness. The

notation introduced will be used throughout the paper.

3.2.1 Stochastic Linear Bandits

The standard linear bandit problem is the problem that a set of 𝑑´dimensional arms are

revealed to the agent, where the agent’s goal is to maximize the expected cumulative reward

in this 𝑇´round online game. The agent at each 𝑡 P r𝑇 s tries to estimate a parameter 𝜃˚ P R𝑑

as accurate as possible by immediately observing the rewards. Rewards are bilinear in feature
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vectors with additive sub-Gaussian noise, i.e.

𝑟p𝑎q “ x𝑎, 𝜃y ` 𝜂

Assumption 3.2.1. The following are the common assumptions in literature.

1. Bounded arms: }𝑎} ď 𝐿 for all 𝑎 P 𝐴

2. Bounded 𝜃: }𝜃˚} ď 𝑆

3. Sub-Gaussian noise: }𝜂}𝜓2 ď 𝜎

4. Finite arm set: 𝐴 “ t𝑎1, . . . , 𝑎𝐾u

5. Bounded rewards: x𝑎, 𝜃˚y P r´1, 1s

The goal of the agent is to maximize cumulative reward, or better yet, minimize a metric

called regret. Let 𝑟𝑡 denote the immediate regret given as

𝑟𝑡 “ x𝑎˚
´ 𝑎𝑡, 𝜃

˚
y (3.1)

where 𝑎˚ is the arm that maximizes the expected reward, formally

𝑎˚
“ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎P𝐴x𝑎, 𝜃˚

y (3.2)

LinUCB Algorithm The standard stochastic linear bandit problem has been studied

extensively, and has various order optimal solutions up-to logarithmic factors. A well-known

algorithm is called LinUCB and/or OFUL in different works [2] , [25]. Below we give an

overview of the practically identical methodology studied in these, and what our algorithm

will eventually largely draw from.

Confidence Sets The LinUCB algorithm relies on using previously-observed rewards to

construct carefully tuned confidence sets on 𝜃˚. The following construction is based on that

of [1]: Let 𝜆 ą 0 be an arbitrary constant (in practice, this can be treated as a tuning
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parameter). Suppose at the beginning of time 𝑡 ` 1, the policy at hand has selected arms

𝑎1, . . . , 𝑎𝑡 and observed rewards 𝑟1, . . . , 𝑟𝑡. We construct the matrix Σ𝑡 as

Σ𝑡 “

𝑡
ÿ

𝑖“1

𝑎𝑖𝑎𝑖
J

` 𝜆𝐼,

where 𝐼 is the identity matrix. Then letting 𝜃𝑡 denote the regularized least-squares estimator

of 𝜃˚, we have

𝜃𝑡 ” Σ´1
𝑡

𝑡
ÿ

𝑖“1

𝑎𝑖𝑟𝑖,

and finally, the confidence set used in the LinUCB algorithm is the following ellipsoid:

𝐶𝑡 “ t𝜃 P R𝑑 : }𝜃 ´ 𝜃𝑡}Σ𝑡´1 ď 𝛽𝑡u, (3.3)

where

𝛽𝑡 “ 𝜎

c

2 log 𝑇 ` 𝑑 log
𝑑𝜆 ` 𝑇𝐿2

𝑑𝜆
`

?
𝜆𝑆. (3.4)

The LinUCB algorithm, then, selects the arm that has the highest “potential” reward over

all 𝜃 P 𝐶𝑡, i.e. it selects

argmax
𝑎P𝐴

max
𝜃P𝐶𝑡

x𝑎, 𝜃y.

The ellipsoidal form of 𝐶𝑡 enables a closed-form expression for the inner maximization above:

𝑈𝐶𝐵𝑡p𝑎q ” max
𝜃P𝐶𝑡

x𝑎, 𝜃y “ x𝑎, 𝜃𝑡y ` 𝛽𝑡}𝑎}𝑉 ´1
𝑡

. (3.5)

The algorithm has a regret upper bound of 𝑂̃p𝑑
?
𝑇 q, where 𝑂̃ hides logarithmic terms.

LinUCB is order optimal, since the lower bound on regret of stochastic linear bandits is

Ωp𝑑
?
𝑇 q.

3.2.2 Meta Linear Bandits

We introduce a new concept we call high dimensional meta linear bandits where we observe

not a single, but 𝑁´many different parameters sequentially in a high dimensional space.

Specifically, let 𝑛 denote the episode at the order of which the current parameter arrived.
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Then for each episode 𝑛 P r𝑁 s, we have 𝑇 rounds of action taking. We are interested in the

high dimensional setting, which is case when the dimension can be much higher than the

horizon, i.e. 𝑑 " 𝑇 . We further require 𝑠 ! 𝑇 , due to the necessity that we need at least 𝑠

observations in a full-rank setting of rank 𝑠 to be able to make a plausible estimation. Let 𝜃𝑛

denote the true parameter at episode 𝑛 for which the following reward function is valid:

𝑟𝑛p𝑎q “ x𝑎, 𝜃𝑛y ` 𝜂 (3.6)

where 𝜂 is a 𝜎 sub-Gaussian noise, and 𝑎 P 𝐴𝑛 where 𝐴𝑛 is the decision set at episode 𝑛. The

sets 𝐴𝑛 for 𝑛 P r𝑁 s may differ among episodes, however, for simplicity, we will assume that

the arm-sets are equivalent across episodes. Hence, we will denote it as a single set 𝐴. Note

that all theorems and assumptions can be easily extended to a varying decision set regime.

Furthermore, we will work with Gaussian noise for simplicity, however, the results can be

extended to sub-Gaussian case easily.

Low Rank Setting We are interested in the setting where the parameters come from a

lower dimensional subspace. Define Θ𝑛 P R𝑑ˆ𝑑 to be the following matrix:

Θ𝑛
“

1

𝑛

𝑛
ÿ

𝑗“1

𝜃𝑗p𝜃𝑗qJ.

In our high-dimensional low-rank setting, this matrix has rank 𝑠, where 𝑠 ! 𝑑. We denote

the singular value decomposition (SVD) of this matrix as

Θ𝑛
“ 𝑉 Λ𝑉 J. (3.7)

We also define the projection matrix: 𝑃 “ 𝑉 𝑉 J. Hence for a given 𝜃𝑛, we have 𝑃𝜃𝑛 “ 𝜃𝑛.

Note that 𝑉 𝜃 P R𝑠 is going to give the coordinates of 𝜃 in the lower dimensional subspace.

This will be used frequently in the algorithms to be discussed in the following sections.

Oracle Oracle in meta learning problem is defined as the setting in which the agent has the

full knowledge of the underlying space, i.e. true 𝑉 ´matrix satisfying 𝑉 𝑉 J “ 𝑃 . Then, the
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oracle may execute one of the well-known order-optimal algorithms, i.e. LinUCB, Thompson

Sampling etc. This concept matters when we compare the subspace recovery precision of the

algorithms at hand to that of a baseline.

Regret: The metric we wish to optimize for is regret. The regret definition is 2-fold. We

analyze a higher layer meta regret as well as a within-episode episodic regret.

• Meta Regret: This is the regret we observe due to the lack of knowledge in 𝑉 ´space,

the 𝑠´dimensional space spanned by row vectors of 𝑉 . It can be interpreted as the

performance difference in scale between the algorithm at hand and an order-optimal

algorithm with the knowledge of this 𝑉 ´space. We denote the meta regret as 𝑅̃𝑛
𝑇 for

an episode 𝑛.

• Episodic Regret: This is the regret we observe due to lack of knowledge on 𝜃˚. It is the

standard regret definition within a 𝑇´dimensional game. Formally, at episode 𝑛 we

have

𝑅𝑛
“

𝑇
ÿ

𝑡“1

p𝜃𝑛q
J

p𝑎𝑛q
˚

´ p𝜃𝑛q
J𝑎𝑡 (3.8)

where p𝑎𝑛q˚ is the arm that maximizes the expected reward with 𝜃𝑛.

3.2.3 Lower Bounds

The lower bounds we provide are based on a special case of meta linear bandits: sparse linear

bandits. Consider the high dimensional meta linear bandits case for which, w.l.o.g,

𝑃 “

¨

˝

𝐼𝑠 0

0 0

˛

‚

Then, the problem is similar to that of the sparse linear bandits where the game lasts for

𝑁𝑇 rounds. The following theorem follows from lower bounds derived for the bandits with

sparsity [53].
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Theorem 3.2.2. For any policy, there exists a sequence of parameters 𝜃1, . . . , 𝜃𝑁 such that

𝑁
ÿ

𝑛“1

𝑅𝑛
𝑇 “ Ωp𝑑 `

?
𝑠𝑑𝑇𝑁 ` 𝑁𝑠

?
𝑇 q (3.9)

Proof Sketch. The three terms that appear in lower bound come from three distinct construc-

tions:

1. The initial term 𝑑 in the above bound comes from any algorithm having to explore 𝑑

dimensions and observe linear regret in 𝑑 due to high dimensional regime.

2. The second term comes from a sequence of orthogonal 𝜃𝑗s where 𝑇 “ 𝑇𝑁
𝑠

, 𝑁 “ 𝑠, and

hence applying the sparse linear bandit lower bound, we derive this term.

3. The third term comes from the best case scenario, i.e. oracle, where we know the true

𝑉 , we observe 𝑁𝑠
?
𝑇 regret due to independent 𝑁´linear bandits.

Combining these 3 points the bound follows. The details can be found in appendix. ■

The lower bound is crucial in the episodic regret level. Notice that, on average, within an

episode we see the first two terms disappearing as 𝑁 goes to infinity. The third term is due

to the lack of knowledge on true 𝜃𝑛 and it comes from the classic minimax lower bounds on

the linear bandits literature, and observed regardless of the knowledge on 𝑉 .

3.3 Algorithm & Bounds

We now propose an algorithm to solve the high dimensional meta linear bandit problem:

Projected LinUCB. As one might guess the algorithm operates in two stages: meta level and

episodic level. In meta level, the goal is to estimate an 𝑠´dimensional subspace to project

the arms onto and work through the next episode from there. In the episodic level, the classic

linear bandit problem is being solved, but in 𝑠´dimensional estimated space. The general

idea is to operate on an approximate lower dimensional setting so as to avoid the drawbacks

from the high dimensional setting.

𝑋𝑛
𝑡 P R𝑑ˆ𝑡 denotes the matrix whose columns are the arms played up until time 𝑡 in

episode 𝑛. Σ𝑛
𝑡 is the regularized matrix in the form Σ𝑛

𝑡 “ 𝜆𝐼 ` 𝑋𝑛
𝑡 p𝑋𝑛

𝑡 qJ where 𝜆 is a
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regularization parameter. The main method is that after each episode ends, we re-calculate

the matrix 𝑉 using the previously observed data and calculated 𝜃. Note that at the beginning

of the game, since 𝑇 ! 𝑑, we do require a certain number of episodes, 𝑛̃, dedicated to

exploration. During these episodes, the algorithm picks arms orthogonal to each other so

as to maximize the information gain from them. Namely, let 𝑋𝑛 P R𝑇ˆ𝑑 be the arm matrix

whose rows are the arms played up until the end at episode 𝑛.The algorithm then is to pick

arms at each episode 𝑛 such that the arms played are unit vectors of 𝑑´dimensional space:

𝑒𝑖 P R𝑑 for all 𝑖 P r𝑑s.

