
On the Asset Pricing Implications of Incomplete

Information in Sovereign Debt Markets

by

Santiago Téllez Alzate

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Finance

Tepper School of Business

Carnegie Mellon University

Dissertation Committee:

Pietro Bonaldi (Co-Chair)

Burton Hollifield (Co-Chair)

Philipp Illeditsch

Karam Kang

Chester Spatt

May 2022



Copyright © 2022 Santiago Téllez Alzate

All Rights Reserved

1
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Abstract

In the first chapter, we investigate the asset pricing implications of disagreement about the unobservable

process that drives monetary policy. We construct a monetary economy with two investors who have

heterogeneous priors about the unobservable expected growth of money, namely, the underlying

monetary stance. The key friction is that information about this unobservable variable is symmetric

but incomplete. Investors estimate it from observed realizations of money supply in a Bayesian

framework. Investors value real money holdings intrinsically, which gives rise to a demand for

money. In equilibrium, the demand for money and investors’ estimates endogenously determine the

nominal short rates and expected inflation through a portfolio rebalancing channel. Disagreement

about money growth is one driver of the conditional variation in all nominal interest rates, expected

inflation, and inflation risk-premium. Through a parameterized example, we show that the volatility

of nominal interest rates tend to rise with increases in disagreement. We show that the relation

between disagreement about money growth and asset prices crucially depends on the persistence of

the unobservable growth rate of money. We further use the model to investigate the consequences

of allowing for heterogeneous interpretations of public information (e.g. central bank statements)

on interest rates. We introduce a public signal on which investors may have different views.

One steadfast investor believes the signal conveys relevant information about the unobservable

process, while a doubtful one believes it contains only noise. Depending on the persistence of the

unobservable process, interest rates may be more or less volatile in an economy populated by one

steadfast investor and one doubtful investor that in an economy with two doubtful investors.

In the second chapter, we propose a method to measure the importance of private information

about fundamentals as a determinant of market power in the primary market for sovereign debt.

The method is based on the estimation of a divisible good uniform price auction model presented

in Vives (2010, 2011). We establish conditions under which the model is identified from bidding

data. Through an application to the Colombian debt market, we show that private information

decreases and inventory costs rise after the rebalancing of two emerging markets debt indices.

These two findings have opposite effects on bid shading. The estimation results indicate that the

change in revenue for the treasury is lower than two basis points of the par value of the bond

offering. However, this result masks the economically meaningful impact that private information
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and inventory costs separately have on market power. We use the model estimates to quantify the

effect of these changes on bidders’ market power, and to evaluate the effectiveness of policies meant

to reduce borrowing costs.

Finally, in the third chapter, we provide model-free evidence that supports the estimated

reduction in the importance of private information and the increase in inventory costs from our

structural estimates. If bidders are privately informed in this market, then an auction’s cutoff price

would reflect bidders’ private information about fundamentals that were not already captured by

observable market prices. We show that auctions with high cutoff prices relative to a pre-auction

benchmark predict high future secondary market prices. After the rebalancing, this effect either

shrinks or vanishes altogether, consistent with a decline in the importance of private information.

Furthermore, we find higher mean-reversion in inventories after the rebalancing. On average, it

takes bidders 11.7 days to offload half of their inventories before the rebalancing, but only 7.5

days afterwards. Finally, we provide reduced-form evidence that is consistent with the assumptions

regarding primary market participation from the theoretical model and our empirical identification

and estimation strategies.
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Chapter 1

Disagreeing about money growth in a

monetary economy

1.1 Introduction

Over the past 30 years, and especially since the financial crisis in 2008, central banks have

increasingly relied on tools such as forward guidance to guide the market participants’ views on the

future path of interest rates and the unobservable monetary policy stance (Campbell et al., 2017).

Blinder et al. (2008) argue that “[N]owadays, it is widely accepted that the ability of a central

bank to affect the economy depends critically on its ability to influence market expectations about

the future path of overnight interest rates, and not merely on their current level.” In a similar

vein, King et al. (2008) assert that monetary policy is now mostly concerned about managing the

expectations of the private sector.

Nevertheless, these efforts to manage private sector’s views have not resulted in a concomitant

decrease in disagreement among investors about the future path of interest rates. Empirical

evidence indicates that interest rate expectations remain dispersed across market participants.

Andrade et al. (2019) report the presence of substantial heterogeneity in the inflation and Federal

Funds rate forecasts across participants in the Blue Chip Financial Forecasts survey. Similarly,

Caballero and Simsek (2020) document significant disagreement between The Fed’s predictions

and forward rates that are difficult to reconcile with traditional macroeconomic models. These

levels of disagreement are likely to bring important asset pricing implications. For instance, Ehling

et al. (2018) theoretically and empirically show that disagreement about inflation has a strong

impact on the yield curve.

This chapter owes a great debt to Burton Hollifield and Philipp Illeditsch for their guidance and insights. I would

also like to thank Pietro Bonaldi, Santiago de la Cuesta, Brent Glover, Bryan Routledge, and Chris Telmer for their

helpful advice and comments.
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Monetary authorities track the private sector’s view on monetary policy stance and interest rate

expectations. They are particularly interested in registering shifts in market views. For instance,

the New York Fed performs the Survey of Primary Dealers (SPD) and the Survey of Market

Participants that reads, “The objective of the Survey of Primary Dealers [. . . ] is to gain insight

into the expectations of primary dealer firms. [...] [R]espondents have been queried about their

expectations for the future level of the federal funds rate. [...] Survey results [...] are used by Federal

Reserve staff in their evaluations of market expectations for the economic outlook, monetary policy,

and the financial markets. [...] [O]ccasionally, the Desk asks respondents to update their responses

immediately following an FOMC meeting to gauge how expectations have changed in response to

new information.”1

Given these considerations, we argue that the development of a benchmark for evaluating

the asset pricing implications of disagreement about the monetary policy is desirable. In this

paper, we construct a monetary model to investigate the relation between interest rates, expected

inflation, and the underlying monetary policy stance. Our monetary model is embedded into an

exchange economy with exogenous paths for consumption and nominal money supply, both of

which are observable. By contrast, we assume that the expected growth rate of money supply is

an unobservable and stationary stochastic process. Investors use their heterogeneous priors and

observations of changes in the money supply to estimate the expected growth rate of money. In

the model equilibrium, the investors’ estimates, on which they base their investment decisions,

become the driver of the conditional variation in interest rates and expected inflation. Through

their dependence on the investors’ estimates, our model replicates the empirical relation between

short nominal interest rate and inflation.2

We relate the latent monetary policy stance to the unobservable expected growth rate of money

in our model.3 The latter may capture in reduced-form smooth changes over time of the underlying

monetary policy stance, as Campbell et al. (2014) and Song (2017) argue regarding the case in the

US. Intuitively, realizations of the nominal money supply contain relevant information from which

investors can learn about the conduct of monetary policy. The monetarist literature has highlighted

that changes in monetary aggregates indeed convey information about key unobservable variables,

which is not already contained in, for instance, changes in the nominal short rate (McCallum and

Nelson, 2010; Ireland, 2017).4

We assume that investors derive utility from consumption and real money holdings. The intra-

temporal rate of substitution between consumption and real balances creates an endogenous demand

1See https://www.newyorkfed.org/markets/survey_market_participants.html for details.
2The empirical relation between short nominal interest rates and inflation is what Carvalho and Nechio (2014)

call one of the basic principles underlying the Taylor rule
3King et al. (2008) assert that private agents do not know the underlying nature of the central banks’ policies.
4See section (1.2.5) for a thorough discussion on the validity of relating the underlying stance of the monetary

policy authority to the expected growth rate of money in our model.
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for real money balances. In turn, this optimality condition determines the nominal short rate,

namely, the nominally risk-free interest rate that investors earn from investing in a bank account.

Thus, the nominal short rate corresponds to the opportunity cost of holding money associated with

standard models of the demand for money, which completes our monetary economy.5 The price

level and interest rates in this economy endogenously adjust, so that the markets for consumption

and real balances clear for any consumption and nominal money supply path. Therefore, a portfolio

rebalancing channel arises endogenously in our model.

In a simple single-investor economy, the mechanism behind this channel is as follows: if the

investor forms a high estimate of the expected growth rate of money, she would prefer to borrow

to hold more real money balances today instead of tomorrow when her marginal utility will be

lower. For markets to clear, the nominal short rate needs to contemporaneously increase. The

higher interest she will earn will afford her to increase future consumption, thus raising expected

inflation. The level and conditional volatility of nominal interest rates across different maturities

are determined in turn by her estimates through her inter-temporal decisions. By contrast, the real

interest rates and the instantaneous inflation risk premium are constant.

To study the asset pricing implications of disagreement about money growth, we introduce

another investor into the economy. We assume that both investors observe the same public

information, but they have heterogeneous priors about the volatility of the unobservable expected

growth rate of money. Therefore, the key friction in the model is that information about the

monetary policy stance is symmetric but incomplete. Investors update their estimates of the

expected growth rate of money based on realizations of the money supply. However, their heterogeneous

priors result in the formation of heterogeneous estimates. Disagreement about money growth is

priced in the real and nominal state-price densities. In turn, it drives expected inflation, the

inflation risk premium, and nominal interest rates. In parameterized examples, we show that the

volatility of nominal interest rates tends to rise with increases in the absolute value of disagreement,

while the inflation risk premium is an increasing function of its level. The effect of disagreement

on the level of nominal interest rates is ambiguous. Crucially, we assert that the overall impact

of disagreement on asset prices hinges on the persistence of the expected growth rate of money.

In particular, the relation between disagreement and equilibrium volatility and risk premium is

weakened when the unobservable process is less persistent. In such case, investors’ estimates are

more heavily influenced by the long-run mean of the underlying process, on which both investors

agree, than by their respective heterogeneous estimates.

Our model can be adapted to investigate the effects of heterogeneous interpretations of public

information about the underlying monetary policy stance. For instance, central banks that attempt

to guide market views on the future path of interest rates rely on unconventional sources (e.g.,

5See McCallum (1989) for a comprehensive treatment on the subject. See Ireland (2009); Lucas Jr and Nicolini

(2015); Belongia and Ireland (2017) for recent works on the demand for real money holdings.
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statements, speeches, and the Fed dots, among others) to communicate policy-relevant information

to market participants. However, market participants may interpret the same information differently

because they have heterogeneous estimation models or priors (Andrade et al., 2019; Caballero

and Simsek, 2020; Sastry, 2021). Motivated by this argument, we further examine the effect

on our monetary model of introducing a public signal that conveys potentially useful and non-

redundant information about the unobservable expected growth rate of money. We assume that a

steadfast investor believes that the signal is informative. On the opposite side, a doubtful investor

believes that the signal conveys only noise. The steadfast investor’s estimate is then subject to

two countervailing forces. Due to her beliefs, she believes she learns about the expected growth

rate of money from observing the signal. Consequently, she strongly reacts to the signal when

updating her estimate of the underlying process and less strongly to the information conveyed

by changes in money growth. By contrast, the doubtful investor bases revisions to her estimate

solely on realizations of the latter. Hence, both investors have different estimation models and

heterogeneously interpret the same public information. The signal itself becomes a risk factor that

both investors are exposed to, despite that only the steadfast investor deems it informative.

We show in two parameterized economies that the nominal interest rates are higher in a mixed

economy with a steadfast and a doubtful investor than in an economy where both investors are

doubtful and there is no disagreement. The higher the credibility the steadfast investor attaches

to the signal, the higher the equilibrium nominal rates. However, this effect is economically

minor. By contrast, the informational tradeoff between money growth and signal stands out when

comparing the volatility of interest rates in both economies. When the unobservable process

is persistent, revisions to the steadfast investor’s estimate after observing the signal are less

pronounced than when it is less persistent. Thus, when the state of the economy is more persistent,

the volatility of nominal rates in the mixed economy is lower than the volatility in the economy

without disagreement and vice versa.

We conclude this section with a discussion of the related literature. The remainder of Chapter

I is organized into several sections. In Section (1.2), we introduce a single-investor economy to

investigate the portfolio rebalancing channel through which interest rates and expected inflation are

determined in the model. We proceed to describe the investor’s filtering problem and characterize

the model’s equilibrium. We conclude the section with an in-depth discussion on whether our

monetary economy is an appropriate model to study monetary policy. In Section (1.3), we introduce

another investor with different priors into the economy, thus producing an endogenous disagreement

variable. We discuss some general properties of the equilibrium of the disagreement economy and

some differences with respect to the single-investor economy. In Section (1.4), we calibrate the

model to study the single-investor and disagreement economies in more detail. We conclude with

a summary of our main results and a brief discussion on directions for future research.
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Related literature Our paper is closely related to the literature on asset prices and heterogeneous

beliefs. Ehling et al. (2018) and Xiong and Yan (2010) study the asset pricing impact of disagreement

about inflation. Ehling et al. (2018) focus on disagreement about the expected growth rate

of inflation, whereas Xiong and Yan (2010) examine disagreement about the long-run inflation

target. Buraschi and Whelan (2012) investigate the implications of disagreement about the long-

run expected growth rate of consumption and its implications on the term structure of interest

rates. Contrary to these works, our focus is on the nominal sector of the economy, especially on

the underlying monetary policy stance. In particular, by endogenizing the demand for real money

holdings, nominal interest rates in our model are jointly determined through a portfolio rebalancing

channel. Thus, nominal interest rates are not subordinated by real interest rates in our model.

Croitoru and Lu (2015) also explore the asset pricing implications of disagreement in a monetary

economy similar to ours. However, we allow for the expected growth rate of money to be governed by

a stationary and stochastic process. This feature makes the level and volatility of nominal interest

rates and expected inflation time-varying, regardless of whether investors have heterogeneous

beliefs. Importantly, we relate the expected growth rate of money to the underlying monetary

policy stance, which changes over time, as argued by Campbell et al. (2014) and Song (2017).

Moreover, our model can naturally accommodate the signaling information channel of monetary

policy documented by Melosi (2017). The heterogeneous confidence about the informativeness of

the public signal in our model is also related to the analysis of Sastry (2021). Other important

works in this literature include Scheinkman and Xiong (2003), Gallmeyer and Hollifield (2008),

Dumas et al. (2009), and Baker et al. (2016), although their focus is on the stock market and the

real sector.

In the macro-finance literature, Caballero and Simsek (2020) examine the disagreement about

the path of interest rates when markets are opinionated. Andrade et al. (2019) analyze monetary

models in which agents have heterogeneous priors. Their focus is on forward guidance announcements

about the future macroeconomic outlook and how they can potentially be interpreted differently

by the private sector. Agents’ disagreement in their models stems from aggregate demand and not

from the monetary policy stance, as in our model.

Our monetary model draws from a resurgent literature that emphasizes the interactions between

the demand for real money holdings and monetary policy. Lucas Jr and Nicolini (2015); Belongia

and Ireland (2016, 2017, 2019); Benati et al. (2021); Belongia and Ireland (2022) and Benati et

al. (2021) restore the demand for money to the academic debate about the conduct of monetary

policy. They construct new monetary aggregates that have a stable empirical relation with inflation

and interest rates. Belongia and Ireland (2022) argue that an explicit money growth rule delivers

similar results to those of standard interest-rate rules in terms of its capacity to stabilize inflation

and output. Furthermore, money growth rules are particularly relevant when the zero-lower

bound becomes binding. The focus of our paper is on asset prices as opposed to macroeconomic
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considerations.

Finally, the equilibrium of the single-investor economy shares some properties with some popular

single-factor interest rate models such as that of Cox et al. (1985). In the model equilibrium, the

nominal interest rates are non-negative, time-varying, and heteroskedastic in the state variable.

Our model has more parameters than Cox et al. (1985); thus, it can potentially allow for a rich

array of dynamics. An important difference with that literature is that the underlying state variable

is unobservable; hence, the driver in the conditional variation of the interest rates is the estimate

of the unobservable state as opposed to an observed variable.

1.2 A single-investor monetary economy

This section introduces a monetary economy where the price level, inflation and interest rates

are all determined endogenously. The framework throughout the paper is a continuous-time pure

exchange economy model. Uncertainty in the model is summarized by the filtered probability space

(Ω,F , {Ft} ,P). We first study a monetary economy with a single-representative investor (investor

i) who derives utility from a perishable consumption good and real cash balances. Assuming that

money enters directly the utility function of the investor can be rationalized by the the fact that

cash holdings facilitate consumption transactions using money. Models with money-in-the-utility-

function have been adopted by Bakshi and Chen (1996); Lucas (2001); Basak and Gallmeyer (2001);

Buraschi and Jiltsov (2005, 2007), and Balduzzi (2007), among others.

Before introducing disagreement, we introduce a the single-investor economy to gain a better

understanding on the properties of the equilibrium of our monetary economy. We investigate

the relation between the consumption, the demand for money, interest rates and prices with the

unobservable expected rate of money growth (i.e. monetary policy stance). Thus, we can isolate

the effects that disagreement itself introduces into the model equilibrium.

1.2.1 Model setup

The model has two sectors: real and nominal. The real sector is represented by a consumption

process denoted by C = (Ct), and the nominal sector consists of a nominal money process denoted

by M = (Mt) , where Mt is the dollar amount of total monetary aggregates held at time t. We

assume that aggregate consumption follows an exogenous processes of the form

dCt = Ct [µcdt+ σcdzc,t] . (1.2.1)

All the uncertainty in the real sector of this economy is driven by the Brownian motion process zc,t

which proxies for real shocks that affect consumption.
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As in Woodford (1995),Mt corresponds to investor i’s direct or indirect holdings of the monetary

base, namely, the sum of her currency holdings and deposits. We also refer to Mt as the nominal

money supply. Furthermore, we assume that Mt is governed by the following stochastic process

dMt = Mt [xtdt+ σmdzm,t] , (1.2.2)

where xt denotes the expected growth rate of money. We assume that xt follows an Ornstein-

Uhlenbeck process given by

dxt = κ (x− xt) dt+ σxdzx,t. (1.2.3)

Thus, xt drives the variation in the conditional expectation of the money supply growth. The

Brownian motions zc,t, zm,t and zx,t are uncorrelated by assumption.6 Furthermore, we assume

that the investor does not observe xt, although she knows it follows an Ornstein-Uhlenbeck process.

Moreover, she knows the persistence parameter κ and long-run mean x, but does not observe

the true volatility parameter σx. As argued later, κ plays a crucial role in the relation between

disagreement about money growth and the asset prices.

Throughout this paper we refer to the system of Eqs. (1.2.2)-(1.2.3) as monetary policy.

Furthermore, we indistinctly refer to Eq.(1.2.2) as the unobservable, underlying, or latent state of

the economy. The expected growth rate of nominal money supply is stochastic and stationary. The

exogeneity assumption is related to the monetarist literature, whereby traditionally the government

exogenously specifies the path of money supply (see Woodford (1995) and references therein). We

remit the reader to section (1.2.5) for a more thorough discussion on the appropriateness of our

notion of a monetary policy stance based on the model above.

1.2.2 Public signal and money growth

We introduce a public source of information similar to the one in Dumas et al. (2009); Xiong and Yan

(2010), but adapted to a monetary economy where the unobservable variable is the expected growth

rate of money. Concretely, the investor observes a public signal, st, that may convey information

about xt. The investor believes that the signal obeys the stochastic differential equation

dst = αidzx,t +
√
1− α2

i dzs,t, (1.2.4)

6We could assume, for instance, that consumption and nominal money supply are correlated by letting dzc,t affect

the dynamics of dMt. The model can easily be adapted to allow for this possibility, although the main results of

the paper would remain unaffected. We focus on the case where all three processes are uncorrelated for the sake of

clarity and tractability.
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where zs,t is a Brownian motion uncorrelated with zc,t, zm,t and zx,t. Investor i believes that

the signal st has a correlation parameter αi ∈ [0, 1] with the unobservable process xt through

their common dependence on the Brownian motion zx,t. Thus, αi is a subjective belief about the

informativeness of the signal. When αi → 1, investor i believes that the signal is perfectly correlated

with the innovation zx,t, and, thereby, she can infer the unobservable state of the economy by

observing a realization of the signal, st. Conversely, when αi → 0, investor i believes that st is pure

noise. Therefore, she believes it conveys no relevant information.

Intuitively, the signal captures that, besides observed changes in monetary aggregates, the

investor believes there are other sources from which she can learn about the unobservable process

that drives money growth. The alternative sources could be related to statements released by

central banks, speeches from board members, or explicit forward guidance, among others. Different

investors may have heterogeneous subjective beliefs about the degree of informativeness of the public

signal. Accordingly, they may react differently to the flow of information conveyed by the signal

(see section (1.3) for more details). Importantly, given that αi is a subjective belief by assumption,

the monetary authority does not have control over the informativeness of the signal. Rather, it is

taken for granted as an input.

Optimal filtering

Following standard filtering theory (see theorem 12.7, Liptser and Shiryaev, 2001), the money

supply dynamics under investor’s i beliefs are

dMt = Mt

[
xitdt+ σmdz

i
m,t

]
. (1.2.5)

Investor i’s optimal estimator of the expected growth rate xit has dynamics

dxit = κ
(
x− xit

)
dt+ ν̂imdz

i
m,t + ν̂isdst, (1.2.6)

where ν̂im and ν̂is are defined below. From Eqs. (1.2.5) and (1.2.6)

dzim,t =
1

σm

(
dMt

Mt
− xitdt

)
.

Therefore, zim,t is a surprise component of the change in money supply growth relative to the

estimate xit adjusted by σm. As new information about Mt becomes available, investor i updates

her estimate xit according to Eq. (1.2.6). We assume that the investor observes the money supply

process for a sufficiently long time such that the variance of her estimate,
(
ν̂im
)2

has reached its

steady state level.7 Therefore

ν̂im = σm

√κ2 + (σx,i
σm

)2 (
1− α2

i

)
− κ

 . (1.2.7)

7See Scheinkman and Xiong (2003); Dumas et al. (2009); Xiong and Yan (2010); Ehling et al. (2018).
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Investor i’s posterior variance is
(
ν̂im
)2
. It is a measure of the uncertainty she attaches to her

estimate xit. The parameter σx,i corresponds to the investor’s prior estimate of the unobservable

parameter σx. In turn, ν̂is measures investor i’s uncertainty about the informativeness of st about

xt with

ν̂is = σx,iαi. (1.2.8)

Investor i’s total uncertainty about xit is denoted by ν̂i with ν̂i ≡
√
(ν̂im)

2 + (ν̂is)
2. From Eqs.

(1.2.7) and (1.2.8), an increase in the correlation coefficient between the signal st and zx,t has two

opposite effects on ν̂i. On the one hand, a higher αi increases ν̂
i
s and the total perceived uncertainty

ν̂i. On the other hand, ν̂im and ν̂i fall as αi increases. Intuitively, higher values of αi imply that

the investor assigns a larger weight to the signal as a source of information about xt relative to her

own updating model. Thus, optimally she reacts less strongly to her own surprise zim,t and more

strongly to the signal. In the extreme case when the investor believes that αi = 1, then ν̂im = 0

and she would only update her estimate xit based on the public signal. On the other extreme, when

αi = 0, the investor believes that the signal is pure noise and she optimally ignores it, so that

ν̂is = 0. In contrast to αi, a higher estimate of σx,i raise ν̂
i through both, ν̂im and ν̂is.

8

1.2.3 Single investor problem

We assume that markets are complete. Investor i solves an infinite time horizon optimization

problem and derives utility from consumption and the real value of the monetary holdings, i.e.,

mt ≡Mt/Pt, where Pt is the unit dollar price of the consumption good. At time t the investor has

the opportunity to invest in a money account with nominal rate of return of Rt. Her optimization

problem is

sup
(Ct,mt)

E
[∫ ∞

0
e−ρtU (Ct,Mt/Pt)

]
s.t. E

[∫ ∞

0
ξt

(
Ct +

Mt

Pt
Rt

)
dt

]
≤W0, (1.2.9)

where ξt denotes the unique real state-price density.

The first-order condition of the problem with respect to consumption and money holdings are,

respectively

e−ρtUc (Ct,Mt/Pt) = yξt,

e−ρtUm (Ct,Mt/Pt) = yξtRt,

8Andrade et al. (2019) and Sastry (2021) also introduce monetary models where agents have heterogeneous priors.

19



where y is the Lagrange multiplier for the optimization problem. Combining the first-order conditions,

we obtain an expression for the nominal short interest rate

Rt =
Um (Ct,Mt/Pt)

Uc (Ct,Mt/Pt)
. (1.2.10)

The intuition for this result is straightforward: if an investor has an extra dollar, she can invest it

in the money account for which she will earn a nominal dollar interest of Rt. She may use these

earnings to purchase Rt
Pt

units of the consumption good. This action would raises her marginal

utility by Uc

(
Ct,

Mt
Pt

)
Rt
Pt
. Otherwise, she can keep the same dollar and have her utility increased

by Um

(
Ct,

Mt
Pt

)
1
Pt
. At the optimum, these increments must equate one another.

1.2.4 Equilibrium

An investment of one dollar at time t in the money account generates a continuous payment stream

at the rate of Rt dollars over time. The corresponding real investment at time t is 1/Pt and the real

dividend at time u is Ru/Pu for u ≥ t. Using the state-price density ξt to price this investment,

the following relation obtains

1

Pt
= Et

[∫ ∞

t

ξu
ξt

Ru
Pu

du

]
. (1.2.11)

Equation (1.2.11) may be interpreted as the familiar asset pricing equation, where the real price

of a unit of money (1/Pt) equals the expected present value of its implicit future dividends Ru
Pu

. In

this context, Ru
Pu

represents the real value of the transaction services provided by holding money.

By the definition of the state-price density ξt and the optimality condition for Rt (1.2.10), the

previous expression becomes

1

Pt
= Et

[∫ ∞

t
e−ρ(u−t)

Um (Cu,mu)

Uc (Ct,mt)

1

Pu
du

]
. (1.2.12)

As pointed out by Basak and Gallmeyer (2001), Eq. (1.2.12) is a backward stochastic differential

equation. For tractability, we assume that the investor has logarithmic utility given by

U (Ct,mt) = φ ln (Ct) + (1− φ) ln (mt) , 0 ≤ φ ≤ 1,

where φ is the share of expenditure on consumption.9 With this functional form, Eq. (1.2.12)

becomes

1

Pt
=

1− φ

φ
Et
[∫ ∞

t
e−ρ(u−t)

Ct
Mu

du

]
.

9Ireland (2004) shows that the estimated cross-derivative of consumption and real money holdings in a linearized

IS equation is close to zero. McCallum and Nelson (2010) argue that, in many cases, utility can be treated as

approximately separable in money and other arguments based on the previous study, among others.
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Re-arranging terms

1

Pt
=

1− φ

φ

Ct
Mt

∫ ∞

t
Et

[
e−ρ(u−t)

(
Mu

Mt

)−1
]
du. (1.2.13)

Using 1.2.13 and the dynamics forMt and xt in Eqs. (1.2.2) and (1.2.3), we calculate the equilibrium

price level and nominal short rate of this economy in the Proposition (1.2.1).

Proposition 1.2.1. The equilibrium price level and short nominal rate in the monetary economy

without disagreement are given, respectively, by

1

Pt
=

1− φ

φ

Ct
Mt

, (1.2.14)

Rt = Q
(
xit
)−1 ≥ 0, (1.2.15)

where Q
(
xit
)
≡
∫∞
t M

(
xit, u− t

)
du,

M
(
xit, u− t

)
= Et

[
e−ρ(u−t)

(
Mu

Mt

)−1
]
= exp

{
−A (u− t)− B (u− t)xit

}
, (1.2.16)

B (u− t) =
1

κ

(
1− e−κ(u−t)

)
, (1.2.17)

A (u− t) =

(
x−

(
ν̂i
)2

2κ2
− ν̂ix

κ

)
[(u− t)− B (u− t)] +

(
ρ− σ2m

)
(u− t) +

(
ν̂i
)2

4κ
B (u− t)2 . (1.2.18)

From Eq. (1.2.16), it can be seen that M
(
xit, u− t

)
≥ 0 for any xit, which implies that Q

(
xit
)

is non-negative.10 Re-arranging terms in Eq. (1.2.14) and combining with Eq. (1.2.15)

ln

(
Mt

Pt

)
= ln (mt) = constant + ln (Ct)− ln (Rt) . (1.2.19)

Eq. (1.2.19) has the natural interpretation of a demand for real money holdings: higher levels of

income (consumption in equilibrium) increase the demand for money, while high nominal interest

rates decrease it. The relation between Rt and mt is pinned down by Q
(
xit
)
, which in turn is a

function of xit. From Eq. (1.2.19), Q
(
xit
)
is proportional to the demand of real money holdings

per unit of income, which we refer to as the normalized demand for money hereafter. Therefore,

the normalized demand for money is in itself determined by the estimate xit. Suppose that investor

i infers that xt will be high, either due to a large realization of the nominal money supply, dMt,

or signal dst. According to Eq. (1.2.16), M
(
xit, u− t

)
must be lower. Therefore, the investor

optimally decides to reduce her real money holdings in period t, so that Q
(
xit
)
falls. For markets

10Observe that M
(
xit, u− t

)
is similar to the equilibrium bond price in the seminal interest rate model of Vasicek

(1977).
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to clear, the nominal short rate Rt must rise to induce the investor to substitute cash balances today

for nominal interest-bearing assets in the future. Thus, the nominal short rate in this economy is

the opportunity cost of holding cash at hand.

