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Introduction

What is the role of the government in a market economy?

Chapter 1 studies a market failure. I document a fact that in the United
States over the past forty years, new business formation has concentrated in
large cities. I develop a continuum geographic model where business formations
endogenously occur in heterogeneous cities based on ex ante firm productivity.
I show that changes in externalities can generate the spatial firm dynamism.

Chapter 2 (joint with Ali Shourideh) studies fiscal policy and reform. We
explore the aggregate and distributional effects of tax competition. We develop
a theory to analyze how interjurisdictional tax competition affects productiv-
ity and inequality by distorting firms’ production decisions. Our results suggest
that moving toward a coordinated fiscal regime boosts aggregate and local-level
productivity. Moreover, tax coordination is more favorable compared to tax com-
petition when wage elasticity is low or when there are more superstar firms.

Chapter 3 studies industrial policy and structural change. I analyze the
macroeconomic consequences of place-based industrial policies in the presence
of production networks and external economies of scale. I document novel em-
pirical evidence on the spillover effects of a specific place-based industrial policy
in China. To rationalize the facts, I develop a quantitative general equilibrium
trade model incorporating policies, production networks, trade, and agglomer-
ation externalities. I take the model to Chinese data, designing a new approach
that combines sorting and the exact-hat algebra in international trade theories.
Results show higher externalities in targeted sectors and aggregate welfare gains
through strengthening local sectoral competitiveness.

Chapter 4 (joint with Natasha Che) studies international trade and growth.
We design an algo-based export recommendation system using a collaborative
filtering method to study the relationship between export structure and growth
performance. Our system produces export portfolio for more than 190 economies
spanning over 30 years. We find that economies whose export structures are
more aligned with the algorithm-recommended export structures achieve better
growth performance. Our study provides empirical evidence on export diversi-
fication potential and enlights further analyses on comparative advantages.

Disclaimer: The views expressed in this dissertation are those of the author(s)
and do not necessarily represent the views of the International Monetary Fund
(IMF), its Executive Board, or IMF management.
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Chapter 1

Spatial Distribution of Business Formation

Abstract

This chapter documents the fact that in the U.S. over the past 40 years, business
formation has been concentrated in large cities. I develop a model to explain
this concentration through an increase in the extent of production externalities.
In particular, this model generates a Pareto distribution for firm entry driven by
positive sorting, providing an alternative explanation to a city-size-based dis-
tribution. I use the model to show how changes in extent of externalities, size
elasticity of urban costs, and the primitive distribution of firm productivity affect
the spatial distribution of business formation.

1.1 Introduction

Cities develop with different demographical and technological structures, which
are key to understanding regional agglomeration and mobility patterns. When
businesses start in a city, they bring job opportunities, technology, and produc-
tion. This chapter aims to understand the mechanism driving changes in the
city-level firm-entry distribution.1

This chapter is motivated by a new fact concerning the spatial concentration
of firm entry (see Section 1.3 for details). This distributional change is impor-
tant for several reasons. First, locational choices made by heterogeneous firms
are informative in terms of the spatial distribution of productivity, innovation,
and resources. Quantifying these effects is useful for policymakers, but doing so
is not easy. Second, it has been taken as a stylized fact that larger cities have
higher average incomes but also exhibit higher wage gaps, i.e., the urban wage
premium (as in Baum-Snow and Pavan, 2011 [1]). Thus, understanding the
distribution and its changes can help us understand the sources of income in-
equality. Third, many policies and incentives affect firms’ locational choices.2

1I use business formation, firm entry, and establishment entry interchangeably in this chapter.
Key empirical patterns addressed in this chapter using firm or establishment entries do not vary
significantly.

2An example of such a policy is a local government subsidy designed to lure firms to locate
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Many studies such as Decker et al. (2016) [2] have documented the decline of
startups in recent decades. Policy advocates (e.g., Edwards, 2021 [3]) have also
sought to remove barriers to new businesses, such as by simplifying the process
of obtaining permits and licenses. Analyzing how regulations, either in a cen-
tralized economy or a decentralized one, can distort firms’ locational choices or
optimal city sizes is an important avenue for future investigation.

To explore possible mechanisms behind empirics, I build a model that allows
heterogeneous firms to make locational choices driven by production externali-
ties, and derive a spatial equilibrium of firm entry. In this chapter, externalities
are defined as extra production benefits in the presence of other firms in the same
location. The source and a detailed micro-foundation of variation in production
externalities is abstract from this chapter.

The rest of this chapter is organized as follows. Section 1.2 introduces the
related literature and contributions of this chapter. Section 1.3 presents facts
on business dynamism. Section 1.4 introduces the model and finds its equilib-
rium. In Section 1.5, I use comparative statics to illustrate how elements of the
model drive distributional changes, and I discuss on further suggestive evidence.
Section 1.6 concludes.

1.2 Literature Review

This chapter draws and contributes to several branches of literautre. First, this
chapter draws from the literature on sorting and matching theory. The spatial
sorting mechanism proposed in this chapter is developed from the sorting theory
for heterogeneous agents. Positive sorting is originated in matching theory and
assignment games (see a survey by Chade et al., 2017 [4]). In the canonical
matching model developed by Becker (1973) [5], positive assortative match-
ing comes from output-function increases in a partner’s type for a fundamental
model based on complementarities in the context of marriage. Recent studies in-
herit supermodularity including labor sorting (Behrens et al., 2014 [6]) and firm
sorting (Gaubert, 2018 [7]). Many previous studies have used a mixture of sort-
ing and selection. Behrens et al. (2014) [6] made a seminal contribution of in-
troducing ex ante sorting in location and ex post selection in occupation of labor.
Baldwin et al. (2006) [8] produced a canonical work that combines the Melitz
model with the economic geography model to show that relocating to larger re-
gions is more attractive for productive firms. Previous studies focus less on firm
sorting than on labor sorting. Compared to the former ones studing production
side, this chapter differs from previous approaches in generating sorting, such
as the trade-off between entry cost and price in Nocke (2006) [9], and spatial

their headquarters in designated areas, see Chapter 2 for further discussion. Other examples
include public venture-capital funds implemented in Finland, and the technology diffusion and
export promotion driven by the Industrial Master Plan in Malaysia. I will explore more place-
based, industrial, and export policies will be studied in Chapter 3 and 4.
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separation incurring trade costs among locations in Okubo et al. (2010) [10].
This chapter also contributes to the literature on many-to-one sorting. In this
chapter, positive sorting, more productive firms sort into large cities, arises (see
Section 1.4.2). This is analogous to a many-to-one matching problem, where
many firms with similar productivity will optimally choose a single location. As
surveyed in Chade et al. (2017) [4], both many-to-one matching and sorting
with externalities are still open questions.

Second, this chapter contributes to the literature on firm size distribution.
Among the literatures establishing the fact of city size distribution, large cities
following the Zipf’s Law, and Pareto distributions as in Gabaix (1999) [11], and
populated places have been shown to follow log-normal distributions Eeckout
et al. (2014) [12]. Ioannides and Skouras (2013) [13] verify the Pareto distri-
bution using multiple different definitions of U.S. cities. City size distributions
outside of the U.S. are less unified. Rosen and Resnick (1980) [14] reject Zipf’s
Law for 36 out of 44 countries. Soo (2005) [15] tests Zipf’s Law for 73 countries
and finds that the average Pareto exponent is less than 1.

Among the ongoing controversies regarding the exact distributions for firm
and city size, two key issues are distributional forms and identifying the mecha-
nisms behind them. There are currently two main streams of thoughts. The first
is the random process: Gabaix (1999) [11] presents a canonical model where
the Kesten process and Gibrat’s law are the underlying mechanisms driving the
Pareto distribution. Rossi-Hansberg and Wright (2007) [16] extend this idea,
using productivity shocks to explain deviations from Zipf’s Law. The second is
the recent static approach where Geerolf (2016) [17] introduces a model that
generates Pareto distributions for the span of control of managers, and Zipf’s
law is used for firm size distribution with production functions embedding com-
plementarities. My model is related to that of Geerolf (2016) [17] in that com-
plementarity assumptions are essentially the same, but mine focuses more on
sorting firm entries rather than sorting workers. Size distributions derived in
this chapter rely on both the primitive distribution and the structure of supply-
side optimization.

A side strand of literature related to the size distribution is firm dynamics.
The spatial concentration documented in this chapter contributes to the back-
drop of a country-level decreasing trend in new business formation. This chapter
finds that this decreasing trend holds across cities (see Section 1.3). Papers on
firm dynamics have focused mainly on trends of business formation across dif-
ferent ages and sizes at the national level. The most relevant papers are Halti-
wanger et al. (2016) [18] and Pugsley and Sahin (2015) [19] who use the
Census LBD data set. Rossi-Hansberg and Wright (2007) [16] and Rubinton
(2020) [20] examine the connection between establishment scale and firm en-
try/exit dynamics, focusing on city-level patterns. Other papers consider policy
in analyzing firm dynamism. Garicano et al. (2016) [21] estimate the welfare
effect of French labor regulation on firm size and productivity distribution. Bar-
wick et al. [22] (2020) and Gu and Jia (2021) [23] study the entry and exit
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changes responding to Chinese industrial policies and state-owned enterprise
(SOE) reforms. Asturias et al. (2017) [24] find that reducing entry barriers to
technology adoption for firms generates aggregate growth in Chile and South
Korea.

Third, this chapter contributes to studies incorporating supply-side exter-
nalities, which have long been discussed in economics. Marshall (1890) [25]
proposed three canonical sources of agglomeration externalities: labor (labor-
market pooling), goods (input-output linkage), and ideas (knowledge spillover).
Since then, externalities have been widely discussed in terms of the above as-
pects, as well as in terms of endowed amenities (such as natural advantages; see
Ellison and Glaeser (1999) [26]). This chapter abstracts from the exact mech-
anisms generating externalities. Instead, I consider ex ante identical locations
and embed externalities determining firms’ choices in endogenous city distribu-
tions. See Section 1.5 for evidence of a change in externalities and a discussion
as to the source of this change.

1.3 Facts

This chapter uses the city as the geographical unit of analysis. A city refers to
a Metropolitan Statistical Area (MSA), as defined by the Office of Management
and Budget (OMB) for federal statistical purposes. According to the OMB, an
MSA represents a geographic area consisting of a large population nucleus to-
gether with adjacent communities having a high degree of economic and social
integration with the nucleus.3 To understand production agglomeration at the
city level, this chapter gathers the total number of establishments, establishment
entries and employment from the Census Business Dynamics Statistics (BDS), as
well as GDP and population from the BEA, from 1977 to 2014.4 In the fact sec-
tion, city size is measured by entries, establishments, population and GDP, and
I will compare their distributional changes respectively. In the model section,
city size is measured by the number of entries or total number of establishments
to understand and highlight the effect of agglomeration on the distribution of
business formation. In what follows, I document two facts that motivate the
quantitative analysis.

First, the correlation between entry and total number of establishments in-
creases significantly. I use the following set of regressions.

Yi,t = β0 + β1ln(estab)i,t + β2ln(estab) ∗ Year+ γi +ηt + εi,t

where Yi,t denotes ln(ent r y) and ln(ent r y_pc) (per capita) at city-year level.
t is from 1977 to 2014, and i denotes cities. Independent variables include to-

3The definition used in this chapter is the July 2015 version; for details, see BEA regional
section on the MSA list. City and MSA are used interchangeably in the rest of this chapter.

4The BEA reports total earnings by metropolitan areas as metro-level GDP.
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tal number of establishments and interacting terms. γi and ηt are fixed effects.
Results (see Table 1.3) show siginificant increases in the correlation between
entry and establishment with interacting terms significantly positive. The esti-
mated size elasticities of entry and entry per capita (β1) are 1.088 and 0.195
respectively. β2 are both positive and monotonically increasing, indicating the
positive correlation increasing over time. OLS plots without fixed effect be-
tween ln Ent r y , ln Ent r y Per Capita and ln Establ ishment are shown in
Figure 1.13. Figure 1.13.c and 1.13.d show the value of the slopes of fitted line
with 95% confidence intervals from 1977 to 2014. The slopes increase signif-
icantly in both cases. Accompanying the raising significance is the decline in
variation and increase in the explanatory power, reflected by Figure 1.13 with
change in standard error and R2 respectively. Variation of coefficient decreases
over time, suggesting a shrinking spread in both cases. R2 increases from 0 to 0.2
for entry per capita (see solid line in Figure 1.13.f), and this number increases
from 0.97 to 0.985 for total entry (see solid line in Figure 1.13.).

Second, firm entry is concentrated in large cities. The concentration is shown
by an increase in the share of entry for certain amount of cities. Figure 1.10
shows that establishment and entry have increased disporportionally over time.
As indicated in Figure 1.11, the share of GDP and population for the top 20
MSAs remain constant and decrease, but the entry and establishment shares in-
crease significantly.5 Specifically, in Figure 1.11, the population share is almost
flat around 45%, the GDP share remained around 50%, while the establishment
entry increased by around 8% (from around 36% to around 44%). Figure 1.12
shows that the cumulative share of establishment entry in top cities (in Fig-
ure 1.12, the ten lines from bottom to top aligned represent top 10, 20, 30, ...,
100 MSAs ranked by 2014 nominal GDP) has been increased. The set of the top
10 cities has increased by around 5%, while in the set of the top 100 cities, it
has increased by more than 10%.

The concentration is consistent with the nation-wide decline in new business
formation documented in Haltiwanger et al. (2014 [2], 2016 [18]) and Pugsley
and Sahin (2015) [19]. However, the distribution of this decline across cities is
largely unknown. Table 1.1 presents summary statistics for change in entry and
establishment. Firm entry in Top 50 MSAs increased in absolute value (from
7137.8 to 8207.3 on average) and share (see the fifth line from the bottom
in Figure 1.12) while other MSAs in total decrease in the value (from 640.4 to
552.3 on average) and the share. Total number of establishments and entry both
increase in the average and the spread for top cities, while decrease in entry in
bottom cities.6

5The rank is based on nominal GDP in each year, which do not change significantly when
switching to the real GDP measure. This approach is robust if ranked by population, number
of establishment and employment. The same holds true for all ranks mentioned in this chapter
later. Note that each share is calculated at the national level.

6This fact is robust for entry at firm age 0, which is used to measure the entrepreneur activity
in this chapter.
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1.4 Model

In this section, I build a simple static model to analyze the effects of changes in
the extent of externalities and other key factors on the city size distribution.7

1.4.1 Setup

Cities. Assume there is a continuum of cities with mass λ sitting on the interval
[0,λ] ≡ I .8 Cities are ex ante identical. Both the city size and measure for
each size of city are endogenously determined by firms’ locational choices. Let
mi ∈ R+ ∪ {0} denote ex post city size and let f (mi) ∈ R+ ∪ {0} denote measure
of cities with size mi. We index cities by i based on the rank of ex post city size,
i ∈ I , i.e., we build a monotonically increasing function mi ≡ m(i) : I 7→ R+.
Cities differ in externalities, denoted by φ(mi), while sizes are endogenously
heterogeneous. We assume ∂ φ

∂mi
> 0 ∀i, which can be thought of as a production

spillover or learning benefit in the presence of other firms in a location.

Firms. Assume there is a unit continuum of firms sitting on the interval
[0, 1] ≡ J . Firms are exogenously heterogeneous in productivity, drawn from
a given distribution G(a) with supp(G) = [a,∞] ⊂ R+. We index these firms
by j based on the rank of the productivity, j ∈ J , which can be summarized
by a monotonically increasing function a j ≡ a( j) : J 7→ supp(G). Assume
each firm hires unit labor as the only input and produce a unit numeraire good.
A firm chooses the city size that is endogenously and uniquely determined in
equilibrium. Firm a j ’s production function yi, j ≡ y(a j, mi) at city i is yi, j =
a jφ(mi).

Labor. Assume workers are homogeneous and do not make locational choices.
Denote w(m) the labor supply that represents the congestion cost increasing in
city size.9 Assume there is a pool of infinite labor in each city. Index labor in
each city by k. Denote wR,k as the reservation wage for individual k, capturing
heterogeneous value of time for individuals. Assume wR,k i.i.d. drawn from a
stationary distribution of reservation wage of the population F(w), with a finite
bounded support W. Assume F(·) is the same across cities. Each individual
participates the labor market only if the equilibrium wage is higher than the
reservation wage. Denote the indicator function 1(wR,k) as the choice to work

7It is as if a steady state considering a firm’s maximization objective over time where there
is a probability of death in any given period. It can be easily shown that solving for asymmetric
entry equilibrium is essentially equivalent to solving for ex post city size conditional on steady
state turnover rate. And measure, index, productivity distribution of firms remain the same.

8Discrete city case has positive sorting property and similar equilibrium condition. See ap-
pendix for illustration and proofs.

9This is to avoid a coordination failure.
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for individual k given an equilibrium wage wi in city i:

1i(wR,k) =

¨

1 if wi ≥ wR,k

0 if wi < wR,k

Denote Li as the aggregate labor supply in city i. The labor supply function is
as follows.

Li =

∫ wi

0

1(x) · dF(x) = F(wi)

1.4.2 Equilibrium

Definition

A spatial equilibrium consists of a set of equilibrium city sizes {m∗i }i∈I , the mea-
sure of cities f ∗(mi), and equilibrium wages {w∗i }i∈I such that:

1. Taking the city size m∗i and local wage w∗i as given, firm j’s locational choice
satisfies the following maximization problem with labor markets cleared
locally.

max
i

a jφ(mi)−w(mi), ∀ j ∈ J

2. In equilibrium, non-degenerated city sizes solve the following:

∃ j ∈ supp(G) s.t. m∗(a j) ∈ {arg max
i∈I

π(a j, mi;Θ)}, ∀i ∈ supp( f )

3. The measure of cities satisfies a firm-city matching with continuity and
no-bunching conditions met:

G(a) =

∫ m∗(a)

m

mdF(m), ∀a ∈ supp(G)

where F(m) ∈ C 2.

Properties

In what follows, I present properties of the equilibrium. I first impose a func-
tional form onφ as in Duranton and Puga (2004) [27]: φ(m) = mα for tractabil-
ity. And I assume labor supply is not perfectly elastic and takes the following
functional form (as Gennaioli et al. (2013) [28] and Behrens et al. (2014) [6])
where η is the wage elasticity. Assume this elasticity is identical across cities:
wi = F−1(mi) = γmη

i .
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Firm j’s problem is to choose a city i ∈ I from a given set of potential cities
to maximize their profits.10 With the specified functional form assumptions on
φ(·) and cost w(·), individual maximization problem is: maxm∈{mi}ni=1

a jm
α−γmη.

This gives us the first property of positive sorting. When η−α > 0, ∂m
∂ a j
> 0 ∀a j ∈

supp(G), optimal city size is monotonically increasing in individual productiv-
ity.11

If all optimal choices are achievable in equilibrium, the above optimization
problem immediately indicates: (1) cities are homogeneous in firm type; and (2)
all firms make positive profits. The intuition is that when the cost elasticity of city
size is small enough, all agents will go to the largest city or do not enter, given
that firms have low productivity to even afford a city of any size. I summarize
the this property with the following lemma.

Lemma 1. (Positive Sorting) In equilibrium, given θ = (α,γ,η, k, a,λ) and
η > α, ∂m∗

∂ a j
> 0 and π(a j)> 0 ∀a j ∈ supp(G).

The second property is the distribution of total number of firm as a suffi-
cient statistic for distribution of firm entry. The nature of the problem gives the
indeterminancy of entry in absence of an exogeneous constant entry rate. The
reason is that firms make choices based on the city size. In this model, city size
is the only identity of the city, but among cities with the same size, firms are
indifferent. Thus, we effectively do not differentiate the pair of cities with their
sizes flipped in equilibrium.

Third, there exists possible binding constraints because of the relative mea-
sure of cities and firms. We look for an equilibrium that the distribution is con-
tinuous on supp( f ). Since the relative measure of cities and firms are not neces-
sarily equal, there are cases where the smallest size of cities binds firms’ choices
at the bottom. To see this, let m̂(a) denote the break-even city size for any given
productivity a j. From the optimization problem, we know that m̂(a j) = (

a j

γ )
1
η−α .

By the setup, the relative measure between cities and firms is λ, λ ∈ R+. We need
to consider the following four cases to derive equilibrium city size distribution.

1. All firms enter without constraints;

2. All firms enter almost without constraint (the ex post smallest city happens
to be the one optiamlly chosen by the least productive firm);

10Firms know which one is potentially larger, i.e., the ex post rank; but they do not know the
ex post size. We assume the knowledge of such “potential rank” due to the following reason.
In absence of city developer, there could be multiple equilibria in the sense that agents do not
know which city is exactly the one with their desired size. In other words, the basline model
can pin down a unique city size distribution and a unique set of cutoff productivity, but the set
of equilibrium city size is not an ordered set.

11To see this, π(a j) = a jφ(m∗)− w(m∗) = a
η
η−α

j γ
α
α−η ((αγ )

α
η−α − (αη )

η
η−α ) > 0⇔ η > α,∀a j ∈

[a,∞).
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3. All firms enter with constraints (only bunching);

4. Not all firms enter (bunching and staying outside of the market)

Let m denote ex post the smallest city endogenously determined in equilib-
rium. For any given set of parameters θ = (α,γ,η, k, a,λ), the endogeneous
m gives us four sets of equilibrium conditions to characterize the above cases,
with their relation to m̂(·) and m∗(·) illustrated in Figure 1.1. Each case corre-
sponds to a relative measure of cities and firms (λ), which is characterized in
the analytical solution in next section.

a j

m

0

m∗(a j)

m̂(a j)

â ã

Case 4: m→

ã

Case 3: m→

Case 2: m→
Case 1: m→

Figure 1.1: Cases when m endogenously determined

Equilibrium Firm-City Distribution

For any given set of parameters θ = (α,γ,η, k, a,λ), we obtain a unique city-size
distribution satisfying the equilibrium conditions, characterized by the cumula-
tive distribution function F(m) and the productivity cutoffs for exiting â and
bunching ã, summarized in the following proposition.

Proposition 1. (Ex Post City Size Distribution) For any given set of pa-
rameters θ including the extent of externalities α, productivity distribution shape
parameter k, scale parameter a, labor supply coefficient γ, elasticityη, and measure
of cities λ (measure of firms normalized to 1), denote Θ ≡ (α,γ,η, k, a,λ) = {Θ ⊂
RcardΘ
+ ,η > α}, there exists a unique continuous distribution of ex post city size with

or without bunching at the bottom of distribution. When assuming Pareto distri-
bution for firm size distribution, city size distribution follows Pareto, with shape
parameter ξ= k(η−α) + 1.

Proof. See Appendix 1.7.1. �

The solution of CDF F ∗(m) is specified as follows:
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• Case 1: When Θ ⊂ Θ1 ≡ {(α,γ,η, k, a,λ) ⊂ RcardΘ
+ : λ > λ̄2}, where

λ̄2 ≡
k(η−α)

( αa
γη )

1
η−α (k(η−α)+1)

, there are λ− β empty cities.

F ∗(m) =

(

0, if m< m

1−
k(η−α)( aα

γη )
k

β[k(η−α)+1]mk(η−α)+1 , if m≥ m

where β = k(η−α)
[k(η−α)+1]( aα

γη )k
,and m= (αa

γη)
1
η−α .

• Case 2: When Θ ⊂ Θ2 ≡ {(α,γ,η, k, a,λ) ⊂ RcardΘ
+ : λ= λ̄2},

F ∗(m) = 1−
k(η−α)( aα

γη)
k

λ[k(η−α) + 1]mk(η−α)+1
.

• Case 3: When Θ ⊂ Θ3 ≡ {(α,γ,η, k, a,λ) ⊂ RcardΘ
+ : λ ∈ (λ̄1, λ̄2)}, where

λ̄1 ≡
k(η−α)

k(η−α)+1+(
η
α )

k−1

( a
γ )

1
η−α ( ηα )k

and λ̄2 as specified above, firms with productivity below

ã bunch at city with size m and we denote F as the measure of the bunching
size12.

F ∗(m) =











0, if m< m
F
λ , if m= m
F
λ +

∫ m

−∞
k(η−α)( aα

γη )
k

xk(η−α)+2 d x , if m> m

where m= ( ãα
γη)

1
η−α , F = G(ã)

m s.t.

ã = {ã ∈ [a,∞) : (
α

γη
)

1
α−η ã

1
α−η −

akα

γη

1
α−η

ã
1
α−η−k + βa

θ
η−α ã

θ
α−η −λ= 0}.

• Case 4: When Θ ⊂ Θ4 ≡ {(α,γ,η, k, a,λ) ⊂ RcardΘ
+ : λ≤ λ̄1}, all firms with

productivity under â do not enter the market. Firms with producitivty
above â but below ã bunch at city with size m.

F ∗(m) =











0, if m< m
F
λ , if m= m

1− k(η−α)( ηα )
k

β[k(η−α)+1]mk(η−α)+1 , if m> m

12In this case, CDF has different form compared to case 4 although it is essentially a special
case of case 4. This is because ã cannot be solved analytically due to a higher order non-linear
equation. But due to the closed-form solution for all variables in case 4, we can write the bound
for λ analytically in case 3.



Model Implication 11

where ã = { 1
λ[

a

( αγη )
1
η−α
( k(η−α)

k(η−α)+1+(
η

α)
k−1)]}

1

k+ 1
η−α , m= ( ãα

γη)
1
η−α , F = λ[( ηα )

k−1]
k(η−α)

k(η−α)+1+(
η
α )k−1

,

β = λ− F .

Proposition 2. (Entry Distribution) For each ex post city size probability distri-
bution F ∗(m), and exogeneous entry/exit rate µ, there exists a unique city-entry
steady state probability distribution with CDF H∗(m), which follows Pareto with
shape parameter k(η− α) + 1, regardless whether there is bunching or exiting at
the bottom of distribution. Specifically, when there is no bunching, the CDF is:

H∗M(m) = 1−
µk(η−α)+1k(η−α)( aα

γη)
k

ζ[k(η−α) + 1]mk(η−α)+1
.

where ζ= λ in case 1 and ζ= λ− F in case 2,3,4 as indicated in Proposition 1.

Proof. See Appendix 1.7.1. �

1.5 Model Implication

In this section, I first confirm that the empirical distribution is consistent with
the theoretical result using several statistical approaches. Then, I present some
numerical experiments and use the data to identify the change in the extent of
externalities that can generate the distributional change of firm entry.

1.5.1 Empirical Distribution

According to Proposition 2, the entry distribution follows Pareto. Using the fol-
lowing robust statistical tests, I show that the empirical city-level establishment
entry follows Pareto distribution at the top, with the shape parameter decreasing
over time.

1. Pareto regression

I start by following a standard power law OLS regression (Auerbach (1913)
[29] and Gabaix (1999) [11]):

ln(Rank)t = β0 + β1ln(Size)t + εt

Measuring city size with population, the Pareto law coefficient is robustly esti-
mated in a range [0.85,1.2], which can be found in Gabaix (1999) [11] for the
U.S. and Soo (2005) [15] for international cases.13 However, when measuring
city size with entry and establishment, Power law (or rank-size) exponent is not

13Zipf’s Law refers to absolute value of the rank-size coefficient is 1, thus when Pareto coef-
ficient ξ has value 1 it is equivalent to say Zipf’s coefficient or Zipf’s law exponent. A detailed
survey can be found in Gabaix (2003).
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close to 1 and it increases significantly in both cases. Figure 1.14 shows the log-
log plot of rank versus entry. The flatter slope in the power law plot corresponds
to the decrease in the shape parameter of Pareto distribution; see Proposition
3 below. Figure 1.16 compares power law coefficients for entry, establishment,
GDP and population. There are two main observations. First, there is a signifi-
cant linear relation between the rank and the size (although different from −1
over time). Second, contrary to the city size measured by GDP and population,
there is a significant increase in Zipf’s coefficient for entry and establishment.
In the data, we observe an increase in the Zipf’s coefficient (or decrease in abso-
lute value of Zipf’s coefficient), i.e., a decrease in the shape parameter of Pareto
distribution in the continuous case.14

Proposition 3. Assuming a random variable X follows Pareto distribution with
a shape parameter a and its discrete realization has a Zipf ’s coefficient b (power
law), then an increase in Zipf ’s coefficient b is equivalent in a decrease in a.

Proof. See Appendix 1.7.1. �

2. Mean excess function and QQ-plot. Denote X a random variable and xF

as the right endpoint. I plot the following mean excess function over threshold
value u: e(u) = E(X − u|X > u), 0 ≤ u < xF ; see results in Figure 1.17. Heavy-
tailed distributions typically have mean excess function diverging (to infinity in
the extreme) (Embrechts et al., 1997 [30]), which is consistent with the plot for
entry. QQ-plot is often used to refer extreme value family with linearity of the
fitted line. As instructed by Embrechts (1997) [30], I fit the distribution with
MLE and have the estimation plugged in QQ-plot as the standard inspection; see
results in Figure 1.18.

3. Pickands estimator (Pickands III, 1975). Pickands estimator (ξ̂(P)k,n =
1

ln2 ln
X n

k−X n
2k

X n
2k−X n

4k
) does not show a significant change in the shape parameter. See

Figure 1.19.

4. Hill estimator (Hill, 1975). Hill estimator (ξ̂(H)k,n =
�

1
k

∑k
j=1 lnX j,n − lnXk,n

�−1
)

shows the range for Pareto in terms of order statistics, which indicates distribu-
tional changes over time. (See Figure 1.20) Clauset et al. (2009) [31] design an
algorithm for an estimator15 combining maximum-likelihood and Kolmogorov-
Smirnov statistics to test the Power distribtion in empirical data, which is es-
sentially equivalent to Hill estimator.16 In this chapter, I use the well-developed
algorithm in Clauset et al. (2009) [31] to estimate the shape parameter. The
change is around 0.08 (from 1.09 to 1.01 from 1977 to 2014), close to the as-
sociated change from the truncated Power law.

14An alternative way is to use Benford’s Law for Pareto distribution. See
https://terrytao.wordpress.com/2009/07/03/benfords-law-zipfs-law-and-the-pareto-
distribution/ for their equivalence.

15The estimator they use is κ̂= 1+ n
�

∑n
i=1 ln X i

Xmin

�−1
, where κ= 1

ξ .

16I also test this empirically and the result does not change significantly.
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5. Generalized Pareto Distribution MLE (Smith, 1990) with likelihood
function is l((ξ,β);X(n)) = −nlnβ −

�

1
ξ + 1

�

∑n
i=1 ln

�

1+ ξ
β X i

�

where X(n) ≡
(X (n)i )

n
i=1. Both the Generalized Pareto Distribution (GPD) MLE and the Hill es-

timator show significant increases in ξ for the order statistics after the top 100
(see Figure 1.20) and for the top 200, 100, 50 and 20 entry cities (see Table 1.4
and 1.5). The results indicate a significant fatter tail. However, according to
Table 1.4 and Table 1.5, the estimated shape parameters are sensitive when
changing the order statistics. For robustness, I adopt a smaller change as the
conservative result.

1.5.2 Quantitative Analysis

I first use the empirical distribution to calibrate values in Proposition 2. Fig-
ure 1.2 shows the change in the extent of externalities (α) when assuming pro-
ductivity distribution (starting from k = 1.05 as Luttmer (2007) [32]) and wage
elasticity (η = 0.082 as Behrens et al. (2014) [6]). The magnitudes are consis-
tent with current literature such as Acemoglu and Angrist (2000) [33], Moretti
(2004) [34] and Behrens et al. (2014) [6].17

Figure 1.2: Relative Change in Externalities (α) Corresponding to Produc-
tivity Parameter (k)

As stated in Proposition 2 in Section 1.4.2, the distribution in the range where

firms choose their optimal sizes is: H∗M(m) = 1−
µk(η−α)+1k(η−α)( aα

γη )
k

ζ[k(η−α)+1]mk(η−α)+1 . Thus we can
summarize the comparative statics of concentration with the following lemma.

Lemma 2. (Concentration) An increase in the extent of externalities induces
a fatter tail in firm entry distribution, i.e., ∂ θ∂ α < 0, ∀k > 0.

17Their estimates vary from 0.03 to 0.15.
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The intuition is that when α increases, firms are driven by a disporportional
increase in their benefits from city sizes. Thus, they can afford higher costs to
set up business in large cities. Therefore, large cities become disporportionally
larger, i.e., a concentration occurs at the aggregate level.

To understand the change in magnitiude, I compute the change in relative
output corresponding to the change in externalities. k is taken to be 1.05 as
in Luttmer (2007) [32]. As shown in Figure 1.3, for a firm with productivity
a j ∈ supp(G), moving to a city twice as large as before will incur a 1% net
increase in output with the extent of externalities as the value in 1977. However,
this number will be 5% with the extent of externalities as the value in 2014.
Similarly, moving to a city, for instance, 10 times as large as before, the net
increase in outputs would be around 2% in 1977 but will be around 19.5% in
2014.

Figure 1.3: Relative Change in Output Corresponding to Change in Exter-
nalities (α)

Although the identified magnitudes are within a reasonable range, few ex-
isting studies have identified the change in the extent of externalities over time.
And it is difficult to reach an conclusion whether this change (either in α or in
output) is economically significant at this point. For further studies, it is worth-
while exploring how this concentration of firm entry shapes the distribution of
productivity and income inequality.

Because there is no direct empirical evidence indicating an increase in the
extent of externalities, an intuitive source of such change is proposed. In my
model setup, the production externality is defined as the extra benifit from be-
ing in a larger pool of firms around, for example, a specialization in a produc-
tion network (either firms producing similar products, or upstream/downstream
firms). With a technological improvements, firms and industries are better off
concentrating on smaller ranges of tasks, i.e., specializing in a narrower types of
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techologies (or in a narrower skill-level conditional on the same type of technol-
ogy). However, a specialization does not mean that production becomes more
isolated, or less diversified.18 Instead, firms can increase their dependence on
each other. In other words, technologies can be seperated into different layers
of firms in terms of their productivity (ability to adapt to such technologies), but
their overall network can be made tighter to ensure professional and matched
supports. This setup is not equivalent to the Marshallian externalities in terms
of input-output linkages as in Marshall (1890) [25], which is conditional on any
technology or productivity level. Rather, I focus on the increase in benefits when
technology improves. Such improvement can be any productivity increase, such
as that coming from innovation and automation, or better business environ-
ment, or improved learning from peers. An example of the latter is that firms
become better aware of their own and others’ (dis)advantages, leading them
to rely more on a direct searches. In this case, the efficiency is reflected in the
ability to determine what they need to learn and whom they need to learn it
from.

According to the Proposition 2, concentration can also come from changes
in the productivity distribution (k) and/or the wage elasticity (η). Because the
bottom distribution is not robust, we lack moments with which to identify the
entry data directly. To address the issue, there is evidence suggesting a change in
k. Specifically, Axtell (2001) [35] identifies the firm size distribution with Cen-
sus and Compustat data, and finds that shape parameters are stable over time.
Moreoever, even if there are evidence indicated that the wage elasticity and firm
size distribution are invariant over time, a benchmark is needed to assess the
change in α. One way to find such a level is to use firms’ profits data accompa-
nied by detailed information on location and firm-specific characteristics. Some
studies are going to this direction, such as the identification of human capital
externalities as in Moretti (2004) [34], Gennaioli et al. (2013) [28] and Behrens
et al. (2014) [6]. That being said, the change in these estimates over time is
still ambiguous and worthwhile for further studies.

1.6 Conclusion

U.S. cities differ in their abilities to attract firms and labor. Business formation is
concentrated in large cities, accompanied by an overall decline in entries across
all cities. This chapter establishes facts regarding the increasing correlations
between entry, entry per capita, and city size, as well as firm-entry concentra-
tion from 1977 to 2014. Furthermore, the empirical city size distribution fol-
lows a Pareto distribution at the top, with a shape parameter that significantly
decreases over time when measuring the size with entries or total number of
establishments.

In this chapter, I build a heterogeneous firms model to explain this concen-

18This is also relevant to the discussion in Chapter 4 at detailed product level.
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tration pattern. In equilibrium, firms are sorted to different city sizes. They
trade off between complementarity of size and producitivity, and local fixed cost.
When the extent of externalities increases, the city size distribution has a fatter
tail, indicating the disproportionate pull of larger cities.

This chapter provides a means with which to understand several potential
mechanisms in driving the changing geography of firm dynamics. Many inter-
esting questions have arisen; this chapter is a first step towards deeper policy
analysis. Relevant and important questions include the economic significance
of the concentration and other drivers. In reality, firms’ locational choices are
driven not only by the scale of the city size but also by variation in entry costs,
labor constraints, prices of goods and so forth. To consider other major factors
affecting firms’ locational choice and spatial distribution of business formation
requires a more quantitative model with relevant elements and appropriate firm-
level data.

In the remainder of this dissertation, I will address other aspects that require
study on production in space and some macroeconomic policies on impact. One
relevant aspect is the drivers behind the spatial changes. Structural changes of
spatial economic activities involve not just size but also structure.19 Data sug-
gests that firm entry is concentrated in large cities. However, we also see a large
amount of heterogeneity within city groups. Figure 1.22 shows the divergence
in firm entry between Dallas and Detroit from 1977 to 2014. Back in 1977, these
two cities were similar in terms their relative total establishments and entries:
both accounting for 1.5% to 1.7% of the total national entries. However, both
the numer of entries and the number of establishments have increased signifi-
canly in Dallas, while in Detroit they have decreased over time. In 2014, the
disparity in total establishments had increased from 0.1% to nearly 1%, and the
disparity in total entries had increased to around 1.2%. Given that they are both
among the 20 most populous U.S. cities, the reason for the divergence could be
structural changes or location-based policies. This chapter cannot explain such
divergences among large cities, but they could be important to understanding
inequality in the U.S.20

Dallas today has a sprawling startup community. If we anatomize cities with
respect to productivity dynamics, we find a set of cities, including San Fran-
sisco, Seattle, and Boston, that feature a significant number of entrepreneurs
and technological innovations. Cities such as Cleveland and Detroit have seen
not only decreasing firm entry but also decreasing production and populations.
This divergence is documented in Moretti (2012) [37].

Another factor to consider is regional policies that shape firms’ locational de-
cisions and thus change inequality and overall productivity. Texas has no state
or local income tax, and in 2014 CEO Magazine ranked Texas the number one

19I study this idea further in Chapter 3.
20Looking at granular patterns reveals a tension between aggregate and local product mar-

kets, as documented in Rossi-Hansberg et al. (2021) [36].
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state for attracting businesses. The Dallas Regional Chamber also supports many
large-scale start-up activities to bolster the business-friendly environment. In
addition, special regulations at the subcentral-government level, including tax
cuts, rebates, and promises of government services, induce new businesses to
locate in specific regions. Tax competition among states or cities can also signif-
icantly drive firms’ locational decisions (Ruben, 2014 [38]). These points lead
to the discussion in Chapter 2.

1.7 Appendix
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Table 1.1: Summary Statistics for GDP, Population, Establishment and Entry in 1977 and 2014

1977 2014

Mean 25% 75% S.D. Mean 25% 75% S.D.

(1) (2) (3) (4) (5) (6) (7) (8)

GDP in Top 50 1.92e+07 7871205 1.94e+07 2.42e+07 1.82e+08 7.71e+07 1.92e+08 2.01e+08
GDP in Others 1423646 646446 1897272 1115830 1.27e+07 5284769 1.71e+07 1.03e+07

Population in Top 50 2308092 1015639 2476457 2714391 3491294 1609533 4438715 3366137
Population in Others 203932.8 99335 269295 151502.7 310132.3 143428 414926 235510.6

Entry in Top 50 7137.8 3024 7031 8137.5 8207.3 3118 9242 9179.3
Entry in Others 640.4 307 823 479.2 552.3 224 756 464.3

Establishment in Top 50 42904.7 18204 42714 54540.9 75457.9 34489 86840 79130.7
Establishment in Others 3720.6 1812 4967 2787.8 6081.0 2706 8044 4662.8

Notes: There are 366 observations each year in BDS. Top 50, all MSA after 50 and bottom 50 categorized in the table are based on rank of 2014 nominal
GDP. Ranking by nominal GDP in 1977 and 2014 in respective years do not change their share significantly since the rank are almost stable in top 50 cities,
especially when only accumulative statistics are required. 25% and 75% represent the first and third quartiles. S.D. stands for standard deviation. Refer to
Section 1.3 for further details.
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1.7.1 Main Proofs

Proposition 1. (Ex Post City Size Distribution) For any given set of parameters
θ , there exists a unique continuous distribution of ex post city size with or without
bunching at the bottom of distribution. When assuming Pareto distribution for
firm size distribution, city size distribution follows Pareto, with shape parameter
ξ= k(η−α) + 1.

Proof. Consider cases where firms are constrained and unconstrained by
endogeneously determined smallest city. When firms are choosing their optimal
size in equilibrium: m ≤ m∗(a). Equivalently, city size distribution (F(mi)) has
no mass point, i.e., it is absolute continuous with respect to Lebesgue measure.
Equilibrium is F(m) (or f (m)), m such that:



















m∗(a j) = (
a jα

γη )
1
η−α

G(a) =
∫ m∗(a)

m
mdF(m)

∫∞
−∞ dF(m) = λ

m= m∗(a)

(1.1)

Absolute continuity assumption and monotonicity of the mapping m∗(a j) allows
us to write the add-up condition for measure of firms. We count total measure
of firms under productivity a, G(a), by integrating city size m (measured by
number of firms choosing this city) from the smallest m all the way up to the
city size m∗(a) chosen by firm with productivity a. Note we only focus on cases
where there is no bunching in the middle of the distribution, as indicated in
data. In other words, F(m) is continuous on [m,∞), where m denotes the
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lower bound of city size, i.e., ex post smallest city in equilibrium. Thus, there

exists a continuous density f (m) on [m,∞) such that G(a) =
∫ m∗(a)

m
mdF(m).

