
On Scalable Algorithms and
Algorithms with Predictions

Thomas Lavastida

May 11, 2022

Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Benjamin Moseley

R. Ravi
Willem-Jan van Hoeve

Clifford Stein

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Algorithms, Combinatorics, and Optimization.

Copyright © 2022 Thomas Lavastida

To my parents, for their love and always believing in me even when I did not

iv

Abstract

In recent years the massively increased availability of data has created
significant interest in data-driven methods in engineering and business. This
has created a need both for more scalable algorithms to process larger data sets
as well as new methods for leveraging data in decision making and optimization.
In this dissertation we consider both of these broader questions for a variety
of relevant problems. The first part of this dissertation is concerned with the
question of scalability via parallel and distributed algorithms, while the second
part considers questions within the growing field of algorithms with predictions.

In Chapter 1, we consider the weighted longest common subsequence prob-
lem and its all-substrings generalization. This problem arises in computational
biology applications, where there is a need to scale to larger inputs. We
give efficient parallel algorithms which yield nearly optimal solutions for both
problems.

Hierarchical clustering is a fundamental data analysis tool, and one of the
most widely used clustering methods in practice. Typical approaches suffer
from issues of scalability, either due to needing at least quadratic time or having
an inherently sequential nature. To get around these barriers, we consider
approximations. Our main results for Chapter 2 are efficient distributed
algorithms which approximate the wide class of divisive k-clustering methods.

In algorithms with predictions we augment our usual algorithms with
additional information representing (potentially erroneous) predictions about
the input or desired solution. These predictions can be useful in resolving future
uncertainty in the online setting or improving the average case running time of
an algorithm when a problem must be solved repeatedly on similar inputs. In
general, we want to design and analyze algorithms whose performance is tied
to prediction error, as well as to show how to appropriately construct these
predictions from past data.

Chapter 3 considers online load balancing with restricted assignments. We
show the existence of predictions which can help guide the online algorithm in
constructing a fractional assignment. These predictions are robust to small
errors and they can be efficiently learned from past instances of the problem.
To complete the result, we give an online rounding algorithm.

Finally, Chapter 4 considers the Hungarian algorithm for minimum cost
bipartite matching. Usually this algorithm is given a näıve initial dual solution.
We show, both theoretically and practically, that a learned initial dual solution
can significantly improve the running time of this algorithm. This can be seen
as using past instances of the problem to set a “warm-start” solution, which is
more likely to be close to an optimal solution, and thus require fewer iterations
to reach optimality.

vi

Acknowledgments

First, I would like to thank my advisor, Ben Moseley, who originally took
me on as a student when he was at Washington University in St. Louis. It has
been a long journey to get here, and I could not have done it without Ben’s
endless support, optimism, and enthusiasm for research. Whether it was a
paper rejection or preparing my job market talk, Ben has always been there to
help me set my trajectory and offer feedback.

In addition to my advisor, I have been very luck to work with and learn
from a wonderful group of co-authors throughout my years as a PhD student. I
am thankful to have had the pleasure of working with Jeremy Buhler. Michael
Dinitz, Sungjin Im, Silvio Lattanzi, Kefu Lu, R. Ravi, Sergei Vassilvitskii,
Yuyan Wang, and Chenyang Xu.

Additionally, I would like to thank my committee, which included Ben
Moseley, R. Ravi, Willem-Jan van Hoeve, and Cliff Stein. They provided me
with useful feedback on my writing and talks, as well as gave me support and
encouragement in pursuing an academic career.

I am grateful to my friends from LSU: Matthew, Daniel, Justin, Bo, and
Bea. It has been a very interesting experience to see all of us move from being
undergraduate students at LSU to each of us pursuing our respective paths
professionally. I love that we have remained close even after moving all over
the U.S. (or the world, in Daniel’s case), and I hope that we can plan more
meet-ups in the future.

My friends I have made while at Carnegie Mellon have made my time here
unforgettable. I am grateful to Nam, Christian, Gerdus, Amin, Aleks, Michael,
Ryo, Wenting, Yang, Arash, Goran, Neda, Ziye, Violet, Sagnik, Yuyan, Melda,
Ozgun, Kyra, Su, Serim, Rudy, Mik, Anthony, Daniel, Sherry, and Yasamin
for their friendship throughout my time as a PhD student. I am also grateful
to my support group, which was very helpful to me while completing my PhD
in the midst of a global pandemic.

Finally, I would like to thank my family. There have been several moments
during my PhD where I have been anxious or stressed and my parents, Jorge
and Maureen, have never failed to believe in me. I am immensely grateful for
the love and support I have received from them, as well as from my sisters -
Emily, Claire, Sara, and Gianna.

viii

Contents

Abstract iv

Acknowledgments vi

Introduction 1

1 Parallel Approximation Algorithms for Weighted Longest Common Sub-
sequence 7
1.1 Introduction . 7
1.2 Preliminaries . 11
1.3 All-Substrings Weighted Longest Common Subsequence 11

1.3.1 Divide-and-Conquer Strategy . 11
1.3.2 Approximation via Sketching . 12
1.3.3 Base Case Local Algorithm . 13

1.4 Analysis of Approximation and Runtime 19
1.4.1 Quality of the Solution . 19
1.4.2 Running Time . 20

2 Distributed Algorithms for Hierarchical Clustering 23
2.1 Introduction . 23
2.2 Preliminaries . 25
2.3 A Framework for Parallelizing Hierarchical Clustering Algorithms 26
2.4 Algorithms and Theoretical Guarantees . 27

2.4.1 Distributed Divisive k-Clustering 27
2.4.2 From Bounded Length Dependency Chains to Parallel Algorithms . 29

3 Online Load Balancing with Predictions 31
3.1 Introduction . 31

3.1.1 Related Work . 34
3.2 Preliminaries . 35

3.2.1 Problem Definition and Notation 35
3.2.2 ML Oracles . 37
3.2.3 Predictions for Online Scheduling 38

3.3 A Robust Online Algorithm via Machine Weights 39

ix

3.3.1 Constructing Fractional Solutions Online Using Learned Weights . . 39
3.4 Rounding Algorithm Overview . 41
3.5 Online Rounding Algorithm & Analysis . 43

3.5.1 Instance Transformation . 44
3.5.2 Rounding A Single Class of Large Jobs 45

3.6 Lower Bounds for Online Rounding . 54
3.6.1 Deterministic Lower Bound . 55
3.6.2 Randomized Lower Bound . 55
3.6.3 Learning the Weights . 58

3.7 Existence of Weights for a Near Optimal Fractional Assignment 64
3.8 Proof of Rounding Theorem . 67
3.9 Removing Knowledge of T . 67

4 Speeding up the Hungarian Algorithm with Learned Duals 71
4.1 Introduction . 71

4.1.1 Our Contributions . 72
4.1.2 Related Work . 74
4.1.3 Roadmap . 75

4.2 Preliminaries . 75
4.3 Faster Min-Weight Perfect Matching . 76

4.3.1 Recovering a Feasible Dual Solution (Feasibility) 77
4.3.2 Seeding Hungarian with a Feasible Dual (Optimization) 79
4.3.3 Learning Optimal Advice (Learning) 82

4.4 Experiments . 86
4.4.1 Running Time . 90

4.5 Extending to b-Matching . 90
4.5.1 Recovering a Feasible Dual Solution for b-Matching 93
4.5.2 Converting a Feasible Dual Solution to an Optimal Primal Solution 94
4.5.3 Learning the Dual Prices . 96

4.6 Conclusion and Future Work . 97

Conclusions 99

Bibliography 101

x

Introduction

In recent years the massively increased availability of data has created significant interest
in data-driven methods in engineering and business. This has created a need both for more
scalable algorithms to process larger data sets as well as new methods for leveraging data
in decision making and optimization. In this dissertation we consider both of these broader
questions for a variety of problems, including string comparison, hierarchical clustering,
online scheduling, and bipartite matchings.

The first part of this dissertation is concerned with the question of scalability via
parallel and distributed algorithms, while the second part considers questions within the
growing field of algorithms with predictions.

Parallel and Distributed Algorithms

While data sets have greatly increased in size, the availability of large amounts of cheap
computing resources has also increased through online cloud computing platforms such as
Amazon Web Services [9], Microsoft Azure [112], and Google Cloud Platform [73]. Thus a
common approach to achieving greater scalability is to utilize multiple computing resources
in tandem. This could take the form of a multi-core CPU or a distributed network of
several machines across which the computation takes place.

In order to design and analyze algorithms we need to consider models which capture
aspects of these practical settings. In this dissertation we will describe algorithms within
the (Parallel Random Access Machine (PRAM) [65] and Massively Parallel Computation
(MPC) [90, 72, 36] models of computation. These models are designed to distill the
essential components of the practical settings of a multi-core CPU or a distributed network
of machines, respectively. This allows algorithm designers to devise new algorithms which
can better leverage multiple computing resources to achieve greater scalability.

PRAM: In the PRAM model, there are a fixed number p of parallel processors with a
shared memory where the input is initially stored. Issues of synchronization will not be
important as our algorithms will parallelize naturally, so we will ignore them here. The
main quantity of interest will be the parallel running time of our algorithms.

MPC: In the MPC model there is a collection of M machines each with their own local
memory of size S. Initially, the input of size N is distributed across the M machines so
that each machine has a different piece of the input. Computation is carried out in rounds.
In a single round, each machine is allowed to carry out computation on data stored in its

1

local memory, after which there is a synchronous communication step where machines are
allowed to exchange information. The total amount communicated by each machine (both
sending and receiving) should be O(S). This model is widely used to capture the class of
algorithms that scale in programming frameworks such as Spark and MapReduce.

We will require that S ·M = Õ(N), which enforces that we cannot communicate all
of the data to one machine and apply a sequential algorithm. Here the main quantity of
interest is the number of rounds needed to carry out a computation under the previous
constraints, which we would like to be polylogarithmic in N . A typical setting of the
parameters has S = Õ(N δ), for some constant δ ∈ (0, 1). This way we have both S and
M sublinear in N .

Breaking Dependencies: Ideally, when designing a parallel algorithm, we want to break
up a computation into several independent parts which can be handled in parallel by
separate machines/processors. One of the main challenges in designing an efficient parallel
algorithm is dealing with chains of dependencies. Dependencies occur when one step in a
computation depends on a previous one. If an algorithm has a long chain of dependencies,
then this creates a bottleneck for parallelizing it. For the problems considered in this
dissertation, standard algorithms will suffer from this problem.

To understand this issue more concretely, let’s consider the longest common subsequence
(LCS) problem and its standard dynamic programming algorithm. In this problem, there
are strings x and y over a common finite alphabet Σ. We will let the length of x be n and
the length of y be m. The goal is to find a subsequence that is common to both strings
that is as long as possible. A standard dynamic programming algorithm computes an
optimal solution in time O(nm) by setting up the following recurrence. Let L(i, j) be the
length of the longest common subsequence between x[1 : i] and y[1 : j] (where x[1 : i]
refers to the substring of x consisting of the first i characters). Ignoring base cases, for
i, j > 1 we recursively compute:

L(i, j) = max{L(i− 1, j), L(i, j − 1), L(i− 1, j − 1) + 1{x[i]=y[j]}}.

Since the goal is to finally compute L(n,m), observe from the recurrence above that doing
so will have dependency chains of length Θ(n+m), thus making it difficult to parallelize
this algorithm.

Thus, a key challenge for algorithm designers is to find algorithms with significantly
smaller chains of dependencies which can be implemented efficiently in parallel and
distributed settings. In this dissertation, we will do this through the use of approximation.
That is, rather than insisting on producing an optimal solution or making exact decisions,
we will relax our algorithms and allow them to produce nearly optimal solutions or make
approximate decisions throughout their execution. A natural question to ask is: when can
approximations be leveraged to break long chains of dependencies and allow us to achieve
better scalability? We will answer this question affirmatively for a weighted version of the
LCS problem described above and also for divisive hierarchical clustering methods.

2

Chapter 1: Parallel Approximation Algorithms for Weighted Longest Common
Subsequence

In the weighted longest common subsequence (WLCS) problem we are given strings
x and y over a common finite alphabet Σ (of length n and m, respectively) as well
as a non-negative scoring function f : Σ × Σ → N. The objective is to output a
correspondence with maximum total weight. A correspondence between x and y is a
sequence of index pairs (i1, j1), (i2, j2), . . . , (iℓ, jℓ) such that ik < ik+1 and jk ≤ jk+1 for
all k. The weight of a correspondence is given by

∑ℓ
k=1 f(x[ik], y[jk]). This problem

generalizes the longest common subsequence problem and a simple modification of the
dynamic programming algorithm described above can be used to find an optimal solution
in O(nm) time (sequentially).

This problem has applications in bioinformatics, where the strings x and y correspond
to DNA sequences which may be millions to billions of characters long. Thus there is a
need to develop more scalable approaches since the sequential O(nm) running time may
be prohibitive at these scales.

In Chapter 1, we develop efficient parallel approximation algorithms for this problem.
Our algorithms take in a parameter ϵ ∈ (0, 1) and will output a solution with weight at
least 1− ϵ times the weight of an optimal correspondence. The main result of this chapter
is a parallel algorithm with running time

O

(
σmn

p
+

m

ϵ2
log2(σm) log2(n) log(p)

)
,

where σ is an upper bound on the scoring function (which is usually small in practice).
We also note that our algorithms can be adapted to run in O(log n) rounds in the MPC
setting when m = O(

√
n).

Chapter 2: Distributed Algorithms for Hierarchical Clustering

In hierarchical clustering, we are given a set of n points S along with a dissimilarity
function d : S×S → R and the goal is to output a binary tree on n leaves, where each leaf
corresponds to one of the points in S. Internal nodes in the tree represent clusters which
contain all of the leaf nodes in the sub-tree rooted at the node. Ideally, more dissimilar
points are separated near the top of the tree, while more similar points are separated
closer to the bottom of the tree.

A natural method for constructing a hierarchical clustering tree is to first use a
clustering method such as k-means with k = 2 to divide the set S into two parts, and
then continue recursively on each part. While it is known how to compute a k-means
clustering efficiently in the MPC setting, adapting this divisive algorithm to the MPC
setting is not immediate. It is possible for the k-means clustering to produce unbalanced
clusters in each step, causing long chains of sequential dependencies and resulting in an
inefficient parallel algorithm. In Chapter 2, we will show that we can overcome this issue
while retaining an O(1)-approximate solution to the clustering problem in each step. In
particular, we will give divisive hierarchical clustering algorithms in the MPC setting

3

running in O(log n) rounds under mild assumptions, which guarantee that the split at
each step is an O(1)-approximation for the clustering cost used by the divisive algorithm.

Algorithms with Predictions

Recent advances in machine learning have revolutionized how problems in computer vision,
natural language processing, and perception are addressed. Improvements to predictive
models and increased availability of large data-sets have contributed to this rapid progress.
One might also ask if it’s possible to leverage machine learning and predictive models to
improve the design of algorithms for optimization problems. Machine learning models
use past data to infer structure in the (unknown) target distribution that allow them to
make accurate predictions on new examples from the same distribution. Could we use
past instances of an optimization problem in order to learn something which can assist in
solving new instances of the problem, ideally with some sort of improved performance?

Following a rekindled interest in beyond worst case analysis of algorithms [129], there
has been significant effort in developing methods for incorporating machine learning and
data-driven methods into algorithm design for combinatorial problems. This area has
come to be known as learning-augmented algorithms or algorithms with predictions [116].
In this dissertation we will use the latter term to refer to this area. The aim of this area is
to design algorithms which incorporate predictions so that the algorithm can go beyond
worst-case lower bounds when the prediction is accurate and retain similar worst-case
performance otherwise.

A natural setting where predictions and learning can help is in online optimization. In
online optimization, each piece of the problem is revealed one at a time and the algorithm
must commit to a decision before seeing more of the problem. For example, in online
scheduling the algorithm must decide how to schedule a newly arrived job before seeing
future jobs. This commitment to a decision before seeing the entire input means that
we usually expect the online algorithm to find sub-optimal solutions. Thus we want to
quantify and upper bound how sub-optimal the algorithm is. Usually this is done in a
worst case sense. For some instance I of a problem, say that ALG(I) is the cost incurred
by an online algorithm and OPT(I) is the cost of an optimal solution in hindsight (which
knows the entire input sequence). Then we say that an algorithm is c-competitive (or has
competitive ratio c) if for all instances I we have ALG(I) ≤ c · I. Since this is worst-case,
usually one can show strong lower bounds on possible values of c.

In the setting of online algorithms with predictions, we hope that accurate predictions
can allow an online algorithm to go beyond worst-case lower bounds on the competitive
ratio, but perform nearly the same as in the worst-case setting when the predictions are
very inaccurate, with a smooth degradation in-between. This line of work was initiated
by Lykouris and Vassilvitskii [107, 108], who studied the online caching problem in the
presence of predictions. On the arrival of each page request, they assume that the online
algorithm is also given a prediction of when it will arrive again in the future. They quantify
the competitiveness of their algorithm in terms of the ℓ1-distance between the vector of
predicted arrival times and the vector of true arrival times. More recently there has been

4

an explosion of work in this area, covering many classic online settings such as the ski
rental problem [126, 69, 11], further work on caching [128, 85, 148, 32], page migration [82],
scheduling [126, 115, 20], online covering [31], bipartite matching [15, 103, 1], metrical task
systems [14], and Steiner tree [22, 150]. In terms of online algorithms with predictions,
this dissertation will consider online load balancing with restricted assignments, a classic
online scheduling problem with strong lower bounds in the worst-case setting.

In addition to competitive ratios in the online setting, there has been significant interest
in using predictions to improve other aspects of an algorithm’s performance, such as running
time and space complexity. For example, Kraska et al. [94] use learning to improve query
times in index structures, a standard tool for data retrieval. Mitzenmacher [114] uses
predictions to improve the space complexity of bloom filters. Hsu et al. [80] using predictions
to improve the errors in sketches for heavy-hitters in the streaming setting. Chmiela
et al. [48] consider learned primal-heuristic schedules to improve primal performance in
mixed integer programming solvers, which can also help to improve running time. In
this dissertation we will study how to improve the running time for weighted bipartite
matching algorithms through predictions of the optimal dual solution.

Another related area is data-driven algorithm design [24, 75, 28, 27, 26, 25]. Here
a parameterized family of algorithms is considered, and the goal is to use data on past
problem instances to learn a setting of the parameters for the algorithm so that it performs
well on instances drawn from the same population as the past problem instances used
in learning. Usually, the main goal is to understand the sample complexity of learning
the parameter, i.e. how much data is needed. We will make use of ideas from this area
in order to show that the predictions we propose are also learnable. Additionally, work
within the algorithms with predictions community has also recognized that learnability is
an important and interesting property for a prediction to have [11, 10, 55].

Research Questions: In this dissertation we will consider the setting of algorithms
with predictions in the context of optimization problems. This raises several questions to
address when faced with a concrete optimization problem:

1. What quantity should be predicted? This should depend on the structure of the
problem at hand.

2. How do we incorporate the predictions in the design of the algorithm? Ideally, more
accurate predictions should yield improved performance.

3. How do we construct the prediction from past problem instances? Can we guarantee
the prediction we learn will generalize to new problem instances?

In the final two chapters of this dissertation, we will consider all of these questions for
two classic optimization problems: online makespan minimization and improving running
time for minimum cost bipartite matchings.

Chapter 3: Online Load Balancing with Predictions

In this chapter, we will consider online makespan minimization with restricted assignments
in the algorithms with predictions setting. In this problem, there is a collection of n jobs

5

which arrive online to be scheduled on m machines. Upon a job j’s arrival, it reveals
its size pj and a subset N(j) ⊆ [m] of feasible machines where it can be assigned. The
algorithm must irrevocably assign the job to some machine i ∈ N(j) before seeing future
jobs. The objective is to minimize the maximum load of a machine, where the load of
machine i is the total size of jobs assigned to it.

Online makespan minimization with restricted assignments is a fundamental problem in
online scheduling and well understood from the perspective of worst-case analysis. Notably,
all online algorithms are Ω(logm)-competitive and the natural greedy algorithm which
assigns each job to the least loaded feasible machine is O(logm)-competitive [21]. We will
be interested in finding quantities to predict that succinctly captures the structure of an
instance, so that highly accurate predictions can go beyond this worst-case lower bound.
Our approach will construct fractional assignments, and thus we also study the problem
of rounding a fractional assignment online in order to be competitive with the in-hindsight
makespan of the fractional assignment, providing both upper and lower bounds for this
online rounding problem. Additionally, we will show that our proposed prediction is in
some sense learnable from past data.

Chapter 4: Speeding up the Hungarian Algorithm with Learned Duals

Another natural setting where predictions can help is in the context of improving running
times. In addition to ensuring that our algorithm has a good worst-case running time, we
can use learned predictions to tailor our algorithm to the inputs that are typically seen
in practice. In Chapter 4, we do this for the minimum cost perfect matching problem in
bipartite graphs. In this problem, there is a bipartite graph G = (V,E) with integer costs
c on the edges of the graph. The goal is to output a perfect matching M which minimizes
the cost c(M) =

∑
e∈M ce.

A standard algorithm for solving this problem is the Hungarian algorithm [97], which
is based on updating dual variables for a linear programming formulation of the problem
in order to reach optimality. Usually, these dual variables are initialized in a näıve way
in order to guarantee dual feasibility. The main idea for this chapter is to predict initial
values for the dual variables with the hope that they are likely to be closer to the optimal
dual solution for a new instance, and thus require fewer iterations of the Hungarian method
to reach optimality. There are several challenges we have to address:

1. What if the predicted duals are infeasible for the new problem instance?

2. Does a more accurate prediction of the duals lead to an improved running time?

3. How do we use past data to predict values for the dual variables?

We will answer all three of these questions, which will give us an end-to-end framework
for incorporating predicted duals into the Hungarian algorithm.

In addition to these theoretical results, we conduct experiments based on both synthetic
and real data which demonstrate the capability of learned duals to significantly outperform
standard initialization methods for the Hungarian algorithm in terms of running time.

6

Chapter 1

Parallel Approximation Algorithms
for Weighted Longest Common
Subsequence

This chapter is based on ”A Scalable Approximation Algorithm for Weighted Longest
Common Subsequence” [42], which appeared in the proceedings of the 27th Interna-
tional European Conference on Parallel and Distributed Computing (EURO-PAR 2021).
Collaborators on the project were Jeremy Buhler, Kefu Lu, and Benjamin Moseley.

1.1 Introduction

Technologies for sequencing DNA have improved dramatically in cost and speed over
the past two decades [125], resulting in an explosion of sequence data that presents
new opportunities for analysis. To exploit these new data sets, we must devise scalable
algorithms for analyzing them. A fundamental task in analyzing DNA is comparing two
sequences to determine their similarity.

A basic similarity measure is weighted longest common subsequence (WLCS). Given
two strings x and y over a finite alphabet Σ (e.g. {A,C,G,T}), a correspondence between
them is a set of index pairs (i1, j1) . . . (iℓ, jℓ) in x and y such that for all k < ℓ, ik < ik+1

and jk < jk+1. A correspondence need not use all symbols of either string. We are given a
non-negative scoring function f : Σ× Σ→ N on pairs of symbols, and the goal is to find
a correspondence (the WLCS) that maximizes the total weight

∑ℓ
k=1 f(x[ik], y[jk]). We

assume, consistent with actual bioinformatics practice [138], that the maximum weight
σ returned by f for any pair of symbols is a small constant [88], so that the maximum
possible weight for a correspondence between sequences is proportional to their length.
WLCS is a special case of the weighted edit distance problem [120] in which match and
mismatch costs are non-negative and insertion/deletion costs are zero. This problem is
sufficient to model similarity scoring with a match bonus and mismatch and gap penalties,
provided we can subsequently normalize alignment weights by the lengths of the two
sequences [141]. If f scores +1 for matching symbol pairs and 0 for all others, the problem

7

reduces to unweighted LCS.

A generalization of WLCS is the all-substrings WLCS or AWLCS problem. In this
variant, the goal is to compute a matrix H such that H[i, j] is the weight of a WLCS
between the entire string x and substring y[i..j]. This “spectrum” of weights can be used to
infer structure in strings, such as approximate tandem repeats and circular alignments [135].
Of course, H includes the weight of a WLCS between the full strings x and y as an entry.

Throughout this chapter, we let |x| = n, |y| = m and assume that n ≥ m.

Sequential Methods The WLCS problem, like the unweighted version, can be solved by
dynamic programming in time O(nm). In particular, the well-known Needleman-Wunsch
algorithm [120] for weighted edit distance, which is the basis for many practical biosequence
comparison tools [137, 132, 133, 134], solves the WLCS problem as a special case. Sub-
quadratic time algorithms are also known for the WLCS problem based on the “Four
Russians” technique [110], which works for integer weights. In addition, there is the work
of Crochemore et al that works for unrestricted weights and also achieves sub-quadratic
time [51]. At the same time, the sequential complexity of the LCS and WLCS problem is
well understood - results in fine-grained complexity give strong lower bounds assuming
the Strong Exponential Time Hypothesis, see e.g. [40, 39] and [2].

Schmidt [135] showed that AWLCS, which naively requires much more computation
than WLCS, can be solved in time O(nm logm) as a special case of all-substrings weighted
edit distance. Alves et al. reduced this cost to O(nm) for the special case of unweighted
all-substrings LCS (ALCS) [8].

Parallel Methods One way to solve large WLCS problems more efficiently is to parallelize
their solution. Krusche and Tiskin [96] study parallelization of standard dynamic program-
ming algorithms for LCS. However, the straightforward dynamic programming approaches
for LCS and WLCS do not easily parallelize because they contain irreducible chains of
dependent computations of length Θ(n+m). The fastest known parallel algorithms for
these problems instead take a divide-and-conquer approach (such as [16]), combining the
all-substrings generalization of LCS with methods based on max-plus matrix multiplication
as we will describe.

Let x1 and x2 be two strings, and let H1 and H2 be AWLCS matrices on string pairs
(x1, y) and (x2, y), respectively. Defining matrix multiplication over the ring (max,+),
H1 × H2 is the AWLCS matrix for strings x1 · x2 and y [142]. Hence, we can compute
the AWLCS matrix for the pair (x, y) on p processors by subdividing x into p pieces
xk, recursively computing matrices Hk for each xk with y, and finally multiplying the
Hk together. Given a base-case algorithm to compute AWLCS in time B(m,n) and an
algorithm to multiply two m×m AWLCS matrices in time A(m), this approach will run
in time B(m, n

p
) + A(m) log p.

Fast multiplication algorithms exist that exploit the Monge property of AWLCS
matrices: for all 1 ≤ i < k ≤ m and 1 ≤ j < ℓ ≤ n, H[i, j] +H[k, ℓ] ≤ H[i, ℓ] +H[k, j].
Tiskin [142] showed that for the special case of unweighted ALCS, A(m) = O(m logm),

yielding an overall time of O
(

mn
p

+m logm log p
)
.

For AWLCS, A(m) = O(m2) using an iterated version of the SMAWK algorithm [4, 131].

8

No faster multiplication algorithm is known for the general case. Practically subquadratic
multiplication has been demonstrated for specific scoring functions f [131], but the
performance of these approaches depend on f in a difficult-to-quantify manner. In [127] a
complex divide-and-conquer strategy was used to achieve an optimal running time for the
pairwise sequence alignment problem, which is similar but more general than our problem.
In our work we use an alternative divide-and-conquer strategy to obtain a fast parallel
algorithm.

Contributions: This chapter introduces a new approach to parallelizing AWLCS and
therefore WLCS. We introduce algorithms that are (1− ϵ) approximate. Our algorithm’s
running time scales with o(m2) in the PRAM setting as the number of processors increases.

The new algorithm is our main contribution. Our algorithm sketches a sequential
dynamic program and uses a divide-and-conquer strategy which can be parallelized. This
sketch comes with a cost of approximating the objective to within a 1 − ϵ factor for
any parameter ϵ ∈ (0, 1). By relaxing the algorithm’s optimality guarantee, we are able
to obtain subquadratic-time subproblem composition by building on recent results on
parallelizing dynamic programs for other problems [81]. Additionally, we develop and
utilize a new base case algorithm for AWLCS that takes advantage of the small range of
weights typically used [88]. The following theorem summarizes our main result.

Theorem 1.1.1. Let W be the largest possible correspondence weight and let p be the
number of processors. For any ϵ ∈ (0, 1), there is a PRAM algorithm running in time
O(B(m, n

p
) + m

ϵ2
log2(W) log2(n) log(p)) that computes a (1 − ϵ)-approximate solution to

the WLCS problem.

Using Schmidt’s algorithm (B(m,n) = O(mn logm)) for the base case, we obtain a
parallel algorithm with running time:

O

(
mn logm

p
+

m

ϵ2
log2W log2 n log p

)
,

where W is the largest possible correspondence weight between strings(which, by our
assumption of bounded weights, is O(min(n,m))). As mentioned, this is the first parallel
algorithm for weighted LCS for which the running time scales as o(m2), and also the fastest
(1− ϵ)-approximation algorithm for weighted LCS in BSP. In contrast, previous methods’
running times have a Θ(m2) term that does not diminish as the number of processors p
increases.

Using Schmidt’s algorithm for the base case dominates the running time. We would
like to improve the O(mn logm) running time of the base case to get as close to O(mn) as
possible. We develop an interesting alternative base case algorithm by extending Alves’s
O(mn) algorithm for ALCS [8] to the weighted case of AWLCS. This is our second major
contribution. This algorithm, like our overall divide-and-conquer strategy, exploits the
small range of weights typically used by scoring functions for DNA comparison.

Theorem 1.1.2. Let σ be the highest weight produced by the scoring function f . There is a
sequential algorithm running in time O(σnm) time for computing an implicit representation
of the AWLCS matrix using space O(σm).

9

Using this algorithm as the base case in Theorem 1.1.1, we achieve an overall running
time of O(σmn

p
+ m

ϵ2
log2(σm) log2(n) log(p)).

Algorithmic Techniques We leverage two main techniques. The first is parallelizing a
natural dynamic program for a problem via sketching. Let C(i, j) be the weight of a WLCS
between x[1 : n] and y[i : j]; we want to compute this quantity for all 1 ≤ i < j ≤ m. One
may add a third index to specify Ck(i, j), the weight of a WLCS between x[1 : k] and y[i : j].
Ck can be computed via the following recurrence: Ck(i, j) = max{Ck−1(i, j), Ck(i, j −
1), Ck−1(i, j − 1) + f(x[k], y[j])}. But this recurrence is both inefficient, requiring time
O(nm2), and difficult to parallelize, with dependent computation chains of size Ω(n+m).

To improve efficiency, we abandon direct computation of C(i, j) and instead compute
some D(i, w) which is subsequently be used to derive the entries of C(i, j). D(i, w) is the
least index j s.t. there exists a correspondence of weight at least w between y[i : j] and
x[1 : n]. We compute and store D(i, w) only for values w that are powers of 1+ ϵ′ for some
fixed ϵ′ > 0. This sketched version of D effectively represents the O(m2) sized matrix C
using O(m log1+ϵ′ mσ) entries. Although our sketching strategy is not guaranteed to find
the optimal values C(i, j), we show that it exhibits bounded error as a function of ϵ′.

A straightforward computation of D(i, w) entails long chains of serial dependencies.
Thus, we use a divide-and-conquer approach instead. LetDr1,r2(i, w) store the the minimum
index j s.t. a correspondence of weight at least w exists between y[i : j] and x[r1 : r2].
We will show how to compute Dr1,r3(i, w) given Dr1,r2(i, w

′) and Dr2+1,r3(i, w
′) for values

w′ ≤ w. If we compute D matrices for non-overlapping substrings of x in parallel and
double the range of x covered by each D matrix at each step, we can compute D1,n(i, w)
in a logarithmic number of steps.

In realistic applications, we seek to compare sequences with millions of DNA bases; the
number of available processors is small in comparison, that is, p≪ min(n,m). Speedup
is therefore limited by the base-case work on each processor, which must sequentially
solve an AWLCS problem of size roughly m× n

p
. Solving these problems using Schmidt’s

algorithm, which is insensitive to the magnitude of weights, takes time O(n
p
m logm).

However, Schmidt’s algorithm involves building complex binary trees which proved to have
high overhead in practice. Our second main technique is developing a weight-sensitive
AWLCS algorithm utilizing an efficient and compact implicit representation.

We show that if the scoring function f assigns weights at most σ to symbol pairs,
the matrix C(i, j) can be represented implicitly using only O(mσ) storage rather than
O(m2). Moreover, we can compute this representation in sequential time O(n

p
mσ). The

algorithm computes and stores values of the form hs(j), which is the least index i such
that C(i, j) ≥ C(i, j − 1) + s, for 1 ≤ s ≤ σ. These h values indicate where there is an
increase of s in the optimal correspondence weight when the index j increases. The key to
the technique is showing that these values contain information for reconstructing C and
how to compute them efficiently without complex auxiliary data structures.

Roadmap Section 1.3.1 presents the main dynamic program which can be parallelized
via a divide-and-conquer strategy, while Section 1.3.2 shows how to use sketching to
make this step time and space efficient while retaining (1 − ϵ)-approximate solutions.

10

Section 1.3.3 presents our new algorithm for AWLCS which we use as an efficient local
base case algorithm on each processor. Finally, Section 1.4 completes our analysis.

1.2 Preliminaries

We denote by x[i : j] the contiguous substring of x that starts at index i and ends at index
j. The goal of AWLCS is to find correspondences of maximum weight between x[1 : n] and
y[i : j] for all 1 ≤ i ≤ j ≤ m. We develop a method to obtain the weights of the desired
correspondences; the alignments can be recovered later by augmenting the recurrence to
permit traceback of an optimal solution. However, for AWLCS, the weights alone suffice for
many applications [135]. Finally, we denote by W the highest possible weight of a WLCS
between x and y, which we assume to be O(σmin(n,m)). Here σ = maxc,c′∈Σ f(c, c′) is
the maximum possible weight of matching two characters. We note that in practice, σ is a
constant and typically less than 20.