Eq. (1.2.1) shows that, in equilibrium, the nominal short rate is endogenously determined from

the optimality condition (1.2.10) and the processes (1.2.1), (1.2.2) and (1.2.3). From Eq. (1.2.15),

the estimate of the expected growth rate of money, xit, drives the time-variation in Rt.
11 Moreover,

given that
∂Q(xit)
∂xit

< 0, Rt is an increasing function of xit. Indeed, xit fully describes the dynamics

of all nominal interest rates and expected inflation in this economy.

Proposition 1.2.2. The dynamics of the price level, nominal short rate, and the real and nominal

state-price densities in the monetary economy without disagreement are

dPt
Pt

= πtdt+ ϕpcdzc,t + ϕpm,tdz
i
m,t + ϕps,tdst, (1.2.20)

dRt = µRt dt+ ϕRm,tdz
i
m,t + ϕRs,tdst, (1.2.21)

dξt
ξt

= −rdt− θcdzc,t, (1.2.22)

dξ$t
ξ$t

= −Rtdt− θ$m,tdz
i
m,t − θ$s,tdst, (1.2.23)

where ξ$t = ξt
Pt

is the unique nominal state-price density. The expected inflation rate, πt, and

the diffusion terms ϕpc , ϕ
p
m,t, and ϕpz,t are given by Eqs. (1.6.5), (1.6.6), (1.6.7), and (1.6.8),

respectively. The drift and diffusion terms µRt and ϕRz,t are given by Eqs. (1.6.9), and (1.6.10),

respectively. The real short rate, r, is given by r = ρ+ µc − σ2c and θc = σc. Finally, the nominal

short rate, Rt, and the nominal prices of risk θ$m,t and θ
$
s,t are given, respectively, by Eqs. (1.6.16),

(1.6.14), and (1.6.15) in the Appendix.

From Proposition (1.2.2), there are three risk factors in this economy: a real risk factor

associated with consumption, zc,t, and two nominal risk factors, zim,t and st, which are associated

with investor i’s adapted shock and the public signal, respectively. Therefore, whenever αi > 0,

the signal becomes another risk factor for which investor i requires compensation. In turn, the

real short rate, r, is constant and independent of the nominal parameter σm and of any realization

of xit. Moreover, the economy’s single real price of risk, θc, is constant, while the nominal risk

factors do not affect the real state-price density, ξt. Therefore, the monetary sector does not affect

consumption and other real variables the economy. This result is a consequence of the log-utility

assumption, which equalizes the substitution and income effects. In turn, the real risk factor is not

priced in by the nominal state-price density, ξ$t . Therefore, in the model’s equilibrium, the nominal

and real sectors of the economy are determined separately.

11For the sake of conciseness, we choose not to state the explicit dependence of Rt on xit unless necessary.
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Furthermore, the drift of the nominal state-price density must be equal to the short rate defined

in Eq. (1.2.15). Accordingly, as we show in the Appendix

Rt = ρ− σ2m + xit +
G
(
xit
)

Q
(
xit
) (κ (x− xit

)
− ν̂ix

)
−
(
ν̂i
)2
2

H
(
xit
)

Q
(
xit
) ,

where G
(
xit
)
and H

(
xit
)
are defined when proving proposition (1.2.2) in the Appendix.12 A higher

time discount increases the nominal short rate, whereas a higher value of σm lowers the nominal

rate due to risk-aversion, as in standard models. Furthermore, xit first has a linear impact on Rt.

When nominal money supply is expected to grow at a faster rate, it takes a larger Rt to induce the

investor to invest in the money account. This result is similar to the linear impact of an increase

in the expected growth rate of consumption, µc, on the short real rate, r, arising from the Euler

equation.

The remaining terms are adjustments accounting for the stochastic and unobservable nature of

xt. The first one of them is due to the mean-reversion of the estimate xit. For instance, a high

value of xit brings the process farther away from its long-run mean, x. As a result, xit is pulled

back towards x. The speed of mean-reversion is modulated by
G(xit)
Q(xit)

, which corresponds to the

negative of the elasticity of the demand for real cash balances to changes in xit.
G(xit)
Q(xit)

is bounded

below by zero and above by κ−1. The mean-reversion of Rt is large enough for Rt to never become

negative, even for very low values of xit.
13 Second, the steady-state volatility ν̂ix reduces Rt due to

the filtering problem that investor i faces when estimating xt. The last term comes from Jensen’s

inequality. It is determined by the steady-state posterior variance
(
ν̂i
)2

and
H(xit)
Q(xit)

. Therefore, Rt

is bounded above by xit plus a constant. Finally, due to the independent determination of the real

and nominal sectors, µc and σc do not influence the nominal short rate.

We observe from Eqs. (1.2.21) and (1.2.23) that the drift and diffusion terms in the dynamics of

the nominal short rate and state-price densities are a function of xit, and therefore, stochastic. Thus,

xt is a driver of the conditional expectation and variance of the nominal sector.14 We introduce a

discussion about the expected inflation rate, πt, in the comparative analysis of the model in section

(1.4).

Proposition 1.2.3. The instantaneous inflation risk premium in period t, IRPt, and the real and

12It can be shown that
G(xi

t)
Q(xi

t)
and

H(xi
t)

Q(xi
t)
are bounded below by zero and above by 1

κ
and 1

κ2 , respectively. Moreover,

they are inverted sigmoid functions of xit.
13This mechanism is similar to the pull in the widely used interest rate model from Cox et al. (1985), where the

interest rate can never become negative either. As can be seen from ϕR
m,t and ϕ

R
s,t in proposition (1.2.2), the stochastic

nature of the volatility of the nominal interest rate is another trait that our model shares with Cox et al. (1985).
14This result is not present in Croitoru and Lu (2015), where time-variation of the system arises only after the

introduction of disagreement.

23



nominal yield curves between periods t and τ , yt,τ and y$t,τ , are given, respectively, by

IRPt = σ2c , (1.2.24)

yt,τ = ρ+ µc − σ2c , (1.2.25)

y$t,τ = −
logQ

(
xit, τ

)
τ − t

+
logQ

(
xit
)

τ − t
, (1.2.26)

where Q
(
xit, τ

)
≡
∫∞
τ M

(
xit, u− t

)
du. Furthermore, the dynamics of the nominal yield curve are

dy$t,τ = µyt,τdt+ ϕym,t,τdz
i
m,t + ϕys,t,τdst. (1.2.27)

The diffusion terms ϕym,t,τ and ϕys,t,τ are equal to

ϕym,t,τ =
ν̂im
τ − t

(
G
(
xit, τ

)
Q
(
xit, τ

) − G
(
xit
)

Q
(
xit
)) , (1.2.28)

ϕys,t,τ =
ν̂is
τ − t

(
G
(
xit, τ

)
Q
(
xit, τ

) − G
(
xit
)

Q
(
xit
)) , (1.2.29)

where G
(
xit, τ

)
≡
∫∞
τ Bκ (u− τ)M

(
xit, u− t

)
du.

From Eq. (1.2.24), the instantaneous inflation risk premium is positive. Hence, investing in the

nominally risk-free money account is risky in real terms because the inflation rate is itself stochastic,

as can be seen from Eq. (1.2.20).15 Nevertheless, the instantaneous inflation risk premium is

constant and independent of xit, as is the real yield curve, yt,τ , for any τ ≥ t. These results are

a further consequence of the log-utility assumption, which implies that the cross-derivative of the

utility function with respect to consumption and real money holdings is zero (Bakshi and Chen,

1996).

In contrast, the nominal yield curve is time-varying and fully characterized by realizations of xit,

just like the nominal short rate. For τ > t, it follows from Eq. (1.2.26) and the definition ofQ
(
xit, τ

)
in proposition (1.2.3) that

∫∞
τ M

(
xit, u− t

)
du <

∫∞
t M

(
xit, u− t

)
du. Therefore, y$t,τ > 0 for any

realization of xit. Additionally, the diffusion terms of the nominal yield curve ϕym,t,τ and ϕys,t,τ are

in turn functions of xit, such that the instantaneous volatility of the yield curve is heteroskedastic.

It is difficult to state more general properties about the shape of the nominal yield curve and its

dynamics. Instead, we rely on a comparative numerical analysis of the level and volatility of the

nominal in the single-investor economy in section (1.4).

15The stochastic nature of the price level also implies that the Fisher relation between the short term nominal and

real interest rates does not hold in this economy.
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1.2.5 Discussion of monetary policy in the model

Thus far, we have refrained from discussing whether our model conforms to an appropriate framework

for the study of monetary policy. Our implicit assumption is that the monetary system, given

by Eqs. (1.2.2)-(1.2.3), constitutes a good proxy for the unobservable monetary policy stance.

In a seminal paper, Taylor (1993) argues that the Federal Reserve conducts monetary policy by

gradually adjusting the short-term nominal interest rate to changes in inflation and some measure of

the output gap. Since then, most work in the macroeconomics and macro-finance tradition develop

models with a production sector that study monetary policy under a Taylor rule. In contrast to these

works, our model is framed as an exchange economy where prices are determined endogenously,

whereas consumption (output in equilibrium) and nominal money supply are exogenous. This

assumption rules out any meaningful measure of the output gap that is directly derived from the

model.16

Instead, our model pertains to the monetarist and quantitative-theoretic tradition according

to which the aggregate measures of money play an important role in the conduct of monetary

policy. This literature emphasizes the importance of money as a monetary policy instrument over

the nominal short rate.17 Studies within this tradition argue that, to the extent that the relation

between money and prices or interest rates (i.e., the demand for real money holdings) is stable,

monetary policy should be tied to money growth targets.18

As shown in Eq. (1.2.19), a demand for real money holdings naturally arises in our model: for a

given level of consumption, the demand for money adjusts to changes in the nominal short rate. In

turn, the nominal short rate responds to variations in the expected growth rate of money supply,

xt. Even though investor i cannot directly observe xt, she knows it follows an Ornstein-Uhlenbeck

process. Investor i’s estimate, xit, inherits the stationarity of xt. Moreover, as argued in the previous

section, we know that Rt is bounded below by zero and above by xit plus a constant. Therefore,

the demand for real money holdings is stable. Given that the conditional variation in expected

inflation πt is in turn fully characterized by xit, a stable and positive relation between Rt and πt

also follows. Thus, our model is capable of replicating at least the first part of what Carvalho and

Nechio (2014) refer to as the basic principles underlying the Taylor rule: short nominal interest

rates tend to increase with inflation.

16In addition, it is unfeasible to introduce a Taylor rule in our model due to the estimation problem faced by

the investors. Standard filtering theory from Liptser and Shiryaev (2001) requires a state-space specification where

measure and state variables are already solved for. On the contrary, a Taylor rule establishes an explicit relation

between inflation and the nominal short rate, which are endogenous variables.
17Lucas Jr and Nicolini (2015) argue that one driver of the shift towards the nominal short rate as a policy

instrument was the deterioration of the stability of the empirical relations between monetary aggregates, prices, and

interest rates. They construct an updated monetary aggregate that accounts for changes in regulation that affected

the substitutability between cash and bank deposits.
18See Friedman (1988), McCallum (1989), Ireland (2017), among many others.
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We also assume that the expected growth rate of money, xt, is a stochastic and unobservable

process; hence, the nominal interest rates and expected inflation are, in turn, stochastic and time-

varying.19 This result is important because, as we argue in upcoming sections, the persistence of xt

exerts a substantial influence on the impact of disagreement on interest rates and inflation. As for

the unobservable nature of xt, McCallum and Nelson (2010) assert that under some circumstances,

money growth might produce more accurate signals about the unobservable monetary policy stance

than interest-rate rules. For instance, money growth may contain valuable information about the

unobservable natural rate of interest rates. They argue that monetary aggregates reveal relevant

information for future aggregate demand that is not conveyed by current output and interest

rates.20 While we only speculate that xt might be related to the natural rate of interest rates or

other latent variables containing pertinent information for future macroeconomic outcomes, the

filtering problem in Section (1.2.2) is consistent with the mechanism described by McCallum and

Nelson (2010).21 In particular, investors in our model learn about the unobservable process xt, the

sole driver of conditional variation in the economy, from the information revealed by money growth

over time. When producing her estimate, the investor accounts for the mean-reversion of xt, which

influences her expectations about the future path of money growth and interest rates.

Overall, we believe that our model constitutes a sensible starting point to investigate the asset

pricing implications of disagreement about monetary policy, to the extent that money growth is

indeed capable of capturing the latter. We certainly acknowledge the limitations of the answers

that our model can provide, given its simple setup as an exchange economy.

1.3 A monetary economy with disagreement

In this section, we introduce disagreement about monetary policy among investors. To this end,

we assume the existence of two investors who have heterogeneous beliefs about the dynamics of

the expected growth rate of the money xt. As before, we assume that both investors observe

Ct, with dynamics given by Eq. (1.2.1) and Mt, having the incomplete information filtration

19In reduced-form, the time-varying nature of xt may accommodate smooth changes in the policy stance of the

monetary authority. Campbell et al. (2014); Song (2017) document significant shifts in the aggressiveness of monetary

policy and inflation in the U.S. Malmendier et al. (2021) argue that decisions made by new appointees to the board

of the directors of a Central Bank may be substantially influenced by their previous experiences with inflation.
20Belongia and Ireland (2019) argue that interest-rate rules are of limited value to learn about the monetary policy

stance when the zero lower bound becomes a binding constrain on nominal short rates, as has been the case since

2008.
21Moreover, the asset pricing results in our model follow from the adjustment of the relative prices of real money

holdings, consumption, and bonds to the estimate xit. This result is consistent with the view of Allan Meltzer on the

monetary transmission mechanism, which relies on changes in relative prices and imperfect information. See Ireland

(2017) for a more thorough discussion of Allan Meltzer’s vast work on monetary policy and its implications for the

current academic and policy debate.
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FM
t ∈ Ft, t ∈ [0,∞). Furthermore, we assume that investors have equivalent probability measures

Pi, i ∈ {A,B}. We assume that both investors deduce σm from the quadratic variation of Mt, but

can only draw inferences about xt from realizations of Mt. Specifically, we assume that investors

know that xt follows an Ornstein-Uhlenbeck process as the one in Eq. (1.2.3), but they may have

different priors about the volatility of the expected growth rate of the money supply, which yields

different estimates about the process xt. Put differently, we assume that investors agree on the

long-run mean x and the speed of mean reversion κ in Eq. (1.2.3), but may have different beliefs

about σx, the volatility of the unobservable expected growth rate of money. Investor A knows

investor B’s estimate σx,B and vice versa. However, they believe that their own estimate is correct.

That is, they “agree to disagree.” We refer to this model as the disagreement economy for the

remainder of this paper.

1.3.1 Investor’s problem

Here, we recast the optimization problem (1.2.9) for investor i where i ∈ {A,B}. Now, the

information set on which every investor conditions their decisions are based on their own priors

and their estimates. The investor’s problem is very similar to the one from the single-investor

sup
(Ci,t,mi,t)

Ei
[∫ ∞

0
e−ρtU (Ci,t,Mi,t/Pt)

]
s.t. Ei

[∫ ∞

0
ξi,t

(
Ci,t +

Mi,t

Pt
Rt

)
dt

]
≤Wi,0. (1.3.1)

Assuming log-utility, the optimality conditions of the problem are

yiξi,t = φe−ρtC−1
i,t , (1.3.2)

yiξi,t = (Rt)
−1 (1− φ) e−ρtm−1

i,t , (1.3.3)

where yi is the Lagrange multiplier from the static budget constraint in investor i’s optimization

problem (1.3.1).

1.3.2 Sharing rules derivation

As in Basak (2005) and Ehling et al. (2013), the equilibrium sharing rules are derived using a

state-dependent representative investor with utility given by

U (Ct,mt, λt) = max
{CA,t+CB,t=Ct,mA,t+mB,t=mt}

[φ ln (CA,t) + (1− φ) ln (mA,t)] +

λt [φ ln (CB,t) + (1− φ) ln (mB,t)] ,

where λt > 0 is a stochastic welfare weight that captures the impact of disagreement among investors

on risk sharing. The equilibrium allocation must solve the representative investor’s problem above
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implying that

λt =
C−1
A,t

C−1
B,t

=
y1ξA,t
y2ξB,t

, (1.3.4)

where the second equality comes from the optimality individual condition in Eq. (1.3.2). For u > t,

the random variable λu, weighted by y2
y1
, is the Radon-Nikodym derivative of investor B’s beliefs

with respect to investor A’s beliefs; i.e., dPB

dPA .

From Girsanov’s theorem, innovations of investors A and B are linked by

dzBm,t = dzAm,t − ψtdt, (1.3.5)

where ψt =
xBt −xAt
σm

. ψt captures the level of disagreement between xBt and xAt per unit of uncertainty

of the nominal money supply. We also refer to ψt as the beliefs spread.

As pointed out by Basak (2005), since ψt follows directly from the exogenous endowment process

and investors’ priors, we may treat it as an exogenous parameter if we do not impose any equilibrium

restrictions on it.

Proposition 1.3.1. The dynamics of the stochastic weight λt are

dλt
λt

= ψtdz
A
m,t. (1.3.6)

Applying Ito’s lemma to ψt and re-arranging terms, we compute the dynamics of the disagreement

process

dψt = −βψtdt+ νψ,mdz
A
m,t + νψ,sdst, (1.3.7)

where β ≡ κσm+ν̂Bm,

σm
, νψ,m ≡ ν̂Bm−ν̂Am

σm
and νψ,s ≡ ν̂Bs −ν̂As

σm
, where ν̂im and ν̂is are defined in Eqs. (1.2.7)

and (1.2.8), respectively, for i ∈ {A,B}. The equilibrium consumption allocations for investors A

and B are given by

CA,t = f (λt)Ct, (1.3.8)

CB,t = (1− f (λt))Ct, (1.3.9)

where ft ≡ f (λt) =
1

1+λt
. The equilibrium consumption allocations for investors A and B are given

by

mA,t = f (λt)mt, (1.3.10)

mB,t = (1− f (λt))mt. (1.3.11)

The real state-price densities for investors A and B are, respectively

ξA,t
ξA,0

= e−ρt
(
f (λt)

f (λ0)

)−1(Ct
C0

)−1

, (1.3.12)

ξB,t
ξB,0

= e−ρt
(
1− f (λt)

1− f (λ0)

)−1(Ct
C0

)−1

. (1.3.13)
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The stochastic weighting process λt captures the impact of disagreement about the money

growth process on the equilibrium allocations. The uncertainty of λt is driven by the adapted

nominal shock zAm,t, while Eq. (1.3.5) links zAm,t and z
B
m,t. The disagreement process, ψt, obeys an

Ornstein-Uhlenbeck process with long-run mean equal to zero. The diffusion terms νψ,m and νψ,s

depend on the steady-state posterior variances
(
ν̂im
)2

and
(
ν̂is
)2

for i ∈ {A,B}.22 For disagreement

to persist over time, either ν̂Am ̸= ν̂Bm or ν̂As ̸= ν̂Bs . Therefore, investors must have different estimates

about the volatility of xt (i.e., σx,A ̸= σx,B) or about the informativeness of the public signal st (i.e.,

αA ̸= αB). Otherwise, the disagreement process ψt becomes deterministic, as can be seen from Eq.

(1.3.7). For the remainder of this paper, unless stated otherwise, we assume that σx,A ̸= σx,B or

αA ̸= αB, so that ψt is stochastic.

Suppose that σx,A > σx,B, so that investor A has a higher prior estimate of the volatility of xt

than B. Therefore, ν̂Am > ν̂Bm and νψ,m < 0. If investor A observes a large and positive dMt that is

difficult to reconcile with her previous estimate xBt , she would interpret it as a large money surprise

dzAm,t. Then, she would revise her estimate xAt upwards, thereby decreasing dψt. Thus, investor A

becomes relatively more optimistic about xt.
23 Alternatively, suppose that αA = 0, αB > 0. Thus,

investor B believes that the signal conveys relevant information about xt, whereas A believes it is

pure noise, which implies that νψ,s = ν̂Bs > ν̂As = 0. A positive dst then means that investor B infers

good news about the unobservable expected growth rate of money from the signal. Consequently,

she revises her estimate xBt upwards such that dψt rises in turn. Accordingly, investor B becomes

relatively more optimistic about xt.

1.3.3 Equilibrium

The asset pricing equation that values an investment of one dollar in real terms under investor i’s

beliefs is

1

Pt
= Eit

[∫ ∞

t

ξi,u
ξi,t

Ru
Pu

du

]
, i ∈ {A,B} . (1.3.14)

Combining the first-order conditions (1.3.2) and (1.3.3), we obtain the optimality condition for the

nominal short rate Rt

Rt =
1− φ

φ
Ci,t

(
Mi,t

Pt

)
.

Inserting the previous equation into Eq. (1.3.14), we obtain an analogous equation to (1.2.13)

under the beliefs of investor i, where the price level is determined by

1

Pt
=

1− φ

φ
Eit
[∫ ∞

t
e−ρ(u−t)

Ci,t
Mi,u

du

]
, i ∈ {A,B} . (1.3.15)

22See Section (1.2.2) for details on the derivation of the optimal filtering problem faced by investor i.
23We adopt the term optimistic for convenience to indicate that the expected growth rate of money is expected to

rise. We employ the term pessimistic conversely.
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Specifically, under the beliefs of investor A the equation above becomes

1

Pt
=

1− φ

φ
EAt
[∫ ∞

t
e−ρ(u−t)

CA,t
M1,u

du

]
.

Proposition 1.3.2. The equilibrium price level and nominal short rate are, respectively

Pt =
φ

1− φ
Q
(
xAt , x

B
t , λt

)−1
(
Ct
Mt

)−1

, (1.3.16)

Rt = Q
(
xAt , x

B
t , λt

)−1 ≥ 0, (1.3.17)

where Q
(
xAt , x

B
t , λt

)
≡
∫∞
t

(
ftM

(
xAt , u− t; ν̂A, ν̂Ax

)
+ (1− ft)M

(
xBt , u− t; ν̂B, ν̂Bx

))
du and

M
(
xAt , u− t; ν̂A, ν̂Ax

)
≡ Eit

[
e−ρ(u−t)

(
Mu
Mt

)−1
]
is defined in Eq. (1.6.17) for i ∈ {A,B}.

From Proposition (1.3.2), Q
(
xAt , x

B
t , λt

)
can be decomposed into two components

Q
(
xAt , x

B
t , λt

)
= ftQ

(
xAt ; ν̂

A, ν̂Ax
)
+ (1− ft)Q

(
xBt ; ν̂

B, ν̂Bx
)
, (1.3.18)

where Q
(
xit
)
≡
∫∞
t M

(
xit, u− t; ν̂i, ν̂ix

)
du for i ∈ {A,B}.24 Suppose that investor B estimates

a high xt in period t. For the reasons discussed in the single-investor economy in section (1.2),

this means that Q
(
xBt
)
would be low. Then, from Eqs. (1.3.17) and (1.3.18), the nominal short

rate in the disagreement economy rises in turn. Q
(
xit
)
is proportional to the normalized demand

for real cash balances in an economy entirely populated by investor i. Therefore, Q
(
xAt , x

B
t , λt

)
is proportional to the weighted-average of the demand for money that would prevail in the single-

investor economies of A and B, where the weights of both investors are given by the sharing rules ft

and 1−ft, respectively. To facilitate the comparison between the single-investor economy in section

(1.2) and the disagreement economy in this section, table (1.1) draws a mapping between some of

the auxiliary variables in the single-investor economy and their corresponding counterparties in the

disagreement economy. The latter are, in turn, averages of hypothetical single-investor economies

weighted by the sharing rules.

We proceed to compute the dynamics of the price level, nominal short rate, and the real and

nominal state-price densities of the disagreement economy in proposition (1.3.3). Then, we compare

the results to those of the single-investor economy laid out in section (1.2).

Proposition 1.3.3. The dynamics of the price level, nominal short rate, and nominal and real

state-price densities are

dPt
Pt

= πtdt+ ϕpcdzc,t + ϕpm,tdz
A
m,t + ϕPs,tdst, (1.3.19)

dRt = µRt dt+ θRm,tdz
A
m,t + θRs,tdst, (1.3.20)

dξA,t
ξA,t

= −rdt− θcdzc,t − θm,tdz
A
m,t, (1.3.21)

dξ$A,t

ξ$A,t
= −Rtdt− θ$m,tdz

A
m,t − θ$s,tdst, (1.3.22)

24We omit the explicit dependence of Q
(
xit
)
on the posterior variances ν̂i, ν̂ix for the sake of conciseness.
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where ξ$A,t =
ξA,t

Pt
is investor A’s nominal state-price density. The expected inflation rate, πt, and

the diffusion terms ϕpc,t, ϕ
p
m,t, and ϕ

p
s,t are given by Eqs. (1.6.29), (1.6.30), (1.6.31), and (1.6.32),

respectively. The drift and diffusion terms µRt , ϕ
R
m,t and ϕ

R
s,t are given by Eqs. (1.6.34), (1.6.35),

and (1.6.36), respectively. The real short rate, r, and the real prices of risk, θc and θm,t, are given

respectively by r = ρ+ µc − σ2c , θc = σc, and θm,t = − (1− ft)ψt. The nominal short rate, Rt, and

the nominal prices of risk θ$m,t and θ
$
s,t, a vector of nominal prices of risk are given, respectively,

by Eqs. (1.6.40), (1.6.41), and (1.6.42) in the Appendix.

There are similarities and differences between the single-investor economy and the disagreement

economy above. First, the same three risk factors are present in the disagreement economy.

Furthermore, the real short interest rate and the single real risk factor are also constant. However,

the nominal risk factor zAm,t now affects the real-state price density, with time-varying price of risk

measured by θm,t. Intuitively, disagreement about the money growth process leads to beliefs about

the state of the economy and sharing rules that fluctuate over time. Given that the sharing rules

determine real cash balances and consumption allocations, the prices of the risky real assets of this

economy (e.g. stocks) are indeed impacted by the level of disagreement in the economy. This result

is also present in Ehling et al. (2018) even with log-utility.

Before continuing with the analysis the impact of disagreement on the dynamics of the variables

in proposition (1.3.3), we discuss the disagreement adjustment term Ψ
(
xAt , x

B
t , λt

)
defined in Eq.

(1.6.21). We call it a disagreement adjustment because it affects the level of the nominal short rate,

expected inflation, and the instantaneous inflation risk premium. In turn, it impacts the diffusion

terms of the dynamics of the price level, the nominal short rate, state-price density and yield curve.

Suppose that xBt > xAt , such that ψt > 0. Thus, M
(
xAt , u− t; ν̂A, ν̂Ax

)
< M

(
xBt , u− t; ν̂B, ν̂Bx

)
when ν̂A and ν̂B are of similar magnitude.25 By construction, it then follows that D

(
xAt , x

B
t

)
< 0.

When xBt < xAt and ψt < 0, following an analogous reasoning it can be shown that D
(
xAt , x

B
t

)
>

0. Therefore, regardless of the sign of ψt, when xAt ̸= xBt it is the case that ψtD
(
xAt , x

B
t

)
<

0. Furthermore, the disagreement adjustment term depends on the product of the sharing rules

(1− ft) ft, which is maximized at ft = 0.5, that is, when both investors have an equal share of the

endowment processes.

The drift of the dynamics of ξ$A,t, given by Eq. (1.6.13), must coincide with the nominal short

rate in Eq. (1.3.17). From table (1.1) and Eq. (1.6.40), we observe that all but the last two terms

of the nominal short rate in the disagreement economy correspond to weighted-averages of the

nominal short rates in hypothetical single-investor economies. The last two terms are θm,t, whose

sign depends on ψt, and Ψ
(
xAt , x

B
t , λt

)
, where the latter tends to lower the nominal short rate. Both

terms stem from the disagreement about xt. They imply that, in general, the equilibrium nominal

25We show this in section (1.4) for some parameterized example.