First, for each of these 𝜃𝑛, we create a 𝑑´dimensional Ridge estimator 𝜃𝑛 such that:

𝜃𝑛𝑇 “ pΣ𝑛
𝑇 q

´1
p𝑋𝑛

𝑇 q
J𝑌 𝑛

𝑇

where 𝑌 𝑛
𝑇 P R𝑇 is the noisy reward observed throughout episode 𝑛 for 𝑇 rounds.

Below in Algorithm 3, we provide LinUCB algorithm on a lower dimensional setting,

where we require a 𝑉𝑠-matrix to switch to a lower dimensional setting. The algorithm has

the same logic explained in Section 4.3.1, except that it projects the high dimensional arms

onto the given subspace at the beginning of the game using matrix 𝑉𝑠, and works with the

projected armset 𝐴 throughout 𝑇 rounds.

Subspace Estimation The main component of the Projected LiNUCB algorithm is the

subspace estimation on meta level. After collecting a set of 𝜃 estimates for 𝑛̃ episodes, the

algorithm creates the following matrix estimate of Θ:

Θ̂ “
1

𝑛

𝑛
ÿ

𝑗“1

𝜃𝑗p𝜃𝑗qJ (3.10)

Then, it takes the first 𝑠 principal dimensions of this matrix by performing an SVD, and

calculate a projection matrix 𝑃 . We have:

Θ̂ “ 𝑉 Λ̂𝑉 J (3.11)
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Then, we take the first 𝑠 eigenvectors of 𝑉 : 𝑉𝑠, which will act as the vessel to the lower

dimensional space we will play the LinUCB-s game on. Then, we feed the arm set 𝐴 and 𝑉𝑠

along with the tuning parameters to LinUCB-s and receive a matrix 𝑋𝑇 and a reward vector

𝑌𝑇 . After this, we generate a 𝑑´dimensional 𝜃 using the ridge estimator and update Θ̂ to

run SVD on and retrieve a better estimate of 𝑉 , and repeat through episodes.

Exploration on Meta Level The surprising part of the algorithm is that, even though

on the meta level we work with a greedy-type algorithm, i.e. pick the best fit projection,

there is an exploration component at play in disguise. The gist of it is that after playing

the game in 𝑠´dimensional space spanned by 𝑉 , we re-calculate 𝜃 in 𝑑´dimensional space,

with 𝑑´dimensional arms. Note that the estimate 𝜃 P R𝑑 does not necessarily lie in 𝑠𝑝𝑎𝑛p𝑉 q.

Through the underlying reason that the rewards come from the 𝑠´dimensional space spanned

by 𝑉 , we introduce an exploratory nature to the meta level algorithm as well.

3.3.1 Upper Bound on Regret

We provide bounds on 2 types of regret: episodic and meta. As explained in model section,

episodic regret is the regret we observe during one 𝑇´round episode, where we compare a

policy to the optimal one. Meta regret, on the higher level, compares the algorithm with that

with the knowledge of the subspace, i.e. oracle that knows the true 𝑉 -matrix. The following

theorem demonstrates upper bounds on the meta and episodic regrets of Projected LinUCB.

Theorem 3.3.1. Suppose the assumptions given in Assumption 4.3.1 hold. Further assume

that there exists an 𝑛 for which 𝜆𝑠pΘ
𝑛q “ Ωp

b

log 𝑑
𝑛

q and 𝑛 ě 𝑑{𝑇 . Then for such 𝑛, with

probability 1 ´ 3𝛿, for 𝛿 “ 𝑂p1{𝑇 q, the following cumulative regret bound holds for episodic

regret at episode 𝑛 ` 1 after 𝑇 rounds:

𝑅𝑛`1
𝑇 “ 𝑂̃

˜

𝑑 ` 𝑠
?
𝑇 ` 𝑠

c

𝑇

𝑛

¸
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Furthermore, for 𝑁´episode meta regret, we have

𝑁
ÿ

𝑛“1

𝑅̃𝑛
𝑇 “ 𝑂̃p𝑠

?
𝑁𝑇 q

Proof Sketch. The proof is similar to that of linear bandits. However, we observe additive

components in both confidence set construction and cumulative regret bounds that depend

on the subspace estimation error. We give an overall interpretation of the theorem proof

below.

Projection Error Here we establish the error bound on the 2´norm of the difference between

the estimated and actual projection matrices.

Theorem 3.3.2. Suppose 𝜆𝑠pΘ
𝑛q “ Ωp

b

log 𝑑
𝑛

q and 𝑛 ě 𝑑{𝑇 , where Ω hides terms dependent

on 𝐿, 𝜎, 𝜆 and 𝑆. Then with probability 1 ´ 2𝛿,

}𝑃 ´ 𝑃 } “ 𝑂p
1

?
𝑛

c

log
2𝑑

𝛿
q (3.12)

The detailed proof of the above theorem can be found in the appendix. The proof mainly

utilizes Davis-Kahan’s 𝑠𝑖𝑛Θ theorem [78], and the fact that for the first 𝑑{𝑇 episodes, the

algorithm only plays the unit vectors to maximize informational gain. The term log 𝑑 comes

from the high probability matrix concentration bounds. The requirement on the 𝜆𝑠pΘq is

a necessary one to be able to recover the final space. Once we analyze the extreme case it

is more clear why: imagine 𝜃1 “ 𝜃2 “ ¨ ¨ ¨ “ 𝜃𝑛, and that 𝑠 " 1. Then, with this knowledge,

it’s practically impossible to be able to recover the underlying 𝑠´dimensional space for the

current 𝑛. This condition ensures that the true 𝜃 vectors we have observed until episode 𝑛

span a large enough space with large enough eigen values, so as to be able to recover the

underlying 𝑉 ´space.

Projected Confidence Sets Now we dive deep into guarantees on the confidence set we

create in Algorithm 3 on 𝑠´dimensional estimated subspace. See the following theorem for

the confidence set for 𝜃˚ at time 𝑡 during some episode 𝑛.
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Theorem 3.3.3. Suppose the assumptions for standard stochastic linear bandits hold for each

episode. Then with probability 1 ´ 3𝛿, during an episode 𝑛 ě 𝑑{𝑇 at time 𝑡, 𝜃𝑛 lies in the set:

𝐶𝑠 “ t𝜃 P R𝑑 : }𝜃𝑡 ´ 𝜃}Σ𝑡 ď 𝛽𝑡u

where

𝛽𝑡 “ 𝑂

˜

c

logp
1

𝛿
q ` 𝑠 log 𝑡 `

c

1

𝑛
𝑠𝑡 log 𝑡 log

𝑑

𝛿

¸

(3.13)

where Σ𝑡, 𝜃𝑡 are as defined in the Algorithm 3 and 𝑂 hides terms dependent on 𝜎, 𝑆, 𝐿, 𝜆.

■

Note that the term 𝛽𝑡 displays a familiar flavor: in classic least square confidence bounds,

we have 𝛽𝑡 “ 𝑂p

b

logp1
𝛿
q ` 𝑠 log 𝑡q. The additional term is produced by the error we observe

through projection estimates. Notice that in the absence of an error between the projection

matrices, we derive back the original confidence set for 𝜃 in 𝑠´dimensional space. In the

final regret bound, this term disappears in episodic regret level as 𝑛 Ñ 8, however, in meta

regret, it accumulates to a
?
𝑁 -order regret.

3.3.2 Discussion

The episodic regret contains a term proportionate to 𝑑, which comes from the setting that

for the first 𝑑{𝑇 episodes where the algorithm randomly explores by playing orthogonal

arms. Note that this term is inevitable for any algorithm since learning requires at least Ωp𝑑q

exploration. The second term, 𝑠
?
𝑇 is the regret we observe due to the lack of 𝜃˚ knowledge.

Notice that it is the only term we have for oracle regret. The last term 𝑠
b

𝑇
𝑛
, is due to the

projection error. The important observation here is that as 𝑛 Ñ 8, the third term disappears

as we have a close-to-optimal estimate of the underlying 𝑉 in the meta problem. As per meta

regret, we are interested in the cumulative regret we observe due to the lack of knowledge in

𝑉 . The meta regret is calculated by summing the term 𝑠
b

𝑇
𝑛

over all 𝑁 . It basically says

that in the meta level, the error we accumulate is in the order of
?
𝑁 , which matches the

lower bound provided in the previous section.
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3.4 Experiments

Synthetic Experiments In this section we provide a set of experiments where we compare

the cumulative regret across episodes. Notice that regret can have 2 different meanings:

regret with respect to oracle and regret with respect to the optimal policy, as is analyzed in

Section 3.3. We will compare policies based on both perspectives.

Oracle As mentioned in Section 3.2.2, the oracle is the policy for which the underlying

subspace, or in other words the matrix 𝑉 , is known. We argue that the meta regret cannot

have a clearly defined immediate regret as there are multiple order-optimal policies and there

is a randomness as to which arm is the arm that the oracle would play. However, we can still

look at the cumulative reward difference between policies and assess how close the algorithms

at hand are to oracle.

Mainly, the oracle first projects all arms in set 𝐴 onto the known 𝑠´dimensional subspace,

i.e. 𝐴 “ t𝑉 𝑎|𝑎 P 𝐴u. After this operation, notice that 𝐴 has 𝑠´dimensional arms. Now, for

experimental purposes, we picked LinUCB as the algorithm to be applied: pick the arm that

maximizes x𝑎, 𝜃𝑡y ` 𝛾}𝑎}Σ´1
𝑡

, where 𝛾 is a tuning parameter and 𝑎 P 𝐴.

In experiments, we create a set of arms by randomly generating from the unit ball in 𝑑

dimensions. The following step is to generate 𝜃 values in 𝑑 dimensions that lie on a lower

dimensional subspace. To do so, we first generated a set of 𝜃1 values in 𝑠´dimensional unit

ball. Then, for each trial, we randomly generate a set of independent and orthogonal unit

vectors in 𝑑 dimensions, and use them to represent these 𝜃s in d dimensions.

𝐾 is the number of arms, 𝑁 is the number of episodes and also number of different 𝜃s,

and 𝑇 is the horizon for each episode. Each algorithm has 2 component as one might expect:

the algorithm for meta level, and the algorithm for the episodic level. The following gives the

explanation as to what kind of algorithms we run for meta and episodic levels.

• Greedy+Greedy: The algorithm picks an approximate 𝑠´dimensional subspace in a

greedy manner, and plays a greedy policy within an episode.

• Greedy + LinUCB: The algorithm picks an approximate 𝑠´dimensional subspace in

a greedy manner, and plays an optimism based policy within an episode. This is our
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Figure 3-1: The regret vs period plot. Each point is the cumulative regret after the end of a
period

algorithm that we test against other benchmarks.

• Oracle: The oracle uses the given subspace to project the game onto, and plays an

optimism based policy within an episode.

• Independent+LinUCB: The algorithm plays 𝑁 independent episodes, and within episode

it executes an optimism based algorithm.

• Independent+Greedy: The algorithm plays 𝑁 independent episodes, and within episode

it executes a greedy algorithm.

The plot was created by subtracting the cumulative rewards from that of the policy oracle.

