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Abstract

This thesis offers methodological and computational contributions to several fields of
operations research including stochastic programming, decomposition-based meth-
ods, robust optimization, and fairness in resource allocation. In the first chapter, we
introduce the stochastic planning and scheduling problem and formulate it as a two-
stage stochastic program. We devise a logic-based Benders decomposition algorithm
that can solve this problem exactly. We present an extensive numerical analysis
on the effectiveness of the proposed solution algorithm. In the second chapter, we
extend our analysis on the planning and scheduling problem. We introduce new
Benders cuts and improve some of the cuts proposed in the literature. We then focus
on a class of sequence-dependent scheduling problems. We provide an exact solution
method for this problem by deriving novel logic-based Benders cuts. The cuts we
propose generalize some of the other well-known cuts in the literature. The numerical
experiments show that the proposed method outperforms the benchmark. In the
third chapter, we study the classical Markowitz model for portfolio optimization.
We focus on a robust portfolio optimization model that attempts to address the
uncertainty in the expected returns. We provide a theoretical analysis on the
selection of the error covariance matrix that is used to define the uncertainty set.
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Our results show that the class of diagonal estimation-error matrices can achieve an
arbitrarily small loss in the expected portfolio return as compared to the optimum.
The computational experiments we perform show that even using the identity matrix
as the error covariance matrix outperforms the classical Markowitz model. In the
fourth and the last chapter, we focus on the use of optimization models for fair
allocation of scarce resources. We study several social welfare functions that are
used in optimization models to balance efficiency and equity in resource distribution.
We analyze the structural properties of the socially optimal distributions based on
each social welfare function. We discuss the implications of selecting a social welfare
function with respect to the incentives it creates for both the players and the social
planner. We then extend our analysis to hierarchical networks. Our analysis offers
a novel approach to evaluating the adequacy of well-known social welfare functions
for distribution of scarce resources.
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Introduction

"Cum enim mundi universi fabrica sit perfectissima
atque a Creatore sapientissimo absoluta, nihil omnino
in mundo contingit, in quo non maximi minimive
ratio quaepiam eluceat; quamobrem dubium prorsus
est nullum, quin omnes mundi effectus ex causis
finalibus ope methodi maximorum et minimorum
aeque feliciter determinari queant, atque ex ipsis
causis efficientibus." 1

Leonhard Euler (De Curvis Elasticis, 1774)

Mathematical optimization plays an essential role in the planning, design, and

operation of engineering systems. It provides a modeling framework for formulating

real-world problems in detailed mathematical terms and techniques for solving those

mathematical models. Today, the field of operations research offers significant tools

for decision making through interdisciplinary collaboration between mathematicians,

engineers, and practitioners. In this dissertation, we make contributions to several

frontiers of operations research, from logic-based Benders decomposition to portfolio

optimization and fair allocation of resources.
1"Briefly and very freely translated: Nothing in the world takes place without optimization,

and there is no doubt that all aspects of the world that have a rational basis can be explained by
optimization methods." (Grötschel, 2012)
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Logic-based Benders decomposition. The idea of decomposition in mathemati-

cal optimization relies on breaking down an intractable problem into smaller problems

that are easier to solve. One such approach for solving large-scale linear/integer

programs is proposed by Jacques F. Benders in his seminal work in 1962. An

important restriction of the classical Benders decomposition is that it can only

be applied to the problems where subproblems are linear programs. Logic-based

Benders decomposition, introduced by John Hooker in 2000, extends the classical

Benders decomposition to cases in which subproblems can be arbitrary optimization

problems.

In chapter 1, we apply logic-based Benders decomposition (LBBD) to two-stage

stochastic planning and scheduling problems in which the second stage is a scheduling

task. We solve the master problem with mixed-integer/linear programming and the

subproblem with constraint programming. As Benders cuts, we use simple nogood

cuts as well as analytical logic-based cuts we develop for this application. We

find that LBBD is computationally superior to the integer L-shaped method. In

particular, a branch-and-check variant of LBBD can be faster by several orders of

magnitude, allowing significantly larger instances to be solved. This is due primarily

to computational overhead incurred by the integer L-shaped method while generating

classical Benders cuts from a continuous relaxation of an integer programming

subproblem. To our knowledge, this is the first application of LBBD to two-

stage stochastic optimization with a scheduling second-stage problem, and the first

comparison of LBBD with the integer L-shaped method. The results suggest that

LBBD could be a promising approach to other stochastic and robust optimization

problems with integer or combinatorial recourse.

In chapter 2, we study a class of sequence-dependent parallel machine scheduling
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problems in which the objective is makespan minimization. In contrast to the

traditional literature, we develop an exact algorithm that finds the optimal solution

in finitely many iterations. We achieve this by devising an algorithm that utilizes

the LBBD framework. We derive novel logic-based Benders cuts by analyzing the

combinatorial structure of the scheduling problem. The proposed cuts generalize

other well known cuts in the literature. We demonstrate the efficacy of the cuts via

a computational study.

Portfolio optimization. The publication of Harry Markowitz’s theory of portfolio

selection has been instrumental in the understanding of financial markets and the

development of financial decision making. His famous work in 1952 suggested that

financial decision making is a quantitative trade-off between risk and return. Ever

since, the concepts of diversification and portfolio optimization have been studied

extensively and quantitative techniques have become widespread in the investment

industry.

In chapter 3, we study an extension of the classical Markowitz model. It is well known

that the classical Markowitz model for portfolio optimization is extremely sensitive

to estimation errors on the expected asset returns. Robust optimization mitigates

this issue. We focus on ellipsoidal uncertainty sets around a point estimate of the

expected asset returns. An important issue is the choice of the matrix that specifies

this ellipsoid. In this paper we investigate the performance of diagonal estimation-

error matrices. We show that diagonal estimation-error matrices can achieve an

arbitrarily small loss in the expected portfolio return as compared to the optimum.

We then formulate the problem of finding the best estimation error matrix as a bilevel

program. Finally we analyze the use of an identity matrix as the estimation-error

matrix. The results of our simulation show that robust portfolio models featuring

21



an identity matrix as an estimation-error matrix outperform the classical Markowitz

model when the size of the uncertainty set is chosen properly.

Fair allocation of resources. Social welfare optimization is a paradigm that is

used to incorporate ethical norms into decision making processes. When used to

improve societal outcomes, optimization models that simply focus on utilitarian goals

may produce extreme and undesirable solutions. To balance equity and efficiency,

researchers have proposed various ways to incorporate both goals in the decision-

making process. From the perspective of optimization, this can be done by using a

social welfare function (SWF) that combines equity and efficiency in the objective

function.

In chapter 4, we focus on the use of optimization models for fair allocation of scarce

resources. We show that the plethora of SWFs proposed in the literature can also

produce extreme solutions. For example, the maximin (Rawlsian) criterion ignores

less fortunate individuals except for the very worst one; alpha fairness SWF may

equate an egalitarian solution with an extremely imbalanced solution; the Kalai-

Smorodinsky bargaining solution may favor individuals that are already privileged by

proportionally allocating resources to everyone based on their utility upper bounds;

and a threshold SWFs with leximax criterion may produce more moderate outcomes

at the price of increasing complexity in model formulation and analysis. We analyze

these SWFs roughly in increasing order of their complexity. Such complexity arises

from the goal of preventing extreme outcomes and thus may attenuate the extremity

of solutions. But it also can at the same time lead to more complex and undesirable

properties. We illustrate the latter point with a representative example throughout,

focusing on a simple hierarchical resource allocation model. In conclusion, one needs

to be careful in choosing a SWF to avoid unacceptable outcomes.
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Chapter 1

Stochastic Planning and Scheduling

with Logic-Based Benders

Decomposition

This chapter is a joint work with John Hooker.

1.1 Introduction

Benders decomposition has seen many successful applications to two-stage stochastic

optimization, where it typically takes the form of the L-shaped method (Benders,

1962; Van Slyke and Wets, 1969). It offers the advantage that the second-stage

problem decouples into a separate problem for each possible scenario, allowing much

faster computation of the recourse decision.
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A limitation of classical Benders decomposition, however, is that the subproblem

must be a linear programming problem, or a continuous nonlinear programming

problem in the case of “generalized” Benders decomposition (Geoffrion, 1972). This

is necessary because the Benders cuts are derived from dual multipliers (or Lagrange

multipliers) in the subproblem. Yet in many problems, the recourse decision is a

combinatorial optimization problem that does not yield dual multipliers. This issue

has been addressed by the integer L-shaped method (Laporte and Louveaux, 1993),

which formulates the subproblem as a mixed-integer/linear programming (MILP)

problem and obtains dual multipliers from its linear programming (LP) relaxation.

To ensure finite convergence, classical Benders cuts from the LP relaxation are

augmented with “integer cuts” that simply exclude the master problem solutions

enumerated so far.

Unfortunately, a combinatorial subproblem may be difficult to model as an MILP, in

the sense that many variables are required, or the LP relaxation is weak. This

is particularly the case when the recourse decision poses a scheduling problem.

We therefore investigate the option of applying logic-based Benders decomposition

(LBBD) to problems with a second-stage scheduling decision (Hooker, 2000b; Hooker

and Ottosson, 2003), because it does not require dual multipliers to obtain Benders

cuts. Rather, the cuts are obtained from an “inference dual” that is based on a

structural analysis of the subproblem. This allows the subproblem to be solved

by a method that is best suited to compute optimal schedules, without having to

reformulate it as an MILP.

We investigate the LBBD option by observing its behavior on a generic planning

and scheduling problem in which scheduling takes place after the random events

have been observed. The planning element is an assignment of jobs to facilities that
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occurs in the first stage. Jobs assigned to each facility are then scheduled in the

second stage subject to time windows. We assume that the job processing time is a

random variable, but the LBBD approach is easily modified to accommodate other

random elements, such as the release time. The subproblem decouples into a separate

scheduling problem for each facility and each scenario. For greater generality, we

suppose the recourse decision is a cumulative scheduling problem in which multiple

jobs can run simultaneously on a single facility, subject to a limit on total resource

consumption at any one time.

We solve the first-stage problem by MILP, which is well suited for assignment

problems. More relevant to the present study is our choice to solve the scheduling

subproblem by constraint programming (CP), which has proved to be effective on

a variety of scheduling problems, perhaps the state of the art in many cases. We

therefore formulate the subproblem in a CP modeling language rather than as an

MILP. In view of the past success of LBBD on a number of deterministic planning

and scheduling problems, we test the hypothesis that it can obtain similar success on

stochastic problems with many scenarios. We perform computational experiments

while minimizing makespan, total tardiness, and total assignment cost. We also

derive new logic-based Benders cuts for the minimum makespan problem that have

not been used in previous work.

In addition to standard LBBD, we experiment with branch and check, a variation

of LBBD that solves the master problem only once and generates Benders cuts on

the fly during the MILP branching process (Hooker, 2000b; Thorsteinsson, 2001).

We find that both versions of LBBD are superior to the integer L-shaped method.

In particular, branch and check is faster by several orders of magnitude, allowing

significantly larger instances to be solved. We also conduct a variety of tests
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to identify factors that explain the superior performance of LBBD, the relative

effectiveness of various Benders cuts, and the impact of modifying the integer L-

shaped method in various ways. To our knowledge, this is the first computational

comparison between LBBD and the integer L-shaped method on any kind of

stochastic optimization problem. It also appears to be the first application of LBBD

to two-stage stochastic optimization with a scheduling second-stage problem.

The remainder of this paper is organized as follows. We introduce the stochastic

planning and scheduling problem in Section 1.3. This is followed by Section 1.4

where we propose the logic-based Benders decomposition based solution methods for

solving three variants of the stochastic planning and scheduling problem. We present

the computational results in Section 1.7 and give our concluding remarks in Section

1.8. Additional computational experiments and details on the data set can be found

in the electronic companion to the paper.

1.2 Previous Work

A wide range of problems can be formulated as two-stage stochastic programs. For

theory and various applications, we refer the reader to Birge and Louveaux (2011),

Shapiro et al. (2009), Prékopa (2013), and the references therein. Allowing discrete

decisions in the second-stage problem significantly expands the applicability of the

two-stage stochastic framework, as for example to last-mile relief network design

(Noyan et al., 2015) and vehicle routing with stochastic travel times (Laporte et al.,

1992).

Benders decomposition (Benders, 1962) has long been applied to large-scale opti-

mization problems (Geoffrion and Graves, 1974; Cordeau et al., 2001; Binato et al.,
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2001; Contreras et al., 2011). Rahmaniani et al. (2017) provide an excellent survey

of enhancements to the classical method. In particular, it has been applied to two-

stage stochastic programs with linear recourse by means of the L-shaped method

(Van Slyke and Wets, 1969). Its applicability was extended to integer recourse by

the integer L-shaped method of Laporte and Louveaux (1993), which was recently

revisited and improved by Angulo et al. (2016) and Li and Grossmann (2018).

Other Benders-type algorithms that have been proposed for integer recourse include

disjunctive decomposition (Sen and Higle, 2005) and decomposition with parametric

Gomory cuts (Gade et al., 2014). The essence of these two methods is to convexify the

integer second-stage problem using disjunctive cuts and Gomory cuts, respectively.

Still other decomposition-based methods in the literature include progressive hedging

for multi-stage stochastic convex programs (Rockafellar and Wets, 1991) and a

dual decomposition method for multi-stage stochastic programs with mixed-integer

variables (Carøe and Schultz, 1999). We refer the reader to Küçükyavuz and Sen

(2017) for a review of two-stage stochastic mixed-integer programming.

Logic-based Benders decomposition was introduced by Hooker (2000b) and further

developed in Hooker and Ottosson (2003). Branch and check, a variant of LBBD, was

also introduced by Hooker (2000b) and first tested computationally by Thorsteinsson

(2001), who coined the term “branch and check.” A general exposition of both

standard LBBD and branch and check, with an extensive survey of applications, can

be found in Hooker (2019a). A number of these applications have basically the same

mathematical structure as the planning and scheduling problem studied here, albeit

generally without a stochastic element.

In more recent work, Atakan et al. (2017) focus on a one-stage stochastic model

for single-machine scheduling in which they minimize the value-at-risk of several
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random performance measures. Bülbül et al. (2016) consider a two-stage chance-

constrained mean-risk stochastic programming model for single-machine scheduling

problem, but the scheduling decisions do not occur in the second stage. Rather,

the second-stage problem is a simple optimal timing problem that can be solved

very rapidly. The deterministic version of the planning and scheduling problem we

consider here is solved by LBBD in Hooker (2007) and Ciré et al. (2016). We rely

on some techniques from these studies.

We are aware of three prior applications of LBBD to stochastic optimization.

Lombardi et al. (2010) use LBBD to assign computational tasks to chips and to

schedule the tasks assigned to each chip. In this application, the scheduling problem

parameters are not random, and the expected recourse has an analytic solution.

The authors reformulate the problem as a single-stage stochastic program using

the analytical solution. Fazel-Zarandi et al. (2013) solve a stochastic location-

routing problem with LBBD, but there is no actual recourse decision in the second

stage, which only penalizes vehicles if the route determined by first-stage decisions

exceeds their threshold capacity. Guo et al. (2019) use LBBD to schedule patients

in operating rooms, where the random element is the surgery duration. Here

the scheduling takes place in the master problem, where patients are assigned to

operating rooms and surgery dates. The subproblem checks whether there is time

during the day to perform all the surgeries assigned to a given operating room,

and if not, finds a cost-minimizing selection of surgeries to cancel on that day.

Unstrengthened nogood cuts are used as LBBD cuts, along with classical Benders

cuts derived from a network flow model of the subproblem that is obtained from a

binary decision diagram.

The present study therefore appears to be the first application of LBBD to two-stage
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stochastic optimization with scheduling in the second stage. It is also the first to

compare any application of stochastic LBBD with the integer L-shaped method.

1.3 The Problem

We study a two-stage stochastic programming problem that, in general, has the

following form:

min
x∈𝑋

{︀
𝑓(x) + E𝜔[𝑄(x, 𝜔)]

}︀
(1.1)

where 𝑄(x, 𝜔) is the optimal value of the second-stage problem:

𝑄(x, 𝜔) = min
y∈𝑌 (𝜔)

{︀
𝑔(y)

}︀
(1.2)

Variable x represents the first-stage decisions, while y represents second-stage

decisions that are made after the random variable 𝜔 is realized. We suppose that 𝜔

ranges over a finite set Ω of possible scenarios, where each scenario 𝜔 has probability

𝜋𝜔. The first-stage problem (1.1) may therefore be written as

min
x∈𝑋

{︁
𝑓(x) +

∑︁
𝜔∈Ω

𝜋𝜔𝑄(x, 𝜔)
}︁

We consider a generic planning and scheduling problem in which the first stage

assigns jobs to facilities, and the second stage schedules the jobs assigned to each

facility. The objective is to minimize expected makespan or expected total tardiness.

We assume that only the processing times are random in the second stage, but a

slight modification of the model allows for random release times and/or deadlines as

well.
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We therefore suppose that each job 𝑗 has a processing time 𝑝𝜔𝑖𝑗 on facility 𝑖 in scenario

𝜔 and must be processed during the interval [𝑟𝑗, 𝑑𝑗]. For greater generality, we allow

for cumulative scheduling (Aggoun and Beldiceanu 1993, Baptiste et al. 2001), where

each job 𝑗 consumes resources 𝑐𝑖𝑗 on facility 𝑖, and the total resource consumption

must not exceed 𝐾𝑖.

To formulate the problem we let variable 𝑥𝑗 be the facility to which job 𝑗 ∈ 𝐽 is

assigned. The first-stage problem is

min
x

{︁
𝑔(x) +

∑︁
𝜔∈Ω

𝜋𝜔𝑄(x, 𝜔)
⃒⃒⃒
𝑥𝑗 ∈ 𝐼, all 𝑗 ∈ 𝐽

}︁
(1.3)

where 𝐼 indexes the facilities. In the second-stage problem, we let 𝑠𝑗 be the time at

which job 𝑗 starts processing. We also let 𝐽𝑖(x) be the set of jobs assigned to facility

𝑖, so that 𝐽𝑖(x) = {𝑗 ∈ 𝐽 | 𝑥𝑗 = 𝑖}. Thus

𝑄(x, 𝜔) = min
𝑠

{︁
ℎ(𝑠,x, 𝜔)

⃒⃒⃒
𝑠𝑗 ∈ [𝑟𝑗, 𝑑𝑗−𝑝𝜔𝑥𝑗𝑗

], all 𝑗 ∈ 𝐽 ;
∑︁

𝑗∈𝐽𝑖(x)
0≤𝑡≤𝑠𝑗+𝑝𝜔𝑖𝑗

𝑐𝑖𝑗 ≤ 𝐾𝑖, all 𝑖 ∈ 𝐼, all 𝑡
}︁

where ℎ(𝑠,x, 𝜔) denotes the second-stage objective function given the first-stage

decision 𝑥 and scenario 𝜔.

The two-stage problem (1.1) is risk-neutral in the sense that it is concerned with

minimizing expectation. However, the LBBD approach presented here can be

adapted to a more general class of problems that incorporate a dispersion statistic

D𝜔 that measures risk, such as variance, as in the classical Markowitz (1952) model.
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Then the problem (1.1) becomes

min
x∈𝑋

{︀
𝑓(x) + (1− 𝜆)E𝜔[𝑄(x, 𝜔)] + 𝜆D𝜔[𝑄(x, 𝜔)]

}︀
(1.4)

and the first-stage planning and scheduling problem (1.3) becomes

min
x

{︁
𝑔(x) + (1− 𝜆)

∑︁
𝜔∈Ω

𝜋𝜔𝑄(x, 𝜔) + 𝜆D𝜔

[︀
𝑄(x, 𝜔)

]︀ ⃒⃒⃒
𝑥𝑗 ∈ 𝐼, all 𝑗 ∈ 𝐽

}︁
(1.5)

Formulations (1.4) and (1.5) also accommodate robust optimization, as for example

when 𝜆 = 1 and

D𝜔(𝑄(x, 𝜔)) = max
𝜔∈Ω

{𝑄(x, 𝜔)}

and Ω is an uncertainty set. See Ahmed (2006) for a discussion of various tractable

and intractable risk measures.

1.4 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) is designed for problems of the form

min
x,y

{︀
𝑓(x,y)

⃒⃒
𝐶(x,y), x ∈ 𝐷𝑥, y ∈ 𝐷𝑦

}︀
(1.6)

where 𝐶(x,y) denotes a set of constraints that contain variables x and y, and 𝐷𝑦

and 𝐷𝑥 represent variable domains. The rationale behind dividing the variables

into two groups is that once some of the decisions are fixed by setting x = x̄, the

remaining subproblem becomes much easier to solve, perhaps by decoupling into

smaller problems. In our study, the smaller problems will correspond to scenarios
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and facilities. The subproblem has the form

SP(x̄) = min
y

{︀
𝑓(x̄,y)

⃒⃒
𝐶(x̄,y), y ∈ 𝐷𝑦

}︀
(1.7)

The key to LBBD is analyzing the subproblem solution so as to find a function 𝐵x̄(x)

that provides a lower bound on 𝑓(x,y) for any given x ∈ 𝐷𝑥. The bound must be

sharp for x = x̄; that is, 𝐵x̄(x̄) = SP(x̄). The bounding function is derived from the

inference dual of the subproblem in a manner discussed below. In classical Benders

decomposition, the subproblem is an LP problem, and the inference dual is the LP

dual.

Each iteration of the LBBD algorithm begins by solving a master problem:

MP(X̄) = min
x,𝛽

{︀
𝛽
⃒⃒
𝛽 ≥ 𝐵x̄(x), all x̄ ∈ X̄; x ∈ 𝐷𝑥

}︀
(1.8)

where the inequalities 𝛽 ≥ 𝐵x̄(x) are Benders cuts obtained from previous solutions

x̄ of the subproblem. There may be several cuts for a given x̄, but for simplicity

we assume in this section there is only one. Initially, the set X̄ can be empty, or it

can contain a few solutions obtained heuristically to implement a “warm start.” The

optimal value MP(X̄) of the master problem is a lower bound on the optimal value

of the original problem (1.6). If x̄ is an optimal solution of the master problem, the

corresponding subproblem is then solved to obtain SP(x̄), which is an upper bound

on the optimal value of (1.6). A new Benders cut 𝛽 ≥ 𝐵x̄(x) is generated for the

master problem and x̄ added to X̄ in (1.8). The process repeats until the lower and

upper bounds provided by the master problem and subproblem converge; that is,

until MP(X̄) = minx̄∈X̄{SP(x̄)}. The following is proved in Hooker (2000b):
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Theorem 1. If 𝐷𝑥 is finite, the LBBD algorithm converges to an optimal solution

of (1.6) after a finite number of iterations.

The inference dual of the subproblem seeks the tightest bound on the objective

function that can be inferred from the constraints. Thus the inference dual is

DSP(x̄) = max
𝑃∈𝒫

{︁
𝛾
⃒⃒⃒ (︀

𝐶(x̄,y), y ∈ 𝐷𝑦

)︀ 𝑃⇒
(︀
𝑓(x̄,y) ≥ 𝛾)

)︀}︁
(1.9)

where 𝐴 𝑃⇒ 𝐵 indicates that proof 𝑃 deduces 𝐵 from 𝐴. The inference dual is always

defined with respect to set 𝒫 of valid proofs. In classical linear programming duality,

valid proofs consist of nonnegative linear combinations of the inequality constraints

in the problem. We assume a strong dual, meaning that SP(x̄) = DSP(x̄). The dual

is strong when the inference method is complete. For example, the classical Farkas

Lemma implies that nonnegative linear combination is a complete inference method

for linear inequalities. Indeed, any exact optimization method is associated with a

complete inference method that it uses to prove optimality, perhaps one that involves

branching, cutting planes, constraint propagation, and so forth.

In the context of LBBD, the proof 𝑃 that solves the dual (1.9) is the proof of

optimality the solver obtains for the subproblem (1.7). The bounding function 𝐵x̄(x)

is derived by observing what bound on the optimal value this same proof 𝑃 can

logically deduce for a given x, whence the description “logic-based.” In practice, the

solver may not reveal how it proved optimality, or the proof may be too complicated

to build a useful cut. One option in such cases is to tease out the structure of the

proof by re-solving the subproblem for several values of x and observing the optimal

value that results. This information can be used to design strengthened nogood cuts

that provide useful bounds for many values of x other than x̄. Another approach is
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to use analytical Benders cuts, which deduce bounds on the optimal value when x̄ is

changed in certain ways, based on structural characteristics of the subproblem and

its current solution. We will employ both of these options.

Branch and check is a variation of LBBD that solves the master problem only once

and generates Benders cuts on the fly. It is most naturally applied when the master

problem is solved by branching. Whenever the branching process discovers a solution

x̄ that is feasible in the current master problem, the corresponding subproblem

is solved to obtain one or more Benders cuts, which are added to the master

problem. Branching then continues and terminates in the normal fashion, all the

while satisfying Benders cuts as they accumulate. Branch and check can be superior

to standard LBBD when the master problem is much harder to solve than the

subproblems.

A common enhancement of LBBD and other Benders methods is a warm start, which

includes initial Benders cuts in the master problem. Recent studies that benefit from

this technique include Angulo et al. (2016), Elçi and Noyan (2018), and Heching

et al. (2019). Benders cuts can also be aggregated before being added to the master

problem, a technique first explored in Birge and Louveaux (1988). A particularly

useful enhancement for LBBD is to include a relaxation of the subproblem in the

master problem, where the relaxation is written in terms of the master problem

variables (Hooker, 2007; Fazel-Zarandi and Beck, 2012). We employ this technique

in the present study.
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1.5 Benders Formulation of Planning and Schedul-

ing

We apply LBBD to the generic planning and scheduling problem by placing the

assignment decision in the master problem and the scheduling decision in the

subproblem. The master problem is therefore

min
x

{︁
𝑔(x) +

∑︁
𝜔∈Ω

𝜋𝜔𝛽𝜔

⃒⃒⃒
Benders cuts; subproblem relaxation; 𝑥𝑗 ∈ 𝐼, all 𝑗 ∈ 𝐽

}︁

where 𝛽𝜔 is an auxiliary variable that captures second-stage objective function value

under scenario 𝜔. The Benders cuts provide lower bounds on each 𝛽𝜔. The cuts

and subproblem relaxation are somewhat different for each variant of the problem

we consider below. The scheduling subproblem decouples into a separate problem

for each facility and scenario. If x̄ is an optimal solution of the master problem, the

scheduling problem for facility 𝑖 and scenario 𝜔 is

SP𝑖𝜔(x̄) = min
𝑠

{︁
ℎ𝑖(𝑠, x̄, 𝜔)

⃒⃒⃒
𝑠𝑗 ∈ [𝑟𝑗, 𝑑𝑗 − 𝑝𝜔𝑖𝑗], all 𝑗 ∈ 𝐽𝑖(x̄);

∑︁
𝑗∈𝐽𝑖(x̄)

0≤𝑡≤𝑠𝑗+𝑝𝜔𝑖𝑗

𝑐𝑖𝑗 ≤ 𝐾𝑖, all 𝑡
}︁

We solve the master problem and subproblem by formulating the former as an MILP

problem and the latter as a CP problem. In the master problem, we let variable
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𝑥𝑖𝑗 = 1 when job 𝑗 is assigned to facility 𝑖. The master problem becomes

minimize 𝑔(x) +
∑︁
𝜔∈Ω

𝜋𝜔𝛽𝜔

subject to
∑︁
𝑖∈𝐼

𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝐽

Benders cuts

subproblem relaxation

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

(1.10)

where x now denotes the matrix of variables 𝑥𝑖𝑗. If x̄ is an optimal solution of the

master problem, the subproblem for each facility 𝑖 and scenario 𝜔 becomes

minimize ℎ̂𝑖(𝑠, x̄, 𝜔)

subject to cumulative
(︁(︀

𝑠𝑗
⃒⃒
𝑗 ∈ 𝐽𝑖(x̄)

)︀
,
(︀
𝑝𝜔𝑖𝑗
⃒⃒
𝑗 ∈ 𝐽𝑖(x̄)

)︀
,
(︀
𝑐𝑖𝑗
⃒⃒
𝑗 ∈ 𝐽𝑖(x̄)

)︀
, 𝐾𝑖

)︁
𝑠𝑗 ∈ [𝑟𝑗, 𝑑𝑖 − 𝑝𝜔𝑖𝑗], 𝑗 ∈ 𝐽𝑖(x̄)

(1.11)

The optimal value of (1.11) is again SP𝑖𝜔(x̄). The cumulative global constraint

in (1.11) is a standard feature of CP models and requires that the total resource

consumption at any time on facility 𝑖 be at most 𝐾𝑖.

To solve a problem (1.5) that incorporates risk, one need only replace the objective

function of (1.10) with

𝑔(x) + (1− 𝜆)
∑︁
𝜔∈Ω

𝜋𝜔𝛽𝜔 + 𝜆D𝜔[𝛽𝜔]

and otherwise proceed as in the risk-neutral case.
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1.5.1 Minimum Makespan Problem

We begin by considering a minimum makespan problem in which the jobs have release

times and no deadlines. The first-stage objective function is 𝑔(x) = 0, and so we

have 𝑔(x) = 0 in the MILP model (1.10). The second-stage objective function is the

finish time of the last job to finish:

ℎ(𝑠,x, 𝜔) = max
𝑗∈𝐽(x)

{︁
𝑠𝑗 + 𝑝𝜔𝑥𝑗𝑗

}︁
This objective function is incorporated into the CP problem (1.11) by setting

ℎ̂𝑖(𝑠, x̄, 𝜔) = 𝑀 and adding to (1.11) the constraints 𝑀 ≥ 𝑠𝑗 + 𝑝𝜔𝑖𝑗 for all 𝑗 ∈ 𝐽𝑖(x̄).

Since there are no deadlines, we assume 𝑑𝑗 = ∞ for all 𝑗 ∈ 𝐽 .

Both strengthened nogood cuts and analytic Benders cuts can be developed for this

problem. A simple nogood cut for scenario 𝜔 can take the form of a set of inequalities

𝛽𝜔 ≥ 𝛽𝑖𝜔, 𝑖 ∈ 𝐼 (1.12)

where each 𝛽𝑖𝜔 is bounded by

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)
(︁ ∑︁

𝑗∈𝐽𝑖(x̄)

𝑥𝑖𝑗 − |𝐽𝑖(x̄)|+ 1
)︁

(1.13)

and where x̄ is the solution of the current master problem and |𝐽𝑖(x̄)| denotes the

cardinality of set 𝐽𝑖(x̄). The cut says that if all the jobs in 𝐽𝑖(x̄) are assigned to

facility 𝑖, possibly among other jobs, then the makespan of facility 𝑖 in scenario 𝜔 is

at least the current makespan SP𝑖𝜔(x̄). The cut is weak, however, because if even one

job in 𝐽𝑖(x̄) is not assigned to 𝑖, the bound in (1.13) becomes useless. The cut can be
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strengthened by heuristically assigning proper subsets of the jobs in 𝐽𝑖(x̄) to facility

𝑖, and re-computing the minimum makespan for each subset, to discover a smaller set

of jobs that yields the same makespan. This partially reveals which job assignments

serve as premises of the optimality proof. Then 𝐽𝑖(x̄) in (1.13) is replaced with this

smaller set to strengthen the cut. This simple scheme, and variations of it, can be

effective when the makespan problem solves quickly (Hooker, 2007).

A stronger cut can be obtained without re-solving the makespan problem by using

an analytical Benders cut. We introduce a cut based on the following lemma:

Lemma 2. Consider a minimum makespan problem 𝑃 in which each job 𝑗 ∈ 𝐽

has release time 𝑟𝑗 and processing time 𝑝𝑗, with no deadlines. Let 𝑀* denote the

minimum makespan for 𝑃 , and 𝑀̂ the minimum makespan for the problem 𝑃 that

is identical to 𝑃 except that the jobs in a nonempty set 𝐽 ⊂ 𝐽 are removed. Then

𝑀* − 𝑀̂ ≤ ∆+ 𝑟+ − 𝑟− (1.14)

where ∆ =
∑︀

𝑗∈𝐽 𝑝𝑗, and 𝑟+ = max𝑗∈𝐽 and 𝑟− = min𝑗∈𝐽{𝑟𝑗} are the latest and

earliest release times of the jobs in set 𝐽 .

Proof. Consider any solution of 𝑃 with makespan 𝑀̂ . We will construct a feasible

solution for 𝑃 by extending this solution. If 𝑀̂ > 𝑟+, we schedule all the jobs in 𝐽

sequentially starting from time 𝑀̂ , resulting in makespan 𝑀̂ +∆. This is a feasible

solution for 𝑃 , and we have 𝑀* ≤ 𝑀̂ + ∆. The lemma follows because 𝑟+ − 𝑟− is

nonnegative. If 𝑀̂ < 𝑟+, we schedule all the jobs in 𝐽 sequentially starting from time

𝑟+ to obtain a solution with makespan of 𝑟+ + ∆. Again this is a feasible solution
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for 𝑃 , and we have 𝑀* ≤ 𝑟+ +∆. This implies

𝑀* − 𝑀̂ ≤ 𝑟+ − 𝑀̂ +∆ (1.15)

Because 𝑀̂ is at least 𝑟−, (1.15) implies (1.14), and the lemma follows.

We can now derive a valid analytical cut:

Theorem 3. A valid Benders cut for scenario 𝜔 can be obtained by adding

inequalities (1.12) and the following to the master problem:

𝛽𝑖𝜔 ≥

⎧⎪⎪⎨⎪⎪⎩
SP𝑖𝜔(x̄)−

(︁ ∑︁
𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 + 𝑟+ − 𝑟−

)︁
, if 𝑥𝑖𝑗 = 0 for some 𝑗 ∈ 𝐽𝑖(x̄)

SP𝑖𝜔(x̄), otherwise

⎫⎪⎪⎬⎪⎪⎭ , 𝑖 ∈ 𝐼

(1.16)

where 𝑟+ = max𝑗∈𝐽𝑖(x̄){𝑟𝑗} and 𝑟− = min𝑗∈𝐽𝑖(x̄){𝑟𝑗}.

Proof. The cut clearly provides a sharp bound max𝑖∈𝐼{SP𝑖𝜔(x̄)} when x = x̄,

because the second line of (1.16) applies in this case. The validity of the cut follows

immediately from Lemma 2.

We linearize the cut (1.16) as follows:

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)(𝑝
𝜔
𝑖𝑗 + 𝑟+ − 𝑟−) (𝑎)

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 − (𝑟+ − 𝑟−) (𝑏)

(1.17)

The Benders cut (1.16) is inserted into the master problem by including inequalities
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(1.17) for each 𝑖 ∈ 𝐼 and 𝜔 ∈ Ω, along with the inequalities (1.12).

Corollary 4. The inequalities (1.17) yield a valid Benders cut equivalent to (1.16).

Proof. Let 𝑘 =
∑︀

𝑗∈𝐽𝑖(x̄)(1 − 𝑥𝑖𝑗). If 𝑘 = 0, (1.17a) is identical to the second line of

(1.16), while (1.17b) is implied by (1.17a) and therefore valid. If 𝑘 = 1, both (1.17a)

and (1.17b) are identical to the first line of (1.16). If 𝑘 ≥ 2, (1.17b) is identical to

the first line of (1.16), while (1.17a) is implied by (1.17b) and therefore valid.

A Benders cut can also be derived for the case in which all release times are equal

and the jobs have deadlines. The following is an immediate consequence of a theorem

proved in Hooker (2007):

Theorem 5. Suppose all release times are 𝑟𝑗 = 0, and each job 𝑗 has a deadline 𝑑𝑗.

A valid Benders cut for scenario 𝜔 can be obtained by adding inequalities (1.12) and

the following to the master problem:

𝛽𝑖𝜔 ≥

⎧⎪⎪⎨⎪⎪⎩
SP𝑖𝜔(x̄)−

(︁ ∑︁
𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 + 𝑑+ − 𝑑−

)︁
, if 𝑥𝑖𝑗 = 0 for some 𝑗 ∈ 𝐽𝑖(x̄)

SP𝑖𝜔(x̄), otherwise

⎫⎪⎪⎬⎪⎪⎭ , 𝑖 ∈ 𝐼

(1.18)

where 𝑑+ = max𝑗∈𝐽𝑖(x̄){𝑑𝑗} and 𝑑− = min𝑗∈𝐽𝑖(x̄){𝑑𝑗}.