As we will see below, even with the bunching and exiting, the distribution above
smallest ex post city m will not change. This is because the optimal choice of
firms that are not bound by the smallest city size will remain same size choices.
So the bunching and exiting only change distribution at the bottom.

Because of the potential binding constraint of endogeneous lower bound, we
need to consider four cases mentioned in Section 1.4.2 and Figure 1.1.

1. (Case 1 and Case 2) When all firms enter and ex post smallest city size is
not binding firms’ decision. First consider the case where ex post smallest
city size is exactly the unconstrained optimal choice of the firm with the
lowest productivity, i.e., m= m∗(a). In equilibrium,



















m∗(a j) = (
a jα

γη )
1
η−α (optimal choice)

G(a) =
∫ m∗(a)

m
mdF(m) (measure of firms)

∫∞
−∞ dF(m) = λ (measure of cities)

m= m∗(a)

In this case,
∫∞
−∞ dF(m) =

∫∞
m∗(a) f (m)dm, ∀m ∈ R. Solving the ODE of

the measure of firms specified above gives f (m∗(a)) =
kak(η−α)( αγη )

k

mk(η−α)+2 . For

simplicity afterwards, denote β ≡ k(η−α)
m(k(η−α)+1) ,θ ≡ k(η − α) + 1. When

m = m∗(a), with some algebra, we obtain the density for equilibrium city
size (before normalizing mass to 1):

f (m∗(a)) = β
θmθ

mθ+1

with

∫ ∞

−∞
f (m)dm= λ⇒ λ=

k(η−α)

(αa
γη)

1
η−α (k(η−α) + 1)

≡ λ1

When the smallest city size is not binding the optimal choice of the least
productive firm, i.e., m < m∗(a). It must be that m = 0 since no firms
in supp(G) are willing to enter any city smaller than m∗(a). In this case,
λ >

k(η−α)

( αa
γη )

1
η−α (k(η−α)+1)

, empty cities have total measure: λ− k(η−α)

( αa
γη )

1
η−α (k(η−α)+1)

.

2. (Case 3) When there is only bunching: m ∈ (m∗(a), m∗(ã)). ã denotes the
cutoff productivity where firms lower than ã will bunch at city with size
m. Let F denote the value of the mass point, i.e., the measure of city with
size m. Note all firms are still making positive profits. i.e., no firms are
out, although some are not going to their theoretically optimal size m∗.
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a

bunch at m with measure F

ã

choose m∗(a) with measure f (m∗) at each m∗

∞

Figure 1.4: When all firms enter and bunching exists

Equilibrium is F(m) (or f (m)), m, ã, F s.t.:


































m∗(a j) = (
a jα

γη )
1
η−α

G(a) = G(ã) +
∫ m∗(a)

m
mf (m)dm, (a > ã) (measure of firms)

F +
∫∞

m
f (m)dm= λ (measure of cities)

G(ã) = m · F
m= m∗(ã)

When all firms enter but constrained by the ex post smallest size, i.e. m ∈
(m∗(a), m̂(a)).

F +

∫ ∞

−∞
dF(m) = λ

⇒
1− ( a

ã )
k

(αã
γη)

1
η−α
+

k(η−α)ak

(k(η−α) + 1)( αγη)
1
η−α ãk+ 1

η−α
= λ

The above is a non-linear equation of ã which cannot be solved analyti-
cally. However, we can solve case 4 analytically, thus all firms enter with
bunching when

λ ∈ (
k(η−α)

k(η−α)+1 + (
η

α)
k − 1

( a
γ)

1
η−α (ηα)k

,
k(η−α)

(αa
γη)

1
η−α (k(η−α) + 1)

)

3. (Case 4) When there are both bunching and exiting: m ∈ (m∗(â), m∗(ã)).
â denotes the cutoff productivity of firms breaking even at city size, i.e.,
{â} := {a j : a jm

α − γmη = 0}. ã denotes the cutoff productivity of firms
with optimal choice exactly equals the size of the smallest city in equilib-
rium, i.e., {ã} := {a j : m∗(a j) = m}. Thus, firms productivity within the
rage (â, ã) will bunch at city with size m.
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a
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ã
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Figure 1.5: When both bunching and exiting exist

Equilibrium is F(m) (or f (m)), m, ã, â, F s.t.:

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m∗(a j) = (
a jα

γη )
1
η−α

G(a) = G(ã) +
∫ m∗(a)

m
mdF(m), (a > ã) (measure of firms)

F +
∫∞

m
dF(m) = λ (measure of cities)

G(ã)− G(â) = m · F
m= m∗(ã)
âmα − γmη = 0 (â breaks even at m)

Thus we obtain f (m) = β θmθ

mθ+1 on (m,∞), as well as the cutoff and mass point
in the bottom of the distribution:

F =
ak((ηα)

k − 1)

( αγη)
1
η−α

ã−k− 1
η−α

⇒ã = {
1
λ
[

a

( αγη)
1
η−α
(

k(η−α)
k(η−α) + 1

+ (
η

α
)k − 1)]}

1

k+ 1
η−α

When there are firms exiting and bunching, i.e., m ∈ (m̂(a),∞).

F +

∫ ∞

m

f (m)dm= [
akk(η−α)(γηα )

1
η−α

k(η−α) + 1
+ ak[(

η

α
)k − 1](

γη

α
)

1
η−α ]ã−k− 1

η−α = λ

⇒ m∗(ã)> (
a

γ
)

1
η−α ⇔ λ <

k(η−α)
k(η−α)+1 + (

η

α)
k − 1

( a
γ)

1
η−α (ηα)k

≡ λ2

At the end, we check whether the solution set is empty. Note all terms are
positive in λ1 and λ2, thus λ1,λ2 > 0. In addition, Θ = {(α,γ,η, k, a,λ) :
λ2 −λ1 > 0} 6= ; ∀(α,γ,η, k, a,λ) ∈ R6

+ and η > α.

Therefore, a unique solution exists for any give set of parameters. And we
obtain the the distribution for ex post city size F ∗(m) in equilibrium in the main
content. And we obtain the Pareto distribtuion with shape parameter ξ≡ k(η−
α) + 1. �

Proposition 2. (Entry Distribution) For each ex post city size probability
distribution F ∗(m), and exogeneous entry/exit rate µ, there exists a unique city-
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entry steady state probability distribution has CDF H∗(m), which follows Pareto
with shape parameter k(η−α)+1, regardless whether there is bunching or exiting
at the bottom of distribution. Specifically, when there is no bunching, the CDF is:

H∗M(m) = 1−
µk(η−α)+1k(η−α)( aα

γη)
k

ζ[k(η−α) + 1]mk(η−α)+1

where ζ= λ in case 1 and ζ= λ− F in case 2,3,4 as indicated in Proposition 1.

Proof. Consider random variable X ∼ FX (x) with CDF FX and randome
variable M = X

µ ≡ h(X ), where µ is a constant entry/exit rate in steady state.

Denote χ as sample space of X , by transformation of random variable:

FM(m) = PM(M ≤ m)
= PM(h(X )≤ m)
= PX (x ∈ χ : g(X )≤ m)

=

∫

{x∈χ:g(X )≤m}
f ∗X (x

′)d x ′

= 1−
k(η−α)( aα

γη)
k

ζ[k(η−α) + 1](m
µ )k(η−α)+1

f ∗m(M) = F ′M(m) =
µk(η−α)+1k(η−α)( aα

γη)
k

ζ2[k(η−α) + 1]mk(η−α)+2

where ζ= λ in case 1 and ζ= λ− F in case 2,3,4 as indicated in Proposition 1.

Note that the baseline model is without initial size, equivalent to the case
where there is initial size but with entry/exit rate λ = 1. The adding-up condi-
tion needs to change when λ 6= 1 since the total measure of firms only entrants,
not incumbents. In other words, to solve for entry, we need to change equi-
librium condition to capture the measure of entrants. However, this gives the
same results without taking into account of entrants and conduct ex post random
variable transformation.

When λ = 1, for x ∈ [m, m∗] ≡ {x : F(x) ∈ C 2} where x is variable for ex

post city size: G(a) =
∫ m∗(a)

−∞ xdF(x). When λ ∈ (0,1), for x ∈ [m, m∗e] ≡ {x :

F(x) ∈ C 2} where x is variable for entry: G(a) =
∫ m∗e(a)

−∞ xdF(x).

Therefore the distribution for entry H∗(m) in equilibrium is:

• Case 1:

H∗(m) =

(

0, if m< m

1−
µk(η−α)+1k(η−α)( aα

γη )
k

β[k(η−α)+1]mk(η−α)+1 , if m≥ m

where β = k(η−α)
[k(η−α)+1]( aα

γη )k
, m= (αa

γη)
1
η−α
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• Case 2: H∗(m) = 1−
µk(η−α)+1k(η−α)( aα

γη )
k

λ[k(η−α)+1]mk(η−α)+1 .

• Case 3: firms with productivty below ã bunch at city with size m.21

H∗(m) =











0, if m< m
F
λ , if m= m
F
λ +

∫ m

m

µk(η−α)+1k(η−α)( aα
γη )

k

xk(η−α)+2 d x , if m> m

where m= ( ãα
γη)

1
η−α , F = G(ã)

m s.t.

ã = {ã ∈ [a,∞) : (
α

γη
)

1
α−η ã

1
α−η −

akα

γη

1
α−η

ã
1
α−η−k + βa

θ
η−α ã

θ
α−η −λ= 0}

• Case 4: When Θ ⊂ Θ4 ≡ {(α,γ,η, k, a,λ) ⊂ RcardΘ
+ : λe =

λ
µ < χ2}, where

χ2 ≡
k(η−α)

k(η−α)+1+(
η
α )

k−1

µ( a
γ )

1
η−α ( ηα )k

, all firms with productivity under â do not enter the

market. Firms with producitivty above â but below ã bunch at city with

size m. where ã = { 1
λ[

a

( αγη )
1
η−α
( k(η−α)

k(η−α)+1 + (
η

α)
k − 1)]}

1

k+ 1
η−α , m = ( ãα

γη)
1
η−α ,

F = λ[( ηα )
k−1]

k(η−α)
k(η−α)+1+(

η
α )k−1

, β = λ− F . �

Power Law Coefficient and Shape Parameter of Pareto Distribution

We refer Power Law coefficient to the size-rank (ln scale) coefficient and Zipf’s
coefficient a special case of Power Law coefficient with shape parameter 1. Note
that Power Law coefficient is between discrete order statistics (rank) and a cer-
tain level, whereas Pareto distribution is between continuous cumulative prob-
ability (below or above a certain threshold) and the level.

Proposition 3 Assuming a random variable follows Pareto distribution with
shape parameter a and its discrete realization has Power Law coefficient b, then
increase in rank-size coefficient absolute value of b is equivalent in decrease in a.

Proof. Denote a set of discrete realization of random variable M with X (n) :=
{Mi}ni=1, where i index the rank of M . By setup,

ln(i) = ln(c)− bln(m)⇒ i∝ m−b, m∝ i−
1
b

Denote m(i) := Mi. By Power Law definition: E(Mi) = m(i) = ci−
1
b : N 7→ R+

21In this case, CDF cannot be written in the form only with exogeneous parameters. This is
because ã cannot be solved analytically due to a higher order non-linear equation thus lower
bound of integral m cannot be expanded. But due to the closed-form solution for all variables
in case 4, we can write the bound for λ analytically.
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for some constant c. Thus P(M ≥ m(i)) = P(M ≥ ci−
1
b ) = c̃ i for some constant

c̃. By change of variable, we have P(M ≥ n)∝ n−b, which is cumulative distri-
bution of M and P(M = n)∝ n−1−b ≡ n−a where a = 1+ b, where b is Power
Law coefficient and a the shape parameter of Pareto distribution. Therefore, a
decrease in b (i.e., an increase in Power Law coefficient) is equivalent to increase
in shape parameter of Pareto distribution. �

1.7.2 Comparative Statics for Other Distribution Properties

First, I use numerical experiments to illustrate comparative statics when there
is both bunching and existing. Due to the lack of robustness of the Pareto ditri-
bution in bottom of empirical data, we only present an illustrative numerical
experiment in this section to see how externalities drives the distribution at the
bottom. η= 1.5 is chosen as in Saiz (2010) [39]. Other parameters are chosen
as: k = 1.1, a = 0.1,γ = 1,λ = 0.1. For each case we vary α on [0,1]. We first
illustrate the PDF and CDF when α= 0.2,0.5, 0.8.

Figure 1.6: Change in PDF (Left) and CDF (Right) when Increasing α

Note that the shape parameters and scale parameters are changing at the
same time. Fatter tail is accompanied by a change in the bottom of distribu-
tion. Specifically, the shape parameter decreases monotonically while the scale
parameter does not (see Figure 1.7).

Figure 1.7: Change in Scale Parameter when Increasing α



Appendix 26

To see this,

f (m) =
k(η−α)( aα

γη)
k

mk(η−α)+2

⇒
∂ θ

∂ α
= −k < 0

⇒
∂ β

∂ α
=

ak2(η−α)
�

αa
γη

�k−1

γη
− k

�

αa

γη

�k

Effects on Cutoffs. Figure 1.8 shows when increasing α, firms below and
close to the bunching cutoffs are entering the market, cutoff for bunching de-
creases and cutoff for exiting increases. This is also reflected by the fatter tail of
the city size distribution. On the other hand, the exting cutoff increases, thus the
mass of firms exiting the market also increases. This corresponds to the change
of scale parameter of the Pareto distribution.

Figure 1.8: Left: Effects on bunching cutoff ( ∂ ã
∂ α) Right: Effects on exiting

cutoff ( ∂ â
∂ α)

Effects on Bunching. Figure 1.9 shows that increasing externalities induces
a larger size of bunching city while we see its measure decreasing. The decreas-
ing measure corresponds to a decrease in difference of the above two cutoffs
and thus the decrease in mass of firms choosing to accept to bunch as opposed
to either exit or enter their unconstrained optimal size (if achievable).

Figure 1.9: Left: Effects on the bunching size ( ∂m
∂ α ) Right: Effects on the

mass of bunching ( ∂ F
∂ α)
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Figure 1.10: Change of Percentile for Entry and Establishment (1977-2014)

Notes: Plots show how value of top 1%, 5%, 10%, 15% and 20% percentile (from the top curve
the the bottom curve) in entry (left) and establishment (right) change from 1977 to 2014. Entry
and establishment have increased disporportionally, especially for top 1% and top 5% MSAs.
Refer to Section 1.3 for further details. Source: BDS.

Table 1.2: Summary Statistics for Entry Per Capita and Entry Per Employee
in 2014

ln Entry Per Capita ln Entry Per Employee

Mean 25% 75% S.D. Mean 25% 75% S.D.

(1) (2) (3) (4) (5) (6) (7) (8)

MSA in Total -6.33 -6.53 -6.13 0.29 -5.27 -5.49 -5.06 0.30
Top 50 MSA -6.12 -6.27 -5.97 0.18 -5.23 -5.36 -5.04 0.21

All MSA After 50 -6.37 -6.56 -6.17 0.30 -5.30 -5.50 -5.07 0.31
Bottom 50 MSA -6.40 -6.62 -6.21 0.29 -5.38 -5.56 -5.20 0.31

Notes: There are 357 and 366 observations in entry per capita and entry per employee respec-
tively due to the nuance difference in counting MSA in BEA and BDS. Top 50, all MSA after 50
and bottom 50 categorized in the table are based on rank of 2014 nominal GDP. 25% and 75%
represent the first and third quartiles. S.D. stands for standard deviation. Refer to Section 1.3
for further details.
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Table 1.3: Robust Regression Result for Entry and Entry Per Capita Versus
City Size

Variable ln Entry ln Entry Per Capita

(1) (2)

ln Establishment 1.088*** 0.195***
(0.0078) (0.0105)

ln Establishment*Year pos.& signif. pos.& signif.

Constant -2.455*** -7.160***
(0.0643) (0.0863)

City Fixed Effect Yes Yes
Year Fixed Effect Yes Yes

Observations 13,908 13,566
R2 0.994 0.88

Notes: Using entry per capita and entry per employee do not change the significance of the
increase in coefficient of the interacting term. There are 357 and 366 observations in entry per
capita and entry per employee respectively due to the nuance difference in counting MSA in BEA
and BDS. Standard errors in parentheses: *** p<0.01, ** p<0.05, *p<0.1. Refer to Section 1.3
for further details.
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Figure 1.11: Share of GDP, Population, Entry and Establishment in Top 20
MSAs

Notes: Share of establishment entry in top 20 MSAs have increased significantly over time while
share of GDP and population remain constant or decrease. This pattern also applys to top 10, 30,
..., 100 MSAs. See a specific illustration of entry in Figure 1.12. The rank is based on nominal
GDP in each year. Each share is calculated over national level. Refer to Section 1.3 for further
details. Source: BEA, BDS.

Figure 1.12: Share of Establishment Entry in Top Ranked MSAs in the U.S.
(1977-2014)

Notes: The bottom to top lines (ten lines in total) stand for the share of establishment entry in
top 10, 20, 30, ... 100 MSAs, ranked by 2014 nominal GDP. Ranking by nominal GDP in each
year does not change the pattern significantly. Refer to Section 1.3 for further details.
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Table 1.4: GPD MLE for Shape and Scale Parameters

Groups
All Top 300 Top 200

1977 2014 1977 2014 1977 2014

(1) (2) (3) (4) (5) (6)

m 52 73 226 145 446 368
m̂ 533.19 593.55 540.66 591.78 499.42 482.19
(s.e.) (66.17) (81.24) (64.80) (78.97) (52.60) (58.46)

ξ̂ 0.82 0.92 0.80 0.90 0.76 0.92
(s.e.) (0.12) (0.13) (0.11) (0.13) (0.09) (0.10)

Rate 78.82% 67.61% 80.99% 70.49% 96.88% 84.56%
Convergence Yes Yes Yes Yes Yes Yes

Notes: m is the trucated threshold value in data and m̂ is the fitted threshold for Generalized
Pareto Distribution (GPD). “Rate” is the proportion of data points above the threshold. The last
row reports successful convergence.

Table 1.5: GPD MLE for Shape and Scale Parameters (continued)

Groups
Top 100 Top 50 Top 20

1977 2014 1977 2014 1977 2014

(7) (8) (9) (10) (11) (12)

m 1099 1048 2205 2091 5759 7123
m̂ 690.24 487.50 778.32 596.75 836.04 661.29
(s.e.) (62.89) (50.69) (67.99) (57.28) (71.44) (61.37)

ξ̂ 0.65 0.82 0.50 0.70 0.46 0.64
(s.e.) (0.08) (0.10) (0.07) (0.09) (0.07) (0.08)

Rate 100% 100% 100% 100% 100% 100%
Convergence Yes Yes Yes Yes Yes Yes

Notes: m is the trucated threshold value in data and m̂ is the fitted threshold for Generalized
Pareto distribution. “Rate” is the proportion of data points above the threshold. The last row
reports successful convergence.
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Figure 1.13: Entry and City Size in all MSAs (1977-2014)

a. Entry V.S. Establishment b. Entry Per Capita V.S. Establishment

c. Coefficient (95% CI) in Figure 1.13.ad. Coefficient (95% CI) in Figure 1.13.b

e. R2 and S.E. of Coefficient in Figure 1.13.a f. R2 and S.E. of Coefficient in Figure 1.13.b

Notes: Figure 1.13.a and Figure 1.13.b are scatter plots for only 2 years: 1977 and 2014. Fig-
ure 1.13.c-f show the change of coefficient from 1977 to 2014, in total 38 years. “S.E.” stands
for standard errors.
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Figure 1.14: Comparison of Zipf’s Law for Entry, Establishment, Population
and GDP in all MSAs in the U.S. (1977-2014)

Notes: Refer to Section 1.5.1 for further details. x-axis is the natural log of establishment entry,
y-axis is log of rank of establishment entry.

Figure 1.15: Comparison of Zipf’s Law for Entry, Establishment, Population
and GDP in all MSAs in the U.S. (1977-2014)

Notes: Refer to Section 1.5.1 for further details. x-axis is the natural log of city size measured
by total number of entry, establishment, population and GDP.
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Figure 1.16: Zipf’s Coefficients (with 95% Confidence Interval) for Estab-
lishment Entry, Total Number of Establishments GDP and Population (1977-
2014)

Notes: This graph shows entry rank versus entry size in log-log scale. Statistically significant
linear relationship indicates a Pareto distribution. Regression run in plot: ln(Rank)t = β0 +
β1ln(Size)t + εt , where size is measured by level of entry in each city. Over time, the slope
becomes less steeper with intercept decreases. Zipf’s coefficients associated with trucated data
adapted for MLE Pareto estimation have similar pattern. Refer to Section 1.5.1 for further details.

Figure 1.17: Mean Excess Function for Entry in 1977 and 2014

Notes: We plot the following mean excess function (e(u) = E(X − u|X > u), 0 ≤ u < xF ) over
threshold value u. I.e., the above plot consists {(X n

i , en(X n
i )) : i = 1, ..., n}. As in Embrenchts

(1997), mean excess function is used only as a graphical method to distinguish light- and heavy-
tailed models.
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Figure 1.18: QQ-plot for Entry in 1977

Notes: QQ-plot with ξ indicated using Pareto coefficient in GPD MLE. Refer to Section 1.3 for
more details.

Figure 1.19: Pickand’s Estimator with 95% CI for Entry in 1977 and 2014

Notes: Pickand’s estimator shows stability for shape parameter after order statistics around 20.
Due to the derivation of this estimator (for formula refer Section 1.3) this order statistics rep-
resents around 80th city. However, estimation does not display significant change from 1977 to
2014.
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Figure 1.20: Hill’s Estimator with 95% CI for Entry in 1977 and 2014

Notes: Hill’s estimator shows stability for shape parameter after order statistics around 50. How-
ever, several cities at the top is also noisy. 95% confidence interval show significant increase in
shape parameter from 1977 to 2014. Note that this shape parameter is inverse of the shape
parameter we have in out model due to the original derivation of the formula (see Embrechts
(1997) Chapter 6.4.2 for details). For this reason we omit some of the data points when we do
calibration.
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Figure 1.21: Pareto MLE by Different Order Statistics Groups

a. MLE for Top 50 MSAs in 1977 b. MLE for Top 50 MSAs in 2014

c. MLE for Top 200 MSAs in 1977d. MLE for Top 200 MSAs in 2014

Notes: This is the Pareto fitted shape parameter log-likelihood plot. We sort MSA by number of
entry in 1977 and 2014 respectively. I.e., the number of MSA fitted in the model is exactly the
trucated order statistics. Then, we fit MLE with top 20, 50, 100, 200 and 300 MSAs. Here we
just show Top 50 and Top 200. Full set of MLE with standard errors are presented in Table 1.4.
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Figure 1.22: Share of Entry and Establishment in Dallas and Detroit (1977-
2014)

Notes: This plot compares the share of entry and establishment in Dallas and Detroit from 1977
to 2014. Two similar cities in terms of entry and establishment diverge over time. Source: BDS.



Chapter 2

Macroeconomic Effects of Tax Competition

(joint with Ali Shourideh)

Abstract

What are the aggregate and distributional effects of spatial corporate tax com-
petition? To answer this question, we develop a theory to analyze how the exis-
tence of the interjurisdictional tax competition affects productivity and inequal-
ities. In a tractable model, we characterize city tax and productivity distribution
in both coordinated and uncoordinated fiscal policy regimes. We show that the
existence of tax competition reduces both aggregate and city-level total factor
productivity (TFP). And the size inequality can be driven by shocks in wage elas-
ticity, the heterogeneity of firm productivity, or the city TFP distribution at the
aggregate level. Our results indicate that moving from tax competition to tax
coordination is more favorable when the wage elasticity is low or when there are
more superstar firms. Moreover, our framework sheds light on the distributional
effects of tax competition in a constrained fiscal policy regime.

2.1 Introduction

Tax competition has quickly become a major subject of both national and global
policy debates, chiefly for two reasons. First, there are numerous ongoing “bid-
ding wars” among local governments within countries as well as among nations
around the world. A recent example is the bidding war for Amazon’s second U.S.
headquarters (HQ2). To secure the HQ2 campus, state and local governments
offered huge tax-incentive packages in their proposals.1 Another well-known
case is the “border war” for Kansas City between Missouri and Kansas. Gov-

1In the first round, 238 cities bid for HQ2 across the U.S. Among 20 finalists, Maryland pro-
posed an $8.5 billion fiscal incentive package to lure Amazon to locate HQ2 in the Montgomery
County. This proposal, released in April 2018, set a new U.S. record for the highest bid. As a
result, Amazon splits HQ2, half going to Long Island City, in New York City, (with a $1.5 billion
incentive package and an extra $1.3 billion tax break) and half going to the Crystal City neigh-
borhood in Arlington, Virginia (with a $573 million incentive package). Amazon proposed to
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ernments on both sides of the state border have offered tax breaks to private
companies. And many jobs and plants have been relocated because of changes
in policy differentials across the border. These cases are just two among many
examples of interjurisdictional competitions. Figure 2.20 presents more cases in
which state or local governments have attempted to convince specific firms to
relocate or to build new factories in their localities with tax incentive packages
valued at more than $50 million.2 We highlight the top five records in Figure
2.20. The earliest megadeal recorded in the data set was in 1976; the number
of deals in recent years has grown significantly.

Second, tax competition is relevant to the design and implementation of an
economy’s fiscal policies, as well as the global taxation regime. This issue is
especially critical in light of globalization (Autor et al., 2013 [40], Autor et al.,
2013 [41]) and automation (Acemoglu and Restrepo, 2017 [42]), which have
driven up job losses in certain regions and sectors. Furthermore, policy advo-
cates have supported people in moving to areas and sectors with abundant op-
portunities, or supported firms in moving to localities to create more jobs. Local
fiscal policies provide for infrastructure, job training, and corporate tax cuts to
economically support people, entrepreneurship, and firms’ R&D (Chen et al.,
2021 [43]).3

Should the central government allow local governments to compete? If these
supports and the actions to lure labor or firms are reasonable, how should gov-
ernments implement these policy incentives? Are these policies optimal under a
decentralized regime? Are big cities operating inefficiently due to tax competi-
tion? To answer these questions, we need a theoretical framework to determine
the potential cost of the decentralized fiscal policy regime and to analyze the
relevant mechanisms.

This chapter explores the macroeconomic consequences of the existence of
tax competition in which local governments aim to attract heterogeneous firms.
Specifically, we develop a theoretical framework that incorporates some key el-
ements that previous models cannot speak to. These elements are based on
stylized facts regarding the “urban premium” and sorting in space. The two
main drivers of the urban premium are sorting and agglomeration externalities
(Combes et al. (2012) [45]; Behrens et al. (2014) [6]; Gaubert (2018) [7]).
However, none of these papers endogenize spatial policy. Ossa’s (2015) [46] re-
search is one of few general equilibrium settings embedding endogenous policy,
but it is abstract from measuring distributional distortions. In this chapter, we
consider a tax competition in combination with spatial firm sorting. This is be-

create 25,000 jobs at each location. Souce: Vox. https://www.vox.com/the-goods/2018/11/
5/18066814/amazon-hq2-locations-selected.

2These are named as “megadeals” in the data set provided by Good Jobs First and the New
York Times.

3See a survey by Keen and Konrad (2014) [44] for more detail on practices related to tax
competitions, both in the U.S. and around the world.

https://www.vox.com/the-goods/2018/11/5/18066814/amazon-hq2-locations-selected
https://www.vox.com/the-goods/2018/11/5/18066814/amazon-hq2-locations-selected
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cause tax competition changes the productivity distribution across locations by
distorting firms’ locational choices. The theory proposed in this chapter enables
us to analyze how a tax competition amplifies the sorting effects of heteroge-
neous agents in space, and thus affects spatial distribution of productivity and
income inequality. We solve for a Nash equilibrium policy in an uncooperative
game in comparison to the cooperative regime.

Our main contribution is to bring together the tax competition and the spatial
general equilibrium models. We develop a framework to characterize a distribu-
tional response to endogenous location-based policy (under both uncoordinated
and coordinated regimes) with heterogeneous firms’ locational choices. Our
model features the positive sorting and a “race to the bottom,” as documented
in the standard tax-competition literature. And our framework facilitates the
understanding on fiscal externalities in a competitive policy regime.

Our theoretical framework produces three main results. First, the existence
of tax competition reduces both aggregate TFP and city-level TFP, whereby big
cities are affected more than small cities in terms of the level of size and aver-
age productivity. Second, in tax competition, size inequality is high when wage
elasticity is low, which is the case when there are more superstar firms, or when
there are fewer superstar cities in the economy. Third, the cost of tax competition
decreases when elasticity is high and firm productivity distribution has a thinner
tail. And firms’ locational choices at the top remain the same when switching
tax regimes. Tax competition triggers a race to the bottom, allowing many low-
productivity firms to enter the market and making the whole economy worse
off. The optimal policy is achieved when benefits from the total behavioral ef-
fect are extended further, to the point when cross-behavioral effects propagated
in general equilibrium are internalized.

The rest of this chapter is structured as follows. Section 2.2 connects the
paper to the related literature. Section 2.3 presents relevant facts that motivate
the model. Section 2.4 introduces the model, and discusses equilibrium together
with new elasticities. Section 2.5 describes key properties in cooperative and un-
cooperative regimes. Section 2.6 presents comparative statics within and across
regimes to shed light on the aggregate effects of tax competition. Section 2.7
concludes.

2.2 Literature

Although studies on tax competition have existed for decades, there is no consen-
sus on the aggregate consequences of fiscal regimes. Economists debate whether
the interjurisdictional tax competition within a country drives the economy away
from the social optimum. The primary concerns include the inefficient provision
of public goods and the ambiguous effect on inequalities. Few theoretical tax
competition studies explicitly analyze the distributional impact in general equi-
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librium, while many empirical works are limited to estimate signs of local policy
response functions.

This chapter contributes to several strands of literature. First, it relates to a
large body of research in public finance and tax competition. Policymakers dis-
cuss tax competition and tax harmonization to address fiscal challenges to im-
prove business environments and innovation incentives and to reduce inequal-
ities. For example, in the European Union and the United States, debates have
taken place regarding future tax reforms on the value added tax (Devereux and
Loretz, 2012 [47]). Recent studies discuss policies designed to harmonize global
or regional corporate tax rates (such as Hines, 2022 [48]). In October 2021, 137
member jurisdictions of the OECD/G20 Inclusive Framework on Base Erosion
and Profit Shifting (BEPS) reached an international agreement on a minimum
effective corporate tax rate of 15% to diminish profit shifting and limit interna-
tional corporate tax competition.4

Traditional tax-competition literature discusses whether the strategic com-
petition between localities induces a race to the bottom, or whether tax coordi-
nation across locations is more desirable. However, answers to these questions
have generally come from an empirical standpoint. Moreover, with a few re-
cent quantitative exceptions, firm heterogeneity has been neglected in many tax-
competition studies. Current theories explain asymmetries in tax rates among
competing jurisdictions when each jurisdiction chooses a uniform tax rate within
its boundaries (such as Wilson (1987) [51] and Ottaviano and van Ypersele
(2005) [52]). Approaches to solving this problem vary substantially. Kanbur and
Kenn (1991) [53] develop a model with a single good in a partial-equilibrium
setup where governments are revenue maximizers. Nielsen (2001) [54] extends
the scope of Kanbur and Kenn’s (1991) [53] work to welfare-maximizing gov-
ernments, but this paper relies on an additively separable relationship between
consumer surplus and revenue. Haufler and Stahler (2009) [55] studied tax
competition in relation to heterogeneous firms’ production under partial equi-
librium. In this paper, the concept of tax competition is consistent with that of
Wilson and Wildasin (2004) [56], in that it is defined as the process of uncoop-
erative setting of tax rates to attract mobile tax bases.

Second, our framework adds to an extensive literature studying spatial eco-
nomics and international trade. The spatial-economics literature with interna-
tional trade models is relevant to our approach in that it incorporates microfoun-
dations for firms’ incentives to locate and produce in space. However, current
studies fall short of comparing noncooperative and cooperative regimes in a spa-
tial environment. The most relevant study is by Ossa (2015) [46], who consid-
ers a tax break competition between U.S. states using aggregate data. However,
Ossa’s (2015) [46] work constitutes more of a quantitative analysis that focuses
less on distributional wedges and the mechanisms behind. Other relevant papers

4From OECD (2021) [49]. Also see a relevant theoretical work by Hebous and Keen (2021)
[50].
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discuss local policies, focusing either on sorting, as Gaubert (2018) [7] does, on
optimal spatial policies, as do Fajgelbaum and Gaubert (2020) [57], or on spa-
tial misallocation, as do Serrato and Zidar (2016) [58] and Fajgelbaum et al.
(2019) [59]. However, they stop short of considering strategic interactions.

Urban papers, on the other hand, primarily analyze the subject from an em-
pirical perspective and focus more on partial equilibrium. We inherit standard
microfoundations when modelling the urban congestion. On top of that, we in-
corporate competitive and coordinated policy regimes in firm sorting as a source
of agglomeration forces. By endogenizing entry margins and taxes, we analyze
agents’ decisions under a general equilibrium framework to address productivity
distribution and inequality. In our paper, in a departure from current studies,
the fiscal externality induced by the competitive tax rates incorporates general
equilibrium effects in the spatial sorting. We include conventional behavioral
effects as in Laffer curve analysis. However, the conventional fiscal competition
theories are not enough to explain the propagation channel in different fiscal
regimes. Using a heterogeneous-agent continuum-location model, we tractably
analyze how aggregates are affected by tax competition and its social costs.

2.3 Motivating Facts

In this section, we describe relevant suggestive evidence from literature that mo-
tivates our framework, and present two sets of new facts on local fiscal incentives
in the U.S.

Current studies have documented the existence of tax competitions and the
impact of tax changes on firm mobility and production decisions. Chirinko and
Wilson (2017) [60] demonstrate the existence of tax competition across loca-
tions in the U.S. Devereux and Loretz (2013) [47] analyzes both domestic and
international cases. There are also studies discussing exogenous shocks affect-
ing the tax competition. For example, Baldwin and Krugman (2004) [8] argues
that greater economic integration can lead to a “race to the top” rather than a
“race to the bottom”. Regarding the impact of tax changes on firm’s choices,
Giroud and Joshua (2019) [61] and Serrato and Zidar (2016) [58] documented
that C-corporations reduced their activity when states increase corporate tax
rates. Moretti and Wilson (2017) [62] estimated mobility on the worker side
responding to tax changes. In terms of estimating the effect of mobile firms on
local TFP, Greenston et al. (2010) [63] uses data from historical magazine Site
Selection to test the agglomeration spillover of a winning location when compet-
ing for firm’s locational choice. TFP of incumbent plants and location-wise TFP
in winning counties are higher than that in losing counties. They also confirm
that productivity gains generated by the spillover are reflected in higher local
factor prices. In a more recent work, Nallareddy et al. (2021) [64] documents
an increase in income inequality associated with corporate tax cuts in the U.S.

On top of current literature, we explore some new facts to motivate our the-
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oretical analysis. First, we find a significant amount of public expenditure in-
volved in tax incentives, which have increased (relative to the economic scale)
over time. Our principal source of data is the Panel Database on Incentives
and Taxes (PDIT) provided by the UpJohn Institute. This dataset was released
in 2017, and it includes 33 states that account for over 90% GDP. PDIT re-
categorizes NAICS into 45 industries indexed by a new 2–3-digit industry code.
For each state, we observe both state business taxes and state incentives from
1990 to 2015. State business taxes include: business property taxes (36%), sales
taxes on business inputs (21%), state taxes on corporate income, and state gross
receipts taxes. Incentives include property tax abatements, customized job train-
ing subsidies, investment tax credits (ITCs), job creation tax credits (JCTCs), and
R&D tax credits.5

Based on PDIT, we find a significant increase of fiscal incentives on business
activities among localities in the U.S. Specifically, the share of total incentives
out of the total tax revenue has increased from less than 10% to 30% from 1990
to 2015 across U.S. states (see Figure 2.22). Looking into the distributional
changes, we find a significant increase in total incentives relative to state value-
added, reflected by the right-shifted density in Figure 2.1 over time. Moreover,
we also find a decrease in local (state-level) tax revenue across locations, re-
flected by a left-shifted density in Figure 2.2.6 In addition to the mean shifting,
the variance of tax revenue decreases while the variance of incentive increases.

Figure 2.1: Distribution of Incentive Shifts to the Right

5States with the highest incentives are New Mexico, Tennessee, New York, Louisiana, and
South Carolina. See Bartik (2017) [65] for a more systemetic introduction.

6In the Appendix 2.8.11 Figure 2.24, we also show the left-shifted density in the corporate
tax income over time.
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Figure 2.2: Distribution of Tax Revenue Shifts to the Left

In addition, we test whether changes in tax incentives are closely correlated
with changes in international trade flows between the U.S. and its partners.
We conduct this test because the international trade volume has increased sig-
nificantly since the 1990s, which can be considered a driver of the locational
decision of multi-national corporations (as in Helpman, 1984 [66] and Wang,
2021 [67]). This is especially relevant after the China’s accession to WTO in
early 2000s and the intensive trade flows between the U.S. and China.

To do this, we combine state-level taxes and tax incentives data in PDIT and
the state-level trade data in Census USA Trade.7 Since the data set only in-
cludes 2014 information, we match this with PDIT data in 2014. We investigate
the relationship between sectoral trade flows and incentives using the following
specification:

yi,k = β0 + β1 x i,k + γi +δk + εi,k

where x i,k indicates policy measures (incentives, tax revenue, and the incentive
shares out of revenue) calculated from PDIT. We index i for location, k for sector.
yi,k ≡

yi,k
∑

i,k yi,k
,

yi,k
∑

i yi,k
,

yi,k
∑

k yi,k
are import and export shares calculated from Census.

Results are in Table 2.1 and 2.2. We find that local fiscal incentives have in-
significant relationship with international trade in the U.S. As regression results
indicate, higher incentives do not have a significant correlation with import and
export. The export has a few more significant results, but not much compared to
other variables. These facts help motivate our model of interjurisditional com-
petitions within a country.

7For our purpose, NAICS codes are matched to PDIT from Census USA Trade. See https:
//usatrade.census.gov.

https://usatrade.census.gov
https://usatrade.census.gov
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2.4 Model

2.4.1 Setup

Cities. There is a continuum of cities.8 Cities are heterogeneous in ex ante
TFP b, which is drawn from a distribution Gb(b) with supp(Gb) = B ⊂ R+.
Each city has ex post productivity as the average productivity of firms that choose
this city in equilibrium. Ex post TFP is a function of ex post productivity and
ex ante TFP, which will be clarified in the firm’s setup. We index each city by
its inverse CDF of the TFP distribution: i = G−1(b) to faciliate the elasticity
analysis in Section 2.4.3. Cities are ex ante empty. Denote L(b) the ex post
city size in city b determined in equilibrium. Assume there is no agglomeration
externalities in each location.9 Production occurs in cities that are not empty ex
post. Production function will be clarified later in the firm’s setup.

Each city features an endogenous congestion cost which is identical for all
firms choosing to locate in this city. We denote the congestion as w(L(b)). There
are many ways to model it in the urban literature, such as commuting costs, local
land rent, or local wage.10 In this paper, we follow Behrens and Robert-Nicoud
(2015) [68] by assuming an exogenous local wage function:

∂ w(L(b))
∂ L(b)

> 0

Thus far, we have not specified any functional form for w(L). We will assume
specific forms in Section 2.4.4 when solving for the equilibrium.

Governments. Assume there is one local government in each city that shares
the same index with the city. We assume the government at city with TFP b levies
a local lump sum tax T (b) on the profit of a firm that chooses this location in
equilibrium. This tax is place-based instead of firm-based.11 A government’s
objective is to maximize local tax revenue, and end up to operate at the peak of
the Laffer curve. In the tax competition literature, it belongs to a convention of
how governments behave (e.g., as in Keen and Kotsogiannis (2004) [69]), often
broadly referred as the “Rawlsian” or “Leviathan” governments. This type of
government maximizes revenue to rebate people without income, or they invest
revenue to provide public goods. This assumption might be different from what
occurs in the real world. We model Laffer government to capture one aspect of

8We will also show the discrete setup to understand policy responses more intuitively.
9In the appendix, we relax this assumption and show key characterizations under different

policy regimes.
10As a part of the “urban premium”, it has been well documented in the urban literature

that larger cities have higher wages. In this paper, we model congestion with wage. Other
microfoundations are also possible, such as land.

11This is not completely realistic, but it captures many cases where local economic develop-
ment tax credits are offered. PDIT documents place-based incentives.
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the trade-offs on the government side such that the social welfare increases in
revenue. When moving away from maximizing revenue, we would effectively
obtain a different Laffer curvature or be constrained in a segment of the Laffer
curve. How governments deal with tax revenue ex post is also irrelevant in this
paper and we therefore do not offer an opinion on it.

