
A Pathwise Optimization Approach

for Reinforcement Learning in

Merchant Energy Operations

By

Bo Yang

A thesis submitted to

Tepper School of Business at Carnegie Mellon University

in partial fulfillment of the thesis requirement

for the degree of Doctor of Philosophy

in

Operations Management

Pittsburgh PA, US

April 2022

©Bo Yang 2022



A Pathwise Optimization Approach for

Reinforcement Learning in Merchant Energy

Operations

Bo Yang

Abstract

This thesis studies the management of energy conversion assets, such as oil and biore-

fineries, ethanol production plants, transportation pipelines, and natural gas processing

and storage facilities. The merchant operations approach formulates the management

of these assets as real option models, which provide a convenient way to maximize the

market value of the conversion assets. However, the real option approach gives rise to

an intractable Markov decision process (MDP) formulation due to intertemporal linkages

between decisions and the high dimensionality of the market state variables when using

realistic price models. We consider reinforcement learning (RL) approaches that rely on

basis-function-based value function approximations to compute both a feasible policy and

a lower bound on the optimal policy value of this MDP, as well as a dual (upper) bound

on the latter quantity. In particular, we focus on pathwise optimization (PO), because,

in theory, it generates the tightest dual bound for a given set of basis functions.

We first extend PO from optimal stopping to merchant energy production. It is

known that applying least squares Monte Carlo (LSM), a state-of-the-art RL approach

for financial and real option valuation, in conjunction with information relaxation and

duality techniques to realistic merchant ethanol production instances results in sizable

(about 13%) average optimality gaps. Our research aims at reducing these gaps by

extending the PO applicability from optimal stopping to merchant energy production.

This extension rests on formulating a novel PO linear program (PLP), which is difficult to

solve optimally because it is both ill conditioned and large scale. We develop an effective

preconditioning approach based on principal component analysis (PCA). We mitigate

the dimensionality concern by proposing a provably convergent block coordinate descent

(BCD) technique. On the known set of merchant ethanol production instances, PO

leads to considerably smaller (roughly 7%) average optimality gaps compared to LSM

but entails a noticeably larger average computational effort (eleven hours rather than

one hour). The optimality gap reduction is almost entirely attributable to the stronger

PO-based dual bounds relative to the LSM-based ones. We thus bring to light the near

optimality of the LSM-based policy.

Next, we put forth a constraint generation method to solve PLP. The proposed method

iterates between a master and a subproblem. The master problem combines subsets of

2



the constraints and variables of the model to obtain a relaxed linear program that an

off-the-shelf solver can handle. The subproblem strengthens this relaxation by efficiently

identifying constraint violations in the original linear program. This method provably

converges. It can be stopped once the current solution is sufficiently close to the optimal

one, which we can check using a bound that we compute when solving the subproblem, or

it leads to good-enough bounds on our MDP optimal policy value. We have verified both

the efficiency and effectiveness of this version of our method on the benchmark merchant

ethanol production instances employed in the previous chapter.

Finally, we extend PO to merchant energy operations and related real option mod-

els. The extension includes both modeling and solution aspects. The original modeling

approach leads to unbounded PLPs in those applications if no feasible decision can ter-

minate the MDP at each controllable state, e.g., “stop” in optimal stopping. We propose

a novel pseudo action scheme to deal with this issue. The pseudo action scheme provides

effective bounds to the LP by adding artificial actions from nonanticipative policies, i.e.,

policies that do not utilize future information. We also develop a new solution approach,

the coordination decomposition and regression approach, to reduce the computational

complexities of solving PLPs in those applications. Our solution approach (i) solves PLP

dual via the coordinated decomposition (alternating direction method of multipliers) and

(ii) recovers an associated primal solution by approximately enforcing complementary

slackness via two norm regression. Compared to the extant approaches, our approach

features low per iteration computational complexity because it exploits the problem’s

decomposition structure. We conduct numerical studies in realistic energy storage and

production to demonstrate the use of our approaches. Our pseudo action scheme extends

PO to energy storage and generates comparable results to the benchmark method. In

merchant energy production, our solution technique solves both existing instances with

substantially less computational efforts (85% reduction in memory and 50% reduction

in CPU time) than the BCD and constraint generation approaches and larger instances

that were out of reach, achieving near optimal performance and dominating a standard

competitor in terms of solution quality.

3



Acknowledgements

I acknowledge the financial support from the Scott Institute for Energy Innovation at

Carnegie Mellon University and from NSF grant CMMI 1761742.

First and foremost, I thank my advisors, Prof. Nicola Secomandi and Prof. Selvaprabu

Nadarajah. It is hard to put into words how valuable their guidance, patience and support

has been throughout my PhD journey. I am very lucky to be advised by them, and I am

truly grateful.

I thank the other members of my dissertation committee, Prof. Alan Scheller Wolf,

Prof. Duane Seppi, and Prof. Javier Pena, for their time and effort in reading my

dissertation and providing valuable feedback on my work.

I thank Lawrence Rapp and Laila Lee for taking care of all the administrative needs

of the PhD program at Tepper. Life would be a lot harder if it was not for their profes-

sionalism and generosity.

I thank the classmates at CMU: Arash Haddadan, Franco Berbeglia, Mehmet and

Neda Mirzaeian. Whether discussing research or just hanging out, it has always been a

pleasure. Special thanks to my first year roomates: Jun Shi, Zhou Yu, and Qi Zhang.

You are the best roommates I have ever had. Withou you, my first year in Pittsburgh

would be much harder and more lonely.

I thank my best friend Wenlei Zhang.

I thank my partner Sang Wu.

I thank my parents in China. Their love and support throughout my journey has

been a great source of comfort and inspiration. I would not be here without them.

4



Contents

1 Introduction 10

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 MDP Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Approximation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 16

2 Pathwise Optimization for Reinforcement Learning in Merchant Energy

Production 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Approximate Solution Approach . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Greedy Policy and Lower Bound . . . . . . . . . . . . . . . . . . . 26

2.3.2 Dual Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Solving the Pathwise Linear Program . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Pre-conditioning Algorithm . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 BCD Optimization Algorithm . . . . . . . . . . . . . . . . . . . . 35

2.6 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.3 Bounds and Run Times . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.4 Operating Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Constraint Generation for Pathwise Reinforcement Learning 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Constraint Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



3.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Modeling and Algorithmic Generalizations 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Information Relaxation and Duality Techniques . . . . . . . . . . 57

4.3.3 PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Unbiased Upper Bound and Greedy Lower Bound . . . . . . . . . 60

4.4 Pseudo Action Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Alternating Direction Method of Multipliers and Primal Solution Recovery 63

4.5.1 ADMM Reformulation . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 Primal Solution Recovery . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.1 Convergence of ADMM . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6.2 Analysis on the Primal Solution Recovery . . . . . . . . . . . . . 72

4.7 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7.1 Example: Managing Natural Gas Storage Asset . . . . . . . . . . 75

4.7.2 Example: Merchant Energy Production . . . . . . . . . . . . . . . 78

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Conclusion 84

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendices 97

A Supplement for Chapter 2 97

A.1 Block-diagonal Structure of G and PCA . . . . . . . . . . . . . . . . . . 97

A.2 Interpretation of P2LP using Modified Basis Functions . . . . . . . . . . 98

A.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Numerical Results for Linear Basis Functions . . . . . . . . . . . . . . . . 104

A.5 Numerical Results Under Different Block Selection Rules . . . . . . . . . 105

B Supplement for Chapter 4 107

B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 Illustration of the Unbounded issue in PLP . . . . . . . . . . . . . . . . . 111

6



List of Figures

2.1 Illustration of function f(xi, ai) . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Comparison of the estimated LSM and PO gaps based on the respective

PO- and LSM-based dual bounds. . . . . . . . . . . . . . . . . . . . . . . 40

2.3 (a) Box plots of the stage when the greedy policies abandon the plant

(the 75-th percentiles and the maxima coincide) and (b)-(c) average VFAs

corresponding to the (b) operational and (c) mothballed modes for the Jan

instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Box plots of the number of stages in which the greedy policies take the

available decisions excluding abandonment for the Jan instance (the min-

ima and the 25-th percentile coincide except for suspension with respect

to the LSM-based greedy policy). . . . . . . . . . . . . . . . . . . . . . . 44

2.5 (a) Greedy actions and operational mode transitions (the abandon deci-

sions in stages twenty two and twenty three are ignored for simplicity) and

(b) total forward conversion spread curve in a subset of stages of the Jan

instance for the considered sample. . . . . . . . . . . . . . . . . . . . . . 45

4.1 Suboptimality of OBJ(β̄) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Estimated Lower Bounds as the Percentage of the Estimated Dual Bounds. 81

4.3 Comparison of the estimated LSM- and PO-ADMM-based optimality gaps. 82

A.1 Structure of the G matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Decision Tree for the Illustrating Example . . . . . . . . . . . . . . . . . 111

7



List of Tables

2.1 Values of the common instance parameters. . . . . . . . . . . . . . . . . . 38

2.2 LSM- and PO-based bound estimates, with standard errors reported in

parenthesis, and their percentage ratios (the latter estimates divided by

the former ones). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Average CPU times (minutes). . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Influence of samples on LSM and PO bound estimates. . . . . . . . . . . 42

2.5 CPU times (minutes) corresponding to varying the number of samples used

to estimate the VFAs for the Jan instance. . . . . . . . . . . . . . . . . . 42

3.1 Comparison of dual bounds between CG and BCD approaches on bench-

mark instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Comparison of lower bounds between CG and BCD approaches on bench-

mark instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Comparison of the average optimality gaps, CPU times, and memories

between CG and BCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Computational Complexities for the ADMM Updates . . . . . . . . . . . 71

4.2 Values of the common parameters. . . . . . . . . . . . . . . . . . . . . . 76

4.3 The estimated lower and upper bounds of natural gas storage (standard

errors in parenthesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Values of the common parameters. . . . . . . . . . . . . . . . . . . . . . 79

4.5 Comparison of dual bounds between ADMM and BCD approaches on

benchmark instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Comparison of lower bounds between ADMM and BCD approaches on

benchmark instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Optimality Gaps of ADMM and BCD . . . . . . . . . . . . . . . . . . . . 80

4.8 Comparison of the averaged CPU Times and Memory . . . . . . . . . . . 81

4.9 The estimated lower and upper bounds of 36-stage instances (standard

errors in parenthesis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1 LSM- and PO-based lower and dual bound estimates with linear basis . . 104

8



A.2 LSM- and PO-based lower and dual bound estimates with different block

selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 CPU times for the bound estimates . . . . . . . . . . . . . . . . . . . . . 105

9



Chapter 1

Introduction

We study the management of energy conversion assets, in particular, the energy pro-

duction and storage facility, and the methodology arising in this context. In §1.1, we
introduce the background of merchant operations of energy conversion assets. In §1.2
and §1.3, we describe a Markov decision process (MDP) formulation of the problem and

its dual version, respectively. We then briefly review two streams of the extant reinforce-

ment learning (RL) approaches in the literature. We summarize our contributions in

§1.5.

1.1 Background

Renewable energy such as biofuels, hydrogen, and solar power plays essential roles in eco-

nomic and environmental activities. For instance, ethanol has been extensively blended in

gasoline (e.g., nearly all US gasoline contains 10% - 15% of ethanol) due to the urgency of

acting on climate change, which contributes 35 Billion dollars to the US economy in 2021.

According to Renewable Fuels Association (2021), ethanol can reduce 70% greenhouse

gas (GHG) emission by 2030 compared to gasoline and achieve net-zero GHG emissions

by 2050. The worldwide biofuel production and storage capacities are also expected to be

growing in recent years as international energy companies like Exxon Mobile, Calumet,

and Kinder Morgan are expanding their renewable energy business (Brelsford 2021a,b,

Oil & Gas Journal 2021).

Due to the importance of renewable energy, managing energy conversion assets that

generate, process, transport, and store renewable energy is thus a crucial task. In practice,

this task requires an energy company to obtain (i) a physical operating policy to generate

maximal cash flows with the assets and (ii) a financial hedging policy to reduce the

uncertainty in those cash flows. Roughly speaking, the physical operating policy aims

at improving the expected total revenues brought by the asset. In contrast, the hedging

policy tries to lock in the expected value by reducing its variability. In literature, the

10



energy company is referred to asmerchant and the two aspects are referred to asmerchant

energy operations (Secomandi and Seppi 2014).

This thesis studies (i), i.e., managing the physical operation of energy conversion

assets, because it directly impacts the revenue and lays the foundation for hedging. (i)

involves formulating the management of energy and commodity conversion assets as real

options and solving the corresponding models to obtain an operating policy. The real

option technique is commonly used in literature (Dixit and Pindyck 1994, Trigeorgis

et al. 1996, Smith and McCardle 1998, 1999, Eydeland and Wolyniec 2003, Geman 2005,

Secomandi and Seppi 2016) because it bridges the expected total cash flows and the

market value of the asset by modeling commodity prices under the risk neutral measure.

Based on this connection, maximizing the expected total cash flows in real option models

is equivalent to maximizing the market value of the assets.

The real option formulation of the problem typically leads to an intractable MDP.

The source of the intractability comes from the intertemporal linkages between decisions

and the high dimensionality of the commodity prices when using realistic financial mod-

els. Merchants thus use various approximation approaches to obtain a lower and a dual

(upper) bound on the optimal policy value as well as a feasible operating policy. The

value of the feasible policy provides a lower bound on the optimal policy value. The dual

bound serves as a metric for the quality of the lower bound and the feasible policy.

The value function approximation (VFA, Powell 2007, Bertsekas 2019) based RL ap-

proaches are commonly used in merchant energy operation to obtain a lower bound and

a feasible policy. The information relaxation technique is the state of the art approach

to generate a dual bound (Brown et al. 2010, Brown and Smith 2014, 2011, Brown and

Haugh 2017, Brown and Smith 2021, Nadarajah and Secomandi 2018a, Secomandi 2017,

Secomandi and Seppi 2016, Lai et al. 2010). However, practice-based RL approaches,

such as LSM, in conjunction with the information relaxation techniques, may lead to

large gaps between these two bounds in energy operation settings like the energy pro-

duction (Nadarajah and Secomandi 2020). It is unclear which bound is weak and most

contributes to the large gap. Thus, narrowing the gap and finding a dual bound that can

provide a more accurate assessment of the policy is crucial in both practice and research.

1.2 MDP

Merchant operations of energy conversion assets can be modeled as discrete time MDPs

with finite horizons. Suppose the merchant manages an energy conversion asset over I

horizons. The stage number indexed by i is an element of the index set I := {0, ..., I −
1}. In stage i, the state of the MDP consists of both the endogenous and exogenous

components. The endogenous state component describes the status of the asset, such as

the inventory level and the operational mode of the plant. The exogenous state tracks

11



the evolution of commodities’ futures prices in the wholesale market. We denote the

endogenous and exogenous state components as xi and Fi, respectively. Their feasible

sets are respective Xi and Fi. Clearly, we have (xi, Fi) ∈ Xi ×Fi for each i.

In each stage, the merchant first observes Fi from the commodity markets and then

chooses an action ai based on xi. We denote as Ai(xi) the feasible action set for xi ∈
Xi, i.e., ai ∈ Ai(xi). Each action ai has an immediate payoff given by the function

r(xi, Fi, ai) : Xi ×Fi ×Ai(xi) → R. The decision rule Di : Xi ×Fi → A(xi) is a mapping

from the state space to the action set for each stage i. A policy π is a collection of these

decision rules, i.e., π := {D0, D1, ..., DI−1}. We let Π be the set of all feasible policies.

We assume the merchant is a small player compared to the entire commodity market;

thus, the action ai in each stage can only influence the transition of the endogenous state

components. This assumption, also known as the price taker assumption, is common in

merchant energy operation and real option literature. So we denote as f(xi, ai) the en-

dogenous state transition function that characterizes the transition of xi under the action

ai. The evolution of Fi is governed by a predetermined stochastic process independent of

the decision ai.

We use a constant risk-free discount factor δ ∈ (0, 1) to calculate the current value of

cash flows in the future. Suppose the initial state is (x0, F0), the optimal policy π∗ that

maximizes the expected total discounted cash flows can be obtained by solving:

max
π∈Π

E
[ I−1∑

i=0

δir(xπ
i , Fi, a

π
i )

∣∣∣∣x0, F0

]
(1.1)

where E is the expectation taken w.r.t. Fi. The expectation and stochastic process that

governs the transition of Fi are typically under the risk neutral measure (Shreve 2004) so

(1.1) also maximizes the market value of the asset. Define V (xi, Fi) as the value function

for each state (xi, Fi) ∈ Xi×Fi. The stochastic dynamic programming (SDP) formulation

of (1.1) is

Vi(xi, Fi) = max
ai∈A(xi)

{
r(xi, Fi, ai) + δE

[
Vi+1(f(xi, ai), Fi+1)

∣∣∣∣Fi

]}
, (1.2)

with the terminal condition VI(xI , FI) = 0, ∀(xI , FI) ∈ XI × FI . In general, (1.2)

is computationally intractable due to the well known “curse of dimentionality” (Powell

2007). The source of the intractability is primarily the exogenous state space in merchant

energy operations such as energy production, and storage because the exogenous state

space tracks the price information that includes both the spot and futures prices of all

commodities.

12



1.3 MDP Dual

There is also a dual version of (1.1) in which decisions are made based on future infor-

mation but the benefit of this foresight is eliminated by a so-called dual penalty (Brown

et al. 2010). The dual MDP generates a dual (upper) bound on the optimal policy value

of (1.1).

Let F̄ be a sample path that includes exogenous states from stages 0 through I − 1

starting with F0. The set F̄ is the collection of all such paths. We denote by F̄i the

stage i exogenous state corresponding to sample path F̄ . The decision rule for the dual

model is denoted as D̄i : Xi × F̄ → Ai(xi) which prescribes a feasible action for stage

i, endogenous state xi, and sample path F̄ . The dual policy π̄ is the collection of such

decision rules {D̄i, i ∈ I}. The set of such policies is Π̄.

Ideal dual penalties depend on the value function associated with (1.2). Consider

stage i ̸= I−1 and suppose we take feasible action ai for endogenous state xi and sample

path F̄ . The ideal penalty is the additional value of knowing the stage i+ 1 information

F̄i+1 at stage i relative to only having knowledge of the information F̄i at this stage,

which corresponds to the discounted difference

δ

(
Vi+1

(
f(xi, ai), F̄i+1

)
− E

[
Vi+1 (f(xi, ai), Fi+1)

∣∣∣∣F̄i

])
(1.3)

We use (1.3) to reduce the cash flow that ensues in the stage i ̸= I − 1 from applying the

decision rule D̄π̄
i to the pair (xi, F̄ ). The resulting dual MDP is

E

max
π̄∈Π̄

{ ∑
i∈I\{I−1}

δi
[
r(xπ̄

i , F̄i(F̄ ), Āπ̄
i )− δ

(
Vi+1(f(x

π̄
i , Ā

π̄
i ), F̄i+1)

−E[Vi+1(f(x
π̄
i , Ā

π̄
i ), Fi+1)|F̄i]

)]
+ δI−1r(xπ̄

I−1, sI−1(F̄ ), Āπ̄
I−1)

}∣∣∣∣x0, F0

]
, (1.4)

where we use the shorthand notation D̄π̄
i instead of D̄π̄

i (x
π̄
i , F̄i). This model differs from

(1.1) in two key ways: (i) The maximization is inside the expectation because dual poli-

cies depend on sample paths, and (ii) its objective function is the sum of the discounted

ideally penalized rewards and the last stage reward. Let V0(x0, F0) be the value func-

tion for stage 0 and the given state (x0, F0), which is obtained in a manner analogous to

(1.2) for this stage and state. At optimality, (1.4) equals V0(x0, F0) for each sample path

(Brown et al. 2010). It follows that the (1.1) and its dual version (1.4) are equivalent at

13



the optimality. Similar to (1.1), the SDP formulation of (1.4) for each F̄ are

Ui(xi, F ) = max
ai∈Ai(xi)

{
ri(xi, si, ai)− δ

(
Vi+1 (f(xi, ai), Fi+1)

−E [Vi+1 (f(xi, ai), Fi+1) |Fi]

)
+ δUi+1 (f(xi, ai), F )

}
, (1.5)

for stage 0 and the given x0 and each stage i ∈ I \ {0} and xi ∈ X , where Ui(·, F ) is the

stage i dual value function, with UI(·, F ) := 0.

Solving (1.4) is no easier than solving (1.1) as the ideal dual penalty relies on the

value function V (xi, Fi) for each state (xi, Fi). We thus need approximation methods to

solve (1.1) and (1.4).

1.4 Approximation Strategies

We can broadly classify the literature about the approximation strategies of solving (1.1)

and (1.4) into two streams: (i) primal approximation and (ii) dual approximation. We

will briefly review each of them in this section.

Primal Approximation: Most of the approximation strategies belong to this stream.

The basic idea is to use VFAs constructed with a set of pre-determined basis functions

to approximate the true value function in (1.1). Since the number of basis functions is

substantially less than the state space dimension, the resulting model is in a lower and

more tractable dimensional space than the original one.

The VFA can be either linear or nonlinear in basis functions. Although a nonlinear

model like the deep neural network can potentially capture the true value function better

in a more complex state space than the linear model, it is not easy to provide theoretical

guarantees for its performance. Thus, the most common choice, in particular for the

valuation of financial and real options, is still the linear VFA. Specifically, we define the

VFA, denoted as V̂ (xi, Fi), for stage i ∈ I \ {0, I − 1} and state (xi, Fi) ∈ Xi ×Fi as the

linear combination

V̂ (xi, Fi) :=
∑
b∈Bi

βi,xi,bϕi,b(Fi), (1.6)

where Bi := {1, ..., Bi} is the index set of Bi basis functions ϕi,b(Fi)’s of Fi and βi,xi,b is

the weight associated with the b-th such function when the endogenous state is xi. The

associated dual penalty is constructed by replacing V (xi, Fi) with (1.6).

There is a vast literature on obtaining VFAs defined as (1.6). The state of the art

approaches in energy operations and other financial option values include least squares

Monte Carlo (LSM, Eydeland and Wolyniec 2003, Glasserman and Yu 2004, Boogert and

De Jong 2008, 2011, Gyurkó et al. 2015, Longstaff and Schwartz 2001, Carriere 1996,

Tsitsiklis and Van Roy 2001) and approximate linear programming (ALP, De Farias and

14



Van Roy 2003, 2004, Desai et al. 2012a, Wang et al. 2015, Nadarajah 2014, Adelman

2003, 2004, 2007, Lin et al. 2020). There is a long history of developing these methods,

and they have been successfully applied to many applications. A common feature of these

methods is that they converge to the true value function from the primal side, i.e., they

aim at improving the lower bound.

Once VFA is known, using the VFA (1.6) in lieu of the value function in (1.2) for all

endogenous states and solving the resulting SDP gives the stage i decision rule Aβ
i of the

feasible policy that is greedy with respect to this VFA, that is, the greedy policy πβ.

Aβ
i := argmax

ai∈Ai(xi)

{
r(xi, Fi, ai) + δE[V̂ (f(xi, ai), Fi+1)|Fi]

}
, (1.7)

The associated policy value at (xi, Fi) is a pointwise estimate of V (xi, Fi). The sample

average of such estimates in a Monte Carlo simulation gives a lower bound on V (xi, Fi).

For the dual bound, we can replace the value function in (1.5) with (1.6) and solve the

resulting dual Bellman equations via the backward induction. A dual bound estimator

can be obtained analogously to that of the lower bound (See examples in Brown et al.

2010, Brown and Smith 2014, Brown and Haugh 2017, Balseiro and Brown 2019, Lai

et al. 2010, Nadarajah and Secomandi 2015, Nadarajah et al. 2015, Secomandi et al.

2015a, Nadarajah and Secomandi 2018b). However, since most methods do not have

mechanisms to improve the dual bound, there is no guarantee for its quality.

Dual Approximation: The second stream of literature focuses on computing ap-

proximations to the dual value function and penalty. Similar to the primal approximation

approach, the dual VFA can be linear, nonlinear in the basis functions or even model free.

The methods in this category typically improve the approximated dual value function and

the penalty and show that these values converge to their optimal ones. These methods also

generate feasible policies by replacing V̂ (f(xi, ai), Fi+1) in (1.7) with the approximated

dual value functions, though additional steps may be required. In contrast to the primal

approximation approach which finds good penalties based on trials and errors, the dual

approximation approach formalizes the process and generates tight dual bounds. The

dual approach may also improve feasible policies because it generates feasible policies

by adjusting anticipated policies, i.e., policies with hindsight information (Brown and

Smith 2014, 2021). Pathwise optimization (PO, Desai et al. 2012a) is the state of the

art approach. A salient feature of PO is that it generates an approvably tightest dual

bound than any other dual approximation approach with a given set of basis functions.

To obtain a lower bound and a feasible operating policy, an additional regression step is

required. Despite its conceptual appeal, the application of PO is very limited due to the

difficulty of solving the underlying linear program in complicated settings.

Compared to the primal approximation approach, the literature for the dual approx-

imation is scant, which makes this area quite active given the importance of generating

15



tight dual bounds (and potentially tight lower bounds based on the approximated dual

value function). Some recent developments on this direction include the primal-dual ap-

proach in Chen et al. (2020), the reoptimization approach in Trivella et al. (2019), and

the reinforcement learning approaches in El Shar and Jiang (2020) and Min et al. (2019).

1.5 Thesis Contributions and Outline

This thesis focuses on using PO to compute lower and dual bounds on the optimal policy

value of the MDPs arising in merchant energy operations. Our work extends PO from

optimal stopping to MDPs with respective small and large endogenous and exogenous

state spaces as well as a finite action space. We identify two computational hurdles for

the underlying LP in PO and propose solution methods to deal with those difficulties.

The proposed methods significantly improve the efficiency of solving the LP by leveraging

preconditioning and convex optimization techniques. We provide analytical supports for

each of the proposed methods and compare their performance with LSM, the state of the

art approach, under realistic ethanol production and natural gas storage instances. We

have three main insights based on our numerical studies: (i) PO generates substantially

tighter dual bounds than LSM, which is not known in literature before our study, (ii)

based on (i), both PO and LSM generate near optimal lower bounds and feasible operating

policies, thus the large gap between the LSM lower and dual bound is almost entirely

due to the looseness of its dual bound, and (iii) PO also generates slightly tighter lower

bounds than LSM. These findings provide clear answers to the conjecture discussed in

§1.1. They also highlight the potential of PO in generating tight bounds for merchant

energy operations.

Although we focus on merchant energy production and storage in this thesis, our

approaches have potential applicability in problems like swing options and chooser caps,

inventory control, network revenue management, and portfolio optimization (see Brown

and Smith 2021 and the reference therein).

We list the three chapters contained in this thesis and introduce the contributions of

each chapter in detail.

Chapter 2: This chapter studies merchant energy production modeled as a classical

real option. LSM combined with information relaxation and duality is a state-of-the-art

reinforcement learning methodology to obtain operating policies and optimality gaps for

related models. PO is a competing technique developed for optimal stopping settings,

in which it typically provides superior results compared to this approach, albeit with a

larger computational effort. We apply these procedures to merchant energy production.

Employing PO requires methodological extensions. We use principal component analysis

and block coordinate descent in novel ways to respectively precondition and solve the

16



ensuing ill-conditioned and large-scale linear program, which even a cutting-edge com-

mercial solver is unable to handle directly. Both techniques yield near optimal operating

policies on realistic ethanol production instances. However, at the cost of both consider-

ably longer run times and greater memory usage, PO leads to substantially tighter dual

bounds compared to LSM, even when specified in a simple fashion, complementing it in

this case.

Chapter 3: This chapter studies a constraint generation method to solve the PO

linear program. The proposed method iterates between master and subproblems. The

master problem combines subsets of the constraints and variables of the model to ob-

tain a relaxed linear program that an off-the-shelf solver can handle. The subproblem

strengthens this relaxation by efficiently identifying constraint violations in the original

linear program. This method provably converges. It can be stopped once the current so-

lution is sufficiently close to the optimal one, which we can check using a bound that we

compute when solving the subproblem, or it leads to good-enough bounds on our MDP

optimal policy value. We have verified both the efficiency and effectiveness of this ver-

sion of our method on the benchmark merchant ethanol production instances employed

in Chapter 2. Compared to the first chapter, the constraint generation method generates

similar results with less memory but longer CPU times. However, the way the constraint

generation deals with the large exogenous state space can be applied to instances with

large endogenous state. Thus, it motivates further research into its extension.

Chapter 4: In this chapter, we generalize PO from merchant energy production

to general energy operations and real option models. The considered MDPs feature

respectively high and low dimensional exogenous and endogenous state components as

well as a finite action space. The original PO potentially has unbounded optimal solutions

and objective value if applied to these MDPs. The state of the art approach in dealing

with PO also has an excessive memory requirement in complicated settings. We fix the

unboundedness issue by adding constraints based on nonanticipated policies and develop

a decomposition and regression approach to reduce the memory requirement. We test the

effectiveness of these techniques on respective natural gas storage and ethanol production.

The extended PO generates tight dual bound and near optimal lower bound for natural

gas storage. In ethanol production instances, the proposed algorithms can solve both

existing instances faster with significantly less memory than the state-of-the-art method

and new larger-size ones that were out of reach, achieving near-optimal performance and

dominating a standard competitor in terms of solution quality.

Conclusion and Appendices A-B:We summarize the contributions and discuss the

future research in Conclusion. Appendices A-B include proofs and supporting materials

for Chapter 2-4, respectively.

17



Chapter 2

Pathwise Optimization for

Reinforcement Learning in Merchant

Energy Production

2.1 Introduction

We study the merchant management of energy production assets, such as power and

natural-gas-processing plants, oil and bio refineries, and ethanol manufacturing facilities

(Tseng and Barz 2002, Tseng and Lin 2007, Devalkar et al. 2011, Thompson 2013, Dong

et al. 2014, Boyabatli et al. 2017, Nadarajah and Secomandi 2018b), whereby these assets

are operated by trading their inputs and outputs in wholesale markets to take advantage

of favorable prices. Modeling as a portfolio of real options the ability of the managers of

these assets to dynamically adapt their operating policies to changing market conditions

provides a convenient approach to maximize their market values (Dixit and Pindyck

1994, Trigeorgis et al. 1996, Smith and McCardle 1998, 1999, Eydeland and Wolyniec

2003, Geman 2005, Guthrie 2009, Secomandi and Seppi 2014, 2016).

Managing an ethanol factory in wholesale markets (Guthrie 2009, Chapter 17) ex-

emplifies the main ideas underlying merchant energy production. Operating the plant

is desirable when the spread between the output and input wholesale prices net of the

conversion cost is attractive. Temporary or prolonged periods of unappealing spreads

can be dealt with by suspending production or mothballing the plant. In the latter case,

reactivating or abandoning operations is advisable when the spread improves or worsens.

This managerial flexibility can be modeled as a compound switching and timing option

on the uncertain evolution of the prices of ethanol and of corn and natural gas (the raw

materials).