The linearization provided in Hooker (2007) for this cut introduces a continuous

variable for each job 𝑗. This adds a considerable computational burden for the

stochastic problem, since it requires a new continuous variable for each scenario 𝜔

and each facility 𝑖. However, we can avoid additional variables by formulating a
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linearization parallel to (1.17) that uses the following inequalities:

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)(𝑝
𝜔
𝑖𝑗 + 𝑑+ − 𝑑−) (𝑎)

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 − (𝑑+ − 𝑑−) (𝑏)

(1.19)

The Benders cut is inserted into the master problem by including inequalities (1.19)

for each 𝑖 ∈ 𝐼 and 𝜔 ∈ Ω, along with the inequalities (1.12). The proof of validity is

similar to the proof of Corollary 4.

Corollary 6. The inequalities (1.19) yield a valid Benders cut equivalent to (1.18).

Finally, we add a subproblem relaxation to the master problem. We use a relaxation

from Hooker (2007), modified to be scenario-specific:

𝛽𝑖𝜔 ≥ 1

𝐾𝑖

∑︁
𝑗∈𝐽

𝑐𝑖𝑗𝑝
𝜔
𝑖𝑗𝑥𝑖𝑗, 𝑖 ∈ 𝐼, 𝜔 ∈ Ω (1.20)

This relaxation is valid for arbitrary release times and deadlines.

1.5.2 Minimum Cost Problem

In the minimum cost problem, there is only a fixed cost 𝜑𝑖𝑗 associated with assigning

job 𝑗 to facility 𝑖. So we have

𝑔(x) =
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝜑𝑖𝑗𝑥𝑖𝑗

in the MILP master problem (1.10), and we set 𝛽𝜔 = 0 for 𝜔 ∈ Ω. The subproblem

decouples into a feasibility problem for each 𝑖 and 𝜔, because ℎ̂𝑖(𝑠, x̄, 𝜔) = 0.

41



A Benders cut is generated for each 𝑖 and 𝜔 when the corresponding scheduling

problem (1.11) is infeasible. A simple nogood cut is

∑︁
𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗) ≥ 1 (1.21)

We strengthen the cut heuristically by re-solving the scheduling problem |𝐽𝑖(x̄)|
times, each time removing a different job 𝑗 from 𝐽𝑖(x̄). We add the nogood cut

(1.21), with 𝑗 removed from 𝐽𝑖(x̄), whenever the scheduling subproblem is infeasible.

To create a subproblem relaxation for the master problem, one can exploit the fact

that we now have two-sided time windows [𝑟𝑗, 𝑑𝑗]. Let 𝐽(𝑡1, 𝑡2) be the set of jobs 𝑗

for which [𝑟𝑗, 𝑑𝑗] ⊆ [𝑡1, 𝑡2]. Adapting an approach from Hooker (2007), one can add

the following inequalities to the master problem for each 𝑖 ∈ 𝐼:

1

𝐾𝑖

∑︁
𝑗∈𝐽(𝑡1,𝑡2)

𝑝min
𝑖𝑗 𝑐𝑖𝑗𝑥𝑖𝑗 ≤ 𝑡2 − 𝑡1, 𝑡1 ∈ {𝑟1, . . . , 𝑟𝑛′}, 𝑡2 ∈ {𝑑1, . . . , 𝑑𝑛′′} (1.22)

where 𝑟1, . . . , 𝑟𝑛′ are the distinct release times among 𝑟1, . . . , 𝑟𝑛, and 𝑑1, . . . , 𝑑𝑛′′ the

distinct deadlines among 𝑑1, . . . , 𝑑𝑛. Some of these inequalities may be redundant,

and a method for detecting them is presented in (Hooker, 2007). Because the

relaxation must be valid across all scenarios, the processing time is set to 𝑝min
𝑖𝑗 =

min𝜔∈Ω{𝑝𝜔𝑖𝑗}.

1.5.3 Minimum Tardiness Problem

In this section, we consider a minimum tardiness problem in which jobs are all

released at time zero but have different due dates 𝑑𝑗. There are no hard deadlines,

and so we let 𝑑𝑗 = ∞ for all 𝑗 ∈ 𝐽 . As in the minimum makespan problem, there
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is no first-stage cost, so that 𝑔(x) = 0 in the MILP model (1.10). The second-stage

objective function is expected total tardiness, and we have

ℎ̂𝑖(𝑠,x, 𝜔) =
∑︁

𝑗∈𝐽𝑖(x)

(︀
𝑠𝑗 + 𝑝𝜔𝑖𝑗 − 𝑑𝑗

)︀+
in the CP scheduling problem (1.11). Here 𝛼+ = max{0, 𝛼}.

The following analytic Benders cut can be adapted from Hooker (2012):

𝛽𝜔 ≥
∑︁
𝑖∈𝐼

(︁
SP𝑖𝜔(x̄)−

∑︁
𝑗∈𝐽𝑖(x̄)

(︁ ∑︁
𝑗′∈𝐽𝑖(x̄)

𝑝𝜔𝑖𝑗′ − 𝑑𝑗

)︁+
(1− 𝑥𝑖𝑗)

)︁
(1.23)

The cut is added to (1.10) for each 𝜔 ∈ Ω. Strengthened nogood cuts similar to

those developed for the makespan problem can also be used.

Two subproblem relaxations can be adapted from Hooker (2007). The simpler one

is analogous to (1.22) and adds the following inequalities to (1.10) for each 𝑖 and 𝜔

𝛽𝑖𝜔 ≥ 1

𝐾𝑖

∑︁
𝑗′∈𝐽(0,𝑑𝑗)

𝑝𝜔𝑖𝑗′𝑐𝑖𝑗′𝑥𝑖𝑗′ − 𝑑𝑗, 𝑗 ∈ 𝐽 (1.24)

along with the bounds 𝛽𝑖𝜔 ≥ 0. A second relaxation more deeply exploits the

structure of the subproblem. For each facility 𝑖 and scenario 𝜔, let 𝜏𝜔𝑖 be a

permutation of {1, . . . , 𝑛} such that 𝑝𝜔𝑖𝜏𝜔𝑖 (1)𝑐𝑖𝜏𝜔𝑖 (1) ≤ · · · ≤ 𝑝𝜔𝑖𝜏𝜔𝑖 (𝑛)𝑐𝑖𝜏𝜔𝑖 (𝑛). We also

assume that jobs are indexed so that 𝑑1 ≤ · · · ≤ 𝑑𝑛. Then we add the following

inequalities to the master problem (1.10) for each 𝑖 and 𝜔:

𝛽𝑖𝜔 ≥ 1

𝐾𝑖

∑︁
𝑗′∈𝐽

𝑝𝜔𝑖𝜏𝜔𝑖 (𝑗′)𝑐𝑖𝜏𝜔𝑖 (𝑗′)𝑥𝑖𝜏𝜔𝑖 (𝑗′) − 𝑑𝑗 − (1− 𝑥𝑖𝑗)𝑈𝑖𝑗𝜔, 𝑗 ∈ 𝐽
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where

𝑈𝑖𝑗𝜔 =
1

𝐾𝑖

∑︁
𝑗′∈𝐽

𝑝𝜔𝑖𝜏𝜔𝑖 (𝑗′)𝑐𝑖𝜏𝜔𝑖 (𝑗′) − 𝑑𝑗

1.6 The Integer L-Shaped Method

The integer L-Shaped method is a Benders-based algorithm proposed by Laporte

and Louveaux (1993) to solve two-stage stochastic integer programs. It terminates

in finitely many iterations when the problem has complete recourse and binary

first-stage variables. It is similar to branch and check in that Benders cuts are

generated while solving the first-stage problem by branching. It differs in that it uses

subgradient cuts derived from a linear programming relaxation of the subproblem

rather than combinatorial cuts derived from the original subproblem. It also uses a

simple integer nogood cut to ensure convergence, but the cut is quite weak and does

not exploit the structure of the subproblem as does branch and check. We describe

the integer L-shaped method as it applies to minimizing makespan in the planning

and scheduling problem.

We first state an MILP model of the deterministic equivalent problem, as it will play

a benchmarking role in computational testing. We index discrete times by 𝑡 ∈ 𝑇 and

introduce a 0–1 variable 𝑧𝜔𝑖𝑗𝑡 that is 1 if job 𝑗 starts at time 𝑡 on facility 𝑖 in scenario

𝜔. The model is
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minimize
∑︁
𝜔∈Ω

𝜋𝜔𝛽𝜔 (𝑎)

subject to
∑︁
𝑖∈𝐼

𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝐽 (𝑏)

𝛽𝜔 ≥ 𝛽𝑖𝜔, 𝑖 ∈ 𝐼, 𝜔 ∈ Ω (𝑐)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (𝑑)

𝛽𝑖𝜔 ≥
∑︁
𝑡∈𝑇

(𝑡+ 𝑝𝜔𝑖𝑗)𝑧
𝜔
𝑖𝑗𝑡, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝜔 ∈ Ω (𝑒)

𝑧𝜔𝑖𝑗𝑡 ≤ 𝑥𝑖𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω (𝑓)∑︁
𝑖∈𝐼

∑︁
𝑡∈𝑇

𝑧𝜔𝑖𝑗𝑡 = 1, 𝑗 ∈ 𝐽, 𝜔 ∈ Ω (𝑔)∑︁
𝑗∈𝐽

∑︁
𝑡′∈𝑇𝜔

𝑡𝑖𝑗

𝑐𝑖𝑗𝑧
𝜔
𝑖𝑗𝑡′ ≤ 𝐾𝑖, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω (ℎ)

𝑧𝜔𝑖𝑗𝑡 = 0, 𝑖 ∈ 𝐼, 𝜔 ∈ Ω, 𝑗 ∈ 𝐽, all 𝑡 ∈ 𝑇 with 𝑡 < 𝑟𝑗 (𝑖)

𝑧𝜔𝑖𝑗𝑡 ∈ {0, 1}, 𝑖 ∈ 𝑖, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝜔 ∈ Ω (𝑗)

(1.25)

where 𝑇 𝜔
𝑡𝑖𝑗 = {𝑡′ | 0 ≤ 𝑡′ ≤ 𝑡 − 𝑝𝜔𝑖𝑗}. In the integer L-shaped method, the first stage

minimizes (1.25a) subject to (1.25b)–(1.25d) and Benders cuts that provide bounds

on 𝛽𝜔. The Benders cuts consist of classical Benders cuts derived from the linear

relaxation of the second-stage scheduling problem for each 𝑖 and 𝜔, as well as integer

cuts. If x̄ is an optimal solution of the first-stage problem, the second-stage problem
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for facility 𝑖 and scenario 𝜔 is

minimize 𝑀

subject to 𝑀 ≥
∑︁
𝑡∈𝑇

(𝑡+ 𝑝𝜔𝑖𝑗)𝑧
𝜔
𝑖𝑗𝑡, 𝑗 ∈ 𝐽𝑖(x̄)∑︁

𝑡∈𝑇

𝑧𝜔𝑖𝑗𝑡 = 1, 𝑗 ∈ 𝐽𝑖(x̄)∑︁
𝑗∈𝐽

∑︁
𝑡′∈𝑇𝜔

𝑡𝑖𝑗

𝑐𝑖𝑗𝑧
𝜔
𝑖𝑗𝑡′ ≤ 𝐾𝑖, 𝑡 ∈ 𝑇

𝑧𝜔𝑖𝑗𝑡 ∈ {0, 1}, 𝑗 ∈ 𝐽𝑖(x̄), 𝑡 ∈ 𝑇

𝑧𝜔𝑖𝑗𝑡 = 0, 𝑗 ∈ 𝐽𝑖(x̄), all 𝑡 ∈ 𝑇 with 𝑡 < 𝑟𝑗

𝑧𝜔𝑖𝑗𝑡 ∈ {0, 1}, 𝑗 ∈ 𝐽𝑖(x̄), 𝑡 ∈ 𝑇

(1.26)

The following integer L-shaped cut is used for each 𝜔 to ensure convergence:

𝛽𝜔 ≥
(︀
SP𝜔(x̄)− LB𝜔

)︀(︁ ∑︁
𝑗∈𝑆(x̄)

𝑥𝑖𝑗 −
∑︁

𝑗 ̸∈𝑆(x̄)

𝑥𝑖𝑗 − |𝑆(x̄)|+ 1
)︁
+ LB𝜔 (1.27)

where 𝑆(x̄) := {𝑖 : 𝑥𝑖 = 1} and LB𝜔 is a global lower bound on makespan under

scenario 𝜔. We obtain LB𝜔 by solving the LP relaxation of (1.25) for fixed scenario

𝜔. The same lower bound is used to strengthen the initial master problem in LBBD

and branch-and-check methods by adding bounds of the form

𝛽𝜔 ≥ LB𝜔, 𝜔 ∈ Ω. (1.28)
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1.7 Computational Study

In this section, we describe computational experiments we conducted for all three

objective functions described in Section 1.5. In addition, we use the minimum

makespan problem to test the effect of several modifications to the LBBD and integer

L-shaped methods.

One effect that has been observed in previous work (Hooker 2007, Ciré et al. 2016)

is that the relative advantage of LBBD for planning and scheduling tends to increase

with the number of facilities, for a given fixed number of jobs. In particular, the

advantage of LBBD is much less pronounced when there are only two facilities.

This is because a larger number of facilities results in more decoupling of the

subproblem and a smaller number of jobs assigned to each facility (the complexity of

the scheduling problem is highly sensitive to the number of assigned jobs). Stochastic

planning and scheduling is similar in that the subproblem is smaller when there

are more facilities, but there is a difference as well: the scheduling problem size

remains constant as the number of scenarios increases. We might therefore expect

that computational tests will show the relative advantage of stochastic LBBD to be

less with two facilities than with a greater number, while it is an open question how

its advantage will vary with the number of scenarios. To test the former hypothesis,

we design experiments with two and four facilities. To investigate the latter question,

we run tests with a wide range of scenario counts (1 to 500).

All experiments are conducted on a personal computer with a 2.80 GHz Intel® Core™

i7-7600 processor and 24 GB memory running on a Microsoft Windows 10 Pro. All

MILP and CP formulations are solved in C++ using the CPLEX and CP Optimizer

engines of IBM® ILOG® CPLEX® 12.7 Optimization Studio, respectively. We
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use a single thread in all computational experiments. We modify CP Optimizer

parameters to execute an extended filtering and DFS search. The rest of the

parameters are set to their default values for both CPLEX and CP Optimizer engines.

Lastly, we use the Lazy Constraint Callback function of CPLEX to implement

branch and check.

1.7.1 Minimum Makespan Problem

For the minimum makepsan problem, we generate problem instances by combining

ideas from Hooker (2007) and Atakan et al. (2017). We first generate the

deterministic problem as in Hooker (2007). Let |𝐼| = 𝑚 and |𝐽 | = 𝑛. The capacity

limits of the facilities is set to 𝐾𝑖 = 10 for all 𝑖 ∈ 𝐼, and integer capacity requirements

of jobs are drawn from a uniform distribution on [1, 10]. Integer release times

are drawn from a uniform distribution on [0, 2.5𝑛(𝑚 + 1)/𝑚]. For each facility

𝑖 ∈ 𝐼, integer mean processing times 𝑝𝑖𝑗 are drawn from a uniform distribution on

[2, 25− 10(𝑖− 1)/(𝑚− 1)]. This causes facilities with a higher index to process jobs

more rapidly.

We then follow Atakan et al. (2017) by perturbing the mean processing times to

obtain a set of scenarios. In particular, we first divide the jobs into two groups,

one group containing jobs 𝑖 for which 0 < 𝑝𝑖𝑗 ≤ 16, and the other group containing

the remainder of the jobs. We then generate a perturbation parameter 𝜖𝜔 for each

scenario 𝜔 ∈ Ω from a mixture of uniform distributions. Specifically, for jobs in the

first group, 𝜖𝜔 is distributed uniformly on the interval [−0.1, 0.5] with probability 0.9

and on the interval [2.0, 3.0] with probability 0.1. For jobs in the second group, 𝜖𝜔

is distributed uniformly on the interval [−0.1, 0.5] with probability 0.99 and on the

interval [1.0, 1.5] with probability 0.01. Finally, we generate the processing times
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Table 1.1: Computation times in seconds (averaged over 3 instances) of the integer L-shaped and
branch-and-check methods for 2 and 4 facilities.

2 facilities 4 facilities

Integer B&Ch B&Ch Integer B&Ch B&Ch
Tasks Scenarios L-shaped nogood analytic L-shaped nogood analytic

method cuts cuts method cuts cuts

10 1 127.3 1.5 0.9 2405.0†† 0.5 0.4
5 839.2 4.6 2.1 * 2.5 2.4

10 2316.9† 6.1 3.1 * 3.9 3.7
50 * 28.4 17.3 * 24.4 17.4

100 * 56.1 36.7 * 41.9 28.6
500 * 375.6 279.1 * 268.3 164.8

14 1 1831.6† 4.3 3.8 3016.6†† 0.9 1.7
5 * 16.3 16.9 * 5.6 4.8

10 * 37.7 26.1 * 12.4 7.3
50 * 186.0 134.4 * 88.0 34.2

100 * 411.0 357.9 * 189.5 83.2
500 * 2431.9† 2424.3† * 854.7 443.9

18 1 2416.2†† 208.3 155.5 2404.7†† 1.5 1.0
5 * 1102.4 988.4 * 57.0 20.7

10 * 2184.0 1888.3† * 116.4 39.5
50 * * * * 458.2 187.8

100 * * * * 943.7 332.7
500 * * * * 2804.5†† 2825.9††

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.

under scenario 𝜔 ∈ Ω by letting 𝑝𝜔𝑖𝑗 = ⌈𝑝𝑖𝑗(1 + 𝜖𝜔)⌉. All problem instances used

throughout this paper are publicly available (see electronic companion A.1.3).

Table 1.1 summarizes the relative performance of LBBD and the integer L-shaped

method on instances of various sizes. The table focuses on the branch-and-check

variant of LBBD because we found it to be superior to standard LBBD. Statistics
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for standard LBBD and other variants are reported in subsequent tables. The specific

methods compared are as follows:

• Integer L-shaped method. We decouple the second-stage problem by facility

and scenario, and we solve the resulting problems and their LP relaxations

using the MILP engine of CPLEX whenever a candidate incumbent solution is

identified. We then add the integer cut (1.27), as well as the classical Benders

cut from the LP relaxation for each scenario. The initial bounds (1.28) are

included in the master problem, even though they are not standard, because

previous experience indicates that they significantly enhance performance. The

subproblem relaxation (1.20) is likewise included in the master problem for fair

comparison with LBBD and branch and check, where it is standard.

• Branch and check with nogood cuts. We use (1.12) and unstrengthened nogood

cuts (1.13). We solve the decoupled subproblems by CP Optimizer. The initial

bounds (1.28) are included in the master problem.

• Branch and check with analytical cuts. We use (1.12) and analytical cuts

(1.17) rather than nogood cuts. The decoupled subproblems are solved by

CP Optimizer. The initial bounds (1.28) are again included in the master

problem.

The results indicate that branch and check is clearly superior to the L-shaped method.

It is already orders of magnitude faster in those few smaller instances where the L-

shaped method could solve the problem within an hour. Perhaps not surprisingly, the

analytic Benders cuts are almost always more effective than the nogood cuts. These

data also confirm the hypothesis that the advantage of branch and check is greater

when there are 4 facilities rather than 2, indeed dramatically greater as instance size
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increases.

Table 1.2 probes algorithmic performance more deeply by comparing computation

times and optimality gaps for seven algorithms. Three of the methods are described

above, and the remaining four are as follows:

• Deterministic equivalent MILP. We solve the deterministic equivalent model

(1.25) using the MILP engine in CPLEX, which we also use to solve the first

stage of the other six models.

• Integer L-shaped method with CP. We modify the standard method by solving

the second-stage subproblems with CP rather than MILP. Integer cuts are as

before, and classical Benders cuts are derived from the LP relaxation of the

MILP model as before. The initial bounds (1.28) and subproblem relaxation

(1.20) are again included in the master problem.

• Standard LBBD with nogood cuts. We use (1.12) and unstrengthened nogood

cuts (1.13). We solve the decoupled subproblems by CP Optimizer. The initial

bounds (1.28) are included in the master problem for comparability with the

integer L-shaped method.

• Standard LBBD with analytical cuts. We use (1.12) and analytical cuts

(1.17) rather than nogood cuts. The decoupled subproblems are solved by

CP Optimizer. The initial bounds (1.28) are again included in the master

problem.

In addition to average computation time (in seconds), Table 1.2 reports the

optimality gap obtained for each solution method, defined as (UB − LB)/UB.

For the deterministic equivalent and branch-and-check methods, UB and LB are,
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Table 1.2: Average computation time in seconds over 3 instances (upper half of table) and average
relative optimality gap (lower half) for various solution methods, based on 10 jobs and 2 facilities.

Determ. Integer Integer LBBD LBBD B&Ch B&Ch
Scenarios equiv. L-shaped L-shaped Nogood Analytic Nogood Analytic

MILP method with CP cuts cuts cuts cuts

1 2.4 127.3 27.9 2.0 0.6 1.5 0.9
5 475.8†† 839.2 149.3 12.1 3.0 4.6 2.1

10 * 2316.9† 437.8 27.4 7.3 6.1 3.1
50 * * 2517.8†† 243.1 42.8 28.4 17.3

100 * * * 952.8 118.8 56.1 36.7
500 * * * * 900.9 375.6 279.1

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 7.8 0.0 0.0 0.0 0.0 0.0 0.0

10 12.4 3.8 0.0 0.0 0.0 0.0 0.0
50 17.4 21.7 13.9 0.0 0.0 0.0 0.0

100 25.4 25.4 21.7 0.0 0.0 0.0 0.0
500 44.5 25.8 25.4 13.5 0.0 0.0 0.0

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.

respectively, the upper and lower bounds obtained from CPLEX upon solution of the

master problem. For standard LBBD, UB and LB are, respectively, the smallest

subproblem optimal value and the largest master problem optimal value obtained

during the Benders algorithhm.

As one might expect, the integer L-shaped implementations are faster than solving

the deterministic equivalent MILP, because they exploit the scenario-based block

structure of two-stage stochastic programs. We also see that the integer L-shaped

method can be significantly accelerated by solving the exact subproblem with CP

rather than MILP (to obtain upper bounds and generate the integer cut), since CP

is more effective for this type of scheduling problem.
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It is clear from Table 1.2 that all four implementations of LBBD substantially

outperform the integer L-shaped method, even when the latter uses CP. Furthermore,

the two branch-and-check implementations scale much better than standard LBBD,

due mainly to time spent in solving the master problem in standard LBBD. This

confirms the rule of thumb that branch and check is superior when solving the master

problem takes significantly longer than solving the subproblems. The results also

indicate that analytical Benders cuts are more effective than unstrengthened nogood

cuts in both standard LBBD and branch and check.

Table 1.3 provides a more detailed comparison of the integer L-shaped method with

the branch-and-check implementations. The L-shaped method with CP is shown, as

we have seen that it is faster than solving the subproblem with MILP. Interestingly,

solving a CP formulation of the subproblem is much faster than solving the LP

relaxation of an MILP formulation. This illustrates the computational cost of using

the larger MILP formulation. We also see that the stronger analytical cuts reduce the

number of times the subproblem must be solved, and therefore the number of cuts

generated and the resulting size of the master problem. Furthermore, the number of

subproblem calls is roughly constant as the number of scenarios increases. Finally,

the subproblem solutions consume about half of the total computation time in the

branch-and-cut algorithms. Previous experience suggests that for best results, the

computation time should, in fact, be about equally split between the master problem

and subproblem (Ciré et al. 2016).

Given the computational burden of solving the LP relaxation of the MILP subprob-

lem, we experimented with running the integer L-shaped method with only integer

cuts. This obviates the necessity of solving the LP relaxation of an MILP model.

The results appear in Table 1.4. The three implementations shown in the table are
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Table 1.3: Analysis of the integer L-shaped method with CP subproblems and two branch-and-
check algorithms. Each number is an average over 3 problem instances.

Integer L-shaped with CP B&C with nogood cuts B&C with analytical cuts

Time (sec) Statistics Time (sec) Statistics Time (sec) Statistics

Scenarios Total CPsub LPsub Cuts Calls TotalCPsub Cuts Calls Total CPsub Cuts Calls

1 27.9 0.9 2.1 450 452 1.5 0.7 282 150 0.9 0.4 180 95
5 149.3 5.6 16.4 2692 541 4.6 2.1 1289 144 2.1 0.8 658 79

10 437.8 15.8 73.4 5114 515 6.1 3.1 2390 134 3.1 1.3 1243 75
50 2517.8† 97.3† 500.2† 20002† 401† 28.4 14.8 12616 148 17.3 7.6 7684 94

100 * * * * * 56.1 29.7 25880 152 36.7 16.0 15800 99
500 * * * * * 375.6 169.0 127404 150 279.1 76.9 76029 96

†Average excludes two instances that exceeded an hour.
*Computation terminated for all 3 instances after one hour.

exactly the same except for the cuts used and therefore permit a direct comparison

of the effectiveness of the cuts. The integer L-shaped method actually runs faster

using only integer cuts, without any classical Benders cuts obtained from the LP

relaxation. We also see that the analytical cuts are much more effective than integer

cuts, which are quite weak.

Finally, these data allow us to address the question, posed earlier, as to whether the

advantage of branch and check relative to the L-shaped method increases with the

number of scenarios. The advantage appears to be roughly constant for 2 facilities

and perhaps increasing for 4 facilities, although the latter is uncertain because the

L-shaped method (even with no LP relaxation) quickly times out.

We also experimented with a different distribution of processing times. We simulated

a situation in which processing proceeds normally except when there is a delay due

to mechanical breakdown or other causes. Accordingly, we defined processing time

to be a random variable that is equal to the mean quantity specified above with 80%
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Table 1.4: Performance of the integer L-shaped method with integer cuts only (no cuts from the
LP relaxation).

2 facilities 4 facilities

Integer L-shaped B&Ch Integer L-shaped B&Ch
Tasks Scenarios L-shaped integer analytic L-shaped integer analytic

method cuts only cuts method cuts only cuts

10 1 127.3 2.8 0.9 2405.0†† 78.1 0.4
5 839.2 9.0 2.1 * 906.5 2.4

10 2316.9† 16.0 3.1 * 2213.0† 3.7
50 * 87.2 17.3 * * 17.4

100 * 209.5 36.7 * * 28.6
500 * 1166.6 279.1 * * 164.8

14 1 1831.6† 48.9 3.8 3016.6†† 2403.9†† 1.7
5 * 229.5 16.9 * 2402.8†† 4.8

10 * 284.7 26.1 * * 7.3
50 * 1850.6 134.4 * * 34.2

100 * 2810.4†† 357.9 * * 83.2
500 * * 2424.3† * * 443.9

18 1 2416.2†† 1358.6† 155.5 2404.7†† 1346.8† 1.0
5 * 3048.4†† 988.4 * 2405.5†† 20.7

10 * 3477.2†† 1888.3† * * 39.5
50 * * * * * 187.8

100 * * * * * 332.7
500 * * * * * 2825.9††

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.

probability, but 1.5 times as large with 15% probability, and 4 times as large as 5%

probability. The results appear in Table 1.5. Comparison with Table 1.4 reveals that

the relative advantage of branch and check is even greater with this processing time

distribution than with the original one.
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Table 1.5: Average computation time for the makespan problem with alternate processing times.

2 facilities 4 facilities

L-shaped B&C L-shaped B&C
Jobs Scenarios integer analytic integer analytic

cuts only cuts cuts only cuts

10 1 18.5 0.3 3246.3 0.9
5 141.3 2.6 * 1.9

10 292.3 2.7 * 2.8
50 2425.0 11.6 * 15.1

100 * 22.3 * 21.5
500 * 129.3 * 149.1

14 1 1971.2 5.2 1368.6 0.8
5 * 18.1 * 3.7

10 * 43.3 * 5.6
50 * 241.8 * 26.2

100 * 704.4 * 60.1
500 * 3503.4 * 407.4

18 1 * 213.3 1770.1 2.7
5 * 2190.4 * 10.1

10 * 2932.3 * 31.5
50 * * * 316.6

100 * * * 634.3
500 * * * 3162.8

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.

1.7.2 Minimum Cost Problem

In this section, we present the results of the computational experiments on the

minimum cost problem. We use the same instances we used for the minimum

makespan problem, with the addition of costs and deadlines. The fixed cost

associated with assigning jobs to facility 𝑖 is drawn from a uniform distribution

on the interval [400/𝛼, 800/𝛼], where 𝛼 = 25− (𝑖−1)(10/(𝑚−1)), so that the faster
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facilities tend to be more expensive. The deadline 𝑑𝑗 of job 𝑗 is obtained as follows.

Let 𝐿 = 20× 𝑛/𝑚. We set 𝑑𝑗 = 𝑟𝑗 + 𝛽 where 𝑟𝑗 is the release time of job 𝑗 and 𝛽 is

drawn from a uniform distribution on [0.75× 𝛼𝐿, 1.25× 𝛼𝐿] with 𝛼 = 2/3.

Table 1.6: Average computation time in seconds over 3 instances for the minimum cost problem.

2 facilities 4 facilities

Determ. B&Ch Determ. B&Ch
Jobs Scenarios equiv. analytic equiv. analytic

MILP cuts MILP cuts

10 1 0.3 0.1 0.2 0.2
5 4.9 0.8 1.2 1.2

10 3.7 1.7 2.7 1.7
50 6.5 4.9 15.1 9.0

100 19.2 6.1 18.5 15.5
500 353.1 31.9 201.5 82.5

14 1 4.1 0.3 0.6 0.3
5 19.0 1.5 2.8 1.5

10 46.6 3.3 4.9 2.6
50 85.5 9.1 24.7 10.5

100 445.4 19.9 75.4 20.6
500 * 156.9 844.0 130.0

18 1 23.2 32.8 2.8 1.8
5 56.5 97.7 17.6 4.8

10 416.8 128.6 38.4 11.3
50 2527.9†† 587.1 107.2 64.7

100 3348.2†† 1425.1† 335.1 133.9
500 * 2526.0†† * 716.9

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.

We compare LBBD performance solely with the deterministic equivalent MILP

formulation, since the type of integer cut used in the L-shaped method is an

optimality cut and is not defined for infeasible subproblems. The MILP model is the
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same as (1.25) except that the objective function is replaced by
∑︀

𝑖∈𝐼
∑︀

𝑗∈𝐽 𝜑𝑖𝑗𝑥𝑖𝑗,

𝛽 variables are eliminated, and constraint (i) is modified to reflect two-sided time

windows.

As is evident in Table 1.6, the deterministic equivalent MILP performs better on this

problem than on the minimum makespan problem. However, the branch-and-check

method scales better than the MILP formulation and is superior for solving the larger

instances.

1.7.3 Minimum Tardiness Problem

In this section, we present the results of the computational experiments on the

minimum tardiness problem. We use the same instances as for the minimum

makespan problem, with due dates added. The due dates are obtained in the same

fashion as the deadlines for the minimum cost problem, except that we set 𝛼 equal

to 1/3 rather than 2/3.

The MILP model we used for the integer L-shaped method is the same as (1.25)

except that constraint (i) is modified to reflect two-sided time windows, constraints

(c) and (e) are replaced by the following:

𝛽𝜔 ≥
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝛽𝑖𝑗𝜔, 𝜔 ∈ Ω (𝑐)

𝛽𝑖𝑗𝜔 ≥
∑︁
𝑡∈𝑇

(𝑡+ 𝑝𝜔𝑖𝑗)𝑧
𝜔
𝑖𝑗𝑡 − 𝑑𝑗, 𝛽𝑖𝑗𝜔 ≥ 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝜔 ∈ Ω (𝑒)

The implementation of the integer L-shaped method is otherwise identical to the one

applied to the minimum makespan problem. We use the logic-based cuts and the

simpler subproblem relaxation (1.24) presented in Section 1.5.3.
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Table 1.7: Average computation time in seconds over 3 instances for the minimum tardiness problem.

2 facilities 4 facilities

Determ. L-shaped B&Ch Determ. L-shaped B&Ch
Jobs Scenarios equiv. integer analytic equiv. integer analytic

MILP cuts only cuts MILP cuts only cuts

10 1 3.1 4.0 2.7 2.1 * 7.5
5 36.7 8.5 4.8 7.9 * 31.6

10 868.4 19.7 10.8 29.1 * 60.2
50 2614.5†† 100.3 55.1 248.4 * 280.0

100 2787.5†† 215.8 110.1 1312.3 * 1108.8
500 * 1262.3 641.9 * * *

14 1 4.7 7.9 2.6 2.9 * 9.9
5 1307.9 71.5 14.6 21.4 * 25.5

10 2431.8†† 94.1 16.3 45.4 * 36.9
50 * 387.6 92.0 1574.1† * 374.3

100 * 969.1 152.4 2945.2†† * 782.7
500 * 2765.1†† 762.7 * * 2605.2†

18 1 5.8 18.1 5.3 3.6 * 7.8
5 250.0 12.8 6.3 162.6 * 24.3

10 599.5 94.3 25.4 1092.6 * 37.3
50 * 2415.1†† 1075.9 * * 158.2

100 * 2408.1†† 1573.3† * * 382.8
500 * 2429.6†† 2532.0†† * * 2390.4†

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.
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The results in Table 1.7 shows that the branch-and-check method clearly outperforms

both of the benchmark methods. Interestingly, the integer L-shaped method is unable

to solve any of the instances even without the overhead created by an LP relaxation.

1.8 Conclusion

In this study, we applied logic-based Benders decomposition (LBBD) to two-

stage stochastic optimization with a scheduling task in the second stage. While

Benders decomposition is often applied to such problems, notably in the integer

L-shaped method, the necessity of generating classical Benders cuts requires that

the subproblem be formulated as a mixed-integer/linear programming problem and

cuts generated from its continuous relaxation. We observed that this process incurs

substantial computational overhead that LBBD avoids by generating logic-based

cuts directly from a constraint programming model of the scheduling subproblem.

Although the integer cuts used with the L-shaped method can be regarded as a special

case of logic-based Benders cuts, they are extremely weak, even weaker than simple

nogood cuts often used in an LBBD context. Furthermore, the type of subproblem

analysis that has been used for past applications of LBBD permits much stronger

logic-based cuts to be derived, again without the overhead of obtaining a continuous

relaxation.

Computational experiments found that, due to these factors, LBBD solves a generic

stochastic planning and scheduling problem much more rapidly than the integer

L-shaped method. The speedup is several orders of magnitude for the minimum

makespan problem when a branch-and-check variant of LBBD is used. Branch and

check is also superior when minimizing assignment cost or total tardiness, although its
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advantage for the minimum cost problem is less pronounced. These outcomes suggest

that LBBD could be a promising approach to other two-stage stochastic and robust

optimization problems with integer or combinatorial recourse, particularly when the

subproblem is relatively difficult to model as an integer programming problem.

Acknowledgement. This chapter is published in INFORMS Journal of Computing,

see Elçi and Hooker (2022).
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Chapter 2

On Logic-Based Benders

Decomposition and

Sequence-Dependent Scheduling

This chapter is a joint work with John Hooker.

2.1 Introduction

Sequence-dependent scheduling has played a fundamental role in designing manufac-

turing and business systems (Allahverdi, 2015). In many practical applications, there

are several facilities (machines) available to process tasks and a setup time is needed

to prepare the facilities between each task. When the setup time is independent

of the sequence of the tasks, it can easily be captured as part of the processing

time. However, the setup time in many real-world applications is sequence-dependent
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(Allahverdi and Soroush, 2008) and it is crucial to develop models and algorithms

that can account for the setup time correctly.

In this paper, we focus on a parallel (unrelated) machine scheduling problem

(PMSP) with sequence-dependent setup times in which the objective is makespan

minimization. Using the three-field notation introduced by Graham et al. (1979), the

problem that we study belongs to the class of (𝑅, STsd, 𝐶max). For greater generality,

we assume that each task must be processed within a time window, i.e, the release

times and deadlines of the tasks can be different for each task.