Policy Regimes. In this paper, policy regimes refer to laissez-faire, tax com-
petition and tax coordination. As in Wilson and Wildasin (2004) [56], tax com-
petition is defined as a process of the uncooperative setting of tax rates to attract
mobile tax bases. Specifically, we are interested in the Nash equilibrium tax, i.e.,
government b sets tax T (b) taking government −b’s strategy as given. Tax co-
ordination stands for a regime where there is a central government that sets a
menu of tax rates across locations and maximize total revenue. We will compare
the uncooperative equilibrium with that in coordination. Laissez-faire stands for
the case where there is no government, and thus no tax levied.

Firms. There is a mass λ firms in the economy. Firms are heterogeneous in
productivity denoted by a, which is drawn from an exogenous cumulative distri-
bution Ga(a), with supp(Ga)≡A ⊂ R+. Assume Ga(·) is absolutely continuous.
Each firm hires a unit labor and produces a unit numeraire good. Assume there
is no sectoral heterogeneity. The total size of a city with TFP level b is charac-
terized by the measure of firms in equilibrium:

L(b)gb(b) =

∫

A
1(i∗(a) = b)dGa(a), ∀b ∈B

where 1(i∗(a) = b) = 1 if firm with productivity a optimally chooses city b in
equilibrium; and 0 otherwise. Firm a’s payoff in location b is thus π(a, b) =
φ(a, b) − w(L(b)) − T (b). We follow Duranton (2004) [27] and assume φ is
supermodular in size and TFP (φab > 0). Note that the congestion cost is identi-
cal for all firms that choose to locate in the same city. Thus, there exists positive
sorting in firms’ productivity and in city size.12 Each firm makes decisions taking
governments’ policies as given.13

Workers. There is a continuum of workers that are identical and fixed in
each city. Each worker is hired at local wage rate w(L(b)). After firms choose
locations, equal number of new jobs are immediately created locally. It can be
shown that this setup induces a general supply curve such that local aggregate

12To see this, denote ex post smaller city with Li .

πi(a)> π j(a)⇔ a <
w(L j)−w(Li) + T j − Ti

b j − bi

The sorting effect requires bi 6= b j , since otherwise all firms prefer smaller city to pay lower cost
and a coordination failure occurs.

13We solve the model backwards: first, we consider each firm’s location choice problem (“lo-
cation game” hereafter). Then, we investigate strategic interactions between the governments
(“policy game” hereafter).
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labor supply is equal to city size in equilibrium (L∗(b)). In Section 2.4.4, we
assume labor supply is not perfectly elastic and takes a parametric form that is
standard in the literature.

2.4.2 Equilibrium

Given the above structure, a spatial general equilibrium in tax competition is the
set of size, tax and productivity distributions {L∗(b), T ∗(b), a∗(b)} such that: (1)
Taking size and tax as given, firm with productivity a ∈A choose a city b ∈B
to maximize profits:

max
b∈B
{φ(a, b)−w(L(b))− T (b), 0}, ∀a ∈A

(2) Taking strategies in other locations (−b ∈ B \ {b}) as given, local govern-
ment b chooses a level of lump sum tax T (b) to maximize the local tax revenue:

max
T (b)

L(T (b); b)T (b; T (−b)), ∀b ∈B

(3) Local labor market-clearing condition is implicitly imposed in w(L(b)). Lo-
cation size L(b) and productivity distribution a(b) is determined in general equi-
librium upon firms and governments make choices:

∫ ∞

b

L(b)dGb(b) = λ(1− Ga(a(b))), ∀b ∈B

In tax coordination, a firm’s problem and market-clearing condition remain
the same, whereas a government’s problem changes. The central government
maximizes total tax revenue across all cities through the selection of a menu of
taxes, i.e.,

max
{T (b)}b∈B

∫

B
L(T (b), b)T (b)dGb(b)

Next, we highlight the key difference between our model and current theo-
ries. We bring together conventional behavioral effects and fiscal externalities in
a general equilibrium, captured by new endogenous elasticities across locations
in both discrete and continuum setup. Consistent with current literature, two
major forces drive the competitive policy equilibrium: conventional behavioral
effects and fiscal externalities. “Conventional” is in the sense that when fixing
an arbitrary city, the size of this city decreases when a local tax increases. This
is captured by L(T (b); b). Furthermore, fiscal externalities operate on top of
it as the regime distortion. When choosing the optimal tax, local governments
do not take into account their distributional effects. How the conventional be-
havioral effects differ across locations (we refer to this as the “cross-behavioral
effect”, or “cross-elasticity”) as general equilibrium outcomes have not been ana-
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lyzed before.14 To understand macroeconomic effects, we will analyze how they
interact with other factors under different policy regimes as endogenous cross-
behavioral effects depend on both productivity distribution and policy regimes.
In the following section, we will show equilibrium elasticities with discrete- and
continuum-location cases to provide tractable analyses.

2.4.3 Elasticity in Heterogeneous Locations with Endogenous Loca-
tion Decision

The cross-elasticity summarizes a change in tax in any location transmitted to all
other locations through general equilibrium effects. We highlight key compo-
nents and the policy response in two environments respectively.15

Discrete Setup

Locations. There are n ∈ N cities sitting on interval [0, 1]. A city sitting at the
i th node from 0 can be indexed by i

n , i ∈ {1,2, ..., n}. Denote the set of city by
I ≡ { 1

n , 2
n , ..., n−1

n , 1}. We normalize the original index i by n so that we can then
represent the cumulative portion of all cities, which is also useful when extend-
ing to the continuum case. The heterogeneous TFP setup is as we defined in main
model setup in Section 2.4.1. In discrete case, the exogenous TFP is denoted by
bi at each i ∈ I . Denote B ≡ {bi}i∈I as the set of exogenous TFP across loca-
tions. Without loss of generality, assume b 1

n
< b 2

n
< ... < b1, i.e., ordering cities

with their exogenous TFP from the lowest to the highest. Equivalently, there is
a bijection between city orders and TFP: b(i) : I 7→B , where bi < b j, ∀i < j ∈
I .

Firms. There is a mass Λn firms.16 A firm’s payoff is as above in Section
2.4.1. Denote L i

n
as total measure of firms in city i in equilibrium. Firm a’s

payoff in location i is the following:

π(a, b i
n
) = φ(a, b i

n
)−w(L i

n
)− T (b i

n
)

Positive sorting property still holds as a result of supermodularity between
local TFP and firm productivity, in addition to the increasing wage function. This

14Note that elasticity mainly refers to a behavioral effect throughout this chapter unless spec-
ified, i.e., how size in an arbitrary city changes in relation to tax change in a specific city.

15Since general setups are the same as Section 2.4.1, we only state what are different from
that in continuum case as follows. In the Appendix, we also show a simple baseline model
with discrete locations and uniform productivity and TFP distribution where we can solve cross-
elasticity analytically.

16The subscript n denotes the total mass corresponding to a given number of cities in the
economy. Otherwise, as we increase number of cities, the size of each city will effectively go to
zero.
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means that more productive firms will sort themselves into ex post larger loca-
tions. And the intuition is that all firms would want to go to ex ante productive
cities, but only the most productive firms can bear high cost in ex post large
cities.

The difference between continuum and discrete cases is that, in the discrete
case, there is no perfect positive sorting. What pins down equilibrium produc-
tivity distribution will be a set of productivity cutoffs (denoted by {a i

n
}i=1,...,n).

We still see more productive firms end up being in ex post larger locations, but
around other productive ones, i.e., locations are not ex post homogeneous vis-à-
vis the firm type. This is consistent with the result in Behrens and Robert-Nicoud
(2015) [68], whereas they do not include either policy or policy regime(s). As
a part of equilibrium results, discreteness rules out zero tax equilibrium across
locations.17 This will be discussed in detail in the entry margin section.

With firms maximizing profits and governments maximizing tax revenue, an
equilibrium in discrete locations consists of a sequence of taxes, city sizes and
productivity cutoffs {T i

n
, L i

n
, a i

n
}i=1,...,n, n∈N such that

φ(a∆, b∆)−w(L∆)− T∆ = 0 (2.1)

φ(ap, bp)−w(Lp)− Tp = φ(ap, bp−∆)−w(Lp−∆)− Tp−∆, ∀p ∈ I \ {∆, 1}
(2.2)

Λn[G(ap+∆)− G(ap)] = Lp, ∀r ∈ I \ {1} (2.3)

Λn[1− G(a1)] = L1 (2.4)

where ∆≡ 1
n the index of the least productive city. We denote p, r ∈ I as some

generic cities, which is the inverse cdf of each city’s ex ante TFP. Equation (2.1)
and (2.2) characterize indifferent productivity at entry margin and between any
two arbitrary nearby (in terms of ex ante TFP) cities. Equations (2.3) and (2.4)
characterize the adding-up feature: size of city with index i

n equal to the measure
of firms between two associated productivity cutoffs.

Consider a tax purterbation in city r. In equilibrium, elasticity of size and

17To see this, suppose the equilibrium is zero tax in all cities, then any city with positive mass
of firms, which must be heterogeneous, has the motivation to deviate by levying ε tax without
lossing all of firms.
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productivity cutoffs to a unit increase in Tr is characterized by:

φa (a∆, b∆)
∂ a∆
∂ Tr

−w′ (L∆)
∂ L∆
∂ Tr

− 1 [∆= r] = 0 (2.5)

φa

�

ap, bp

� ∂ ap

∂ Tr
−w′

�

Lp

� ∂ Lp

∂ Tr
− 1 [r = p] = φa

�

ap, bp−∆

� ∂ ap

∂ Tr
−w′

�

Lp−∆

� ∂ Lp−∆

∂ Tr
− 1 [r = p+∆]

(2.6)

Λn

�

g
�

ap+∆

� ∂ ap+∆

∂ Tr
− g

�

ap

� ∂ ap

∂ Tr

�

=
∂ Lp

∂ Tr
(2.7)

−Λn g (a1)
∂ a1

∂ Tr
=
∂ L1

∂ Tr
(2.8)

With conditions (2.5)-(2.8), we immediately obtain how one perturbation is
accumulated and transmitted to other cities, shown in the proof of proposition
in appendix.

From Discrete to Continuum

Proposition 1. If elasticity satisfies conditions (2.1)- (2.4) in discrete case, then
cross-elasticity { d Lp

dTr
}p,r∈I satisfies the following equations in the limit:

−
∫ 1

p

d L p̂

dTr
d p̂
φab

�

ap, bp

�

b′p
λg
�

ap

� −w′′
�

Lp

�

L′p
d Lp

dTr
−w′

�

Lp

� d
dp

d Lp

dTr
= 0,∀p > r

−

�

−
1

w′ (Lr)
+

∫ 1

p

d L p̂

dTr
d p̂

�

φab

�

ap, bp

�

b′p
λg
�

ap

� −w′′
�

Lp

�

L′p
d Lp

dTr
−w′

�

Lp

� d
dp

d Lp

dTr
= 0, ∀p < r

−
φa(a0, b0)
λg(a0)

�

∫ 1

0

d L p̂

dTr
d p̂−

1
w′ (Lr)

�

−w′(L0)
d L0

dTr
=0

Proof. See Appendix 2.8.1. �

Note that Proposition 1 features an important equilibrium proporty of cross-
elasiticity. Fix a location p, and consider a tax perturbation in any other location
r, elasticity below and above this perturbation city is not symmetric. To derive
the distribution in a more intuitive and economically meaningful way, we will
change the measure from p, r to TFP b for elasticity from now on. With a little
abuse use of notation, we denote cross-elasticity of an arbitrary city with TFP
b with respect to tax perturbation city with TFP p (b 6= p ∈ B) to be f (b, p)
where

f (b, p) =

¨

f L(b, p)≡ d L(b)
dT (p) , ∀b < p

f U(b, p)≡ d L(b)
dT (p) , ∀b > p
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Further, define

F L(b, p) := −
∫ ∞

b

f L(u, p)dG(u)

Lemma 1. (Continuum elasticities) Given productivity distribution Ga(b)
and TFP distribution Gb(b), cross-elasticity { f L(b, p), f U(b, p)} are character-
ized by the following partial integro-differential equations E1, E2 with a system
of boundary conditions:

−
∫ ∞

b

f U(u, p)dGb(u)Ψ(b)−W (b) f U(b, p)−w′(L(b)) f U
b (b, p) = 0,∀p > b

−
�

−
1

w′(L(p))
+L L(b)

�

Ψ(b)−W (b) f L(b, p)−w′(L(b)) f L
b (b, p) = 0,∀p < b

where L L(b) ≡
∫∞

b
f L(u, p)dGb(u), Ψ(b) ≡

φab
λga(a(b))

, W (b) ≡ w′′(L(b))L′(b),
and

−
b

λαca(b)αs

�

L L(b)−
1

κσL(p)σ−1

�

− κσL(b)σ−1 d L(b)
dT (p)

= 0,∀p ∈B

F U(∞, p) = 0,∀p ∈B

F L(b, b) +
1

κσL(b)σ−1
= 0

F U(b, b)− F L(b, b) = 0,∀b ∈B
f U(b, b)− f L(b, b) = 0,∀b ∈B

Proof. See Appendix 2.8.1. �

In the appendix, we extend our continuum model with externalities and al-
ternative government roles to compare key optimality conditions.

2.4.4 Equilibrium in Comparison

We use the following assumptions on the exogeneous productivity distribution,
profit and local costs to analyze equilibrium. These assumptions facilitate tractabil-
ity in the coordinated equilibrium, as will be clear in following propositions. We
provide some extensions in the appendix.

Denote Θ ≡ {αc,αs,βc,βs,κ,λ,σ} the set of primitives.

Assumption 1. Assume the location TFP b and a firm’ productivity a have

the following distribution: a ∼ Ga = Pareto(
�

αc
−1−αs

�
1

−1−αs ,−1 − αs), b ∼ Gb =

Pareto(
�

βc
−1−βs

�
1

−1−βs ,−1 − βs). Denote a(b) ∈ [a,∞) ≡ A = supp(Ga), b 6=
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p ∈ [b,∞) ≡ B = supp(Gb). For simplicity, shape parameters are denoted by

ka ≡
�

αc
−1−αs

�
1

−1−αs and kb ≡
�

βc
−1−βs

�
1

−1−βs .A firm’s profit features supermodularity
between local TFP and own productivity: φ(a, b) = ab. At last, the wage func-
tion has the following form (as Behrens et al. (2014) [6] and Gennaioli et al.
(2013) [28]) where σ is the wage elasticity: w(L) = κLσ.

2.4.5 Equilibrium under Laissez-Faire

First, consider equilibrium size and productivity in laissez-faire, i.e., no tax levied
by any government across locations.18

Laissez-faire economy. Equilibrium in laissez-faire is a productivity distri-
bution and a city size distribution {a∗(b), L∗(b)} such that taking city TFP b,
city size L(b) and local wage w(L) as given, a firm with productivity a makes
locational choice b to maximize profits: maxb∈B ab − w(L(b)), ∀a ∈ A . And
upon the firm’s choice being made, local labor markets clear:

∫∞
b

L(b)dGb(b) =
λ(1− G(a(b))), ∀b ∈B .

Lemma 2. Equilibrium allocations in laissez-faire have power form solution
L(b) = c∗L bS∗L , a(b) = c∗Abs∗A, where equilibrium allocations on size and produc-
tivity have the following coefficients and exponents: s∗L =

αs+βs+2
αsσ+σ−1 , s∗A =

βsσ+σ+1
αsσ+σ−1 ,

and

c∗L,Laissez− f aire =

�

αcλ(σs∗L − 1)(κσs∗L)
αs+1

βc

�

1
1−(αs+1)σ

≡ C LF
L

c∗A,Laissez− f aire = κσs∗L

 

�

αcλ(σs∗L − 1)(κσs∗L)
αs+1

βc

�

1
1−(αs+1)σ

!σ

≡ C LF
A

Proof. See appendix. �

18A world with harmonized tax, an equal positive tax across locations, is a generalized version
of this. As shown in the proof, tax harmonization will only change the entry margin, but not
change the equilibrium allocation distribution at the top. For now we just focus on zero tax case
to show the general intuition to compare different regimes. We will go back to tax harmonization
in comparative statics in Section 2.6.
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2.4.6 Equilibrium under Tax Competition

Given the equilibrium in uncooperative game equilibrium defined in Section
2.4.2, equilibrium conditions can be summarized as:

−
T (b)

w′(L(b))
+ L(b) = 0,∀b ∈B (2.9)

a(b)−w′(L(b))L′(b)− T ′(b) = 0,∀b ∈B (2.10)

L(b)gb(b)−λga(a(b))a
′(b) = 0,∀b ∈B (2.11)

where the location game of firms satisfies:

π(a(b), b) = 0
∫ b̄

b

L(b)dF(b)−λ
�

1− G(a(b))
�

= 0

lim
b→∞

a(b) =∞

In addition, elasticities satisfy the system of integro-differential equations with
a set of boundary value conditions in Lemma 1.

Before proceeding the equilibrium, we highlight a rationale behind local op-
timal taxes. As the policy condition indicates, in tax competition, local govern-
ment will levy a tax proportional to local cost, i.e.,

T (b)∝ w′(L(b))L(b)∝ w(L)

The intuition is that local government maximizes the local revenue without tak-
ing into account their policy effect on other locations. Consider one unit increase
in local tax T (b), mechanical effect will just be L(b) holding sizes fixed. At the
same time, a local government knows that there will be firms leaving its city,
which is determined by self-elasticity 1

w′(L(b)) . The only behavioral effect that
matters for the local government comes from its own city. As will be shown
in later sections, the cross-elasticities, which are essentially irrelevant for local
governments, are key terms in the coordination equilibrium.

We summarize the uncooperative equilibrium with the following proposition.

Proposition 2. (Equilibrium allocation in tax competition) In a tax com-
petition, the equilibrium size, productivity and tax are in the form of L(b) =
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c∗L bS∗L , T (b) = c∗T bs∗T , a(b) = c∗Abs∗A, where

Size coefficient: c∗L =

�

αcλ(σsL − 1)(κσ(σ+ 1)sL)αs+1

βc

�
1

1−(αs+1)σ

Size shape: s∗L =
αs + βs + 2
αsσ+σ− 1

Productivity coefficient: c∗A = κσ(σ+ 1)s∗L











�

αcλ(σs∗L − 1)(κσ(σ+ 1)s∗L)
αs+1

βc

�

1
1−(αs+1)σ

︸ ︷︷ ︸

c∗L











σ

= (σ+ 1)
1

1−(αs+1)σ C LF
A > 0

Productivity shape: s∗A =
βsσ+σ+ 1
αsσ+σ− 1

Tax coefficient: c∗T = κσ











�

αcλ(σs∗L − 1)(κσ(σ+ 1)s∗L)
αs+1

βc

�

1
1−(αs+1)σ

︸ ︷︷ ︸

c∗L











σ

Tax shape: s∗T =
αsσ+ βsσ+ 2σ
αsσ+σ− 1

where C LF
L , C LF

A are functions of fundamentals specified in Lemma 2.

Proof. See appendix. �

As Proposition 2 shows, size and productivity coefficients are proportional to
that in Laissez-faire. In particular, size coefficient c∗L dampens the laissez-faire
constant C LF

L while the productivity coefficient c∗A is accelerated. This suggests
that the city size decreases overall whereas the average productivity increases
in these shrunk cities. The reason is that the cost is driven up in these locations
by the tax. We will compare the uncooperative equilibium distribution with the
centralized regime once we establish the coordinated results in the next section.

2.4.7 Equilibrium under Tax Coordination

Under tax coordination, location games (2.10 and 2.10) and elasticity conditions
(as E1 and E2 in the appendix) remain the same, but policy conditions change
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to the following:
∫ p

b

χ L(u, p)du+

∫ ∞

p

χU(u, p)du

︸ ︷︷ ︸

cross-behavioral effect

−
T (p)

κσL(p)σ−1
︸ ︷︷ ︸

self-behavioral effect

+ L(p)
︸︷︷︸

mechanical effect

= 0,∀p ∈B

(2.12)

where χ L(u, p) ≡ T (u) f L(u, p)gb(u) and χU(u, p) ≡ T (u) f U(u, p)gb(u), with
integration range below and above p respectively. The difference between P1
and P2 are two integrals in the first two terms in P2, i.e., the “cross behavioral
effects”. They represent how a tax perturbation in location p will incur an inflow
to all other locations. In this fiscal regime, the central government tradeoff
between the gain with a higher tax in any arbitrary location and the potential
loss from the inter-regional flow outcome triggered by such tax perturbation.
We will illustrate the below p and above p distinction in the next section.

Different from policy optimality condition in competition, the coordinated
equilibrium also consists elasticity functions. These are characterized by a sys-
tem of partial integro-differential equations associated with a system of bound-
ary value conditions in both Fredholm and Volterra types. And we find analytical
solution for cooperative equilibrium, as summarized in the following proposi-
tion.

Proposition 3. (Equilibrium allocation in coordination) Equilibrium alloca-
tion features Pareto distribution. Specifically, size, productivity feature same
shape paratmers as in competition, while scale parameters are as functions of
ρ.

Size: c∗L(ρ) =

�

αcλ(σsL − 1)(κσ(ρσ+ 1)sL)αs+1

βc

�
1

1−(αs+1)σ

= (ρσ+ 1)
αs+1

1−(αs+1)σ C LF
L

s∗L =
αs + βs + 2
αsσ+σ− 1

Productivity c∗A(ρ) = κσ(ρσ+ 1)s∗Lc∗L(ρ)
σ = (ρσ+ 1)

1
1−(αs+1)σ C LF

A

s∗A =
βsσ+σ+ 1
αsσ+σ− 1

Tax: c∗T (ρ) = ρκσc∗L(ρ)
σ

s∗T =
αsσ+ βsσ+ 2σ
αsσ+σ− 1

where ρ∗ = αsσ+σ−1
(αs+2)σ and t∗ =

cT r1 bsT+r1
sT+r1

+ cT r2 bsT+r2
sT+r2

br1+ br2
ζ

. Elasticities { f U(b, p), f L(b, p)}
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are the following:

f U(b, p) =
r2c1−σ

L b−βs+r2−1 (r2pr2 + r1ζpr1) p−r1−r2−σsL+sL

βcκσζ(r2 − r1)
, ∀p > b ∈B

f L(b, p) =
r2 b−βs−1c1−σ

L (r2 br2 + r1ζbr1) p−r1−σsL+sL

βcκσζ(r2 − r1)
, ∀p < b ∈B

and r1 =
θ2−θ1+

p
(θ1−θ2)2+4θ2

2θ2
and r2 =

θ2−θ1−
p
(θ1−θ2)2+4θ2

2θ2
where θ1 ≡

λκσαc cαs
A cσ−1

L (sL(σ−1)−βs)
βc

,

θ2 ≡
λκσαc cαs

A cσ−1
L

βc
, ζ ≡ −

�

B
A

r2
βc

br2−βs−1−br2

B
A

r1
βc

br1−βs−1−br1

�

, B ≡ κσcσ−1
L bsL(σ−1) and A ≡ b

λαc cαs
A bsAαs .

Note that c∗L, c∗A, c∗T are different that in competition.

Proof. See appendix. �

Proposition 3 indicates that size and productivity distribution have coeffi-
cients proportional to that in laissez-faire. We will explore properties in coordi-
nation in the next section.

2.4.8 Elasticity

In this section, we discuss properties to understand the general equilibrium ef-
fects, which facilitates us to derive optimal policies in the coordinated regime in
Section 2.5.

When there is a tax perturbation in city p, denoted by ∆T (p), it first af-
fects firms locational choices in that city and around it.19 The optimal locational
choice will then feed back into cities around the perturbation and propagate to
further ones in B , followed by the adjustment of policies. Within the sorting
environment, accordingly, behavioral effects in all cities corresponding to a tax
perturbation in a specific city can be characterized by a curve with a kink at
the purturbation city. Figure 2.3 illustrates examples of behavioral effects corre-
sponding to two cities: when tax perturbation city is at 25 perecentile in terms
of ex ante TFP level in whole distribution (blue solid curve) and when tax per-
turbation city is at 75 percentile (red dashed curve). This is an example when
ex ante TFP follows uniform distribution. Take when p = 1.25 as an example,
when city p = 1.25 increase one unit of tax, cities around 1.25 see larger size
increase than that in cities far away, i.e., it decays from the tax perturbation city
to two sides- cites with TFP above 1.25 and below 1.25. The intuition behind
this is that when tax changes in a specific city, nearby cities (in terms of ex ante
TFP) changes more than cities far away. For example, when city of Pittsburgh
changes tax, it affects cities such as Boston more than cities such as Yuma. This
result comes from positive sorting and it also holds in discrete location case.

19We illustrate the group perturbations with smaller and larger measures in the Appendix,
see Figure 2.18 and 2.19.
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Similarly, Figure 2.4 illustrates examples of behavioral effects corresponding to
three tax perturbation cities with p at the 10, 50, and 90 percentiles respectively,
when ex ante TFP follows Pareto distribution.

At the same time, different cities have heterogeneous distributional effects
on all other cities. For example, when the City of Pittsburgh changes its tax, it
has a different behavioral effect from all other cities compared to the case when
New York City changes its tax. Thus we see behavioral effect curves are different
among different tax perturbation cities. In both uniform and Pareto cases, we
could analytically show that the response surfaces are different when conducting
tax perturbations in different cities.

Figure 2.3: An Illustration of Behavioral Effects Corresponding to Two Ex-
ample Tax Perturbations (b ∼ Uni f orm)
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Figure 2.4: An Illustration of Behavioral Effects Corresponding to Three
Example Tax Perturbations (b ∼ Pareto)

2.5 Cooperative and Uncooperative Equilibrium

In this section, we compare some properties of cooperative and uncooperative
equilibrium outcomes and provide intuitions to understand the government’s
behavior. We start with the following lemma for distributional effects.

Lemma 3. Shape of productivity distribution is determined by relative het-
erogeneity between firm and location and extent of congestion cost in all regimes.
(s∗(σ, Ga, Gb)). Firms’ location decisions at the top remain the same regardless
of tax competition and coordination regimes.

Proof. See appendix. �

Lemma 3 indicates that the tax competition hurts firms more at the bottom.
This is an intuitive result in the sense that most productive firms are not really
driven by tax competition since they are capable, and would have the motivation
when conditions permit, to enter most productive area anyways. Our model
suggests that what matter to these productive ones are relative hetergeneity
between firm and city TFP, as well as how extent of congestion cost dampens
this relative term. In all three regimes, these three primitives will directly affect
concentration pattern of firms at the top. This will is also related to the following
proposition about inequality.

Proposition 4. (Equilibrium Tax Comparison) In tax coordination, a central
government will increase taxes across all locations, compared to uncooperative
regime, i.e., T (b)coord > T (b)comp, ∀b ∈B .

Proof. See appendix. �
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The above difference comes from the fact that the central government takes
into account all cross behavioral effects, whereas local governments do not. In
particular, consider comparing policy condition in two regimes. To maximize the
total revenue, a social planner internalizes a full set of elasticities. With a unit
increase in local tax in p, fixing size L(p), there will be a L(p) revenue increase
mechanically. However, the central government also realizes a T (p)

w′(L(p)) decrease
in revenue from local behavioral effect– firms exiting this area, and an increase
in revenue from cross behavioral effect– firms entering other areas, thus varying
(BEU

C , BE L
C).

Now we turn to the difference of ρ in two policy regimes in Figure 2.5. Con-
sider a tax increase in tax perturbation city p. The left subplot shows when total
revenue benefit from extra inflow in other locations (“Total cross effect”=BE L

C +
BEU

C ) dominates that in tax perturbation city (“Total self effect”= −BES +M E).
The middle subplots shows when total behavioral effect-including the loss from
tax perturbation city to other cities plus the gain from inflows in other cities
(“Total behavioral effect”= BE L

C+BEU
C −BES) dominates that of total mechanical

effect in perturbation city (“Total mechanical effect”= M E). The right subplot
shows that, in competition, local governments equalize self-behavioral effect
(“Total behavioral effect”−BES) with self-mechanical effect (“Total mechanical
effect”= M E). In competition, local governments do not take into account of
how firms leaving the perturbation city increases revenue in other cities on av-
erage.

Figure 2.5: Equilibrium Tax Coefficient (ρ) in Two Regimes

When ρ increases, self mechanical effect increases together with the general
equilibrium effects on work, thus revenue in a menu of locations increases. This
effect is taken into consideration by the planner, reflected by how the optimal
ρ shifts to the right in the left and middle plots. ρ∗ under coordination is the
one in which all general equilibrium effects are embededed, indicating marginal
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beneficiary in other cities from tax perturbation. In other words, the planner is
able to utilize the cross-effects when maximizing total revenue by levying high
taxes in a menu of locations.

Why can taxes necessarily be set higher in the coordination? When a plan-
ner takes into account all cross-elasticities, benefits from behavioral effects are
extended up until a point when all general equilibrium effects entered in opti-
mality condition are exhausted. With same self-BE and M E, what determines
the tax differential between two regimes is how total cross-BE pins down the
tax coefficient ρ. This is shown in middle and right subplot in Figure 2.5. If
we combine the middle and the right plot, we can show how behavioral effects
are dampend in the existence of fiscal externalities. In Figure 2.6, we plot the
self-BE curve and total BE curve and compare the equilibrium ρ in one plot.
The cooperative tax coefficient ρ is determined by the intersection of total BE
and M E, highlighted by the blue arrow. This plot highlights the extent of fiscal
externalities by the difference between the red dashed curve and blue dotted
curve.

Figure 2.6: Equilibrium Tax Coefficient in Two Regimes and the Extent of
Fiscal Externalities

General equilibrium effects enter all terms in the coordinated condition 2.12.
The intuition is that the central government knows when increasing tax in an ar-
bitrary location in the open interval, revenues from other locations will increase
(two cross-behavioral effects from the lower and upper parts). To maximize
the total revenue, a planner will take advantage of its power to increase taxes
in all locations. Fixing city sizes, this first decreases the productivity of firms
that could afford to any given city. On the other hand, market-clearing induces
a decrease in the number of firms in all cities, including the most productive
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ones. However, since only the most productive ones will stay in the market, the
higher tax levied on them will balance off the lower cost (because of the adjust-
ing scales). This further prevents less productive firms to enter. In other words,
the central government is able to manage city sizes and the city distribution to
be relatively small in general and with less dispersion. The only equilibrium to
sustain this is to leave the most productive firms to stay in the economy. Since
cities are smaller, the city distribution shifts up at the bottom.20 Therefore, we
observe that the productivity increases in all cities, and thus a high-productivity
economy on average.21

A central government’s tradeoff between cross-behavioral effects and self-
behavioral effects is characterized in the elasticity function. Figure 2.7 shows
that elasticity surface shifts up compared to that in competition (with associated
contour plots shown in Figure 2.8.). With higher cross-elasticity, with any tax
perturbation, a central government can gain more when firms are more elastic to
move. In other words, the way that a government can earn high profits across
locations is to leave firms who can afford such tax in the economy and take
advantage of the high behavioral effects.22

20This shift is driven by a change not in the shape, but the scale paramter of the Pareto
distribution.

21This is reflected by a upward shifts in productivity distribution in Figure 2.9
22Note that sorting effect is a key to guarantee such coordination strategy. This is because

when increasing T (p) in any arbitrary location, the only way to have firms not exiting the market,
given that other places also have high tax, is that all firms in the market are most productive
ones. In the coordinated regime, the planner levys high taxes across locations and can effectively
uses the entry margin to control who are excluded.
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Figure 2.7: Comparision of Elasticity Surface in Two Regimes

Figure 2.8: Comparison of Contour Plots

We now turn to policy effects on equilibrium variables, summarized in the
following lemma. Note that due to firms’ production function, city ex post TFP
is equivalent to a(b)b ≡ A(b).

Lemma 4. Under coordination, equilibrium city size distribution is first order
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stochastic dominated by that in competition. With lower city taxes in competi-
tion (T ∗(b)comp < T ∗(b)coord , ∀b ∈B), city sizes in competition are larger than
that in coordination; city-level TFP in competition is lower than that in coordi-
nation. Size dispersion in terms of range is larger and productivity dispersion is
smaller in competition.

A∗(b)comp < A∗(b)coord , ∀b ∈B
L∗(b)comp > L∗(b)coord , ∀b ∈B

Proof. See appendix. �

The intuition of the above lemma is the following. In competition, all local
governments set lower tax to lure firms. This is consistent to standard tax com-
petition results. This is effectively decreasing local fixed costs for all firms in
all cities. Consequently, fixing a city b, we see less productive firms can afford
to produce in this city. At the top, since positive sorting still holds, with such
race-to-the-bottom triggered by tax competition, all firms are now “upgrading”
ex ante higher TFP cities. At the bottom, the entry margin is driven down. In
other words, tax competition allows least productive firms who could not afford
to enter the market at the beginning to enter. The above process reflects how
taxes affect firms’ optimal locational choices. This will then feed back into the
size distribution. Sizes across locaitons will increase until the decreased tax cost
is balanced off by increasing city size, thus increasing congestion and inducing
fiscal externalities.

With the above mechanism, wage and city size distributions differ between
regimes due to general equilibrium effects. The reason why a central govern-
ment can set a high tax schedule across locations in coordination is that it can
control city size distribution and entry margin. In Figure 2.9, we illustrate how
size, productivity, wage and tax as a function of ex ante local TFP changes when
switching regimes. Functional form assumptions induce equilibrium tax in co-
ordination also proportional to wage, but with a higher coefficient.
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Figure 2.9: Equilibrium Allocations in Three Regimes

Therefore, Proposition 3 and Proposition 4 indicate that, in competition, city
sizes are relatively bigger, whereas local TFPs are lower (i.e., firms are less pro-
ductive) across all cities. Because the Pareto shifts in scale parameter, this means
that the aggregate TFP decreases. In tax competition, with lower taxes across
locations, governments are effectively creating a divergence across locations vis-
à-vis productivity. With lower taxes, the least productive firms could enter the
economy and cities become inefficiently larger than that in coordination. In a
constrained policy regime where at least the jurisdictional power is at work to
some extent, and when less productive locations attract firms, this could be the
case that cities are controlled to be smaller and the least productive firms are
exluded outside of the market.23

2.6 Comparative Statics

2.6.1 Inequality under Tax Competition

We start by exploring how a shock in the extent of congestion drives changes in
size inequality. Under a competitive regime, the size inequality increases when

23Examples of group perturbations are shown in the Appendix Figure 2.18 and 2.19. Also
note that the most productive firms always enter the market and stay at high TFP cities. What
matters for them is how large city they end up being with a specific slope of city size distribution
and how the size differential is relative to the tax differential.
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the wage elasticity 24 of labor supply decreases. This is because when the wage
elasticity is low, firms are able to afford to locate themselves in ex ante higher
TFP cities. At the same time, the entry margin is driven down. As in tax effect,
a decreasing congestion exponent is balanced by the increasing size in distribu-
tion. In the left plot in in Figure 2.10, we present a case where σ increases from
1 to 2, the city size distribution (cdf) has a thinner tail, i.e., due to an economy-
wise increase in wage cost, small cities at the bottom are bigger, while big cities
at the top are smaller. This induces a direct shrink in inequality. Meanwhile, the
right plot in in Figure 2.10 shows how inequality, measured by a 90/10 ratio
in city size distribution, decreases with a continuous increase in wage elasticity
(σ).

Figure 2.10: Comparative Statics to City Size Distribution and Inequality
with respect to Wage Elasticity (σ)

Then, we conduct experiments on shapes of firms productivity distribution.
Under a competitive regime, the size inequality decreases when the firms’ pro-
ductivity distribution have thinner tails. This is because, with a thinner tail,
there are fewer superstar firms at the top. Therefore, there are less firms to ef-
fectively form mega cities in equilibrium, i.e., the city size inequality decreases.
As shown in Figure 2.11, in the left subplot, when ka increases, i.e., the density
of firms’ productivity distirbution skews to the left, city size distribution moves
toward the left. This means large cities cannot be particularly large compared
to the case when more productive firms exist. The leftward shift, together with
the shrink in support, result in a decrease in the city-size inequality, as shown
in the right subplot (90/10 ratio). This comparative statics is helpful to un-
derstand what may drive size and income inequality when there is a structural
change in the firms’ productivity distribution. Recent literature has discussed

24More generally, it can be regarded as the extent of congestion elasticity. Existing studies
discuss possible sources as in Duranton and Turner (2018) [70] and Hsieh and Moretti (2019)
[71].
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such changes. One example is the rise of superstar firms, as studied by Autor et
al. (2020) [72].

Figure 2.11: Comparative statics with respect to shape parameter of firm
productivity distribution (ka)

At last, we also consider varying the shape of city ex ante TFP distribution.
Under the competitive regime, the size inequality increases when the city ex ante
TFP distribution has thinner tails. With a thinner TFP tail at the top, there are
fewer mega cities in the economy. Conditional on the same firm productivity
distribution, the lower number of these cities determines the fact that more pro-
ductive firms crowd into the limited set of high TFP cities. As a result, inequality
is boosted. In the left subplot in Figure 2.12, we observe that when kb increases,
i.e., the density of the city TFP distribution has a thinner tail at the bottom, city
size distribution is stretched horizontally and shifts to the right. This means
there are very large cities formed compared to the case where there are many
ex ante high TFP cities. Therefore, as we see in the right subplot, with a thinner
tail in TFP distribution, i.e., larger kb, the inequality increases. Estimating local
TFP distribution is challenging in general. This comparative statics reveals that
how exogenous shocks in TFP distribution could drive inequality. One handy
property of the equilibrium under the Pareto case is that we can theoretically
identify the aggregate TFP loss and show the independence between its level
and the ex ante city TFP distribution, as summarized in Lemma 6.
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Figure 2.12: Comparative statics with respect to shape parameter of city ex
ante TFP distribution (kb)

2.6.2 The Cost of Tax Competition

We now study the driving factors of the inefficiency created by uncooperative
game, and compare the uncoorperative policy regime with the coorperative one.

Lemma 5. Competition equilibrium is closer to that in coordination when
the extent of congestion cost (σ) is higher and productivity distribution on firm
side features thinner tail (large |αs|).

Proof. See appendix. �

When the congestion elasticity is high, regardless of competition and coor-
dination regimes, only the most productive firms can afford to enter. It is as
if the power of policies is dominated by the entry margin. On the other hand,
when there are less ex ante heterogeneity in terms of firms productivity in the
economy, the discrepancy between tax competition and coordination diminishes.
This is beacause coordination results in an exclusion to relatively high produc-
tive firms staying in the market. When firms productivity has a fatter tail at the
bottom, the competition cannot induce much difference by lowering tax across
the economy with only firms with advantages left. In other words, in both cases
(high σ or αs), effects of taxes on the sorting mechanism are dampened since
governments confront a greater challenge when distorting productivity distribu-
tion. The comparison of the elasticity between competition and coordination is
shown in Figure 2.13, and the contour plots in the two regimes are shown in
Figure 2.14.25

25The double-side Pareto assumption induces tractablility in the nonlinear cost model. In the
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Figure 2.13: Comparision of Elasticity Surface between Competition and
Coordination

Figure 2.14: Comparison of Contour Plots

Appendix, we also provide analysis with elasticity illustrated when we assume linear cost with
uniform TFP and firm productivity distribution. The decay pattern of the elasticity surface still
holds.
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Lastly, we analyze the aggregate cost of tax competition in terms of the ag-
gregate TFP loss. We first characterize it with the following lemma.

Lemma 6. In equilibrium, the aggregate TFP in a policy regime is T F P =
∫

B a(b)bdGb(b). The loss in the aggregate TFP from tax competition is:

TFP Loss=
1

1− (αs + 1)σ
ln
�

ρσ+ 1
σ+ 1

�

Proof. See Appendix 6. �

The mechanism behind this identification is the dampening effect of the tax
competition on local and aggregate productivity (a(b)) with a coefficient shifter
in the ex post Pareto distribution so that firms at the top are not affected effec-
tively.26 Figure 2.15 shows the comparative statics of the loss of tax competition
with respect to congestion elasticity and firm heterogeneity.

Figure 2.15: Comparative statics of the loss of tax competition

The extent of concentration of the productivity distribution is determined by
the relative heterogeneity between the firm and the location as well as by the
extent of the congestion cost. The fact that firms’ spatial decisions at the top
are not affected by regimes is what policymakers can leverage when desiging
fiscal policies to diminish the aggregate costs of the existence of decentralized
competition.

The above analyses shed light on ways for policymakers to design fiscal pol-
icy regimes. The first is about choosing a proper fiscal policy regime. Our results

26We do not need the information on the specific ex ante distribution of city TFP to pin down
the aggregate loss. This is an advantage of our model specifications.
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suggest that, to lower the aggregate costs, tax competition induces a higher cost
when the congestion elasticity is lower (less responsive to wage differentials),
or the shape parameter is smaller. If there are institutional constraints to switch
to a fully centralized fiscal regime, a centralized fiscal policy regime is more
beneficial to the aggregate economy when the economy is closer to the above
circumstances. The second takeaway is about the distributional effects of a de-
centralized fiscal regime. Our results show that the existence of tax competition
reduces aggregate TFP and city-level TFP, where big cities are affected more than
small cities vis-à-vis the level of size and productivity. In a decentralized regime,
the size inequality is higher when the wage elasticity is lower, when there are
more superstar firms, or when there are fewer mega cities.