As is typical in merchant energy operations (Secomandi and Seppi 2014, 2016), real

option models of energy production give rise to intractable Markov decision processes

18



(MDPs). In each stage the MDP state contains the status of both the plant and the

market. The choices of the merchant producer determine the evolution of the former

component. Given stochastic processes govern the dynamics of the latter one. Further,

they are independent of these decisions based on small plant size and price taking as-

sumptions. That is, these actions do not affect market prices because they are small

relative to the depth of the markets in which they take place, so that these prices are

taken as fixed when quantifying cash flows. Intertemporal linkages between operational

conditions and high dimensional market information (input and output current futures

curves) lead to (some of) the well-known “curses of dimensionality” (Powell 2007, §1.2).
Reinforcement learning (RL) methods are thus used to obtain (operating) policies and

optimality gaps.

Combining least squares Monte Carlo (LSM) and information relaxation and dual-

ity techniques (Carriere 1996, Longstaff and Schwartz 2001, Smith 2005, Cortazar et al.

2008, Brown et al. 2010, Secomandi and Seppi 2016, Nadarajah et al. 2017, Secomandi

2017, Nadarajah and Secomandi 2017, 2018a) is a state-of-the-art RL approach for in-

tractable merchant operations MDPs. LSM uses Monte Carlo sample paths of the market

uncertainty and regression to compute a value function approximation (VFA) expressed

as a linear combination of basis functions that defines both a policy and dual penalties

on hindsight information, thus enabling the estimation of both lower and upper (dual)

bounds on the optimal policy value. Pathwise optimization (PO, Desai et al. 2012b, Chan-

dramouli 2019) is an RL approach developed for optimal stopping models that first solves

a linear program formulated on analogous sample paths to find the best dual penalties

constructed using a VFA specified as in LSM. It then obtains both a VFA that determines

a policy and its optimality gap. Desai et al. (2012b) show that PO dominates LSM in

terms of solution quality at the expense of longer run times, whereas the bound-related

findings of Chandramouli (2019) are less conclusive than the ones of these authors.

We extend the limited extant research that compares LSM and PO from optimal

stopping to merchant energy production. We formulate an MDP that relies on a model

for the evolution of the prices of futures contracts (term structures) on the inputs and the

output. Using LSM in this context is standard whereas the application of PO necessitates

methodological development.

Our PO linear program (PLP) is hard to solve in the specified setting despite our use

of an advanced commercial solver such as Gurobi Optimization (2021). This difficulty

distinguishes even instances with short horizons because PLP is ill-conditioned, that is,

has a large condition number. Scale is an additional complication for instances with

long horizons for the stated specification. We address these issues by developing (i) an

exact preconditioning procedure based on principal component analysis (PCA) and (ii) a

block coordinate descent (BCD) optimization method. Our PCA procedure exploits the

block diagonal structure of the dual-penalty component of PLP for efficiency and exactly

19



reformulates it by making its columns orthogonal within each block, implicitly leading

to new dual penalties that are defined in terms of basis functions that are particular

linear combinations of the original ones. We provide some theoretical support for the

effectiveness of this approach. Our BCD algorithm solves this preconditioned linear

program by iteratively optimizing the values of groups of decision variables, while fixing

the ones of the remaining variables. It thus requires less memory than employing a

monolithic approach, which is impractical due to its excessive memory requirement for

large instances. We establish that an idealized version of our BCD technique converges

to an optimal solution.

We numerically assess the performance of both LSM and PO on a set of realistic

instances with the futures price model calibrated to market data and values of the opera-

tional parameters based on the literature. The estimated optimality gaps of the PO-and

LSM-based policies, both obtained using the PO-based dual bounds, are on average 7%

and 8%, respectively, whereas the latter ones grow to 11% if the LSM-based dual bounds

are used. PO thus plays an important role in establishing the effectiveness of both these

policies. Computationally PO is considerably more onerous than LSM, on average taking

several hours instead of minutes per instance. When PO is specified with simple basis

functions, its run times almost halve and it leads to strong and weak dual and greedy

bounds, respectively, thus complementing the LSM ability to determine good greedy

bounds. Finally, we analyze the operating choices made by different operating policies.

The PO-based policy tends to abandon the plant sooner than the LSM-based one. The

optimal static policy, which optimizes the net present value of discounted cash flows

ignoring uncertainty, performs poorly on our instances because it quickly ceases opera-

tions. This finding brings to light the importance of adopting a good dynamic policy in

the considered setting.

Our research is potentially relevant for other commodity merchant operations contexts

and related real option models (Secomandi and Seppi 2014, 2016), including oil and

natural gas extraction fields, liquefied natural gas facilities, copper mines, and renewable

energy plants (Brennan and Schwartz 1985, Smith and McCardle 1998, 1999, Kamrad

and Ernst 2001, Cortazar et al. 2008, Rømo et al. 2009, Enders et al. 2010, Lai et

al. 2011, Arvesen et al. 2013, Denault et al. 2013, Hinz and Yee 2018, Zhou et al.

2019), because they feature configurations of the MDP states and their dynamics that

are analogous to the ones of our MDP. Specifically, these models are finite horizon and

discrete time MDPs with states that include a few operating levels and several market

variables, dynamics of these components that depend on the decisions made and given

stochastic processes, respectively, and a small number of actions (including models with

continuous operating levels and choices that can be optimally discretized). Our work

motivates additional research aimed at reducing the computational burden of the PO

approach.

20



The MDP that we consider is based on the real option ethanol production model

presented in Guthrie (2009, Chapter 17). This author uses a one-factor model of the

processing spread and represents its evolution using a binomial tree, which enables the

use of stochastic dynamic programming for obtaining a corresponding policy. In contrast,

we employ a multifactor model of the dynamics of the input and output futures curves,

which is common in the commodity and energy merchant operations literature (see, e.g.,

Clewlow and Strickland 2000, Eydeland and Wolyniec 2003, Lai et al. 2010), and rely on

RL methods to approximately solve the resulting intractable MDP.

Desai et al. (2012b) and Chandramouli (2019) employ PO for optimal stopping, formu-

lating their linear programs by enumerating the payoffs of every possible stopping choice,

of which there are multiple ones in Chandramouli (2019). This approach is intractable

with more than one stopping time. Similarly, it leads to a linear optimization model with

an exponential number of constraints when applied to merchant energy production. We

thus specify PLP by exploiting the dynamic programming formulation of the MDP dual

model, which allows us to avoid this issue.

Desai et al. (2012b) apply a commercial linear programming solver to readily optimize

their PO model. Chandramouli (2019) approximately solves his PO linear program as

a sequence of single stopping PO models formulated and optimized as in Desai et al.

(2012b). Different from the decomposition approach of this author, we find a near optimal

solution to PLP using a BCD algorithm that sequentially solves more manageable PLP

versions until a given termination criterion is met. The literature on BCD methods

is extensive (see, e.g., Sargent and Sebastian 1973, Grippo and Sciandrone 2000, Tseng

2001, Nesterov 2012, Richtárik and Takáč 2014, Bertsekas 2015, Chapter 6, and references

therein). Our use of this methodology in a PO setting is novel. The idealized version of

the cyclic BCD algorithm and its theoretical analysis are based on common assumptions

(see, e.g., Bertsekas 2015, §6.5).

Desai et al. (2012b) and Chandramouli (2019) do not report any computational insta-

bilities in their applications nor do they arise when we employ LSM in ours. In contrast,

we observe that PLP is severely ill-conditioned, which gives rise to numerical issues.

Preconditioning is a common technique to facilitate solving mathematical programs that

suffer from ill-conditioning, in particular ones with linear constraints (see, e.g., Renegar

1995a,b, Cheung and Cucker 2001, Epelman and Freund 2002, Belloni and Freund 2009,

Amelunxen and Burgisser 2012, Peña et al. 2014, and references therein). Employing

PCA for preconditioning, as we do, rather than dimensionality reduction, as commonly

done in the literature (see, e.g., Jolliffe 2002), appears to be unique. Our theoretical anal-

ysis of the effectiveness of this approach is rooted in the literature on condition numbers

(see, e.g., Zhang and Adelman 2009, Golub and Van Loan 2012 and references therein).

We are not the first to observe collinearity in an RL setting. For example, (Ariyajunya

et al. 2021) describe state space multicollinearity issues that negatively affect the perfor-

21



mance of the RL method they use to solve an ozone pollution model. They propose two

techniques to rectify this deficiency, one of which is based on orthogonalization through

feature extraction. Although our PCA approach is based on a similar idea, it applies to

the components of dual penalties related to basis functions associated with a VFA in a

PO linear program rather than the state space of an MDP.

The outcome of our numerical comparison of the LSM- and PO-based bounds is

directionally similar to the one of Desai et al. (2012b) for optimal stopping, whereas

the analogous finding of Chandramouli (2019) for multiple optimal stopping is mixed.

However, we observe that PO achieves considerably smaller and larger improvements in

the quality of the estimated lower and dual bounds, respectively, relative to LSM than

they do.

Trivella et al. (2019) study a version of the merchant commodity production model

of Nadarajah and Secomandi (2018b, 2020) that discourages abandonment using LSM

and duality methods. The LSM-based bounds that we obtain are looser than the ones of

these authors. Further, they are not as tight as the using LSM-based bounds computed

by Nadarajah et al. (2017) and Nadarajah and Secomandi (2017) for energy storage,

Nadarajah et al. (2017) for swing options, and Nadarajah and Secomandi (2018a) for

networks of energy storage and transport assets.

Section 2.2 presents the merchant energy production MDP that we study. We intro-

duce the approximate solution approach that we adopt to obtain policies and dual bounds

based on VFAs in §2.3. Section §2.4 discusses how to use LSM and PO to obtain VFAs.

We present the PCA and BCD algorithms we develop to solve PLP in §2.5. Section 2.6

reports the results of our numerical study. We conclude in §2.7. An appendix includes

the proofs of formal results.

2.2 Model

This section presents a real option model of the merchant management of energy pro-

duction. We provide a simple description of this formulation in §2.2.1 and formulate an

MDP in §2.2.2. The contents of §2.2.1 and §2.2.2 largely rely on material available in

Guthrie (2009, Chapter 17) and Nadarajah and Secomandi (2020, §4), which is itself in

part based on Guthrie (2009, Chapter 17).

2.2.1 Informal Overview

For concreteness we consider a plant that converts corn and natural gas into ethanol. A

merchant manages this facility by periodically making operating choices and transacting

on a spot basis in wholesale markets to buy and sell, respectively, the inputs and output

of the manufacturing process. The current and anticipated conditions of the conversion

22



spread, which is the difference of the ethanol spot price and the sum of both the spot

prices of corn and natural gas scaled by their respective requirements and the marginal

production cost, play an important role in determining these decisions. Suppose the

plant is operational. If the spot conversion spread is positive then it is beneficial to

source, produce, and sell at full capacity. If this spread is negative then the merchant

can avoid receiving it by suspending production, mothballing the plant, or abandoning it.

Suspension keeps the plant operational at a cost, which is incurred every time this decision

is taken. Mothballs changes the status of the plant from operational to mothballed.

Compared to suspension, this choice requires paying a one time cost, a cost for each

period during which the plant is kept mothballed, which is however lower than the cost

of suspending production, and a one time cost if the plant is reactivated later on, that

is, it becomes operational again. Abandonment is associated with a salvage value and

foregoes all cash flows that the merchant may otherwise earn in the future. Intuitively,

the merchant can suspend production or mothball the plant when anticipating short

or long lived unappealing conversion spreads. Further, reactivating or abandoning the

plant once it is mothballed can take advantage or limit the negative effect of improved

or worsened anticipated conversion spreads. Abandonment does not require that the

asset be first mothballed. It is compulsory at the end of the facility lifetime. Whereas

deciding when to produce is easy, the challenge lies in deciding which market conditions

warrant adopting one of the available switching (suspension, mothballs, and reactivation)

or timing (abandonment) decisions with the goal of maximizing the residual market value

of the asset.

2.2.2 MDP

The residual life of the plant includes I decision dates. The stage set I := {0, 1, . . . , I−1}
includes their indices.

The operational and mothballed operating modes are O and M, respectively. Deciding

to mothball or reactivate the plant in a given stage leads to a mothballed or operational

facility in the next stage (longer such transitions can be accommodated as in Guthrie

(2009, Chapter 17), and Nadarajah and Secomandi (2020, §4.1). The abandoned oper-

ating mode is denoted by A. The stage i operating mode set is Xi and xi is an element

of this set. This set equals {O} if i = 0, that is, the plant is initially operational, and

{A,M,O} otherwise.

We denote as P the decision to produce Q gallons of ethanol using γC bushels of corn

and γN mmBTU of natural gas each per gallon of output. We label as S, M, R, and A

the suspension, mothballing, reactivation, and abandonment actions, respectively. The

feasible action set corresponding to the operating mode xi is Ai(xi). It is defined as

follows:

23



• If xi = O then Ai(xi) equals {A,M,P, S} if i ̸= I − 1 and {A} if i = I − 1.

• If xi = M then Ai(xi) equals {A,M,R} if i /∈ {0, I − 1} and {A} if i = I − 1.

• If xi = A then Ai(xi) = {A}.

The function f(xi, ai) gives the next stage operating mode that results from executing

feasible action ai in the current stage when the operating mode is xi. In particular, its

value is O if the pair (xi, ai) belongs to the set {(O,P), (O, S), (M,R)} and ai in all other

cases. Figure 2.1 illustrates these transitions.

S S S S S

P P P P P

M M M M M

M M M M

A A A A A

A A A A

A A A A

A A A

R R R R

0 1 2 3 4 5

Stages

...

...

...

...

...

Operational

Mothballed

Abandoned

Figure 2.1: Illustration of function f(xi, ai)

We abbreviate corn, ethanol, and natural gas to C, E, and N, respectively, and include

these labels in set C. The spot price of commodity c ∈ C in stage i is sci ∈ R+. The

total spot conversion spread is (sEi − γCs
C
i − γNs

N
i ) ∗ Q − CP, where CP is the cost of

producing Q gallons of ethanol in addition to the cost of purchasing the two inputs; that

is, the merchant is a price taker. The respective costs per stage of producing Q gallons

of ethanol, suspending production, and keeping the plant fully mothballed are CP, CS

(< CP), and CM (< CS) dollars. The one time costs of mothballing and reactivating the

plant are IM and IR, respectively. Abandoning the plant yields a net salvage value of S

(this notation differs from the S label used to denote the suspension action). The per

stage reward depends on the operating mode xi, the spot price vector si := (sci , c ∈ C),

24



and the action ai ∈ A(xi):

r(xi, si, ai) :=



(sEi − γCs
C
i − γNs

N
i )Q− CP, if (xi, ai) ∈ (O,P),

−CS, if (xi, ai) = (O, S),

−IM, if (xi, ai) = (O,M),

−CM, if (xi, ai) = (M,M),

−IR, if (xi, ai) = (M,R),

S, if (xi, ai) ∈ {(O,A), (M,A)},
0, if (xi, ai) ∈ {(A,A)}.

The forward curve for a given commodity includes both its spot price and the prices of

the futures for a set of traded maturities. We formulate the evolution of the spot prices

of corn, ethanol, and natural gas using a model of the joint dynamics of the forward

curves of these commodities. Specifically, as in Cortazar and Schwartz (1994), Clewlow

and Strickland (2000, Chapter 8), and Secomandi and Seppi (2014, §4.3), we employ a

Markovian multifactor model of the evolution of the vector of these forward curves under

the assumption that the merchant’s decisions do not affect it; that is, the plant is small

relative to the market size. We take the stages to be the maturities of the futures. The

price in stage i of the futures for commodity c with delivery in stage j ≥ i is F c
i,j ∈ R+.

If i equals j then F c
i,i and sci coincide. Given F c

i,j the price F c
i+1,j, with j > i, satisfies

F c
i+1,j = F c

i,jexp

[
− 1

2
(Ti+1 − Ti)

K∑
k=1

σ2
c,i,j,k +

√
Ti+1 − Ti

K∑
k=1

σc,i,j,kWk

]
, (2.1)

where Ti is the time corresponding to stage i, K is the number of stochastic factors, which

are common to all commodities and maturities, σc,i,j,k is the stage i loading coefficient

on the k-th factor for the futures of commodity c with maturity in stage j, and Wk

is a standard normal random variables that is uncorrelated with the other K − 1 ones

(the loading coefficients embed the correlation between price changes). This model is

driftless because it is specified under a risk neutral measure. The stage i forward curve of

commodity c, F c
i , is the vector (F c

i,j, j ∈ {i, . . . , I − 1}). The vector of forward curves in

stage i is Fi := (F c
i , c ∈ C). It takes values in R3(I−i)

+ . According to model (2.1), given the

vector of forward curves Fi in stage i the stage i+1 vector of forward curves Fi+1, which

includes the spot price vector si+1, is jointly lognormally distributed with parameters

that depend on Fi, e.g., Fi is the mean of Fi+1. In particular, the distribution of the spot

price vector si+1 depends on the vector (F c
i,i+1, c ∈ C).

The state of our MDP in stage i includes the operating mode xi and the vector of

forward curves Fi. The stage i state space is thus Xi × R3(I−i)+ . The presence of the

vector of forward curves in the state is needed to be able to determine the stochastic

transitions of this part of the state. This vector affects the merchant’s optimal decision

25



in a particular stage and state because it conditions the evolution of the future market

conditions, that is, it is the basis of the merchant’s anticipation of such conditions. For

example, it is reasonable to surmise that for a given stage the merchant should be less

prone to optimally mothball or abandon the plant in a state with vectors of forward

curves that correspond to positive expected future spot conversion margins compared to

states with forward curves associated with negative such margins.

A feasible policy π is the collection of decision rules {Aπ
i , i ∈ I}, with Aπ

i : Xi ×
R3(I−i)

+ → Ai(xi). The set of such policies is Π. The objective is to choose a feasible

policy that maximizes the market value of operating the plant during the finite horizon

given the initial state (x0, F0):

max
π∈Π

∑
i∈I

δiE [r (xπ
i , si, A

π
i (x

π
i , Fi)) | x0, F0] , (2.2)

where δ is the per stage risk free discount factor; E is the expectation taken w.r.t. the

vector of forward curves under a risk neutral measure; and xπ
i is the random operating

mode reached in stage i when using policy π.

2.3 Approximate Solution Approach

We discuss a typical approximate solution approach for obtaining a feasible policy and

estimating bounds on the optimal policy value of model (2.2) that relies on VFAs (see,

e.g., (Powell 2007, §6.4) and (Brown et al. 2010)). We discuss how to obtain both a

policy that is greedy with respect to a given VFA and its corresponding lower bound

estimate in §2.3.1 and the estimation of a dual bound in §2.3.2. This section is partly

based on Nadarajah and Secomandi (2020, §3.1).

2.3.1 Greedy Policy and Lower Bound

The optimality conditions of our MDP are

Vi(xi, Fi) = max
ai∈Ai(xi)

{
ri(xi, si, ai) + δE

[
Vi+1(f(xi, ai), Fi+1)|Fi

]}
, (2.3)

for stage 0 and the initial state (x0, F0) and each stage i ∈ I \ {0} and state (xi, Fi) ∈
X ×R3(I−i)

+ , where Vi is the stage i value function, with VI(·, ·) := 0. The stage i decision

rule of an optimal policy is

argmax
ai∈Ai(xi)

{
ri(xi, si, ai) + δE

[
Vi+1(f(xi, ai), Fi+1)|Fi

]}
, (2.4)

26



where in case of a tie we weakly prefer producing to suspending, mothballing, or aban-

doning; suspending to mothballing or abandoning; and mothballing to abandoning. Ob-

taining the value function by solving (2.3) is in general intractable, due to the high

dimensionality of the forward curve and the difficulty of evaluating the expectation in

this model. Thus, computing an optimal policy based on (2.4) is impractical.

To obtain a feasible policy, we replace the value function in (2.4) with a low dimen-

sional VFA for states that include the mothballed or operational operating modes, M and

O, which we include in set X ′. We specify the VFA for stage i ∈ I \ {0, I − 1} and state

(xi, Fi) ∈ X ′ × R3(I−i)
+ as the linear combination∑

b∈Bi

βi,xi,bϕi,b(Fi), (2.5)

where Bi := {1, ..., Bi} is the index set of Bi basis functions ϕi,b(Fi)’s of the vector of

forward curves Fi and βi,xi,b is the weight associated with the b-th such function when

the operating mode is xi. Using the VFA (2.5) in lieu of the value function in (2.4) for

states that include the operational or mothballed operating mode, that is, xi ∈ X ′, gives

the stage i decision rule Aβ
i of the feasible policy that is greedy with respect to this VFA,

that is, the greedy policy πβ (here 1(·) is the indicator function that evaluates to one

when its argument is true and to zero otherwise):

argmax
ai∈Ai(xi)

{
r(xi, si, ai) + 1 (i ̸= I − 1, f(xi, ai) ∈ X ′) δ

∑
b∈Bi

βi+1,f(xi,ai),bE[ϕi+1,b(Fi+1)|Fi]

}
,

(2.6)

Using the greedy policy is particularly practical if the expectation in (2.6) can be evalu-

ated efficiently, a condition that we state as Assumption 3.

Assumption 1. The expectation E[ϕj,b(Fj)|Fi] can be computed in closed form for each

i and j ∈ I \ {0, I − 1} with j > i and Fi ∈ R3(I−i)
+ .

This assumption holds for commonly used basis functions and stochastic models for

the evolution of the vector of forward curves (see, e.g., Glasserman and Yu 2004, Nadara-

jah et al. 2017 and references therein), which we use in this work. If Assumption 3 is not

satisfied then the expectation in (2.6) needs to be approximated, e.g., as a sample average

based on Monte Carlo simulation of the next stage vector of forward curves conditional

on their values in the current stage.

A lower bound on the optimal policy value can be estimated by applying the greedy

policy on a set of samples of vectors of forward curves, obtained via Monte Carlo simu-

lation, and operating modes, resulting by using this policy, in each stage starting from

the initial stage and state, and averaging the sum of the resulting discounted rewards

collected on each such path. Specifically, we let L := {1, 2, ..., L} be the index set of the

27



samples of the array of forward curves from stage 0 through stage I−1 and estimate this

bound as
1

L

∑
l∈L

∑
i∈I

δir
(
xπβ ,l
i , sli, A

β
i

(
xπβ ,l
i , F l

i

))
, (2.7)

where xπβ ,l
i is the operating mode reached under policy πβ in stage i on sample l, sli

and F l
i are the vectors of spot prices and forward curves, respectively, for this stage and

sample, and
(
xπβ ,l
0 , F l

0

)
equals the given initial state (x0, F0) for each sample l.

2.3.2 Dual Bound

The quality of a greedy policy can be assessed by comparing its estimated value against

a perfect information dual bound on the optimal policy value. The idea behind this

approach is to optimize the operating policy assuming perfect foresight of the future un-

certainty, that is, the entire array of the vectors of forward curves in our application.

Intuitively, the expected value of the resulting total discounted cash flows is an upper

bound on the optimal policy value, albeit typically a loose one. The information relax-

ation and duality methodology aims at strengthening this bound, eliminating in theory

all and otherwise some of the benefit of foreknowledge by imposing ideal and good, re-

spectively, penalties on the amount of information that is not supposed to be known when

making decisions.

Let F be the array of vectors of forward curves from the initial stage through the

terminal one, F := (Fi)i∈I . The ideal dual penalty when taking feasible action ai in state

(xi, Fi) with knowledge of each element of F is the exact additional value of also knowing

the stage i + 1 vector of forward curves Fi+1 in stage i rather than only the vector of

forward curves Fi:

δ {Vi+1 (f(xi, ai), Fi+1)− E [Vi+1 (f(xi, ai), Fi+1) |Fi]} . (2.8)

For each array of vectors of forward curves F ∈ R3
∑

i∈I(I−i), the dual versions of the

optimality conditions (2.3) are

Ui(xi, F ) = max
ai∈Ai(xi)

{ri(xi, si, ai)− δ {Vi+1 (f(xi, ai), Fi+1)− E [Vi+1 (f(xi, ai), Fi+1) |Fi]}

+δUi+1 (f(xi, ai), F )} , (2.9)

for stage 0 and the given operating mode x0 and each stage i ∈ I \ {0} and operating

mode xi ∈ X , where Ui(·, F ) is the stage i dual value function, with UI(·, F ) := 0. The

use of ideal dual penalties in (2.9) implies that the identity Ui(xi, F ) ≡ Vi (xi, Fi) holds for

each stage i, operating mode xi, and array of vectors of forward curves F with probability

one. That is, these penalties completely remove the advantage of currently knowing the

28



values of the future vectors of forward curves. The dual bound is E [U0(x0, F ) | x0, F0],

which is trivially tight because U0(x0, F ) equals V0(x0, F0) with probability one.

Because (2.3) is generally intractable, ideal dual penalties and the corresponding dual

bound cannot be computed. However, these penalties can be approximated based on a

VFA to obtain so called good dual penalties. Further, a corresponding valid dual bound

can be estimated using the samples of the array of vectors of forward curves used to esti-

mate the lower bound. Define ∆E,F
i ϕi+1,b := δ {ϕi+1,b (Fi+1)− E [ϕi+1,b (Fi+1) |Fi]}. Good

dual penalties result from substituting with a VFA the value function in the expression

that defines them, that is, (4.3). The particular ones that ensue from using our VFA are∑
b∈Bi

βi+1,f(xi,ai),b∆
E,F
i ϕi+1,b, (2.10)

with the provision that f(xi, ai) is an element of set X ′. These dual penalties lead to

the following model, which resembles (2.9) but is based on such penalties rather than the

ideal ones, for each array of vectors of forward curves F ∈ R3
∑

i∈I(I−i):

Uβ
i (xi, F ) = max

ai∈Ai(xi)

{
r (xi, si, ai)− 1 (i ̸= I − 1, f(xi, ai) ∈ X ′)

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,F
i ϕi+1,b

+δUβ
i+1 (f(xi, ai), F )

}
, (2.11)

for stage 0 and operating mode x0 and each stage each i ∈ I \ {0, I − 1} and operating

mode xi ∈ X , where Uβ
i (·, F ) is the approximate dual value function corresponding to

using the VFA associated with the weight vector β to obtain the good penalties (4.5), with

Uβ
I (·, F ) := 0. The expectation E

[
Uβ
0 (x0, F ) | x0, F0

]
is a valid dual bound on V0(x0, F0).

An unbiased estimate of this bound can be obtained based on solving a version of (2.11)

formulated on the samples of the array of vectors of forward curves indexed by the set of

indices L. Let F l be this array for sample l ∈ L. The sample average

1

L

∑
l∈L

Uβ
0

(
x0, F

l
)

(2.12)

is an unbiased estimate of E
[
Uβ
0 (x0, F ) | x0, F0

]
. When Assumption 3 holds the dual

penalties (4.5) can be evaluated efficiently and each term Uβ
0

(
x0, F

l
)
can be readily

computed by backward dynamic programming.

29



2.4 PO

PO works with two VFAs: One is associated with the greedy policy and its corresponding

lower bound, the other one with the dual bound. We first discuss the latter VFA because

the method we use to obtain it yields the inputs needed to determine the former one.

The key idea behind PO is to obtain a VFA by finding values for its basis functions

weights that lead to the smallest dual bound among all the ones that are supported by

good penalties corresponding to such VFAs. Specifically, this approach entails solving

min
β

E
[
Uβ
0 (x0, F )|x0, F0

]
, (2.13)

where the decision variable vector β is an element of R
∑

i∈I\{0,I−1}
∑

b∈Bi .

Exact evaluation of the objective function of model (2.13) is typically impossible. A

natural approach is to solve instead its sample average approximation formulated using

samples of the array of vectors of forward curves. For this purpose we employ the same

such samples used by LSM, that is, the ones indexed by set L′. The resulting model is

min
β

1

L′

∑
l∈L′

Uβ
0

(
x0, F

l
)
, (2.14)

which has a piecewise linear convex objective function (see Desai et al. 2012b). As dis-

cussed in §2.3.2, for a fixed vector β, each term Uβ
0

(
x0, F

l
)
solves model (2.11) expressed

with F l in lieu of F . Observing that this version of (2.11) can be equivalently formulated

as a linear program using the approach of (Manne 1960) leads to the following alternative

linear programming representation of (2.14), that is, PLP:

min
β,u

1

L′

∑
l∈L′

u0,x0,l (2.15)

s.t. ui,xi,l ≥ r
(
xi, s

l
i, ai
)
− 1 (i ̸= I − 1, f(xi, ai) ∈ X ′)

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b

+δui+1,f(xi,ai),l,∀(i, xi, ai, l) ∈ (({0} × {x0} × A0(x0))

∪ (I \ {0} × Xi ×Ai(xi)))× L′, (2.16)

where u is the vector of decisions variables ui,xi,l’s and ∆E,l
i is shorthand notation for

∆E,F l

i . Similar to the PO linear program of Desai et al. (2012b) for optimal stopping,

PLP can be equivalently formulated by eliminating all the ui,·,· decision variables for

stages 1 through I − 1 and replacing its constraints with ones that enforce each u0,x0,·

choice term to be no smaller than the sum of the discounted penalized rewards along all

possible sequences of feasible states and actions from the initial stage and state through

the end of the horizon for each sample. In contrast to the model of these authors, in

our context this version of PLP has an exponential number of constraints. Proposition 1

30



establishes that PLP is well posed.

Proposition 1. PLP has a finite optimal objective function value and at least one

bounded optimal solution.

Using an argument analogous to the one that underlies the proof of Theorem 1 of Desai

et al. (2012b), one could show that the optimal objective function value of model (2.14)

converges almost surely to the one of (2.13) as the number of samples used to formulate

it grows large.

We label as βPLP the VFA weight vector obtained by solving PLP. We use it to estimate

a dual bound as discussed in §2.3.2. We do so because the optimal PLP objective function

value is a biased low estimator of this dual bound, as well as of the optimal objective

function of model (2.13). In fact, letting L̃′ be the index set of the random array of vectors

of forward curves
(
F l, l ∈ L̃′

)
with cardinality L′ and EL̃′ be expectation with respect to

this random quantity, denoting as βPLP
(
L̃′
)
and β

(
L̃′
)
, respectively, the random VFA

weight vector obtained from solving PLP and vector of decision variables of model (2.14)

both formulated using L̃′, and observing that βPLP is instead the vector associated with

PLP expressed for L′ taken as fixed, we have

EL̃′

 1

L′

∑
l∈L̃′

U
βPLP(L̃′)
0

(
x0, F

l
)
|x0, F0

 = EL̃′

min
β(L̃′)

1

L′

∑
l∈L̃′

U
β(L̃′)
0

(
x0, F

l
)
|x0, F0


≤ min

β
EL̃′

 1

L′

∑
l∈L̃′

Uβ
0

(
x0, F

l
)
|x0, F0


= min

β
E
[
Uβ
0 (x0, F )|x0, F0

]
≤ E

[
UβPLP

0 (x0, F )|x0, F0

]
.

Although the VFA weight vector βPLP can be used to derive a greedy policy, its

quality may be poor (Desai et al. 2012b). Indeed, consider the common assumption that

the first basis function used to construct a VFA is a constant, that is, ϕi,1(·) := 1 for

each i ∈ I \ {0, I − 1}, which implies that each term ∆E,l
i ϕi+1,1 equals zero. Thus, the

decision variables βi,xi,1’s have zero coefficients in PLP and in each stage the resulting

VFA has an arbitrary intercept, which is undesirable from the perspective of obtaining a

good greedy policy. We follow Desai et al. (2012b) to address this issue. Denote as uPLP

the u vector attained by solving PLP. Let uPLP
i,xi,l

be the element of uPLP corresponding to

the triple (i, xi, l) ∈ I \ {0, I − 1} × X ′ × L′. For each pair (i, xi) ∈ I \ {0, I − 1} × X ′

31



we solve the least squares regression model

min
βi,xi

1

L′

∑
l∈L′

[
uPLP
i,xi,l

−
∑
b∈Bi

βi,xi,bϕi,b

(
F l
i

)]2
.