3.5 Conclusion

In this paper, we first introduced the model of high dimensional meta linear bandits, where

the dimension 𝑑 is much larger than the horizon 𝑇 . We are focusing on the version for which

we have 𝑁 different parameters coming in to the system sequentially, where 𝑁 can go to

infinity, and the information we have upfront is that there is an unknown 𝑠´dimensional linear

subspace where these 𝑁 different parameters lay in: 𝑠 ! 𝑇 ! 𝑑. We propose a projection
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based algorithm Projected LinUCB, where we play an optimism based game in the episodic

level and a greedy policy on the meta level. Interestingly, we found that the greedy policy

introduces a certain exploration and successfully avoids the common problem of getting stuck

at a local optima.

For future work, certain assumptions can be loosened such as introducing a varying 𝑇

for different games. Parallel structure is another version that could be useful in practical

applications.
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3.6 Appendix

3.6.1 Lower Bounds

Theorem 3.6.1. Let 𝐴 “ t𝑒𝑖 P R𝑑u. For any policy 𝜋 there exists a sequence of 𝜃1, . . . , 𝜃𝑁

such that
𝑁
ÿ

𝑛“1

𝑅𝑛
𝑇 “ Ωp𝑑 `

?
𝑠𝑑𝑇𝑁 ` 𝑁𝑠

?
𝑇 q (3.14)

Proof. We make use of the following lower bound from [53]:

Theorem 3.6.2 (Theorem 24.3, [53]). Assume 𝑠𝑑 ď 𝑇 for some integer 𝑘 ě 2. Let

𝐴 “ t𝑒𝑖 P R𝑘 : 𝑖 P r𝑘su𝑠 Ă R𝑑. Then for any policy there exists a parameter vector 𝜃 P R𝑑

with }𝜃}0 “ 𝑠 and }𝜃}8 ď
a

𝑑{p𝑠𝑇 q such that 𝑅𝑇 p𝐴, 𝜃q ě Ωp
?
𝑠𝑑𝑇 q.

Now consider the oracle: the case for which we know the 𝑉 ´space. Then, by using the

regular linear bandits lower bound, we have 𝑁𝑠
?
𝑇 . Finally, we take the max of these, which

lead to the provided lower bound as follows.

Ωpmaxp𝑑,
?
𝑠𝑑𝑁𝑇 ,𝑁𝑠

?
𝑇 qq “ Ωp𝑑 `

?
𝑠𝑑𝑇𝑁 ` 𝑁𝑠

?
𝑇 q

■

3.6.2 Bound on Projection Error

Theorem 3.6.3. For the 𝑃 , and 𝑃 defined in section 4, let 𝑛 ě, 𝜆𝑠 ě, with probability 1´2𝛿,

}𝑃 ´ 𝑃 } ď
2𝜎2 𝜆´

p𝜆´`𝜆q2

b

1
𝑁
log 2𝑑

𝛿
` 2𝜎𝑆

?
𝜆´

𝜆´`𝜆

b

1
𝑁
log 2𝑑

𝛿

𝜆𝑠pΘq ´ 2𝜎2 𝜆´

p𝜆´`𝜆q2

b

1
𝑁
log 2𝑑

𝛿
´ 2𝜎𝑆

?
𝜆´

𝜆´`𝜆

b

1
𝑁
log 2𝑑

𝛿

(3.15)
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Proof. We use Davis-Kahan theorem and Matrix Bernstein here. Define the following:

𝑆 “
1

𝑁

𝑁
ÿ

𝑗“1

𝜃𝑗p𝜃𝑗qJ
` 𝑉 𝑉 JΣ𝜖𝑉 𝑉 J

` 𝑉 𝑉 JΣ𝜃𝜖𝑉 𝑉 J
` 𝑉 𝑉 JΣJ

𝜃𝜖𝑉 𝑉 J

𝑆 “ Θ̂

Σ𝜖 “ Er𝜖𝜖J
s

“ 𝜃𝜃J
´ 2p𝑋J𝑋 ` 𝜆𝐼q

´1𝑋J𝑋𝜃𝜃J
` p𝑋J𝑋 ` 𝜆𝐼q

´1𝑋J𝑋𝜃𝜃J𝑋J𝑋p𝑋J𝑋 ` 𝜆𝐼q
´1

` p𝑋J𝑋 ` 𝜆𝐼q
´1𝑋J𝜎2𝐼𝑑𝑋p𝑋J𝑋 ` 𝜆𝐼q

´1

Σ𝜃𝜖 “ Er𝜃𝜖J
s “ 𝜃𝜃J

´ p𝑋J𝑋 ` 𝜆𝐼q
´1𝑋J𝑋𝜃𝜃J

Notice now that 𝑆 P 𝑠𝑝𝑎𝑛p𝑉 q and 𝑆 P 𝑠𝑝𝑎𝑛p𝑉 q, hence, we can apply Davis Kahan’s 𝑠𝑖𝑛Θ

theorem to bound the difference between these 2 spaces.

}𝑃 ´ 𝑃 }2 ď
}Θ̂𝑈 ´ 𝑈Λ}2

𝛿
ď

}pΘ̂ ´ 𝑆q𝑉 }2

𝛿
ď

}ErpΘ̂ ´ 𝑆q𝑉 s} ` }Θ̂ ´ 𝑆 ´ ErΘ̂ ´ 𝑆s}

𝛿

where 𝛿 “ |𝜆𝑠p𝑆q ´ 𝜆𝑠`1pΘ̂q|. Using Weyl’s inequality we have:

}𝑃 ´ 𝑃 } ď
}ErpΘ̂ ´ 𝑆q𝑉 s} ` }Θ̂ ´ 𝑆 ´ ErΘ̂ ´ 𝑆s}

𝜆𝑠p𝑆q ´ }ErΘ̂ ´ 𝑆s} ´ }Θ̂ ´ 𝑆 ´ ErΘ̂ ´ 𝑆s}

𝜆𝑠p𝑆q ě 𝜆𝑠pΘq ` 𝜆minp𝑉 JΣ𝜖𝑉 q ` 2𝜆minp𝑉 JΣ𝜃𝜖𝑉 q ě 𝜆𝑠pΘq (3.16)

note the following based on the definitions:

}ErΘ̂ ´ 𝑆s} ď }Σ𝜖} ` 2}Σ𝜃𝜖} ď 𝑆p
𝜆

𝜆 ` 𝜆´
q
2

` 𝜎2 𝜆`

p𝜆 ` 𝜆`qp𝜆 ` 𝜆´q
` 2

𝜆

𝜆 ` 𝜆`

}ErpΘ̂ ´ 𝑆q𝑉 s} “ }Erp
1

𝑛

𝑛
ÿ

𝑗“1

p𝜃𝑗𝜃
J
𝑗 ` 𝜃𝑗𝜖

J
𝑗 ` 𝜖𝑗𝜃

J
𝑗 ` 𝜖𝑗𝜖

J
𝑗 q ´ 𝑆q𝑉 s} “ 0

Θ̂ ´ 𝑆 “
1

𝑁

˜

𝑁
ÿ

𝑗“1

𝜖𝑗𝜖
J
𝑗 `

𝑁
ÿ

𝑗“1

𝜃𝑗𝜖
J
𝑗 `

𝑁
ÿ

𝑗“1

𝜖𝑗𝜃
J
𝑗 ´ 𝑉 𝑉 JΣJ

𝜖 𝑉 𝑉 J
´ 𝑉 𝑉 JΣ𝜃𝜖𝑉 𝑉 J

´ 𝑉 𝑉 JΣJ
𝜃𝜖𝑉 𝑉 J

¸

Θ̂ ´ 𝑆 ´ ErΘ̂ ´ 𝑆s “
1

𝑛

𝑛
ÿ

𝑗“1

`

𝜖𝑗𝜖
J
𝑗 ´ Σ𝜖 ` 𝜃𝑗𝜖

J
𝑗 ` 𝜖𝑗𝜃

J
𝑗 ´ Σ𝜃𝜖 ´ ΣJ

𝜃𝜖

˘

(3.17)
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Now from Cauchy Schwartz we get the following:

}Θ̂ ´ 𝑆 ´ ErΘ̂ ´ 𝑆s} ď }
1

𝑛

𝑛
ÿ

𝑗“1

𝜖𝑗𝜖
J
𝑗 ´ Σ𝜖} ` }

1

𝑛

𝑛
ÿ

𝑗“1

𝜃𝑗𝜖
J
𝑗 ` 𝜖𝑗𝜃

J
𝑗 ´ Σ𝜃𝜖 ´ ΣJ

𝜃𝜖}

Now in order to bound both of these terms above we need the following theorems.

Theorem 3.6.4. [Matrix Bernstein- SubExponential case, [71]] Consider a finite sequence

t𝑋𝑘u of independent, random, self-adjoint matrices with dimension 𝑑. Assume that Er𝑋𝑘s “ 0

and Er𝑋𝑝
𝑘 s ď

𝑝!
2
𝑅𝑝´2𝐴2

𝑘, and define

𝜎2
“ }

ÿ

𝑘

𝐴2
𝑘}

Then the following holds for all 𝑡 ě 0:

P

#

𝜆maxp
ÿ

𝑘

𝑋𝑘q ě 𝑡

+

ď 𝑑 expp
´𝑡2

4𝜎2
q (3.18)

Theorem 3.6.5. With probability 1 ´ 2𝑒´𝑢, the following holds for an absolute constant

𝐶 ą 0:

}
1

𝑛

ÿ

𝑗

𝜖𝑗𝜖
J
𝑗 ´ Σ𝜖} ď 𝐶𝐾2

˜

c

𝑑 ` 𝑢

𝑛
`

𝑑 ` 𝑢

𝑛

¸

}Σ𝜖} (3.19)

Bounding Term 1 Notice that the 𝜖𝑗𝜖
J
𝑗 follows a sub-Exponential distribution, hence, we

can bound the first term using the concentration bound given in Theorem 3.6.5. Notice that

𝜖𝑗 follows a multivariate Gaussian distribution with variance and that the product of two

sub-Gaussian random variables follow a subexponential distribution:

𝑉 𝑎𝑟p𝜖𝑗q “ 𝜎2
p𝑋J𝑋 ` 𝜆𝐼q

´1𝑋J𝑋p𝑋J𝑋 ` 𝜆𝐼q
´1

}p𝜖𝑗𝜖
J
𝑗 q}𝜓2 ď 𝜎2 𝜆´

p𝜆´ ` 𝜆q2

}Σ𝜖} ď 𝑆p
𝜆

𝜆 ` 𝜆´
q
2

` 𝜎2 𝜆`

p𝜆 ` 𝜆`qp𝜆 ` 𝜆´q

(3.20)
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Therefore, using the above information with Theorem 3.6.5, we get

P

#

}
1

𝑛

𝑛
ÿ

𝑖“1

𝜖𝜖J
´ Σ𝜖} ě 2𝜎2 𝜆´

p𝜆´ ` 𝜆q2

c

1

𝑁
log

2𝑑

𝛿

+

ď 𝛿 (3.21)

Bounding Term 2 Following from the sub-Gaussian norm established on Equation (3.20),

we have the following bound

P

#

}
1

𝑛

𝑛
ÿ

𝑖“1

𝜃𝜖J
´ Σ𝜃𝜖} ě 2𝜎𝑆

?
𝜆´

𝜆´ ` 𝜆

c

1

𝑁
log

2𝑑

𝛿

+

ď 𝛿 (3.22)

Combining above bounds we get, with probability 1 ´ 2𝛿,

}𝑃 ´ 𝑃 } ď
2𝜎2 𝜆´

p𝜆´`𝜆q2

b

1
𝑁
log 2𝑑

𝛿
` 2𝜎𝑆

?
𝜆´

𝜆´`𝜆

b

1
𝑁
log 2𝑑

𝛿

𝜆𝑠pΘq ´ 2𝜎2 𝜆´

p𝜆´`𝜆q2

b

1
𝑁
log 2𝑑

𝛿
´ 2𝜎𝑆

?
𝜆´

𝜆´`𝜆

b

1
𝑁
log 2𝑑

𝛿

“ 𝑂p
1

?
𝑁

c

log
2𝑑

𝛿
q (3.23)

where the last inequality follows from 𝜆𝑠pΘq ą 2𝜎2 𝜆´

p𝜆´`𝜆q2

b

1
𝑁
log 2𝑑

𝛿
` 2𝜎𝑆

?
𝜆´

𝜆´`𝜆

b

1
𝑁
log 2𝑑

𝛿
,

which basically translates to 𝑛 ě log 𝑑𝑇 for 𝛿 “ 𝑂p1{𝑇 q. Since we are already interested in

the later game when 𝑛 ą 𝑑{𝑇 , this assumption holds naturally.