We now define two key matrices utilized in the design of our algorithms. C(i, j) will
denote the maximum weight of a correspondence between x and y[i : j]. The AWLCS
problem seeks to compute C(i, j) for all 1 ≤ i < j ≤ m. An alternative way to view these
weights is via the matrix D, where we swap the entry stored in the matrix with one of the
indices. Let D(i, w) = min{j | C(i, j) ≥ w}. If no such j exists, we define D(i, w) =∞.
D stores essentially the same information as C; a single entry of C(i, j) can be queried via
the matrix D in time O(logW) by performing a binary search over possible values of w.
However, the matrix D will be a substantially more compact representation than C once
we introduce our sketching strategy.

1.3 All-Substrings Weighted Longest Common Sub-

sequence

Here we present our algorithm for AWLCS. Following the divide-and-conquer strategy of
prior work, we initially divide the string x equally among the processors, each of which
performs some local computation using a base-case algorithm to solve AWLCS between y
and its portion of x, yielding a solution in the form of the D matrix defined above. We
then combine pairs of subproblem solutions iteratively to arrive at a global solution. We
first describe the algorithm’s divide and combine steps while treating the base case as a
black box, then discuss the base-case algorithm.

1.3.1 Divide-and-Conquer Strategy

Let Dr1,r2 be the D matrix resulting from the AWLCS computation between strings
x[r1 : r2] and y. Our goal is to compute D1,n, which encompasses all of x and y.

Our algorithm first divides x into p substrings of length n
p
, each of which is given to one

processor along with the entire string y. We assume that consecutive substrings of x are
given to consecutive processors in some global linear processor ordering. If a processor is

11

Algorithm 1 Combining Subproblems

procedure Combine(Dr1,r2 , Dr2+1,r3)
for i = 1 to m do

for w = 0 to W do
Dr1,r3(i, w)←∞
for w1 = 0 to w do

w2 ← w − w1

j′ ← Dr1,r2(i, w1)
j ← Dr2+1,r3(j

′ + 1, w2)
Dr1,r3(i, w) = min(Dr1,r3(i, w), j)

end for
end for

end for
end procedure

given a substring x[r1 : r2], it computes the subproblem solution Dr1,r2 using our new local,
sequential base-case algorithm described in Section 1.3.3. It then remains to combine the
p subproblem solutions to recover the desired solution D1,n. We compute D1,n in O(log p)
rounds. In the j’th round, the algorithm computes O(2log(p)/j) subproblem solutions, where
each solution combines two sub-solutions from adjacent sets of 2j−1 consecutive processors.

Let Dr1,r2 and Dr2+1,r3 be adjacent sub-solutions obtained from previous iterations.
We combine these solutions to obtain Dr1,r3 . To compute Dr1,r3(i, w), we consider all
possible pairs w1, w2 for which w = w1 + w2. For each possible w1, we use the solution
of the first subproblem to find the least index j′ for which there exists a correspondence
of weight w1 between x[r1 : r2] and y[i : j′]. We then use the solution of the second
subproblem to find the least j such that a correspondence of weight w2 = w − w1 exists
between x[r2 + 1 : r3] and y[j′ + 1 : j]. (Clearly, j ≥ j′.) These two correspondences use
non-overlapping substrings of x and y and can be combined feasibly. The exact procedure
can be found in Algorithm 1.

1.3.2 Approximation via Sketching

Algorithm 1 solves the AWLCS problem exactly; the cost to combine two subproblems
is O(mW 2). For unweighted ALCS, W = m; the combine step is O(m3). To overcome
this cost, we sketch the values of w. Sketching reduces the number of distinct weights
considered from W to O(logW) and hence reduces the cost to combine two subproblems
from O(mW 2) to O(m log2W). We analyze its precise impact on solution quality and
overall running time in Section 1.4.

Our sketching strategy fixes a constant ϵ > 0 and sets β = 1 + ϵ
logn

. Define D∗(i, s) to

be the least j such that there exists a correspondence between x and y[i : j] with weight
w ≥ ⌊βs⌋. Define D∗

r1,r2
analogously to Dr1,r2 for substrings of x. To compute D∗

r1,r3

12

from D∗
r1,r2

and D∗
r2+1,r3

, we modify the algorithm described above as follows. For each
power s s.t. ⌊βs⌋ ≤ W , we consider each power s1 ≤ s and compute the least s2 such that
⌊βs1⌋+ ⌊βs2⌋ ≥ ⌊βs⌋. Let j′ = D∗

r1,r2
(i, s1) and j = D∗

r2+1,r3
(j′ + 1, s2). Then there exist

non-overlapping correspondences with weights at least βs1 and βs2 , and hence a combined
correspondence of weight at least βs, between x[r1 : r3] and y[i : j]. We take D∗

r1,r3
(i, s) to

be the least j′ that results from this procedure. In Section 1.4, we formally show that this
sketching strategy preserves (1− ϵ)-approximate solutions and analyze the runtime and
space usage of our algorithm.

1.3.3 Base Case Local Algorithm

We now describe a sequential algorithm, inspired by the work of [7], to obtain the initial
matrices Dr1,r2(i, w) for each individual processor.

In theory, one could continue the divide and conquer approach on each local machine
until the entry to compute is of the form Dr1,r1+1(i, w), yielding a simple base case to
solve. However, this procedure proves computationally inefficient with a fixed number p of
processors. Instead, we propose a different base case algorithm for computing Dr1,r2(i, w)
which better fits our setting.

For this section, we will drop the indices r1 and r2 and create an algorithm for
computing D for strings x and y. Each processor applies this same algorithm, but to
different substrings x[r1 : r2].

The algorithm works in two steps. First, we calculate two sequences of indices, referred
to as the h- and v-indices. Then, we use these indices to compute D(i, w) for all desired
i, w. Intuitively, these indices give compact information about the structure of the C
matrix (and hence the D matrix), specifically the magnitude of change between weights in
adjacent rows and columns of C.

Definition of the Indices Recall the definition of the AWLCS matrix C, and let Cℓ

be the C matrix corresponding to the strings x[1 : ℓ] and y. Before proceeding with the
definition of the h- and v-indices, we note a lemma concerning the Monge properties of
Cℓ. These properties are well-known; see, e.g., [7].

Lemma 1.3.1. For any triple of indices i, j, ℓ, Cℓ(i− 1, j − 1) + Cℓ(i, j) ≥ Cℓ(i− 1, j) +
Cℓ(i, j − 1), and Cℓ(i− 1, j) + Cℓ−1(i, j) ≥ Cℓ−1(i− 1, j) + Cℓ(i, j).

The following corollaries result from rearranging terms in the previous lemma.

Corollary 1.3.2. For any i, j, ℓ, Cℓ(i, j)− Cℓ(i, j − 1) ≥ Cℓ(i− 1, j)− Cℓ(i− 1, j − 1).

Corollary 1.3.3. For any i, j, ℓ, Cℓ(i, j)− Cℓ−1(i, j) ≤ Cℓ(i− 1, j)− Cℓ−1(i− 1, j).

We now consider the implications of Corollary 1.3.2. Fix i, j and ℓ with Cℓ(i, j) −
Cℓ(i, j − 1) = s for some s. This s is the difference in WLCS weight if the second string
is allowed one extra character at its end (y[j]), since it is comparing x[1 : ℓ] with either
y[i : j] or y[i : j−1]. The corollary states that this difference is only greater for a substring
of y that starts at i′ > i instead of i. Therefore, for each pair of fixed j, ℓ, there exists

13

some minimal i such that Cℓ(i, j)− Cℓ(i, j − 1) is first greater than s, as it will be true
for all i′ > i. For different values of s, there are possibly different corresponding i which
are minimal. Similar implications can be derived from Corollary 1.3.3.

Using this insight, we can define the h-indices and v-indices. These values h1, . . . , hσ

and v1, . . . , vσ are the key to our improved base case algorithm. For s ∈ [σ], hs(ℓ, j) is
the smallest index i such that Cℓ(i, j) ≥ Cℓ(i, j − 1) + s. That is, each hs(ℓ, j) for a fixed
ℓ and j marks the row of Cℓ where we start to get a horizontal increment of s between
columns j − 1 and j. The v-indices are slightly different; vs(ℓ, j) is the smallest index i
such that Cℓ(i, j) < Cℓ−1(i, j) + s. The v-indices mark the row where we stop getting a
vertical increment of s in column j between Cℓ−1 and Cℓ. The entire matrix Cℓ can be
computed recursively as a function of the indices as follows:

Cℓ(i, j) =


Cℓ(i, j − 1) i < h1(ℓ, j)

Cℓ(i, j − 1) + s hs(ℓ, j) ≤ i < hs+1(l, j)

Cℓ(i, j − 1) + σ hσ(ℓ, j) ≤ i

(1.1)

Cℓ(i, j) =


Cℓ−1(i, j) + σ i < vσ(ℓ, j)

Cℓ−1(i, j) + s vs+1(ℓ, j) ≤ i < vs(l, j)

Cℓ−1(i, j) v1(ℓ, j) ≤ i

(1.2)

The h and v-indices provide an efficient way to compute the entries in D(i, w). If we
can compute Cℓ(i, j) for all i, j, then D(i, w) is the smallest j for which Cℓ(i, j) ≥ w. The
indices actually correspond to a recursive definition of the values of Cℓ(i, j).

The following intuition may help to interpret the h-indices. consider h1(ℓ, j) for a
fixed ℓ and j. This is the smallest value of i for which Cℓ(i, j) exceeds Cℓ(i, j − 1) by at
least 1. Suppose we compare the best WLCS of x and y[i : j − 1] against that of x and
y[i : j]. There is a gain of one character (the last one) in the second pair of strings, so the
second WLCS might have more weight. There is a unique value h1(ℓ, j) of i for which the
difference in weight first becomes ≥ 1. The uniqueness of this value can be inferred from
Corollary 1.3.2.

The increment in the WLCS weight due to adding y[j] may become greater as i
increases, i.e., as we allow fewer opportunities to match x to earlier characters in y.
However, the increment cannot exceed σ, the greatest possible weight under f of a match
to y[j]. Note that if hs(ℓ, j) ≥ j, there is no index fulfilling the condition since the substring
y[hs(ℓ, j) : j] has no characters.

Given the h-indices for every ℓ, j, we may compute Cℓ(i, j) for any fixed ℓ as follows.
Cℓ(i, i) = 0 by definition, and Cℓ(i, j + 1) can be computed from Cℓ(i, j) by comparing i
against each possible hs(ℓ, i+ 1). One may then compute D(i, w) from Cn(i, j). However,
one may directly computeD from the h-indices more efficiently using an approach described
in Section 1.3.3.

The v-indices can be interpreted similarly, though the ordering of v1 . . . vσ is reversed.
Consider vσ(ℓ, j) for some fixed ℓ and j. This is the smallest value of i for which Cℓ(i, j)
does not exceed Cℓ−1(i, j) by at least σ. Here, the comparison is between the WLCS of
x[1 : l] and y[i : j] and that of x[1 : l − 1] and y[i : j]. The first WLCS might have more

14

weight, and so there is unique index where the difference in weight first becomes less than
σ. In this case, due to Corollary 1.3.3, the difference between Cℓ(i, j) and Cℓ−1(i, j) can
only be less than the difference between Cℓ(i− 1, j) and Cℓ−1(i− 1, j). Now vσ(ℓ, j) is the
unique value of i after which the difference can be no more than σ − 1. Similar intuition
applies to all the other v-indices.

We note that the v-indices are not explicitly involved in the procedure for computing
entries of D; however, they are necessary in computing the h-indices.

Recursive Computation of the Indices

We now show how to compute the h-indices hs(ℓ, j) for all ℓ, j. We first show a general
recursive formula for these indices, then show a more efficient strategy to compute them.

In the formula, hs will always refer to hs(ℓ− 1, j) unless indices are specified. Similarly,
vs will always refer to vs(ℓ, j − 1) unless indices are specified.

Let d = f(xℓ, yj), where f is the scoring function. For the general case ℓ, j > 0:

hs(ℓ, j) =


if d < s : min

z∈[s,σ]

(
max(hz, vz−(s−1))

)
if d ≥ s :

min

(
min

z∈[d+1,σ]

(
max(hz, vz−(s−1))

)
, vd−(s−1)

) (1.3)

vs(ℓ, j) =


if d < s : max

z∈[s,σ]

(
min(hz−(s−1), vz)

)
if d ≥ s :

max

(
max

z∈[d+1,σ]

(
min(hz−(s−1), vz)

)
, hd−(s−1)

) (1.4)

The base cases are hs(0, j) = j and vs(ℓ, 0) = 0 for all s. The first corresponds to an
empty substring of x, which has an empty WLCS with any substring of y. The second
corresponds to an empty substring of y, which has an empty WLCS with any substring of
x. Recurrences (1.3) and (1.4) generalize the recurrences for h and v for unweighted LCS
in [7], which can be recovered as a special case of our recurrence for σ = 1.

We now describe the calculations for these indices, beginning with the hs(ℓ, j) calcula-
tions. To calculate hs(ℓ, j), we use the entries vs(ℓ, j−1) and hs(ℓ−1, j) (for all possible s)
in addition to the value of d. It is useful to visualize the situation using Figure 1.1. In the
figure, a represents the weight of the WLCS between x[1 : l− 1] and y[i : j − 1] for some i.
Similarly, u represents the weight of the WLCS between x[1 : l] and y[i : j − 1], and v is
the WLCS between x[1 : l− 1] and y[i : j]. Finally, t represents the WLCS between x[1 : l]
and y[i : j]. The edges represent the relationship between the WLCS weights. First, u
and v are both at least a. Further, one possible value for t could be a+ d, since one may
take the WLCS which corresponds to a and add in the match between x[l] and y[j], which
has weight d. Alternatively, t could also be the same value as either u or v. If t = u, then
y[j] is unused in the WLCS; similarly, if t = v, the character x[l] is unused.

The value of hs(ℓ, j) has a natural interpretation: it is the first value of i for which the
difference between t and u is at least s. Recall hs will always refer to hs(ℓ− 1, j) unless

15

Figure 1.1: Relationship between four points.

indices are specified; similarly, vs will always refer to vs(ℓ, j−1) unless indices are specified.
Thus, hs is exactly the minimum i where there is a difference of at least s between v and
a. Similarly, vs is the minimum i where there is a difference less than s between u and a.
We will relate t and u by comparing both to a. Then we can determine the correct hs(ℓ, j)
where t ≥ u+ s for any i ≥ hs(ℓ, j).

Suppose we seek to calculate hs(ℓ, j) for a fixed s > d. One possible weight for t is
a+d, but this edge cannot determine hs as u ≥ a, and hence a+d is not greater than u by
at least s. The WLCS which involves a never yields any information about the minimum
i where t ≥ u+ s. However, consider an i such that i ≥ hs(ℓ− 1, j). The edge weight t
can have value a+ s. In this case, if i ≥ v1(ℓ, j − 1), then we know that u = a and hence
t ≥ u+ s. Therefore, if i is greater than both hs and v1, then the difference between t and
u is at least s. Hence, it would seem that hs(ℓ, j) is just equal to max(hs, v1). However,
there are many other pairs which also fulfill this condition, e.g. if i is greater than both
hs+1 and v2. In general, if i is greater than any hx and vx−(s−1) for some positive integer
σ ≥ x > s, then the difference between t and u is at least s. Therefore, in the case where
s > d the expression for hs(ℓ, j) is the minimum of the pairwise maximum of such pairs.
This is formalized in equation (1.3).

The other case is when we seek to compute hs for a fixed s ≤ d. Here, the weight a+ d
is always possible for t. The expression in equation (1.3) is essentially a truncated version
of the expression for s > d. Namely, we do not need to consider the pairs involving hs

where s ≤ d. (If i ≥ vd−(s−1) then immediately we already know that t ≥ u+ s regardless
of whether i is also greater than some h value.)

The vs(ℓ, j) computations are similar. We are interested in the difference between t
and v, so we will relate both t and v to a. First, consider computing vs(ℓ, j) where s > d.
In this case we can again ignore the case where t = a+ d. Recall that vs(ℓ, j) defines the
value of i where if i > vs(ℓ, j), then the t < v + s. Consider the case where only a single
important pair of values exist, h1 and vs. If i is greater than vs then t = u < a + s. A
similar property holds if i > h1. Hence, vs(ℓ, j) is the value of the minimum of vs and h1 if
that is the only pair. Once again, when there are multiple pairs of vs, h1 and vs+1, h2 and
so on, the expression becomes more complex as it becomes the maximum of the minima of
these pairs.

16

The case for computing vs(ℓ, j) when s ≤ d is similar to the case for the hs(ℓ, j)
computations in equation (1.3) except where the formula is truncated; no pairs which
involve vs for s ≤ d are used. Since a weight of a+ d can always be attained, only hd−(s−1)

needs to be checked for any of the lesser vs pairs.
Equations (1.3) and (1.4) give a recursive computation for all of the h-indices and

v-indices. There are O(mnσ) total entries to compute, and following the two equations
above yield a O(mnσ2) time algorithm for computing the h- and v-indices. However, using
a clever observation, it is possible to compute these entries in O(mnσ) time, which we
show next.

Faster Computation of h- and v-Indices Naively computing the recurrences 1.3 and 1.4
for each 1 ≤ s ≤ σ takes O(σ2) time. We show how to improve this to O(σ) now.

We start with the following definitions. For 1 ≤ s ≤ σ define z∗(s) to be the value such
that the following holds: (1) z < z∗(s) =⇒ vz−s+1 > hz and (2) z ≥ z∗(s) =⇒ vz−s+1 ≤
hz. Similarly, define z#(s) to be the value such that (1) z < z#(s) =⇒ hz−s+1 < vz
and (2) z ≥ z#(s) =⇒ hz−s+1 ≥ vz. These values are well defined since the sequences h
and v are respectively non-decreasing and non-increasing, so either the inequalities above
trivially hold, or there is a point where the sequences cross. The existence of a crossing
point is not affected by applying an offset to one of the sequences. We will simultaneously
compute z∗(s) and z#(s) while computing new values of hs and vs.

To see why the above definitions are useful, consider substituting them into (1.3) and
(1.4). First, consider the calculation of hs when d < s:

hs(ℓ, j) =
σ

min
z=s

(max(hz, vz−s+1))

= min

(
min

z<z∗(s)
max (hz, vz−s+1) , min

z≥z∗(s)
max (hz, vz−s+1)

)
= min

(
min

z<z∗(s)
vz−s+1, min

z≥z∗(s)
hz

)
= min

(
vz∗(s)−s, hz∗(s)

)
where we again use the property that h and v are respectively non-decreasing and non-
increasing. Similar calculations can be done with z#(s) for computing vs(ℓ, j) and for the
case when d ≥ s. This shows that given z∗(s) and z#(s), it is possible to compute hs(ℓ, j)
and vs(ℓ, j) in constant time.

The only remaining task is to compute z∗(s) and z#(s) for each weight s. This can
be done by sweeping through h and v in O(σ) time. We may then compute hs(ℓ, j) and
vs(ℓ, j) for each s in O(σ) time.

Computing the D Matrix

We now show how to compute the entries D(i, w) directly from the h-indices. The
computation requires only the indices hs(n, j); in this section, we drop the n and refer to
these indices simply as hs(j). We compute the entries of D(i, w) row by row, iterating
through one value of i at a time. At each iteration, we will keep T , a data structure storing
pairs of the form (j, hs(j)). During iteration i, we may insert pairs into T or delete pairs
from T , maintaining the following invariant:

17

Algorithm 2 Reconstruct the D matrix from the h-indices

T ← ∅, j ← 1, s← 1
for i = 1, . . . ,m do

while hs(j) ≤ i do
if j > i then ▷ Insert pairs w/ j > i.

T.insert((j, s, hs(j))
end if
s← s+ 1
if s > σ then

s← 1
j ← j + 1

end if
end while
for k ∈ K do ▷ Compute D(i, k) ∀k

(j′, s′, h′)← T.search by rank(k)
D(i, k) = j′

end for
Remove from T all (j, s, h) where j = i

end for

(j, hs(j)) ∈ T ⇐⇒ j > i and hs(j) ≤ i. (1.5)

The invariant guarantees two useful properties. First, all pairs in T have hs(j) ≤ i, the
existence of such a pair in T means that the difference between C(i, j) and C(i, j − 1) is s.
Note that if (j, hs(j)) ∈ T , then clearly (j, hs′(j)) ∈ T for all s′ < s since hs′(j) ≤ hs(j).
Thus, one can think of each pair in T as representing an increase of 1.

Second, if the pairs in T are sorted increasingly by j, then D(i, k) is exactly the jk
which corresponds to the pair of rank k within T . This can be shown as follows: Let
j1, j2, . . . jk denote the pairs of rank 1 through k (represented by say (jk, hs(jk)) within
T . Each fixed jx among these means that there is a difference of 1 between C(i, jx − 1)
and C(i, jx). There are k pairs here, each denoting a difference of 1 between some C(i, jx)
and C(i, jx − 1) and there are a total of k such differences. Note by the invariant, j1 > i.
Furthermore, clearly j1 ≤ jk. Thus, between C(i, i) and C(i, jk) there are a total of k
differences of 1 each. Since C(i, i) = 0 the difference between C(i, i) and C(i, jk) is exactly
k. Hence, jk is exactly the value of D(i, k).

This analysis yields Algorithm 2, where T is a balanced tree data structure.

18

1.4 Analysis of Approximation and Runtime

We now formally describe the sketching strategy for the D matrix and prove the claims
about the performance of Algorithm 1 under our sketching procedure.

Recall that our sketching strategy fixes a constant ϵ > 0 and sets β = 1 + ϵ
logn

.

Define D∗(i, s) to be the least j such that there exists a correspondence between x and
y[i : j] with weight w ≥ ⌊βs⌋. Define D∗

r1,r2
analogously to Dr1,r2 for substrings of x.

To compute D∗
r1,r3

from D∗
r1,r2

and D∗
r2+1,r3

, we modify Algorithm 1 as follows. For each
power s s.t. ⌊βs⌋ ≤ W , we consider each power s1 ≤ s and compute the least s2 such that
⌊βs1⌋+ ⌊βs2⌋ ≥ ⌊βs⌋. Let j′ = D∗

r1,r2
(i, s1) and j = D∗

r2+1,r3
(j′ + 1, s2). Then there exist

non-overlapping correspondences of weights at least βs1 and βs2 , and hence a combined
correspondence of weight at least βs, between x[r1 : r3] and y[i : j]. We take D∗

r1,r3
(i, s) to

be the least j′ that results from this procedure.

1.4.1 Quality of the Solution

In Section 1.3.2, we showed how to reduce the space and time requirement of computing
the D matrix using Algorithm 1 via sketching. We consider only weights of the form ⌊βs⌋
for β = 1 + ϵ/ log n and so will not obtain the exact optimum. However, we show that we
can recover a (1− ϵ) approximation to the optimum.

Computationally, we only need to construct the matrix D∗ in order to extract solutions
to the AWLCS and WLCS problems. However, for analysis purposes it is useful to define C∗,
an approximate version of the matrix C. Let Cr1,r2(i, j) be the optimal weight of a WLCS
between x[r1 : r2] and y[i : j]. Equivalently, we have Cr1,r2(i, j) = max{w | Dr1,r2(i, w) ≤
j}. This motivates defining C∗ as follows. Let C∗

r1,r2
(i, j) = maxs{⌊βs⌋ | D∗

r1,r2
(i, s) ≤ j}.

We prove the following lemma which shows that the C∗ matrices approximate the C
matrices well, and hence the matrices D∗ implicitly encode good solutions.

Lemma 1.4.1. Let x[r1, r2] be a substring of x considered by our algorithm in some step.
Then for all i, j we have

C∗
r1,r2

(i, j) ≥ (1− ϵ)Cr1,r2(i, j)

Proof. We prove the following stronger claim by induction. Let ℓ be the level at which we
combined substrings to arrive at x[r1 : r2] in our algorithm. Then for all i, j we have

C∗
r1,r2

(i, j) ≥
(
1− ϵ

log n

)ℓ

Cr1,r2(i, j)

In particular this implies the lemma since we can use the inequality (1− z)ℓ ≥ 1− ℓz for
all z ≤ 1 and ℓ ≥ 0, and the fact that ℓ ≤ log n.

C∗
r1,r2

(i, j) ≥
(
1− ϵ

log n

)ℓ

Cr1,r2(i, j)

≥
(
1− ϵℓ

log n

)
Cr1,r2(i, j) ≥ (1− ϵ)Cr1,r2(i, j)

19

Now to prove the claim by induction on the levels ℓ. Fix a pair of indices i, j in y. If x[r1, r2]
was considered at the first level, then we computed the exact matrix Dr1,r2 using our base
case algorithm, so the base case follows trivially. Now suppose that we considered x[r1, r2]
at some level ℓ after the first. Our algorithm combines the subproblems corresponding to
x[r1, r

′] and x[r′+1, r2] that occur at level ℓ− 1. where r′ = ⌊(r1+ r2)/2⌋. To compute the
solution for r1, r2 and i, j we concatenate solutions corresponding to x[r1, r

′] and y[i : j′]
and x[r′+1, r2] and y[j′+1 : j], for some j′. We get the sum of their weights, but rounded
down due to sketching. Thus we have:

C∗
r1,r2

(i, j) ≥
C∗

r1,r′
(i, j′) + C∗

r′+1,r2
(j′, j)

(1 + ϵ/ log n)
. (1.6)

Now Cr1,r2(i, j) = Cr1,r′(i, j
′′) + Cr′+1,r2(j

′′ + 1, j) for some j′′, since the solution corre-
sponding to Cr1,r2(i, j) can be written as the concatenation of two sub-solutions between
x[r1 : r′], y[i : j′′] and x[r′ + 1 : r2], y[j

′′ + 1 : j]. Note that our algorithm chooses j′

such that C∗
r1,r′

(i, j′) + C∗
r′+1,r2

(j′, j) ≥ C∗
r1,r′

(i, j′′) + C∗
r′+1,r2

(j′′ + 1, j). Now applying the
induction hypothesis to C∗

r1,r′
(i, j′′) and C∗

r′+1,r2
(j′′ + 1, j) we have:

C∗
r1,r′(i, j

′) + C∗
r′+1,r2

(j′, j) ≥ C∗
r1,r′(i, j

′′) + C∗
r′+1,r2

(j′′ + 1, j)

≥
(
1− ϵ

log n

)ℓ−1

(Cr1,r′(i, j
′′) + Cr′+1,r2(j

′′ + 1, j))

=

(
1− ϵ

log n

)ℓ−1

Cr1,r2(i, j)

Now combining this with (1.6) we have:

C∗
r1,r2

(i, j) ≥

(
1− ϵ

logn

)ℓ−1

Cr1,r2(i, j)

1 + ϵ
logn

≥
(
1− ϵ

log n

)ℓ

Cr1,r2(i, j),

which completes the proof of the general case.

1.4.2 Running Time

We now analyze the running time of our algorithm, starting with the combining procedure
in Algorithm 1.

Lemma 1.4.2. Let n′ = r3 − r1 + 1 be the number of characters of the string x assigned
to one call to Algorithm 1. Let ϵ′ = ϵ/2 log(n) and t = log1+ϵ′(σmin(n′,m)). Then the
procedure described in Algorithm 1 uses O(mt) space and runs in O(mt2) time.

Proof. First note that σmin(n′,m) is an upper bound on the maximum weight for the
instance passed to Algorithm 1. The matrix D contains an entry for each pair of starting
indices and each weight. There are m starting indices. To prove the space bound, it
suffices to show that the number of possible weights is O(t). Recall that sketching the

20

weights yields an entry for each weight of the form (1+ ϵ/2 log2 n)
ℓ = (1+ ϵ′)ℓ for integer ℓ,

up to some upper bound on the weight. Hence, taking t as in the statement of the lemma
implies that (1 + ϵ′)t ≥ σmin(n′,m), so O(t) different weights suffices.

The bound on the running time follows by noting that each of the O(m) iterations of
the algorithm iterates through all pairs of weights, yielding total time O(mt2).

O(log(p)) rounds of combining are required to merge the p base-case results into the
final D matrix, since each round reduces the number of remaining sub-problems by half.
To analyze the entire algorithm, we separately consider the two steps.

Lemma 1.4.3. Let B(m,n) be the running time of a base-case algorithm computing D.
Then our algorithm runs in time B(m,n/p) +O(m log21+ϵ′(σm) log(p)) on p processors.

Proof. The base case algorithm is run on subproblems of size n/p × m. Each of the
O(log(p)) rounds of merging has cost O(m log21+ϵ′(σm)) by the previous lemma.

Finally, since log1+ϵ′(σm) = O(log(σm)/ϵ′) = O(log2(n) log(σm)/ϵ), our algorithm
acheives the claimed runtime and local memory per processor.

21

22

Chapter 2

Distributed Algorithms for
Hierarchical Clustering

This chapter is based on “A Framework for Parallelizing Hierarchical Clustering Meth-
ods” [99], which appeared in the proceedings of European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 2019.

2.1 Introduction

Thanks to its ability in explaining nested structures in real world data, hierarchical
clustering is a fundamental tool in any machine learning or data mining library. In
recent years the method has received a lot of attention, with some work developing new
foundations and objective functions for hierarchical clustering [53, 130, 45, 146]. Other
work has looked at scaling specific methods such as single-linkage [87, 34]. Despite these
efforts, almost all proposed hierarchical clustering techniques are sequential methods that
are difficult to apply to large data sets.

The input to the hierarchical clustering problem is a set of points and a function
specifying either their pairwise similarity or their dissimilarity. The output of the problem
is a rooted tree representing a hierarchical structure of the input data, also known as a
dendrogram. The input points are the leaves of this tree and subtrees induced by non-leaf
nodes represent clusters. These clusters should also become more refined when the root of
the corresponding subtree is at a lower level in the tree. Hierarchical clustering is useful
because the number of clusters does not need to be specified in advance and because the
hierarchical structure yields a taxonomy that allows for interesting interpretations of the
data set. For an overview of hierarchical clustering methods refer to [118, 95, 77].

Several algorithms have emerged as popular approaches for hierarchical clustering.
Different techniques are used depending on the context because each method has its own
advantages and disadvantages. There are various classes of data sets where each method
outperforms the others. For example, the centroid-linkage algorithm has been used for
biological data such as genes [63], whereas, an alternative method, bisecting k-means,
is popular for document comparison [139]. The most commonly used methods can be

23

Figure 2.1: A Hierarchical Clustering Tree. The grey leaves are the input data points.
Internal nodes represent a cluster of the leaves in the subtree rooted at the internal node.

categorized into two families: agglomerative algorithms and divisive algorithms.

Divisive algorithms are top-down. They partition the data starting from a single cluster
and then refine the clusters iteratively layer by layer. The most commonly used techniques
to refine clusters are k-means, k-median, or k-center clustering with k = 2. These divisive
algorithms are known as bisecting k-means (respectfully, median, center) algorithms [83].
Agglomerative algorithms are based on a bottom up approach (see [76] for details). In an
agglomerative algorithm, all points begin as their own cluster. Clusters are then merged
through some merging strategy. The choice of merging strategy determines the algorithm.
Common strategies include single-linkage, average-linkage and centroid-linkage.

Most of these algorithms are inherently sequential; they possess a large number of
serial dependencies and do not lend themselves to efficient parallelization. For example, in
a divisive method lower splits in the tree depend upon splits higher up in the tree, so if the
depth of the resulting tree is large then there will be a large number of serial dependencies.

Recently, there has been interest in making hierarchical clustering scalable. Nevertheless
most prior work has focused on scaling the single-linkage algorithm; efficient MapReduce
and Spark algorithms are known for this problem [86, 87, 34, 153]. This is unsurprising
because single-linkage can be reduced to computing a Minimum-Spanning-Tree [74], and
there has been a line of work on efficiently computing minimum spanning trees in parallel
and distributed settings [23, 90, 101, 12]. Unfortunately this approach does not extend to
other hierarchical clustering techniques such as divisive methods.

Contributions: In this chapter we introduce scalable hierarchical clustering algorithms.
The main results are the following:

A Theoretical Framework: We develop a theoretical framework for scaling hierarchical
clustering methods. We introduce the notion of closeness between two hierarchical
clustering algorithms. Intuitively, two algorithms are close if they make provably close
or similar decisions. This enforces that our scalable algorithms produce similar solutions
to their sequential counterpart. Using this framework, we formalize the root question for
scaling existing methods.

Provably Scalable Algorithms: We introduce fast scalable algorithms for the bisecting k-
means, k-median and k-center algorithms. These new algorithms are the main contribution
of the chapter. The algorithms are proved to be close to their sequential counterparts

24

and efficient in parallel and distributed models. These are the first scalable algorithms for
divisive k-clustering, moreover they are applicable to data belonging to any metric space.

2.2 Preliminaries

In this section we formally define the hierarchical clustering problem, describe popular
sequential approaches, and provide other necessary background information.

Problem Input: The input is a set S of n data points. The distance between points
specifies their dissimilarity. Let d(u, v) ≥ 0 denote the distance between two points
u, v ∈ S. It is assumed that d is a metric.

Problem Output: The output is a rooted tree where all of the input points are at
the leaves. Internal nodes represent clusters; the leaves of the subtree rooted at a node
correspond to the points in that specific cluster.

Computational Model: We will analyze our algorithms in the context of the MPC
model as described in the Introduction to this dissertation. Here the input size N is given
by the number of data points n and we assume that the distance function d is given by an
oracle which we can query for any two points on the same machine.

k-Clustering Methods: We recall the definitions of k-{center,median,means} clusterings.
Let C = {c1, c2, . . . , ck} be k distinct points of S called centers. For x ∈ S let d(x,C) =
minc∈C d(x, c) We say that these centers solve the k-{center,median,means} problem if
they optimize the following objectives, respectively:

• k-center: minC maxx∈S d(x,C)

• k-median: minC

∑
x∈S d(x,C)

• k-means: minC

∑
x∈S d(x,C)2.

