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Abstract

With increasing deployment of optimization and Artificial Intelligence (Al) to assist high-stake real
life decisions, fairness has become an essential factor of consideration for both the designers and
users of these tools. This dissertation studies new approaches for formulating, attaining and eliciting
fairness. Chapter one begins with a brief introduction of the background on fairness and a selection of
common fairness measures.

Chapter two studies balancing fairness and efficiency through optimization models. We propose
new social welfare functions (SWFs) as combined measures of two well-known criteria, Rawlsian
leximax fairness and utilitarianism. We then design a procedure to sequentially maximize these SWFs
with mixed integer/linear programming models to find socially optimal solutions. This approach
has practical potentials on a wide range of resource allocation applications, and is demonstrated on
realistic size applications in healthcare provision and shelter assignment for disaster preparation.

Chapter three considers an optimization task motivated by fair machine learning (ML). When
developing fair ML algorithms, it is useful to understand the computational costs of fairness in
comparison to the standard non-fair setting. For fair ML methods that utilize optimization models
for training, specialized optimization algorithms have potentials to offer better computational per-
formances than generic solvers. In this chapter, I explore this question for support vector machines
(SVMs), and design block coordinate descent type algorithms to train SVMs containing linear fairness
constraints. Numerical experiments highlight that the new specialized algorithms are more efficient
than an off-the-shelf solver for training fair SVMs.

Chapter four examines social welfare optimization as a general paradigm for formalizing welfare-
based fairness in Al systems. Contrary to commonly used statistical bias metrics in fair Al, optimizing
a social welfare objective supports broader perspective on fairness motivated by distributive justice
considerations. We propose in-processing and post-processing integration schemes between social
welfare optimization and Al, in particular, ML and rule-based Al. We implement and evaluate the
integration schemes on a simulated loan processing instance. The empirical results demonstrate the
advantages of the proposed integration strategies. We conclude this chapter by highlighting research
directions to pursue for a holistic view of welfare-based fairness.

The next two chapters explore the human-centric perspective to elicit people’s moral values
through preference learning. Chapter five studies a general preference learning framework based on
online learning (OL) from revealed preferences: a learner learns an agent’s private utility function

through interactions in a changing environment. Through designing a new convex loss function, we



vi

design a flexible OL framework that enables a unified treatment of usual loss functions from literature
and supports a variety of online convex optimization algorithms. This framework has advantages in
regret performance and solution time over other OL algorithms from the literature.

Lastly, chapter six explores a moral decision-making inspired task. This chapter considers
the modelling and elicitation of people’s dynamic ethical judgments in the sequential allocation
of resources. We utilize a Markov Decision Process model to represent a sequential allocation
task, where the state rewards capture people’s moral preferences, thus people’s ethical judgments
are reflected via policy rewards. We design a preference inference model which relies on active
preference-based reward learning to infer the unknown reward function. The learning framework is
applied in human-subject experiments on Amazon Mechanical Turk to understand people’s moral

reasoning in a hypothetical scenario of allocating scarce medical resources.
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Chapter 1

Introduction

1 Fairness is important to people's daily lives and society. As a key component of ethics, fairness
seeks equitable distribution of resources and opportunities to promote equality, justice and social
well-beings. In real-life decisions and policies, it is morally desirable and socially sustainable to
pursue fairness. With optimization and Arti cial intelligence (Al) tools increasingly applied to assist
high-stake decisions, such as, optimizing humanitarian operations with resource allocation models,
using machine learning models for criminal risk assessment, fairness is no longer a nice-to-have
advantage, but rather a necessary property of practical and trustworthy decision support models and
algorithms. This dissertation speaks to the rising demand of better understanding of fairness, and
develops new approaches and insights for fairness in optimization and Al.

In contrast to the widely recognized signi cance of fairness, there is no uniformly superior
interpretation and operationalization of fairness. Besides the large variety of fairness related theories
proposed across academic elds, people hold diverse fairness perceptions as in uenced by their
personal backgrounds and speci ¢ decision contexts. This dissertation explores two perspectives for
the fundamental questionshat is fairnesandhow to be fair

One perspective is the formulation of fairness optimization models in alignment with ethics
principles. Optimization has long been used to support decision making. Most practical optimization
problems involves the allocation decisions of some resources. In recent years, optimization also
has been extensively studied in arti cial intelligence, especially in machine learning (ML) where
optimization models are often core components in a ML framework. Conventionally, optimization
models have a ef ciency-driven objective function. For resource allocation decisions, the objective
describes seeking the most effective use of resources. For example, a government agency aims to
maximize the total population bene ts from healthcare provision, a company tries to minimize costs
and maximize pro ts during facility expansion. For optimization-based ML methods, the standard
objective focuses on minimizing the total prediction losses to seek high accuracy. By pursuing
ef ciency goals, these conventional optimization models may lead to unfair results, so a crucial
task is to incorporate fairness and equity into existing optimization models. While it is normally