We employ the collection of resulting optimal solutions to specify a VFA for the

purposes of obtaining a greedy policy and bound pair in the manner explained in §2.3.1.

2.5 Solving the Pathwise Linear Program

This section presents our approach to solve PLP, which is both ill-conditioned and large

scale in our application. We introduce our PCA preconditioning algorithm, the so pre-

conditioned PLP (P2LP), and how to retrieve a PLP solution from a P2LP one in §2.5.1
and the BCD method to solve P2LP in §2.5.2.

2.5.1 Pre-conditioning Algorithm

Gurobi, a state-of-the-art commercial optimization software, either is impractical, that is,

does not terminate in a reasonable amount of time, or outright fails when we embed its

simplex or barrier methods within our BCD approach and attempt to solve the PLPs for

the instances that we employ in the base configuration of our numerical study. This solver

does so even when applied to PLPs for versions of these instances with their horizons

shortened so that it can directly handle them on our high performance computer. In

particular, the barrier algorithm just stops because of numerical issues, even if it is

an interior point technique, a class of procedures that are well suited for large scale

linear programs, especially ones that feature a block diagonal constraint matrix (Gurobi

Optimization 2020, §28.5), which PLP has (the PO linear program of Desai et al. 2012b

shares this aspect and they solve it using this approach without reporting any numerical

issues).

Interior point methods are iterative algorithms that at each iteration solve a system

of linear equations (Mikosch et al. 2006) with coefficients determined by a nonuniform

scaling of the Grammatrix of an optimization model, that is, the product of the matrix

of this model’s constraints and itself (Nesterov and Nemirovskii 1994, Boyd et al. 2004).

The condition number of a matrix is the ratio of its largest and smallest singular values.

The smallest such value of a matrix that is almost rank deficient, that is, some of its

columns are nearly linearly dependent, is close to zero, which leads to a large condition

number. If the matrix that expresses the system of linear equations that the interior

point procedures need to solve is of this type then the optimization model is said to

be ill-conditioned and these techniques usually encounter numerical issues (Klotz and

Newman 2013). The condition number of the Gram matrix of an optimization model is a

32



proxy used for detecting these difficulties before attempting to solve it. For example, such

instabilities are likely to arise if the Gurobi barrier algorithm, an interior point method,

is applied to a model with such a condition number that exceeds 1012 (Gurobi Optimiza-

tion 2021, Section 28.5), Desai et al. (2012b). The value of this number for one of our

shortened horizon instances in which Gurobi fails to solve PLP is 1013, which is above

this threshold (we obtain this value in Matlab because Gurobi does not report it when

it does not terminate). This pitfall is the combined effect of the chosen basis functions

and the number of available actions in our MDP. That is, it tends to disappear when

we considerably simplify the basis functions that distinguish the base configuration of

our numerical study, at the expense of policies and bounds of poor quality, or eliminate

some decisions, which is undesirable. These findings suggest that preconditioning PLP to

shrink its associated condition number is a potentially useful way to mitigate the observed

difficulty of solving this model.

To ease the exposition we express the PLP constraints as

Du+Gβ ≥ r (2.17)

where D and G are the constraint coefficient matrices associated with the PLP decision

variable vectors u and β, respectively, and r is the column vector (r(xi, s
l
i, ai), (l, i, xi, ai) ∈

L′ ×I ×Xi ×A(xi)). The PLP Gram matrix is [D G]⊤[D G], where ⊤ denotes transpo-

sition.

We theoretically investigate the condition number of the PLP Gram matrix. Assump-

tion (2) imposes structure on the G matrix, which include the dual penalty coefficients.

Assumption 2. The G matrix has full column rank.

This assumption is mild because it can be satisfied by deleting dependent columns

from G and redefining this matrix using the remaining ones without changing the optimal

PLP objective function value. Lemma (1) characterizes the column ranks of the D and

PLP Gram matrices.

Lemma 1. The D matrix has full column rank. If Assumption 2 holds then the PLP

Gram matrix has full column rank.

The properties stated in this result and Assumption (2) ensure that the singular values

of the D, G, and PLP Gram matrices are strictly positive. Letting ND, NG, and N be

the number of columns of the D, G, and [D G] matrices, we denote the sequences of their

respective singular values, each ordered from largest to smallest, as (κD
n )

ND
n=1,(κ

G
n )

NG
n=1, and

(κn)
N
n=1.

Proposition 2 provides an upper bound on the condition number of the PLP Gram

matrix in the trivial case in which there are no dual penalties, that is, there is no G

33



matrix and the PLP Gram matrix reduces to D⊤D, and a lower bound on the condition

number of the PLP Gram matrix in the regular case, that is, the G matrix is present. We

denote the condition number of a matrix as cond(·). We let Mu be the maximum of all

the numbers that correspond to how many constraints include each PLP variable ui,xi,l.

Proposition 2. We have (i) cond(D⊤D) ≤ MuND and (ii) if Assumption (2) is satisfied

then
∑N

n=1 κ
2
n ≥ 1 and

cond([D G]⊤[D G]) ≥ max

{ ∑N
n=1 κ

2
n/N[(

ΠND
n=1κ

D
n

)(
ΠNG

n=1κ
G
n

)]2/N , cond(D⊤D)

}

Part (i) of this proposition implies that in the absence of dual penalties the condition

number of the PLP Gram matrix is bounded above by a constant, so PLP cannot be

ill-conditioned. In the presence of dual penalties, the right hand side of the lower bound

on the condition number of the PLP Gram matrix in part (ii) of this result is the largest

of two terms. The first one is a ratio that depends on the singular values of the PLP

Gram matrix in its numerator and of the D and G matrices in its denominator. The

second one is the condition number of the D⊤D matrix, which a constant bounds from

above by part (i). Suppose we pick basis functions that lead to dual penalties such that

the columns of the G matrix are almost linearly dependent, but this matrix remains full

rank, that is, Assumption 2 holds. Consequently, the smallest singular value of the G

matrix is close to zero. In this case, the first term in the lower bound is large, because its

numerator is bounded below by 1/N and its denominator is almost zero. Also assume,

without loss of generality, that our choice of basis functions makes this term exceed the

second one in this so it determines its value. Thus, the PLP Gram matrix is nearly rank

deficient and PLP is ill-conditioned.

This discussion motivates us to obtain a version of PLP with improved conditioning

by removing any close to linear dependence that may exist among the columns of the G

matrix. We make these columns orthogonal by applying PCA to this matrix. Define W

to be the square matrix with columns equal to the eigenvectors of the matrix G⊤G. Let

G⊥ be the product of G and W , that is, G⊥ := GW . It is easy to verify that the columns

of G⊥ are orthogonal. As discussed in Online Appendix B, we obtain W by exploiting the

block diagonal structure of G for efficiency and to ensure that G⊤ retains this structure.

P2LP results from replacing the PLP constraints (2.17) with

Du+G⊥β ≥ r (2.18)

Proposition 3 states that solving P2LP is equivalent to solving PLP.

Proposition 3. Every feasible PLP solution has a corresponding P2LP feasible solution

with the same objective function value and vice versa.

34



Given a P2LP feasible solution (β, u) we define βW as Wβ. The pair (βW , u) is a

PLP feasible solution. Proposition 4 affirms that the condition number of the P2LP

Gram matrix is bounded above by a constant.

Proposition 4. If Assumption 2 holds then cond([D G⊥]⊤[D G⊥]) ≤ MuND + 1.

This result implies that P2LP is well-conditioned. P2LP is identical to PLP formu-

lated using VFAs associated with a set of modified basis functions, each of which is a

linear combination of the original basis functions with weights given by the elements of

the W matrix (see Appendix A.2). Thus, our PCA preconditioning algorithm can be

interpreted as a procedure that obtains new basis functions from a given pool of such

functions that avoid the ill-conditioning that may otherwise affect PLP.

P2LP is well suited for interior point methods because it is well-conditioned and

the G⊤ matrix is block diagonal. For example, Gurobi’s barrier method readily solves

P2LP for the short horizon instance mentioned above. In particular, the condition num-

ber of this P2LP Gram matrix is 109, which compares favorably with the Gurobi’s ill-

conditioning threshold reported there. More broadly, our preconditioning approach makes

our BCD approach practical for the instances that we use in our numerical study.

2.5.2 BCD Optimization Algorithm

We devise a customized BCD method to deal with the large sizes of the instances that we

consider in our numerical study, which make the direct solution of the resulting P2LPs

an impossible task on our workstation because they exceed its available memory. Our

algorithm solves a sequence of P2LPs in which the values of some of the decision variables

that belong to the β vector are fixed and the values of all the others, including the ones

that are part of the u vector, are optimally chosen (exact evaluation of the P2LP objective

function requires an optimal selection of the values of all the elements of the u vector). In

particular, it optimizes blocks of P elements of the VFA weight vector β that correspond

to subsets of the index set P̄ := I \{0, I−1}×X ′, which we assume is sorted. We define

the block corresponding to a subset P of P̄ as β(P) := (βi,xi,b, (i, xi) ∈ P , b ∈ Bi).

Algorithm 1 outlines our BCD procedures. Its inputs are the initial VFA weight vector

β0, the index set P̄ , the block size P , a block selection rule R, and the pair that includes

the the stopping tolerance ϵ and integer valued iterationlag H. The initialization step sets

the iteration counter h to zero and lets OBJ0 be the optimal objective function value of

P2LP fomulated by assigning to the variables in the β vector the values of the element of

β0. In each subsequent iteration h, Algorithm 1 (i) applies the block selection rule R to de-

termine P , (ii) solves the variant (2.19)-(2.21) of P2LP in which the values of the variables

that belong to the u and the β(Ph) vectors are optimized, whereas the others are fixed to

their iteration h−1 values, and (iii) makes (βh, uh) and OBJh equal to the optimal solution

35



Algorithm 1: BCD Algorithm

input : Initial VFA weight vector β0, index set P̄ , block cardinality P ,
block selection rule R, and stopping tolerance and iteration lag
pair (ϵ,H).

initialization: Set h = 0 and OBJ0 equal to the optimal objective function
value of P2LP solved with the values of the β vector variables
fixed to the ones of the elements of β0

do
h = h+ 1.
(i) Apply block selection rule R to obtain a subset Ph of P̄ with cardinality
P .
(ii) Let (β∗, u∗) be the optimal solution to the LP

min
β,u

1

L′

∑
l∈L′

u0,x0,l (2.19)

s.t. Du+G⊥β ≥ r, (2.20)

β(P̄ \ Ph) = βh−1(P̄ \ Ph). (2.21)

(iii) βh = β∗, uh = u∗, and OBJh = 1
L′

∑
l∈L′ u∗

0,x0,l
.

while |OBJh −OBJmax{h−H,0}| > ϵ;
output : Return βh and uh.

and the optimal objective function value of this linear program, respectively. Termina-

tion occurs if and only if the quantity OBJ(βh) and the analogous quantity OBJmax{h−H,0}

differ by less than ϵ, in which case the vectors βh and u are returned (choosing a value

of the iteration lag H larger than one discourages premature BCD termination due to

solutions that have similar evaluations of the objective function in consecutive iterations

even if additional ones can lead to a substantial objective function value improvement).

The performance of BCD depends most notably on the block selection rule, of which

the cyclic, greedy, and random ones are examples (Nesterov 2012, Beck and Tetruashvili

2013, Saha and Tewari 2013, Richt´arik and Tak´aˇc 2014, Nutini et al. 2015). The cyclic
rule forms the set Ph by picking consecutive elements from the index set P with the first

element shifted by P in each iteration following a repeating pattern. To illustrate, suppose

the set P̄ has four elements and the value of the parameter P is three. Then the sets P1

and P2 are {1, 2, 3} and {1, 2, 4}, respectively. The greedy and random rules construct

the set Ph by sequentially choosing the index with largest associated total reduced cost

and uniformly sampling, respectively, from the subset of yet unselected elements of P̄
in the current iteration (the total reduced cost corresponding to an index (i, xi) is the

sum of the reduced costs of all the variable βi,xi,b’s in the optimal solution of the linear

program obtained in the previous iteration).

Convergence results for BCD typically assume the optimization of a function that

includes a smooth non-separable component and a separable non-smooth component

36



(Tseng 2001). In contrast, P2LP corresponds to the minimization of a non-separable

and non-smooth function. We establish convergence of an idealized version of our BCD

algorithm based on assumptions analogous to the ones that are used in the literature

to prove that BCD reaches an optimal limit point (see, e.g., Bertsekas 2015, §6.5). The

idealized BCD procedure is analogous to the one described in Algorithm 1 but it solves

the linear program (2.19)-(2.21) augmented with the constraint

βL
i,xi,b

≤ β∗
i,xi,b

≤ βH
i,xi,b

(2.22)

for each triple (i, xi, b) ∈ I \ {0, I − 1} × X ′ × Bi, where βL
i,xi,b

and βH
i,xi,b

are bounded

constants that satisfy βL
i,xi,b

< βH
i,xi,b

(the superscripted L and H abbreviate low and high,

respectively), and has the stopping tolerance set equal to −ϵ, that is, it never stops.

Proposition 5 characterizes the behavior of this method.

Proposition 5. Suppose the idealized BCD algorithm uses one of the cyclic, greedy, or

random block selection rules. The solution sequence that it generates admits a limit. If

this limit strictly satisfies the constraints (2.22) and its u vector component is a non-

degenerate solution of P2LP then this sequence converges to the set of P2LP optimal

solutions.

In our numerical study we use the BCD technique that corresponds to Algorithm 2

rather than its idealized BCD version that this proposition characterizes. We find that in

the base configuration of this investigation it always terminates and leads to PLP solutions

of high quality, that is, they lead to policies for our MDP with small estimated optimality

gaps. Proposition 5 provides some theoretical support for this observed behavior.

2.6 Numerical Study

This section reports the results of our numerical study. We describe the instances that

form the basis of this investigation in §2.6.1, which is in part based on (Nadarajah and

Secomandi 2020, §4.2), present the setup of our analysis in §2.6.2, discuss bounds and

run times in §2.6.3, and examine operating policies in §2.6.4.

2.6.1 Instances

We consider an existing ethanol production asset with two years left in its lifetime. De-

cisions are made on a monthly basis. Each stage represents the beginning of each month

in the selected horizon. Thus, we set the number of stages (I) equal to twenty four.

Our study is based on twelve instances each distinguished by a starting date corre-

sponding to one of the months in year 2011. We refer to them using the first three letters

of these months.

37



The monthly risk free discount factor (σ) depends on the one year United States

Treasury rate observed on an instance initial date. The values of these rates are 0.29%,

0.27%, 0.25%, 0.27%, 0.22%, 0.18%, 0.20%, 0.22%, 0.10%, 0.12%, 0.13%, and 0.12% for

the Jan through Dec instances, respectively.

The initial vector of forward curves (F0), with the exclusion of the vector of spot

prices (s0), is based on the closing prices of futures for corn, ethanol, and natural gas

traded on the Chicago Mercantile Exchange (CME) observed on the first trading day of

the month that corresponds to each instance, whereas the spot price vector hinges on

the settled futures prices for each of these months. CME trades ethanol and natural gas

futures with maturities for all the months that the horizons of our instances comprise. In

contrast, it deals corn futures with maturities only in March, May, July, September, and

December of each year in the considered horizon. We compute the prices of corn futures

for any missing maturity by interpolation as described in Guthrie (2009, §12.2.2) when
this approach is applicable and extrapolation otherwise, that is, employing the observed

futures price for the first or the last traded maturity as a proxy of the prices of futures

with earlier or later hypothetical maturities.

We calibrate the futures price model (2.1) using CME corn, ethanol, and natural gas

futures daily closing prices observed from January 2008 through December 2011, supple-

mented by the described interpolation and extrapolation approach for corn. As in Seco-

mandi et al. (2015a), for each calendar month we determine a sample variance-covariance

matrix of the daily log futures price returns for the next twenty three maturities for the

three considered commodities and compute the principal components of this matrix to

estimate the loading coefficients σ̄′
c,i,j,ks (the index i maps to a calendar month). We set

the number of factors (K) equal to eight because it is the smallest number that explains

more than 95% of the total observed variance in our data sets. Our instances share the

same calibrated futures price model.

We adapt the values of the operational parameters, which are common to our in-

stances, from Guthrie (2009, §12.2.2). Table 4.4 reports them.

Table 2.1: Values of the common instance parameters.

Parameter Value Parameter Value ($ MM)

I 24 months IM 0.5

γC 0.36 bushel/gallon IR 2.5

γN 0.035 MMBtu/gallon CP 2.25

Q 8.33 million gallons CS 0.5208

S 0 CM 0.02917

38



2.6.2 Setup

The software implementation of our methods relies on C++ using the GCC 4.8.5 (Red

Hat 4.8.5-11) compiler and CentOS Linux 7 operating system. We use Gurobi 7.5 to solve

linear programs. We apply the dlib C++ machine learning package and LAPACKE to

perform PCAs and regressions, respectively. We execute our algorithms on a server with

128 GB of RAM and 12 Intel(R) Core(TM) i7-5930K processors, of which we employ at

most six when running Gurobi to reduce its memory requirement.

We specify the basis functions as polynomials of spot and futures prices as commonly

done in the literature (Longstaff and Schwartz 2001, Boogert and De Jong 2008, Nadara-

jah et al. 2017). For each stage i ∈ I these functions are (i) one; (ii) {F c
i,j, j ∈ Ii, c ∈ C};

(iii) {(F c
i,j)

2, j ∈ Ii, c ∈ C}; (iv) {F c
i,jF

c′
i,j, j ∈ Ii, c, c

′ ∈ C, c ̸= c′}; and (v) {F c
i,jF

c
i,j+1, j ∈

Ii \ {I − 1}, c ∈ C}. Their conditional expectations can be efficiently evaluated (see

Nadarajah et al. 2017 for the expressions pertaining to cases (ii)-(v)), that is, Assump-

tion 3 is satisfied. We use the BCD greedy block selection rule, setting the values of the

block size (P ), iteration lag for termination (H), and stopping tolerance (ϵ) to fourteen,

one, and 0.01, respectively, starting with a zero β vector. The number of Monte Carlo

samples that we employ to estimate bounds or obtain VFAs (L or L′) is five hundred

thousand or seventy thousand. The latter value is the largest value of the number of

samples that allows us to apply BCD as described to solve the resulting P2LPs, which

have three and ten million variables and constraints, without facing memory issues. We

refer to this set of choices as the base configuration. We obtain alternative configurations

by using one of ten, thirty, fifty thousand samples to obtain VFAs, changing the BCD

block selection rule to be either cyclic or random (in both cases we set to four the value

of the iteration lag for termination), or considering only linear basis functions, that is,

types (i) and (ii). With ten or thirty thousand samples or linear basis functions we can

and do directly apply Gurobi to solve the corresponding P2LPs (equivalently, we apply

BCD with a block size equal to the cardinality of the index set P).

2.6.3 Bounds and Run Times

Table 2.2 reports the estimates of the LSM- and PO-based bounds, along with their

respective standard errors and the ratios of the estimated PO- and LSM-based bounds,

for the base configuration. The precisions of the estimated bounds have the same order

of magnitude. In particular, the standard errors are at most 0.43% of their respective

estimates. PO always dominates LSM in terms of the quality of the estimated bounds,

but the improvement for the greedy bounds is considerably smaller than the one for the

dual bounds. Specifically, the ratios vary between 100.27% and 102.21% and average

to 101.09% for the greedy bounds and they range from 94.62% to 96.81% and have an

average of 95.59% for the dual bounds.

39



Table 2.2: LSM- and PO-based bound estimates, with standard errors reported in paren-
thesis, and their percentage ratios (the latter estimates divided by the former ones).

Greedy Bound Dual Bound
Month LSM PO Ratio (%) LSM PO Ratio (%)
Jan 19.01 (0.07) 19.35 (0.06) 101.79 21.71 (0.01) 20.61 (0.05) 94.93
Feb 18.98 (0.07) 19.38 (0.07) 102.09 21.61 (0.01) 20.92 (0.04) 96.81
Mar 23.54 (0.08) 23.74 (0.08) 100.84 25.95 (0.01) 25.05 (0.07) 96.52
Apr 25.13 (0.09) 25.22 (0.09) 100.34 27.57 (0.01) 26.57 (0.07) 96.38
May 21.19 (0.08) 21.25 (0.08) 100.27 23.78 (0.01) 22.64 (0.06) 95.23
Jun 17.65 (0.08) 17.82 (0.08) 101.00 20.30 (0.01) 19.27 (0.07) 94.94
Jul 14.85 (0.07) 15.06 (0.07) 101.40 17.20 (0.01) 16.35 (0.05) 95.05
Aug 21.02 (0.08) 21.06 (0.08) 100.18 23.65 (0.01) 22.49 (0.07) 95.09
Sep 21.88 (0.09) 22.00 (0.08) 100.54 24.73 (0.01) 23.65 (0.07) 95.64
Oct 19.36 (0.07) 19.55 (0.07) 100.95 21.98 (0.01) 21.06 (0.06) 95.85
Nov 17.98 (0.07) 18.24 (0.07) 101.47 20.30 (0.01) 19.50 (0.05) 96.07
Dec 13.84 (0.06) 14.14 (0.06) 102.21 16.05 (0.01) 15.18 (0.05) 94.62

(a) Ratios of LSM- and PO-based greedy bounds to their respective
dual bounds

(b) Ratios of LSM- and PO-based greedy bounds to the PO-based
dual bounds

Figure 2.2: Comparison of the estimated LSM and PO gaps based on the respective PO-
and LSM-based dual bounds.

Panel (a) of Figure 2.2 displays the percentage suboptimality of the LSM- and PO-

based greedy policies assessed using their respective dual bound estimates. The range and

40



average of the resulting optimality gaps are 11− 13% and 12% for LSM and 5− 8% and

7% for PO. Panel (b) of Figure 2.2 shows the stated suboptimality using the PO-based

dual bound estimates as yardstick. In this case, the range and average of the optimality

gaps of the LSM-based greedy policies reduce to 5−9% and 8%, respectively. Thus, both

LSM and PO lead to near optimal operating policies, even if PO marginally outperforms

LSM in this respect. The estimated PO-based dual bounds play an important role in

establishing this finding. Further, on average the estimates of these dual bounds are

8.95% smaller than the ones obtained by using zero dual penalties. Thus, estimating

good dual bounds for the considered instances is not straightforward.

Table (4.8) reports the average CPU times required to execute LSM and PO. LSM

takes fifteen minutes in total, with about the same amount of time needed to run the

regression and estimate each of the two bounds. In contrast, PO necessitates a total of

three hundred and twenty four minutes (roughly five and a half hours), of which BCD

uses most of them (about three hundred) and PCA, regression, and the greedy and

dual bound estimations employ three, eleven, four, and five, respectively. On average

BCD converges in roughly fourteen iterations, thus demanding about twenty minutes per

iteration. Although PO entails considerably longer CPU times than LSM, it is practical

for use in our application.

Table 2.3: Average CPU times (minutes).

Greedy
Bound

Dual
BoundMethod PCA BCD Regression Total

LSM 6 4 5 15
PO 3 301 11 4 5 324

Table (2.4) reports the bound estimates and resulting optimality gaps for the rep-

resentative Jan instance considering both the alternative configurations that correspond

to varying the number of samples used to obtain the VFAs and the base configuration.

The choice of this parameter value affects both the LSM performance and the PO-based

greedy bound in an immaterial fashion. In contrast, the PO-based dual bound critically

depends on it: At least fifty thousand samples are required to achieve an optimality gap

below 10%. Employing more samples to determine the VFAs increases the CPU times,

which, as Table (2.5) shows, rise by about half a time and almost three times for LSM

and PO, respectively, when the number of samples changes from ten thousand to seventy

thousand for the chosen illustrative instance.

The estimated PO-based bounds in the alternative configurations that correspond to

changing the BCD block selection rule are minimally to moderately different compared

to the ones obtained in the base configuration. In particular, with respect to this case on

average the greedy bound estimates improve by 0.5% irrespective of which of the other two

rules is chosen and the dual bound estimates deteriorate by 1.01% and 1.89% when using

41



Table 2.4: Influence of samples on LSM and PO bound estimates.

LSM PO
Sample Greedy Bound Dual Bound Gap (%) Greedy Bound Dual Bound Gap (%)
10000 19.06 21.64 14 19.35 24.68 28
30000 19.04 21.64 14 19.35 21.33 10
50000 19.04 21.63 14 19.32 20.82 8
70000 19.05 21.71 14 19.35 20.61 7

the cyclic and random rules, respectively. The average BCD run times corresponding to

these rules increase substantially, specifically they triplicate, compared to the baseline.

Table 2.5: CPU times (minutes) corresponding to varying the number of samples used
to estimate the VFAs for the Jan instance.

Number of Samples
Method 10,000 30,000 50,000 70,000
LSM 10 12 13 16
PO 103 130 227 289

Relative to the base configuration, the absence of nonlinear basis functions has a

considerable, yet distinct effect on the performance of LSM and PO. Specifically, in the

alternative configuration associated with linear basis functions the estimated greedy and

dual bounds, respectively, worsen by 3% and 15% for LSM and 15% and 1% for PO. This

finding reflects the differential natures of LSM and PO, which are rooted on obtaining

greedy and dual bounds, respectively. It suggests that these methods can be used in a

complementary fashion when employing PO based on simple basis functions: LSM yields

a good greedy bound and operating policy pair (with nonlinear basis functions) and PO

generates a fine dual bound in this case. The average total run times when only linear

basis functions are considered are two minutes and about three hours for LSM and PO,

respectively, which are close to one tenth and half of what they are in the base case.

2.6.4 Operating Policy

We investigate the behaviors of the LSM- and PO-based greedy policies for the repre-

sentative Jan instance in the base configuration. Panel (a) of Figure (2.3) displays the

box plots of the stage in which these policies abandon the plant. The PO-based policy

tends to do so sooner than the LSM-based one. To gain some intuition on this difference,

panels (b) and (c) Figure (2.3) depict the average VFAs in each stage for both LSM and

PO (the averaging is with respect to the sampled forward curves used to estimate the

bounds). LSM obtains average VFAs that always exceed the ones that PO determines.

This finding suggests that the merchant has more incentives to defer abandonment when

using the greedy policy corresponding to the LSM-based VFAs rather than the ones as-

sociated with PO. Figure (2.4) presents the box plots of the number of stages in which

42



the two greedy policies take the other available decisions. The LSM-based policy has a

tendency to employ all these choices more often than the PO-based one, as suggested by

the observation that it is prone to abandon the plant later compared to the other policy.

This discussion indicates that the two considered policies differ in how they manage the

plant even if their values are similar. We exemplify how the actions prescribed by the

(a)

1 3 5 7 9 11 13 15 17 19 21 23
0

2

4

6

8

10

12

14

16

18

20

22

24

Stage

$

PO
LSM

(b)

1 3 5 7 9 11 13 15 17 19 21
0

2

4

6

8

10

12

14

16

18

20

22

24

Stage

$
PO
LSM

(c)

Figure 2.3: (a) Box plots of the stage when the greedy policies abandon the plant (the
75-th percentiles and the maxima coincide) and (b)-(c) average VFAs corresponding to
the (b) operational and (c) mothballed modes for the Jan instance.

greedy decision rules relate to the shapes of the forward curves. We consider a sample for

the representative Jan instance in which the two greedy policies make the same choices.

Panel (a) of Figure (2.5) shows these decisions and the corresponding operational mode

transitions. Production is suspended and occurs for the first and next five stages, respec-

tively. At this point the plant is mothballed and remains so for eight more stages. It is

then reactivated. Production happens in the subsequent stage, after which abandonment

takes place. Panel (b) of Figure (2.5) illustrates the discounted total forward conversion

spread curve for the residual maturities in stages zero, five, ten, nineteen, twenty, and

twenty one, that is, the vector with elements δj−i
[(
FE
i,j −γCF

C
i,j −γNF

N
i,j

)
Q−CP

]
for each

maturity j that equals or exceeds each considered stage i. The negative and somewhat

at discounted total forward conversion spreads in the initial stage bode well with the

43



Figure 2.4: Box plots of the number of stages in which the greedy policies take the
available decisions excluding abandonment for the Jan instance (the minima and the
25-th percentile coincide except for suspension with respect to the LSM-based greedy
policy).

decision to suspend production. The positive total spot conversion spread in stage five

calls for producing. In stage ten the discounted total forward conversion spreads are all

negative and even smaller for the next two maturities compared to the current one, a

situation that suggests mothballing the plant is beneficial. In stage nineteen this spread

for the next maturity is positive, which makes reactivation appealing. Producing in stage

twenty is analogous to taking this action in stage five. Abandonment in stage twenty

one coincides with negative residual discounted total forward conversion spreads. These

behaviors are reasonable.

To assess the usefulness of managing the plant using a dynamic approach, we consider

the optimal static policy, which solves the version of our MDP in which uncertainty is

suppressed and the spot prices in each stage are replaced by their corresponding forward

prices available in the initial stage; that is, F c
0,i is used in lieu of sci for each stage i ̸= 0

and commodity c (F c
0,0 and sc0 match). This policy exhibits dismal performance: It has

essentially zero value in every instance because it abandons the plant early on. Thus,

using a good dynamic policy is critical in our instances.

2.7 Conclusions

We investigate a compound switching and timing option model of merchant energy pro-

duction that gives rise to an intractable MDP. We compare on realistic instances the

performance of LSM, a state-of-the-art RL approach for option models, and PO, an

alternative methodology so far developed for optimal stopping models, extending the lit-

erature that benchmarks these methods. Whereas using LSM involves following standard

steps, applying PO to our considered context demands algorithmic development. We de-

vise novel PCA and BCD methods to deal with the illconditioned and large scale nature

44



....

....

....

Operational

Mothballed

Abandoned

............

Stages

(a)

0 2 4 6 8 10 12 14 16 18 20 22
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

Maturity

$

Stage 0
Stage 5
Stage 10
Stage 19
Stage 20
Stage 21

(b)

Figure 2.5: (a) Greedy actions and operational mode transitions (the abandon decisions
in stages twenty two and twenty three are ignored for simplicity) and (b) total forward
conversion spread curve in a subset of stages of the Jan instance for the considered sample.

of the resulting PLP, which is out of direct reach even for a modern commercial solver

such as Gurobi. Both LSM and PO lead to near optimal policies, but PO yields substan-

tially stronger dual bounds compared to LSM, at the expense of larger computational

requirements, in terms of both run times and memory use. PO provides good quality dual

bounds also when it is specified in a simple manner, in which case it complements LSM.

Our findings on the relative size of the LSM-and PO-based bounds differ from known

ones. Our research may be relevant in other commodity merchant operations settings

and stimulates further methodological contributions in the realm of PO.