31



short rate in the disagreement economy does not equal the weighted-average of the nominal short

rates of the single-investor economies. Unless, ψt = 0, this result is at odds with that of Xiong and

Yan (2010). In fact, the presence of these two terms induce additional volatility of the nominal

interest rate not present in Xiong and Yan (2010). In sum, the overall effect of disagreement on

the nominal short rate is ambiguous.

Finally, we compare the diffusion terms in proposition (1.3.3) to those from weighted-averages of

single-investor economies in table (1.1). Given that investors agree on the consumption process and

the public signal (although they may have heterogeneous subjective beliefs about its informativeness),

the disagreement adjustment term Ψ
(
xAt , x

B
t , λt

)
does not appear in the diffusion terms associated

with them. Therefore, the diffusion terms associated with consumption and public signal correspond

to weighted-averages of hypothetical single-investor economies, as can be seen in table (1.1). On

the contrary, it appears in the diffusion terms associated with investor A’s adapted shock zAm,t,

even in the case of the real state-price density. Therefore, any effect of the beliefs spread ψt on

the volatility of the variables of interest arises from Ψ
(
xAt , x

B
t , λt

)
, θm,t, and z

A
m,t. We revisit the

analysis of the volatility of the short rate in section (1.4).

Proposition 1.3.4. In the economy with disagreement, the instantaneous inflation risk premium

in period t, IRPt, and the real and nominal yield curves between periods t and τ , yt,τ and y$t,τ , are

IRPt = σ2c + θm,t

[
−σm −

G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) +Ψ
(
xAt , x

B
t , λt

)]
, (1.3.23)

yt,τ = ρ+ µc − σ2c , (1.3.24)

y$t,τ = −
logQ

(
xAt , x

B
t , λt, τ

)
τ − t

+
logQ

(
xAt , x

B
t , λt

)
τ − t

, (1.3.25)

where Q
(
xAt , x

B
t , λt, τ

)
≡
∫∞
τ

(
M(xAt ,u−t;ν̂A,ν̂Ax )+λtM(xBt ,u−t;ν̂B ,ν̂Bx )

1+λt

)
du. Furthermore, the nominal

yield curve has dynamics

dy$t,τ = µyt,τdt+ ϕym,t,τdz
1
m,t + ϕys,t,τdzs,t, (1.3.26)

with

ϕym,t,τ =

(
1

τ − t

)[G (xAt , xBt , λt, τ ; ν̂m)
Q
(
xAt , x

B
t , λt, τ

) −
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) ]
−

ft (1− ft)ψt
τ − t

[
−D

(
xAt , x

B
t , τ

)
+D

(
xAt , x

B
t

)]
, (1.3.27)

ϕys,t,τ =

(
1

τ − t

)[G (xAt , xBt , λt, τ ; ν̂s)
Q
(
xAt , x

B
t , λt, τ

) −
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) ] , (1.3.28)

with G
(
xAt , x

B
t , λt, τ ; ν̂l

)
for l ∈ {m, s}, and D

(
xAt , x

B
t , τ

)
are given by Eqs. (1.6.43) and (1.6.44),

respectively.
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Contrary to the single-investor economy, the instantaneous inflation risk premium is time-

varying in the disagreement economy. Despite the log-utility assumption, investors require a

compensation to invest in nominal bonds over real bonds. The compensation varies with their

estimates of the unobservable money growth process xt. As expected, Ψ
(
xAt , x

B
t , λt

)
affects the

inflation risk premium, with its total effect being multiplied by θm,t, whose sign depends on sign of

ψt so there is an ambiguous prediction about the impact of Ψ
(
xAt , x

B
t , λt

)
on IRPt. Instead, suppose

that ψt > 0 such that investor B is more optimistic about xt than A. Thus, θm,tΨ
(
xAt , x

B
t , λt

)
would

tend to be positive, thus increasing the inflation risk premium. Intuitively, from the standpoint

of investor A, who is relatively more pessimistic about xt than B, it takes a higher inflation risk

premium to induce her to invest in nominal bonds. If ψt < 0, then the opposite result obtains.

Moreover, if the economy experiences a positive shock to money supply growth, then investor B

would confirm her more optimistic view on xt, thereby increasing her weight 1− ft, which in turn

affects θm,t. This feedback exacerbates the effect of the initial bet about xt between investors A

and B.

As in the single-investor economy, the real yield curve is constant and flat. In contrast, it is

immediately seen from Eq. (1.3.25) that the nominal yield curve is a function of disagreement.

We draw a similar conclusion regarding its conditional volatility from the diffusion terms in Eqs.

(1.3.27) and (1.3.28).

1.4 Calibration and comparative analysis

We calibrate the model to examine the equilibrium of the economies in Sections (1.2) and (1.3).

The parameters are selected to be roughly consistent with those in Ehling et al. (2013, 2018). The

model’s calibration is summarized in Table (1.2). Throughout this section, we focus our analysis on

three key parameters, namely κ, σx,i, and αi. The persistence parameter κ is known by investors,

whereas σx,i is an estimate of the volatility of the unobservable process xt. In turn, αi is the

subjective belief about the correlation between the public and xt according to investor i. Given

the importance of these three parameters in our model, we allow them to vary across exercises.

Consequently, they are not necessarily set at the values in Table (1.2).

In Section (1.4.1), we first evaluate the impact of the parameters of interest on the level of the

nominal interest rates and expected inflation, and the volatility of nominal interest rates in the

single-investor economy. In Section (1.4.2), we assume that investors A and B disagree about their

estimates σx,i but express the same beliefs about αi. In Section (1.4.2) we assume that investors

disagree about αi but have the same estimate σx,i.

33



1.4.1 Single-investor economy

In this section, we analyze the equilibrium of the single-investor economy characterized in Propositions

(1.2.2) and (1.2.3). We focus on the estimate of the expected growth rate of money, xit, because it

is the sole driver of conditional variation in this economy. We calculate the model equilibrium for

the variables of interest as a function of xit. The domain of xit is set within two standard deviations

below and above its unconditional mean, x in Eq. (1.6.2), for u≫ t.

Figure (1.1) plots the nominal short rate, Rt, and expected inflation rate, πt as a function of

xit across multiple values of three key parameters of interest: κ, σx,i, and αi. Regardless of the

parameter of choice, Rt and πt are both increasing in xit. When investor i infers that money supply

will grow at a faster pace in the future, she will lower her demand for real money holdings today

relative to tomorrow. For markets to clear, Rt must increase. From the optimality condition in

Eq. (1.2.10), the interest to be earned in the future from the reduction in her cash balances in

t, will result in additional future consumption, such that πt increases in turn. Moreover, Rt is a

non-negative convex function of xit. For high realizations,
G(xit)
Q(xit)

, the elasticity of the demand for

real money holdings to xit, approaches zero and Rt becomes approximately linear in xit.

In turn, reducing the persistence of xt, flattens the responsiveness of Rt and πt to the estimate xit.

For high levels of κ, the future values of the expected growth rate will likely be close to x and, thus,

will be less influenced by the current latent state of the economy, xt. In the limit, as κ increases,

Rt and πt become flat because xit would be set at x at all times regardless of the shocks that hit the

economy. Furthermore, increasing the estimate σx,i of the volatility parameter σx shifts the nominal

short rate down across all xit. Thus, in an economy where the investor has more uncertainty about

the volatility of xt, she will prefer to invest more money in the bank account. This effect results in

lower values of Rt. She subsequently substitutes real cash balances for consumption, the expected

growth rate of which is constant and observable, thus raising expected inflation. Finally, the higher

the level of αi, the higher the nominal interest rate Rt across all x
i
t. When investor i believes that

the public signal conveys valuable information about xt, she is less willing to invest in the money

account. Thus, for markets to clear, the nominal short rate increases and the expected inflation

falls. Intuitively, according to Eq. (1.10), higher values of αi reduce ν̂x, the risk adjustment due

to the unobservable nature of xt. Although Rt increases in equilibrium, this effect is economically

negligible.

From Figure (1.2), we observe that the instantaneous volatility of the nominal short rate is an

increasing function of xit. Furthermore, the nominal short rate becomes more volatile as κ rises. As

for the uncertainty parameter σx,i, we know that more uncertainty unambiguously results in higher

posterior variance
(
ν̂im
)2
, which in turn shifts upwards the volatility curve of Rt for any x

i
t. In turn,

increases in αi reduce the investor’s posterior variance
(
ν̂im
)2
, but instead increase

(
ν̂is
)2

. Thus,

the investor responds more strongly to any realization of the public signal. In the equilibrium, the
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increase in
(
ν̂is
)2

more than offsets the reduction in
(
ν̂im
)2
, and volatility rises with αi for any x

i
t.

We plot in Figure (1.3) the nominal yield curve between t and τ for two levels of xit: low and

high, which correspond to values below and above x, respectively. The first important result is that

the slope of the yield curve is a function of the estimate xit. In particular, when xit is low relative to

x, the yield curve is upward-sloping, whereas it is downward-sloping for high values of xit relative to

x. Intuitively, when xit is low, the nominal short rate is concomitantly low for the reasons discussed

above. In addition, given that the expected growth rate of money is mean-reverting, the investor

expects that xit will be pulled up towards the long-run mean in τ > t. Thus, the nominal interest

rate between t and τ is expected to rise in the future, such that the yield curve slopes upwards.

Larger deviations of xit from x imply stronger pulls towards the long-run mean, thereby further

raising its slope. Conversely, when xit is high, the investor expects the growth rate of money to be

pulled down to x, and the opposite result for the slope of the yield curve follows. We also observe

that larger values of κ make the yield curve less responsive to xit. Additionally, more uncertainty

σx,i shifts downward the yield curve for all τ ≥ t, and a higher degree of confidence αi has the

opposite effect. As these three effects are analogous to those above alluding to the nominal short

rate, so we do not reiterate the same discussion here for the sake of briefness.

We conclude this section by analyzing the instantaneous volatility of the yield curve between

t and τ for low and high levels of xit in Figure (1.4). The main takeaway is that the volatility is

decreasing in the horizon of the yield curve, regardless of the parameter configuration. Moreover,

higher estimates xit increase the volatility of the interest rates between τ and t. The impact

of varying the three parameters of interest on the instantaneous volatility of the yield curve is

analogous to that of the volatility of the nominal short rate.

1.4.2 Disagreement economy

In this section, we first explore the asset pricing implications of disagreement when one investor is

more confident than the other one regarding the uncertainty parameter (σx,B < σx,A). We then

examine a scenario where investor B believes that the public signal is informative, but investor A

does not (i.e., αB > 0, αA = 0). This comparative analysis is based on the disagreement economy

described in Section (1.3).

Investors A and B must have different priors about the volatility of the expected growth rate

of money supply or the informativeness of the signal. If they had the same priors, then they

would converge to the same beliefs about xt for any initial level of disagreement, as can be seen in

Eq. (1.3.7). For the remainder of this paper, without loss of generality, we adopt the convention

that investor B is either more confident, in which case σx,B < σx,A, or assigns a larger credibility

to the signal, such that αB > αA. Furthermore, as previously argued, ψt directly follows from

the exogenous endowment process and investors’ priors; hence, it can be treated as an exogenous
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variable. Additionally, conditional on information up to period t, the stochastic weighting λt is itself

a state variable that determines the investors’ consumption and real money holdings allocations

through the sharing-rule f (λt), which endogenously fluctuates between zero and one. Thus, in

the disagreement economy, the set of state variables expands to include ψt and f (λt). In the

parameterized economy, we construct a grid for ψt within two standard deviations below and above

zero, the unconditional mean of ψt (see Eq. (1.3.7)). In turn, we select key values for the sharing

rule, such that f (λt) ∈ {0.1, 0.5, 0.9}.

No public signal

We initially assume there is no public signal and σx,A > σx,B, that is, investors have different

estimates about the volatility of the process xt.
26 Figure (1.5) plots the impact of disagreement ψt

on the disagreement adjustment term Ψ
(
xAt , x

B
t , λt

)
and the nominal short rateRt for three different

sharing rules. The first result is that the adjustment term is an inverted parabola in ψt. When

σx,B is close to σx,A, its vertex is approximately zero, indicating that Ψ
(
xAt , x

B
t , λt

)
is decreasing

in the absolute value of disagreement, namely |ψt|.27 Otherwise, Ψ
(
xAt , x

B
t , λt

)
is decreasing in

|ψt|, except in a small neighborhood around its vertex. Stated differently, Ψ
(
xAt , x

B
t , λt

)
tends to

fall as disagreement increases because either investor B is becoming more optimistic relative to

investor A, or vice versa. Additionally, for a given level of disagreement, Ψ
(
xAt , x

B
t , λt

)
is largest

(in absolute value) when the sharing rules are equal, i.e., f (λt) = 0.5.

By contrast, the impact of the disagreement on the nominal short rate is ambiguous. The reason

for this is that, as evidenced in Eq. (1.6.40), two components determine the nominal short rate:

the weighted-average of the nominal interest rates that would prevail in hypothetical single-investor

economies, and the disagreement terms Ψ
(
xAt , x

B
t , λt

)
and θm,t. The impact of disagreement in the

former is ambiguous. For instance, fixing xAt and then increasing (decreasing) xBt such that ψt rises

(falls) in turn, leads to a high (low) Rt. The decrease in Ψ
(
xAt , x

B
t , λt

)
that tends to follow an

increase in ψt is then dominated.

In Figure (1.6), we study the effect of disagreement on the instantaneous volatility of the

nominal short rate and inflation risk premium. First, we observe that the volatility of Rt plots a

parabola in ψt, with its vertex slightly shifted to the left of ψt. Its shape resembles that of the

disagreement adjustment Ψ
(
xAt , x

B
t , λt

)
, except that now it is (mostly) increasing in the absolute

value of ψt. Therefore, a larger level of disagreement in either direction tends to make the nominal

short rate more volatile. As before, the impact of disagreement on volatility is maximum when

f (λt) = 0.5, for any given ψt. The mechanism behind this result is the usual one in the literature

26Alternatively, we could have assumed that αA = αB = 0 and the same results would follow because investors

would optimally choose to ignore the signal. This assumption of different estimates about the volatility of the

unobservable process is similar to that of Ehling et al. (2018)
27The vertex is tilted towards the left of ψt = 0 because, by assumption, σx,A > σx,B .
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of heterogeneous beliefs. Upon the observation of a positive shock that raises the nominal money

supply, the more optimistic investor (i.e., the one with the largest estimate xit) confirms her bullish

view on xt and, hence, bets on an increase in interest rates. The weight of the more optimistic

investor in the economy then endogenously grows. This feedback effect raises the nominal interest

rate in the economy by a larger magnitude. Furthermore, the more dissimilar the investors’ weights

in the economy, the more influential the views of the dominant investor in the determination of

asset prices.

As for the instantaneous inflation risk premium, it is an increasing function of ψt. By contrast,

in the single-investor economy it is constant. To understand this result, observe that when ψt > 0,

investor B is more optimistic about xt than A. In turn, consistent with her optimistic view on

xt, investor B expects higher interest rates in the future than investor A. Hence, she expects to

earn more interest from investing in the money market. For the money market to clear, investor A

requires an inflation risk premium to invest in nominal short bonds. Otherwise, she would prefer

to invest in risk-free real short bonds that are unaffected by the beliefs’ spread. A higher value of

ψt would prompt investor A to command a larger compensation in case investor B turns out to be

right. We also observe that the magnitude of the instantaneous inflation risk premium decreases

as f (λt) rises. By assumption, investor A has less certainty about the volatility parameter σx than

B, such that σx,A > σx,B. Thus, when her weight in the economy is low (e.g., f (λt) = 0.1), the

instantaneous inflation risk premium must be higher to induce her to invest in the bank account

for markets to clear.

Impact of disagreement under different levels of persistence of expected growth rate

We investigate in this section the impact of the persistence of the expected growth rate of money, κ,

on the relation between disagreement and asset prices in the disagreement economy. In Figure (1.7),

we depict the same four variables as before (disagreement adjustment Ψ
(
xAt , x

B
t , λt

)
, nominal short

rate Rt, and instantaneous inflation risk premium and nominal short rate volatility) as a function of

ψt across multiple values of κ. For the sake of space, we only report the plots when f (λt) is fixed at

0.5, but the results remain unaffected across different sharing rules. We first observe that both the

disagreement adjustment term and the instantaneous volatility of the nominal short rate become

less responsive to changes in ψt as κ increases. Furthermore, the response of the instantaneous

inflation risk premium to ψt is also lower for high values of κ, whereas it is ambiguous in the case

of the nominal short rate.

This argument can be stated formally by looking at Eq. (1.6.1). For u > t, low values of

κ imply that the term e−κ(u−t) in the conditional expectation of xiu is large, thereby making xiu

proportionally more dependent on the current estimate xit. By contrast, when κ is high e−κ(u−t),

rapidly declines. Thus, the conditional expectation of xiu becomes more heavily influenced by the

long-run mean x than by xit. Investors would undoubtedly continue to “agree to disagree” in this
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scenario and still interpret realizations of the money supply growth through the lens of their own

models and priors. However, their updated estimates would fluctuate over x, a parameter they

both agree on, as opposed to their own respective previous estimates, on which they have different

views. Therefore, the feedback effect between investment decisions and endogenous fluctuations of

wealth is lessened.

In Figure (1.8), we analyze the relation between money growth disagreement and the level and

instantaneous volatility of the nominal yield curve across multiple values of κ. We conduct this

analysis for three different levels of ψt: no disagreement, low and high belief spreads, where the

last two correspond to two standard deviations below and above the unconditional mean of ψt (i.e.,

zero disagreement), as can be seen from Eq. (1.3.7). Furthermore, we fix xAt at 90% of its long-run

mean. We observe that the slope of the yield curve depends on the level of disagreement and the

persistence parameter. First, the low levels of ψt indicate that xBt is low. Thus, the investor B

expects for xt to be pulled up towards x in the future, which implies that she anticipates high

future interest rates. The result is an upward-sloping nominal yield curve between periods τ and

t, regardless of the value of κ. Conversely, a downward-sloping nominal yield follows from a high

value of ψt.

The intermediate case in Figure (1.8) illustrates an interesting situation. In this scenario xBt =

xAt = 0.9x and disagreement is equal to zero. In turn, both investors have estimates below their

long-run mean x. Given the mean-reversion of xt, we might expect that the nominal interest rates

between τ and t would rise. This case indeed holds for most values of κ in the plot. However, for

the lowest κ, the opposite result emerges. Thus, even though both investors believe that money

growth will be higher in the future, the yield curve slopes downwards. We interpret this situation

as follows: despite the bullish view on future monetary policy stance that both investors share, the

high persistence of the unobservable monetary policy stance implies that the individual estimates

xit will fail to be pushed up rapidly enough for long-term interest rates to rise. This situation is

compounded by the fact that the estimates are close to their long-run mean.28

Heterogeneous interpretation of public signal

In this section, we consider a situation where investor B believes that the public signal, st, conveys

relevant information about money growth, i.e., αB > 0, whereas investor A believes it is not

informative. Thus, investor B is steadfast about her ability to partly infer xt from the public

signal. From Eq. (1.2.6), investor B’s model then relies on the signal, realizations of the money

supply, and her own priors to adjust her estimate of xt. By contrast, investor A is doubtful about

the signal as she believes it conveys only noise and, consequently deciding to optimally ignore it.

In this scenario, investors effectively employ different estimation models based on the same public

28This scenario bears some resemblance to the “Greenspan’s Conundrum”, whereby rising short-term interest rates

are associated with falling long-term interest rates.
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information. We investigate the extent to which the adoption of different estimation models affects

the equilibrium asset prices and volatility. To isolate the effect of having heterogeneous subjective

beliefs about the informativeness of the signal, we assume for the remainder of this section that

σx,A = σx,B.
29

Using table (1.2), we calculate the equilibrium in two economies: a mixed economy where

αB ∈ (0, 1) , αB = 0, and a doubtful economy without disagreement with αA = αB = 0. For every

case, we subsequently calculate asset prices and volatility when the beliefs spread is zero, low, and

high. We set the beliefs spread within two standard deviations below and above zero for the low

and high cases, respectively.30 Afterwards, we compute the ratio of a variable of interest (e.g., the

nominal short rate) in the mixed economy to its corresponding value in the doubtful economy. If

the resulting ratio for Rt is equal to, say, 1.06, then Rt is 1.06 larger in the mixed-economy than in

the benchmark homogeneous economy. We calculate these ratios for a grid of αB between zero and

one across multiple values of κ. We plot the resulting ratios for the nominal short rate, Rt, and

the 10-year nominal rate,y$t,t+10, in Figure (1.9), and for the instantaneous volatility of the nominal

short rate and 10-year nominal rate in Figure (1.10).

We first observe from Figure (1.9) that both the nominal short and 10-year rates are higher

in the mixed economy than in the doubtful economy without disagreement. Moreover, the ratio

is increasing in αB, which means that the higher credibility investor B attaches to the signal, the

larger the level of nominal interest rates relative to the benchmark economy. Given that investor

B believes she can learn about xt from st, she is less willing to invest in nominally risk-free assets.

The nominal interest rates must rise in equilibrium for markets to clear. We also observe that the

wedge between the economies is larger for low values of κ. However, the overall effect is economically

small, regardless of the value of κ and the beliefs spread.

In Figure (1.4.2), we study the volatility of the nominal interest rates. For low values of κ, the

instantaneous volatilities of the nominal short and 10-year rates are smaller in the mixed-economy

with αB > 0 than one where αB = 0. In fact, the wedge between both economies is larger than

10% for all 0 < αB < 1 and all three levels of the belief spread. By contrast, for a high level of κ,

29This exercise is similar to that of Scheinkman and Xiong (2003); Dumas et al. (2009); Xiong and Yan (2010),

among others. These papers assume that one investor is overconfident about the informativeness of a public signal

relative to a prudent investor who correctly infers that the public signal is uninformative about the unobservable

state of the economy. In the context of monetary policy, this exercise is related to the signaling effects documented

by Melosi (2017). We interpret it as a situation where investors have heterogeneous interpretations about the same

public signal that provides them with potentially useful information about the underlying monetary policy stance.

For instance, when two investors disagree about whether a central bank statement is effectively conveying information

about the future path of interest rates.
30To control for the beliefs spread, we assume that ψt is the same in the mixed economies and doubtful economies.

Of course, a non-zero beliefs spread in the α−agreement economy cannot be sustained indefinitely because αA = αB

and σx,A = σx,B . Thus, both investors will converge to the same estimate eventually. Given that we perform

comparative statics in this section, we temporarily ignore this property.
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the opposite result emerges. As argued in Section (1.2.2), two countervailing forces affect investor

B’s filtering problem when she believes that the public signal conveys relevant information. On the

one hand, from Eq. (1.2.6), higher αB will decrease her reliance on her own surprise zBm,t, thereby

reducing the updated volatility estimates ν̂Bx and ν̂Bm. On the other hand, she will respond more

strongly to any realization of st, thus increasing ν̂Bs . Each of these estimates increases volatility;

hence, the overall impact of varying αB depends on which effect eventually prevails. Our results

indicate that the answer once again hinges on the persistence of the underlying money growth

process. Investor B updates dxBt when she receives the signal flow dst regardless of the value of κ.

However, when κ is low, the current state xit carries significant influence on the magnitude of the

revision. Therefore, dxBt does not respond as strongly to dst. On the contrary, when the underlying

money growth is less persistent, dxBt strongly reacts to any realization of the signal, thereby making

the dynamics of xBt and, hence, the nominal interest rates more volatile. Finally, the effect of αB

on the volatility wedge in either scenario is monotonic in αB.

1.5 Final remarks and further discussion

We investigate the asset pricing implications of disagreement about the unobservable process driving

monetary policy. We present a monetary economy embedded into an exchange economy with

exogenous paths for consumption and nominal money supply. The monetary economy is populated

by two investors with heterogeneous priors about the unobservable expected growth of money, which

we identify as the underlying monetary policy stance. The key model friction is that information

about the expected growth rate of money is symmetric but incomplete. Investors estimate the

expected growth rate of money by combining their priors with the observed realizations of the

money supply. Investors value holding real cash balances intrinsically, which creates a demand for

money. In equilibrium, the demand for money and investors’ estimates endogenously determine the

nominal short rate and expected inflation for any given path of money supply through a portfolio

rebalancing channel.

Disagreement about money growth drives the conditional variation in all nominal interest rates,

expected inflation, and their volatility. Through a parameterized example, we show that the

volatility of nominal interest rates tends to rise with increases in the absolute value of disagreement.

In turn, the inflation risk premium increases with the view of the more optimistic investor. The

effect on the nominal interest rates is ambiguous. The relation between disagreement about money

growth and asset prices crucially depends on the persistence of the unobservable growth rate of

money. For instance, when the unobservable process is less persistent, disagreement about money

growth has a weaker impact on asset prices.

Our model is also well suited to address questions about the consequences of having heterogeneous

interpretations about unconventional monetary policy on interest rates. To this end, we introduce
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into the model a public signal on which investors may have different views. One steadfast investor

believes that the signal conveys relevant information about the unobservable process, whereas a

doubtful one believes that the signal is pure noise. The volatility of the nominal rates of an economy

populated by one steadfast investor and one doubtful investor may be larger or smaller than the

volatility of an economy with two doubtful investors and no disagreement. Whichever economy is

more volatile depends, in turn, on the persistence of the unexpected growth rate of money.

Despite all the reasonable caveats of our paper, we believe that our simple monetary model

provides a sensible starting point to investigate the asset pricing implications of disagreement

about monetary policy in more general settings. In particular, the assumption that investors’

utility function is logarithmic makes the model tractable. We show that disagreement about money

growth determines nominal interest rates, expected inflation, and inflation risk premium even with

log utility. However, the effects of disagreement on the real bond market are largely muted due

to this assumption. As documented by Ehling et al. (2018), this is an economic relation with

strong empirical support. By considering more general risk-aversion configurations, the model may

become a building block to accommodate a broader research question. For instance, the model

could include a properly defined real sector with investment on physical capital, which then could

be used for investigating the impact of disagreement about money growth on the stock market.

This topic has received little attention in the literature.

Another avenue for future research is related to the study of disagreement about other types

of policies such as quantitative easing (QE). As underscored by Ireland (2017), the three rounds of

QE are directed at raising the monetary base to prevent inflation from decreasing. Moreover, QE

purportedly works through a change in the relative price of the private sector’s portfolio, namely,

a portfolio rebalancing channel (Bernanke (2013)). Both components, monetary growth and a

portfolio rebalancing channel, play a preponderant role in our model. Moreover, Beckworth (2017)

argues that one crucial component of the effectiveness of QE is the capacity of the Federal Reserve

to commit to a permanent expansion of the monetary base. As we have argued throughout the

paper, the persistence of the underlying monetary policy stance is a key determinant of our results.

For all these reasons, we believe that our model can be extended to address this pertinent question.
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1.6 Appendix

1.6.1 Tables and figures

Table 1.1: Variable correspondence between single-investor and disagreement economies

Single-investor economy Disagreement economy

Variable Definition Variable Definition
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Table 1.2: Parameter calibration

Parameter Description Value

Investors

ρ Time preference parameter 0.017

f (λ0) Initial cons/money hold. allocation 0.5

Consumption process

µc Expected cons. growth 0.0172

σc Volatility of cons. 0.0332

Money supply process

σm Money supply total vol. 0.013

x Long-run mean 0.050

κ Mean reversion 0.5

σx Vol. of expected money growth (true) 0.05

Unobservable process

σx,A Vol. of expected money growth for investor A 0.06

σx,B Vol. of expected money growth for investor B 0.02
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Figure 1.1: Nominal short rate and expected inflation as a function of xit

Note: This figure plots the nominal short rate and expected inflation as a function of estimates the expected

growth rate of money, xit, in the single-investor economy described in section (1.2). The parameters come from

table (1.2). The grid of xit is within two standard deviations below and above its unconditional mean, x. See Eq.