■

3.6.3 Confidence Set Construction

Theorem 3.6.6. Suppose the assumptions above hold. Then with probability 1 ´ 3𝛿, 𝜃 lies in

the set:

𝐶𝑠 “ t𝜃 P R𝑑 : }𝜃𝑡 ´ 𝜃}𝐴𝑡 ď 𝛽𝛿u

where

𝛽𝛿 “ 𝑅

c

2 logp
1

𝛿
q ` 𝑚 logp1 `

𝑡𝐿2

𝑚𝜆
q ` 𝑆𝐿

?
𝛾𝑚𝑡

d

log

ˆ

1 `
𝑡𝐿2

𝑚𝜆

˙

}𝑃 ´ 𝑃 }2 ` 𝑆
?
𝜆
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Proof. Let 𝑆𝑡 :“
ř𝑡
𝑖“1 𝑃𝑋𝑖´1𝜂𝑖´1.

𝜃𝑡 “ 𝐴:
𝑡𝑆𝑡 ` 𝐴:

𝑡𝑃Σ𝑡´1𝑃𝜃˚

“ 𝐴:
𝑡𝑆𝑡 ` 𝐴:

𝑡p𝑃Σ𝑡´1p𝑃 ` 𝑃 ´ 𝑃 q ` 𝜆𝑃 ´ 𝜆𝑃 q𝜃˚

“ 𝐴:
𝑡𝑆𝑡 ` 𝑃𝜃˚ ` 𝐴:

𝑡p𝑃Σ𝑡´1p𝑃 ´ 𝑃 qq𝜃˚ ´ 𝜆𝐴:
𝑡𝜃˚

Now, for any 𝑥 P R𝑑 we can write the following:

𝑥J𝜃𝑡 ´ 𝑥J𝜃˚ “ 𝑥J𝐴:
𝑡𝑆𝑡 ` 𝑥J𝐴:

𝑡p𝑃Σ𝑡´1p𝑃 ´ 𝑃 qq𝜃˚ ´ 𝜆𝑥J𝐴:
𝑡𝜃˚

“ x𝑥, 𝑆𝑡y𝐴:
𝑡

` x𝑥, 𝑃Σ𝑡´1p𝑃 ´ 𝑃 q𝜃˚y
𝐴:

𝑡
´ 𝜆x𝑥, 𝜃˚y

𝐴:
𝑡

Now, for 𝑥 “ 𝐴𝑡p𝜃𝑡 ´ 𝜃˚q, we have the following inequality derived by using Cauchy-Schwartz

inequality:

|𝑥J𝜃𝑡 ´ 𝑥J𝜃˚| ď }𝑥}
𝐴:

𝑡

´

}𝑆𝑡}𝐴:
𝑡

` }𝑃Σ𝑡´1p𝑃 ´ 𝑃 q𝜃˚}
𝐴:

𝑡
` 𝜆}𝜃˚}

𝐴:
𝑡

¯

ď }𝑥}
𝐴:

𝑡

´

}𝑆𝑡}𝐴:
𝑡

` }𝐴:
𝑡

1{2
𝑃Σ𝑡´1p𝑃 ´ 𝑃 q𝜃˚}2 ` 𝜆}𝜃˚}

𝐴:
𝑡

¯

ď }𝑥}
𝐴:

𝑡
p}𝑆𝑡}𝐴:

𝑡
` }p𝐴:

𝑡q
1{2𝑃Σ𝑡´1p𝑃 ´ 𝑃 q𝜃˚}2 `

?
𝜆}𝜃˚}2q

For 𝑥 “ 𝐴𝑡p𝜃𝑡 ´ 𝜃˚q we have

}𝜃𝑡 ´ 𝜃˚}
2
𝐴𝑡

ď }𝐴𝑡p𝜃𝑡 ´ 𝜃˚q}
𝐴:

𝑡

´

}𝑆𝑡}𝐴:
𝑡

` }p𝐴:
𝑡q

1{2𝑃Σ𝑡´1}2}𝑃 ´ 𝑃 }2}𝜃˚}2 `
?
𝜆}𝜃˚}2

¯

Now we divide both sides with }𝜃𝑡 ´ 𝜃˚}𝐴𝑡 , which gives,

}𝜃𝑡 ´ 𝜃˚}𝐴𝑡 ď }𝑆𝑡}𝐴:
𝑡

` 𝑆}p𝐴:
𝑡q

1{2𝑃Σ𝑡´1}2}𝑃 ´ 𝑃 }2 ` 𝑆
?
𝜆

Now, we bound each term above separately.

Bound on Term 1 We use a theorem from [49]
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Theorem 3.6.7 (Theorem 9, [49]). For any 𝛿 ą 0, with probability 1 ´ 𝛿, for all 𝑡 ě 1,

}𝑆𝑡}
2

𝐴:
𝑡

ď 2𝑅2 log

ˆ

detp𝐵𝑡q
1{2 detp𝜆𝐼𝑚q´1{2

𝛿

˙

Using above result and the fact that 𝑑𝑒𝑡p𝐵𝑡q ď p𝜆 ` 𝑡𝐿2

𝑚
q𝑚, we get:

}𝑆𝑡}𝐴:
𝑡

ď 𝑅

c

2 logp
1

𝛿
q ` 𝑚 logp1 `

𝑡𝐿2

𝑚𝜆
q (3.24)

Bound on Term 2

Lemma 3.6.8. Assuming }𝑥𝑡} ď 𝐿 for all 𝑥𝑡 P 𝑎𝑟𝑚𝑠𝑒𝑡, }p𝐴:
𝑡q

1{2𝑃Σ𝑡´1}2 ď 𝐿
?
𝑡
?
𝛾𝑚

b

log
`

1 ` 𝑡𝐿2

𝑚𝜆

˘

.

Proof. Recall the definition of Σ𝑡 “
ř𝑡
𝑖“1𝑋𝑖𝑋

J
𝑖 . We get the bound doing the following:

}p𝐴:
𝑡q

1{2𝑃Σ𝑡´1}2 “ }

𝑡
ÿ

𝑖“1

p𝐴:
𝑡q

1{2𝑃𝑋𝑖𝑋
J
𝑖 }2

ď

𝑡
ÿ

𝑖“1

}p𝐴:
𝑡q

1{2𝑃𝑋𝑖𝑋
J
𝑖 }2

ď

𝑡
ÿ

𝑖“1

}p𝐴:
𝑡q

1{2𝑃𝑋𝑖}2}𝑋𝑖}2

ď 𝐿
𝑡
ÿ

𝑖“1

}p𝐴:
𝑡q

1{2𝑃𝑋𝑖}2

“ 𝐿
𝑡
ÿ

𝑖“1

}𝑃𝑋𝑖´1}
𝐴:

𝑡

“ 𝐿
𝑡
ÿ

𝑖“1

}𝑉 J𝑋𝑖´1}𝐵´1
𝑡

ď 𝐿
?
𝑡

g

f

f

e

𝑡
ÿ

𝑖“1

}𝑉 J𝑋𝑖´1}
2
𝐵´1

𝑡,𝑖´1

ď 𝐿
?
𝛾𝑚𝑡

d

log

ˆ

1 `
𝑡𝐿2

𝑚𝜆

˙

(3.25)

where 𝛾 “ 𝐿2

𝜆 logp1`𝐿2

𝜆
q
. Now combining above points .... , we have:

}𝜃𝑡 ´ 𝜃˚}𝐴𝑡 ď 𝑅

c

2 logp
1

𝛿
q ` 𝑚 logp1 `

𝑡𝐿2

𝑚𝜆
q ` 𝑆𝐿

?
𝛾𝑚𝑡

d

log

ˆ

1 `
𝑡𝐿2

𝑚𝜆

˙

}𝑃 ´ 𝑃 }2 ` 𝑆
?
𝜆

(3.26)
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■

3.7 Upper Bound on Regret

Theorem 3.7.1. With probability 1 ´ 3𝛿, at episode 𝑁 ` 1 with 𝑇 timesteps, the following

regret bound holds:

𝑅𝑇 ď 𝑂̃

˜

𝑚
?
𝑇 ` 𝑚

c

𝑇

𝑁

¸

Furthermore, for the meta regret defined in , we have

𝑅𝑁
𝑇 “ 𝑂̃p𝑚

?
𝑁𝑇 q

Proof.
𝑅𝑡 “ 𝜃J𝑎˚

´ 𝜃J𝑎𝑡

ď 𝜃J𝑃𝑎𝑡 ´ 𝜃J𝑃𝑎𝑡 ` 2𝐿𝑆}𝑃 ´ 𝑃 }

“ p𝜃J
´ 𝜃J

q𝑃𝑎𝑡 ` 2𝐿𝑆}𝑃 ´ 𝑃 }

ď }𝜃J
´ 𝜃J

}𝑉 }𝑃𝑎𝑡}𝑉 ´1 ` 2𝐿𝑆}𝑃 ´ 𝑃 }2

ď 𝛽}𝑎𝑡}𝐴:
𝑡

` 2𝐿𝑆}𝑃 ´ 𝑃 }2

(3.27)

Now, using the assumption of reward begin upper bounded, we write the following.

𝑅𝑡 ď 2min
´

𝛽}𝑎𝑡}𝐴:
𝑡

` 𝐿𝑆}𝑃 ´ 𝑃 }2, 1
¯

ď 2min
´

𝛽𝑡}𝑎𝑡}𝐴:
𝑡
, 1
¯

` 2𝐿𝑆minp}𝑃 ´ 𝑃 }, 1q

ď 2𝛽𝑡min
´

}𝑎𝑡}𝐴:
𝑡
, 1
¯

` 2𝐿𝑆p}𝑃 ´ 𝑃 }q

(3.28)

where the last inequality comes from the assumption that we run the algorithm after the
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warm up period, which gives }𝑃 ´ 𝑃 }2 ď 1.