Parallel machine scheduling problem with sequence- dependent setup times and hard

time windows (PMSP-TW) is notoriously a very difficult problem to solve. It is NP-

Hard (Lenstra et al., 1977) and exact solution methods are scarce in the literature.

Most studies focus on developing a heuristic method (see, e.g., Ying et al., 2012; Lin

and Ying, 2014).

Among the exact methods, Tran et al. (2016) develop a logic-Based Benders

decomposition (LBBD) algorithm to solve PMSP without time windows. In our

study, we extend their work and derive novel logic-based Benders cuts for the case

with hard time-windows. We summarize our contributions as follows:

• We analyze the LBBD cuts proposed in Hooker (2007) and Elçi and Hooker

(2022).

– We improve the LBBD cuts in Elçi and Hooker (2022) that are proposed

for the planning and scheduling problem with no deadlines but with non-

zero release times.

– We show that the LBBD cuts proposed in this study and in Hooker (2007)
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are tight, i.e., cannot be dominated by another set of LBBD cuts.

– We introduce another set of LBBD cuts for the planning and scheduling

problem considered in Elçi and Hooker (2022).

• We develop LBBD cuts for PMSP-TW.

– This cut generalizes the some of the LBBD cuts proposed earlier in the

literature. First, it generalizes the cuts proposed in Hooker (2007) and

Elçi and Hooker (2022) so that the scheduling problem can feature both

non-zero release times and hard deadlines. Furthermore, it generalizes

the LBBD cuts proposed in Tran et al. (2016) to a setup with hard time

windows.

• We develop a branch-and-check algorithm for PMSP-TW. Our method is one

of the very few exact methods to solve the PMSP with both release times and

due dates.

• We present an extensive computational study that shows the effectiveness of

the proposed solution method in various settings.

– We show that our new LBBD cuts for the planning and scheduling problem

considered in Elçi and Hooker (2022) together with the improved version

of the existing cuts perform better.

– We demonstrate that the proposed branch-and-check algorithm for PMSP-

TW performs better than the benchmark method.

The rest of the paper is organized as follows. In the next section, we review the

relevant literature. In Section 2.3 we describe PMSP-TW in detail. The next two
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chapters are devoted to the analysis of the planinng and scheduling problem and

PMSP-TW, respectively. We present the computational experiments in Section 2.6

and conclude our paper in Section 2.7.

2.2 Previous Work

Our work is closely related to two bodies of literature: (i) sequence-dependent

machine scheduling and (ii) logic-based Benders decomposition for scheduling and

routing. In this section, we review the relevant papers and summarize our

contributions to each body of literature.

2.2.1 Sequence-Dependent Machine Scheduling

The setup cost/time is a very crucial in designing scheduling systems. Allahverdi

and Soroush (2008) discusses the role the setup cost/time play in today’s modern

manufacturing systems. Accordingly, there is a growing body of literature that

focuses on modeling and algorithm design for scheduling problems with sequence-

dependent setup cost/time. We refer the readers to Allahverdi (2015) for an excellent

review on scheduling problems with setup time/cost.

In this study, we focus on PMSP-TW that incorporates setup time as part of

the scheduling problem. PMSP-TW generalizes PMSP so as to feature hard time

windows for each task. The objective function that we consider is makespan

minimization. Within the PMSP literature, there are several studies that focus

on makespan minimization. Most of the studies develop a heuristic/metaheuristic

method. Among these, we name hybrid artificial bee colony algorithm (Lin and

Ying, 2014), and a restricted simulated annealing algorithm (Ying et al., 2012).
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Both of these studies assume that the release times are equal to zero and there are

no deadlines.

The literature on sequence-dependent machine scheduling with time windows is

scarce. Ying and Lin (2012) study PMSP with sequence-dependent setup times and

deadline constraints. They propose a heuristic artificial-bee-colony-based algorithm

to solve this problem. Jula and Rafiey (2012) consider a single machine with

sequence-dependent setup times and strictly enforced time-window constraints on

the start times of each task. They develop a heuristic algorithm based on network

flow methods.

The literature on exact solution methods for PMSP is scarce too. Rocha et al.

(2008) focus on a scheduling problem with unrelated parallel machines, sequence

and machine-dependent setup times, due dates and weighted tasks. The objective

function is to minimize the sum of the makespan and weighted total tardiness. They

develop an exact branch-and-bound algorithm. Tran et al. (2016) focus on PMSP

where the objective is to minimize makespan. They develop an exact branch-and-

check method.

Our main contributions to the sequence-dependent machine scheduling literature is

to introduce a PMSP model that features hard time windows and propose an exact

solution method based on the logic-based Benders decomposition framework.

We finish this section by noting that PMSP-TW is very closely related to vehicle

routing problem with time windows (VRP-TW). There is a very rich literature on

VRP-TW, we refer the reader to Toth and Vigo (2002) for an excellent overview. Our

work is a step forward to devise an exact decomposition-based method for VRP-TW.
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2.2.2 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) is a well celebrated framework that

offers a method to solve large-scale combinatorial optimization problems exactly. It

is introduced by Hooker (2000a) and further studied in Hooker and Ottosson (2003).

Branch-and-check is a variant of LBBD which is also introduced in Hooker (2000a)

and the first computational experiments are presented in Thorsteinsson (2001).

LBBD framework has found use for exact solution methods in applications including

planning and scheduling problem (Hooker, 2007), plant location problem (Fazel-

Zarandi and Beck, 2012), and network design (Solak et al., 2014). We refer the

readers to Hooker (2019b) for an overview on LBBD for large-scale optimization.

Within the LBBD literature, Tran et al. (2016) is the closest study to our work. They

develop a branch-and-check method to solve PMSP. Furthermore, Hooker (2007) and

Elçi and Hooker (2022) are related to our study in that we improve and generalize

the logic-based Benders cuts proposed in those studies.

2.3 The Problem

We consider a generic sequence-dependent parallel machine scheduling problem. The

objective is to minimize makespan. We suppose that each task 𝑗 ∈ 𝐽 has a processing

time 𝑝𝑖𝑗 on facility 𝑖 ∈ 𝐼. In addition, each task 𝑗 ∈ 𝐽 is available within a time

window denoted by [𝑟𝑗, 𝑑𝑗]. In our notation, 𝑟𝑗 and 𝑑𝑗 denote the release time and

deadline of each task 𝑗 ∈ 𝐽 , respectively. We assume that there are no precedence

constraints among tasks. Furthermore, each facility (machine) is available all the

time and can handle one task at a time with no preemption.
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The setup time needed to prepare facilities is sequence and facility dependent. We

have that 𝑠𝑖𝑗𝑘 denotes the setup time if task 𝑘 is processed right after task 𝑗 on facility

𝑖. We assume that the setup times follow the triangle inequality: 𝑠𝑖𝑗𝑘 ≤ 𝑠𝑖𝑗𝑙 + 𝑠𝑖𝑙𝑘.

This assumption is common in the literature, see Kohl et al. (1999) for a discussion

on time-related triangular inequality.

In the remainder of this section, we present two exact solution methods to solve

PMSP-TW. The first one is a mixed-integer programming model (MIP) that is similar

to the MIP formulation given in Toth and Vigo (2002) for VRP-TW. The second

method is a branch-and-check algorithm that relies on our analysis of the sequence-

dependent scheduling problem in Section 2.5.

2.3.1 MIP Formulation of PMSP-TW

In this section, we present an MIP model for PMSP-TW. We first define the decision

variables of our problem as follows:

𝑦𝑖𝑗𝑘 =

⎧⎪⎨⎪⎩1, if task 𝑘 ∈ 𝐽 is processed directly after task 𝑗 ∈ 𝐽 on facility 𝑖 ∈ 𝐼

0, otherwise

𝑤𝑖𝑗 = the start time of processing of task 𝑗 ∈ 𝐽 on facility 𝑖 ∈ 𝐼.

We suppose that 𝐽 = {1, . . . , 𝑛} denote the set of tasks. Let 0 and 𝑛+ 1 be dummy

tasks and 𝐽 := {0, . . . , 𝑛 + 1}. Let 𝐽+(𝑗) and 𝐽−(𝑗) denote the set of tasks that

can succeed and precede a given task 𝑗 ∈ 𝐽 , respectively. By definition, the dummy

task 0 cannot succeed any task, and the dummy task 𝑛+1 cannot precede any task.
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Using the above notation, we next present the MIP model.

minimize 𝐶max (2.1a)

subject to 𝐶max ≥ 𝑤𝑖,𝑛+1, 𝑖 ∈ 𝐼, (2.1b)∑︁
𝑖∈𝐼

∑︁
𝑘∈𝐽+(𝑗)

𝑦𝑖𝑗𝑘 = 1, 𝑗 ∈ 𝐽, (2.1c)

∑︁
𝑗∈𝐽+(0)

𝑦𝑖0𝑗 = 1, 𝑖 ∈ 𝐼, (2.1d)

∑︁
𝑘∈𝐽+(𝑗)

𝑦𝑖𝑗𝑘 −
∑︁

𝑘∈𝐽−(𝑗)

𝑦𝑖𝑘𝑗 = 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (2.1e)

∑︁
𝑗∈𝐽−(𝑛+1)

𝑦𝑖𝑗,𝑛+1 = 1, 𝑖 ∈ 𝐼, (2.1f)

𝑤𝑖𝑗 + 𝑝𝑖𝑗 + 𝑠𝑖𝑗𝑘 − 𝑤𝑖𝑘 ≤
(︀
1− 𝑦𝑖𝑗𝑘

)︀
𝑀𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽+(𝑗),

(2.1g)

𝑟𝑗
∑︁

𝑘∈𝐽+(𝑗)

𝑦𝑖𝑗𝑘 ≤ 𝑤𝑖𝑗 ≤ 𝑑𝑗
∑︁

𝑘∈𝐽+(𝑗)

𝑦𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (2.1h)

𝑤𝑖𝑗 ≥ 0, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (2.1i)

𝑦𝑖𝑗𝑘 ∈ {0, 1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽+(𝑗). (2.1j)

The objective function (2.1a) minimizes the makespan. We make sure that each

task is assigned to a facility via constraint set (2.1c). Constraint sets (2.1d)− (2.1f)

make sure that the tasks are correctly scheduled. Constraint sets (2.1g) and (2.1h)

guarantee that time-window considerations are respected. The non-negativity and

binary restrictions are given in constraint sets (2.1i) and (2.1j).

The time-window constraints given in (2.1g) features non-linear terms. We linearize
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such terms using the fact that variables y are binary as follows:

𝑤𝑖𝑗 + 𝑝𝑖𝑗 + 𝑠𝑖𝑗𝑘 − 𝑤𝑖𝑘 ≤
(︀
1− 𝑦𝑖𝑗𝑘

)︀
𝑀𝑖𝑗𝑘, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐽+(𝑗),

Here 𝑀𝑖𝑗𝑘 are large constants (Toth and Vigo, 2002). We let 𝑀𝑖𝑗𝑘 = max{𝑑𝑗 + 𝑠𝑖𝑗𝑘 +

𝑝𝑗𝑘 − 𝑟𝑘, 0}.

2.3.2 Logic-Based Benders Decomposition for PMSP-TW

In this section, we show how we use logic-based Benders decomposition framework to

solve PMSP-TW. We define the following decision variables to be used in the master

problem:

𝑥𝑖𝑗 =

⎧⎪⎨⎪⎩1, if task 𝑗 ∈ 𝐽 is served by facility 𝑖 ∈ 𝐼

0, otherwise

To this end, we have the following master problem.

minimize 𝛽 (2.2a)

subject to 𝛽 ≥ 𝛽𝑖, 𝑖 ∈ 𝐼, (2.2b)∑︁
𝑖∈𝐼

𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝐽, (2.2c)

subproblem relaxation, (2.2d)

0 ≥ 𝐵fea
𝑖,x̄(x) for all x̄ that yields infeasibility, (2.2e)

𝛽𝑘 ≥ 𝐵opt
𝑖,x̄ (x), 𝑖 ∈ 𝐼, (2.2f)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼. (2.2g)
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Let 𝐽𝑖(x̄) denote the set of tasks assigned to facility 𝑖 at a given iteration.

The subproblem decouples into separate facility-specific problems. We model the

subproblem as a constraint programming model (CP) model. The subproblem for

facility 𝑖 ∈ 𝐼 has the following form.

minimize 𝑀 (2.3a)

subject to 𝑀 ≥ 𝑏𝑗 + 𝑝𝑖𝑗, 𝑗 ∈ 𝐽𝑖(x̄, (2.3b)

noOverlap
(︁(︀

𝑏𝑗
⃒⃒
𝑗 ∈ 𝐽𝑖(x̄)

)︀
,
(︀
𝑝𝑖𝑗
⃒⃒
𝑗 ∈ 𝐽𝑖(x̄)

)︀
,
(︀
𝑠𝑖𝑗𝑘

⃒⃒
𝑗, 𝑘 ∈ 𝐽𝑖(x̄)

)︀)︁
,

(2.3c)

𝑏𝑗 ∈ [𝑟𝑗, 𝑑𝑗 − 𝑝𝑖𝑗], 𝑗 ∈ 𝐽𝑖(x̄) (2.3d)

In this formulation, 𝑏𝑗 ∈ 𝐽 denote the start time of task 𝑗. noOverlap is a constraint

available in many commercial CP solvers. Furthermore, some solvers allow the

modelling of sequence-dependent scheduling via a noOverlap constraint. We refer

the readers to Laborie et al. (2018) for a detailed explanation of the modeling of

sequence-dependent single-facility scheduling problem via IBM CP Optimizer.

The above master problem is a reformulation of the original problem (2.1). It relies

on the existence of valid Benders feasibility and optimality cuts shown in equations

(2.2e) and (2.2f), respectively. In the next section, we describe the details of the

branch-and-check algorithm that makes use of the LBBD-based formulation (2.2).

2.3.3 Outline of the Branch-and-Check Algorithm

We propose the following branch-and-check algorithm to solve PMSP-TW. The above

pseudo-code summarizes the major steps of our branch-and-check algorithm. In the

72



Initialization;
Invoke Solver to solve the relaxed master problem;
while Solver determines that optimality gap is greater than the threshold do

Identify a new candidate incumbent solution x̄ and 𝛽;
for 𝑖 ∈ 𝐼 do

Update the subproblem formulation (2.3) based on 𝐽𝑖(x̄);
Solve the subproblem;
if If the subproblem is infeasible then

Add a feasibility cut;
Break the for-loop and continue with a new candidate incumbent
solution;

else
Let SP𝑖(x̄) denote the optimal value of the subproblem;
if 𝛽𝑖 < SP𝑖(x̄) then

Add an optimality cut;
end

end
end

end
Algorithm 1: Branch-and-check algorithm for PMSP-TW.
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remainder of this section, we provide some implementation details of our proposed

algorithm. We defer the discussion on optimality cuts to Section 2.5 as the derivation

of the optimality cuts requires an analysis of the combinatorial structure of the

sequence-dependent scheduling problem.

We use the following feasibility cuts whenever an infeasible subproblem is idendified.

𝐵fea
𝑖,x̄(x) = 1−

∑︁
𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗). (2.4)

Furthermore, we stop solving the subproblems corresponding to the other facilities,

once an infeasible subproblem is identified.

Lastly, the following inequalities are valid for the master problem (Hooker, 2007).

𝛽𝑖 ≥
∑︁
𝑗∈𝐽

𝑝𝑖𝑗𝑥𝑖𝑗 (2.5)

We use the above inequalities as subproblem relaxation as part of the relaxed master

problem during the initialization stage of our branch-and-check algorithm

2.4 Revisiting the Planning and Scheduling Prob-

lem

In this section, we revisit the planning and scheduling problem studied in Hooker

(2007) and Elçi and Hooker (2022). We begin by presenting two lemmas that

establish valid lower bounds for the makespan problem.
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Lemma 7. (Elçi and Hooker, 2022) Consider a minimum makespan problem 𝑃 in

which each task 𝑗 ∈ 𝐽 has release time 𝑟𝑗 and processing time 𝑝𝑗, with no deadlines.

Let 𝑀* denote the minimum makespan for 𝑃 , and 𝑀̂ the minimum makespan for

the problem 𝑃 that is identical to 𝑃 except that the tasks in a nonempty set 𝐽 ⊂ 𝐽

are removed. Then

𝑀* − 𝑀̂ ≤ ∆+ 𝑟+ − 𝑟− (2.6)

where ∆ =
∑︀

𝑗∈𝐽 𝑝𝑗, and 𝑟+ = max𝑗∈𝐽{𝑟𝑗} and 𝑟− = min𝑗∈𝐽{𝑟𝑗} are the latest and

earliest release times of the tasks in set 𝐽 .

Lemma 8. (Hooker, 2007) Consider a minimum makespan problem 𝑃 in which each

task 𝑗 ∈ 𝐽 has deadline 𝑑𝑗 and processing time 𝑝𝑗. Assume that all tasks are released

at time 0. Let 𝑀* denote the minimum makespan for 𝑃 , and 𝑀̂ the minimum

makespan for the problem 𝑃 that is identical to 𝑃 except that the tasks in a nonempty

set 𝐽 ⊂ 𝐽 are removed. Then

𝑀* − 𝑀̂ ≤ ∆+ 𝑑+ − 𝑑− (2.7)

where ∆ =
∑︀

𝑗∈𝐽 𝑝𝑗, and 𝑑+ = max𝑗∈𝐽{𝑑𝑗} and 𝑑− = min𝑗∈𝐽{𝑑𝑗} are the latest and

earliest deadline of the tasks in set 𝐽 .

We next show how to improve Lemma 7.

Lemma 3 - improved. Consider the same problem in Lemma 7. We have that

𝑀* − 𝑀̂ ≤ ∆+ 𝐶 (2.8)

where 𝐶 = max{0, 𝑟+ − 𝑟− − 𝑝−} with ∆ =
∑︀

𝑗∈𝐽 𝑝𝑗, 𝑟+ = max𝑗∈𝐽{𝑟𝑗}, 𝑟− =
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min𝑗∈𝐽{𝑟𝑗} and 𝑝− = min𝑗∈𝐽{𝑝𝑗}.

Proof. Consider any solution of 𝑃 with makespan 𝑀̂ . We will construct a feasible

solution for 𝑃 by extending this solution.

There are two cases to consider. Suppose that 𝑟+ − 𝑟− − 𝑝− > 0. If 𝑀̂ > 𝑟+,

we schedule all the tasks in 𝐽 sequentially starting from time 𝑀̂ . This is a feasible

solution for 𝑃 , and we have 𝑀* ≤ 𝑀̂+∆. The lemma follows because 𝑟+−𝑟−−𝑝− >

0. If 𝑀̂ < 𝑟+, we schedule all the tasks in 𝐽 sequentially starting from time 𝑟+. Again

this is a feasible solution for 𝑃 and we have that 𝑀* ≤ 𝑟+ +∆. This implies

𝑀* − 𝑀̂ ≤ 𝑟+ − 𝑀̂ +∆

The lemma follows because 𝑀̂ is at least 𝑟− + 𝑝−.

Now consider the case 𝑟+ − 𝑟− − 𝑝− < 0. Since 𝑟− + 𝑝− > 𝑟+, we have that 𝑀̂ > 𝑟+.

We schedule all the tasks in 𝐽 sequentially after 𝑀̂ . This is a feasible solution for 𝑃 ,

and we have that 𝑀* ≤ 𝑀̂ +∆. The lemma follows since 𝐶 = 0.

This bound yields a logic-based Benders cut for the stochastic planning and

scheduling problem studied in Elçi and Hooker (2022).

Theorem 9. The following is a valid Benders cut for the minimum makespan

problem with no deadlines.

𝛽𝑖𝜔 ≥

⎧⎪⎪⎨⎪⎪⎩
SP𝑖𝜔(x̄)−

(︁ ∑︁
𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 + 𝐶

)︁
, if 𝑥𝑖𝑗 = 0 for some 𝑗 ∈ 𝐽𝑖(x̄)

SP𝑖𝜔(x̄), otherwise

⎫⎪⎪⎬⎪⎪⎭ , 𝑖 ∈ 𝐼

(2.9)
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where 𝐽𝑖(x̄) = {𝑗 ∈ 𝐽 : 𝑥𝑖𝑗 = 1}, 𝐶 = max{0, 𝑟+−𝑟−−𝑝−} with 𝑟+ = max𝑗∈𝐽𝑖(x̄){𝑟𝑗},
𝑟− = min𝑗∈𝐽𝑖(x̄){𝑟𝑗} and 𝑝− = min𝑗∈𝐽𝑖(x̄){𝑝𝑗}.

In order to linearize the cut (2.9), we first establish the following lemma.

Lemma 10. Consider the following non-linear Benders cut.

𝛽 ≥

⎧⎪⎪⎨⎪⎪⎩
SP(z̄)−

(︁ ∑︁
𝑗∈𝐽(z̄)

(1− 𝑧𝑗)𝑐𝑗 + 𝐶
)︁
, if 𝑧𝑗 = 0 for some 𝑗 ∈ 𝐽(z̄)

SP(z̄), otherwise

⎫⎪⎪⎬⎪⎪⎭ (2.10)

where z̄ is a given binary solution of the master problem, SP(z̄) is the optimal value

of the subproblem and 𝐽(z̄) = {𝑗 ∈ 𝐽 : 𝑧𝑗 = 1}. Suppose that the constants 𝑐𝑗 and 𝐶

are non-negative constants. Then the cut can be linearized as follows:

𝛽 ≥ SP(z̄)−
∑︁

𝑗∈𝐽(z̄)

(1− 𝑧𝑗)(𝑐𝑗 + 𝐶) (𝑎)

𝛽 ≥ SP(z̄)−
∑︁

𝑗∈𝐽(z̄)

(1− 𝑧𝑗)𝑐𝑗 − 𝐶 (𝑏)
(2.11)

Proof. Let 𝑘 =
∑︀

𝑗∈𝐽(z̄)(1 − 𝑧𝑗). If 𝑘 = 0, (2.11a) is identical to the second line of

(2.10). Furthermore, (2.11b) is dominated by (2.11a). Therefore (2.11) is valid.

If 𝑘 = 1, both (2.11a) and (2.11b) are identical to the first line of (2.10) and

therefore valid. If 𝑘 ≥ 2, (2.11b) is identical to the first line of (2.10), while (2.11a)

is dominated by (2.11b). Therefore (2.11) is valid.

The lemma above is powerful to linearize any logic-based Benders cut that has the

same non-linear structure of (2.10), see, for example, Corollary 1 and 2 in Elçi and
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Hooker (2022). We also linearize the cut (2.9) using Lemma 10.

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)(𝑝
𝜔
𝑖𝑗 + 𝐶) (𝑎)

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝑝
𝜔
𝑖𝑗 − 𝐶 (𝑏)

(2.12)

Corollary 11. The inequalities (2.12) yield a valid Benders cut equivalent to (2.9).

In the remainder of this section, we will show that the lower bounds presented above

cannot be improved.

We say that a lower bound for a logic-based cut is tight if there is an instance for

which the lower bound holds as an equality. If the lower bound is tight for a logic-

based cut, it means that it is the best cut one can find (more correctly, it cannot be

dominated by another cut).

Theorem 12. The lower bound given in (2.8) is tight.

Proof. Let 𝐽 = {1, 2}. Suppose that 𝑟1 < 𝑟2 and 𝑝1 < 𝑝2. We have that 𝑟+ = 𝑟2,

𝑟− = 𝑟1, and 𝑝− = 𝑝1. Let 𝐽 = {2} so that we remove task 2 from the set 𝐽 . We

have that 𝑀* = 𝑟2 + 𝑝2 and 𝑀̂ = 𝑟1 + 𝑝1. Suppose that 𝑟1 + 𝑝1 < 𝑟2. This implies

that 𝐶 = 𝑟+ − 𝑟− − 𝑝− > 0.

The lower bound from in (2.8) states that

𝑀* − 𝑀̂ ≤ ∆+ 𝐶
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Plugging in the values for this instance show that the left hand side is equal to the

right hand side.

We next establish a similar result for Lemma 8.

Theorem 13. The lower bound given in Lemma 8 is asymptotically tight

when 𝑑+ = min
{︀
max𝑗∈𝐽{𝑑𝑗},

∑︀
𝑗∈𝐽 𝑝𝑗

}︀
.

Proof. First, it is easy to see that the modified 𝑑+ given above does not affect the

makespan problem since
∑︀

𝑗∈𝐽 𝑝𝑗 is a trivial upper bound on the makespan problem

when release times are all equal to 0.

Let 𝐽 = {1, 2, 3}. Suppose that d = (2, 1,∞), p = (1, 1, 2), c = (2, 1, 1), and

𝐶 = 2. We have that 𝑀* = 𝑝1 + 𝑝2 + 𝑝3. Let 𝐽 = {1}. Then, 𝑀̂ = 𝑝3, ∆ = 𝑝1,

𝑑+ = 𝑝1 + 𝑝2 + 𝑝3, and 𝑑− = 𝑑2. This example, presented in Hooker (2007), shows

that 𝑀* − 𝑀̂ ≤ ∆ is not a valid bound when the deadlines differ. In particular,

when we remove task 1, the makespan decreases by 2 unit despite the fact that the

processing time of task 1 is equal to 1. This happens because the deadline of task 1

forces us to schedule it before task 3. In the absence of task 1, task 2 and 3 can be

processed simultaneously, hence the makespan decreases more than the processing

time of task 1.

Observe that for this instance, the bound given in (2.7) yields

(𝑝1 + 𝑝2 + 𝑝3)− 𝑝3 ≤ 𝑝1 + (𝑝1 + 𝑝2, 𝑝3)− 𝑑2.

We have that

−𝑝3 = −2 < 𝑝1 − 𝑑2 = 0 (2.13)
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is not tight.

We next show that the difference between the left and the right hand side of (2.13)

can get arbitrarily small. Consider the above instance. We keep 𝑑2 and 𝑝2 the same,

but we simultaneously decrease 𝑝1, 𝑑1 and 𝑝3 by the same amount. We observe

that task 1 still needs to be processed before task 3, because the deadline and the

processing time of task 1 are both getting smaller, and the processing time of task

1 and 3 are decreasing at the same rate. Under this construction, we still have

𝑀* = 𝑝1 + 𝑝2 + 𝑝3, 𝑀̂ = 𝑝3, ∆ = 𝑝1, 𝑑+ = 𝑝1 + 𝑝2 + 𝑝3, and 𝑑− = 𝑑2 = 𝑝2.

We see that as 𝑝1 → 0, 𝑑1 → 1, and 𝑝3 → 1, both the left and right hand side of

(2.13) approach to −1. This shows that the cut is (almost/asymptotically) tight.

We next derive another class of logic-based Benders cuts for the makespan problem

studied in Elçi and Hooker (2022).

Lemma 14. Consider the same problem in Lemma 7. We have that

𝑀* − 𝑀̂ ≤
∑︁
𝑗∈𝐽

𝛾𝑗 (2.14)

where 𝛾𝑗 = 𝑝𝑗 + 𝐶𝑗 with 𝐶𝑗 = (𝑟𝑗 − 𝑟− − 𝑝−)+ for all 𝑗 ∈ 𝐽 .

Proof. Consider the same construction in the proof of Lemma 7-improved.

Suppose without loss of generality that each task has a distinct release time. Let

𝑘 = argmax𝑗∈𝐽{𝑟𝑗}. If 𝑘 ∈ 𝐽 , then the bound (2.14) is dominated by the bound

(2.6). Otherwise, we know that 𝑘 ∈ 𝐽 . This implies that 𝑀̂ > 𝑟+. We schedule all
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the tasks in 𝐽 sequentially starting from time 𝑀̂ . This is a feasible solution for 𝑃 ,

and we have 𝑀* ≤ 𝑀̂ +
∑︀

𝑗∈𝐽 𝑝𝑗 that implies the bound (2.14).

The above lemma establishes the following logic-based Benders cuts.

Theorem 15. The following is a valid Benders cut for the minimum makespan

problem with no deadlines

𝛽𝑖𝜔 ≥ SP𝑖𝜔(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

𝛾𝑗(1− 𝑥𝑖𝑗) (2.15)

where 𝛾𝑗 = 𝑝𝑗 + 𝐶𝑗 with 𝐶𝑗 = (𝑟𝑗 − 𝑟− − 𝑝−)+ for all 𝑗 ∈ 𝐽𝑖(x̄).

Remark 16. Neither cut dominates the other. Clearly, (2.9) is tight by Theorem

12, therefore cannot be dominated. On the other hand, the cut (2.15) can be better

than (2.9) when fewer tasks are removed, see Example 17 below. We show in our

computational study that it can be advantageous to use both cuts.

Example 17. Let 𝐽 = {1, 2, 3, 4}. Let 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 𝑝. Suppose that

𝑟1 = 𝑟2 = 𝑟3 = 0 and 𝑟4 > 𝑝. We have that the constant 𝐶 in the cut (2.9) is equal

to (𝑟4 − 0− 𝑝)+ = 𝑟4 − 𝑝. Furthermore, the constants in the cut (2.15) are given by

𝐶1 = (𝑟1 − 0− 𝑝)+ = 0

𝐶2 = (𝑟1 − 0− 𝑝)+ = 0

𝐶3 = (𝑟1 − 0− 𝑝)+ = 0

𝐶4 = (𝑟4 − 0− 𝑝)+ = 𝑟4 − 𝑝 > 0
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Let 𝐽 = {1} so that we remove task 1 from the set 𝐽 . We see that the lower bound

obtained from (2.9) is given by

SP𝑖𝜔(x̄)− (𝑟4 − 𝑝)− 𝑝

is strictly lower than the bound

SP𝑖𝜔(x̄)− 𝑝

that is obtained from (2.15).

2.5 Makespan Problem with Sequence-Dependent

Setup Times

In this section, we analyze the sequence-dependent scheduling problem with time

windows. The objective of the scheduling problem is makespan minimization. The

analysis of this problem is crucial to derive logic-based Benders cuts for PMSP-TW.

We use these logic-based Benders cuts within our branch-and-check algorithm.

Suppose that at a given iteration of our branch-and-check algorithm, we have x̄ as

a candidate incumbent solution. Recall that 𝐽𝑖(x̄) denotes the set of tasks assigned

to facility 𝑖. Let SP𝑖(x̄) denote the optimal makespan on facility 𝑖. Theorem 18

establishes our main result.

Theorem 18. The following is a valid Benders cut for facility 𝑖.

𝛽𝑖 ≥

⎧⎪⎨⎪⎩SP𝑖(x̄)−
(︁∑︀

𝑗∈𝐽𝑖(x̄)(1− 𝑥𝑖𝑗)𝛾𝑗 + 𝐶1 + 𝐶2
)︁
, if one or more tasks are removed

SP𝑖(x̄), otherwise
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where 𝛾𝑗 = 𝑝𝑖𝑗 + 𝛼𝑗, 𝐶1 = (𝑟+ − 𝑟− − 𝑝−)+, and 𝐶2 = 𝑑+ − 𝑑− with 𝛼𝑗 =

max𝑘∈𝐽𝑖(x̄)∖{𝑗}{𝑠𝑘𝑗} for all 𝑗 ∈ 𝐽𝑖(x̄), 𝑟+ = max𝑗∈𝐽𝑖(x̄) {𝑟𝑗}, 𝑟− = min𝑗∈𝐽𝑖(x̄) {𝑟𝑗},
𝑑+ = max𝑗∈𝐽𝑖(x̄) {𝑑𝑗}, 𝑑− = min𝑗∈𝐽𝑖(x̄) {𝑑𝑗}, 𝑝− = min𝑗∈𝐽𝑖(x̄) {𝑝𝑖𝑗}.

Proof. Let 𝑃 be a minimum makespan problem where the tasks in 𝑁 are assigned

to facility 𝑖 at a given iteration, i.e., 𝑁 = 𝐽𝑖(x̄). Denote the optimal makespan with

𝐶𝑁 . Suppose that the cut is not valid for a particular assignment decision where the

tasks in 𝑁* are assigned to facility 𝑖. We consider the case where 𝑁* and 𝑁 are not

equal to each other and they are not mutually exclusive, because it is trivial to see

that the cut is valid in these two cases.

Let 𝑁̂ = 𝑁 ∖ 𝑁* denote the set of tasks that are removed from facility 𝑖. Because

the cut is not valid, we have that

𝐶𝑁* < 𝐶𝑁 −
∑︁
𝑗∈𝑁̂

𝛾𝑗 − 𝐶1 − 𝐶2 (2.16)

We take the optimal solution of the makespan problem where the tasks 𝑁* are

scheduled on facility 𝑖. Remove the tasks in 𝑁*∖𝑁 from this solution. The remaining

tasks are only the ones in 𝑁̄ = 𝑁 ∩𝑁*. This solution is a feasible scheduling of tasks

in 𝑁̄ . Denote the makespan of this solution by 𝐶𝑁̄ . We have that 𝐶𝑁̄ ≤ 𝐶*
𝑁 by the

triangular inequality. This implies that

𝐶𝑁̄ < 𝐶𝑁 −
∑︁
𝑗∈𝑁̂

𝛾𝑗 − 𝐶1 − 𝐶2 (2.17)
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Rearranging the above inequality, we have that

𝐶𝑁 > 𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝐶1 + 𝐶2 (2.18)

We will show that (2.18) leads to a contradiction.

Case 1. 𝐶𝑁̄ > 𝑟+. We schedule the tasks in 𝑁̂ sequentially after time 𝐶𝑁̄ .

Case 1-1. If 𝐶𝑁̄ +
∑︀

𝑗∈𝑁̂ 𝛾𝑗 ≤ 𝑑−, then this is a feasible solution for problem 𝑃 .

Denote the makespan of this feasible solution by 𝐶 ′
𝑁 . We have that

𝐶 ′
𝑁 ≤ 𝐶𝑁̄ +

∑︁
𝑗∈𝑁̂

𝛾𝑗 (2.19)

by our choice of 𝛾𝑗 for each task 𝑗. We see that (2.19) contradicts with (2.18) because

𝐶𝑁 is the optimal makespan and 𝐶1 + 𝐶2 is non-negative.

Case 1-2. If 𝐶𝑁̄ +
∑︀

𝑗∈𝑁̂ 𝛾𝑗 > 𝑑−, we have that

𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝑑+ > 𝑑− + 𝑑+

Because 𝐶𝑁 < 𝑑+, this implies that

𝐶𝑁 < 𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝑑+ − 𝑑− (2.20)

We see that (2.20) contradicts with (2.18) because 𝐶𝑁 is the optimal makespan and

𝐶1 is non-negative.

Case 2. If 𝐶𝑁̄ < 𝑟+. We schedule the tasks in 𝑁̂ sequentially after time 𝑟+. Note
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the 𝐶1 = 𝑟+ − 𝑟− − 𝑝− in this case, because 𝐶𝑁̄ ≥ 𝑟− + 𝑝−. Therefore, (2.18) can be

written as

𝐶𝑁 > 𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝑟+ − 𝑟− − 𝑝− + 𝑑+ − 𝑑− (2.21)

Case 2-1. If 𝑟+ +
∑︀

𝑗∈𝑁̂ 𝛾𝑗 ≤ 𝑑−. This is a feasible solution for problem 𝑃 . Denote

the makespan of this feasible solution by 𝐶 ′
𝑁 . We have that

𝐶 ′
𝑁 ≤ 𝑟+ +

∑︁
𝑗∈𝑁̂

𝛾𝑗 (2.22)

by our choice of 𝛾𝑗 for each task 𝑗.

We conclude that (2.22) contradicts with (2.21) because 𝐶𝑁 is the optimal makespan,

𝐶𝑁̄ is at least 𝑟− + 𝑝−, and 𝐶2 = 𝑑+ − 𝑑− is non-negative.