The choice of centers induces a clustering of S in the following natural way. For i = 1, . . . , k
let Si = {x ∈ S | d(x, ci) = d(x,C)}, that is we map each point to its closest center and
take the clustering that results. In general it is NP-hard to find the optimal set of centers
for each of these objectives, but efficient O(1)-approximations are known [78, 47, 89].

Classic Divisive Methods: We can now describe the classical divisive k-clustering
algorithms. The pseudocode for this class of methods is given in Algorithm 3. As stated
before, these methods begin at the root of the cluster tree corresponding to the entire set
S and recursively partition the set until we reach the leaves of the tree. Note that at each
node of the tree, we use an optimal 2-clustering of the current set of points to determine
the two child subtrees of the current node.
Notation: We present some additional notation and a few technical assumptions. Let X
be a finite set of points and x a point in X. We define the ball of radius R around x, with
notation B(x,R), as the set of points with distance at most R from x in the point set X,
i.e. B(x,R) = {y | d(x, y) ≤ R, y ∈ X}. Let ∆(X) = maxx,y∈X d(x, y) be the maximum
distance between points of X. Finally, WLOG we assume that all points and pairwise

25

Algorithm 3 DivisiveClustering(S)

1: if |S| = 1 then
2: Return a leaf node corresponding to S
3: else
4: Let S1, S2 be an optimal 2-clustering of S ▷ One of the means, median, or center

objective is used
5: T1 ← DivisiveClustering(S1)
6: T2 ← DivisiveClustering(S2)
7: Return a tree with root node S and children T1, T2

8: end if

distances are distinct1 and that the ratio between the maximum and minimum distance
between two points is polynomial in n.

2.3 A Framework for Parallelizing Hierarchical Clus-

tering Algorithms

We now introduce our theoretical framework that we use to design and analyze scalable
hierachical clustering algorithms. Notice that both divisive and agglomerative methods
use some cost function on pairs of clusters to guide the decisions of the algorithm. More
precisely, in divisive algorithms the current set of points S is partitioned into S1, and S2

according to some cost c(S1, S2). Similarly, agglomerative algorithms merge clusters S1

and S2 by considering some cost c(S1, S2). So in both settings the main step consists of
determining the two sets S1 and S2 using different cost functions. As an example, observe
that c(S1, S2) is the 2-clustering cost of the sets S1 and S2 in the divisive method above
and that c(S1, S2) = d(µ(S1), µ(S2)) in centroid linkage.

The insistence on choosing S1, S2 to minimize the cost S1, S2 leads to the large number
of serial dependencies that make parallelization of these methods difficult. Thus, the main
idea in this chapter is to obtain more scalable algorithms by relaxing this decision making
process to make near optimal decisions. This is formalized in the following definitions.

Definition 2.3.1 (α-close sets). Let c be the cost function on pairs of sets and let S1, S2

be the two sets that minimize c(S1, S2). Then we say that two sets S ′
1, S

′
2 are α-close to

the optimum sets for cost c if c(S ′
1, S

′
2) ≤ αc(S1, S2), for α ≥ 1.

Definition 2.3.2 (α-close algorithm). We say that a hierarchical clustering algorithm is
α-close to the optimal algorithm for cost function c if at any step of the algorithm the
sets selected by the algorithm are α-close for cost c, for α ≥ 1. 2

1We can remove this assumption by adding a small perturbation to every point.
2Note that the guarantees is on each single choice made by the algorithm but not on all the choices

together.

26

A necessary condition for efficiently parallelizing an algorithm is that it must not have
long chains of dependencies. Now we formalize the concept of chains of dependencies.

Definition 2.3.3 (Chain of dependency). We say that a hierarchical clustering algorithm
has a chain of dependencies of length ℓ, if every decision made by the algorithm depends
on a chain of at most ℓ previous decisions.

We now define the main problem tackled in this chapter.

Problem 1. Is it possible to design hierarchical clustering algorithms that have chain
of dependencies of length at most poly(log n) and that are α-close, for small α, for the
k-means, k-median, and the k-center cost functions?

It is not immediately obvious that allowing our algorithms to be α-close will admit
algorithms with small chains of dependencies. In Section 2.4.1 we answer this question
affirmatively for divisive k-clustering methods 3. Then in section 2.4.2 we show how to
efficiently implement these algorithms in the MPC model.

2.4 Algorithms and Theoretical Guarantees

2.4.1 Distributed Divisive k-Clustering

We now present an O(1)-close algorithm with dependency chains of length O(log(n)) under
the assumption that the ratio of the maximum to the minimum distance between points is
polynomial in n.

As discussed in Sections 2.2 and 2.3, the main drawback of Algorithm 3 is that its
longest chains of dependencies an be linear in the size of the input4. We modify this
algorithm to overcome this limitation while remaining O(1)-close with respect to the
clustering cost objective. In order to accomplish this we maintain the following invariant.
Each time we split S into S1 and S2, each set either contains a constant factor fewer
points than S or the maximum distance between any two points has been decreased by a
constant factor compared to the maximum distance in S. This property will ensure that
the algorithm has a chain of dependency of logarithmic depth. We present the pseudocode
for the new algorithm in Algorithms 4 and 5.

The goal of this subsection is to show the following theorem guaranteeing that Algo-
rithm 4 is provably close to standard divisive k-clustering algorithms, while having a small
chain of serial dependencies.

Theorem 2.4.1. Algorithm 4 is O(1)-close for the k-center, k-median, and k-means cost
functions and has a chain of dependencies of length at most O(log n).

3In prior work, Yaroslavtsev and Vadapalli [153] give an algorithm for single-linkage clustering with
constant-dimensional Euclidean input that fits within our framework.

4Consider an example where the optimal 2-clustering separates only 1 point at a time.

27

The main difference between Algorithm 3 and Algorithm 4 is the reassignment step.
This step’s purpose is to ensure that the invariant holds at any point during the algorithm
as shown in the following lemma. Intuitively, if both S1 and S2 are contained within a
small ball around their cluster centers, then the invariant is maintained. However, if this
is not the case, then there are many points “near the border” of the two clusters, so we
move these around to maintain the invariant.

Lemma 2.4.2. After the execution of Reassign(S1, S2) in Algorithm 4 either |S1| ≤ 7
8
|S|

or ∆(S1) ≤ 1
2
∆(S). Similarly, either |S2| ≤ 7

8
|S| or ∆(S2) ≤ 1

2
∆(S).

Proof. Let S1, S2 be the resulting clusters and v1, v2 be their centers. Consider the sets
Bi = B(vi,∆(S)/8) ∩ S, for i = 1, 2. If S1 ⊆ B1 and S2 ⊆ B2, then both clusters are
contained in a ball of radius ∆(S)/8. By the triangle inequality the maximum distance
between any two points in either S1 or S2 is at most ∆(S)/2.5

Otherwise, consider U , the set of points not assigned to any Bi. We consider c = 4
as in the default case. If |U | ≤ |S|/4, then the algorithm assigns U to the smaller of B1

and B2 and the resulting cluster will have size at most 3|S|/4 since the smaller set has
size at most |S|/2. Furthermore the other cluster is still contained within a ball of radius
∆/8 and thus the maximum distance between points is at most ∆(S)/2. If |U | ≥ |S|/4
then the points in U are distributed evenly between S1 and S2. Both sets in the recursive
calls are guaranteed to have less than |S| − |U |/2 ≤ 7

8
|S| points since U was evenly split.

Similar properties can be shown for other values of c.

Next we can show that the algorithm is O(1)-close by showing that the algorithm is an
O(1)-approximation for the desired k-clustering objective in each step.

Lemma 2.4.3. Let p be the norm of the clustering objective desired (i.e. p = 2 for k-means,
p =∞ for k-center or p = 2 for k-median). The clustering produced in each iteration is
a constant approximation to any desired k-clustering objective with any constant norm
p ∈ (0, 2] or p =∞.

Proof. Fix p to be a constant in (0, 2] or∞ and let k = 2 be the desired number of centers.
Consider a two clustering solution with centers v1 and v2 that is a c-approximation. The
proof considers the cases for p constant or p =∞ separately.

For p constant. For any two centers v1 and v2 the cost of the solution is
∑

u∈S1
d(u, v1)

p+∑
u∈S2

d(u, v2)
p. So by definition of U , this is at least

O :=
∑

u∈S1\U

d(u, v1)
p +

∑
u∈S2\U

d(u, v2)
p + |U |(∆(S)/8)p.

Now the algorithm reassigns points in U and the maximum distance between any point
and its new center is upper-bounded by ∆(S). So the cost of the algorithm’s solution
is at most

∑
u∈S1\U d(u, v1)

p +
∑

u∈S2\U d(u, v2)
p + |U |(∆(S))p ≤ 4pO. Thus the solution

5By the generalized triangle inequality this is true for p = 1, 2 and it is true for p =∞. So this is true
for the cost of k-center, k-means and k-median.

28

computed by Algorithm 4 is at most a factor 8p larger due to the reassignment and so
it is a 8pc-approximation if we used a c-approximation algorithm to solve the clustering
problem.

For p =∞. If |U | is empty the algorithm returns the c-approximation, otherwise the
cost of the c-approximation algorithm is at least ∆(S)/8 and our algorithm returns a
solution of cost at most ∆(S). Thus, the algorithm computes an 8c-approximation giving
the lemma.

Combining Lemma 2.4.2 and Lemma 2.4.3 we obtain Theorem 2.4.1 as a corollary.

2.4.2 From Bounded Length Dependency Chains to Parallel
Algorithms

We now discuss how to adapt our algorithms to run on distributed systems. In particular
we show that every iteration between consequent recursive calls of our algorithms can be
implemented using a small number of rounds in the massively parallel model of computation
and so we obtain that both algorithms can be simulated in a polylogarithmic number of
rounds.
Parallelizing Divisive k-Clustering: We start by observing that there are previously
known procedures [64, 46, 35] to compute approximate k-clusterings in the massively
parallel model of computation using only a constant number of rounds. Here we use these
procedures as a black-box.

Next, the reassignment operation can be performed within a constant number of parallel
rounds. Elements can be distributed across machines and the centers v1 and v2 can be
sent to every machine. In a single round, every element computes the distance to v1 and
v2 and in the next round the size of B1, B2 and U are computed. Finally given the sizes
of B1, B2 and U the reassignment can be computed in a single parallel round.

So steps 4, 5 and 6 of Algorithm 4 can be implemented in parallel using a constant
number of parallel rounds. Furthermore, we established that the algorithm has at most
logarithmic chain of dependencies. Thus we obtain the following theorem:

Theorem 2.4.4. There exist O(log n) round hierarchical clustering algorithms in the MPC
setting that are O(1)-close to divisive k-means, divisive k-center, and divisive k-median.

29

Algorithm 4 O(1)-close divisive k-clustering algorithm

1: if |S| = 1 then
2: Return a leaf node corresponding to S
3: else
4: Let S1, S2 be an optimal 2-clustering of S ▷ One of the means, median, or center

objective is used
5: (S1, S2)← Reassign(S1, S2,∆(S))
6: Recurse on each of S1 and S2, yielding trees T1, T2

7: Return a tree with root S and children T1, T2

8: end if

Algorithm 5 Reassign(S1, S2,∆)

1: Let v1, v2 be the centers of each cluster
2: for i = 1, 2 do
3: Bi ← B(vi,∆/8) ∩ (S1 ∪ S2) ▷ Construct a ball of radius ∆/4 around each cluster

center
4: end for
5: if S1 ⊆ B1 and S2 ⊆ B2 then
6: Return (S1, S2)
7: else
8: U ← (S1 \B1) ∪ (S2 \B2) ▷ U is the set of all points not assigned to any ball]
9: if |U | ≤ n/c then
10: {c is a constant parameter. By default, c = 4}
11: Assign U to the smaller of B1 and B2.
12: else
13: Split U evenly between B1 and B2

14: end if
15: Return (B1, B2)
16: end if

30

Chapter 3

Online Load Balancing with
Predictions

This chapter is primarily based on the paper “Online Scheduling via Learned Weights” [100],
which appeared in the proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA) 2020. Collaborators on the project were Silvio Lattanzi, Benjamin Moseley,
and Sergei Vassilvitskii. We also include a result that appeared in “Learnable and
Instance Robust Predictions for Online Matching, Flows, and Load Balancing” [103], as
it complements the results which appeared in the preceding paper. Collaborators on the
latter project were R. Ravi, Benjamin Moseley, and Chenyang Xu.

3.1 Introduction

Modern machine learning has had unprecedented success in speech and language un-
derstanding, vision, and perception. More recently, researchers have shown how to use
machine learning to solve classical combinatorial optimization questions, for example
finding the optimal decision strategy for the secretary problem [93], computing Optimal
Auctions [61], or building faster look up tables [94].

The above approaches achieve notable empirical success, but come without any theoret-
ical analysis. A complementary line of work has looked into ways to incorporate machine
learned predictions to provide formal guarantees, for instance improving competitive ratios
for online algorithms [108, 126]. These methods bound the performance of the algorithm
in terms of the (ex-post) error of the predictor, and show that, with good, but imperfect,
predictions, one can circumvent strong worst case lower bounds.

In this work we continue this line of research and extend it to one of the central
scheduling problems: minimizing makespan under restricted assignment. In this problem
there are m machines, and jobs arrive one at a time, each annotated with its size and
the subset of machines it can run on. The goal is to allocate jobs to machines online, to
minimize the makespan, i.e. the maximum total size of the jobs on any machine. This is
a key problem in scheduling, but has strong, Ω(logm), lower bounds on the competitive
ratio.

31

Online algorithms operate under worst case assumptions about the input, but, in
practice, the input often has a repetitive nature to it. As an example, when scheduling jobs
in a large data center, we may observe that some jobs happen daily around the same time
(for instance, regular backup jobs), and so their presence is very predictable. Other jobs,
for instance, payroll analysis jobs, may have some variability in terms of arrival time, but
are known to happen weekly, or at the end of each month; overall traffic may be lighter on
holidays, or during extreme weather events, and so on. Thus, it makes sense that we can
predict something about the jobs and the congestion of machines using standard features,
such as day of week, weekday vs. holiday, weather, etc.

While the predictions are not going to be perfect, they can still guide the allocation
algorithm about which machines will be in contention in the future. The nature of the
prediction then becomes part of the algorithm design process. There is a fine balance
between offloading too much of the complexity onto the predictor on one side, versus
having the prediction not provide any insights on the other. The former makes the
algorithmic problem trivial, but the learning problem virtually impossible, the latter gives
little additional benefit over worst case analysis. Thus, we strive for sparse representations
that capture the complexity of the problem. For instance, for online bipartite matching,
a problem closely related to our work (except for the choice of the objective function),
previous work [54, 145] has shown that the dual variables associated with machines in the
LP formulation of the problem are enough to reconstruct the optimum assignment. As we
will show in Section 3.2.3 this representation is not sufficient when minimizing makespan,
nor are other immediate quantities, such as the total load of each machine in the optimum
solution, or the number of jobs that could potentially be assigned.

Our first contribution is in identifying a specific quantity that we will predict. We
follow the work of [5] and associate a weight, wi with each machine i. We show that
even if we are only given access to estimates, ŵi of the optimal wi, we can recover a near
optimal fractional solution, with the approximation guarantee that scales logarithmically
with the error.

Theorem 3.1.1 (Theorem 3.3.3 restated). Let w be a set of machine weights that lead to
a fractional solution with makespan T . Let ŵ be predictions of w and let η = maxi ŵi/wi

be the maximum error in our predictions. Then there exists an online algorithm (which
is given T as an input) that generates a fractional assignment of jobs to machines with
makespan at most O(T log η).

We note that this result assumes that the algorithm knows the value of T . Later
in Section 3.9, we show how to remove this assumption, at a small cost of a factor of
O(log log log(m)) to the makespan of the resulting solution.

The learned weights allow us to recover an approximately optimal fractional solution;
however, new algorithmic challenges arise when rounding this solution online to an integral
solution. Our second technical contribution is an online rounding procedure that loses
an O((log logm)3) factor in the makespan. Thus converting from fractional to integer
solutions is not as hard as obtaining good fractional solutions in the first place. We note
that our rounding procedure can be used for the more general unrelated machines problem,
where job sizes are machine dependent and uncorrelated.

32

Rounding a fractional solution online requires several new ideas. Prior rounding
algorithms need access to the overall instance, and are inherently offline. For instance,
the 2-approximation of Lenstra, Shmoys and Tardos [105] requires preprocessing the
fractional solution, iteratively transforming the assignment by shifting probability mass
found in cycles in the corresponding bipartite graph. Obviously the full problem instance
and assignment is necessary to perform this kind of rebalancing. Other methods utilize
sophisticated configuration LPs[84, 140], which cannot be easily modified to fit the online
setting. Thus known makespan rounding methods are not good candidates to adapt to
the online setting.

In an effort to design a good rounding algorithm, we first observe that any deterministic
rounding procedure has a competitive ratio of Ω(logm) as compared to the fractional
solution (See Section 3.6.1). We resort to randomized approaches. Since simple randomized
rounding will lead to a poor approximation ratio, we introduce a new rounding algorithm
that involves carefully transforming the instance to ensure certain structural properties,
then classifying jobs into different categories, and running different rounding algorithms
for each category. The classification is critical, as rounding algorithms that are good for
one category perform poorly for others. However, coupled together in the right way, we
establish our results. See Section 3.4 for a proof overview and Section 3.5 for the whole
proof.

Theorem 3.1.2 (Theorem 3.5.1 restated). Let x be a fractional assignment of restricted
assignment jobs that is revealed online and let T be the fractional makespan of x.1 There
exists a randomized online algorithm that rounds a fractional assignment to an inte-
ger assignment such that the resulting makespan is at most O((log logm)3T) with high
probability.

In addition to this, we show that our online rounding algorithm is nearly optimal. We
show that no randomized online rounding algorithm can achieve a competitive ratio better
than Ω̃(log logm) when rounding a given fractional solution online (See Section 3.6.2).

Theorem 3.1.3 (Theorem 3.6.1 restated). Let x be a fractional assignment of restricted
assignment jobs that is received online and let T be the fractional makespan. No deter-
ministic algorithm for converting x to an integer assignment can be o(log / log logmm)-
competitive with respect to T . Further, no randomized algorithm for the same task can be
o(log logm/ log log logm)-competitive with respect to T .

Combining the two upper bound results, we show that by learning approximate weights
and applying our rounding algorithm one obtains an O(log η(log logm)3)-competitive
algorithm, an exponential improvement over an algorithm that does not use any predictions,
whenever the predictions are reasonably accurate. We also show that it’s easy to fall back
to the traditional algorithm in case when the error is detected to be large. More formally:

Corollary 3.1.4. For any restricted assignment job sequence there exist machine weights w
and an online algorithm that when given access to predictions ŵ of the weights, assigns the

1We assume that T is at least the size of any job to deal with instances having poor integrality gap.
See Section 3.5 for a proper definition of T

33

jobs with competitive ratio Õ(min{log η(log logm)3, logm}) with respect to the makespan,
where η = maxi ŵi/wi. The online algorithm is randomized and succeeds with high
probability.

Finally, we show that the weights can in some sense be learned from past problem
instances. The next result is concerned with a PAC-style model.

Theorem 3.1.5 (Theorem 3.6.9 restated). Let ϵ, δ ∈ (0, 1) and R = O(m
2

ϵ2
log(m

ϵ
)) be

given and let D =
∏n

j=1Dj be a distribution over n-job restricted assignment instances

such that ES∼D[OPT(S)] ≥ Ω(1
ϵ2
log(m

ϵ
)). There exists an algorithm which finds weights

w ∈ W(R) such that ES∼D[ALG(w, S)] ≤ (1 +O(ϵ))minw′∈W(R) ES∼D[ALG(w′, S)] when
given access to s = poly(m, 1

ϵ
, 1
δ
) independent samples S1, S2, . . . , Ss ∼ D. The algorithm

succeeds with probability at least 1−O(δ) over the random choice of samples.

3.1.1 Related Work

There are multiple instances of augmenting classic online algorithms with additional
information in order to improve competitive ratios. Broadly, the extra information can
come in the form of assumptions on the data, or in terms of explicit hints about the future
given to the algorithm.

The most prominent example of the former is the random arrival model, where the
full set of arrivals is chosen adversarially, but the exact sequence seen by the algorithm is
a random permutation of the worst case instance. These lead to a family of algorithms
that use the first part of the input to learn the structure of the input, often via simple
empirical risk minimization (ERM) methods, and then use the learned structure to guide
the algorithm’s choices on the rest of the input. Notable examples include the secretary
problem, where the learned structure is just the best candidate seen so far, to more delicate
arguments, such as those in the work by Devanur and Hayes [54] and Vee et al. [145] for
online bipartite matching. A line of work initiated by Cole and Roughgarden [50] and
continued by Balkanski et al. [30] asks explicitly what kind of information can be learned
just from a sample of the data, and strives to get tight bounds on the size of the sample
necessary to achieve good results.

A related structural assumption is that input comes from a stochastic distribution.
This too has been studied in the context of online matching [113] and bandit learning [41],
where the authors show how to get improved guarantees if the assumption holds, and
retain the worst case guarantees if it does not. Mahdian et al. [109] generalize this even
further, allowing for an arbitrary optimistic algorithm, rather than assuming that the
input is stochastic, and showing how to recover a constant fraction of either the optimistic
or worst case performance.

In a new line of work, Kumar et al. [98] assume that the online input is a mixture
of adversarial elements and elements arriving from a known sequence. They show how
to achieve near optimal results for the online matching in this “semi-online” model of
computation.

The work described above assumes that the input is restricted in some manner.
Additionally, there has been increased interest in a model, where the input is not explicitly

34

restricted, but some information about it is available to the algorithm. The seminal work
by Ailon et al. [6] considered “self-improving” algorithms that effectively learn the input
distribution, and adapt to be nearly optimal in that domain.

In the online algorithms with advice model, the algorithm has access to an oracle that
knows the exact input. The goal then is to reduce the amount of information the oracle
needs to communicate to the algorithm, see Boyar et al. [38] for a recent survey. Critically,
in this model the oracle is perfect, and makes no mistakes, whereas we explicitly assume
that the predictions are going to be error-prone, and our goal is to tie the competitive
ratio of the algorithm to the quality of the predictions.

Another closely related area of work is that of approximation and online algorithms
for scheduling. There has been a considerable amount of work on approximate makespan
minimization. The work of Lenstra, Shmoys and Tardos [105] gives a 2-approximation
algorithm by rounding a natural LP relaxation and this result holds for the unrelated
machines case. The breakthrough work of [84, 140] improves the approximation ratio for the
restricted assignment problem. The work of Svensson [140] shows a 1.9412 approximation
and Jansen and Rohwedder [84] improves this to a 2− 1

6
+ϵ approximation. This additionally

bounds the integrality gap of the configuration LP by 2− 1
6
. For the unrelated machine

case, the best known approximation is 2. Recently, Chakrabarty, Khanna and Li [44] show
improved results for a special case. In the online setting there are tight bounds of Θ(logm)
on the competitive ratio for the restricted assignment problem [21].

Finally, we refer the reader back to the introduction of this dissertation for a review of
recent work in algorithms with predictions and data-driven algorithm design.

3.2 Preliminaries

3.2.1 Problem Definition and Notation

We study the online restricted assignment problem. In this problem there are m machines
(indexed from 1 to m) and a sequence of jobs that arrive online. Job j has an integer
size pj > 0 and a subset of machines ∅ ⊊ N(j) ⊆ [m] where j can be feasibly assigned.
Throughout this chapter we refer to N(j) as the neighborhood of job j. Similarly, we can
define the neighborhood of a machine i, N(i) as the set of jobs that can feasibly be assigned
to i. The neighborhood structure induces a bipartite graph on the set of machines and the
set of jobs. The algorithm must irrevocably assign each job j to some machine i ∈ N(j),
and it must do so online, i.e. with no knowledge of the future jobs in the sequence. This
assignment incurs a load on each machine, equal to the total size of the jobs assigned
to each machine. The objective is to minimize the makespan, or maximum load across
all machines. If Ji is the set of jobs assigned to machine i, then Li =

∑
j∈Ji pj and the

makespan, T = maxi∈[m] Li.

A more general version of this problem is the online makespan minimization on unrelated
machines problem. The setup for this problem is mostly the same as above, except that
instead of jobs having a single size and a subset of feasible machines, the size of a job
is completely machine dependent and uncorrelated between machines. That is, for each

35

machine-job pair i, j, there is a size pij > 0 that determines the size of job j if it were
assigned to machine i. The objective is still to minimize the makespan. The restricted
assignment problem can be reduced to unrelated machines by taking pij = pj if i ∈ N(j)
and pij =∞ otherwise.

We study our algorithms in the setting of competitive analysis. If T is the optimal
makespan for a sequence of jobs in hindsight, then we seek to give online algorithms that
output assignments with makespan at most αT , for α ≥ 1 as small as possible. If an online
algorithm achieves such a guarantee, then we say that the algorithm is α-competitive. For
the case of the online rounding problem we define competitiveness similarly, but instead
with T = max{maxi∈[m]

∑
j∈N(i) pjxij,maxj pj}. In the case of randomized algorithms, we

compare our online algorithm to oblivious adversaries. The adversary does not have access
to the randomness used by our algorithm to make assignments. That is, the adversary
fixes the (worst case) sequence of jobs in the beginning, then our algorithm runs and
assigns the jobs.

In analyzing randomized algorithms we will often say that some event occurs with high
probability. We take this to mean that the event occurs with probability at least 1− 1/mc,
for any constant c > 0. This implies that we can union bound over any polynomially in
m many “bad” events and retain high probability. We will use concentration inequalities
to establish high probability bounds several times in our analysis, see below for precise
statements.

Theorem 3.2.1 (Upper Chernoff Bound). Let X1, X2, . . . , Xn be independent random
variables with Xi ∈ [0, 1] for 1 ≤ i ≤ n. Let X =

∑
i Xi and µ ≥ E[X], then for all ϵ > 0

we have

Pr[X ≥ (1 + ϵ)µ] ≤ exp

(
− ϵ2

2 + ϵ
µ

)
Theorem 3.2.2 (Lower Chernoff Bound). Let X1, X2, . . . , Xt be a collection of independent
Bernoulli RV’s with Pr[Xi = 1] = pi. Let X =

∑
iXi and µ =

∑
i E[Xi]. Then for all

δ ∈ (0, 1)

Pr[X < (1− δ)µ] ≤ exp

(
−δ2µ
2

)
.

Theorem 3.2.3 (Bernstein’s Inequality). Let X1, . . . , Xt be independent Bernoulli RV’s
with Pr[Xi = 1] = pi and let a1, . . . , at be non-negative scalars. Let X =

∑
i aiXi,

v =
∑

i a
2
i pi, and a = maxi ai. Then for all λ > 0

Pr[X > E[X] + λ] ≤ exp

(
−λ2

2v + 2aλ/3

)
.

Theorem 3.2.4 (Two-Sided Hoeffding Bound). Let X1, X2, . . . , Xn be independent random
variables with ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Let X =

∑
i Xi and µ = E[X]. Then for all

t > 0 we have

Pr[|X − µ| ≥ t] ≤ 2 exp

(
− t2∑

i(bi − ai)2

)
36

Theorem 3.2.5 (Union Bound). Let A1, . . . , At be a collection of events, then

Pr[A1 ∪ . . . ∪ At] ≤
t∑

i=1

Pr[Ai]

Technical Assumptions. Throughout the rest of this chapter, we assume that our
algorithms know the optimal makespan T . In the offline setting this assumption can
typically be removed by a simple binary search. In Section 3.9, we show how to remove
this assumption in the online setting. We also assume that the job sizes are at least 1 and
are polynomially bounded, i.e. pj = O(mk) for some constant k. This assumption can be
made with negligible increase in the competitive ratio.

3.2.2 ML Oracles

When incorporating predictions into an online algorithm, an important consideration is
deciding what to predict. At a high level, the predictions should give a parsimonious
representation of the problem instance. Specifically, we want the prediction to satisfy
three properties:

• The performance of the algorithm should degrade gracefully with the error in
predicted quantities.

• The predictions should be robust to inconsequential changes in the problem instance.

• The predictions should be efficiently learnable, that is they should be concise and
come from a limited domain.

The first point is critical to good algorithm design. Machine learned approaches are
never perfect, and errors are to be expected, and any algorithm that is not robust to errors
in the predictions is bound to perform poorly in practice. In their definition of the model,
Lykouris and Vassilvitskii [108] further insist that algorithms are consistent, that is they
recover the optimal solution as the prediction error goes to zero.

The next two properties describe what it means for the learning to be meaningful. For
instance, some quantities may be easy to predict, but give no insight into the structure
of the problem instance. For instance, predicting the total load on each machine in the
optimal solution is not a good prediction—one can easily extend any example to make
sure that the total load on each machine is identical. We give other examples of poor
options for predictions, and further describe the qualities of a meaningful prediction in
Section 3.2.3.

In contrast, the last point puts limits on the nature of the predictions, making sure they
can be efficiently learned. For instance, one may propose predicting the exact instance
that will appear and then execute the offline algorithm on the learned prediction. The field
of computational learning theory has developed strong bounds on the number of examples
needed to effectively learn a function from a given class. Specifically, it is well known that
if the hypothesis class contains N functions, one needs at least logN examples to learn
the best function (this is the weakest lower bound, typically many more examples are

37

necessary) [117]. In the case of restricted assignment, each of the jobs can be matched to
2m machines, therefore an instance with n jobs arriving, can take on 2mn different values.
Thus learning the jobs requires at least Ω(mn) examples, which is prohibitively expensive
even for relatively small m and n. On the other hand, learning a single parameter per
machine is a much easier learning task, requiring many fewer examples.

In much of the previous work the choice of the prediction was relatively straightforward.
For instance for the classic ski rental problem, Purohit et al. [126] predict the number of
skiing days, and then base their decision on the value of the prediction vis-à-vis the cost
of buying the skis. In streaming heavy hitters, Hsu et al. [80] predict whether an element
is likely to be a heavy hitter, and if so, maintain its count exactly, rather than resorting to
a sketch. Finally, for the online caching problem, Lykouris and Vassilvitskii [108] focus
on predicting the subsequent arrival time of each element, and then modify the Marking
algorithm to take advantage of this new information. In contrast, in online scheduling, the
question of what to predict is not obvious.

3.2.3 Predictions for Online Scheduling

The decision of what to predict obviously influences the design of the algorithm using
these predictions. However, even without an algorithm in mind, we can eliminate some
choices because they fail to satisfy one of the criteria listed above.

For the online scheduling problem, the quantity we predict should intuitively guide us
how congested a particular machine is going to be. Consider a restricted version of the
problem, where the optimal makespan has value one. Then each instance is equivalent
to a bipartite graph between jobs and machines, and the offline problem is to compute a
matching between jobs and machines. Given the full instance, what is a good representation
that can be used to guide the online algorithm?

One natural approach is to look at the degree of each machine, i.e. the number of
jobs that could be assigned to it. However, by adding a small number of dummy jobs and
machines it is easy to modify each instance so that all machines have identical degree,
in which case, this prediction does not carry any additional information. A similar fate
befalls predictions of the load of each machine in the optimal solution, the degree of the
jobs, and other simple heuristics: for each of these there exists a simple transformation
that makes this additional information vacuous.

A more robust approach is to look at the dual problem, and consider learning the dual
variables corresponding to machines. This kind of a setting has been successfully used
for online bipartite matching—Devanur and Hayes [54] showed how to use duals learned
on a random sample of the input to give approximately optimal solutions in an online
setting. Critically, however, the choice of the objective plays a large role: while using
1 + ϵ approximate duals gives a (1−O(ϵ)) solution to the bipartite matching, the same
approach does not yield a constant competitive approximation to the makespan. The
reason is that in job scheduling, we must match all of the jobs to machines and compare
the resulting makespans, whereas in online matching, we only try to match as many jobs
as possible to empty machines and compare the cardinality of the matching.

Another approach for online matching, advocated by Vee et al. [145], was to formulate

38

the online matching problem as a quadratic program, and then look at the dual variables
in that space. In addition to the mismatch in objective described above, we note that the
duals in the Vee et al. formulation are extremely sensitive, and approximately correct
duals may no longer lead to near optimal solutions on the primal.

3.3 A Robust Online Algorithm via Machine Weights

In this section we identify a quantity that compactly captures the structure of an offline
instance of the problem. We give an online algorithm to compute fractional solutions using
these quantities, and show that they are robust to errors, if we were to predict them.

The key idea is to assign a weight to each machine, and then allocate each job
proportionally to the weights of the machines that it can be assigned to. Intuitively,
the machine weight is inversely proportional to the contentiousness of the machine, i.e.
machines with very high demand have small weights.

Formally, let w ∈ Rm
+ be a vector of non-negative weights, one per machine. Let xij(w)

denote the fractional assignment of job j on machine i when using weights w, we define
the assignment function as:

xij(w) =
wi∑

i′∈N(j) wi′
(3.1)

We first need to show that the weights capture enough information for us to reconstruct
a good solution. In other words, we need to ensure that for any offline instance there are
a set of weights such that the corresponding fractional assignment has a near optimal
makespan. We build upon the work of Agrawal et al [5] who showed the existence of such
weights for b-matchings. Formally, we say that a set of weights w is c-good if for every
machine i,

∑
j∈N(i) pjxij(w) ≤ cT for some constant c ≥ 1. In Section 3.7 we show that

good weights exist for arbitrarily small c for the restricted assignment problem.
Given that weights are enough to reconstruct approximately optimal solutions, they will

be our target for predictions. Before analyzing what happens when weights are predicted
incorrectly, we observe that the allocation given by w is scale invariant, i.e. that γw yields
the same allocation as w for any γ ∈ R.