𝑅𝑇 ď

𝑇
ÿ

𝑡“1

2𝛽𝑡minp}𝑎𝑡}𝐴:
𝑡
, 1q ` 2𝐿𝑆}𝑃 ´ 𝑃 }

“ 2𝐿𝑆𝑇 }𝑃 ´ 𝑃 } ` 2𝛽𝑇

𝑇
ÿ

𝑡“1

minp}𝑎𝑡}𝐴:
𝑡
, 1q

ď 2𝐿𝑆𝑇 }𝑃 ´ 𝑃 } ` 2𝛽𝑇

g

f

f

e𝑇
𝑇
ÿ

𝑡“1

minp}𝑎𝑡}2𝑉 J
, 1q

ď 2𝐿𝑆𝑇 }𝑃 ´ 𝑃 } ` 2𝛽𝑇

g

f

f

e𝑇
𝑇
ÿ

𝑡“1

minp}𝑃 :𝑎𝑡}2𝐴´1
𝑡

, 1q

ď 2𝐿𝑆𝑇 }𝑃 ´ 𝑃 } ` 2𝛽𝑇

c

𝑇𝑚 log
𝜆𝑚 ` 𝑇𝐿2

𝑚𝜆

ď 𝐶.𝛽𝑇
a

𝑇𝑚 log 𝑇

(3.29)

Since the second term is dominating, the last inequality follows. Since 𝛽𝑡 “ 𝑂p
?
𝑚 log 𝑡 `

b

𝑚 log 𝑡 log 𝑑
𝑁

q, as 𝑁 Ñ 8

𝑅𝑡 “ 𝑂̃p𝑚
?
𝑇 q

Now we further prove the meta regret bound. To do so, we need to analyze the cumulative

regret over 𝑁 periods.

𝑁
ÿ

𝑛“1

2𝐿𝑆𝑇 }𝑃 ´ 𝑃 } ` 2𝛽𝑇

c

𝑇𝑚 log
𝜆𝑚 ` 𝑇𝐿2

𝑚𝜆
ď
ÿ

𝑛

2𝐿𝑆𝑇𝐶p
1

?
𝑛

a

log 𝑑𝑇 q ` 𝐶2p𝑚 log 𝑇
?
𝑇 ` 𝑚 log 𝑇

a

𝑇 log 𝑑{𝑛q

ď 𝑂̃p𝑑 ` 𝑁𝑚
?
𝑇 ` 𝑚

?
𝑁𝑇 q

(3.30)

Lemma 3.7.2 (Eliptical Potential Lemma). Let 𝑥1, . . . , 𝑥𝑛 P R𝑑, 𝑉𝑡 “ 𝑉0`
ř𝑡
𝑠“1 𝑥𝑠𝑥

J
𝑆 , 𝑡 P r𝑛s,

𝑣0 “ 𝑡𝑟𝑎𝑐𝑒p𝑉0q, and 𝐿 ě 𝑚𝑎𝑥𝑡}𝑥𝑡}2. Then,

𝑛
ÿ

𝑡“1

minp1, }𝑥𝑡}
2
𝑉 ´1
𝑡´1

q ď 2 log
det𝑉𝑛
det𝑉0

ď 𝑑 log
𝑣0 ` 𝑛𝐿2

𝑑 det1{𝑑 𝑉0

■

■
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Chapter 4

Bilinear Bandits with Arbitrary Arrivals

4.1 Introduction

Consider an online recommendation problem, where users arrive in a platform, such as a

streaming service or media or arbitrarily, and such platform wants to make a well-informed

decision on which item to show to the incoming user based on the limited data access they

have. This is a common recommendation phenomenon faced by many platforms, and hence

the models and algorithms to solve this problem are very widely studied. They are solved

mostly by using matrix completion methods, or certain bandit algorithms.

We are focusing on the linear bandit setting where the rewards are noisy with a mean

that is linear in the unknown user vectors. More precisely, stochastic linear bandits is an

online learning model that associates each action with a feature vector and assumes the mean

reward is the inner product between the feature vector and an unknown parameter vector [1],

[24], [25]. There are numerous applications that make use of this framework, such as serial

webpage recommendations, pricing, or various other problems about modeling user behavior.

Generally speaking, the idea is to learn these unknown parameters of users within a time

frame called horizon.

Previous work on linear bandits has focused primarily on the case where this horizon is

much larger than the dimension of the space. The main reason for this is that the minimax

lower bounds are linear as opposed to sublinear in horizon in the worst case when the opposite

is true, and the desired rate of learning may not happen in an adversarial setting. However,
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many real world applications deal with high dimensional settings in which the horizon may

not be as large as these algorithms require. The framework we propose is what sheds some

light into this problem: we can learn about users more efficiently across different games when

the dimension is much larger and the underlying structure of these distinct parameters is

low-rank. In other words, on a higher level we also learn about the lower dimensional space

from which the parameters come from. We place this idea in the meta learning with bandits

literature.

Meta bandits are a part of meta learning, where the agent has extra information on the

structure behind the incoming parameters to the system and learns the parameters to that of

the structure as well. In the bandit world, the algorithms also try to learn the underlying

information about these parameters so as to use it to discover the parameters themselves. We

see different regimes of meta learning within the bandit literature such as models with a prior

knowledge on the distribution over these parameters [21], or over the arms [49], meta learning

over different bandit models [83], sparsity [39], low rank reward matrix where the parameters

are tensors [57]. Our work fills the gap where the parameters come from an unknown lower

dimensional subspace and the dimension we operate on can be much larger than the horizon.

The bandit model described above has strong correspondence in real-world recommender

system applications. Consider an online system where we see a series of users coming in,

staying for a fixed amount of rounds, receiving recommendations, observing rewards and

leaving. The platform can consider the rewards as implicit, such as the time spent, or explicit

such as the binary ’click-no click’ proxy measure. The problem the platform is concerned with

is that, given that these users have unknown feature vectors coming from a lower dimensional

subspace, what kind of approach can we take to learn more and/or better about the current

and future users so as to maximize the cumulative reward. The problem reveals itself to be

2-fold: the individual parameter learning part, which is what most of bandit literature is

focused on, and the meta learning of the subspace on a higher layer, which is learning the

underlying structure these parameters come from.

There are certain caveats in solving a cold start problem by employing a bandit algorithm,

which in fact is the common and the most advanced method, is that the arm (or item in this

case) knowledge come from previously made observations, i.e. old data. Although matrix
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completion methods are quite pristine, once the latent space changes from dataset to dataset,

the knowledge transfer does suffer from some loss. We are trying to solve a particular type of

problem caused by this: arms have high dimensional estimated vectors, or the arms are new

themselves which would result in a high dimensional setting, and that the true dimension is

much lower than the ambient dimension.

The problem we are concerned with falls under a more realistic setting where 𝑑 " 𝑇 𝑗,

where 𝑇 𝑗 is the amount of times a user 𝑗 has appeared in the system. In a high dimensional

setting, well known classical algorithms do not ’start working’ until a certain amount of

observations have been made, and play a randomly selected arm (or show a randomly selected

item in this context), which hurt the overall performance of the recommender system.

To overcome this issue, we require a further common assumption: the user vectors come

from a lower dimensional subspace. Notice that this assumption is not a newly-made one,

since the entire matrix completion literature feeds from the assumption that the reward

matrix has low rank structure. This, consequently, means the matrix whose rows are the user

vectors in the system, has a low rank structure as well.

Contributions The contributions we make in this paper is 3-fold:

1. Model: We model this problem by using high dimensional meta linear bandits with

arbitrary arrivals. The 𝑑´dimensional user vectors lay in a lower 𝑠´dimensional

subspace. The rewards are bilinear in these unknown user vectors.

2. Algorithm: We propose a novel iterative algorithm based on a convex relaxation of

a rank minimization problem. We then solve this problem by approximating it using

SoftImpute, and further borrow from optimism based principles from matrix completion

literature.

3. Experiments: We test our algorithm against well known methods from literature on a

real-world data set from NetEase music streaming platform, containing over 50 million

impressions. Our algorithm outperforms the benchmarks on various settings we test on.

We further analyze the effect of the relationship between the ambient dimension and

underlying rank.
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4.2 Previous Work

We have given some background on the previous work on bandits in the previous section.

There exist a few studies on pulling a pair of arms as a unit action. [47] consider the k-armed

bandit with 𝑁1 left arms and 𝑁2 right arms. The expected rewards can be represented

as a matrix 𝑁1 ˆ 𝑁2 where the authors assume it has rank 𝑟. The main difference from

our setting is that they do not assume that the arm features are available, so our work is

related to [47] in the same way as the linear bandits are related to K-armed bandits. The

problem considered in [42] is essentially a rank-one version of [47], which is motivated by

a click-feedback model called position-based model with 𝑁1 items and 𝑁2 positions. This

work is further extended to have a tighter KL-based bound by [42]. [84] propose a more

generic problem called factored bandits whose action set is a product of atomic L action sets

rather than two. While they achieve generality by not require to know the explicit reward

model, factored bandits do not leverage the known arm features nor the low-rank structure,

resulting in large regret in our problem. There are other works that exploit the low-rank

structure of the reward matrix, although the action is just a single arm pull. [67] consider

the contextual bandit setting where there are discrete contexts and arms, but do not take

into account the observed features of contexts or arms. [38] consider a similar setting, but

employ the robust tensor power method for recovery. [43] study essentially the same problem,

but make assumptions on the prior that generates the unknown matrix and perform online

matrix factorization with particle filtering to leverage the low-rank structure. There has been

a considerable amount of contextual bandit studies that exploit other structures, where the

context is usually the user identity or features. For example, [33], [32], leverage the clustering

structure of the contexts. In[22] and [73], a graph structure of the users is leveraged to enjoy

regret bound that is lower than running bandits on each context (i.e., user) independently.

[28] introduce a multitask learning view and exploit arm similarity information via kernels,

but their regret guarantee is valid only when the similarity is known ahead of time. In this

vein, if we think of the right arm set 𝑍 as tasks, we effectively assume different parameters

for each task but with a low-rank structure. That is, the parameters can be written as a

linear combination of a few hidden factors, which are estimated on the fly rather than being
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known in advance. [40] consider low-rank structured bandits but in a different setup. Their

reward model has expected reward of the form in our setting, they consider a continuous arm

set only, so their algorithm cannot be applied to our problem. Our subroutine LowOFUL

is quite similar to SpectralUCB of [46], which is designed specifically for graph-structured

arms in which expected rewards of the two arms are close to each other when there is an

edge between them. [39] study a similar regularizer in the context of sparse linear bandits

under the assumption that a superset of the sparse locations is known ahead of time. [79]

consider a setup where they assume an estimate of the subspace is available, but their regret

bound still depends on the total dimension p. Sparsity is a special case of low rank structure

and has been studied in different settings. Linear bandits with sparsity in [53] does not have

a high dimensional regime. High dimensional sparse linear bandits have been studied in [39],

but they do not cover the general case of lower dimensional structure. We also look at a

meta regime where we observe independent games but the parameters are correlated.

For matrix completion methods, there is a vast sea of work to look at, [19], [44], [17],

[63], [18] . There are 2 main differences between matrix completion and what we want to

solve: the entries are not independently observed, the rows to be observed at each time step

is arbitrary, and the column vectors are known.

A more relevant model recently introduced is [21], where the authors analyze the case

where an underlying distribution exists behind the 𝜃𝑛 regime, and while recovering the true

𝜃, they also recover the underlying distribution. What we introduce and argue is a better

suited model is the underlying regime having a lower dimensional structure that we do not

observe. Another very relevant work is [41], where the agent can pull an arm that has a

bilinear matrix structure, i.e. pull the entries. This model is different than ours, since the

agent is allowed to pull any entry, as we work on an arbitrary row arrival.