Case 2-2. If 𝑟+ +
∑︀

𝑗∈𝑁̂ 𝛾𝑗 > 𝑑−, we have that

𝑟+ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝑑+ > 𝑑− + 𝑑+

Because 𝐶𝑁 ≤ 𝑑+, this implies that

𝐶𝑁 ≤ 𝑟+ +
∑︁
𝑗∈𝑁̂

𝛾𝑗 + 𝑑+ − 𝑑− (2.23)

We see that (2.23) contradicts with (2.21) because 𝐶𝑁 is the optimal makespan, and

𝐶𝑁̄ is at least 𝑟− + 𝑝−

Remark 19. The following are true for Theorem 18.
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1. It generalizes the Benders cut given in Tran et al. (2016) when there are no

time windows.

2. It captures Theorem 9 as a special case. Therefore, it improves the Benders cut

given in Elçi and Hooker (2022) when there are no setup time and deadlines.

3. It generalizes the Benders cuts given in Hooker (2007) and Elçi and Hooker

(2022) to include different release times and deadlines simultaneously. In other

words, our Benders cut can be used for the planning and scheduling problem

introduced by Hooker (2007) in the presence of time windows with different

release time and deadlines.

Corollary 20. We can linearize the cut (18) due to Lemma 10 as follows:

𝛽𝑖 ≥ SP𝑖(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)(𝛾𝑗 + 𝐶1 + 𝐶2) (𝑎)

𝛽𝑖 ≥ SP𝑖(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

(1− 𝑥𝑖𝑗)𝛾𝑗 − 𝐶1 − 𝐶2 (𝑏)
(2.24)

In the remainder of this section, we present two more Benders cuts for the parallel

machine scheduling problem in the same spirit of Theorem 15.

Theorem 21. The following is a valid Benders cut for the minimum makespan

problem with setup times when there are no deadlines.

𝛽𝑖 ≥ SP𝑖(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

𝜃𝑗(1− 𝑥𝑖𝑗) (2.25)

where 𝜃𝑗 = 𝑝𝑗 + 𝛼𝑗 +𝐶1
𝑗 with 𝐶1

𝑗 = (𝑟𝑗 − 𝑟− − 𝑝−)+ and 𝛼𝑗 = max𝑘∈𝐽𝑖(x̄){𝑠𝑘𝑗} for all
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𝑗 ∈ 𝐽𝑖(x̄).

Proof. Consider the same construction in the proof of Theorem 18. Let 𝑘1 =

argmax𝑗∈𝑁{𝑟𝑗}. In this proof, we consider two cases depending on whether 𝑘1 is

an element of 𝑁̂ . Suppose that the cut is not valid. We have that

𝐶𝑁 > 𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝜃𝑗 (2.26)

Case 1 - (𝑘1 ∈ 𝑁̂). In this case, we have that

𝐶𝑁 > 𝐶𝑁̄ +
∑︁
𝑗∈𝑁̂

𝜃𝑗 (2.27)

= 𝐶𝑁̄ +
∑︁
𝑗∈𝐽

𝛾𝑗 +
∑︁

𝑗∈𝐽∖{𝑘1}

𝐶1
𝑗 + 𝐶1 (2.28)

We see that (2.28) is greater than the right hand side of (2.18). Thus, we reach

the same contradictions under all possible cases. (A longer argument would go

through two cases depending on whether 𝐶𝑁̄ > 𝑟+ or not. We don’t need this longer

argument.)

Case 2 - (𝑘1 ̸∈ 𝑁̂). In this case, we have that 𝑘1 ∈ 𝑁̄ . This implies that 𝐶𝑁̄ > 𝑟+.

We schedule the tasks in 𝑁̂ sequentially after time 𝐶𝑁̄ . This is a feasible solution

for problem 𝑃 . Denote the makespan of this feasible solution by 𝐶 ′
𝑁 . We have that

𝐶 ′
𝑁 ≤ 𝐶𝑁̄ +

∑︁
𝑗∈𝑁̂

𝛾𝑗 (2.29)

by our choice of 𝛾𝑗 for each task 𝑗. We see that (2.29) contradicts with (2.26) because
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𝐶𝑁 is the optimal makespan and 𝐶1 is non-negative.

When there are deadlines, the following theorem can be used.

Theorem 22. The following is a valid Benders cut for the minimum makespan

problem with setup times.

𝛽𝑖 ≥ SP𝑖(x̄)−
∑︁

𝑗∈𝐽𝑖(x̄)

𝜃𝑗(1− 𝑥𝑖𝑗) (2.30)

where 𝜃𝑗 = 𝑝𝑗 + 𝛼𝑗 + 𝐶1
𝑗 + 𝐶2 with 𝐶1

𝑗 = (𝑟𝑗 − 𝑟− − 𝑝−)+, 𝐶2 = (𝑑+ − 𝑑−), and

𝛼𝑗 = max𝑘∈𝐽𝑖(x̄){𝑠𝑘𝑗} for all 𝑗 ∈ 𝐽𝑖(x̄).

Proof. The proof if analogous to the above Theorem.

2.6 Computational Experiments

In this section, we present the results of our computational experiments. The goal

of this section is two-fold. Our first goal is the demonstrate the impact of using

improved Benders cuts (2.12) together with (2.14) for solving the stochastic planning

and scheduling problem studied in Elçi and Hooker (2022). Our second goal is to

demonstrate the effectiveness of the proposed branch-and-check method for solving

PMSP-TW.

All experiments presented in this section are conducted on a personal computer with a

2.80 GHz Intel® Core™ i7-7600 processor and 24 GB memory running on a Microsoft
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Windows 10 Pro. We use CPLEX and CP Optimizer engines of IBM® ILOG® CPLEX®

12.7 Optimization Studio for all MILP and CP formulations, respectively. The

formulations are implemented in C++ API using a single thread. We use the Lazy

Constraint Callback function of CPLEX to implement branch-and-check algorithm.

2.6.1 Instance Generation for PMSP-TW

In order to generate instances for PMSP-TW, we follow a similar approach proposed

in Elçi and Hooker (2022). Let |𝐼| = 𝑚 and |𝐽 | = 𝑛. Integer release times are drawn

from a uniform distribution on [0, 2.5𝑛(𝑚 + 1)/𝑚]. For each facility 𝑖 ∈ 𝐼, integer

processing times 𝑝𝑖𝑗 are drawn from a uniform distribution on [2, 25−10(𝑖−1)/(𝑚−
1)]. We also use the same distribution to generate setup times. In particular, integer

setup times 𝑠𝑖𝑗𝑘 are drawn from a uniform distribution on [2, 25−10(𝑖−1)/(𝑚−1)].

As a result, we have that facilities with a higher index are more efficient both in

terms of processing tasks and setup time. Furthermore, we have a balance between

the setup and processing times, since they are generated from the same distribution

(see, e.g., Ying et al., 2012). Lastly, the deadline 𝑑𝑗 of task 𝑗 is obtained as follows.

Let 𝐿 = 20× 𝑛/𝑚. We set 𝑑𝑗 = 𝑟𝑗 + 𝛽 where 𝑟𝑗 is the release time of task 𝑗 and 𝛽

is drawn from a uniform distribution on [0.75× 𝛼𝐿, 1.25× 𝛼𝐿] with 𝛼 = 2.

2.6.2 Impact of the Analysis in Section 4

We use the same data set from Elçi and Hooker (2022) (see Table 5). We modify

the B&C algorithm in Elçi and Hooker (2022) in two ways: (i) We use the improved

Benders cuts (2.12). (ii) We add the Benders cuts (2.14) in addition to the cuts (2.12)

whenever a violated Benders cut is identified during the course of the algorithm. Each

cell in Table 2.1 represents an average computation time over three instances.
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Table 2.1: Average computation time for planning and scheduling problem.

2 facilities 4 facilities

L-shaped B&Ch B&Ch L-shaped B&Ch B&Ch
Tasks Scenarios integer analytic enhanced integer analytic enhanced

cuts only cuts cuts only cuts

10 1 18.5 0.3 0.2 3246.3 0.9 0.4
5 141.3 2.6 1.0 * 1.9 1.5

10 292.3 2.7 1.4 * 2.8 2.2
50 2425.0 11.6 6.5 * 15.1 11.9

100 * 22.3 13.4 * 21.5 26.7
500 * 129.3 73.0 * 149.1 128.9

14 1 1971.2 5.2 1.3 1368.6 0.8 0.5
5 * 18.1 6.4 * 3.7 2.2

10 * 43.3 12.9 * 5.6 4.3
50 * 241.8 66.3 * 26.2 25.5

100 * 704.4 169.1 * 60.1 47.4
500 * 3503.4 1899.2 * 407.4 236.2

18 1 * 213.3 13.3 1770.1 2.7 1.3
5 * 2190.4 169.0 * 10.1 8.9

10 * 2932.3 239.8 * 31.5 15.0
50 * * 1771.3† * 316.6 95.5

100 * * 2326.3† * 634.3 138.3
500 * * * * 3162.8 1525.2

†Average excludes one instance that exceeded an hour in computation time.
††Average excludes two instances that exceeded an hour.
*All three instances exceeded an hour.
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We see from Table 2.1 that our enhancements are significant. The impact of our

enhancements is more pronounced on the harder instances with 2 facilities and 14

tasks or 18 tasks. We see that the enhanced branch-and-check method is at least

an order of magnitude faster on the hardest instances with 2 facilities and 18 tasks,

solving 4 instances that the previous version could not solve within the given time

limit.

2.6.3 The Performance of the Branch-and-Check Algorithm

In this section, we perform experiments to assess the effectiveness of the proposed

branch-and-check method in solving PMSP-TW. To this end, we generate instances

as described in Section 2.6.1. Each cell in Table 2.2 is an average over 5 instances

that represents the computational time required to prove optimality within one hour

of time limit.

We benchmark our branch-and-check algorithm against the MIP formulation given

in (2.1). We use the default settings of CPLEX solver for the MIP formulation. In our

implementation of the branch-and-check method we add two sets of optimality cuts.

Namely, we add both (2.24) and (2.30) whenever executing line 1 of Algorithm 1.

We see from Table 2.2 that the branch-and-check method clearly outperforms the

MIP formulation. For example, we observe that the instances with 15 tasks cannot

be solved using the MIP formulation, whereas the branch-and-check method can

solve those instances within 100 seconds, on average.
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Table 2.2: Average computation time for PMSP-TW.

2 facilities 4 facilities

Tasks MIP B&Ch MIP B&Ch

5 0.2 0.1 0.2 0.2
10 3054.5† 1.0 117.7 1.0
15 * 91.0 * 82.4
20 * * * 3222.0††

†Average excludes two instances that exceeded an hour.
††Average excludes four instances that exceeded an hour.
*All three instances exceeded an hour.

2.7 Conclusion

In this paper, we make methodological contributions to the literature of logic-

based Benders decomposition framework. We begin our analysis by focusing on

the planning and scheduling problem, a problem well studied in the literature. We

propose two new classes of logic-based Benders cuts for a variant of this problem with

no deadlines. We show that our cuts and the cuts for the variant with no release

times are both tight. The computational experiments show the effectiveness of the

two new classes of cuts we introduce.

We then focus on a sequence-dependent parallel machine scheduling problem. We

derive novel logic-based Benders cuts that generalizes several well known cuts in

the literature. We show that these cuts can be used to devise a branch-and-check

algorithm. Our computational study shows that the proposed algorithm performs

better than the benchmark.

We conclude by providing several directions for future work. The proposed branch-

and-check method can be used to solve a stochastic variant of the sequence-dependent

92



scheduling problem. Furthermore, it is an interesting research direction to explore

the use of logic-based Benders cuts for vehicle routing problems as this problem can

be cast as a sequence-dependent scheduling problem.
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Chapter 3

Portfolio Optimization in the

Presence of Estimation Errors on the

Expected Asset Returns

This chapter is a joint work with Gérard Cornuéjols and Matthias Köppe.

3.1 Introduction

Consider a portfolio optimization problem where we want to invest in 𝑛 assets. If the

return vector r ∈ R𝑛 is given, we formulate the problem as maximize{rTx : x ∈ ∆}
where x ∈ R𝑛 denotes the fraction of investment in each asset and ∆ denotes the

feasible region. In this paper we consider ∆ := {x ∈ R𝑛 :
∑︀𝑛

𝑖=1 𝑥𝑖 = 1, x ≥ 0}.
The constraints x ≥ 0 restrict the model to portfolios with long positions only. This

problem has a trivial optimal solution: Only invest in the asset that has the highest
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return.

In practice, however, the assets are risky and the return vector r is random. The

classical mean-variance portfolio optimization problem introduced by Markowitz

(1952) addresses this issue by maximizing the expected return of the portfolio subject

to a constraint on the risk modeled as the variance of the portfolio return.

maximize
x

𝜇Tx (3.1a)

subject to xTΣx ≤ 𝑣 (3.1b)

x ∈ ∆. (3.1c)

Here, 𝜇 and Σ denote the expectation vector and covariance matrix of the asset

returns, respectively. In practice, 𝜇 and Σ are estimated, and it has been observed

that the Markowitz model tends to amplify estimation errors. In particular, small

errors in 𝜇 may produce large changes in portfolio holdings (see, e.g., Best and

Grauer, 1991; Chopra and Ziemba, 1993; Michaud, 2008). Approaches to mitigate

the effect of estimation errors in 𝜇 and Σ on portfolio construction have lead to

a vast literature. Among these we name ter Horst et al. (2006), Chopra (1993),

Jagannathan and Ma (2003), Goldfarb and Iyengar (2003), Tutuncu and Koenig

(2004), Ceria and Stubbs (2006), Scherer (2007), Garlappi et al. (2007), Kan and

Zhou (2007), DeMiguel et al. (2009a), DeMiguel et al. (2009b), Lim et al. (2012),

and Ban et al. (2018). In this paper, we pursue this line of work, focusing on the

uncertainty in the 𝜇 estimates.

We assume that the expected return vector 𝜇 is unknown and belongs to an ellipsoidal
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uncertainty set given by

𝒰 :=
{︀
𝜇 ∈ R𝑛 : (𝜇− 𝜇̂)TΞ−1(𝜇− 𝜇̂) ≤ 𝜅2

}︀
(3.2)

where 𝜇̂ is the estimated expected return and the positive definite matrix Ξ is referred

to as the estimation-error matrix. Using the uncertainty set 𝒰 , we formulate the

robust portfolio optimization problem as follows

max
x∈𝒳

min
𝜇∈𝒰

{︃
𝜇Tx

}︃
(3.3)

where 𝒳 denotes the feasible set (3.1b) − (3.1c). We assume that the covariance

matrix Σ is known. Consequently, 𝒳 is the intersection of an ellipsoid with a simplex.

This problem can be reformulated following Ben-Tal and Nemirovski (1999) as

max
x∈𝒳

{︃
𝜇̂Tx− 𝜅

√
xTΞx

}︃
. (3.4)

We refer the reader to Goldfarb and Iyengar (2003), Tutuncu and Koenig (2004) and

Fabozzi et al. (2007) for more detailed discussions on robust portfolio optimization.

The risk-like term 𝜅
√
xTΞx in formulation (3.4) can be interpreted as an estimation

risk that must be considered by risk-averse investors on top of the risk caused by the

variance xTΣx of the portfolio return (Fabozzi et al., 2007, p 371).

Our contribution. In this paper, we provide a theoretical analysis on the choice

for the estimation-error matrix Ξ in robust portfolio optimization. The literature

on selecting/constructing an estimation-error matrix is scarce (Gotoh and Takeda,

2011). Stubbs and Vance (2005) provide a comprehensive overview on practical
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approaches for computing estimation-error matrices. They also recommend the use

of diagonal estimation-error matrices to practitioners. On the other hand, there are

several studies in which a scalar multiple of Σ is used as the estimation-error matrix

(see, e.g., Scherer, 2007; Garlappi et al., 2007; Olivares-Nadal and DeMiguel, 2018).

Among these, Scherer (2007) has a skeptical take on robust optimization and shows

that such a choice for Ξ is equivalent to some other well known shrinkage approaches.

In our work, we begin by discussing the difference between true and actual frontier - a

well known approach that is used to quantify the impact of the estimation errors. We

show that when Ξ is a multiple of Σ, robust optimization cannot improve the actual

performance of the Markowitz model. This analysis supports the recommendation of

Stubbs and Vance (2005) where they claim that such a choice is not used in practice

and is not recommended. We then focus on the use of diagonal estimation-error

matrices and show that the class of diagonal estimation-error matrices can achieve

an arbitrarily small loss in the expected portfolio return as compared to the optimum.

We accomplish this by reformulating the optimality conditions of the robust portfolio

problem when we have a single expected return vector.

We then investigate diagonal estimation-error matrices in the presence of multiple

expected returns. To this end, we propose a bilevel model that computes the loss and

we show that the diagonal estimation-error matrices can achieve an arbitrarily small

loss even when there are multiple estimates for the expected return. The proposed

bilevel model also provides a principled way to construct estimation-error matrices

using data, though it is a non-convex optimization problem and it is difficult to solve

in practice.

We finally focus on the use of an identity matrix for Ξ. This choice requires
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calibrating a single parameter (𝜅) for the robust problem. We perform computational

experiments to test whether robust optimization can perform better than the

Markowitz model. Our results demonstrate that a good choice for 𝜅 can significantly

improve the performance of the Markowitz model, especially when the expected

return estimates are not reliable.

The rest of the paper is organized as follows. We introduce true, estimated and

actual frontiers in Section 3.2. In Section 3.3, we show that robust optimization

can improve on the actual performance. We present the analysis of the robust

optimization problem in Section 3.4. Section 3.5 generalizes the analysis of the

robust model to incorporate multiple expected returns. We analyze the use of an

identity matrix as estimation-error matrix in Section 3.6. Section 3.7 concludes the

paper.

3.2 True, Estimated, and Actual Frontiers

The sensitivity of mean-variance portfolio optimization models to estimation errors

on the expected asset returns is well documented in the literature (see, e.g., Best and

Grauer, 1991; Chopra, 1993; Michaud, 2008). It is sometimes referred to as the error

maximization tendency of mean-variance optimization. In order to quantify the effect

of estimation errors, Broadie (1993) made a distinction between true, estimated, and

actual frontiers. A frontier plots the maximum expected return of a portfolio of assets

as a function of the risk threshold (Markowitz, 1952). The true frontier is computed

by using the true expected returns of the assets, a quantity in fact unknown to the

decision maker. The estimated frontier is computed by using the estimated expected

returns. It describes what appears will be the expected return of a portfolio optimized
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based on the estimated parameters. The actual frontier plots the expected return

one actually achieves (using the true expected returns) when one invests in the above

portfolio (constructed using estimated expected returns). We next describe how we

compute these three frontiers.

We solve the problem maximize{𝜇Tx : (3.1b)−(3.1c)} to obtain the optimal solution

x* where 𝜇 is the true (but unknown to the investor) vector of expected asset returns.

Using x*, we construct the true frontier 𝜇Tx*. Let 𝜇̂ be the vector of estimated

expected asset returns. We solve maximize{𝜇̂Tx : (3.1b) − (3.1c)} to obtain the

Markowitz solution estimate x̂𝑀 . Using x̂𝑀 , we construct the estimated Markowitz

frontier 𝜇̂Tx̂𝑀 and the actual Markowitz frontier 𝜇Tx̂𝑀 .
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Figure 3-1: True, actual Markowitz, and estimated Markowitz frontiers.

In Figure 3-1, we illustrate the gap between the true and the actual frontiers on real-

world data. Details on the data set can be found in Appendix A.2.1. We assume

that the asset returns are normally distributed with distribution Normal(𝜇,Σ). The

vector 𝜇̂ is the sample average of 𝑁 random samples. Equivalently, we generate 𝜇̂

from Normal(𝜇,Σ/𝑁). We illustrate the cases 𝑁 = 1 and 𝑁 = 24. Each point in the

figures represents the average value over 10000 trials. The dashed-line represents the
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performance of the equal-weight portfolio where we invest equally in all the assets.

The expected return of the equal-weight portfolio is 0.0131. Another interesting

portfolio for comparison is the minimum variance portfolio, which has an expected

return of 0.0122.

We see in Figure 3-1a that the actual performance of the Markowitz solution estimate

is poor when the sample size is equal to 1. In fact, the average expected return

values are worse than the equal-weight portfolio. On the other hand, we see that the

performance of the Markowitz solution estimate improves significantly in Figure 3-1b

with more accurate return estimates with a sample size of 24. As 𝑁 goes to +∞,

the actual Markowitz frontier converges to the true frontier. Furthermore, we plot

the estimated frontier in Figures 3-1a and 3-1b. We see that the estimated frontier

is far away from the true frontier so much that it is off the chart in Figure 3-1a.

Similarly, solving the robust optimization problem (3.4), we obtain the robust solution

estimate x̂𝑅. Using x̂𝑅, we construct the estimated robust frontier 𝜇̂Tx̂𝑅 and the

actual robust frontier 𝜇Tx̂𝑅. A key aspect here is the modeler’s choice of the

estimation-error matrix Ξ.

3.3 Robust Optimization Can Improve the Actual

Performance

A possible choice for Ξ is to make this matrix proportional to Σ, namely Ξ = 𝜌Σ.

Such an idea has been proposed by ter Horst et al. (2006) and Garlappi et al. (2007).

Notice however that, for solutions x that satisfy the risk constraint xTΣx ≤ 𝑣 at

equality (which is the most interesting case), the objective 𝜇̂Tx − 𝜅
√
xTΞx of the

101



robust problem (3.4) becomes

𝜇̂Tx− 𝜅
√︀

xT𝜌Σx = 𝜇̂Tx− 𝜅
√
𝜌𝑣.

The last term is just a constant, and therefore the robust problem reduces to the

Markowitz model (3.1). The estimation errors do not affect the optimal portfolio!

Garlappi et al. (2007) consider a variation of model (3.1) where the risk is not a

hard constraint xTΣx ≤ 𝑣 but instead a penalty in the objective, leading to the

model max𝑥∈Δ 𝜇Tx − 𝛾 xTΣx for a given penalty term 𝛾 ∈ R. Robustifying as

in (3.4), this model becomes max𝑥∈Δ 𝜇Tx − 𝛾 xTΣx − 𝜅
√
xTΞx. Garlappi et al.

(2007) consider this model with Ξ = Σ. When 𝜅 = 0, this reduces to the Markowitz

model and when 𝜅 → +∞, it reduces to the minimum variance portfolio. In their

computational experiments, Garlappi et al. (2007) find that the minimum variance

portfolio gives the best results in terms of measures such as the expected return or

the Sharpe ratio.

In the remainder of this paper, we consider choices for Ξ that can outperform both

the Markowitz portfolio and the minimum variance portfolio, using actual expected

return as a measure.

To illustrate the potential of robust optimization, we design an experiment showing

that good matrices Ξ exist, even among diagonal matrices with only two different

diagonal entries. We construct Ξ based on partial information on the true expected

return 𝜇. In particular, in Figures 3 − 2𝑎 − 3 − 2𝑏, we let some entries of the

estimation-error matrix equal to 𝜖 = 0.001 (𝜅 = 1, sample size = 24). In Figure 3-2a,

the entry corresponding to the asset with the highest true return is set to 𝜖, and in
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(b) Ξ = diag
(︀
[1, 𝜖, 1, 1, 1, 1, 1, 𝜖, 1, 1, 1]

)︀
Figure 3-2: Robust frontiers of several Ξ matrices.

Figure 3-2b, the entries corresponding to the four assets with highest true return are

set to 𝜖.

The overall picture that we see in Figure 3-2 is that there is room for improvement

if one is able to choose a good matrix Ξ. It seems promising that the robust

optimization can close the gap between the actual Markowitz frontier and the true

frontier.

3.4 The Class of Diagonal Estimation-Error Matri-

ces

In this section, we focus on the class of diagonal estimation-error matrices. This

choice is partly motivated by the study of Stubbs and Vance (2005). The authors

argue that it is difficult to generate estimation-error matrices accurately, and they

suggest that the use of simple diagonal matrices is beneficial. A natural question to

ask is: Do we loose in performance by restricting our attention to diagonal matrices
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Ξ?

The issue boils down to the following: Given an estimate 𝜇̂ of 𝜇, can we always find a

diagonal matrix Ξ such that the resulting robust portfolio x̂𝑅 has an actual expected

return very close to the true expected return? To this end, we start examining the

optimality conditions of (3.4).

3.4.1 Analysis of the Robust Portfolio Optimization Problem

We first write (3.4) as a convex optimization problem of the following form.

minimize
x

− 𝜇̂Tx+
√
xTΞx (3.5a)

subject to xTΣx ≤ 𝑣, (3.5b)

1Tx = 1, (3.5c)

− x ≤ 0. (3.5d)

We next make some observations about (3.5). The proof of these observations are

deferred to the Appendix.

Proposition 23. Suppose that Ξ and Σ are positive definite. Then, the following

statements are true about (3.5).

1. It is a convex optimization problem with a strictly convex objective function.

Therefore, the optimal solution x̂𝑅 is unique.

2. It satisfies Slater’s condition.

3. It is sufficient to consider the optimality conditions for differentiable functions.
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We next derive the optimality conditions of (3.5). Let 𝜆1 ∈ R, 𝜆2 ∈ R, and 𝜆3 ∈
R𝑛 respectively denote the Lagrangian multipliers of the constraints of (3.5). The

Lagrangian function associated with this problem is given below.

𝐿
(︀
x, 𝜆1, 𝜆2,𝜆3

)︀
= −𝜇̂Tx+

√
xTΞx+ 𝜆1

(︀
xTΣx− 𝑣

)︀
+ 𝜆2

(︀
1Tx− 1

)︀
−
(︀
𝜆3
)︀T

x

Using the Lagrangian function, we can write the optimality conditions of (3.5).

−𝜇̂+
Ξx√
xTΞx

+ 2𝜆1Σx+ 𝜆21− 𝜆3 = 0 (3.6a)

xTΣx ≤ 𝑣 (3.6b)

1Tx = 1 (3.6c)

−x ≤ 0 (3.6d)

𝜆1 ≥ 0 (3.6e)

𝜆3 ≥ 0 (3.6f)

𝜆1
(︀
xTΣx− 𝑣

)︀
+
(︀
𝜆3
)︀T

x = 0 (3.6g)

When Ξ is a diagonal matrix, (3.6a) can be written as

−𝜇̂𝑖 +
𝜉𝑖𝑥𝑖√︁∑︀𝑛
𝑗=1 𝜉𝑗𝑥

2
𝑗

+ 2𝜆1

𝑛∑︁
𝑗=1

𝜎𝑖𝑗𝑥𝑗 + 𝜆2 − 𝜆3
𝑖 = 0, 𝑖 ∈ [1, 𝑛] (3.7)

Here, 𝜉 denotes the vector of diagonal entries of Ξ and [1, 𝑛] := {1, . . . , 𝑛}. Now,

we introduce additional variables and constraints to rewrite the square-root term in

(3.7). Let

𝑧𝑖 =
𝜉𝑖𝑥𝑖√︁∑︀𝑛
𝑗=1 𝜉𝑗𝑥

2
𝑗

, 𝑖 ∈ [1, 𝑛]. (3.8)
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Using this substitution, we rewrite (3.7) as

−𝜇̂𝑖 + 𝑧𝑖 + 2𝜆1

𝑛∑︁
𝑗=1

𝜎𝑖𝑗𝑥𝑗 + 𝜆2 − 𝜆3
𝑖 = 0, 𝑖 ∈ [1, 𝑛], (3.9a)

𝑛∑︁
𝑖=1

𝑥𝑖𝑧𝑖 = 𝛼, (3.9b)

𝜉𝑖𝑥𝑖 = 𝑧𝑖𝛼, 𝑖 ∈ [1, 𝑛], (3.9c)

𝑧𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛], (3.9d)

𝜉𝑖 > 0, 𝑖 ∈ [1, 𝑛], (3.9e)

𝛼 > 0 (3.9f)

We have the following result, its proof is deferred to Appendix A.2.2.

Proposition 24. The system {(3.6b) − (3.6g), (3.9)} is a correct reformulation of

the system (3.6).

3.4.2 Analysis of the Loss Due to Estimation Error

Given a solution estimate x̂, we define the loss in objective value in the following

way.

loss(x̂) = 𝜇Tx* − 𝜇Tx̂

A solution x̂𝑅 to the robust problem (3.4) depends on the expected return estimate

𝜇̂ and the estimation-error matrix Ξ. In this case we write

loss(𝜇̂,Ξ) = 𝜇Tx* − 𝜇Tx̂𝑅
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The first question we want to answer is the following: Given any 𝜇̂, does there exist

a diagonal Ξ matrix such that loss(𝜇̂,Ξ) is equal to zero. The following example

shows that it is not always possible to find such a diagonal matrix Ξ.

Example 25. Consider a two asset portfolio optimization problem. Let 𝜎11 < 𝑣,

𝜎22 > 𝑣. Let 𝜇1 > 𝜇2. Clearly (𝑥1 = 1, 𝑥2 = 0) is the true optimal solution. Suppose

that 𝜇̂2 > 𝜇̂1.

It follows that we have 𝜆1 = 0 because the risk constraint is not tight. Furthermore,

𝜆3
1 = 0 because the non-negativity constraint of 𝑥1 is not active. We see that the

optimality conditions are satisfied except (3.6a). Using our reformulation idea, we

must find a feasible solution to the following system.

− 𝜇̂1 + 𝑧1 + 𝜆2 = 0

− 𝜇̂2 + 𝑧2 + 𝜆2 − 𝜆3
2 = 0

𝑥1𝑧1 + 𝑥2𝑧2 = 𝛼

𝜉1𝑥1 = 𝑧1𝛼

𝜉2𝑥2 = 𝑧2𝛼

𝜉1, 𝜉2 > 0

𝑧1, 𝑧2 ≥ 0

𝛼 > 0

We see that because 𝑥2 = 0 and 𝛼 > 0, it must be that 𝑧2 = 0. Furthermore, we

can rewrite the first two equations in the following way by treating 𝑧1 and 𝜆3
2 as slack

107



variables.

𝜆2 ≤ 𝜇̂1

𝜆2 ≥ 𝜇̂2

This is impossible since 𝜇̂2 > 𝜇̂1. Because the true optimal solution is unique, we

conclude there does not exist 𝜉 such that the robust portfolio optimization problem

yields zero loss.

Our next result shows that even though it is not possible to reach zero loss, we can

get arbitrarily close to it.

Theorem 26. Given 𝜖 > 0, for every 𝜇̂ there exists a diagonal Ξ matrix such that

loss(𝜇̂,Ξ) ≤ 𝜖.

Proof. Let xmv := argminx{xTΣx : x ∈ ∆} denote the minimum variance portfolio.

Let xeq denote the equal-weight portfolio, i.e. 𝑥𝑖 = 1/𝑛, 𝑖 ∈ [1, 𝑛]. Pick 𝛿 ∈ (0, 1)

such that x̃ = 𝛿xmv + (1− 𝛿)xeq has a lower variance than the true optimal solution

x*. Clearly, all components of x̃ are strictly greater than zero. Let x̃* = (1−𝜖)x*+𝜖x̃

for some 𝜖 ∈ (0, 1). Note that x̃* ∈ 𝒳 and has a lower variance than x*, therefore it

is a feasible solution to the portfolio problem.
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Now, observe that the loss corresponding to x̃* is given by

loss(x̃*) =
𝑛∑︁

𝑖=1

𝜇𝑖

(︁
𝑥*
𝑖 − 𝑥̃*

𝑖

)︁
=

𝑛∑︁
𝑖=1

𝜇𝑖

(︁
𝑥*
𝑖 −

[︀
(1− 𝜖)𝑥*

𝑖 + 𝜖𝑥̃𝑖

]︀)︁
= 𝜖

𝑛∑︁
𝑖=1

𝜇𝑖

(︁
𝑥*
𝑖 − 𝑥̃𝑖

)︁
= 𝜖
(︁
𝜇Tx* − 𝜇Tx̃

)︁
> 0.

Therefore, given 𝜖, we can pick 𝜖 ∈ (0, 1) such that

𝜖 ≤ 𝜖

𝜇Tx* − 𝜇Tx̃

This pick ensures that loss(x̃*) ≤ 𝜖.

It suffices to find 𝜉, 𝜆1, 𝜆2 and 𝜆3 such that together with x̃* we have a solution that

satisfies the optimality conditions.

Let 𝜆1 = 0, and 𝜆3
𝑖 = 0 for all 𝑖 ∈ [1, 𝑛]. We see that all optimality conditions are

satisfied except (3.6a). Using the reformulation idea, we see that finding such 𝜉 is
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equivalent to finding a solution to the below system.

−𝜇̂𝑖 + 𝑧𝑖 + 𝜆2 = 0, 𝑖 ∈ [1, 𝑛]

𝑛∑︁
𝑖=1

𝑧𝑖𝑥̃
*
𝑖 = 𝛼

𝜉𝑖𝑥̃
*
𝑖 = 𝑧𝑖𝛼, 𝑖 ∈ [1, 𝑛]

𝜉𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛]

𝑧𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛]

𝛼 ≥ 0

Let 𝜆2 < min𝑖{𝜇̂𝑖}. Let 𝑧𝑖 = 𝜇̂𝑖 − 𝜆2 for all 𝑖 ∈ [1, 𝑛]. Then 𝛼 =
∑︀𝑛

𝑖=1 𝑧𝑖𝑥̃
*
𝑖 . We let

𝜉𝑖 =
𝑧𝑖𝛼
𝑥̃*
𝑖

for all 𝑖 ∈ [1, 𝑛]. Clearly, all 𝜉𝑖, 𝑧𝑖, 𝛼 are greater than zero. Therefore, 𝜉

satisfies the optimality conditions and this concludes the proof.

Finally we conclude this section by stating a sufficient condition for obtaining zero

loss.

Theorem 27. If all the assets are active in the true optimal solution, then for every

𝜇̂ there exists a diagonal Ξ matrix such that loss(𝜇̂,Ξ) = 0.

Proof. Without loss of generality, we assume that all elements of the given 𝜇̂ are

greater than 0. It suffices to find 𝜉, 𝜆1, 𝜆2 and 𝜆3 such that together with x* we

have a solution that satisfies the optimality condition.

Let 𝜆1 = 0, 𝜆2 = 0, and 𝜆3
𝑖 = 0 for all 𝑖 ∈ [1, 𝑛]. Using the reformulation idea, we
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see that finding such 𝜉 is equivalent to finding a solution to the below system.

−𝜇̂𝑖 + 𝑧𝑖 = 0, 𝑖 ∈ [1, 𝑛]

𝑛∑︁
𝑖=1

𝑧𝑖𝑥
*
𝑖 = 𝛼

𝜉𝑖𝑥
*
𝑖 = 𝑧𝑖𝛼, 𝑖 ∈ [1, 𝑛]

𝜉𝑖 > 0, 𝑖 ∈ [1, 𝑛]

𝑧𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛]

𝛼 > 0

Let 𝑧𝑖 = 𝜇̂𝑖 for all 𝑖 ∈ [1, 𝑛]. Then we have that 𝛼 =
∑︀𝑛

𝑖=1 𝜇̂𝑖𝑥
*
𝑖 . We let 𝜉𝑖 =

𝑧𝑖𝛼
𝑥*
𝑖

for

all 𝑖 ∈ [1, 𝑛]. Clearly, all 𝜉𝑖, 𝑧𝑖, 𝛼 are greater than zero. Therefore, 𝜉 satisfies the

optimality conditions and this concludes the proof.

3.5 Finding the Best Estimation-Error Matrix

In this section, we generalize the results of the previous section to the situation where

we have several estimates 𝜇̂1, . . . , 𝜇̂𝑇 of 𝜇. We consider a setup in the same spirit

with the computational experiments conducted to measure the performance of the

robust optimization via an out-of-sample simulation in Scherer (2007). In particular,

we investigate the ability of the robust model to produce portfolios that are close to

the true optimal portfolio even when different estimated expected returns are used

as an input to the robust model.

We show that we can always find a diagonal matrix Ξ such that the resulting robust

portfolios x̂1, . . . , x̂𝑇 all have an actual expected return very close to the optimal
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expected return 𝜇T𝑥* where 𝑥* is the optimal portfolio computed using the true 𝜇.