Remark 3.3.1. The fractional assignment produced by w is scale invariant, i.e. for any
γ ∈ R, xij(w) = xij(γw).

3.3.1 Constructing Fractional Solutions Online Using Learned
Weights

Suppose that ŵ is a prediction of good weights w. Due to scale invariance, we can assume
that ŵi ≥ wi for all i. First we consider using ŵ directly to compute allocations online
using Equation 3.1. To analyze this procedure we define µi = ŵi/wi ≥ 1 to be the relative
error with respect to the i’th machine. We define the total error in the prediction to be
η = maxi µi. Consider the allocation xij(ŵ) given by the predictions. Intuitively, this

39

allocation is locally a good approximation to xij(w), which implies that the makespan of
our complete solution is bounded. The following claim makes this intuition precise and
implies that the naive algorithm will have a makespan of O(ηT).

Claim 3.3.2. For all i and j we have that xij(ŵ) ≤ ηxij(w).

Proof. Using equation (3.1) we have:

xij(ŵ) =
ŵi∑

i′∈N(j) ŵi′
=

µiwi∑
i′∈N(j) µi′wi′

≤ η

(
wi∑

i′∈N(j) wi′

)
= ηxij(w).

Thus we see that the error in our prediction cleanly shows up in the competitive ratio
of our algorithm. However we can use standard techniques from online algorithms to
improve on this result exponentially. The key idea is that we do not have to continue using
the current predictions ŵ if we believe the error is large. Rather than use the predictions
statically, we update them over time to account for errors that have been detected. The
following observation is important in formalizing this idea. If for all i 1/2 ≤ ŵi/wi ≤ 1,
then xij(ŵ) ≤ 2xij(w). This follows by applying the same style of analysis as above. This
motivates the design of Algorithm 6.

Algorithm 6 Improved algorithm for computing fractional assignments online

Let ŵ be predictions of w
Initialize Li ← 0 for each machine i ▷ Li = fractional load of machine i
for each job j do

For all i ∈ N(j), Li ← Li + pjxij(ŵ) ▷ Compute fractional assignment
for i = 1, . . . ,m do

if Li > 2T then
ŵi ← ŵi/2, Li ← 0 ▷ Update ŵ, start new phase

end if
end for

end for

Algorithm 6 keeps track of the load of each machine in phases. At the start of a
machine’s phase its load Li is initialized to 0. As each job j arrives we update Li by
adding xij(ŵ). At this point if Li ≤ 2T we do nothing, as we have no reason to believe
that µi = ŵi/wi is very large. However, if Li > 2T , then by our observation we know
that µi is large, so we update ŵi by dividing it by 2 and start a new phase by resetting
Li to 0. Once the condition in our observation is satisfied, we know that this will be
the last phase for all machines. So the question becomes, how many phases will each
machine go through until the condition is satisfied. Let ki be the number of phases
that machine i starts. The condition is satisfied for machine i when 1/2 ≤ ŵ

2kiwi
≤ 1

40

which implies that ki ≤ ⌈log2(ŵi/wi)⌉ + 1. All machines satisfy the condition after
k = maxi ki = maxi log2(ŵi/wi) = maxi log2(µi) phases.

How much does this algorithm lose in terms of the makespan? Each machine phase
incurs a factor of 2 loss in the makespan, and each machine has at most k = maxi log2(µi)
phases. Thus we see that the resulting makespan is O(kT) = O(maxi log2(µi)T). Since
µi ≥ 1, we have that maxi log2(µi) = log2(maxi µi) = log2(η). Thus the competitive ratio
is O(log2(η)), an exponential improvement over naively using the predictions. We state
the above results in Theorem 3.3.3.

Theorem 3.3.3. Let ŵ be predictions of a set of good machine weights w and let
η = maxi ŵi/wi be the maximum error in our predictions. Then Algorithm 6 is an
O(min{log η, logm})-competitive algorithm for minimizing the fractional makespan online.

In order to get the stated competitive ratio of O(min{log η, logm}), we run Algorithm
6 normally until assigning some job causes our algorithm to have makespan > 2T logm.
In this case, the predictions are not helpful and we switch to a O(logm)-competitive
algorithm from the literature, such as the ones described in [21] or [18].

3.4 Rounding Algorithm Overview

Before delving into the technical details, we first describe an overview of the rounding
algorithm. Recall that jobs arrive online and when job j arrives the algorithm learns xij

for all machines i. We assume that
∑

i∈[m] xij = 1 and the goal is to be competitive with

the final fractional makespan. T := maxi∈[m]

∑
j∈[n] pijxij . To make the exposition simpler,

we discuss the case of restricted assignment with unit sized jobs and the algorithm knows
the exact fractional makespan T a priori. In this case, each job has size 1 or ∞ on each
machine.

First observe that if T ≥ Ω(logm) then the rounding is easy. Each job j independently
performs randomized rounding, selecting a machine i with probability xij. Because the
contribution of each job is much smaller than the total makespan, standard concentration
bounds ensure that the makespan is bounded by O(T) with high probability. The
challenging case is when T is small compared to logm. In the proof, we denote this the
“large” job case.

We further break up the analysis into two cases. Let Bj = {i | xij ≥ 1
log2 m

} and

Sj = {i | xij < 1
log2 m

and xij > 0}. The set Bj contains the machines where xij is big

and Sj are the machines in the support where xij is small. Let B be the set of jobs j
where

∑
i∈Bj

xij ≥ 1
2
. These are jobs mostly assigned using large xij values. Let S be the

remaining jobs. These are jobs assigned using mostly small xij values.

Jobs in B. We begin by simplifying the instance. We show that at the cost of losing
a factor of O(log logm) in the total cost, we can transform the instance to one with
xij ∈ {0, 1

λ
} for a single value 1

log2 m
≤ 1

λ
≤ 1. This further implies that each job j has

Θ(λ) machines in the support of xij. Let N(j) be this set of machines. Notice that each

41

machine can have at most Õ(Tλ) = O(poly logm) jobs that can be assigned to it. This
case is hard because the fractional solution is revealing very little information. Indeed,
each job is uniformly split across a neighborhood of size λ.

To reason about the rounding in this case, consider the bipartite graph G corresponding
to the problem instance. Nodes representing jobs are on one side, and machines are on the
other, with an edge between a job and machine if the (job, machine) pair is in the support.
By construction the maximum degree in this graph, ∆ = O(poly(logm)). Now to allocate
jobs we use the following algorithm: when job j arrives, it selects machines independently
at random from N(j), selecting machine i with probability Θ(log log(m) · xij)

2. The job
can assign itself to any machine chosen so long as the machine has been assigned at
most O(T log logm) jobs so far. If the job does not select a machine or the machines are
overloaded then the job “fails” and enters a set F of failed jobs.

Let GF be the induced subgraph consisting only of the failed jobs and all of the
machines. The key to the proof is showing that with high probability every connected
component in GF is small. In particular, each connected component has fewer than
poly logm nodes. Intuitively, this is because the graph G has maximum degree at most
poly logm and therefore the graph is broken into small pieces. This is reminiscent of the
shattering idea in the parallel graph algorithms community [33, 67].

If this is the case, and the components are small then the problem becomes easy. Each
failed job assigns itself greedily to the least loaded machine. It is known [21] that the greedy
deterministic algorithm is a O(logm′)-approximation for any input with m′ machines. We
can think of each component as an individual instance, resulting in m′ ≤ poly logm and
these jobs contribute at most a O(T log logm) amount to the makespan.

Finally, we argue that the components are indeed small. Notice that if there is a
connected component of size poly logm then there should exist a path in the graph of
length at least poly logm

λ
because the maximum degree is λ. Thus, it suffices to show that no

such path survives. The proof begins by establishing that each job fails with probability
at most 1

logc m
for some constant c by simple concentration bounds. This means that every

edge in G remains in GF with probability at most 1
logc m

.

For sake of intuition assume that each edge were to be removed independently with this
probability (this is not true and we will remove this assumption shortly). The probability
a fixed path of length ℓ survives is at most (1

logc m
)ℓ = 1

logcℓ m
. Hence we can union bound

over all possible paths to show that no long paths survive. More precisely, assume that
the path starts at a machine node in GF and there are m starting positions. Recall that
the maximum degree is ∆, thus the total number of paths of length ℓ is bounded by m∆ℓ.
Ensuring that ∆ ≤ log3m and choosing c ≥ 4 and ℓ ≥ logm ensures no path exists with
good probability. This implies there is no large connected component, completing the
analysis of jobs in B.

The only issue that remains is the assumption on the independence of the edges. The
proof establishes that edges or nodes sufficiently far apart survive to be in GF independently.

2Note that machines are chosen independently and this independence is crucial for the proof. A job
may select more than one machine or no machines. It easily follows that the probability a job fails to
chose a machine is bounded by exp(Θ(− log logm))

42

By carefully counting ‘special’ sets of edges that survive independently because they are
well separated, but still reachable in a few hops, allows us to effectively use the above
argument.

Jobs in S. When we rely on machines with small assignment, we will run randomized
rounding in phases. In phase k, each job j that makes it to the phase selects a machine
with probability xij. If the chosen machine’s makespan is smaller than O(T) from jobs
assigned during phase i then the job goes to the machine. If not, then the job goes to
phase k + 1.

Define the fractional makespan of phase k to be the maximum fractional makespan
on the machines only counting jobs that survive to phase k. Using concentration bounds,
we can show that the fractional makespan decreases rapidly with each phase. Intuitively,
this is because most jobs have a good probability of being successfully assigned. After
O(log logm) number of phases, the fractional makespan will drop below O(1

log2 m
). This is

the last phase. At this point, if a job still survives then the job chooses logm machines in
N(j) uniformly at random. Then the job goes to a machine that no other job from this
phase selected. Because the fractional makespan is so small, concentration bounds will
imply that with high probability one of the machines that each job picks with be chosen
only by that job. Thus, the overall the makepsan will be O((log logm)T) from rounding
jobs in S with high probability.

3.5 Online Rounding Algorithm & Analysis

In this section we give a formal analysis of the online rounding algorithm. For this
section we assume the more general unrelated machine problem. Recall the setup of the
problem. Jobs arrive over time online. When each job j arrives, the value of the fractional
assignment, xij, and the job size pij is revealed for all machines i. That is, at each time t
we know the fractional assignment xij for all jobs j that have arrived up to time t and
have no information about the future jobs. We assume that

∑
i xij = 1. That is, all jobs

are fully fractionally assigned.

The goal is to assign jobs online to machines integrally using the fractional values as a
guide so that the final makespan is as close as possible to the makespan of the fractional
schedule. Since the integrality gap can be bad for the underlying linear relaxation3, we
define the quantity T := max{maxi∈[m]

∑
j∈[n] pijxij, p

∗}, where p∗ = max{pij | xij > 0}.
Note that this assumption enforces pij ≤ T whenever xij > 0. It is known that the
integrality gap is large if this condition is not met [149]. Since we apply the result of this
section to the case of restricted assignment, we note that the definition of T above reduces
to T = max{maxi∈[m]

∑
j∈N(i) pjxij,maxj pj} for this case.

An interesting challenge in our setting is that the assignment needs to be online so the
algorithm only has partial knowledge of the instance. We assume no structural properties

3If there is 1 unit size job with xij = 1/m for all i ∈ [m] then any assignment has makespan 1, a factor
of m larger than the fractional makespan.

43

on the fractional solution. In particular, we do not assume that the fractional assignment
corresponds to a vertex of the linear program for makespan on unrelated machines, a key
property used in offline rounding procedures [105, 136].

Now we present an online randomized algorithm for rounding fractional assignments
which achieves a competitive ratio of O(poly(log logm)) with high probability. Throughout
the analysis, we will assume that T is known. Later we discuss how we can remove the
assumption on the knowledge of T using a standard doubling analysis. We state our result
formally as the following theorem.

Theorem 3.5.1. Let x be a fractional assignment of unrelated machines that is received
online and let T be the fractional makespan of x, i.e. T := maxi

∑
j∈N(i) pijxij. Further,

xij = 0 if pij > T . There exists a randomized online algorithm that rounds a frac-
tional assignment to an integer assignment such that the resulting makespan is at most
O((log logm)3T) with high probability.

3.5.1 Instance Transformation

The first step in our analysis is to convert the instance into a number of simpler instances as
we receive it online. Depending on the properties of the job, it will be sent to a procedure
for that particular job type.

We redefine the neighborhood for the unrelated case as N(j) := {i | xij > 0} be the set
of machines in the support for job j. We will refer to this as the neighborhood of job j.
Recall that job sizes are bounded in the following way: pij ≤ T for all i ∈ N(j). Now the
first breakdown we make is to separate jobs into a notion of small and large jobs. For a
job j let Sj = {i ∈ N(j) | pij ≤ T/ logm}. We say that a job is small if

∑
i∈Sj

xij ≥ 1/2,
and otherwise it is large. Intuitively, a job is small if most of its fractional weight is on
machines with small pij as compared to T . Note that this separation can easily be done
online because it only depends on pij and xij for a job j.

The interesting case is the large jobs, which we discuss next. The small jobs can be
assigned by using randomized rounding as we show in Section 3.5.2. Because the jobs are
small, Chernoff bounds ensure no machine is overloaded with high probability.

Transforming Large Jobs

We first consider how to round the large jobs. For this, we further break the jobs into cases.
For each job j let Bj = N(j) \ Sj be the set of machines i in N(j) where pij > T/ logm.
Let B be the set of large jobs. For each large job j we have

∑
i∈Bj

xij ≥ 1/2. We now

preprocess the large jobs online creating a new fractional solutions x′ where the following
properties hold.

Lemma 3.5.2. At a loss of increasing the makespan by a O(log logm) factor, the fractional
solution x can be converted to a fractional solution x′ where the following properties hold:

• x′
ij ≥ 0 and

∑
i∈N(j) x

′
ij = 1

• x′
ij ≤ 2 log log(m)xij

44

• If x′
ij > 0 then pij = 2kT/ logm for some fixed k ∈ [log logm]

This modification can be done for each job individually in an online manner.

This preprocessing step will allow us to assume that the size of the job is the same on
all machines in the support of x′ for the job.

Proof. Consider the intervals Ik = [2k−1 T
logm

, 2k T
log(m)

] for k ∈ [log logm]. We have that

[T logm,T] =
⋃log logm

k=1 Ik. Let Bj,k = {i ∈ Bj | pij ∈ Ik}. Since all large jobs have most
of their fractional weight on machines with pij ∈ [T/ logm,T], by averaging there is a
k ∈ [log logm] such that

∑
i∈Bj,k

xij ≥ 1
2 log logm

. That is, a large fraction, at least 1
2 log logm

,
of a job’s fractional assignment is to machines where the sizes are within a factor 2 of each
other. Set x′

ij = 0 for i /∈ Bj,k and x′
ij = xij/

∑
i′∈Bj,k

xi′j for i ∈ Bj,k. It is simple to verify
the above properties for this transformation.

Since for all i such that x′
ij > 0 we have that pij ≤ 2kT/ logm, we can think of the

job as having a single size p′j = 2kT/ logm on its neighborhood of machines for some
k ∈ [log logm] by rounding the size up by at most a factor two.

Thus we have reduced the more general unrelated machines instance to an instance of
restricted assignment. In the new restricted assignment instance, a job has a fixed size,
but can only be assigned to a subset of machines.

Let Ck be the set of large jobs in the k’th class that now have size 2kT/ logm. We
say that j ∈ Ck is of class k. In the remainder of this section we show how to round the
jobs in the k’th class with small loss in the makespan. Since there are O(log logm) such
classes and we increased each fractional value by at most an O(log logm) factor, we lose
an extra factor of O((log logm)2) overall. For simplicity we assume throughout the rest of
the analysis that the solution x has the properties stated in the claim.

3.5.2 Rounding A Single Class of Large Jobs

We now focus on a single class Ck of large jobs. All jobs in this class have the same size
p′j = 2kT/ log(m), but a job specific neighborhood N(j) of feasible machines. We break
these down into two more cases.

For a job j let S ′
j = {i ∈ N(j) | xij ≤ 1

log2 m
}. We say that a job j’s fractional

assignment has small support if
∑

i∈S′
j
xij ≥ 1/2, and otherwise it has large support. (This

inference can be easily done online). We start by analyzing the jobs with large support.

Jobs with Large Support

For jobs with large support, we further preprocess the instance to give it more structural
properties. In particular, we will show that by increasing the makespan by a log logm
factor we can assume that for a fixed job j the values of xij are either 0 or a single positive
value.

45

Lemma 3.5.3. Fix a class Ck of large jobs. The fractional solution can be modified by
increasing the makespan by a factor O(log logm) to ensure the following property holds.

For each job j ∈ Ck, for all i either xi,j = 0 or xi,j =
2ℓ

log2 m
for some fixed ℓ ∈ [log logm].

This modification can be done for each job individually in an online manner.

Proof. For a job with large support we have that most of its fractional assignment is
on machines i with 1

log2 m
≤ xij ≤ 1. Fix a job j. Consider grouping machines by their

fractional values in powers of 2. A machine is in group ℓ ∈ [2 log logm] for job j if

xij ∈ [2ℓ

log2 m
, 2ℓ+1

log2 m
]. Let Gj,ℓ contain all such machines.

By an averaging argument, there is a group Gj,ℓ of machines where the job j has at
least a 1/2 log logm of its fractional assignment. That is, there is an ℓ ∈ [2 log logm] where∑

i∈Gj,ℓ
xij ≥ 1

4 log logm
. Let λj be the number of machines in this group. Since all the

fractional assignments in this group are off by at most a factor of 2 from each other, we
might as well consider them to be the same at the cost of a factor of 2. We set x′

ij = 1/λj

to be the new fractional assignment for machines in this group and x′
ij = 0 for machines

outside of this group. By construction we have that log2 m
2ℓ
≤ λj ≤ log2 m

2ℓ−1 for some ℓ. Let

Dℓ be the set of large support jobs with λj in the interval [log
2 m
2ℓ

, log
2 m

2ℓ−1]. We will refer to a
set Dℓ of jobs as a group for some fixed ℓ. Since there are O(log logm) such groups of
large support jobs, it suffices to consider only a single such group at the cost of increasing
the makespan by a O(log log(m)) factor.

Rounding a Single Group of Large Support Jobs

This section gives the algorithm for the case where jobs have large support. Fix a class Dℓ

of large support jobs. All of these jobs have a neighborhood of size at most λ for some
λ ≤ log2m. Our aim is to show that a single iteration of randomized rounding followed by
a deterministic greedy assignments suffices to assign these jobs in a good way.

The algorithm we use to round these jobs is as follows. Each job j chooses a random
machine in its neighborhood N(j), then checks the machine it chose. If the load incurred
by other jobs in class Dℓ on this machine is greater than 101 log logmT , then the job
rejects this assignment. In this case the job is added to the set Fℓ of failed jobs for class ℓ.
The jobs in Fℓ are assigned using a deterministic greedy algorithm.

The greedy algorithm works as follows. For a machine i ∈ N(j) let its ℓ-load be the
number of jobs in Fℓ that have already been assigned to it. A job j ∈ Fℓ chooses to be
assigned to the a machine with the minimum ℓ-load. This can easily be done online.

By definition, the jobs assigned using randomized rounding contribute O((log logm)T)
to the makespan. Thus it suffices to bound the contribution of the jobs assigned using
greedy.

Let Gℓ be the bipartite graph consisting of nodes for each job in Fℓ that rejected their
random assignment. The set of machines are on the other side. A job i ∈ Fℓ is connected to
a machine j with an edge if and only if xi,j ≥ 0. The proof will show that every connected
component of Gℓ has size O(poly(logm)) with high probability. It then follows that the
jobs assigned by greedy contribute O(log logm)T to the makespan. This is because the
deterministic greedy algorithm [21] is known to achieve a O(log m̂) approximation for any

46

instance of restricted assignment on m̂ machines and each connected component is an
instance of size O(poly(logm)) with high probability. Thus, these are “instances” of size
O(poly(logm)) and the makespan of the greedy algorithm as compare to optimal can be
at most a O(log logm)T factor larger.

In order to show that Gℓ has small connected components we apply a technique similar
to shattering in the distributed computing literature. We will define a special substructure
and show that if a connected component of Gℓ is large, then one of these substructures
exist. We will then show that the probability of one of these substructures existing is small;
after carefully counting the number of possible substructures and applying a union bound
we can conclude that every connected component of Gℓ is small with high probability.

We start by defining the substructure.

Definition 3.5.4. Two jobs j and j′ are machine disjoint if N(j) ∩N(j′) = ∅.

Definition 3.5.5. A sequence j1, j2, . . . , jβ of jobs is special if all the jobs are pairwise
machine disjoint and for each k, jk is within 4 hops of at least one of j1, . . . , jk−1 in G.

Later on, machine disjointness will allow us to show that certain events are statistically
independent. Note that by definition, all of the jobs in a special sequence must belong to
the same connected component. Equipped with these definitions we prove the following
lemma:

Lemma 3.5.6. Let C be a connected component of Gℓ of size at least logcm with c > 7,
then there is a special job sequence of size β = logm.

Proof. We prove the lemma by induction on the size of the sequence. Every large connected
component has at least one job, so the base case is trivial. Now for the induction step.
Let C be a connected component with size at least logc(m). Suppose there is a special job
sequence of β − 1 jobs. We combine these jobs into a single node and start a breadth first
search in C. Since the underlying graph is bipartite, the first level of this search consists
of machines, the second jobs, and the third machines. If there is any job in the fourth
level of this search, then it must be machine disjoint from the first β − 1. Suppose that
there is no such job. Then 3 levels of this search suffices to explore all nodes of C. Thus
since the maximum degree of a job or machine is bounded by λ, the size of C is at most:

|C| ≤ (β − 1)λ3 ≤ (β − 1) log6m.

This leads to a contradiction when β = logm and c > 7. Thus such a job in the fourth
level exists, yielding a special job sequence of size β = O(logm).

The proof above gave a way to construct the sequence of jobs given the graph. This
also gives us a way to upper bound the number of such special sequences.

Lemma 3.5.7. Let C be a connected component of Gℓ. There are at most m(βλ)4β special
job sequences for β = logm. So for λ ≤ log2 n, this is upper bounded by m(log12m)logm ≤
m1+12 log logm.

47

Proof. Let us count special job sequences by following the construction given in the proof
of Lemma 3.5.6. There are at most m jobs we can start with to construct a special
sequence. At the i’th step of the construction there are at most (iλ)4 possible jobs we
can choose to append onto the sequence by traversing out 4 hops in the graph from the
currently chosen jobs. Since i ≤ β, this is at most (βλ)4. Thus there are at most m(βλ)4β

such special job sequences.

The previous lemma bounds the number of possible special job sequences. Using this,
we can bound the probability that all jobs in a fixed special job sequence fail to be assigned
by randomized rounding, and then union bound over all possible special job sequences.

Lemma 3.5.8. Fix a special job sequence σ of length β = logm. The probability that all
jobs in σ fail to be assigned by randomized rounding is at most m−100 log logm.

Proof. Recall that a job is failed to be assigned by randomized rounding if it chose a
machine with load > (100 log logm+ 1)T . Let Li be the load of jobs that sample machine
i in randomized rounding and let Xij be the random variable indicating whether or not
job j sampled machine i in randomized rounding. Then we have Li =

∑
j∈N(i) p

′
jXij and

in expectation:

E[Li] ≤
∑

j∈N(i)

p′j
1

λ
≤ T

Applying Theorem 3.2.3, we have that the probability that a machine becomes overloaded
is:

Pr[Li > T (1 + 100 log logm)]

≤ exp

(
−(100 log logm)2

2 + log logm

)
≤ exp(−100 log logm)

Now let σ be a special job sequence. For j ∈ σ, we have that the probability that j fails to
be assigned by randomized rounding is at most the probability that any machine becomes
overloaded. Since N(j) ∩N(j′) = ∅ for all j, j′ ∈ σ, we have that the jobs in σ fail to be
assigned by randomized rounding independently. Thus the probability that all jobs in σ
fail to be assigned is at most

exp(−100 log logm)β = exp(−100β log logm)

= m−100 log logm,

proving the lemma.

We are now ready to show that every connected component in Gℓ is small with high
probability.

Lemma 3.5.9. With high probability, every connected component of Gℓ has size O(logcm).

48

Proof. By Lemma 3.5.6, it suffices to show that no special sequence of jobs of length
β = logm exists in Gℓ with high probability. For a fixed special sequence of jobs,
Lemma 3.5.8 states the probability that it is in Gℓ is at most m−100 log logm. Now taking a
union bound over all special sequences, the probability that there exists a special sequence
of jobs in Gℓ of length β = logm is at most(

m−100 log logm
) (

m(log12m)logm
)

=
(
m−100 log logm

) (
m1+12 log logm

)
≤ m−5,

where we use the bound on the number of special job sequences from Lemma 3.5.7. Thus
no special sequence of length logm exists in Gℓ with high probability.

Lemma 3.5.10. Fix a class ℓ of large support jobs. We can round the jobs in this class
with makespan at most O(log logm)T with high probability.

Proof. Each job in this class is assigned by randomized rounding or by a separate greedy
assignment. The jobs assigned by randomized rounding contribute O(log logm)T to the
makespan by definition of our algorithm. Looking at the instance after removing all jobs
assigned by randomized rounding, by Lemma 3.5.9 every connected component in the
underlying graph of this instance has size at most O(logc m) for some constant c with
high probability. Thus running Greedy on this remaining instance contributes an extra
O(log logm)T to the makespan. In aggregate, the contribution to the makespan from this
class of large support jobs is O(log logm)T .

Rounding Jobs with Small Support

In this section we consider the case where for jobs j that have small support. Recall
that this means that

∑
i∈S′

j
xij ≥ 1/2 where S ′

j is the set of machines i where xij ≤ 1
log2 m

.

In this case, we set xij = 0 for i /∈ S ′
j. Then we re-normalize the remaining fractional

assignment to ensure
∑

i xij = 1 for all j, increasing each assignment by at most a factor
of 2. Note that since we are rounding jobs of a single class, we may assume all jobs are
unit sized and the makespan is T is bounded by O(logm) by rescaling.

The algorithm that we use to handle this type of jobs, Iterated Randomized Rounding,
works in several phases. Each phase k maintains a fractional load Tk and integer load
L(i, k) for each machine. The load L(i, k) counts the total size of jobs assigned using
this procedure in phase k. In each phase we attempt to randomly assign a job to several
machines, however this fails if L(i, k) is too large for the sampled machines. In the case of
failure, the job goes on to the next phase. Our analysis will show that after O(log logm)
phases only few jobs will be left and we will handle them separately.

Interestingly the procedure can be done for each job individually, where L(i, k) is the
load assigned to the machine so far among jobs in phase k. Thus the procedure can be
done online.

In the first phase of Iterated Randomized Rounding, the fractional load of each machine
is at most T . The intuition behind this algorithm is that as the algorithm goes to higher

49

Algorithm 7 Iterated Randomized Rounding

1: for each job j do
2: for each phase k = 0, 1, 2, . . . do
3: For each i ∈ N(j) assign j to i independently with probability xij

4: If L(i, k) > 10T for all sampled machines, then j goes to the next phase
5: Otherwise assign j to i such that L(i, k) < 10T and increase the load of all

sampled machines i with L(i, k) < 10T
6: end for
7: end for

and higher phases, then this fractional load should decrease quickly. Let Tk be the bound
on the fractional load in phase k of Iterated Random Rounding. We will to show that
Tk+1 ≤ ρTk for some constant ρ ∈ (0, 1) with high probability. We can continue running
Iterated Random Rounding while this bound is relatively large. When we reach a phase
where the fractional load becomes too small, any job that is still unassigned becomes a
“leftover” job and we assign it using a different technique. The number of phases of Iterated
Randomized Rounding we need will be O(log logm), implying that the contribution to
the makespan of jobs with small support will be O(log logm)T plus the contribution of
“leftover” jobs. We start the analysis with the following lemma.

Lemma 3.5.11. Let Tk be an upper bound on the fractional load of all jobs that make it
to phase k in Iterated Randomized Rounding, with T0 = T . For all k = 0, 1, 2, . . . we have
that Tk+1 ≤ ρTk for some constant ρ ∈ (0, 1) with high probability.

Proof. Consider a phase k and let Tk be as in the lemma statement. We need to upper
bound the fractional load of jobs that fail to be assigned in phase k, and hence contribute
to the fractional load in phase k + 1. Let L(i, k) be the load of machine i in phase k and
let N(i, k) be the set of jobs that can be assigned to machine i in phase k. We have that

E[L(i, k)] =
∑

j∈N(i,k)

pjxij ≤ Tk

The probability that any job fails to be assigned in phase k is at most the probability that
machine i has load more than 10T in phase k. By Markov’s inequality this is at most

Pr[L(i, k) > 10T] ≤ E[L(i, k)]
10T

≤ Tk

10T
≤ 1

10

since Tk ≤ T for all k. Now fix a machine i∗. We are interested in how much fractional load
i∗ may potentially contribute to the next phase. Let Z(k, i∗, i) =

∑
j∈N(i,k) xi∗jI(j picks i).

Intuitively, if j picks machine i and j ends up going to phase k + 1, then j will contribute
xi∗j to i∗’s fractional load. First we bound Z(k, i∗, i) with high probability.

Claim 3.5.12. For each i, Z(k, i∗, i) ≤
(

d+1
log2 m

)
Tk with high probability for some constant

d > 0 when Tk = Ω(1
logm

).

50

Proof. In expectation we have

E[Z(k, i∗, i)] =
∑

j∈N(i,k)

xi∗jE[I(j picks i)]

=
∑

j∈N(i,k)

xi∗jxij

≤ 2

log2m

∑
j∈N(i,k)

xij ≤
2Tk

log2m

Since Z(k, i∗, i) is a sum of independent random variables in the form needed for Theo-
rem 3.2.3, we apply this theorem with a ≤ 2

log2 m
and v ≤ 2

log2 m
E[Z(k, i∗, i)]. Thus taking

λ = dTk/ log
2m, we have

Pr

[
Z(k, i∗, i) >

2Tk

log2m
+ λ

]
≤ exp

(
−λ2

4E[Z(k,i∗,i)]

log2 m
+ 4λ

3 log2 m

)

≤ exp

(
−d2T 2

k
4Tk

log2 m
+ 4dTk

3 log2 m

)

= exp

(
−
(

d2

4 + 4d/3

)
Tk log

2m

)
= exp(−c′ logm) = m−c,

for some constant c′ depending on d. Note from the second to last line to the last line we
used the fact that Tk = Ω(1/ logm). Now choosing c′, d large enough and taking a union
bound over all machines we see that Z(k, i∗, i) ≤ d+1

log2 m
Tk for all i with probability at least

1− 1/mc′−1.

To bound the fractional load in the next phase define Z(k, i∗) =∑
i Zk,i∗,iI(i overloaded in phase k). Note that this is a bound on the fractional

load that survives phase k and hence goes to phase k+1. Thus any bound on this random
variable that holds for all i∗ yields a bound on Tk+1.

Claim 3.5.13. For each i∗, Z(k, i∗) ≤ ρTk for some ρ ∈ (0, 1) with high probability when
Tk = Ω(1/ logm).

Proof. For each i∗, in expectation we have

E[Z(k, i∗)] =
∑
i

E[Z(k, i∗, i)] Pr[i overloaded in phase k]

≤ 1

10

∑
i

∑
j∈N(i,k)

xi∗jxij

=
1

10

∑
j∈N(i,k)

xi∗j

∑
i

xij

=
1

10

∑
j∈N(i,k)

xi∗j ≤
1

10
Tk.

51

By Claim 3.5.12, we have that Z(k, i∗, i) ≤ d+1
log2 m

Tk for all i with high probability. Now

since Z(k, i∗) is defined as a sum of independent random variables4, we can again apply
Theorem 3.2.3 to this random variable with a ≤ d+1

log2 m
Tk and v ≤ d+1

log2 m
TkE[Z(k, i∗)].

Taking λ = qTk we have

Pr

[
Z(k, i∗) >

1

10
T + λ

]
≤ exp

(
−λ2

2(d+1)TkE[Z(k,i∗)]

log2 m
+ 2(d+1)Tkλ

3 log2 m

)

= exp

 −q2T 2
k

2(d+1)T 2
k

10 log2 m
+

2(d+1)qT 2
k

3 log2 m


= exp

(
−
(

q2

(d+ 1)/5 + 2q(d+ 1)/3

)
log2(m)

)
Now we choose q such that ρ = 1

10
+q ∈ (0, 1) and the above expression becomes sufficiently

small, i.e. ≤ m−c for some constant c > 1. Then taking a union bound over all machines
i∗, we have that Z(k, i∗) ≤ (1

10
+ q)Tk = ρTk for all i∗ with high probability.

By Claim 3.5.13, we can take Tk+1 = maxi∗ Z(k, i
∗), which is at most ρTk with high

probability, proving the lemma.

Now we have a sequence of bounds T0, T1, . . . , Tk, . . . that hold with high probability.
Note that in the proof of Claim 3.5.12, we required that Tk = Ω(1/ logm). Thus it
only makes sense to consider this sequence while this bound is true. We assume that
T0 = T = Ω(1) and that T = O(logm). Thus there are O(log logm) phases before Tk

becomes O(1/ logm). Jobs that make it this far without being assigned become “leftover”
jobs and we assign them using a different technique.

Rounding the “Leftover” Large Jobs with Small Support

The “leftover” jobs are small support jobs that survived too many phases of random
assignments. The setup of this case is the following. Each job has xi,j ≤ 1

log2 m
. Let

T (i) =
∑

j xi,j be the fractional load of machine i. It is the case that T (i) ≤ 1
64 logm

for
each machine i ∈ m.