(1.6.1).
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Figure 1.2: Nominal short rate instantaneous volatility as a function of estimates of expected growth rate of

money, xit

Note: This figure plots the instantaneous volatility of the nominal short rate, Rt, as a function of estimates of

the expected growth rate of money, xit, in the single-investor economy described in section (1.2). The parameters

come from table (1.2). The grid of xit is within two standard deviations below and above its unconditional mean,

x. See Eq. (1.6.1).
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Figure 1.3: Nominal yield curve as a function of estimates of expected growth rate of money, xit

Note: This figure plots the level of the nominal yield, y$t,τ , across two values of the expected growth rate of

money, xit, in the single-investor economy described in section (1.2). The parameters come from table (1.2). Low

and high values of xit are given by 0.5x and 1.5x, respectively.
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Figure 1.4: Instant. volatility of nominal yield curve as a function of xit

Note: This figure plots the volatility of the nominal yield, y$t,τ , across two values of the expected growth rate of

money, xit, in the single-investor economy described in section (1.2). The parameters come from table (1.2). Low

and high values of xit are given by 0.5x and 1.5x, respectively.
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(b) Nominal short rate, Rt; f (λt) = 0.1
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(d) Nominal short rate, Rt; f (λt) = 0.5
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(e) Disagreement adjustment, Ψ
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(f) Nominal short rate, Rt; f (λt) = 0.9

Figure 1.5: Impact of disagreement on Ψ
(
xAt , x

B
t , λt

)
and nominal short rate across multiple sharing rules

Note: This figure plots the disagreement adjustment, Ψ
(
xAt , x

B
t , λt

)
, and nominal short rate, Rt, across multiple

beliefs spreads, ψt, and sharing rules, f (λt), in the disagreement economy described in section (1.3). The

parameters come from table (1.2). xAt is fixed at 0.9x. The grid of ψt is within two standard deviations below

and above its unconditional mean, zero. See Eq. (1.3.7).
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(a) Instant. volatility of Rt; f (λt) = 0.1
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(b) Instant. inflation risk premium, IRPt; f (λt) = 0.1
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(c) Instant. volatility of Rt; f (λt) = 0.5
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(d) Instant. inflation risk premium, IRPt; f (λt) = 0.5
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(e) Instant. volatility of Rt; f (λt) = 0.9
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(f) Instant. inflation risk premium, IRPt; f (λt) = 0.9

Figure 1.6: Impact of disagreement on instant. volatil. and inflat. risk premium across multiple sharing rules

Note: This figure plots the instantaneous volatility of the nominal short rate and inflation risk premium across

multiple beliefs spreads, ψt, and sharing rules, f (λt), in the disagreement economy described in section (1.3).

The parameters come from table (1.2). xAt is fixed at 0.9x. The grid of ψt is within two standard deviations

below and above its unconditional mean, zero. See Eq. (1.3.7).
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(b) Nominal short rate Rt; f (λt) = 0.5
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(c) Instant. inflation risk premium; f (λt) = 0.5
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(d) Instant. volatility of Rt; f (λt) = 0.5

Figure 1.7: Impact of disagreement on Ψ
(
xAt , x

B
t , λt

)
and inflation risk premium across multiple κ

Note: This figure plots the disagreement adjustment, Ψ
(
xAt , x

B
t , λt

)
, and nominal short rate, Rt, across multiple

beliefs spreads, ψt, and sharing rules, f (λt), in the disagreement economy described in section (1.3). The

parameters come from table (1.2). xAt is fixed at 0.9x. The grid of ψt is within two standard deviations below

and above its unconditional mean, zero. See Eq. (1.3.7).
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(a) Nominal yield curve y$t,τ ; low ψt
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(b) Instant. volatility of y$t,τ ; low ψt
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(c) Nominal yield curve y$t,τ ; ψt equal to zero
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(d) Instant. volatility of y$t,τ ; ψt equal to zero
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(e) Nominal yield curve y$t,τ ; high ψt

0.0

0.5

1.0

1.5

0.0 2.5 5.0 7.5 10.0

Years

P
e
rc

e
n

t 
p

o
in

ts κ

0.30

0.60

0.90

1.20

1.50

(f) Instant. volatility of y$t,τ ; high ψt

Figure 1.8: Impact of disagreement on level and volatility of nominal yield curve across multiple κ

Note: This figure plots the level and instantaneous volatility of the nominal yield curve across multiple beliefs

spreads, ψt, and sharing rules, f (λt), in the disagreement economy described in section (1.3). The parameters

come from table (1.2). xAt is fixed at 0.9x. Low and high ψt correspond to, respectively, two standard deviations

below and above its unconditional mean, zero. See Eq. (1.3.7).
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(a) Nominal short rate Rt; κ = 0.3
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(b) Nominal short rate Rt; κ = 0.7
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(c) 10-year nominal rate y$t,t+10; κ = 0.3
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(d) 10-year nominal rate y$t,t+10; κ = 0.7

Figure 1.9: Ratio of nominal short and 10-year rates in mixed to doubtful economies as αB varies

Note: This figure plots the ratio of selected variables in two economies: a mixed economy where αB ∈ (0, 1) , αB =

0, and a doubtful economy where αA = αB = 0. A ratio is calculated for every variable across three values of

ψt: low, null, and high. Low and high correspond to two standard deviations below and above zero, respectively.

The ratios are calculated for a grid of αB between zero and one. The selected variables are the nominal short

rate and 10-year rate. The equilibrium corresponds to disagreement economy described in section (1.3). The

parameters come from table (1.2).
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(a) Instant. volatility of Rt; κ = 0.3
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(b) Instant. volatility of Rt; κ = 0.7
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(c) Instant. volatility of 10-year nom. rate y$t,t+10; κ = 0.3
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(d) Instant. volatility of 10-year nom. rate y$t,t+10; κ = 0.7

Figure 1.10: Ratio of volatility of nominal short and 10-year rates in mixed to doubtful economies as αB varies

Note: This figure plots the ratio of selected variables in two economies: a mixed economy where αB ∈ (0, 1) , αB =

0, and a doubtful economy where αA = αB = 0. A ratio is calculated for every variable across three values of

ψt: low, null, and high. Low and high correspond to two standard deviations below and above zero, respectively.

The ratios are calculated for a grid of αB between zero and one. The selected variables are the volatilities of the

nominal short rate and 10-year rate. The equilibrium corresponds to disagreement economy described in section

(1.3). The parameters come from table (1.2).
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1.6.2 Proofs and auxiliary results

Proof of Proposition 1.2.1

Price level: The dynamics of investor i’s estimate of expected growth rate of money, xit,

follow a standard Ornstein–Uhlenbeck process. Thus, it has an explicit solution for u ≥ t of the

form

xiu = e−κ(u−t)xit + x
(
1− e−κ(u−t)

)
+ ν̂im

∫ u

t
e−κ(u−v)dzim,v + ν̂is

∫ u

t
e−κ(u−v)dsv.

The conditional moments of xiu are given by

Et
[
xiu
]

= e−κ(u−t)xit + x
(
1− e−κ(u−t)

)
, (1.6.1)

vart
[
xiu
]

=
1

2κ

[(
ν̂im
)2

+
(
ν̂is
)2] (

1− e−2κ(u−t)
)
=

(
ν̂i
)2

2κ

(
1− e−2κ(u−t)

)
. (1.6.2)

Furthermore, the dynamics of Mt have an explicit solution for u ≥ t given by

ln (Mu) = ln (Mt) +

∫ u

t
xvdv −

σ2m
2

(u− t) + σm (zm,u − zm,t) .

The conditional moments of ln (Mu) are computed using the Fubini’s theorem for stochastic integrals

(see Munk (2013)), and Eqs. (1.6.1) and (1.6.2). Thus

Et [ln (Mu)] = ln (Mt) +
1

κ

(
1− e−κ(u−t)

)
(xt − x) +

(
x− σ2m

2

)
(u− t) , (1.6.3)

vart [ln (Mu)] =

(
ν̂i
)2

4κ2

(
e−2κ(u−t) − 1

)
+

((
ν̂i
)2

2κ
+ σ2m

)
(u− t) . (1.6.4)

Let M
(
xit, u− t

)
≡ Et

[
e−ρ(u−t)

(
Mu
Mt

)−1
]
= exp

{
−ρ (u− t)− Et

[
ln
(
Mu
Mt

)]
+ 1

2vart

[
ln
(
Mu
Mt

)]}
where the last equality follows from log-normality. Inserting the conditional moments (1.6.3)

and (1.6.4) into this expression, we obtain M
(
xit, u− t

)
= exp

{
−A (u− t)− Bκ (u− t)xit

}
where

A (u− t) and Bκ (u− t) are given by Eqs. (1.2.18) and (1.2.17), respectively. InsertingM
(
xit, u− t

)
into Eq. (1.2.13), we conclude the proof of the first part of Proposition (1.2.1).

Nominal short rate The second part of the proposition follows from inserting the optimality

condition (1.2.10) into the equilibrium price level in Eq. (1.2.13) and the definition of real money

holdings, mt ≡ Mt
Pt

. Thus, we obtain that Rt moves is inversely proportional to Q
(
xit
)
. That Rt is

non-negative follows trivially from the definition of Q
(
xit
)
.

Proof of Proposition 1.2.2
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Dynamics of the price level: For convenience, let qt ≡ 1
Pt

such that Eq. (1.2.13) becomes

qt =
1− φ

φ

Ct
Mt

Q
(
xit
)
,

or qt ≡ q
(
Ct,Mt, x

i
t

)
. Before computing the dynamics of qt, note that

∂M
(
xit, u− t

)
∂xit

= −Bκ (u− t)M
(
xit, u− t

)
< 0;

∂BM
(
xit, u− t

)
∂xBt

= Bκ (u− t)2M
(
xit, u− t

)
> 0.

Moreover

∂Q
(
xit
)

∂xit
= −G

(
xit
)
< 0,

where G
(
xit
)
≡
∫∞
t Bκ (u− t)M

(
xit, u− t

)
du. Therefore

∂qt
∂xit

=

(
1− φ

φ

)
Ct
Mt

∂Q
(
xit
)

∂xit
= −

G
(
xit
)

Q
(
xit
)qt,

∂Bqt

∂
(
xit
)2 =

(
1− φ

φ

)
Ct
Mt

∂Q
(
xit
)2

∂
(
xit
)2 =

H
(
xit
)

Q
(
xit
)qt,

where H
(
xit
)
=
∫∞
t Bκ (u− t)2M

(
xit, u− t

)
du.

Applying Ito’s lemma to qt and combining the resulting expression with the derivatives from

above

dqt
qt

=
dCt
Ct

− dMt

Mt
+
∂qt
∂xit

(
dxit
)
+

(
dMt

Mt

)2

+
1

2

∂Bqt

∂
(
xit
)2 (dxit)2

−
(
dCt
Ct

)(
dMt

Mt

)
+

∂Bqt
∂Ct∂xit

(dCt)
(
dxit
)
+

∂Bqt
∂Mt∂xit

(dMt)
(
dxit
)

= µqtdt+ ϕqcdzc,t + ϕqm,tdz
i
m,t + ϕqs,tdst,

where µqt ≡ µc + σ2m − xit +
G(xit)
Q(xit)

(
ν̂ix − κ

(
x− xit

))
+

(ν̂i)
2

2

H(xit)
Q(xit)

, ϕqc ≡ σc, ϕ
q
m,t ≡ −σm − ν̂im

G(xit)
Q(xit)

,

and ϕqs,t ≡ −ν̂is
G(xit)
Q(xit)

.

Applying Ito’s lemma to Pt =
1
qt

and using the dynamics for qt computed above

dPt
Pt

= −dqt
qt

+

(
dqt
qt

)2

= πtdt+ ϕpcdzc,t + ϕpm,tdz
i
m,t + ϕps,tdst,

where

πt ≡ σ2c − µc + xit +
G
(
xit
)

Q
(
xit
) (κ (x− xit

)
+ ν̂ix

)
−
(
ν̂i
)2
2

H
(
xit
)

Q
(
xit
) + (ν̂i)2( G

(
xit
)

Q
(
xit
))2

,(1.6.5)

ϕpc ≡ −σc, (1.6.6)

ϕpm,t ≡ σm + ν̂im
G
(
xit
)

Q
(
xit
) , (1.6.7)

ϕps,t ≡ ν̂is
G
(
xit
)

Q
(
xit
) . (1.6.8)
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Dynamics of the short nominal rate: Applying Ito’s lemma to Eq. (1.2.15) and using the

results from above when computing the dynamics of qt

dRt = −Rt

(
∂Q
(
xit
)

∂xit

(
dxit
)
+

1

2

∂BQ
(
xit
)

∂
(
xit
)2 (

dxit
)2)

+Rt

(
∂Q
(
xit
)

∂xit

(
dxit
))2

= µRt dt+ ϕRm,tdz
i
m,t + ϕRs,tdst,

where

µRt ≡ Rt

σ2m − ρ+Rt − xit + ν̂ix
G
(
xit
)

Q
(
xit
) + (ν̂im)2

(
G
(
xit
)

Q
(
xit
))2

 , (1.6.9)

ϕRm,t ≡ ν̂im
G
(
xit
)

Q
(
xit
)Rt, (1.6.10)

ϕRs,t ≡ ν̂is
G
(
xit
)

Q
(
xit
)Rt. (1.6.11)

Dynamics of the state-price densities: We first compute the dynamics of the real state-

price density. By definition

ξt = e−ρtuc (Ct,mt)

= φe−ρtC−1
t .

The dynamics are given by

dξt
ξt

= −ρdt−
(
dCt
Ct

)
+

(
dCt
Ct

)2

= −rtdt− θc,tdzc,t,

where

rt = ρ+ µc − σ2c , (1.6.12)

is the instantaneous real rate and θc,t ≡ σc is the real price of risk which only depends on real

variables.

The dynamics of the nominal state-price density are computed from

ξ$t = ξtqt.

By Ito’s lemma

dξ$t
ξ$t

=

(
dξt
ξt

)
+

(
dqt
qt

)
+

(
dξt
ξt

)(
dqt
qt

)
= −Rtdt− θ$m,tdz

i
m,t − θ$s,tdst,
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where the nominal short rate is given by

Rt = rt − µq,t + θc,tϕ
q
c,t, (1.6.13)

and the vector of nominal prices of risk Θ$
t ≡

[
θ$m,t, θ

$
s,t

]′
is

θ$m,t = σm + ν̂im
G
(
xit
)

Q
(
xit
) , (1.6.14)

θ$s,t = ν̂is
G
(
xit
)

Q
(
xit
) . (1.6.15)

Inserting the explicit solutions we found above for rt, µq,t, θc,t, and ϕqc,t into Rt, we obtain an

alternative expression for Rt

Rt = ρ− σ2m + xit +
G
(
xit
)

Q
(
xit
) (κ (x− xit

)
− ν̂ix

)
−
(
ν̂i
)2
2

H
(
xit
)

Q
(
xit
) . (1.6.16)

Proof of Proposition 1.2.3

Inflation risk premium: After noting that
(
ϕqc,t
)2

+
(
ϕqm,t

)2
+
(
ϕqs,t
)2

= vart

(
dqt
qt

)
=

vart

(
dPt
Pt

)
, we can re-arrange Eq. (1.6.5) as follows

µqt = −πt + vart

(
dPt
Pt

)
.

By inserting this expression into Eq. (1.6.13) and re-arranging terms, we obtain[
Rt − πt + vart

(
dPt
Pt

)]
− rt = θc,tϕ

q
c,t.

The difference between the model implied real rate Rt − πt + vart

(
dPt
Pt

)
and rt is the inflation

risk premium. By letting IRPt denote the instantaneous inflation risk premium, it follows that

IRPt = θc,tϕ
q
c,t = σ2c .

Real yield curve: The price of a real bond in t with maturity in τ can be computed from

the expression Bt,τ = Et
[
ξτ
ξt

]
= Et

[
e−ρ(τ−t)

(
Cτ
Ct

)−γ]
. From log-normality and Eq. (1.2.1)

Bt,τ = e−(ρ+µc−σ
2
c)(τ−t).

By letting the real yield curve between t and τ be equal to yt,τ = − log(Bt,τ )
τ−t the result obtains.
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Level of the nominal yield curve: The price of a nominal bond in t with maturity τ is

given by B$
t,τ = Et

[
ξ$τ
ξ$t

]
= Et

[
ξτ
Pτ

Pt

ξ$t

]
. We can manipulate the expression inside the conditional

expectation using the price level from Eq. (1.2.13) and the real state-price density into this

expression as follows

ξ$τ

ξ$t
=

Eτ
[∫∞
τ e−ρuM−1

u du
]

Et
[∫∞
t e−ρuM−1

u du
] =

∫∞
τ Eτ

[
e−ρ(u−t)

(
Mu
Mt

)−1
]
du

Q
(
xit
) .

Inserting the expression above into the price of a nominal bond with maturity τ ≥ t at time t

B$
t,τ = Et


∫∞
τ Eτ

[
e−ρ(u−t)

(
Mu
Mt

)−1
]
du

Q (xt)


=

1

Q (xt)

∫ ∞

τ

(
Et

[
e−ρ(u−t)

(
Mu

Mt

)−1
])

du,

where the last equality follows from the tower property of conditional expectations. Thus, the price

of the nominal bond B$
t,τ has an explicit solution given by

B$
t,τ =

∫∞
τ M

(
xit, u− t

)
du∫∞

t M
(
xit, u− t

)
du
.

The desired result obtains from the definition of the yield curve y$t,τ = − log(B$
t,τ)

τ−t and by letting

Q
(
xit, τ

)
be given by Q

(
xit, τ

)
≡
∫∞
τ M

(
xit, u− t

)
du (with some abuse of notation).

Dynamics of nominal yield curve: From an application of Ito’s lemma to y$t,τ and by

letting G
(
xit, τ

)
≡
∫∞
τ Bκ (u− τ)M

(
xit, u− t

)
du, we obtain the diffusion terms. We omit the

exact expression for the drift of the yield curve for the sake of briefness.

Proof of Proposition 1.3.1

Dynamics of stochastic weight: The Radon-Nikodym derivative of the model is the density

function λu = dPB

dPA . By Girsanov’s theorem, λu is given by the stochastic exponential

λu = ewu ,

where wu ≡
∫ s
t ψudz

A
m,u − 1

2

∫ s
t ψ

B
u du is a standard Ito’s process adapted to zAm,s. Equivalently

dwt = −1

2
ψBt dt+ ψtdz

A
m,t.

Applying Ito’s lemma to λu and inserting dwt into the resulting equation

dλt =
∂λt
∂wt

(dwt) +
1

2

∂Bλt

∂wBt
(dwt)

2

= λtψtdz
A
m,t.
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Equilibrium allocations: Inserting the optimality condition for investor i in Eq. (1.3.2)

into the feasibility constraint for total consumption, along with the stochastic weights λt that we

identified in Eq. (1.3.4) and re-arranging terms

Ct = CA,t + CB,t

=⇒ Ct =
(
φ−1eρtξA,ty1

)−1
(1 + λt) .

Using again Eq. (1.3.2) and re-arranging terms

CA,t = f (λt)Ct,

where f (λt) ≡ 1
1+λt

. Thus, we obtain Eqs. (1.3.8) and (1.3.9). Following a similar procedure for

mt = Mt
Pt

from the feasibility constraint (in real terms) Mt
Pt

=
MA,t

Pt
+

MB,t

Pt
and the optimality

condition (1.3.3), we arrive at Eqs. (1.3.10) and (1.3.11). Finally, inserting the equilibrium

consumption allocations into the individual optimality condition (1.3.2), we obtain the equilibrium

real state-price densities

ξA,t = φy−1
1 e−ρtφf (λt)

−1C−1
t .

We set y1 = f (λ0)
−1C0

−1 w.l.o.g. for ξA,0 = φ and ξB,0 = φ. Thus, the previous expression

becomes

ξA,t
ξA,0

= e−ρtφ

(
f (λt)

f (λ0)

)−1(Ct
C0

)−1

.

Furthermore, from the definition of the stochastic weight λt

y2 =
f (λ0)

−1C0
−1

λ0
.

Inserting into the state-price density for investor B

ξB,t
ξB,0

= e−ρt
(
1− f (λt)

1− f (λ0)

)−1(Ct
C0

)−1

.

Proof of Proposition 1.3.2

Price level: We start from the equation that determines the price level under the beliefs of

investor A

1

Pt
=

1− φ

φ
EAt
[∫ ∞

t
e−ρ(u−t)

CA,t
M1,u

du

]
.

Inserting the sharing rules we derived in Proposition (1.3.1) into the previous expression

1

Pt
=

1− φ

φ
EAt
[∫ ∞

t
e−ρ(u−t)

f (λt)Ct
f (λu)Mu

du

]
.
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Re-arranging terms and by Fubini’s theorem

1

Pt
=

1− φ

φ

f (λt)Ct
Mt

∫ ∞

t
e−ρ(u−t)

(
EAt

[(
Mu

Mt

)−1
]
+ EAt

[
λu

(
Mu

Mt

)−1
])

du.

Changing the probability measure of the last term in the equation above to that of investor B by

multiplying and dividing by λt, and recalling that λu = y1
y2

dPB

dPA and λt =
y1
y2

for u > t, it follows that

1

Pt
=

1− φ

φ

f (λt)Ct
Mt

∫ ∞

t
e−ρ(u−t)

(
EAt

[(
Mu

Mt

)−1
]
+ λtEAt

[(
λu
λt

)(
Mu

Mt

)−1
])

du

=
1− φ

φ

Ct
Mt

∫ ∞

t

(
M
(
xAt , u− t; ν̂A, ν̂Ax

)
+ λtM

(
xBt , u− t; ν̂B, ν̂Bx

)
1 + λt

)
du,

where M
(
xit, u− t; ν̂i, ν̂ix

)
≡ Eit

[
e−ρ(u−t)

(
Mu
Mt

)−1
]
, for i ∈ {A,B}. Following the same steps from

the proof Proposition (1.2.2), we can show that

M
(
xit, u− t; ν̂i, ν̂ix

)
= exp

{
−A

(
u− t; ν̂i, ν̂ix

)
− B (u− t)xit

}
, (1.6.17)

where A
(
u− t; ν̂i, ν̂ix

)
and B (u− t) are defined as in Eqs. (1.2.18) and (1.2.17) from Proposition

(1.2.1), respectively for i ∈ {A,B}. Observe that, after introducing disagreement, we make the

dependence of A
(
u− t; ν̂i, ν̂ix

)
and M

(
xit, u− t; ν̂i, ν̂ix

)
on ν̂i and ν̂ix explicit to emphasize that

investors A and B have different confidence regarding their estimates of xt.

Nominal short rate: The proof of the nominal short rate is the same as the one in Proposition

1.2.1.

Proof of Proposition 1.3.3

Dynamics of the price level: Let qt ≡ 1
Pt

and Qt ≡ Q
(
xAt , x

B
t , λt

)
for convenience. Thus

qt = q
(
xAt , x

B
t , λt

)
=

φ

1− φ

(
Ct
Mt

)
Q
(
xAt , x

B
t , λt

)
.

Before calculating the dynamics of qt, we calculate the first and second derivatives of qt with respect

to its arguments. To this end, observe that

∂Q
(
xAt , x

B
t , λt

)
∂xAt

= − 1

1 +ϖλt
G
(
xAt
)
,
∂Q
(
xAt , x

B
t , λt

)
∂xBt

= − ϖλt
1 +ϖλt

G
(
xBt
)
,

where G
(
xit
)
≡
∫∞
t Bκ (u− t)M

(
xit, u− t; ν̂i, ν̂ix

)
du. Additionally

∂BQ
(
xAt , x

B
t , λt

)(
∂xAt

)2 =
1

1 +ϖλt
H
(
xAt
)
,
∂BQ

(
xAt , x

B
t , λt

)(
∂xBt

)2 =
ϖλt

1 +ϖλt
H
(
xBt
)
,
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where H
(
xit
)
≡
∫∞
t Bκ (u− t)2M

(
xit, u− t; ν̂i, ν̂ix

)
du. Thus

∂qt

∂xAt
= −

ftG
(
xAt
)

Q
(
xAt , x

B
t , λt

)qt, ∂qt

∂xBt
= −

(1− ft)G
(
xBt
)

Q
(
xAt , x

B
t , λt

) qt,
∂Bqt

∂
(
xAt
)2 =

ftH
(
xAt
)

Q
(
xAt , x

B
t , λt

)qt, ∂Bqt

∂
(
xBt
)2 =

(1− ft)H
(
xBt
)

Q
(
xAt , x

B
t , λt

) qt.
Furthermore, the derivatives of Qt with respect to the likelihood ratio are

∂Q
(
xAt , x

B
t , λt

)
∂λt

=

(
1

1 +ϖλt

)2

D
(
xAt , x

B
t

)
,
∂BQ

(
xAt , x

B
t , λt

)
∂λBt

= − 2

(1 +ϖλt)
3D
(
xAt , x

B
t

)
,

where

D
(
xAt , x

B
t

)
≡

∫ ∞

t

[
M
(
xBt , u− t; ν̂B, ν̂Bx

)
−M

(
xAt , u− t; ν̂A, ν̂Ax

)]
du. (1.6.18)

Similarly, the cross-derivatives are given by

∂Bqt

∂λt∂xAt
= fBt

G
(
xAt
)

Q
(
xAt , x

B
t , λt

)qt, ∂Bqt

∂λt∂xBt
= −fBt

G
(
xBt
)

Q
(
xAt , x

B
t , λt

)qt,
∂Bqt

∂λt∂Mt
= −fBt

D
(
xAt , x

B
t

)
Q
(
xAt , x

B
t , λt

) qt
Mt

,
∂Bqt
∂λt∂Ct

= fBt
D
(
xAt , x

B
t

)
Q
(
xAt , x

B
t , λt

) qt
Ct
,

∂Bqt

∂xAt ∂Mt
=

ftG
(
xAt
)

Q
(
xAt , x

B
t , λt

) qt
Mt

,
∂Bqt

∂xBt ∂Mt
=

(1− ft)G
(
xBt
)

Q
(
xAt , x

B
t , λt

) qt
Mt

,

∂Bqt

∂xAt ∂Ct
= −

ftG
(
xAt
)

Q
(
xAt , x

B
t , λt

) qt
Ct
,

∂Bqt

∂xBt ∂Ct
= −

(1− ft)G
(
xBt
)

Q
(
xAt , x

B
t , λt

) qt
Ct
.

In turn, the instantaneous covariances of the stochastic processes that characterize the economy

are summarized in the following table

dCt
Ct

dMt
Mt

dxAt dxBt
dλt
λt

dCt
Ct

σ2c
dM
Mt

0 σ2m

dxAt 0 σmν̂
A
m

(
ν̂Am
)2

+
(
ν̂As
)2

=
(
ν̂A
)2

dxBt 0 σmν̂
B
m ν̂Amν̂

B
m + ν̂As ν̂

B
s

(
ν̂Bm
)2

+
(
ν̂Bs
)2

=
(
ν̂B
)2

dλt
λt

0 xBt − xAt ν̂Amψt ν̂Bmψt ψBt
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With these results we apply Ito’s lemma to qt

dqt = qt

(
dCt
Ct

− dMt

Mt

)
+

∂qt

∂xAt

(
dxAt

)
+

∂qt

∂xBt

(
dxBt

)
+
∂qt
∂λt

(dλt) + qt

(
dMt

Mt

)2

+

1

2

∂Bqt

∂
(
xAt
)2 (dxAt )2 + 1

2

∂Bqt

∂
(
xBt
)2 (dxBt )2 + 1

2

∂Bqt

∂λBt
(dλt)

2 − qt

(
dCt
Ct

)(
dMt

Mt

)
+

∂Bqt

∂Ct∂xAt
(dCt)

(
dxAt

)
+

∂Bqt

∂Ct∂xBt
(dCt)

(
dxBt

)
+

∂Bqt

∂Mt∂xAt
(dMt)

(
dxAt

)
+

∂Bqt

∂Mt∂xBt
(dMt)

(
dxBt

)
+

∂Bqt

∂xAt ∂x
B
t

(
dxAt

) (
dxBt

)
+

∂Bqt
∂λt∂Ct

(dλt) (dCt) +
∂Bqt

∂λt∂Mt
(dλt) (dMt) +

∂Bqt

∂λt∂xAt
(dλt)

(
dxAt

)
+

∂Bqt

∂λt∂xBt
(dλt)

(
dxBt

)
.