1This chapter uses excerpts from a joint work with John Hooker



2 Introduction

straightforward to formulate an ef ciency objective, fairness can be understood in multiple ways, with
no generally accepted method for representing any of them in a mathematical idiom. Moreover, the
growth of integrated methods, such as, optimization based on ML predictions, in modern decision-
making adds to the challenge of formulating fairness models. As discussed above, this perspective
opens up interesting modeling and computational questions in the broad eld of Al. Chapter 2, 3, 4
studies such questions.

The other perspective is to elicit fairness beliefs, and more generally ethical values, from human
stakeholders. Conventional approaches to de ning and justifying fairness are driven by principles,
namely, the central planner determines what are the suitable ethical values and what should be the
resulting fairness notion. Due to the large variety of fairness concepts and the potentially different
positions held by the planner and stakeholders, the chosen fairness notion could be incompatible
with stakeholders' moral beliefs and ethics principles. The possible incompatibility has led to the
recent research thread of human-centric fairness, a bottom-up strategy aiming to learn what people
believe to be fair under different decision contexts then bring their judgments into the formulation of
fairness. While there are situations where people's perspectives should not be incorporated due to
irrationality or bias, in general, decision makers would seek to align fairness interventions with what
the people desire, so that they would be more welcoming to these interventions. A core component of
this perspective is the modeling, elicitation and learning of preferences: chapter 5 studies a general
preference learning question in an online setup, and chapter 6 explores a concrete moral preference
learning task.

1.1 Background on Fairness

Fairness has a long history of being studied across elds including philosophy, sociology, psychology
and economics. These early literature provide ethical and conceptual foundations for the more recent
discussion of fairness in operations research and Al, where the goal is to operationalize fairness via
optimization and machine learning for concrete applications. A well known framework to distinguish
fairness concepts is to perceive fairness via distributive justice versus procedural justice. The high-
level intuition is that distributive justice concerns fairness in the outcomes from a decision, whereas
procedural justice emphasizes fairness in the process of decision making. This dissertation focuses on
outcome fairness via the distributive justice perspective.

Mathematical formalization of outcome fairness can be further distinguished into utility-based
and parity-based de nitions. Utility-based fairness is broadly used in resource allocation to attain a
fair distribution of utilities, which can be pro ts, negative costs, or some other bene ts appropriate to
the application. Utilities were initially proposed as part of the theory of utilitarianism, which seeks to
maximize the overall well-beings of the population. In particular, the standard ef ciency formulation
follows utilitarianism and uses the total or average utility as a measure of the population's overall
welfare. Parity-based fairness is typically considered in machine learning to seek unbiased treatments
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towards the involved groups or individuals. There is a large number of fairness de nitions in both
types, and samples of popular choices in literature and practice are summarized below.

1.1.1 Utility-based Fairness

based fairness measuk®(u) is a function aggregating the utility values to evaluateith respect to
the selected fairness notion. We categorize utility-based fairness criteria into three types.

Inequality Measures

The rst type measures fairness via the degree of equality in the distribution of utilities, for which
several statistical metrics have been proposed (Cowell 2000, Jenkins and Van Kerm 2011). There is a
wide variety of philosophical opinion on the ethical signi cance of equality, ranging from the view
that we have an irreducible obligation to strive for equality, to the view that inequality is unfair only
when it reduces total utility (Frankfurt 2015, Par t 1997, Scanlon 2003). In any event, it is generally
acknowledged that equality is not the same concept (or cluster of concepts) as fairness, even when
the two are closely related. An equality metric can be appropriate in a context where a speci cally
egalitarian distribution is the primary goal, without regard for ef ciency or other forms of equity.
Inequality measures have been used for inequity averse optimization in a broad range of applications.
More recently, inequality measures are also considered in the growing area of algorithmic fairness.
We next introduce several commonly studied de nitions.

Measures of relative dispersiorf. Therelative rangeof utilities is an inequality metric, that,
when negated, yields the fairness measure,

W(u) = (1=U) Umax Umin

whereumax = maxf uig, Umin = minif uig, andu=( 1=n) &; u;.

Another dispersion metric is threlative mean deviatigrwhich measures inequality more compre-
hensively by considering all utilities rather than only the minimum and maximum. The corresponding
fairness measure is,

W= (Q=0aju U

The coef cient of variationis the normalized standard deviation, leading to the fairness measure
below. It may be appropriate when large deviations from the mean are disproportionately signi cant,
but it has the possible drawback of computational dif culty due to the quadratic component.