2.7 Conclusion

This paper studies the macroeconomic effects of the existence of tax competition.
We develop a new theory to study how uncooperative local governments use
local tax incentives to lure heterogeneous firms. In equilibrium, productive firms
enter ex ante productive and ex post larger cities, which is consistent with the
urban premium. In our model, inequality can be driven by exogenous shocks,
such as an urban congestion force, or a shock in the ex ante distribution on both
firms’ productivity and city TFPs.

This paper contributes to the current literature on both spatial production
and tax competition by analyzing how different policy regimes interact with en-
dogenous locational choice in firm sorting. We analytically characterize cross-
behavioral effects in the general equilibrium with a heterogeneous-agent and
continuum-space model, which has not been fully analyzed before. This cross-
effect is a key endogenous term in understanding the difference between coor-
dinated and uncoordinated policy, and how conventional fiscal externalities can
be accelerated by general equilibrium effects.

Through the lens of the model, we show how firms’ locational choices are
distorted in an uncoordinated policy regime compared to a coordinated one.
Equilibrium taxes under competition is lower than that in coordination, which
is consistent with a race to the bottom, widely documented empirically in liter-
ature. With the theoretical framework, we find that the existence of tax com-
petition dampens aggregate TFP and city-level TFPs. With double-side Pareto
distributions, big cities are affected more vis-à-vis the level of size and produc-
tivity. Regarding the aggregate costs of the tax competition, we find that the
competitive equilibrium converges to a planner solution when urban congestion
cost is higher or the firm productivity distribution features a thinner tail. When
the economywise congestion cost elasticity is higher, the cost of tax competition
is lower. Thus, the ability of a planner to manage the entry margin vanishes com-
pared to that in competition. Moreover, we find that productive firms respond
to policy perturbations more sensitively.
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The policy takeaways from this paper are twofold. First, policymakers should
carefully implement a fiscal regime and consider the aggregate cost of a decen-
tralized fiscal regime determined by country circumstances. This paper pro-
vides some key factors to consider in a tractable way. Second, conditional on
a decentralized fiscal regime, for example, under structural constraints to mov-
ing to a coordinated regime, there are distributional effects of an interjurisdic-
tional tax competition. Therefore, policy regimes could accelerate the stagnation
in productivity growth within most firms and/or dampen a minority of high-
performers, or superstar firms.

Our study can also be used as a benchmark for both theoretical and empir-
ical analysis. With the growing literature on spatial decisions and firm sorting
(e.g., Eeckout and Guner, 2017 [73]), our mechanism will help researchers and
policymakers to consider the implications of fiscal regimes with either endoge-
nous or exogenous policies. Distortion in firm sorting through tax competition
indicates that previous estimations could be subject to caveats. In the future, it
would be interesting to generalize our current theory and think about quantita-
tive applications.

2.8 Appendix

2.8.1 Proof of Propostition 1 and Lemma 1

Proof. We start from discrete conditions with tax perturbation (2.5)-(2.8).
Equivalently, we have the following equations featuring how an arbitrary cutoff
productivity responds to a tax perturbation in an arbitrary city

∂ ap

∂ Tr
. This behav-

ioral response is a function of size of all cities with TFP below the tax perturba-
tion city. Summation comes from general equilibrium effect, representing how
this response is accumulated from all cities with higher TFP than the optimal
choice of this cutoff firm.

−Λn g
�

ap

� ∂ ap

∂ Tr
=

n(1−p)
∑

i=0

∂ Lp+i∆

∂ Tr

Therefore, we summarize both optimality and market clearing conditions in
the following system of linear equations which determines the Jacobian matrix
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�

∂ Lp

∂ Tr

�

p,r∈{ 1
n ,··· ,1}

in discrete location model.

−
n(1−p)
∑

i=0

∂ Lp+i∆

∂ Tr

φa

�

ap, bp

�

−φa

�

ap, bp−∆

�

Λn g
�

ap

� −w′
�

Lp

� ∂ Lp

∂ Tr
+w′

�

Lp−∆

� ∂ Lp−∆

∂ Tr
= 1 [r = p]− 1 [r = p+∆]

(2.13)

−
φa (a∆, b∆)
Λn g (a∆)

n
∑

i=1

∂ Li∆

∂ Tr
−w′ (L∆)

∂ L∆
∂ Tr

= 1 [∆= r]

(2.14)

Denote self-elasticity and cross-elasticity in n city case
�

∂ L(p)
∂ T (p)

�(n)
and

�

∂ L(p)
∂ T (p′)

�(n)
.

We conjecture the following on self- and cross-elasticity in the limit:

lim
n→∞

�

∂ L(p)
∂ T (p)

�(n)

= −
1

w′(L(p))
, ∀p ∈ I

lim
n→∞

�

∂ L(p)
∂ T (p′)

�(n)

= 0, ∀p 6= p′ ∈ I

lim
n→∞

�

n
∂ L(p)
∂ T (p′)

�(n)

=
d L(p)
dT (p′)

, ∀p 6= p′ ∈ I

To see this, if we divide equation (2.5) by ∆ and consider ∆→ 0, at r =∆, the
third term of left hand side of (2.8) will be infinity, while the only way to have
equation hold is to have self-derivative ∂ L

∂ T to be a constant as well. Thus, to have
self-derivative cancel the blowing-up Dirac function at r =∆, this constant must
be 1

−w′(L(p)) . The idea is the same for equation (2.6) at r = p or r = p+∆.

Then from equation (2.14), we take limit when ∆ ≡ 1
n → 0 as n → ∞,

∀r 6=∆:

lim
∆→0

(2.14)
∆

= −
φa(a∆, b∆)
λg(a∆)

�

∫ 1

0

d L p̂

dTr
d p̂−

1
w′(Lr)

�

−w′(L0)
∂ L∆
∂ Tr

Similarly, from equation (2.13), consider an arbitrary p 6= r, we have:

lim
∆→0

(2.13)
∆2

= lim
∆→0

 

−
φa(ap, bp)−φ(ap, bp−∆)

λn∆2 g(ap)

n(1−p)
∑

i=0

∂ Lp+i∆

∂ Tr
−

w′(Lp)
∂ Lp

∂ Tr
−w′(Lp−∆)

∂ Lp

∂ Tr

∆2

!

(∀p > r) = −
φab(ap, bp)b′p
λg(ap)

∫ 1

p

d L p̂

dTr
d p̂−w′′(Lp)L

′
p

d Lp

dTr
−w′(Lp)

d
dp

d Lp

dTr

(∀p < r) = −

�

−
1

w′ (Lr)
+

∫ 1

p

d L p̂

dTr
d p̂

�

φab

�

ap, bp

�

b′p
λg
�

ap

� −w′′
�

Lp

�

L′p
d Lp

dTr
−w′

�

Lp

� d
dp

d Lp

dTr
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Thus we can rewrite elasticity conditions as follows. Notice p, r ∈ [0,1] are both
in the inverse cdf scale.

−
∫ 1

p

d L p̂

dTr
d p̂
φab

�

ap, bp

�

b′p
λg
�

ap

� −w′′
�

Lp

�

L′p
d Lp

dTr
−w′

�

Lp

� d
dp

d Lp

dTr
= 0,∀p > r

(2.15)

−

�

−
1

w′ (Lr)
+

∫ 1

p

d L p̂

dTr
d p̂

�

φab

�

ap, bp

�

b′p
λg
�

ap

� −w′′
�

Lp

�

L′p
d Lp

dTr
−w′

�

Lp

� d
dp

d Lp

dTr
= 0,∀p < r

(2.16)

−
φa(a0, b0)
λg(a0)

�

∫ 1

0

d L p̂

dTr
d p̂−

1
w′ (Lr)

�

−w′(L0)
d L0

dTr
=0

(2.17)

Equation (2.17) gives the first boundary constraint since it essentially captures
behavior at entry margin. And the second constraint holds by definition of
F L(b, p). The above system is what we see in Proposition 1.

Then, we denote in continuum location model, a ∼ Ga(a), b ∼ Gb(b). Both
cdf are Pareto distribution Ga = P (a,α), Gb = P (b,β), with pdf ga(a), gb(b)
respectively, where a ∈ [a,∞)≡A , b ∈ [b,∞)≡B . Note a(b) is endogenous
although Ga exogenous (through entry margin and functional form of endoge-
nous matching a(b)). Note that bp : [0, 1] 7→ R+ is the inverse cdf of b. Let
p = Gb(b), thus we can obtain

b′p =
d

dp

�

G−1
b (p)

�

=
�

dp
d b

�−1

=
1

gb(b)

For convenience to change units, we redefine the following transformed func-
tions: â(b) := a(Gb(b)) = ap ≡ a(p), L̂(b) := L(Gb(b)) = Lp ≡ L(p), and
T̂ (b) := T (Gb(b)) = Tp ≡ T (p). Consider rewriting equilibrium conditions
(2.15), (2.16), (2.17) with transformed measures simplified. These give us the
following system.

−
∫ ∞

b

d L(u)
dT (b′)

dGb(u)
φab(a(b), b)
λg(a(b))

−
dw′(L(b))

d b
d L(b)
dT (b′)

−w′(L(b))
d

d b
d L(b)
dT (b′)

= 0,∀b > b′

(2.18)

−
�

−
1

w′ (L(b′))
+

∫ ∞

b

d L(u)
dT (b′)

dGb(u)

�

φab(a(b), b)
λg(a(b))

−
dw′(L(b))

d b
d L(b)
dT (b′)

−w′(L(b))
d

d b
d L(b)
dT (b′)

= 0,∀b < b′

(2.19)

For the rest of this chapter, we will use the TFP measure unless specified. The
above equations (2.18) and (2.19) characterize the system in Lemma 1. �
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2.8.2 Proof of Lemma 2

Proof. First, we show how productivity exponent is related to size exponent:

a(b)∝ w′(L)L′(b)∝ bsLσ−1

⇒ sA = sL(σ− 1)
︸ ︷︷ ︸

wage effect w′(L)

+ (sL − 1)
︸ ︷︷ ︸

dampened by size effect L′(b)

= sLσ− 1

Key exponent of city size distribution is pinned down by the market clearing
condition:

sL
︸︷︷︸

GE effect from size

+ βs
︸︷︷︸

GE effect from Gb

= sA− 1
︸ ︷︷ ︸

endogenous choice a′(b)

+ sAαs
︸︷︷︸

dampened by distribution Ga

⇒ (1− (αs − 1)σ)
︸ ︷︷ ︸

Total GE effect

sL = −αs − βs − 2

⇒ s∗L =
αs + βs + 2
αsσ+σ− 1

Derivations for other coefficients and components are obvious from equilibrium
conditions. The total general equilibrium effect is shown in all denominators in
shape parameters. In addition, with the above setup we have the following key
restrictions on parameters:

sLσ− 1> 0, 1−σ(αs + 1)> 0

2.8.3 Proof of Propostition 2

Proof. Consider L(b) = cL bSL , w(L) = κ(L(b))σ, T (b) = cT bsT , a(b) = cAbsA.
“C” denotes coefficients, “S” denotes exponents. Equilibrium allocation param-
eters in competition are pinned down by the following location games and policy
games.

P1: −
T (b)

w′(L(b))
+ L(b) = 0

L1: a(b)−w′(L)L′(b)− T ′(b) = 0,∀b ∈B
L2: L(b)gb(b)−λga(a(b))a

′(b) = 0,∀b ∈B

With condition P1, we obtain cT (cL), sT (sL):

T (b) = κσcσL bsLσ ≡ cT bsT ⇒ T ′(b) = κσ2cσL sL bsLσ−1
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With condition L1, we obtain cA(cL), sA(sL):

a(b) = κσ (1+σ)
︸ ︷︷ ︸

distortion from tax competition

cσL sL bsLσ−1 ≡ cAbsA

With condition L2,

βccL bsL+βs = λαc(κσ(1+σ)sL)
αs+1cσ(αs+1)

L sAbsAαs+sA−1

Thus we can solve for parameters of equilibrium allocation as in propostiton.

Boundary value conditions in location games can pin down entry margin. If
all enter, we have

π(a, b) = ab− κL(b)σ − T (b) = 0 (2.20)
∫ ∞

b

L(b)dGb(b) = c∗Lβc
1

s∗L + 1

�

bs∗L+1
�∞

b
= λ (2.21)

If not all firms enter, a∗(b) 6= a, we have

π(a∗(b), b) = a∗(b)b− κL(b)σ − T (b) = 0
∫ ∞

b

L(b)dGb(b) = c∗Lβc
1

s∗L + 1

�

bs∗L+1
�∞

b
= λ

�

1− G(a∗(b))
�

Denote:

f U(b, p)≡
d L(b)
dT (p)

, F U(b, p)≡ −
∫ ∞

b

f U(u, p)gb(u)du

Given ga(·), gb(·), w(L), equilibrium elasticity in competition is { f L∗(b, p), f U ∗(b, p)}
determined by the following integro-differential equations (p is tax perturbation
city) for p > b and p < b respectively.

−
∫ ∞

b

f U(u, p)dGb(u)
1

ga(a(b))
−w′′(L(b))L′(b) f U(b, p)−w′(L(b)) f U

b (b, p) = 0

−
�

−
1

w′(L(p))
+

∫ ∞

b

f L(u, p)dGb(u)

�

1
ga(a(b))

−w′′(L(b))L′(b) f L(b, p)−w′(L(b)) f L
b (b, p) = 0

Assumeφab = 1, w(L) = κLσ, w′(L) = κσLσ−1, w′′(L) = κσ(σ−1)Lσ−2. The
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above equations become:

E1: −
∫ ∞

b

f U(u, p)βcu
βs du

1
αc(cAbsA)αs

− κσ(σ− 1)L(b)σ−2 L′(b) f U(b, p)−κσL(b)σ−1 f U
b (b, p) = 0

E2: −
�

−
1

κσL(p)σ−1
+

∫ ∞

b

f L(u, p)βcu
βs du

�

1
αc(cAbsA)αs

− κσ(σ− 1)L(b)σ−2 L′(b) f L(b, p)−κσL(b)σ−1 f L
b (b, p) = 0

Taking into account power forms in equilibrium allocations, move two terms
without integration to right hand side, and multiply by g(a(b)), E1 give:

LHS = F U(b, p) = −
∫ ∞

b

f U(x , p)βc xβs d x

(2.22)

RHS = λαc(cAbsA)αs

︸ ︷︷ ︸

ga(b)



κσ(σ− 1)(cL bsL)σ−2

︸ ︷︷ ︸

w′′(L)



cLsL bsL−1

︸ ︷︷ ︸

L′(b)



 f U(b, p) +κ(cL bsL)σ−1

︸ ︷︷ ︸

w′(L)

f U
b (b, p)





(2.23)

From F U(b, p), we know f U(b, p) =
F U

b (b,p)

βc bβs
. Denote the term with f U to be

RHS1 and the term with f U
b to be RHS2 in (2.23) , we have:

RHS1 =
�

κσ(σ− 1)cσ−2
L cLsLβ

−1
c bsL(σ−2)+sL−1−βs F U

b (b, p)
�

RHS2 = λαc(cAbsA)αs

︸ ︷︷ ︸

ga(b)

�

−κσcσ−1
L β−1

c βs b
sL(σ−1)−βs−1+sAαs F U

b (b, p) +κσcσ−1
L β−1

c bsL(σ−1)+βs+sAαs F U
bb(b, p)

�

Denote the exponent of b before F U
b (b, p) as δU

1 , we can conduct the follow-
ing decomposition of economic forces:

δU
1 ≡ sL(σ− 1)

︸ ︷︷ ︸

marginal cost exponent

− βs
︸︷︷︸

dampened by gb

+ sAαs
︸︷︷︸

dampened by ga(a(b))

−1 (2.24)

Similarly, denote the exponent of b before F U
bb(b, p) as

δU
2 ≡ sL(σ− 1)− βs + sAαs (2.25)

Notice that δU
1 = δ

U
2 − 1, which will be useful to see why exponents match

in LHS and RHS. Now we can combine RHS1, RHS2 to be RHS, so we simplify
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(2.23) to be

LHS = F U(b, p) = λαcc
αs
A κσcσ−1

L βc(sL(σ− 1)− βs)
︸ ︷︷ ︸

≡θU
1

bδ
U
1 F U

b (b, p) +λαcc
αs
A κσcσ−1

L
︸ ︷︷ ︸

≡θU
2

βc bδ
U
2 F U

bb(b, p) = RHS

Thus we summarize (2.23) with a second-order PDE with derivative of only
b dimensions.

F U(b, p) = θ U
1 bδ

U
1 F U

b (b, p) + θ U
2 bδ

U
2 F U

bb(b, p) (2.26)

where θ1 = (sL(σ− 1)− βs), θ2 =
αcκλσ(x)

σ−1(−(κσ(σ+1)(−αs−βs−2)(x)σ))
βc(αsσ+σ−1) , and

x ≡





αcλ
�

−σ(−αs−βs−2)
αsσ+σ−1 − 1

��

−κσ(σ+1)(−αs−βs−2)
αsσ+σ−1

�αs+1

βc





1
1−(αs+1)σ

Moreover, our functional assumptions result in δ1 = 1,δ2 = 2,i.e., a Cauchy-
Euler type if we take p as some constant. To see this, with previous information,
we have:

δU
2 = sAαs + s∗L(σ− 1)− βs = (s

∗
Lσ− 1)αs + s∗Lσ− s∗L − βs

= s∗L(σαs +σ− 1)−αs − βs = βs +αs + 2−αs − βs = 2

Now we show how p enters F U and F L. Assume seperable form for F U and
F L in b and p. We guess there exists some ϕU(p),ϕL(p), rU

1 , rU
2 , r L

1 , r L
2 with the
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following form which can solve the system.27

F U(b, p)≡ −
∫ ∞

b

f U(u, p)dGb(u) = ϕ
U
1 (p)b

rU
1 +ϕU

2 (p)b
rU
2 , ∀p > b ∈B

F L(b, p)≡ −
∫ ∞

b

f L(u, p)dGb(u) = ϕ
L
1 (p)b

r L
1 +ϕL

2 (p)b
r L
2 −

1
w′(L(p))

, ∀p < b ∈B

Consider rewriting relevant differential equations as

ϕU
1 (p)b

rU
1 +ϕU

2 (p)b
rU
2 = θ U

1 b
�

ϕU
1 (p)r

U
1 brU

1 −1 +ϕU
2 (p)r

U
2 brU

2 −1
�

+ θ U
2 b2

�

ϕU
1 (p)r

U
1 (r

U
1 − 1)brU

1 −2 +ϕU
2 (p)r

U
2 (r

U
2 − 1)brU

2 −2
�

=
�

θ U
1 rU

1 + θ
U
2 rU

1 (r
U
1 − 1)

�

brU
1 ϕU

1 (p) +
�

θ U
1 rU

2 + θ
U
2 rU

2 (r
U
2 − 1)

�

brU
2 ϕU

2 (p)

Thus, exponents in foundamental solutions are r1,2 =
θ2−θ1±

p
(θ1−θ2)2+4θ2

2θ2
. For

notation consistency later, we denote two roots as r1 > 0> r2.

Now we turn to f L(b, p) and start from E2 (Equation 2.19). Denote the
above 2nd order ODE (2.26)L (b) = 0. If y1(b) and y2(b) are linearly indepen-
dent solutions of the equation L (b) = 0 on an interval B ⊂ R, where variable
coefficients are continuous functions onB , then there are unique constants c1, c2

such that every solution y(b) of the differential equation L (b) = 0 on can be
written as a linear combination. By conjecture of F U , F L, we know

f j =
2
∑

i=1

ϕ
j
i (p)ri

βc
bri−βs−1, j ∈ {U , L}

27To double-check whether the form we obtained is indeed the solution, first take partial
derivatives with respect to b gives:

F U(b, p) = −
∫ ∞

b

f U(x , p)βc xβs d x ≡ βcϕ(p)
bε

U

εU

where εU ≡ 1+ rU + βs. Together with F U
b (b, p) and F U

bb(b, p), consider rewriting (2.26) as

βcϕ(p)
εU

bε
U
= θU

1 βcϕ(p)b
δU

1 +ε
U−1 + θU

2 βcϕ(p)(ε
U − 1)bδ

U
2 +ε

U−2 (2.27)

where we clearly see the above would hold (if hold) regardless of ϕ(p) and εU . Now to verify
our guess, we need to check whether the power match in b, so we want to see exponent on the
left of b equals that in the right terms. Recall form of δU

1 and δU
2 in (2.24) and (2.25), we need

to check the equation:

exponent of b on LHS of (2.27) = εU = sL(σ− 1)− βs + ε
U − 2+ sAαs = exponent on RHS

With the equilibrium allocation parameters (we use s∗A, s∗L here) solved at the beginning, we
confirm the above is true. Since the exponents match, the power form is indeed a solution to
the differential equations.



Appendix 79

By BV4, ϕL
1 (p) =

�

B
A

r2
βc

br2−βs−1−br2

− B
A

r1
βc

br1−βs−1−br1

�

ϕL
2 (p)≡ ζϕ

L
2 (p).

By Continuity 1,

F U(b, b) = ϕU
2 (p)b

rU
2 |p=b = ϕ2(b)b

rU
2

=
�

ζbr L
1 + br L

2
�

ϕL
2 (b)−

1
w′(L(b))

= F L(b, b)

By Continuity 2,

f U(b, b) =
ϕL

1 (p)r
L
1

βc
br L

1−βs−1|p=b +
ϕL

2 (p)r
L
2

βc
br L

2−βs−1|p=b = f L(b, b)

Thus we have ∀p ∈B ,

ϕL
1 (p) =

r L
2 c1−σ

L p−r L
1−(σ−1)sL

κσ(r L
2 − r L

1 )
(2.28)

ϕU
2 (p) =

c1−σ
L

�

r L
2 pr L

2 + r L
1ζpr L

1
�

p−r L
1−r L

2−(σ−1)sL

κσζ(r L
2 − r L

1 )
(2.29)

Substitute into conjectured form, we have:

F U(b, p) =
br2 c1−σ

L (r2pr2 + r1ζpr1) p−r1−r2−σsL+sL

κσζ(r2 − r1)

F L(b, p) =
c1−σ

L p−r1−σ(sL+1)+sL
�

r2 br2 pσ + r2ζbr1 pσ + ζ(r1 − r2)pr1+(σ−1)sL+1
�

κσζ(r2 − r1)

Therefore, elasticity in competition is characterized by the following pieace-
wise surface.

f U(b, p) =
r2c1−σ

L b−βs+r2−1 (r2pr2 + r1ζpr1) p−r1−r2−σsL+sL

βcκσζ(r2 − r1)
, ∀b > p

f L(b, p) =
r2 b−βs−1c1−σ

L (r2 br2 + r1ζbr1) p−r1−σsL+sL

βcκσζ(r2 − r1)
, ∀b < p

�

2.8.4 Proof of Proposition 3

Proof. First, consider tax has a variable part which is proportional to wage
with an unkown coefficients as the following. We preserve σ before w(L) for



Appendix 80

convenience to compare with competition regime later.

T (b) = cT bsT + t = ρ (σw(L(b))) + t

The method is similar as in competition except for the fact that cT , cA, cL are
different, where they are pinned down at the end when we close the model by the
policy conditon. Due to similarity, we skip the part for solving PDE. Note that the
foundamental solution of PDE is the same as in competition, with all parameters
in coordination c∗(ρ; s∗). We use f U , f L solved from PDE into condition P2 to
pin down ρ, t. LHS and RHS of condition P2 can be simplied to the following
with same structure of equations (2.28)-(2.29):

LHS =
cT c1−σ

L r1r2

κσ(r2 − r1)

�

1
(sT + r1)

−
1

(sT + r2)

�

psL +
tc1−σ

L

κσ
p−sL(σ−1) − (C1 + C2)p

−sL(σ−1)−r1

RHS =

�

cT

κσcσ−1
L

− cL

�

psL +
tc1−σ

L

κσ
p−sL(σ−1)

where

C1 =
cT c1−σ

L r1r2 bsT+r1

(sT + r1)κσ(r2 − r1)
−

cT c1−σ
L r1r2 bsT+r2

(sT + r2)ζκσ(r2 − r1)

C2 =
t br1 r2c1−σ

L

κσ(r2 − r1)
−

t br2 r2c1−σ
L

ζκσ(r2 − r1)

Thus we have 1− 1
ρ∗ =

r1(ρ∗)r2(ρ∗)
(sT+r1(ρ∗))(sT+r2(ρ∗))

in equilibrium for ρ∗ where

r1(ρ) =
θ2(ρ)− θ1(ρ) +

p

(θ1(ρ)− θ2(ρ))2 + 4θ2(ρ)
2θ2(ρ)

> 0

r2(ρ) =
θ2(ρ)− θ1(ρ)−

p

(θ1(ρ)− θ2(ρ))2 + 4θ2(ρ)
2θ2(ρ)

< 0

and

θ2 =
λκσαccA(ρ)αs cL(ρ)σ−1

βc

θ1 = (sL(σ− 1)− βs)θ2 =
λκσαccA(ρ)αs cL(ρ)σ−1(sL(σ− 1)− βs)

βc

Recall θ are from PDE, we have

F U(b, p) = β−1
c λαcc

αs
A κσcσ−1

L (sL(σ− 1)− βs)
︸ ︷︷ ︸

≡θU
1

bF U
b (b, p) + β−1

c λαcc
αs
A κσcσ−1

L
︸ ︷︷ ︸

≡θU
2

b2F U
bb(b, p)

In addition, from fundamental solutions, r1r2 = −
1
θ2

, r1+r2 = 1−(sL(σ−1)−βs).
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After combining terms and some algebra, we obtain:

ρ∗ =
αsσ+σ− 1
(αs + 2)σ

(2.30)

And thus we also solve for t and obtain:

t∗ =

cT r1 bsT+r1

sT+r1
+ cT r2 bsT+r2

sT+r2

br1 + br2

ζ

(2.31)

where A≡ b
λαc cαs

A bsAαs , B ≡ κσcσ−1
L bsL(σ−1), and ζ≡ −

�

B
A

r2
βc

br2−βs−1−br2

B
A

r1
βc

br1−βs−1−br1

�

. �

2.8.5 Proof of Proposition 4

Proof. By solution from equation (2.30), since αs < −2 and σ > 0, we know
ρ > 1.

By solution from equation (2.31), since sT + r2 < 0 (we know from conver-
gence requirement in boundary value conditions), r2 < 0 < r1. By definition of
ζ, we can simplify br1 + br2

ζ = 1. Thus we know t∗ > 0.

∂ cT

∂ ρ
=

κσ(σ(αs −ρ + 1)− 1)

 

�

αcλ(βsσ+σ+1)
�

κσ(αs+βs+2)(ρσ+1)
αsσ+σ−1

�αs+1

βc(αsσ+σ−1)

�
1

1−(αs+1)σ

!σ

(αsσ+σ− 1)(ρσ+ 1)

= (1+ρσ)
σ(1+αs)

1−σ(1+αs)
−1(σ(αs −ρ + 1)− 1) · Constant > 0

since αsσ+σ− 1< 0,αs + βs + 2< 0 and σ,ρ > 0. �

2.8.6 Proof of Lemma 3

To show firms’ behavior at the top do not depend on regime change, we only
need to show shape parameters are the same, i.e., exponents of power form are
the same.

In competition, by P1, we have T (b) = σw(L(b)) = κσcσL bsLσ. Thus sT =
σsLF

L . By L1, L2, we know sA = sLσ−1 and sL = sLF
L (from cLβc bsL+βs = λαcc

αs+1
A sAbsAαs+sA+1).

Thus competition has the same equilibrium exponents as in laissez-faire.

In coordination, same relationships hold for sL, sA, sT when we guess and
verify proportionality:

T (b)− t∗(ρ;Θ)∝ w(L(b)), a(b)∝ w′(L(b))L′(b)
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At the same time, market clearing condition is independent of regimes, which
pins down sL in all regimes. Thus exponents for b hold in tax coordination
as in laissez-faire. Note that although market clearing conditions remain the
same form in all regimes, general equilibrium effects enter through coefficients
cL, cA, cT . �

2.8.7 Proof of Lemma 4

Proof. To see why city size distirbution in coordination is driven down, we start
from comparative statics for coefficient of equilibrium size. To show the lemma,
it is equivalent to show

∂ c∗L
∂ ρ < 0,

∂ c∗A
∂ ρ > 0 which can then indicate Var(L)coord ≤

Var(L)comp ≤ Var(L)laissez-faire. To see this:

∂ c∗L
∂ ρ
=

1+αs

1−σ(αs + 1)
(1+ρσ)

αs+1
1−σ(αs+1)−1σc LF

L < 0

To see how scale and shape parameter of size and productivity distribution
change, we need to transform power form to standard form. Denote cumula-
tive and probability distribution function of size distirbution GL(L), gL(L). De-
note ls, lmin the shape and scale parameters of size distribtution. From Gb(b) =

GL(L(b)), we know gL(L) =
βc
sL

c
− βs+1

sL
L L

βs+1
sL
−1. Thus city size distribution follows

Pareto with shape and scale parameters:














ls = −
�

βs−sL+1
sL

�

− 1

lmin =

 

βc
sL

c
− βs+1

sL
L

ls

!
1
ls

=
�

βc
sL ls

�
1
ls cL

where variance of size distribution is Var(L) = l2
c ls

(ls−1)2(ls−2) . Thus we know

sgn
�

∂ Var(L)
∂ ρ

�

= −sgn
�

∂ Var(L)
∂ cL

�

= −sgn
�

∂ lmin

∂ cL

�

< 0

Since αs < −2 and ρ,σ, c LF
L > 0. Thus when variable tax increases by mul-

tiplied a constant coefficient ρ, scale parameter is driven down. By property of
Pareto, city size distribution has lower variance. Therefore income inequality is
driven down, i.e.,

Var(L)coord ≤ Var(L)comp ≤ Var(L)Laissez− f aire

Similarly, productivity distirbution is featured by:

ga(a(b)) = αcc
αs
A bsAαs
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We again start from comparative statics for coefficient of equilibrium pro-
ductivity:

∂ c∗A
∂ ρ
=

1
1−σ(αs + 1)

(1+ρσ)
1

1−σ(αs+1)−1σc LF
A > 0

since 1−σ(αs + 1)> 0 (as derived in Laissez-faire) and σ, c LF
A > 0.

To see how productivity distribution changes on average, consider the fol-
lowing tranformation:

ga(a(b)) = αsc
αs
A bsAαs

Thus productivity distribution follows Pareto with shape (as) and scale pa-
rameters (amin):







as = −sAαs − 1

amin =
�

αsc
αs
A

−sAαs

�
1

−sAαs−1

Thus we can derive average productivity:

sgn
�

∂ E(a)
∂ ρ

�

=
αs

−sAαs − 1

�

αc

−sAαs − 1

�
1

−sAαs−1

c
αs
−sAαs

−1

A > 0

since αs < −2, sA > 0,αc > 0. Therefore, comparing among three regimes gives:

E(a)coord ≥ E(a)comp ≥ E(a)laissez-faire

In summary, size is larger and endogenous productivity is lower in all cities under
tax competition compared to coordination. �

2.8.8 Proof of Lemma 5

Proof. From Proposition 3 and Proposition 4, we know that tax competition
can be summarized as a special case where ρ = 1 and t = 0. Therefore, when
uncooperative results are close to that in cooperative game is equivalent to when
ρ∗ in coordination is close to 1. Thus we simply take limits,

lim
αs→∞

= 1, lim
σ→∞

ρ∗ =
αs + 1
αs + 2

Note αs < −2 thus when extent of congestion cost is high and productivity dis-
tribution has thinner tail ex ante, uncooperative equilibrium is close to that in
cooperative game. �
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2.8.9 Proof of Lemma 6

Proof. Denote aggregate TFP in tax coordination and tax competition as
T F P coord and T F P comp respectively. Since each firm hire unit labor and proudce
unit numeraire good, city level ex post TFP can be written as A(b)≡ a(b)b and
thus we can write equilibrium aggregate TFP as:

T F P =

∫

B
a(b)bdGb(b)

Denote endogenous city productivity level aT C(b) in tax competition and
aC(b) in tax coordination. Loss in aggregate TFP in competition from coordina-
tion in log scale is:

T F PC

T F PT C
=

∫

B aC(b)bdGb(b)
∫

B aT C(b)bdGb(b)

By Proposition 2 and 3 where all cities are filled (i.e. no ex post empty city),
we know

aC(b)
aT C(b)

=
cC

A

cT C
A

Thus

∆T F P = ln









κσ(ρσ+ 1)s∗L

�

�

αcλ(σsL−1)(κσ(ρσ+1)sL)αs+1

βc

�
1

1−(αs+1)σ
�σ

κσ(σ+ 1)s∗L

�

�

αcλ(σs∗L−1)(κσ(σ+1)s∗L)
αs+1

βc

�
1

1−(αs+1)σ
�σ









=
1

1− (αs + 1)σ
ln
�

ρσ+ 1
σ+ 1

�

Therefore, when ρ > 1, 1−σ(αs + 1) > 0 (as proved in Proposition 2 and
4), we have:

∂∆T F P
∂ σ

=
−(αs + 1) log

�

ρσ+1
σ+1

�

(σ+ 1)(ρσ+ 1) + (ρ − 1)(αsσ+σ− 1)

(αsσ+σ− 1)2(σ+ 1)(ρσ+ 1)
< 0

∂∆T F P
∂ ka

= −
σ log

�

ρσ+1
σ+1

�

(αsσ+σ− 1)2
< 0

Note that we use αs to illustrate distribution in a clearer way agains local
TFP (b), while the Pareto shape parameter for productivity distribution is ka. �
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2.8.10 Uniform Distribution with Linear Congestion

In this section, we present ways to solve discrete equilibrium and elasticity
surface. Denote competition (“T C”) and coordination (“C”) two regimes R ∈
{T C , C}. âk−1 is the cutoff prouctivity between city k−1 and city k, k ∈ {1, 2, . . . , n}.

Equilibrium conditions in location game consist of a set of indifference con-
ditions and a set of adding-up conditions. Denote L as a mass of firms before

normalization, thus
L i

n
Λn

is the share of firms with locational choice of i.



















â 1
n
b 1

n
−κL 1

n
− T 1

n
= 0

â 2
n
b 1

n
−κL 1

n
− T 1

n
= â 2

n
b 2

n
−κL 2

n
− T 2

n
...

â1 b n−1
n
− κL n−1

n
− T n−1

n
= â1 b1 −κL1 − T1

(2.32)



















L 1
n
= Λn[G(â 2

n
)− G(â 1

n
)]

L 2
n
= Λn[G(â 3

n
)− G(â 2

n
)]

...

L1 = Λn[1− G(â1)]

(2.33)

Rearranging the above system using the telescoping pattern, and denote
measure of firms exiting the market as L0, we can obtain the system:

max
{L i

n
,T i

n
,â i

n
}i=1,...,n

n
∑

i=1

L i
n
T i

n
(
1
n
)

s.t. â 1
n
b 1

n
+

n
∑

i=p

â i
n

�

b i
n
− b i

n−∆

�

= κL p
n
+ T p

n
, ∀p ∈ {2, ..., n}

n
∑

i=p

L i
n
= Λn(1− G(â p

n
)), ∀p ∈ {2, ..., n}

Equilibrium can be solved by combining all FOC from Lagrangian into one
matrix where x′ = [L|a|~µ]

Mx≡

















−2κ 0 b1 0 1 0
0 −2κ b1 b2 − b1 1 1

0b1 b1 0 0 Λn
ā 0

0 b2 − b1 0 0 0 Λn
ā

1 1 Λn
ā 0 0 0

0 1 0 0Λn
ā 0 0

















x=















0
0
0
0
Λn

Λn















≡ c

In general, when there are n cities, the constant term is c3n×1 = [~0|~0|Λn]′.
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Thus we can solve all equilibrium variables

x= [L|a|~µ]′ = M−1c

An alternative way to solve the system is to identify the cross-behavioral
effect. To see this, with uniform distribution assumption of firms’ productivity,
we can write out G(x) = x

ā by plugging in â’s into market clearing conditions.
The mechanism of general equilibrium is clear throught two sets of systems. By
conditions 2.32, when t i, Li increase, âi increases whereas âi+1 decreases. By
conditions 2.33, we know Li decreases ∀i ∈ {1, 2, ..., n − 1}. Change in n will
only induce a change in ân.



































L 1
n
= Λn

�

κL 2
n
−κL 1

n
+t 2

n
−t 1

n
ā(b 2

n
−b 1

n
)

�

−Λn

�

κL 1
n
+t 1

n
āb 1

n

�

L 2
n
= Λn

�

κL 3
n
−κL 2

n
+t 3

n
−t 2

n
ā(b 3

n
−b 2

n
)

�

−Λn

�

κL 2
n
−κL 1

n
+t 2

n
−t 1

n
ā(b 2

n
−b 1

n
)

�

...

L1 = Λn −Λn

�

κL1−κL n−1
n
+t1−t n−1

n
ā(b1−b n−1

n
)

�

(2.34)

Denote I as the standard identity matrix and the following vectors for con-
venience:

L≡









L1

L2
...

Ln









, t≡









t1

t2
...
tn









,b≡









b1

b2
...

bn









,c≡









0
0
...
Λn









Equilibrium conditions can be summarized by the following:

L= SL+ T t+ c (2.35)

where T can be shown to be a symmetric matrix, which has negative diagonal
and positive off-diagonal elements.



















− Λn
ā(b2−b1)

− Λn
āb1

Λn
ā(b2−b1)

0 . . . 0 0
Λn

ā(b2−b1)
− Λn

ā(b3−b2)
− Λn

ā(b2−b1)
Λn

ā(b3−b2)
. . . 0 0

0 Λn
ā(b3−b2)

− Λn
ā(b4−b3)

− Λn
ā(b3−b2)

. . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . − Λn

ā(bn−1−bn−2)
− Λn

ā(bn−bn−1)
Λn

ā(bn−bn−1)

0 0 0 . . . Λn
ā(bn−bn−1)

− Λn
ā(bn−bn−1)



















Thus, we know I−S, where S = κT , is symmetric and has positive diagonal and
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negative off-diagonal elements:




















κΛn
ā(b2−b1)

+ κΛn
āb1
+ 1 − κΛn

ā(b2−b1)
0 . . . 0 0

− κΛn
ā(b2−b1)

κΛn
ā(b3−b2)

+ κΛn
ā(b2−b1)

+ 1 − κΛn
ā(b3−b2)

. . . 0 0

0 − κΛn
ā(b3−b2)

κΛn
ā(b4−b3)

+ κΛn
ā(b3−b2)

+ 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . κΛn

ā(bn−1−bn−2)
+ κΛn

ā(bn−bn−1)
+ 1 − κΛn

ā(bn−bn−1)

0 0 0 . . . − κΛn
ā(bn−bn−1)

κΛn
ā(bn−bn−1)

+ 1





















Notice I − S is a row/column strictly diagonally dominant and our assumption
on distribution of b guarantees that it is also irreducible. By Levy–Desplanques
Theorem, this matrix is non-sigular and invertible. Therefore we can solve for
the equilibrium considering the following decomposition forces below:28

L(t) = (I − S)−1

︸ ︷︷ ︸

sorting effect on size

T
︸︷︷︸

tax effect on size

t

︸ ︷︷ ︸

tax distortion on size (through sorting)

+ (I − S)−1

︸ ︷︷ ︸

sorting effect on size

c
︸︷︷︸

trivial size (without sorting): all in city n
︸ ︷︷ ︸

Laissez-faire size with sorting

Consider denoting the first term of RHS above as Et+k, where E is the elasticity
matrix for the distortion effect on size E ≡ dL

dt = (I − S)−1T . Thus elements in
diag(E) are self-elasticity in each city with respect to change in its own tax.
Denote each element in E as ξi, j at the i th row and the j th column, ∀i, j ∈
{1,2, ..., n}. Furthermore, assume b are uniformly distribuited as in our context,
i.e., b1 = bi+1− bi ≡ b = 1

n a constant. The above two matrices are both almost-
Toeplitz type and can be further simplified to the following.

I − S =
κΛn

āb















2+ āb
κΛn

−1
−1 2+ āb

κΛn
−1

...
...

...
. . .

...
...

...
−1 2+ āb

κΛn
−1

−1 1+ āb
κΛn















T =
Λn

āb













−2 1
1 −2 1
...

...
...

. . .
...

...
...

1 −2 1
1 −1













28By Neumann series expansion, we can write the sorting effect part as

(I − S)−1 =
∞
∑

n=1

Sn

where each element in the series can be regarded as one round of general equilibrium adjustment
of city size until Lk+1 = κTLk + T t+ c converges to a fixed point.
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Note that I , as the key general equilibrium term, plays an important role
in generating distributional effect. (−S)−1 will generate a trivial distribution of
elasticity but (I − S)−1 realize the sorting so that elasticity will decay when we
look at two otherwise very different cities.

Under tax competition, local government i solves the following problem:

max
t

t ◦ L= max
{t i}ni=1

t i L(t i; t−i) = t i [Et+ k]i (2.36)

FOC with respect to t i gives:

∑

j

Ei j t j + ki + t i

d
�

∑

j Ei j t j + ki

�

d t i
= Eii t i +

∑

j 6=i

Ei j t j + ki + Eii t i = 0 (2.37)

⇒ tT C
i = (2Eii)

−1(−ki −
∑

j 6=i

Ei j t
T C
j ) (2.38)

We can write it in matrix form to decompose mechanical and behavioral effects:








E11 E12 . . . E1n

E21 E22 . . . E2n
...