45



Chapter 3

Constraint Generation for Pathwise

Reinforcement Learning

3.1 Introduction

In this chapter, we provide an alternative method, a constraint generation approach, to

solve (2.15)-(2.16). The idea of the proposed method is based on an observation that the

number of tight constraints at optimality is substantially less than the total number of

constraints in (2.15)-(2.16). This is true because the tight constraints on every sample

path l ∈ L correspond to the optimal action sequence on that sample path. In other

words, the number of tight constraints on each l is at most I, if there is no degeneration

in (2.15)-(2.16). The total number of tight constraints should be less than or equal to

IL. Based on this observation, we can directly obtain the optimal solution if we solve a

linear system with those IL constraints, which is significantly smaller than the original

PLP. However, the idea is impractical because picking the correct constraints requires

the optimal dual solution. So we propose a constraint generation approach that can

iteratively generate a subset of constraints from PLP. By solving a new LP with this

subset of constraints, we obtain a near optimal solution that is sufficiently good for

generating competing bounds in our application.

Specifically, the proposed method iterates between a subproblem and a master prob-

lem. The master problem has the same objective function as PLP but with a few selected

constraints. The subproblem is the PLP dual with a fixed current VFA value, which de-

couples according to samples by construction. In each iteration, we solve the decoupled

subproblem to select potential constraints and then insert them into the master problem.

We use the master problem to update the VFA. The objective function values of the sub

and master problems provide upper and lower bounds on the optimal objective function

value, respectively. The former value decreases during the iteration because the solution

is approaching optimality; the latter increases as there are more and more constraints

46



in the master problem. So the algorithm terminates when the gap between these two

problems is sufficiently small.

We apply the constraint generation approach to merchant energy production. Nu-

merical results show that our approach can generate a near optimal solution with an

order of magnitude fewer constraints (10%) than directly solving PLP. The qualities of

the bounds and the feasible operating policy are comparable to the results in Chapter

2. The constraint generation approach uses less memory (70%) and longer CPU times

(100%), compared to the BCD approach.

3.2 Literature Review

Constraint generation, a.k.a. Benders decomposition, was initially proposed to solve

mixed integer linear programming (MILP; Benders 1962). Since then, many extensions

have been made to apply the algorithm to other problems, such as linear, nonlinear,

integer, stochastic, multi stage, and other optimization problems (Geoffrion 1972, Hooker

and Ottosson 2003, Adulyasak et al. 2015, Cordeau et al. 2001, Cai et al. 2001, Li et al.

2021, Côté et al. 2014). Typical applications include planning and scheduling (Canto

2008, Hooker 2007, Fischetti et al. 2017), health care (Luong 2015), transportation and

telecommunications (Costa 2005, Maheo et al. 2019, Crainic et al. 2021), and energy and

resource management (Cai et al. 2001, Zhang and Ponnambalam 2006). Our work mainly

contributes to this stream of literature.

Many enhancement strategies that can accelerate the algorithm have also been devel-

oped since it’s well known that classical Benders decomposition converges slowly (Rah-

maniani et al. 2017). Those strategies can be categorized into four classes: decomposition

strategy, cut generation, solution procedure, and solution generation (Rahmaniani et al.

2017).

Our paper employs standard solution generation and decomposition strategies but

customized (sub) solution procedure and cut generation strategies. Our subproblem is

very easy to solve because it decouples according to samples. Besides, we only need to

solve deterministic dynamic programming via the standard backward induction on each

sample path. In literature, solving the subproblem is not always a simple task because

it is a large scale LP. The simplex method is the most commonly used algorithm for the

subproblem (Rahmaniani et al. 2017). Specialized methods are much more powerful than

the commercial solver when there are special structures for the subproblems. Cordeau

et al. (2001) and Mercier et al. (2005) use the column generation approach to solve their

subproblems. Fischetti et al. (2016) and Mahey et al. (2001) reduce the subproblem as a

knapsack and a network flow problem with closed form solutions, respectively.

The way we generate constraints (cuts) is also different from the literature. Our

subproblem is always feasible, so all generated constraints in our context are optimal-

47



ity constraints. Also, our subproblem rarely becomes degenerated, so we do not need to

choose the so-called Pareto optimal cut among multiple candidates (Magnanti et al. 1978,

Magnanti and Wong 1981), which requires solving a secondary problem for the subprob-

lem. Although many techniques can tackle the secondary problem efficiently, generating

a Pareto optimal cut may not yield a net computational advantage (Mercier and Soumis

2007). Besides, the constraints we use are the tight constraints in the subproblem, which

are the most dominated constraints under the current solution. It is different from the

commonly used “most violated” constraints in literature (Rahmaniani et al. 2017).

3.3 Constraint Generation

Our approach follows the general framework of the constraint generation approach in the

literature (Bertsimas and Tsitsiklis 1997). We construct sub and master problems based

on PLP, respectively. The subproblem is the dual of PLP with a fixed β variable values

because the β variables are the complicating variables that couples the constraints across

all samples. Once we fix its value, the subproblem decouples by samples. The master

problem shares the objective function from PLP. However, it contains partial constraints

of PLP. In each iteration, we solve the master problem to update the current solution

and the subproblem to generate the constraints based on the obtained solution. We then

insert the new constraints into the master problem and repeat these steps.

Supposed we use the quadruplet (l, i, xi, ai) to refer to the constraint of taking action

ai at xi on sample path l. The set of constraints contained in the master problem in the

k-th iteration is defined as Ck. We have Ck ⊂ L × I × Xi × Ai(xi), ∀k. So the master

problem is simply a LP that contains partial constraints in (2.15)-(2.16):

min
U,β

1

L

∑
l∈L

U l,β
0 (x0) (3.1)

s.t. U l
i (xi) ≥ r(xi, F

l
i , ai)−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b + δU l,β

i+1(f(xi, ai))

∀(i, xi, ai, l) ∈ Ck (3.2)

U l,β
0 (x0) ≥ r(x0, F0,A),∀l ∈ L. (3.3)

The last constraint guarantees that the master problem is well-defined in every iteration.

By following the same procedure of Proposition 1 in Chapter 2, we immediately obtain

the following proposition.

Proposition 6. ( 3.1)-( 3.2) has a finite optimal objective function value and at least one

bounded optimal solution.

48



To define the subproblem, we first consider the following LP:

min
U

1

L

∑
l∈L

U l
0(x0) (3.4)

s.t. U l
i (xi) ≥ r(xi, F

l
i , ai)−

∑
b∈Bi

β̂i+1,f(xi,ai),b∆
E,l
i ϕi+1,b + δU l

i+1(f(xi, ai))

∀(i, xi, ai, l) ∈ I \ {I − 1} × Xi ×A(xi)× L
(3.5)

U l,β
I−1(xI−1) ≥ r(xI−1, F

l
I−1, aI−1),∀(xI−1, aI−1, l) ∈ XI−1 ×A(xI−1)× L (3.6)

where β̂k
i+1,f(xi,ai),b

is the solution from the master problem in k-th iteration. This LP

is generated by fixing βk
i+1,f(xi,ai),b

= β̂k
i+1,f(xi,ai),b

in (2.15)-(2.16). Denote as r̂(xi, F
l
i , ai)

the penalized reward r(xi, F
l
i , ai) −

∑
b∈Bi

β̂i+1,f(xi,ai),b∆
E,l
i ϕi+1,b. We define the dual of

(3.4)-(3.6) as our subproblem:

max
µ

∑
l∈L

∑
i∈I

∑
xi∈Xi

∑
ai∈A(xi)

µl
xi,ai

r̂(xi, s
l
i, ai) (3.7)

s.t.
∑

a0∈A(x0)

µl
x0,a0

=
1

L
,∀l ∈ L (3.8)

∑
xi∈Xi

∑
ai∈A(xi)

1{f(xi,ai)=xi+1}µ
l
xi,ai

=
∑

ai+1∈A(xi+1)

µl
xi+1,ai+1

,

∀(i+ 1, xi+1, l) ∈ I \ {0} × Xi+1 × L (3.9)

µl
xi,ai

≥ 0,∀(l, xi, ai) ∈ L × Xi ×A(xi) (3.10)

where µl
xi,ai

, ∀(l, i, xi, ai) ∈ L × I × Xi × A(xi) are the dual variables corresponding

corresponds to the primal constraints. The objective function is the total rewards ensued

by all µl
xi,ai

, ∀(l, i, xi, ai) ∈ L × I × Xi ×Ai.

This subproblem has two kinds of constraints: the balance constraints (3.8)-(3.9) and

the bound constraints (3.10). Balance constraints (3.8)-(3.9) indicate that the sum of

the dual variables reaching a state pair (i + 1, xi+1) ∈ I \ {0} × Xi+1 equals the sum

of dual variables leaving that state pair on every sample path. For (0, x0), this sum is

equal to 1/L. Intuitively, balance constraints are analogous to the flow constraints in a

network problem. They restrict the incoming flow equals the outgoing flow for each node.

The bound constraints require that every feasible dual solution should be nonnegative.

Since s, the subproblem (3.7)-(3.10) is well-defined, i.e., it can never become infeasible or

unbounded.

Proposition 7. ( 3.7)-( 3.10) has a finite optimal objective function value and bounded

optimal solution.

In each iteration, we first solve the subproblem. The complementary slackness con-

49



ditions suggest that if µl
xi,ai

> 0, the corresponding constraint is tight; otherwise, the

constraint is redundant at the optimality. Then we select every constraint in P2LP with

its dual variable value strictly positive and insert those constraints into the master prob-

lem. The complete algorithm can be summarized below:

Algorithm 2: Constraint Sampling and Generation Algorithm

input : Initial vector β0, OBJ(β0), C0, and stopping tolerance ϵ > 0.
initialization: Set k = 0, β0 = 0, C0 = ∅
do

k = k + 1.
(i) Compute r̂k(xi, s

l
i, ai) for each (l, i, xi, si, ai) ∈ L× I ×Xi ×Ai(xi) with βk

(ii) Solve the subproblem and obtain µk

max
µ

∑
l∈L

∑
i∈I

∑
xi∈Xi

∑
ai∈A(xi)

µl
xi,ai

r̂k(xi, s
l
i, ai)

s.t.
∑

a0∈A(x0)

µl
x0,a0

=
1

L
,∀l ∈ L

∑
xi∈Xi

∑
ai∈A(xi)

1{f(xi,ai)=xi+1}µ
l
xi,ai

=
∑

ai+1∈A(xi+1)

µl
xi+1,ai+1

,

∀(i+ 1, xi+1, l) ∈ I \ {0} × Xi+1 × L
µl
xi,ai

≥ 0,∀(l, xi, ai) ∈ L × Xi ×A(xi)
(iii) Update Ck based on the dual solution µk.
(iv) Solve the master problem and obtain βk

min
U,β

1

L

∑
l∈L

U l,β
0 (x0)

s.t. U l
i (xi) ≥ r(xi, F

l
i , ai)−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b + δU l,β

i+1(f(xi, ai))

∀(i, xi, ai, l) ∈ Ck

while |Sub OBJk −Master OBJk| > ϵ;
output : Return βk

Also, we can show that Algorithm (2) is convergent.

Proposition 8. Algorithm (2) converges to the optimal solution of the LP (4.11)-(4.13)

in finite iterations.

3.4 Numerical Study

In this section, we show the effectiveness of the constraint generation approach via mer-

chant ethanol production. The basic settings of this application is from Chapter 2.

We compare our CG approach with the BCD method proposed in Chapter 2. Table

3.1 shows the comparison of dual bounds between CG and BCD in these instances. The

50



CG dual bounds are slightly worse than BCD in all instances. The percentage ratio,

which is 1 minus the ratio of CG dual bound and BCD dual bound, ranges between

−1.00% and −0.20% with an average of −0.65%.

Table 3.1: Comparison of dual bounds between CG and BCD approaches on benchmark
instances.

Instance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

UB-CG 19.95 19.46 24.20 25.58 21.97 18.77 16.04 22.34 23.34 20.78 19.12 14.72

UB-BCD 19.90 19.32 23.96 25.45 21.82 18.59 15.92 22.22 23.18 20.62 18.98 14.69

Ratio (%) -0.25 -0.72 -1.00 -0.51 -0.69 -0.97 -0.75 -0.54 -0.69 -0.78 -0.74 -0.20

Table 4.6 reports the lower bounds for these two approaches. The lower bounds from

CG are slightly better than the BCD bounds in all instances except in Mar, Oct, and

Dec. The average improvement on the lower bound is 0.16%. In the worst case (March),

the CG lower bound is 0.66% worse than BCD. In the best case (May), the improvement

is 0.74%. The optimality gap, which is one minus the ratio of lower bound and the

best known upper bound, for CG is slightly worse than the BCD with respective average

optimality gaps of 7.56% and 7.08% for each approach. CG generates comparable bounds

as the BCD approach since the difference between the results of CG and BCD are always

within 1%. However, CG generates those results with 70% BCD memory. Compared to

the 11 hours for the BCD approach, it takes 22 hours for CG to solve the problem. Table

3.3 reports the average optimality gaps, memories, and CPU times.

Table 3.2: Comparison of lower bounds between CG and BCD approaches on benchmark
instances.

Instance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LB-CG 18.64 18.01 22.66 23.87 20.28 17.20 14.62 20.55 21.54 19.06 17.68 13.47

LB-BCD 18.58 17.97 22.76 23.86 20.25 17.18 14.63 20.55 21.50 19.12 17.64 13.49

Ratio (%) 0.32 0.22 -0.44 0.04 0.14 0.11 -0.01 0.00 0.19 -0.31 0.22 -0.15

Table 3.3: Comparison of the average optimality gaps, CPU times, and memories between
CG and BCD.

Gap (%) CPU Time (hours) Memory (%)
PO-BCD 7.08 11 100
PO-CG 7.67 22 70

3.5 Conclusion

PO has been used to obtain high-quality bounds and control policies for intractable

Markov decision processes, e.g., financial and real option models. PO solves a linear

51



program which has a large number of constraints. To improve the efficiency of solv-

ing such LP, we propose a constraint generation approach. Our solution methodology

constructs a master and a subproblem to generate an iterative solution and find the vi-

olation constraints, respectively. The master problem contains a small portion of the

total constraints. The subproblem decouples according to samples. So both of them are

tractable compared to the original LP. We also show that the proposed approach is prov-

ably convergent. We demonstrate the use of our approach in merchant energy production

problems modeled as real options. The numerical results show that our approach gen-

erates comparable lower and dual bounds to the state-of-the-art methods. Our research

has potential relevance beyond option related models, e.g., for inventory/production and

capacity-investment management with demand forecast updates.

52



Chapter 4

Modeling and Algorithmic

Generalizations

4.1 Introduction

PO has been employed to obtain high quality bounds and control policies for intractable

Markov decision processes (MDPs) such as optimal stopping and merchant energy pro-

duction (Desai et al. 2012b, Yang et al. 2021). The state space of these MDPs typically

consists of a rich information component and a finite controllable component. The former

state component tracks the evolution of market information, e.g., prices and demands,

while the latter one describes the assets’ operational status. We further require the ac-

tion space to be finite and relatively small. Many applications share this common feature

when modeled as MDPs. Typical examples include financial and real option valuations

(Adkins and Paxson 2011, Boogert and De Jong 2011, Boomsma et al. 2012, Carmona

and Ludkovski 2010, Carriere 1996, Chandramouli and Haugh 2012, Cortazar et al. 2008,

Denault et al. 2013, Devalkar et al. 2011, Enders et al. 2010, Gyurkó et al. 2015, Jaillet

et al. 2004, Lai et al. 2010, Muñoz et al. 2011, Tsitsiklis and Van Roy 2001) and produc-

tion and inventory management (Heath and Jackson 1994, Iida and Zipkin 2006). This

paper focuses on extending PO to MDPs with such structures.

PO is rooted on the information relaxation and duality technique (Rogers 2002, Haugh

and Kogan 2004, Brown et al. 2010) and value function approximation approach (VFA;

see, e.g., Powell 2007, Bertsekas 2019). PO constructs a dual version of the MDP by

relaxing the hindsight information while simultaneously introducing a penalty specified

in linear VFAs to subtract the benefit of such information. It then solves a sample average

approximation to the dual MDP and obtains VFAs that can be used to obtain lower and

dual (upper) bounds, as well as a feasible operating policy. A salient feature of PO is

that it generates a dual bound that is tighter than any other RL method that employs

the same VFAs. In practice, PO typically outperforms other benchmark methods such

53



as least squares Monte Carlo (LSM; Desai et al. 2012b, Yang et al. 2021).

Despite its appeal, practical use of PO requires solving a pathwise linear program

(PLP) based on a Monte Carlo simulation for the informationally rich state component.

However, a well defined PLP requires feasible terminating decisions at the initial con-

trollable state; otherwise, it becomes unbounded. This requirement is naturally satisfied

by optimal stoppings and merchant energy production (e.g., “Stop” and “Abandon”)

but is not met by many other applications such as swing options and chooser caps and

inventory control. Besides, solving PLP typically necessitates developing specialized algo-

rithms (Chandramouli 2019, Yang et al. 2021) because commercial solvers confront severe

computational issues in complicated settings, e.g., chooser caps and swing options (Chan-

dramouli 2019) and merchant energy production (Yang et al. 2021). The state of the art

approach of solving PLP is the block coordinate descent (BCD) and constraint generation

methods proposed in Chapter 2 and 3. These techniques have limited scalability due to

their high per iteration time and space complexities.

We put forth a pseudo action scheme and a coordinate decomposition and regression

method to address the above two issues, respectively. Our pseudo action scheme adds

(lower) bound constraints to PLP by leveraging nonanticipative policies, i.e., policies that

only rely on current information. With such constraints, PLP becomes well defined for

applications that do not have terminating decisions at the controllable state. Our coor-

dinate decomposition and regression approach involves two steps: (i) Solving the PLP

dual and (ii) Recovering a primal solution based on a near optimal dual solution from

(i). Specifically, we craft algorithms that rely on coordinated decomposition, i.e., the

alternating direction method of multipliers (ADMM; Boyd et al. 2011), to solve the PLP

dual. ADMM exploits the MDP’s structures to decompose the ensuing math program-

ming model into subproblems with closed form solutions. We use least squares regression

in step (ii) to approximately enforce the complementary slackness (CS) conditions. Al-

though not having closed form solutions, step (ii) generates near optimal primal solutions

with a small portion of constraints in PLP. We provide an error bound analysis for the

proposed approach and show its asymptotic convergence property. Our technique ex-

hibits better per iteration computational complexity than both the known BCD method

and directly applying ADMM to PLP.

We demonstrate the effectiveness of our pseudo action scheme with the natural gas

storage problem (Secomandi et al. 2015a) where a direct implementation of PO is impos-

sible. The numerical results show that our technique bounds PLP in this context. The

obtained lower and dual bounds are comparable to LSM, the state of the art approach

for storage problems. We test the performance of ADMM and regression in merchant

ethanol production modeled as a compound switching and timing option (Yang et al.

2021, Guthrie 2009). For realistic instances in literature, our approach generates almost

the same results as the state of the art approach for PLP, i.e., the BCD approach, but

54



with substantially less (10%) memory and (50%) run time. Our algorithm can also deal

with larger instances that are out of the reach of BCD, achieving near optimal perfor-

mance and dominating LSM, a standard competitor in this case, in terms of solution

quality. These results suggest that the insights in Yang et al. (2021) also hold for larger

instances.

Though we focus on natural gas storage and ethanol production in this paper, our

research is potentially relevant for other merchant operations contexts and related real

option models (Secomandi and Seppi 2014, 2016), including oil and natural gas extraction

fields, liquefied natural gas facilities, copper mines, and renewable energy plants (Brennan

and Schwartz 1985, Smith and McCardle 1998, 1999, Cortazar et al. 2008, Rømo et al.

2009, Enders et al. 2010, Lai et al. 2011, Arvesen et al. 2013, Denault et al. 2013, Hinz

and Yee 2018, Zhou et al. 2019).

We present the considered MDP and PO in §4.3. We introduce the pseudo action

scheme and our solution approach in §4.4 and §4.5, respectively. We provide a convergence

and error bound analyses in §4.6. The numerical results are reported in §4.7. We conclude

in §4.8.

4.2 Literature Review

Our work first contributes to PO literature where PO has been applied to optimal stop-

ping (Desai et al. 2012b) and merchant energy production (Yang et al. 2021). These two

applications have terminating decisions (“stop” and “abandon”) in their feasible action

sets and thus can be naturally modeled as PLPs. Our paper extends PO to new appli-

cations that do not share the same feature in the action set, e.g., the energy storage and

multiple stopping models. This extension significantly broadens the applicability of PO.

The solution approach in this paper substantially reduces the computational complex-

ities, particularly the space complexity, of solving PLP with the extant approaches in the

literature. Desai et al. (2012b) apply a commercial linear programming solver (CPLEX)

to optimize their PO model readily. Chandramouli (2019) approximately solves his PO

linear program as a sequence of single stopping PO models formulated and optimized as

in Desai et al. (2012b). Yang et al. (2021) uses a block coordinate descent method (BCD)

to solve the resulting PLP in merchant energy production. Aside from optimal stopping

(Desai et al. 2012b), both Yang et al. (2021) and Chandramouli and Haugh (2012) report

the difficulty of solving large scale PLP in their applications. The main bottleneck of

solving PLP is the excessive memory requirement. Our work alleviates this difficulty by

providing a more efficient algorithm than their approaches.

The literature on ADMM is vast but combining ADMM with PO is new. The ADMM

we use can be viewed as a multi-block ADMM, which does not converge in general (Chen

et al. 2016). Nevertheless, the structure of our formulation satisfies one of the sufficient

55



conditions in Chen et al. (2016). Under such a condition, our ADMM is essentially an

extension of the 2-block ADMM. Thus all existing convergence results still hold, i.e.,

the linear global convergence of ADMM stands in our context (Chen et al. 2016, Tao

and Yuan 2012). Besides, our work shows that ADMM can employ the MDP structure

embedded in the state space in the PO context. The utilization of the structure leads to

a decoupling of the ADMM formulation and closed-form updating formulas in each step.

We are not the only ones who apply ADMM to an LP. Wang and Shroff (2017)

also do that. Our approach differs from their work in two ways. First, our ADMM

formulation is different from theirs. We treat the LP constraints as feasible sets for the

variables, whereas Wang and Shroff (2017) dualize the equality constraints. Second, we

decouple the subproblems in each updating step according to the MDP structure and

solve the decoupled subproblems with closed-form expressions. In contrast, Wang and

Shroff (2017) tried to find an approximate solution to the subproblems via the first order

method. Applied to our setting, the approach of Wang and Shroff (2017) would yield a

methodology with inferior computational complexity compared to ours.

As far as we know, our primal solution recovery approach is novel in the literature.

Existing primal solution recovery methods mainly focus on recovering primal solutions

for the dual subgradient method via an averaging scheme (Sherali and Choi 1996, Larsson

et al. 1999, Barahona and Anbil 2000, Nedić and Ozdaglar 2009, Nesterov and Shikhman

2018, Gustavsson et al. 2015). On the other hand, our approach provides a way to recover

a primal solution with a near optimal dual solution from ADMM. Though we directly

solve the regression in this paper, our work motivates additional research to reduce the

computational burden of the regression with advanced algorithms.

4.3 Preliminaries

We formulate the considered MDP and its dual version in §4.3.1 and §4.3.2, respectively.
We introduce PO in §4.3.3. The regression and the greedy policy are discussed in §4.3.4.

4.3.1 Markov Decision Process

We focus on a discrete time MDP with finite horizons. The sequential decision process

is over I stages. The stage number indexed by i is an element of the stage index set

I := {0, ..., I−1}. The state of the considered MDP consists of both the rich information

component and the controllable component. For simplicity, we refer to the former one

as the exogenous state and the latter as the endogenous state. The endogenous state

component in stage i is denoted as xi. It belongs to a small and finite set Xi. The

corresponding exogenous state component is Fi. It contains high dimensional information

that describes the evolution of dynamic information. We denote Fi as the feasible set

56



of Fi. Typical examples of applications that can be formulated as this MDP are the

valuation of energy assets. In those applications, the endogenous state describes the

asset’s status, such as the discretized inventory level of the energy storage facility and

the operational mode of the plant in energy production. The exogenous state component

tracks the evolution of the energy commodity’s futures prices in the wholesale market.

At each stage, the decision maker chooses an action ai based on xi. We denote as

Ai(xi) the feasible action set for xi ∈ Xi, i.e., ai ∈ Ai(xi). Each action ai incurs an

immediate payoff defined by the function r(xi, Fi, ai) : Xi ×Fi ×Ai(xi) → R.
The dynamics of the endogenous state component is governed by the transition func-

tion f(xi, ai) : Xi × A(xi) → Xi+1. The evolution of Fi is governed by a predetermined

stochastic process such as the geometric Brownian motion. A fundamental assumption

for the transitions of Fi ∈ Fi is that it is independent of the decision ai. This assumption

is also known as the small player assumption, i.e., the decision maker does not impact

the entire market.

The decision rule Di : Xi × Fi → A(xi) is a mapping from the state space to the

action set for each stage i. A policy π is a collection of these decision rules, i.e., π =

{D0, D1, ..., DI−1}. We let Π be the set of all feasible policies. We use a constant risk-

free discount factor δ ∈ (0, 1) to calculate the current value of cash flows in the future.

Suppose the initial state is (x0, F0), the optimal policy π∗ that maximizes the expected

total cash flows can be obtained by solving:

max
π∈Π

E
[ I−1∑

i=0

δir(xi, Fi, a
π
i )

∣∣∣∣x0, F0

]
, (xi, Fi, a

π
i ) ∈ Xi ×Fi ×A(xi) (4.1)

where E is the expectation w.r.t. Fi. The expectation and stochastic process that governs

the transition of Fi are typically under the risk neutral measure (Shreve 2004) in financial

and real option valuations. The stochastic dynamic programming (SDP) formulation of

(4.1) for each (i, xi, Fi) ∈ I × Xi ×Fi is

Vi(xi, Fi) = max
ai∈A(xi)

{
r(xi, Fi, ai) + δE

[
Vi+1(f(xi, ai), Fi+1)

∣∣∣∣Fi

]}
(4.2)

where the terminal conditions are VI(xI , FI) = 0, ∀(xI , FI) ∈ XI × FI . (4.2) is compu-

tationally intractable due to the high dimensional Fi, which is known as the “curse of

dimentionality” (Powell 2007).

4.3.2 Information Relaxation and Duality Techniques

There is also a dual version of (4.1) in which decisions are made with information on

the realized random variables in the future, but the benefit of this foresight is entirely

eliminated by penalties (Brown et al. 2010). The dual MDP generates a dual (upper)

57



bound on the optimal policy value of (4.1).

Let F̄ be a sample path that includes exogenous states from stages 0 through I − 1

starting with F0 (we suppress this dependence from our notation for ease of exposition).

The set F̄ is the collection of all such paths. We denote by Fi(F̄ ) the stage i exogenous

state corresponding to sample path F̄ . The dual policy π̄ is the collection of decision

rules {D̄π̄
i , i ∈ I}, where D̄π̄

i : Xi × F̄ → Ai(xi) prescribes a feasible action for stage i,

endogenous state xi, and sample path F̄ . The set of such policies is Π̄.

Ideal penalties depend on the value function associated with (4.2). Consider stage

i ̸= I − 1 and suppose we take feasible action ai for endogenous state xi and sample

path F̄ . The ideal penalty is the additional value of knowing the stage i+ 1 information

Fi+1(F̄ ) at stage i relative to only having knowledge of the information Fi(F̄ ) at this

stage, which corresponds to the discounted difference

δ
(
Vi+1

(
f(xi, ai), Fi+1(F̄ )

)
− E[Vi+1 (f(xi, ai), Fi+1) |Fi(F̄ )]

)
. (4.3)

We use (4.3) to reduce the cash flow that ensues in the stage i ̸= I − 1 from applying the

decision rule D̄π̄
i to the pair (xi, F̄ ). The resulting dual MDP is

E

max
π̄∈Π̄

{ ∑
i∈I\{I−1}

δi
[
r(xπ̄

i , si(F̄ ), Āπ̄
i )− δ

(
Vi+1(f(x

π̄
i , Ā

π̄
i ), Fi+1(F̄ ))

−E[Vi+1(f(x
π̄
i , Ā

π̄
i ), Fi+1)|Fi(F̄ )]

)]
+ δI−1r(xπ̄

I−1, sI−1(F̄ ), Āπ̄
I−1)

}∣∣∣∣x0, F0

]
,

(4.4)

where we use the shorthand notation D̄π̄
i instead of D̄π̄

i (x
π̄
i , F̄i). This model differs from

(4.1) in two key ways: (i) The maximization is inside the expectation because dual poli-

cies depend on sample paths and (ii) its objective function is the sum of the discounted

ideally penalized rewards and the last stage reward. Let V0(x0, F0) be the value function

for stage 0 and the given state (x0, F0), which is obtained in a manner analogous to (4.2)

for this stage and state. At optimality the objective function (4.4) equals V0(x0, F0) for

each sample path (Brown et al. 2010). It follows that (4.1) and (4.4) are equivalent at

the optimality.

4.3.3 PO

The dual model (4.4) is intractable because (i) the ideal penalties are unknown, and (ii)

the outer expectation is impossible to evaluate exactly in general. We formulate PO and

its associated linear program to deal with these two issues.

PO addresses (i) by replacing the value function Vi+1(f(xi, ai), Fi+1) with a linear

VFA
∑B

b=1 ϕi+1,b(Fi+1(F̄ ))βi+1,f(xi,ai),b, where ϕi+1,b(·) is the basis function in set Φi+1 =

58



{ϕi+1,1, ϕi+1,2, ..., ϕi+1,B} for stage i + 1, and βi+1,f(xi,ai),b ∈ R is the weight associated

with the b-th basis function for the stage and state pair (i+1, f(xi, ai)). Let ∆
E
i ϕi+1,b :=

δ{ϕi+1,b(Fi+1(F̄ ))− E[ϕi+1,b(Fi+1)|Fi(F̄ )]}, a good dual penalty based on the linear VFA

is ∑
b∈Bi

βi+1,f(xi,ai),b∆
E
i ϕi+1,b. (4.5)

The conditional expectation in (4.5) needs to be evaluated. Approximating them by

sample average approximations is a possibility (Desai et al. 2012b) but introduces an

error in the dual bound estimate. We thus choose basis functions and stochastic models

for the evolution of the vector of forward curves that satisfy Assumption 3, which is

common in the literature (see, e.g., Glasserman and Yu 2004, Nadarajah et al. 2017 and

references therein)

Assumption 3. The expectation E[ϕi+1,b(Fi+1)|Fi(F̄ )] is available in an efficiently com-

putable closed form for each i and i+ 1 ∈ I \ {I − 1} and Fi ∈ Fi.

We obtain PO by replacing the ideal dual penalty with (4.5), and minimizing the

objective value over β, :

min
β

{
E
[
max
π∈Π

N−1∑
i=0

δi
(
r(xi, Fi(F̄ ), aπi )−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E
i ϕi+1,b

)∣∣∣∣x0, F0

]}
,

(xi, Fi(F̄ )) ∈ Xi ×Fi, a
π
i ∈ A(xi) (4.6)

The minimization in (4.6) suggests that PO generates the tightest dual bound than any

other dual approaches using VFA in the span of the set of basis functions by construction.

Besides (4.6) is essentially an unconstrained convex optimization over β because operators

min{·} and E[·] preserve the convexity of the piecewise linear function (Desai et al. 2012b).