To this end, we write a mathematical program that outputs a matrix Ξ that achieves

the minimum loss. We define the loss given a collection of return estimates {𝜇̂𝑡}𝑇𝑡=1

and estimation-error matrix Ξ as

loss({𝜇̂𝑡}𝑇𝑡=1,Ξ) =
∑︁

𝑡∈[1,𝑇 ]

(𝜇Tx* − 𝜇Tx̂𝑅,𝑡)

where x̂𝑅,𝑡 denotes the optimal robust portfolio for 𝑡 ∈ [1, 𝑇 ].

3.5.1 A Bilevel Programming Formulation

In this section, we describe the bilevel programming formulation that computes the

best estimation-error matrix Ξ for a given collection of return estimates {𝜇̂𝑡}𝑇𝑡=1.

The following parameters are used in the description of the bilevel model.

• 𝜇 : True expected return vector.

• Σ : True covariance matrix of the asset returns.

• 𝜇̂𝑡 : Estimated return vector under trial 𝑡 ∈ [1, 𝑇 ].

• 𝑣 : Risk threshold.

• x*(𝑣) = argmaxx∈Δ𝑛

{︁
𝜇Tx : xTΣx ≤ 𝑣

}︁
, The portfolio with maximum

expected return for a given risk threshold value 𝑣.

Let x̂𝑡(𝑣,Ξ, 𝜇̂𝑡) denote the optimal portfolio given that the estimated return vector

is 𝜇̂𝑡, estimation-error matrix is Ξ, and the risk threshold is 𝑣 under trial 𝑡 ∈ [1, 𝑇 ].

Note that this value is obtained by solving a convex optimization problem of the
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form (3.4). Therefore, we have the following bilevel program to compute the best Ξ

that minimizes the loss.

minimize
Ξ

𝑇∑︁
𝑡=1

(︁
𝜇Tx*(𝑣)− 𝜇Tx̂𝑡(𝑣,Ξ, 𝜇̂𝑡)

)︁
(3.10a)

subject to x̂𝑡(𝑣,Ξ, 𝜇̂𝑡) = argmax
x∈Δ𝑛

{︁
(𝜇̂𝑡)Tx−

√
xTΞx : xTΣx ≤ 𝑣

}︁
, 𝑡 ∈ [1, 𝑇 ],

(3.10b)

Ξ ∈ 𝒮𝑛
++. (3.10c)

In this formulation, Ξ is the upper-level decision variable, and each x̂𝑡(𝑣,Ξ, 𝜇̂𝑡) is a

lower-level decision variable. Note that we have as many lower-level problems as the

number of trials we have.

The above bilevel program minimizes the sum of the difference between the value of

the true frontier, and the value of the actual frontier under each trial. Alternatively,

one can use other performance measures, for example minimizing the maximum of

the differences. In this formulation, we assume the risk threshold 𝑣 is large enough

that the lower-level problem is feasible. Our next goal is to reformulate problem

(3.10) as a single level optimization program.

3.5.2 Reformulating (3.10) as a Single Level Program

We know that robust portfolio optimization problem is a convex optimization

program, it satisfies Slater’s condition, and it has a unique solution, see Proposition

23. Therefore, we can use the optimality conditions (3.6) to reformulate (3.10) as a

single level program (Bard, 1998).
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minimize
Ξ,x̂T,𝜆1,𝑡,𝜆2,𝑡,𝜆3,𝑡

𝑇∑︁
𝑡=1

(︁
𝜇Tx* − 𝜇Tx𝑡

)︁
(3.11a)

subject to − 𝜇̂𝑡 +
Ξx𝑡√︀
(x𝑡)TΞx

+ 2𝜆1,𝑡Σx𝑡 + 𝜆2,𝑡1− 𝜆3,𝑡 = 0, 𝑡 ∈ [1, 𝑇 ],

(3.11b)

(x𝑡)TΣx𝑡 ≤ 𝑣, 𝑡 ∈ [1, 𝑇 ], (3.11c)

1Tx𝑡 = 1, 𝑡 ∈ [1, 𝑇 ], (3.11d)

− x𝑡 ≤ 0, 𝑡 ∈ [1, 𝑇 ], (3.11e)

𝜆1,𝑡 ≥ 0, 𝑡 ∈ [1, 𝑇 ], (3.11f)

𝜆3,𝑡 ≥ 0, 𝑡 ∈ [1, 𝑇 ], (3.11g)

𝜆1,𝑡
(︀
(x𝑡)TΣx𝑡 − 𝑣

)︀
+
(︀
𝜆3,𝑡
)︀T

x𝑡 = 0, 𝑡 ∈ [1, 𝑇 ], (3.11h)

Ξ ∈ 𝒮++. (3.11i)

Note that in the above formulation, the optimality conditions are appended for each

trial 𝑡 ∈ [1, 𝑇 ].

The bilevel model (3.11) is a non-convex optimization problem due to the stationary

point equations (3.11b) and the complementary slackness conditions (3.11h). We

next present a reformulation for (3.11) when Ξ is a positive definite diagonal matrix.

Using the earlier reformulation idea in Section 3.4, we can reformulate (3.11) so as
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to avoid the square-root terms.

minimize
𝜉,x𝑡,𝜆1,𝑡,𝜆2,𝑡,𝜆3,𝑡

(3.11a) (3.12a)

subject to (3.11c) − (3.11h) (3.12b)

− 𝜇̂𝑡
𝑖 + 𝑧𝑡𝑖 + 2𝜆1,𝑡

𝑛∑︁
𝑗=1

𝜎𝑖𝑗𝑥
𝑡
𝑗 + 𝜆2,𝑡 − 𝜆3,𝑡

𝑖 = 0, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [𝑇 ],

(3.12c)
𝑛∑︁

𝑖=1

𝑥𝑡
𝑖𝑧

𝑡
𝑖 = 𝛼𝑡, 𝑡 ∈ [𝑇 ], (3.12d)

𝜉𝑖𝑥
𝑡
𝑖 = 𝑧𝑡𝑖𝛼

𝑡, 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇 ], (3.12e)

𝑧𝑡𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [𝑇 ], (3.12f)

𝛼𝑡 > 0, 𝑡 ∈ [𝑇 ], (3.12g)

𝜉𝑖 > 0. (3.12h)

3.5.3 Analysis of the Bilevel Model

In this section, we show that the bilevel model (3.12) has always an optimal solution

that yields arbitrarily small loss.

Theorem 28. For every 𝜖 > 0 and {𝜇̂𝑡}𝑇𝑡=1, there exists a diagonal matrix Ξ such

that loss({𝜇̂}𝑇𝑡=1,Ξ) ≤ 𝜖.

Proof. It suffices to find 𝜉, 𝜆1,𝑡, 𝜆2,𝑡, 𝜆3,𝑡, and x𝑡 such that they are feasible for (3.12),

and all the vectors x𝑡 are within a small neighborhood of x*.

Let 𝜆1,𝑡 = 0, and 𝜆3,𝑡
𝑖 = 0 for all 𝑖 ∈ [1, 𝑛] and 𝑡 ∈ [1, 𝑡]. Then (3.12c) can be written
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as

−𝜇̂𝑡
𝑖 + 𝑧𝑡𝑖 + 𝜆2,𝑡 = 0, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [𝑇 ], (3.13)

Using (3.12h), we substitute 𝑥𝑡
𝑖 = 𝑧𝑡𝑖𝛼

𝑡/𝜉𝑖 in (3.12g). We see that it suffices to solve

the following system to complete the proof.

∑︁
𝑖∈[1,𝑛]

(𝜇̂𝑡
𝑖 − 𝜆2,𝑡)2

𝜉𝑖
= 1, 𝑡 ∈ [1, 𝑇 ]. (3.14a)

𝑧𝑡𝑖 ≥ 0, 𝑖 ∈ [1, 𝑛], 𝑡 ∈ [𝑇 ], (3.14b)

𝛼𝑡 > 0, 𝑡 ∈ [𝑇 ], (3.14c)

𝜉𝑖 > 0. (3.14d)

Let x̃* be as in the proof of Theorem 26.

That is, x̃* is a feasible solution of (3.1) that satisfies the constraints xTΣx ≤ 𝑣 and

x ≥ 0 strictly and is within a small ball of the true optimum x*.

Pick 𝜉𝑖 = 𝑀/𝑥̃*
𝑖 for some large 𝑀 . With this choice, the equations in (3.14a) are

written as ∑︁
𝑖∈[1,𝑛]

(𝜇̂𝑡
𝑖 − 𝜆2,𝑡)2

𝑥̃*
𝑖

= 𝑀, 𝑡 ∈ [1, 𝑇 ]. (3.15)

For each 𝑡 ∈ [1, 𝑇 ], start by letting 𝜆2,𝑡 = min𝑖∈[1,𝑛]{𝜇̂𝑡
𝑖} and decrease 𝜆2,𝑡 until the

equation in (3.15) is satisfied. This will happen, because the left hand side in (3.15)

is continuous and monotonically increasing.

Now, let 𝑧𝑡𝑖 = 𝜇̂𝑡
𝑖 − 𝜆2,𝑡. Let 𝜂 > 0 be any positive real. Note that by choosing 𝑀

sufficiently large, we can guarantee that, for each 𝑡, all 𝑧𝑡𝑖 are within 1 + 𝜂 of the

smallest. Namely, for all 𝑖 ∈ [1, 𝑛], 𝑘𝑡 ≤ 𝑧𝑡𝑖 ≤ (1 + 𝜂)𝑘𝑡, where 𝑘𝑡 = min𝑗 𝑧
𝑡
𝑗. This is
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because the 𝜇̂𝑡
𝑖 are fixed whereas −𝜆2,𝑡 increases as 𝑀 increases.

For each 𝑡 ∈ [1, 𝑇 ], set 𝛼𝑡 = 1∑︀
𝑖

𝑧𝑡
𝑖

𝜉𝑖

. Now let 𝑥𝑡
𝑖 = 𝛼𝑡 × 𝑧𝑡𝑖

𝜉𝑖
. Note that we have∑︀

𝑖∈[1,𝑛] 𝑥
𝑡
𝑖 = 1 and 𝑥𝑡

𝑖 > 0. To show that x𝑡 is feasible, we only need to show that it

satisfies the variance constraint. This will follow from showing that x𝑡 is in a small

neighborhood of x̃*, which satisfies it strictly. We have 𝑥𝑡
𝑖 = 𝛼𝑡 × 𝑧𝑡𝑖

𝜉𝑖
= 𝛼𝑡 × 𝑧𝑡𝑖 𝑥̃

*
𝑖

𝑀
.

Using our bounds on 𝑧𝑡𝑖 , we get

𝛼𝑡𝑘𝑡
𝑀

𝑥̃*
𝑖 ≤ 𝑥𝑡

𝑖 ≤ (1 + 𝜂)
𝛼𝑡𝑘𝑡
𝑀

𝑥̃*
𝑖 .

Adding over 𝑖 we get 𝛼𝑡𝑘𝑡
𝑀

≤ 1 ≤ (1 + 𝜂)𝛼
𝑡𝑘𝑡
𝑀

. This implies

(1− 𝜂)𝑥̃*
𝑖 ≤ 𝑥𝑡

𝑖 ≤ (1 + 𝜂)𝑥̃*
𝑖 .

This translates into a vanishing loss in the objective value as 𝜂 goes to 0. And this

concludes the proof.

We conclude this section by noting that despite the exciting theoretical results of

Sections 3.4 and 3.5, the non-convex non-linear bilevel model is intractable to solve

using the current state-of-the-art software for global optimization. Developing an

efficient method to solve the bilevel model presented in this section remains a future

work.
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3.6 Using the Identity Matrix as Estimation-Error

Matrix

The results of the previous sections demonstrate that one can focus on diagonal

estimation-error matrices and consequently deal with calibrating only 𝑛 parameters

in constructing the uncertainty sets. In this section, we restrict our attention to the

simplest diagonal estimation-error matrix, the identity matrix. In this case, we only

need to calibrate one parameter(𝜅), which is advantageous for decision makers.

Our goal is to investigate whether using an identity matrix as the estimation-error

matrix can improve the performance of the classical Markowitz model. To this end,

we perform a simulation where we compare the out-of-sample performances of the

two approaches. We generate samples from the distribution Normal(𝜇,Σ/𝑁). The

value of 𝑁 determines the accuracy of the samples we generate (increasing 𝑁 results

in better estimates of the expected return). Then, we solve the classical Markowitz

model and the robust portfolio model for varying 𝜅 values and compare their actual

performances. When 𝜅 = ∞, the robust portfolio becomes the equal-weight portfolio.

𝜅×𝑁

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ∞
1 13.0 18.3 19.3 19.4 19.3 19.2 19.1 19.0 18.9 18.9 18.4
3 7.8 13.7 16.3 17.2 17.4 17.4 17.2 17.0 16.8 16.7 15.1

N 6 5.3 10.1 13.1 14.6 15.2 15.3 15.2 15.0 14.8 14.6 11.4
12 3.6 7.0 9.6 11.3 12.2 12.5 12.6 12.4 12.2 11.9 5.8
24 2.4 4.6 6.4 7.8 8.7 9.1 9.2 9.0 8.7 8.3 -3.4
120 1.2 2.0 2.7 3.1 3.3 3.2 2.8 2.3 1.6 0.8 -59.2

Table 3.1: Percentage gap closed by the robust model when Ξ = I (𝑣 = 0.002).
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Table 3.1 gives the result of our simulation. Each cell in Table 3.1 contains the

percentage gap closed by the robust solution compared to the Markowitz solution.

Specifically, in each cell of Table 3.1, we report (𝑅̄− 𝑀̄)/(𝑇 − 𝑀̄) where 𝑅̄ denotes

the actual performance of the robust solution estimates, 𝑀̄ denotes the actual

performance of the Markowitz solution estimates, and 𝑇 denotes the true return. For

example, the entry 19.4 for 𝑁 = 1 and 𝜅×𝑁 = 0.4 is obtained by first computing the

estimates 𝑀̄ = 0.01262 and 𝑅̄ = 0.01314. Similarly, for 𝑁 = 120 and 𝜅 ×𝑁 = 0.5,

we have that 𝑀̄ = 0.01395 and 𝑅̄ = 0.01399 which yields the entry 3.3. The true

return 𝑇 is equal to 0.01535. Note that for each cell, the values 𝑅̄ and 𝑀̄ are averages

over 10000 trials; consequently, the standard error for each cell in Table 3.1 is less

than 0.5.

We see from Table 3.1 that the robust model can significantly outperform the

Markowitz model when 𝜅 lies in a wide range of values. This is interesting,

because the identity matrix contains no information about the problem or the

relationship between the assets. Furthermore, the equal-weight portfolio outperforms

the Markowitz solution estimates up to 𝑁 = 12. On the other hand, the Markowitz

solution estimates are better than equal-weight portfolio when we have more accurate

samples (i.e., 𝑁 = 24 and 𝑁 = 120). It is important to note that the robust solution

estimates are better than the Markowitz solution estimates even when the samples

are very accurate (i.e., 𝑁 = 120).

We repeat the experiments on a different data set based on four international equity

indices. We use the monthly returns for Canada, Switzerland, the United Kingdom

and the United States between 2004 and 2022. The data is obtained from Morgan

Stanley Capital International (MSCI).
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𝜅×𝑁

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ∞
1 32.9 31.5 30.8 30.5 30.3 30.2 30.1 30.0 30.0 29.9 29.6
3 31.2 31.9 30.1 29.1 28.5 28.1 27.9 27.7 27.5 27.4 26.3

N 6 28.2 32.8 30.6 28.6 27.4 26.5 26.0 25.5 25.2 24.9 22.6
12 24.8 33.1 32.6 29.9 27.4 25.6 24.3 23.4 22.7 22.1 17.1
24 21.5 32.0 34.4 32.8 29.7 26.6 23.9 21.8 20.1 18.8 7.4
120 14.7 25.4 32.4 36.4 38.0 37.7 35.8 32.9 29.2 25.2 -63.3

Table 3.2: Percentage gap closed by the robust model when Ξ = I (𝑣 = 0.0013).

We see from Table 3.2 that the robust portfolios perform better than the portfolios

obtained from the classical Markowitz model. In this data set, the expected returns

of the minimum variance portfolio and of the equal-weight portfolio are 0.00108 and

0.00473, respectively. The true expected return 𝑇 is equal to 0.00559. We note that

the Markowitz model beats the equal-weight portfolio only when 𝑁 = 120, whereas

the robust model beats the equal-weight portfolio under all 𝑁 −𝜅×𝑁 combinations

where 𝜅 ×𝑁 is finite in Table 3.2. Furthermore, the minimum variance portfolio is

outperformed by both the Markowitz model and the robust model under all 𝑁−𝜅×𝑁

combinations.

The results in Table 3.1 and 3.2 illustrate that the 𝜅 × 𝑁 values that perform best

vary between 0.2 and 0.7. We observe that keeping 𝜅 × 𝑁 constant when 𝑁 varies

works well for improving the actual performance of the portfolio. Not surprisingly,

the need for robustification diminishes when we have better estimates as 𝑁 increases.

In order to understand the results better, we focus on two particular distributions

𝑁 = 3 and 𝑁 = 24 when 𝜅×𝑁 = 0.5 in Table 3.1. We present the averages 𝑀̄ and

𝑅̄ as a histogram. Figure 3-3 provides a clearer picture for the superior performance
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Figure 3-3: Histograms of the actual performances of Robust and Markowitz models.

of the robust model. We see that the empirical distributions of the actual returns

under the robust model have a smaller variance. On the other hand, the actual

returns under the Markowtiz model features outliers that perform very poorly. As

a result, the robust model outperforms the Markowitz model, and the difference is

significant.

3.7 Conclusion

In this paper, we take a theoretical look at the robust portfolio optimization problem.

Our main contribution is to show that the family of diagonal estimation-error

matrices is sufficiently rich to achieve an arbitrarily small loss compared to the

optimum expected return. We perform illustrative computational experiments to

show that even using an identity matrix can improve on the actual performance of

the Markowitz model when the size of the uncertainty set is correctly calibrated.
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Our work is a step towards constructing better estimation-error matrices for robust

portfolio optimization. Our bilevel model can be used to construct good estimation-

error matrices using the available data. This will require developing a more efficient

method to solve the bilevel model. Another research direction would be a theoretical

analysis on the use of identity matrices as estimation-error matrices.
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Chapter 4

Structural Properties of Equitable

and Efficient Distributions

This chapter is a joint work with John Hooker and Peter Zhang.

4.1 Introduction

Optimization offers a powerful tool for identifying an efficient and equitable allocation

of resources. By maximizing a suitable objective function subject to resource

limits and other constraints, one can find the best possible allocation of resources

as measured by that function. Far and away the most widely used objective is

the maximization of total utility, which can take the form of minimizing cost or

maximizing revenue or some other benefit. Yet a purely utilitarian criterion lacks an

explicit measure of equity. When maximized subject to typical resource constraints,

it can lead to extreme and unsatisfactory solutions that benefit a very few at the
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expense of the many. If this result does not occur for many optimization models

used in practice, it is because the complexity of the constraint set excludes extreme

solutions—not because they are recognized as unjust, but simply because they do

not happen to satisfy all of the constraints. In effect, the constraints conceal the

inherent inadequacy of the objective function.

This poses the challenge of identifying an objective function that incorporates within

itself a criterion for equity as well as efficiency. We address this challenge by

examining the structure of optimal solutions that result from maximizing a variety

of social welfare functions (SWFs), subject to basic resource limitations. We find

that not only a utilitarian objective, but some of the best-known fairness measures,

can result in extreme and often unacceptable solutions. Again, if these extreme

solutions are not often observed, it is because they are excluded by side constraints

that reflect the exigencies of the situation rather than some underlying concept of

fairness. This indicates that one must look further for an SWF that encapsulates an

adequate concept of equity.

With this goal in mind, we examine a series of increasingly sophisticated social

welfare functions. They include utilitarian, Rawlsian maximin, and leximax SWFs,

as well as alpha fairness, proportional fairness (the Nash bargaining solution), the

Kalai–Smorodinsky bargaining solution, and recently proposed threshold functions

that combine utilitarian with maximin or leximax fairness. We focus primarily on

SWFs that combine efficiency and equity criteria in some fashion, partly because

this is an obvious strategy for avoiding the extreme outcomes, and partly because

efficiency is as important as equity in most practical applications. We derive the

structural properties of optimal solutions that result when these SWFs are maximized

subject to simple but generic constraints that form the core of a wide variety of
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applications. Specifically, we suppose there is a budget limit that constrains total

available resources, optional bounds on each party’s utility, and a linear (or concave

piece-wise linear) utility function that links each party’s utility to the resources

provided. To our knowledge, very few of these structural results appear in the

literature. We find that while each SWF avoids some of the extreme solutions

associated with the previous ones, it introduces anomalies of its own. Only the

last criterion seems to avoid these difficulties, although it may itself require further

refinement.

We also examine the structure of solutions in a hierarchical distribution network.

This represents the common situation in which a national authority allocates

resources to regions, which in turn combine these with their own resources for

distribution to its subregions or institutions. We find that the more sophisticated

SWFs are more likely to be regionally nondecomposable, as perhaps they should be.

This means that the regional authorities must take into account the national picture

before they can equitably allocate resources within their own territory.

The paper begins with a statement of the generic optimization problem, followed by

a healthcare example that illustrates how this type of problem can occur in practice.

It then states the optimization problem on a hierarchical network and defines

concepts of collapsibility, monotone separability, and regional decomposability. Next,

incentives from the perspectives of individuals are discussed. Concretely, such

questions are studied by looking at the behavior of the optimal solutions as the

model parameters change. Following this, it considers a sequence of SWFs and

derives properties of the optimal solutions they deliver. Proofs may be found in the

Appendix. The paper concludes by drawing lessons from these results.
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4.2 The Optimization Problem

We wish to maximize social welfare subject to a budget constraint. If x = (𝑥1, . . . , 𝑥𝑛)

are the resources allotted to individuals 1, . . . , 𝑛, a general distribution problem may

be stated

max
x∈R𝑛

{︁
𝑊
(︀
U(x)

)︀ ⃒⃒⃒ ∑︁
𝑗

𝑥𝑗 ≤ 𝐵, c̄ ≤ x ≤ d̄
}︁

(4.1)

The social welfare function 𝑊 (u) measures the desirability of a distribution of

utilities u = (𝑢1, . . . , 𝑢𝑛) across individuals 1, . . . , 𝑛. The utility function U

determines the vector u = U(x) of utilities resulting from resource allotment x =

(𝑥1, . . . , 𝑥𝑛). The budget constraint
∑︀

𝑗 𝑥𝑗 ≤ 𝐵 limits total resource consumption

to 𝐵. The bounds c̄ ≤ x ≤ d̄ constrain the resources allotted to individuals by

requiring that 𝑐𝑗 ≤ 𝑥𝑗 ≤ 𝑑𝑗 for each 𝑗.

We will focus on linear utility functions of the form

U(x) = (𝑥1/𝑎1, . . . , 𝑥𝑛/𝑎𝑛) (4.2)

where each 𝑎𝑗 > 0 and c ≥ 0. This allows us to eliminate x and write (4.1) as

max
u∈R𝑛

{︀
𝑊 (u)

⃒⃒
aTu ≤ 𝐵, c ≤ u ≤ d

}︀
(4.3)

where 𝑐𝑗 = 𝑐𝑗/𝑎𝑗 and 𝑑𝑗 = 𝑑𝑗/𝑎𝑗 for all 𝑗. Thus a large coefficient 𝑎𝑗 indicates that it

is expensive to provide for the welfare of individual 𝑗, perhaps due to a disease that

is costly to treat. The lower bounds impose a floor on the welfare of each individual,

or may reflect a default utility level without resources. The upper bounds reflect

the fact that greater resources can yield greater utility only up to a point; once the

disease is cured, there is no need to provide more medical resources.
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To simplify notation, we assume individuals are indexed so that 𝑎1 ≤ · · · ≤ 𝑎𝑛. This

means that individual 1’s welfare is the least costly to provide. We also assume

without loss of generality that 0 ≤ 𝑐𝑗 ≤ 𝑑𝑗 ≤ 𝐵/𝑎𝑗 for each 𝑗, since 0 ≤ 𝑢𝑗 ≤ 𝐵/𝑎𝑗

is already enforced by the budget constraint and u ≥ 0.

Finally, it is often revealing to investigate problem (4.3) without upper and/or lower

bounds on the utilities. When there are no positive lower bounds (c = 0), (4.3)

becomes

max
u∈R𝑛

{︀
𝑊 (u)

⃒⃒
aTu ≤ 𝐵, 0 ≤ u ≤ d

}︀
(4.4)

which we refer to as maximizing social welfare subject to a budget constraint and

upper bounds. When, in addition, there are no nontrivial upper bounds (𝑑𝑗 = 𝐵/𝑎𝑗

for all 𝑗), model (4.3) becomes

max
u∈R𝑛

{︀
𝑊 (u)

⃒⃒
aTu ≤ 𝐵, u ≥ 0

}︀
(4.5)

which we refer to as maximizing social welfare subject to a budget constraint.

The model (4.3) accommodates a wide variety of resource allocation scenarios, one

of which is described in the next section. Yet in some cases it may be desirable to

measure utility as a nonlinear function of resources, as when there are decreasing

returns to scale. In the latter case, the utility function 𝑈(x) is concave and can be

approximated by imposing a system Au ≤ B of linear budget constraints. In such

cases one can solve the problem

max
u∈R𝑛

{︀
𝐹 (u)

⃒⃒
Au ≤ B, c ≤ u ≤ d

}︀
(4.6)

where each budget constraint has the form 𝐴𝑖u ≤ 𝐵𝑖 for 𝑖 = 1, . . . ,𝑚.
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4.3 A Motivating Example

A health provision problem solved by Hooker and Williams (2012) illustrates how

the optimization model of the previous section can occur in practice. Hooker and

Williams solved the problem using their threshold SWF (described in Section 4.9),

but any of the SWFs we survey can be used. In this section, we focus on the problem

constraints.

The problem is to allocate healthcare resources in a manner that is both equitable

and efficient, subject to a budget limitation. We are given 𝑚 treatment groups that

are distinguished by the severity and prognosis of the disease. Each group 𝑖 has size

𝑛𝑖. We let 𝑐𝑖 be the cost per patient of administering the treatment, 𝑞𝑖 the average

net gain in quality-adjusted life years (QALYs) for a member of group 𝑖 when the

treatment is administered, and 𝛼𝑖 is the average QALYs that results from medical

management without the treatment in question. The budget constraint is

∑︁
𝑖

𝑛𝑖𝑐𝑖𝑦𝑖 ≤ 𝐵̃ (4.7)

where

𝑢𝑖 = 𝑞𝑖𝑦𝑖 + 𝛼𝑖 (4.8)

and 0 ≤ 𝑦𝑖 ≤ 1. The variables 𝑦𝑖 indicate the fraction of patients in group 𝑖 provided

treatment. In the event of partial funding, medical personnel make triage decisions

based on individual situations. The expected utility in each group (measured in

QALYs) is formulated as an affine function of resources, because the additional

expected utility resulting from treatment is reasonably seen as proportional to the

number of patients treated.
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Since we have from (4.8) that 𝑦𝑖 = (𝑢𝑖 − 𝛼𝑖)/𝑞𝑖, we substitute this into (4.7) to get

the budget constraint ∑︁
𝑖

𝑛𝑖𝑐𝑖
𝑞𝑖

𝑢𝑖 ≤ 𝐵̃ +
∑︁
𝑖

𝑛𝑖𝑐𝑖𝛼𝑖

𝑞𝑖
(4.9)

Also (4.8) and 0 ≤ 𝑦𝑖 ≤ 1 imply the lower and upper bounds

𝛼𝑖 ≤ 𝑢𝑖 ≤ 𝑞𝑖 + 𝛼𝑖 (4.10)

Now the problem of maximizing (u) subject to (4.9) and (4.10) has the form of our

general model (4.3), where 𝑎𝑖 = 𝑛𝑖𝑐𝑖/𝑞𝑖 and 𝐵 = 𝐵̃ +
∑︀

𝑖 𝑛𝑖𝑐𝑖𝛼𝑖/𝑞𝑖. This example

illustrates how model (4.3) can encompass a broad class of resource allocation

problems with linear utility functions.

4.4 Hierarchical Distribution

We also examine distribution on a hierarchical network, a type of allocation problem

that frequently arises in real-world applications (Simchi-Levi et al., 2019). The

resulting optimization problem is a special case of (4.6). We show analysis in

this section with a two-level network setup. But all definitions and results can be

generalized to a hierarchical network with any finite number of levels, which we briefly

comment on at the end of the section. Each region 𝑘 has an existing resource budget

𝐵𝑘, and the national government must decide how much resources 𝑦𝑘 to allocate to
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each region. If there are 𝑟 regions, the distribution problem (4.1) becomes

max
x,y

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝑊
(︀
U(x)

)︀
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

𝑟∑︁
𝑘=1

𝑦𝑘 ≤ 𝐵, c̄ ≤ x ≤ d̄, y ≥ 0

∑︁
𝑗∈𝐽𝑘

𝑥𝑗 ≤ 𝐵𝑘 + 𝑦𝑘, 𝑘 = 1, . . . , 𝑟

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where 𝐽𝑘 is the index set for the subregions in region 𝑘. Again using the linear utility

function (4.2), this problem becomes

max
y,u

⎧⎨⎩𝑊 (u)

⃒⃒⃒⃒
⃒⃒ eTy ≤ 𝐵, c ≤ u ≤ d, y ≥ 0

a𝑘u𝑘 ≤ 𝐵𝑘 + 𝑦𝑘, 𝑘 = 1, . . . , 𝑟

⎫⎬⎭ (4.11)

where e = (1, . . . , 1) and vector u𝑘 contains the utilities of subregions of region 𝑘.

Interestingly, if we drop the requirement y ≥ 0 (i.e, we allow the national government

to take resources from the regions), the model collapses into a single-level problem:

max
u

{︃
𝑊 (u)

⃒⃒⃒⃒
⃒ aTu ≤ 𝐵 +

𝑟∑︁
𝑘=1

𝐵𝑘, c ≤ u ≤ d

}︃
(4.12)

We will say that a hierarchical problem is collapsible if it can be solved by solving

its collapsed version (4.12). A problem is collapsible if each region’s allocation in the

collapsed problem (4.12) is no less than its stock already on hand.

Proposition 29. A hierarchical problem (4.11) is collapsible if for any optimal

solution ū of (4.12), a𝑘ū𝑘 ≥ 𝐵𝑘 for 𝑘 = 1, . . . , 𝑟.

Paradoxically, the individual regions may not compute the same distribution for

their subregions as recommended by national planners, even when they use the same

130



social welfare function. Examples of this are given in Sections 4.9 and 4.10. We

will say that a problem is regionally decomposable when this issue does not arise;

that is, when the optimal distribution within any region, given the resource subsidy

provided by the national solution, is the same as in the national solution. More

precisely, (4.11) is regionally decomposable if, given any optimal solution (ū, ȳ) of

(4.11), and given any set of solutions û1, . . . , û𝑟 that are respectively optimal in the

regional distribution problems

max
u𝑘

{︀
𝑊 (u𝑘)

⃒⃒
a𝑘u𝑘 ≤ 𝐵𝑘 + 𝑦𝑘, c

𝑘 ≤ u𝑘 ≤ d𝑘
}︀
, 𝑘 = 1, . . . , 𝑟 (4.13)

the solution (u,y) = (û1, . . . , û𝑟, ȳ) is optimal in (4.11).

A key to regional decomposability is monotonic separability of 𝑊 (u). This means

that for any partition u = (u1,u2), 𝑊 (ū1) ≥ 𝑊 (u1) and 𝑊 (ū2) ≥ 𝑊 (u2) imply

𝑊 (ū) ≥ 𝑊 (u). In particular, a separable function1 𝑊 (u) =
∑︀

𝑗 𝑊𝑗(𝑢𝑗) is mono-

tonically separable. Then we have

Proposition 30. If 𝑊 (u) is monotonically separable, problem (4.11) is regionally

decomposable.

Thus if the SWF is monotonically separable, the regions will distribute their

allotment in a way consistent with a nationally optimal solution. However, if the

SWF is not monotonically separable, or some regions use a different social welfare

criterion, a region’s distribution to its subregions may depart from the national plan.

If so, the nation’s allocation of resources to regions is based on the false assumption

1A common assumption made by early research in this area, such as Dalton (1920) and Atkinson
(1970). For more discussion on such a welfare function, we refer readers to Section 4.7.
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that the resources will be distributed within regions as prescribed by the national

solution.

In a network with more than two levels, the definition of collapsibility and Proposition

29 essentially remain the same. For regional decomposability, one needs to generalize

the definition in a natural way to reflect the consistency of resource allocations at

all levels. Proposition 30 remains the same.

4.5 Incentives and Sharing

A social welfare solution raises two important and related questions. One is whether

an individual 𝑖 receives more utility allotment by having a more efficient utility

conversion; that is, by reducing 𝑎𝑖 in the resource constraint. Another question is

how such an efficiency improvement affects the welfare of other individuals. Using

concepts from Sen’s capabilities approach (Sen, 1995), we call 𝑎𝑖 the conversion

efficiency of individual 𝑖. In most cases, we simply refer to it as efficiency, unless

there is ambiguity between “conversion efficiency” and “sum of everyone’s utilities”.

Many factors contribute to conversion efficiencies. For the purpose of our discussion,

we categorize them into personal, technological, and others. Personal factors of

individual 𝑖 refer to the factors that each individual 𝑖 has control over, such as

individual 𝑖’s exercise routine and diet that could affect the treatment effectiveness

of certain drugs. Technological factors refer to the factors that our social planner

has control over, such as the development of a new drug that is cheaper and more

effective, therefore can convert the same healthcare resources to a larger increase in

overall societal QALYs. While personal factors affect one 𝑎𝑖 at a time, technological

factors can affect one or more 𝑎𝑖’s simultaneously.
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We can ask questions regarding both personal and technological factors. For personal

factors, we ask whether there is a personal incentive to become more efficient, and

whether doing so benefits others or pits one in competition against them. One might

hypothesize that a greater emphasis on equity in a SWF results in more sharing

of benefits and therefore encourages cooperation. For technological factors, we ask

whether the social planner has an incentive to improve the conversion efficiencies for

a certain subset of individuals, and who is in this subset. This is especially interesting

if we think about two different ways of investing additional societal resource: directly

investing the resource in the form of increased budget 𝐵, or indirectly investing the

resource by improving conversion efficiencies, i.e., decreasing 𝑎𝑖. Investing directly

into 𝐵 usually benefits every individual 𝑖 at the rate of 1/𝑎𝑖 or 0. On the other hand,

as we will see, indirect investment via conversion efficiencies leads to a different set

of rates under each social welfare functions. In general, the indirect investment could

lead to outcomes that are more balanced than 1/𝑎𝑖 (1/𝑎2𝑁 rate for each 𝑎𝑖) or less

balanced than 1/𝑎𝑖 (1/𝑎2𝑖 for each 𝑎𝑖), or somewhere in between.

We address these questions mathematically by observing how reducing an individual 𝑖’s

coefficient 𝑎𝑖 in the budget constraint changes a socially optimal solution u*. For

purposes of this analysis, we assume the optimum is obtained subject only to a

resource constraint, without upper bounds on utilities. We focus on effects at the

margin, which means that we investigate only the effect of small perturbations in

𝑎𝑖. To simplify the analysis without undermining basic insights, we ignore points at

which at which the solution u* is a discontinuous function of a. This allows us to

express the sensitivity of an individual’s utility 𝑢*
𝑗 to reductions in 𝑎𝑖 as a negative

partial derivative: the rate of increase of 𝑢*
𝑗 with respect to decreases in 𝑎𝑖. In

addition, because we are dealing with small perturbations, the effect of technology
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improvement can be directly approximated as the sum of these partial derivatives.

4.6 Utilitarian, Maximin, and Leximax Criteria.

4.6.1 Socially Optimal Distributions

An analysis of utilitarian, maximin and leximax social welfare functions is straight-

forward but a useful starting point. The utilitarian SWF

𝑊 (u) =
∑︁
𝑗

𝑢𝑗

stems ultimately from Jeremy Bentham’s idea that one should maximize the greatest

good for the greatest number (Bentham, 1789). While many optimization models are

designed to achieve this goal, a consistently utilitarian objective can lead to extreme

distributions. This is borne out by solutions of the optimization problem (4.3).