Consider the following algorithm. Each job j independently samples a set M(j) of
machines from N(j) where machine i ∈ N(j) is in the set with probability 32 logm · xi,j.
Each job j is assigned to the machine which has the smallest load in this phase. Now
we show that with high probability that for each job j it is always the case that M(j)
contains a machine i such that i /∈M(j′) for all other jobs j. Thus, with high probability
each machine is assigned at most one job.

Lemma 3.5.14. With probability at least 1− 1
m

it is the case that for all jobs j the set
M(j) contains a machine i not in M(j′) for all j′ ̸= j.

4Machines in the same phase become overloaded independently of one another because the machines
are selected independently by each job and a job can increase the load of multiple machines in the same
phase (even if it is assigned to a single one).

52

Proof. Fix any job j. First we show that |M(j)| ≥ 5 logm with probability at least 1− 1
m4 .

Indeed, letXi be 1 if job j samples machine i and 0 otherwise. By definition of the algorithm
E[Xi] = 32 logm · xi,j and E[

∑m
i=1Xi] = 32 logm. Using Theorem3.2.2 we have that the

probability |M(j)| =
∑m

i=1 Xi is smaller than 5 logm is at most exp(−32 logm
8

) = 1
m4 . Thus

|M(j)| ≥ 5 logm with probability at least 1− 1
m4 .

Consider any machine i. Let Gi be the random variable with value 1 if there is no job
j′ ̸= j such that i ∈M(j′). Otherwise Gi has value 0. By definition of the algorithm we
have the following.

Pr[Gi = 1] = Pr[i /∈M(j′) ∀j ̸= j′] (3.2)

=
∏
j′ ̸=j

Pr[i /∈M(j′)] (3.3)

=
∏
j′ ̸=j

(1− 32 logm · xi,j′) (3.4)

≥ exp(−32 logm
∑
j′ ̸=j

xi,j′) (3.5)

≥ exp(−32 logmT (i)) (3.6)

≥ 1

e1/2
[T (i) ≤ 1

64 logm
by assumption] (3.7)

Let Ej denote the event that |M(j)| ≥ 5 logm. Consider the probability that G :=∑
i∈M(j)(1−Gi) given that Ej occurs. This is the probability of the bad event where no

machine in M(j) is selected only by j given Ej . Given a set M(j), we know E[G |M(j)] =

E[
∑

i∈M(j) Gi |M(j)] =
∑

i∈M(j) E[Gi] =
∑

i∈M(j)
1

e1/2
= |M(j)|

e1/2
. This holds for all setsM(j).

Thus, E[G | Ej] ≥ 5 logm
e1/2

. Using Theorem 3.2.2 the probability that G :=
∑

i∈M(j)(1−Gi)

given Ej is at most exp(−5 logm
2e1/2

) ≥ 1
m3/2 .

We now put the above facts together. The probability Ej does not occur is at most
1
m4 . The probability that G = 0 given Ej occurs is at most 1

m3/2 . One of these events must
occur for G to be 0. Thus, a union bound says that the probability G = 0 is at most
1
m4 +

1
m3/2 ≤ 1

m
. Therefore, the probability G ≥ 1 happens with probability at least 1− 1

m
,

implying that there is a machine i in M(j) such that no other job j′ has i ∈M(j′).

Assigning the Small Jobs

In this section we show how the small jobs can be assigned. For each small job, we
preprocess its fractional assignment as follows. First we set x′

ij = 0 for i /∈ Sj, then
set x′

ij = xij/
∑

i′∈Sj
xi′j for i ∈ Sj. It is easy to verify that this transformation has the

following properties.

• x′
ij ≥ 0 and

∑
i∈N(j) x

′
ij = 1

• x′
ij ≤ 2xij

53

• If x′
ij > 0 then pij ≤ T/ log(m)

This is all the preprocessing we need to do for small jobs. Afterwards all small jobs
are assigned using randomized rounding.

Algorithm 8 Randomized Rounding

1: for each job j do
2: Sample i ∈ N(j) according to the distribution {xij}mi=1

3: Assign job j to machine i
4: end for

Note that the preprocessing and the randomized rounding can be executed online.

Lemma 3.5.15. Let S be the set of all small jobs. Applying randomized rounding with
the preprocessed fractional assignments x′

ij yields a makespan of O(T) for just the jobs in
S with high probability.

Proof. Let Xij be the indicator random variable for the event that j ∈ S is assigned to
machine i. By definition of randomized rounding, we have that the random variables Xij

are independent for varying j. Let LS
i =

∑
j∈S∩N(i) pijXij be the load of the small jobs on

machine i. Computing expectations we have

E[LS
i] =

∑
j∈S∩N(i)

pijx
′
ij ≤ 2

∑
j∈S∩N(i)

pijxij ≤ 2T.

Applying Theorem 3.2.3 with v =
∑

j∈S∩N(i) p
2
ijx

′
ij ≤ 2 T

logm
E[LS

i] ≤ 2T 2

logm
, a ≤ T

logm
, and

λ = cT for some large enough constant c we have

Pr[LS
i > 2T + λ] ≤ Pr[LS

i > E[LS
i] + λ]

≤ exp

(
−λ2

2v + aλ/3

)
= exp

(
−c2T 2

4T 2

logm
+ cT 2/3

logm

)
= exp (−d logm)) = m−d,

where d = 3c2

12+c
is a constant. Now taking a union bound over all machines, we have

LS
i ≤ (c+ 2)T for all i with probability at least 1−md−1. Since c is some constant, this

proves the lemma.

3.6 Lower Bounds for Online Rounding

In this section we aim to prove the following result, as stated in Section 3.1.

54

Theorem 3.6.1. Let x be a fractional assignment of restricted assignment jobs that is
received online and let T := max{maxi

∑
j∈N(i) pjxij,maxj pj} be the adjusted fractional

makespan. No deterministic algorithm for converting x to an integer assignment can be
o(logm/ log logm)-competitive with respect to T . Further, no randomized algorithm for
the same task can be o(log logm/ log log logm)-competitive with respect to T .

3.6.1 Deterministic Lower Bound

In this section we give a bad instance for deterministic online rounding algorithms
for makespan. A rounding algorithm converts a fractional solution xij ≥ 0 in which∑

i∈N(j) xij = 1 for each job j into an assignment of job j on some machine i ∈ N(j). For a

sequence of n jobs with fractional solutions, the fractional makespan is maxi
∑

j∈N(i) pjxij .
Due to bad integrality gaps for some instances, we compare our algorithms to T :=
max{maxi

∑
j∈N(i) pjxij,maxj pj}, which we refer to as the adjusted fractional makespan.

We show that for any deterministic online rounding algorithm there is an instance for
which it incurs a large makespan when compared to T .

Lemma 3.6.2. For any deterministic online rounding algorithm A there exists a sequence
of unit size jobs such that A has makespan logm/ log logm while the fractional makespan
is 1/ log logm and the optimal solution has makespan 1.

Proof. Fix the deterministic rounding algorithm A. Let λ, p and m be integers such that
λp = m. The exact value of λ will be chosen later. We consider an instance with m
machines. Each job in our sequence will have a size of 1 and a neighborhood of cardinality
λ and fractional solution xij =

1
λ
for each i ∈ N(j). The bad sequence of jobs will consist

of p phases. In the first phase, we release m/λ jobs, each with disjoint neighborhoods of
size λ. We observe where A assigns these jobs. Since these jobs had disjoint neighborhoods
they get assigned to different machines. Let M ′ be the set of machines where a job got
assigned and recurse on this set of machines, starting a new phase. Note that |M ′| = m/λ.
This recursion continues until we run out of machines. By our choice of λ, p,m, there are
p phases since λp = m.

Letting λ = log(m), we observe that the rounding algorithm’s makespan is p =
log(m)/ log log(m), while the optimal solution in hindsight has makespan 1. It is also easy
to verify that the fractional makespan is p/λ = 1/ log log(m).

For the above sequence T = max{ 1
log logm

, 1}, and so this implies the Ω(logm
log logm

) lower
bound for deterministic algorithms. Note that using a uniform fractional assignment on
other sequences of jobs such as the one described in [21] does not suffice. For an analysis
of a deterministic algorithm on these sequences of jobs we would have T = Θ(logm), while
the algorithm’s makespan would be Ω(logm). Thus the resulting ratio would be constant.

3.6.2 Randomized Lower Bound

Applying Yao’s principle [152], we aim to give a distribution over instances such that any
deterministic algorithm A has a large makespan in expectation when compared to the

55

corresponding fractional makespan. Lemma 3.6.2 implies that for each algorithm A, there
exists an instance IA for which A has makespan at least Ω(logm/ log logm) factor bigger
than the corresponding value of T for the instance. We start by describing a distribution
for instances on m machines. Afterwards we boost this to a distribution for instances on
M := mk machines for some parameter k. We conclude the lower bound by analyzing the
resulting makespan in terms of M .

Distribution for instances on m machines

As hinted above, our distribution over instances on m machines will be uniform over all
possible instances described in Lemma 3.6.2. Fix integers λ, p and m such that λp = m.
In particular we use λ = logm and p = logm/ log logm as in Lemma 3.6.2. Let I be the
set of all instances of the form given by Lemma 3.6.2 with parameters λ, p and m. Then
our distribution over instances is uniform over I, i.e. for any instance I we set

Pr[send I] =

{
1/|I| if I ∈ I
0 otherwise

We now analyze this distribution and state some key properties it has.

Proposition 3.6.3. The set of instances I has the following properties:

1. |I| ≤ O
(
λO(p2λp)

)
2. |I| ≥ Ω(λΩ(pλp))

3. For every I ∈ I, the corresponding fractional makespan is 1/ log logm

4. For every deterministic algorithm A, there exists IA ∈ I such that A has makespan
at least logm/ log logm.

Proof. The last two points follow from Lemma 3.6.2, so we prove the first two points. To
bound the number of such instances we describe a process to generate an instance of I.
We start by choosing a set of λ machines from the set of m machines, then λ from the
remaining m− λ machines, and so on. Each set corresponds to unit size job with the set
of machines as its neighborhood. Afterwards, we choose of m/λ machines, one from each
set, and recurse on these machines. We count the number of ways to pick the initial set of
jobs as (

m

λ

)(
m− λ

λ

)
· · ·
(
m− (m/λ)λ

λ

)
=

m!

(λ!)m/λ

To see this equality note that corresponding terms in the numerators and denominators
cancel out, leaving just the first m! and a λ! for each binomial term. After picking these
jobs, there are λm/λ ways to choose the set of machines to recurse on since there are m/λ

56

sets of size λ and we choose one machine from each. Applying this idea recursively, we get
that

|I| =
p∏

ℓ=0

(m/λℓ)!

(λ!)m/λℓ λ
m/λℓ

At some loss, we upper bound this by taking the first term (since it’s the largest) in the
product above to the p’th power.

|I| ≤
(

m!

(λ!)m/λ
λm/λ

)p

We now use the fact that m = λp to express everything in terms of only λ and p.

|I| ≤
(

(λp)!

(λ!)λp−1 λ
λp−1

)p

Using Sterling’s approximation for factorial we have that (λp)! = O(λp(λp+1)) and λ! ≥
Ω(λλ). Now combining these two inequalities we have that

|I| ≤ O
(
λO(p2λp)

)
Now to get the lower bound we look at the first term in the product above and substitute
m = λp.

|I| ≥ m!

(λ!)m/λ
λm/λ =

(λp)!

(λ!)λp−1 λ
λp−1

Again using Sterling’s approximation for factorial we have (λp)! = Ω(λpλp
) and λ! =

O(λλ+1). Combining these yields

|I| ≥ Ω(λΩ(pλp))

completing the proof.

The above proposition implies that for any deterministic algorithm A, the probability
that A incurs makespan at least Ω(logm/ log logm) is 1/|I| ≥ Ω(1/λO(p2λp))

Boosting the Distribution

Since the above distribution on m machines has a low probability of incurring a high
makespan on some deterministic algorithm A, we need to boost this in order to conclude
our lower bound. Let k := |I| and set M := mk. We construct a distribution for instances
on M machines as follows. Partition the set of M machines into k groups of m machines
and on each group independently sample an instance from I.

Let I1, I2, . . . , Ik be the sampled instances on each group of machines. For any deter-
ministic algorithm A we have that group s has makespan logm/ log logm if Is = IA, which
happens with probability at least 1/k. Using this we can show the following lower bound
on the expected makespan of algorithm A.

57

Lemma 3.6.4. The expected makespan of any deterministic algorithm A on the above
distribution over instances on M machines is at least Ω(logm/ log logm).

Proof. Algorithm A has makespan Ω(logm/ log logm) if any group’s sampled instance is
equal to A’s bad instance, IA. This occurs with the following probability:

Pr[∨ks=1(Is = IA)] = 1− Pr[∧ks=1(Is ̸= IA)]

= 1−
k∏

s=1

(1− Pr[Is = Ik])

≥ 1− (1− 1/k)k

≥ 1− 1/e = Ω(1)

So A’s expected makespan is Ω(logm/ log logm).

Finally, we just need to conclude that log logM = O(logm) and log log logM =
Ω(log logm) to finish the proof of the lower bound.

Lemma 3.6.5. For M := mk, we have log log(M) = O(logm) and log log logM =
Ω(log logm)

Proof. Since k = O
(
λO(p2λp)

)
and m = λp, we have M = O

(
λO(p2λp)

)
as well. Thus we

have logM = O (p2λp log λ) and

log logM = O(log p+ p log λ+ log log λ) = O(p log λ).

Now using that p = logm/ log logm and λ = logm we have that log logM = O(logm).
Similarly, since k = Ω(λΩ(pλp)) and m = λp, we have M = mk = Ω(λΩ(pλp)). Thus we

have logM = Ω(pλp log λ) and log logM = Ω(log p+ p log λ+ log log λ). Thus we have

log log logM = Ω(log p) = Ω(log logm)

since p = logm/ log logm.

Finally, we see that Lemmas 3.6.2, 3.6.4, and 3.6.5 imply Theorem 3.6.1.

3.6.3 Learning the Weights

We show that machine weights for makespan minimization are learnable from data in
the following formal sense. There is an unknown distribution D over instances of the
problem. A sample S ∼ D consists of n jobs, where job j has size pj and neighborhood
N(j) ⊆ [m] of machines. For simplicity, we assume D =

∏n
j=1Dj, i.e. each job is sampled

independently from it’s own “private” distribution and that pj = 1 for all jobs. Later
we show how to generalize to different sizes. Let ALG(w, S) be the fractional makespan
on instance S with weights w. We want to show that we can find weights w given s
samples S1, S2, . . . , Ss from D such that ES∼D[ALG(w, S)] ≤ (1 +O(ϵ))E[OPT(S)] with

58

high probability (i.e. probability at least 1 − δ for δ > 0. Here OPT(S) is the optimal
(fractional) makespan on job set S. Note that such a result also implies that these weights w
also satisfy ES∼D[ALG(w, S)] ≤ (1 +O(ϵ))minw′ ES∼D[ALG(w′, S)] with high probability,
i.e. they are comparable to the best set of weights for the distribution D. Ideally, we want
s = poly(m, 1

ϵ
, 1
δ
) number of samples, and lower is better.

Preliminary Results on Proportional Weights

We need the following prior results about the weights. Recall that given a set of jobs S
and weights w ∈ Rm

+ we consider the following fractional assignment rule for job j and
i ∈ N(j).

xij(w) :=
wi∑

i′∈N(j) wi′
(3.8)

For ease of notation we assume that xij = 0 whenever i /∈ N(j). We would like to find
weights w such that xij(w) approximately solves the following LP.

maximize
∑
i

∑
j

xij∑
j

xij ≤ Ti ∀i ∈ [m]∑
i

xij ≤ 1 ∀j ∈ S

x ≥ 0

(3.9)

Here, the right hand side values Ti are inputs and can be thought as all being set to
the optimal makespan. Given an assignment via the weights xij(w) via weights w, we can
always convert it to a feasible solution to LP (3.9) in the following way. For all i ∈ [m] let
Oi = max{

∑
j xij(w)/Ti, 1}. It is easy to see that x′ is feasible for LP (3.9) and that the

amount lost is exactly the overallocation
∑

i max{
∑

j xij(w)− Ti, 0}. We can then take
x′
ij = xij(w)/Oi for all i, j. The following theorem is adapted from Agrawal et al.

Theorem 3.6.6 (Theorem 1 in Agrawal et al.). For any δ ∈ (0, 1), there exists an
algorithm which finds weights w such that a downscaling of xij(w) is a 1− δ-approximation
to LP (3.9). The algorithm operates in R = O(1

δ2
log(m/δ)) iterations and produces weights

of the form wi = (1 + ϵ)k for k ∈ [0, R].

Using this theorem, we get the following result as simple corollary. Again let S be set
of n jobs that we want to schedule on m machines to minimize the makespan. Let T be
the makespan of an optimal schedule

Corollary 3.6.7. For any ϵ > 0, there exists weights w ∈ Rm
+ such that xij(w) yields a

fractional schedule with makespan at most (1 + ϵ)T . The weights are computed by running
for R = O(m2 log(m/ϵ)/ϵ2 iterations and produces weights of the form wi = (1 + ϵ)k for
k ∈ [0, R].

59

Proof. Consider running the algorithm of Theorem 3.6.6 with δ = ϵ/m and Ti = T for all
i. The optimal value of (3.9) on this instance is exactly n since T is the optimal makespan
and thus we are able to assign all the jobs. After scaling down to be feasible, the solution
has value at least (1− ϵ/m)n. We only scaled down the assignment on machines for which
its assignment was greater than T , and the amount we lost in this scaling down was at
most ϵn/m. Thus in the worst case, any machines assignment using the weights is at most
T + ϵn/m ≤ (1 + ϵ)T , since T ≥ n/m.

Learning the Weights by Stacking

Our learning algorithm will be to compute weights on a “stacked” instance, that is we will
aggregate all of the instances together into a single large instance. Our goal for this section
will be to show that this is a reasonable thing to do. Let’s set up some more notation.
Let W(R) be the set of possible weights output by R iterations of the proportional
algorithm. Let OPT(S) be the optimal fractional makespan on job set S. We are
interested in the case when ES∼D[OPT(S)] = Ω(logm). Let Li(w, S) be the fractional load
of machine i on instance S with weights w. Thus we have ALG(w, S) = maxi Li(w, S).
Note that Li(w, S) =

∑
j∈S xij(w). Our first lemma shows that ES∼D[ALG(w, S)] ≈

maxi ES∼D[Li(w, S)]. When it is clear, we will suppress S ∼ D for ease of notation.

Lemma 3.6.8. Let ϵ > 0 be given. If ES∼D[OPT(S)] ≥ 4+2ϵ
ϵ2

log(m√
ϵ
), then for all R and

all weights w ∈ W(R), we have ES∼D[ALG(w, S)] ≤ (1 + 2ϵ)maxi ES∼D[Li(w, S)].

Proof. Fix any R and w ∈ W(R). We have the following simply bound on ALG(w, S). It
can either be at most (1 + ϵ)maxi E[Li(w, S)], or it is larger in which case it is at most n.
Thus we have:

E[ALG(w, S)] ≤(1 + ϵ)max
i

E[Li(w, S)]

+ nPr[ALG(w, S) > (1 + ϵ)max
i

E[Li(w, S)]]

≤(1 + ϵ)max
i

E[Li(w, S)] + n
∑
i

Pr[Li(w, S) ≥ (1 + ϵ)E[Li(w, S)]]

Now we claim that for each i, Pr[Li(w, S) ≥ (1 + ϵ)E[Li(w, S)]] ≤ ϵ/m2. Indeed, if this is
the case then we see that

E[ALG(w, S)] ≤ (1 + ϵ)max
i

E[Li(w, S)] +
ϵn

m
≤ (1 + 2ϵ)max

i
E[Li(w, S)]

since maxi E[Li(w, S)] ≥ n/m, and thus proving the lemma. Thus we just need to show
the claim. Recall that Li(w, S) =

∑
j∈S xij(w) and that each job j is chosen to be part of S

independently from distribution Dj . Thus xij(w) is an independent random variable in the
interval [0, 1] for each j. Applying Theorem 3.2.1 to Li(w, S) with µ = maxi′ E[Li′(w, S)],
we see that since µ ≥ E[OPT(S)] ≥ 4+2ϵ

ϵ2
log(m√

ϵ
), we have

Pr[Li(w, S) > (1 + ϵ)µ] ≤ exp

(
− ϵ2

2 + ϵ
µ

)
≤ exp

(
− ϵ2

2 + ϵ
E[OPT(S)]

)
≤ ϵ

m2

completing the proof of the claim.

60

Now that we have this lemma, we can show that computing the weights on a “stacked”
instance suffices to find weights that generalize for the distribution. The result we want to
prove is the following.

Theorem 3.6.9. Let ϵ, δ ∈ (0, 1) and R = O(m
2

ϵ2
log(m

ϵ
)) be given and let D =

∏n
j=1Dj be

a distribution over n-job restricted assignment instances such that ES∼D[OPT(S)] ≥
Ω(1

ϵ2
log(m

ϵ
)). There exists an algorithm which finds weights w ∈ W(R) such that

ES∼D[ALG(w, S)] ≤ (1 + O(ϵ))minw′∈W(R) ES∼D[ALG(w′, S)] when given access to s =
poly(m, 1

ϵ
, 1
δ
) independent samples S1, S2, . . . , Ss ∼ D. The algorithm succeeds with proba-

bility at least 1−O(δ) over the random choice of samples.

We will show that uniform convergence occurs when we take s = poly(m, 1
ϵ
, 1
δ
) samples.

This means that for all i ∈ [m] and all w ∈ W(R) simultaneously, we have with probability
1− δ that 1

s

∑
α Li(w, Sα) ≈ ES[Li(w, S)]. Intuitively this should happen because the class

of weights W(R) is not too complex. Indeed we have that |W(R)| = Rm, and thus the
pseudo-dimension is log(|W(R)|) = m log(R) = O(m logm) when R = O(m2 logm). Once
we have established uniform convergence, setting up the algorithm and analyzing it will
be quite simple. We start with some lemmas showing uniform convergence.

Lemma 3.6.10. Let ϵ, δ ∈ (0, 1) and S1, S2, . . . , Ss ∼ D be independent samples. If

s ≥ m2

ϵ2
log(2|W(R)|m

δ
), then with probability at least 1− δ for all i ∈ [m] and w ∈ W(R) we

have ∣∣∣∣∣1s∑
α

Li(w, Sα)− ES[Li(w, S)]

∣∣∣∣∣ ≤ ϵmax
i′

ES[Li′(w, S)]

Proof. Fix a machine i ∈ [m] and w ∈ W(R). We have that 1
s
Li(w, Sα) is an independent

random variable in [0, n/s] for each α ∈ [s]. Moreover we have that E[1
s

∑
α Li(w, Sα)] =

E[Li(w, S)]. Applying Theorem 3.2.4 to 1
s

∑
α Li(w, Sα) with t = ϵmaxi′ E[Li′(w, S), we

have

Pr

[∣∣∣∣∣1s∑
α

Li(w, Sα)− E[Li(w, S)]

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−sϵ

2(maxi′ E[Li′(w, S)])
2

n2

)
.

We claim that if s ≥ m2

ϵ2
log(2|W(R)|m

δ
), then this probability is at most δ

|W(R)|m . Indeed, this

claim follows if m ≥ n
maxi′ E[Li′ (w,S)]

, which is true since maxi′ E[Li′(w, S)] ≥ n/m. Finally,

the lemma follows by union bounding over all i ∈ [m] and w ∈ W(R).

Lemma 3.6.11. Let ϵ, δ ∈ (0, 1) and S1, S2, . . . , Ss ∼ D be independent samples. For each
α ∈ [s] let Tα = OPT(Sα). If s ≥ m2

ϵ2
log(2/δ) then with probability at least 1− δ we have

(1− ϵ)E[OPT(S)] ≤ 1

s

∑
α

Tα ≤ (1 + ϵ)E[OPT(S)]

61

Proof. For each α ∈ [s] we have 1
s
Tα is an independent random variable in [0, n/s].

Moreover, we have E[1
s

∑
α Tα] = E[OPT(S)]. Applying Theorem 3.2.4 to 1

s

∑
α Tα we

have

Pr

[
|1
s

∑
α

Tα − E[OPT(S)]| ≥ ϵE[OPT(S)]

]
≤ 2 exp

(
−sϵ

2E[OPT(S)]2

n2

)
.

Now since E[OPT(S)] ≥ n/m we have this probability is at most 2 exp(−sϵ2/m2). Thus
whenever s ≥ m2

ϵ2
log(2/δ), this probability becomes at most δ, completing the proof.

Analyzing the Learning Algorithm

We can now formally describe and analyze the algorithm. Set R = O(m
2

ϵ2
log(m/ϵ). We

sample independent instances S1, S2, . . . , Ss ∼ D for s ≥ m2

ϵ2
log(2|W(R)|m

δ
) Next we set up

a stacked instance consisting of all the jobs in these samples. Next we set Tα = OPT(Sα)
and T =

∑
α Tα. We run the algorithm of Corollary 3.6.7 on the stacked instance with

right hand side bounds Ti = T for all i. The algorithm should run for R rounds and
produce weights w ∈ W(R) such that

∑
α Li(w, Sα) ≤ (1 + ϵ)T for all i. We can now

prove Theorem 3.6.9.

Proof of Theorem 3.6.9. Let w ∈ W(R) be the weights output by the algorithm above.
Now for a new randomly sampled instance S ∼ D, by Lemma 3.6.8 we have that

E[ALG(w, S)] ≤ (1 + 2ϵ)max
i

E[Li(w, S)].

By Lemma 3.6.10, we have maxi E[Li(w, S)] ≤ (1+O(ϵ))maxi
1
s

∑
α Li(w, Sα) with proba-

bility at least 1− δ. By construction of our algorithm, we have
∑

α Li(w, Sα) ≤ (1+ ϵ)T =
(1 + ϵ)

∑
α Tα for all i. It thus follows that maxi E[Li(w, S)] ≤ (1 + O(ϵ))1

s

∑
α Tα with

probability at least 1−δ. Next we have that 1
s

∑
α Tα ≤ (1+ ϵ)E[OPT(S)] with probability

at least 1 − δ. Finally, with probability at least 1 − 2δ, by chaining these inequalities
together we get

E[ALG(w, S)] ≤ (1 +O(ϵ))E[OPT(S)] ≤ (1 +O(ϵ))E[ALG(w∗, S)]

where w∗ = argminw′∈W(R) E[ALG(w∗, S)]. Since R = O(m
2

ϵ2
log(m

ϵ
)), we have that

log(|W(R)|) = m log(R) = O(m log(m/ϵ)). Thus we can take s = poly(m, 1
ϵ
, 1
δ
) to

get the result. This completes the proof.

Handling Different Sizes

Now we give a sketch of how to handle the case when each job has an integer size pj > 0.
For this we need a slightly different version of Theorem 3.6.6 and Corollary 3.6.7. Consider
the following variant of LP 3.9:

62

maximize
∑
j

pj
∑
i

xij∑
j

pjxij ≤ Ti ∀i ∈ [m]∑
i

xij ≤ 1 ∀j ∈ S

x ≥ 0

(3.10)

Again we simplify notation and assume xij = 0 whenever i /∈ N(j). The following is a
corollary of Theorem 3.6.6. Let T be the optimal makespan for a set of jobs

Corollary 3.6.12. For any ϵ > 0, there exists weights w ∈ Rm
+ such that xij(w) yields a

fractional schedule with makespan at most (1 + ϵ)T . The weights are computed by running
a variant of the algorithm of Theorem 3.6.6 for R = O(m2 log(m/ϵ)/ϵ2 iterations and
produces weights of the form wi = (1 + ϵ)k for k ∈ [−R,R].

Proof. Consider creating pj unit-sized copies of each job j. Note that this only needs to be
done conceptually. It is easy to see that writing down LP 3.9 for this conceptual instance
is a relaxation of LP 3.10. Consider running the Algorithm of Theorem 3.6.6 with δ = ϵ/m,
Ti = T for all i ∈ [m] and for R = O(1

δ2
log(fracmδ) iterations. Note that since T is the

optimal makespan, there exists a solution with value
∑

j pj. Thus since the algorithm
returns a (1− δ)-approximation, we get a solution with value at least (1− δ)

∑
j pj. The

amount that we lose in the objective is exactly the total amount over-allocated in the
solution given by the weights. Thus for all i, since T ≥

∑
j pj/m. we have

∑
j

pjxij(w) ≤ T + δ
∑
j

pj = T + ϵ

∑
j pj

m
≤ (1 + ϵ)T.

Our learning algorithm will be the same as before, just the jobs will now have sizes. We
go through each lemma above and prove an analogous version for when there are job sizes.
For a job set S and weights w ∈ W(R) let Li(w, S) =

∑
j pjxij(w). Let pmax = maxj pj

be the maximum job size. For this case our assumption becomes ES∼D[OPT(S)] ≥
4+2ϵ
ϵ2

pmax log(
m√
ϵ
).

Lemma 3.6.13. Let ϵ > 0 be given. If ES∼D[OPT(S)] ≥ 4+2ϵ
ϵ2

pmax log(
m√
ϵ
), then for all R

and all weights w ∈ W(R), we have ES∼D[ALG(w, S)] ≤ (1 + 2ϵ)maxi ES∼D[Li(w, S)].

Proof. Fix any R and w ∈ W(R). We have the following simply bound on ALG(w, S). It
can either be at most (1 + ϵ)maxi E[Li(w, S)], or it is larger in which case it is at most

63

∑
j pj. Thus we have:

E[ALG(w, S)] ≤(1 + ϵ)max
i

E[Li(w, S)]

+
∑
j

pj Pr[ALG(w, S) > (1 + ϵ)max
i

E[Li(w, S)]]

≤(1 + ϵ)max
i

E[Li(w, S)] +
∑
j

pj
∑
i

Pr[Li(w, S) ≥ (1 + ϵ)E[Li(w, S)]]

Now we claim that for each i, Pr[Li(w, S) ≥ (1 + ϵ)E[Li(w, S)]] ≤ ϵ/m2. Indeed, if this is
the case then we see that

E[ALG(w, S)] ≤ (1 + ϵ)max
i

E[Li(w, S)] +
ϵ
∑

j pj

m
≤ (1 + 2ϵ)max

i
E[Li(w, S)]

since maxi E[Li(w, S)] ≥
∑

j pj/m, and thus proving the lemma. Thus we just need to
show the claim. Recall that Li(w, S) =

∑
j∈S pjxij(w) and that each job j is chosen to be

part of S independently from distribution Dj. Thus pjxij(w) is an independent random
variable in the interval [0, pmax] for each j. Applying Theorem 3.2.1 to Li(w, S)/pmax with
µ = maxi′ E[Li′(w, S)]/pmax, we see that since µ ≥ E[OPT(S)]/pmax ≥ 4+2ϵ

ϵ2
log(m√

ϵ
), we

have

Pr

[
Li(w, S)

pmax

> (1 + ϵ)µ

]
≤ exp

(
− ϵ2

2 + ϵ
µ

)
≤ exp

(
− ϵ2

2 + ϵ
E[OPT(S)]

)
≤ ϵ

m2

which implies the claim.

Modifying the remaining lemmas is simple. We can do this by replacing most instances
of n in the proofs with

∑
j pj.

3.7 Existence of Weights for a Near Optimal Frac-

tional Assignment

We first establish that perhaps surprisingly there exists weights that result in a near
optimal fractional assignment using the rule described in (3.1). We build on the recent
work of Agrawal et al [5] which shows the existence of such weights for a related problem,
and an efficient algorithm to construct the weights given an offline instance. We build
upon this work for our objective of makespan minimization on unrelated machines. Their
work is concerned with finding approximate solutions to the maximum cardinality bipartite
b-matching problem, which is described below in (3.11).

64

max
n∑

j=1

∑
i∈N(j)

xij

s.t.
∑

j∈N(i)

xij ≤ Ti ∀i ∈ [m]∑
i∈N(j)

xij ≤ 1 ∀j ∈ [n]

x ≥ 0

(3.11)

We will refer to the first set of constraints as the makespan constraints. Agrawal
et al show that there exist weights w such that the proportional assignment xij(w) is a
(1− δ)-approximation to the above problem for any δ ∈ (0, 1). This is stated formally in
the following theorem.

Theorem 3.7.1 (Theorem 1 in [5]). For any constant δ ∈ (0, 1) there exists an algorithm
that computes weights w ∈ Rm

+ such that an appropriately scaled down allocation given by
(3.1) is feasible and a (1−δ)-approximation for (3.11). The algorithm runs in poly(n,m, 1

δ
)

time.

Unfortunately, we cannot use this theorem to directly infer the existence of good
weights for our problem. First, the above problem only captures the case of restricted
assignment with unit size jobs, rather than more general sizes (although this will be
easy to fix). Second, the theorem implicitly reduces the assignment of some jobs so
that the constraint

∑
i∈N(j) xij ≤ 1 is no longer tight, despite the fact that assigning via

equation (3.1) maintains that this constraint is tight. This reduction is done to ensure
strict feasibility for the matching problem, but causes issues for the makespan objective.
Indeed, a key difference between the two problems is that for makespan minimization, all
jobs must be assigned. Whereas, for approximate b-matchings some jobs that are difficult
to assign can be dropped.

Consider the following modified problem that accounts for job sizes. We will consider
the case where Ti := T for all i ∈ [m], since this corresponds to our makespan minimization
problem.

max
n∑

j=1

∑
i∈N(j)

xij

s.t.
∑

j∈N(i)

pjxij ≤ T ∀i ∈ [m]∑
i∈N(j)

xij ≤ 1 ∀j ∈ [n]

x ≥ 0

(3.12)

We extend the algorithm and analysis of Agrawal et al to this problem. Note that the
objective is maximizing the number of assigned jobs and that the objective is n if all jobs
can be feasibly assigned. Algorithm 9 describes the procedure for constructing the weights
w and is a modification of the algorithm in [5]. The overall procedure is similar to the

65

Multiplicative Weights Update method [17]. This algorithm takes a parameter ϵ ∈ (0, 1)
as input. The algorithm starts by initializing all wi to 1, then it updates the weights in
successive rounds. In each round we compute the fractional load of each machine, Li. If
Li greatly violates its makespan constraint, then we should decrease wi. Similarly, if Li

is very slack for its makespan constraint then wi should be increased. The increases and
decreases are done in small amounts by multiplying or dividing by 1 + ϵ. Taking ϵ = δ/5
suffices to yield Theorem 3.7.1 as shown in [5].