4.2.1 Notation

Let 𝐴 Ă R𝑑 denote the set of vectors in 𝑑´dimensional space, where 𝑎1, . . . , 𝑎𝐾 Ă 𝐴 are

the available actions to the agent. We assume that the arm-set spans the entire R𝑑, for,

if not, one can always project arms onto the lower dimensional space and play the game

in that where the set spans the entire space. Let 𝑒𝑖 denote the unit vector for which the
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𝑖th dimension is 1 and the rest of the dimensions are 0. If 𝑘 is a positive integer, we use

the notation r𝑘s “ t1, . . . , 𝑘u. We define 𝜆𝑠p𝑀q as the 𝑠𝑡ℎ largest eigen value of matrix M,

and 𝜆´p𝑀q and 𝜆`p𝑀q the smallest and largest positive eigenvalues of 𝑀 , respectively. We

denote the 𝑠´dimensional identity matrix as 𝐼𝑠 and 𝑀 : denotes the pseudo inverse of matrix

𝑀 . }𝑣}𝑀 denotes the 𝑀´matrix norm of a vector and is defined as: }𝑣}𝑀 “
?
𝑣𝑇𝑀𝑣.

4.3 Preliminaries & Model

We start by re-introducing the stochastic linear bandits framework and meta linear bandits

for completeness. The notation introduced will be used throughout the paper.

4.3.1 Stochastic Linear Bandits

The standard linear bandit problem is the problem that a set of 𝑑´dimensional arms are

revealed to the agent, where the agent’s goal is to maximize the expected cumulative reward

in this 𝑇´round online game. The agent at each 𝑡 P r𝑇 s tries to estimate a parameter 𝜃˚ P R𝑑

as accurate as possible by immediately observing the rewards. Mean rewards are bilinear in

feature vectors with additive sub-Gaussian noise, i.e.

𝑟p𝑎q “ x𝑎, 𝜃y ` 𝜂 (4.1)

Assumption 4.3.1. The following are the common assumptions in literature.

1. Bounded arms: }𝑎} ď 𝐿 for all 𝑎 P 𝐴

2. Bounded 𝜃: }𝜃˚} ď 𝑆

3. Sub-Gaussian noise: }𝜂}𝜓2 ď 𝜎

4. Finite arm set: 𝐴 “ t𝑎1, . . . , 𝑎𝐾u

5. Bounded rewards: x𝑎, 𝜃˚y P r´1, 1s

The goal of the agent is to maximize cumulative reward, or better yet, minimize a metric

called regret. Let 𝑟𝑡 denote the immediate regret given as

𝑟𝑡 “ x𝑎˚
´ 𝑎𝑡, 𝜃

˚
y (4.2)
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where 𝑎˚ is the arm that maximizes the expected reward, formally

𝑎˚
“ 𝑎𝑟𝑔𝑚𝑎𝑥𝑎P𝐴x𝑎, 𝜃˚

y (4.3)

LinUCB Algorithm The standard stochastic linear bandit problem has been studied

extensively, and has various order optimal solutions up-to logarithmic factors. A well-known

algorithm is called LinUCB and/or OFUL in different works [2] , [25]. Below we give an

overview of the practically identical methodology studied in these, and what our algorithm

will eventually largely draw from.

Confidence Sets The LinUCB algorithm relies on using previously-observed rewards to

construct carefully tuned confidence sets on 𝜃˚. The following construction is based on that

of [1]: Let 𝜆 ą 0 be an arbitrary constant (in practice, this can be treated as a tuning

parameter). Suppose at the beginning of time 𝑡 ` 1, the policy at hand has selected arms

𝑎1, . . . , 𝑎𝑡 and observed rewards 𝑟1, . . . , 𝑟𝑡. We construct the matrix Σ𝑡 as

Σ𝑡 “

𝑡
ÿ

𝑖“1

𝑎𝑖𝑎𝑖
J

` 𝜆𝐼,

where 𝐼 is the identity matrix. Then letting 𝜃𝑡 denote the regularized least-squares estimator

of 𝜃˚, we have

𝜃𝑡 ” Σ´1
𝑡

𝑡
ÿ

𝑖“1

𝑎𝑖𝑟𝑖,

and finally, the confidence set used in the LinUCB algorithm is the following ellipsoid:

𝐶𝑡 “ t𝜃 P R𝑑 : }𝜃 ´ 𝜃𝑡}Σ𝑡´1 ď 𝛽𝑡u, (4.4)

where

𝛽𝑡 “ 𝜎

c

2 log 𝑇 ` 𝑑 log
𝑑𝜆 ` 𝑇𝐿2

𝑑𝜆
`

?
𝜆𝑆. (4.5)

The LinUCB algorithm, then, selects the arm that has the highest “potential” reward over

all 𝜃 P 𝐶𝑡, i.e. it selects

argmax
𝑎P𝐴

max
𝜃P𝐶𝑡

x𝑎, 𝜃y.
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The ellipsoidal form of 𝐶𝑡 enables a closed-form expression for the inner maximization above:

𝑈𝐶𝐵𝑡p𝑎q ” max
𝜃P𝐶𝑡

x𝑎, 𝜃y “ x𝑎, 𝜃𝑡y ` 𝛽𝑡}𝑎}𝑉 ´1
𝑡

. (4.6)

The algorithm has a regret upper bound of 𝑂̃p𝑑
?
𝑇 q, where 𝑂̃ hides logarithmic terms.

LinUCB is order optimal, since the lower bound on regret of stochastic linear bandits is

Ωp𝑑
?
𝑇 q.

4.3.2 Meta Linear Bandits

Meta linear bandits are a sequence of linear bandit games with a finite horizon. Each of these

games are called a period. Let 𝑁 denote the number of distinct users arriving at the system.

At a period 𝑗 “ 1, . . . , 𝑁 , and time 𝑡 “ 1, . . . , 𝑇 , a user arrives with an unknown feature

vector 𝜃𝑗 P R𝑑. The reward function follows the linear function introduced in Equation (4.1).

The meta structure behind this model is that these vectors 𝜃1, . . . , 𝜃𝑁 come from an

𝑠´dimensional subspace where 𝑠 ! 𝑑. In other words, there exists a 𝑉 P R𝑑ˆ𝑠, such

that 𝑉 𝑉 J𝜃𝑗 “ 𝜃𝑗 for all 𝑗 P r𝑁 s. Meta linear bandits showcase a regret lower bound of

Ωp𝑑 `
?
𝑠𝑑𝑁𝑇 ` 𝑁𝑠

?
𝑇 q. There exists a concept of oracle in meta linear bandits, where the

algorithm knows the matrix 𝑉 . In order to evade the high dimensional curse, the oracle

projects arms onto the 𝑠´dimensional subspace spanned by the vectors of 𝑉 , and executes

an order optimal algorithm. One such algorithm with optimism principle as introduced in

the previous section, i.e. LinUCB, is given in Algorithm 3 for an episode.

Algorithm 3: LinUCB-s
Input: 𝑉𝑠, 𝐴, 𝑐
Initialization: 𝑉 𝑗 “ 𝜆𝐼, 𝜃𝑗 “ r0s𝑠

Project arms onto 𝑠´dimensional subspace: 𝐴 :“ t𝑉𝑠𝑎 : 𝑎 P 𝐴u

for 𝑡 “ 1, 2, . . . 𝑇 do
Select arm 𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑠𝑡 “ argmax𝑎P𝐴 𝑎

J𝜃𝑗𝑡 ` 𝑐}𝑎}𝑉 ´1
𝑡´1

Observe reward 𝑟 and append to 𝑟𝑗𝑡

Update 𝑉 𝑗𝑡 “ 𝑉 𝑗𝑡 ` 𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑠𝑡p𝑎𝐿𝑖𝑛𝑈𝐶𝐵𝑠𝑡q
J

Update 𝜃
end
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The algorithm’s working principle feeds from the following fact where 𝑃 “ 𝑉 J𝑉 :

𝑎J𝜃 “ 𝑎J𝑃𝜃 “ p𝑉 𝑎q
J𝑉 𝜃

Hence the algorithm learns only on the component that is spanned by 𝑉 , since the space

spanned by 𝑉 K does not contribute to the reward.

4.3.3 Main Model: Bilinear Bandits with Arbitrary Arrivals

We herein introduce a more general version of meta linear bandits, where there are multiple

users arriving in the system in an arbitrary fashion. Formally, let 𝜃˚
𝑗 P R𝑑 denote the true

latent vector of a user 𝑗, where there are 𝑁 users in total: 𝑗 “ 1, . . . , 𝑁 . The reward function

follows the linear function introduced in Equation (4.1) for each user and arm pulled. The

game consists of a single 𝑇 -length game, where at each time 𝑡 the system receives an index

of the user, pulls an arm 𝑎𝑡 and receives reward 𝑟𝑡. The reward function follows the linear

function with sub-Gaussian noise as usual, as defined in Equation (4.1).

As per the meta regime, we assume that these vectors lie in a lower 𝑠´dimensional linear

subspace such that 𝑠 ! 𝑑. In other words, they can be written in the form 𝜃 “
ř𝑠
𝑖“1 1𝑖𝑣𝑖

for some 11, . . . , 1𝑠 P R, and 𝑣𝑖 K 𝑣𝑗 for all 𝑖, 𝑗 P r𝑠s. For the model to be meaningful we

also require that during the horizon 𝑇 in consideration, we observe at least Ωp𝑠q arrivals to

the system for each user 𝑗. At a given time 𝑡 P t1, . . . , 𝑇 u, a game/parameter 𝑗𝑡 P r𝑁 s is

received with its unknown 𝜃˚
𝑗𝑡 P R𝑑. Notice that the order 𝑗1, . . . , 𝑗𝑇 can be arbitrary, and

the only assumption we make is each use arrives at least 𝑠 times, meaning,
ř

𝑡 1p𝑗𝑡 “ 𝑗q ě 𝑠

for all 𝑗 P r𝑁 s. This is a necessary assumption since, even when the underlying subspace is

known, in the case for 𝑠 " 𝑇 𝑗, no algorithm can do better than random. In other words, any

algorithm needs at least 𝑠 observations to form an 𝑠´dimensional estimate, hence, 𝑠 ! 𝑇 𝑗

will result in linear regret. At each round 𝑡, with the current user 𝜃𝑗𝑡 , a decision is made so as

to pick an action 𝑎 P R𝑑 from the set 𝐴, where |𝐴| “ 𝐾. Notice that the arm set could also

have a dynamic structure throughout time, and be dependant on 𝑡, however, for notation ease

we work with fixed set of arms. The work is easily extendable to varying arm sets over time.

87



Metric The metric we try to maximize in this game is cumulative reward. Notice that

the optimal policy with the full knowledge of 𝑎𝑖 and 𝜃𝑗 would be to maximize the expected

cumulative reward. Let 𝜋 denote any policy,

𝜋𝑡 : pr𝐾s ˆ R ˆ r𝑁 sq
𝑡´1

ˆ r𝑁 s Ñ r𝐾s,

which at each time 𝑡, maps the previously selected arms and observed rewards to the next

selected arm. Furthermore, let 𝑎𝜋𝑡 be the arm that is played by the algorithm at that time.

Now, for any given policy 𝜋, we try to maximize the expected cumulative reward given as:

ÿ

𝑡

𝑟p𝑎𝜋𝑡q “
ÿ

𝑡

x𝜃˚
𝑗𝑡 , 𝑎𝜋𝑡y (4.7)

For the purpose of experiments and algorithms, we will compare the results based on this

given cumulative reward metric.