Suppose that utilities are indexed so that 𝑎1 ≤ · · · ≤ 𝑎𝑛, which means that that

utility is least expensive for individual 1. Then utility is maximized by allocating all

available utility to individual 1, up to 𝑑1, then all remaining utility to individual 2

up to 𝑑2, and so forth. Thus we have the simple result,

Proposition 31. If 𝑎1 ≤ · · · ≤ 𝑎𝑛 and

𝜑𝑗 =
1

𝑎𝑗

(︁
𝐵 −

𝑗−1∑︁
ℓ=1

𝑎ℓ𝑑ℓ

)︁
, for 𝑗 = 1, . . . , 𝑛

then maximizing utility subject to a resource constraint and upper bounds yields the
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optimal solution

𝑢*
𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑗 for 𝑗 = 1, . . . , 𝑘

𝜑𝑘+1 for 𝑗 = 𝑘 + 1

0 for 𝑗 = 𝑗 + 2, . . . , 𝑛

where 𝑘 = max{𝑗 ∈ {0, . . . , 𝑛} | 𝑑𝑗 ≤ 𝜑𝑗}. In particular, if 𝐵/𝑎1 ≤ 𝑑1, then person

1 receives all available utility, and everyone else receives nothing.

While a utilitarian policy of lavishing all resources on a single or a few individuals

is often unacceptable, a maximin criterion can also lead to questionable outcomes.

It is inspired by the Difference Principle of John Rawls (Rawls, 1999), which has

been discussed in a large literature (surveyed in Richardson and Weithman (1999);

Freeman (2003)). It states roughly that inequality is justified only to the extent that

it improves the lot of the worst-off. The criterion therefore seeks to maximize the

minimum utility and corresponds to the simple SWF

𝑊 (u) = min
𝑗
{𝑢𝑗}

While Rawls intended the principle only to apply to the design of social institutions

and the distribution of “primary goods,” it can be investigated as a possible rule for

fair distribution in general.

The maximin solution subject to a budget constraint splits utility equally among

individuals. Thus if we define 𝑎𝐽 =
∑︀

𝑗∈𝐽 𝑎𝑗 and 𝑁 = {1, . . . , 𝑛}, we have 𝑢*
𝑗 = 𝐵/𝑎𝑁

for all 𝑗, so that person 𝑗 receives resource allotment 𝐵(𝑎𝑗/𝑎𝑁). This can require a

very unequal distribution of resources when 𝑎1 ≪ 𝑎𝑛. For example, when devoting

all available resources to a seriously ill patient yields only a slight improvement,

nearly all resources must be devoted to that person, and the welfare of everyone else
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reduced to the same low level. The outcome is similar if there are upper bounds. If

we let 𝑑min = min𝑗{𝑑𝑗}, then we have

Proposition 32. A maximin solution subject to a resource constraint and upper

bounds allots equal utility 𝑢*
𝑗 = min{𝑑min, 𝐵/𝑎𝑁} to all persons 𝑗.

The proposition reveals another problem with the maximin criterion. A solution

in which the utilities are equal to 𝑑min can waste much of the available resources,

specifically max{0, 𝐵 − 𝑎𝑁𝑑min}.

This anomaly is avoided by moving to a leximax criterion (lexicographic maxi-

mization). It maximizes the smallest utility min𝑗{𝑢𝑗}, then while fixing min𝑗{𝑢𝑗}
at that level, maximizes the second smallest utility, and so forth. The social

contract argument with which Rawls defends the maximin criterion can reasonably

be extended to a leximax criterion.

This is a different sense of lexicographic maximization than is often used. When

comparing utility distributions u, it assumes that the utilities in u are ordered by

size rather than their positions in the sequence 𝑢1, . . . , 𝑢𝑛. To define this sense

precisely, we say that utility distribution u dominates u′ when there is permutation

𝜋 of 1, . . . , 𝑛 for which 𝑢𝜋1 ≤ · · · ≤ 𝑢𝜋𝑛 , a permutation 𝜋′ for which 𝑢′
𝜋′
1
≤ · · · ≤ 𝑢′

𝜋′
𝑛
,

and an index 𝑘 ∈ 𝑁 , such that the following holds: 𝑢𝜋𝑗
= 𝑢′

𝜋′
𝑗

for 𝑗 = 1, . . . , 𝑘 − 1

and 𝑢𝜋𝑘
> 𝑢′

𝜋′
𝑘
. Thus, while u = (1, 3, 2) dominates u′ = (1, 2, 4) in the usual sense,

u′ dominates u in the sense defined here. We now say that u* ∈ 𝑈 is a leximax

solution over a feasible set 𝑈 if no element of 𝑈 dominates u*.

A leximax solution subject to a budget constraint and upper bounds can be obtained

as follows: set utilities with the 𝑘 smallest upper bounds to those upper bounds, and

136



then set the remaining utilities to an equal value that is selected to exhaust the

remaining resources. The number 𝑘 depends on the specific problem data. Thus we

have the following.

Proposition 33. Suppose that utilities 𝑢1, . . . , 𝑢𝑛 are indexed so that their upper

bounds satisfy 𝑑1 ≤ · · · ≤ 𝑑𝑛, and that

𝜑𝑗 =
(︁
𝐵 −

𝑗−1∑︁
ℓ=1

𝑎ℓ𝑑ℓ

)︁(︁
𝑎𝑁 −

𝑗−1∑︁
ℓ=1

𝑎ℓ

)︁−1

, for 𝑗 = 1, . . . , 𝑛

Then a leximax solution u* subject to a resource constraint and the upper bounds is

given by

𝑢*
𝑗 =

⎧⎨⎩ 𝑑𝑗 for 𝑗 = 1, . . . , 𝑘

𝜑𝑘+1 for 𝑗 = 𝑘 + 1, . . . , 𝑛

where 𝑘 = max{𝑗 ∈ {0, . . . , 𝑛} | 𝑑𝑗 ≤ 𝜑𝑗} and 𝑑0 = 𝜑0 = 0. Furthermore, this

solution consumes all available resources.

4.6.2 Hierarchical Distributions

The hierarchical problem (4.11) is regionally decomposable for the utilitarian

criterion, because the SWF is separable and therefore monotonically separable. The

maximin SWF is not separable, but it is monotonically separable and therefore

regionally decomposable due to Proposition 30.

Proposition 30 cannot be applied to the leximax criterion, because it is not repre-

sented by a single SWF. However, a property analogous to monotone separability can

be defined for lexicographic comparisons as shown in the Appendix, and it allows

one to establish that the hierarchical problem is regionally decomposable for the
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leximax criterion. Regional decomposability is defined for this problem by replacing

max{𝑊 (u)} with leximax{u} in (4.11) and (4.13). Thus we have

Proposition 34. The hierarchical problem (4.11) is regionally decomposable for a

leximax criterion.

The utilitarian criterion is collapsible only in the degenerate case where 𝐵 = 𝐵𝑘 = 0

for all 𝑘 ̸= 1. The utilitarian solution is again extreme. If there are no upper

bounds, for example, at most one subregion in each region receives positive utility.

A straightforward argument shows that the maximin problem is collapsible when

𝐵 +
∑︁
𝑖

𝐵𝑖 ≥ min
{︁
𝑎𝑁𝑑min, max

𝑘

{︀
(𝑎𝑁/𝑎𝐽𝑘)𝐵𝑘

}︀}︁

where 𝑑min = min𝑗{𝑑𝑗}. An optimal solution of the collapsed problem is

𝑢*
𝑗 = min

{︃
𝑑min, (1/𝑎𝑁)

(︁
𝐵 +

∑︁
𝑘

𝐵𝑘

)︁}︃
, all 𝑗

4.6.3 Incentives and Sharing

Finally, we examine the effect on a socially optimal solution u* (subject to a resource

constraint) when an individual 𝑖 improves personal efficiency by reducing 𝑎𝑖. In the

utilitarian problem, only the individual who receives all resources (𝑖 = 1) benefits,

and everyone else continues to receive zero utility. A reduction in 𝑎1 increases this

individual’s utility at the rate 𝐵/𝑎21 = 𝑢*
1/𝑎1. In the maximin problem, everyone

shares the surplus equally when one individual improves efficiency. A reduction in

any 𝑎𝑖 increases every individual 𝑗’s utility at the rather small rate (𝑎𝑖/𝑎
2
𝑁)𝐵.
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Since one’s efficiency improvements benefit oneself as well as others, one’s incentive

to improve is inversely proportional to one’s current efficiency. This implies a leveling

tendency that complements the equal distribution of utility in a maximin solution.

Those who waste more resources have a stronger incentive to cut waste. Those

who require greater resources due to ill health, or some other debilitating condition,

benefit more in a maximin solution from reductions in the cost of treatment or

therapy.

We can define the societal utility increase rate from investment into 𝑖 as −𝜕
∑︀

𝑗 𝑢
*
𝑗/𝜕𝑎𝑖,

and define the gradient of technology investment as the change in total utility as

we change different 𝑎𝑖’s, (−𝜕
∑︀

𝑗 𝑢
*
𝑗/𝜕𝑎1,−𝜕

∑︀
𝑗 𝑢

*
𝑗/𝜕𝑎2, . . . ). It is straightforward

to see that under a utilitarian framework, investment in technological efficiency

leads to a utility increase rate proportional to 1/𝑎2𝑖 for the most efficient individual

𝑖, and 0 otherwise. So the gradient of technology investment is in the form of

(0, . . . , 𝑎−2
min, 0, 0, . . . ). Under a maximin SWF, the utility increase rate is 𝑛𝐵/𝑎2𝑁

for every 𝑖, therefore the gradient of technology investment is proportional to

(𝑎−2
𝑁 , 𝑎−2

𝑁 , . . . ).

4.7 Alpha Fairness

4.7.1 Socially Optimal Distribution

Alpha fairness is perhaps the most popular criterion for balancing equity and

efficiency Mo and Walrand (2000); Lan et al. (2010); Bertsimas et al. (2012). It

has the advantage of allowing one to regulate the balance with a parameter 𝛼,

where larger values of 𝛼 place a greater emphasis on fairness. In particular, 𝛼 = 0

corresponds to a purely utilitarian criterion, and 𝛼 = ∞ to a maximin criterion. An
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important special case is proportional fairness, also known as the Nash bargaining

solution Nash (1950), which is frequently used in such engineering contexts as

telecommunications and traffic signal timing Mazumdar et al. (1991); Kelly et al.

(1998).

The alpha fairness SWF is

𝑊𝛼(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1− 𝛼

∑︁
𝑗

𝑢1−𝛼
𝑗 , if 𝛼 ≥ 0 and 𝛼 ̸= 1

∑︁
𝑗

log(𝑢𝑗), if 𝛼 = 1

The special case of 𝛼 = 1 corresponds to the Nash bargaining solution. Nash

provided an axiomatic justification for this solution, but it rests on a strong axiom

of interpersonal noncomparability that arguably rules out the possibility of assessing

distributive justice. The Nash solution is also the outcome of certain “rational”

bargaining procedures, but they, too, rely on strong assumptions.

Since the alpha fairness SWF is concave (strictly concave for 𝛼 > 0), classical

optimality conditions yield a simple closed-form solution for the optimization

problem without utility bounds.

Proposition 35. Maximizing alpha fairness subject to a resource constraint yields

an optimal solution in which

𝑢*
𝑖 =

𝐵

𝑎
1/𝛼
𝑖

∑︁
𝑗

𝑎
1−1/𝛼
𝑗

, 𝑖 = 1, . . . , 𝑛

In the case of proportional fairness (𝛼 = 1), each individual 𝑖 receives utility 𝑢*
𝑖 =
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𝐵/(𝑛𝑎𝑖).

It is evident from Proposition 35 that alpha fairness gives some priority to individuals

with a smaller budget coefficient 𝑎𝑖, but without giving everything to one individual

(if 𝛼 > 0) as in a utilitarian context. As 𝛼 increases, the solutions transform

smoothly from utilitarian to maximin, and the allotments become more egalitarian.

Proportional fairness (𝛼 = 1) is appropriately named, because it results in utility

allotments that are exactly proportional to efficiency. A solution can be derived for

the case when upper bounds are present, but it is complicated to state and yields

little structural insight.

A difficulty with alpha fairness is that the parameter 𝛼 is difficult to interpret in

practice. It is somewhat helpful to characterize mathematically a welfare-preserving

transfer of utility from one individual to another. If 𝑢𝑘 > 𝑢𝑗, then individual

𝑘’s utility must be reduced by (𝑢𝑘/𝑢𝑗)
𝛼 to compensate for a one-unit increase in

individual 𝑗’s utility, if total social welfare is to remain constant. Thus equality is a

stronger imperative for larger 𝛼, but it is not obvious what particular value of 𝛼 is

appropriate in a given context.

Alpha fairness is also capable of extreme solutions in a nonconvex feasible set, because

it can assign equality the same social welfare as arbitrarily extreme inequality. In

a 2-player situation, for example, the distribution u = (1, 1) has the same social

welfare value as (𝑡, 𝑇 ), where

𝑡 =

⎧⎨⎩ 1/𝑇 if 𝛼 = 1(︀
2− 𝑇 1−𝛼

)︀1/(1−𝛼) if 𝛼 > 1 and 𝑇 1−𝛼 < 2
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Thus for 𝛼 = 1, we have 𝑡 → 0 has 𝑇 → ∞, and for 𝛼 > 1, 𝑡 → 21/(1−𝛼) as 𝑇 → ∞,

even when social welfare is held fixed. If the feasible set is the union of the box

[0, 1] × [0, 1] with the box [0, 𝑡] × [0, 𝑇 ], both [1, 1] and [𝑡, 𝑇 ] are optimal. Alpha

fairness can judge an egalitarian solution to be no better than a solution in which

there is arbitrarily extreme inequality. This anomaly does not arise when 0 ≤ 𝛼 < 1.

4.7.2 Hierarchical Distribution

The hierarchical problem is regionally decomposable with an alpha fairness criterion,

since the SWF is separable and therefore monotonically separable (Proposition 30).

It is collapsible under the condition stated in Proposition 29.

4.7.3 Incentives and Sharing

An alpha fairness solution responds to increases in efficiency in ways that might be

expected: there is more sharing when 𝛼 is larger. For a given 𝛼 > 0, a reduction in

coefficient 𝑎𝑖 changes another individual 𝑗’s allotment 𝑢*
𝑗 at the rate

(𝑢*
𝑗)

2

𝐵

(︁
1− 1

𝛼

)︁(︁𝑎𝑗
𝑎𝑖

)︁1/𝛼
(4.14)

It increases individual 𝑖’s own utility at the rate

(𝑢*
𝑖 )

2

𝐵

[︁
1 +

1

𝛼

(︁
𝑎
1/𝛼−1
𝑖

∑︁
𝑗

𝑎
1−1/𝛼
𝑗 − 1

)︁]︁
(4.15)

We see from (4.14) that an improvement in individual 𝑖’s utility increases the utility

of others only when 𝛼 > 1, since 1 − 1/𝛼 > 0 in this case. Thus as one might

anticipate, the surplus utility is shared with others only when equity is viewed as
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relatively important (𝛼 > 1). Resources are diverted from others when equity is less

important (𝛼 < 1), due to the relative emphasis on utilitarianism and individual 𝑖’s

enhanced ability to make use of those resources. Proportional fairness (𝛼 = 1)

dictates that one’s efficiency improvements have no marginal effect on the utility of

other individuals. Finally, (4.15) tells us that one always benefits personally from

one’s own efficiency improvements, regardless of the value of 𝛼, so long as 𝛼 > 0.

This is because ∑︁
𝑗

𝑎
1−1/𝛼
𝑗 > 𝑎

1−1/𝛼
𝑖

implies that 1/𝛼 is multiplied by a positive number in (4.15). When 𝛼 = 0, the

solution u* is utilitarian and behaves as described in the previous section.

For the social planner, the gradient of technology investment becomes more involved

with an arbitrary 𝛼, but we can observe that as 𝛼 changes from 0 to 1 to ∞, the

gradient goes from (0, . . . , 𝑎−2
min, 0, 0, . . . ), to ≈ to (𝑎−2

𝑁 , 𝑎−2
𝑁 , . . . ).

4.8 Kalai–Smorodinsky Bargaining

4.8.1 Socially Optimal Distribution

The Kalai–Smorodinsky (K–S) bargaining solution minimizes each person’s relative

concession (Kalai and Smorodinsky, 1975) . It is defined as the feasible vector u of

utilities that maximizes a scalar 𝛽 subject to u = 𝛽umax, where 𝑢max
𝑗 is the “ideal”

utility for individual 𝑗 (i.e., the maximum of 𝑢𝑗 over all feasible utility distributions).

The K–S solution therefore maximizes each individual’s fraction of his or her ideal

utility, subject to the condition that this fraction is the same for all individuals. This

can be interpreted geometrically as the furthest feasible point from the origin on the
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line segment connecting the origin and umax. A curious feature of the K–S criterion

is that it proposes no SWF in the usual sense. The social welfare of a distribution u

that lies even slightly off this line segment is undefined.

The K–S solution is easily derived for a budget constraint, with or without upper

bounds. Recall that we assume (without loss of generality) that the upper bounds 𝑑𝑗

satisfy 𝑑𝑗 ≤ 𝐵/𝑎𝑗 for all 𝑗, which means that umax = d. We assume in this section

that aTd ≥ 𝐵, since otherwise the budget constraint plays no role, and the K–S

solution simply sets each utility equal to its upper bound (u = d).

Proposition 36. If aTd ≥ 𝐵, then the Kalai–Smorodinsky bargaining solution

subject to a budget constraint and upper bounds d is u* = 𝐵d/aTd. Otherwise, the

solution is u* = d. If there are no upper bounds, the solution is 𝑢*
𝑖 = (1/𝑛)(𝐵/𝑎𝑖)

for all 𝑖.

Thus, in the absence of upper bounds, each individual 𝑗 receives 1/𝑛 of his or her

ideal utility 𝐵/𝑎𝑗. This is the same solution as obtained under proportional fairness

(alpha fairness with 𝛼 = 1). Yet we now see that this solution can allocate far more

utility to an individual whose welfare is easily improved than to one who is less

fortunate. For example, it may divert treatment resources from cancer patients to

persons suffering from the common cold to provide them the same fraction of their

maximum health potential. In general, it favors individuals who happen to enjoy

favorable circumstances, perhaps through no merit of their own. This rules out any

notion that justice should compensate for the capriciousness of fate. The K–S model

offers no means to prevent this kind of outcome by adjusting the trade-off between

equity and efficiency, as is possible with alpha fairness.
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4.8.2 Hierarchical Distribution

The hierarchical problem may or not be collapsible, and a sufficient condition is given

in the following proposition. A collapsible problem is regionally decomposable.

Proposition 37. The hierarchical problem (4.11) with a Kalai–Smorodinsky SWF

is collapsible if
a𝑘d𝑘

aTd

(︃
𝐵 +

∑︁
𝑖

𝐵𝑖

)︃
≥ 𝐵𝑘 (4.16)

for all 𝑘. Furthermore, the problem is regionally decomposable if it is collapsible.

4.8.3 Incentives and Sharing

An improvement in individual 𝑖’s efficiency increases that individual’s utility at the

rate (1/𝑛)(𝐵/𝑎2𝑖 ) = 𝑢*
𝑖 /𝑎𝑖. The analysis of personal efficiency and technological

efficiency is identical to the case of 𝛼 = 1 in alpha fairness SWF. The change of

personal efficiency has no effect on the utility of others. This poses what might be

viewed as a classical bargaining situation for independent, self-interested individuals.

One’s efforts to make better use of resources benefits only oneself, with no necessity

to share the surplus with others, and one cannot expect any benefits from the efforts

of others. On the other hand, one’s incentive to improve efficiency is proportional

to the square of one’s current efficiency. As a result, those who consume more

resources to achieve a given welfare level have significantly less incentive to improve

their efficiency. From the social planner’s perspective, the gradient of technology

investment is (𝑎−2
1 , 𝑎−2

2 , . . . ).
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4.9 Utility Threshold Criterion

Williams and Cookson (2000) propose a pair of 2-person social welfare criteria based

on thresholds. One uses a utility threshold: it employs a maximin criterion until the

utility cost becomes excessive, at which point it begins to switch to a utility criterion.

The other uses am equity threshold: it employs a utilitarian criterion until inequality

becomes excessive, at which point it switches to a maximin criterion. We study the

former in this section and the latter in the next.

4.9.1 Socially Optimal Distribution

Williams and Cookson illustrate contours of the 2-person utility-based threshold

criterion as in Fig. 4-1. The contours are based on a maximin criterion but switch

to a utilitarian criterion when |𝑢1 − 𝑢2| > ∆. Given the feasible region shown, a

maximin solution (small open circle) requires great sacrifice from individual 2. It

may therefore be desirable to use a utilitarian solution (solid dot), whose social

welfare is slightly greater than that of the maximin solution.

Hooker and Williams (2012) generalize the utility threshold criterion to 𝑛 individuals,

formulate a mixed integer programming model for it, and apply it to a health

resources problem. Their SWF is given by

𝑊Δ(u) = (𝑛− 1)∆ +
𝑛∑︁

𝑗=1

max{𝑢𝑗 −∆, 𝑢min} (4.17)

where 𝑢min = min𝑗{𝑢𝑗}. They propose a practically meaningful interpretation of

the parameter ∆ that goes as follows. Utilities within ∆ of the lowest utility are

regarded as belonging to the fair region, and the corresponding individuals receive
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Figure 4-1: Contours for a 2-person utility threshold SWF.

special priority. The remaining individuals belong to the utilitarian region. The

SWF treats utilities in the fair region as though they were equal to the smallest

utility, which therefore receives weight in (4.17) equal to the number of utilities in

the fair region. Utilities in the utilitarian region receive unit weight. The function

becomes purely utilitarian when ∆ = 0 and maximin as ∆ → ∞. The parameter ∆ is

chosen so as to locate utilities in the fair region when the corresponding individuals

should be seen as disadvantaged enough to deserve higher priority. Larger values

of ∆ therefore place a greater emphasis on fairness as measured by the Rawlsian

maximin criterion.

The threshold function 𝑊Δ(u) escapes an anomaly that, as noted earlier, charac-

terizes alpha fairness. It cannot assign equality the same social value as arbitrarily

extreme inequality. In a 2-person context, for example, an egalitarian distribution

u = (1, 1) can have the same social value as a distribution in which one party has no
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utility and the other ∆+ 2, but the gap can be no greater than this.

When the utility-based threshold SWF is maximized subject to a budget constraint,

the solution is either purely utilitarian or purely maximin, depending on the value

of ∆. In particular,

Proposition 38. Maximizing the utility threshold SWF subject to a budget constraint

yields a purely utilitarian optimal solution u* = (𝐵/𝑎1)e1 when

∆ ≤ 𝐵

(︂
1

𝑎1
− 𝑛

𝑎𝑁

)︂
(4.18)

and otherwise a purely maximin solution 𝑢* = (𝐵/𝑎𝑁)𝑒.

When there are lower and upper bounds on individual utilities, as often occurs in

practice, the solutions are less extreme and perhaps more useful. They have an

interesting structure as well.

Proposition 39. Maximizing a utility threshold SWF subject to a budget constraint

and upper and lower utility bounds yields an optimal solution in which at most one

utility 𝑢𝑖 is strictly between 𝑢min and 𝑑𝑖. Furthermore, if there is such a utility, then

some other utility 𝑢𝑗 that is equal to 𝑢min is at its lower or upper bound.

This result says that nearly all utilities will be at their upper bound or equal to

the lowest utility. It is illustrated for two persons in Fig. 4-2, where 𝑢*
1 is strictly

between the upper bound 𝑑1 and 𝑢*
min, but 𝑢*

2 = 𝑢*
min. This kind of structure can

simplify implementation and provide managerial insight. In the healthcare example

described earlier, it tells us that nearly all patients (all but those suffering from one
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Figure 4-2: Two instances of the utility threshold problem in which 𝑢*
1 lies strictly between 𝑑1 and

𝑢*
min in an optimal solution (𝑢*

1, 𝑢
*
2) (black dot). Note that in the second instance, there is another

optimal solution in which 𝑢*
1 = 𝑢*

min (open circle).

particular disease) will either receive their maximum possible utility or else end up

as one of the worst-off patients, who are given the highest priority. We can also

specialize Proposition 39 to a hierarchical network with 𝑟 regions, each of which has

subregions.

Proposition 40. Any optimal solution ū of (4.11) with a utility-based threshold

function 𝑊Δ(u) satisfies the following:
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(i) At most 𝑟 utilities lie strictly between 𝑢̄min and their upper bounds.

(ii) At most one utility in any region lies strictly between 𝑢̄min and its upper bound.

4.9.2 Hierarchical Distribution

The threshold function 𝑊Δ(u) is not monotonically separable, and so there is no

assurance that a given instance of the problem is regionally decomposable. As a

simple example, suppose there are two regions, one with subregional utilities 𝑢1, 𝑢2

and the other with a single utility 𝑢3, and let ∆ = 1. Then if a = (1, 1, 4) and

(𝐵,𝐵1, 𝐵2) = (1, 1, 0), Proposition 38 tells us that the solution of the collapsed

problem (4.12) is u = (2, 0, 0). This instance of the problem is, in fact, collapsible

by Proposition 29 because (𝐵1, 𝐵2) ≤ (2, 0), and so u = (2, 0, 0) solves the original

problem (4.11). However, the regionally optimal solution for (𝑢1, 𝑢2) is (1, 1), which

is suboptimal in the national problem. This instance of the problem is therefore not

regionally decomposable.

4.9.3 Incentives and Sharing

The benefits of improving one’s efficiency are distributed as in a purely utilitarian or

purely maximin solution, depending on which one obtains for the chosen value of ∆.

4.10 Equity Threshold Criteria

4.10.1 Socially Optimal Solution

Contours of the 2-person equity threshold SWF of Williams and Cookson (2000)

are illustrated in Fig. 4-3. They are based on a utilitarian function but switch to a
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Figure 4-3: Contours for a 2-person equity threshold SWF.

maximin criterion when |𝑢1−𝑢2| > ∆. The SWF is generalized to 𝑛 persons in Chen

and Hooker (2021) as follows:

𝑊Δ(u) = 𝑛∆+
𝑛∑︁

𝑗=1

min
{︀
𝑢𝑗 −∆, 𝑢min

}︀
(4.19)

The interpretation of ∆ is different than for a utility threshold. Increasing a utility

𝑢𝑗 that already exceeds the lowest by more than ∆ is viewed as adding nothing to

social welfare, unless the lowest is increased an equal amount. Thus larger values of

∆ correspond to more nearly utilitarian solutions, rather than smaller values as in

the utility threshold problem. In particular, ∆ = 0 yields a pure maximin solution,

and sufficiently large ∆ a pure utilitarian solution.

The analysis of the equity threshold SWF is also quite different because, unlike the

utility threshold SWF, it is concave. The welfare maximizing solution also has a
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more complex structure. When maximizing welfare subject to a budget constraint,

larger values of ∆ result in an allocation of utility ∆ to a few of the more efficient

individuals, while all other individuals (with one possible exception) receive nothing.

As ∆ increases, fewer individuals benefit, with only one individual receiving utility

in the pure utilitarian case. Smaller values of ∆ allocate utility to everyone, but at

two levels. Less efficient individuals receive utility 𝑢0 and more efficient individuals

utility 𝑢0 + ∆, where 𝑢0 depends on the problem data. The precise result is stated

in the following theorem, whose proof uses the fact that the optimization problem

has a linear programming model:

Proposition 41. Suppose 𝑎1 ≤ · · · ≤ 𝑎𝑛, and let 𝑘* be the largest 𝑘 for which

𝑎𝑁/𝑎𝑘 > 𝑛. Then for values of ∆ with

0 ≤ ∆ < 𝐵
(︁ 𝑘*∑︁

𝑖=1

𝑎𝑖

)︁−1

(4.20)

an optimal solution subject to a budget constraint for the equity threshold criterion

is given by

𝑢*
𝑖 =

⎧⎨⎩ 𝑢0 +∆, 𝑖 = 1, . . . , 𝑘*

𝑢0, 𝑖 = 𝑘* + 1, . . . , 𝑛
(4.21)

where

𝑢0 =
1

𝑎𝑁

(︁
𝐵 −∆

𝑘*∑︁
𝑖=1

𝑎𝑖

)︁
(4.22)

For values of ∆ with

∆ ≥ 𝐵
(︁ 𝑘*∑︁

𝑖=1

𝑎𝑖

)︁−1

(4.23)
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an optimal solution is given by

𝑢*
𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∆, 𝑖 = 1, . . . , 𝑘 − 1

1

𝑎𝑘

(︁
𝐵 −∆

𝑘−1∑︁
𝑗=1

𝑎𝑗

)︁
, 𝑖 = 𝑘

0, 𝑖 = 𝑘 + 1, . . . , 𝑛

(4.24)

when 𝑘 ≤ 𝑘* and 𝑘 satisfies

𝐵
(︁ 𝑘∑︁

𝑖=1

𝑎𝑖

)︁−1

< ∆ ≤ 𝐵
(︁ 𝑘−1∑︁

𝑖=1

𝑎𝑖

)︁−1

4.10.2 Hierarchical Distribution

The equity threshold SWF is not regionally decomposable. The counterexample

exhibited in the previous section serves as a counterexample here. In this case,

the unique optimal solution of the national problem is (𝑢̄1, 𝑢̄2, 𝑢̄3) = (1, 1, 0) and

(𝑦1, 𝑦2) = (1, 0), while the only two optimal solutions of the region 1 subproblem are

(𝑢1, 𝑢2) = (1.5, 0.5) and (0.5, 1.5). Thus an optimal solution of the regional problem

cannot be part of an optimal solution of the national problem.

4.10.3 Incentives and Sharing

The effects of efficiency improvements have an interesting structure. For the more

egalitarian values of ∆ that satisfy (4.20), an improvement in any individual’s

efficiency increases every utility 𝑢*
𝑗 at the rate 𝑢*

𝑗/𝑎𝑁 . Thus an individual’s rate

of improvement is proportional to that individual’s current utility allotment, so

that everyone has the same percentage rate of increase. Since one’s efficiency

153



improvements benefit oneself as well as others, one has a personal incentive to

improve that is proportional to one’s current utility allotment.

For the less egalitarian values of ∆ that satisfy (4.23), only the individual 𝑘 who has

utility 𝑢*
𝑘 strictly between 0 and ∆ is affected by efficiency changes. Efficiency changes

by the less efficient individuals 𝑖 > 𝑘 have no effect at all. Efficiency improvements

by the more efficient individuals 𝑖 < 𝑘 increase individual 𝑘’s utility at the rate ∆/𝑎𝑘.

Efficiency improvements obtained personally by individual 𝑘 increase utility at the

lesser rate 𝑢*
𝑘/𝑎𝑘 (recall that 𝑢*

𝑘 < ∆). Thus only the transitional individual 𝑘 is

personally incentivized to improve efficiency. Indeed, only individual 𝑘 benefits from

anyone’s efficiency improvements, and even then only from those of more efficient

individuals. However, the benefit from any of their improvements is greater than

from individual 𝑘’s own improvements.

For small values of ∆ satisfying 4.20, the gradient of technology investment is

(𝑔, 𝑔, . . . , 𝑔, 0, . . . ), where the first 𝑘* entries are 𝑔 = (𝑛𝐵/𝑎2𝑁 − 𝑛𝑎[𝑘*]/𝑎𝑁 + ∆/𝑎𝑁).

For larger values of ∆ satisfying (4.23), the gradient is (0, . . . , 0, 𝑔′, 0, . . . ), where the

only non-zero element is at the 𝑘th position with 𝑔′ = (𝐵 −∆𝑎[𝑘−1])/𝑎
2
𝑖 .

4.11 A Threshold Criterion with Leximax Fairness

4.11.1 Socially Optimal Distribution

While a utility-based threshold criterion with maximin fairness tends to avoid

extreme solutions, at least in the presence of utility bounds, the maximin component

continues to ignore all but the lowest utility value in the fair region. This can result

in solutions that are insensitive to the plight of disadvantaged individuals other than
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the very worst off. Chen and Hooker (2020b) and Chen and Hooker (2020a) avoid this

problem by combining utilitarianism with a leximax rather than maximin criterion.

An added benefit of this approach is that it avoids extreme solutions (i.e., purely

utilitarian or purely leximax) even when there is a single budget constraint with no

upper bounds on utilities.

The Chen–Hooker approach sequentially maximizes social welfare functions 𝑊1, . . . ,𝑊𝑛,

where 𝑊1 is the Hooker–Williams SWF. The first maximization problem 𝑃1 is (4.3).

The remaining maximization problems 𝑃𝑘 for 𝑘 = 2, . . . , 𝑛 are

max
u

⎧⎪⎪⎨⎪⎪⎩𝑊𝑘(u𝐾)

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑢𝑖 ≥ 𝑢̄𝑖𝑘−1

, max{𝑐𝑖, 𝑢̄𝑖𝑘} ≤ 𝑢𝑖 ≤ 𝑑𝑖, 𝑖 ∈ 𝐼𝑘∑︁
𝑖∈𝐼𝑘

𝑎𝑖𝑢𝑖 ≤ 𝐵𝑘

⎫⎪⎪⎬⎪⎪⎭ (4.25)

where

𝑊𝑘(u𝐾) = (𝑛− 𝑘 + 1)𝑢min +
∑︁
𝑖∈𝐼𝑘

(︀
𝑢𝑖 − 𝑢̄𝑖1 −∆

)︀+
and where

𝑢min = min
𝑖∈𝐼𝑘

{𝑢𝑖}, 𝐵𝑘 = 𝐵 −
𝑘−1∑︁
𝑗=1

𝑎𝑖𝑗 𝑢̄𝑖𝑗

Problem 𝑃𝑘 is solved over the variable set {𝑢𝑖 | 𝑖 ∈ 𝐼𝑘}, where 𝐼𝑘 = {1, . . . , 𝑛} ∖
{𝑖1, . . . , 𝑖𝑘−1} and 𝑢𝑖1 , . . . , 𝑢𝑖𝑘−1

are the variables whose values in the socially optimal

solution are determined by solving 𝑃1, . . . , 𝑃𝑘−1 respectively. Thus the vector u𝐾

consists of the elements 𝑢𝑖 of vector u for 𝐼𝑘. Solving 𝑃𝑘 determines the value of the

𝑘th smallest utility in the socially optimal solution 𝑢̄. That is, 𝑃𝑘 sets 𝑢̄𝑖𝑘 = 𝑢̃𝑖𝑘 ,

where 𝑖𝑘 = argmin𝑖∈𝐼𝑘{𝑢̃𝑖} and 𝑢̃𝐾 is an optimal solution of 𝑃𝑘. Actually, one need

only solve 𝑃1, . . . , 𝑃𝑘* (rather than 𝑃1, . . . , 𝑃𝑛) where 𝑘* is the smallest 𝑘 for which

𝑢̄𝑖𝑘 − 𝑢̄𝑖1 ≥ ∆. At this point, all the remaining utilities (i.e., all 𝑢𝑖 for 𝑖 ∈ 𝐼𝑘*) are
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in the utilitarian region, and one can set 𝑢̄𝑖 = 𝑢̃𝑖 for 𝑖 ∈ 𝐼𝑘* , where 𝑢̃𝑖 is the optimal

value of 𝑢𝑖 in the solution of 𝑃𝑘* . Chen and Hooker state mixed integer programming

models of 𝑃1, . . . , 𝑃𝑛 that can be readily solved in practice.

We showed earlier (Proposition 38) that when the social welfare problem is solved

subject only to a budget constraint, the solution of 𝑃1 is purely utilitarian or purely

maximin. The socially optimal solution ū that results from solving the sequence

of problems 𝑃1, . . . , 𝑃𝑛 is, in general, neither utilitarian nor leximax and has an

interesting structure.