Algorithm 9 Proportional Allocation Algorithm

1: Input: ϵ ∈ (0, 1), R ∈ Z+, sets N(i), N(j) for each i, j, makespan bound T
2: for i = 1, . . . ,m do
3: wi ← 1 ▷ Initialization
4: end for
5: for r = 1, . . . , R do
6: for i = 1, . . . ,m do
7: for j ∈ N(i) do
8: Compute xij(w) as in (3.1)
9: end for

10: Compute Li =
∑

j∈N(i) pjxij

11: if Li ≥ (1 + ϵ)T then ▷ Over-allocation
12: w′

i ← wi/(1 + ϵ)
13: else if Li ≤ T/(1 + ϵ) then ▷ Under-allocation
14: w′

i ← (1 + ϵ)wi

15: end if
16: end for
17: w ← w′

18: end for

Theorem 3.7.2. Consider an instance of (3.12) in which there exists an assignment that
fully assigns all jobs and satisfies all makespan constraints. Let n′ =

∑
j pj. Then the

fractional makespan of the assignment output by Algorithm 9 with ϵ = δ
5
= c

5m
is at most

(1 + c)T for any c > 0.

Proof. We start by noting that we can reduce the restricted assignment problem with job
sizes to the unit size case in the following way. For each job j with size pj, release pj
unit size jobs all with neighborhood N(j). Any solution to (3.11) on the reduced instance
translates to a solution to (3.12), in particular the solution generated by the machine
weights translates between the problems. Under the assumption that pj ≤ poly(m,n)
this reduction can be done in polynomial time. We note that the number of jobs in this
reduced instance is n′ =

∑n
j=1 pj.

Let OPT be the value of an optimal solution to (3.1) on the reduced instance. Since
there is a way to assign all jobs and satisfy the makespan constraints, we have that
OPT = n′. Note that at the end of the algorithm if we assign the variables xij using (3.1)

66

the objective value is n′ since every job is fully allocated. Now from Theorem 3.7.1 we
know that the solution after scaling down has value at least (1− δ)OPT = (1− δ)n′. The
scaling down only occurs on machines for which the makespan constraint is violated. Thus
the amount we lost in the objective after scaling is equal to the total amount we have
over-assigned the machines. The amount lost is at most δn′, so the total over-assignment
across all machines is at most δn′. In the worst case, this over-assignment occurs on a
single machine. Thus our choice of δ guarantees that the assignment on each machine
(before scaling down) is at most

T + δn′ = T +
cn′

m
≤ (1 + c)T.

The last inequality follows from the fact that there exists a feasible assignment with
makespan T and the pigeonhole principle, so we have that n′

m
≤ T .

This establishes that for any offline instance of our problem, there exists w ∈ Rm
+ such

that the allocation given by (3.1) completely assigns all jobs and is a (1+ c)-approximation
for the makespan for any c > 0.

3.8 Proof of Rounding Theorem

In this section we combine the results of the analysis in Section 3.5 to conclude Theo-
rem 3.5.1. We recall the statement of this result here.

Theorem 3.8.1 (Theorem 3.5.1 restated). Let x be a fractional assignment of restricted
assignment jobs that is received online and let T be the fractional makespan of x, i.e.
T := maxi

∑
j∈N(i) pjxij. There exists a randomized online algorithm that rounds a

fractional assignment to an integer assignment such that the resulting makespan is at most
O((log logm)3T) with high probability.

Proof. The result mostly follows from the lemmas in Section 3.5. The worst case for
our algorithm is due to the large jobs with large support. In our algorithm there are
O(log logm) classes of large jobs by Lemma 3.5.2. Within a fixed class of large jobs
there are O(log logm) classes of large support jobs by Lemma 3.5.3. Finally, rounding a
fixed class of large support jobs loses can be done with makespan O((log logm)T) due to
Lemma 3.5.10. The other cases of our algorithm lose fewer factors of log logm, and all
cases of our algorithm succeed with high probability. Combining these losses we see that
the makespan is at most O((log logm)3T) with high probability.

3.9 Removing Knowledge of T

Throughout this chapter, we described our algorithms and results as if we knew the optimal
makespan T . We now show how to remove this assumption.

We use the following claim which states that we can combine k fractional solutions
into a single fractional solution online while remaining O(log k)-competitive against the
best single fractional solution.

67

Claim 3.9.1. Suppose that in addition to receiving each job j online, we also receive k
fractional solutions {xs

ij}i∈[m],s∈[k] which suggest how to assign job j. There is an online
algorithm with fractional makespan at most O(log k) · (mins∈[k] maxi∈[m] pijx

s
ij)

We defer proving this claim here, but note that it is similar to results that have
appeared before in the literature, e.g. that of Azar et al. [19].

Lemma 3.9.2. There exists a fractional online algorithm using weight predictions which is
O(log log log(m) log(η))-competitive which does not need to know the value of the optimal
makespan T .

Proof. The main idea is as follows. We apply the algorithm from Theorem 3.3.3 with
k = O(log logm) different guesses of T at once in parallel. We do this because we do not
know the exact value of the error η, and we do not know the correct makespan T . This
will produce k different fractional solutions, where ideally at least one of which will be
O(log η)-competitive. Then we can apply Claim 3.9.1 to conclude the lemma.

For each s ∈ [k], where k = Θ(log logm), let Ts be the guess of T in the s’th parallel copy
of our fractional algorithm which knows T i.e. copy s runs the algorithm from Theorem 3.3.3
with value Ts. We will always maintain that Ts+1 = 2Ts for s = 2, 3, . . . , k − 1. We will
start with T1 = 1, and double the value of T1 whenever the optimal makespan of the jobs
seen so far increases by a constant factor. Updating T1 causes us to update the other
values of Ts by the logic above. Additionally, whenever we update the Ts values we reset
each algorithm and simulate it on the already seen jobs with its new value of Ts. This
incurs only a constant factor loss to the makespan of each copy. As discussed above, we
just need to show that there always exists some parallel copy of our algorithm which is
O(log η)-competitive in order to conclude the lemma.

There are two cases. In the first case we have that Ts ≤ T/ log(m) for some s ∈ [k]. In
this case, we use the fact that the fractional algorithm from Theorem 3.3.3 will not be worse
than O(logm)Ts = O(T) = O(log(η)T). In the other case, we have that for all s ∈ [k],
T/ log(m) < Ts ≤ T . Since we spread the Ts values out in powers of 2, and there are
Θ(log log(m)) = Θ(k) powers of 2 in this interval, we conclude that some Ts = Θ(T). Thus
by Theorem 3.3.3, there is a parallel copy of our algorithm with makespan O(log(η)T).

Lemma 3.9.3. There exists an online rounding algorithm using predictions yielding the
same competitiveness as the algorithm guaranteed by Theorem 3.5.1 that does not need to
know the optimal makespan T ∗ and succeeds with high probability.

Proof. We consider running our algorithm with varying guesses of T . A run of the
algorithm consists of starting with zero load on all machines and then assigning jobs while
the makespan in this run is at most cT , where c = O(poly(log logm)) is the competitive
ratio guaranteed by our algorithm. The run ends if an assignment would cause the
makespan to go above cT . This event can be caused by at most three other events, (1)
the random assignment of our algorithm failed with low probability, (2) the guess of T
was wrong, or (3) the learned weights were wrong. Since bad random assignments happen
with very low probability, we assume that this is not the case and in the end we union

68

bound over all runs to conclude that we succeed with high probability. Thus we need to
decide if the failure was caused by a wrong guess of T or bad weights.

To decide this question, we recompute the near optimal weights using Algorithm 9
with T as a guess of the makespan on the input received so far. If Algorithm 9 terminates
with weights such that the resulting makespan is Ω(T), then the guess of the makespan
was wrong and we start a new run with T ← 2T . Otherwise we start a new run with the
same guess of T , and we use updated predictions of the weights.

The initial run starts with T = 1. Let Tf be the final guess of the makespan. Since
our algorithm succeeds with high probability once T ≥ T ∗, we have that Tf ≤ 2T ∗. Our
algorithm pays at most 2cT for each guess of T , since there might be one extra run where
the predictions were bad. Let g be the number of guesses of T . Thus in total our algorithm
incurs makespan at most

2cTf + cTf + cTf/2 + cTf/4 + . . .+ 2c

= 2cTf (1 + 1/2 + 1/4 + . . . 1/2g)

≤ 2cT ∗(1 + 1/2 + 1/4 + . . .)

= O(cT ∗)

Say that a run is bad if the random assignment given by our rounding algorithm fails. The
probability that a run is bad is at most 1/ poly(m). The number of runs is O(log(T ∗)) =
O(poly(m)), thus union bounding over all runs, we conclude that no run is bad with high
probability, and thus the makespan bound above is correct with high probability.

69

70

Chapter 4

Speeding up the Hungarian
Algorithm with Learned Duals

This chapter is based on “Faster Matchings via Learned Duals” [57], which appeared in
the proceedings of Neural Information Processing Systems 2021 as an oral presentation.
Collaborators on the project were Michael Dinitz, Sungjim Im, Benjamin Moseley, and
Sergei Vassilvitskii.

4.1 Introduction

Classical algorithm analysis considers worst case performance of algorithms, capturing
running times, approximation and competitive ratios, space complexities, and other notions
of performance. Recently there has been a renewed interest in finding formal ways to go
beyond worst case analysis [129], to better understand performance of algorithms observed
in practice, and develop new methods tailored to typical inputs observed.

An emerging line of research dovetails this with progress in machine learning, and
asks how algorithms can be augmented with machine-learned predictors to circumvent
worst case lower bounds when the predictions are good, and approximately match them
otherwise (see [116] for a survey). Naturally, a rich area of applications of this paradigm
has been in online algorithms, where the additional information revealed by the predictions
reduces the uncertainty about the future and can lead to better choices, and thus better
competitive ratios. For instance, see the work by [108, 128, 85] on caching; [15, 62] on the
classic secretary problem; [126, 100] on scheduling; [126, 11] on ski rental; and [31] on set
cover.

However, the power of predictions is not limited to improving online algorithms. Indeed,
the aim of the empirical paper that jump-started this area by [94] was to improve running
times for basic indexing problems. The main goal and contribution of this work is to show
that at least in one important setting (weighted bipartite matching), we can give formal
justification for using machine learned predictions to improve running times: there are
predictions which can provably be learned, and if these predictions are “good” then we
have running times that outperform standard methods both in theory and empirically.

71

How can predictions help with running time? One intuitive approach, which has been
used extensively in practice, is through the use of “warm-start” heuristics [151, 70, 71, 119],
where instead of starting with a blank slate, the algorithm begins with some starting
state (which we call a warm-start “solution” or “seed”) which hopefully allows for faster
completion. While it is a common technique, there is a dearth of analysis understanding
what constitutes a good warm-start, when such an initialization is helpful, and how they
can best be leveraged.

Thus we have a natural goal: put warm-start heuristics on firm theoretical footing by
interpreting the warm-start solution as learned predictions. In this set up we are given a
number of instances of the problem (the training set), and we can use them to compute a
warm-start solution that will (hopefully) allow us to more quickly compute the optimal
solution on future, test-time, instances. There are three challenges that we must address:

(i) Feasibility. The learned prediction (warm-start solution) might not even be feasible
for the specific instance we care about! For example, the learned solution may be
matching an edge that does not exist in the graph at testing time.

(ii) Optimization. If the warm-start solution is feasible and near-optimal then we want
the algorithm to take advantage of it. In other words, we would like our running
time to be a function of the quality of the learned solution.

(iii) Learnability. It is easy to design predictions that are enormously helpful but
which cannot actually be learned (e.g., the “prediction” is the optimal solution). We
need to ensure that a typical solution learned from a few instances of the problem
generalizes well to new examples, and thus offers potential speedups.

If we can overcome these three challenges, we will have an end-to-end framework for
speeding up algorithms via learned predictions: use the solution to challenge (iii) to learn
the predictions from historical data, use the solution to challenge (i) to quickly turn the
prediction into something feasible for the particular problem instance while preserving
near-optimality, and then use this as a warm-start seed in the solution to challenge (ii).

4.1.1 Our Contributions

We focus on one of the fundamental primitives of combinatorial optimization: computing
bipartite matchings. For the bipartite minimum-weight perfect matching (MWPM)
problem, as well as its extension to b-matching, we show that the above three challenges
can be solved.

A key conceptual question is finding a specification of the seed, and an algorithm to
use it that satisfies the desiderata above. We have discussed warm-start “solutions”, so
it is tempting to think that a good seed is a partial solution: a set of matched edges
that can then be expanded to a optimal matching. After all, this is the structure we
maintain in most classical matching algorithms. Moreover, any such solution is feasible
(one can simply set non-existing edges to have very high weight), eschewing the need for
the feasibility step. At the same time, as has been observed previously in the context of

72

online matchings [54, 145], this primal solution is brittle, and a minor modification in the
instance (e.g. an addition of a single edge) can completely change the set of optimal edges.

Instead, following the work of [54, 145], we look at the dual problem; that is, the dual to
the natural linear program. We quantify the “quality” of a prediction ŷ by its ℓ1-distance
from the true optimal dual y∗, i.e., by ∥ŷ − y∗∥1. The smaller quantities correspond to
better predictions. Since the dual is a packing problem we must contend with feasibility:
we give a simple linear time algorithm that converts the prediction ŷ into a feasible dual
while increasing the ℓ1 distance by a factor of at most 3.

Next, we run the Hungarian method starting with the resulting feasible dual. Here, we
show that the running time is in proportional to the ℓ1 distance of the feasible dual to the
optimal dual (Theorem 4.3.11). Finally, we show via a pseudo-dimension argument that
not many samples are needed before the empirically optimal seed is a good approximation
of the true optimum (Theorem 4.3.12), and that this empirical optimum can be computed
efficiently (Theorem 4.3.21). For the learning argument, we assume that matching instances
are drawn from a fixed but unknown distribution D.

Putting it all together gives us our main result.

Theorem 4.1.1 (Informal). There are three algorithms (feasibility, optimization, learning)
with the following guarantees.

• Given a (possibly infeasible) dual ŷ from the learning algorithm, there exists an
O(m+ n) time algorithm that takes a problem instance c, and outputs a feasible dual
ŷ′(c) such that ∥ŷ′(c)− y∗(c)∥1 ≤ 3∥ŷ − y∗(c)∥1.

• The optimization algorithm takes as input feasible dual ŷ′(c) and outputs a minimum
weight perfect matching, and runs in time Õ(m

√
n ·min{∥ŷ′(c)− y∗(c)∥1,

√
n}).

• After Õ(C2n3) samples from an unknown distribution D over problem instances,
the learning algorithm produces duals ŷ so that Ec∼D [∥ŷ − y∗(c)∥1] is approximately
minimum among all possible choices of ŷ, where C is the maximum edge cost and
y∗(c) is an optimal dual for instance c.

Combining these gives a single algorithm that, with access to Õ(C2n3) problem in-
stance samples from D, has expected running time on future instances from D of only
Õ(m

√
nmin{α,

√
n}), where α = miny Ec∼D [∥y − y∗(c)∥1].

We emphasize that the Hungarian method with Õ(mn) running time is the standard
algorithm in practice. Although there are other theoretically faster exact algorithms for
bipartite minimum-weight perfect matching, such as those due to [123, 68, 66] and [60]
that run in time O(m

√
n log(nC)), they are relatively complex (using various scaling

techniques). Very recent breakthroughs based on interior point methods give algorithms
of run time Õ((m+ n1.5) log2(C)) for the minimum-weight perfect matching problem and
several interesting extensions [144, 143]. However, these breakthrough algorithms are
highly complicated and their practical performance is yet to be demonstrated.

Note that our result shows that we can speed up the Hungarian method as long as the
ℓ1-norm error of the learned dual, i.e., ∥ŷ − y∗(c)∥1 is o(

√
n). Further, as the projection

73

step that converts the learned dual into a feasible dual takes only linear time, the overhead
of our method is essentially negligible. Therefore, even if the prediction is of poor quality,
our method has worst-case running time that is never worse than that of the Hungarian
algorithm. Even our learning algorithm is simple, consisting of a straightforward empirical
risk minimization algorithm (the analysis is more complex and involves bounding the
“pseudo-dimension” of the loss functions).

We validate our theoretical results via experiments. For each dataset we first feed a
small number of samples (fewer than our theoretical bounds) to our learning algorithm.
We then compare the running time of our algorithm to that of the classical Hungarian
algorithm on new instances.

Details of these experiments can be found in Section 4.4. At a high level they show
that our algorithm is significantly faster in practice. Further, our experiment shows only
very few samples are needed to achieve a notable speed-up. This confirms the power of
our approach, giving a theoretically rigorous yet also practical method for warm-start
primal-dual algorithms.

4.1.2 Related Work

Matchings and b-Matchings: Bipartite matchings are one of the most well studied
problems in combinatorial optimization, with a long history of algorithmic improvements.
We refer the interested reader to [59] for an overview. We highlight some particular results
here. If edges have no weights and thus the goal is to find the maximum cardinality
matching (see Section 4.2 for a formal definition), the fastest running time had long
been O(m

√
n) [56, 91, 79] until the recent breakthrough with Õ(m+ n1.5) running time

was discovered [144]. We are interested in the weighted versions of these problems and
when all edge weights are integral. Let C be the maximum edge weight, n be the
number of vertices, and m the number of edges. For finding exact solutions to the
minimum weight perfect matching problem, the scaling technique leads to a running time
of O(m

√
n log(C)) [123, 68, 66, 60].

The minimum cost b-matching problem and its generalization, the minimum cost flow
problem, have also been extensively studied. See [121] for a summary of classical results.
More recently there has been improvements by applying interior point methods. The
algorithm of [52] has running time Õ(m3/2 log2(C)) and it is improved by the algorithm
of [104] which runs in time Õ(m

√
n logO(1)(C)). We note that the recent breakthrough

of van den Brand et al. [144] solves the minimum cost flow problem in time Õ((m +
n1.5)no(1) log2(BC)), where B is the maximum capacity and C is the maximum edge
weight.

Large scale bipartite matchings have been studied extensively in the online setting,
as they represent the basic problem in ad allocations [111]. While the ad allocation is
inherently online, most of the methods precompute a dual based solution based on a
sample of the input [54, 145], and then argue that this solution is approximately optimal
on the full instance. In contrast, we strive to compute the exactly optimal solution, but
use previous instances to improve the running time of the approach.

74

We refer the reader back to the introduction of this dissertation for an overview of
recent work on algorithms with predictions and data-driven algorithm design.

4.1.3 Roadmap

We begin with preliminaries and background in Section 4.2. We then present our main
theoretical results on min-cost perfect bipartite matching in Section 4.3. The experiments
are presented in Section 4.4. Finally, the extension to b-matching is presented in Section 4.5.

4.2 Preliminaries

Notation: Let G = (V,E) be an undirected graph. When G is bipartite we will use L
and R to refer to the two sides of the bipartition. We will let N(i) := {e ∈ E | i ∈ e}
be the set of edges adjacent to vertex i. Similarly if G is directed, then we use N+(i)
and N−(i) to be the set of edges leaving i and the set of edges entering i, respectively.
For a set S ⊆ V , let Γ(S) be the vertex neighborhood of S. For a vector y ∈ Rn, we let
∥y∥1 =

∑
i |yi| be its ℓ1-norm. Let ⟨x, y⟩ be the standard inner product on Rn.

Linear Programming and Complementary Slackness: Here we recall optimality
conditions for linear programming that are used to ensure the correctness of some algorithms
we present. Consider the primal-dual pair of linear programs below.

min c⊤x
Ax = b
x ≥ 0

(P)

max b⊤y
A⊤y ≤ c

(D)

A pair of solutions x, y for (P) and (D), respectively, satisfy complementary slackness if
x⊤(c− A⊤y) = 0. The following lemma is well-known.

Lemma 4.2.1. Let x be a feasible solution for (P) and y be a feasible solution for (D).
If the pair x, y satisfies complementary slackness, then x and y are optimal solutions for
their respective problems.

Maximum Cardinality Matching: Let G = (V,E) be a bipartite graph on n vertices
and m edges. A matching M ⊆ E is a collection of non-intersecting edges. The Hopcroft-
Karp algorithm for finding a matching maximizing |M | runs in time O(

√
n ·m) [79], which

is still state-of-the-art for general bipartite graphs. For moderately dense graphs, a recent
result by [144] gives a better running time of Õ(m+ n1.5) (where Õ hides polylogarithmic
factors).

Minimum Weight Perfect Matching (MWPM): Again, let G = (V,E) be a bipartite
graph on n vertices and m with costs c ∈ ZE

+ on the edges, and let C be the maximum
cost. A matching M is perfect if every vertex is matched by M . The objective of this
problem is to find a perfect matching M minimizing the cost c(M) :=

∑
e∈M ce.

75

When looking for optimal solutions we can assume that G is a complete graph by
adding all possible edges not in E with weight Cn2. It is easy to see that any o(n)
approximate solution would not use any of these edges.

Maximum Flow: Now let G = (V,E) be a directed graph on n vertices and m edges
with a capacity vector u ∈ RE

+. Let s and t be distinct vertices of G. An st-flow is a vector
f ∈ RE

+ satisfying
∑

e∈N+(i) fe −
∑

e∈N−(i) fe = 0 for all vertices i ̸= s, t. An st-flow f is

maximum if it maximizes
∑

e∈N+(s) fe =
∑

e∈N−(t) fe. The algorithm due to Orlin [122]

and King, Rao, and Tarjan [92] runs in time O(nm).

4.3 Faster Min-Weight Perfect Matching

In this section we describe how predictions can be used to speed up the bipartite Minimum
Weight Perfect Matching (MWPM) problem.

The MWPM problem can be modeled by the following linear program and its dual –
the primal-dual view will be very useful for our algorithm and analysis. We will sometimes
refer to a set of dual variables y as dual prices. Both LPs are well-known to be integral,
implying that there always exist integral optimal solutions.

min
∑
e∈E

cexe∑
e∈N(i)

xe = 1 ∀i ∈ V

xe ≥ 0 ∀e ∈ E

(MWPM-P)

max
∑
i∈V

yi

yi + yj ≤ ce ∀e = ij ∈ E
(MWPM-D)

Suppose we are given a prediction ŷ of a dual solution. If ŷ is feasible, then by
complementary slackness we can check if ŷ represents an optimal dual solution by running
a maximum cardinality matching algorithm on the graph G′ = (V,E ′), where E ′ = {e =
ij ∈ E | ŷi + ŷj = cij} is the set of tight edges. If this matching is perfect, then its
incidence vector x satisfies complementary slackness with ŷ and thus represents an optimal
solution by Lemma 4.2.1.

We now consider the problem from another angle, factoring in learning aspects. Suppose
the graph G = (V,E) is fixed but the edge cost vector c ∈ ZE

+ varies (is drawn from some
distribution D). If we are given an optimal dual y∗ as a prediction, then we can solve
the problem by solving the max cardinality matching problem only once. However, the
optimal dual can significantly change depending on edge cost c. Nevertheless, we will show
how to learn “good” dual values and use them later to solve new MWPM instances faster.
Specifically, we seek to design an end-to-end algorithm addressing all the aforementioned
challenges:

76

1. Feasiblity (Section 4.3.1). The learned dual ŷ may not be feasible for MWPM-D
with some specific cost vector c. We show how to quickly convert it to a feasible
dual ŷ′(c) by appropriately decreasing the dual values (the more we decrease them,
the further we move away from the optimum). Finding the feasible dual minimizing
∥ŷ − ŷ′(c)∥1 turns out to be a variant of the vertex cover problem, for which we
give a simple 2-approximation running in O(m + n) time. As a result, we have
∥ŷ′(c)− y∗(c)∥1 ≤ 3∥ŷ − y∗(c)∥1. See Theorem 4.3.5.

2. Optimization (Section 4.3.2). Now that we have a feasible solution ŷ′(c), we want
to find an optimal solution starting with ŷ′(c) in time that depends on the quality
of ŷ′(c). Fortunately, the Hungarian algorithm can be seeded with any feasible
dual, so we can “warm-start” it with ŷ′(c). We show that its running time will be
proportional to |∥ŷ′(c)∥1 − ∥y∗(c)∥1| ≤ ∥ŷ′(c) − y∗(c)∥1.See Theorem 4.3.11. Our
analysis does not depend on the details of the Hungarian algorithm, and so applies
to a broader class of primal-dual algorithms.

3. Learnability (Section 4.3.3). The target dual we seek to learn is given by
argminy Ec∼D∥y − y∗(c)∥; here y∗(c) is the optimal dual for MWPM-D with cost
vector c. We show we can efficiently learn ŷ that is arbitrarily close to the target
vector after Õ(C2n3) samples from D. See Theorem 4.3.12.

Combining all of these gives the following, which is a more formal version of Theo-
rem 4.1.1. Let D be an arbitrary distribution over edge costs where every vector in the
support of D has maximum cost C. For any edge cost vector c, let y∗(c) denote the optimal
dual solution.

Theorem 4.3.1. For any p, ϵ > 0, there is an algorithm which:

• After O
((

nC
ϵ

)2
(n log n+ log(1/p))

)
samples from D, returns dual values ŷ such

that Ec∼D[∥ŷ − y∗(c)∥1] ≤ min
y

Ec∼D[∥y − y∗(c)∥1] + ϵ with probability at least 1− p.

• Using the learned dual ŷ, given edge costs c, computes a min-cost perfect matching
in time O (m

√
n ·min{∥ŷ − y∗(c)∥1,

√
n}).

In the rest of this section we detail our proof of this Theorem.

4.3.1 Recovering a Feasible Dual Solution (Feasibility)

Let ŷ be an infeasible set of (integral) dual prices – this should be thought of as the
“good” dual obtained by our learning algorithm. Our goal in this section is to find a new
feasible dual solution ŷ′(c) that is close to ŷ, for a given MWPM-D instance with cost c. In
particular we seek to find the closest feasible dual under the ℓ1 norm, i.e. one minimizing
∥ŷ′(c)− ŷ∥1.

Looking at (MWPM-D), it is clear that we need to decrease the given dual values ŷ
in order to make it feasible. More formally, we are looking for a vector of non-negative
perturbations δ such that ŷ′ := ŷ − δ is feasible. We model finding the best set of

77

perturbations, in terms of preserving ŷ’s dual objective value, as a linear program. Let
F := {e = ij ∈ E | ŷi + ŷj > cij} be the set of dual infeasible edges under ŷ. Define
re := ŷi + ŷj − ce for each edge e = ij ∈ F . Asserting that ŷ − δ is feasible for (MWPM-
D) while minimizing the amount lost in the dual objective leads to the following linear
program:

min
∑
i∈V

δi

δi + δj ≥ rij ∀ij ∈ F
δi ≥ 0 ∀i ∈ V

(4.1)

Note that this is a variant of the vertex cover problem—the problem becomes exactly
the vertex cover problem if rij = 1 for all edges ij. We could directly solve this linear
program, but we are interested in making this step efficient. To find a fast approximation
for (4.1), we take a simple greedy approach.

Algorithm 10 Fast Approx. for Distance to Feasibility

1: procedure FastApprox(G = (V,E), r)
2: ∀i ∈ V , δi ← 0
3: while E ̸= ∅ do
4: Let i be an arbitrary vertex of G
5: while i has a neighbor do
6: j ← argmaxj′∈N(i) rij′
7: δi ← rij
8: γij = 1/2 ▷ γij is only used for analysis
9: Delete i and all its edges from G
10: i← j
11: end while
12: end while
13: Return δ
14: end procedure

Algorithm 10 is a modification of the algorithm of [58] which walks through the graph
setting δi appropriately at each step to satisfy the covering constraints in (4.1). The
analysis is based on interpreting the algorithm through the lens of primal-dual—the dual
of (4.1) turns out to be a maximum weight matching problem with new edge weights rij.

The dual is the following:

max
∑
e

reγe∑
e∈N(i)∩F

γe ≤ 1 ∀i ∈ V

γe ≥ 0 ∀e ∈ F

(4.2)

First we show the algorithm is fast.

78

Lemma 4.3.2. Algorithm 10 runs in time O(n+m).

Proof. This follows from the trivial observation that each vertex/edge is considered O(1)
times.

Next, we show that the algorithm constructs a feasible dual solution.

Lemma 4.3.3. The perturbations δ returned by Algorithm 10 is feasible for (4.1).

Proof. We want to show that δi + δj ≥ re for all edges e = ij ∈ E. We claim that this
condition holds whenever the edge is deleted from G. Suppose that the algorithm is
currently at i and let ij′ be the edge selected by the algorithm in this step. By definition
of the algorithm we have δi = rij′ ≥ rij so δi + δj ≥ rij.

Finally, we address the objective.

Lemma 4.3.4. The perturbations δ returned by Algorithm 10 are a 2-approximation for
(4.1).

Proof. In each iteration, the increase of the primal objective (δi = rij in Line 7) is exactly
twice the increase of the dual objective (rijγij = rij/2 in Line 8). Thus, due to weak
duality, it suffices to show that the dual is feasible. This follows from the observation that
{ij | γij = 1/2} forms a collection of vertex disjoint paths and cycles. Thus, for every
i ∈ V , there are at most two edges e adjacent to i such that γe > 0, and for those edges e,
γe = 1/2. Therefore, the dual is feasible.

This shows we can project the predicted dual prices ŷ onto the set of feasible dual
prices at approximately the minimum cost such way of doing so. The prior lemmas give
the following theorem by noticing that y∗(c) is a possible feasible solution. Note that
integrality is immediate from the algorithm.

Theorem 4.3.5. There is a O(m+ n) time algorithm that takes an infeasible integer dual
ŷ and constructs a feasible integer dual ŷ′(c) for MWPM-D with cost vector c such that
∥ŷ′(c)− ŷ∥1 ≤ 2∥ŷ − y∗(c)∥1 where y∗(c) is the optimal dual solution for MWPM-D with
cost vector c. Thus by triangle inequality we have ∥ŷ′(c)− y∗(c)∥1 ≤ 3∥ŷ − y∗(c)∥1.

4.3.2 Seeding Hungarian with a Feasible Dual (Optimization)

In this section we assume that we are given a feasible integral dual ŷ′(c) for an input with
cost vector c and the goal is to find an optimal solution. We want to analyze the running
time in terms of ∥ŷ′(c)− y∗(c)∥1, the distance to optimality. We use a simple primal-dual
schema to achieve this, which is given formally in Algorithm 11.

79

Algorithm 11 Simple Primal-Dual Scheme for MWPM

1: procedure MWPM-PD(G = (V,E), c, y)
2: E ′ ← {e ∈ E | yi + yj = cij } ▷ Set of tight edges in the dual
3: G′ ← (V,E ′) ▷ G containing only tight edges
4: M ← Maximum cardinality matching in G′

5: while M is not a perfect matching do
6: Find S ⊆ L such that |S| > |Γ(S)| in G′ ▷ Exists by Hall’s Theorem

▷ Can be found in O(m+ n) time
7: ϵ← mini∈S,j∈R\Γ(S){cij − yi − yj}
8: ∀i ∈ S, yi ← yi + ϵ
9: ∀j ∈ Γ(S), yj ← yj − ϵ
10: Update E ′, G′

11: M ← Maximum cardinality matching in G′

12: end while
13: Return M
14: end procedure

To satisfy complementary slackness, we must only choose edges with yi + yj = cij.
Let E ′ be the set of such edges. We find a maximum cardinality matching in the graph
G′ = (V,E ′). If the resulting matching M is perfect then we are done by complementary
slackness (Lemma 4.2.1) Otherwise, in steps 7-9 we modify the dual in a way that guarantees
a strict increase in the dual objective. Since all parameters of the problem are integral,
this strict increase then implies our desired bound on the number of iterations.

We now analyze Algorithm 11. Recall that L and R give the bipartition of V . First
we show that the algorithm is correct. The main claim we need to establish is that if y is
initially dual feasible, then it remains dual feasible throughout the algorithm. First we
check that the update defined in lines 6-10 is well defined, i.e. in line 6 such a set S always
exists and ϵ defined in line 7 is always strictly positive.

Proposition 4.3.6. If M is not a perfect matching in G′, then there exists a set S ⊆ L
such that |S| > |Γ(S)| in G′. Further, such S can be found in O(m+ n) time.

Proof. The first claim follows directly from Hall’s Theorem applied to G′. It is well-known
that the maximum matching size is equal to the minimum vertex cover size when the
underlying graph is bipartite. Further, a minimum vertex cover C can be derived from a
maximum matching M in time O(m+n). We set S = L\C. Then, we have Γ(S) ⊆ C ∪R
due to C being a vertex cover, and |C ∩L|+ |C ∩R| = |C| < n as the minimum cover size
is less than n; recall M is not perfect. Thus, we have |S| = n−|C ∩L| > |C ∩R| ≥ |Γ(S)|,
as desired.

Proposition 4.3.7. Let y be dual feasible and suppose that S ⊆ L with |S| > |Γ(S)| in G′.
Let ϵ = mini∈S,j∈R\Γ(S) cij − yi − yj. Then as long as c and y are integer we have ϵ ≥ 1.

Proof. Every edge ij considered in the definition of ϵ is not in E ′ and thus must have
cij > yi + yj. Thus for all such edges we have cij − yi − yj ≥ 1 since c and y are integer,
and so ϵ ≥ 1.

80

If no such edge exists, then we have a set S ⊆ L such that |S| is strictly larger than
its neighborhood in G (rather than G′) which shows that the problem is infeasible. This
contradicts our assumption that the original problem is feasible.