After much algebra, we arrive at

dqt
qt

= µqtdt+ ϕqcdzc,t + ϕqm,tdz
A
m,t + ϕqs,tdst, (1.6.19)

where the drift terms are given by

µqt ≡ −xAt + µc + σ2m −
G
(
xAt , x

B
t , λt

)
Q
(
xAt , x

B
t , λt

) + 1

2

H
(
xAt , x

B
t , λt; ν̂

)
Q
(
xAt , x

B
t , λt

) +

(1− ft)ψt

[
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) −

(
σmft

D
(
xAt , x

B
t

)
Q
(
xAt , x

B
t , λt

) +Ψ
(
xAt , x

B
t , λt

))]
,(1.6.20)

where

Ψ
(
xAt , x

B
t , λt

)
≡ (1− ft) ft

D
(
xAt , x

B
t

)
Q
(
xAt , x

B
t , λt

)ψt (1.6.21)

G
(
xAt , x

B
t , λt

)
≡ ftG

(
xAt
) (
κ
(
x− xAt

)
− ν̂Ax

)
+ (1− ft)

(
κ
(
x− xBt

)
− ν̂Bx

)
, (1.6.22)

G
(
xAt , x

B
t , λt; ν̂l

)
≡ ftG

(
xAt
)
ν̂Al + (1− ft)G

(
xBt
)
ν̂Bl , for l ∈ {m, s} , (1.6.23)

H
(
xAt , x

B
t , λt; ν̂

)
≡ ftH

(
xAt
) (
ν̂A
)2

+ (1− ft)H
(
xBt
) (
ν̂B
)2
. (1.6.24)

Thus, Ψ
(
xAt , x

B
t , λt

)
is a disagreement adjustment term, G

(
xAt , x

B
t , λt

)
is an adjusted mean-reversion

term, G
(
xAt , x

B
t , λt; ν̂l

)
for l = m, s is an uncertainty adjustment, and H

(
xAt , x

B
t , λt; ν̂

)
is a Jensen’s

inequality term.

Furthermore, the diffusion terms are

ϕqc = σc, (1.6.25)

ϕqm,t = −σm −
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) +Ψ
(
xAt , x

B
t , λt

)
, (1.6.26)

ϕqs,t = −
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) . (1.6.27)

Applying Ito’s lemma to Pt =
1
qt
, we obtain the dynamics of the price level

dPt
Pt

= πtdt+ ϕpcdzc,t + ϕpm,tdz
A
m,t + ϕps,tdst, (1.6.28)
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where the expected inflation (drift term) is given by

πt ≡ −µqt +
(
ϕqc,t
)2

+
(
ϕqm,t

)2
+
(
ϕqs,t
)2
, (1.6.29)

and the diffusion terms by

ϕpc ≡ −σc, (1.6.30)

ϕpm,t ≡ σm +
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) −Ψ
(
xAt , x

B
t , λt

)
, (1.6.31)

ϕps,t ≡
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) . (1.6.32)

Dynamics of the short nominal rate: Making use of the relation between Rt and Qt ≡
Q
(
xAt , x

B
t , λt

)
from proposition (1.3.2) and Ito’s lemma, we obtain

dRt = µR,tdt+ θRm,tdz
A
m,t + θRs,tdst, (1.6.33)

with drift terms given by

µRt ≡ Rt

(
µQt −

[(
ϕQm,t

)2
+
(
ϕQs,t
)2])

, (1.6.34)

and diffusion terms by

θRm,t ≡
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) Rt −Ψ
(
xAt , x

B
t , λt

)
Rt, (1.6.35)

θRs,t ≡
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) Rt. (1.6.36)

To arrive at the previous results, we first calculated the dynamics of Qt from Ito’s lemma

dQt = µQt dt+ ϕQm,tdz
A
m,t + ϕQs,tdst,

where

µQt ≡ −
(
ftG

(
xAt
)
κ
(
x− xAt

)
+ (1− ft)G

(
xBt
)
κ
(
x− xBt

))
Q
(
xAt , x

B
t , λt

) +
1

2

H
(
xAt , x

B
t , λt; ν̂

)
Q
(
xAt , x

B
t , λt

) +

(1− ft)ψt

[
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) −Ψ
(
xAt , x

B
t , λt

)]
,

ϕQm,t ≡ −
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) +Ψ
(
xAt , x

B
t , λt

)
,

ϕQs,t ≡ −
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) .
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Dynamics of the real state-price density: The real state-price density of investor A is

given by

ξA,t = y−1
1 φe−ρtf (λt)

−1C−1
t = y−1

1 φe−ρtC−1
t (1 + λt) .

By Ito’s lemma

dξA,t
ξA,t

= −ρdt−
(
dCt
Ct

)
+

(
dCt
Ct

)2

+

(
λt

1 + λt

)(
dλt
λt

)
= −rdt− θcdzc,t − θm,tdz

A
m,t,

where rt is the instantaneous real risk-free rate given by

r ≡ ρ+ µc − σ2c , (1.6.37)

and the prices of risk are

θc ≡ σc, (1.6.38)

θm,t ≡ − (1− ft)ψt. (1.6.39)

Dynamics of the nominal state-price density: The nominal state-price density is given

by

ξ$A,t = qtξA,t.

By Ito’s lemma

dξ$A,t

ξ$A,t
=

(
dξA,t
ξA,t

)
+

(
dqt
qt

)
+

(
dξA,t
ξA,t

)(
dqt
qt

)
= −Rtdt− θ$m,tdz

A
m,t − θ$s,tdst,

where the nominal short rate Rt is

Rt = ρ+ x1t − σ2
m +

G
(
xAt , x

B
t , λt

)
Q
(
xAt , x

B
t , λt

) − 1

2

H
(
xAt , x

B
t , λt; ν̂

)
Q
(
xAt , x

B
t , λt

) − σmθm,t + σmΨ
(
xAt , x

B
t , λt

)
. (1.6.40)

In turn, the vector of nominal prices of risk, Θ$
t ≡

[
θ$m,t, θ

$
s,t

]′
is

θ$m,t ≡ θm,t − ϕqm,t = σm +
G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) −Ψ
(
xAt , x

B
t , λt

)
+ θm,t, (1.6.41)

θ$s,t ≡ −ϕqs,t =
G
(
xAt , x

B
t , λt; ν̂s

)
Q
(
xAt , x

B
t , λt

) , (1.6.42)

and µqt , θc, θm,t, ϕ
q
c, and ϕ

q
m,t are given by Eqs. (1.6.20), (1.6.38), (1.6.39), (1.6.25), and (1.6.26),

respectively.
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Proof of Proposition 1.3.4

Instantaneous inflation risk premium: This proof is very similar to the one of proposition

(1.2.3). The only difference is that now we have to account for an additional term θm,tϕ
q
m,t in Eq.

(1.6.40). This additional term implies that the instantaneous inflation risk premium in the model

with disagreement is given by IRPt ≡
[
Rt − πt + vart

(
dPt
Pt

)]
− rt. Thus

IRPt = θc,tϕ
q
c,t + θm,tϕ

q
m,t

= σ2c − (1− ft)ψt

[
−σm −

G
(
xAt , x

B
t , λt; ν̂m

)
Q
(
xAt , x

B
t , λt

) +Ψ
(
xAt , x

B
t , λt

)]
.

Real yield curve: We begin with the definition of the price in t of a real bond with maturity

in period τ under the beliefs of investor A, that is Bt,τ = EAt
[
ξA,τ

ξA,t

]
= EAt

[
e−ρ(τ−t)

(
f(λτ )Cτ

f(λt)Ct

)−1
]
,

where the last equality follows from Eq. (1.3.12). After inserting the sharing rule and re-arranging

terms, the bond price becomes

Bt,τ =
e−ρ(τ−t)

1 + λt

(
EAt

[(
Cτ
Ct

)−1
]
+ λtEAt

[
λτ
λt

(
Cτ
Ct

)−1
])

.

Changing the probability measure of the last term in the equation above to that of investor B as we

did when proving proposition (1.3.2), we obtain EAt
[
λτ
λt

(
Cτ
Ct

)−1
]
= EBt

[(
Cτ
Ct

)−1
]
= EAt

[(
Cτ
Ct

)−1
]
.

The last equality follows from the assumption that information about the consumption process is

complete. Therefore, from log-normality

Bt,τ = e−ρ(τ−t)EAt

[(
Cτ
Ct

)−1
]
= e−(ρ+µc−σ

2
c)(τ−t).

The real yield curve follows directly from yt,τ = − log(Bt,τ )
τ−t .

Nominal yield curve: The price in t of a nominal bond with maturity in period τ under

the beliefs of investor A is B$
t,τ = EAt

[
ξ$A,τ

ξ$A,t

]
. We can manipulate the ratio

ξ$A,τ

ξ$A,t

by inserting Eqs.

(1.3.12) and (1.3.16) as follows

ξ$A,τ

ξ$A,t
=

∫∞
τ e−ρu

(
EAτ
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]
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[
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]
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M
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)
+ λtM

(
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))
du

.
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Using the the previous result and the price of a nominal bond with maturity τ ≥ t at time t

under the beliefs of investor A

B$
t,τ = Et


∫∞
τ

(
EAτ
[
e−ρ(u−t)

(
Mu
Mt

)−1
]
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[
e−ρ(u−t)λu

(
Mu
Mt

)−1
])

du∫∞
t

(
M
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)
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(
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.

By the tower property of conditional expectations
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(
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]
.

Furthermore, we can change the measure from investor A’s beliefs to investor B’s such that

EA
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[
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]
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(
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]
.

Therefore, the integrand in the numerator of B$
t,τ becomes
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]
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.

Hence, the price of the nominal bond is given by

B$
t,τ =

∫∞
τ

(
M
(
xAt , u− t; ν̂A, ν̂Ax

)
+ λtM

(
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(
M
(
xAt , u− t; ν̂A, ν̂Ax

)
+ λtM

(
xBt , u− t; ν̂B, ν̂Bx
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du
.

The nominal yield curve follows from y$t,τ = − log(B$
t,τ)

τ−t , the expression above and by letting

Q
(
xAt , x

B
t , λt, τ

)
≡
∫∞
τ

(
M(xAt ,u−t;ν̂A,ν̂Ax )+λtM(xBt ,u−t;ν̂B ,ν̂Bx )

1+λt

)
du for τ ≥ t with some abuse of

notation.

Dynamics of the nominal yield curve: The diffusion terms of the nominal yield curve

follow from an application of Ito’s lemma and by letting, for l ∈ {m, s}

G
(
xAt , x

B
t , λt, τ ; ν̂l

)
≡

ftG
(
xAt , τ

)
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) , (1.6.43)

D
(
xAt , x

B
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t
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M
(
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)
−M

(
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du. (1.6.44)
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Chapter 2

Quantifying Private Information

about Fundamentals in Treasury

Auctions

2.1 Introduction

The role of private information about fundamentals occupies a central position in the study

of financial markets. It is directly related to key questions about market efficiency (Fama, 1970,

1991), market microstructure (Kyle, 1985) and information aggregation (Grossman and Stiglitz

(1980); Diamond and Verrecchia (1981); Kyle (1989)). In the context of the primary market for

sovereign debt, early work argued that the main incentive for bidders in treasury auctions (i.e., the

primary market) is to resell purchased bonds to investors in the secondary market (Cammack (1991);

Spindt and Stolz (1992); Bikhchandani and Huang (1993)). These authors concluded that private

information about the resale price (the fundamental value) should determine bidding strategies,

whereas idiosyncratic differences in valuations can safely be assumed to be negligible. Nyborg et

al. (2002) and Bjønnes (2001), among others, provide reduced-form empirical evidence consistent

with private information. In contrast, Hortaçsu and Kastl (2012) do not find statistical evidence

of private information in Canadian treasury auctions. Hortaçsu et al. (2018) argue that bidders

Chapters II and III are based on ”Quantifying Private Information about Fundamentals in Treasury Auctions”,

a paper co-authored with Pietro Bonaldi and Alejandra Ruiz. We want to thank Sergio Armella, Juan Esteban

Carranza, Matthew Denes, Brent Glover, Burton Hollifield, Karam Kang, David Mart́ınez-Miera, Anh Nguyen,

Alberto Ramos, Bryan Routledge, Jesper Rüdiger, Chester Spatt, Vincent van Kervel, Mauricio Villamizar-Villegas

for valuable comments. We also want to thank seminar participants at Carnegie Mellon University, Pontificia

Universidad Católica de Chile, Pontificia Universidad Javeriana, Universidad Carlos III de Madrid, and the Global

Investment Research Group at Goldman Sachs for their helpful discussions.
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in US Treasury auctions are sophisticated traders with access to overlapping data sources on the

value of the bonds being offered, including information on secondary market prices right before the

auction. Hence, even if reselling bonds is a chief motivation for bidders, it is unlikely that they are

privately informed about resale prices. Instead, heterogeneity in bids is more likely attributable

to differences in idiosyncratic valuations. More recently, however, Boyarchenko et al. (2020) study

information sharing in US treasury auctions by estimating a model with private information about

fundamentals and idiosyncratic valuations. In summary, the importance of private information in

primary debt markets remains an open empirical question.

We contribute to this debate by proposing an empirical method to quantify the amount of private

information in treasury auctions structured as divisible good uniform price auctions. The method is

based on the estimation of the theoretical model presented in Vives (2010, 2011), where bidders are

allowed to be privately informed about fundamentals but may also receive idiosyncratic valuation

shocks. The relative importance of private information is determined by the correlation between

bidders’ valuations and the precision of their private signals. These are model parameters that, we

show, are identified from data on bids and secondary market prices. Through an application to

the Colombian sovereign debt market, we find that the importance of private information varies

with market conditions. In particular, our estimates indicate that the information structure of the

market under consideration is less characterized by private information after an exogenous positive

shock to the demand for government bonds in the secondary market. Furthermore, we provide

model-free empirical evidence to support this finding.

Bidders in treasury auctions have market power because access to the primary market is

generally restricted to a few financial institutions. These bidders strategically submit bids below

their marginal valuations, a result known in the auctions literature as bid shading or demand

reduction. One key result of Vives (2010, 2011) is that private information about fundamentals

raises market power above the full-information level. Consequently, the model predicts that holding

all else constant, an observed reduction in private information would lower market power and

bid shading, thereby reducing issuer borrowing costs. However, the model allows for decreasing

marginal valuations, and, in equilibrium, bidders with steeper marginal value curves shade their

bids more. The slope of the marginal value function, which is a parameter of the model, can

be interpreted as the cost to the bidders of deviating from their target inventory, or inventory

costs. The model implies that higher inventory costs also result in greater market power. This

poses an identification challenge. The same level of bid shading can be rationalized by high

private information and low inventory costs, or alternatively, high inventory costs and low private

information. Nonetheless, we show that the model parameters that determine private information

and inventory costs are identified separately from auction data (including bids) and a secondary

price benchmark.

We apply our method to the Colombian sovereign debt market. In March 2014, J.P. Morgan
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announced that it would boost the weights of Colombian sovereign bonds on two local currency

emerging market debt indices. Williams (2018) documents that this unanticipated rebalancing

triggered a surge in the demand for Colombian sovereign debt, which in turn prompted banks

in Colombia to reduce their holdings of government bonds. We provide supplementary empirical

evidence that Colombian sovereign bonds were traded more actively after the shock. Furthermore,

the secondary debt market became more liquid and experienced a significant decrease in volatility.

We hypothesize that the primary market was likely also affected by the rebalancing. Consequently,

we estimate the model separately before and after the shock. We find a substantial reduction

in private information about fundamentals as a determinant of observed bids, but also a sizeable

increase in inventory costs. These two findings have opposing effects on bid shading. The estimation

results indicate that the change in revenue for the treasury is lower than two basis points (bp) of

the par value of the bond offering. However, the latter masks the separate effects of private

information and inventory costs. We decompose these two effects and find that the reduction in

private information alone implies a drop in bid shading (increase in revenue) of 34–112bp, depending

on the number of bidders. In contrast, the increase in inventory costs raises bid shading by 35–

110bp. In Chapter III, we provide reduced-form evidence consistent with both channels.

Our proposed methodology is well suited to quantify the effects of private information and

inventory costs on policies meant to lower treasuries’ borrowing costs. We study two such policies:

increasing the number of primary market participants and reducing the total bond offering per

auction. After the rebalancing, the structural estimation results imply that increasing the number

of bidders from 10 to 14 (the minimum and maximum observed participation in our sample) reduces

bid shading by 4 bp. In contrast, in a hypothetical but empirically feasible scenario with high market

power (high private information matching the pre-rebalancing estimates and high inventory costs

matching the post-rebalancing result), bid shading drops by 80 bp when the number of bidders

increases from 10 to 14. Analogously, we quantify the effect of reducing the total bond offering in a

specific auction on market power. From the equilibrium of the model in Vives (2010, 2011), market

power increases with bond supply. We find that, following a one standard deviation decrease in the

total bond supply below its sample mean, market power would fall by at most 4 bp according to

our post-rebalancing estimates. In the high market power scenario, the reduction in market power

lies between 20 bp and 63 bp, depending on the number of bidders.

Debates on whether the aforementioned policies should be pursued require estimates of the

prevailing level of market power in the primary market under consideration. Furthermore, more

targeted policies intended to address either private information frictions or inventory costs related

to market-making services would benefit from methodologies that can decompose market power

into its determinants to discern which feature is more preponderant in the market. Our study

contributes to both objectives.

We conclude this section with a discussion on related literature. The remainder of Chapter II

69



is organized as follows. In Section (2.2) we summarize the model presented in Vives (2010, 2011).

We then show that the model parameters are identified using only bidding data and prices from

the secondary debt market in Section (2.3), and we outline our empirical strategy to estimate the

parameters of interest. In Section (2.4), we describe the main features of the Colombian debt

market along with the data we use to estimate the model. In Section (2.5), we present the results

of our structural estimation, a quantitative assessment of the change in bidders’ market power, and

a counterfactual analysis to evaluate policies to reduce borrowing costs.

Related literature In the auctions literature, questions about the importance of private information

have been formulated in terms of which theoretical model better describes the information structure

that determines bidders’ valuations. Private information is consistent with common value models.

In such models, the ex post value of the asset after the auction is the same for all bidders (e.g.,

its resale price in the secondary market), but it is uncertain to the bidders ex ante. Instead,

each bidder observes a private signal of the common value that amounts to private information

about fundamentals. On the other extreme, the absence of private information corresponds to

a model with only private values. In that model, any common component in bidders’ values is

common knowledge; hence, all information about fundamentals is public, but bidders have different

idiosyncratic valuations. The theoretical model in Vives (2010, 2011) encompasses both common

and private values. The weight of each of these two components in bidders’ valuations determines

the importance of private information.1

Our study is closely related to Boyarchenko et al. (2020). They extend the uniform price common

value model of Kyle (1989) and Wang and Zender (2002) by adding a private value component to

bidders’ valuations. However, they do not rely on an estimation procedure based on bidding data.

In contrast to our work, they calibrate the model to auction results and post-auction secondary

market prices. In their calibration, the relative importance of the common value component is

not recovered from the data and is instead fixed. Hence, in their study, the importance of private

information is imposed by assumption. To the best of our knowledge, ours is the first study to

estimate the importance of private information in a divisible good uniform price auction with both

private and common values.

Methodologically, our estimation approach complements Hortaçsu and McAdams (2010) and

Kastl (2011). Their estimation method is non-parametric and takes into account the fact that bids

are discrete. However, it requires an assumption of independent private values. Hence, it cannot be

used to recover the distribution of bidders’ valuations in settings with private information (common

1Armantier and Sbäı (2006) propose a parametric estimation of a generalized version of the model in Wang and

Zender (2002) where bidders have pure common values but are asymmetric. Recent work on non-parametric structural

estimation of multiunit auctions under the private values paradigm includes Chapman et al. (2007), Kang and Puller

(2008), Hortaçsu and McAdams (2010), Kastl (2011), Hortaçsu et al. (2018).
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values). In contrast, we follow the model in Vives (2011), which has a unique equilibrium in linear

demand schedules. We focus on this equilibrium, acknowledging that it imposes strong parametric

assumptions, and treats bids as continuous linear functions. However, these assumptions allow us

to derive a likelihood function and, consequently, estimate the model on bidding data and readily

available secondary market pricing data alone. Furthermore, unlike in non-parametric estimation

methods, we can decompose market power into private information and inventory costs.

The results of our application indicate that the information structure is not an immutable

characteristic of treasury auctions. Hence, although we find evidence of private information, our

findings are not necessarily inconsistent with those of Hortaçsu and Kastl (2012). Using detailed

bidding data from Canadian Treasury auctions, they do not reject the null hypothesis of private

values in favor of an alternative common values hypothesis. However, their test could, in principle,

reject the null hypothesis if applied to a different market or at a different point in time.2

Our study is also related to the empirical literature on the aggregation of private information in

sovereign debt markets. Green (2004), Brandt and Kavajeckz (2004), Pasquariello and Vega (2007),

Valseth (2013), and Czech et al. (2020) show that order-flow predicts future bond yields.3 They

argue that order-flow contributes to price discovery (i.e., aggregation of asymmetric information)

in secondary debt markets. While our main focus is on the primary market, we provide empirical

evidence that private information is revealed to market participants through the auction’s cutoff

price, which in turn predicts future secondary market yields and prices. Furthermore, Green (2004)

and Pasquariello and Vega (2007) document that the empirical relationship between order-flow and

yields changes with macroeconomic announcements. This result resonates with our findings on the

time-varying nature of private information in debt markets.

2.2 Model

We follow the uniform price auction model of Vives (2010, 2011) with private and common values.

kt units of an asset are sold at each auction t = 1, ..., T , and bidders are uncertain about the ex

post value of the asset. For each bidder i = 1, ..., nt, the marginal value of buying xi,t units is

vi,t (xi,t) = θi,t−λxi,t, with λ > 0. λ captures decreasing marginal valuation and can be interpreted

as an opportunity cost. Bidders do not observe their valuations θi,t, instead they receive private

independent signals si,t = θi,t + ϵi,t. The distributions of ϵi,t and θi,t are common knowledge.

ϵi,t ∼ N
(
0, σ2ϵ

)
for all i and all t, cov (ϵi,t, ϵjt) = 0 for i ̸= j and cov (ϵis, ϵi,t) = 0 for s ̸= t.

θi,t ∼ N
(
θt, σ

2
θ

)
with θt > 0 and σ2θ > 0, cov (θi,t, θjt) = ρσ2θ for i ̸= j, cov (θis, θi,t) = 0 for s ̸= t,

2The test proposed by Hortaçsu and Kastl (2012) relies on the econometrician observing how dealers change their

bids after they learn their customers’ bids. Therefore, we cannot apply it to our data because there are no customer

bids in Colombian treasury auctions.
3Evans and Lyons (2005) and Menkhoff et al. (2016), among others, document a similar result for order-flow and

future exchange rates.
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and cov (ϵi,t, θjt) = 0 for all i and j.

Notice that bidders’ valuations can be decomposed into a common value and idiosyncratic

independent components, as follows. Let θi,t = ϕ̃t+γi,t, where ϕ̃t ∼ N
(
θt, ρσ

2
θ

)
, γi,t ∼ N

(
0, (1− ρ)σ2θ

)
,

cov
(
ϕ̃t, γi,t

)
= 0, and cov (γi,t, γjt) = 0 for i ̸= j. ϕ̃t is a common value, as traditionally defined in

the auctions literature. It is common to all bidders and, crucially, for some values of the parameters,

bidders are imperfectly and privately informed about its value. This is precisely the feature of the

model that captures private information about fundamentals.

The model encompasses extreme cases traditionally considered in the auctions literature. When

ρ = 1 and σ2ϵ > 0, the model reduces to a pure common value auction as the asset has the same

uncertain ex post value for all bidders, with probability one. In such a case, bidders are privately

informed about the unknown common value of the asset. In contrast, if ρ < 1 and σ2ϵ = 0, bidders

have pure private values because they are no longer uncertain about their private ex post values.

Individual valuations still include a common component, but no bidder has private information that

is value relevant for other bidders who already know their valuations with certainty, hence private

information about fundamentals (about the common component) is irrelevant. Finally, when ρ = 0

and σ2ϵ > 0, there is no uncertain common value, the common component θt is commonly known,

but bidders are not perfectly informed about their ex post idiosyncratic values, moreover, their

signals are independent conditional on θt.

In summary, bidders in the model have private information about fundamentals if and only if

ρ > 0 and σ2ϵ > 0. In such a case, there is a common component ϕ̃t in bidders valuations that is

not perfectly known (ρ > 0), and bidders receive different private signals about its value (σ2ϵ > 0).

More broadly, the importance of private information in bidders valuations is determined by ρ and

σϵ.

2.2.1 Auction equilibrium

After observing their private signals, bidders submit linear demand schedules of the formX (si,t, p) =

bt+ atsi,t− ctp. The auctioneer determines the auction cutoff price that clears the market, that is,

the price p̂t that satisfies
∑nt

i=1X (si,t, p̂t) = kt. If there is no such price for a given realization of

signals, the auction is canceled and no units of the asset are sold. Following Vives (2011), we only

consider symmetric Bayesian Nash equilibria in linear demand schedules. He proves the existence

of a unique such equilibrium. We reproduce his Proposition 1 below for convenience.

Proposition 2.2.1. Let σ2
ϵ

σ2
θ
< ∞. Then there is a unique symmetric linear Bayesian demand

function equilibrium if and only if n− 2−M > 0, where

M ≡ ρσ2ϵn

(1− ρ)
(
σ2ϵ + σ2θ (1 + (n− 1) ρ)

) . (2.2.1)
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This equilibrium is given by

X (si, p) = (E [θi|si, p]− p) /(d+ λ) = b+ asi − cp, (2.2.2)

where c = n−2−M
λ(n−1)(1+M) , d = 1

(n−1)c , a =
(1−ρ)σ2

θ

(1−ρ)σ2
θ+σ

2
ϵ
(d+ λ)−1 and

b =
1

1 +M

(
k

n
M +

σ2ϵ
σ2ϵ + (1 + (n− 1) ρ)σ2θ

(d+ λ)−1 θ

)
. (2.2.3)

In equilibrium, 1/λ (1 +M) > c > 0, a > 0, c decreases with M and with λ, and d is decreasing in

n.

2.2.2 Bid shading, private information and decreasing marginal valuations

In equilibrium, bidders submit bids below their marginal valuations. This is a feature of several

auction models, commonly refer to as bid shading. In fact, the demand function of a price-taking

bidder is Xpt (si, p) = (E [θi|si, p]− p) /λ, which is above the equilibrium demand schedule in 2.2.1

because d > 0. Moreover, it follows from Proposition 2.2.1 and the market clearing condition

that the equilibrium cutoff price is p̂ = 1
n

∑n
i=1E [θi|s]− (d+ λ) k/n. It follows that the difference

between the price that bidders pay for the asset and their average marginal valuation is dk/n.

Therefore, as discussed in Vives (2010), this quantity measures the amount of bid shading or,

alternatively, market power.

In the model, market power is thus explained by three factors: imperfect competition, private

information and decreasing marginal valuations. Specifically, d depends on the number of bidders

n, the parameters determining private information (ρ, σϵ, and σθ), and the slope of the marginal

valuation function λ.

We will first describe the effect of private information on bid shading. The equilibrium in

Proposition 2.2.1 is privately revealing in the sense of Allen (1981). In particular, E [θi|si, p] =
E [θi|s], where s = (s1, ..., sn) is the vector of all signals. That is, the equilibrium cutoff price

conveys the same information to bidder i about its own valuation θi than the signals of all other

bidders. This provides incentives for bid shading analogous to the winner’s course in common

value auctions. A low cutoff price reveals to bidder i that other bidders received low signals, hence

decreasing its ex-post valuation of the asset. Rational bidders protect themselves against this bad

news by increasing bid shading.

If ρ = 0 or σϵ = 0, the equilibrium in Proposition 2.2.1 coincides with a full-information

equilibrium where all bidders observe their own signals and the signals of all other bidders. In such

a case, E [θi|si] = E [θi|s], hence the cutoff price no longer contains additional information about

bidders valuations. There is still bid shading in the full-information equilibrium (which we denote

using a superscript f , following Vives (2010)), but it is lower than in the equilibrium with private

information (ρ > 0 and σϵ > 0). Notice that M > Mf = 0, therefore cf > c > 0 and 0 < df < d.
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All things equal, it follows from equation (2.2.1) that larger values of M reduce c, therefore bidders

submit less elastic demand schedules, and their market power, as measured by d, increases.

In the private information equilibrium, M determines the effect of private information on bid

shading and market power, through its effect on the slope c. However, the latter is also determined

by λ, that is, by how steep the bidders’ decreasing marginal valuations are. Steeper marginal

valuations (higher λ) imply steeper equilibrium demand schedules (higher c), which in turn results

in higher bid shading (higher d).

Finally, as stated in Proposition 2.2.1, d (therefore bid shading as well) is monotonically

decreasing in the number of bidders. Moreover, as n → ∞, d → 0, hence the equilibrium with

private information converges to the full-information equilibrium.

2.3 Identification and estimation

We establish sufficient conditions under which the model in Section 2.2 is identified. For any

auction t, we assume the econometrician observes the number of bidders nt, the total number of

units offered kt, all bids submitted, the auction cutoff price pct and the secondary market price p̄t.