Proposition 42. Suppose 𝑎1 ≥ · · · ≥ 𝑎𝑛. Let 𝑚 = 1 if (4.18) is violated, and

otherwise let 𝑚 be the smallest index 𝑘 ≥ 2 for which the following (4.26) is violated:

1

𝑛− 𝑘
𝐵

(︂
2
𝑛− 𝑘 + 1

𝑎𝐾
− 1

𝑎ℓ𝑘

)︂
≤ ∆ ≤ 𝐵

(︂
1

𝑎ℓ𝑘
− 𝑛− 𝑘 + 1

𝑎𝐾

)︂
(4.26)

where 𝑎ℓ𝑘 = min{𝑎ℓ | ℓ = 𝑘, . . . , 𝑛} and 𝑎𝐾 =
∑︀𝑛

𝑖=𝑘 𝑎𝑖. We regard (4.26) as violated

when 𝑛 = 𝑘. Then a socially optimal solution ū of the leximax threshold problem

subject to a budget constraint is given by the following:

𝑢̄𝑖 =

⎧⎨⎩ 0, for 𝑖 = 1, . . . ,𝑚− 1

𝐵/𝑎𝑀 , for 𝑖 = 𝑚, . . . , 𝑛
(4.27)

where 𝑎𝑀 =
∑︀𝑛

𝑖=𝑚 𝑎𝑖.

Thus, several of the more efficient individuals receive equal shares of utility, with

the remaining individuals receiving nothing. Utility can be spread more broadly by

increasing ∆, even to a point where everyone receives an equal share. A threshold

criterion that combines utilitarian and leximax elements can therefore yield a variety
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of solutions, even when there is only a single budget constraint. The variety is still

greater when there are lower and/or upper bounds on utilities.

4.11.2 Incentives and Sharing

When individual 𝑖 improves efficiency, individual 𝑗’s utility increases at a rate 𝐵𝑎𝑖/𝑎𝑀

if 𝑖, 𝑗 ≥ 𝑚, with no effect if 𝑖 < 𝑚 or 𝑗 < 𝑚. Thus an individual who receives utility in

the socially optimal solution is incentivized to improve efficiency, and all others with

positive utility benefit as well. This means there is sharing rather than competition,

although this effect exists at the margin only among those who already benefit from

the optimal distribution.

We can also look beyond marginal analysis to note that an improvement in any

individual’s efficiency (with the possible exception of the most efficient individual)

causes the lower bound in (4.26) to increase and the upper bound to decrease. This

a sufficiently large improvement can result in a larger 𝑚 and a greater number of

individuals who benefit.

4.12 Conclusion

One might construct a narrative from the foregoing observations as follows. The

inadequacy of popular optimization objectives becomes evident when they are applied

to a generic constraint set consisting of a budget limitation and perhaps bounds

on the utilities of each party concerned. A utilitarian objective is by far the most

widely used but leads to results that almost any observer would find unacceptable. It

allocates all utility to a single party, an outcome that is only marginally ameliorated

by placing bounds on individual utilities. While this extreme result is not evident in
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most practical optimization models, due to the complexity of the constraint set, this

complexity only serves to conceal the basic unreasonableness of a purely utilitarian

criterion.

Objectives based solely on equity can yield equally extreme and unacceptable

solutions. Perhaps the most famous fairness criterion, the maximin objective that

derives from the Rawlsian difference principle, forces all parties to accept the same

level of utility, except, again, where this is blocked by other constraints—constraints

that may reflect only the situation and no coherent understanding of what is just. For

example, if one person is difficult to accommodate, due to unfortunate circumstances

such as incurable disease, it is necessary to lavish resources on that person to the

point that all others are reduced to the same level of suffering. Even if we prevent

this outcome by placing a low upper bound on the disadvantaged party’s utility, the

maximin objective allows us to allot others that same low level of utility, when they

could receive much more. A leximax objective largely removes this second anomaly,

but the extreme solutions remain.

A natural strategy for avoiding extreme solutions is to combine equity and utilitarian

considerations in some fashion. A simple convex combination is both unprincipled

and difficult to calibrate, particularly since equity and efficiency tend to be measured

in different units. Alpha fairness, perhaps the best known composite criterion, allows

a parameterized balancing of fairness and efficiency that avoids the extreme solutions

just descibed. Yet it creates an extreme result of its own, because it can regard an

egalitarian distribution as no better than one in which there is extreme inequality.

This does not become evident in optimal solutions subject to simple budgetary and

bounding constraints, but it can emerge in nonconvex constraint sets. It is also

unclear how to select and interpret the balancing parameter. The Kalai–Smorodinsky
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bargaining solution avoids the extreme outcomes of alpha fairness, but at the cost of

another extreme that is opposite to that of the maximin criterion. It awards wealthy

and privileged individuals the same fraction of their potential utility as individuals

who have far less potential, perhaps due to some physical or mental impairment.

There is also no parameter for regulating the equity/efficiency balance.

Threshold functions provide an alternate means for combining equity and efficiency,

where the balance is governed a parameter ∆ that is more easily interpreted in

practice. A utility threshold function employs a maximin criterion but switches to a

utilitarian criterion when utility cost fairness crosses a specified threshold, while an

equity threshold function does the reverse. Yet threshold criteria can lead to extreme

solutions, at least in the presence of the simplest constraints. The utility threshold

function, for example, yields a purely utilitarian or purely maximin solution in the

presence of a single budget constraint without utility bounds, although one can state

in closed form which values of ∆ produce one or the other. The addition of utility

bounds results in much more reasonable solutions, unlike the situation with a simple

utilitarian objective. In addition, the resulting solutions have an interesting structure

that can ease implementation and provide managerial insights.

Nonetheless, threshold functions that combine utilitarian with maximin objectives

inherit a shortcoming of the latter, if only in attenuated form. This is the tendency

to give insufficient attention to disadvantaged parties other than the very worst

off. The problem can again be addressed by replacing a maximin with a leximax

criterion, in this case by optimizing a certain sequence of threshold functions rather

than a single one. The resulting solutions avoid all the extremes described here,

even in the presence of a simple budget constraint without utility bounds. While the

individual threshold functions share the structural properties mentioned earlier, the
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socially optimal solutions that result are more complex in nature. A threshold-based

combination of utilitarian and leximax criteria doubtless has shortcomings of its own,

but it illustrates the thesis that we must move beyond the naïveté of simpler social

welfare functions if we are to avoid unacceptable results.

This narrative is enriched by observing the behavior of the various criteria on

hierarchical networks in which resources can be passed from a national to a regional

level. Each region combines its own resources with those received from above

and distributes them to subregions (which can be interpreted as hospitals or other

institutions). All of the extremes discussed above persist in this context. However,

the simpler models are more likely to be regionally decomposable, due to a technical

property (monotone separability) of the corresponding social welfare functions.

Regional decomposability means that if each region distributes its allotted resources

using the same social welfare criterion as used at the national level, it will obtain

an allocation to subregions that is consistent with that prescribed at the national

level. The allocation computed by the national authority assumes, in fact, that

the allocation within regions will follow this pattern. When there is no regional

decomposability, the national solution is valid only if the regions follow the national

prescription for intra-regional distribution rather than computing the distribution

themselves.

To be specific, the pure utilitarian and maximin criteria are regionally decomposable,

as is alpha fairness. The Kalai–Smorodinsky model is regionally decomposable when

it is collapsible, meaning that the multilevel problem can be solved as a single-level

problem. A sufficient condition for collapsibility can be checked by applying a simple

test. The utility threshold model can be regionally nondecomposable even when it

is collapsible. Thus the more sophisticated models are progressively less prone to be
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decomposable. This might be regarded as an inconvenience, but it can also signal

greater adequacy and subtlety as an equity measure. Perhaps local decisions should

reflect a larger perspective if they are to be truly fair.
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Conclusion

In this dissertation, we study a variety of topics in stochastic programming,

decomposition-based methods, robust optimization, and fairness in resource al-

location. In the first two chapters, we explore the use of logic-based Benders

decomposition for solving a variety of scheduling problems. In Chapter 3, we study

a robust portfolio optimization model that attempts to address the uncertainty in

portfolio returns. In the last chapter, we focus on the use of social welfare functions

for fair allocation of resources. In this section, we conclude by summarizing our

contributions.

In Chapter 1, our goal is to devise an exact algorithm to solve two-stage stochastic

programs with integer recourse. We propose utilizing the logic-based Benders

decomposition framework to accomplish this goal. To this end, we focus on a

stochastic version of the planning and scheduling problem. The classical Benders

decomposition algorithm cannot be used for this problem, because the subproblem is

a difficult cumulative scheduling problem that cannot be modeled as a linear problem.

We summarize our contribution in this chapter as follows:

• We derive novel Benders cuts for the planning and scheduling problem with
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different release times.

• We devise a branch-and-check method that can solve the planning and

scheduling problem exactly.

• We benchmark our method against a mixed-integer programming formulation

and the integer L-shaped method.

• Our computational study shows that our branch-and-check method can be

faster by several orders of magnitude, allowing significantly larger instances to

be solved.

In Chapter 2, we extend our analysis to a class of sequence-dependent parallel

machine scheduling problems. For further generality, we assume that there are strict

time windows associated with each task. A wide range of problems can be formulated

as sequence-dependent scheduling problems including the canonical vehicle routing

problem. However, sequence-dependent scheduling problems are notoriously very

difficult to solve precisely due to the sequence-dependent nature of the setup times.

We summarize our contribution in this chapter as follows:

• We extend our analysis in Chapter 1 by introducing new Benders cuts and

improving some of the cuts proposed for the planning and scheduling problem.

We show that these cuts are tight and yield a computationally more efficient

branch-and-check method.

• We introduce novel Benders cuts for the sequence-dependent parallel machine

scheduling problem. These cuts generalize some of the other well-known

Benders cuts in the literature.
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• We devise a branch-check method that solves the sequence-dependent parallel

machine scheduling problem exactly.

• Our computational study shows the effectiveness of the proposed solution

method.

In Chapter 3, we study the classical Markowitz model for portfolio optimization.

In the classical model, it is assumed that the expected portfolio returns are known

exactly. In practice, however, the portfolio returns are uncertain. To this end, robust

optimization is one of the techniques that addresses this uncertainty. We summarize

our contribution in this chapter as follows:

• We focus on ellipsoidal uncertainty sets around a point estimate of the expected

asset returns and the choice of the error-covariance matrix that specifies this

ellipsoid.

• We show that the class of diagonal estimation-error matrices can achieve an

arbitrarily small loss in the expected portfolio return as compared to the

optimum portfolio return.

• We propose a bilevel program that finds the best estimation error matrix. The

bilevel model also allows us to numerically analyze the error when there are

multiple estimates for the expected return and/or when there are additional

restrictions on the structure of the estimation error matrix.

• We perform simulations to test the use of an identity matrix as the estimation-

error matrix. Our simulations show that the robust portfolio models featuring

an identity matrix as an estimation-error matrix outperform the classical

Markowitz model when the size of the uncertainty set is chosen properly.
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In the last chapter, we focus on fair allocation of resources. Optimization offers a

powerful tool for identifying an efficient and equitable allocation of resources. This

is usually accomplished by using a social welfare function as an objective function.

To this end, we investigate a plethora of social welfare functions. We summarize our

contribution in this chapter as follows:

• We focus primarily on social welfare functions that combine efficiency and

equity criteria.

• We derive the structural properties of optimal solutions that result when

these social welfare functions are maximized subject to simple but generic

constraints.

• We examine the structure of solutions in a hierarchical distribution network

that represents a typical situation in which a national authority allocates

resources to regions, which in turn combine these with their own resources

for distribution to their subregions or institutions.

• We discuss the implications of selecting a social welfare function with respect

to the incentives it creates for both the players and the social planner.

• We show that several well known social welfare functions can result in extreme

and often unacceptable solutions.
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Appendix A

Appendix

A.1 Chapter 1

In this appendix, we present the results of additional computational experiments

concerning the details of our implementation of the algorithms used in Chapter 1.

A.1.1 CP Parameters

In this section, we test the impact of using different CP parameters on the overal

solution time of the LBBD algorithm for solving the minimum makespan problem.

We use the same instances used in Tables 1.1 − 1.4. The results are presented in

Table A.1.

We see from Table A.1 that using different CP parameters does not change the overall

picture of the performance of the two solution methods. Extended inference level

and DFS search look to be good choices for the CP solver, therefore, we use these
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Table A.1: Average computation time in seconds over 3 instances for different CP parameter values,
based on 10 tasks and 2 facilities.

INT-L LBBD

Inference level Default Extended Default Extended Default Extended Default Extended
Search type Default Default DFS DFS Default Default DFS DFS

1 2.25 2.26 1.77 2.84 1.44 1.58 1.22 0.91
5 11.85 13.40 8.43 9.00 3.73 4.33 3.17 2.12

|𝑆| 10 19.75 23.92 15.92 16.00 4.65 5.44 5.54 3.09
50 116.16 116.97 92.09 87.19 23.92 26.46 23.16 17.33
100 247.71 254.05 192.95 209.51 50.78 55.73 45.29 36.72
500 1430.95 1322.95 1151.25 1166.55 363.55 450.47 391.01 279.07

setting in all the experiments we perform in this paper.

A.1.2 Lower Bound for the Integer L-shaped Method

In this section, we perform experiments to see the impact of using better lower bounds

on the performance of the integer L-shaped method. We tested two different sets of

lower bounds as shown in Table A.2. The results in the “integer bounding” column

correspond to the global lower bound obtained by solving (1.25) for fixed scenario 𝜔

without relaxing the integrality constraints. The results in the “relaxed bounding”

column correspond to the results where we us the bounds obtained by solving the

LP relaxation of (1.25). We again use the same makespan instances used in Tables

1.1− 1.4.

We see from Table A.2 that better lower bounds from integer programming yield

modest improvements in the average solution times (indicated in columns labeled

“INT-L time”). Yet this improvement is substantially offset by the much longer time

required to compute the integer programming bound. We therefore opted to use

relaxed bounding in all computational experiments.
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Table A.2: Average computation time in seconds over 3 instances for two different lower bounds,
based on 10 tasks and 2 facilities.

integer bounding relaxed bounding

|𝑆| Preprocessing time INT-L time total Preprocessing time INT-L time total

1 2.2 0.9 3.0 0.2 1.9 2.1
5 9.0 8.2 17.2 0.6 8.1 8.7

10 14.0 12.0 26.0 1.1 15.0 16.1
50 64.1 80.2 144.3 5.3 88.4 93.6

100 139.7 186.2 325.9 12.0 212.3 224.2
500 707.4 1227.3 1934.6 53.3 1473.7 1527.0

A.1.3 Accessing Problem Instances

The readers can access all the problem instances used in our computational experi-

ments via https://github.com/ozgunelci/Stochastic-Scheduling-With-LBBD.
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A.2 Chapter 3

A.2.1 Data Set

We use the data set provided in Kocuk and Cornuéjols (2020). The data set includes

360 monthly returns of 11 sectors based on the Global Industrial Classification

Standard. We calculate the true return vector 𝜇 and the true covariance matrix

Σ as the sample average and the sample covariance matrix of these returns. We

refer the reader to Kocuk and Cornuéjols (2020) for more details about the dataset.

A.2.2 Additional Proofs

In this section, we present the additional proofs.

Proof of Proposition 23

1. We know that there exists a matrix L such that Ξ = LLT, because Ξ is a

positive definite matrix. Therefore, the objective function 𝑓 of (3.5) can be

written as

𝑓(x) = −(𝜇̂)Tx+
√
xTΞx (A.1)

= −(𝜇̂)Tx+ ‖xL‖2

To conclude the proof, it suffices to show that the norm function ‖·‖2 is strictly

convex on the feasible region of (3.5), because the composition with an affine

mapping of a strictly convex function is strictly convex.

To this end, we first note that any two distinct point in the feasible region of

(3.5) are linearly independent because of 1Tx = 1. Let 𝜆 ∈ (0, 1). We want to
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show that

‖𝜆x1 + (1− 𝜆)x2‖2 < 𝜆‖x1‖2 + (1− 𝜆)‖x2‖2

We take the square of both sides and observe that

‖𝜆x1 + (1− 𝜆)x2‖22 =
(︀
𝜆x1 + (1− 𝜆)x2, 𝜆x1 + (1− 𝜆)x2

)︀
= 𝜆2

(︀
x1,x1

)︀
+ (1− 𝜆)2

(︀
x2,x2

)︀
+ 2𝜆(1− 𝜆)

(︀
x1,x2

)︀
= 𝜆2‖x1‖22 + (1− 𝜆)2‖x2‖22 + 2𝜆(1− 𝜆)

(︀
x1,x2

)︀
< 𝜆2‖x1‖22 + (1− 𝜆)2‖x2‖22 + 2𝜆(1− 𝜆)‖x1‖2‖x2‖2
= (𝜆‖x1‖2 + (1− 𝜆)‖x2‖2)2

The strict inequality above is true due to the fact that Cauchy-Schwarz

inequality is strict when x1 and x2 are linearly independent.

2. It is clear that the robust portfolio optimization problem (3.5) is a convex

program. It suffices to exhibit an interior point of the feasible region. We

assume that 𝑣 is strictly greater than the minimum variance portfolio. Let

xmv and xeq denote the minimum variance and the equal-weight portfolios,

respectively. There exists 𝛿 ∈ (0, 1) such that the variance of x̃ = 𝛿xmv + (1−
𝛿)xeq is less than 𝑣. Clearly, all components of x̃ is greater than zero. Thus, x̃

is an exterior point of the feasible region of (3.5).

3. The square-root function is non-differentiable only at the origin. We have that

the objective function (A.1) is always differentiable in the feasible region of

(3.5), because Ξ is positive definite, and 1Tx = 1.
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Proof of Proposition 24

We want to show the equivalence of the system (3.6) and the system {(3.6b) −
(3.6g), (3.9)}. We only need to show given (Ξ,x, 𝜆1, 𝜆2,𝜆3) that satisfies (3.6) with

Ξ is positive definite and diagonal, there exists (z, 𝛼, 𝜉,x, 𝜆1, 𝜆2,𝜆3) that satisfies

{(3.6b) − (3.6g), (3.9)}. The other direction is trivial since the 𝜉 vector in any

feasible solution to {(3.6b)− (3.6g), (3.9)} is a diagonal estimation-error matrix that

satisfies the optimality conditions.

Let 𝜉 denote the diagonal entries of Ξ. Because Ξ is positive definite, we know that

all elements of 𝜉 are strictly greater than zero. It suffices to find (z, 𝛼) that satisfies

(3.9), since (x, 𝜆1, 𝜆2,𝜆3) automatically satisfies (3.6b) − (3.6g).

Consider any given x >= 0. Let 𝑃 := {𝑖 ∈ [1, 𝑛] : 𝑥𝑖 > 0}. Let 𝑍 = [1, 𝑛] ∖ 𝑃 . Since

1Tx = 1, we know that 𝑃 is non-empty. This implies that the right hand side of

(3.9c) is positive for all 𝑖 ∈ 𝑃 . Therefore, 𝛼 must be positive.

Now note that we can write (3.9b) as

𝛼 =
∑︁
𝑖∈𝑃

𝑥𝑖𝑧𝑖 +
∑︁
𝑖∈𝑍

𝑥𝑖𝑧𝑖

=
∑︁
𝑖∈𝑃

𝑥𝑖𝑧𝑖

=
∑︁
𝑖∈𝑃

𝑥𝑖
𝜉𝑖𝑥𝑖

𝛼

Thus we have that 𝛼 =
√︀∑︀

𝑖∈𝑃 𝑥𝑖𝜉𝑖𝑥𝑖 > 0. Accordingly, each 𝑧𝑖 assumes the value
𝜉𝑖𝑥𝑖

𝛼
for all 𝑖 ∈ 𝑃 . Letting each 𝑧𝑖 = 0 for all 𝑖 ∈ 𝑍 concludes the proof.
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A.2.3 The Importance of the Choice of Horizon Length in

Dynamic Analysis of the Portfolio Models

Rolling-horizon-based experiments allow decision makers to perform dynamic analy-

ses of their portfolio optimization models. Such experiments are typically conducted

by following a historical sample path of assets prices. In this section, we present an

important observation on the performance of the Markowitz model when analyzed

through a historical path.

We use the same data described in Appendix A.2.1 and perform a rolling horizon

analysis. In particular, for a given horizon length (𝑛), the portfolio weights are

determined each month using the expected return estimated from a rolling window

of length 𝑛, and these portfolio weights are then used the calculate the returns of

the month 𝑛+ 1.

horizon length (𝑛) the average return of the Markowitz model

1 0.01071
3 0.01083
6 0.01116
12 0.01338
24 0.01507
36 0.01417
60 0.01366
90 0.01396
120 0.01117
180 0.00948

Table A.3: Impact of horizon length in a dynamic analysis.

The results presented in Table A.3 are very interesting. We see that the horizon

length has a very significant impact on the average actual return. In particular,
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the horizon length of 24 significantly outperforms the other choices. These results

show the elaborate dynamics of performing rolling-horizon-based experiments and

the importance of the choice for horizon length when the returns are correlated over

a time horizon.
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A.3 Chapter 4

A.3.1 Proofs of Results

Proof of Proposition 29. Let ū be an optimal solution of (4.12) that satisfies

a𝑘ū𝑘 ≥ 𝐵𝑘 for 𝑘 = 1, . . . , 𝑟. If we let 𝑦𝑘 = a𝑘ū𝑘 − 𝐵𝑘 ≥ 0, then (ȳ, ū) is feasible in

(4.11) because
𝑟∑︁

𝑘=1

𝑦𝑘 =
𝑟∑︁

𝑘=1

a𝑘ū𝑘 −𝐵𝑘 ≤ 𝐵 (A.2)

where the inequality is due to the constraint in (4.12). Also any u feasible in (4.11)

is feasible in (4.12), which implies 𝐹 (u) ≤ 𝐹 (ū) since ū is optimal in (4.12). Thus

(ȳ, ū) is optimal in (4.11). □

Proof of Proposition 30. Let (ȳ, ū) be optimal in (4.11) and û𝑘 optimal in

(4.13) for 𝑘 = 1, . . . , 𝑟. We wish to show that (û1, . . . , û𝑟, ȳ) is optimal in (4.11).

We first note that (û1, . . . , û𝑟, ȳ) is feasible in (4.11), by hypothesis. To show that

(û1, . . . , û𝑟, ȳ) is optimal, it suffices to show

𝑊 (û1, . . . , û𝑟) ≥ 𝑊 (u1, . . . ,u𝑟) (A.3)

for any (u1, . . . ,u𝑟,y) that is feasible in (4.11). But if (u1, . . . ,u𝑟,y) is feasible in

(4.11), then u𝑘 is feasible in (4.13) with 𝑦𝑘 = 𝑦𝑘 for each 𝑘. Since û𝑘 is optimal in

(4.13), we have 𝑊 (û𝑘) ≥ 𝑊 (u𝑘) for each 𝑘. Now (A.3) follows from the fact that

𝑊 (u) is monotonically separable. □

Proof of Proposition 31. Since (4.3) is a linear programming problem, it suffices

to exhibit a feasible solution of the dual problem whose objective function value is
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equal to the optimal value
∑︀

𝑗 𝑢
*
𝑗 of the primal. The dual problem is

min
{︁
𝐵𝑣0 +

∑︁
𝑗∈𝑁

𝑑𝑗𝑣𝑗

⃒⃒⃒
𝑣0 ≥ 0; 𝑎𝑗𝑣0 + 𝑣𝑗 ≥ 1, 𝑣𝑗 ≥ 0 for 𝑗 ∈ 𝑁

}︁

If 𝑢*
𝑛 = 𝑑𝑛, the desired dual solution is 𝑣0 = 0, 𝑣𝑗 = 1 for 𝑗 ∈ 𝑁 . Its objective value

is the same as the optimal value
∑︀

𝑗 𝑑𝑗 of (4.3). Otherwise the desired dual solution

is

𝑣𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐵/𝑎𝑘 for 𝑗 = 0

1− 𝑎𝑗/𝑎𝑘 for 𝑗 = 1, . . . , 𝑘 − 1

0 for 𝑗 = 𝑘, . . . , 𝑛

where 𝑘 = min{𝑗 ∈ 𝑁 | 𝑢*
𝑗 < 𝑑𝑗}. It is easily verified that this solution is dual

feasible and has same objective function value as the optimal solution of (4.3), namely

𝐵/𝑎𝑘 +
∑︀𝑘−1

𝑗=1(1− 𝑎𝑗/𝑎𝑘)𝑑𝑗. □

Proof of Proposition 32. Let 𝑑𝑘 = 𝑑min. If the given solution u* is not maximin,

there must be a feasible solution ū such that 𝑢̄𝑗 > 𝑢*
𝑗 for all 𝑗. In particular, since

𝑢̄𝑘 > 𝑢*
𝑘 = min{𝑑𝑘, 𝐵/𝑎𝑁} and 𝑢̄𝑘 ≤ 𝑑𝑘, we must have 𝐵/𝑎𝑁 < 𝑑𝑘. Now since each

𝑎𝑗 > 0, ∑︁
𝑗

𝑎𝑗𝑢̄𝑗 >
∑︁
𝑗

𝑎𝑗𝑢
*
𝑗 = 𝑎𝑁 min

{︀
𝑑𝑘, 𝐵/𝑎𝑁

}︀
= 𝑎𝑁𝐵/𝑎𝑁 = 𝐵

which implies that ū is infeasible. □

Proof of Proposition 33. We first show that the given solution u* consumes all

available resources 𝐵. The resource consumption is

𝑛∑︁
𝑗=1

𝑎𝑗𝑢
*
𝑗 =

𝑘∑︁
𝑗=1

𝑎𝑗𝑑𝑗 +
𝑛∑︁

𝑗=𝑘+1

𝑎𝑗𝜑𝑘+1 (A.4)
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Substituting the definition of 𝜑𝑘+1 and observing that

𝑛∑︁
𝑗=𝑘+1

𝑎𝑗 = 𝑎𝑁 −
𝑘∑︁

𝑗=1

𝑎𝑗

we find that (A.4) simplifies to 𝐵. We also note that by definition of 𝑘, we have

𝑢*
𝑗 = 𝜑𝑗 < 𝑑𝑗 for 𝑗 = 𝑘 + 1, . . . , 𝑛. Thus all and only the 𝑘 smallest utilities in u*

are set to their upper bounds. We now suppose, contrary to the claim, that u* is

dominated by some feasible solution u′. Since the 𝑘 smallest utilities in u* are set to

their upper bounds, the 𝑘 smallest utilities in u′ cannot exceed the 𝑘 smallest utilities

in u*, respectively, and must therefore be equal to these utilities. Thus if u′ is to

dominate u*, some utility among the 𝑛 − 𝑘 largest in u′ must exceed the common

value 𝜑𝑘+1 of 𝑢*
𝑘+1, . . . , 𝑢

*
𝑛. But this forces another of the 𝑛 − 𝑘 largest utilities in

u′ to be smaller than 𝜑𝑘+1, because the utilities u* consume all available resources.

This is inconsistent with assumption that u′ dominates u*. □

To prove Proposition 34, we establish a property for lexicographic comparisons that

is analogous to monotone separability. We write ū ≽ u when 𝑢̄⟨𝑖⟩ ≥ 𝑢⟨𝑖⟩ for 𝑖 =

1, . . . , 𝑛, where (𝑢̄⟨1⟩, . . . , 𝑢̄⟨𝑛⟩) is ū arranged in nondecreasing order, and similarly

for (𝑢⟨1⟩, . . . , 𝑢⟨𝑛⟩).

Lemma 43. If ū ≽ u and v̄ ≽ v, then (ū, v̄) ≽ (u,v).

Proof. Let (𝑤̄1, . . . , 𝑤̄𝑛) consist of the components of (ū, v̄) in nondecreasing order,

and similarly for (𝑤1, . . . , 𝑤𝑛). It suffices to show that 𝑤̄𝑘 ≥ 𝑤𝑘 for 𝑘 = 1, . . . , 𝑛.

We first note that there is a perfect matching between 𝑤̄1, . . . , 𝑤̄𝑛 and 𝑤1, . . . , 𝑤𝑛 in

which each 𝑢̄⟨𝑖⟩ is matched with 𝑢⟨𝑖⟩ and each 𝑣⟨𝑖⟩ with 𝑣⟨𝑖⟩. For any given 𝑘, 𝑤̄𝑘 must
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be matched with 𝑤ℓ either for ℓ ≥ 𝑘 or for ℓ < 𝑘. If ℓ ≥ 𝑘, then 𝑤̄𝑘 ≥ 𝑤ℓ ≥ 𝑤𝑘, so

that 𝑤̄𝑘 ≥ 𝑤𝑘. If ℓ < 𝑘, then 𝑤̄𝑖 for some 𝑖 < 𝑘 must be matched with 𝑤𝑗 for some

𝑗 ≥ 𝑘. Now we have 𝑤̄𝑘 ≥ 𝑤̄𝑖 ≥ 𝑤𝑗 ≥ 𝑤𝑘, which again implies 𝑤̄𝑘 ≥ 𝑤𝑘.

Proof of Proposition 34. Let (ȳ, ū) be a leximax solution of (4.11), which means

that ū ≽ u for all (u,y) that are feasible in (4.11). Let û𝑘 a leximax solution of

(4.13) for each 𝑘, so that

û𝑘 ≽ u𝑘, 𝑘 = 1, . . . , 𝑟 (A.5)

for all u𝑘 feasible in (4.13). We note that by construction, (û1, . . . , û𝑟, ȳ) is feasible

in (4.11). We wish to show that

(û1, . . . , û𝑟) ≽ (u1, . . . ,u𝑟) (A.6)

for any (u1, . . . ,u𝑟,y) feasible in (4.11). But for any such solution of (4.11), u𝑘 is

feasible in (4.13) with 𝑦𝑘 = 𝑦𝑘. Thus (A.5) holds, which implies (A.6) by Lemma 43.

□

Proof of Proposition 36. The K–S problem is

max
𝛽,u

{︀
𝛽
⃒⃒
u = 𝛽umax, aTu ≤ 𝐵, 0 ≤ u ≤ d, 0 ≤ 𝛽 ≤ 1

}︀
Substituting 𝛽umax = 𝛽d for u, this becomes

max
𝛽

{︀
𝛽 | 𝛽aTd ≤ 𝐵, 0 ≤ 𝛽d ≤ d, 0 ≤ 𝛽 ≤ 1

}︀
The constraint 0 ≤ 𝛽d ≤ d is redundant, and 𝐵/aTd ≤ 1 since we are given
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that aTd ≥ 𝐵. The optimal solution is therefore 𝛽* = 𝐵/aTd ≤ 1, and

u* = 𝛽*d = 𝐵d/aTd. If there are no upper bounds, we can set 𝑑𝑖 = 𝐵/𝑎𝑖 for each 𝑖,

so that aTd = 𝑛𝐵. Thus we have the optimal solution 𝑢*
𝑗 = (1/𝑛)𝐵/𝑎𝑗 for all 𝑗. □

Proof of Proposition 37. The collapsed problem (4.12) is

max
𝛽,u

{︃
𝛽

⃒⃒⃒⃒
⃒ u = 𝛽d, aTu ≤ 𝐵 +

∑︁
𝑖

𝐵𝑖, 0 ≤ 𝛽 ≤ 1

}︃

By Proposition 36, the solution of this problem is

ū =
(︁
𝐵 +

∑︁
𝑖

𝐵𝑖

)︁
d/aTd, or 𝛽 =

(︀
1/aTd

)︀(︁
𝐵 +

∑︁
𝑖

𝐵𝑖

)︁
(A.7)

where the latter expression is due to ū = 𝛽d. By Proposition 29, this solves the

original problem (4.11) if a𝑘ū𝑘 ≥ 𝐵𝑘 for all 𝑘. Substituting the value of ū, we obtain

(4.16).

To show that the hierarchical problem is regionally decomposable, we note that

region 𝑘’s problem (4.13) is

max
𝛽𝑘

{︀
𝛽𝑘

⃒⃒
a𝑘d𝑘𝛽𝑘 ≤ a𝑘ū𝑘, 0 ≤ 𝛽𝑘 ≤ 1

}︀
where u𝑘 = 𝛽𝑘d

𝑘. Substituting the value of ū𝑘 in (A.7), this becomes

max
𝛽𝑘

{︃
𝛽𝑘

⃒⃒⃒⃒
⃒ a𝑘d𝑘𝛽𝑘 ≤

a𝑘d𝑘

aTd

(︁
𝐵 +

∑︁
𝑖

𝐵𝑖

)︁
, 0 ≤ 𝛽𝑘 ≤ 1

}︃
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By Proposition 36, the solution of this problem is

û𝑘 = 𝛽𝑘d =
(︁
𝐵 +

∑︁
𝑖

𝐵𝑖

)︁
d/aTd, or 𝛽𝑘 =

(︀
1/aTd

)︀(︁
𝐵 +

∑︁
𝑖

𝐵𝑖

)︁

Thus we have 𝛽𝑘 = 𝛽 for all 𝑘, and û = 𝛽d = 𝛽d = 𝑢̄ solves the original problem

(4.11). □

To prove Proposition 38, it is useful to reformulate (4.5) as follows:

max
𝑣0,v

{︀
𝑊 (𝑣0,v)

⃒⃒
𝑎𝑁𝑣0 + aTv ≤ 𝐵, v ≥ 0

}︀
(A.8)

where 𝑣 = (𝑣1, . . . , 𝑣𝑛) and

𝑊 (𝑣0,𝑣) = (𝑛− 1)∆ + 𝑛𝑣0 +
𝑛∑︁

𝑖=1

(︀
𝑣𝑖 −∆

)︀+

Lemma 44. Formulation (A.8) has the same optimal value as (4.5).

Proof. It suffices to show that for any feasible solution of (4.5), there is a feasible

solution of (A.8) with value at least as large as that of (4.5), and vice-versa. First

consider any feasible solution 𝑢 of (4.5). If we let 𝑣0 = 𝑢min and 𝑣𝑗 = 𝑢𝑗 − 𝑢min for

all 𝑗, the solution (𝑣0,v) is feasible in (A.8), given the constraints of (4.5). Also the

objective function 𝑊 is identical to 𝑊 , and so 𝑊 (𝑣0,v) = 𝑊 (u).

Now suppose that (𝑣0,v) is feasible in (A.8). Set 𝑢𝑗 = 𝑣0+ 𝑣𝑗 for all 𝑗, which implies

𝑢min = 𝑣0 + 𝑣min, where 𝑣min = min𝑗{𝑣𝑗}. The constraint 𝑎T𝑢 ≤ 𝐵 of (4.5) becomes

𝑎𝑁𝑣0 + aTv ≤ 𝐵 in (A.8), so that 𝑢 is feasible in (4.5). The objective function of
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(4.5) becomes

(𝑛− 1)∆ + 𝑛𝑣min + 𝑛𝑣0 +
∑︁
𝑗

(︀
𝑣𝑗 − 𝑣min −∆

)︀+
which can be written

(𝑛− 1)∆ + 𝑛𝑣0 +
∑︁
𝑗

max
{︀
𝑣𝑗 −∆, 𝑣min

}︀
This is no smaller than the objective function of (A.8) because 𝑣min ≥ 0.