We now show the main claims we described above.

Lemma 4.3.8. If Algorithm 11 is given an initial dual feasible y, then y remains dual
feasible throughout its execution.

Proof. Inductively, it suffices to show that if y is dual feasible then it remains so after
the update steps defined in lines 6-10. To make the notation clear, let y′ be the result
of applying the update rule to y. Consider an edge ij ∈ E. We want to show that
y′i + y′j ≤ cij after the update step. There are 4 cases to check: (1) i ∈ L \ S, j ∈ R \ Γ(S),
(2) i ∈ L \ S, j ∈ Γ(S), (3) i ∈ S, j ∈ R \ Γ(S), and (4) i ∈ S, j ∈ Γ(S).

In the first case, neither yi nor yj are modified, so we get y′i + y′j = yi + yj ≤ cij since
y was initially dual feasible. In the second case we have y′i + y′j = yi + yj − ϵ ≤ cij since
ϵ > 0. In the third case we have y′i = yi + ϵ and so y′i + y′j = yi + ϵ+ yj ≤ cij since there
was slack on these edges and ϵ was chosen to be the smallest such slack. Finally, in the
last case we have y′i + y′j = yi + ϵ+ yj − ϵ ≤ cij . Thus we conclude that y remains feasible
throughout the execution of Algorithm 11.

Lemma 4.3.9. Each iteration strictly increases the value of the dual solution.

Proof. Note that in each iteration yi increases by ϵ for all i ∈ S and yj decreases by ϵ for
all j ∈ Γ(S); and all other dual variables remain unchanged. Thus, the dual objective
increases by ϵ(|S| − |Γ(S)|) ≥ ϵ.

The above lemma allows us to analyze the running time of our algorithm in terms of
the distance to optimality.

Lemma 4.3.10. Consider an arbitrary cost vector c. Suppose that ŷ′(c) is an integer dual
feasible solution and y∗(c) is an integer optimal dual solution. If Algorithm 11 is initialized
with ŷ′(c), then the number of iterations is bounded by ∥ŷ(c)− y∗(c)∥1.

Proof. By Lemma 4.3.9, we have that the value of the dual solution increases by at least
1 in each iteration. Thus the number of iterations is at most

∑
i y

∗
i (c) −

∑
i ŷi(c) ≤∑

i |y∗i (c)− ŷi(c)| = ∥y∗(c)− ŷ(c)∥1.

Finally, we get the following theorem as a corollary of the lemmas above and theO(m
√
n)

runtime of the Hopcroft-Karp algorithm for maximum cardinality matching [79]. More
precisely, the above lemmas show that the algorithm performs at most O (∥y∗(c)− ŷ′(c)∥1)
iterations, each running in O(m

√
n) time. We can further improve this by ensuring the

algorithm runs no longer than the standard Hungarian algorithm in the case that we have
large error in the prediction, i.e., ∥y∗(c)− ŷ′(c)∥1 is large. In particular, steps 6 and 11 do
not precisely specify the choice of the set S and the matching M . If we instantiate these
steps appropriately (let S = L \ C for step 6, where C is a minimum vertex cover, and
update M along shortest-augmenting-paths for step 11) then we recover the Hungarian
Algorithm and its Õ(mn) running time.

81

Theorem 4.3.11. Consider an arbitrary cost vector c. There exists an algorithm which
takes as input a feasible integer dual solution ŷ′(c) and finds a minimum weight perfect
matching in Õ (min {m

√
n∥y∗(c)− ŷ′(c)∥1,mn}) time, where y∗(c) is an optimal dual

solution.

4.3.3 Learning Optimal Advice (Learning)

Now we want to formally instantiate the “learning” part of our framework: if there is a
good starting dual solution for a given input distribution, we want to find it without seeing
too many samples. The formal model we will use is derived from data driven algorithm
design and PAC learning.

We imagine solving many problem instances drawn from the same distribution. To
formally model this, we let D be an unknown distribution over instances. For simplicity,
we consider the graph G = (V,E) to be fixed with varying costs. Thus D is a distribution
over cost vectors c ∈ RE. We assume that the costs in this distribution are bounded. Let
C := maxc∼D maxe∈E ce be finite and known to the algorithm. Our goal is to find the
(not necessarily feasible) dual assignment that performs “best” in expectation over the
distribution. Based on Theorems 4.3.5 and 4.3.11 , we know that the “cost” of using dual
values y when the optimal dual is y∗ is bounded by O(m

√
n∥y∗ − y∥1), and hence it is

natural to define the “cost” of y as ∥y∗ − y∥1.
For every c ∈ RE we will let y∗(c) be a fixed optimal dual solution for c:

y∗(c) := argmax
y

{∑
i

yi | ∀ij ∈ E, yi + yj ≤ cij

}
.

Here we assume without loss of generality that y∗(c) is integral as the underlying polytope
is known to be integral. We will let the loss of a dual assignment y be its ℓ1-distance from
the optimal solution:

L(y, c) = ∥y − y∗(c)∥1.

Our goal is to learn dual values ŷ which minimize Ec∼D[L(y, c)]. Let y∗ denote the
vector minimizing this objective, y∗ = argminy Ec∼D[L(y, c)].

We will give PAC-style bounds, showing that we only need a small number of samples
in order to have a good probability of learning an approximately-optimal solution ŷ. Our
algorithm is conceptually quite simple: we minimize the empirical loss after an appropriate
number of samples. We have the following theorem.

Theorem 4.3.12. There is an algorithm that after s = O
((

nC
ϵ

)2
(n log n+ log(1/p))

)
samples returns dual values ŷ such that Ec∼D[L(ŷ, c)] ≤ Ec∼D[L(y

∗, c)] + ϵ with probability
at least 1− p. The algorithm runs in time polynomial in n,m and s.

This theorem, together with Theorems 4.3.5 and 4.3.11, immediately implies Theo-
rem 4.3.1.

82

Proof of Theorem 4.3.12

We now discuss the main tools we require from statistical learning theory in order to prove
Theorem 4.3.12. For every dual assignment y ∈ RV , we define a function gy : RE → R
by gy(c) = L(y, c) = ∥y∗(c) − y∥1. Let H = {gy | y ∈ RV } be the collection of all such
functions. It turns out that in order to prove Theorem 4.3.12, we just need to bound
the pseudo-dimension of this collection. Note that the notion of shattering and pseudo-
dimension in the following is a generalization to real-valued functions of the classical notion
of VC-dimension for Boolean-valued functions (classifiers).

Definition 4.3.13 ([124, 13]). Let F be a class of functions f : X → R. Let S =
{x1, x2, . . . , xs} ⊂ X. We say that that S is shattered by F if there exist real numbers
r1, . . . , rs so that for all S ′ ⊆ S, there is a function f ∈ F such that f(xi) ≤ ri ⇐⇒ xi ∈ S ′

for all i ∈ [s]. The pseudo-dimension of F is the largest s such that there exists an S ⊆ X
with |S| = s that is shattered by F .

The connection between pseudo-dimension and learning is given by the following
uniform convergence result.

Theorem 4.3.14 ([124, 13]). Let D be a distribution over a domain X and F be a class
of functions f : X → [0, H] with pseudo-dimension dF . Consider s independent samples
x1, x2, . . . , xs from D. There is a universal constant c0, such that for any ϵ > 0 and

p ∈ (0, 1), if s ≥ c0
(
H
ϵ

)2
(dF + ln(1/p)) then we have∣∣∣∣∣1s

s∑
i=1

f(xi)− Ex∼D[f(x)]

∣∣∣∣∣ ≤ ϵ

for all f ∈ F with probability at least 1− p.

Intuitively, this theorem says that the sample average 1
s

∑s
i=1 f(xi) is close to its

expected value for every function f ∈ F simultaneously with high probability so long
as the sample size s is large enough. This theorem can be utilized to give a learning
algorithm for our problem by considering an algorithm which minimizes the empirical loss.
In general, the “best” function is the one which minimizes the expected value over D,
i.e. f ∗ = argminf∈F Ex∼D[f(x)]. We have the following simple corollary for learning and

approximately best function ĥ.

Corollary 4.3.15. Consider a set of s independent samples x1, x2, . . . , xs from D and let
f̂ be a function in F which minimizes 1

s

∑s
i=1 f̂(xi). If s is chosen as in Theorem 4.3.14,

then with probability 1− p we have Ex∼D[f̂(x)] ≤ Ex∼D[f
∗(x)] + 2ϵ

Thus based on the above Theorem and Corollary, to prove Theorem 4.3.12 we must
accomplish the following tasks. First and foremost, we must bound the pseudo-dimension
of our class of functions H. Next, we need to check that the functions are bounded on the
domain we consider, and finally we need to give an algorithm minimizing the empirical
risk. The latter two tasks are simple. By assumption the edge costs are bounded by C.

83

If we restrict H to be within a suitable bounding box, then one can verify that we can
take H = O(nC) to satisfy the conditions for Theorem 4.3.14. Additionally, the task of
finding a function to minimize the loss on the sample can be done via linear programming.
We formally verify these details in Sections 4.3.3 and 4.3.3. This leaves bounding the
pseudo-dimension of the class H, which we focus on now.

To bound the pseudo-dimension of H, we will actually consider a different class of
functions Hn: for every y ∈ Rn we define a function fy : Rn → R by fy(x) = ∥y − x∥1,
and we let Hn = {fy | y ∈ Rn}. It is not hard to argue that it is sufficient to bound the
pseudo-dimension of this class.

Lemma 4.3.16. If the pseudo-dimension of Hn is at most k, then the pseudo-dimension
of H is at most k.

Proof. We prove the contrapositive: we start with a set of size s which is shattered by H,
and use it to find a set of size s which is shattered by Hn. Let S = {c1, c2, . . . , cs} with
each ci ∈ RE be a set which is shattered by H. Then there are real numbers r1, r2, . . . , rs
so that for all S ′ ⊆ [s], there is a function g ∈ H where g(ci) ≤ ri ⇐⇒ i ∈ S ′. By
definition of H, this g is gyS′ for some yS′ ∈ Rn, and so ∥yS′ − y∗(ci)∥1 ≤ ri ⇐⇒ i ∈ S ′.

Let Ŝ = {y∗(c1), y∗(c2), . . . , y∗(cs)}. We claim that Ŝ is shattered by Hn. To see
this, consider the same real numbers r1, . . . , rs and some S ′ ⊆ [s]. Then fyS′ (y

∗(ci)) =
∥yS′−y∗(ci)∥1 = gyS′ (ci) and hence fyS′ (y

∗(ci)) ≤ ri ⇐⇒ gyS′ (ci) ≤ ri ⇐⇒ i ∈ S ′. Thus

Ŝ is shattered by Hn.

So now our goal is to prove the following bound, which (with Lemma 4.3.16 and
Theorem 4.3.14) implies Theorem 4.3.12.

Theorem 4.3.17. The pseudo-dimension of Hn is at most O(n log n).

Let k be the pseudo-dimension of Hn. Then by the definition of pseudo-dimension there
is a set P = {x1, x2, . . . , xk} which is shattered by Hn, so there are values r1, r2, . . . , rk ∈
R≥0 so that for all S ⊆ P there is an f ∈ Hn such that f(xi) ≤ ri ⇐⇒ xi ∈ S. By our
definition of Hn, this means that there is a yS ∈ Rn so that ∥yS − xi∥1 ≤ ri ⇐⇒ xi ∈ S.

For each S ⊆ P , define the region of S (denoted by r(S)) to be

r(S) = {y ∈ Rn : ∥y − xi∥1 ≤ ri ⇐⇒ xi ∈ S},

i.e., the set of points that are at ℓ1-distance at most ri from xi for precisely the xi’s that
are in S. Clearly each r(S) is nonempty for every S ⊆ P due to the existence of yS. Let
m = 2k be the number of nonempty regions.

To upper bound the pseudo-dimension k we will prove that there cannot be too many
nonempty regions (i.e., m is small). This is somewhat complex since the ℓ1-balls have
complex structure (in particular, they have 2n facets), so we will do this by partitioning
Rn into cells in which the ℓ1 balls are simpler. For each xi ∈ P and j ∈ [n], let Qi

j be
the hyperplane in Rn that passes through yi and is perpendicular to the axis ej (i.e.,
Qi

j = {y ∈ Rn : ⟨y − xi, ej⟩ = 0}). Clearly there are kn of these hyperplanes. Define a cell
to be a maximal set of points in Rn which are the same side of every hyperplane. Note

84

that there are (k + 1)n of these cells, they partition Rn, and every cell which is bounded is
a hypercube.

Lemma 4.3.18. Let C be a cell and xi ∈ P . There is a halfspace H such that B1(x
i, ri)∩

C = H ∩ C.

Proof. If B1(x
i, ri) ∩ C = ∅ then we are done. So suppose that B1(x

i, ri) ∩ C ≠ ∅. By
definition, B1(x

i, ri) is the set of points y ∈ Rn such that
∑n

j=1 |xi
j − yj| ≤ ri. Hence

B1(x
i, ri) is defined by the intersection of 2n halfspaces:

B1(x
i, ri) =

{
y ∈ Rn |

n∑
j=1

aj(x
i
j − yj) ≤ ri ∀a ∈ {−1,+1}n

}

If the intersection of the boundary of B1(x
i, ri) with C is one of these hyperplanes, then

we are finished. Otherwise, there are at least two of these hyperplanes H1 = (a1, . . . an)
and H2 = (a′1, . . . , a

′
n) such that B1(x

i, ri) ∩ C contains a point y ∈ H1 \H2 and a point
y′ ∈ H2 \H1, both of which are also on the boundary of B1(x

i, ri). Let j ∈ [n] such that
aj = −a′j. Then yj − xi

j has a different sign than y′j − xi
j, since the fact that y and y′ are

on the boundary of B1(x
i, ri) but on different facets implies that xi

j − yj has sign aj while
xi
j − y′j has sign a′j. But this contradicts the definition of C, since it means that y and y′

are on different sides of Qi
j and hence not in the same cell.

This lemma allows us to analyze the number of regions that intersect any cell.

Lemma 4.3.19. Let C be a cell. The number of regions that intersect C is at most
2O(n)kn.

Proof. For every S ⊆ P , the region r(S) is the set of points that are in B1(x
i, ri) for

all xi ∈ S and are not in B1(x
i, ri) for all xi ̸∈ S. By Lemma 4.3.18, r(S) ∩ C is the

intersection of C with k halfspaces (one for each xi ∈ P). It is well-knownthat k halfspaces
can divide Rn into at most

∑n
i=0

(
k
i

)
= O(n)kn regions, and hence the same bound holds

for C.

Now some standard calculations imply Theorem 4.3.17, and hence Theorem 4.3.12.

Proof of Theorem 4.3.17. Lemma 4.3.19, together with the fact that there are at most
(k+1)n cells, implies that the number of nonempty regions m is at most O(n)kn ·(k+1)n ≤
O(n)(k + 1)2n. Since m = 2k, this implies that 2k ≤ O(n)(k + 1)2n. Taking logarithms of
both sides yields that

k ≤ log(k + 1) ·O(n), (4.3)

and then taking another logarithm and rearranging yields that log n ≥ Ω(log k−log log k) =
Ω(log k) and hence log(k + 1) ≤ O(log n). Plugging this into (4.3) implies Theorem 4.3.17.

85

Bounding the Range

In this section we verify the condition for Theorem 4.3.14 that every function in H has its
range in [0, H] for H = O(nC). This is actually not quite true as defined, but it is easy
enough to ensure: we just consider a restricted class of functions H′ = {gy | gy ∈ H, y ∈
[−C,C]V }. Note that for any fixed set of costs c the class H′ contains y∗(c), so without
loss of generality we can just use H′ instead of H. From the definition of pseudo-dimension
and H′ ⊆ H, it immediately follows that the pseudo-dimension of H′ is at most that of H.
Thus, we just need to ensure that the range of the restricted functions are bounded.

Lemma 4.3.20. Each function gy ∈ H′ has its range in [0, H] for H = O(nC).

Proof. Let’s bound the range by considering the maximum value gy can take on a set of
costs c. Recall that gy(c) = ∥y − y∗(c)∥1. Each coordinate can contribute at most O(C)
to the sum since y∗i (c) ∈ [−C,C] and yi ∈ [−C,C]. Summing over the n coordinates gives
H = O(nC).

Minimizing the Empirical Loss

Now we give an algorithm to minimize the empirical loss on a collection of sample
instances. Let c1, c2, . . . , cs be a collection of samples from D. Our goal is to find dual
prices y minimizing 1

s

∑s
i=1 gy(ci) = 1

s

∑s
i=1 ∥y − y∗(ci)∥1. Let xi = y∗(ci). Then the

problem amounts to minimizing 1
s

∑s
i=1 ∥y − xi∥1 over y ∈ [−C,C]V . Then, for each

coordinate j it suffices to find yj minimizing
∑s

i=1 ∥yj − xi
j∥1, where yj and xi

j denote the
j-th coordinate of y and xi, respectively. Further, it is easy to see that

∑s
i=1 ∥yj − xi

j∥1 is
a continuous piece-wise linear function in yj where the slope can change only at {xi

j}i∈[s].
Recalling that we can assume wlog that xi = y∗(ci) is an integer vector, we only need to
consider setting yj to each value in {xi

j}i∈[s], which is a set of integers. This leads to the
following result.

Theorem 4.3.21. Given s samples c1, c2, . . . , cs, there exists a polynomial time algorithm
which finds integer dual prices y minimizing 1

s

∑s
i=1 ∥y − y∗(ci)∥1.

We remark that minimizing this emprical loss can be efficiently implemented by taking
the coordinate-wise median of each optimal dual, i.e. taking yj = median(x1

j , x
2
j , . . . , x

s
j)

for each j ∈ V .

4.4 Experiments

In this section we present experimental results on both synthetic and real data sets. Our
goal is to validate the two main hypotheses in this work. First we show that warm-starting
the Hungarian algorithm with learned duals provides an empirical speedup. Next, we show
that the sample complexity of learning good duals is small, ensuring that our approach is
viable in practice.

Experiment Setup: All of our experiments were run on Google Cloud Platform [73]
e2-standard-2 virtual machines with 2 virtual CPU’s and 8 GB of memory.

86

Dataset Blog Feedback1 Covertype KDD Skin2 Shuttle
of Points (n) 52,397 581,012 98,942 100,000 43500
of Features (d) 281 54 38 4 10

Table 4.1: Datasets used in experiments based on Euclidean data

We consider two different setups for learning dual variables and evaluating our algo-
rithms.

• Batch: In this setup, we receive s samples c1, c2, . . . , cs from the distribution of
problem instances, learn the appropriate dual variables, and then test on new
instances drawn from the distribution.

• Online: A natural use case for our approach is an online setting, where instance
graphs G1, G2, . . . arrive one at a time. When deciding on the best warm start
solution for Gt we can use all of the data from G1, . . . , Gt−1. This is a standard
scenario in industrial applications like ad matching, where a new ad allocation plan
may need to be computed daily or hourly.

Datasets: To study the effect of the different algorithm parameters, we first run a
study on synthetic data. Let n be the number of nodes on one side of the bipartition and
let ℓ, v be two parameters we set later. First, we divide the n nodes on each side of the
graph into ℓ groups of equal size. The weight of all edges going from the i’th group on the
left side and the j’th group on the right side is initialized to some value Wi,j drawn from
a geometric distribution with mean 250. Then to generate a particular graph instance,
we perturb each edge weight with independent random noise according to a binomial
distribution, shifted and scaled so that it has mean 0 and variance v. We refer to this as
the type model (each type consists of a group of nodes). We use n = 500, ℓ ∈ {50, 100}
and vary v from 0 to 220.

We use the following model of generating instances from real data. Let X be a set
of n points in Rd, and fix a parameter k. We first divide X randomly into two sets, XL

and XR and compute a k-means clustering on each partition. To generate an instance
G = (L ∪R,E), we sample one point from each cluster on each side, generating 2k points
in total. The points sampled from XL (resp. XR) form the vertices in L (resp. R). The
weight of an (i, j) edge is the Euclidean distance between these two points. Changing k
allows us to control the size of the instance.

We use several datasets from the UCI Machine Learning repository [106]. See Table 4.1
for a summary. For the KDD and Skin datasets we used a sub-sample of the original data
(sizes given in Table 4.1).

Implemented Algorithms and Metrics: We implemented the Hungarian Algorithm
(a particular instantiation of Algorithm 11, as discussed in Section 4.3.2) allowing for
arbitrary seeding of a feasible integral dual. We experimented with having initial dual of 0
(giving the standard Hungarian Algorithm) as the baseline and having the initial duals
come from our learning algorithm followed by Algorithm 10 to ensure feasibility (which we
refer to as “Learned Duals”). We also added the following “tightening” heuristic, which

87

is used in all standard implementations of the Hungarian algorithm: given any feasible
dual solution y, set yi ← yi + minj∈N(i){cij − yi − yj} for all nodes i on one side of the
bipartition. This can be quickly carried out in O(n+m) time, and guarantees that each
node on that side has at least one edge in E ′. We compare the runtime and number of
primal-dual iterations, reporting mean values and error bars denoting 95% confidence
intervals. Running time results can also be found below.

To learn initial duals we use a small number of independent samples of each instance
type. We compute an optimal dual solution for each instance in the sample. To combine
these together into a single dual solution, we compute the median value for each node’s
set of dual values. This is an efficient implementation of the empirical risk minimization
algorithm from Section 4.3.3.

Results: First, we examine the performance of Learned Duals in the batch setting
described above. For these experiments, we used 20 training instances to learn the initial
duals and then tested those on 10 new instances. For the type model, we used ℓ = 50
and considered varying the variance parameter v. The left plot in Figure 4.1 shows the
results as we increase v from 0 to 300. We see a moderate improvement in this case, even
when the noise variance is larger than the mean value of an edge weight. Going further,
in the middle plot of Figure 4.1 we consider increasing the noise variance in powers of
two geometrically. Note that even when the noise significantly dominates the original
signal from the mean weights (and hence the training instances should not help on the
test instances), our method is comparable to the Hungarian method.

Continuing with the Batch setting, the right plot in Figure 4.1 summarizes our results
for the clustering derived instances on all datasets with k = 500 (similar results hold for
other values of k; see Figure 4.4). We see an improvement across all datasets, and a greater
than 2x improvement on all but the Covertype dataset.

Figures 4.2 and 4.3 display our results in the online setting. We aim to show that
not too many samples are needed to learn effective duals. From left to right, the plots in
Figure 4.2 show the performance averaged over 20 repetitions of the experiment with 20
time points on the type model with ℓ = 100, v = 200, and the clustering derived instances
on the KDD and Covertype datasets with k = 500, respectively. We see that only a few
iterations are needed to see a significant separation between the run time of our method
with learned duals and the standard Hungarian method, with further steady improvement
as we see more instances.

We see similar trends in both the real and synthetic data sets. We conclude the
following.

• The theory is predictive of practice. Empirically, learning dual variables can lead to
significant speed-up. This speed-up is achieved in both the batch and online settings.

• As the distribution is more concentrated, the learning algorithm performs better (as
one would suspect).

• When the distribution is not concentrated and there is little to learn, then the
algorithm has performance similar to the widely used Hungarian algorithm.

88

All together, these results demonstrate the strong potential for improvements in
algorithm run time using machine-learned predictions for the weighted matching problem.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Noise Variance / Mean Weight

0

10

20

30

40

50

60

Ite
ra

tio
n

C
ou

nt

Type Model Iteration Count vs. Noise Variance

Method
Hungarian
Learned Duals

2
6

2
3

2
0

2
3

2
6

2
9

2
12

Noise Variance / Mean Weight

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

Ite
ra

tio
n

C
ou

nt

Type Model Iteration Count vs. Noise Variance

Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

200

400

600

800

1000

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 500
Method
Hungarian
Learned Duals

Figure 4.1: Iteration count results for the Batch setting. The left figure gives the iteration
count for the type model (synthetic data) versus linearly increasing v, while the middle
geometrically increases v. The right figure summarizes the results for clustering based
instances (real data) in the batch setting.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ite
ra

tio
n

Co
un

t

Type Model, v = 200 - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

400

600

800

1000

1200

Ite
ra

tio
n

Co
un

t

KDD - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

350

400

450

500

550

600

Ite
ra

tio
n

Co
un

t

Covertype - Online Setting
Method
 Hungarian
 Learned Duals

Figure 4.2: Iteration count results for the Online setting. The left figure is for the type
model (synthetic data), while the middle and right are for the clustering based instances
(real data) with k = 500 on KDD and Covertype, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

450

500

550

600

650

700

Ite
ra

tio
n

Co
un

t

Blog Feedback - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

50

100

150

200

250

300

350

400

Ite
ra

tio
n

Co
un

t

Shuttle - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

40

50

60

70

80

90

100

110

Ite
ra

tio
n

Co
un

t

Skin - Online Setting

Method
 Hungarian
 Learned Duals

Figure 4.3: More iteration count results for the Online setting. From left to right, we
have the results for the clustering based instances on Blog Feedback, Shuttle, and Skin, all
with k = 500.

89

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

20

40

60

80

100

120

140

160

Ite
ra

tio
n

Co
un

t
Clustering-Based Instances, k = 100

Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

50

100

150

200

250

300

350

400

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 200
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

100

200

300

400

500

600

700

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 300
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

200

400

600

800

1000

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 400
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

200

400

600

800

1000

1200

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 600
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

250

500

750

1000

1250

1500

1750

2000

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 700
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 800
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

2500

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 900
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

Ite
ra

tio
n

Co
un

t

Clustering-Based Instances, k = 1000
Method
Hungarian
Learned Duals

Figure 4.4: Iteration count results for clustering derived instances in the Batch setting on
other values of k. Here we give the results for each k in {100 · i | 1 ≤ i ≤ 10} \ {500}.

4.4.1 Running Time

Now we present our running time results (as opposed to number of primal dual iterations).
We observe that there is a significant improvement for our method with respect to this
metric over the standard initialization for the Hungarian algorithm.

Figure 4.5 gives running time results for the batch setting, while Figure 4.6 give the
results for the online setting. Finally, Figure 4.7 looks at the clustering derived instances
for other values of k. We see similar performance improvements for Learned Duals against
the standard Hungarian algorithm, showing that the impact of running Algorithm 10 to
make the predicted duals feasible is minimal.

4.5 Extending to b-Matching

We now extend the results from Section 4.3 to the minimum weight perfect b-matching
problem on bipartite graphs. In the extension we are given a bipartite graph G = (V,E),

90

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Noise Variance / Mean Weight

2

4

6

8

10

12

14

16

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Type Model Running Time vs. Noise Variance

Method
Hungarian
Learned Duals

2
6

2
3

2
0

2
3

2
6

2
9

2
12

Noise Variance / Mean Weight

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Type Model Running Time vs. Noise Variance

Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

50

100

150

200

250

300

350

400

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 500
Method
Hungarian
Learned Duals

Figure 4.5: Running time results (in seconds) for the Batch setting. The left figure gives
the iteration count for the type model (synthetic data) versus linearly increasing v, while
the middle geometrically increases v. The right figure summarizes the results for clustering
based instances (real data) in the batch setting.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

8

9

10

11

12

Ru
nt

im
e

(s
ec

on
ds

)

Type Model, v = 200 - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

100

150

200

250

300

Ru
nt

im
e

(s
ec

on
ds

)

KDD - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

90

100

110

120

130

140

150

160

Ru
nt

im
e

(s
ec

on
ds

)

Covertype - Online Setting
Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

110

120

130

140

150

160

170

180

Ru
nt

im
e

(s
ec

on
ds

)

Blog Feedback - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

10

20

30

40

50

60

70

80

Ru
nt

im
e

(s
ec

on
ds

)

Shuttle - Online Setting

Method
 Hungarian
 Learned Duals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Instance Number

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Ru
nt

im
e

(s
ec

on
ds

)

Skin - Online Setting

Method
 Hungarian
 Learned Duals

Figure 4.6: Running time results for the Online setting. The top left figure is for the
type model (synthetic data). The rest, in order, are KDD and Covertype, Blog Feedback,
Shuttle, and Skin. All use k = 500.

where V = L ∪ R, a weight vector c ∈ ZE
+ and a demand vector b ∈ ZV

+. As before, we
assume that the primal is feasible for the remainder of this section. Note that the feasibility
of the primal can be checked with a single call to a maximum flow algorithm.

The problem is modeled by the following linear program and its dual linear program.

91

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Ru

nt
im

e
(s

ec
on

ds
)

Clustering-Based Instances, k = 100
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 200
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

10

20

30

40

50

60

70

80

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 300
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

50

100

150

200

250

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 400
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

100

200

300

400

500

600

700

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 600
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

200

400

600

800

1000

1200

1400

1600

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 700
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

2500

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 800
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

2500

3000

3500

4000

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 900
Method
Hungarian
Learned Duals

Shuttle Skin Blog Feedback Covertype KDD
Dataset

0

500

1000

1500

2000

2500

3000

3500

4000

Ru
nt

im
e

(s
ec

on
ds

)

Clustering-Based Instances, k = 1000
Method
Hungarian
Learned Duals

Figure 4.7: Running time results (in seconds) for clustering derived instances in the
Batch setting on other values of k. Here we give the results for each k in {100 · i | 1 ≤ i ≤
10} \ {500}.

min
∑
e∈E

cexe∑
e∈δ(i)

xe = bi ∀i ∈ V

xe ≥ 0 ∀e ∈ E

(MWBM-P)

max
∑
i∈V

biyi

yi + yj ≤ cij ∀ij ∈ E
(MWBM-D)

First we show how to project an infeasible dual onto the set of feasible solutions, then
we give a simple primal dual scheme for moving to an optimal solution. The end goal of
this section is proving the following theorem.

92

Theorem 4.5.1. There exists an algorithm which takes as input a (not necessarily feasible)
dual assignment y and finds a minimum weight perfect b-matching in O(mn∥y∗ − y∥1)
time, where y∗ is an optimal dual solution and ∥y∗ − y∥b,1 :=

∑
i bi|y∗i − yi|.

4.5.1 Recovering a Feasible Dual Solution for b-Matching

As in Section 4.3, our goal now is to find non-negative perturbations δ such that ŷ′ := ŷ− δ
is feasible for (MWPM-D). We would like these perturbations to preserve as much of the
dual objective value as possible. Again we define re := ŷi+ ŷj−ce for each edge e = ij ∈ E.
Following the same steps as before, this leads to the following linear program and it’s dual.

min
∑
i∈V

biδi

δi + δj ≥ re ∀e = ij ∈ E
δi ≥ 0 ∀i ∈ V

(4.4)

max
∑
e∈E

reγe∑
e∈N(i)

γe ≤ bi ∀i ∈ V

γe ≥ 0 ∀e ∈ E

(4.5)

Again we are interested in finding a fast approximate solution to this problem. We
develop a new algorithm different than that used in the prior section and show it is a 2
approximation to (4.4). To do so, consider the dual LP above. This is an instance of the
weighted b-matching problem where edges can be selected any number of times. We will
first develop a 2 approximation to this LP in O(m logm+ n) time. The analysis will be
done via a dual fitting analysis. This analysis will give us the corresponding 2-approximate
fractional primal solution that will be used to construct ŷ′.

Consider the following algorithm for the dual problem. Sort the edges e in decreasing
order of re. When considering an edge e′ = i′j′ in this order set γe′ as large as possible
such that

∑
e∈N(i′) γe ≤ bi′ and

∑
e∈N(j′) γe ≤ bj′ . Notice the running time of the algorithm

is bounded by O(m logm+ n).
When the algorithm terminates we construct a corresponding primal solutions. For

each i ∈ V , set δi =
∑

e∈N(i) γere

bi
. That is, δi is the summation of the weights r of the

adjacent edges divided by the b-matching constraint value bi. We will show that δ is a
feasible primal solution. Moreover that the primal and dual objectives are within a factor
two of each other.

Lemma 4.5.2. The solution δ is feasible for LP (4.4) and γ is feasible for the dual LP
(4.5).

Proof. The feasibility for the dual is by construction, so consider the primal. Consider any
edge e′ = i′j′. Our goal is to show that δi′ +δj′ ≥ re′ . Let Ae′ be the set of edges considered
by the algorithm up to edge e′ including the edge itself. These edges have weight at least
as large e′. We claim that either

∑
e∈N(i′)∩Ae′

γe = bi′ or
∑

e∈N(j′)∩Ae′
γe = bj′ . Indeed,

93

otherwise we would increase γe′ until this is true. Without loss of generality say that∑
e∈N(i′)∩Ae′

γe = bi′ . We will argue that δi′ ≥ re′ . Knowing that δj′ is non-negative, this
will complete the proof.

Consider the value of δi′ . This is
∑

e∈N(i′) γere

bi′
=

∑
e∈N(i′)∩Ae′

γere

bi′
. We know from the

above that
∑

e∈N(i′)∩Ae′
γe = bi′ and every edge in Ae′ has weight greater than e′. Thus,∑

e∈N(i′)∩Ae′
γere

bi′
≥ re′

∑
e∈N(i′)∩Ae′

γe

bi′
= re′

Next we bound the objective of the primal as a function of the dual.

Lemma 4.5.3. The primal objective is exactly twice the dual objective.

Proof. It suffices to show each edge e = ij contributes twice as much to the primal
objective as it does to the dual objective. First, e’s contribution to the dual objective is
clearly reγe. For the dual, edge e contributes to the summation for both end points. That
is, e contributes to δi by γere/bi and to δj by γere/bj. Thus, edge e’s contribution to the
primal objective is bi

γere
bi

+ bj
γere
bj

= 2γere, as desired.