4.4 Our Algorithm

Before diving into the algorithm proposed, the issue we address should be made clear. In

the high dimensional case we are interested in, 𝑑 " 𝑇 𝑗 for all 𝑗 P r𝑁 s, for an algorithm that

works in 𝑑´dimensions, there is no accurate estimate of each 𝜃𝑗 arriving in the system as the

well-known estimation methods require a certain number of observations in 𝑂p𝑑q. Stemming

from this issue faced in real-life recommender systems, the general idea behind our algorithm

is to operate on an approximated lower dimensional setting so as to avoid the drawbacks

from the high dimensional setting.

More rigorously, 𝑋𝑛
𝑡 P R𝑑ˆ𝑡 denotes the matrix whose columns are the arms played up

until time 𝑡 in user type 𝑛. Σ𝑛
𝑡 is the regularized matrix in the form Σ𝑛

𝑡 “ 𝜆𝐼 ` 𝑋𝑛
𝑡 p𝑋𝑛

𝑡 qJ

where 𝜆 is a regularization parameter. The main method is that after each episode ends, we

re-calculate the matrix 𝑉 using the previously observed data and calculated 𝜃. Note that

at the beginning of the game, since 𝑇 ! 𝑑, we do require a certain number of episodes, 𝑛̃,

dedicated to exploration. During these episodes, the algorithm picks arms orthogonal to each

other so as to maximize the information gain from them. Namely, let 𝑋𝑛 P R𝑇ˆ𝑑 be the arm
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matrix whose rows are the arms played up until the end at episode 𝑛.The algorithm then is

to pick arms at each episode 𝑛 such that the arms played are unit vectors of 𝑑´dimensional

space: 𝑒𝑖 P R𝑑 for all 𝑖 P r𝑑s.

First, for each of these 𝜃𝑛, we create a 𝑑´dimensional Ridge estimator 𝜃𝑛 such that:

𝜃𝑛𝑇 “ pΣ𝑛
𝑇 q

´1
p𝑋𝑛

𝑇 q
J𝑌 𝑛

𝑇

where 𝑌 𝑛
𝑇 P R𝑇 is the noisy reward observed throughout episode 𝑛 for 𝑇 rounds.

Below in Algorithm 3, we provide LinUCB algorithm on a lower dimensional setting,

where we require a 𝑉𝑠-matrix to switch to a lower dimensional setting. The algorithm has

the same logic explained in Section 4.3.1, except that it projects the high dimensional arms

onto the given subspace at the beginning of the game using matrix 𝑉𝑠, and works with the

projected armset 𝐴 throughout 𝑇 rounds. For each 𝑡 “ 1, . . . , 𝑇 “ 𝑑 we try to solve for the

following problem:
minimize

Θ
𝑟𝑎𝑛𝑘pΘq

subject to
𝑁
ÿ

𝑛“1

}𝐴𝑛Θ𝑛 ´ 𝑟𝑛}
2

ď 𝛾

which we relax as:

minimize
Θ

1

2

𝑁
ÿ

𝑛“1

}𝐴𝑛Θ𝑛 ´ 𝑟𝑛}
2

` 𝜆}Θ}˚

The Iterative Algorithm below solves this relaxed version of the problem approximately.

Algorithm 4: Iterative Algorithm
Input: Θ𝑖´1, 𝑟, 𝐴, 𝜆
for 𝑛 “ 1, . . . , 𝑁 do

Solve for 𝜃˚
𝑛 “ argmin𝜃𝑛 }𝜃𝑛 ´ Θ𝑖´1

𝑛 }2 ` 𝛾}𝐴𝑛𝜃𝑛 ´ 𝑟𝑛}2

end
Construct Θ𝑖𝑛𝑡 “ r𝜃˚

1 , . . . , 𝜃
˚
𝑁 s

Calculate 𝑈 𝑖𝑛𝑡,Σ𝑖𝑛𝑡, 𝑉 𝑖𝑛𝑡 “ 𝑆𝑉 𝐷pΘ𝑖𝑛𝑡q

Return Θ𝑖 “ 𝑈 𝑖𝑛𝑡Σ𝑖𝑛𝑡
𝜆 𝑉 𝑖𝑛𝑡 and 𝑉 𝑖𝑛𝑡 where Σ𝜆 is the soft threshold.

The idea behind the iterative algorithm is as follows. For a very large 𝑑, in a single bandit

game, for the first 𝑑 rounds the algorithm cannot do anything but random. However, in

the case we know the underlying dimension among these unknown 𝜃s, we can come up with
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a constrained optimization problem where we minimize the rank of the design matrix of

incoming user feature vectors. Then, by penalizing the difference between the estimated

rewards of current Θ̂ and given arms, we estimate each 𝜃𝑗 that arrived in the sysxtem until

time 𝑡. Then we perform a SoftImpute based SVD, where SoftImpute is the algorithm given

in Algorithm 6. Then, we repeat this approximate rank minimization and SoftImpute until

convergence.

As per what happens when a user arrives, as given in Line 5, the estimated subspace for 𝜃

values are used to project arms onto the space. Then, a regular LinUCB is performed, where

the only difference is the 𝜃 is not the maximum likelihood estimator, but the estimate we

acquired from the iterative approximation of the matrix Θ.

Optimism Principle Having mentioned the algorithm we use to estimate a 𝜃𝑗 for each

user, we further want to improve by introducing an optimism based principle. As given in

Algorithm 3, LinUCB introduces a certain exploration based on confidence intervals obtained

on 𝜃. With that idea in mind, hereby, we borrow from a very recent work on the entry wise

confidence intervals on matrix completion [29].

Algorithm 5: High Dimensional Bilinear Low Rank LinUCB
[h!]
Input: 𝑐, 𝜆
Initialize: 𝜃10, . . . , 𝜃

𝑁
0 “ r0s𝑑, 𝑉 𝑛

0 “ 𝜆𝐼,Θ0 “ r0s𝑁ˆ𝑑

for t=1,. . . ,T do
Θ𝑡, 𝑋𝑡 “ IterativeAlgorithmpΘ𝑡´1, 𝑟, 𝐴, 𝜆q

r𝜃1𝑡´1, . . . , 𝜃
𝑁
𝑡´1s Ð Θ𝑡

Project arms onto estimated subspace 𝐴𝑛
𝑡 “ 𝑋𝑡𝐴

𝑛

Update/calculate 𝑉 𝑛
𝑡´1 according to this projection matrix/projected arm set

Play arm argmax𝑎P𝐴𝑛
𝑡
𝑎J𝜃𝑛𝑡´1 ` 𝑐𝑠𝑗𝑡,𝑎 where 𝑠𝑖𝑗 is as defined in Equation (4.8) and

observe reward
Update r and 𝐴

end

Lemma 4.4.1 (Farias et al, [29]). For binary observations, the entry p𝑖, 𝑗q has a variance

𝑠2𝑖𝑗 “

ř𝑚
𝑙“1𝑀

˚
𝑙𝑗p1 ´ 𝑀˚

𝑙𝑗qp
ř𝑟
𝑘“1 𝑈

˚
𝑖𝑘𝑈

˚
𝑙𝑘q2

𝑝
`

ř𝑛
𝑙“1𝑀

˚
𝑖𝑙p1 ´ 𝑀˚

𝑖𝑙qp
ř𝑟
𝑘“1 𝑉

˚
𝑙𝑘𝑉

˚
𝑗𝑘q

2

𝑝
(4.8)
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The full form of the theorem can be found in [29]. There are two issues with the practical

correspondence of this theoretical breakthrough: the model this theorem is based on assumes

that entries are observed independently with a probability 𝑝 and it assumes the arms(or

column vectors) are unit vectors. We conjecture the second assumption could be relaxed to

fit this work, however, the theoretical foundation of the algorithm introduced is beyond the

scope of this work. We nevertheless apply this theorem to form a confidence interval on the

entries. The corresponding algorithm is given in Algorithm 5. The working logic is as follows:

we first solve the rank minimization problem by relaxing and applying SoftImpute. This is

not a new development, since it is the foundational method for matrix completion algorithms.

Then, with the calculated 𝜃s, we create a confidence interval for each entry in the reward

matrix using Equation (4.8), and pick the entry that gives the highest potential reward. The

idea is to introduce a certain optimism principle based on the entry-wise variance where the

mean is the estimated 𝜃 values.

4.5 Experiments

In this section, we work on a dataset that was acquired from [81]. We first give an analsyis of

the dataset, then the detailed explanation of how we retrieved a ground truth for comparison

and a set of algorithms from literature that we compare against.

4.5.1 Data Description

In this section, we introduce and analyze a dataset from NetEase, a music streaming platform.

The detailed full description of this set can be found in [81]. NCM is a free music streaming

service developed and owned by NetEase, Inc. For the purposes of this experiment, we work

on the impression dataset. Table 4.1 describes each data field in the impression-level data

table. This data table contains 57, 750, 395 impression-level data points covering 2, 085, 533

unique users during the 30-day-long sample period.

The table contains 13 data fields. The userId data field uniquely identifies each user

in the entire data set, and it can be used to join this table with user tables in Section 2.4.

The mlogId data field uniquely identifies each card and can be used to join this impression
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Column Name Data Type Description
userId string The unique identifier of each user in the data set

dt numeric The number of days from the start of the sample period
mlogId string The unique identifier of each card in the data set.

impressTime numeric The epoch time of the impression
impressPosition numeric The position of impression in the feed

isClick binary 1 if the user clicks on the card, 0 ow 1
isComment binary 1 if the user comments on the card, 0 ow

isLike binary 1 if the user likes the card, 0 ow 1
isShare binary 1 if the user shares the card, 0 ow 1

isViewComment binary 1 if the user views comments from other users on the card, 0 ow
isIntoPersonalHomepage binary 1 if the user enters the creator’s homepage through the card, 0 ow

mlogViewTime numeric The number of seconds that the user has spent on the card
detailMlogInfoList string JSON file contains all cards that the user sees if s/he swipes down

Table 4.1: Table for all the columns the impression data contains

table with card tables in Section 2.2. The impressTime data field records the epoch time

when the impression is first shown to the user on her app. Each user may have multiple

impressions in a given day; each card may be shown to multiple users during the sample

period. Therefore, each row of impression data is uniquely identified by a combination of

userId, mlogId and impressTime, representing that a card is shown to a user at a particular

time. Each impression for a user comes with a position in her feed stream, and it is recorded

in the impressPosition data field. The position starts with 1 and is counted from top to down

and from left to right.

For each impression, the table provides the users’ actions on the recommended cards.

First, a user could click on a card once the impression of the card is presented to the user.

Once the user clicks on the card, the music video in the card will be automatically played

in the user’s app in full screen mode if the card contains a video. If a card contains a set

of images, the first image will be shown to the user in full screen mode. Such an action is

recorded in the isClick data field. Second,once clicking on a card, the user can comment and

view other comments on the card. Whether a user comments on a card for an impression

is recorded in the isComment data field, and whether a user views others’ comments on a

recommended card is recorded in the isViewComment data field.