We further assume that the bids correspond to the unique symmetric linear Bayesian equilibrium

from Section 2.2, for a given realization of private signals st = (s1t, ..., sntt). Hence, bids are linear

demand schedules of the form Xi,t (p) = αi,t − ctp, where αi,t = bt + atsi,t. Equivalently, bids

can be described as inverse demand schedules: Pi,t (x) = p0i,t − 1
ct
x, where p0i,t =

αi,t

ct
. For a given

auction t, all the information contained in the bids can be summarized in a vector of intercepts,

either αt = (α1t, ..., αntt) or p0t =
(
p01t, ..., p

0
ntt

)
, and a slope ct that is common to all bidders in a

symmetric equilibrium.

We assume the econometrician has data from T independent auctions labeled t = 1, , , T . Pooling

bidding data from several different auctions is a common practice in the empirical study of treasury

auctions, since the number of potential bidders tends to be low (e.g, Hortaçsu and McAdams (2010),

Armantier and Sbäı (2006), Kastl (2011), and Hortaçsu and Kastl (2012)).

In the model, the mean of the bidders’ values θt is common knowledge for the bidders, but

it is unlikely that the econometrician will know it with certainty. This introduces unobserved

auction heterogeneity posing a challenge to the identification strategy, since we are combining

data from several different auctions. To address this challenge we allow the econometrician to

have partial knowledge of θt, captured by a proxy p̄t. Secondary market prices, which are widely

available for sovereign bond markets around the world, are likely good proxies of average valuations.

Consequently, besides the assumptions of the model in Section 2.2, we add an assumption stating

that secondary market prices are proxies of average valuations.

Assumption 2.3.1. Let p̄t be the observable secondary market price of the asset. Then θt = p̄t+ηt,

where ηt ∼ N
(
µη, σ

2
η

)
with unknown mean and variance.

74



Our goal now is to establish the identification of all time-invariant parameters in the model,

i.e., (ρ, σϵ, σθ, λ). We will also discuss the identification of µη and σ2η, although these are are not

main parameters of interest and are added to the model only to address unobserved heterogeneity.

We exploit variation in the number of bidders to prove identification. Specifically, we assume there

are arbitrarily many auctions with at least two different numbers of bidders.

To establish identification, we start by noticing that in equilibrium the sensitivity of the

intercepts to the signals, at, and the slope of the linear bids, ct, both depend on the number

of bidders, nt, but do not depend on total supply, kt. Hence, across multiple auctions all with the

same number of bidders, at and ct remain constant. The same is true of the variables M and d

in Proposition 2.2.1. In what follows, we will denote the dependency of this variables on nt by

explicitly expressing them as functions of nt. That is, we will use the notation a (nt) , c (nt), M (nt)

and d (nt).

Proposition 2.3.2. For all i and t, the intercepts of the inverse demand schedules can be expressed

as

p0i,t = p̄t +
M (nt)

c (nt)nt (1 +M (nt))
kt + ηt +

a (nt)

c (nt)
(ξi,t + ϵi,t) , (2.3.1)

where ξi,t = θi,t − θ̄t is normally distributed with mean zero and variance σ2θ .

The proof of Proposition (2.3.2) can be found in the Appendix. Therefore, conditional on nt,

kt and p̄t, p
0
t follows a normal distribution with

E
[
p0i,t|nt, kt, p̄t

]
= p̄t +

M (nt)

c (nt)nt (1 +M (nt))
kt + µη, (2.3.2)

and

Var
[
p0i,t|nt, kt, p̄t

]
=
a (nt)

2

c (nt)
2

(
σ2θ + σ2ϵ

)
+ σ2η, (2.3.3)

for bidder i, and

Cov
[
p0i,t, p

0
jt|nt, kt, p̄t

]
=
a (nt)

2

c (nt)
2 ρσ

2
θ + σ2η, (2.3.4)

for i ̸= j.

The conditional variance and covariances are constant across all auctions with nt = n̄, as

well as the slopes of the linear demand schedules c (n̄), and the coefficients of the linear conditional

expectation: M(n̄)
c(n̄)n̄(1+M(n̄)) and µη. It follows immediately that the parameter µη, and the constants

M (n̄) and d (n̄) are separately identified. Moreover, since c (n̄) = n̄−2−M(n̄)
λ(n̄−1)(1+M(n̄)) , then the parameter

λ is also identified. Variation in the number of bidders allows us to identify all other parameters

of the model. We establish this result in Proposition 2.3.3. The proof is left to the Appendix.

Proposition 2.3.3. Given a dataset of T independent auctions D =
{
nt, kt, p̄t, p

0
t , ct

}T
t=1

, if p0t and

ct correspond to the equilibrium linear demand schedules of model 2.2 for each t, and assumption

2.3.1 holds, then ρ, σϵ, σθ, λ, µη and σ2η are identified when there are arbitrarily many auctions

with the same number of bidders n > 2, for at least two different values of n denoted n̄ and n̂.
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The identification result above assumes bids are linear (inverse) demand schedules. It shows that

the model in Vives (2010, 2011) is identified. Moreover, a symmetric linear Bayesian equilibrium is

a common feature of several other theoretical and empirical studies of treasury auctions including

Wang and Zender (2002), Armantier and Sbäı (2006), and Boyarchenko et al. (2020). However, in

most countries, treasury auction rules require bidders to submit discrete bids consisting of a finite

number of price-quantity pairs, as those described in Section 2.4.1. For such cases, we assume the

model equilibrium from Section 3 is still a good approximation of the observed bids. More precisely,

we assume that the distribution of the highest price submitted by each bidder coincides with the

distribution of the intercepts of the inverse linear demand schedules predicted by the model, and

that the observed cutoff price is equal to the model’s equilibrium market cutoff price p̂t plus a

normal error due to misspecification. We formally state these two assumptions below and then

establish identification of the model parameters under these assumptions.

Assumption 2.3.4. Let p0i,t denote the highest price submitted by bidder i. Conditional on the

number of bidders nt, total supply kt and the mean value θ̄t, p
0
i,t follows a normal distribution with

mean

E
[
p0i,t|nt, kt, θ̄t

]
= θ̄t +

M (nt)

c (nt)nt (1 +M (nt))
kt, (2.3.5)

and variance

Var
[
p0i,t|nt, kt, θ̄t

]
=
a (nt)

2

c (nt)
2

(
σ2θ + σ2ϵ

)
. (2.3.6)

Moreover, for any two bidders i ̸= j

Cov
[
p0i,t, p

0
jt|nt, kt, θ̄t

]
=
a (nt)

2

c (nt)
2 ρσ

2
θ , (2.3.7)

Assumption 2.3.5. pct = p̂t + ζt, and ζt ∼ N
(
0, σ2ζ

)
Proposition 2.3.6. Under assumptions 2.3.4 and 2.3.5, and given a dataset of T independent

auctions
{
nt, kt, p̄t, p

0
t , p

c
t

}T
t=1

, if there are arbitrarily many auctions with the same number of bidders

n > 2, for at least two different values of n (denoted n̄ and n̂) the parameters (ρ, σϵ, σθ, λ, µη, ση)

are identified.

In the model, the market cutoff price is p̂t = 1
nt

∑nt
i=1 p

0
i,t − kt

ntc(nt)
, hence assumption 2.3.5

implies that conditional on nt, kt, and the vector of price bids pct , the observed cutoff price is

normally distributed with mean

E
[
pct |nt,kt, p0t

]
=

1

nt

nt∑
i=1

p0i,t −
kt

ntc (nt)
. (2.3.8)

It follows that c (n̄) and c (n̂) are identified, even if they are not directly observable. The rest of

the proof of Proposition 2.3.6 is identical to that of Proposition 2.3.3.
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The parametric assumptions of the model (2.2) allow us to easily estimate its parameters by

maximum likelihood. The vector p0t is normally distributed conditional on nt, kt and p̄t. Moreover,

the observed cutoff price pct is also normally distributed conditional on nt, kt, p̄t and p0t . The

respective conditional densities can be used to derived the likelihood function and estimate the

model parameters, even in the presence of unobserved auction heterogeneity. The likelihood

function is included in the Appendix.

2.4 Data

We apply our method to the Colombian sovereign debt market. As with many other sovereign

fixed-income markets, the Colombian debt market is organized around a set of primary dealers

(PDs). They are large financial institutions that directly participate in the primary market, where

bonds are offered by the issuer, namely, the sovereign government. PDs are expected to participate

in the primary market by purchasing securities that they can hold in their balance sheets or resell

to other dealers or customers in the secondary market. There are 14 PDs in our sample. All of

them are commercial banks, financial corporations, or broker-dealers. For more details on the PD

program in Colombia, see Cardozo (2013) and Williams (2018).

2.4.1 Primary market

Colombian government bonds (TES) are offered at biweekly prescheduled auctions. TES are

coupon-paying government securities issued in the local currency with a maturity of more than

one year. The primary market for each bond is an auction conducted by the Central Bank of

Colombia on behalf of the Colombian Treasury. Only PDs (which we indistinctly call bidders)

designated by the Colombian Treasury can participate in the primary market. Before the auction

is held, the Central Bank announces the par value of the bond offering, that is, the bond supply.

When an auction opens, every PD may submit a sealed demand schedule that consists of a set

of yield-quantity pairs. Equivalently, each demand schedule can be characterized as price-quantity

pairs from the submitted yields. A single price-quantity pair within a given bid is a bid-step. When

the auction closes, the Central Bank sorts all the individual bid-steps from the highest to the lowest

prices. Then, it adds up all the submitted quantities cumulatively. The market-clearing or cutoff

price is set at the point where aggregate demand (the cumulative sum of submitted quantities)

meets the bond supply (the total amount offered at the auction). Thus, all pairs above or at the

cutoff price are winning pairs. The auctions follow a uniform price mechanism, meaning that PDs

pay exactly the cutoff price for all their winning price-quantity pairs, regardless of the actual prices

(yields) they submitted. The auction results are announced on the same day as the offering, which

is also when PDs receive their share of won securities.

The Colombian government has restricted the number of different bond issues it offers to a few
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benchmarks annually. Thus, rather than auctioning off a new five-year bond every two weeks, the

government usually reopens the offering of an existing bond with a maturity of approximately

five years on auction days. Except for newly issued bonds, an identical TES bond is traded

simultaneously in the secondary debt market before and after the auction. Reopening existing

bond offerings is a method frequently employed by treasuries in Sweden, Norway, and Italy, among

others (Nyborg et al. (2002); Valseth (2013); Sigaux (2018)). Moreover, some US treasury bills

and notes are frequently reopened (Fleming (2002); Lou et al. (2013)). Given that all PDs observe

trading activity in the secondary market for a to-be-offered bond prior to entering a reopening

auction, bidders may use the secondary market price to extract information about the security’s

fundamental value. In Section (2.3), we use a bond’s secondary market price as a commonly known

signal of its ex post value when estimating the model.

Bids

Our sample spans all TES auctions between 2013 and 2015. It contains 154 auctions in total,

for nine different bonds that were either auctioned off for the first time or reopened. For a given

auction, we observe the complete set of yield-quantity pairs submitted by each PD. We convert

the yields to prices using the bond’s face value (100), coupon payments, time to maturity, and

day-count convention (NL/365), consistent with the guidelines of the Colombian treasury. Thus,

for bidder i in auction t, we have H price-quantity pairs, denoted by {pi,t,h, xi,t,h}H−1
h=0 .

Table (2.1) presents some summary statistics regarding bidding data. On average, 12.4 bidders

participate in an auction and each bidder submits around four price-quantity pairs.

Number of bidders per auction

As described in Section (2.3), we take advantage of the variation in the number of bidders that

participate in a given auction both before and after the rebalancing announcement on March 19,

2014.4 Table (2.2) presents the total number of bond auctions with a given number of bidders both

before and after the rebalancing announcement. Up to 14 bidders may participate in any given

auction. This value corresponds to the number of PDs designated by the Colombian government

in our sample. It is immediately seen from table (2.2) that more than ten bidders participate in

the vast majority of auctions before the rebalancing announcement and in all of them afterwards.

Thus, at least 71% of all possible PDs submit bids to the primary market for most bond offerings..

4See Section (2.5) for more details on the rebalancing announcement.
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Table 2.1: Summary statistics

Panel A: All sample

Variable Mean Std. dev.

Highest bid over cutoff price (bp) 53.4 34.2

Number of participants 12.4 1.2

Number of price-quantity pairs 4.1 1.4

Total supply (bill. hundr. COP) 1.9 1.0

Panel B: Pre-rebalancing sample

Variable Mean Std. dev.

Highest bid over cutoff price (bp) 49.0 40.7

Number of participants 12.2 1.3

Number of price-quantity pairs 3.9 1.6

Total supply (bill. hundr. COP) 1.8 1.2

Panel C: Post-rebalancing sample

Variable Mean Std. dev.

Highest bid over cutoff price (bp) 57.2 27.1

Number of participants 12.6 1.0

Number of price-quantity pairs 4.4 1.0

Total supply (bill. hundr. COP) 1.9 0.7

Our sample spans all Colombian treasury auctions of all sovereign bonds in locally-denominated currency (COP)

between 2013 and 2015. The pre-rebalancing sample corresponds to all auctions held before the J.P. Morgan

GBI-EM index rebalancing announcement on March 19, 2014. ”Highest bid over cutoff price” corresponds to

the highest submitted bid by a bidder over the auction’s cutoff or market-clearing price in bp. ”Number of

participants” corresponds to the effective number of bidders who submitted demand schedules in an auction.

”Number of price-quantity pairs” is the total number of price-quantity pairs submitted in an auction. ”Total

bond supply” is the pre-announced par value of the bond to be issued in the auction in hundreds of billions of

COP. The average nominal spot exchange rate in March 2014 was 2,000 COP per 1.00 USD.
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Table 2.2: Number of auctions per number of bidders

Number of bidders Pre-rebalancing Post-rebalancing

(1) (2)

8 2 0

9 0 0

10 7 3

11 6 7

12 27 22

13 19 34

14 11 16

Total 72 82

This table presents the total number of auctions with a given number of bidders before and after the J.P. Morgan

GBI-EM index rebalancing announcement on March 19, 2014. At most, up to fourteen bidders (also known as

designated Primary Dealers) may participate in any given auction. Our sample spans all Colombian sovereign

bond offerings between 2013 and 2015.

2.4.2 Secondary market

Primary dealers in the Colombian secondary debt market act as intermediaries between the bond

issuer (treasury) and investors (either end-investors or other dealers), although they usually also

keep a fraction of the purchased security in their own books.5

PDs may trade in the secondary market with different sets of customers, which can potentially

give rise to differences in clients’ order-flow across bidders. In turn, heterogeneous clients’ order-flow

may result in dealers having private information about fundamental values in Treasury markets, as

argued in Boyarchenko et al. (2020).6

We have access to all transactions in the main interdealer broker (IDB) market for TES bonds

between 2013 and 2015.7 A transaction from the IDB market is recorded as a vector that contains

5TES holders are mainly pension funds, commercial banks, brokerage firms, foreign funds, and public institutions.
6Green (2004), Brandt and Kavajeckz (2004), Pasquariello and Vega (2007), and Czech et al. (2020) investigate

the relationship between order-flow imbalances and Treasury returns.
7There are three main different trading and registering systems to transact TES bonds in our sample: the Electronic

Negotiation System (known as SEN in Colombia), the Colombian Electronic Market (MEC), and the Colombian

Electronic Market Register Module (MEC-R). As discussed in León et al. (2014), SEN, a system managed and operated

by the Central Bank, is the principal interdealer trading and negotiation platform for TES bonds in Colombia. PDs

have exclusive access to this platform, where they can trade and settle anonymously without counterparty limits.

More than 50 percent of total trading in TES bonds occurs within this system Survey (2011) . The Electronic

Negotiation System is the main IDB that we refer to above in the text. See León et al. (2014) for more details on

different trading systems in which PDs can transact TES bonds.
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the transaction’s clearing time stamped to the nearest second, its nominal value, its price, and an

(anonymized) identifier for the dealers involved in the transaction.

We also gather the prices of the bonds offered from Bloomberg. Specifically, we collect Bloomberg’s

daily mid-quote for the opening- and end-of-day prices for all nine bonds offered in our sample.

These prices are merely suggestive, as they are not necessarily the prices at which dealers or

investors may actually transact. Nevertheless, Bloomberg’s prices for TES bonds are calculated

using information from different platforms and trading facilities in the Colombian secondary debt

market; therefore, we include them in our information set as well.

We use all transactions in the main IDB market from the start of the trading day until

immediately before an auction opens to compute the quantity-weighted price of the bond to-

be-offered. We interpret this price as a proxy for the commonly known signal about the bond’s

fundamental value. We also perform robustness tests using prices from Bloomberg as an alternative

secondary market price benchmark. We exclude bids from three auctions in which we do not observe

a secondary market price because the bond is auctioned off for the first time, which reduces our

effective sample to 151 auctions.

2.5 Application: Rebalancing

On March 19, 2014, J.P. Morgan announced that it would rebalance the weights in its JPM GBI-EM

Global and JPM GBI-EM Global Diversified debt indexes. These indexes are composites of locally

denominated government debt instruments issued in emerging markets and tracked by funds that

managed approximately $200 billion (see Hong and Molinski, 2014). Colombia’s weight in the JPM

GBI-EM index was boosted by the inclusion of five additional Colombian sovereign bonds.8 The

rebalancing increased Colombia’s total weight in the index from 3.24 to 7.69 percent. According to

Arslanalp and Tsuda (2015), approximately 97.7 percent of the weight’s increase was a consequence

of the inclusion of new TES bonds, whereas the remaining portion was due to valuation effects.

Romero et al. (2020) estimate that 80% of all offshore investors with significant dealings in Colombia

use this index as a benchmark.

Williams (2018) documents that the share of debt held by foreigners in the Colombian debt

market rose from 8.5 percent in March 2014 at the time of the announcement to 19 percent in

September 2014. Similarly, Arslanalp and Tsuda (2015) estimate that the net foreign purchases of

Colombian government bonds were USD $7.36 billion from March to September 2014, a much larger

figure than in previous years. Moreover, Williams (2018) provides evidence that the rebalancing

significantly impacted the balance sheet of Colombian PDs. After the rebalancing, PDs reduced

their domestic sovereign debt holdings by 7.8 percentage points, as a fraction of their total assets,

8The five new Colombian bonds that were included in the JPM GBI-EM index had maturity in 2016, 2018, 2022,

2024 and 2028. All five bonds were offered during our sample.
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relative to non-PD commercial banks.

In summary, the J.P. Morgan rebalancing implied a positive demand shock for Colombian

sovereign debt, mostly driven by foreign funds tracking the indexes. This shock may have altered

the information structure of the primary market for Colombian government bonds by redistributing

the share of customers’ order flows to which different dealers and PDs have access. In Section

(2.5.1), we provide reduced-form empirical evidence of changes in the information structure of the

Colombian government debt market based on observed patterns in secondary bond markets around

the rebalancing.

2.5.1 Changes in the information structure around the rebalancing: evidence

from the secondary market

In this section, we document changes in trading conditions in the Colombian secondary debt market

after the rebalancing announcement. We study potential shifts in three separate, but related

dimensions: total trading activity, liquidity, and price volatility. Below, we discuss why changes

along these dimensions are consistent with variations in the market’s information structure.

We begin by fitting the following panel data model

tradl,t = αl + βrrebalt + γ ′controlsl,t + εl,t, (2.5.1)

where tradl,t is a secondary market measure for bond l on day t of the total trading activity, liquidity,

or volatility. rebalt is equal to one after the rebalancing date and zero otherwise. We add bond

fixed-effects and control for time-varying bond characteristics (duration and convexity), market-

wide conditions (10-year CDS on the Colombian sovereign government, and aggregate volatility

proxied by the VIX). Only bonds auctioned off both before and after the rebalancing announcement

are included in the panel.

Table (2.3) presents the estimation results. We use the daily total number of transactions

(column 1) and total traded volume at par value (column 2) as measures of total trading activity. For

liquidity, we calculate Amihud (2002)’s measure using transaction data from the main interdealer

market (column 3), and the daily absolute bid-ask spread using Bloomberg’s end-of-day bid and ask

prices (column 4).9 Finally, we construct two measures of daily price volatility. The first corresponds

to realized volatility, that is, the sum of squared intraday returns using adjacent transaction prices

from the main interdealer market (column 5). The second is equal to the fitted values of the

variance equation of a GARCH (1,1) model on bond daily returns using the end-of-day midquotes

from Bloomberg (column 6). Our sample spans the period between 2013 and 2015.

9These variables have been frequently used in the literature to measure bond market liquidity (see Schestag et al.

(2016)) Amihud’s measure is based on changes in trading prices from adjacent transactions, relative to the size of the

transaction. We restrict our attention to these two liquidity proxies because our data do not include the sign of any

transaction.
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The results in column (1) of table (2.3) indicate a significant increase in the daily number

of transactions in the main interdealer market after the rebalancing announcement for any of the

offered bonds. Column (2) shows similar results for the daily traded volume. Relative to the sample

mean, there was an increase of approximately 40% in the daily total trade for any bond regardless

of the chosen indicator.

We further investigate whether this increase in total trade is associated with a change in overall

market liquidity.10 Column (3) in table (2.3) shows a significant reduction in average Amihud’s

illiquidity measure after the rebalancing (approximately 30% relative to the sample mean) for any

traded bond. The result is similar when we use the absolute bid-ask spread from Bloomberg in

column (4), both in terms of direction and magnitude with respect to its own sample mean.

Finally, we explore whether there was a concurrent change in the price volatility of the secondary

market after the rebalancing announcement. The estimation results in columns (5) and (6) of table

(2.3) show that, regardless of the proxy, secondary market volatility significantly decreased after

the rebalancing announcement. This result is particularly sharp for the daily realized volatility.

In summary, following the shock, Colombian sovereign bonds are more actively traded, in a

more liquid secondary interdealer market, with lower price volatility. Previous works in the market

microstructure literature have argued that one prominent motive for dealers to trade with each

other is to share their inventory risk (Hansch et al. (1998) and Reiss and Werner (1998)). That

is, dealers manage their inventory imbalances resulting from recent transactions with customers by

trading in the interdealer market. Therefore, a substantial rise in interdealer trading suggests, at

least indirectly, more trading between PDs and their customers.11 Consequently, price discovery

in the secondary market may be enhanced with the increase in trading volumes that followed the

rebalancing announcement (see, for example, Barclay and Hendershott (2015)). Moreover, increased

liquidity may lead to more informationally efficient markets that aggregate private information more

rapidly (Admati and Pfleiderer, 1988; Chordia et al., 2008). Secondary market volatility may also

affect the market information structure. For instance, Pasquariello and Vega (2007) argue that the

correlation between unanticipated order-flow and future bond yields is higher in periods of high

volatility. In their setting, order-flow reveals private information, which is then impounded into

market prices.

Hence, the trading patterns documented in this section are consistent with changes in the

information structure. As private information is not directly observable, we estimate the model

in Section 2.2 separately before and after the rebalancing to test for changes in the importance of

10Pandolfi and Williams (2019) argue that increases in capital inflows arising from mechanical changes in the

composition of sovereign debt indexes bring about liquidity improvements in secondary markets of emerging

economies. Similarly, (Hegde and McDermott, 2003) find a sustained increase in the liquidity of stocks added to

the S&P 500.
11We cannot provide direct evidence of changes in dealer-customer trading because we do not observe customer

orders in our data.
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private information about fundamentals in both environments.12

Table 2.3: Secondary market changes after rebalancing announcement

Dependent variable:

Number of trans. Total volume Amihud’s meas. Abs. bid-ask Volat. (IDB) Volat. (Bl.)

(1) (2) (3) (4) (5) (6)

Post-rebal 18.088∗∗ 0.728∗∗ −36.099∗∗∗ −12.406∗∗∗ −0.082∗∗ −0.099∗∗∗

(7.544) (0.335) (12.952) (3.203) (0.034) (0.029)

Duration 14.176∗ 0.508 94.605∗∗∗ −4.823∗∗ 0.003 0.089∗∗∗

(7.515) (0.340) (15.982) (2.389) (0.037) (0.027)

Convexity −2.886∗∗∗ −0.108∗∗∗ −8.720∗∗∗ −0.253 0.009 0.001

(0.724) (0.032) (2.956) (0.279) (0.006) (0.005)

CDS (10-year) −0.345∗∗∗ −0.015∗∗∗ 0.792∗∗∗ −0.033 0.001 0.001∗∗∗

(0.061) (0.003) (0.150) (0.023) (0.0004) (0.0003)

VIX 0.080 −0.004 2.687∗∗∗ 0.170 0.009∗∗∗ 0.001

(0.560) (0.023) (0.915) (0.156) (0.002) (0.001)

Sample mean 59.94 2.53 121.94 36.87 0.12 0.32

Units Scalar HBC bps/HBC bps Perc. Perc

Bond FE Yes Yes Yes Yes Yes Yes

Observations 5,002 5,002 3,384 4,815 4,103 4,456

R2 0.209 0.193 0.372 0.493 0.122 0.590

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. HBC stands

for hundreds of billions of COP. This table displays the estimated coefficients of model (2.5.1). Dependent

variables are secondary market measures. All dependent variables are at the daily frequency and at the bond

level. Dependent variables are: total number of transactions in the main inter-dealer (IDB) market (column

(1)); total traded volume in IDB market (column (2)); Amihud (2002)’s liquidity measure (column (3)); absolute

bid-ask spread from Bloomberg end-of-day quotes (column (4)); realized volatility calculated as sum of squared

of intraday returns using transaction prices from main IDB market (column (5)); fitted values of a GARCH (1,1)

model on bond daily returns using the end-of-day midquotes from Bloomberg (column (6)). Post-rebal. is dummy

variable equal to one after J.P. Morgan GBI-EM index rebalancing announcement on March 19, 2014, and zero

otherwise. Duration and convexity are bond-specific at the daily frequency. CDS (10-year) is the 10-year CDS on

the Colombian sovereign government. VIX is Chicago Board Options Exchange’s CBOE Volatility Index. CDS

and VIX are at the daily frequency and they take the same value for all bonds in the panel on a given trading

day. Standard errors are clustered at the bond level.

12We do not claim to provide empirical evidence that the rebalancing announcement was the main cause of the

fundamental changes in the Colombian secondary debt market documented here. Instead, we use the announcement

date to test the ability of our empirical methodology to detect changes in the information structure of the market,

given the reduced-form evidence suggesting that such changes at least concurred with the rebalancing announcement.
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2.5.2 Maximum-likelihood estimation results

We estimate the model separately using bidding data from Colombian treasury auctions before and

after the JPM GBI-EM index rebalancing announcement on March 19, 2014. The pre-rebalancing

sample starts on January 1, 2013, and ends on March 19, 2014. The post-rebalancing sample

spans March 20, 2014, through December 31, 2015. There are 72 and 82 bond offerings in the pre-

and post-rebalancing subsamples, respectively. However, for some auctions, there is no secondary

market price benchmark available, which reduces our sample sizes to 66 and 81 auctions (799 and

1024 bids) before and after the rebalancing, respectively.13 For each parameter in the model, we

test the null hypothesis that it would not change after the rebalancing. The estimation results are

presented in table (2.4). All parameters are statistically different in both subsamples at the 1%

level, except for σζ .

ρ, the correlation parameter in bidders’ valuations conditional on their commonly known mean

θ̄t, falls substantially after the rebalancing, from 0.67 to 0.22. In the model, all else being equal, a

lower ρ implies that there is more precise public information about fundamentals (or, equivalently,

lower variance of the unknown common component in bidders’ valuations). Moreover, the standard

deviation of the distribution of private signals, σϵ, also falls from 0.86 to 0.49 following the

rebalancing. Therefore, bidders are less uncertain about their valuations. This implies that, from

the standpoint of any bidder i, other bidders are less privately informed about its valuation. As

the variance of bidders’ valuations, σ2θ , remains roughly unaltered (relative to the change in σϵ),

both the decline in ρ and σϵ imply that private information about fundamentals is less relevant as

a determinant of bids after the shock.

Table (2.4) also displays the estimates of the other four parameters of the model that are not

related to private information. The estimated value of λ, which captures a bidder’s valuation of

one additional unit of the asset, increases from 0.18 to 2.28. This implies that bidders have much

steeper decreasing marginal valuations after the rebalancing.