Thus, we have found a 2-approximate solution to the primal LP (4.4). However, the
solution is not necessarily integral. Thus, to make it integral, we do the following simple
rounding:

δi ←

{
⌊2δi⌋ if δi ≥ 0.5

0 if δi ∈ [0, 0.5)

Clearly this update can double the cost in the worst case. Hence we only need to check
that every constraint remains satisfied. To see this consider an edge e = ij and let δi and
δj be the dual values before the update. Note that re is an integer assuming that we are
given integer dual values ŷ. Assume re ≥ 1 since otherwise the constraint trivially holds
true. It is an easy exercise to see that ⌊2x⌋ ≥ x for all x ≥ 0.5. Thus, if δi, δj ≥ 0.5, then
the update only increases the value of δi and δj, keeping the constraint satisfied. Further,
as re ≥ 1, it must be the case that δi ≥ 0.5 or δj ≥ 0.5. So, we only need to consider the
case either δi ≥ 0.5 and δj < 0.5; or δi < 0.5 and δj ≥ 0.5. Assume wlog that the latter is
the case. Since δi ≤ δj , if δi + δj ≥ re, we have 2δj ≥ re. Then, we have ⌊2δj⌋ ≥ re as re is
an integer. Again, the constraint is satisfied.

Thus, we obtain the following which is analogous to Theorem 4.3.5.

Theorem 4.5.4. There is a O(m logm+n) time algorithm that takes an infeasible integer
dual ŷ and constructs a feasible integer dual ŷ′ such that ∥ŷ − ŷ′∥b,1 ≤ 4∥y∗ − ŷ∥b,1 where
y∗ is the optimal dual solution. Thus, we have ∥ŷ′ − y∗∥b,1 ≤ 5∥ŷ − y∗∥b,1.

4.5.2 Converting a Feasible Dual Solution to an Optimal Primal
Solution

Now we consider taking a feasible dual y and moving to an optimal solution for the
b-matching problem. The algorithm we use is a simple primal-dual scheme that generalizes

94

Algorithm 11. See Algorithm 12 for details. Below we give a brief analysis of this
algorithm. The objective is to establish a running time in terms of the following distance
∥y∗ − y∥b,1 :=

∑
i bi|y∗i − yi|. One can view this distance as the ℓ1 norm distance where

each coordinate axis is given a different level of importance by the bi values.

Algorithm 12 Simple Primal-Dual Scheme for MWBM

1: procedure MWBM-PrimalDual(G = (V,E), c, y)
2: E ′ ← {ij ∈ E | yi + yj = cij } ▷ Set of tight edges in the dual
3: G′ ← (L ∪R ∪ {s, t}, E ′ ∪ {si | i ∈ L} ∪ {jt | j ∈ R}) ▷ Network of tight edges
4: ∀e ∈ E(G′) s.t. e = si or e = it, ue ← bi
5: ue ←∞ for all other edges of G′

6: f ← Maximum s− t flow in G′ with capacities u
7: while Value of f is <

∑
i∈L bi do

8: Find a set S ⊆ L such that
∑

i∈S bi >
∑

j∈Γ(S) bj ▷ Exists by Lemma 4.5.5

▷ Can be found in O(m+ n) time
9: ϵ← mini∈S,j∈R\Γ(S){cij − yi − yj}
10: ∀i ∈ S, yi ← yi + ϵ
11: ∀j ∈ Γ(S), yj ← yj − ϵ
12: Update E ′, G′, u
13: f ← Maximum s− t flow in G′ with capacities u
14: end while
15: x← f restricted to edges of G
16: Return x
17: end procedure

First we consider the correctness of the algorithm. As before, we need to show that the
update rule is well defined. The following is a well known generalization of Hall’s theorem,
showing that line 8 is well defined. Further, the step can be implemented efficiently given
f . The proof closely follows that of Proposition 4.3.6 – the only difference is factoring b in
the matching size and vertex cover size.

Proposition 4.5.5. Let G′ be the flow network defined in Algorithm 12 with capacities ρ
and let f be the maximum s− t flow in G′ if the value of f is less than

∑
i∈L bi then there

exists S ⊆ L such that
∑

i∈S bi >
∑

j∈Γ(S) bj. Further, such S can be found in O(m+ n)
time.

The following is analogous to Proposition 4.3.7 in Section 4.3.

Proposition 4.5.6. Let y be dual feasible and suppose that S ⊆ L with
∑

i∈S bi >∑
j∈Γ(S) bj in G′. Let ϵ = mini∈S,j∈R\Γ(S){cij − yi − yj}. Then as long as c and y are

integers we have ϵ ≥ 1.

Additionally, we need to establish that y remains feasible throughout the execution of
the algorithm. This is nearly identical to the corresponding lemma in Section 4.3 so we
state it as the following lemma without proof.

95

Lemma 4.5.7. If Algorithm 12 is given an initial dual feasible y, then y remains dual
feasible throughout its execution.

The above statements can be combined to give the following theorem.

Theorem 4.5.8. There exists an algorithm for minimum weight perfect b-matching in
bipartite graphs which runs in time O(nm∥y∗− y∥b,1), where y∗ is an optimal dual solution
and y is the initial dual feasible solution passed to the algorithm.

Proof. The correctness of the algorithm is implied by Lemma 4.5.7 and the fact that the
flow network G′ ensures that the resulting solution x that it finds satisfies complementary
slackness with y. Thus we just need to establish the running time.

Note that it suffices to bound the number of iterations in terms of O(∥y∗ − y∥b,1) since
the most costly step of each iteration is finding the maximum flow in the network G′,
which can be done in time O(nm). The two propositions above state that the net increase
in the dual objective is always at least 1, and so the number of iterations is at most∑

i biy
∗
i −

∑
i biyi ≤

∑
i bi∥y∗i − yi∥ = ∥y∗ − y∥b,1.

This theorem, combined with Theorem 4.5.4, gives Theorem 4.5.1, as desired.

4.5.3 Learning the Dual Prices

In this section we extend the results from Section 4.3.3 to the case of b-matching. As
before, we consider a graph with fixed demands b and an unknown distribution D over the
edge costs c. We are interested in learning a fixed set of prices y which is in some sense
best for this distribution. Since the running time of the algorithms we consider depends
on ∥y∗ − y∥b,1 it is natural to choose this as our loss function with respect to the learning
task. Thus we define Lb(y, c) = ∥y − y∗(c)∥b,1, where again y∗(c) is a fixed optimal dual
vector for costs c. Our goal is to perform well against the best choice for the distribution.
Formally, let y∗ := argminy Ec∼D[Lb(y, c)]. Additionally, let C be a bound on the edge
costs and B = maxi∈V bi be a bound on the demands. We have the following result which
is analogous to Theorem 4.3.12.

Theorem 4.5.9. There is an algorithm that after s = O
((

nCB
ϵ

)2
(n log n+ log(1/ρ)

)
samples returns integer dual values ŷ such that Ec∼D[Lb(ŷ, c)] ≤ Ec∼D[L(y

∗, c] + ϵ with
probability at least 1− ρ. The algorithm runs in time polynomial in n,m and s.

At a high level, we can prove this theorem by again applying Theorem 4.3.14 and
Corollary 4.3.15. To do this we define the following family of functions Hb = {gy | y ∈ RV }
where gy = ∥y− y∗(c)∥b,1. We need to verify the following: (1) the range of these functions
are bounded in [0, H] for some H = O(nCB), (2) minimizing the empirical loss can be
done efficiently, and (3) the pseudo-dimension of Hb is bounded by O(n log n). Applying
similar arguments as in Sections 4.3.3 and 4.3.3 give us the first two points. Here we focus
on the last point, bounding the pseudo-dimension.

Note that for b ∈ Rn
+, ∥·∥b,1 is a norm. Intuitively, the geometry induced by ∥·∥b,1 is the

same as the geometry induced by ∥ · ∥1 except some axes are stretched by an appropriate

96

amount. This should imply that the functions in Hb should not be more complicated than
the functions in H. We make this intuition more formal by arguing that we can map from
one setting to the other while preserving membership in the respective balls induced by
these norms. The following key lemma will imply that the pseudo-dimension of Hb is no
larger than the pseudo-dimension of H.

Lemma 4.5.10. Let Bb,1(x, r) = {y | ∥x− y∥b,1 ≤ r} and B1(x, r) = {y | ∥x− y∥1 ≤ r}
be the balls of radius r under each norm, respectively. There is a mapping ϕ : Rn → Rn

such that y ∈ Bb,1(x, r) if and only if ϕ(y) ∈ B1(ϕ(x), r).

Proof. Define ϕ(y)i = biyi for i = 1, 2, . . . , n. Now we have the following which implies the
lemma.

∥x− y∥b,1 =
∑
i

bi|xi − yi| =
∑
i

|bixi − biyi|

= ∥ϕ(x)− ϕ(y)∥1
Thus one of these is at most r if and only if the other is.

Now define the family of functions Hb,n = {fy : Rn → R | y ∈ Rn, fy(x) = ∥y − x∥b,1},
we have the following which is analogous to Lemma 4.3.16.

Lemma 4.5.11. The pseudo-dimension of Hb is at most the pseudo-dimension of Hb,n

Proof. Nearly identical to that of Lemma 4.3.16 but with ∥ · ∥1 replaced with ∥ · ∥b,1.

We can now prove that the pseudo-dimension of Hb is bounded by O(n log n).

Lemma 4.5.12. The pseudo-dimension of Hb is at most O(n log n).

Proof. By Lemma 4.5.11 we have that the pseudo-dimension of Hb is at most Hb,n. We
now show that the pseudo-dimension of Hb,n is at most the pseudo-dimension of Hn using
Lemma 4.5.10. Let x1, . . . , xk ∈ Rn be given. Now consider yj = ϕ(xj) for j = 1, . . . , k.
By Lemma 4.5.10 we can see that x1, . . . , xk are shattered by Hb,n if and only if y1, . . . , yk

are shattered by Hn. Thus the pseudo-dimension of Hb,n is at most Hn and then the
lemma follows by Theorem 4.3.17.

4.6 Conclusion and Future Work

In this work we showed how to use learned predictions to warm-start primal-dual algorithms
for weighted matching problems to improve their running times. We identified three key
challenges of feasibility, learnability and optimization, for any such scheme, and showed
that by working in the dual space we could give rigorous performance guarantees for each.
Finally, we showed that our proposed methods are not only simpler, but also more efficient
in practice.

An immediate avenue for future work is to extend these results to other combinatorial
optimization problems. The key ingredient is identifying an appropriate intermediate
representation: it must be simple enough to be learnable with small sample complexity,
yet sophisticated enough to capture the underlying structure of the problem at hand.

97

98

Conclusion

This dissertation considered problems under the themes of scalability via parallel and
distributed algorithms and algorithms with predictions.

In Chapters 1 and 2 we used approximation to give efficient parallel and distributed
algorithms for weighted longest common subsequence and divisive hierarchical clustering,
respectively. These are two widely used data analysis tasks for which there is a need to
scale to larger inputs and standard methods are difficult to parallelize. At a high level,
the use of approximations allowed us to overcome these difficulties.

In Chapters 3 and 4 we considered online makespan minimization with restricted
assignment and minimum cost bipartite matchings in the setting of algorithms with
predictions. In the former chapter, we define a prediction which consists of a positive
weight for each machine which implicitly defines a fractional assignment which can be
computed online. The fractional assignment gives a near optimal solution if the prediction
is accurate, going beyond worst-case lower bounds for the problem

Potential Future Work

In terms of parallel and distributed algorithms, there is a potential to develop a better
understanding of efficient distributed algorithms for hierarchical clustering. Much of the
interest in hierarchical clustering in recent years has been due to the development of
objective functions which try to capture properties of a “goood” hierarchical clustering [53,
146, 49, 147]. It is natural to aim for scalable algorithms which approximate these
objectives. Indeed for some objectives such as those in [49] and [146], this can be done
as it is known that the average-linkage algorithm gives an O(1)-approximation for these
objectives and there are efficient, approximate implementations of average-linkage [3, 102].

Thus a relevant question is to develop scalable algorithms which approximate these
other objectives. In particular, is there an O(poly(log n)) round MPC algorithm which
approximates the objective due to Dasgupta [53]? Standard sequential methods for this
problem are based on reductions to sparsest cut or convex programming relaxations, which
are difficult to adapt to the MPC setting.

In terms of algorithms with predictions, there are many possible directions to consider.
One direction concerns the types of predictions that we learn. In some sense, this
dissertation proposes learning a single “one size fits all” prediction from past problem
instances which is then used to help solve new instances of the problem. A more practical,
and potentially more effective approach might be to learn a mapping F , which takes in

99

some instance specific features and outputs a prediction that is more instance-specific.
This mapping would allow us to learn more complicated behaviour in the distribution over
inputs. Indeed, this is what machine learning models for supervised learning problems
attempt to do.

This direction may be challenging from both a theoretical and practical perspective,
so a natural starting point is to restrict the types of mappings. One such restriction
is to learn k different predictions from the past problem instances instead of a single
prediction, then apply the best of these to the new problem instance. Of course, we may
not immediately know which of the k predictions is the best for the new instance (in the
online setting, for example), so there will be some trade-off between the quality of the
k predictions and the performance of our algorithm as k increases. This question has
been studied in the data-driven algorithm design literature [29], which has studied the
sample complexity of learning k different predictions in several settings, but there are also
interesting algorithmic questions for incorporating multiple predictions into the design of
an algorithm and efficiently constructing the k different predictions from past problem
instances. For example, given k different predicted weight vectors for online makespan
minimization (as in Chapter 3), how do we aggregate the solutions given by these different
predictions online in order to be competitive with the best one in hindsight?

100

Bibliography

[1] Anders Aamand, Justin Y. Chen, and Piotr Indyk. (optimal) online bipartite
matching with predicted degrees, 2021.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time
hardness of LCS and other sequence similarity measures. CoRR, abs/1501.07053,
2015.

[3] Amir Abboud, Vincent Cohen-Addad, and Hussein Houdrouge. Subquadratic high-
dimensional hierarchical clustering. In NeurIPS, pages 11576–11586, 2019.

[4] A Aggarwal, MM Klawe, S Moran, P Shor, and R Wilber. Geometric applications
of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.

[5] Shipra Agrawal, Morteza Zadimoghaddam, and Vahab Mirrokni. Proportional
allocation: Simple, distributed, and diverse matching with high entropy. In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
99–108, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[6] Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer, and
C. Seshadhri. Self-improving algorithms. SIAM J. Comput., 40(2):350–375, 2011.

[7] CER Alves, EN Cáceres, and SW Song. A coarse-grained parallel algorithm for
the all-substrings longest common subsequence problem. Algorithmica, 45:301–335,
2006.

[8] CER Alves, EN Cáceres, and SW Song. An all-substrings common subsequence
algorithm. Discrete Applied Mathematics, 156(7):1025 – 1035, 2008.

[9] Amazon Web Services, 2022.

[10] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. A regression
approach to learning-augmented online algorithms. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

101

[11] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML predictions for
online algorithms. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 303–313. PMLR, 2020.

[12] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for
geometric graph problems. In STOC, 2014.

[13] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical founda-
tions. cambridge university press, 2009.

[14] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand
Simon. Online metric algorithms with untrusted predictions. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
345–355. PMLR, 2020.

[15] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary
and online matching problems with machine learned advice. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[16] Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin.
Efficient parallel algorithms for string editing and related problems. SIAM J. Comput.,
19(5):968–988, 1990.

[17] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing, 8(1):121–164,
2012.

[18] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line
routing of virtual circuits with applications to load balancing and machine scheduling.
J. ACM, 44(3):486–504, May 1997.

[19] Yossi Azar, Andrei Z. Broder, and Mark S. Manasse. On-line choice of on-line
algorithms. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual
ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, pages 432–440. ACM/SIAM, 1993.

[20] Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with
uncertain processing time. In Samir Khuller and Virginia Vassilevska Williams,
editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1070–1080. ACM, 2021.

102

[21] Yossi Azar, Joseph Seffi Naor, and Raphael Rom. The competitiveness of on-line
assignments. J. Algorithms, 18(2):221–237, March 1995.

[22] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with
predictions. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 35–66, 2022.

[23] David A. Bader and Guojing Cong. Fast shared-memory algorithms for computing the
minimum spanning forest of sparse graphs. J. Parallel Distrib. Comput., 66(11):1366–
1378, 2006.

[24] Maria-Florina Balcan. Data-driven algorithm design, 2020.

[25] Maria-Florina Balcan, Dan F. DeBlasio, Travis Dick, Carl Kingsford, Tuomas
Sandholm, and Ellen Vitercik. How much data is sufficient to learn high-performing
algorithms? CoRR, abs/1908.02894, 2019.

[26] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning
to branch. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 353–362. PMLR, 2018.

[27] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven
algorithm design, online learning, and private optimization. In Mikkel Thorup,
editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 603–614. IEEE Computer Society,
2018.

[28] Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via
parameterized lloyd’s families. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
pages 10664–10674, 2018.

[29] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization in
portfolio-based algorithm selection. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 12225–
12232. AAAI Press, 2021.

[30] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The power of optimization
from samples. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 4017–4025, 2016.

103

[31] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for
learning augmented algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[32] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee.
Learning-augmented weighted paging. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 67–89, 2022.

[33] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. J. ACM, 63(3):20:1–20:45, 2016.

[34] Mohammadhossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi
Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. Affinity
clustering: Hierarchical clustering at scale. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[35] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab S. Mirrokni.
Distributed balanced clustering via mapping coresets. In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2591–2599,
2014.

[36] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel
query processing. In Richard Hull and Wenfei Fan, editors, Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 273–284. ACM, 2013.

[37] Rajen Bhatt and Abhinav Dhall. Skin segmentation dataset, uci machine learning
repository, 2012.

[38] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W.
Mikkelsen. Online algorithms with advice: A survey. SIGACT News, 47(3):93–129,
August 2016.

[39] Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, streaming, and fine-grained
complexity of (weighted) LCS. In 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018, December
11-13, 2018, Ahmedabad, India, pages 40:1–40:16, 2018.

[40] Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of
longest common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 1216–1235, 2018.

104

[41] Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic
and adversarial bandits. In COLT 2012 - The 25th Annual Conference on Learning
Theory, June 25-27, 2012, Edinburgh, Scotland, pages 42.1–42.23, 2012.

[42] Jeremy Buhler, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. A scalable
approximation algorithm for weighted longest common subsequence. In Leonel Sousa,
Nuno Roma, and Pedro Tomás, editors, Euro-Par 2021: Parallel Processing - 27th
International Conference on Parallel and Distributed Computing, Lisbon, Portugal,
September 1-3, 2021, Proceedings, volume 12820 of Lecture Notes in Computer
Science, pages 368–384. Springer, 2021.

[43] Krisztian Buza. Feedback prediction for blogs. In Myra Spiliopoulou, Lars Schmidt-
Thieme, and Ruth Janning, editors, Data Analysis, Machine Learning and Knowledge
Discovery, pages 145–152, Cham, 2014. Springer International Publishing.

[44] Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1,ϵ))-restricted assignment
makespan minimization. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 1087–1101, 2015.

[45] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via
sparsest cut and spreading metrics. In SODA, 2017.

[46] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental
clustering and dynamic information retrieval. SICOMP, 33(6):1417–1440, 2004.

[47] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-
factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci.,
65(1):129–149, 2002.

[48] Antonia Chmiela, Elias Boutros Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian
Pokutta. Learning to schedule heuristics in branch and bound. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[49] Vincent Cohen-addad, Varun Kanade, Frederik Mallmann-trenn, and Claire Mathieu.
Hierarchical clustering: Objective functions and algorithms. J. ACM, 66(4), 2019.

[50] Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization.
In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 243–252, New York, NY, USA, 2014. ACM.

[51] Maxime Crochemore, Gad M. Landau, and Michal Ziv-Ukelson. A subquadratic
sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput.,
32:1654–1673, 09 2003.

105

[52] Samuel I. Daitch and Daniel A. Spielman. Faster approximate lossy generalized
flow via interior point algorithms. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 451–460. ACM, 2008.

[53] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In
STOC, 2016.

[54] Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: online keyword
matching with budgeted bidders under random permutations. In Proceedings 10th
ACM Conference on Electronic Commerce (EC-2009), Stanford, California, USA,
July 6–10, 2009, pages 71–78, 2009.

[55] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos
Zarifis. Learning online algorithms with distributional advice. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 2687–2696. PMLR, 2021.

[56] Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks
with power estimation. In Soviet Math. Doklady, volume 11, pages 1277–1280, 1970.

[57] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei
Vassilvitskii. Faster matchings via learned duals. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[58] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., 85(4):211–213, 2003.

[59] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
J. ACM, 61(1):1: 1–1: 23, 2014.

[60] Ran Duan and Hsin - Hao Su. A scaling algorithm for maximum weight matching in
bipartite graphs. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012, pages 1413–1424. SIAM, 2012.

[61] Paul Duetting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, and Sai Srivatsa
Ravindranath. Optimal auctions through deep learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 1706–1715. PMLR,
2019.

[62] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries
with advice. In Péter Biró, Shuchi Chawla, and Federico Echenique, editors, EC ’21:

106

The 22nd ACM Conference on Economics and Computation, Budapest, Hungary,
July 18-23, 2021, pages 409–429. ACM, 2021.

[63] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Cluster
analysis and display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences, 95(25):14863–14868, 1998.

[64] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using MapReduce.
In KDD, pages 681–689, 2011.

[65] Steven Fortune and James Wyllie. Parallelism in random access machines. In
Richard J. Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and
Alfred V. Aho, editors, Proceedings of the 10th Annual ACM Symposium on Theory
of Computing, May 1-3, 1978, San Diego, California, USA, pages 114–118. ACM,
1978.

[66] Harold N. Gabow. A scaling algorithm for weighted matching on general graphs. In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 90–100. IEEE Computer Society, 1985.

[67] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277,
2016.

[68] Andrew V. Goldberg and Robert Kennedy. Global price updates help. SIAM J.
Discret. Math., 10(4):551–572, 1997.

[69] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy
with expert advice. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 2319–2327. PMLR, 2019.

[70] Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-plane
scheme. Math. Program., 83:125–143, 1998.

[71] Jacek Gondzio and Pablo González-Brevis. A new warmstarting strategy for the
primal-dual column generation method. Math. Program., 152(1-2):113–146, 2015.

[72] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and
simulation in the mapreduce framework. In Takao Asano, Shin-Ichi Nakano, Yoshio
Okamoto, and Osamu Watanabe, editors, Algorithms and Computation - 22nd
International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011.
Proceedings, volume 7074 of Lecture Notes in Computer Science, pages 374–383.
Springer, 2011.

107

[73] Google Cloud Platform. https://cloud.google.com/, 2022.

[74] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster
analysis. Journal of the Royal Statistical Society. Series C (Applied Statistics),
18(1):54–64, 1969.

[75] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algo-
rithm selection. SIAM J. Comput., 46(3):992–1017, 2017.

[76] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised Learning,
pages 485–585. Springer New York, New York, NY, 2009.

[77] Katherine A. Heller and Zoubin Ghahramani. Bayesian hierarchical clustering.
In Machine Learning, Proceedings of the Twenty-Second International Conference
(ICML 2005), Bonn, Germany, August 7-11, 2005, pages 297–304, 2005.

[78] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. J. ACM, 33(3):533–550, 1986.

[79] John E. Hopcroft and Richard M. Karp. An n5/2-algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[80] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency
estimation algorithms. In 7th International Conference on Learning Representations,
2019.

[81] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods
for dynamic programming. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 798–811, 2017.

[82] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan Mitrovic, and Ronitt Rubinfeld.
Online page migration with ML advice. CoRR, abs/2006.05028, 2020.

[83] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651 – 666, 2010.

[84] Klaus Jansen and Lars Rohwedder. On the configuration-lp of the restricted assign-
ment problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2670–2678, 2017.

[85] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted
paging with predictions. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume
168 of LIPIcs, pages 69:1–69:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

108

https://cloud.google.com/

[86] Chen Jin, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and Alok N. Choud-
hary. Incremental, distributed single-linkage hierarchical clustering algorithm using
mapreduce. In HPC, 2015.

[87] Chen Jin, Ruoqian Liu, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and
Alok N. Choudhary. A scalable hierarchical clustering algorithm using spark. In Big
Data Computing Service and Applications, 2015.

[88] Neil Jones. An introduction to bioinformatics algorithms. MIT Press, Cambridge,
MA, 2004.

[89] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Comput. Geom., 28(2-3):89–112, 2004.

[90] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pages 938–948. SIAM, 2010.

[91] Alexander V Karzanov. On finding maximum flows in networks with special structure
and some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94,
1973.

[92] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17(3):447 – 474, 1994.

[93] Weiwei Kong, Christopher Liaw, Aranyak Mehta, and D. Sivakumar. A new dog
learns old tricks: RL finds classic optimization algorithms. In International Confer-
ence on Learning Representations, 2019.

[94] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case
for learned index structures. In Proceedings of the 2018 International Conference on
Management of Data, pages 489–504. ACM, 2018.

[95] Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient
active algorithms for hierarchical clustering. In Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012, 2012.

[96] Peter Krusche and Alexandre Tiskin. Efficient longest common subsequence com-
putation using bulk-synchronous parallelism. In Computational Science and Its
Applications - ICCSA 2006, International Conference, Glasgow, UK, May 8-11,
2006, Proceedings, Part V, pages 165–174, 2006.

[97] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955.

109

[98] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-
online bipartite matching. In 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages
50:1–50:20, 2019.

[99] Silvio Lattanzi, Thomas Lavastida, Kefu Lu, and Benjamin Moseley. A framework for
parallelizing hierarchical clustering methods. In Ulf Brefeld, Élisa Fromont, Andreas
Hotho, Arno J. Knobbe, Marloes H. Maathuis, and Céline Robardet, editors, Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings, Part I,
volume 11906 of Lecture Notes in Computer Science, pages 73–89. Springer, 2019.

[100] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Online scheduling via learned weights. In Shuchi Chawla, editor, Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1859–1877. SIAM, 2020.

[101] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering:
a method for solving graph problems in mapreduce. In Rajmohan Rajaraman and
Friedhelm Meyer auf der Heide, editors, SPAA 2011: Proceedings of the 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA,
USA, June 4-6, 2011 (Co-located with FCRC 2011), pages 85–94. ACM, 2011.

[102] Thomas Lavastida, Kefu Lu, Benjamin Moseley, and Yuyan Wang. Scaling average-
linkage via sparse cluster embeddings. In Vineeth N. Balasubramanian and Ivor W.
Tsang, editors, Asian Conference on Machine Learning, ACML 2021, 17-19 Novem-
ber 2021, Virtual Event, volume 157 of Proceedings of Machine Learning Research,
pages 1429–1444. PMLR, 2021.

[103] Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable
and instance-robust predictions for online matching, flows and load balancing. In
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European
Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), volume 204 of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[104] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming:
Solving linear programs in o (vrank) iterations and faster algorithms for maximum
flow. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 424–433. IEEE Computer
Society, 2014.

[105] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming, 46(1):259–271,
Jan 1990.

[106] M. Lichman. UCI ml repository, 2013.

110

[107] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine
learned advice. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 3302–3311, 2018.

[108] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine
learned advice. J. ACM, 68(4):24:1–24:25, 2021.

[109] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization
with uncertain information. ACM Trans. Algorithms, 8(1):2:1–2:29, 2012.

[110] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[111] Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords
and generalized online matching. J. ACM, 54(5):22, 2007.

[112] Microsoft Azure. https://azure.microsoft.com/en-us/, 2022.

[113] Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. Simul-
taneous approximations for adversarial and stochastic online budgeted allocation.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1690–1701,
2012.

[114] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sand-
wiching. In Advances in Neural Information Processing Systems, pages 464–473,
2018.

[115] Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[116] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In
Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms, pages
646–662. Cambridge University Press, 2020.

[117] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012.

[118] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 2(1):86–97,
2012.

[119] Vinod Nair, Dj Dvijotham, Iain Dunning, and Oriol Vinyals. Learning fast optimizers
for contextual stochastic integer programs. In Amir Globerson and Ricardo Silva,
editors, Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial

111

https://azure.microsoft.com/en-us/

Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 591–
600. AUAI Press, 2018.

[120] SB Needleman and CD Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Molecular Biology, 48:443–
453, 1970.

[121] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. opera.
Res., 41(2):338–350, 1993.

[122] James B. Orlin. Max flows in o(nm) time, or better. In Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing, STOC ’13, page 765–774, New
York, NY, USA, 2013. Association for Computing Machinery.

[123] James B. Orlin and Ravindra K. Ahuja. New scaling algorithms for the assignment
and minimum mean cycle problems. math. Program., 54:41–56, 1992.

[124] David Pollard. Convergence of stochastic processes. Springer Science & Business
Media, 2012.

[125] NHGRI Genome Sequencing Program. DNA sequencing costs: Data, 2017. https:
//www.genome.gov/sequencingcostsdata/.

[126] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via
ML predictions. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8
December 2018, Montréal, Canada., pages 9684–9693, 2018.

[127] S. Rajko and S. Aluru. Space and time optimal parallel sequence alignments. IEEE
Transactions on Parallel and Distributed Systems, 15(12):1070–1081, Dec 2004.

[128] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice.
In Symposium on Discrete Algorithms (SODA), 2020.

[129] Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge
University Press, 2020.

[130] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics.
In Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2316–2324, 2016.

[131] LMS Russo. Monge properties of sequence alignment. Theor. Comput. Sci., 423:30–49,
2012.

[132] http://jaligner.sourceforge.net/.

[133] https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library.

112

[134] https://github.com/Martinsos/opal.

[135] J Schmidt. All highest scoring paths in weighted graphs and their applications to
finding all approximate repeats in strings. SIAM J. Comput., 27:972–992, 1998.

[136] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized
assignment problem. Math. Program., 62:461–474, 1993.

[137] TF Smith and MS Waterman. Identification of common molecular subsequences. J.
Molecular Biology, 147(1):195–197, 1981.

[138] DJ States, W Gish, and SF Altschul. Improved sensitivity of nucleic acid database
searches using application-specific scoring matrices. METHODS: a companion to
Methods in Enzymology, 3:66–70, 1991.

[139] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document
clustering techniques. In In KDD Workshop on Text Mining, 2000.

[140] Ola Svensson. Santa claus schedules jobs on unrelated machines. SIAM J. Comput.,
41(5):1318–1341, 2012.

[141] A Tiskin. Semi-local string comparison: algorithmic techniques and applications, ch
6.1. https://arxiv.org/abs/0707.3619, 2013. v21.

[142] A Tiskin. Fast distance multiplication of unit-monge matrices. Algorithmica,
71(4):859–888, Apr 2015.

[143] Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly
linear time for dense instances. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 859–869, 2021.

[144] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 919–930. IEEE, 2020.

[145] Erik Vee, Sergei Vassilvitskii, and Jayavel Shanmugasundaram. Optimal online
assignment with forecasts. In David C. Parkes, Chrysanthos Dellarocas, and Moshe
Tennenholtz, editors, Proceedings 11th ACM Conference on Electronic Commerce
(EC-2010), Cambridge, Massachusetts, USA, June 7-11, 2010, pages 109–118. ACM,
2010.

[146] Joshua Wang and Benjamin Moseley. Approximation bounds for hierarchical clus-
tering: Average-linkage, bisecting k-means, and local search. In NIPS, 2017.

113

[147] Yuyan Wang and Benjamin Moseley. An objective for hierarchical clustering in
euclidean space and its connection to bisecting k-means. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 6307–6314. AAAI Press, 2020.

[148] Alexander Wei. Better and simpler learning-augmented online caching. In Jaroslaw
Byrka and Raghu Meka, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19,
2020, Virtual Conference, volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[149] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[150] Chenyang Xu and Benjamin Moseley. Learning-augmented algorithms for online
steiner tree. CoRR, abs/2112.05353, 2021.

[151] Hiroshi Yamashita and Takahito Tanabe. A primal-dual exterior point method for
nonlinear optimization. SIAM Journal on Optimization, 20(6):3335–3363, 2010.

[152] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of
complexity (extended abstract). In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977,
pages 222–227. IEEE Computer Society, 1977.

[153] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and
hardness for single-linkage clustering under lp distances. In ICML, 2018.

114

	Abstract
	Acknowledgments
	Introduction
	Parallel Approximation Algorithms for Weighted Longest Common Subsequence
	Introduction
	Preliminaries
	All-Substrings Weighted Longest Common Subsequence
	Divide-and-Conquer Strategy
	Approximation via Sketching
	Base Case Local Algorithm

	Analysis of Approximation and Runtime
	Quality of the Solution
	Running Time

	Distributed Algorithms for Hierarchical Clustering
	Introduction
	Preliminaries
	A Framework for Parallelizing Hierarchical Clustering Algorithms
	Algorithms and Theoretical Guarantees
	Distributed Divisive k-Clustering
	From Bounded Length Dependency Chains to Parallel Algorithms

	Online Load Balancing with Predictions
	Introduction
	Related Work

	Preliminaries
	Problem Definition and Notation
	ML Oracles
	Predictions for Online Scheduling

	A Robust Online Algorithm via Machine Weights
	Constructing Fractional Solutions Online Using Learned Weights

	Rounding Algorithm Overview
	Online Rounding Algorithm & Analysis
	Instance Transformation
	Rounding A Single Class of Large Jobs

	Lower Bounds for Online Rounding
	Deterministic Lower Bound
	Randomized Lower Bound
	Learning the Weights

	Existence of Weights for a Near Optimal Fractional Assignment
	Proof of Rounding Theorem
	Removing Knowledge of T

	Speeding up the Hungarian Algorithm with Learned Duals
	Introduction
	Our Contributions
	Related Work
	Roadmap

	Preliminaries
	Faster Min-Weight Perfect Matching
	Recovering a Feasible Dual Solution (Feasibility)
	Seeding Hungarian with a Feasible Dual (Optimization)
	Learning Optimal Advice (Learning)

	Experiments
	Running Time

	Extending to b-Matching
	Recovering a Feasible Dual Solution for b-Matching
	Converting a Feasible Dual Solution to an Optimal Primal Solution
	Learning the Dual Prices

	Conclusion and Future Work

	Conclusions
	Bibliography