...
. . .

...
En1 En2 . . . Enn









︸ ︷︷ ︸

M Et=E: mechanical effect vis-à-vis tax

·









t1

t2
...
tn









+









k1

k2
...

kn









︸ ︷︷ ︸

M Ec : mechanical effect
︸ ︷︷ ︸

Total mechanical effect

+









E11 0 . . . 0
0 E22 . . . 0
...

...
. . .

...
0 0 . . . Enn









︸ ︷︷ ︸

BE: Behavioral effect in T C

·









t1

t2
...
tn









= 0

(2.39)

Similarly, under tax coordination, a central government solves the following
problem:

max
t

t>L= max
{t i}ni=1

∑

i

t i L(t i; t−i) =
∑

i

t i [Et+ k]i

FOC with respect to t i gives:

∑

j

Ei j t j + ki +
∑

k

tk

d
�

∑

j Ek j t j + kk

�

d t i
= ki + 2Eii t i +

∑

j 6=i

Ei j t j +
∑

j 6=i

E ji t j = 0

⇒ tC
i = (2Eii)

−1(−ki − 2
∑

j 6=i

Ei j t
C
j )
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System of FOCs can be written as:








E11 E12 . . . E1n

E21 E22 . . . E2n
...

...
. . .

...
En1 En2 . . . Enn









︸ ︷︷ ︸

M Et=E: mechanical effect

·









t1

t2
...
tn









+









k1

k2
...

kn









︸ ︷︷ ︸

M Ec : mechanical effect
︸ ︷︷ ︸

Total mechanical effect

+









E11 E21 . . . En1

E12 E22 . . . En2
...

...
. . .

...
E1n E2n . . . Enn









︸ ︷︷ ︸

BE: Behavioral effect in C

·









t1

t2
...
tn









= 0

(2.40)

We can summarize FOCs in two regimes R ∈ {T C , C} as:

tR = (M Et + BER

︸ ︷︷ ︸

≡FR

)−1(−M Ec
︸︷︷︸

=k

) (2.41)

Therefore, equilibrium tax under tax competition is:

tT C = (F T C)−1(−k) = (E + diag(E))−1(−k) (2.42)

Equilibrium in coordination is:

tC = (2(I − S)−1T )−1(I − S)−1c=
ā
2

b (2.43)

Equation (2.43) states that coorperative tax in each location is only a func-
tion of its own TFP, while uncooperative tax is a function of TFP across all loca-
tions. This is because BEC = M E>. Notice F C symmetric, (F C)−1 also sym-
metric. Though we cannot write (F T C)−1 analytically for large n, we know
(F C)−1

i j < (F
T C)−1

i j < 0,∀i, j.

(F C)−1

︸ ︷︷ ︸

n×n

=











− āb1
2Λn
− κΛn

2Λn
− āb1

2Λn
− āb1

2 . . . − āb1
2Λn

− āb1
2Λn

− āb2
2Λn
− κΛn

2Λn
− āb2

2Λn
. . . − āb2

2Λn
...

...
...

. . .
...

− āb1
2Λn

− āb2
2Λn

− āb3
2Λn

. . . − ābn
2Λn
− κΛn

2Λn











(2.44)

Note that

F C = F T C +









0 E21 . . . En1

E12 0 . . . En2
...

...
. . .

...
E1n E2n . . . 0









= F T C +
�

F T C − diag(F T C)
�>

Since ki < 0∀i, and notice BET C = diag(M Et), BEC = M E>t ,
�

(F C)−1 − (F T C)−1
�

i
<

0, ∀i. Thus with invertibility, tT C
i < tC

i , ∀i ∈ {1,2, ..., n}.



Appendix 90

We can also show that absolute value of self-elasticity is bounded above.

Denote elements in I − S as ci, j. Define neighborhood effects as µi :=
∑

j 6=i |ci, j |
|ci,i |

.
Since I − S is a row strictly diagonally dominant (SDD), thus it is non-sigular
and invertible (by Levy–Desplanques Theorem). By Nabben (1999) that applys
to any SDD matrix, for any i ∈ N

|ξi,i| ∈
�

1
|ci,i|(1+µi)

,
1

|ci,i|(1−µi)

�

and

|ξi, j| ≤ µi|ξ j, j| ≤ |ξ j, j|

By the formation of I−S, we know that the absolute value of the self-elasticity
is bounded above by

|ξi,i| ≤
1

|ci,i|(1−µi)
=

�

|ci,i|

�

1−

∑

j 6=i |ci, j|

|ci,i|

��−1

= 1 (2.45)

Equilibrium Allocation

In discrete version, equilibrium allocations can be characterized by inverse ma-
trices. And it can be seen as an approximation of continuum location. On the
other hand, given the above, we also can solve for continuum equilibrium allo-
cation in uniform distribution directly. In what follows, we show an approach in
solving equilibrium by not identifying elasticity functions from one location to
another. This can be regarded as a dual approach to what we use above, but will
be handy to solve equilibrium variables (size, productiity and wage functions).

An optimal control approach.

We start from the same model setup with continuum locations. DenoteB ≡
[b,∞). With change of variables and send number of cities to infinity, we can
show that optimization problem in continuum case can be analagously written
as the following:

max
T (b),L(b),a(b),a(b)

∫

B
T (b)L(b)dGb(b) (2.46)

s.t. a(b)b+

∫ b

b

a(b̂)d b̂ = w(L(b)) + T (b), ∀b ∈B (2.47)

∫ ∞

b

L(b̂)dGb(b̂) = λ(1− Ga(a(b))), ∀b ∈B (2.48)

From (2.48), L(b)gb(b) = λga(a(b))a′(b)⇒ L(b)gb(b)d b = λd(Gaa(b)) =
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−λd(1 − Ga(a(b))). Use this for integration by part (IBP) and we can rewrite
T (b) and objective function as

T (b) = a(b)b+

∫ b

b

a(b̂)d b̂−w(L(b))

⇒
∫

B
T (b)L(b)dGb(b) =

∫

B

�

a(b)b+

∫ b

b

a(b̂)d b̂−w(L(b))

�

L(b)dGb(b)

= a(b)bλ(1− Ga(a(b))) +λ

∫

B
a(b)(1− Ga(a(b)))d b−

∫

B
w(L(b))L(b)dGb(b)

Thus we can define

W (b) = a(b)bλ(1− Ga(a(b))) +λ

∫ ∞

b

a(b)(1− Ga(a(b)))d b−
∫ ∞

b

w(L(b))L(b)dGb(b)

(2.49)

Rewrite (2.48) for all b ∈B . For any function µ(b) :B 7→ R, we have
∫

B
µ(b)

�∫ ∞

b

L(b̂)dGb(b̂)−λ(1− Ga(a(b)))

�

d b = 0 (2.50)

Suppose costate µ(·) continuous differentiable. Combine objective (2.49)
and (2.50) for {L(·), a(·), s} ⊂ X1 ×X2 ×R≡ X in Banach space.

max
L(·),a(·),s

F =
∫

B

�

T (b)L(b)gb(b) +µ(b)

�∫ ∞

b

L(b̂)dGb(b̂)−λ(1− Ga(a(b)))

��

d b

=λa(b)b(1− Ga(a(b))) +λ

∫

B
a(b)(1− Ga(a(b)))d b−

∫

B
w(L(b))L(b)dGb(b)

+

∫

B
µ(b)

�∫ ∞

b

L(b̂)dGb(b̂)−λ(1− Ga(a(b)))

�

d b

Use IBP again:

∫

B
µ(b)

�∫ ∞

b

L(b̂)dGb(b̂)

�

d b =

∫

B

∫ ∞

b

L(b)dGb(b)d

∫ b

b

µ(b̂)d b̂ (2.51)

=

�

∫ ∞

b

L(b)dGb(b)

∫ b

b

µ(b̂)d b̂

�∞

b

+

∫

B

�

∫ b

b

µ(b̂)d b̂

�

L(b)gb(b)d b

(2.52)
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To see above Gateaux outcomes, first relabel terms:

F =λa(b)b(1− Ga(a(b)))
︸ ︷︷ ︸

I

+λ

∫

B
a(b)(1− Ga(a(b)))d b

︸ ︷︷ ︸

I I

−
∫

B
w(L(b))L(b)dGb(b)

︸ ︷︷ ︸

I I I

+

∫

B
µ(b)

�∫ ∞

b

L(b̂)dGb(b̂)−λ(1− Ga(a(b)))

�

d b

︸ ︷︷ ︸

IV

Then we use definition of Gateaux derivatives to solve a(b) (need terms I I
and IV ):

d
d t

I I =
d
d t

�

λ

∫

B
(a(b) + tc(b)) (1− Ga(a(b) + tc(b))) d b

�

|t=0

⇒ 0= λ

∫

B
c(b)(1− Ga(a(b))) +λ

∫

B
c(b)a(b)(−ga(a(b)))d b+λ

∫

B
c(b)µ(b)(ga(a(b)))d b

for all function c(b). Thus

λ(1− Gaa(b)) +λa(b)(−ga(a(b))) +µ(b)ga(a(b)) = 0

Similarly, we obtain the following conditions from Gateaux derivatives for an
arbitrary b̃ ∈B , with associated boundary constraint from the free entry condi-
tion. This version can be extended to a version with agglomeration externalities
in a tractable way.

λ(1− Ga(a(b̃))− ga(a(b̃))a(b̃)) +λµ(b̃)ga(a(b̃)) = 0

−
�

(w′(L(b̃)))L(b̃) +w(L(b̃))
�

gb(b̃) + gb(b̃)

∫ b

b

µ(b̂)d b̂ = 0

Analytical case with uniform distribution. Assume w(L(b)) = κL(b), a ∼
U[0, ā], b ∼ U[b, b̄]. Denote Θ ≡ {ā, b, b̄,κ,λ}, we can solve for equilibrium
allocations:
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a(b) = c1e

p
ābp

(b̄−b)
p
κ
p
λ + c2e

−
p

ābp
(b̄−b)

p
κ
p
λ +

ā
2

L(b) =
λ(b̄− b)

ā





p
āc1e

p
āb

p
κ
p
λ
p

b̄−b −
p

āc2e
−

p
āb

p
κ
p
λ
p

b̄−b

p
κ
p
λ
q

b̄− b





T (b) =

e
−

p
āb

p
κ
p
λ
p

b̄−b

�

ā3/2 be

p
āb

p
κ
p
λ
p

b̄−b + 2
p

āb

�

c1e
2
p

āb
p
κ
p
λ
p

b̄−b + c2

��

2
p

ā
+ c3

µ(b) = 2e
−

p
āb

p
κ
p
λ
p

b̄−b

�

c1e
2
p

āb
p
κ
p
λ
p

b̄−b + c2

�

where

c1 ≡
āe

p
ā b̄p

(b̄−b)
p
κ
p
λ

2

�

e
2
p

ā b̄p
(b̄−b)

p
κ
p
λ − e

2
p

ābp
(b̄−b)

p
κ
p
λ

�

c2 ≡
āe

p
ā(2b+b̄)p
(b̄−b)

p
κ
p
λ

2

�

e
2
p

ābp
(b̄−b)

p
κ
p
λ − e

2
p

ā b̄p
(b̄−b)

p
κ
p
λ

�

c3 ≡

2
p
κ
p
λ
q

b̄− b

�

c2e
−

p
āb

p
κ
p
λ
p

b̄−b − c1e

p
āb

p
κ
p
λ
p

b̄−b

�

2
p

ā
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Figure 2.16: Equilibrium Allocation in Uniform Distribution and Linear
Congestion Cost

Equilibrium Elasticity

In continuum model with linear congestion cost and uniform TFP and produc-
tivity distirbution, we solve for elasticity from:

−
ā
λ

∫ 1

p

d L p̂

dTr
d p̂−κ

d
dp

d Lp

dTr
= 0,∀p > r

−
ā
λ

�

−
1
κ
+

∫ 1

p

d L p̂

dTr
d p̂

�

−κ
d

dp

d Lp

dTr
= 0,∀p < r

−
āb0

λ

�

∫ 1

0

d L p̂

dTr
d p̂−

1
κ

�

−κ
d L0

dTr
= 0,∀r > 0

F U(1, r) = 0

F U(0, 0) +
1
κ
= 0

F U(r, r) = F L(r, r)
F U

p (r, r) = F L
p (r, r)



Appendix 95

When p > r:

F(p, r) = c1(r)e
p

āpp
κλ + c2(r)e

−
p

āpp
κλ

d Lp

dTr
=
p

āc1(r)e
p

āpp
κλ

p
κλ

−
p

āc2(r)e
−
p

āpp
κλ

p
κλ

When p < r:

F(p, r) = c3(r)e
p

āpp
κλ + c4(r)e

−
p

āpp
κλ −

1
κ

d Lp

dTr
=
p

āc3(r)e
p

āpp
κλ

p
κλ

−
p

āc4(r)e
−
p

āpp
κλ

p
κλ

Where constant functions c(r) are the following

c1(r) =
e−

p
ārp
κλ

�p
āb0

�

e
2
p

ārp
κλ + 1

�

+
p
κλ
�

e
2
p

ārp
κλ − 1

��

2κ
�p

āb0

�

e
2
p

āp
κλ − 1

�

+
p
κλ
�

e
2
p

āp
κλ + 1

��

c2(r) = −
e−

p
ā(r−2)p
κλ

�p
āb0

�

e
2
p

ārp
κλ + 1

�

+
p
κλ
�

e
2
p

ārp
κλ − 1

��

2κ
�p

āb0

�

e
2
p

āp
κλ − 1

�

+
p
κλ
�

e
2
p

āp
κλ + 1

��

c3(r) =

�p
āb0 +

p
κλ
�

e−
p

ārp
κλ

�

e
2
p

āp
κλ + e

2
p

ārp
κλ

�

2κ
�p

āb0

�

e
2
p

āp
κλ − 1

�

+
p
κλ
�

e
2
p

āp
κλ + 1

��

c4(r) =

�p
κλ−

p
āb0

�

e−
p

ārp
κλ

�

e
2
p

āp
κλ + e

2
p

ārp
κλ

�

2κ
�p

āb0

�

e
2
p

āp
κλ − 1

�

+
p
κλ
�

e
2
p

āp
κλ + 1

��

The following is an example for uniform distribution of TFP and productivity.
X-axis and y-axis are in terms of CDF, thus both are in [0, 1], denoted by p, r.
Z-axis is the change in size in city r (or p) when there is a unit tax perturbation
in city p (or r).
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Figure 2.17: Elasticity Surface in Uniform Distribution and Linear Conges-
tion Cost Model

Figure 2.18: Equilibrium with a wider group perturbation
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Figure 2.19: Equilibrium with a narrower group perturbation

2.8.11 Empirical Plots and Tables

Facts on Tax Incentive Packages and Related Public Expenditures

Figure 2.20: Mega deals between state/local governments with specific
firms in the U.S.
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Figure 2.21: Mega deals between state/local governments with specific
firms in the U.S. (log scale)

Figure 2.22: Incentive as percentage out of business taxes at state level

Source: PDIT. Incentives include property tax abatements, customized job training
subsidies, investment tax credits, job creation tax credits, and R&D tax credits.
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Figure 2.23: Structure of tax incentives

Source: PDIT

Figure 2.24: Distribution of tax shifts to the left

Source: PDIT
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International trade and policy incentives

Table 2.1: Correlation between Export and Fiscal Incentives in 2014

Variable Total Share Sector Share Local Share
(1) (2) (3)

Policy Measure
- ITR 0.000814 0.00508 0.00102
- Total Tax -0.0405* -0.634 -0.245
- Total Incentives -0.00214 -0.375 -0.492
State Fixed Effect Ø Ø Ø
Sector Fixed Effect Ø Ø Ø

Obs. 594 594 594
R2 0.355 0.628 0.384

Notes: *** p<0.01, ** p<0.05, *p<0.1. “ITR” stands for incentive tax ratio (share of total
incentive out of total tax revenue at state level). R2 in this table is on average across difference
policy measures for display simpllicity (same for the plot below on import) Source: PDIT, Census
USA Trade.

Table 2.2: Correlation between Import and Fiscal Incentives in 2014

Variable Total Share Sector Share Local Share
(1) (2) (3)

Policy Measure
- ITR 0.000987 -0.0433* 0.0429
- Total Tax 0.00139 -0.192 -0.372
- Total Incentives 0.0171 -0.477 -0.675
State Fixed Effect Ø Ø Ø
Sector Fixed Effect Ø Ø Ø

Obs. 594 594 594
R2 0.535 0.648 0.443

Notes: *** p<0.01, ** p<0.05, *p<0.1. “ITR” stands for incentive tax ratio (share of total
incentive out of total tax revenue at state level). Source: PDIT, Census USA Trade.



Chapter 3

External Economies of Scale and Place-Based
Industrial Policies

Abstract

This chapter studies place-based industrial policies in the presence of produc-
tion networks and local-sectoral external economies of scale. I document new
empirical evidence on the effects of a place-based industrial policy in China. The
policy drove employment growth in targeted industries and targeted locations.
However, the policy also led to the expansion of untargeted industries in tar-
geted locations, so that the industrial mix in targeted locations did not change
significantly. To rationalize these facts, I develop a quantitative general equilib-
rium model with spatial firm sorting. The model also incorporates policies, pro-
duction networks, trade, and local sectoral agglomeration externalities. Using
numerical simulations, I elucidate model predictions that are in line with empir-
ical evidence on policy effects. In the quantitative analysis, I take the model to
Chinese data designing an approach that combines sorting and the exact-hat al-
gebra. I find that targeted industries have higher externalities on average. And
results show that the current policy increases total welfare. This gain arises from
a combination of externalities and inter-sectoral/-regional linkages that result
in net higher competitiveness in both targeted and non-targeted sectors.

3.1 Introduction

Many government policies seek to boost local growth by targeting specific indus-
tries and specific regions, i.e., place-based industrial policies (PBIPs).1 Are these

1PBIPs abound in developed and developing economies. Examples include, in the United
States, “American Leadership in Advanced Manufacturing,” implemented at the state and local
levels to promote competitive industrial sectors, the “California Enterprise Zones Program”, and
the “Texas Enterprise Zones Program”; in the United Kingdom, the “Local Industrial Strategies”.
In developing countries, examples include the “Second Entrepreneurship Initiative in High-Tech
Industrial Development Zones” in China and the “Finance Act of 1993” (a program promoting
manufacturing in districts designated as backward) in India (Hasan et al., 2017 [74]). These
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PBIPs effective? What are the aggregate consequences of PBIPs when industries
and regions are interconnected with each other? To design such policies, policy-
makers would want to understand the likely winners and losers. One common
rationale behind these policies is to increase local productivity by taking advan-
tage of local external economies of scale. However, local productivity is affected
not only by the total scale but also by the industrial structure. When policies are
industry- and location-specific, and when there are both industrial linkages and
regional agglomeration, the aggregate effects of policies are ambiguous. More-
over, an environment with PBIPs can be a laboratory in which to study intra-
and intersectoral and -regional spillovers. And this provides us a specific per-
spective to understand industrial policies. In this chapter, I study the aggregate
consequences of PBIPs and the potential welfare gains because of the presence
of external economies of scale together with industrial and regional linkages.

My context is a specific PBIP in China, the “Second Entrepreneurship Initiative
in High-Tech Industrial Development Zones” program (hereafter 2002 PBIP). This
program is a set of policies mainly about subsidies and preferential tax rates,
together with other supports (such as infrastructure and business environment
improvements) implemented in high-tech sectors in designated special economic
zones. The goal is to promote both local and aggregate economic growth. I first
document the fact that 2002 PBIP drives exports in targeted sectors significantly
more than other sectors. On top of it, the increase is more significant in policy-
targeted zones compared to outside of zones, within policy-targeted cities. On
the other hand, the spillover effects along industrial linkages are more significant
outside of policy-targeted zones within policy-targeted cities. Then, I provide
empirical evidence on changes in the spatial distribution of industry employ-
ment in response to these policies using a propensity-score-weighted difference-
in-difference estimation and an event-study design. This set of analyses reveals
that the 2002 PBIP drives employment in targeted industries to expand in tar-
geted locations. However, the policy also draws untargeted industries to the
targeted locations; as a result, the industrial mix there does not change signif-
icantly. Specifically, the 2002 PBIP increases employment growth in targeted
industries and targeted locations by 16.8 percentage points, but there is a ten-
sion between agglomeration and specialization. Targeted industries’ shares of
employment in targeted locations increase by 0.41 percentage points of the na-
tional total in response to the policy. In contrast, targeted industries’ shares of
local employment do not respond significantly.

policies normally offer reduced tax rates, rebates, and/or subsidies. Some are industrial and im-
plemented at the local level, whereas some are industrial but place-neutral. Examples of recent
industrial policies are “Made in China 2025” (Ju et al., 2021 [75]), “Manufacturing USA,” and
“Energiewende,” in Germany. More general industrial policies include “Industry 4.0” in Germany,
the “Franco-German Manifesto for a European Industrial Policy Fit for the 21st Century” to focus
on the industries of the future: renewable energy, artificial intelligence, and robotics in Europe,
the Technology and Innovation Policy in Asian Miracles (Cherif and Hasanov, 2019 [76]), and
the “Heavy Chemical and Industry (HCI) Drive” in South Korea (Lane, 2021 [77] and Kim et al.
(2021) [78]).
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To rationalize the above empirical evidence on policy effects and to guide
future policy understandings, I build a quantitative general equilibrium trade
model with multiple locations and industries. The model features spatial firm
sorting, agglomeration externalities, input-output (I/O) linkages between indus-
tries, and trade costs across locations. Firms choose locations and production,
considering local agglomeration benefits, costs of congestion, and proximity to
suppliers of intermediate goods. Within an industry, more productive firms are
disproportionately more productive in larger cities. I also use numerical sim-
ulations to illustrate how key statistics change with policies. And comparative
statics exercises are taken vis-à-vis the extent of agglomeration externalities, and
the extent of I/O linkages. Then, I propose an approach to quantify agglomera-
tion externalities permitting the exact-hat algebra. The idea is to take advantage
of equilibrium outcomes determined by model features at the location, industry,
and location-cross-industry levels in terms of I/O linkages, policies, externalities,
and local sectoral variations. My results show that targeted industries have rel-
atively higher sectoral externalities, which provides a perspective to understand
the rationale behind current policies.

Finally, I measure the aggregate welfare effect of current policies through the
lens of the model. With a quantified model, I compare the prepolicy and postpol-
icy scenarios, and I find that the policy generates a 1.71% welfare increase at the
aggregate level. This welfare increase comes from the fact that the average local
sectoral productivity is boosted, and this quantitatively outweighs the increase
in local sectoral costs. The co-existence of firm-sorting and agglomeration ac-
celerates firms’ profitability in general while keeping changes in costs relatively
small so that economic potential is realized. Sectoral competitiveness increases
in both policy-targeted sectors, their close suppliers and heavy industries.

This study sheds light on ways to design and implement (place-based) indus-
trial policies. First, the existence of local sectoral external economies of scale to-
gether with policies, inter-sectoral linkages, and inter-regional trade provides a
rationale for policies. A policy favoring a specific sector in a region affects other
sectors in the same region through the local agglomeration externalities and
price indices. In addition, it affects all sectors in other regions through firms’
choices between locations at the margin, and firms’ production choices upon
their location choices, conditional on the aggregate price distribution deter-
mined in equilibrium. Whether these policies can enhance total welfare depends
on how externalities interact with spatial sorting and I/O linkages. Second, pol-
icymakers should be careful in trying to support a specific industry-location pair.
Further studies will explore welfare analysis based on more appropriate data
sets to better extend our understandings on industrial policies.

This chapter makes contributions to literature in the following aspects. On
the empirical side, I find new evidence suggesting spillover effects of PBIPs.
Other studies estimate the effects of policies, but they focus on either place-
based policies (industry-neutral) or industry-based policies (place-neutral). So,
we lack studies that evaluate effects of PBIPs. One strand of research explores
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the effects of place-based policies. For example, Hyun and Ravi (2018) [79] uses
the spatial variation in the timing of zonal operations to illustrate the spatial dis-
tribution of the impact of special economic zones in India. Lu et al. (2019) [80]
find that special economic zones in China have a positive effect on capital in-
vestment, employment, output, and productivity. Capital-intensive industries
benefit more than labor-intensive ones. However, production networks are not
included in these studies. Greenstone et al. (2010) [63] use Million Dollar
Plants to estimate the magnitude of local agglomeration. They do not account
for industrial and locational heterogeneities together. An exception is a recent
study by Kim et al. (2021) [78] that empirically test the effect of the Heavy
and Chemical Industry (HCI) Drive in South Korea with both the industrial and
the place-based variation. A relevant quantitative study on the HCI Drive is by
Choi and Levchenko (2021) [81]. In addition, the potential inefficiencies in my
framework come from the agglomeration externalities together with industrial
linkages and firm sorting. This differs from the policy-neutral results in Klein
and Moretti (2014) [82] that relied strong assumption of place-neutral agglom-
eration.

On the theoretical side, my proposed model combines endogenous spatial
firm sorting, agglomeration externalities, I/O linkages between industries, trade
costs across locations, and PBIPs. The model inherits agglomeration elements
as in Behrens et al. (2014) [6] and Gaubert (2018) [7]. Moreover, I add
a multilocation trade framework and I/O linkages as in Caliendo and Parro
(2015) [83]. Relevant studies such as Allen and Arkolakis (2014) [84], Costinot
and Rodríguez-Clare (2014) [85], Bartelme et al. (2019) [86], Liu (2019) [87],
Liu and Ma (2021) [88], Carvalho et al. (2021) [89] and Bakker (2021) [90]
incorporate different subsets of the elements in this chapter, but not all together.
For example, Liu (2019) [87] studies industrial linkages in environments with-
out agglomeration externalities. Carvalho et al. (2021) [89] study Japanese
earthquake shock to identify agglomeration effects, but they do not include vari-
ation at the local level. Tian (2021) [91] explores city productivity advantages
and the division of labor based on occupational complexity with Brazilian es-
tablishments. But this study focuses more on labor specialization instead of
sectoral specialization, and thus do not further speak to the scenario when I/O
linkages intertwine with agglomeration externalities. Bakker (2021) [90] finds
that export intensity is higher in more densely populated areas. Firms in larger
cities are more productive and less low-skill-intensive because of comparative
advantages, but there are no I/O linkages. Regarding the international trade
theories, my model inherits the gravity-type results, but it further extends cur-
rent parametric forms found in the seminal work by Costinot and Rodríguez-
Clare (2014) [85] by embedding firm sorting and agglomeration externalities.
Caliendo et al. (2018) [92] consider the aggregate and disaggregate effects of
regional and sectoral shocks to productivity and infrastructure. The shock this
chapter considers is similar vis-à-vis location-sector combination, but it is dif-
ferent from Caliendo et al. (2018) [92] in the sense that I allow externalities,
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policies, and locational choices of heterogeneous firms.

The rest of this chapter proceeds as follows. Section 3.2 introduces institu-
tional background and details the empirical facts on local and aggregate effects
of the policy. Section 3.3 develops a quantitative spatial general equilibrium
model. Section 3.4 shows numerical simulations with supplementary evidence.
Section 3.5 quantifies the model and measures the aggregate and distributional
effects. Section 3.6 concludes.

3.2 Empirical Evidence on Policy Effects

3.2.1 Institutional Background

This chapter is the first to attempt to evaluate the place-based industrial policy
(PBIP) known as the “Second Entrepreneurship Initiative in High-Tech Industrial
Development Zones” (2002) in China. This policy targets at special economic
zones that are designated to focus on the development of high-tech industries
(HTIs). Since 2002, local governments in these national high-tech zones (HTZs)
have issued local policies to boost the growth of HTIs in such ways as providing
subsidies or tax rebates and building infrastructure to improve local business
environments especially for high-tech sectors.2 This initiative was documented
in a nation-wide departmental regulatory document titled “Decision of the Min-
istry of Science and Technology on Further Supporting the National Development
Zones for New and High-Technology Industries” promulgated by the Ministry of
Science and Technology under the supervision of the State Council in January
2002.3 Following this national guideline, the Ministry of Science and Technol-
ogy issued “Some Opinions of the Ministry of Science and Technology Concerning
the Reform and Innovation of the Administration System of the National Develop-
ment Zones for New and High Technology Industries” in March 2002.4 Guided by
these two national policy documents, local governments in National New- and

2I thank useful institutional background information from the Development Research Center
of the State Council, P.R.C.

3This departmental regulatory document was promulgated by the Ministry of Science and
Technology on January 31, 2002 in the No.32 [2002] of the Ministry of Science and Technology,
with an English version is available. (Archived online with the “China Law Info” (CLI) citation
code CLI.4.48812(EN) at en.pkulaw.cn) The official explanation for this initiative wrote as “For
the future 5 to 10 years, the national new and high-tech zones shall come into the secondary period
of starting the undertaking, during which the innovation of science and technology, and that of the
system shall be taken as the momentum, and the main task shall be the fostering of the new- and
high-tech industries.”

4This policy document was promulgated by the Ministry of Science and Technology on March
5, 2002 in the No.61 [2002] of the Ministry of Science and Technology. The English version is
available with the CLI citation code CLI.4.48813(EN) at en.pkulaw.cn.

en.pkulaw.cn
en.pkulaw.cn
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High-Tech Zones responded and initiated local policies to boost the development
of high-tech industries.5

In what follows, I explain why this 2002 policy is both a place-based policy
and an industrial policy. As a place-based policy, this PBIP targets the “National
Development Zones for New and High Technology Industries” (hereafter, HTZs).
Between 1994 and 2007, there were 53 HTZs in 53 major prefectures or mu-
nicipalities in China (hereafter, HTCs).6 These cities are mostly the capital and
major cities in each province. Figure 3.1 shows the geographical distribution
of high-tech cities (HTCs) and a sample map for HTZs in one of HTCs. Specif-
ically, Figure 3.1-Left shows the geographical distribution of cities with HTZs
in each of them in a map of China. Figure 3.1-Right is an example compar-
ing HTZs (yellow) and non-HTZs (green) on a map of Beijing,7 which is one
of the earliest HTCs. The HTZ in Beijing is also known as Zhongguancun Sci-
ence Park. It includes several sub-science parks that are all managed by the
Administrative Committee of the Beijing HTZ. Each of the 53 HTZs has a similar
administrative structure under the leadership of a Management/Administrative
Committee of their own. Each committee is a government agency with respon-
siblity to macro-manage the high-tech zone, to connect municipal government
and private sectors, and to implement related local policies.8

5I have not found systematic records for local implementation across all high-tech cities. But
I found some evidence in official and relevant reports on which local governments responded to
these national guidelines, see Appendix 3.7.

6These zones are in municipalities including Beijing, Tianjin, Shanghai, and Chongqing;
the prefectures include Shijiazhuang, Baoding, Taiyuan, Baotou, Shenyang, Dalian, Anshan,
Changchun, Jilin, Harbin, Daqing, Nanjing, Changzhou, Wuxi, Suzhou, Hangzhou, Hefei,
Fuzhou, Xiamen, Nanchang, Jinan, Qingdao, Zibo, Weifang, Weihai, Zhengzhou, Luoyang,
Wuhan, Xiangfan, Changsha, Zhuzhou, Guangzhou, Shenzhen, Zhuhai, Huizhou, Zhongshan,
Foshan, Nanning, Guilin, Haikou, Chengdu, Mianyang, Guiyang, Kunming, Xi’an, Baoji, Xi-
anyang, Lanzhou, and Urumqi. There was only one addition to the set of high-tech cities during
this period. Note that these zones are at national level. After 2007, many new provincial and
local high-tech cities/zones were designated.

7The Beijing HTZ map comes from Zhongguancun Administrative Agency website (http:
//zgcgw.beijing.gov.cn/zgc/zwgk/sfqgk/sfqjs/yqdy/index.html). This is an updated graph for
2019. The analogous graph of 2002 has not been found in public archives.

8The Management Committee of a high-tech zone has comprehensive functions in finance,
economic development, territory management, planning, investment, talent service, etc. Some
are more market-oriented (such as Zhongguancun in Beijing), whereas some others have greater
authorization from their local governments (such as the HTZ in Xiangfan).

http://zgcgw.beijing.gov.cn/zgc/zwgk/sfqgk/sfqjs/yqdy/index.html
http://zgcgw.beijing.gov.cn/zgc/zwgk/sfqgk/sfqjs/yqdy/index.html
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Figure 3.1: Left: Geographic distribution of high-tech cities (HTCs) with
high-tech zones (HTZs) in China. Right: Geographic distribution of HTZ
(yellow) v.s. non-HTZ (green) in Beijing

As an industrial policy, the 2002 policy emphasizes the goal of promoting
high-tech industries. These high-tech industries are mostly in the manufactur-
ing sector and in high-value-added industries. Specifically, there are eight fields
designated as policy targets: (1) electronic information technology; (2) medical
science and biomedical engineering; (3) aerospace and aeronautical technology;
(4) new materials technology; (5) high-tech service; (6) new energy science and
energy conservation technology; (7) ecology and environmental science; and
(8) other new process or new technology applicable in the traditional indus-
tries.9 This is the official list based on Chinese Industry Classification (hereafter,
CIC) with 62 industries at CIC (2011 version, GB/T 4754-2011) 4-digit level.10

9These fields were not emphasized by the Chinese government for the first time in 2002.
Instead, if tracing the historical policy documents, we can see that the Chinese government
had prepared itself in implementing this policy and moved forward in upgrading on the global
value chains. In fact, high-tech development zones are an important part of China’s Torch Pro-
gram strategized by the State Council in 1980s. These fields can be found in “Notice of the
Ministry of Science and Technology on Issuing the Conditions and Measures for Accreditation of
High and New Technology Enterprises in National High Technology and New Technology Indus-
try Development Zones (2000 Revision)” This is an adjusted version issued by the State Coun-
cil in mid-2000. The official Chinese version can be found at http://www.gov.cn/gongbao/
content/2001/content_60688.htm, with English version search code CLI.4.205008(EN) avail-
able at en.pkulaw.cn. The original version “Conditions and Measures on the Designation of
High and New Technology Enterprises in National High and New Technology Industry Development
Zones” was approved by the State Council on March 6, 1991. And it was promulgated by the
State Science Commission in March 1991. The English version search code CLI.2.5033(EN) at
en.pkulaw.cn.

10There are 42 sectors described as the “third layer” in the official document of HTI (Man-
ufacturing) Classifcation (2013). And there are 62 specific CIC-4 codes specified in the above
document based on the GB/T 4754-2011 system, see Appendix 3.7 Table 3.4. The design of
the high-tech-sector classification in China refers to the OECD ISIC Rev.3 Technology Intensity
Definition (2011), which classifies manufacturing industries into categories based on R&D inten-
sities. In ISIC Rev.3, High-technology Industries consist of (1) aircraft an spacecraft, (2) pharma-

http://www.gov.cn/gongbao/content/2001/content_60688.htm
http://www.gov.cn/gongbao/content/2001/content_60688.htm
en.pkulaw.cn
en.pkulaw.cn


Empirical Evidence on Policy Effects 108

In the empirical analysis, I assigned the designated industries based on this offi-
cial document with industry codes manually crosswalked with the 2002 version,
which include 60 industries at the CIC (2002 version, GB/T 4754-2002) with
both 3-digit and 4-digit levels.

So far, there is no public official documents systematically recording the data
on this policy implemented at the local level. In the Appendix 3.7, I list some
examples from summary reports by local governments. As noted in the 2002
implementation reports by local governments, one goal of this PBIP is to “extend
the industry chain” within the city and to “promote technological advancement in
related industries”. These official statements suggest that local governments in-
tend to take advantage of industrial linkages and encourage economic expansion
and technological changes in industries that are connected to targeted ones.

In the rest of this chapter, for notation simplicity, I use the following ab-
breviations to refer to targeted locations or targeted industries in Section 3.2.
HTI refers to high-tech industries. These are 4-digit CIC codes that are cate-
gorized as high-tech (targeted) industries by the National Bureau of Statistics.
HTP refers to high-tech products. These are 8-digit Harmonized System codes
that are categorized as high-tech (targeted) industries by the General Adminis-
tration of Customs of China. HTC refers to high-tech cities. These are 4-digit
prefecture-level geography codes (under the Chinese National Bureau of Statis-
tics coding system) that contain an HTZ within the prefecture border. HTZ refers
to high-tech zones. These are 5-digit zone/district-level geographical codes (un-
der the Customs coding system) that have been officially approved as National
Development Zones for New and High Technology Industries by the Ministry of
Science and Technology of China.

3.2.2 Facts

This section presents main facts about the spatial distribution of economic activ-
ities corresponding to the implementation of the 2002 policy. Main takeaways
are as follows. First, at the granular level, 2002 PBIP drives exports in tar-
geted sectors significantly more than exports in non-targeted sectors. And this
disproportionate increase is more significant in targeted zones within targeted
cities. Second, at the aggregate level, the PBIP drives employment in targeted
industries to expand in targeted locations. However, the PBIP also drives up em-
ployment in untargeted industries and targeted locations, so that the industrial
mix in targeted locations does not change significantly.

First, I utilize the location information of export production in the detailed
customs data from China to analyze the total export performance within HTCs.
This information is more granular than prefecture labels, as, so far, the most
relevant and systematic one allowing us to seperate the associated 2002 PBIP

ceuticals, (3) office, accounting and computing machinery, (4) radio, TV and communciations
equipment, and (5) medical, precision and optical instruments.



Empirical Evidence on Policy Effects 109

targets. Within a prefecture, it specifies the production areas and names spe-
cial economic zones explicitly.11 This allows me to seperate zones within HTCs,
which effectively helps control for idiosyncratic shocks at above-zone level, in-
cluding common shocks that standard literature concerns, such as the interna-
tional trade exposure.12

Figure 3.2: Export in HTC by policy groups

For trade pattern, I use a difference-in-difference design to estimate the ef-
fects of the 2002 PBIP within HTCs as follows:

ln(Ex por t)i j t = αTar get i j × Post t + F E + εi j t

The dependent variable is the total exporting value (in log scale) at the zone-
product-year level. Tar get i j indicates whether observables belongs to policy-
targeted group 1(HT Zi × HT I j), and i ∈ HT C . F E denotes a full set of fixed
effects (δi,δ j,δt ,ηi t ,ηi j,η j t). The coefficient of interest is α. Regression results

11Within a few prefectures, the exact names changed, while the Customs flag categories kept
the original name. A particular example is Beijing, where the zone name associated with the
current “Zhongguancun” in the Customs data is “Beijing New Tech Industry Development Zone”,
which was designated as “Zhongguancun” in the official document from the State Council (na-
tional level) to Ministry of Science and Technology and Government of Beijing in 1999. This
is partially due to a differentiation between the major raw policy-zone name with some sub-
zones (such as “Changping Science Park”). In 2006, some of these sub-zones were re-organized
to “Zhongguancun” while keeping the total zone area the same, together with a new wave of
newly-approved local special economic zones in other prefectures. The main empirical analysis
in this chapter uses the conservative measurement. In Appendix 3.7.4 Figure 3.14, I supple-
ment alternative measurement adding sub-zones in Beijing. Main empirical facts remain the
same. Furthermore, current empirical analysis used the conservative measure conditional on
HTZs given the major source of the discrepancy.

12As a supplementary check, I use the World Integrated Trade Solution (WITS) data set for
changes in tariffs. It turns out that HTIs do not receive a disproportionate decrease in tariffs on
the international trade market, compared to these in other industries.
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are shown in Table 3.1. These results suggest that the total exporting value
has been increased by around 20.11 percentage points on average responding
to the implementation of the policy, if a product-zone observation belongs to
targeted zones and targeted industries, compared to those that are not in policy-
targted categories. This number is statistically significant and is robust when
using different levels of fixed effects, where column (2) in Table 3.1 is at more
granular level.13

Table 3.1: Regression results with granular trade data

Variables Exports Exports
(1) (2)

Tar get i j × Post t 0.2152** 0.2011***
(2.4000) (2.6686)

One-way FEs Ø Ø
Two-way FEs Ø Ø
Obs. 1,354,809 1,211,321
R2 0.1089 0.7679
(t statistics in parentheses, with clustered s.e.)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Notes: In column (1), geographical fixed effects are at the prefecture level, and the sectoral fixed
effects are at the HS-4 level, so as the interacting FEs. In column (2), geographical fixed effects
are at the zone level, and the sectoral fixed effects are at the HS-8 level, so as the interacting
FEs.

I then use event studies with the following specification:

ln(Ex por t)i j t =
2006
∑

t=2000

βt−2002Tar get i j × Yeart + F E + εi j t

Figure 3.3 shows the event study coefficient βt from 2000 (“−2” means 2 years
before policy) to 2006 (“+4” means 4 years after policy).14 As standard in liter-
ature, I normalize the effect in the year before policy implementation (-1) to be
0. Standard errors are two-way clustered at 95% level.15 The results indicate
that the average effect starts to be statistically significant after the policy imple-
mentation. Conditional on targeted prefectures, the PBIP drives up the export
of high-tech products (HTPs) in high-tech zones (HTZs) significantly. This effect

13There are no systematic granular (zone-level) controls available for this analysis.
14Compared to ASIE, the smaller time range in both IPW-DID and event studies (shown later)

is because of the data availability. The China Customs Trade Data starts the trade transactions
record from 2000, while ASIE starts from 1998.