Computing the expectation in (4.6) is challenging in general. However the value of

(4.6) can be approximated by Monte Carlo simulation conveniently. Consider generating

L random sample paths from the underlying stochastic process. For any fixed β, the

sample average of the maximal policy value on each sample is a good proxy of the value

of (4.6) with a sufficiently large L, so the sampled PO used to approximate (4.6) is defined

as

min
β

{
1

L

∑
l∈L

[
max
π∈Π

I−1∑
i=0

δi
(
r(xl

i, F
l
i , a

π,l
i )−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b

)]}
,

(xl
i, F

l
i , l) ∈ Xi ×Fi × L, aπ,li ∈ A(xl

i) (4.7)

where L = {1, 2, ..., L} is the set of sample paths. We initialize every sample path as

(x0, F0), i.e., (x
l
0, F

l
0) := (x0, F0),∀l ∈ L. Note that the maximization in (4.7) for each

sample path is deterministic. For a fixed β and sample path l, we can denote the policy

59



value for state xi as U
l.β
0 (x0), i.e., for (i, xi, F

l
i , l) ∈ I \ {I − 1} × Xi ×Fi × L

U l,β
0 (x0) = max

π∈Π

I−1∑
i=0

δi
(
r(xl

i, F
l
i , a

π,l
i )−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b

)
(4.8)

By substituting the maximization in (4.7) with U l,β
0 (x0) on each sample path, (4.7) can

be equivalently expressed as solving

min
U,β

1

L

∑
l∈L

U l,β
0 (x0) (4.9)

with the dual value variable U l
i (xi) defined by

U l,β
i (xi) = max

ai∈A(xi)

{
r(xi, F

l
i , ai)−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b + δU l,β

i+1(f(xi, ai))

}
,

(i, xi, F
l
i , l) ∈ I × Xi ×Fi × L (4.10)

where U l,β
i (xi) is the dual value function for each (i, xi, l) ∈ I × Xi × L. The boundary

conditions for (4.10) is U l,β
I (xI) = 0, (xI , l) ∈ XI ×L. We can reformulate (4.9)-(4.10) as

the following linear program (Manne 1960):

min
U,β

1

L

∑
l∈L

U l,β
0 (x0) (4.11)

s.t. U l
i (xi) ≥ r(xi, F

l
i , ai)−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b,+δU l,β

i+1(f(xi, ai))

∀(i, xi, ai, l) ∈ I \ {I − 1} × Xi ×A(xi)× L
(4.12)

U l,β
I−1(xI−1) ≥ r(xI−1, F

l
I−1, aI−1),∀(xI−1, aI−1, l) ∈ XI−1 ×A(xI−1)× L (4.13)

(4.11)-(4.13), known as PLP, is well defined when there is a nonpenalized action in A(x0)

(see Proposition 1 in Yang et al. 2021). This condition is naturally satisfied in optimal

stopping (“Stop”) and merchant energy production (“Abandon”). Nevertheless, many

applications, e.g., multiple stoppings and inventory control, do not have such action at

x0. So (4.11)-(4.13) becomes unbounded in those cases. We will discuss the reason for

this issue and propose a pseudo action scheme to fix it in §4.4.

4.3.4 Unbiased Upper Bound and Greedy Lower Bound

The optimal objective function value of (4.11) is a biased estimate of (4.6) due to the

finite sample paths of the vectors of forward curves used in practice. An unbiased dual

bound can be obtained with an independent set of Monte Carlo simulation sample paths

60



and the solution of the VFA coefficient vector βPLP from (4.11)-(4.13). This unbiased

estimation can be performed by solving an analogy of (4.11)-(4.13) with the new sample

paths but fixing the value of β as βPLP.

We use the common greedy approach in the literature (see, e.g., Powell 2007, §6.4) to
obtain a feasible operating policy and a lower bound. Fixing a VFA weight vector β, the

greedy decision rule for the pair (i, xi) ∈ I × Xi is

argmax
ai∈Ai(xi)

{
r(xi, Fi, ai) + δ

∑
b∈Bi

βi+1,f(xi,ai),bE[ϕi+1,b(Fi+1)|Fi]

}
,

with ties broken in some prespecified way. To estimate its associated lower bound, we

employ the same set of sample paths of the vectors of forward curves used to obtain an

unbiased dual bound estimate and apply the greedy policy to the states visited along

each such path starting from the initial stage and state. The average of the sum of the

resulting discounted rewards is an unbiased lower bound estimate.

We determine VFAs for the lower bound with the vector UPLP obtained from PLP

because βPLP may lead to a weak lower bound estimate (Desai et al. 2012b). Following

Desai et al. (2012b), we obtain the vector βi,xi
:= (βi,xi,b, b ∈ {0, 1, 2, ..., Bi}) via solving

the regression

min
βi,xi

1

L

∑
l∈L

(
U l,βPLP

i (xi)−
∑
b∈Bi

βi,xi,bϕi,b(F
l
i )

)2

.

where ϕi,b ∈ {1} ∪ Φi. We employ these resulting optimal solutions to specify VFAs and

consequently obtain a greedy policy, from which we estimate a lower bound.

4.4 Pseudo Action Scheme

As discussed in §4.3.3, the boundedness of (4.11)-(4.13) relies on the feasibility of ter-

minating actions that do not incur dual penalties at x0; otherwise, the optimal value

of (4.11) goes to negative infinity. The unboundedness issue is mainly due to the sam-

ple average approximation to the expectation in (4.6). With finite sample paths, the

average of the coefficient for each β1,x1,b, b ∈ B, i.e., 1/L∑L
l=1∆

E,l
0 ϕ1,b, is not strictly

0. Since β1,x1,b, ∀b ∈ B is a free variable, there exists a β1,x1 := {β1,x1,b, b ∈ B} vector

for each x1 ∈ X1 that makes the corresponding averaged dual penalty goes to positive

infinity. So the averaged penalized payoff for every action becomes negative infinity. If

U l,β
0 (x0),∀l ∈ L does not have any lower bound, the sample average, 1/L

∑L
l=1 U

l,β
0 (x0),

becomes unbounded. Appendix B.2 illustrates this issue with a simple example.

We propose a pseudo action scheme to fix the issue. The main idea is to add a pseudo

terminating action to A(x0) with its payoff determined by nonanticipative policies. Since

61



the nonanticipative policy does not benefit from any foresight information, the payoff of

the action following such policy incurs 0 dual penalties. By setting its payoff equal to the

payoff of a nonanticipative action sequence from stage 0 to I − 1, the pseudo terminating

action provides a lower bound for each U l
0(x0), l ∈ L.

Specifically, we label as A both the pseudo action and the associated pseudo terminal

state. The extended endogenous state set is defined as X̄i := Xi

⋃{A} for i ∈ I. The

new feasible action set is denoted as Āi(xi). We have Ā0(x0) := A0(x0)
⋃{A}; Āi(xi) :=

Ai(xi), if (i, xi) ∈ I \ {0}×Xi; Āi(xi) := {A}, if (i, xi) ∈ I \ {0}× {A}. The endogenous
state transition function for (i, xi, ai) ∈ I × X̄i × Āi is

f̄(xi, ai) :=



f(xi, ai), if (xi, ai) ∈ Xi ×Ai(xi),

A, if (x0, a0) ∈ X0 × {A},

A, if (xi, ai) ∈ {(A,A)}.

(4.14)

(4.14) suggests that the pseudo state A can only be reached by taking A at x0. Once the

state is reached, there is no other way to transit to states in Xi.

Let πs be a nonanticipative policy and
∑I−1

i=0 δ
ir(xπs

i , Fi, a
πs
i ) the corresponding policy

value at (x0, F0). Then we define the payoff for the pseudo action A at state (x0, F0) and

(A, Fi) as
∑I−1

i=0 δ
ir(xπs

i , Fi, a
πs
i ) and 0, respectively. So the payoff function, denoted as

r̄(xi, Fi, ai), for each (xi, Fi, ai) ∈ X̄i ×Fi × Āi(xi) is

r̄(xi, Fi, ai) :=



r(xi, Fi, ai), if (xi, Fi, ai) ∈ Xi ×Fi ×Ai(xi),

∑I−1
j=0 δ

jr(xπs
j , Fj, a

πs
j ), if (xi, Fi, ai) ∈ X0 ×F0 × {A},

0, if (xi, Fi, ai) ∈ {A} × Fi × {A}.

(4.15)

Denote as V̄i(xi, Fi) the value function for state (xi, Fi) in the extended model. The

corresponding SDP is

V̄i(xi, Fi) = max
ai∈Āi(xi)

{
r̄(xi, Fi, ai) + δE

[
V̄i+1(f̄(xi, ai), Fi+1)

∣∣∣∣Fi

]}
, (4.16)

with the boundary condition V̄I(xI , FI) = 0. The dual SDP becomes

min
β

E[uF,β
0 (x0)|x0, F0] (4.17)

62



where the dual value variables ul,β
i (xi) are defined by the following equations

ul,β
i (xi) = max

ai∈Āi(xi)

{
r̄(xi, s

l
i, ai)− 1(f̄(xi, ai) ∈ Xi+1)

∑
b∈Bi

βi+1,f̄(xi,ai),b∆
E,l
i ϕi+1,b

+ δul,β
i+1(f̄(xi, ai))

}
, (4.18)

where ∀(i, xi) ∈ I × X̄i. The boundary conditions are ul,β
I (xI) = 0. The PLP associated

with PO (4.17) is

min
u,β

1

L

∑
l∈L

ul,β
0 (x0) (4.19)

s.t. ul,β
i (xi) ≥ r̄(xi, F

l
i , ai)− 1(f̄(xi, ai) ∈ Xi)

∑
b∈Bi

βi+1,f̄(xi,ai),b∆
E,l
i ϕi+1,b,+δul,β

i+1(f(xi, ai))

∀(i, xi, ai, l) ∈ I \ {I − 1} × X̄i × Ā(xi)× L
(4.20)

ul,β
I−1(xI−1) ≥ r̄(xI−1, F

l
I−1, aI−1),∀(xI−1, aI−1, l) ∈ X̄I−1 × Ā(xI−1)× L (4.21)

A major difference between (4.11)-(4.13) and (4.19)-(4.21) is that there is an indicator

function in front of the dual penalty in (4.20). This indicator function puts a null penalty

on the payoff when the action is A. The constraints associated with the pseudo actions

provide valid lower bounds on ul,β
0 (x0). Furthermore, (4.17) and (4.19) have the same

optimal objective function value since the nonanticipative policy is dominated by the

optimal policy. These properties are formally stated in Proposition 9.

Proposition 9. (4.17) is equivalent to (4.6). Moreover, the associated PLP (4.19)-

(4.21) is bounded from below and converges to the optimal objective function value of

(4.17) almost surely.

Proposition 9 also suggests that the optimal objective function value of (4.19) and

(4.21) is independent of the nonanticipative policy used. That is, we can use either a

static policy or a dynamic policy to bound PLP. Although the values of these two policies

are different, the two resulting PLPs have the same optimal objective function value.

4.5 Alternating Direction Method of Multipliers and

Primal Solution Recovery

It is challenging to solve (4.19)-(4.21) because: (i) PLP is potentially ill conditioned due

to the colinearity among coefficient columns of β variables; (ii) the size of PLP is large

in practical instances. The former issue is well solved by applying principal component

63



analysis (PCA) to the coefficient matrix of β (please see Yang et al. 2021 for a detailed

discussion on the ill conditioning and the PCA approach). We focus on dealing with

the later issue by developing an algorithm that features low computational complexities

in this section. The proposed method first solves PLP dual and then recovers a primal

solution.

In §4.5.1, we introduce an ADMM reformulation of PLP dual. We then discuss the

primal solution recovery approach in §4.5.2.

4.5.1 ADMM Reformulation

Despite the difficulty of solving (4.19)-(4.21) directly, its dual problem exhibits a decom-

position structure. We exploit this structure via the ADMM approach. To illustrate, we

start from PLP dual:

max
µ

∑
l∈L

∑
i∈I

∑
xi∈X̄i

∑
ai∈Ā(xi)

µl
xi,ai

r̄(xi, F
l
i , ai) (4.22)

s.t.
∑

a0∈Ā(x0)

µl
x0,a0

=
1

L
,∀l ∈ L (4.23)

∑
xi∈X̄i

∑
ai∈Ā(xi)

1f̄(xi,ai)=xi+1
µl
xi,ai

= δ
∑

ai+1∈Ā(xi+1)

µl
xi+1,ai+1

,

∀(i+ 1, xi+1, l) ∈ I × X̄i+1 × L (4.24)∑
l∈L

∑
i∈I

∑
xi∈X̄i

∑
ai∈Ā(xi)

1f̄(xi,ai)=xi+1
∆E,l

i ϕi+1,bµ
l
xi,ai

= 0,

∀(i+ 1, xi+1, b) ∈ I \ {I − 1} × Xi+1 × Bi+1

(4.25)

µl
xi,ai

≥ 0,∀(l, xi, ai) ∈ L × X̄i × Ā(xi). (4.26)

The decision variable µl
xi,ai

in (4.22)-(4.26) corresponds to the endogenous state-action

pair (xi, ai) ∈ X̄i × Ā(xi) on each sample path l ∈ L. The objective function is the total

payoffs weighted by µl
xi,ai

,∀(l, i, xi, ai) ∈ L × I × X̄i × Ā(xi).

The PLP dual contains three kinds of constraints. We refer them as balance con-

straints (4.23)-(4.24), strong duality constraints (4.25), and nonnegativity constraints

(4.26). The balance constraints suggest that the sum of the dual variables reaching the

pair (i + 1, xi+1) ∈ I \ {0} × X̄i+1 equals the sum of dual variables leaving that pair on

every sample path. For (0, x0), the summation is equal to 1/L. Intuitively, the balance

constraints are analogous to flow constraints in a network problem, which restrict the

incoming flow equals the outgoing flow for each node. The strong duality constraints

(4.25) suggest that the sum of coefficients weighted by µl
xi,ai

for each primal variable

64



βi+1,xi+1,b over all samples is 0. (4.25) enforces the strong duality property (Brown et al.

2010, Theorem 2.1 and 2.2) of the dual bound in a finite sample space L. The constraint
ensures that the weighted sum of penalties is 0, so the optimal dual bound equals the

optimal policy value of the MDP in L.

To simplify the exposition, (4.22)-(4.26) can be written in a compact matrix form

max
µ

µ⊤r̄ (4.27)

s.t. Aµ = d; (4.28)

Cµ = 0; (4.29)

µ ≥ 0; (4.30)

where µ is the variable vector defined as µ := (µl
xi,ai

, (l, xi, ai) ∈ L × X̄i × Ā(xi)). r̄ is

the payoff vector r̄ := (r(xi, F
l
i , ai), (l, i, xi, ai) ∈ L × I × X̄i × Ā(xi)). A and d are the

coefficient matrix for µ and RHS of (4.23)-(4.24), respectively. C is the coefficient matrix

in (4.25).

To derive an ADMM reformulation for (4.27)-(4.30), we first duplicate the dual vari-

able µ as µ1, µ2 and µ3, and set each of these duplicates satisfying one of the three

constraints, respectively. So the respective domains of µ1, µ2 and µ3 become the affine

spaces defined by (4.28)-(4.30). To make the new formulation equivalent to (4.27)-(4.30),

we add constraints to force µ1, µ2, and µ3 to equal each other. Specifically, suppose we

use µ1 in (4.28), µ2 in (4.29), and µ3 in (4.30), the ADMM reformulation of (4.27)-(4.30)

is

min
µ1,µ2,µ3

f(µ1) + g(µ2) + h(µ3) (4.31)

s.t. A1µ1 + A2µ2 + A3µ3 = 0 (4.32)

µ1 ∈ P ; µ2 ∈ Q; µ3 ∈ R (4.33)

where A1 := [I, 0]⊤, A2 := [0, I]⊤, A3 := [−I,−I]⊤, P := {µ1 : Aµ1 = d}, Q := {µ2 :

Cµ2 = 0}, and R := {µ3 : µ3 ≥ 0}. h(µ3) is defined as h(µ3) := −µ⊤
3 r. f(µ1) and g(µ2)

are the respective indicator functions of P and Q:

f(µ1) =

0 µ1 ∈ P
+∞ else

g(µ2) =

0 µ2 ∈ Q
+∞ else

(4.34)

(4.27)-(4.30) and (4.31)-(4.33) are equivalent because the optimal solution to the former

one must also optimally solves the latter one. (4.31)-(4.33) share the same spirit of the

consensus ADMM (Boyd et al. 2011, §7). The main difference between our reformulation

and the consensus ADMM is that each duplicate has a different domain in our setting .

65



By dualizing (4.32) with Lagrangian multipliers y := [y1, y2] and adding a regulariza-

tion term amplified by a penalty parameter ρ > 0, the augmented Lagrangian function

for (4.31)-(4.33) is

Lρ(µ1, µ2, µ3, y) := f(µ1)+g(µ2)+h(µ3)+y⊤(A1µ1+A2µ2+A3µ3)+ρ ∥A1µ1 + A2µ2 + A3µ3∥22
(4.35)

ADMM consists of iterations:

µk+1
1 = argmin

µ1∈P
Lρ(µ1, µ

k
2, µ

k
3, y

k) (4.36)

µk+1
2 = argmin

µ2∈Q
Lρ(µ

k+1
1 , µ2, µ

k
3, y

k) (4.37)

µk+1
3 = argmin

µ3∈R
Lρ(µ

k+1
1 , µk+1

2 , µ3, y
k) (4.38)

yk+1 = yk + ρ(A1µ
k+1
1 + A2µ

k+1
2 + A3µ

k+1
3 ) (4.39)

where (µk
1, µ

k
2, µ

k
3, y

k) is the value of (µ1, µ2, µ3, y) in the k-th iteration. (4.36)-(4.38) min-

imize over µ1, µ2 and µ3 respectively while fixing other variables’ values. The Lagrangian

multipler is updated in (4.39).

The affine spaces P , Q, and R in (4.36)-(4.39) have decomposition structures. Specif-

ically, P decouples by samples because each balance constraint only involves decision

variables on the same sample path. In other words, (4.28) essentially describes L inde-

pendent flow networks. Q decouples according to the pair (i, xi) ∈ I×X̄i. To see this, we

first partition (4.29) into
∑

i∈I |Xi| groups according to (i, xi). We can do this because

there is no common variables in any two different groups of constraints. That is, for each

pair (i, xi) ∈ I × Xi, the (i, xi)-th group strong duality constraints exclusively contain

dual variables µl
xi−1,ai−1

satisfying f(xi−1, ai−1) = xi for all l ∈ L. Finally, R, i.e., the

nonnegative constraint (4.26), decouples by both samples and endogenous states because

it holds for every dual variable.

(4.36), (4.37) and (4.38), which are essentially orthogonal projections onto P , Q
and R, also decouple according to samples, endogenous states, and both samples and

endogenous states, respectively. Furthermore, these updates have closed form expressions.

Specifically, (4.36) requires solving the quadratic programming (QP):

min
µ1

∥∥µ1 − µk
3 + yk1

∥∥2
2

(4.40)

s.t. Aµ1 = d. (4.41)

(4.40) is a squared 2-norm so it decouples by samples. (4.41) also decouples by samples

as discussed above. Thus, we can solve (4.40)-(4.41) optimally by solving L sample-wise

QPs separately. Suppose the sample-wise component in A is Al, i.e., Al is the coefficient

66



matrix of the dual variable vector µl
1 := (µl

1,xi,ai
, (xi, ai) ∈ X̄i×Āi) for a fixed l ∈ L. The

sample-wise QP is

min
µl
1

∥∥∥µl
1 − µk,l

3 + yk,l1

∥∥∥2
2

(4.42)

s.t. Alµl
1 = dl; (4.43)

where dl, µk,l
2 and yk,l1 are the corresponding sample-wise components in d, µk

2 and yk1 ,

respectively. The optimal solutions to (4.42)-(4.43) for all l ∈ L consist an optimal

solution to (4.40)-(4.41).

(4.42)-(4.43) indeed have a closed form solution because (i) Al is identical on different

sample paths, i.e., Al = Al′ ∀l, l′ ∈ L, and (ii) Al is of full row rank. (i) is true because

Al describes the transition of xi, which is independent of the sample paths. We show (ii)

in the following lemma.

Lemma 2. Al, ∀l ∈ L has full row rank

Based on the decomposable structure of (4.40)-(4.41) and the features of Al, (4.40)-

(4.41) have the following closed form solution.

µl
1 = zl,k1 − Al,⊤(AlAl,⊤)−1(Alzl,k1 − dl),∀l ∈ L (4.44)

where zl,k1 := µl,k
3 − yl,k1 . Since the inverse (AlAl,⊤)−1 does not change during iterations,

it can be calculated in advance and stored in cache.

The projection (4.37) requires solving

min
µ2

∥∥µ2 − µk
3 + yk2

∥∥2
2

(4.45)

s.t. Cµ2 = 0. (4.46)

which decouples by endogenous states due to the decomposition of the objective function

and (4.46). Analogous to the previous projection, (4.45)-(4.46) also have closed form

solutions for the decoupled QPs. Let Ci,xi
denote the coefficient matrix in (4.46) for

the variable vector µ2,i,xi
:= (µl

2,xi−1,ai−1
, s.t. f(xi−1, ai−1) = xi, ∀(i − 1, xi−1, ai−1) ∈

I \ {0} × Xi ×A(xi)). The decoupled Q for (4.45)-(4.46) is

min
µ2,i,xi

∥∥µ2,i,xi
− µk

3,i,xi
+ yk2,i,xi

∥∥2
2

(4.47)

s.t. Ci,xi
µ2,i,xi

= 0; (4.48)

where µk
3,i,xi

and yk2,i,xi
are the corresponding state-wise components in µk

3 and yk2 , respec-

tively. Assumption 4 imposes a property on Ci,xi
.

Assumption 4. Ci,xi
has full row rank for every (i, xi) ∈ I \ {0} × Xi.

67



This assumption is mild because we can always remove correlated rows in Ci,xi
without

changing the optimal objective value of PLP, which is formally stated in the following

lemma:

Lemma 3. Suppose Ci,xi
is rank deficient and C ′

i,xi
is obtained by deleting linear cor-

related rows from Ci,xi
. Then the optimal objective value of PLP dual stays the same if

Ci,xi
is replaced by C ′

i,xi
.

With Assumption 4 and its decomposition structures, (4.45)-(4.46) can be solved in

closed forms

µ2,i,xi
= C⊤

i,xi
(Ci,xi

C⊤
i,xi

)−1Ci,xi
zk2,i,xi

,∀(i, xi) ∈ I \ {0} × Xi (4.49)

where zk2,i,xi
:= µk

3,i,xi
− yk2,i,xi

. In practice, the ill conditioning of Ci,xi
may influence the

accuracy of the matrix inversion in (4.49). To deal with this issue, we apply PCA to each

C⊤
i,xi

to orthogonalize the columns. It can be shown that this preconditioning procedure

will not change the optimal objective function value (see more details in Yang et al. 2021).

The last projection is

min
µ3

− µ⊤
3 r +

ρ

2

∥∥µk+1
1 − µ2 + yk1

∥∥2 + ∥∥µk+1
3 − µ2 + yk2

∥∥2 (4.50)

s.t. µ3 ≥ 0; (4.51)

Since the feasible region is a nonnegative orthant, the closed-form solution is simply a

nonnegative truncation of the optimal solution to unconstrained optimization (4.50), i.e.,

µ3 =
1

2
(
r

ρ
+ µk+1

1 + µk+1
2 + yk1 + yk2)

+. (4.52)

which clearly can be computed elementwisely. We summarize the closed-form updates

(4.44), (4.49) and (4.52) in Proposition 10. The complete algorithm is summarized in

Algorithm 3.

Proposition 10. The ADMM iterations (4.36)-(4.38) have respective closed-form solu-

tions (i)-(iii):

(i) µl,k+1
1 = zl,k1 − Al,⊤(AlAl,⊤)−1(Alzl,k1 − dl),∀l ∈ L

(ii) µk+1
2,i,xi

= C⊤
i,xi

(Ci,xi
C⊤

i,xi
)−1Ci,xi

zk2,i,xi
,∀(i, xi) ∈ I \ {0} × Xi

(iii) µl,k+1
3,xi,ai

=
1

2
(
r(xi, ai, si)

ρ
+ µk+1

1 + µk+1
2 + yk1 + yk2)

+,∀(l, i, xi, ai) ∈ L × I × X̄i × Ā(xi)

The inputs to Algorithm 3 are the coefficient matrices Al and Ci,xi
, the coefficient

vector r̄ in the objective function, the RHS of constraints d, the stopping tolerance ϵ,

68



Algorithm 3: Decoupled ADMM

input : Ci,xi
,∀(i, xi) ∈ I \ {0} × Xi; A

l,∀l ∈ L;
(Ci,xi

C⊤
i,xi

)−1,∀(i, xi) ∈ I \ {0} × Xi; (A
lAl,⊤)−1, ∀l ∈ L; stopping

tolerance ϵ > 0; ρ > 0.
initialization: Set k = 0, (µ1

1, µ
1
2, µ

1
3, y

1
1, y

1
2) = (0, 0, 0, 0, 0)

do

k = k + 1.

(i) µl,k+1
1 = zl,k1 − Al,⊤(AlAl,⊤)−1(Alzl,k1 − dl),∀l ∈ L

(ii) µk+1
2,i,xi

= C⊤
i,xi

(Ci,xi
C⊤

i,xi
)−1Ci,xi

zk2,i,xi
, ∀(i, xi) ∈ I × Xi

(iii) µl,k+1
3,xi,ai

=
1

2
(
r̄(xi, ai, si)

ρ
+ µk+1

1 + µk+1
2 + yk1 + yk2)

+,

∀(l, i, xi, ai) ∈ L × I × X̄i × Ā(xi)

(iv) yl,k+1
1,xi,ai

= yl,k1,xi,ai
+ µl,k+1

1,xi,ai
− µl,k+1

3,xi,ai
,∀(l, i, xi, ai) ∈ L × I × X̄i × Ā(xi)

(v) yl,k+1
2,xi,ai

= yl,k2,xi,ai
+ µl,k+1

2,xi,ai
− µl,k+1

3,xi,ai
,∀(l, i, xi, ai) ∈ L × I × X̄i × Ā(xi)

(vi) ϵk+1 =
∥∥µk+1

1 − µk+1
3

∥∥
2
+
∥∥µk+1

2 − µk+1
3

∥∥
2

(vii) sk+1 =
∥∥µk+1

3 − µk
3

∥∥
2

while ϵk+1 > ϵ and sk+1 > ϵ;
output : Return

(µ̄1, µ̄2, µ̄3, ȳ1, ȳ2, ϵ̄, s̄) = (µk+1
1 , µk+1

2 , µk+1
3 , yk+1

1 , yk+1
2 , ϵk+1, sk+1)

and the penalty parameter ρ. In addition, we compute the (Ci,xi
C⊤

i,xi
)−1 and (AlAl,⊤)−1

in advance and store the results in cache. The algorithm starts from an initial solution

(0, 0, 0, 0, 0). It updates µ1, µ2, µ3 and y in a coordinated way through (i) to (v). In steps

(vi) and (vii), Algorithm 3 computes the primal residual (ϵk+1) and dual residual (sk+1)

for the (k + 1)-th iteration. These two values reflect the difference among the duplicates

and the change of µ3 in two consecutive iterations, respectively. At optimality, both the

primal and dual residuals are 0. In practice, we set a small tolerance ϵ for these two

residuals. The algorithm terminates once ϵk+1 < ϵ and sk+1 < ϵ.

The stopping criteria indeed provides a theoretical guarantee for the absolute gap

between the current objective value and the optimal objective value. Suppose the gap

for a solution µ̄3 and the optimal solution µ∗ is denoted as AG(µ̄3), i.e., AG(µ̄3) :=

(µ̄3)
⊤r̄ − (µ∗)⊤r̄ and the suboptimality of the current solution is upper bounded by C,

i.e., ∥µ̄3 − µ∗∥2 ≤ C. Using the results in Boyd et al. (2011), we have

AG(µ̄3) ≤ (∥ȳ∥2 + C)ϵ (4.53)

(4.53) means that AG(µ̄3) is bounded by a value related to the Lagrangian dual, the

current solution and the primal and dual residual. Since ∥ȳ∥2+C is finite, if ϵ is sufficiently

small, the absolute gap approaches 0.

69



4.5.2 Primal Solution Recovery

As discussed in §4.3, we need to recover the VFA weight vector β in PLP to compute

a feasible operating policy and lower bound. A common way for linear programming is

to use complementary slackness. If a dual variable is nonzero, the constraint associated

with the dual variable is tight; otherwise, the constraint is redundant at the optimality.

The optimal primal solution can be obtained by solving a recovery LP with the same

objective function as the original LP and tight constraints corresponding to nonzero dual

solutions.

Using CS conditions to recover a primal solution requires a highly accurate optimal

dual solution. If a dual solution is suboptimal, a slight deviation from its optimal value

(e.g., 0) largely influences whether the associated constraint should be kept in the CS-

based recovery LP. Consequently, the LP may produce primal solution with poor quality

or become infeasible due to contradictory equality constraints.

Meanwhile, it is well known that ADMM converges to modest accuracy (e.g., 10−3)

in the first thousands of iterations but requires substantially more iterations for solutions

with high accuracy. This feature of ADMM makes it difficult to recover a primal solution

directly through the CS condition. Besides, a highly accurate solution is not essential

in our context and most ADP applications as it brings little to no improvements on the

accuracy of VFA (Boyd et al. 2011).

To overcome this issue, we develop a primal solution recovery method via simple linear

regression with a near-optimal dual solution from Algorithm 3. We define differences

between the LHS and RHS of (4.20)-(4.21) for ∀(l, i.xi, ai) ∈ L × I × X̄i × Ā(xi) as

Dl
i,xi,ai

:= ul,β
i (xi)− r̄(xi, F

l
i , ai) +

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b − δul,β

i+1(f(xi, ai))

The value of the VFA weight vector, denoted as β̄, is recovered by the following regression

min
u,β

∑
(l,i,xi,ai)∈

L×I×X̄i×Ā(xi)

1(µ̄l
1,i,xi,ai

̸= 0)

(
Dl

i,xi,ai

)2

(4.54)

The objective function minimizes the overall differences between the LHS and RHS

of (4.20)-(4.21). The indicator function in (4.54) means we only consider constraints

corresponding to nonzero dual variables, i.e., µ̄l
1,i,xi,ai

̸= 0. We can also use µ̄l
2,i,xi,ai

and

µ̄l
3,i,xi,ai

to select constraints. This choice doesn’t influence the bounds’ quality because

there are only minor differences among those variables when the algorithm terminates.

(4.54) approximately enforces the complementary slackness but does not strictly require

the equality holds. Clearly, if the dual solution is optimal, the optimal objective function

value of (4.54) is 0.

70



Algorithm 4: Primal Solution Recovery

input : Solution µ̄1 from Algorithm 3; The coefficient matrix C and A;
The coefficient vectors r̄, d; Sample set L′

solve :

(ū, β̄) = argmin
u,β

∑
(l,i,xi,ai)∈

L′×I×X̄i×Ā(xi)

1(µ̄l
1,i,xi,ai

̸= 0)

(
Dl

i,xi,ai

)2

(4.55)

output : return β̄

We can recover a near optimal primal solution β̄ with a subset of L. Intuitively this

is due to the “similarity” among the i.i.d. samples in L. That is, if we select a subset

of “representative” samples (L′) from L in the regression, the recovered solution is close

to the one recovered by L, because samples in L′ “represent” those in L \ L′. In the

ideal case where the dual solution is optimal, it can be shown that the number of samples

required only depends on the number of β variables. We’ll further discuss this point in

§4.6.2. We summarize the regression method in Algorithm 4.