W(u) = au 0?2

1h1 i%'
. :

|l

2All of the following dispersion measures are normalized by the mean utility so as to be invariant under rescaling of
utilities.
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Gini coef cient and Hoover index. The Gini coef cientis by far the best known measure
of inequality, as it is routinely used to measure income and wealth inequality (Gini 1912). It is
proportional to the area between the Lorenz curve and a diagonal line representing perfect equality.
Lorenz curve plots the proportion of the total wealth or bene ts accumulated to the bxf#taohthe
population, thus indicating the degree of inequality via its deviation from the perfect equality line. By
de nition, Gini coef cient vanishes under perfect equality. We can use the negative Gini coef cient
as a fairness measure,

1 5. y
W(u) = 2uTnz%Ju. ujj:

TheHoover indexs also related to the Lorenz curve, as it is proportional to the maximum vertical
distance between the Lorenz curve and a diagonal line representing perfect equality (Hoover 1936). It
can be interpreted as the fraction of total utility that would have to be redistributed to achieve perfect
equality. The corresponding fairness measure is

1 5. _
W(u) = ﬁajui u:
|

Fairness for the Disadvantaged

Rather than focus solely on inequality, fairness measures can prioritize the disadvantaged. Far and
away the most famous of such measures is the difference principle of John Rawls (1999), a maximin
criterion that is based on careful philosophical argument and debated in a vast literature (surveyed in
Freeman 2003, Richardson and Weithman 1999). The difference principle can be plausibly extended
to a lexicographic maximum principle. There is also the McLoone index, which is a statistical measure
that emphasizes the lot of the less advantaged.

The Rawlsian maximin criterion has been a popular fairness measure for decades. Early works
on fair resource allocation, such as bandwidth allocation, often choose the maximin criterion to seek
the best possible performance for the worst-off service among services competing for bandwidth.
Recent research has applied the criterion to more diverse problem contexts, including peer review
paper assignment, ridesharing, etc.

Rawlsian criteria. The Rawlsiardifference principlestates that inequality should exist only to
the extent that it is necessary to improve the lot of the worst-off. It is defended with a social contract
argument that, in its simplest form, maintains that the structure of society must be negotiated in an
“original position” in which people do not yet know their station in society. Rawls argues that one
can rationally assent to the possibility of ending up on the bottom only if that person would have
been even worse off in any other social structure, whence an imperative to maximize the lot of the
worst-off. The principle is intended to apply only to the design of social institutions, and only to the
distribution of “primary goods,” which are goods that any rational person would want. Yet it can be
adopted as a general criterion for distributing utility, namelgaximincriterion that maximizes the
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smallest utility as the fairness measure,
W(u) = minf u;g:
|

The maximin criterion can be plausibly extendedexicographic maximizatiofleximax). Lex-
imax is achieved by rst maximizing the smallest utility subject to resource constraints, then the
second smallest, and so forth.

McLoone index. The McLoone indexcompares the total utility of individuals at or below the
median utility to the utility they would enjoy if all were brought up to the median utility. The index is
1 if nobody'’s utility is strictly below the median, and it approaches 0 if the utility distribution has a
very long lower tail (on the assumption that all utilities are positive). The McLoone index bene ts the
disadvantaged by rewarding equality in the lower half of the distribution, but it is unconcerned by the
existence of very rich individuals in the upper half. The de nition is,
[o]

. — Ui
J|(U)JUi2|a(u)'

W(u) =

whered( is the median of utilities it andl (u) is the set of indices of utilities at or below the median,
sothatl(u)= fiju (g

Combined Fairness and Ef ciency

The previous examples are all pure fairness measures, which are appropriate when there is no need
to balance fairness against the overall well-being of the population. However, practical situations
frequently call for both fairness and ef ciency to be explicitly considered. We next review three
common schemes for combining the two criteria and give examples of the combined measures
following each scheme. Chapter 2 provides further discussion of these measures.

Convex combination. The most obvious approach is to maximize a convex combination of
fairness and ef ciency. Suppo$e(u) is a pure fairness measure, then a combined measure is

W(u) = (1 I)éui+l F (u):

The combination strategy is applicable to both inequality indices and fairness for the disadvantaged.
For instance, Eisenhandler and Tzur (2019) and Mostajabdaveh et al. (2019) propose combined
measures with variations of the Gini coef cientiagu). Yager (1997) and Ogryczak asdiwihski

(2003) consider the combinations with the Rawlsian maximin criterion us{ugy = min;f u;g.