15I conducted robustness checks by varying clustered s.e. and the event study plots do not
change significantly for both set of regressions.
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is significant in HTZ and HTP within HTC, compared to HTP outside of HTZ in
HTC, and compared to non-HTP within HTZ in HTC.

Figure 3.3: Plots of event study coefficients. Left: with granular FEs. Right:
with broader level FEs. (See notes in plots)

Apart from the HTC-HTZ decomposition, I also seperate sectors that are
“closely-related” to policy-targeted sectors based on the Input-Output (I/O) Ta-
ble. Note that the raw I/O Table does not capture the specialty of policy-targeted
industries in the network intuitively. Some recent studies have shown that tar-
geted industries picked in industrial policies in trade wars are special in terms
of substitutability (Ju et al., 2021 [75]). This requires a measure, potentially
corresponding to the policy, to capture how “closely-related” industries respond
to PBIP differently from others in terms of their relation to policy targets. There
are many measures in standard I/O literature.16 The measure illustrated for sim-
plicity is the relative demand coefficient.17 I compute key set of coefficients from
Leontief inverse bi j, the element of B ≡ (I − A)−1 − I , where ai j =

x i j

X j
(the ele-

ment of A) indicates how industry j is consuming industry i out of total input. It
essentially measures how demand from other industries increases when there’s

a unit of a final good consumed from an arbitrary industry j: F j =
1
n

∑n
i=1 bi j

1
n2

∑n
j=1

∑n
i=1 bi j

.

Result suggests that targeted industries are at far downstream. This means high-
tech industries are more inclined to be consumed as final goods instead of in-
termediate inputs in the supply chain. Appendix 3.7.8 Figure 3.27 shows the
relative demand coefficients across industries. Red bars indicate high-tech in-
dustries and they rank relatively high in the supply chain. Green bars are that in

16Alternatively, one could utilize the accounting identity of usage of goods in an industry for
an upstreamness (U) measure, proposed by Antras et al. (2012) [93]: U = (I −∆)−1 1, where
∆ is the matrix where entry (i, j) represents the share of sector i’s total output that is purchased
by industry j. This statistic essentially summarizes average distance between an industry and
final-good consumers. Details are in Appendix 3.7.8. I also refer to industry research for high-
tech industries on supply chain analyses. These are similar regarding the ranking of industries.
Sectors closely related to targeted high-tech industries turn out to be mostly heavy industries
that are direct upstreams of the targeted ones.

17This has been widely used in actual input-output statistics in country reports and handbooks
for national accounting.
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manufacturing sector but not high-tech industries. Blue bars are other sectors.
Because of the different coding system between CIC and HS, I refer to both the
measure computed above and equity research on high-tech industries to include
the heavy industries excluding wastes, utility and resource mining sectors.18

In Figure 3.4, I plot the total export (log scale) within and outside of HTZs
within HTCs by sector groups. Within HTZs and HTCs, the total export in HTPs
(the dark red line) increases more than other sectors. Within non-HTZs and
HTCs, the total export in both HTPs and sectors closely related to HTPs (the dark
red and light red lines) increase more significantly than the “Far” sectoral group
(the gray line).19 This is within expectation since HTZ is a small subset of HTC
in terms of geographic areas. When looking at granular zone-level statistics, it
makes sense that only policy-relevant industries respond. Notice that the growth
of “close” industries starts to catch up HTI from 2003 and they exhibit similar
trends in growth afterwards.20

18These close-related sectors are petroleum processing, coking and nuclear fuel manufactur,
chemical feedstock and chemical manufacturing industry, chemical fiber manufacturing indus-
try, rubber production industry, plastic industry, non-metallic minerals product industry, ferrous
metal smelting and extrusion, non-ferrous smelting and extrusion, metalwork industry, general-
purpose equipment manufacturing industry. If the granular industry codes are already in the HTI
catergory, they are excluded from the midsteam sectors. The NBS categories between heavy and
light are based on production and its usage.

19Formally, I use the following regression specification within HTC and outside of HTZ.

ln(Ex por t)i j t = βClosei j × Post t + F Es+ εi j t

where Closei j = 1 if observations are in HTC and the closely related industry group of HTI.
F Es consist of the complete set of one-way fixed effects (with j at both sector and product level
respectively). Results are shown in Appendix Table 3.5.The estimate is around 14.47 percentage
points increase in relevant sectoral group compared to the control group.

20As a supplementary check, I also plot the average change from the base year (2000) so
that we can get rid of the level difference. Figure 3.24 shows the average growth for non-HTP
within HTC (inside HTZ v.s. outside HTZ.) Average growth is current-year trade volume divided
by base-year trade volume. This deal with the magnitude difference of absolute value in each
group and focus on the growth trend difference. Figure 3.24-left graph suggests that within
HTZ in HTC, growth rate of both “Close” and “Far” group experienced similar trends. Figure
3.24-right graph suggests that outside of HTZ (in HTC), growth rates in “Close” group exceeds
that in “Far” group significantly from 2003.
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Figure 3.4: Left: Export in HTZ, in HTC. Right: Export outside of HTZ, in
HTC

As a placebo check, I also show the average growth outside of high-tech cities
in Figure 3.25. It suggests that “close” group still exceeds that in “far” group.
This can be an evidence on the spillover effects of the PBIP that happens not
only in targeted locations, but also outside of them.

Regarding the distribution of employment within and outside of targeted
regions/sectors, I start with plotting the empirical cumulative distribution of
targeted industries (HTIs) across prefectures in Figure 3.5.21 Each dot represents
the total employment of each prefecture in HTIs in 1998 and 2007. This plot
shows a concentration of employment at the top, reflected by a right shift of the
empirical cumulative distribution from the red dotted curve (1998) to the green
curve (2007). The median employment of the total distribution does not change
significantly. Moreover, at the bottom, the reduction of employment is reflected
by a left shift below the median.

Figure 3.5: Empirical distribution of high-tech industries

21This distribution comes from the author’s aggregation from the firm-level dataset (Annual
Survery of Industrial Enterprises).
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The plot of the distributional changes of non-targeted sectors is shown in
Appendix 3.7.3 Figure 3.15. The non-HTIs experienced a decrease in most loca-
tions, and there was a less significant increase in employment at the top, com-
pared to that of HTIs. This is reflected by a marginal twist at the very top driven
by the top cities.

Furthermore, I use the following additional descriptive facts to illustrate this
concentration pattern in HTIs compared to that in non-HTIs. First, I use the
Herfindahl–Hirschman Index (HHI) at a more aggregated level to show a simi-
lar concentration pattern of HTI-concentrated industries.22 Second, I show the
scale-rank plots for the truncated local sectoral employment for HTIs (see Ap-
pendix 3.7.3 Figure 3.17) and non-HTIs (Figure 3.18) to compare the distribu-
tional change at the top. These two plots essentially show the tail distribution
of Figure 3.15. Figure 3.17 shows the significant concentration of the HTIs is
driven by the top prefectures, followed by the subsequent ones ranked by size.
Besides distribution by industrial targets, I also decompose the data by loca-
tional targets. In Figure 3.19 (left), I decompose the employment within HTIs
by whether they are located in targeted cities. That is, I show two groups of
employment, based on whether it occurs in HTIs. The red line shows total em-
ployment in HTCs (denoted by “P” in the plot) and the black solid line shows em-
ployment in non-HTCs (“NP”). Both levels increase over time, but employment
in HTIs in HTCs increases faster than it does outside of policy-targeted cities. In
Figure 3.19 (right), I decompose the employment within HTCs by whether they
are categorized as targeted industries. The red line is the same as the left plot,
targeted location-industry pairs. The black solid line is the employment level in
non-HTIs (“NH” on the y-axis), conditional on whether they are in HTCs. This
plot shows increases in both groups that have more aligned paces after policy
implementation while not parallel before policy.

Therefore, I conduct a difference-in-difference estimation with a propensity-
score approach embedded at the aggregate level. The designated HTCs are
mostly the capitals in the provinces, together with a set of relatively developed
prefectures. To help address endogeneity, I use the pre-treatment period to gen-
erate the propensity scores for being in the treatment group from observables.

P
�

1(t reatment)i j|X
�

= f
�

β0 +Xi jβ +Xiη
�

where 1(t reatment)i j indicates whether i j is in HTP and HTZ before 2002.23

22Industry-level concentration measured by HHI in this chapter is specified below,

HHI j t =
∑

i

�

∑

e xei j t
∑

i

∑

e xei j t

�2

where xei j t is employment in firm e, location i, industry j, year t. See results in Appendix 3.7.3
Figure 3.16.

23Robustness checks are done in using different combinations of pre-policy year to estimate
propensity scores.
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f (x) is the logistic function. Xi j are observables aggregated from firm level
in NBS dataset, including city-industry-time level leverage, number of export,
number of SOEs. Xi are aggregates from prefecture-level Statistical Yearbook,
where I include local total population, employment in 2nd (industrial) sector,
employment in 3rd (service) sector, local total public expenditures, local pub-
lic expenditures in science and technology, and some other variables so that we
obtain a propensity score for each city-industry aggregates in terms its probabil-
ity of being in treatment group.24 Then, I construct inverse propensity weights
(IPW) as follows

Zi j t =

(

1
P̂(X i j t )

, if i j t ∈ Treatment group
1

1−P̂(X i j t )
, if i j t ∈ Control group

Figure 3.6 shows propensity scores for treatment and control groups before and
after adjustments. Differences in raw and weighted covariates are summarized
in Section 3.7.5 Figure 3.23. I also plot some other variables before and after
inverse propensity weighting.25

Figure 3.6: Comparison of Propensity

I then estimate the equation with IPW:

yi j t = αTar get i j × Post t + F E +Xi j tγ+ εi j t

Dependent variables are the level of employment in HTIs in HTCs, the concen-
tration ratio (shares of employment in HTCs conditional on industries), and the

24Supported by the export-led policy intention, the propensity assignment precludes obser-
vations without export values.

25To give a more extensive picture of the data, in Appendix 3.7.5, I plot other propensity-
weighted aggregates. See Figure 3.20 for sales, Figure 3.21 for public expenditure in science
and technology, and Figure 3.22 for export intensity.
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specialization ratio (shares of employment in HTIs conditional on cities). These
two sets of ratios are specified in detail together with the regression results.
Tar get i j ≡ 1

�

HT Ci ×HT I j

�

, i.e., 1 if an observation (a location-sector pair)
belongs to the PBIP targets. Post t ≡ 1(t > 2002) indicating post-policy peri-
ods. F E consists of one-way (location, sector, time) fixed effects and a full set
of two-way interacting fixed effects. Xi j t indicates a set of controls. Specifi-

cally, i j t-level export intensity is computed with
∑

e 1(xei j t∈({Ex por t},i j t))
∑

e 1(xei j t∈ i j t) . i j t-level

state-owned enterprise (SOE) intensity is computed with
∑

e 1(xei j t∈({SOE},i j t))
∑

e 1(xei j t∈ i j t) . And
I also include mean leverage ratio at i j t-level aggregated from firms’ informa-
tion. Outcome variables are either levels or shares of employment. Regression
results are shown in Table 3.2.

Table 3.2: IPW-DID Estimation

Variables Share (j) Share (j) Share (i) Share (i) Level (log) Level (log)
(1) (2) (3) (4) (5) (6)

Tar get i j × Post t 0.0042** 0.0041** 0.0001 -0.0000 0.1636** 0.1677**
(2.2139) (2.1574) (0.0699) (-0.0057) (2.2129) (2.3255)

Year FE Ø Ø Ø Ø Ø Ø
Location FE Ø Ø Ø Ø Ø Ø
Industry FE Ø Ø Ø Ø Ø Ø
Interacting FEs Ø Ø Ø Ø Ø Ø
Controls Ø Ø Ø
Obs. 36,292 36,260 36,292 36,260 36,292 36,260
R2 0.8896 0.8903 0.9195 0.9196 0.8806 0.8879
(t statistics in parentheses, with clustered s.e.)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

This table reports three types of outcome variables. First four columns are
relative shares, and the last two columns are levels (log scale). Specifically, in

Column (1) and (2), Share( j) ≡ si j t| j ≡
∑

e xei j t
∑

i

∑

e xei j t
are the shares of employment

in city i, industry j and year t, conditional on industry j. This measures spatial
concentration of an industry. I use concentration ratio, λind , to refer to these

shares in later sections. In Column (3) and (4), Share(i) ≡ si j t|i =
∑

e xei j t
∑

j

∑

e xei j t

are the shares of employment in city i, industry j and year t, conditional on
city i. This measures industrial specialization within a location. I use special-
ization ratio, λloc, to refer to these shares hereafter. In Column (5) and (6),
Level(log) ≡ yi j t =

∑

e xei j t are total employment in city i, industry j and year
t in log scale.

Since our purpose is to evaluate the effects of the policy, the key difference-
in-difference coefficient (α) is what we are interested in. It measures the effects
of the PBIP on the treated group (targeted industries and targeted locations)
compared to that in the non-treated group, considering the probability that each
industry-location-year observation receives treatment. Results indicate that the
average effect of being in the targeted group is around 0.41 percentage points
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increase in the local share of the nation total for the industry, and an increase of
around 16.8 percentage points in the growth of employment level. However, the
share of HTIs out of the local total employment does not respond significantly.

Then, I conduct event studies with following specification:

Sharei j t =
2007
∑

t=1998

βt−2002Polic yi j × Yeart + F Es+Xi j tγ+ εi j t

where Sharei j t indicates conditional shares (either sectoral or regional, specified
in the following figure). F Es consists of the complete set of one-way and two-
way fixed effects (δi,δ j,δt ,ηi t ,ηi j,η j t). Xi j t are controls (export share, SOE
share, and average leverage). Results are shown in the following plots.

Figure 3.7: Left: Conditional on industry (i.e., concentration ratio λind).
Right: Conditional on location (i.e., specialization ratio λloc)

Figure 3.7-Left and Figure 3.7-Right show the share conditional on the in-
dustry (si j t| j) and the share conditional on location (si j t|i) respectively. The co-
efficient of the year before the policy was implemented has been normalized to
zero. Standard errors are clustered at the city-industry level. It shows a relatively
significant increase in concentration ratio in the post-policy period, compared to
that of specialization ratio on average.

In summary, the above empirical evidence show that the 2002 PBIP in China
drives employment and productivity growth in targeted industries and targeted
locations. However, it also drives non-targeted industries to targeted locations
so that the industrial mix in targeted locations does not change significantly.
Granular export analysis supplements the main empirics from a zone-level per-
spective, suggesting that the PBIP generates regional spillover effects along the
production network. Moreover, these effects mainly occur in outside of the zone
within prefectures, suggesting that the spillover effects could occur up to a spe-
cific spatial granularity.
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3.3 Model

In this section, I develop a quantitative general equilibrium model that incorpo-
rates spatial sorting of heterogeneous firms, input-output linkages across sectors,
trade between locations, and agglomeration externalities.

3.3.1 Environment

Locations are indexed by i ∈ I = {1, ..., I}. I use Li j to indicate local sectoral em-
ployment. Locations are ex-ante identical. The number of locations is assumed
to be discrete for tractability.26

Sectors are indexed by j ∈ J = {1, ..., J}. Within each sector j, there is a
continuum of heterogeneous firms. Each firm in this sector draws a productivity
z j from F

�

z j

�

. Upon entering location i, a firm with productivity z j takes the
set of local sectoral size {Li j} as given and choose local labor inputs `

�

z j

�

and
composite inputs x i, j′ j

�

z j

�

. Production function is Cobb-Douglas

y
�

z j; Li j

�

= A
�

z j, Li j

�

`
�

z j

�α j
∏

j′∈J

x i, j′ j

�

z j

�(1−α j)γ j′ j

A
�

z j, Li j

�

is the firm-specific productivity with agglomeration externalities em-
bedded. Assume the cost of labor is constant across locations. The cost of com-
posites Pi j is at location-industry level to be determined in general equilibrium.
Given the production structure, unit costs take the following form

ci j ≡ w
α j

i

∏

j′
P
(1−α j)γ j′ j
i j′

Intermediate products are in monoplistic competition. They take the demand
from all other locations (referred as “global” demand) as given and set price for
varieties. Thus the profit maximization problem upon entry is

max
pi(z j)

χi j

�

pi

�

z j

�

−
κc, jci j

A
�

z j, Li j

�

�

∑

i′
qi

i′(z j)

︸ ︷︷ ︸

global demand i→i′

where κc, j ≡
α
−α j
j

∏

j′ (γ j′ j(1−α j))γ j′ j (1−α j )
is a sector-wise constant. χi j is the place-based

industrial policy on a firm’s profits. The intermediate inputs above are assembled

26In Appendix 3.7.9, I extend this setup to a continuum environment.
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with a CES aggregator as follows:

Q i j =

�

∑

i′

∫

Zi′ j

qi′

i

�

z j

�1− 1
σ j dF

�

z j

�

�

σ j
σ j−1

qi′
i

�

z j

�

is the intermediate goods used to produce Q i j shipped from i′ to i. From
the final goods producers’ perspective, these will be the composite inputs x i, j′ j

�

z j

�

in the Cobb-Douglas production function. These composite goods are sold at
price τi′ i pi′

�

z j

�

.27 The set of local sectoral price indices Pi j is determined in
equilibrium. Zi j denotes the set of producers in sector j choosing to locate at
city i in equilibrium. We will revisit this when characterizing firms’ locational
choices.28 With monoplistic competition, we can obtain the demand for inter-
mediate z j at location i from i′

qi′

i

�

z j

�

=

�

pi′(z j)τi′ i

Pi j

�−σ j

Q i j

where sectoral-local price index is Pi j =
�

∑

i′

∫

Zi′ j

�

pi′(z j)τi′ i

�1−σ j dF
�

z j

�

�
1

1−σ j
.

Input choices are

`i

�

z j; Li j

�

= κ`, j

�

A
�

z j, Li j

�

ci j

�σ j−1 GD
i j

wi

x i, j′ j

�

z j; Li j

�

= κx , j′ j

�

A
�

z j, Li j

�

ci j

�σ j−1 GD
i j

Pi j′

where κ`, j and κx , j′ j are constants.29 Thus, pre-policy profits for firms choosing
location Li j are

πi

�

z j; Li j

�

= κπ, j

�

A
�

z j, Li j

�

ci j

�σ j−1

GD
i j

27One can think of a competitive market of the assembling intermediate goods into composite
goods together with the shipping process, which is captured by iceberg trade costs {τi′ i}.

28In Appendix 3.7.11, I discuss the model extension of entry costs.
29Specifically,

κ`, j ≡
�

σ j

σ j − 1

�−σ j

α
1−α j(1−σ j)
j

∏

j′∈J

��

1−α j

�

γ j′ j

�−(1−σ j)(1−α j)γ j′ j

κx , j′ j ≡
�

σ j

σ j − 1

�−σ j

α
α j(σ j−1)
j

�

1−α j

�

γ j′ j

∏

j′′∈J

��

1−α j

�

γ j′′ j

�(1−α j)γ j′′ j(σ j−1)
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where A
�

z j, Li j

�

is the composite term of agglomeration externalities. ci j ≡
w
α j

i

∏

j′ P
(1−α j)γ j′ j
i j′ summarizes inter-sectoral effects, GD

i j ≡
∑

i′ τ
−σ j

ii′ P
σ j

i′ j Q i′ j stands
for a local-secotral global demand shifter, which summarizes inter-regional ef-
fects. κπ, j is a sectoral constant30. Locational choices are characterized by firm
sorting: L∗i j

�

z j

�

= argmaxLi j
π
�

z j, Li j

�

. In laissez-faire, firms choose locations
to produce where the marginal benefit from agglomeration offsets the marginal
production costs conditional on the industry31. Welfare loss comes from a firm’s
distorted choice of location, leading to sub-optimal locations in decentralized
equilibrium because of the existence of agglomeration. Thus, policies can po-
tentially enhance total welfare in the status quo.32

Consumers are identical and freely mobile. Assume perfect elastic labor sup-
ply. They earn wage and transfers/pay lump sum tax, and maximize utility by
choosing a Cobb-Doublus bundle of final goods.

max
{Ci j}

Ui =
∏

j

C
η j

i j

where
∑

j η j = 1, subject to the budget constraint. Note that Ci j is the consump-
tion of composite goods in location i and sector j. These composites share the
same CES aggregator over differentiated variaties.

Policies on firms are in form of wedges denoted by χi j. Governments levy
tax on (or give transfers to) consumers to finance the subsidies to (or levy taxes
on) firms.33

∑

j

χi j

∫

Zi j

πi(z j)dF(z j) = t i

∑

j

Li j

3.3.2 Equilibrium

Given fundamentals and policy wedges of an economy, a general equilibrium
consists of a vector of local sectoral prices, quantities, scales, and firms’ location
choices such that: (1) firms maximize profits at the location they choose, i.e.,
i∗(z j) = arg maxi∈I {πi(z j;Θ), 0}. Once entering a location, they choose prices

30Specifically, κπ, j ≡
(σ j−1)σ j−1

σ
σ j
j

α
α j(σ j−1)
j

∏

j′∈J

��

1−α j

�

γ j′ j

�(1−α j)γ j′ j(σ j−1)

31A mathematical derivation can show this intuition more explicitly when extending the
model to continuum locations. See Appendix 3.7.9.

32In my framework, because of endogenous spatial sorting, the firm-level equilibrium differs
from quantitative trade models with random draws from the Fréchet distribution of observing
the lowest price as in Eaton and Kortum (2002) [94].

33If χi j is the rate of taxes on firm’s profits, and t i is local transfers on consumers. The model
is general in terms of which side to levy tax on. More wedge specifications can be found in
Appendix 3.7.10.
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pi

�

z j

�

, as well as labor and intermediate inputs {`i

�

z j

�

, x i, j′ j

�

z j

�

}. (2) Con-
sumers choose {Ci j} to maximize utility. (3) Government budgets are balanced.
(4) Trade flows are balanced. (5) Goods markets clear. (6) Labor markets clear.
(7) Free mobility condition is satisfied.

With optimal locational choice function implicitly determined above, labor,
composite input choices, and revenue can be written as follows.

`i

�

z j

�

=
κ`, j

χi jκπ, j

πi

�

z j, L∗i j

�

z j

�

�

wi

x i, j′ j

�

z j

�

=
κx , j′ j

χi jκπ, j

πi

�

z j, L∗i j

�

z j

�

�

Pi j′

ri

�

z j

�

=
κ

1−σ j

p, j

χi jκπ, j
πi

�

z j, L∗i j

�

z j

�

�

The above indicates that productive firms sort into larger locations. This is con-
sistent with what we observe in data. I show the sorting pattern in the Appendix
3.7.7 Figure 3.26, which depicts the relationship between estimated firm pro-
ductivity and local sectoral scale. This also provides rationale in Section 3.5.

Moreover, sectoral bilateral trade flows in equilibrium can be expressed as
follows

X (i, i′)| j =






(Ai j(z

∗
j ))

σ j−1

︸ ︷︷ ︸

productivity index

c
1−σ j

i j
︸︷︷︸

unit cost







︸ ︷︷ ︸

home market effect

τ
1−σ j

ii′
︸︷︷︸

trade effect

P
σ j

i′ j
︸︷︷︸

price charged in sales

Q i′ j

︸ ︷︷ ︸

global market effect

where Ai j(z∗j ) is at location-sector-level instead of firm-level, and z∗j is the sec-
toral productivity threshold in equilibrium. In the rest of this chapter, I do not
carry (z∗j ) for simplicity unless specified. And it turns out to be handy to useAi j

to denote the composite productivity term with both externalities and sorting
embedded, incorporating agglomeration and inter-regional effects. Specifically,

Ai j ≡

 

∫

Z ∗i j

A
�

z∗i j, Li j

�σ j−1
dF j(z)

!
1

σ j−1

Local sectoral outflows of goods X (i, j) exhibit the general gravity form as
in international trade literature, but augmented with agglomeration externali-
ties, spatial sorting mechanism, and production network terms. The following
equation represents the total trade outflow from location i in industry j in this
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model.

X (i, j) =

�

∑

r∈I

�

τricr j

Ar j Pi j

�1−σ j
�

Ψi jW

where ci j denotes local sectoral unit cost. Note that this cost incorporates inter-
sectoral effects. W is the general equilibrium effects through [ηw̃L], which em-
beds size distribution and disposible income. Ψi j (with dimension 1 × I J) is a
row of (I−Φ)−1 where

Φ≡

























κx ,11CA11τ
−σ1
11 Pσ1−1

11 · · · κx ,11CA11τ
−σ1
1I Pσ1−1

I1 · · · κx ,1J CA1Jτ
−σJ
1I PσJ−1

I J
...

...
...

κx ,11CAI1τ
−σ1
I1 Pσ1−1

11 · · · κx ,11CAI1τ
−σ1
I I Pσ1−1

I1 · · · κx ,1J CAI Jτ
−σJ
I I PσJ−1

I J
...

...
...

κx ,J1CA11τ
−σ1
11 Pσ1−1

11 · · · κx ,J1CA11τ
−σ1
1I Pσ1−1

I1 · · · κx ,JJ CA1Jτ
−σJ
1I PσJ−1

I J
...

...
...

κx ,J1CAI1τ
−σ1
I1 Pσ1−1

11 · · · κx ,J1CAI1τ
−σ1
I I Pσ1−1

I1 · · · κx ,JJ CAI Jτ
−σJ
I I PσJ−1

I J

























It is as if a generalized “Leontief inverse”, where Φ is a composite matrix sum-
marizing inter-sectoral/regional effects.34 The advantage of writing the Φ as the
above form is that it can be easily decomposed into

Φ≡ (L (κ, CA) ◦ G (τ, P))(I×J)×(I×J)

where L denotes the local pricing power effect with κx , j j′ reflecting local I/O
structure, i.e., how j is technologically required by industry j′. CAi j measures
competitiveness, i.e., firm-level productivity devided by city-sector level cost,
dampended by sectoral elasticity. G denotes the global market buyer effect with
τii′ denotes trade from i to i′ and Pi′ in the last subscript denotes local price
index in the destination markets.35 Note that the benchmark model presented
above does not consider factor-based PBIP. In Appendix 3.7.10, I differ the policy
wedges on different factors of production. And I show that the above general
equilibrium absorption matrix (Φ) preserves a similar form that adds an outer-
layer policy filter.

3.4 Numerical Simulation

In this section, I use simple economy examples to illustrate equilibrium local
sectoral scales with comparative statics. Then I provide relevant supplementary

34In Appendix 3.7.13, I also explain how it relates to Acemoglu et al. (2012) [95] and derive
analagous expressions for concentration ratio and specialization ratio.

35See Appendix 3.7.13 for derivation details. An illustration of this matrix in a simple econ-
omy is also shown.
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empirical evidence with the Chinese data.

First, I simulate the model in a 2 × 2 economy to illustrate how policies
can drive industrial clustering. Figure 3.8 shows a graph to highlight inter-
regional and inter-sectoral linkages in the simple economy. Red arrows high-
light within-location and inter-sectoral flows (through input-output linkages) of
composites (Q i j) at cost Pi j. Blue arrows highlight across-location and intra-
sectoral (through trade) flows of varieties (yi(z j)) at cost pi′(z j)τi′ i. Solid lines
are production processes, while dashed lines are consumption.36 In Appendix
3.7.13, I seperately illustrate inter-sectoral flows and inter-regional flows, and
show derivation for key conditions with agglomeration and sorting mechanisms
embedded.

y1(z1) y2(z1)

y1(z2) y2(z2)

Q11

Q12

Q21

Q22

L1 L2

Figure 3.8: An illustrative example with I = 2 and J = 2.

Consider local subsidies given to a specific location-industry pair (i = 2, j =
2), with the rate of linear firm subsidies ranging from 1% to 20%. Figure 3.9
shows the result. The x-axis shows the change of policy. And y-axis shows dif-
ferent equilibrium outcomes. Li j indicates the employment in location i and
sector j. The upper-left panel shows the employment in location 1, in which the
dashed line indicates sector 1 and the solid line indicates sector 2. The upper-
right panel shows employment in location 2, in which the dashed line indicates
sector 1 and the solid line indicates sector 2 (PBIP target). The lower-left panel
shows the concentration ratio of the PBIP target (λind

22 ≡
L22

∑

i Li2
). The lower-right

panel shows the specialization ratio of the PBIP target (λloc
22 ≡

L22
∑

j L2 j
).37 These

numerical exercises are in line with the empirical patterns we show in empir-
ical evidence. The policy is targeted at a specific industry-location pair38, and

36With a bit abuse of notation, Li ≡
∑

j Li j in the illustrative graph.

37More details on numerical experiment are in Appendix 3.7.14 where I show equilibrium
conditions and related results.

38In this example, i = 2, j = 2. The choice of the location-sector pair here is without loss of
generality.
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the policy also drives the expansion in non-targeted industries. As a result, we
see that targeted industries are concentrated in targeted locations (from around
61.8% to 66.2%). However, the industry mix is not dominated disproportion-
ately more by targeted industries. Instead, this number has dropped, although
by a relatively small amount (from around 53.6% to 52.5%).

Figure 3.9: Numerical experiments on key statistics varying PBIP

Furthermore, I use the simulation to explore how concentration ratio and
specialization ratio respond to the change in policy intensity (∆χ22 as above)
when varying agglomeration externalities and production network technolo-
gies. First, I consider an increase in the agglomeration externality parameter,
and plot two ratios against policy changes as in Figure 3.10. The left plot shows
the change in concenration ratio (λind) with respect to an increase in PBIP. And
the right plot shows the change in specialization ratio (λloc) with respect to an
increase in PBIP. The positive slope in the left plot suggests a positive elastic-
ity of the concentration ratio with respect to policies, which is dampened when
increasing the extent of externalities. And the right plot suggests that the spe-
cialization ratio decreases in policies, although both the elasticity, and its change
between comparative statics, are relatively small, compared to these of the con-
centration ratio.39

39Equilibrium scales in location-sector pairs are shown in Appendix 3.7.14 Figure 3.30.
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Figure 3.10: Numerical experiments varying PBIP and agglomeration ex-
ternalities

Then, I consider changes in the production network and plot two ratios
against policy changes as in Figure 3.11. The left plot shows the concentra-
tion ratio increases when production networks are less effective, i.e., I/O matrix
more diagonally dominant (denoted by “I/O stronger diag” in the plot). How-
ever, the right plot shows that when this happens, there is a decrease in the
specialization ratio, reflected by λloc becoming flatter (the red dashed curve).
This is because the extent of the expansion in other industries (that are other-
wise “relevant” to the targeted industry) decreases. In other words, when I/O
linkages play an important role, the expansion of targeted industry in targeted
location is accompanied by at least equally strong expansion of other related
industries. However, if industries other than targeted ones are less connected
with the targeted industry, the industrial mix can be dominated by the change in
targeted industry, or do not show strong spillover effects along the production
network.40

40Details about this figure are shown in Appendix 3.7.14 Figure 3.31.
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Figure 3.11: Numerical experiments varying PBIP and production networks

At last, I present supplementary evidence on aggregate employment effects.
These give a more complete picture of the empirical facts, and potentially enlight
further studies. I have documented that high-tech industries experience more
significant employment increase than non-high-tech industries when responding
to the place-based policy. Furthermore, the place-based effects are more signifi-
cant for industries that are less connected with high-tech industries, conditional
on non-HTI. This suggests the relatively more important role of agglomeration.
Specifically, I apply the propensity approach in Section 3.2.2 together with the
following difference-in-difference estimation conditional on sectors.

yi j t = αHT Ci × Post t + F E +Xi j tγ+ εi j t , j ∈ G

where G indicates aggregation groups (HTI, non-HTI and their further decom-
posed groups). Regression results are shown in Appendix 3.7.6 Table 3.6 and
Table 3.7. Table 3.6 column (1) and (2) are regression results for the average
effects of being in HTC after policy implementation on total employment in HTI
in each city-industry pair. Column (3) and (4) are effects for non-HTI with the
same set of controls. Table 3.6 shows results for similar econometric specifica-
tions but further decomposes the non-HTI in sectors with their relation with HTI
based on I/O relevance (as in Section 3.2.2). Table 3.7 Column (1) and (2) are
for that in non-HTI but closely connected with HTI (referred as “Close”). Col-
umn (3) and (4) are for that in non-HTI but far from the targeted ones (referred
as “Far”).41 Note that the aggregate evidence relies on the city as the geograph-
ical unit, instead of more granular level such as zones. The city is the relevant
level of granularity supported by the trade analysis shown in 3.2.2 when seper-
ating within- versus out-of-zone patterns conditional on high-tech cities. And

41In addition, I analyze the effects by SOE groups. It turns out that non-SOEs respond more
than SOEs. Results are shown in Appendix 3.7.6 Table 3.8.
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this gives a rationale to quantify externalities by taking the model to data at
aggregate spatial levels.

3.5 Quantitative Analysis

In this section, I take the model to Chinese data designing an approach to quan-
tify externalities, and analyze aggregate effects through the lens of the model.

The model allows us to measure key primitives Θ∗ by changes in the sorted
distribution of local sectoral equilibrium outcomes in response to policy changes,
i.e.,

Θ∗ =F−1
�

L̂, χ̂, P̂, Q̂
�

This differs from previous research by using the spatial sorting moments de-
rived from firm sorting and taking into account the agglomeration and produc-
tion networks. It is new on top of related studies, for example, Bartleme et al.
(2021) [86]without the choice of location, Caliendo and Parro (2015) [83]with-
out agglomeration and the choice of location, and Gaubert (2018) [7] without
production networks. Some primitives are first calibrated as in standard liter-
ature. I/O matrix Γ comes from the Chinese I/O Table at the national level.42

Based on the Chinese industry coding system, the I/O Table includes 135 sectors,
with 80 manufacturing sectors relevant to this chapter, instead of a complete set
of sectors at the CIC 4-digit level. For the purpose of this quantification, I con-
duct a crosswalk of industry codes between CIC and the Chinese Input-Output
Table with an aggregation. I use Figure 3.38 in Appendix 3.7.16 to show the in-
termediate input usage from an industry (along the vertical axis) from any other
industries (along the horizontal axis) in the original I/O Table. The labor share
(0.23) is calibrated from the wage bills in the Chinese NBS for manufacturing
sectors. Inter-regional trade costs T are taken from the mean of Tombe and Zhu
(2019) [96].43

Then, to quantify agglomeration externalities, I utilize the distribution of
agglomeration-embedded TFP in terms of distribution of policies, inter-sectoral
linkages, and inter-regional trade to back out externalities. The simplified equi-
librium conditions are the following:

Â+i j = E






χ̂+i j
︸︷︷︸

Policy

, ĉ+i j
︸︷︷︸

I/O

, Ĝ+i j
︸︷︷︸

Trade

;Θ






, ∀i ∈ I \ {I}, j ∈ J

42In this section, by industry, I mean sectors categorized in the I/O Table. The I/O Tables at
national level across time can be found on the NBS website, which are different from regional
tables.

43See Appendix 3.7.18 Figure 3.42 for values of these costs at the regional level.
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where Â+i j ≡
Â(z̃i, j ,Li, j)

Â(z̃i+1, j ,Li+1, j) , χ̂
+
i j ≡

χ̂i, j

χ̂i+1, j
, ĉ+i j ≡

ĉi, j

ĉi+1, j
, and Ĝ+i j ≡

Ĝi, j

Ĝi+1, j
. ci j is the lo-

cal sectoral unit cost taking into account I/O linkages as specified in the model
section. Gi j ≡

∑

i′ τ
−σ j

ii′ P
σ j

i′ j Q i′ j represents global demand taking into account
inter-regional trade frictions. The i in the above set of moments denotes the
sorted location index, i.e., conditional on each industry, variables are sorted by
local sectoral scales (Li j). This sorted distribution features the spatial sorting
equilibrium when firms make locational choices. And I take these to a nonlin-
ear least square estimation. There are a couple of notes regarding bringing the
model to data. First, these i’s are at the regional level because of data avail-
ability for inter-regional trade costs, and effective values in aggregation. In this
quantification, there are eight broad domestic regions in total.44 Second, as for
agglomeration externalities, I adopt the functional form Ai j(z, L) = z j L

θ j

i j as in
Bartelme et al. (2019) [86]. In general, with a separability assumption between
a firm’s productivity and a local sectoral agglomeration externality, the above
set of moments can be simplified to be reshaped scales as a function of the com-
posite terms.45

The mean of agglomeration externalities obtained with my model is 0.115.
Figure 3.34 shows the results by sector, where HTIs turn out to have relatively
larger externalities, led by the pharmaceutical industry as the top one (0.494).46

I also use Figure 3.35 to compare the model-based EES from my approach with
that in some well-cited recent studies vis-à-vis comparable manufacturing sec-
tors. Specifically, I compare the distribution with Lashkaripour and Lugovskyy
(2017) [97] (the curve noted as “LL(2017)” in the graph), Gaubert (2018) [7],
Bartleme et al. (2019) [86] (the curve noted as BC DR, 2019 in the graph),
and Bakker (2021) [90]. Both Gaubert (2018) [7] and Bakker (2021) [90]
(curves in red) have different parametric forms of agglomeration externalities
with my setup.47 Lashkaripour and Lugovskyy (2017) [97] and Bartleme et al.
(2019) [86] are more comparable in terms of parametric forms.48

44Specifically, these regions are Northeast, Beijing/Tianjin, North Coast, Central Coast, South
Coast, Central, Northwest, and Southwest.

45An alternative approach is to pin down policy changes χ̂i j instead of directly using ad-
ditional moments. The aggregated observables in the time series appear in Appendix 3.7.16,
Figure 3.32. The way to obtain policies is not directly in policy levels, but rather in changes.
Theoretically, we could use model structure to back out the distribution of changes of policies
(χ̂+i j ≡

χ̂i, j

χ̂i+1, j
,∀i ∈ {1, ..., I − 1}) conditional on externalities backed out through inter-regional

trade flows. However, it works worse because of the necessary higher-level aggregation. Details
are shown in the appendix.

46The second highest industry within HTIs is the electronic equipment industry (0.301).
47They attempt to separate log-supermodularity externalities. The comparison plot uses log-

linear EES.
48The sector standing out in the estimation of Lashkaripour and Lugovskyy (2017) [97] is the

broad Petroleum Industry. The data used in my chapter does not include the raw exploration of
petroleum while includes the petroleum processing.
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The main reason for not using conventional exact-hat algebra in my paper is
that it does not provide sufficient quantification convenience in this specific en-
vironment.49 Compared to the conventional exact-hat algebra, my approach has
several benefits specific to the question and data counterparts. First, focusing
on the distributional change allows me to quantify agglomeration externalities
without relying on the estimated TFP and inter-regional trade. Bilateral trade
flow data are normally hard to get at the micro level (such as zone, city, or
county). Second, relative terms summarize changes in distribution. This can
help address the extent to which the policies are targeted to HTI-HTC. If mea-
suring in levels, I see nonzero policies in most locations and industries. How-
ever, when using changes, I focus on the location-sector pairs that are receiving
disproportionately more policies. With a level-removed change in policies, it
is more convincing to use the observed distributional changes across locations
within a sector associated with a policy change to obtain the magnitudes of
agglomeration externalities. Accordingly, from an empirical concern, the data
counterpart of χ̂i j can be a better measurement for policy.50 However, a major
cost of this approach is the necessary aggregation. According to the data, not
all locations and industries export at the granular level.51 So in my context, the
aggregation helps preserve relevant variations to some extent.

Then, I measure the aggregate effects of the 2002 PBIP, using the parame-
ters quantified in the above section and the data counterparts. To do this, I first
depict the pattern of positive sorting at the sector level. Figure 3.36-upper plot
shows the revenue (log scale) of each location-industry pair (each cell) in 2007.
Locations are sorted from the smallest to the largest (1 for the smallest, 8 for the

49To see this, we can derive the exact-hat algebra-equivalent key conditions as follows:

f
�

L̂i j;θ j ,σ j

�

= κ̂`, j F̂ E i
ˆ̄T F Pi j

 

∏

j′
P̂
(1−α j)(1−σ j)γ j′ j

i j′

!

∑

i′
φG

ii′, jτ̂
−σ j

ii′ P̂
σ j−1
i′ j R̂i′ j

where φG
ii′, j ≡

τ
−σ j
ii′ P

σ j−1

i′ j Ri′ j
∑

k τ
−σ j
ik P

σ j−1

k j Rk j

. Note that domestic bilateral trade flows πG
ii′, j are not available at

disaggregated level. In addition, we need to use estimated ¯T F P.
50As a supplementary support, I utilized a novel dataset on local-sectoral infrastructure in-

vestments to help illustrate policy variations. This is by far the most complete record on Chinese
infrastructure investments. Changes in the distribution of infrastructure investment aggregated
by policy targets (location-industry pairs) are shown in Appendix 3.7.2 Figure 3.13. Although
we have to admit the concerns on measured policy levels, these plots show that there are more-
significant changes in infrastructure investment distribution in HTI-HTC, especially compared
to those in non-HTIs.