Proof of Proposition 38. We will show that (𝑣*0,𝑣*) = (0, (𝐵/𝑎1)𝑒1) is an optimal

solution of (A.8) if (4.18) holds, and (𝑣*0,𝑣
*) = (𝐵/𝑎𝑁 ,0) is an optimal solution

otherwise. This proves the theorem because (4.5) and (A.8) have the same optimal

value by Lemma 44, and because

𝑊
(︀
(𝐵/𝑎1)𝑒1

)︀
= (𝑛− 2)∆ +𝐵/𝑎1 = 𝑊

(︀
0, (𝐵/𝑎1)𝑒1

)︀
𝑊
(︀
(𝐵/𝑎𝑁)𝑒

)︀
= (𝑛− 1)∆ + 𝑛𝐵/𝑎𝑁 = 𝑊

(︀
𝐵/𝑎𝑁 ,0

)︀

We first observe that the objective function 𝑊 (𝑣0,𝑣) is convex because (𝑣𝑗 −∆)+ is

a convex function of 𝑣𝑗, and a sum of convex functions is convex. It follows that some

extreme point of the feasible set of (A.8) is optimal. Yet every extreme point is the

solution of some linearly independent subset 𝑇 of 𝑛+ 1 of the following equations:

𝑎𝑁𝑣0 + 𝑎𝑣 = 𝐵 (𝑎)

𝑣0 = 0 (𝑏)

𝑣𝑖 = 0, 𝑖 = 1, . . . , 𝑛 (𝑐)
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We can suppose 𝑇 contains (a), since otherwise the corresponding extreme point

(𝑣0,𝑣) = (0,0) is clearly dominated by (0, (𝐵/𝑎1)𝑒1) and (𝐵/𝑎𝑁 ,0). Then 𝑇

either contains (b) and all but one equation 𝑣𝑗 = 0 in (c), or else all equations

in (c). The former yields extreme point (𝑣0,𝑣) = (0, (𝐵/𝑎𝑗)𝑒𝑗) and the latter

(𝑣0,𝑣) = (𝐵/𝑎𝑁 ,0). Now if (4.18) holds, both 𝑊 (0, (𝐵/𝑎𝑗)𝑒𝑗) = (𝑛 − 2)∆ + 𝐵/𝑎𝑡

and 𝑊 (𝐵/𝑎𝑁 ,0) = (𝑛 − 1)∆ + 𝑛𝐵/𝑎𝑁 are less than or equal to 𝑊 (0, (𝐵/𝑎𝑡)𝑒𝑡)

because 𝑎1 ≤ 𝑎𝑗. If (4.18) does not hold, both of these expressions are less than or

equal to 𝑊 (𝐵/𝑎𝑁 ,0). The proposition follows. □

Proof of Proposition 39. We first show that maximizing a utility threshold SWF

subject to a budget constraint and upper and lower utility bounds yields an optimal

solution u* in which at most one utility 𝑢*
𝑖 is strictly between 𝑢*

min and 𝑑𝑖.

Let 𝑆 be the feasible set of (4.6), and define

𝑆𝑖 = 𝑆 ∩ {𝑢 | 𝑢𝑖 ≤ 𝑢𝑗, all 𝑗}

Since 𝑆 is the union of all 𝑆𝑖, the maximum of 𝑊Δ(𝑢) over some 𝑆𝑖 is optimal in

(4.3). Suppose without loss of generality that the maximum of 𝑊Δ(𝑢) over 𝑆1 is

optimal in (4.3). For 𝑢 ∈ 𝑆1, the function 𝑊Δ(𝑢) can be written

𝑊 ′
Δ(𝑢) = (𝑛− 1)∆ +

𝑛∑︁
𝑖=1

max
{︀
𝑢𝑖 −∆, 𝑢1

}︀
Since 𝑊 ′

Δ(𝑢) is convex, some extreme point 𝑢* of 𝑆1 maximizes 𝑊 ′
Δ(𝑢) and therefore

𝑊Δ(𝑢) over 𝑆1. Since 𝑢* is an extreme point of 𝑆1, it is the solution of some linearly
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independent1 subset 𝐸 of 𝑛 of the equations

𝑢1 − 𝑢𝑗 = 0, 𝑗 = 2, . . . , 𝑛 (𝑎)

aTu = 𝐵 (𝑏)

u = c (𝑐)

u = d (𝑑)

Let 𝑇 be the subset of equations in 𝐸 that appear in (c) or (d). This means that

𝑛−|𝑇 | variables are not fixed to one of their bounds by (c) and (d). Suppose that 2 or

more of these variables are not set equal to 𝑢1 by (a). Then the only nonzero in each

of the corresponding columns must appear in (b). These columns must therefore be

linearly dependent, which is impossible because 𝐸 is nonsingular. We conclude that

at most one variable 𝑢*
𝑖 is fixed neither to a bound by (c) and (d) nor to 𝑢*

1 = 𝑢*
min by

(a). Since 𝑢*
𝑖 cannot be strictly between its lower bound 𝑐𝑖 and 𝑢*

min, the proposition

follows.

We next show that if there is utility strictly between 𝑢*
min and its upper bound, then

some other utility 𝑢*
𝑗 that is equal to 𝑢*

min is at its lower or upper bound. Let 𝑄 be

the set of inequalities (a) in 𝐸. Then 𝑄 contains |𝑄| + 1 variables, and 𝑇 contains

|𝑇 | variables. Since 𝑚 variables are strictly between 𝑢*
min and their upper bounds,

these variables are in neither 𝑄 nor 𝑇 , and 𝐸 must therefore contain all 𝑚 rows of

(b). If 𝑄 and 𝑇 have no variables in common, the number of variables is at least

|𝑄|+ |𝑇 |+𝑚+ 1. But |𝑄|+ |𝑇 |+𝑚+ 1 > 𝑛 because |𝑄|+ |𝑇 |+𝑚 = 𝑛 due to the

linear independence of the equations in 𝐸. Thus one variable 𝑢*
𝑗 belongs to both 𝑄

and 𝑇 , which implies that 𝑢*
𝑗 = 𝑢*

1 = 𝑢*
min and 𝑢*

𝑗 is at its lower or upper bound. □

1We consider equations to be linearly independent when their coefficient rows are linearly
independent.
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Proof of Proposition 40. Let 𝑆 be the feasible set of (4.11), and define

𝑆𝑖 = 𝑆 ∩ {(y,u) | 𝑢𝑖 ≤ 𝑢𝑗, all 𝑗}

Since 𝑆 is the union of all 𝑆𝑖, the maximum of 𝐹 (𝑢) over some 𝑆𝑖 is optimal in (4.11).

Suppose without loss of generality that the maximum of 𝐹 (𝑢) over 𝑆1 is optimal in

(4.11). For (y,u) ∈ 𝑆1, the function 𝐹 (𝑢) can be written

𝐹1(𝑢) = (𝑛− 1)∆ + 𝑛𝑢1 +
𝑛∑︁

𝑖=1

(︀
𝑢𝑖 − 𝑢1 −∆

)︀+
Since 𝐹1(𝑢) is convex, some extreme point (ȳ, ū) of 𝑆1 maximizes 𝐹1(𝑢) and therefore

𝐹 (𝑢) over 𝑆1. Since (ȳ, ū) is an extreme point of 𝑆1, it is the solution of some linearly

independent subset 𝐸 of 𝑛+ 𝑟 of the equations

𝑢1 − 𝑢𝑗 = 0, 𝑗 = 2, . . . , 𝑛 (𝑎)

eTy = 𝐵 (𝑏)

a𝑘u− 𝑦𝑘 = 𝐵𝑘, 𝑘 = 1, . . . , 𝑟 (𝑐)

𝑢𝑖 = 𝑐𝑖, 𝑖 = 1, . . . , 𝑛 (𝑑)

𝑢𝑖 = 𝑑𝑖, 𝑖 = 1, . . . , 𝑛 (𝑒)

𝑦𝑘 = 0, 𝑘 = 1, . . . , 𝑟 (𝑓)

We first demonstrate (i). Let 𝑇 be the subset of equations in 𝐸 that appear in (d) or

(e). This means that 𝑛− |𝑇 | variables 𝑢̄𝑗 are not fixed to one of their bounds by (d)

and (e). Suppose that 𝑟+1 of these variables are not set equal to 𝑢̄1 by (a). Then all

of the nonzeros in the corresponding columns must occur in the 𝑟 rows of (c). The

𝑟+1 columns must therefore be linearly dependent, which is impossible because is 𝐸
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is nonsingular. We conclude that at most 𝑟 variables 𝑢̄𝑗 are fixed neither to a bound

by (d) and (e) nor to 𝑢̄1 = 𝑢̄min by (a). Since these 𝑢̄𝑗s cannot be strictly between

their lower bound 𝑐𝑗 and 𝑢̄min, (i) follows.

We now demonstrate (ii). Let 𝑇 be as before. This means that 𝑛 − |𝑇 | variables

𝑢̄𝑗 are not fixed to one of their bounds by (d) and (e). Suppose for any given 𝑘

that 2 of these variables that are in ū𝑘 are not set equal to 𝑢̄1 by (a). Then all

of the nonzeros in the corresponding columns must occur in row 𝑘 of (c). The 2

columns must therefore be linearly dependent, which is impossible because is 𝐸 is

nonsingular. We conclude that at most one variable 𝑢̄𝑗 in ū𝑘 is strictly between its

lower bound 𝑐𝑗 and 𝑢̄min, and (ii) follows. □

To prove Proposition 41, we first show that the social welfare problem has a linear

programming model.

Lemma 45. If 𝑊Δ(u) is the equity threshold SWF given by (4.19), the optimization

problem (4.3) has the linear programming formulation

max
u,v,𝑤

⎧⎪⎨⎪⎩𝑛∆+
𝑛∑︁

𝑗=1

𝑣𝑗

⃒⃒⃒⃒
⃒⃒⃒ 𝑤 ≤ 𝑢𝑗, 𝑣𝑗 ≤ 𝑢𝑗 −∆, 𝑣𝑖 ≤ 𝑤, 𝑗 = 1, . . . 𝑛∑︁

𝑗

𝑎𝑗𝑢𝑗 ≤ 𝐵, 𝑤 ≥ 0, c ≤ u ≤ d

⎫⎪⎬⎪⎭ (A.9)

where v and 𝑤 are auxiliary variables.

Proof. It suffices to show that for any feasible solution of (A.9), some feasible solution

of (4.3) has an objective function value at least as large, and vice-versa. For the first

claim, if we let (u,v, 𝑤) be a feasible solution of (A.9), then u is obviously feasible
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in (4.3), and it suffices to show that

𝑛∆+
∑︁
𝑗

min
{︀
𝑢𝑗 −∆, 𝑢min

}︀
≥ 𝑛∆+

∑︁
𝑗

𝑣𝑗

But this follows because 𝑣𝑗 ≤ 𝑢𝑗 − ∆ and 𝑣𝑗 ≤ 𝑤 ≤ 𝑢min for each 𝑗, the latter due

to the fact that 𝑤 ≤ 𝑢𝑗 for each 𝑗. To show the converse, suppose u is a feasible

solution of (4.3). It suffices to exhibit a feasible solution (u,v, 𝑤) of (A.9) for which

𝑛∆+
∑︁
𝑗

𝑣𝑗 ≥ 𝑛∆+
∑︁
𝑗

min
{︀
𝑢𝑗 −∆, 𝑢min

}︀
(A.10)

The solution given by 𝑤 = 𝑢min and 𝑣𝑗 = min{𝑢𝑗 − ∆, 𝑢min} for each 𝑗 is feasible

on inspection. We also see that (A.10) follows immediately from the definition of

𝑣𝑗.

Proof of Proposition 41. From Lemma 45, it suffices to show that (4.21) and

(4.24) hold under their respective conditions for some optimal solution u* of (A.9)

with c = 0 and d = ∞. Since (A.9) is an LP, we can show this by exhibiting a feasible

solution (u*,v*, 𝑤*) of (A.9) that is consistent with (4.21) or (4.24), along with a

feasible dual solution that yields the same objective function value as (u*,v*, 𝑤*).

The dual of (A.9) (with c = 0 and d = ∞) is

min
𝛼,𝛽,𝛾,𝛿

⎧⎪⎨⎪⎩𝑛∆+𝐵𝛿 −∆
𝑛∑︁

𝑗=1

𝛽𝑗

⃒⃒⃒⃒
⃒⃒⃒ 𝑎𝑗𝛿 ≥ 𝛼𝑗 + 𝛽𝑗, 𝛽𝑗 + 𝛾𝑗 = 1, 𝑗 ∈ 𝑁∑︁

𝑗

𝛼𝑗 ≥
∑︁
𝑗

𝛾𝑗, 𝛼,𝛽,𝛾 ≥ 0, 𝛿 ≥ 0

⎫⎪⎬⎪⎭ (A.11)

where dual variables 𝛼,𝛽,𝛾, 𝛿 correspond respectively to the first four constraints of

(A.9). We first consider the ∆ range defined by (4.20). It suffices to show that the
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optimal solution (u*,v*, 𝑤*) is optimal when u* is as given by (4.21), v* is given by

𝑣*𝑖 =

⎧⎨⎩ 𝑢0, for 𝑖 = 1, . . . , 𝑘*

𝑢0 −∆, for 𝑖 = 𝑘* + 1, . . . , 𝑛

and 𝑤* = 𝑢0. We note that 𝑢0 ≥ 0 due to (4.20). Given this, it is easily checked that

(u*,v*, 𝑤*) is feasible in (A.9). To show it is optimal, we exhibit the dual solution

(𝛼,𝛽,𝛾, 𝛿) given by

(𝛼𝑖, 𝛽𝑖) =

⎧⎨⎩
(︀
0, 𝑛𝑎𝑗/𝑎𝑁

)︀
, for 𝑖 = 1, . . . , 𝑘*(︀

𝑛𝑎𝑗/𝑎𝑁 − 1, 1
)︀
, for 𝑖 = 𝑘* + 1, . . . , 𝑛

as well as 𝛾𝑖 = 1 − 𝛽𝑖 for 𝑖 = 1, . . . , 𝑛 and 𝛿 = 𝑛/𝑎𝑁 . We note that 𝛼𝑖 ≥ 0 because

𝑛𝑎𝑖/𝑎𝑁 ≥ 1 for 𝑖 = 𝑘* + 1, . . . , 𝑛 due to the definition of 𝑘*. Given this, direct

substitution confirms that (𝛼,𝛽,𝛾, 𝛿) is dual feasible. Furthermore, the objective

value of both primal and dual is

𝑘∆+
𝑛

𝑎𝑁

(︁
𝐵 −∆

𝑘*∑︁
𝑗=1

𝑎𝑗

)︁

This shows that (u*,v*, 𝑤*) is optimal.

We now consider the ∆ range defined by (4.23). It suffices to show that the optimal

solution (u*,v*, 𝑤*) is optimal when u* is given by (4.24) for values of 𝑘 ≤ 𝑘*

satisfying (4.22), when 𝑣*𝑖 = 𝑢*
𝑖 − ∆ for all 𝑖, and when 𝑤* = 0. We note that

𝑢*
𝑘 ≥ 0 due to the second inequality in (4.22). Given this, it is easily checked that

(u*,v*, 𝑤*) is feasible in (A.9). To show it is optimal, we exhibit the dual solution
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(𝛼,𝛽,𝛾, 𝛿) given by

(𝛼𝑖, 𝛽𝑖) =

⎧⎨⎩
(︀
0, 𝑎𝑖/𝑎𝑘

)︀
, for 𝑖 = 1, . . . , 𝑘(︀

𝑎𝑖/𝑎𝑘 − 1, 1
)︀
, for 𝑖 = 𝑘 + 1, . . . , 𝑛

as well as 𝛾𝑖 = 1 − 𝛽𝑖 for 𝑖 = 1, . . . , 𝑛 and 𝛿 = 1/𝑎𝑘. We note that 𝛼𝑖 ≥ 0 because

𝑎𝑖 ≥ 𝑎𝑘 for 𝑖 = 𝑘 + 1, . . . , 𝑛. We also note that the dual constraint
∑︀

𝑖 𝛼𝑖 ≥
∑︀

𝑖 𝛾𝑖

reduces to 𝑎𝑘 ≤ 𝑎𝑁/𝑛, which holds because 𝑘 ≤ 𝑘* and the definition of 𝑘* implies

𝑎𝑘* ≤ 𝑎𝑁/𝑛. Given these facts, direct substitution confirms that (𝛼,𝛽,𝛾, 𝛿) is dual

feasible. Furthermore, the objective value of both primal and dual is

(𝑘 − 1)∆ +
1

𝑎𝑘

(︁
𝐵 −∆

𝑘−1∑︁
𝑖=1

𝑎𝑖

)︁

This shows that (u*,v*, 𝑤*) is optimal. □

To prove Proposition 42, we note that when the social welfare problem has only a

budget constraint, problem 𝑃𝑘 has the form

min
u𝐾

⎧⎪⎨⎪⎩𝑊𝑘(u𝐾)

⃒⃒⃒⃒
⃒⃒⃒ 𝑢𝑖 ≥ 𝑢̄𝑖𝑘−1

, 𝑖 ∈ 𝐼𝑘∑︁
𝑖∈𝐼𝑘

𝑎𝑖𝑢𝑖 ≤ 𝐵𝑘

⎫⎪⎬⎪⎭ (A.12)

where

𝑊𝑘(u𝐾) = (𝑛− 𝑘 + 1)𝑢min +
∑︁
𝑖∈𝐼𝑘

(𝑢𝑖 − 𝑢̄𝑖1 −∆)+

and 𝑢min = min𝑖∈𝐼𝑘{𝑢𝑖}. To simplify notation, we offset the utilities with the change
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of variable 𝑢′
𝑖 = 𝑢𝑖 − 𝑢̄𝑖𝑘−1

. Problem 𝑃𝑘 now becomes a problem 𝑃 ′
𝑘 of the form

max
u′
𝐾

⎧⎪⎨⎪⎩𝑊 ′
𝑘(u

′
𝐾)

⃒⃒⃒⃒
⃒⃒⃒ 𝑢′

𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑘∑︁
𝑖∈𝐼𝑘

𝑎𝑖𝑢
′
𝑖 ≤ 𝐵′

𝑘

⎫⎪⎬⎪⎭ (A.13)

where 𝐵′
𝑘 = 𝐵𝑘 − 𝑎𝐾 𝑢̄𝑖𝑘−1

and

𝑊 ′
𝑘(u

′
𝐾) = (𝑛− 𝑘 + 1)𝑢′

min +
∑︁
𝑖∈𝐼𝑘

(𝑢′
𝑖 −∆′)+

with ∆′ = ∆− (𝑢̄𝑖𝑘−1
− 𝑢̄𝑖1). It is useful to reformulate (A.13) as follows:

max
𝑣0,v

⎧⎪⎨⎪⎩𝑊 𝑘(𝑣0,v)

⃒⃒⃒⃒
⃒⃒⃒ 𝑣0 ≥ 0, 𝑣𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑘

𝑎𝐾𝑣0 +
∑︁
𝑖∈𝐼𝑘

𝑎𝑖𝑣𝑖 ≤ 𝐵′
𝑘

⎫⎪⎬⎪⎭ (A.14)

where

𝑊 (𝑣0,𝑣) = (𝑛− 𝑘 + 1)𝑣0 +
∑︁
𝑖∈𝐼𝑘

(︀
𝑣𝑖 + 𝑣0 −∆′)︀+

Lemma 46. Formulation (A.14) has the same optimal value as (A.13), and solution

u′
𝐾 is optimal in (A.13) if and only if (𝑣0,v) is optimal in (A.14), where 𝑣0 = 𝑢′

min

and 𝑣𝑖 = 𝑢′
𝑖 − 𝑢′

min for 𝑖 ∈ 𝐼𝑘.

Proof. It suffices to show that (a) if u′
𝐾 is optimal in (A.13), then (𝑣0,v) is optimal

in (A.14), where 𝑣0 = 𝑢′
min and 𝑣𝑖 = 𝑢′

𝑖 − 𝑢′
min, and (b) if (𝑣0,v) is optimal in (A.14),

then u′
𝐾 is optimal in (A.13), where 𝑢′

𝑖 = 𝑣0 + 𝑣𝑖 for 𝑖 ∈ 𝐼𝑘. To show (a), suppose

that u′
𝐾 is optimal in (A.13). Then (𝑣0,v) is feasible in (A.14), given the constraints

of (A.13). Also 𝑊 𝑘(𝑣0,v) = 𝑊 ′
𝑘(u

′
𝐾), and so (𝑣0,v) is optimal in (A.14).
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To show (b), suppose that (𝑣0,v) is optimal in (A.14). Set 𝑢′
𝑖 = 𝑣0 + 𝑣𝑖 for 𝑖 ∈ 𝐼𝑘,

which implies 𝑢′
min = 𝑣0 + 𝑣min, where 𝑣min = min𝑖∈𝐼𝑘{𝑣𝑖}. It is easily checked that

u′
𝐾 is feasible in (A.13). Then 𝑊 ′

𝑘(u
′
𝐾) becomes

(𝑛− 𝑘 + 1)(𝑣min + 𝑣0) +
∑︁
𝑖∈𝐼𝑘

(︀
𝑣𝑖 + 𝑣0 −∆′)︀+

This is no smaller than 𝑊 (𝑣0,v) because 𝑣min ≥ 0. Since 𝑊 (𝑣0,v) is the optimal

value of (A.14), u′
𝐾 is optimal in (A.13).

We next show that (A.13) has a utilitarian solution when the following holds, and a

maximin solution otherwise:

1

𝑛− 𝑘
𝐵′

𝑘

(︂
2
𝑛− 𝑘 + 1

𝑎𝐾
− 1

𝑎ℓ𝑘

)︂
≤ ∆′ ≤ 𝐵′

𝑘

(︂
1

𝑎ℓ𝑘
− 𝑛− 𝑘 + 1

𝑎𝐾

)︂
(A.15)

where we regard (A.15) as false when 𝑛 = 𝑘.

Lemma 47. If 𝐵′
𝑘 ≥ 0, problem (A.13) has a optimal solution u′

𝐾 in which

u′
𝐾 =

⎧⎨⎩ (𝐵′
𝑘/𝑎ℓ𝑘)eℓ𝑘 , if (A.15) holds

(𝐵′
𝑘/𝑎𝐾)e𝐾 , otherwise

where ℓ𝑘 = argminℓ∈𝐼𝑘{𝑎ℓ} and e𝐾 is a vector of |𝐼𝑘| ones.

Proof. Due to Lemma 46, it suffices to show that problem (A.14) has an optimal

solution in which

(𝑣0,v) =

⎧⎨⎩
(︀
0, (𝐵′

𝑘/𝑎ℓ𝑘)eℓ𝑘
)︀
, if (A.15) holds(︀

𝐵′
𝑘/𝑎𝐾 ,0

)︀
, otherwise
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Since we solve 𝑃𝑘 only for 𝑘 ≤ 𝑘*, we know that 𝑢̄𝑖𝑘 − 𝑢̄𝑖1 ≤ ∆, which implies ∆′ ≥ 0.

Thus we have

𝑊 𝑘

(︀
0, (𝐵′

𝑘/𝑎ℓ𝑘)eℓ𝑘
)︀
=

(︂
𝐵′

𝑘

𝑎ℓ𝑘
−∆′

)︂+

(A.16)

𝑊 𝑘

(︀
𝐵′

𝑘/𝑎𝐾 ,0
)︀
= (𝑛− 𝑘 + 1)

𝐵′
𝑘

𝑎𝐾
+ (𝑛− 𝑘 + 1)

(︂
𝐵′

𝑘

𝑎𝐾
−∆′

)︂+

(A.17)

We will show that (𝑣0,v) = (0, (𝐵′
𝑘/𝑎ℓ𝑘)𝑒ℓ𝑘) is an optimal solution of (A.14) if (A.15)

holds, and (𝑣0,v) = (𝐵′
𝑘/𝑎𝐾 ,0) is an optimal solution otherwise. We first observe

that the objective function 𝑊 𝑘(𝑣0,v) is convex. It follows that some extreme point

of the feasible set of (A.14) is optimal. Yet every extreme point is the solution of

some linearly independent subset 𝑇 of 𝑛+ 1 of the following equations:

𝑎𝐾𝑣0 +
∑︁
𝑖∈𝐼𝑘

𝑣𝑖 = 𝐵′
𝑘 (𝑎)

𝑣0 = 0 (𝑏)

𝑣𝑖 = 0, 𝑖 ∈ 𝐼𝑘 (𝑐)

We can suppose 𝑇 contains (a), since otherwise the corresponding extreme point

(𝑣0,𝑣) = (0,0) is clearly dominated by (0, (𝐵′
𝑘/𝑎ℓ𝑘)eℓ𝑘) and (𝐵′

𝑘/𝑎𝐾 ,0). Then 𝑇

either contains (b) and all but one equation 𝑣𝑗 = 0 in (c), or else all equations

in (c). The former yields extreme point (𝑣0,v) = (0, (𝐵′
𝑘/𝑎𝑗)e𝑗) and the latter

(𝑣0,v) = (𝐵′
𝑘/𝑎𝐾 ,0).

We first suppose that (A.15) holds and show that (𝑣0,v) = (0, (𝐵′
𝑘/𝑎ℓ𝑘)eℓ𝑘) is optimal.
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For this, it suffices to show

𝑊 𝑘

(︀
0, (𝐵′

𝑘/𝑎𝑗)e𝑗
)︀
≤ 𝑊 𝑘

(︀
0, (𝐵′

𝑘/𝑎ℓ𝑘)eℓ𝑘
)︀
, all 𝑗 ∈ 𝐼𝑘 (A.18)

𝑊 𝑘

(︀
𝐵′

𝑘/𝑎𝐾 ,0
)︀
≤ 𝑊 𝑘

(︀
0, (𝐵′

𝑘/𝑎ℓ𝑘)eℓ𝑘
)︀

(A.19)

Due to (A.16)–(A.17), these are respectively equivalent to

(︂
𝐵′

𝑘

𝑎𝑗
−∆′

)︂+

≤
(︂
𝐵′

𝑘

𝑎ℓ𝑘
−∆′

)︂+

, all 𝑗 ∈ 𝐼𝑘 (A.20)

(𝑛− 𝑘 + 1)
𝐵′

𝑘

𝑎𝐾
+ (𝑛− 𝑘 + 1)

(︂
𝐵′

𝑘

𝑎𝐾
−∆′

)︂+

≤
(︂
𝐵′

𝑘

𝑎ℓ𝑘
−∆′

)︂+

(A.21)

But (A.20) holds simply because 𝑎ℓ𝑘 ≤ 𝑎𝑗 for all 𝑗 ∈ 𝐼𝑘, by definition of ℓ𝑘. To show

(A.21), we distinguish three cases. Case 1: ∆′ ≤ 𝐵′
𝑘/𝑎𝐾 . In this case, to establish

(A.21) it suffices to show that

(𝑛− 𝑘 + 1)
𝐵′

𝑘

𝑎𝐾
+ (𝑛− 𝑘 + 1)

(︂
𝐵′

𝑘

𝑎𝐾
−∆′

)︂
≤ 𝐵′

𝑘

𝑎ℓ𝑘
−∆′

But this follow from the first inequality in (A.15). Case 2: 𝐵′
𝑘/𝑎𝐾 < ∆′ ≤ 𝐵𝑘/𝑎ℓ𝑘 .

Here it suffices to show that

(𝑛− 𝑘 + 1)
𝐵′

𝑘

𝑎𝐾
≤ 𝐵′

𝑘

𝑎ℓ𝑘
−∆′

This follows from the second inequality in (A.15). Case 3: ∆′ > 𝐵′
𝑘/𝑎ℓ𝑘 . This case

cannot occur because it violates the second inequality in (A.15). Since case 1 or 2

must obtain, (A.21) follows.

We now suppose that (A.15) is violated, which means that at least one of the two

inequalities in (A.15) is violated. We wish to show that (𝑣0,v) = (𝐵′
𝑘/𝑎𝐾 ,0) is
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optimal. For this it suffices to show

𝑊 𝑘

(︀
0, (𝐵′

𝑘/𝑎𝑗)e𝑗
)︀
≤ 𝑊 𝑘

(︀𝐵′
𝑘

𝑎𝐾
,0
)︀
, all 𝑗 ∈ 𝐼𝑘 (A.22)

which is equivalent to

(︂
𝐵′

𝑘

𝑎𝑗
−∆′

)︂+

≤ (𝑛− 𝑘 + 1)
𝐵′

𝑘

𝑎𝐾
+ (𝑛− 𝑘 + 1)

(︂
𝐵′

𝑘

𝑎𝐾
−∆′

)︂+

, all 𝑗 ∈ 𝐼𝑘 (A.23)

We again consider 3 cases.

Case 1: ∆′ ≤ 𝐵′
𝑘/𝑎𝐾 . In this case, it suffices to show

𝐵′
𝑘

𝑎𝑗
−∆′ ≤ (𝑛− 𝑘 + 1)

𝐵′
𝑘

𝑎𝐾
+ (𝑛− 𝑘 + 1)

(︂
𝐵′

𝑘

𝑎𝐾
−∆′

)︂
, all 𝑗 ∈ 𝐼𝑘 (A.24)

This follows if the first inequality in (A.15) is false, because 𝑎ℓ𝑘 ≤ 𝑎𝑗 for all 𝑗 ∈ 𝐼𝑘. It

therefore suffices to show that the first inequality is false, given the case hypothesis.

We will demonstrate that the first inequality cannot be true when the second is false,

which means that the first implies the second. But we are given that the first and

second inequalities cannot both be true because (A.15) is false, which means that the

first inequality implies the negation of the second. It follows that the first inequality

must be false. Now it remains to show that the first inequality cannot be true if the

second is false. The case hypothesis ∆′ ≤ 𝐵′
𝑘/𝑎𝑁 together with the first inequality

imply
1

𝑛− 𝑘
𝐵′

𝑘

(︂
2
𝑛− 𝑘 + 1

𝑎𝐾
− 1

𝑎ℓ𝑘

)︂
≤ ∆′ ≤ 𝐵′

𝑘

𝑎𝐾

which implies
𝑛− 𝑘 + 2

𝑎𝐾
≤ 1

𝑎ℓ𝑘
(A.25)
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The case hypothesis together with the falsehood of the second inequality imply

𝐵′
𝑘

(︂
1

𝑎ℓ𝑘
− 𝑛− 𝑘 + 1

𝑎𝐾

)︂
< ∆′ ≤ 𝐵′

𝐾

𝑎𝐾

which implies the negation of (A.25). Thus we have a contradiction, and we conclude

that the first inequality in (A.15) cannot be true when the second is false, as claimed.

Case 2: 𝐵′
𝑘/𝑎𝐾 < ∆′ ≤ 𝐵′

𝑘/𝑎𝑗. In this case, it suffices to show

𝐵′
𝑘

𝑎𝑗
−∆′ ≤ (𝑛− 𝑘 + 1)

𝐵′
𝑘

𝑎𝐾
, or ∆′ ≥ 𝐵𝑘

(︂
1

𝑎𝑗
− 𝑛− 𝑘 + 1

𝑎𝐾

)︂
, all 𝑗 ∈ 𝐼𝑘

This follows if the second inequality in (A.15) is false, because 𝑎ℓ𝑘 ≤ 𝑎𝑗 for all

𝑗 ∈ 𝐼𝑘. It therefore suffices to show that the second inequality is false, given the case

hypothesis. We will demonstrate that the second inequality cannot be true when the

first is false, which means that the second implies the first. But we are given that

the first and second inequalities cannot both be true because (A.15) is false, which

means that the second inequality implies the negation of the first. It follows that the

second inequality must be false. Now it remains to show that the second inequality

cannot be true if the first is false. The case hypothesis ∆′ > 𝐵′
𝑘/𝑎𝑁 together with

the second inequality imply

𝐵′
𝑘

𝑎𝐾
< ∆′ ≤ 𝐵′

𝑘

(︂
1

𝑎ℓ𝑘
− 𝑛− 𝑘 + 1

𝑎𝐾

)︂

which implies the negation of (A.25). The case hypothesis ∆′ > 𝐵′
𝑘/𝑎𝑁 together

with the falsehood of the first inequality imply

𝐵′
𝑘

𝑎𝐾
< ∆′ <

1

𝑛− 𝑘
𝑏′𝑘

(︂
2
𝑛 = 𝑘 + 1

𝑎𝐾
− 1

𝑎ℓ𝑘

)︂
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which implies (A.25). Thus we have a contradiction, and we conclude that the second

inequality in (A.15) cannot be true when the first is false, as claimed.

Case 3. ∆′ > 𝐵′
𝑘/𝑎ℓ𝑘 . Since 𝑎ℓ𝑘 ≤ 𝑎𝑗 for any 𝑗 ∈ 𝐼𝑘, it suffices in this case to show

that

0 ≤ (𝑛− 𝑘 + 1)
𝐵′

𝑘

𝑎𝐾

But this is true because we are given that 𝐵′
𝑘 ≥ 0. Since one of the 3 cases must

obtain, the proof is complete.

Proof of Proposition 42. Let 𝑖𝑗 = 𝑗 for 𝑗 = 1, . . . , 𝑛. It suffices to prove that the

following claims are true in some socially optimal solution ū.

𝑢̄𝑘 = 0 for 𝑘 = 1, . . . ,𝑚− 1 (A.26)

𝑢̄𝑘 = 𝐵/𝑎𝑀 for 𝑘 = 𝑚, . . . , 𝑛 (A.27)

Proof of (A.26). The argument is by induction. For 𝑘 = 1, we know that (4.18)

is satisfied, by definition of 𝑚. Thus by Proposition 38, an optimal solution of 𝑃1

is ũ = (0, . . . , 0, 𝐵/𝑎𝑁), and we can set 𝑢̄1 = min{𝑢̃𝑖 | 𝑖 = 1, . . . , 𝑛} = 0. We now

suppose that (A.26) is true for 𝑘 = 1, . . . , ℓ − 1 and show it is also true for 𝑘 = ℓ

in some optimal solution. We note first that 𝑢̄𝑖 = 0 for 𝑖 = 1, . . . , ℓ− 1 implies that

𝐵ℓ = 𝐵 and 𝐵′
ℓ = 𝐵ℓ − 𝑎𝐿𝑢̄ℓ−1 = 𝐵ℓ = 𝐵. Also ∆′ = ∆ − (𝑢̄ℓ−1 − 𝑢̄1) = ∆. Thus

(A.15) reduces to (4.26). But (4.26), and therefore (A.15), are satisfied by definition

of 𝑚. Since 𝐵′
ℓ ≥ 0, Lemma 47 implies that ũ′

𝐿 = (0, . . . , 0, 𝐵′
ℓ/𝑎𝑛) = (0, . . . , 0, 𝐵/𝑎𝑛)

solves 𝑃 ′
ℓ. This implies that 𝑢̃ = 𝑢̃′ − 𝑢̄ℓ−1e = (0, . . . , 0, 𝐵/𝑎𝑛) solves 𝑃ℓ, and we can

let 𝑢̄ℓ = 0.
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Proof of (A.27). The argument is again by induction. First suppose (A.26) is true

and consider 𝑘 = 𝑚 in (A.27). We have 𝐵′
𝑚 = 𝐵 and ∆′ = ∆ for the same reason

as above, so that (4.26) again reduces to (A.15). But (4.26), and therefore (A.15),

are violated, by definition of 𝑚. Due to this and 𝐵′
𝑚 ≥ 0, Lemma 47 implies that

𝑃 ′
𝑚 has a solution ũ′

𝑀 = (𝐵/𝑎𝑀 , . . . , 𝐵/𝑎𝑀), which implies that 𝑃𝑚 has a solution

ũ𝑀 = ũ′
𝑀 − 𝑢̄𝑚−1e = (𝐵/𝑎𝑀 , . . . , 𝐵/𝑎𝑀) since 𝑢̄𝑚−1 = 0. We can therefore set

𝑢̄𝑚 = 𝐵/𝑎𝑀 . We now suppose (A.26) is true, and (A.27) is true for 𝑘 = 𝑚, . . . , ℓ−1,

and we show (A.27) is also true for 𝑘 = ℓ in some optimal solution. By the induction

hypothesis,

𝐵ℓ = 𝐵 −
ℓ−1∑︁
𝑖=𝑚

𝑎𝑖𝑢̄𝑚 = 𝐵 − 𝐵

𝑀

ℓ−1∑︁
𝑖=𝑚

𝑎𝑖

and

𝐵′
ℓ = 𝐵ℓ = 𝑢̄ℓ−1

𝑛∑︁
𝑖=ℓ

𝑎𝑖 = 𝐵 − 𝐵

𝑎𝑀

(︃
ℓ−1∑︁
𝑖=𝑚

𝑎𝑖 +
𝑛∑︁
𝑖=ℓ

𝑎𝑖

)︃
= 𝐵 − 𝐵

𝑎𝑀
· 𝑎𝑀 = 0

Since 𝐵′
ℓ = 0, the only feasible solution of 𝑃 ′

ℓ is (𝑢̃ℓ, . . . , 𝑢̃𝑛) = (0, . . . , 0). We can

therefore set 𝑢̄′
ℓ = 0, which means 𝑢̄ℓ = 𝐵/𝑎𝑀 , as claimed. □
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