Alpha Fairness. Alpha fairness provides an alternative and perhaps more satisfactory means of
combing fairness and ef ciency than convex combinations. Alpha fairness regulates the combination
with a continuous parametar, where larger values @ signify a greater emphasis on fairness. It
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(Mo and Walrand 2000, Verloop et al. 2010) is represented by a family of functions having the form

8
3 1t qu? fora 0a61l
W, (u) = Loas
2 3 log(u) fora=1
i

Alpha fairness characterizes a continuum that stretches from a utilitarian critarien0f to a
maximin criterion ag ! ¥. Lan et al. (2010) provide an axiomatic treatmenaefairnessin the

context of network resource allocation, and Bertsimas et al. (2012) study worst-case fairness/ef ciency
trade-offs implied by this criterion. The paramegecan be interpreted as quantifying the trade-off as
follows: utility u; must be reduced bfu;=u;)? units to compensate for a unit increaseiirf< u;)

while maintaining constant social welfare. This gives priority to less-advantaged parties, as we desire,
with a indicating how much priority. Yet it is not obvious what kind of trade-off, and therefore what
value ofa, is appropriate for a given application. There is no apparent interpretaterinafependent

of its role in thea -fairness function.

Threshold Criteria. Williams and Cookson (2000) suggest two ways to combine utilitarian and
maximin objectives using threshold criteria for two persons. One, based on an ef ciency threshold,
begins with a maximin criterion but switches to a utilitarian criterion when the overall utility cost of
fairness becomes too great. More explicitly, Williams and Cookson uses a maximin criterion when
the two utilities are suf ciently close to each other wjth uj D, otherwise it uses a utilitarian
criterion. Hooker and Williams (2013) provide arpersonextension for this criterion. Parities
with u;  umin  Dare treated in solidarity with the worst-off through the maximin criterion, and the
remaining greater utilities are treated as themselves. The combined fairness measure is the following,

W =(n 1D+ g max u; D;Uning:
i=1
It is evident thaD = O corresponds to a purely utilitarian objective dnd ¥ to a purely maximin
objective.

Williams and Cookson also propose the reverse perspective based on a fairness threshold: a
utilitarian criterion is used wheju; upj D, then a maximin criterion is used since the inequity has
become too severe. Following the same argument from Hooker and Williams (2012), this de nition
can be extended to threpersoncase and leads to the combined measure below. The main difference
with the previous de nition is that, parities witlh uyi, Dare now counted as equalug;, and
the other utilities are counted as themselves.

n
W(u)= nD+ § minfu;  D;Uming:
i=1

Here,D= 0 corresponds to a purely maximin objective d&hd ¥ to a purely utilitarian objective.
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In Chapter 2, we illustrate that threshold-based combinations that rely on the maximin notion for
fairness are sensitive to the utility level of only the very worst-off party. The equity situation of other
disadvantaged parties become irrelevant, so long as their utilities are Witfithe lowest. As a
result, fairness among the disadvantaged plays almost no role in the solution. This situation can be
addressed to a great degree by replacing maximin fairness with leximax fairness. We defer details on
these measures combining leximax fairness to Chapter 2.

1.1.2 Parity-based Fairness

Inthe eld of machine learning, there have been rising demands for fairness considerations to eliminate
prejudice favoritism toward an individual or a group based on their inherent or acquired characteristics.
One well-known example that motivates extensive interest in fair ML is the series of research efforts
on whether the COMPAS software, supported by a recidivism risk prediction algorithm, is biased
against African-Americans (Angwin et al. 2016, Dieterich et al. 2016). The focus of fair ML is
primarily on mitigating this kind of bias and ensuring that certain minority groups, often de ned by
law, receive fair treatment. Among ML frameworks, fairness in supervised learning has been most
widely studied. The community has seized upon traditional statistical measures of classi cation error
to detect bias, so that it can be avoided when possible.

In a typical scenario, an ML model is trained to make yes—no decisions as to who receives a
certain bene t, such as a mortgage loan, a job interview, parole, and so forth, based on various features
they possess. A fairness test compares decisions for a minority or protected group with those for
the remainder of the population. Four outcomes are possible for each individual: a true positive (the
ML model correctly selects the individual for a bene t), a false positive (it incorrectly selects), a true
negative (it correctly rejects), and a false negative (it incorrectly rejects). We will refer to the number
of individuals in these four groups, respectively, as TP, FP, TN, and FN. Various metrics involving
these four statistics are compared between the minority group and the rest of the population, each
yielding a measure of parity between the groups.

We setd, = 1 when individuali should be selected, anti= 0 otherwise, and} 