51In Appendix 3.7.19 Figure 3.43, I show the distribution of positive exporting value in Au-
tomobile and Motor Vehicle Equipment Manufacturing (C IC = 3725) at the prefecture-level.
Many prefectures do not have exports in specific sectors. With aggregation at the province level
(see Figure 3.44), there are still provinces with no effective data. This decreases effective total
observations, although it helps eliminate sparsity when dealing with granular variations.
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largest) from up to down.52 These appear in brighter yellow on the bottom com-
pared to the darker blue on the top conditional on sectors. Figure 3.36-lower
plot shows the average revenue increasing in regions across sectors, indicating
the positive sorting by industry holds on average. Bringing together prepolicy
and postpolicy outcomes in data counterparts and the aggregate welfare mea-
sure through the model structure, I find that the current PBIP increases aggregate
welfare by 1.71%. The positive welfare gain at the aggregate level provides a
rationale to implement the policy by taking advantage of local agglomeration
externalities together with intersectoral linkages, inter-regional trade, and firm
sorting. This gain at the aggregate level comes from the fact that local sectoral
nominal consumption is boosted, accompanied by an limited increase in the
composite costs. The intuition is that costs are relatively stable when produc-
tive firms are not drastically crowded out. This, in turn, makes it possible that
inter-regional trade accelerates the price advantages in policy targets.

At last, I use the model to quantify the distributional changes in the general
equilibrium effects. Consider rewriting the change in local sectoral competitive-
ness (referred as composite advantages) with the following expression

ĈAi j ∝
�

A ′
i j/Ai j

�

︸ ︷︷ ︸

sorting w/ EES

�

c′i j/ci j

�−1

︸ ︷︷ ︸

inter-sectoral linkages

�

G′i j/Gi j

�

︸ ︷︷ ︸

inter-regional trade

where Ai j =
�

∫

Zi j
A(z j, Li j)σ j−1dF j(z)

�
1

σ j−1

and Gi j =
∑

i′ τ
−σ j

ii′ P
σ j−1
i′ j Yi′ j. Figure

3.12-upper plot shows the composite advantage in changes (pre- and postpol-
icy). The blue bars are CA computed with G as local demand (G̃i j = P

σ j−1
i j Yi j),

while the red bars are the CA computed with G as global demand (Gi j). Figure
3.12-lower plot shows the difference between two cases with local demand and
global demand. It turns out that the existence of inter-regional trade in general
equilibrium (i.e., when triggering the global demand shifter), the relative com-
posite advantage∆CA≡ ĈA

global
i j −ĈA

local
i j reverts a set of sectors from a decrease

to an increase in CA.53 Special chemical products, automobile, electromechan-
ics, other electronic equipment, normal chemical products are sectors benefiting
the most. In Figure 3.37, I normalize the distribution of ∆CA to illustrate sec-
toral beneficiaries. I highlight HTI industries with blue bars.54 These suggest

52Eighty sectors based on the the China Input-Output Table. The employment levels and
changes are shown in Appendix 3.7.16 Figure 3.33.

53Vegetable oil processing is the only sector standing out for a higher change in CA (18.98)
that is excluded, followed by Sugar (2.88) as the second (in terms of the change in CA) excluded
food-related manufacturing sector in the non-HTI group.

54Figure 3.37 shows sectors with increase in CA that are non-food manufacturing, sorted from
the smallest to the largest. Note that this plot normalizes the distribution of changes. Regarding
the raw ∆CA, most industries experienced an increase (74 out of 80), except for (1) 20-Textile
and clothing, shoes, hat; (2) 17-Hemp textile, silk textile, and fine processing; (3) 6-Aquatic
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that both targeted and non-targeted industries’ competitiveness are boosted on
average, especially other industries that are users or suppliers of HTIs.

Figure 3.12: Upper: Sectoral Changes in Competitiveness with and without
Market Assess. Lower: Differences in Competitiveness (ĈA)

3.6 Conclusion

In this chapter, I study the aggregate consequences of place-based industrial
policies (PBIPs) from both empirical and model-based perspectives.

Using Chinese firm-level data sets and a policy shock (the Second Entrepreneur-
ship Initiative in High-Tech Industrial Development Zones), I find that this policy
induced significant cross-industry, within-location spillovers. The 2002 PBIP
drives employment growth in targeted industries and targeted locations. But
it also drives nontargeted industries to targeted locations so that the industrial
mix in targeted locations does not change significantly. In addition, the spillover
effects is at a broader area compared to observed granular outcomes. I provide
supportive empirical evidence that responding to the 2002 PBIP, total export is
most significant in policy-targeted zones within policy-targeted cities, while the
spillover effects along the production network are more significant outside of
policy-targeted zones within policy-targeted cities.

Then, I build a quantitative general equilibrium model incorporating firm
sorting, external economies of scale, and production networks to understand
productivity growth under PBIPs. In this multisector and multilocation frame-
work, each firm endogenously sorts into different locations and products based
on the idiosyncratic productivity, production networks, externalities, and trade

products processing; (4) 14-Tobacco products; (5) 28-Coking; (6) 65-Shipbuilding and floating
equipment.
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frictions across locations. Firms trade off between local agglomeration bene-
fits and the cost of congestion driven by proximity to suppliers of intermediate
goods. Agglomeration externalities imply that productive firms are dispropor-
tionately more productive in larger locations. Agglomeration externalities in
this framework are at the location-sector level and are scale-based. The intu-
ition is that both the total scale and the industry structure respond in general
equilibrium at the local level, and both channels can absorb unintended policy
consequences. To quantitatively analyze the effect of PBIPs, I propose a new
approach to quantify agglomeration externalities by using the change in equi-
librium distribution and the exact-hat algebra in the literature on international
trade. The idea is to use the changes in the distribution of sectoral employment
across locations that respond to policy shocks to obtain sectoral agglomeration
externalities. Quantitative analysis shows that current PBIPs increase aggregate
welfare. This comes from the fact that the gain in competitiveness to policy
beneficiaries in targeted locations and targeted sectors outweighs the loss from
nontargeted sectors in both targeted and nontargeted locations. In addition,
the increase in nominal income outweighs the increase in price indices. The co-
existence of firm-sorting and agglomeration accelerates profitability in general
while keeping cost increases relatively low, so that more economic potential is
realized.

This study has the following policy implications. First, the existence of ex-
ternalities provides a rationale for place-based policies and/or industry-based
policies. Second, policymakers should be careful in supporting specific industry-
location pairs. Scale and structure are not independent. Whether policies tar-
geted at specific regions and sectors can enhance total welfare depends on how
externalities interact with spatial sorting and input-output technologies. A pol-
icy favoring a specific sector in a region may eventually hurt other sectors in the
same region through agglomeration together with sorting channels.

3.7 Appendix

Appendix: Supplementary Evidence on Local Responses to the
National Guidelines

The following are local policies implemented responding to the “Second En-
trepreneurship” national guideline. The most detailed set of policies found is in
Xi’an. Selected local policies55 responding to the national guidelines are shown
below.

• Interim Policy Implementation of Housing Subsidies for R&D Institutions

55Implementation on the Price of Industrial Land, by the Administrative Committee of Xi’an
High-Tech Zone.
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– Policy incidents: companies/centers that are establised in the Xi’an
High-tech zones on and after Janurary 1st, 2003. Specifically, these
consist of Fortune 500 companies, R&D institutions of well-known
international companies, R&D institutions of domestic publicly listed
companies, R&D institutions (designated as national-level, including
technology development centers, engineering centers, and technol-
ogy testing centers).

– Subsidies:

1. R&D institutions of Fortune 500 companies and top 10 well-
known companies in the international ranking receive a one-time
subsidy of 500,000 RMB.

2. R&D institutions of domestic listed companies, national-level R&D
institutions, including technology development center, engineer-
ing center, and technical testing center receive a one-time sub-
sidy of 300,000 RMB.

• Interim Policies of Intellectual Property Subsidy Funds

– Policy incidents: enterprises with the tax relationship is in Xi’an High-
tech Zone that obtained patent rights, trademark rights, computer
software registration or product registration from January 1, 2003 to
December 31, 2006,

– Patent funding standards:

1. 3,000 RMB per domestic invention patent
2. 30,000 RMB per foreign invention patent
3. 1,000 RMB per utility model patent
4. 300 RMB per design patent

– Trademark rights funding/subsidy standards

1. 1,200 RMB per domestic trademark
2. 5,000 RMB per foreign trademark

– Calculator software registration or product registration subsidy stan-
dard

1. 300 RMB per piece of calculator software copyright
2. 500 RMB per piece of calculator software product registration

• Policies on Preferential Industrial Land Prices

– Regional scope and requirements for preferential land prices:

1. The scope of the preferential land price is limited to the newly
developed areas in the second venture, excluding the first and
second phases of the high-tech zone and Chang’an Park.
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2. The preferential land price is only applicable to industrial land.
Industrial land refers to product manufacturing, software devel-
opment production and technology development land for devel-
opment and technology research and development enterprises.

– Basic conditions for preferential land transfer:

1. High-tech, high investment intensity, high-yield industrial projects
2. An independent legal entity registered in the high-tech zone and

tax relationship in the high-tech zone
3. The project shall meet the environmental protection standards

required by the environmental planning of the high-tech zone

Appendix: Supplementary Institutional Background

Examples of 2002 policy implementation at local level are as follows.

Shanghai HTZ: (1) Business environment: Free registration and approval
(approximately equivalent to 8 million RMB). (2) FDI: 0.28 billion USD foreign
investment (incraesed by 24% compaed to 2002), with more than 70% have in-
dependent R&D department. (3) Financial support: provide fi founding subsidy
and housing subsidy to HTI entreprenuers. (4) Labor: HTZ Administry initiates
special residence approval for worker hired by high-tech firms in HTZ (promote
mobility of high-skilled labors)

Shenzhen HTZ: (1) Business environment: construct software district in
HTZ: 1.8 billion RMB; open branches of all major banks in HTZ. (2) Financial
support: 20 million RMB grants as HTZ entrepernuer fund, 10 million RMB
awards to innovators. (3) R&D infrustructure: Build Industry Technology Re-
search Institute, National Biology-medicine Incubator and Software Training
Foundation in HTZ. (4) Labor: Build post-doc station in HTZ; cooperate with
local universities.

Suzhou HTZ: (1) Business environment: build investment service center,
business registration, tax filing, technology property rights exchange center, at-
tract law/accounting/real estate firms. (2) R&D infrustructure: Build Industry
Technology Research Institute, National Biology-medicine Incubator and Soft-
ware Training Foundation in HTZ. (3) Financial support: Add 4% out of total
public expenditure of HTZ zone as special technology develoment fund to sup-
port R&D in HTI firms in HTZ.

Appendix: Data

3.7.1 Firm Production Data

The data I use is the firm-level data in industrial sector (manufacuring, construc-
tion and utility). It includes production and accounting data at firm level. The
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period this chapter uses is from 1998 to 2008. The dataset is a survey data con-
duced by the National Bureau of Statistics (NBS) and includes all state-owned
enterprises (SOE) and non-SOEs that have annual total sales of 5 million RMB
or above. According to GAAP, pre-screen observations that violate any of the fol-
lowing criteria: total assets greater than variable assets; total assets greater than
fixed assets; valid establishing date; total annual sales greater than or equal to 5
million RMB (if non-SOE); annual sales, total assets, total exporting value, inter-
mediate inputs, number of employee positive; interest payment non-negative;
total exporting value less than total annual sales.

As for industry information, for each firm, we know the 4-digit level Chi-
nese Industrial Classification (CIC). This chapter only uses the firms that are in
manufacturing sector, which have CIC category code “C” and 2-digit sector codes
from 13 to 42. Table 3.3 shows some example CIC codes and names in HTI or
non-HTI category, with different digits to give readers an idea on the detailed
level of the industry counted in empirical evidence.

Table 3.3: Example industries in HTI v.s. non-HTI

Category CIC-2 Industry Name CIC-3 Industry Name CIC-4 Industry Name
HTI 37 Transportation equipment 376 Aerospace vehicle 3761 Aircraft manuf. and repair

40 Electronic and computer 405 Electronic device 4052 Semiconductor discrete device
4053 Integrated circuit

n/ HTI 14 Food 141 Bakery food 1412 Cake and bread
22 Paper and paper prod. 222 Papermaking 2223 Processed paper
31 Non-metallic mineral prod. 311 Cement, lime, and gypsum 3111 Cement

The following shows the list of high-tech industries based on GB/T 4754-
2011. CIC-2 is at sector level and can be up to 4-digit level. A crosswalk was
conducted in my empirical analysis to be consistent with 2002 version classi-
fication system. HTI assignments follow the 3-digit level to cover changes or
delete/merge of industry code across time.

Table 3.4: Categories of High-tech Industries (Manufacturing)

Category Name CIC-2 Code No. of CIC-4 Code
Pharmaceutical manuf. 27 7

Aviation, spacecraft and equipment manuf. 37,42 5
Electronic and communication equipment manuf. 35,38,39 19

Computer and office equipment manuf. 34,39 6
Medical equipment and instrumentation manuf. 35,40 24

Information chemical manuf. 26 1
Total - 62
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3.7.2 Supplementary Evidence on Policy Variations

Figure 3.13: Upper Left: nHTI-nHTC. Upper Right: nHTI-HTC. Lower Left:
HTI-nHTC. Lower Right: HTI-HTC.

3.7.3 Other Data Sets

The firm innovation data set includes patents filed Chinese firms. This chapter
used the matched version with the NBS firm data. For each firm in the dataset,
there is the total number of each main type of patents: invention, utility and
design.

For industrial linkages, I use the China Input-Output Table covers 135 sectors
at nation-level (including agriculture, manufacturing, construction, utility and
service), which comes from NBS. Multi-region Input-Output Tables (2002, 2007)
cover 17 sectors and 8 regions (among which 11 are manufacturing sectors),
which comes from the Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences.

For local aggregates, I use the China Statistical Yearbook that contains annual
prefecture-level statistics (share of industrial, service sectors, area, local public
expenditure etc.)
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Appendix: Supplementary Empirics

3.7.4 Descriptive Facts

Figure 3.14: Export in Beijing by policy-I/O group, with policy-zone mea-
surements compared
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Table 3.5: Estimates for Non-Targeted Industries and Non-Targeted Zones

Variables Export Value Export Value
(1) (2)

Closei j × Post t 0.0971*** 0.1447***
(3.2360) (14.7221)

FEs Ø Ø
Obs. 1,106,494 1,106,415
R2 0.0879 0.2811
(t statistics in parentheses, with clustered s.e.)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Notes: In column (1), location fixed effects are at the prefecture level, and the product fixed
effects are at the HS-4 level. In column (2), location fixed effects are at the zone level, and the
product fixed effects are at the HS-8 level.

Figure 3.15: Empirical distribution of high-tech industries

Three 2-digit CIC that have most 4-digit HTI categories: C37 (railroad, shipment
and aircraft equipment manufacturing), C39 (instruments and meters manufac-
turing), C40 (computer, communication and other electronic manufacturing).
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Figure 3.16: HHI at 2-digit CIC level

Figure 3.17: Empirical distribution in scale-rank relation for high-tech in-
dustry
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Figure 3.18: Empirical distribution in scale-rank relation for non-high-tech
industry

Figure 3.19: Employment by policy groups

3.7.5 Inverse-Propensity Weighting

Figure 3.20, 3.21, and 3.22 show density distributions of the following covari-
ates: sales, public expenditure in science and technology, and export intensity
respectively (before and after IPW).
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Figure 3.20: Sales level before and after IPW

Figure 3.21: Public expenditure in science & technology, before and after
IPW

Figure 3.22: Export intensity, before and after IPW
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Figure 3.23: Covariate balancing comparison before and after IPW

3.7.6 Supplementary Tables

Table 3.6: Region-Based Estimates by Industry Groups

HTI HTI Non-HTI Non-HTI
(1) (2) (3) (4)

HT C × Post 0.5693*** 0.5226*** 0.5640*** 0.5071***
(5.9085) (5.7234) (13.0254) (12.2580)

Controls Ø Ø Ø Ø
FEs Ø Ø Ø Ø
Obs. 6,830 6,829 29,554 29,551
R2 0.3450 0.3790 0.3689 0.4040

t statistics in parentheses, with cluseted s.e.

* p < 0.1, ** p < 0.05, *** p < 0.01



Appendix 143

Table 3.7: Region-Based Estimates by Industry-I/O Groups

Close Close Far Far
(1) (2) (3) (4)

HT C × Post 0.4972*** 0.4617*** 0.6198*** 0.5415***
(3.4975) (3.5914) (5.9475) (6.0552)

Controls Ø Ø Ø Ø
FEs Ø Ø Ø Ø
Obs. 13,218 13,218 16,335 16,332
R2 0.3306 0.3569 0.3982 0.4413

t statistics in parentheses, with cluseted s.e.

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 3.8: Region-Based Estimates by Industry-SOE Groups

H-S H-NS NH-S NH-NS
(1) (2) (3) (4)

HT C × Post 0.3562*** 0.3584*** 0.5936*** 0.5251***
(3.3552) (7.4962) (5.6469) (12.0416)

FEs Ø Ø Ø Ø
Controls Ø Ø Ø Ø
Obs. 5,240 22,036 5,868 26,340
R2 0.4075 0.4653 0.4601 0.4390

t statistics in parentheses, with cluseted s.e. H stands for HTI, S stands for SOE.

* p < 0.1, ** p < 0.05, *** p < 0.01

Figure 3.24: Within HTC comparison
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Figure 3.25: Outside of HTC

3.7.7 Sorting Pattern

I use Levinsohn and Petrin (2003) [98] to back out firm-level TFP, then aggregate
to region-sector level. The version with TFP backed out with Ackerberg, Caves,
and Frazer (2015) [99] approach does not affect the main pattern.

Figure 3.26: Positive sorting between measured TFP and employment

3.7.8 Input-Output Measures

The following plot shows the ranking of sectors by relative demand coefficients.
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Figure 3.27: Rankings of relative demand coefficients

An alternative way to do it is to apply the upstreamness measurement pro-
posed in Antras et al. (2012) [93].

Yi = Fi + Zi = Fi +
N
∑

j=1

di j F j

= Fi +
N
∑

j=1

di j F j +
N
∑

j=1

N
∑

k=1

dikdk j F j +
N
∑

j=1

N
∑

k=1

N
∑

`=1

di`d`kdk j F j + · · ·

Ui ≡ 1 ·
Fi

Yi
+ 2 ·

∑

j=1 Ndi j F j

Yi
+ 3 ·

∑N
j=1

∑N
k=1

∑N
`=1 di`d`kdk j F j

Yi
+ · · ·

Ui = 1+
N
∑

j=1

�

di jYj

Yi
U j

�

where Yi denotes the value of gross output in industry i, Fi denotes its use (in
terms of value) as a final good. Zi denotes its use (in terms of value) as an
intermediate input to other industries, which can be expressed in a recursive way
as an infinite sequence. di j is the value of sector i’s output needed to produce
one dollar’s worth of industry j’s output. The Ui is essentially a weighted average
of an industry’s output in the value chain, by taking into account of total value
used in each step, as well as how each step is close to the end-use stage.
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Appendix: Model

3.7.9 Extension: Continuum Locations

In this section I use the continuum version of the current model to highlight
the mechanisms of spatial sorting with input-output linkages. Starting with the
profit for firm choosing location Li j, which is the same as in the baseline model.

πi

�

z j; Li j

�

= χi jκπ, j

�

A
�

z j, Li j

�

ci j

�σ j−1

GD
i j

where κπ, j ≡
(σ j−1)σ j−1

σ
σ j
j

α
α j(σ j−1)
j

∏

j′∈J

��

1−α j

�

γ j′ j

�(1−α j)γ j′ j(σ j−1) is a sectoral

constant and local-secotral global demand shifter can also be written as GD
i j =

∫

i′
τ
−σ j

ii′ P
σ j−1
i′ j Ri′ jdi′. Locational choices are charaiceterized by firm sorting:

L∗i j

�

z j

�

= argmax
Li j

π
�

z j, Li j

�

Notice GD
i j is location specific only due to τii′ and we integrate price index and

quantities over a continuum of locations in “trade effect”. Thus, first-order con-
ditions with respect to Li j gives

A
�

z j, Li j

�−1 ∂ Ai j

∂ Li j
ci j = w

α j

i

∑

j′′

 

�

1−α j

�

γ j′′ j P
−1
i j′′

∂ Pi j′′

∂ Li j

∏

j′
P
(1−α j)γ j′ j
i j′

!

To write in a more compact form, we have

εA,Li j
= κ̄i j

∑

j′

�

γ j′ jεPi j′ ,Li j

�

where κ̄i j a local sectoral constant. εA,Li j
is the “self-elasticity” of local sec-

toral productivity Ai j with respect to local sectoral size, and εPi j′ ,Li j
is the “cross-

elasticity” of local sectoral price index Pi j′ with respect to local sectoral size Li j.

Namely, εA,Li j
≡ ∂ A(z j ,Li j)

∂ Li j

Li j

A(z j ,Li j) and εPi j′ ,Li j
≡ ∂ Pi j′

∂ Li j

Li j

Pi j′
. The first-order condition

characterizes the optimal locational choice: given sector j, marginal gain in
choosing Li j due to EES equals to the marginal cost reflected by a price elas-
ticity accumulated by all industries interacted with I/O matrix

�

γ j′ j

�

and factor
intensity α j.

3.7.10 Extension: Factor-Based PBIP

In this section, I show the model with factor-based PBIP. The goal is to show that
key moment conditions and the absorption matrix (Φ) preserve similar forms as
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in the baseline model specified in the main text. For simplicity, I assume all sec-
tors share the same level of elasticities of subsititution and external economies
of scale. Consider tax on revenue, labor and sector-level material inputs can
be potentially different. Normalize labor wedge to be 1, but preserve t y,i j for
place-based indusrial revenue tax (or subsidy) and denote t x ,i j the place-based
indusrial tax (or subsidy) on price of composites. Policy wedge is at sectoral,
but do not differ across varieties. In other words, the profit function for each
intermediate producer in the market looks like the following:

max
pi(ω j)

�

1− t y,i j

�

pi

�

ω j

�

yi(ω j)−wi`i

�

ω j

�

−
∑

j′

�

1+ t x ,i j′
�

Pi j′ x i, j′ j

�

ω j

�

Due to the CRS technology, let’s first derive unit cost function to easily track the
wedge in further steps. Cost minimization with wedge can shown as follows:

C
�

yi(ω j)
�

= min
`(ω j),{x i, j′ j(ω j)} j′

wi`i(ω j) +
∑

j′

�

1+ t x ,i j′
�

Pi j′ x i, j′ j

�

ω j

�

s.t. prod. fcn.

Thus we know the unit cost is

C(y) =

 

∏

j′

�

(1+ t x ,i j′)Pi j′

(1−α)γ j′ j

�(1−α)γ j′ j
!

�wi

α

�α yi(ω j)

A(ω j, Li j)

≡ χx ,i jc
LF
i j

�

{Pi j′} j′ , wi

� yi(ω j)

A(ω j, Li j)

where χx ,i j ≡
∏

j′(1 + t x ,i j′)
(1−α)γ j′ j is the I/O-accumulated wedge. c LF

i j is the
unit cost in Laissez-faire case as a function of two set of prices for cross-sector
composites prices and labor, both at local level.

We can then derive price

pi(ω j) =
σ

σ− 1

∏

j′(1+ t x ,i j′)
(1−α)γ j′ j

1− t y,i j

c LF
i j

A(ω j, Li j)

≡ χi j
σ

σ− 1

c LF
i j

A(ω j, Li j)
≡ χi j p

LF
i (ω j)

where χi j summarizes effective relative wedges for two inputs and pLF
i (ω j) is



Appendix 148

the price form as that in laissez-faire. We also know factor demand and profits

x i, j′ j(ω j) = (1−α)γ j′ j
︸ ︷︷ ︸

factor share w/ CRS

χx ,i j

1+ t x ,i j′
︸ ︷︷ ︸

IO-induced wedge

c LF
i j yi(ω j)

Pi j′
≡ φ x

i, j′ j x
LF
i, j′ j(ω j)

`i(ω j) = αχx ,i j

c LF
i j yi(ω j)

wi
≡ φ`i j`

LF
i (ω j)

πi(ω j) =

�

(1− t y,i j)pi(ω j)−χx ,i j

ci j

Ai j

�

pi(ω j)
−σGD

i j

=
χσy,i j

χσ−1
x ,i j

(
σ

σ− 1
)1−σ

�

Ai j

ci j

�σ−1

GD
i j ≡ φ

π
i jπ

LF
i (ω j)

Thus key equilibrium with tax

Q i j = Ci j
︸︷︷︸

local final usage

+
∑

j′

∫

Zi j′

φ x
i, j′ j x i, j j′(z j′)dF j′(z)

︸ ︷︷ ︸

local intermediate usage due to IO matrix

For example,

Q11 =C11 +

∫ z∗1

0

φ x
1,11 jκx ,1A(z1, L11)

σ−1P −1
11 P−1

11 GD
11dF1(z) +

∫ z∗2

0

φ x
1,12 jκx ,2A(z2, L11)

σ−1P −1
12 P−1

11 GD
12dF2(z)

So the demand for composite will be filtered with a tax matrix T .

ΦPBI P ≡









T L̃S
1,11G̃D

11,1 T L̃S
1,12G̃D

11,2 T L̃S
1,11G̃D

12,1 T L̃S
1,12G̃D

12,2

T L̃S
1,21G̃D

11,1 T L̃S
1,22G̃D

11,2 T L̃S
1,21G̃D

12,1 T L̃S
1,22G̃D

12,2

T L̃S
2,11G̃D

21,1 T L̃S
2,12G̃D

21 T L̃S
2,11G̃D

22,1 T L̃S
2,12G̃D

22,2

T L̃S
2,21G̃D

21,1 T L̃S
2,22G̃D

21,2 T L̃S
2,21G̃D

22,1 T L̃S
2,22G̃D

22,2









≡ (T ◦L ◦G )i j×i j

This form preserves that in the benchmark model presented in the main content,
but with a generalization.

We can also characterize sorting cutoff with PBIP:

χσy,1 j

χσ−1
x ,1 j

χσ−1
x ,2 j

χσy,2 j

�

L1 j

L2 j

�θ (σ−1)

=
τ−σ21 Pσ1 jQ1 j +τ−σ22 Pσ2 jQ2 j

τ−σ11 Pσ1 jQ1 j +τ−σ12 Pσ2 jQ2 j

�

P1 j

P2 j

�

Thus, a simplified system with factor-based PBIP (labor wedges normalized) con-
sists of (1) goods markets clear: [P ◦Q]i j×1 = [I −ΦPBIP]−1

i j×i j [ηwL]i j×1, where

P =F
�

KWτÃ (z∗j , Li j)
�

. (2) Labor markets clear: L1−θ (σ−1)
i j = φ`i jκ`, jP

−1
i j ∆i(z∗j )G

D
i j .

And (3) sorting
φπ1 j

φπ2 j

L1 j

L2 j
=
h�

GD
2 j

GD
1 j

�
�P1 j

P2 j

�
i

1
θ (σ−1)

, ∀ j ∈ J .
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3.7.11 Extension: Fixed Costs in Entry and Trade

In this section I discuss a model with fixed costs of entry and exports. The goals
are two fold. First, there is extra complication introduced in estimation by in-
troducing these costs, which is beyond of this chapter’s estimation scope. Sec-
ond, I show how this model is generalization of Costinot and Rodríguez-Clare
(2014) [85].

Consider two fixed costs with the following setup. In order to get a produc-
tivity draw, firms must pay a fixed sector-specific entry cost f e

j . In order to sell
to location i, firms from country must then pay a fixed cost of export f ex

i j . Once
fixed entry costs and fixed exporting costs have been paid, the constant cost of
producing and delivering by z j from location i in location i′ is given by

ci jτii′

A(z j ,Li j)
.

I follow the Pareto distribution assumption as in Costinot and Rodríguez-Clare
(2014) [85]. This is just for tractablility, and one can think of more general dis-
tributions. Formally, assume productivity z j independently drawn across mono-
plistically competitive firms in each sector upon entry from a Pareto distribution
G, with dispersion parameter φ j > σ− 1 and lower bound b (normalized to be
1):

G j(z) = 1− z−φ j , ∀z ≥ 1

My framework exhibits endogenous spatial sorting, thus the productivity draw
is not i.i.d. with respect to each location. This is one of the major distinction
from Costinot and Rodríguez-Clare (2014) [85]. As shown below, it matters for
the key general price equation. From individual firm’s revenue and the standard
sorting to export implies

ri(z j)
σ j
= f ex

i j implies

A
�

z∗j , Li j

�

=
ci jχ

σ j

i j f ex
i j

κ
1−σ j
p, j

∑

i′ τ
−σ j

ii′ P
σ j−1
i′ j Ri′ j

With the log-linear assumption on agglomeration externalities, together twith
the price index in the main context, we can obtain the sectoral price between
locations as

Pii′, j =

 

M j

∫

Z ∗j

�

κp, jci jτii′

z j L
θ
i j

�1−σ j

dG j(z)

!
1

1−σ j

=





�

M jκp, jci jτii′

Lθi j

�1−σ j
�

zσ j−φ j−1
�z+j

z∗j

φ j − (σ j − 1)





1
1−σ j

where z+j is the cutoff productivity at the sorted location above i (denoted by
i+). As standard with entry costs derivation in trade literature, free entry costs
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implies

f e
j = M jκπ, jR j P

σ j−1
j

∑

i

�

∫

Zi j

�

ci j

A(z j, Li j)

�σ j−1

dF j(z)

�

With some algebra, we can further obtain

Pii′, j = ξ j

ci jτii′

L
θ j

i j
︸ ︷︷ ︸

Intensive margin

�

R j

f e
j

�
1

1−σ j

︸ ︷︷ ︸

Extensive Margin (entry)

[E (G,τ, c, f ex , P;Θ)]
φ j−(σ j−1)
σ j−1

︸ ︷︷ ︸

Extensive Margin (selection)

where the new version of extensive margin (selection) consists of

E (G,τ, c, f ex , P;Θ)≡

�

Gi+, j

f ex
i+, jχi+, j

�
1

1−σ j
�

ci+, j

Lθi+, j

�

−
�

Gi j

f ex
i j χi j

�
1

1−σ j
�

ci j

Lθi j

�

and ξ j ≡ κ
σ j−φ j−1
p, j

�

φ j − (σ j − 1)
�

σ j−φ j−1
σ j−1 a sectoral shifter.

There are a couple of notes on this expression as a generalized version of
Costinot and Rodríguez-Clare (2014) [85]. First, intensive margin and exten-
sive margin in selection include both cross-sectoral general equilibrium price
and local agglomeration externalities. Second, extensive margin (selection) also
embeds spatial sorting, reflected by the integration over equilibrium locational
choice of firms. Due to data availability, we cannot seperately identify entry
costs and elasticities, even though major margins are log-linear. Furthermore,
extensive margin of selection also involves ordered statistics and additive terms.
These, together with the nonlinear agglomeration externalities, further compli-
cate the estimation.

3.7.12 Extension: Imperfect Sorting

In this section, I extend the model to imperfect sorting. This is to show how spa-
tial sorting holds systematically with shocks, without changing the intuition de-
livered in the baseline model. The imperfect sorting inherits log-supermodular
setup as in Gaubert (2018) [7]. As we will see, log-supermodularity eases the
estimation with a parametric decomposition in agglomeration. Assume there ex-
ists sector-level sorting s j, and sector-level agglomeration externalities. Specifi-
cally, assume the following productivity function for firm with productivity draw
z:

log(A j(z, Li j; s j, a j)) = a j log(Li j) + log(zi)

�

1+ log

�

Li j

L0 j

��s j

+ εi,Li j
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if log(zi) ≥ 0, Li j ≥ L0 j, and log(A j(z, Li j; s j, a j)) = 0 for Li j < L0 j. L0 j is the
minimum effective sectoral size. And we assume εi,L is i.i.d. across cities and
firms from a type-I extreme value distribution with mean zero and variance ζ j.
Thus firms’ locational choice is

L∗(z j) = arg max Li j
Vi(z j)ex p{(σ j − 1)εi}

where Vi(z j) is the determistic part at firm level. Invoking monotone compar-
ative statics, we obtain the positive sorting property of firms along city sizes
within each sector. Namely, when two firms within a the sector draw differ-
ent productivities, for example, z1, j < z2, j, we have F(Li j|z2, j) FOSD (Li j|z1, j).
With idiosyncratic shocks, the probability that a firm locates in a location is the
following regardless of the supermodularity assumption.

P(Li j|z j) =

�

χi jκπ, j

�

A(z(ω j),Li j)
ci j

�σ j−1

GD
i j

�

ζ j
σ j−1

∑

i

�

χi jκπ, j

�

A(z(ω j),Li j)
ci j

�σ j−1

GD
i j

�

ζ j
σ j−1

3.7.13 Model in a Simple Economy

In what follows, I elaborate the model in a 2×2 economy by decomposing flows
of goods, and derive key equations as mentioned in the main text.

From Intermediates to Composites (Cross-Location and Within-Sector)

Figure 3.28 illustrates all flows for these tradable intermediate goods in two
layers of production processes. The first subscript denotes location i, followed
by industry j. Arrows are pointing from suppliers to buyers.

I11 I21

I12 I22

Q11

Q12

Q21

Q22

Figure 3.28: Trade flows (intra- and inter-regional) from inter-
mediate products Ii j to composite products Q i j
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In a simple economy, given that assembly of compsite goods uses interme-
diate inputs from its own sector, we can characterize eight flows. With demand
qi′

i (z j), we can rewrite them in temrs of location-sector level price index, quantity
and sector-level cutoffs with effective variety supports. Consider using origin-
destination-sector-wise flows seperately, and denote a trade flow from location
i to location i′ within industry j by X (i, i′)| j. For example, conditional on sector
j = 1, flows from i = 1 are:

X (1,1)| j=1 =

∫

Z11

q1
1(z1)p1(z1)τ11dF(z1) = Pσ11Q11

∫

Z11

(p1(z1)τ11)
1−σ dF(z1)

X (1,2)| j=1 =

∫

Z11

q1
2(z1)p1(z1)τ12dF(z1) = Pσ21Q21

∫

Z11

(p1(z1)τ12)
1−σ dF(z1)

where pi′
�

z j

�

τi′ i = κp, j

wα
i′
∏

j′ P
(1−α)γ j′ j
i′ j′

A(z j|i′ ,Li′ j)
τi′ i. Zi j is the effective variety supports in

equilibrium as a function of cutoffs.56

From Composites to All Uses (Within-location and Cross-sector)

The following graph illustrates the cross-sector flows. Note that these flows
occur within location. Bold ones highlight input-output linkages. The first sub-
script denotes location i, followed by industry j.

I11 I21

I12 I22

Q11

Q12

Q21

Q22

C1 C2

Figure 3.29: The highlighted bold solid arrows are flows from
composite sectors Q i j to intermediate producers Ii j . Blue arrows
are how Q11 flows to all possible buyers, where bold arrows to
producers whereas thin arrows are to consumers. Dotted arrows
are inter-regional trade in the previous section.

56Conditional on each industry, there are I2 possible flows. Here I show two examples for
j = 1, which are similar for j = 2.
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Composite goods are sold to local intermediate producers across all sectors,
summarized by

Q i j = Ci j
︸︷︷︸

local final usage

+
∑

j′

∫

Ωi j′

x i, j j′(ω j′)dω j′

︸ ︷︷ ︸

local intermediate usage due to IO matrix

≡ Ci j +
∑

j′
Ii j′

where x i, j′ j

�

ω j

�

= κx , j
A(zi(ω j),Li j)σ−1

wα(σ−1)
i Pi j′

∏

j′′ P
(σ−1)(1−α)γ j′′ j
i j′′

GD
i j (generic notations in subscipts).

Although above reflects local supply chain, Ii, j has trade embeded implicitly, as
shown in dotted lines across boarders. For an arbitrary Q i j, it equals to the
demand from both sectors within location i, including demand from both con-
sumers and intermedaite producers. For clarity in notation, I write more nota-
tions in Q11 but abbreviate a bit in other expressions.

Q11 = C11
︸︷︷︸

direct final usage

+ κx ,1A σ−1
11 W1P −1

11 P11
︸ ︷︷ ︸

local supply shifter (LSS) LS
1,11 with I/O (Q→ I)

�

τ−σ11 Pσ11Q11 +τ
−σ
12 Pσ21Q21

�

︸ ︷︷ ︸

global demand shifter (GDS) GD
11 with trade (I →Q)

+ κx ,2A σ−1
12 W1P −1

12 P11
︸ ︷︷ ︸

local supply shifter LS
1,12 with I/O (Q→ I)

�

τ−σ11 Pσ12Q12 +τ
−σ
12 Pσ22Q22

�

︸ ︷︷ ︸

global demand shifter GD
12 with trade (I →Q)

where Wi ≡ w−α(σ−1)
i andAi j ≡

�

∫

Zi j
A(z j, Li j)σ−1dF j(z)

�
1
σ−1

.

Similarly, we can write decomposition of other composite output supply ({Q i j})
in terms of final usage, local supply shifter (LSS, or LS

i j), and global demand
shifter (GDS, or GD

i j). For example,

Q12 = C12
︸︷︷︸

direct final usage

+κx ,1A σ−1
11 W1P −1

11 P12
︸ ︷︷ ︸

LSS LS
1,21 with I/O

�

τ−σ11 Pσ11Q11 +τ
−σ
12 Pσ21Q21

�

︸ ︷︷ ︸

GDS GD
11 with trade

+κx ,2A σ−1
12 W1P −1

12 P12
︸ ︷︷ ︸

LSS LS
1,22 with I/O

�

τ−σ11 Pσ12Q12 +τ
−σ
12 Pσ22Q22

�

︸ ︷︷ ︸

GDS GD
12 with trade

Note that there exists interactions between I/O linkages and trade effect through
sorting equilibrium. Thus we obtain

Q= (I−Φ)−1C

The above shows a recursive form, which can be regarded as a generalized ver-
sion of input-output analysis with basic Leontif inverse and the upstreamness
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measure as in Antras et al. (2012) [93].






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


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


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


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
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
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
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


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




















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I J
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κx ,11CAI1τ
−σ1
I1 Pσ1−1

11 · · · κx ,11CAI1τ
−σ1
I I Pσ1−1

I1 · · · κx ,1J CAI Jτ
−σJ
I I PσJ−1

I J
...

...
...

κx ,J1CA11τ
−σ1
11 Pσ1−1

11 · · · κx ,J1CA11τ
−σ1
1I Pσ1−1

I1 · · · κx ,JJ CA1Jτ
−σJ
1I PσJ−1

I J
...

κx ,J1CAI1τ
−σ1
I1 Pσ1−1

11 · · · κx ,J1CAI1τ
−σ1
I I Pσ1−1

I1 · · · κx ,JJ CAI Jτ
−σJ
I I PσJ−1

I J

























≡

























L̃S
11,11G̃D

11,11 · · · L̃S
11,11G̃D

1I ,I1 · · · L̃S
1J ,1J G̃D

1I ,I J
...

...
...

L̃S
11,I1G̃D

I1,11 · · · L̃S
11,I1G̃D

I I ,I1 · · · L̃S
1J ,I J G̃D

I I ,I J
...

...
...

L̃S
J1,11G̃D

11,11 · · · L̃S
J1,11G̃D

1I ,I1 · · · L̃S
JJ ,1J G̃D

1I ,I J
...

...
...

L̃S
J1,I1G̃D

I1,I1 · · · L̃S
J1,I1G̃D

I I ,I1 · · · L̃S
JJ ,I J G̃D

I I ,I J

























≡ (L ◦G )(I×J)×(I×J)

The last expression is a Hadamard product of price-adjusted L (z∗j , {Li j}, {Pi j})
(with elements L̃ ≡ LSS

Pi j
) and quantity-adjusted form G ({τii′}, {Pi j}) (with ele-

ments G̃ ≡ GDS
Q =

�

P
τ

�σ
). With the Cobb-Douglas consumption for composites,

we know consumers spend constant share of their local income in specific sec-
tors: Ci j =

η j w̃i Li

Pi j
where w̃ disposable imcome. Thus we can express composite

sales in terms of size, price and the composite term reflecting local supply and
global demand:

[PQ]i j×1 = (I−L ◦G )
−1
i j×i j [ηwL]i j×1 ≡ ΨηwL

⇒ λi j ≡
Pi jQ i j

GDP
= (I−L ◦G )−1

i j×i j η j

where is ψi j entry of a generalized “Leontif inverse” Ψ. Propagation channels
involve both within-sector/location and across-sector/location on top of sorting.
Thus this model differs from trade literature as Allen and Arkolakis (2014) [84],
or network literature as Hulten (1978) [100], Acemoglu et al. (2012) [95] and
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Liu (2019) [87]. In Acemoglu et al. (2012) [95], influence vetors are defined
as v = 1

n (I−A)−1 1. In my case, the analogous influence vector is in the form
of a generalized Leontief inverse Ψ ≡ (I− (L ◦G ))−1, which will be useful in
constructing upstreamness/downstreamness. The standard (sales-based) Do-
mar weigths in network literature (such as Carvalho and Tahbaz-Salehi (2018)
[101]) is sales share as a fraction of GDP. In my context, define aggregate Do-
mar weight Λagg, sectoral-based Domar weight Λsec and location-based Domar
weight Λloc as the follows. This is, first, for expositional and decompositional
purposes; and second, to map to empirical moments,

Λ
agg
i j =

∫

Ωi j
pi(ω j)yi(ω j)dω j

∑

i

∑

j

∫

Ωi j
pi(ω j)yi(ω j)dω j

Λsec
i j =

∫

Ωi j
pi(ω j)yi(ω j)dω j

∑

i

∫

Ωi j
pi(ω j)yi(ω j)dω j

Λloc
i j =

∫

Ωi j
pi(ω j)yi(ω j)dω j

∑

j

∫

Ωi j
pi(ω j)yi(ω j)dω j

Dividing both sides by total income (value added) in the economy gives ag-
gregate GDP-based Domar weights connected with employment-based Domar
weights.