4.5.3 Complexities

PLP dual is solved with less time and space complexities by Algorithm 3 compared

to the state-of-the-art BCD method in Yang et al. (2021). We denote as M and D

the cardinalities of the largest endogenous state and feasible action sets, respectively.

That is, M := max{|X1|, ...|XI−1|} and D := max{|Ā(xi)|, (i, xi) ∈ I × X̄i}. We let

H :=
∑

i∈I
∑

xi∈Xi
|A(xi)| be the number of feasible actions, and B := max{|Bi|, i ∈ I} be

the largest number of basis functions. Then the per iteration time and space complexities

of executing steps (ii)-(iv), which are essentially matrix operations, can be summarized

as below:

Table 4.1: Computational Complexities for the ADMM Updates

Time Space
Step (ii) O(I2M2HL) O(IMH)
Step (iii) O(BDL) O(BDL)
Step (iv) O(HL) O(H)

Since most applications have L ≫ H, the per iteration space complexity of Algorithm

3 is O(BDL). The per iteration time complexity depends on the problem structure. It

is O(I2M2HL), if I2M2HL > BD; O(BDL), otherwise.

Algorithm 4 solves a QP. The time complexity of the interior point method for a QP

is O((I3M3L3 + I3M3B3)/K3), where K := |L|/|L′|. Since L ≫ B, the time complexity

is determined by O(I3M3L3/K3). The space complexity is O(IMHL2/K2). Compared

71



to Algorithm 3, the complexities of Algorithm 4 are much higher, which makes solving

(4.55) the bottleneck of our proposed method. However, these complexities are still much

smaller than the BCD approach in the literature, which has the respective time and space

complexities O(I3M3L3) and O(IMHL2).

It is worth mentioning that Algorithm 4 provides a framework to recover a primal

solution to PLP. Using advanced algorithms to solve the regression may further reduce

the complexities. For example, the two-block coordinate descent (CD) approach can

decompose the regression: if we fix the u variable, the problem decouples according

to endogenous states; if we fix the β variable, it decouples by samples. Besides, the

variables can be updated with closed-form solutions in every iteration. The resulting

per-iteration time and space complexities are respective O(IML) and O(IL). However,

implementing CD approach may require sophisticated coding and tuning skills. Thus,

finding a reliable algorithm that can solve the regression with less computing efforts is

an interesting direction for future research.

4.6 Guarantees

In this section, we present theoretical guarantees on the performance of Algorithm 3 and

4. In §4.6.1, we discuss the convergence results for Algorithm 3. In §4.6.2, we show the

asymptotic convergence property of Algorithm 4 and provide an error bound analysis for

it.

4.6.1 Convergence of ADMM

Our ADMM reformulation for (4.27)-(4.30) is a multi-block ADMM which does not have

convergence property in general (Chen et al. 2016). However, our reformulation satisfies

A⊤
1 A2 = [I, 0]× [0, I]⊤ = 0 which is one of the sufficient conditions for a convergent multi-

block ADMM (Chen et al. 2016). Under such condition, (4.31)-(4.33) are equivalent to

a 2 block ADMM by viewing (µ1, µ2) as a variable, [A1, A2] its coefficient matrix and

f(µ1) + g(µ2) its objective function. So the convergence analysis for the 2 block ADMM

in literature (Tao and Yuan 2012) holds for Algorithm 3. For completeness, we repeat

the result in Chen et al. (2016) and Tao and Yuan (2012).

Proposition 11. (Theorem 4.1 in Tao and Yuan 2012 and Theorem 2.5 in Chen et al.

2016) Algorithm 3 converges to an optimal solution of (4.27)-(4.30) at a rate of O(1/k).

4.6.2 Analysis on the Primal Solution Recovery

A major advantage of our primal solution recovery approach is that for any given µ̄1,

(4.54) is always feasible. In addition, the recovered β̄ is also feasible to (4.19)-(4.21)

72



because β is free in PLP. In fact, this recovery is exact in the ideal case. The following

proposition shows that if µ̄1 is optimal, the recovered β̄ is also optimal.

Proposition 12. Given an optimal dual solution, (4.54) recovers an optimal β̄ to (4.19)-

(4.21).

Proposition (12) seems trivially true: if the dual solution is optimal, a solution re-

covered by (4.54) satisfies the CS conditions, and therefore should be optimal. However,

this may not be the case in general because the least squares regression may generate

multiple solutions. It is possible that one of those recovered solutions is optimal to PLP,

but the others are not. Proposition (12) and its proof indicate that in our case, we can

rule out this possibility because the solution set of the regression is indeed a singleton

if µ̄1 is optimal. So the recovered (ū, β̄) must be optimal. Furthermore the following

proposition shows that we can recover the optimal primal solution with
∑

i∈I
∑

xi∈Xi
Bi

samples.

Proposition 13. Given an optimal dual solution, Algorithm 4 can recover an optimal

primal solution with at least
∑

i∈I
∑

xi∈Xi
Bi samples.

The intuition behind this proposition can be interpreted as follows: the primal solution

recovery can be performed in a low dimensional space whose dimension only depends on

the number of β variables, i.e.,
∑

i∈I
∑

xi∈Xi
Bi. In other words, once the value of β

variables is fixed in the regression in Algorithm 4, the value of U variables is uniquely

determined.

In practice, since the dual solution is suboptimal, the recovered β̄ is not optimal in

general. We provide a theoretical bound on the difference between the objective function

value associated with β̄ and the optimal objective function value. It guarantees that if

the dual solution is near optimal, so is the recovered primal solution.

Proposition 14. Suppose that the optimal dual solution is µ∗ and that the near optimal

dual solution µ̄1 from Algorithm 4 satisfies ∥µ̄1 − µ∗∥2 ≤ C. The suboptimality of the

objective function value associated with β̄ from Algorithm 4 is bounded by

OBJ(β̄)−OPT ≤ ∥ȳ∥2 ∥ϵ∥2 + C ∥ϵ∥2 + ∥µ̄1∥2 ∥ϵ̃∥2 (4.56)

where OPT, ϵ and ϵ̃ represent the optimal objective function value of PLP, the primal

residual in Algorithm 3 and the regression residual in Algorithm 4, respectively.

Proposition 14 indicates that the obtained solution from Algorithm 3 and 4 has an

objective function value that deviates at most ∥ȳ∥2 ∥ϵ∥2 +D ∥ϵ∥2 + ∥µ̄1∥2 ∥ϵ̃∥2 from the

optimal objective function value of PLP. The error bound relates to the difference among

variable duplicates, i.e., ϵ, the Lagrangian multiplier ȳ, the solution µ̄1, and the residual

ϵ̃.

73



Proposition 14, in conjunction with Proposition 11 and 12, shows the asymptotic

convergence property of the recovered primal solution: When ϵ → 0 and ϵ̃ → 0 as

k → ∞, OBJ(β̄) approaches OPT gradually. The deviation of the primal objective

function value consists of two parts: the error from solving PLP dual and the one from

recovering a primal solution. If these two errors are sufficiently small, the OBJ(β̄) is

close to OPT .

Figure 4.1: Suboptimality of OBJ(β̄)

The intuition for Proposition 14 is illustrated in Figure 4.1. The dashed lines and

the area surrounded by them represent the original constraints and feasible region. OPT

is the optimal objective function value. The area enclosed by solid lines corresponds

to the new feasible region based on the near-optimal dual solutions from Algorithm 3.

OBJ(β̄) is the objective function value associated with the recovered solution. As shown

in Figure 4.1, OBJ(β̄) deviates slightly from OPT due to the small shift (arrows) of the

constraints. In fact, we can show that (µ̄1, µ̄2, µ̄3) is an optimal solution to an adjust LP.

Proposition 15. Suppose (µ̄1, µ̄2, µ̄3) = (µk+1
1 , µk+1

2 , µk+1
3 ) is a solution from Algorithm

3, then it is the optimal solution to the following LP, where ϵ1 = µ̄1 − µk
3, ϵ2 = µ̄2 − µk

3

and δ = µ̄3 − µk
3

max
µ

µ⊤
1 (r − 2ρδ) (4.57)

s.t. µ1 − µ3 = ϵ1 − δ (4.58)

µ2 − µ3 = ϵ2 − δ (4.59)

µ1 ∈ P ; µ2 ∈ Q; µ3 ∈ R (4.60)

Proposition (15) suggests that Algorithm 4 indeed recovers the optimal primal solu-

tion to (4.57)-(4.60). Compared to (4.27)-(4.30), the above LP has different RHS and

74



coefficients in the objective function. Since these differences approaches 0 as Algorithm 3

converges to the optimality, the recovered solution from Algorithm 4 should also converges

to the optimal primal solution.

4.7 Numerical Study

In this section, we apply the pseudo action scheme to natural gas storage in Secomandi

et al. (2015a) and the ADMM and regression approach to merchant ethanol production in

Chapter 2, respectively. PO can not be directly applied to natural gas storage because the

underlying PLP is unbounded. We apply the pseudo action scheme to fix the issue and

therefore show its effectiveness. We demonstrate the use of the ADMM and regression

approach in merchant energy production. We show that our approach can solve both

existing instances with substantially less computational efforts and larger instances that

are unsolvable by the state of the art method in the literature.

We implemented all proposed approaches in CentOS Linux 7 and C++ with the GCC

4.8.5 (Red Hat 4.8.5-11) compiler. Gurobi 7.5 is used to solve the QP in Algorithm 4. We

apply the LAPACKE package to perform PCAs and matrix operations, respectively. All

simulations are performed on a server with 128 GB of RAM and 12 Intel(R) Core(TM)

i7-5930K processors.

The section is organized as follows: in §4.7.1 and §4.7.2, we introduce the natural gas
storage and ethanol production settings, respectively. We specify the MDP discussed in

§4.3 as the instances in each of these subsections and then present the results.

4.7.1 Example: Managing Natural Gas Storage Asset

Consider a natural gas commodity merchant who makes intertemporal commodity trad-

ings by renting storage capacity from the owner of the storage facilities. The merchant

is interested in maximizing the total cash flows brought by the lease contract. At each

stage, the merchant can: (i) buy natural gas from the wholesale market at the spot price

and inject it into the rented storage facility (if there is still capacity), (ii) withdraw the

natural gas from the facility (if the inventory is nonempty) and sell it to the market,

and (iii) do nothing. The merchant’s decision is complicated by the commodity market’s

highly volatile natural gas price.

Instance

We consider a 2 year instance with monthly stages. Suppose the endogenous state xi is

the inventory level in storage at stage i. We denote the storage capacity as C̄. So the

inventory level is between 0 and C̄ at each stage. An action a ∈ R represents the inventory

change between stages i and i + 1. A positive action is a withdrawal-and-sell decision,

75



a negative action is an energy purchase-and-inject decision, and zero is the do-nothing

decision.

The marginal payoff of a withdraw-and-sell decision is sW := ϕW s− cW , where ϕW ∈
(0, 1] is a fraction factor that models the inventory withdraw loss, s is the spot price of

natural gas, and cW is the fixed marginal cost of withdrawing. Similarly, the marginal

payoff of the inject-and-buy decision is sI := ϕIs+ cI where ϕI and cI are the respective

fraction of inventory injection loss and the marginal cost of injection. If the action is

do-nothing, we assume it incurs 0 costs for simplicity. So the intermediate payoff is equal

to sIa if a < 0, sWa if a > 0, and 0 if a = 0.

The inventory transition function f(xi, a) is xi − a. The per-stage capacities for the

withdrawal and injection are CW > 0 and CI < 0, respectively. So the feasible action sets

for the withdraw and injection at the inventory level x are respective
[
0,min{xi, C

W}
]

and
[
max{CI , (xi − C̄)}, 0

]
. The entire feasible action set is the union of these two sets,

i.e.,
[
0,min{xi, C

W}
]⋃ [

max{CI , (xi − C̄)}, 0
]
. The optimal policy to this problem is

known to have a double basestock structure (Secomandi 2010, Secomandi et al. 2015b).

If the capacities CI , CW , and C̄ are integer multiples of some positive real number Q,

the inventory level can be optimally discretized as {0, Q, 2Q..., C̄}. The initial inventory

level x0 is 0. Table 4.2 summarizes the specific parameter values used in our simulation.

We denote the stage i price of the maturity j ≥ i natural gas futures as Fi,j ∈ R.
The forward curve at stage i is Fi := (Fi,j, j ∈ I, i ≤ j). The stage i spot price is Fi,i.

The transition of the forward curves is governed by a multi-factor term structure model

which is commonly used in both practice and literature (Clewlow and Strickland 2000,

Lai et al. 2010, Secomandi et al. 2015a, Nadarajah et al. 2017):

dF (i, j)

F (i, j)
=

K∑
k=1

σi,j,kdWk

where F (i, j) is the time i futures price with maturity j (F (i, j) = Fi,j), K is the number

of factors, σi,j,k and dWk are the k-th loading coefficient and standard Brownian motion

increment, respectively. The K standard Brownian motions dWk, k ∈ {1, 2, ..., K} are

mutually independent, i.e., dWkdWk′ = 0, k′ ̸= k, and k, k′ ∈ {1, 2, .., K}.

Table 4.2: Values of the common parameters.

Parameter Value
cI 0.02$
cW 0.01$
ϕI 1.01
ϕW 0.99
C̄ 1
Q 1

76



We calibrated our term structure model to the daily data of natural gas futures prices

observed between January 2016 and December 2017 in the New York Mercantile Exchange

(NYMEX). We consider four instances with the initial date corresponding to the first day

of March, June, September, and December in 2016, respectively. We denote these four

instances as Mar, Jun, Sep, and Dec. We use the one month US Treasury rate as the

constant risk free interest rate on each initial date. They are respective 0.18%, 0.10%,

0.27%, and 0.25% for the Mar, Jun, Sep, and Dec instances.

We use the linear basis functions. For each stage i ∈ I these functions are (i) one; (ii)

{Fi,j, j ∈ I, j ≥ i}. The selected basis functions satisfy Assupmtion 3. The conditional

expectations of the basis functions are E[Fi+1,j|Fi,j] = Fi,j,∀i, j ∈ I, j ≥ i.

Results

We choose least squares Monte Carlo method (LSM) as the benchmark method as it is

widely used in the literature and practice (Carriere 1996, Longstaff and Schwartz 2001,

Smith 2005, Cortazar et al. 2008, Nadarajah and Secomandi 2018b). We also use the

corresponding LSM policy as the nonanticipative policy to bound the PLP. The PO and

LSM are executed with 10,000 Monte Carlo sample paths of the vector of forward curves

starting from the initial date of each instance. We generate an independent set of 10,000

vectors of forward curve sample paths to estimate the lower and dual bounds for these

two approaches.

Table 4.3 reports the bound estimates with the standard error of each estimate dis-

played in parentheses. PO and LSM yield almost the same lower and upper bounds in all

instances. The PO lower bounds are slightly worse than LSM in the Mar, Jun, and Dec

instances. However, the PO dual bound is better than LSM in the Mar instance. The

suboptimality of the PO and LSM greedy policies with respect to their corresponding

upper bound estimates are less than 2.2% and 1.4%, respectively. The standard errors

of the PO and LSM bound estimates are at most 0.6% of their corresponding estimates.

These results show that our pseudo action scheme effectively provides a lower bound for

PLP. The resulting PLP generates a high quality operating policy and bounds.

Table 4.3: The estimated lower and upper bounds of natural gas storage (standard errors
in parenthesis)

PO LSM
LB UB LB UB

Mar 1.49 (0.001) 1.51 (0.010) 1.50 (0.006) 1.52 (0.001)
Jun 1.47 (0.010) 1.48 (0.009) 1.48 (0.010) 1.48 (0.002)
Sep 1.20 (0.007) 1.21 (0.005) 1.20 (0.010) 1.21 (0.002)
Dec 0.90 (0.010) 0.92 (0.006) 0.91 (0.010) 0.92 (0.002)

77



4.7.2 Example: Merchant Energy Production

The basic settings are largely from Chapter 2. The only difference here is that the

mothballing and reactivation processes may last multiple stages, which is a typical case

in practice. To capture this change, we redefine the MDP in an analogous way as we did

in Chapter 2.

Instance

The status of the production facility in stage i is tracked by xi. The feasible state

set for xi in stage i is denoted as Xi := {A}⋃{O}⋃M⋃R where A represents the

abandoned state; O is the operational state; M is a set containing the KM -stage duration

of mothballing processes, i.e., M = {M1, ...,MKM}; R = {R1, ...,RKR−1} describes the

KR-stage reactivation processes. For i, j ∈ I, we use F c
i,j to represent the futures price in

stage i for corn with maturity j. When i = j, F c
i,i is the spot price sci . The price vector

F c
i is F c

i = (F c
i,j, j ∈ {i, ..., I − 1}). We let each F c

i,j ∈ R. The spot and futures prices for

ethanol, corn and natural gas in stage i are denoted by Fi := (F c
i , c ∈ {C,NG,E}) where

C, NG and E are abbreviation of corn, natural gas and ethanol.

We denote action produce as P; suspend as S; mothball as M; reactivate as R and

abandon as A. The feasible action sets for state O and MKM are A(O) = {A,P, S,M} and

A(MKM ) = {A,M,R} respectively. We assume the mothballing and reactivation processes

can not be interrupted so the feasible action set is A(xi) = {M} for xi ∈ {M1, ...,MKM−1}
and A(xi) = {R} for xi ∈ {R1, ...,RKR−1}. Once the plant is abandoned, the decision

process is ended so A(xi) = ∅ for xi ∈ {A}. In the last stage, we set the feasible action

set as a singleton {A} for ∀xI−1 ∈ XI−1.

The production margin is sEi − γCs
C
i − γNGs

NG
i which depends on spot prices of both

inputs and outputs. γC and γNG are the respective consumptions of corn and natural gas

for one unit of ethanol. The production quantity is a constant Q, i.e., we assume the

plant produces at full capacity. A fixed cost for production is CP. The maintenance cost

for suspension is CS. The mothballing will trigger an one time cost IM and a maintenance

cost CM(< CS). The reactivation has a fixed cost IR. The plant has a salvage value SA if

abandoned. The reward function for every (xi, Fi, ai) ∈ Xi ×Fi ×A(xi) is

r(xi, si, ai) :=



(sEi − γCs
C
i − γNs

N
i )Q− CP, if (xi, ai) ∈ (O,P),

−CS, if (xi, ai) = (O, S),

−IM, if (xi, ai) = (O,M1),

−CM, if (xi, ai) = (MKM ,MKM),

−IR, if (xi, ai) = (MKM ,R1),

SA, if (xi, ai) ∈ {(O,A), (MKM ,A), (RKR−1,O)}

We denote f(xi, ai) : Xi × Ai → Xi+1 as the state transition function governing the

78



transitions among endogenous states. At the state O, the plant’s next state is still O if the

action is P and S. If (xi, ai) = (O,M), the state will transit from O toM1. The mothballing

process lasts KM stages so the next state is Mn+1 for (xi, ai) ∈ {(Mn,M)|1 ≤ n < KM}.
When the plant is fully mothballed, the merchant can keep it mothballed or reactivate it

to operational. If (xi, ai) = (MKM ,M), the next state is still MKM ; if (xi, ai) = (MKM ,R),

the next state is R1. Analogous to the mothballing process, the next state during the

reactivation process is Rn+1 for (xi, ai) ∈ {(Rn,R)|1 ≤ n < KR − 1}. The state transition
function therefore can be defined as

f(xi, ai) :=



O, if (xi, ai) ∈ {(O,P), (O, S), (RNR−1,R)}
M1, if (xi, ai) = (O,M)

Mn+1, if (xi, ai) ∈ {(Mn,M)|n ̸= NM}
MNM , if (xi, ai) = (MNM ,M)

R1, if (xi, ai) = (MNM ,R)

Rn+1, if (xi, ai) ∈ {(Rn,R)|n ̸= NR − 1}
A, if (xi, ai) ∈ {(O,A), (MNM ,A)}

The transitions among exogenous state are determined by a similar term structure model

in §4.7.1. The k-th loading coefficient for period [i, j) and commodity c is denoted as

σc
i,j,k where k ∈ {1, 2, ..., K}. The randomness of prices is simulated with K mutually

independent standard Brownian motions dWk, k ∈ {1, 2, ..., K}, i.e., dWkdWk′ = 0, k′ ̸=
k, and k, k′ ∈ {1, 2, .., K}. So the stochastic process governing the evolution of F c(i, j) is

dF c(i, j)

F c(i, j)
=

K∑
k=1

σc
i,j,kdWk

We use the same loading coefficients as Yang et al. (2021), which are calibrated with data

from NYMEX. We also specify parameters as Yang et al. (2021) did in their paper. All

parameters and their values are shown in the Table 4.4.

Table 4.4: Values of the common parameters.

Parameter Value Parameter Value ($ MM)
I 24 months IM 0.5
γC 0.36 bushel/gallon IR 2.5
γN 0.035 MMBtu/gallon CP 2.25
NM 1 month CS 0.5208
NR 3 months CM 0.02917
Q 8.33 million gallon S 0.0

We implement the ADMM algorithm using the same basis functions employed by

Yang et al. (2021). For each stage i ∈ I these functions are (i) one; (ii) {F c
i,j, j ∈

Ii, c ∈ C}; (iii) {(F c
i,j)

2, j ∈ Ii, c ∈ C}; (iv) {F c
i,jF

c′
i,j, j ∈ Ii, c, c

′ ∈ C, c ̸= c′}; and (v)

79



{F c
i,jF

c
i,j+1, j ∈ Ii \ {I − 1}, c ∈ C}. These basis functions also satisfy Assumption 3.

The conditional expectations of the basis functions of the vector of forward curves are

available in Nadarajah and Secomandi (2018b).

Comparisons between ADMM-based approach and BCD method

We compare our approach with the BCD method in Yang et al. (2021). We use the stan-

dard cyclic block selection rule for the BCD approach, with the block size and stopping

tolerance equal to four and 0.01, respectively. We employ 70,000 samples in PLP, which

is the largest number of samples that allows us to apply BCD without facing any memory

issue. In this case, PLP has three and ten million variables and constraints.

Table 4.5 shows the comparisons of dual bounds between ADMM and BCD in these

instances. The negative sign in front of the ratio suggests that ADMM dual bounds are

worse than BCD. Specifically, the ADMM dual bound is, on average, 0.68% worse than

the BCD dual bound, with the percentage ranging between 0.41% and 1%.

Table 4.5: Comparison of dual bounds between ADMM and BCD approaches on bench-
mark instances.

Instance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ADMM 19.97 19.45 24.21 25.57 21.97 18.77 16.04 22.40 23.32 20.74 19.12 14.75

BCD 19.90 19.32 23.96 25.45 21.82 18.59 15.92 22.22 23.18 20.62 18.98 14.69

Ratio (%) -0.50 -0.67 -1.00 -0.47 -0.69 -0.97 -0.75 -0.81 -0.60 -0.58 -0.74 -0.41

Table 4.6: Comparison of lower bounds between ADMM and BCD approaches on bench-
mark instances.

Instance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ADMM 18.58 17.98 22.61 23.99 20.40 17.20 14.62 20.70 21.55 19.15 17.67 13.51

BCD 18.58 17.97 22.76 23.86 20.25 17.18 14.63 20.55 21.50 19.12 17.64 13.49

Ratio (%) 0.00 0.06 -0.66 0.54 0.74 0.12 -0.01 0.73 0.23 0.16 -0.17 0.15

The ADMM lower bounds are slightly better than BCD in all instances except Mar,

Jul, and Nov, as reported in Table 4.6. The average improvement on the lower bound is

0.16%. In the worst case (Mar), the ADMM lower bound is 0.66% worse than BCD. In

the best case (May), the improvement is 0.74%.

Table 4.7: Optimality Gaps of ADMM and BCD

Instance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average

ADMM (%) 7.10 7.56 6.57 6.18 7.15 8.36 8.85 7.59 7.59 7.67 7.74 8.41 7.56

BCD (%) 6.63 6.99 5.01 6.25 7.20 7.61 8.11 7.53 7.26 7.29 6.93 8.19 7.08

80



Table 4.7 reports the optimality gap, which is one minus the ratio of lower bound

to the best known upper bound from these two approaches. The optimality gap for the

proposed approach is slightly worse than BCD. The average optimality gap is 7.56% for

ADMM and 7.08% for BCD. Based on the results above, we conclude that our approach

generates almost the same bounds as the BCD approach, because the difference between

the results of ADMM and BCD are always within 1%.

However, our approach uses one order of magnitude less memory and 50% CPU times

to generate these results. Table 4.8 reports the average CPU times and the relative

memory requirement to BCD. ADMM uses 4% of the memory used by BCD to solve the

PLP dual and 15% memory to recover the primal solution. Compared to the 11 hours

for the BCD approach, it takes 5 hours for our approach to solving the problem.

Table 4.8: Comparison of the averaged CPU Times and Memory

PO-ADMM
PO-BCD ADMM Recovery

CPU Times (hours) 11 1 4
Memory Relative to BCD (%) 100% 4% 15%

New instances

Our approach could solve larger instances that can not be solved by BCD. We increase

the stage number (I in Table 4.4) and sample paths (L) to 36 and 150, 000, respectively

while keeping all other parameter values the same. The resulting PLP has 30 million

constraints and 10 million variables.

Our benchmark is the LSM approach because the problem size exceeds the maximal

problem that can be solved by BCD. We use the same basis functions and sample paths

for these two approaches.

Figure 4.2: Estimated Lower Bounds as the Percentage of the Estimated Dual Bounds.

81



Table 4.9: The estimated lower and upper bounds of 36-stage instances (standard errors
in parenthesis)

PO-ADMM LSM
UB LB UB LB

Jan 54.32 (0.11) 50.78 (0.17) 57.27 (0.03) 50.70 (0.17)
Feb 49.75 (0.11) 46.61 (0.16) 52.76 (0.03) 46.54 (0.17)
Mar 80.28 (0.11) 78.76 (0.22) 84.47 (0.03) 78.75 (0.22)
Apr 60.23 (0.11) 57.05 (0.18) 64.03 (0.03) 57.05 (0.19)
May 51.99 (0.11) 48.04 (0.18) 54.85 (0.03) 48.02 (0.18)
Jun 49.41 (0.11) 45.08 (0.18) 52.09 (0.03) 45.06 (0.18)
Jul 39.96 (0.11) 36.76 (0.18) 42.00 (0.03) 36.36 (0.15)
Aug 55.41 (0.11) 52.01 (0.18) 58.55 (0.03) 51.56 (0.19)
Sep 58.21 (0.11) 55.21 (0.18) 61.70 (0.03) 54.79 (0.20)
Oct 50.1 (0.11) 47.41 (0.18) 53.28 (0.03) 47.35 (0.17)
Nov 47.44 (0.11) 44.12 (0.18) 49.93 (0.03) 44.08 (0.16)
Dec 45.11 (0.11) 42.2 (0.18) 47.83 (0.03) 42.19 (0.16)

Table 4.9 shows the lower and upper bounds of the 36-stage instances with corre-

sponding standard errors in the parenthesis. For all instances, PO-ADMM tighter lower

and upper bounds than LSM does. Although the PO-ADMM has larger standard errors

for upper bounds than LSM, the absolute values of standard errors relative to the upper

bounds never exceed 0.3% across all instances. PO-ADMM improves upper bounds by

5.69% on average with a minimal value 5.10% and a maximal value 6.34%. The lower

bounds are also enhanced by 0.01% to 0.87% with an average value of 0.27%. Figure 4.2

shows the percentage gap between the lower and dual bounds for these two approaches.

We can see that the PO-ADMM substantially reduces the LSM gap through all instances.

Figure 4.3: Comparison of the estimated LSM- and PO-ADMM-based optimality gaps.

Figure 4.3 reports the optimality gaps for the LSM- and ADMM-based approaches.

That is, we use the ADMM upper bounds as the yardstick to evaluate the lower bounds

82



from these two approaches. In this case, the optimality gaps of LSM reduces from 11-

14% to 2-9% with an average value 6%. Thus, both LSM and PO lead to near optimal

operating policies, even if PO marginally outperforms LSM in this respect.

4.8 Conclusion

PO has been used to obtain lower and dual bounds for intractable MDPs arising in optimal

stopping and merchant energy production. Many financial and real option applications

share a similar structure if modeled as MDPs. However, the PO formulation in those

context is well defined only when there are terminating decisions in the controllable

states. The extant solution method of the LP also exhibits high per-iteration complexities

in complicated settings. These two limits restrict the applicability of PO. In this paper,

we develop a pseudo action scheme and a new coordinate decomposition and regression

approach to deal with these two issues, respectively. The pseudo action scheme extends

PO to new applications without the required decisions. Our new solution approach,

which employs ADMM to solve the dual of PLP and recovers the primal solution via a

least squares regression, substantially reduces the required computational complexities.

We also establish the convergence results of the new solution approach. We test the

performance of the proposed techniques in the context of natural gas storage and merchant

energy production. The numerical results suggest that both techniques are effective. Our

technique is potentially relevant to other financial and real options applications.

83



Chapter 5

Conclusion

Merchant energy operation is an important business application that consists of both the

physical operation to maximize the expected total cash flows and financial operations to

hedge the risks in the cash flows. This thesis focuses on managing the physical operation

of energy conversion assets, which typically gives rise to intractable MDPs due to the in-

tertemporal linkages between decision and the high dimensional state space. We extend

PO, a state of the art RL approach of generating lower and upper bounds on the MDPs,

from optimal stopping to those applications, and solve the resulting model with novel

algorithms based on math programming techniques. In contrast to most RL approaches

in the literature, which aim at improving the lower bound, our approach features op-

timizing the upper bound. We provide theoretical guarantees to support the proposed

approaches. We examine the effectiveness of our approaches with realistic energy produc-

tion and storage application. Our approach generates substantially and slightly better

upper and lower bounds than the state of the art approach in the literature. We further

provide numerical evidence to show that the extant algorithms generate near optimal

lower bounds and loose upper bounds. The techniques in this dissertation have potential

relevance to broader application contexts, such as inventory control, portfolio optimiza-

tion, network revenue management, and assortment problem (Brown and Smith 2021).

In §5.1, we summarize the main contributions from each chapter. In §5.2, we discuss

directions for future research.

5.1 Summary

This thesis extends PO, an RL approach of optimizing the upper bound, from optimal

stopping to merchant energy operations and real option models. The extant methods in

the RL and financial engineering literature typically solve this kind of MDPs from its

primal side, i.e., improving the lower bound, and then generate upper bounds by the

information relaxation techniques. However, those methods do not have any mechanism

84



to guarantee the quality of the upper bound. The performance of those methods relies

on trial and error in finding good heuristic penalties. In applications such as optimal

stopping, multiple stopping, and merchant energy production, there are large gaps be-

tween the two bounds. A natural conjecture is that the sizable gap is mainly due to

the looseness of the upper bound, but investigations into this question require tightening

the bounds. Meanwhile, PO is an emerging RL method that provides an optimal dual

penalty in the context of optimal stopping. However, the applicability of PO is severely

limited due to the difficulty of solving the underlying LP in complicated settings such

as energy production and multiple stoppings. It is unclear whether people can prescribe

PO as the required benchmark method to the aforementioned conjecture. This thesis

provides a positive answer to this question.