The estimation results also indicate that P̄t is a biased but otherwise precise proxy of θ̄t

because, even though µη is positive, ση is very close to zero, and not statistically significant,

in both subsamples.14 Finally, σζ , the standard deviation of the difference between the observed

and model-implied auction cutoff price due to potential misspecification, drops by 8 bp after the

rebalancing.

13Some auctions correspond to first-time bond offerings. Bonds with maturities in 2018, 2019, 2028, and 2030 were

offered for the first time in February 2013, January 2014, January 2013, and January 2015, respectively. We do not

use these auctions to estimate the model because there are no secondary markets for these bonds prior to auctions.
14By assumption, the mean of the bidder’s private valuation, θ̄t, is common knowledge to all bidders but is unknown

to the econometrician who instead only observes a noisy proxy P̄t, as described in Section (2.3).
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Table 2.4: Estimation results before and after rebalancing

Pre-rebalancing Post-rebalancing Difference in sub-samples

(1) (2) (3)

ρ 0.67*** 0.22*** 0.44***

(0.04) (0.07) (0.08)

σϵ 0.8*** 0.38*** 0.41***

(0.06) (0.13) (0.14)

σθ 0.49*** 0.57*** -0.08***

(0.02) (0.03) (0.04)

λ 0.18*** 2.28*** -2.1***

(0.03) (0.65) (0.65)

µη 0.37*** 0.68*** -0.32***

(0.05) (0.1) (0.11)

ση < 0.01 < 0.01 < 0.01

(0.15) (0.18) (0.24)

σζ 0.34*** 0.26*** 0.08***

(0.03) (0.02) (0.04)

Number of auctions 66 81 147

Number of obs. 799 1024 1823

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. This table

presents the results of the estimation of the model before and after the J.P. Morgan GBI-EM index rebalancing

announcement on March 19, 2014. Columns (1) and (2) report the maximum likelihood estimated parameters of

the model described in 2.3. Standard errors reported in parentheses below estimated parameters. Standard errors

are calculated using the numerical Hessian from the maximum likelihood estimation in Section (2.3). Statistical

significance for every parameter was established using the reported estimated value along with its associated

standard error through a t-test with degrees of freedom given by the number of auctions in the last row of the

table. Column (3) reports the estimated difference between the parameters before and after the rebalancing. To

compute this difference, we construct an augmented likelihood function that spans both sub-samples where, we

split the set of parameters to be estimated through the augmented likelihood in two groups. The first group

corresponds to the vector of parameters in column (1) of table (2.4) for all auctions before the rebalancing.

For every auction after the rebalancing, there is a transformed group of parameters defined by the difference in

every parameter before and after the rebalancing. We estimate changes in every parameter in both sub-samples

using the transformed vector of differences. Standard errors reported in parentheses below estimated parameters.

Standard errors constructed using the Hessian of the likelihood function evaluated at the estimated vector of

parameters. Number of auctions corresponds to the number of bond offerings with available secondary market

pricing information. Number of observations corresponds to the sum of all bidders that participated in every

auction with available secondary market pricing information.
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2.5.3 Private information, market power and number of bidders

In this section, we explore the behavior of the endogenous equilibrium variables in the model before

and after the rebalancing. Specifically, based on the maximum likelihood estimates from table (2.4),

we calculate M(n), c(n), and d(n)/n for multiple bidders n in these two scenarios. The results of

this exercise are plotted in figure 2.1.

Panel (a) plots M(n) as a function of n. As discussed in Section 2.2.2, M(n) captures the

amount of bid shading attributable to private information. The results indicate that M(n) is

higher before the rebalancing announcement than afterward for any n. This result is expected

considering that M(n) is a decreasing function of ρ and the ratio σϵ/σθ, both of which decrease

after the rebalancing. All else being equal, the estimated change in private information thereby

implies a reduction in the bidders’ market power in the Colombian market.

Panel (b) of figure 2.1 depicts c(n), the slope (in absolute value) of the equilibrium demand

schedule in Eq. (2.2.1) as a function of the number of bidders. Higher values of c(n) imply more

elastic demand schedules. For low values of n, the bidders submit more inelastic demand schedules

before the rebalancing. However, for n ≥ 12, the opposite result is obtained. We observe a similar

pattern for d(n)
n k in panel (d). As discussed in Section (2.2.2), d(n)

n k is a measure of bid shading

or, equivalently, market power. Our results indicate that bid shading is slightly larger before the

announcement for low n. However, this situation reverses when the number of bidders increases.

Moreover, the absolute estimated change in bid shading is never larger than two bp.15 Therefore,

according to our estimates, bidders’ market power remains mostly unaltered after the rebalancing.

At first glance, the results for c(n) and d(n)
n k might seem at odds with our discussion above

regarding the change inM(n). Given the evidence of less private information after the rebalancing,

we might have expected that bidders would submit more elastic demand curves, thereby reducing

their market power. The reason for this apparent discrepancy is that we also observe a substantial

increase in λ, which is the slope of the decreasing marginal valuations. When n is large, the increase

in λ more than offsets the impact of lower values of M(n) on the elasticity of the demand schedule

and, thus, on bid shading.

15Bid shading is expressed in basis points (bp) of the par value of the issue. It can be interpreted as a “discount”

relative to the par amount.
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Figure 2.1: Model equilibrium as a function of the number of bidders and parameter estimates

This figure plots the equilibrium of the model across multiple n, the number of bidders who participate in a given

auction. The choice of n in all panels is guided by table (2.2). M(n) and c(n) are calculated according to Eq.

(2.2.1) for a given n. Bid shading equals d(n)/nk for a given k, and d(n) is calculated according to Eq. (2.2.1). k

is evaluated at the sample mean of total supply from table (2.1). The parameters ρ, σϵ, σθ, and λ come from our

estimates in table (2.4) before and after the J.P. Morgan GBI-EM index rebalancing announcement on March

19, 2014. The blue line corresponds to the M(n), c(n), and bid shading with the estimates from column (1) of

table (2.4). The red line depicts 2.3. The red line depicts the same variables with the estimates from column (2)

of table (2.4).

To further illustrate the economic impact of these countervailing forces, in figure (2.2), we plot

the total bid shading, d(n)k/n, for different combinations of the estimates in table (2.4). In panel

(a), we hold the private information parameters constant at their pre-rebalancing estimated values

and plot d(n)k/n for two different values of λ: its pre- and post-rebalancing estimated values,

respectively. Clearly, the change in λ alone implies a substantial increase in bid shading, ranging
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from approximately 37 bp to 120 bp, depending on the number of bidders. For comparison, the

average absolute bid-ask spread from Bloomberg for all offered bonds in our sample is approximately

36 bp (see table (2.3)).

In panel (b) of figure (2.2), we keep λ constant at its post-rebalancing value but let the private

information parameters drop from their pre-rebalancing to their post-rebalancing estimates. The

reduction in private information has the opposite effect on bid shading compared with the increase

in λ. The combined effect is shown in panel (c) of figure 2.1.
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Figure 2.2: Decomposition of bid shading into estimates of private information and slope of marginal

valuation (λ)

This figure plots the estimated equilibrium bid shading of the model as a function of the number of bidders. Bid

shading is expressed in bp of the par value of the bond offering. Bid shading equals d(n)/nk. n, the number

of bidders who participate in a given auction, comes from table (2.2). k is evaluated at the sample mean of

total bond supply from table (2.1). d(n) is calculated according to Eq. (2.2.1) for a given n and combinations

of the estimated parameters from table (2.4). High and low private information correspond to scenarios where

the amount of private information is set at the estimates of ρ, σϵ, and σθ from the pre- and post-rebalancing

samples, respectively. Flatter and steeper marginal valuation correspond to scenarios where λ is fixed at pre- and

post-rebalancing estimates, respectively.

2.5.4 Policy implications

Arguably, an auctioneer’s goal is to increase revenue by sustaining high auction prices. Bidders’

market power hinders this goal. The model in Section (2.2) predicts an unambiguous reduction

in bid shading as the number of bidders increases. Hence, the auctioneer may want to consider a

policy that fosters primary market participation. Moreover, the structural estimation in Section 2.3

allows us to quantify the change in bid shading that results from increased participation. However,

increasing the maximum number of bidders is likely costly or not even feasible, as they expect

compensation from their role as market makers. Thus, quantifying the benefits to the bond issuer
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from increasing competition through lower bidders’ market power is necessary to determine the

optimal number of bidders.16

To illustrate this use of the model estimation in policy analysis, we consider two cases. The

first is the estimated post-rebalancing scenario, characterized by low private information and

high inventory costs. The second is a hypothetical but empirically feasible high market power

scenario with high levels of private information matching the pre-rebalancing estimates and the

same inventory costs from the post-rebalancing scenario. They are depicted in figure (2.3).

We first focus on bid shading evaluated at the sample mean of bond offering per auction. In

the high market power scenario in panel (a), even though bid shading is never lower than 30 bp

for any number of participants, it would fall by more than 80 bp if the number of bidders increases

from 10 to 14. Therefore, with high market power, fostering market participation is a policy worth

considering. In contrast, in the post-rebalancing scenario in panel (b), bid shading falls by only 4

bp in the same situation. In such situations, designating a small number of PDs would not result

in significantly higher government borrowing costs.

Another implication of Vives (2010, 2011) is that the auctioneer should monitor current market

conditions when deciding the size of each bond offering (per auction).17 As shown in Figure 2.3,

reducing the bond offering in the high market power scenario would result in a substantial decrease

in the total bid shading for any number of participants. In particular, a one standard deviation

decrease in total bond supply over its sample mean would lower bid shading by 20 bp with 14

bidders and by 63 bp with ten.18 In contrast, in the post-rebalancing scenario, bid shading does

not fall by more than 4 bp for any number of bidders between 10 and 14, following a one standard

deviation decrease in bond supply over its sample mean.

16As of 2022, Norway, Sweden, and Luxembourg have, respectively, designated only four, eight, and nine financial

institutions as PDs. In contrast, there are 44 PDs in Germany’s debt market. See https://www.esma.europa.eu/

sites/default/files/library/list_of_market_makers_and_primary_dealers.pdf.
17In the long run, total bond issuance is a fiscal policy decision. The policy evaluated here focuses on the size of

each bond offering at a specific auction given a predetermined fiscal policy.
18A one standard deviation in total bond supply per auction corresponds to roughly 100 hundred billion Colombian

pesos (approximately 50 billion USD as of March 2014). See panel A of table (2.1).

90

https://www.esma.europa.eu/sites/default/files/library/list_of_market_makers_and_primary_dealers.pdf
https://www.esma.europa.eu/sites/default/files/library/list_of_market_makers_and_primary_dealers.pdf


25

50

75

100

10 11 12 13 14
Number of bidders

B
a

s
is

 p
o

in
ts

sample mean one s.d. below sample mean

(a) High market power

2

4

6

8

10 11 12 13 14
Number of bidders

B
a

s
is

 p
o

in
ts

sample mean one s.d. below sample mean

(b) Post-rebalancing estimates

Figure 2.3: Bid shading evaluated at different levels of total bond supply

This figure plots the estimated equilibrium bid shading of the model as a function of the number of bidders. Bid

shading is expressed in bp of the par value of the bond offering. Bid shading equals d(n)/nk. n, the number

of bidders who participate in a given auction, comes from table (2.2). k is evaluated at the sample mean and

one standard deviation (s.d.) below the sample mean of the total bond supply per auction, respectively. The

sample means come from table (2.1). d(n) is calculated according to Eq. (2.2.1) for a given n and combinations

of the estimated parameters from table (2.4). The high market power scenario corresponds to scenarios where

the estimates of ρ, σϵ, and σθ are from the pre-rebalancing sample, and λ is set at the post-rebalancing estimate.

2.6 Final remarks

We propose a method to empirically quantify the importance of private information in divisible

good uniform price auctions based on the estimation of a model presented in Vives (2010, 2011). We

apply our method to the Colombian sovereign debt market after the rebalancing of two emerging

market debt indices that triggered an increase in the demand for Colombian sovereign bonds. We

find that these bonds were traded more actively after the shock, and the secondary market became

more liquid and experienced a significant decrease in volatility. We estimate the model separately

before and after the shock.

We find a substantial reduction in private information about fundamentals as a determinant

of observed bids but also a sizeable increase in inventory costs. These two findings have opposing

effects on market power. Our estimation results indicate that the change in revenue for the treasury

is less than two bp of the par value of the bond. However, the latter masks the separate effects of

private information and inventory costs. We decompose these two effects and find that a reduction

in private information implies an increase in revenue of 34–112 bp. In contrast, the increase in

inventory costs lowers revenue by 35–110 bp.

We quantify the effects of private information and inventory costs on policies aimed at lowering
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treasuries’ borrowing costs. After the rebalancing, our structural estimates imply that increasing

the number of bidders from 10 to 14 reduces bid shading by four bp. In contrast, in a hypothetical

high private information and inventory scenario, market power falls significantly when the number

of bidders increases from 10 to 14.
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2.7 Appendix

Proof of Proposition 2.3.2

It can be shown from the equilibrium of the model in proposition (2.2.1) that

c (nt)− a (nt) =

(
1

1 +M (nt)

) σ2
ϵ

σ2
θ

σ2
ϵ

σ2
θ
+ (1 + (nt − 1) ρ)

(d (nt) + λ)−1 .

Inserting this result into the equilibrium intercept in proposition (2.2.1) and re-arranging terms

b (nt) =
M (nt)

nt (1 +M (nt))
kt +

(
1

1 +M (nt)

) σ2
ε

σ2
θ

σ2
ε

σ2
θ
+ (1 + (nt − 1) ρ)

(d (nt) + λ)−1 θt

=
M (nt)

nt (1 +M (nt))
kt + (c (nt)− a (nt)) θt.

The intercepts of the individual demand schedules for auction t and bidder i ∈ {1, . . . , nt} are given

by αi,t = b (nt) + a (nt) si,t. In turn, the individual signals si,t are si,t = θi,t + ϵi,t. Letting ξi,t be

given by ξi,t = θi,t − θt and inserting the signals into the individual intercepts, we obtain

αi,t = b (nt) + a (nt)
(
θt + ξi,t + ϵi,t

)
.

Inserting the equation for b (nt) from before into the equation above and re-arranging terms

αi,t = b (nt) + a (nt)
(
θt + ξi,t + ϵi,t

)
=

M (nt)

nt (1 +M (nt))
kt + c (nt) θt + a (nt) (ξi,t + ϵi,t) .

Inserting θt = pt + ηt from assumption (2.3.5) into the equation above and dividing the resulting

expression by c (nt), we obtain the desired expression for p0i,t ≡
αi,t

c(nt)
, the inverse intercept of the

demand schedule

p0i,t = pt +
M (nt)

c (nt)nt (1 +M (nt))
kt + ηt +

a (nt)

c (nt)
(ξi,t + ϵi,t) .

Proof of Proposition 2.3.3

Let us assume that there are infinitely large sets of auctions, each with a fixed number of bidders

per auction n̄ and n̂, respectively, where n̄ > 2, n̂ > 2 and n̂ ̸= n̂. It follows directly from equation

(2.3.2) that µη is identified and M(n) is identified for n ∈ n̄, n̂. Hence, and d(n) and λ are also

identified. Now let,

K (n) =
M (n)

n (1 +M (n))
=

ρσ2ϵ
(1 + (n− 1) ρ)

(
σ2ϵ + σ2θ(1− ρ)

) . (2.7.1)
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It follows that both K (n̄) and K (n̂) are identified. Moreover

K (n̄)

K (n̂)
=

1 + (n̂− 1) ρ

1 + (n̄− 1) ρ
, (2.7.2)

hence ρ is identified.

The difference between the conditional variance and covariance of the intercepts can be expressed

as

Var
[
p0i,t|n, kt, p̄t

]
− Cov

[
p0i,t, p

0
jt|n, kt, p̄t

]
=
a (n)2

c (n)2
(
σ2θ + σ2ϵ

)
− a (n)2

c (n)2
ρσ2θ

=

(
1 + (1− ρ)

σ2
θ
σ2
ϵ

)
(1 + (n− 1) ρ)2

σ2
θ
σ2
ϵ
σ2θ(

1 + (1 + (n− 1) ρ)
σ2
θ
σ2
ϵ

)2 . (2.7.3)

Moreover, from Proposition 2.2.1,

M (n) =
ρσ2ϵn

(1− ρ)
(
σ2ϵ + (1 + (n− 1) ρ)σ2θ

) . (2.7.4)

Let us now consider two cases. If M (n̄) = M (n̂) = 0, it follows from the definition of M that

σ2ϵ = 0. In such case, σ2θ is also identified from 2.7.3.

If instead, M (n̄) > 0 and M (n̂) > 0, then σ2ϵ > 0 and(
ρn̄

(1− ρ)M (n̄)
− 1

)
(1 + (n̄− 1) ρ)−1 =

σ2θ
σ2ϵ
, (2.7.5)

hence the ratio
σ2
θ
σ2
ϵ
is identified. It then follows from 2.7.3 that σ2θ and σ2ϵ are separately identified.

From Proposition 2.2.1, a (n̄) =
(1−ρ)σ2

θ

(1−ρ)σ2
θ+σ

2
ϵ
(d (n̄) + λ)−1, hence a (n̄) is also identified, and the

parameter σ2η is then also identified from the conditional variance of the intercepts. This completes

the proof that the model parameters (ρ, σϵ, σθ, λ) and the incidental parameters
(
µη, σ

2
η

)
are all

identified.

Likelihood function

For each auction t the probability density function of p0t is given by

f0t
(
p0t |nt,kt, p̄t; Γ

)
=

1√
(2π)nt |Σt|

exp

(
−1

2

(
p0t − µt

)T
Σ−1
t

(
p0t − µt

))
, (2.7.6)

where Γ =
(
ρ, σϵ, σθ, λ, µη, σ

2
η

)
, µt is the vector of conditional means E

[
p0i,t|nt,, kt, p̄t

]
and Σt is

the variance-covariance matrix with diagonal elements Var
[
p0i,t|nt, kt, p̄t

]
= a(nt)

2

c(nt)
2

(
σ2θ + σ2ϵ

)
+ σ2η,

for all i, and off-diagonal elements equal to Cov
[
p0i,t, p

0
jt|nt, kt, p̄t

]
= a(nt)

2

c(nt)
2 ρσ

2
θ + σ2η for all i ̸= j.

Similarly, the conditional density of pct is

f ct
(
pct |nt,kt, p̄t, p0t ; Γ

)
=

1√
2πσ2ζ

exp

(
−1

2

(
p0t − µct

)2
σ2ζ

)
, (2.7.7)
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where µct is the conditional mean E
[
pct |nt,kt, p0t

]
. For a sample of T independent auctions{

nt, kt, p̄t, p
0
t , p

c
t

}T
t=1

, the log-likelihood function is

L (Γ) =
T∑
t=1

log f0t
(
p0t |nt,kt, p̄t; Γ

)
+ log ft

(
pct |nt,kt, p̄t, p0t ; Γ

)
. (2.7.8)
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Chapter 3

Validation of estimation results

3.1 Introduction

In Chapter II, we propose a method to measure the importance of private information about

fundamentals as a determinant of market power in treasury auctions. This method is based on

the theoretical model in Vives (2010, 2011), which has a unique equilibrium in linear demand

schedules. We acknowledge that the linear equilibrium imposes restrictive parametric assumptions.

Moreover, bids are assumed to be continuous linear functions. However, these assumptions allows

us to estimate the auction using bidding data and readily available secondary market pricing data

alone. In addition, the model allows us to decompose market power into private information and

inventory costs, which would be unfeasible with non-parametric methods.1 Furthermore, we exploit

variation in the number of bidders across auctions to identify and estimate the model parameters.

Such variation is assumed to be exogenous and known by all bidders in our empirical setting. In

this chapter, we adopt a reduced-form approach to support the structural estimation results and

the main assumptions of our proposed methodology.

According to our findings from Chapter II, there was a substantial reduction in private information

about fundamentals as a determinant of observed bids in the Colombian primary market after the

rebalancing announcement. Our structural results also show a considerable increase in inventory

adjustment costs. In this chapter, we provide model-free evidence that supports both findings.

First, auction outcomes such as market-clearing (cutoff) prices aggregate information about bidders’

valuations. If private information is prevalent in this market, then the auction cutoff price would

reveal bidders’ private signals about fundamentals that were not already captured by observable

market prices before the auction. Thus, upon observing a realization of the auction price, market

participants would revise their valuation of the offered bond. We show that a high auction

cutoff price relative to a pre-auction price benchmark predicts subsequent high secondary market

1See literature review in Chapter II for additional details on the discussion between parametric and non-parametric

methods.
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prices. Consistent with an information-revelation channel, we show that this result is significant

and persistent, at least through a week after the auction. After the rebalancing, however, this

effect either shrinks or vanishes altogether, which supports our view of the decline in the relative

prevalence of private information.

Second, our structural results also show a large increase in inventory adjustment costs, namely,

the slope of the bidders’ marginal value curves. This implies that bidders should be more reluctant

to deviate from their inventory target levels after the rebalancing. To test this implication,

we estimate a reduced-form model of short-term (overnight) changes in inventory based on the

literature on inventory risk (Madhavan and Smidt (1993); Friewald and Nagler (2016); Schultz

(2017), among others). We find higher one-day mean reversion in inventories after the rebalancing,

which implies lower inventory half-lives. On average, it takes bidders 11.7 days to offload half of

their inventories before the rebalancing, but only 7.5 days after the shock.

Our identification and estimation strategies rely on exploiting the variation of the actual number

of bidders who participate in any auction. In the model of Vives (2010, 2011), the number of

participants is exogenous and known by all bidders. An implicit assumption when estimating

the model is that bidders’ decision to participate in a given auction is unrelated to the signal

they receive regarding their valuation. In this chapter, we provide further reduced-form evidence

that is consistent with this assumption. First, using pre-auction inventory as a proxy for bidders’

valuation, we show that a bidder with a long (short) pre-auction inventory submits less (more)

aggressive bids.2 Then, we show that a bidder’s pre-auction inventory does not predict whether

such bidder will participate in a given auction. Therefore, our evidence indicates that our proxy

for valuation is unrelated to the individual decision to enter an auction.

Another assumption regarding primary market participation is that bidders know the actual

number of rivals they are competing against in any auction, although we do not have direct evidence

to support it. We take an indirect approach to investigate how reasonable this assumption is.

If bidders do not know with certainty how many competitors they are bidding against, then

their equilibrium strategies cannot be a function of the actual number of auction participants.

Accordingly, we split all auctions by the number of bidders. Then, for every group, we construct

empirical measures of the demand slope based on the market-clearing condition and the linearity of

the equilibrium demand schedules. We show that the resulting empirical demand slopes vary with

changes in the number of bidders. Moreover, the empirical slopes are similar to the slopes derived

directly from our structural estimates. Therefore, despite the restrictive parametric assumptions

imposed by the model, the equilibrium strategies appear to respond to auction participation in a

way that is consistent with the predictions of the model. We interpret this finding as suggestive

2(Nyborg and Strebulaev, 2004) show theoretically that differences in pre-auction position lead to heterogeneous

valuations in uniform price auctions. Using data from Canadian treasury auctions, (Rydqvist and Wu, 2016) provide

evidence consistent with this result.
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evidence supporting the assumption that the number of bidders in a given auction is common

knowledge.

The remainder of this chapter is organized as follows. In Section (3.2), we provide reduced-

form evidence that is consistent with the main structural estimation results. Then, we discuss the

validity of the assumptions regarding bidders’ participation in Section (3.3).

3.2 Reduced-form evidence about private information and inventory

costs

In this section, we provide model-free empirical evidence consistent with the main results of the

structural estimation. First, we find sizable evidence of the existence of private information in the

primary market before the rebalancing announcement, but significantly less so afterward. Second,

we document significant changes in bidders’ inventory policy that accord well with the increase in

the estimates of λ, the slope of the marginal valuation function.

Lower private information: Auction’s cutoff price and secondary market prices

A high realization of the auction cutoff price conveys to all market participants, including dealers

in the secondary market who do not participate in the auction, that bidders received high private

signals on average. Moreover, in the equilibrium with private information, the auction cutoff price

aggregates information about the bond fundamental value contained in the private signals.

We investigate whether the new information aggregated by the auction predicts future secondary

market prices. We measure new pricing information as the difference between the auction t cutoff

price, pct , and the bond secondary market price benchmark immediately before the auction, pt.

Recall that pt is the volume-weighted average price of all transactions of the bond at issue between

the market opening time (8 a.m.) and the moment when the auction closes (10 a.m.). Therefore,

pct − pt should mostly be driven by new information about bidders’ valuations aggregated by the

auction’s cutoff price, which is not already impounded into observable secondary market prices.

We test whether pct−pt predicts pt(τ)−pt for τ ∈ {1, . . . , 5}, where pt(τ) is the bond’s secondary
market price τ days after auction t3. If the auction’s cutoff price indeed reveals private information,

then a high value of pct − pt predicts a positive pt(τ)− pt. Moreover, we would expect the effect on

future prices to persist over time (Brandt and Kavajeckz (2004)).

To test this hypothesis, we pool all auctions in our sample and fit the following model

pt(τ)−pt = βr(τ)rebalt+βp(τ) (p
c
t − pt)+βp,r(τ)rebalt× (pct − pt)+βn(τ)nt+βk(τ)kt+γ(τ)′controlst+εt, (3.2.1)

3For consistency, we use volume-weighted daily average transaction prices from the main Colombian interdealer

market τ days after the auction as measures of secondary market prices.
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for τ ∈ {1, . . . , 5}, where t is a bond auction, rebalt is a post-rebalancing dummy, nt is the number

of participants in auction t, kt is auction’s t total offering, and controlst are bond-specific (bond

duration and convexity) as well as market-wide (10-year CDS on Colombian bonds, VIX, and 1-year

rate). Model (3.2.1) also includes bond fixed effects.

The results are presented in table (3.1). They indicate that the impact of pct − pt on pt(τ)− pt

is positive and statistically significant for all τ ∈ {1, . . . , 5} before the rebalancing. That is, a high

cutoff auction price relative to the benchmark predicts high secondary market prices several days

after the auction.4

As pointed out by Brandt and Kavajeckz (2004), when private information in opaque markets

is revealed to market participants through signals like order-flow, then any resulting pricing effect

should be persistent. Intuitively, in the presence of private information, market participants are

prompted to revise their beliefs about fundamentals upon the observation of large trade imbalances

or, as in our case, large pricing news from the auction’s cutoff price. The persistence of the results

in the first row of table (3.1) accords well with this intuition.

The interaction coefficient βp,r in Eq. (3.2.1) measures the change in the predictability of future

prices from the auction price following the rebalancing announcement. β̂p,r(τ) is negative across all

τ and statistically significant for τ ∈ {3, 4, 5}. The lower persistence of the post-rebalancing effect is

consistent with the auction’s cutoff price, aggregating less private information about fundamentals

after the rebalancing, thus validating the results from the structural estimation.5

Moreover, we estimate a similar model to the one in Eq. (3.2.1) where the dependent variable

is the bond yield τ ∈ {1, . . . , 5} days after auction t. Furthermore, we augment Eq. (3.2.1)

by controlling for the auction’s bid-to-cover ratio, which is defined as the sum of quantity-bids

submitted by all bidders in any given auction divided by total bond supply. Policy makers and

market participants usually interpret this variable as a measure of an auction’s success.6 As shown

by tables (3.4) and (3.5) in the Appendix, the results remain unaffected in both empirical models.