A user can also like a shown card. Whether a user likes a card or not is recorded in the
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isLike data field. A user can also click on the share button. Whether a user decides to

share the card from an impression is recorded in the isShare data field. Moreover, a user

can click on the creator’s personal profile logo on top of the like button and get into the

creator’s personal page, and whether a user enters the creator’s personal homepage from a

card is recorded in the isIntoPersonalHomepage data field. Last but not least, the users can

also swipe down a card. Once a user decides to swipe down the card, a new card will be

automatically recommended to the user. If a user chooses to swipe down after watching a

card recommended to her, the information regarding each of the cards shown after swiping

down will be stored in the detailMlogInfoList data field of the focal card’s data point in Table

2. The number of data points in detailMlogInfoList represents how many times that the user

has swiped down after clicking on a card. Furthermore, the data also provides the number of

seconds for which the user has played the card. In other words, this is the difference between

the time when the user clicks on the card and the time when the user swipes down or leaves

the card by clicking the back button or closes the app. If the card contains a video and the

user is still on the video page when the video ends, the video will automatically replay. The

watch time of an impression is recorded in the mlogViewTime data field. Notice that a user’s

total app usage cannot be imputed from this watch time since a user may browse other tabs

in the app on a given day; and therefore, unfortunately, researchers cannot impute a user’s

total app usage in a day through this data set.

4.5.2 Data Analysis

In this section we do a preliminary statistical analysis of the data in hand.

isClick isComment isLike isShare
Positive 427524 8629 141210 19518
Negative 54879957 57741766 57609185 57730877

Table 4.2: The positive and negative feedback amount based on the type of feedback the
system received. Note that negative feedback is that there is no interaction of that type for a
given impression point.

We further provide histogram for the amount of time spent in a given recommendation.

Notice that the majority of the users spend less than 20 minutes on a given recommendation.
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Furthermore, most recommended cards are not interacted at all, if one looks at Table 4.2.

(a) Number of impressions vs time spent (b) User number vs number of impressions

Figure 4-1: A snippet of how user behavior is distributed

The Ground Truth We make the following assumptions before implementing an algorithm

to extract a pseudo ground truth.

1. Rewards are binary: 𝑟 P t0, 1u.

2. The reward takes value 1, if at least 1 of the isView, isComment, isClick,isLike,isShare

fields is 1.

3. The reward matrix is low rank.

Under the light of the assumptions above, we employ one of the commonly used matrix

completion algorithms to extract the true feature vectors of users and items, called SoftImpute.

We take the following notation and algorithm from [59].

Define a matrix 𝑃Ωp𝑌 q P R𝑚ˆ𝑛 such that

𝑃Ωp𝑌 qp𝑖, 𝑗q “

$

’

&

’

%

𝑌𝑖𝑗 if p𝑖, 𝑗q P Ω

0 if p𝑖, 𝑗q R Ω

(4.9)

Lemma 4.5.1 (Mazumder et al. , [59]). Suppose the matrix 𝑊𝑚ˆ𝑛 has rank r. Then the

solution to the optimization problem

min
𝑍

1

2
}𝑊 ´ 𝑍}

2
𝐹 ` 𝜆}𝑍}˚ (4.10)
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is given by 𝑍 “ 𝑆𝜆p𝑊 q where

𝑆𝜆p𝑊 q ” 𝑈𝐷𝜆𝑉
1 (4.11)

with 𝐷𝜆 “ 𝑑𝑖𝑎𝑔rp𝑑1 ´ 𝜆q`, . . . , p𝑑𝑟 ´ 𝜆q`s. 𝑈𝐷𝑉 1 is the SVD of 𝑊 , 𝐷 “ 𝑑𝑖𝑎𝑔r𝑑1, . . . , 𝑑𝑟s and

𝑡` “ maxp𝑡, 0q.

In the light of the lemma, we also employ the following algorithm to extract the ground

truth.

Algorithm 6: Soft Impute
Initialize: 𝑍𝑜𝑙𝑑 “ 0
for 𝜆1 ą ¨ ¨ ¨ ą 𝜆𝑟 do

while True do
Repeat:
Compute 𝑍𝑛𝑒𝑤 Ð 𝑆𝜆𝑟p𝑃Ωp𝑋q ` 𝑃K

Ω p𝑍𝑜𝑙𝑑qq

If }𝑍𝑛𝑒𝑤´𝑍𝑜𝑙𝑑}2𝐹
}𝑍𝑜𝑙𝑑}2𝐹

ă 𝜖 then break.
Assign 𝑍𝑜𝑙𝑑 Ð 𝑍𝑛𝑒𝑤

end
Assign 𝑍𝜆𝑟 Ð 𝑍𝑛𝑒𝑤

end
Return 𝑍𝜆1 , . . . , 𝑍𝜆𝑟 .

Ambient and true dimension For the purposes of our experiments, we tested various

dimensions/rank while implementing SoftImpute: 𝑑 “ 20, 200, 2000, 10000, which denotes the

ambient dimension all 𝜃 and arm vectors lay in. We further employ SVD methods to perform

PCA and project the vectors onto 𝑠´dimensional subspace. Mainly, let 𝜃1, . . . , 𝜃𝑁R𝑑 denote

the extracted user features from data. We re-calculate the 𝑑´dimensional representations of

these vectors by projecting them onto a subspace extracted from 𝑠´principal components

using SVD. Namely,

Θ “ 𝑈Σ𝑉 J (4.12)

Then we take the first 𝑠 dimensions of this decomposition.

Θ1
“ 𝑈Σ𝑠𝑉

J (4.13)
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(a) Mean rewards histogram for d=20 (b) Mean rewards histogram for d=200

where Σ𝑠 “

»

—

—

—

—

—

—

—

—

—

–

𝑠1 0 . . . 0
... . . . ...

0 𝑠𝑟 0
... . . .

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. Then we multiple each 𝜃1 with 𝑉 , to get a 𝑑´dimensional

representation with an underlying 𝑠´dimensional subspace. Notice that there are mul-

tiple ways to extract such information, another one of which is to randomly generate a

𝑑´dimensional spanning vector set and represent these newly found 𝑠´dimensional user

vectors by multiplying with these vectors.

Below, we give the reward distribution acquired after implementing SoftImpute matrix

completion method for 𝑑 “ 20 and 𝑑 “ 200. Notice that mean rewards change according to

the dimension we use to complete the rewards matrix from raw data.

4.5.3 Benchmark Algorithms

Matrix Completion and Entry-wise Confidence Intervals In terms of matrix completion

and the entry-wise confidence intervals, there haven’t been a development until recently. We

adapt theoretical results from one of the aforementioned papers [29].

Under the assumptions, an entry 𝑀𝑖𝑗 follows a distribution with the following variance:

𝑠2𝑖𝑗 “

ř𝑚
𝑙“1𝑀

˚
𝑙𝑗p1 ´ 𝑀˚

𝑙𝑗qp
ř𝑟
𝑘“1 𝑈

˚
𝑖𝑘𝑈

˚
𝑙𝑘q

2

𝑝
`

ř𝑛
𝑙“1𝑀

˚
𝑖𝑙p1 ´ 𝑀˚

𝑖𝑙qp
ř𝑟
𝑘“1 𝑉

˚
𝑙𝑘𝑉

˚
𝑗𝑘q

2

𝑝
(4.14)

Notice that we do not have access to true reward matrix, user matrix, and arm matrix:

𝑀˚, 𝑈˚, 𝑉 ˚ respectively. Hence, we instead use the estimated versions of these matrices
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Arm Information Greedy Optimism
s-dimensional arms - oracle

d-dimensional arms with rank info s - ours
d-dimensional arms - Separate

no arm information with rank info s MC-Greedy MC

Table 4.3: The algorithms categories based on given information

extracted by SoftImpute algorithm. We test our algorithm introduced in the previous section

against the following benchmarks. The following table demonstrates the algorithms we test

with varying information regimes.

1. Separate: The algorithm we call ’Separate’ has no information about the underlying

subspace, or that there exists one. It treats each distinct user arrival independently

and plays a linear bandit game in parallel with 𝑁 users.

2. Oracle: This is the alogrithm that has all the information except true 𝜃s.

3. MC + UCB: This algorithm makes use of the fact that the reward matrix is low rank

and applies the SoftImpute algorithm to extract an s-dimensional estimate of both sets

of vectors Θ, 𝐴.

4. MC + Greedy: This is the algorithm that executes a matrix completion algorithm with

𝑠´dimensional rank. Then, it picks a largest estimated value among the values in the

current user in consideration.

5. Ours: We apply the algorithm given in the previous section, where we utilize the

low-rank knowledge on arriving users, estimate the parameters and add a exploration

term based on entry based variances.

4.5.4 Results

After running the algorithms described in the previous subsection for the first 1 million arrivals,

and cumulatively calculating the reward we obtain the following results. The experiments

were repeated over 100 times. Note that the reward we care about is the mean rewards rather

than the actual observed ones, since that is what we want to maximize for.
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Figure 4-2: Reward vs Time plot for d=200, s=20

We further look at the effect of the ratio 𝑑{𝑠 on the results, and run the experiments for

when 𝑑 “ 𝑠 “ 20 and 𝑑 “ 2000, 𝑠 “ 20. Notice that for the first case, our algorithm, the

oracle, and Separate become the same as the ambient dimension and the true dimension

coincide.

(a) Reward vs Arrival for d=20 and s=20 (b) Reward vs Arrival for d=2000 and s=20

Figure 4-3: Extreme cases of dimensions

Analysis of results As seen in Figure 4-2, we have established that for 𝑠 “ 20, 𝑑 “ 200 the

algorithm proposed has better performance than the aforementioned algorithm adaptations

in literature. We further investigate the effect of dimension ratio i.e. 𝑑{𝑠 on the algorithm

performance. We point out that the case for which the underlying dimension is equal to
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that of the introduced dimension, i.e. 𝑑 “ 𝑠 “ 20, the algorithms Separate, Oracle, Ours

become the same, since the information of the underlying dimension does not constitute for

additional information. We see that in that case MC methods work well enough, within 87%

of the oracle’s cumulative reward.

For these 2 experiments, our algorithm has made use of the knowledge of arms and won

against the other benchmarks. We further question the effect of high dimension by working

with 𝑑 “ 2000. In Figure 4-2, it is clear that the knowledge on the arms cannot overcome the

low rank assumption as much when we work with higher dimensional settings. There are 2

reasons for this. The first one is, for 10 000 users and such short arrival time, any estimation

for 𝑑 “ 2000 is going to be very close to random, which is what causes the Separate method

to fail in the higher dimensional setting. Another point is, tour algorithm becomes very close

to those based on matrix completion methods. This is because the knowledge on the arms do

not matter as much. Or in other words, the matrix completion methods are doing a good

enough job to compensate for the lack of knowledge in 2000´dimensional arms.

4.6 Conclusion

In this paper, we investigate the general version of high dimensional meta linear bandits,

where there is an underlying lower dimensional subspace the unknown user feature vectors

come from. The users arrive in the system in an arbitrary fashion, and we assume each user

arrives at least 𝑚 times through the horizon 𝑇 . We introduce a bandit model where rewards

are binary. We further assume the mean of these rewards are bilinear in the user vectors. We

introduce an algorithm to solve this problem where we solve a rank minimization problem

subject to certain constraints gathered from past data. We validate the proposed algorithm

against various other algorithms from the literature on a real world data-set, and see the

algorithm outperforms the well known algorithms in literature. We further investigate the

effect of the relationship between the true and ambient dimension and how it affects the final

outcome of these algorithms.

Future work includes theoretical bounds for this algorithm, and further investigation on

different data-sets and how the distribution of items and users might affect the final outcome.
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