We extend PO on both modeling and solution aspects. We first introduce the dual

value variables in PO to avoid the exponential increase of constraints in the considered

MDP settings. We also identified that PLP is unbounded when there are no terminating

decisions in the feasible action set of the MDP. We proposed a novel pseudo action scheme

based on nonanticipated policies to fix this issue. The proposed method, though simple,

substantially extends PO to broader applications other than optimal stopping and energy

production. The lower and dual bounds generated by PO and the pseudo action scheme

are competitive to the state of the art approach.

Solving the underlying PLP in PO turns out to be an extremely difficult task. The

difficulties are twofolds: (i) PLP is ill conditioned, and (ii) PLP is large scale. We first

provided analysis to show that the source of the ill conditioning is the highly correlated

coefficient columns in the dual penalty. Although it is impossible to precondition the

entire coefficient matrix of the dual penalty, we leveraged the block diagonal structure of

the matrix and applied PCA to each of those blocks to orthogonalize the columns. The

numerical studies show that PCA effectively remove the ill conditioning and substantially

improves the efficiency of the solution methods. Different from the common situation

where PCA is used, our use of PCA is to precondition the linear programming. Besides,

PCA is very reachable because it is embedded in many off the shelf packages as a standard

statistic tool.

Our next contribution was to overcome the size issue in PLP. We first propose the

BCD approach to take advantage of the block diagonal structure of the dual penalty.

The BCD approach iteratively solves PLP and reduces the computational burden of

solving the problem as a whole. The combination of PO with BCD is new. We also use

commercial solvers in each BCD iteration to avoid turning parameters such as the step

size in the algorithm. Consequently, the algorithm generates solutions with high accuracy

in our context. With this approach and the PCA-based preconditioning, we solved PLP

for 24-stage ethanol production instances. Compared to standard methods, our approach

leads to substantially tighter dual bounds and smaller optimality gaps at the expense

85



of considerably larger computational efforts. Specifically, we provide numerical evidence

for the near optimality of the policies based on least squares Monte Carlo and compute

slightly better policies on a set of existing benchmark ethanol production instances.

We developed a second approach, i.e., a coordinated decomposition and regression

approach, to further reduce the computational complexities of solving PLP. This approach

features lower per iteration computational complexity than the BCD approach because it

exploits the problem’s decomposition structure. The proposed method generates roughly

the same solution as the BCD approach to the 24-stage ethanol production instance with

much less memory and CPU times. It can also solve 36-stage instances whose PLP is

almost one order of magnitude larger than the previous instances. The results for the new

instances suggest that the insights for the 24-stage instance still hold for larger instances.

Overall, our findings suggest that PO outperforms LSM in the context of energy

production and that the ADMM and regression approach is the most efficient method for

solving PLP.

5.2 Future Research

The results in this thesis suggest several methodological and theoretical directions for

future research and one application extension. We discuss them below.

First of all, while progress on solving PO has been made, it is still hard to solve PLP

for the current application with practical horizons, e.g., 10 years or even 30 years. Much

stronger methods are required in those contexts because the resulting PLPs have billions

of variables and constraints. Although the issue can somehow be avoided by using stages

with different time scales in the MDP, it would be interesting and important to further

increase the efficiency of the solution method.

The algorithms proposed in this thesis (BCD in Chapter 2 and ADMM in Chapter 4)

belong to high order methods as they utilize more information than first order methods.

It is known that the high order method typically converges faster but at a higher com-

putational cost than the first order method. Thus, exploring first order updates that use

less information may provide a way to get more scalable PO methods.

The current PO approach requires an additional step to generate a second group of

VFAs for the lower bound. It would be interesting to automate this process and develop

methods that systematically generate feasible policies from PO. Intuitively, such policies

should outperform the feasible policies obtained from solving the primal MDP because

they are “corrected” from the policy that utilizes all future information. However, a

rigorous explanation based on mathematical analysis is lacking in this aspect.

Exploring PO in a more general MDP context is certainly another promising direction.

This thesis only considered MDPs with small and large endogenous and exogenous state

spaces and assumes that the decision does not impact the transitions of the exogenous

86



states. It is unclear how to generate high quality upper bounds with PO for MDPs

with large endogenous and exogenous state spaces. Besides, it is also interesting to study

extending PO to MDPs where the decisions can influence the transitions of the exogenous

states.

Broadly speaking, it would be interesting to connect PO to other reinforcement learn-

ing approaches. The recent work of Min et al. (2019), and Jiang et al. (2020) provide

some ideas along these lines.

87



Bibliography

Daniel Adelman. Price-directed replenishment of subsets: Methodology and its application to

inventory routing. Manufacturing & Service Operations Management, 5(4):348–371, 2003.

Daniel Adelman. A price-directed approach to stochastic inventory/routing. Operations Re-

search, 52(4):499–514, 2004.

Daniel Adelman. Dynamic bid prices in revenue management. Operations Research, 55(4):

647–661, 2007.

Roger Adkins and Dean Paxson. Reciprocal energy-switching options. Journal of Energy Mar-

kets, 4(1):91–120, 2011.

Yossiri Adulyasak, Jean-François Cordeau, and Raf Jans. Benders decomposition for production

routing under demand uncertainty. Operations Research, 63(4):851–867, 2015.

Dennis Amelunxen and Peter Burgisser. A coordinate-free condition number for convex pro-

gramming. SIAM Journal on Optimization, 22(3):1029–1041, 2012.

Bancha Ariyajunya, Ying Chen, Victoria CP Chen, Seoung Bum Kim, and Jay Rosenberger.

Addressing state space multicollinearity in solving an ozone pollution dynamic control

problem. European Journal of Operational Research, 289(2):683–695, 2021.

Øystein Arvesen, Vegard Medbø, S-E Fleten, Asgeir Tomasgard, and Sjur Westgaard. Linepack

storage valuation under price uncertainty. Energy, 52(1):155–164, 2013.

Santiago R Balseiro and David B Brown. Approximations to stochastic dynamic programs via

information relaxation duality. Operations Research, 67(2):577–597, 2019.

Francisco Barahona and Ranga Anbil. The volume algorithm: producing primal solutions with

a subgradient method. Mathematical Programming, 87(3):385–399, 2000.

Alexandre Belloni and Robert M Freund. A geometric analysis of Renegar’s condition number,

and its interplay with conic curvature. Mathematical Programming, 119(1):95–107, 2009.

Jacques F Benders. Partitioning procedures for solving mixed-variables programming problems.

Numerische mathematik, 4(1):238–252, 1962.

D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, Belmont, MA, USA, 2015.

Dimitri Bertsekas. Reinforcement and Optimal Control. Athena Scientific, 2019.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena

Scientific Belmont, MA, 1997.

Alexander Boogert and Cyriel De Jong. Gas storage valuation using a monte carlo method.

Journal of Derivatives, 15(3):81, 2008.

88



Alexander Boogert and Cyriel De Jong. Gas storage valuation using a multifactor price process.

Journal of Energy Markets, 4(4):29–52, 2011.

Trine Krogh Boomsma, Nigel Meade, and Stein-Erik Fleten. Renewable energy investments

under different support schemes: A real options approach. European Journal of Operational

Research, 220(1):225–237, 2012.

O. Boyabatli, J. Nguyen, and T. Wang. Capacity management in agricultural commodity

processing and application in the palm industry. Manufacturing & Service Operations

Management, 19(4):551–567, 2017.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge

university press, 2004.

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning via

the alternating direction method of multipliers. Now Publishers Inc, 2011.

Robert Brelsford. Calumet advances montana refinery’s renewable diesel project. Oil & Gas

Journal, 2021a.

Robert Brelsford. Imperial weighs renewable diesel complex at strathcona refinery. Oil & Gas

Journal, 2021b.

M. J. Brennan and E. S. Schwartz. Evaluating natural resource investments. Journal of Busi-

ness, 58(2):135–157, 1985.

David B Brown and Martin B Haugh. Information relaxation bounds for infinite horizon markov

decision processes. Operations Research, 65(5):1355–1379, 2017.

David B Brown and James E Smith. Dynamic portfolio optimization with transaction costs:

Heuristics and dual bounds. Management Science, 57(10):1752–1770, 2011.

David B Brown and James E Smith. Information relaxations, duality, and convex stochastic

dynamic programs. Operations Research, 62(6):1394–1415, 2014.

David B Brown and James E Smith. Information relaxations and duality in stochastic dynamic

programs: A review and tutorial. 2021.

David B Brown, James E Smith, and Peng Sun. Information relaxations and duality in stochastic

dynamic programs. Operations Research, 58(4-part-1):785–801, 2010.

Ximing Cai, Daene C McKinney, Leon S Lasdon, and David W Watkins Jr. Solving large

nonconvex water resources management models using generalized benders decomposition.

Operations Research, 49(2):235–245, 2001.

Salvador Perez Canto. Application of benders’ decomposition to power plant preventive main-

tenance scheduling. European journal of operational research, 184(2):759–777, 2008.

René Carmona and Michael Ludkovski. Valuation of energy storage: An optimal switching

approach. Quantitative finance, 10(4):359–374, 2010.

Jacques F Carriere. Valuation of the early-exercise price for options using simulations and

nonparametric regression. Insurance: Mathematics and Economics, 19(1):19–30, 1996.

Shyam S Chandramouli and Martin B Haugh. A unified approach to multiple stopping and

duality. Operations Research Letters, 40(4):258–264, 2012.

89



Shyam Sundar Chandramouli. A convex optimization approach to multiple stopping: Pricing

chooser caps and swing options. 2019. Working Paper, IEOR Department, Columbia

University, New York, NY, USA.

Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of admm

for multi-block convex minimization problems is not necessarily convergent. Mathematical

Programming, 155(1-2):57–79, 2016.

Nan Chen, Xiang Ma, Yanchu Liu, and Wei Yu. Information relaxation and a duality-driven

algorithm for stochastic dynamic programs. arXiv preprint arXiv:2007.14295, 2020.

Dennis Cheung and Felipe Cucker. A new condition number for linear programming. Mathe-

matical Programming, 91(1):163–174, 2001.

Les Clewlow and Chris Strickland. Energy Derivatives: Pricing and Risk Management. Lacima

Publications, London, England, UK, 2000.

Jean-François Cordeau, Goran Stojković, François Soumis, and Jacques Desrosiers. Benders de-

composition for simultaneous aircraft routing and crew scheduling. Transportation science,

35(4):375–388, 2001.

G. Cortazar and E. S. Schwartz. The valuation of commodity contingent claims. Journal of

Derivatives, 1(4):27–39, 1994.

Gonzalo Cortazar, Miguel Gravet, and Jorge Urzua. The valuation of multidimensional Amer-

ican real options using the LSM simulation method. Computers & Operations Research,

35(1):113–129, 2008.

Alysson M Costa. A survey on benders decomposition applied to fixed-charge network design

problems. Computers & operations research, 32(6):1429–1450, 2005.

Jean-François Côté, Mauro Dell’Amico, and Manuel Iori. Combinatorial benders’ cuts for the

strip packing problem. Operations Research, 62(3):643–661, 2014.

Teodor Gabriel Crainic, Mike Hewitt, Francesca Maggioni, and Walter Rei. Partial benders

decomposition: general methodology and application to stochastic network design. Trans-

portation Science, 55(2):414–435, 2021.

Daniela Pucci De Farias and Benjamin Van Roy. The linear programming approach to approx-

imate dynamic programming. Operations research, 51(6):850–865, 2003.

Daniela Pucci De Farias and Benjamin Van Roy. On constraint sampling in the linear pro-

gramming approach to approximate dynamic programming. Mathematics of operations

research, 29(3):462–478, 2004.

Michel Denault, Jean-Guy Simonato, and Lars Stentoft. A simulation-and-regression approach

for stochastic dynamic programs with endogenous state variables. Computers & Operations

Research, 40(11):2760–2769, 2013.

Vijay V Desai, Vivek F Farias, and Ciamac C Moallemi. Approximate dynamic programming

via a smoothed linear program. Operations Research, 60(3):655–674, 2012a.

Vijay V Desai, Vivek F Farias, and Ciamac C Moallemi. Pathwise optimization for optimal

stopping problems. Management Science, 58(12):2292–2308, 2012b.

90



Sripad K Devalkar, Ravi Anupindi, and Amitabh Sinha. Integrated optimization of procure-

ment, processing, and trade of commodities. Operations Research, 59(6):1369–1381, 2011.

A. K. Dixit and R. S. Pindyck. Investment under Uncertainty. Princeton University Press,

Princeton, NJ, USA, 1994.

Lingxiu Dong, Panos Kouvelis, and Xiaole Wu. The value of operational flexibility in the

presence of input and output price uncertainties with oil refining applications. Management

Science, 60(12):2908–2926, 2014.

Ibrahim El Shar and Daniel Jiang. Lookahead-bounded q-learning. In International Conference

on Machine Learning, pages 8665–8675. PMLR, 2020.

Paul Enders, Alan Scheller-Wolf, and Nicola Secomandi. Interaction between technology and

extraction scaling real options in natural gas production. IIE Transactions, 42(9):643–655,

2010.

Marina Epelman and Robert M Freund. A new condition measure, preconditioners, and relations

between different measures of conditioning for conic linear systems. SIAM Journal on

Optimization, 12(3):627–655, 2002.

A. Eydeland and K. Wolyniec. Energy and Power Risk Management: New Developments in

Modeling, Pricing, and Hedging. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003.

Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Benders decomposition without separability:

A computational study for capacitated facility location problems. European Journal of

Operational Research, 253(3):557–569, 2016.

Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Redesigning benders decomposition for

large-scale facility location. Management Science, 63(7):2146–2162, 2017.

H. Geman. Commodities and Commodity Derivatives: Modeling and Pricing for Agriculturals,

Metals and Energy. John Wiley & Sons Ltd, Chichester, England, UK, 2005.

Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization theory and

applications, 10(4):237–260, 1972.

Paul Glasserman and Bin Yu. Simulation for american options: Regression now or regression

later? In Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 213–226. Springer,

2004.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

Luigi Grippo and Marco Sciandrone. On the convergence of the block nonlinear Gauss–Seidel

method under convex constraints. Operations Research Letters, 26(3):127–136, 2000.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.

gurobi.com.

Emil Gustavsson, Michael Patriksson, and Ann-Brith Strömberg. Primal convergence from

dual subgradient methods for convex optimization. Mathematical Programming, 150(2):

365–390, 2015.

Graeme Guthrie. Real Options in Theory and Practice. Oxford University Press, New York,

NY, USA, 2009.

91

http://www.gurobi.com
http://www.gurobi.com


Lajos Gergely Gyurkó, Ben M Hambly, and Jan Hendrik Witte. Monte carlo methods via a

dual approach for some discrete time stochastic control problems. Mathematical Methods

of Operations Research, 81(1):109–135, 2015.

Martin B Haugh and Leonid Kogan. Pricing american options: a duality approach. Operations

Research, 52(2):258–270, 2004.

David C Heath and Peter L Jackson. Modeling the evolution of demand forecasts ith application

to safety stock analysis in production/distribution systems. IIE transactions, 26(3):17–30,

1994.

Juri Hinz and Jeremy Yee. Optimal forward trading and battery control under renewable

electricity generation. Journal of Banking & Finance, 95(October):244–254, 2018.

John N Hooker. Planning and scheduling by logic-based benders decomposition. Operations

research, 55(3):588–602, 2007.

John N Hooker and Greger Ottosson. Logic-based benders decomposition. Mathematical Pro-

gramming, 96(1):33–60, 2003.

Tetsuo Iida and Paul H Zipkin. Approximate solutions of a dynamic forecast-inventory model.

Manufacturing & Service Operations Management, 8(4):407–425, 2006.

Patrick Jaillet, Ehud I Ronn, and Stathis Tompaidis. Valuation of commodity-based swing

options. Management science, 50(7):909–921, 2004.

Daniel R Jiang, Lina Al-Kanj, and Warren B Powell. Optimistic monte carlo tree search with

sampled information relaxation dual bounds. Operations Research, 68(6):1678–1697, 2020.

Ian T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, NY, USA, second

edition, 2002.

Ed Klotz and Alexandra M Newman. Practical guidelines for solving difficult mixed integer

linear programs. Surveys in Operations Research and Management Science, 18(1-2):18–32,

2013.

G. Lai, M. X. Wang, S. Kekre, A. Scheller-Wolf, and N. Secomandi. Valuation of storage at a

liquefied natural gas terminal. Operations Research, 59(3):602–616, 2011.

Guoming Lai, François Margot, and Nicola Secomandi. An approximate dynamic program-

ming approach to benchmark practice-based heuristics for natural gas storage valuation.

Operations research, 58(3):564–582, 2010.

Torbjörn Larsson, Michael Patriksson, and Ann-Brith Strömberg. Ergodic, primal convergence

in dual subgradient schemes for convex programming. Mathematical programming, 86(2):

283–312, 1999.

Yantong Li, Jean-François Côté, Leandro Callegari-Coelho, and Peng Wu. Novel formulations

and logic-based benders decomposition for the integrated parallel machine scheduling and

location problem. INFORMS Journal on Computing, 2021.

Qihang Lin, Selvaprabu Nadarajah, and Negar Soheili. Revisiting approximate linear pro-

gramming: Constraint-violation learning with applications to inventory control and energy

storage. Management Science, 66(4):1544–1562, 2020.

92



Francis A Longstaff and Eduardo S Schwartz. Valuing American options by simulation: A

simple least-squares approach. Review of Financial studies, 14(1):113–147, 2001.

Curtiss Luong. An examination of Benders’ decomposition approaches in large-scale healthcare

optimization problems. University of Toronto (Canada), 2015.

Thomas L Magnanti and Richard T Wong. Accelerating benders decomposition: Algorithmic

enhancement and model selection criteria. Operations research, 29(3):464–484, 1981.

Thomas L Magnanti, Robert W Simpson, et al. Transportation network analysis and decom-

position methods. Technical report, United States. Dept. of Transportation. Research and

Special Programs . . . , 1978.

Arthur Maheo, Philip Kilby, and Pascal Van Hentenryck. Benders decomposition for the design

of a hub and shuttle public transit system. Transportation Science, 53(1):77–88, 2019.

P Mahey, Henrique Pacca Loureiro Luna, and CD Randazzo. Benders decomposition for local

access network design with two technologies. Discrete Mathematics & Theoretical Com-

puter Science, 4, 2001.

Alan S Manne. Linear programming and sequential decisions. Management Science, 6(3):

259–267, 1960.

Anne Mercier and François Soumis. An integrated aircraft routing, crew scheduling and flight

retiming model. Computers & Operations Research, 34(8):2251–2265, 2007.

Anne Mercier, Jean-François Cordeau, and François Soumis. A computational study of benders

decomposition for the integrated aircraft routing and crew scheduling problem. Computers

& Operations Research, 32(6):1451–1476, 2005.

Thomas V Mikosch, J Wright Stephen, and Nocedal Jorge. Numerical Optimization. Springer

New York, 2006.

Seungki Min, Costis Maglaras, and Ciamac C Moallemi. Thompson sampling with information

relaxation penalties. Advances in Neural Information Processing Systems, 32, 2019.

José Ignacio Muñoz, Javier Contreras, J Caamaño, and PF Correia. A decision-making tool for

project investments based on real options: the case of wind power generation. Annals of

Operations Research, 186(1):465, 2011.

Selvaprabu Nadarajah. Approximate dynamic programming for commodity and energy mer-

chant operations. 2014.

Selvaprabu Nadarajah and Nicola Secomandi. Regress-later least squares monte carlo: Duality

perspective and energy real option application. 01 2015.

Selvaprabu Nadarajah and Nicola Secomandi. Relationship between least squares monte carlo

and approximate linear programming. Operations Research Letters, 45(5):409–414, 2017.

Selvaprabu Nadarajah and Nicola Secomandi. Merchant energy trading in a network. Operations

Research, 66(5):1304–1320, 2018a.

Selvaprabu Nadarajah and Nicola Secomandi. Least squares monte carlo and approximate

linear programming: Error bounds and energy real option application. Available at SSRN

3232687, 2018b.

93



Selvaprabu Nadarajah and Nicola Secomandi. Least squares monte carlo and approximate

linear programming with an energy real option application. Foundations and Trends® in

Technology, Information and Operations Management, 14(1–2):178–202, 2020.

Selvaprabu Nadarajah, François Margot, and Nicola Secomandi. Relaxations of approximate

linear programs for the real option management of commodity storage. Management Sci-

ence, 61(12):3054–3076, 2015.

Selvaprabu Nadarajah, François Margot, and Nicola Secomandi. Comparison of least squares

Monte Carlo methods with applications to energy real options. European Journal of Op-

erational Research, 256(1):196–204, 2017.

Angelia Nedić and Asuman Ozdaglar. Approximate primal solutions and rate analysis for dual

subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780, 2009.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.

SIAM Journal on Optimization, 22(2):341–362, 2012.

Yu Nesterov and Vladimir Shikhman. Dual subgradient method with averaging for optimal

resource allocation. European Journal of Operational Research, 270(3):907–916, 2018.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex pro-

gramming. SIAM, 1994.

Oil & Gas Journal. Kmi, neste partner on louisiana renewables storage. Oil & Gas Journal,

2021.

Javier Peña, Vera Roshchina, and Negar Soheili. Some preconditioners for systems of linear

inequalities. Optimization Letters, 8(7):2145–2152, 2014.

Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,

volume 703. John Wiley & Sons, 2007.

Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The benders

decomposition algorithm: A literature review. European Journal of Operational Research,

259(3):801–817, 2017.

James Renegar. Incorporating condition measures into the complexity theory of linear program-

ming. SIAM Journal on Optimization, 5(3):506–524, 1995a.

James Renegar. Linear programming, complexity theory and elementary functional analysis.

Mathematical Programming, 70(1-3):279–351, 1995b.

Renewable Fuels Association. 2021 Ethanol Industry Outlook. Technical report, 07

2021. URL https://ethanolrfa.org/wp-content/uploads/2021/02/RFA_Outlook_

2021_fin_low.pdf.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent

methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,

2014.

Leonard CG Rogers. Monte carlo valuation of american options. Mathematical Finance, 12(3):

271–286, 2002.

Frode Rømo, Asgeir Tomasgard, Lars Hellemo, Marte Fodstad, Bjørgulf Haukelidsæter Eidesen,

94

https://ethanolrfa.org/wp-content/uploads/2021/02/RFA_Outlook_2021_fin_low.pdf
https://ethanolrfa.org/wp-content/uploads/2021/02/RFA_Outlook_2021_fin_low.pdf


and Birger Pedersen. Optimizing the Norwegian natural gas production and transport.

INFORMS Journal on Applied Analytics, 39(1):46–56, 2009.

RWH Sargent and DJ Sebastian. On the convergence of sequential minimization algorithms.

Journal of Optimization Theory and Applications, 12(6):567–575, 1973.

N. Secomandi. Approximations for high dimensional commodity and energy merchant opera-

tions models. Foundations and Trends in Technology, Information and Operations Man-

agement, 11(1-3):144–164, 2017.

Nicola Secomandi. Optimal commodity trading with a capacitated storage asset. Management

Science, 56(3):449–467, 2010.

Nicola Secomandi and Duane J Seppi. Real options and merchant operations of energy and

other commodities. Foundations and Trends in Technology, Information and Operations

Management, 6(3–4):161–331, 2014.

Nicola Secomandi and Duane J. Seppi. Energy real options: Valuation and operations. In

V. Kaminski, editor, Managing Energy Price Risk, pages 449–477. Risk Books, London,

England, UK, fourth edition, 2016.

Nicola Secomandi, Guoming Lai, François Margot, Alan Scheller-Wolf, and Duane J Seppi.

Merchant commodity storage and term-structure model error. Manufacturing & Service

Operations Management, 17(3):302–320, 2015a.

Nicola Secomandi, Guoming Lai, François Margot, Alan Scheller-Wolf, and Duane J Seppi.

Merchant commodity storage and term-structure model error. Manufacturing & Service

Operations Management, 17(3):302–320, 2015b.

Hanif D Sherali and Gyunghyun Choi. Recovery of primal solutions when using subgradient

optimization methods to solve lagrangian duals of linear programs. Operations Research

Letters, 19(3):105–113, 1996.

S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer, New York,

NY, USA, 2004.

James E. Smith. Alternative approaches for solving real-options problems: (comment on

brandão et al. 2005). Decision Analysis, 2(2):89–102, 2005.

James E. Smith and K. F. McCardle. Valuing oil properties: Integrating option pricing and

decision analysis approaches. Operations Research, 46(2):198–217, 1998.

James E Smith and Kevin F McCardle. Options in the real world: Lessons learned in evaluating

oil and gas investments. Operations Research, 47(1):1–15, 1999.

Min Tao and Xiaoming Yuan. On the o(1/t) convergence rate of alternating direction method

with logarithmic-quadratic proximal regularization. SIAM Journal on optimization, 22(4):

1431–1448, 2012.

Matt Thompson. Optimal economic dispatch and risk management of thermal power plants in

deregulated markets. Operations Research, 61(4):791–809, 2013.

Lenos Trigeorgis et al. Real options: Managerial flexibility and strategy in resource allocation.

MIT press, 1996.

95



Alessio Trivella, Selvaprabu Nadarajah, Stein-Erik Fleten, Denis Mazieres, and David Pisinger.

Managing shutdown decisions in merchant commodity and energy production: A social

commerce perspective. Manufacturing & Service Operations Management, Forthcoming,

2019.

Chung Li Tseng and Graydon Barz. Short-term generation asset valuation: A real options

approach. Operations Research, 50(2):297–310, 2002.

Chung Li Tseng and Kyle Y Lin. A framework using two-factor price lattices for generation

asset valuation. Operations Research, 55(2):234–251, 2007.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimiza-

tion. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.

John N Tsitsiklis and Benjamin Van Roy. Regression methods for pricing complex american-

style options. IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

Sinong Wang and Ness Shroff. A new alternating direction method for linear programming. In

Proceedings of the 31st International Conference on Neural Information Processing Sys-

tems, pages 1479–1487, 2017.

Yang Wang, Brendan O’Donoghue, and Stephen Boyd. Approximate dynamic programming

via iterated bellman inequalities. International Journal of Robust and Nonlinear Control,

25(10):1472–1496, 2015.

Bo Yang, Selvaprabu Nadarajah, and Nicola Secomandi. Least squares monte carlo and pathwise

optimization for merchant energy production. Available at SSRN 3900797, 2021.

Dan Zhang and Daniel Adelman. An approximate dynamic programming approach to network

revenue management with customer choice. Transportation Science, 43(3):381–394, 2009.

Joyce Li Zhang and K Ponnambalam. Hydro energy management optimization in a deregulated

electricity market. Optimization and Engineering, 7(1):47–61, 2006.

Y. Zhou, A. Scheller-Wolf, N. Secomandi, and S. J. Smith. Managing wind-based electricity

generation in the presence of storage and transmission capacity. Production and Operations

Management, 28(4):970–989, 2019.

96



Appendix A

Supplement for Chapter 2

A.1 Block-diagonal Structure of G and PCA

G :=



G1,O 0 · · · 0
0 G1,M · · · 0
...

...
. . .

...
0 0 · · · GI−2,M

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Gi,M :=

[
Ci

Ci

]
Gi,O :=

 Ci

Ci

Ci



Ci :=


∆E,1

i−1ϕi,1 ∆E,1
i−1ϕi,2 . . . ∆E,1

i−1ϕi,Bi

∆E,2
i−1ϕi,1 ∆E,2

i−1ϕi,2 . . . ∆E,2
i−1ϕi,Bi

...
...

. . .
...

∆E,L′

i−1 ϕi,1 ∆E,L′

i−1 ϕi,2 . . . ∆E,L′

i−1 ϕi,Bi


Figure A.1: Structure of the G matrix.

The block diagonal structure of G holds because MDP (2.2) has a finite number of

endogenous states and an associated deterministic transition function f(xi, ai). Figure

A.1 illustrates this structure. For each pair (i, xi) ∈ I \ {0, I − 1}×X ′, we define the set

of tuples Ti(xi) := {(l, xi−1, ai−1)|(l, xi−1, ai−1) ∈ L′ × X ′ × A(xi−1), f(xi−1, ai−1) = xi}
to describe it. The (i, xi)-th block of G, Gi,xi

, includes the columns associated with the

triples (i, xi, b)’s for each b ∈ Bi and the rows corresponding to the tuples (l, xi−1, ai−1)’s

in set Ti(xi). Since the basis functions do not depend on ai−1 and xi−1, the matrix Gi,xi

duplicates a matrix Ci that has Bi columns and L′ rows, with its entry in column b ∈ Bi

and row l ∈ L′ is equal to ∆E,l
i−1ϕi,b. The number of copies of Ci in Gi,xi

equals the number

of the pairs (xi−1, ai−1) ∈ X ′×A(xi−1) that satisfy f(xi−1, ai−1) = xi. The 0 entries below

GI−2,M in G correspond to constraints that have no penalties.

Exploiting this structure, at each stage i ∈ I \ {0, I − 1}, we perform PCA on the

97



matrix Ci and use the resulting pre-conditioned matrix to construct as follows a matrix

analogous to G that also has block-diagonal structure but differs because it has orthogonal

columns. DefineWi to be the square Bi×Bi matrix with columns equal to the eigenvectors

of C⊤
i Ci. Let G⊥

i,xi
be the analogue of Gi,xi

with Ci replaced by C⊥
i := CiWi, which has

orthogonal columns by definition. Similarly, G⊥ shares the block-diagonal structure of G

with each block Gi,xi
replaced by G⊥

i,xi
, which has orthogonal columns as it is composed

of row copies of C⊥
i .

A.2 Interpretation of P2LP using Modified Basis Func-

tions

We establish the equivalence of P2LP and a PLP formulated with modified basis func-

tions. These basis functions are defined as ϕW
i,b(Fi) :=

∑
b′∈Bi

Wi,b′,bϕi,b(Fi) for all (i, b) ∈
I \ {i, ..., I − 1} × Bi. That is, each basis function ϕW

i,b is a linear combination of basis

functions (ϕi,b, b ∈ Bi) using the weights in the b-th column of matrix Wi. Evaluating the

VFA constructed using basis functions (ϕi,b, b ∈ Bi) and VFA weights βW at stage i and

state (xi, Fi) is equivalent to evaluating a modified VFA that is based on (ϕW
i,b, b ∈ Bi)

and β: ∑
b∈Bi

ϕi,b(Fi)β
W
i,xi,b

=
∑
b∈Bi

ϕi,b(Fi)
∑
b′∈Bi

Wi,b,b′βi,xi,b′

=
∑
b′∈Bi

(∑
b∈Bi

ϕi,b(Fi)Wi,b,b′

)
βi,xi,b′

=
∑
b′∈Bi

ϕW
i,b′(Fi)βi,xi,b′ .

The first equality uses the definition of βW , the second re-arranges the two summations

and groups terms, and the third uses the definition of ϕW
i,b(Fi).