Higher inventory costs

The results of the structural estimation in Section 2.5.2 also show a significant increase in λ following

the rebalancing, implying steeper decreasing marginal valuations. In Vives (2011), marginal valuations

can also be expressed as a function of the deviation from their target inventory level x̂i,t, as

v(xi,t) = θi,t − λ(xi,t − x̂i,t). Hence, λ can be interpreted as an inventory adjustment cost. This

4Given that auctions occur every two weeks, by fixing τ between one and five trading days after the auction, we

guarantee that no two adjacent auctions of the same bond overlap.
5We also estimate a similar model to the one in Eq. (3.2.1), where the dependent variable is the bond yield

τ ∈ {1, . . . , 5} days after auction t. The results remain unaffected. Table (3.4) in the Appendix displays the

estimated coefficients.
6See Beetsma et al. (2018) for an academic work on the ability of the bid-to-cover ratio to predict future yields.
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Table 3.1: Auction price and secondary market prices

Dependent variable:

Second. market price ms. benchm. τ -days after auction

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

(1) (2) (3) (4) (5)

Cutoff price ms. benchm. 1.552∗∗∗ 1.765∗∗∗ 1.637∗∗∗ 2.536∗∗∗ 2.857∗∗∗

(0.318) (0.359) (0.344) (0.539) (0.839)

Post-rebal. dummy 0.218 −0.009 −0.018 0.396 0.082

(0.273) (0.292) (0.288) (0.317) (0.462)

Cutoff price ms. benchm. (post-rebal.) −0.637∗ −0.727 −1.018∗∗ −1.866∗∗∗ −1.737∗∗

(0.365) (0.451) (0.422) (0.572) (0.819)

Number of bidders −0.113∗∗ −0.189∗∗ −0.137∗ −0.186∗∗ −0.135

(0.056) (0.081) (0.076) (0.091) (0.121)

Bond offering 0.046 0.050 −0.035 0.030 0.126

(0.088) (0.107) (0.100) (0.111) (0.129)

Bond FE Yes Yes Yes Yes Yes

Bond controls Yes Yes Yes Yes Yes

Macro controls Yes Yes Yes Yes Yes

Observations 147 147 147 147 147

R2 0.381 0.373 0.366 0.436 0.373

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. Every observation

corresponds to the auction of a given bond. Dependent variable is average secondary market price of offered bond

τ -days after auction minus price benchmark of to-be-offered bond before auction. Average secondary market price

is calculated as volume-weighted average price of all transactions in the main inter-dealer market involving the

bond τ -days after it was offered in the primary market. Price benchmark of to-be-offered bond before auction is

calculated as the volume-weighted average price of all transactions on an auction-day involving the to-be-offered

bond between the market opening time and the auction’s closing time. If there are no transactions in the inter-

dealer market in that interval, the opening price from Bloomberg is used instead. Post-rebal. dummy is equal to

one after J.P. Morgan GBI-EM index rebalancing announcement on March 19, 2014, and zero otherwise. Cutoff

price ms. benchm. is equal to the auction cutoff price minus price benchmark of to-be-offered bond. Cutoff price

ms. benchm. (post-rebal.) is an interacted term between Cutoff price ms. benchm and Post-rebal. dummy.

Bond controls include duration and convexity calculated from prices of auction-day. Macro controls include the

10-year CDS on the Colombian sovereign government, Chicago Board Options Exchange’s CBOE Volatility Index

(VIX), and the 1-year yield on locally-denominated Colombian government debt calculated by the Central Bank

of Colombia. Bond and macro controls are from auction-day. Standard errors are robust.
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suggests that bidders became less willing to deviate from their inventory target levels after the

rebalancing.

To test this implication, we use data from the Colombian Central Bank on bidders’ daily bond

inventory. These data are not used to estimate the auction model. Instead, we use it to examine

how dealers control their overnight bond inventory, using the following model

invi,t − invi,t−1 = αi + αrrebalt + αinvinvi,t−1 + αinv,rrebalt × invi,t−1 + εi,t, (3.2.2)

where invi,t is bidder i’s (standardized) aggregate bond inventory on day t and rebalt is a post-

rebalancing dummy. We also add bidder fixed-effects αi.

The above model is based on the inventory risk literature (see, for example, Madhavan and Smidt

(1993); Friewald and Nagler (2016); Schultz (2017)). αinv shows how the average daily changes in

inventory between t− 1 and t are affected by the average inventory level in t− 1. Negative values

of αinv imply that the bidders’ inventory exhibits mean-reversion. The coefficient αinv,r captures

the changes in the bidders’ inventory policy following the rebalancing announcement. Based on

the estimates α̂inv and α̂inv,r, we also estimate inventory half-life in the pre- and post-rebalancing

samples as log (2) / (1− α̂inv) and log (2) / (1− α̂inv − α̂inv,r), respectively. According to Madhavan

and Smidt (1993); Friewald and Nagler (2016); Schultz (2017), this measures the average number

of days a dealer takes to offload half of their inventory position.

The estimates of Eq. (3.2.2) are reported in panel A of table (3.2). The estimated inventory

half-lives before and after the rebalancing, calculated using the coefficients from panel A, are

shown in panel B of the same table. Before the rebalancing, the inventory mean-reversion is equals

either -0.061 or -0.058, respectively. This means that, on average, 6.1% or 5.8% of the aggregate

bidders’ inventory position is eliminated overnight. This implies that bidders take 11.7 days on

average to offload half of their inventory holdings. Interestingly, after the rebalancing, there is a

significant increase in the speed of the mean-reversion parameter in columns (1) and (2) in panel

A, thus resulting in a concomitant reduction of the inventory half-life to 7.5 days. On average, it

takes bidders fewer than four days to unwind half of their aggregate inventory position after the

rebalancing, which corresponds to a time reduction of approximately 36%.

This change in bidders’ inventory management is consistent with a shift from a principal market-

making model toward an agency model.7 In the former, bidders act as market makers who stand

ready to accommodate asynchronous trading needs by temporarily warehousing bonds in their

books until offsetting orders arrive. They are compensated through the bid-ask spread for the

inventory risk they incur as liquidity providers. In contrast, in an agency model, bidders act as

brokers who take on less inventory risk by attempting to match buyers and sellers directly. In

7See Duffie (2012); Adrian et al. (2017); Bessembinder et al. (2018), among others, for a related discussion in the

aftermath of the adoption of the Volcker rule.
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this scenario, the bid-ask spread would be lower, which is indeed the case in the post-rebalancing

sample, as documented in Section 2.5.1.

Table 3.2: Inventory mean-reversion and half-life after rebalancing announcement

Panel A: Inventory mean-reversion

Dependent variable:

Daily change in inventory

(1) (2)

Mean-reversion: α̂inv −0.061∗∗∗ −0.058∗∗∗

(0.007) (0.008)

Post-rebal. dummy: α̂r 0.008 0.009

(0.006) (0.009)

Mean-reversion (post-rebal.): α̂inv,r −0.036∗∗∗ −0.041∗∗∗

(0.011) (0.013)

Panel B: Inventory half-life (in days)

(1) (2)

Before rebalancing: log(2)
(1−α̂inv)

11.7 11.7

After rebalancing: log(2)

(1−α̂inv−α̂inv,r)
7.5 7.5

Bidder FE No Yes

Observations 7,264 7,264

R2 0.044 0.044

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. This table presents

the estimated coefficients of model (3.2.2) (panel A), and estimated inventory half-life based on these coefficients

(panel B). Aggregate daily inventory corresponds to end-of-day holdings of all TES bonds at the individual

level for ten out of fourteen bidders. Aggregate inventories are standardized at the bidder level by subtracting

the sample mean and then dividing every resulting observation by the sample standard deviation. Post-rebal.

dummy is equal to one after J.P. Morgan GBI-EM index rebalancing announcement on March 19, 2014, and zero

otherwise. The sample ranges from 2013 to 2015. Standard errors are clustered at the bidder level.
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3.3 Assumptions about market participation

A crucial assumption of the theoretical model in Vives (2010, 2011) is that the number of bidders,

nt, is exogenous and known by all bidders. The theoretical model does not address the source

of fluctuations in the number of bidders who decide to participate in any given auction. We

acknowledge that this is a restrictive assumption. In this section, we discuss each aspect of this

assumption separately.

Exogenous number of participants in any auction

Implicit in the theoretical model is the assumption that any bidder’s decision to participate in a

given auction is independent of his or her own signal regarding the ex post value of the object. To

investigate whether this is actually the case in our setting, we use an individual bidder’s inventory

prior to entering the auction as a proxy for his or her ex ante valuation of the bond. Intuitively, if

a bidder holds a long position on the to-be-offered bond, then the idiosyncratic component in her

valuation will be lower, which would encourage the bidder to submit a conservative bid. Conversely,

if the bidder holds a short position on the bond, it might be prompted to submit a more competitive

bid to cover his or her position. With this idea in mind, we first empirically explore whether pre-

auction inventory predicts bidding behavior. After establishing the significance of this empirical

relationship, we investigate whether pre-auction inventory predicts bidder participation.

An important caveat needs to be addressed before testing this hypothesis. Bidders’ inventory is

idiosyncratic and not necessarily related to private information on bond fundamentals. Unfortunately,

we do not have good proxies for the bidder’s individual valuation prior to entering the auction, which

is directly related to the amount of private information possessed by each bidder. In fact, one of

the main contributions of our study is its proposal of an econometric methodology to quantify

the importance of private information about fundamentals because such variables are difficult to

come by. Notwithstanding this caveat, our structural estimation results indicate that, in both

subsamples, an important idiosyncratic component exists in the bidders’ valuation.

We formally explore whether bidders’ inventory prior to entering the auction affects bidding

behavior. To test this, we fit the following reduced-form model based on a modified version of Eq.

(2.3.1)

markdowni,t = αi + βinvinventoryi,t + βkkt + εi,t, (3.3.1)

where bidder i’s markdown in auction t is given by markdowni,t = p0i,t−pt, where p0i,t is the highest
bid submitted by bidder i in auction t, pt is the secondary market price benchmark in auction

t, kt is the total bond supply offered, and inventoryi,t is bidder i’s (detrended and standardized)

inventory on bond t one day before auction t.8 Intuitively, a higher markdown captures a more

8Unfortunately, we only have daily aggregate inventory data at the bidder level for all Colombian government
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competitive or aggressive bid because p0i,t is high relative to the price benchmark. αi are bidder

fixed-effects.

The model results are reported in column (1) of table (3.3). A one standard-deviation increase

in aggregate inventory reduces bidders’ markdown by almost 10 percent. Thus, when a bidder is,

on average, long Colombian bonds, it will be prompted to submit less competitive bids, which

is consistent with a lower idiosyncratic valuation. Now that we have shown that pre-auction

inventory predicts bidding behavior, we test whether it also predicts bidder participation by fitting

the following linear probability model

partici,t = αi + βinvinventoryi,t + βkkt + εi,t, (3.3.2)

where partici,t takes the value of one if bidder i participates in auction t and zero otherwise. αi are

bidder fixed-effects. The results are reported in column (2) of table (3.3). From the first row, we

cannot reject the null hypothesis that βinv is significantly different from zero.9

We cannot categorically conclude from these two empirical exercises that nt is exogenous

to bidders’ private signals because, as mentioned earlier, individual inventory is a predictor of

idiosyncratic valuation that is not necessarily related to private information about fundamentals,

which is important according to our estimates. However, to the extent that pre-auction inventory

is a good proxy for their signals, bidders’ decision to participate in the auction would appear to be

unrelated to their valuation.

Number of participants in any auction is common knowledge

Next, we focus on how realistic it is to assume that the number of bidders who participate in auction

t, nt, is known to all auction participants. By regulation, only 14 PDs are allowed to participate

in any Colombian treasury auction. However, not all 14 PDs participate in every auction. This

raises the question of whether PDs know with certainty the number of auction participants they

will be effectively competing against. We do not have direct evidence to conclusively answer this

question.10 Instead, we test whether the bidding data are consistent with this assumption.

If the bidders did not know the effective number of participants, they are bidding against nt, but

only the maximum number of PDs allowed to participate in any auction N , and their equilibrium

strategies cannot be a function of nt. In particular, the slope of the equilibrium demand schedules

bonds denominated in local currency. Thus, if, for instance, auctions for bonds with maturity in 2024 and 2028, for

instance, are held simultaneously, the inventory measure will be the same in both auctions. Furthermore, we do not

have inventory measures for four bidders at any point in time because these four bidders are not commercial banks

and, as such, are not required to report their inventory holdings.
9We also fitted a logistic model (not reported in this paper) where we could not reject the null hypothesis either.

10There is survey evidence suggesting that even though bidders do not necessarily disclose to one another whether

they will participate in any given auction, some of them are able to infer who will do so based on conversations with

their clients (Cardozo, 2013).
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Table 3.3: Bidder’s markdown and auction participation

Dependent variable:

Bidder’s markdown Bidder participation

(1) (2)

Inventory before auction −0.061∗∗∗ 0.002

(0.023) (0.011)

Auction FE Yes Yes

Observations 1,174 1,563

R2 0.299 0.089

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. This table displays

the estimated coefficients of the linear models (3.3.1) in column (1), and (3.3.2) in column (2). Dependent variables

are bidder’s markdown (column (1)) and bidder participation (column (2)), respectively. Bidder’s markdown is

calculated as the difference between a bidder’s highest submitted price in a given auction minus price benchmark.

Price benchmark of a bond is calculated as the volume-weighted average price of all transactions on an auction-

day involving the to-be-offered bond between the market opening time (8 am) and the moment when the auction

closes up (10 am). If there are no transactions in the inter-dealer market in that two-hour interval for a given

to-be-offered bond on an auction-day, the opening price from Bloomberg is used instead. Bidder participation

takes the value of one when a bidder participates in an auction and zero otherwise. Inventory before auction

is the (detrended and standardized) bidder’s aggregate inventory on all Colombian sovereign bonds on the day

before the auction denominated in COP. Standard errors are clustered at the auction level.
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should not change with nt, but only with N , because the former would be unknown to bidders.

Therefore, we can test whether bidders know nt by examining whether c varies with nt.

We do not directly observe the equilibrium slope of the demand curves, but we can recover it

from the bidding data and auction cutoff price p̂t. As we show in Section 2.3, the model implies

a direct relationship between p̂t and slope c, given by p̂t =
1
nt

∑nt
i=1 p

0
it − kt

ntc
. In fact, this is the

market-clearing condition for any symmetric linear equilibrium with uniform cutoff prices. It has

the appealing feature that it is solely a function of observed variables such as the average bidders’

intercept, total bond supply, number of bidders, and the auction cutoff price. As in Section (2.3),

we assume that the observed cutoff price pct is only a proxy for the model-implied price p̂t such that

pct = p̂t + ζt. Thus, we can estimate c using the following equation

pct −
1

nt

nt∑
i=1

p0i,t = βk (nt) kt + ζt, (3.3.3)

where βk (nt) = − 1
ntc

.

We estimate βk(nt) for different numbers of observed bidders, nt. We then calculate the implied

slopes ĉ (nt) = − 1
ntβ̂k(nt)

. Once again, if the bidders did not know nt when submitting their

bids, then ĉ (nt) should be constant in nt because optimal strategies depend only on the bidders’

information sets.

In figure (3.1), panel (a) shows ĉ (nt) for all the observed values of nt. Here, we express ĉ (nt)

as a fraction of the average bond supply per auction, kt. When nt increases from ten to fourteen,

ĉ (nt) /kt jumps from 0.14 to 0.35 before the rebalancing, and from 0.11 to 0.16 after the shock.

Thus, we provide empirical evidence that bidder strategies respond to changes in nt, which suggests

that they are part of their information sets.

Under the assumption that bidders know nt, the model predicts that c(nt) is increasing in nt.

In panel (b) of figure (3.1), we plot the values of c(nt) implied by our structural estimation results.

Again, the model-implied c(nt) is increasing but flatter after the rebalancing. We observe a similar

pattern for “empirical” slopes ĉ(nt). Hence, we interpret figure (3.1) as suggestive evidence that

the data support the model’s predictions regarding the relationship between the number of bidders

and the slope of the demand curve.
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Figure 3.1: c(nt)/kt: model-implied vs empirical demand schedule slope standardized by average supply

per auction

This figure plots c(nt), the demand schedule’s slope, across multiple nt, the number of bidders who participate

in a given auction. c(nt) are standardized by the average total bond supply per auction kt. Choice of nt in both

panels is guided by table (2.2). c(nt) in panel (a) are calculated from βk (nt) = − 1
ntc(nt)

, using the estimates of

βk(nt) from the linear model in Eq. (3.3.3) for all nt. Red line in panel (a) depicts c(nt) using estimated βk for

all nt before the J.P. Morgan GBI-EM index rebalancing announcement on March 19, 2014. Blue line in panel

(a) depicts c(nt) using estimated βk from the post-rebalancing sample for all nt. c(nt) in panel (a) are calculated

according to Eq. (2.2.1), where value of parameters ρ, σϵ, σθ, and λ come from estimates in table (2.4). Red line

in panel (b) depicts c(nt) as a function of nt using the estimates in column (1) of table (2.4). Blue line in panel

(b) depicts c(nt) as a function of nt using the estimates in column (2) of table (2.4).

Final remarks

We provide model-free evidence supporting the reduction in the importance of private information

and the increase in inventory adjustment costs. If private information about fundamentals is

prevalent in this market, then an auction’s cutoff price would reflect bidders’ private signals about

fundamentals that were not captured by observable market prices prior to the auction. We show

that auctions with high cutoff prices relative to a pre-auction benchmark predict high subsequent

secondary market prices. After the rebalancing, this effect either shrinks or vanishes altogether,

which is consistent with a decline in the importance of private information. Furthermore, we find

a faster overnight mean-reversion in inventories after the rebalancing. On average, it takes bidders

11.7 days to offload half of their inventories before the rebalancing, but only 7.5 days after the

shock.

Finally, we provide empirical evidence consistent with the model assumptions regarding primary

market participation. First, we show that while a bidder’s pre-auction inventory predicts bidding
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behavior, it does not predict auction participation. To the extent that pre-auction inventory is

related to bidders’ valuation signals, then the individual decision to participate in a given auction

is unrelated to the individual signal. Second, for groups of auctions with a given number of

participants, we construct empirical measures of the demand curve slope. We show that these

empirical demand slopes respond to changes in the number of bidders, which should not be the

case if bidders do not know with certainty the true number of auction competitors. Furthermore, the

empirical slopes are similar to those directly derived from the model equilibrium and our structural

estimates. Therefore, despite the parametric model, equilibrium strategies appear to respond to

auction participation in a way that is consistent with the predictions of the model.
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3.4 Appendix

Additional reduced form evidence

Auction’s cutoff price and secondary market yields

Table 3.4: Auction price and secondary market yields

Dependent variable:

Second. market yields ms. benchm. τ -days after auction

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

(1) (2) (3) (4) (5)

Cutoff price ms. benchm. −0.486∗∗∗ −0.504∗∗∗ −0.491∗∗∗ −0.608∗∗∗ −0.650∗∗∗

(0.096) (0.091) (0.091) (0.080) (0.089)

Post-rebal. dummy −1.383∗∗∗ −1.345∗∗∗ −1.341∗∗∗ −1.402∗∗∗ −1.363∗∗∗

(0.118) (0.115) (0.116) (0.114) (0.111)

Cutoff price ms. benchm. (post-rebal.) 0.813∗∗∗ 0.809∗∗∗ 0.845∗∗∗ 0.960∗∗∗ 0.945∗∗∗

(0.188) (0.187) (0.185) (0.178) (0.180)

Number of bidders −0.068∗∗∗ −0.059∗∗ −0.066∗∗∗ −0.061∗∗ −0.067∗∗

(0.024) (0.025) (0.025) (0.026) (0.027)

Bond offering 0.074 0.076 0.088 0.078 0.064

(0.054) (0.054) (0.056) (0.055) (0.054)

Bond FE Yes Yes Yes Yes Yes

Bond controls Yes Yes Yes Yes Yes

Macro controls Yes Yes Yes Yes Yes

Observations 147 147 147 147 147

R2 0.916 0.917 0.915 0.918 0.918

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. This table displays

the estimated coefficients of a model analogous to that of Eq. (3.2.1) with the bond yield as dependent variable.

Every observation corresponds to the auction of a given bond. Dependent variable is average secondary market

yield of offered bond τ -days. Average secondary market yield is converted from volume-weighted average price of

all transactions in the main inter-dealer market involving the offered bond τ -days after the bond was offered in the

primary market. Post-rebal. dummy is equal to one after J.P. Morgan GBI-EM index rebalancing announcement

on March 19, 2014, and zero otherwise. Cutoff price ms. benchm. is equal to the auction cutoff price minus

price benchmark of to-be-offered bond. Cutoff price ms. benchm. (post-rebal.) is an interacted term between

Cutoff price ms. benchm and Post-rebal. dummy. Bond controls include duration and convexity calculated from

prices of auction-day. Macro controls include the 10-year CDS on the Colombian sovereign government, Chicago

Board Options Exchange’s CBOE Volatility Index (VIX), and the 1-year yield on locally-denominated Colombian

government debt calculated by the Central Bank of Colombia. Bond and macro controls are from auction-day.

Standard errors are robust.
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Auction’s cutoff price and secondary market prices: controlling for bid-to-cover ratio

Table 3.5: Auction price and secondary market prices

Dependent variable:

Second. market price ms. benchm. τ -days after auction
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

(1) (2) (3) (4) (5)

Cutoff price ms. benchm. 1.629∗∗∗ 1.920∗∗∗ 1.763∗∗∗ 2.730∗∗∗ 3.097∗∗∗

(0.356) (0.395) (0.373) (0.581) (0.916)

Post-rebal. dummy 0.185 −0.075 −0.072 0.313 −0.021
(0.271) (0.290) (0.291) (0.312) (0.446)

Cutoff price ms. benchm. (post-rebal.) −0.630∗ −0.713 −1.006∗∗ −1.848∗∗∗ −1.715∗∗

(0.361) (0.442) (0.414) (0.556) (0.802)

Number of bidders −0.103∗ −0.167∗∗ −0.119 −0.159∗ −0.102
(0.055) (0.076) (0.074) (0.088) (0.114)

Bond offering 0.013 −0.016 −0.088 −0.052 0.023
(0.094) (0.115) (0.111) (0.126) (0.153)

Bid-to-cover ratio −0.042 −0.084 −0.069 −0.106∗ −0.131
(0.045) (0.061) (0.050) (0.063) (0.087)

Bond FE Yes Yes Yes Yes Yes
Bond controls Yes Yes Yes Yes Yes
Macro controls Yes Yes Yes Yes Yes
Observations 147 147 147 147 147

R2 0.384 0.382 0.373 0.445 0.382

Note: (*) Significant at 10% level; (**) significant at 5% level; (***) significant at 1% level. Every observation

corresponds to the auction of a given bond. Dependent variable is average secondary market price of offered bond

τ -days after auction minus price benchmark of to-be-offered bond before auction. Average secondary market price

is calculated as volume-weighted average price of all transactions in the main inter-dealer market involving the

bond τ -days after it was offered in the primary market. Price benchmark of to-be-offered bond before auction is

calculated as the volume-weighted average price of all transactions on an auction-day involving the to-be-offered

bond between the market opening time and the auction’s closing time. If there are no transactions in the inter-

dealer market in that interval, the opening price from Bloomberg is used instead. Post-rebal. dummy is equal to

one after J.P. Morgan GBI-EM index rebalancing announcement on March 19, 2014, and zero otherwise. Cutoff

price ms. benchm. is equal to the auction cutoff price minus price benchmark of to-be-offered bond. Cutoff price

ms. benchm. (post-rebal.) is an interacted term between Cutoff price ms. benchm and Post-rebal. dummy.

Bond controls include duration and convexity calculated from prices of auction-day. Macro controls include the

10-year CDS on the Colombian sovereign government, Chicago Board Options Exchange’s CBOE Volatility Index

(VIX), and the 1-year yield on locally-denominated Colombian government debt calculated by the Central Bank

of Colombia. Bond and macro controls are from auction-day. Bid-to-cover ratio is calculated as the sum of all

submitted quantity-bids over total bond supply (par amount). Standard errors are robust.
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Armantier, Olivier and Erwann Sbäı, “Estimation and comparison of treasury auction formats

when bidders are asymmetric,” Journal of Applied Econometrics, 2006, 21 (6), 745–779.

Arslanalp, Serkan and Takahiro Tsuda, “Emerging Market Portfolio Flows: The Role of

Benchmark-Driven Investors,” IMF Working Papers, 01 2015, 15, 1.

Baker, Steven D, Burton Hollifield, and Emilio Osambela, “Disagreement, speculation,

and aggregate investment,” Journal of Financial Economics, 2016, 119 (1), 210–225.

Bakshi, Gurdip S. and Zhiwu Chen, “Inflation, Asset Prices, and the Term Structure of

Interest Rates in Monetary Economics,” The Review of Financial Studies, 1996, 9 (1), 241–275.

Balduzzi, Pierluigi, “Money and asset prices in a continuous-time Lucas and Stokey cash-in-

advance economy,” Journal of Economic Dynamics and Control, 2007, 31 (8), 2713 – 2743.

Barclay, Michael J. and Terrence Hendershott, “Price Discovery and Trading After Hours,”

The Review of Financial Studies, 04 2015, 16 (4), 1041–1073.

Basak, Suleyman, “Asset pricing with heterogeneous beliefs,” Journal of Banking & Finance,

2005, 29 (11), 2849–2881.

and Michael Gallmeyer, “Currency Prices, the Nominal Exchange Rate, and Security Prices

in a Two-Country Dynamic Monetary Equilibrium,” Mathematical Finance, 2001, 9 (1), 1–30.

Beckworth, David, “Permanent versus temporary monetary base Injections: Implications for

past and future Fed Policy,” Journal of Macroeconomics, 2017, 54, 110–126.

Beetsma, Roel, Massimo Giuliodori, Jesper Hanson, and Frank de Jong, “Bid-to-cover

111



and yield changes around public debt auctions in the euro area,” Journal of Banking & Finance,

2018, 87, 118–134.

Belongia, Michael T and Peter N Ireland, “Money and output: Friedman and Schwartz

revisited,” Journal of Money, Credit and Banking, 2016, 48 (6), 1223–1266.

and , “Circumventing the zero lower bound with monetary policy rules based on money,”

Journal of Macroeconomics, 2017, 54, 42–58.

and , “The demand for Divisia Money: Theory and evidence,” Journal of Macroeconomics,

2019, 61, 103128.

and , “A reconsideration of money growth rules,” Journal of Economic Dynamics and Control,

2022, p. 104312.

Benati, Luca, Robert E Lucas Jr, Juan Pablo Nicolini, and Warren Weber,

“International evidence on long-run money demand,” Journal of monetary economics, 2021,

117, 43–63.

Bernanke, Ben, “Communication and Monetary Policy. Speech. Federeal Reserve Board of

Governors, November,” https://www.federalreserve.gov/newsevents/speech/bernanke20131119a.htm,

2013.

Bessembinder, Hendrik, Stacey Jacobsen, William Maxwell, and Kumar

Venkataraman, “Capital commitment and illiquidity in corporate bonds,” The Journal of

Finance, 2018, 73 (4), 1615–1661.

Bikhchandani, Sushil and Chi fu Huang, “The Economics of Treasury Securities Markets,”

Journal of Economic Perspectives, September 1993, 7 (3), 117–134.

Bjønnes, Geir, “Winner’s Curse in Discriminatory Price Auctions: Evidence from the Norwegian

Treasury Bill Auctions,” SIFR Research Report Series 3, Institute for Financial Research 2001.

Blinder, Alan S., Michael Ehrmann, Marcel Fratzscher, Jakob De Haan, and David-

Jan Jansen, “Central Bank Communication and Monetary Policy: A Survey of Theory and

Evidence,” Journal of Economic Literature, December 2008, 46 (4), 910–45.

Boyarchenko, Nina, David Lucca, and Laura Veldkamp, “Taking Orders and Taking Notes:

Dealer Information Sharing in Treasury Auctions,” Journal of Political Economy, 2020, 0 (ja),

null.

Brandt, Michael W. and Kenneth A. Kavajeckz, “Price Discovery in the U.S. Treasury

Market: The Impact of Orderflow and Liquidity on the Yield Curve,” The Journal of Finance,

2004, 59 (6), 2623–2654.

Buraschi, A. and A. Jiltsov, “Habit Formation and Macroeconomic Models of the Term

Structure of Interest Rates,” The Journal of Finance, 2007, 62 (6), 3009–3063.

Buraschi, Andrea and Alexei Jiltsov, “Inflation risk premia and the expectations hypothesis,”

Journal of Financial Economics, 2005, 75 (2), 429 – 490.

and Paul Whelan, “Term structure models with differences in beliefs,” Imperial College

112



Business School Working Paper, 2012.

Caballero, Ricardo J and Alp Simsek, “Monetary policy with opinionated markets,” Technical

Report 2020.

Cammack, Elizabeth B, “Evidence on Bidding Strategies and the Information in Treasury Bill

Auctions,” Journal of Political Economy, 1991, 99 (1), 100–130.

Campbell, Jeffrey R, Jonas DM Fisher, Alejandro Justiniano, and Leonardo

Melosi, “Forward guidance and macroeconomic outcomes since the financial crisis,” NBER

Macroeconomics Annual, 2017, 31 (1), 283–357.

Campbell, John Y, Carolin Pflueger, and Luis Manuel Viceira, “Monetary policy drivers

of bond and equity risks,” 2014.

Cardozo, Pamela, “Bidders´ Behaviour in Government Securities Auctions: A case study for

Colombia,” BORRADORES DE ECONOMIA 010501, BANCO DE LA REPÚBLICA February
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