A.3 Proofs

Proof of Proposition 1. Let U0
i (xi, F

l) be the value function for stage i and state xi

of the dynamic program (2.11) for sample path l formulated with the β vector set equal

to zero. Denote by U0
0 (x0, F

l) the corresponding value of Uβ
0 (x0, F

l). This term is finite

because it is the discounted sum of bounded rewards from the initial stage through the

final one along the given sample path. The pair (β, U) associated with this particular

choice of β vector and the resulting U vector is a feasible PLP solution with finite objective

function value. Thus, the optimal value of the PLP objective function is bounded from

above. The PLP constraint for each tuple (l, i, xi,A) is ui,xi,l ≥ r(xi, s
l
i,A). The right

98



hand side of this inequality evaluates to 0 or S when xi equals A or it belongs to X ′. It

follows that the optimal PLP objective function value is bounded from below.

Suppose that all optimal PLP solutions have at least one infinite element of their

corresponding β vector. That is, βi,xi,b = ∞ for some (i, xi, b) ∈ I \ {0} × X ′
i × Bi.

Pick an arbitrary optimal PLP solution (β∗, u∗). Let (0, u(0)) be the PLP solution used

to establish that the optimal PLP objective function value is bounded from above. In

particular, it is a basic feasible solution for PLP. Consider a sequence of such solutions

that starts from (0, u(0)), ends at (β∗, u∗), and includes as additional elements, if any,

points that belong to the boundary of the PLP feasible set. The points generated by

pivots in the simplex method starting from the former solution and ending at the latter

one is an example of such a sequence. The penultimate item of this sequence is a vertex

(β′, u′) that has an extreme ray connecting it to (β∗, u∗). Such an extreme ray exists

because the former solution is finite while the latter one (by assumption) has at least one

infinite element. If (β′, u′) was not finite, the sequence would end at this solution and not

reach (β∗, u∗). In addition, since the optimal PLP objective value is bounded from both

below and above, the objective function gradient along the extreme ray must be zero. It

follows that (β′, u′) is a finite optimal PLP solution, which contradicts the assumption

that all optimal PLP solutions have at least one infinite element. Thus, PLP has at least

one finite optimal solution.□

Proof of Proposition 1. Matrix D has a column for each variable ui,xi,l. Consider

the PLP constraints (2.16) indexed by tuples of the form (i, xi,A, l), that is, those that

correspond to an abandon action. For each triple (i, xi, l), the variable ui,xi,l appears in

the left hand side of exactly one such constraint and the right hand side of this constraint

has no variables from the vector u. Therefore, the submatrix of D defined by the afore-

mentioned tuples (with some possible row re-arrangement) is a square identity matrix I,

which allows us to write

D =

[
D1

I

]
, (A.1)

where D1 corresponds to the constraints (2.16) associated with non-abandonment deci-

sions. It follows immediately that D is full column rank.

Next, suppose G is full column rank. Based on the representation of D in (A.1), we

have [
D G

]
=

[
D1 G

I 0

]
because the abandonment decision has no associated dual penalty. By performing row

99



operations on this matrix using the submatrix [I 0], which preserve rank, we obtain

rank

([
D1 G

I 0

])
= rank

([
0 G

I 0

])
.

All columns in the matrix obtained from the row operations are linearly independent

because I and G are both full column rank. Hence, [D G] is full column rank. The

matrix [D G]⊤[D G] is also full rank because the rank of any matrix Y and its Gram

matrix Y ⊤Y are equal, which follows from the equivalence between the null spaces of the

former and latter matrices. □

We use Lemma 4 in the proofs of propositions 2 and 4.

Lemma 4. kD
1 ≤ √

MuND and kD
ND

≥ 1.

Proof of Lemma 4. Let MD denote the number of rows of D, dm,n the entry in row

m and column n of this matrix, and dn its n-th column. From equivalent definitions of

the Frobenius norm ∥D∥F of D we have

∥D∥F =

√√√√ND∑
n=1

(κD
n )

2 =

√√√√ND∑
n=1

MD∑
m=1

d2m,n =

√√√√ND∑
n=1

∥dn∥22,

where ∥ ·∥2 represents the Euclidean norm. We can then bound the largest singular value

of D as follows:

κD
1 ≤

√√√√ND∑
n=1

(κD
n )

2 =

√√√√ND∑
n=1

∥dn∥22 ≤
√

ND max
n∈{1,2,...,ND}

∥dn∥22. (A.2)

Since column dn corresponds to a particular variable in the vector u and its entries are

either 0, −δ (> −1), or 1, inequality ∥dn∥22 ≤ Mu holds for any n. Combining this

inequality with (A.2) establishes κD
1 ≤ √

NDMu.

Next we move to lower bounding the smallest singular of D. From the representation

of D in (A.1) we have

zTDTDz = z⊤

[
D1

I

]⊤ [
D1

I

]
z = z⊤D⊤

1 D1z + z⊤z = ∥Dz∥22 + ∥z∥22 ≥ ∥z∥22.

We then apply this inequality with the definition of the smallest singular to obtain

(κD
ND

)2 = min
∥z∥2=1

zTDTDz ≥ ∥z∥22 = 1,

which shows that κD
ND

≥ 1. □

100



Proof of Proposition 2 (i) Since the singular values ofD⊤D are squares of the singular

values of D, we have cond(D⊤D) = (cond(D))2 = (κD
1 /κ

D
ND

)2. In addition, using the

bounds from Lemma 4, it follows that (κD
1 /κ

D
ND

)2 ≤ MuND.

(ii) The inequality
∑N

n=1 κ
2
n ≥ 1 can be established using the following sequence of

relationships:
N∑

n=1

κ2
n ≥ κ2

1 ≥ (κD
1 )

2 ≥ (κD
ND

)2 ≥ 1,

where the second inequality is due to the largest singular value of a matrix (weakly)

increasing as columns are added (Golub and Van Loan 2013, Page 78), and the fourth

from Lemma 4. The lower bound on the condition number of [D G]⊤[D G] is the

maximum of two terms. We proceed by showing that each term is a valid lower bound.

The first term we consider is cond(D⊤D). The validity of the first lower bound term

holds because

cond([D G]⊤[D G]) = (cond([D G]))2 ≥ (cond(D))2 = cond(D⊤D),

where the inequality is a consequence of the condition number of a matrix always increas-

ing as more columns are added (Golub and Van Loan 2013, Page 78).

Now we show the validity of the remaining term in the lower bound as follows:

1/N
∑N

n=1 κ
2
n

(ΠND
n=1(κ

D
n )

2ΠNG
n=1(κ

G
n )

2)1/N
=

1/N
∑N

n=1 κ
2
n

| det(DTD) det(GTG)|1/N

≤ 1/N
∑N

n=1 κ
2
n

| det([D G]⊤[D G])|1/N

=
1/N

∑N
i=n κ

2
n

(ΠN
n=1κ

2
n)

1/N

≤ 1/N
∑N

n=1 κ
2
1

(ΠN
n=1κ

2
N)

1/N

=
κ2
1

κ2
N

= cond([D G]⊤[D G]).

The first and second equalities follow from the absolute value of the determinant of a

matrix being equal to the product of the squares of its singular values, and the first and

second inequalities hold because of Fischer’s inequality (Zhang 2011, Theorem 7.11) and

κN ≤ κn along with κ1 ≥ κn, respectively. □

Proof of Proposition 3 As outlined in §2.5.1 and discussed in more detail in A.1,

the PCA matrix W can be constructed using submatrices Wi of size Bi × Bi for each

101



i ∈ I \ {0, I − 1}. Pick a feasible PLP solution (β, u). Define β′ as the vector with

(i, xi) component β′
i,xi

equal to W−1
i βi,xi

. Evaluating the left hand sides of the PLP

constraints and the P2LP ones at (β, u) and (β′, u), respectively, yields the same values.

An analogous result holds for the feasible P2LP solution (β, u) and the PLP one (β′, u)

for which the (i, xi) part β
′
i,x1

of the vector β′ is Wiβi,xi
. That is, there is a one to one

mapping between the respective sets of PLP and P2LP feasible solutions. PLP and P2LP

have the same objective function. Thus, their optimal solution sets coincide. □

Proof of Proposition 4 Since cond([D G⊥]⊤[D G⊥]) = (κ1/κN)
2, we obtain the

required upper bound on this quantity by finding upper and lower bounds on κ1 and κN ,

respectively, in this order.

Let Y = [D G⊥]⊤. Suppose ∥·∥ is the two norm. We have

∥Y z∥2 =
∥∥∥∥∥
[

D⊤

(G⊥)⊤

]
z

∥∥∥∥∥
2

=
∥∥D⊤z

∥∥2 + ∥∥(G⊥)⊤z
∥∥2

≤
(
(κD

1 )
2 + (κG⊥

1 )2
)
∥z∥2 ,

where κG⊥
1 is the largest singular value of G⊥. The last inequality is implied by the

following definitions of maximum singular values:

κD
1 = max

z ̸=0

∥∥D⊤z
∥∥

∥z∥ , and κG⊥

1 = max
z ̸=0

∥∥(G⊥)⊤z
∥∥

∥z∥ .

Applying an analogous definition to matrix Y gives

κY
1 = max

z ̸=0

∥Y z∥
∥z∥ ≤

√
(κD

1 )
2 + (κG⊥

1 )2.

The largest singular values of Y and Y ⊤ = [D G⊥] are the same since the transpose

operator does not alter singular values. Therefore, we have κ2
1 = (κY

1 )
2 ≤ (κD

1 )
2+(κG⊥

1 )2.

For lower bounding κN , consider

Y 1 =

[
D⊤D 0

0 (G⊥)⊤(G⊥)

]
, Y 2 =

[
0 D⊤(G⊥)

(G⊥)⊤D 0

]
.

Clearly, [D (G⊥)]⊤[D (G⊥)] = Y 1+Y 2. Then by Theorem 8.13 in Zhang (2011), we have

κN ≥ κY 1

N + κY 2

N ≥ κY 1

N

and because Y 1 is block diagonal that κY 1

N = min{(κD
ND

)2, (κG⊥
NG

)2}, which together imply

102



that κN ≥ min{(κD
ND

)2, (κG⊥
NG

)2}.
Combining these bounds, we have the desired bound on cond([D G⊥]⊤[D G⊥]), that

is,

(κ1/κN)
2 ≤ (κD

1 )
2 + (κG⊥

1 )2

min{(κD
ND

)2, (κG⊥
NG

)2} =
(κD

1 )
2 + 1

min{(κD
ND

)2, 1} = (κD
1 )

2 + 1

The second equality holds because all singular values of the orthogonal matrix G⊥ are

one. The last equality follows from Lemma 4, in particular, κD
ND

≥ 1. □

Proof of Proposition 5. Suppose the sequence of solutions generated by Algorithm 1

is (βh, uh)h∈N, where N denotes the set of (non-negative) natural numbers. Let’s consider

a subsequence (βhk , uhk)k∈N, where (hk)k∈N is a strictly increasing sequence of positive

numbers, such that this subsequence converges to a point (β, u). Such a subsequence

always exists because of the Bolzano-Weierstrass theorem. Because the objective function

is continuous, it follows that the sequence (OBJ(βhk , uhk))k∈N converges to OBJ(β, u).

This sequence is also non-increasing and bounded from below. The former owing to the

optimization performed by BCD at each iteration, which implies

OBJ(βh+1, uh+1) ≤ OBJ(βh, uh), ∀h ∈ N.

The latter follows from the proof of Proposition 1 and the equivalence between PLP and

P2LP established in Proposition 3. Then the monotone convergence theorem ensures that

OBJ(β, u) is the infimum of the sequence (OBJ(βhk , uhk))k∈N and thus once BCD reaches

OBJ(β, u), its objective function value will remain at this value in later iterations.

By assumption, ū is a non-degenerate optimal solution to the variant of P2LP with

β equal to β̄, which implies that its dual model has a unique optimal solution. We

denote the latter solution as µ∗(β). Consider the idealized P2LP dual model. It has

(i) vectors of decision variables µ and θ that are associated with primal constraints and

bound constraints and (ii) two sets of constraints that are related to the β and u vectors

of the variables of the idealized P2LP. The β-related constraints and the θ variables can

be subdivided according to the elements of the given partition P . At each iteration, the

idealized BCD method solves the linear program in Algorithm 1, which we denote as LPh,

for a set Ph ⊆ P chosen by the block selection rule. The dual of this model features the

µ and θ(Ph) := (θi,xi,b, (i, xi, b) ∈ Ph ×Bi) variable vectors and the u- and β(Ph)-related

constraints. The pair (β(Ph), u) is an optimal LPh solution. Consider the complementary

slackness conditions for this model and its dual expressed with respect to it. Solving the

ones associated with u amounts to finding a solution to the system of u-related constraints

that define µ∗(β), which we know uniquely solves it. Moreover, because we assume that

β(Ph) strictly satisfies the bound inequalities, the elements of the corresponding optimal

vector θ∗(Ph; β(Ph)) equal zero. Thus, (β, u) and (µ∗(β), θ∗(Ph; β(Ph))) ≡ (µ∗(β), 0)

103



comply with both the complementary slackness equations for the idealized P2LP and its

dual and the ones for P2LP and its dual. Moreover, the pair (µ∗(β), 0) fulfills the set of

β(Ph)-related constraints of the idealized P2LP dual, because it is the only solution for

the dual of LPh that satisfies complementary slackness with respect to its primal optimal

solution (β(Ph), u).

For the greedy selection rule, since the chosen block Ph has the largest reduced cost, it

indicates that µ∗(β) also satisfies the β(P \Ph)-related constraints of the idealized P2LP

dual. So we conclude that µ∗(β) is feasible for the P2LP dual. When using the cyclic

rule the blocks β(Ph) optimized across iterations after reaching (β, u) cover P . Under

the random rule, the same holds with probability 1 since we sample uniformly. Therefore,

we can repeat the argument described for the chosen Ph to show that µ∗(β) is feasible

for the P2LP dual. Consequently, (β, u) and µ∗(β) optimally solve P2LP and its dual,

respectively, i.e., (β, u) belongs to the set of P2LP optimal solutions.

Since the objective function value is nonincreasing and the limit point (β, u) is optimal,

the solutions generated after (β, u) must also be optimal. Thus BCD converges to the

set of P2LP optimal solutions. □

A.4 Numerical Results for Linear Basis Functions

Table A.1: LSM- and PO-based lower and dual bound estimates with linear basis

Upper Bounds Lower Bounds CPU Time (mins)
Month PO LSM PO LSM PO LSM
Jan 20.90 (0.06) 25.00 (0.03) 16.83 (0.07) 18.59 (0.07) 166 2
Feb 20.75 (0.06) 24.75 (0.03) 16.10 (0.07) 18.48 (0.07) 153 2
Mar 25.28 (0.07) 29.37 (0.03) 20.37 (0.08) 23.15 (0.08) 200 2
Apr 26.86 (0.07) 30.98 (0.03) 21.52 (0.08) 24.72 (0.09) 202 2
May 23.16 (0.07) 27.58 (0.03) 17.76 (0.08) 20.63 (0.08) 175 2
Jun 19.69 (0.07) 24.31 (0.03) 15.59 (0.08) 16.90 (0.08) 179 2
Jul 16.66 (0.06) 20.97 (0.03) 12.29 (0.06) 14.01 (0.07) 194 2
Aug 23.10 (0.07) 27.80 (0.03) 18.61 (0.08) 20.31 (0.08) 187 2
Sep 24.17 (0.07) 28.93 (0.04) 19.64 (0.08) 21.16 (0.09) 163 2
Oct 21.40 (0.06) 25.61 (0.03) 17.15 (0.07) 18.68 (0.07) 162 2
Nov 19.85 (0.06) 24.06 (0.03) 15.53 (0.07) 17.30 (0.07) 165 2
Dec 15.43 (0.06) 19.43 (0.03) 11.69 (0.06) 13.20 (0.06) 174 2

104



A.5 Numerical Results Under Different Block Selec-

tion Rules

Table A.2: LSM- and PO-based lower and dual bound estimates with different block
selection rules

Upper Bounds Lower Bounds
Month Cyclic Greedy Random Cyclic Greedy Random
Jan 20.81 (0.08) 20.61 (0.05) 21.03 (0.03) 19.35 (0.06) 19.35 (0.06) 19.38 (0.07)
Feb 20.61 (0.04) 20.92 (0.04) 21.82 (0.04) 19.21 (0.07) 19.37 (0.07) 19.30 (0.07)
Mar 25.19 (0.05) 25.05 (0.07) 25.25 (0.03) 23.76 (0.08) 23.74 (0.08) 23.79 (0.08)
Apr 26.72 (0.05) 26.57 (0.07) 26.91 (0.03) 25.22 (0.09) 25.21 (0.09) 25.31 (0.09)
May 22.98 (0.05) 22.64 (0.06) 23.10 (0.03) 21.26 (0.08) 21.24 (0.08) 21.32 (0.08)
Jun 19.53 (0.05) 19.27 (0.07) 19.78 (0.03) 17.89 (0.08) 17.82 (0.08) 17.91 (0.08)
Jul 16.56 (0.04) 16.34 (0.05) 16.80 (0.03) 15.11 (0.07) 15.05 (0.07) 15.25 (0.07)
Aug 22.97 (0.05) 22.49 (0.07) 22.25 (0.03) 21.13 (0.08) 21.06 (0.08) 21.15 (0.08)
Sep 24.03 (0.05) 23.64 (0.07) 24.13 (0.03) 22.06 (0.08) 22.00 (0.08) 22.09 (0.09)
Oct 21.33 (0.06) 21.06 (0.06) 21.38 (0.03) 19.61 (0.07) 19.54 (0.07) 19.67 (0.07)
Nov 19.75 (0.04) 19.49 (0.05) 19.90 (0.04) 18.29 (0.07) 18.23 (0.07) 18.31 (0.07)
Dec 15.34 (0.04) 15.18 (0.05) 15.54 (0.03) 14.18 (0.06) 14.14 (0.06) 14.20 (0.06)

Table A.3: CPU times for the bound estimates

CPU Times (mins)
Month Cyclic Greedy Random
Jan 933 289 966
Feb 951 313 985
Mar 975 394 1010
Apr 1059 332 1099
May 1051 390 1090
Jun 1067 369 1105
Jul 1031 321 1071
Aug 1116 323 1155
Sep 1137 302 1178
Oct 1021 286 1058
Nov 947 301 981
Dec 1136 300 1178
Avg. 1035 327 1073

105



Bibliography

Golub GH, Van Loan CF (2013) Matrix Computations, volume 3 (JHU press).

Zhang F (2011) Matrix Theory: Basic Results and Techniques (Springer Science & Business

Media).

106



Appendix B

Supplement for Chapter 4

B.1 Proofs

Proof of Lemma 2. For every pair (i, xi) ∈ ×I × Xi on the sample path l, since

there is a feasible action which terminates the decision process and has a deterministic

reward, the column in Al corresponding to this action contains only 0 entries except the

one associated to the U l
i (xi) row. Therefore we can eliminate all entries in the U l

i (xi) row

with this column by column operations. We can repeat this step for every pair (i, xi) on

sample path l to obtain a matrix containing only one nonzeor element in each row. These

nonzero elements are also in different columns since they represent different constraints.

Thus Al is full row rank. □

Proof of Lemma 3 We consider two LPs: PLP dual and adjusted PLP dual. We’ll

show that these two LPs have equivalent feasible sets. A solution feasible to PLP dual

must also be feasible to the adjust PLP dual and vice versa. To see this, we only need

to consider the strong duality constraints since the other two kinds constraints are the

same in two LPs.

We first show if Ci,xi
µi,xi

= 0, then C ′
i,xi

µi,xi
= 0. It’s easy to see that if µi,xi

is a

solution to the first linear system, it must be a solution to the second one because the

constraints in C
′
i,xi

µi,xi
= 0 are also in Ci,xi

µi,xi
= 0. Reversely, suppose µi,xi

is a solution

to the second linear system, then it’s also a solution to the first linear system because

each constraint in Ci,xi
µi,xi

= 0 can be expressed as a linear combination of constraints

in C ′
i,xi

µi,xi
= 0. □

Proof of Proposition 9 The first statement is true because the constraint generated

by the pseudo action scheme is a lower bound on the optimal policy value of the MDP

almost everywhere. Thus, (4.17) has the same optimal objective function value as the

(4.6) because the optimal objective value of both (4.17) and (4.6) are upper bounds on

the MDP. In other words, the generated constraints do not influence the optimal objective

107



value at all. The second statement holds by a direct extension of Theorem 1 in Desai

et al. (2012b).□

Proof of Proposition 12 The proof is based on using the block coordinate descent

method to solve the regression. We divide the variables into two blocks, U variable and β

variable blocks. In every iteration of BCD, we iteratively fix the value of U variable block

or the β variable block while optimizing over the other variable block. The algorithm

will converge to an optimal solution because the objective function is convex and (twice)

differentiable. We’ll further show that the optimal solution is in fact unique.

Step 1: Fixing the value of β variables and optimizing over U variables. In step 1,

the optimization is still a least squares regression. The difference between the regression

in this step and the original regression is that every β variable has a fixed value. So the

variables contained in this regression are U variables only. Note that the least squares

regression decouples by samples because the U variable and its coefficient matrix A can

be decoupled into L groups based on samples. Following the same spirit of Lemma 2, it

can be shown, on each sample path, the coefficient matrix of U variables is full row rank.

So the regression on each sample path has a unique solution. Step 1 generates unique

solutions in BCD iterations.

Step 2: Fixing the values of U variables and optimizing over β variables. In the second

step, the subproblem is still a linear regression. But the variables become β variables and

all values of U variables are fixed. Also note that this regression decouples according to

endogenous states since the β variables can be decoupled according to endogenous states.

Since µ̄ is a solution to the linear system Ci,xi
µi,xi

= 0,∀(i, xi) ∈ I × Xi, the coefficient

matrix of the βi,xi
in this step must contain a set of bases in the solution space and

therefore is full row rank. So the regression for each endogenous state also has a unique

solution in step 2.

Since both step 1 and 2 generate unique solutions, the optimal solution to the re-

gression is also unique. Due to the uniqueness of the optimal solution to the regression,

(U∗, β∗) must also be the optimal primal solution to PLP. □

Proof of Proposition 13 The proof is also based on using the block coordinate descent

method to solve the regression in Algorithm 4.55. We still divide all variables in the

regression into two blocks, one block is U variables and the other is β variables. In every

iteration of BCD, we either fix the value of β variables and update U , denoted as step 1

or fix the value of U and update β, denoted as step 2.

In step 1, there are only U variables in the regression because β is fixed. The re-

gression will decouple according to samples as discussed in the proof for proposition 1.

Furthermore by Lemma 2, the coefficient matrix of U l
i (xi), ∀(i, xi) ∈ I l×X l

i is always full

row rank on every sample path l given the optimal dual variable µ. Therefore, as long as

108



we pick up all constraints in the regression by the unit of sample path, that is, we either

include all constraints related to a sample path l or none of them in the regression, the

step 1 will always generate a unique solution when updating U variables by BCD.

In step 2, there are only β variables in the regression which decouples by endogenous

states. As discussed in proposition 12, the coefficient matrix of βi,xi
, denoted as Ĉi,xi

, is

full row rank for each (i, xi) ∈ I × Xi. Since each Ĉi,xi
only has Bi rows, we can find

at most Bi linearly independent columns from Ĉi,xi
, i.e., we have Bi constraints for each

(i, xi) ∈ I × Xi. In the worst case, these Bi constraints come from Bi different samples.

So the total number of samples we need is
∑

i∈I
∑

xi∈Xi
Bi.□

Proof of Proposition 14 By the Hölder’s inequality, we have

µ̄⊤
1 (AŪ + Cβ̄ − r) ≤ ∥µ̄1∥2

∥∥AŪ + Cβ̄ − r
∥∥
2

(B.1)

Note that

µ̄⊤
1 (AŪ + Cβ̄ − r) = d⊤Ū + ĉβ̄ − µ̄⊤

1 r (B.2)

If defining OBJ(β) = d⊤Ū + ĉβ̄, the RHS of (B.2) becomes

d⊤Ū + ĉβ̄ − µ̄⊤
1 r = OBJ(β̄)− µ̄⊤

1 r (B.3)

Based on the results in Boyd et al. (2011), we have

µ̄⊤
1 r −OPT ≤ ȳ⊤ϵ̄+ (µ1 − µ∗)⊤ϵ̄ (B.4)

Therefore, we have the following inequality by combining (B.3) and (B.4)

OBJ(β̄)−OPT ≤ OBJ(β̄)− µ̄⊤
1 r + ȳ⊤ϵ̄+ (µ1 − µ∗)⊤ϵ̄ (B.5)

With (B.2), the above inequality becomes

OBJ(β̄)−OPT ≤ µ̄⊤
1 (AŪ + Cβ̄ − r) + ȳ⊤ϵ̄+ (µ̄1 − µ∗)⊤ϵ̄ (B.6)

So the suboptimality of OBJ(β̄) is bounded by the following inequality

OBJ(β̄)−OPT ≤ ∥ȳ∥2 ∥ϵ̄∥2 + ∥µ̄1 − µ∗∥2 ∥ϵ̄∥2 + ∥µ̄1∥2
∥∥AŪ + Cβ̄ − r

∥∥
2

(B.7)

≤ ∥ȳ∥2 ∥ϵ̄∥2 +D ∥ϵ̄∥2 + ∥µ̄1∥2 ∥ϵ̃∥2 (B.8)

where ϵ̃ := AŪ + Cβ̄ − r. The first inequality holds because of the Holder’s inequality.

The second inequality is due to ∥µ̄1 − µ∗∥2 ≤ D. □

109



Proof of Proposition 15 First it’s easy to check (µ̄1, µ̄2, µ̄3) is feasible. Then analo-

gous to the PLP dual (4.27)-(4.30), we apply ADMM to solve LP (4.57)-(4.60) and set

(µ̄1, µ̄2, µ̄3) as the initial point. If the solution satisfies the optimality conditions of the

Lagrangian function (4.35), it is optimal. The ADMM steps in the first iteration are as

follows

µ1
1 = argmin

µ1∈P

{
∥µ1 − µ̄3 + δ − ϵ1 + ȳ1∥22

}
(B.9)

µ1
2 = argmin

µ2∈Q

{
∥µ2 − µ̄3 + δ − ϵ2 + ȳ2∥22

}
(B.10)

µ1
3 = argmin

µ3∈R

{
− µ⊤

3 (r − 2ρδ) + ρ/2 ∥µ̄1 − µ3 + ȳ1 + δ − ϵ1∥22

+ ρ/2 ∥µ̄2 − µ3 + ȳ2 + δ − ϵ2∥22
}

(B.11)

y11 = ȳ1 + µ1
1 − µ1

3 − ϵ1 + δ (B.12)

y12 = ȳ2 + µ1
2 − µ1

3 − ϵ2 + δ (B.13)

For (B.9), note that ȳk−1
1 = ȳ1− ϵ1 and µ̄k−1

3 = µ̄3− δ. By plugging in these values, (B.9)

becomes

µ1
1 = argmin

µ1∈P

{∥∥µ1 − µ̄k−1
3 + ȳk−1

1

∥∥2
2

}
(B.14)

so µ1
1 = µ̄k

1 = µ̄ and similarly µ1
2 = µ̄2. For (B.11), by replacing ȳ1 − ϵ1 with ȳk−1

1 and

µ̄3 − δ with µ̄k−1
3 and rearranging, it can be shown that the optimal solution is µ̄3. So

the optimal solution to (B.11) maintains the same during the iteration as well.

This update means that if we start from (µ̄1, µ̄2, µ̄3), it will still be the optimal solution

in the following rounds of iterations. Thus, both the primal and dual residuals are 0, which

satisfies the optimality conditions for the Lagrangian function (4.35).□

110



B.2 Illustration of the Unbounded issue in PLP

We provide a simple example to illustrate the unboundedness issue of PLP. We start from

PLP (4.11)-(4.12):

min
U l,β

1

L

L∑
l=1

U l
0(x0) (B.15)

s.t. U l
i (xi) ≥ r(xi, s

l
i, ai)−

∑
b∈Bi

βi+1,f(xi,ai),b∆
E,l
i ϕi+1,b

+ δU l
i+1(f(xi, ai)),∀(i, xi, ai) ∈ I \ {I − 1} × Xi ×Ai(xi), (B.16)

U l
I−1(xI−1) ≥ r(xI−1, s

l
I−1, aI−1), ∀(xI−1, aI−1) ∈ ×XI−1 ×AI−1(xI−1), (B.17)

for each xI−1 ∈ XI−1. For simplicity, we use two sample paths and set three as the time

horizon in the example, i.e., L = 2 and I = 3. The endogenous state component set Xi

for each stage is set to be {O}. The corresponding dual value variables are U l
i (xi) with

i ∈ {0, 1, 2}, xi ∈ {O}, and l ∈ {1, 2}. We restrict P the only feasible action for stage 0

and 1. The decision process stops with an action A in the last stage. We further assume

there is only one β in the VFA, i.e., B = 1. The discount factor is also set to be 1. Figure

B.1 shows the endogenous state transition for this illustrating example.

Figure B.1: Decision Tree for the Illustrating Example

Suppose the value of the coefficients corresponding to β on these two samples are 1.5

and −1.3, respectively. Then PLP for this example is (after simplification):

min
U,β

1

2

2∑
l=1

U l
0(x0) (B.18)

U1
0 (x0) ≥ r10 + 1.5β + r11 (B.19)

U2
0 (x0) ≥ r20 − 1.3β + r21 (B.20)

The above PLP is unbounded as β goes to the negative infinity. Even if we increase

the number of samples, the issue will always exist as long as the sample average of the

coefficient column of β is not 0 (in the specified example, the value is 1.5−1.3 = 0.2).

111


	Introduction
	Background
	MDP
	MDP Dual
	Approximation Strategies
	Thesis Contributions and Outline

	Pathwise Optimization for Reinforcement Learning in Merchant Energy Production
	Introduction
	Model
	Informal Overview
	MDP

	Approximate Solution Approach
	Greedy Policy and Lower Bound
	Dual Bound

	PO
	Solving the Pathwise Linear Program
	Pre-conditioning Algorithm
	BCD Optimization Algorithm

	Numerical Study
	Instances
	Setup
	Bounds and Run Times
	Operating Policy

	Conclusions

	Constraint Generation for Pathwise Reinforcement Learning
	Introduction
	Literature Review
	Constraint Generation
	Numerical Study
	Conclusion

	Modeling and Algorithmic Generalizations
	Introduction
	Literature Review
	Preliminaries
	Markov Decision Process
	Information Relaxation and Duality Techniques
	PO
	Unbiased Upper Bound and Greedy Lower Bound

	Pseudo Action Scheme
	Alternating Direction Method of Multipliers and Primal Solution Recovery
	ADMM Reformulation
	Primal Solution Recovery
	Complexities

	Guarantees
	Convergence of ADMM
	Analysis on the Primal Solution Recovery

	Numerical Study
	Example: Managing Natural Gas Storage Asset
	Example: Merchant Energy Production

	Conclusion

	Conclusion
	Summary
	Future Research

	Appendices
	Supplement for Chapter 2
	Block-diagonal Structure of G and PCA
	Interpretation of P2LP using Modified Basis Functions
	Proofs
	Numerical Results for Linear Basis Functions
	Numerical Results Under Different Block Selection Rules

	Supplement for Chapter 4
	Proofs
	Illustration of the Unbounded issue in PLP