Λ
ag g
i j = η jλi +

∑

k

Φ2∗(i−1)+ j,kΛ
ag g
i j , ∀i, j

Thus we obtain Λag g = (I− (L ◦G ))
−1 [ηλ], where [Λag g]i j =

Pi jQ i j
∑

i

∑

j Pi jQ i j
,λi =

Li
L .57

57We use capital Λ for final goods production and lowercase λ for labor Domar weights.
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3.7.14 A Simple Economy, with Numerical Analysis

In a 2× 2 economy, equilibrium consists of {Li j,Q i j, Pi j, z∗j , t i, ū}I ,J such that

wi Li j = κ`, jCAi j

∑

i′

�

τ
−σ j

ii′ P
σ j

i′ j Q i′ j

�

, ∀i, j

Pi jQ i j = η jw̃i +
∑

j′

�

κi j′CAi j′

�

∑

i′
τ
−σ j′

ii′ P
σ j′

i′ j′ Q i′ j′

��

, ∀i, j

P
1−σ j

i j = κ
1−σ j

p, j

∑

i′

�

φi′(z
∗
j )τ

1−σ j

i′ i L
θ (σ j−1)
i′ j

�

ci′ j

�1−σ j
�

, ∀i, j

�

χ+j

��

A +
j

�

∑

i′ τ
−σ j

1i′ P
σ j

i′ j Q i′ j
∑

i′ τ
−σ j

2i′ P
σ j

i′ j Q i′ j

=

�

c1 j

c2 j

�σ j−1

, ∀ j

t i

∑

j

Li j =
∑

j

si j



κπ, jCAi j

∑

i′

 

τ
−σ j

ii′

P
1−σ j

i′ j

(Pi′ jQ i′ j)

!



 , ∀i

ui = ū, ∀i

where CAi j ≡
�

φi(z∗j )L
θ
i j

ci j

�σ j−1

, ci j ≡ w
α j

i

∏

j′ P
(1−α j)γ j′ j
i j′ . Composite local sectoral

level productivities areφ1(z∗j )≡
��

z∗j
σ j

�σ j

−
� z j

σ j

�σ j
�

1
σ j−1

andφ2(z∗j )≡
�
�

z̄ j

σ j

�σ j
−
�

z∗j
σ j

�σ j
�

1
σ j−1

.

These expressions are found to be useful in quantitative analysis. κ`, j,κp, j,κx , j′ j

are industry-level constants. Specifically, κ`, j ≡
�

σ j

σ j−1

�−σ j
α1−α(1−σ j)∏

j′∈J

�

(1−α)γ j′ j

�−(1−σ j)(1−α)γ j′ j ,

κp, j ≡
σ j

σ j−1
α−α

∏

j′ (γ j′ j(1−α))
γ j′ j (1−α)

κx , j′ j, and

κx , j′ j ≡
�

σ j

σ j − 1

�−σ j

αα(σ j−1)(1−α)γ j′ j

∏

j′

�

(1−α)γ j′ j

�(1−α)γ j′ j(σ j−1)

The generalized “Leontif-inverse” in a 2×2 economy is shown below, where
I write in a way ready to decompose local and global effects.

Φ≡









L̃S
1,11G̃D

11,1 L̃S
1,12G̃D

11,2 L̃S
1,11G̃D

12,1 L̃S
1,12G̃D

12,2

L̃S
1,21G̃D

11,1 L̃S
1,22G̃D

11,2 L̃S
1,21G̃D

12,1 L̃S
1,22G̃D

12,2

L̃S
2,11G̃D

21,1 L̃S
2,12G̃D

21 L̃S
2,11G̃D

22,1 L̃S
2,12G̃D

22,2

L̃S
2,21G̃D

21,1 L̃S
2,22G̃D

21,2 L̃S
2,21G̃D

22,1 L̃S
2,22G̃D

22,2









We can further map the above PBIP model in a simple economy to empirical
moments in the motivating facts. Concentration ratio λind

i j denotes the share of
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employment in industry j and location i, conditional on any industry.

L1 j

L2 j
=





GD
1 j

GD
2 j

∆1

�

z∗j
�

∆2

�

z∗j
�

P −1
1 j

P −1
2 j





1
1−θ (σ−1)

=
∆1

�

z∗2
�

/χ1 j

∆2

�

z∗2
�

/χ2 j

⇒ χ̃ ind
2 j λ

ind
2 j =






1+





GD
1 j

GD
12

∆1

�

z∗j
�

∆2

�

z∗j
�

P −1
1 j

P −1
2 j





1
1−θ (σ−1)







−1

The specialization ratio λloc
i j denotes the share of employment in industry j

and location i, conditional on any location.

Li1

Li2
=

�

κ`,1

κ`,2

GD
i1

GD
12

∆i

�

z∗1
�

∆i

�

z∗2
�

P −1
i1

P −1
i2

�
1

1−θ (σ−1)

=
∆i

�

z∗1
�

/χi1

∆i

�

z∗2
�

/χi2

⇒ χ̃ locλloc
i2 =



1+

�

κ`,1

κ`,2

GD
i1

GD
12

∆i

�

z∗1
�

∆i

�

z∗2
�

P −1
i1

P −1
i2

�
1

1−θ (σ−1)





−1

where κ`, j ≡
�

σ−1
σ

�σ α1−α(1−σ)
∏

j′(γ j′ j(1−α))
(1−α)(1−σ)γ j′ j

.

The following figure shows the comparative statics when increasing agglom-
eration externalities and when varying I/O technologies respectively.
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Figure 3.30: Numerical experiment for local sectoral scales and key ratios
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Figure 3.31: Numerical experiment for local sectoral scales and key ratios

WLOG, consider a policy change in industry 2 and location 2 (which is labled
to be the location where more productive firms go). Conditional on industry 2
(HTI), share of firms in location 2 (HTC) is

λind
2 ≡

L22
∑

i Li2
=



1+
�

χ22

χ12

�
1

θ (σ−1)
�

τ−σ21 Pσ12Q12 +τ−σ22 Pσ22Q22

τ−σ11 Pσ12Q12 +τ−σ12 Pσ22Q22

�
1

θ (σ−1)





−1

Whereas this ratio in laissez-faire is

λind
2 =

�

1+
∆1

�

z∗2
�

∆2

�

z∗2
�

�−1

When χ22 increases, the first-order effect is a decrease in size of more productive
city since a smaller size (thus agglomeration benefit) is enough to generate same
profit. However, this will then trigger a behavioral change in marginal firms to
move to more productive cities (i.e. ∆2 j increases, and ∆1 j decreases). But the
extent to which these two productivity cutoffs change in relative size depends
on changes of composite price index, which, together with Li j, pin down all
quantities. The change in price index depends on relative dominance of local
supply shifter LLS (I/O linkages effect) and global demand shifter GDS (trade
effect).
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Appendix: Quantitative Analysis

3.7.15 Statistics in Changes

Denote the relative changes of an arbitrary variable as: x̂ = x ′

x . Consider hat

algebra on concentration ratio λind
i j =

Li j
∑

i Li j
. For our empirical facts, we will

focus on all potential Domar weights: concentration ratio, specialization ratio
or aggregate ratio. The change in concentration ratio in any arbitrary location
and industry can be written as

λ̂ind
i j =

L̂i j
∑

i
Li j L̂i j
∑

k Lk j

=
L̂i j

∑

i λ
ind
i j L̂i j

Similarly, the change in specialization ratio can be written as λ̂loc
i j =

L̂i j
∑

j λ
loc
i j L̂i j

.

Together with market clearing conditions, we have

L̂i j =
�

κ`, j Ĝ
D
i j

ˆP −1
i j ∆̂i

�

z∗j
��

1

θ j(σ j−1)

Thus

λ̂ind
i j =

�

κ`, j Ĝ
D
i j

ˆP −1
i j ∆̂i

�

z∗j
��

1

θ j(σ j−1)

∑

i

�

λind
i j

�

κ`, j Ĝ
D
i j

ˆP −1
i j ∆̂i

�

z∗j
��

1

θ j(σ j−1)
�

where the components on right hand side can be obtained as follows:

• Global demand shifter

ĜD
i j =

∑

i′ τ
′−σ
ii′ P ′σi′ jQ

′
i′ j

∑

i′ τ
−σ
ii′ Pσi′ jQ i′ j

=

��

P ′ i′ j
τ′ ii′

�σ

Q′i′ j

�

i′=1
+ · · ·+

��

P ′ i′ j
τ′ ii′

�σ

Q′i′ j

�

i′=I
∑

i′

� P i′ j
τii′

�σ

Q i′ j

=
∑

i′
φ

Gi′

i j

�

P̂ i′ j

τ̂ii′

�σ

Q̂i′ j

where φGi′

i j ≡

�

Pi′ j
τii′

�σ

Q′
i′ j

∑

i′

�

Pi′ j
τii′

�σ

Q i′ j

.



Appendix 161

• Price index

Pi j =

�∫

Ω

�

pi′(ω j)τi′ i

�1−σ
dω j

�
1

1−σ

=

 

∑

i′

 

τi′ iκp, jw
α
i

 

∏

j′
P
(1−α)γ j′ j
i′ j

!

A −1
i′ j

!1−σ!
1

1−σ

Thus

P̂1−σ
i j =

∑

i′

�

τ′ i′ iκ
′
p, jw

′α
i

�

∏

j′ P
′(1−α)γ j′ j
i′ j

�

A ′−1
i′ j

�1−σ

∑

i′

�

τi′ iκp, jw
α
i

�

∏

j′ P
(1−α)γ j′ j
i′ j

�

A −1
i′ j

�1−σ

=
∑

i′
φ

Pi′

i j

 

τ̂i′ iκ̂p, jŵ
α
i

 

∏

j′
P̂
(1−α)γ j′ j
i′ j
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Â −1
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where φPi′

i j ≡

�

τi′ iκp, j w
α
i

�

∏

j′ P
(1−α)γ j′ j
i′ j

�

A −1
i′ j

�1−σ

∑

i′

�

τi′ iκp, j w
α
i

�

∏

j′ P
(1−α)γ j′ j
i′ j

�

A −1
i′ j

�1−σ . Thus aggregate price index in

change is

P̂i j =
∏

j′

 

∑

i′
φ

Pi′

i j

 

τ̂i′ iκ̂p, jŵ
α
i

 

∏

j′
P̂
(1−α)γ j′ j
i′ j

!

Â −1
i′ j

!1−σ!(1−α)γ j′ j

• The cost of the input bundle

ĉi j = ŵ
α j

i

∏

j′

 

∑

i′
φ

Pi′

i j

 

τ̂i′ iκ̂p, jŵ
α j

i

 

∏

j′
P̂(

1−α j)γ j′ j
i′ j

!

Â −1
i′ j

!1−σ j
!(1−α j)γ j′ j

• Trade flow

X̂ i′ i, j = ĈAi jτ̂ii′
1−σ j P̂

σ j−1
i′ j Ŷi′ j
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3.7.16 Supplementary Figures

Figure 3.32: Change in tax rates by policy groups with observables aggre-
gated from firm-level data

Figure 3.33: local sectoral employment Li j. Left: level in log-scale. Right:
change (pre- and post-policy)
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Figure 3.34: Sectoral EES

Figure 3.35: Comparison of EES
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Figure 3.36: Positive sorting pattern (2007)

Figure 3.37: Sorted relative ĈA by sector

The following shows the national input-output table in 2002. There are 80 man-
ufacturing sectors in total, which is equivalent to 2/3-digit CIC level.
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Figure 3.38: Input-Output Matrix in China (2002)

3.7.17 Regional Flow Approach

The alternative approach utilizes trade flows among regions. Specifically, I take
the changes in sectoral bilateral trade flows (X̂ (i, i′| j)) from China’s multi-regional
input-output table (MRIO) across time (2002 and 2007) to quantify θ ∗j . These
MRIO trade flows cross the regions. (The most-detailed level for regions and sec-
tors are contained in the 2002 and 2007 versions of the MRIO.58) The variation
is within-sector between all origin-destination pairs. This cross-sectional varia-
tion incorporates information from both the inter-sectoral and the inter-regional
components:

X (i, i′| j) =






(Ai j(z

∗
j ))

σ j−1

︸ ︷︷ ︸

agglomeration

ρ
1−σ j

i j
︸ ︷︷ ︸

I/O linkage







︸ ︷︷ ︸

effect from origin

τ
1−σ j

ii′
︸︷︷︸

trade effect

P
σ j

i′ j Q i′ j
︸ ︷︷ ︸

effect from destination

where ρi j ≡ κp, jw
α j

i

∏

j′ P
(1−α j)γ j′ j
i j′ and κp, j ≡

σ j

σ j−1

α
−α j
j

∏

j′ (γ j′ j(1−α j))γ j′ j (1−α j )
. The “ag-

glomeration” term is the productivity including agglomeration externalities. Then,
I can compute prepolicy and postpolicy changes of trade flows, which is the hat
term on the left-hand side of the following equation, and changes of price (P),
productivity (T F P), and revenue (R) in each (i, j) pair, which are hat terms on

58I thank the Institute of Geographic Science and Natural Resources Research, Chinese
Academy of Science for data support.
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the right-hand side below.

X̂ i,i′, j = f



 {P̂i, j′} j′∈J
︸ ︷︷ ︸

origin, inter-sectoral

, ˆT F P i j, P̂i′, j, R̂i′, j
︸ ︷︷ ︸

destination, inter-regional





In the baseline, there are (2I−1)×J moments and there are (I+2)×J parameters
to estimate. The following plots show the variation of trade flows at sector level.
There are 17 sectors in total in the MRIO 2002 and 2007, among which 11 are
manufacturing sectors.

Figure 3.39: Change in trade flow from 2002 to 2007 at sector level: light

Figure 3.40: Change in trade flow from 2002 to 2007 at sector level: heavy
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Figure 3.41: Change in trade flow from 2002 to 2007 at sector level: others

All sectors have experienced an increase in flow values on average, but the
extent of the increase vary, led by “Non-metallic mineral and products”. Unlike
in the baseline quantification, when using a complete set of industries of trade
flows with consistent industries and locations, there are (I2 + 2I − 1) × J mo-
ments and (I + 2) × J parameters to estimate with J the number of sectors at
a more-aggregated level. With 11 aggregated manufacturing sectors in MRIO
has a mean EES of 0.82, closer to Bakker (2021) [90] compared to the other
approaches. However, it has a much larger dispersion, which is mainly because
of the necesary aggregation associated with MRIO.

3.7.18 Trade Costs

Trade costs are taken from Tombe and Zhu (2019) [96], where the inter-regional
values are shown by the following plot.

Figure 3.42: Trade costs across regions in China
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3.7.19 Limitation

The following shows that change in trade at prefecture and province level for
C IC = 3725.

Figure 3.43: Map of China and level of export in C IC = 3725 at prefecture
level

Figure 3.44: Map of China and level of export in C IC = 3725 at province
level



Chapter 4

High Performance Export Portfolio: Design
Growth-Enhancing Export Structure with
Machine Learning

(joint with Natasha Che)

Abstract

To study the relationship between export structure and growth performance, we
design an export diversification system using a collaborative filtering algorithm
based on countries’ revealed comparative advantages. The system is used to
produce export portfolio covering more than 190 economies spanning over 30
years. We find that economies whose export structure is more aligned with the
algorithm-recommended export structure achieve better growth performance, in
terms of both higher GDP growth rate and lower growth volatility. These findings
demonstrate that export structure matters for obtaining high, and stable growth.
Our results provide empirical evidence on export diversification and growth for
further quantitative studies.

4.1 Introduction

Over the past decades, many success stories of growth and income convergence—
most notably, China and several other East Asian emerging economies—have
been export-led. Some of these countries have governments that actively pursue
industrial policies that foster strategic export industries; others let the market
take the lead. Setting aside the pros and cons of each approach, there is no deny-
ing that export diversification and industrial structural change are important for
growth (e.g., Aiginger and Rodrik, 2020 [102]). Despite the topic’s relevance,
however, there is little exporting product analysis in economic literature regard-
ing what types of export product portfolio are possibly suitable for growth, and
what type of export portfolio countries could consider diversifying into.1

1This chapter provides cross-country empirical evidence. However, it shall not be taken as
direct country-wise policy advisory. “Recommendation” in this chapter refers to the algorithm-
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Classical trade theories suggest that countries should export what they are
relatively good at producing, i.e., following comparative advantages. But how
exactly does one ascertain comparative advantages? Trade theories predict that
many developing countries tend to have comparative advantages in labor-intensive
exports and should, to some extent, stay away from capital-intensive industries.
But in reality, comparative advantages contain far more dimensions than capital
and labor. Some of these dimensions are quantifiable in a more linear way with
production technologies, whereas others are not.

The matter becomes even more complicated when we consider the fact that
comparative advantages evolve as a country grows. How could the export struc-
ture change as a result to achieve better growth performance? General trade
theories and empirical studies do not go very far in granular-level insights in
explaining the structural change in exports. In a recent study, Che (2020) [103]
proposes a novel method to operationalize the concept of comparative advan-
tage and its evolution. It uses collaborative filtering algorithms in machine learn-
ing, most commonly applied to product recommendations in e-commerce, to
produce export diversification recommendations that reflect a country’s latent
comparative advantages and future potentials in export structure. In Section
4.3, we will go over the details of the methodology, but the basic intuition is
that a country is likely to have comparative advantages in those products that
are highly related to the products it is already good at exporting (i.e., products
with revealed comparative advantages), where the “relatedness” between any two
products is measured by the similarities among countries that are the main ex-
porters of the two products. Moreover, it turns out that the export structures
recommended by the “product-based KNN” algorithm can predict the evolution
of actual export structure for several high-growth countries (China, India, Chile
and Poland) reasonably well. Here the export structure is measured by the num-
ber of products recommended by the algorithm, categorized by Standard Inter-
national Trade Classification (SITC) 4-digit codes, which belong to each of the
10 SITC 1-digit sectors, as a share of the total number of recommended products.

Inheriting the intuition of exporting based on comparative advantages, this
chapter further provides cross-country evidence by designing an export diversi-
fication system. The rationale for our approach comes from two cross-country
observations. First, products that require similar production inputs and know-
how tend to show up in an export portfolio together. For example, a country that
has successfully exported beef can branch into, with some effort, dairy. A coun-
try that has mastered the trade of exporting desktop computer hardware is in a
well positioned to produce and export cellphones, than otherwise. Therefore,
the products in a country’s existing export portfolio contain valuable informa-
tion regarding what other products the country could get good at producing.
Second, countries with similar comparative advantages tend to export similar
products. Bangladesh and Vietnam are both successful in exporting garments

based results. Specific policy recommendations need to be in accordance with a country’s cir-
cumstances and further structural analyses.
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because of the countries’ shared abundance in low-cost labor. New Zealand and
Uruguay both specialize in cattle exports partly because of their abundance of
suitable pasture land. In other words, products related to a country’s existing
exports and export portfolios of similar countries offer useful information about
the country’s latent comparative advantages, even though the latter cannot al-
ways be neatly expressed quantitatively.

Our key index calculation (i.e., the similarity score, which will be specified
later) is based on export portfolio, instead of the “diversification” notion as com-
monly understood. Specifically, the export portfolio is more general in address-
ing the evolution of trade patterns in a cross-country analysis. It also provides
insights on diversification strategies as an application, especially in a single-
country analysis. For example, a country can double the number of products it
exports, i.e., diversification in numbers, without changing its export structure
at all, if the sectoral distribution of its exports stays the same. In contrast, if a
country that used to export 100 products all in the food industry now switches
to exporting 50 products in the food sector and 50 in the chemical industry, it
has not “diversified” in numbers, but its export structure has changed. A coun-
try’s export portfolio can be potentially improved by diversifying in the number
of export products, as well as by adjusting the export structure to fit its evolving
comparative advantages. Moreover, the expression diversification per se may not
be well-defined when comparing countries. For example, it can be controversial
whether a country already producing a fair amount of products becomes rela-
tively more diversified when its exporting products expand within a sector, com-
pared to other countries with the same change in the total number of products.
Therefore, in our cross-country analyses, we use the export portfolio to capture
more general features on the evolution of international trade. We do not take a
stand regarding whether a specific country should consider a structural change
or a diversification. The set of algorithm-based export portfolio provides some
possible structures, which facilitates us to analyze how its alignment with actual
ones relates to growth performance.

Our primary goal in this chapter is to test the hypothesis that export port-
folio2 based on a collaborative filtering algorithm is positively correlated with a
given country’s export structure that likely to help it grow better over time. To
do this, we first use a product-based k-nearest neighbors algorithm to predict
annual export product recommendations in the SITC 4-digit product space, for
more than 190 economies spanning over three decades. We then compare the
algo-recommended sectoral structure of exports with the actual export structure
of each country. At last, we use the full sample countries to test the main hy-
pothesis. See Section 4.3 for details on methodology. The intuition is that, if the
export recommendations produced by the algorithm indeed capture some coun-
tries’ latent comparative advantages, we should observe that countries whose
export structure closely aligns with the recommended structure would have bet-

2The portfolio refers to the SITC-1 export structure derived from the algorithm-generated
product recommendations, where “recommendations” is from an algorithm perspective.



Introduction 172

ter growth performance. Here we define “better” as higher growth and lower
growth volatility.

A preliminary look at the data appears to support our hypothesis. Figure
4.1 plots the cross-country correlation between average real GDP growth per
capita over the 1982–2017 period and average similarity score between a coun-
try’s actual export structure and recommended export structure produced by our
algorithm.3 Figure 4.2 plots the correlation between the five-year standard de-
viation of annual growth rate and the similarity score. The charts indicate that
countries with an export structure closer to the algo-recommended structure en-
joy higher growth, lower growth volatility and higher risk-adjusted growth. The
same pattern can be discerned from Figure 4.3, which shows a positive corre-
lation between the similarity score and countries’ risk-adjusted growth, i.e., the
five-year average growth divided by standard deviation of growth.

Figure 4.1: Relationship between “Similarity Score” and Growth

3The similarity score is calculated as the Pearson correlation between actual and recom-
mended export structures. Thus it has a theoretical range of [-1, 1]. See Section 4.3 for details.
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Figure 4.2: Relationship between “Similarity Score” and Growth Volatility

Figure 4.3: Relationship between “Similarity Score” and Volatility-Adjusted
Growth

It is interesting to look at some examples of specific countries as well. Figure
4.4 plots the evolution of the similarity score between algorithm-recommended
export structure and actual export structure for China, Singapore, South Korea,
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and Germany.4 Since the late 1980s, the similarity score for China has increased
significantly, from below the world average to the top 3% of the world sample.
The magnitude of increase for Singapore is similar. For South Korea, though
the similarity score has a decreasing trend in general (despite increasing in the
most recent years), it still remains at high levels (in the top 10%) on average.
Likewise, Germany has one of the highest similarity scores in the world, which is
unsurprising given the country’s diversified, and dynamic industrial export base
over the past decades.

Figure 4.4: Similarity Scores for Selected High-Growth and Developed
Countries (5-Year MA)

Figure 4.5 plots the evolution of the similarity score for several developing
countries with lower growth—Honduras, Kuwait, Libya, and Venezuela. For
Libya and Kuwait, the similarity scores are particularly low. Though Kuwait’s
score has increased since 2010, it remained below 0.2 until the early 2010s and
is still low, below 0.4 in recent years, compared to the world average of 0.82.
For Honduras and Venezuela, the similarity scores are higher but still below
the world level, and they have dropped significantly since the mid 1990s, likely
reflecting a decline in diversification and manufacturing capacity.

4The similarity scores are calculated annually and the charts present five-year moving aver-
ages of the scores.
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Figure 4.5: Similarity Scores for Selected Low-Growth and Fragile Countries
(5-Year MA)

The rest of this chapter is organized as follows. Section 4.2 presents re-
lated literature on export structure and diversification. Section 4.3 explains the
product-based KNN algorithm and our empirical methodology. Section 4.4 de-
scribes the data. Sections 4.5 and 4.6 present the baseline empirical results and
robustness checks. Section 4.7 concludes.

4.2 Literature

The literature closest to our paper is the studies on the so-called product space
and its implication for diversification and growth (e.g., Hausmann & Klinger
2007 [104], Hidalgo & Hausmann 2009 [105]). Like the current paper, this
strand of research seeks to understand a country’s export structure by looking
at the relatedness among products.

But there are two key differences. The first is regarding the efficiency in the
use of information contained in the trade data. The product-space literature uses
a probability formula to represent the relatedness, or proximity between two
products.5 While this approach features a clean, easy-to-understand formula
and makes subsequent analyses computationally simpler, it is at the cost of not

5Specifically, the proximity between product A and product B is defined as the probability
that a country exports product A given that it exports product B, or vice versa. For example,
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fully exploiting the information contained in the data matrix of country-product
exports. In contrast, the product-based KNN algorithm in the present paper
makes more efficient use of the data to detect the unique blend of characteristics
of countries and products. This leads to potentially better recommendations. To
be sure, it is at the cost of requiring more computational resources and forsaking
the easily comprehensible linear formula. This is a common drawback of many
machine learning algorithms– the nonparametric nature of the approach can
make some results seem “magical” and harder to explain with linear logic.

The second, and more important, difference is one of perspectives. The
product-space literature makes specific value judgments about the worthiness of
different products for diversification purpose. A product’s diversification value is
seen as broadly depended on 1) how “complex” it is, meaning, how much sophis-
ticated knowledge is required to product the product, and 2) how closely related
the product is to other more complex products. Each product is assigned a com-
plexity level as such. The rationale for doing so is a reasonable one– more com-
plex products have higher value-added, use more human capital, and face less
global competition. And products that are “bridges” to the more complex prod-
ucts may be a pathway for a country to move up the global value chain. Some
empirical evidence shows that diversifying into these products is supposed to
be better for growth (Hausmann, 2007 [104]). However, several issues emerge
when this model is used for product-level recommendations. First, there is an
underlining tension between this line of thinking and the framework of com-
parative advantages that the product-space analysis is built on. By assigning
each product a score of virtue (e.g., industrial products are “good”, agricultural
commodities are “bad”), it leads to a tendency to recommend products that the
model deems universally worthy to countries of drastically different fundamen-
tals. In the extreme, though improbable, scenario where all countries internalize
the same worthiness ranking of products in developing their export structure,
there would be no comparative advantages to speak of. Secondly, to come up
with a tractable, universally applicable scoring system for “product complexity”,
strong assumptions need to be made that reduce the feature dimensions of real-
ity and throw away valuable country- and product- specific information, which
may limit the model’s usefulness in producing realistic export recommendations
for individual countries.6

In contrast, the approach of the current paper is agnostic about the diver-
sification value of any specific product. Instead, we seek to fully exploit the
information contained in the country-product space, and make realistic export
recommendations off of a country’s current revealed comparative advantages.
One implication is that countries do not necessarily need to chase the “complex”

suppose that 17 countries export wine, 24 export grapes and 11 export both, all with revealed
comparative advantage. Then, the proximity between wine and grapes is 11/24 = 0.46.

6For the algo-recommendation scores using more observable data, this is a limit. Strcutural
analyses, on the other hand, require necessary simplication for more mechanisms.
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exports to achieve better growth performance. As Section 4.5 shows, countries
whose export structure closely aligns with the algorithm-recommended struc-
ture have higher and more stable growth, even though the algorithm’s recom-
mendations do not make any specific judgment regarding product complexity,
and are solely based on information from a country’s currently revealed com-
parative advantages.

The chapter is also related to the literature on the relationship between
export diversification and countries’ economic performance. Existing research
asserts that export diversification is a key element in the economic develop-
ment process, particularly for developing and emerging market economies try-
ing to catch up with their advanced peers. Various studies provide evidence
of a positive association between export diversification and economic develop-
ment (e.g., Imbs and Wacziarg, 2003 [106]; Klinger and Lederman 2004 [107]
and 2011 [108]; Cadot et al., 2011 [109]). Numerous country studies also
supports the benefits of export diversification. For example, Feenstra and Kee
(2008) [110] use data from a large set of countries exporting to the US, to show
that a sustained increase in export diversification results in increases in produc-
tivity and a notable increase in the GDP of the exporters. IMF (2014) [111]
finds that diversification in exports and in domestic production has been con-
ducive to faster economic growth in LICs. Al-Marhubi (2000) provides similar
findings within a set of developing economies. Balaguer and Cantavella-Jorda
(2004) [112] find that export variety plays a key role in Spain’s economic de-
velopment. And Herzer and Danzinger (2006) [113] report a positive impact
of export diversification on economic growth of Chile. Research also points to a
positive association between export diversification and macroeconomic stability
(e.g., IMF, 2014 [111]).

However, not all types of diversification are created equal, and diversifica-
tion for its own sake is hardly a recipe for sustainable growth. A fundamental
idea of the classical international trade theory is that under free trade, coun-
tries will tend to export what they are relatively good at producing, i.e., prod-
ucts they have a comparative advantage in. “Diversifying” into industries that
are misaligned with a country’s current endowment fundamentals, as the for-
mer Soviet-block nations did after World War II through industrial policies that
aimed to accelerate industrialization, has negative growth consequences (Lin,
2009) [114]. On the other end of the spectrum, delayed industrialization also
leads to negative growth outcomes, as the experience of many resource-rich
countries that are entrenched in their over-dependence on commodity exports
has shown (e.g., Frankel, 2010 [115]).

A difference in focus between the current paper and the export diversification
literature is that the latter sees diversification as mostly in increasing the number
of export products, while the current paper emphasizes more on the structure of
the export portfolio. Our algorithm does provide a list of recommended products
for each country, which offers useful insights for countries looking to increase
the number of export items. But our econometric exercise focuses on the growth
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impact of the appropriate export structure, i.e., sectoral distribution of exports.

4.3 Methodology

The goal of this chapter is to answer the question of whether our algo-based ex-
port recommendations are positively correlated and can predict growth-enhancing
export structure, in the sense that countries with higher alignment with the
algo-based recommendations tend to achieve better growth performance. We
go about answering this question in the following steps:

• STEP 1. Determine the number of SITC 4-digit products to predict for
each country (see Section 4.3.1). These numbers of products are derived
from a country’s size and development level.

• STEP 2. Generate a list of export products7 using a product-based KNN
algorithm, at country-year level in the sample (see Section 4.3.2).

• STEP 3. Calculate the similarity score between the export structure im-
plied by the list of recommended export products and the actual export
structure, for each country-year (see Section 4.3.3).

• STEP 4. Estimate the robust correlation between the similarity score and
growth, volatility, and risk-adjusted growth (see Section 4.3.4).

An important concept used throughout the chapter is Revealed Comparative
Advantage (RCA). The RCA score, first introduced by Balassa (1965) [116], is a
popular measure to calculate the relative importance of a product in a country’s
export basket. Formally, the RCA score of country i in product j can be calculated
as:

RCAi j =
Ei j/

∑

j Ei j
∑

i Ei j/
∑

i

∑

j Ei j

where Ei j is the export value of product j from country i.
∑

j Ei j is the total
export value from country i.

∑

i Ei j is the total export value of product j from
all countries around the world. And

∑

i

∑

j Ei j is the total world exports.

A high-RCA product for country i is defined as a product with its RCAi j > 1.
Mathematically, it means that the product’s share in the country’s export portfo-
lio is greater than its share in the total world exports, which can be seen as
an indication that the country has a comparative advantage in the product.
For example, vehicle exports were about 12 percent of total world exports in
2017, while they constituted 22 percent of total exports from Mexico. There-
fore, RCAi j = 22/12 = 1.8 for Mexico’s vehicle exports in 2017. Since it is

7We sometimes refer this with export “recommendation”. Note that these are algorithm-
recommeded predictions, instead of direct policy advisory.
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greater than 1, according to our criteria, Mexico has a revealed comparative
advantage in automobiles. To put it another way, automobiles is a high-RCA
product for Mexico. The recommendation algorithm that will be introduced in
Section 4.3.2 essentially simulates a hypothetical RCA score for each country-
product combination, and pick the top products with the highest hypothetical
scores as the recommended export portfolio for country i.

4.3.1 Choosing the number of products in algorithm

Examining the export data by SITC 4-digit industry8 reveals the following em-
pirical regularities. First, more developed economies tend to have a larger num-
ber of high RCA products. This reflects the fact that more advanced economies
have a wider range of production knowledge and more sophisticated production
structures. Figure 4.6 regresses the number of high RCA exports of each country
on its real GDP per capita relative to the U.S. level, controlling for the country
size, and shows a positive relationship.9 Second, larger countries tend to have
a larger number of high RCA exports. This is unsurprising, as population size
correlates highly with the number of firms, the amount of human capital and the
amount of other production resources a country may have, enabling the country
to viably export a wider range of products. In addition, some industries and
products need a minimum scale to be sustainable. Figure 4.7 plots this positive
relationship between the number of high RCA exports and country population.

There are obviously other factors that determine how many high RCA ex-
ports a country has. But since we are focusing on exploring export structure
instead of simply expanding the number of export products, we pin down the
number of export products to predict for each country by the country’s size and
development stage. Specifically, we run the following estimation:

Krca,i t = β1GDPi t + β2POPi t + γt + εi t

where Krca,i t is the number of high RCA exports that country i has in year t.
GDPi t is GDP per capita and POPi t is population size. We add a time fixed effect
γt in the regression, as the average number of high RCA exports tends to rise
overtime around the world, with the increase in product variety brought about
by economic growth and technological change. We use K̂rca,i t , the predicted
number of high RCA exports from the regression, as the number of products
that the algorithm will recommend at country-year level.

8See Section 4.4 for a more detailed description of the underlining data.
9This chart reproduces Figure 3 of Che (2020).
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Figure 4.6: Number of High-RCA Exports v.s. Income Level, Partial Regres-
sion Plot

4.3.2 The algorithm-based recommendation

Our export product recommendation system10 employs a product-based K-nearest
neighbor (KNN) algorithm that is widely used in the collaborative filtering recom-
mendation systems of online commerce. The goal of the exercise is to generate,
for each country-year, a list of “top-K recommendations”, i.e., K products that a
country should export the most of based on empirical regularities.11

The algorithm produces the list by computing a recommendation score for
each product for the underling country, using the training dataset of RCA scores
by country and SITC 4-digit product, and recommending the K products with
the highest recommendation scores. Here, we set K to be equal to the K̂rca,i t

estimated in Section 4.3.1 for each country i in year t.

The underlining data used in the recommendation algorithm can be repre-
sented as a m×n matrix R, where m is the number of country-year combinations
in the database, and n is the total number of SITC 4-digit products. Each ele-
ment of R, i.e., ri j, is country i’s RCA score in product j. R is a sparse matrix due

10“Recommendation” throughout this chapter is from an algorithm perspective for our cross-
country empirical analysis in later steps, instead of direct policy advisory.

11In our implementation, we mainly include the fundamentals in scale and development stage
for the cross-country analysis. Note that these are not (necessarily) optimal levels to implement
at country level. Rather, it provides a way to systematically compare portfolio across countries
based on one explanatory metrics, supported by empirical regularities. There can be alternative
ways to obtain number of products a country could (or even should) export, which are more
suitable and relevant when considering specific country cases.
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Figure 4.7: Number of High-RCA Exports v.s. Population, Partial Regression
Plot

to the fact that each country only exports a subset of the products in the SITC
universe.12 In the case that country i does not export any product j, ri j = 0. If
in running the algorithm, multiple years of export data are used as the training
set, then each country-year is a row in R, i.e., m= c × y , where c is the number
of countries in the dataset, and y is the number of years included. In practice,
we set y = 1. In other words, when we generate scores at product-country level
i in 2017, only the cross-country export data for 2017 is included in the training
set.13

KNN is one of the most frequently used methods in solving classification
and pattern recognition problems, and is a popular approach in constructing
recommender systems. The basic idea of KNN is learning by analogy– classifying
the test sample by comparing it to the set of training samples most similar to
it. Different KNN implementations vary in terms of their choices of how the
similarity between input vectors is calculated. In the present paper, the cosine
similarity score is used as the similarity measure.

The intuition behind the product-based KNN implementation is simple– first
look at what products a country already has a revealed comparative advantage
in, and then recommend other products that are “related” to those products. To

12The dimension of the space depends on the granularity of products.
13We experimented with including multiple years of data in the training set, but found no

significant improvement in the results, while the model took longer to compute as the size of m
increases.
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explain the approach in more details, first write the RCA score matrix R as:

R=
�

p1,p2, ...,pn

�

where p j, an arbitrary element in R, is a vector of length m that represents the
RCA scores of product j for all the m countries14 in the sample:

p j =











r1 j

r2 j

.

.
rmj


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

The cosine similarity between products j and j′ is equal to
p j ·p j′

‖p j‖‖p j′‖
, which ranges

from -1, when the two vectors are the exact opposite, to 1, when the two are
exactly the same. The intuition behind this is that by comparing the two sets
of countries that export i and j, and how important the products are in the
countries’ export baskets, information can be inferred regarding how closely
related the two products are.

The implementation of the product-based KNN recommender for country i
in year t involves the following steps:

1. Represent each product in the SITC 4-digit product space as a vector of
RCA scores, p j.

2. Select the set of products that country i has a revealed comparative ad-
vantage, i.e., ri j > 1, which will be referred as the high-RCA product set
of country i.

3. For each j ∈ [1, n], calculate the predicted value of ri j as a weighted aver-
age RCA score of the high-RCA product set, weighted by the cosine simi-
larity between product j and the products in the country’s high-RCA set.

4. The algorithm-generated results for country i are the K̂rca,i t products with
the highest predicted ri j values (i.e., scores of the training result, or “rec-
ommendation scores” in accordance with the convention in the collabora-
tive filtering literature), where K̂rca,i t comes from the estimation in Section
4.3.1.

We repeat the above steps for each country-year pair to obtain the algorithm-
generated scores in terms of SITC 4-digit products in our full sample of countries
and time range with effective first-stage prediction.

14Note that in our implementation, m is effectively the cross-sectional country numbers. In
machine learning terminology, each product in the sample has m features.
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4.3.3 Calculating similarity scores

For the next step, we compute the similarity between the actual export portfolio
of a country and the recommended export portfolio.

We define the portfolio structure of country i’s actual exports in time t as the
number of high RCA exports (at SITC 4-digit level) that belong to each SITC
1-digit sector,15 as a share of total number of high RCA exports. In other words,
let N actual

l,i t be the number of high RCA exports in sector l, and

sactual
l,i t ≡

N actual
l,i t

∑

l ′ N
actual
l ′,i t

is the share of the number of high RCA exports that belong to sector l in the
total number of high RCA exports. Country i’s export structure, Sactual

i t , is thus

defined as a L × 1 vector:
�

sactual
l,i t

�

L×1
, where L = 10 with the SITC sectoral level

aggregation.

Similarly, we define the recommended export structure S rec
i t ≡

�

srec
l,i t

�

L×1
, as

the vector for the number of recommended products that belong to each SITC
1-digit sector as a share of the total number of recommended export products.

The similarity score between the actual and the recommended export port-
folios for country i at time t is then calculated as the similarity between the two
vectors of actual and recommended structures:

Simi t ≡

�

S rec
i,t−∆t − S̄ rec

i,t−∆t

�

·
�

Sactual
i t − S̄actual

i,t

�

‖S rec
i,t−∆t − S̄ rec

i,t−∆t‖‖S
actual
i t − S̄actual

i,t ‖

where∆t is a time lag we used when calculating the similarity scores to account
for the fact that it takes time for an export structure to evolve.16 This means
that the similarity scores depend on our choices of time lags. In our baseline
estimation, we set ∆t = 5 years. Alternative assumptions for the time lags are
also adopted in robustness checks presented in Section 4.6.

We calculate the annual Simi t for all country-year pairs in the sample, and
then incorporate the scores into the growth, volatility and risk-adjusted regres-
sions that will be specified in the following section.

15See appendix Table 4.17 for the full list of SITC 1-digit sectors.
16We include this time lag because Che (2020) [103] found that recommendations given by

the product-based KNN algorithm are to some extent forward-looking, in that they match the
export portfolios of several high-growth countries in their future years better than in the current
year.
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4.3.4 Growth and volatility estimations

Our main econometric exercise aims to investigate the correlation17 of the align-
ment of recommended and actual export structure on growth and volatility of
growth. The hypothesis is that countries with an export structure highly aligned
with their latent comparative advantages– manifested as a high similarity score
between their actual and algorithm-recommended export portfolios, as defined
in Section 4.3.3– should see higher and more stable growth over time.

To examine the robust correlation of export structure and growth, we specify
the following estimation model:

gi t = β0 + β1 yi,t−∆t + β2Simi t + γXi t + εi t (4.1)

where gi t the average annual growth in GDP per capita for country i from t−∆t
to t. yi,t−∆t is the lagged real GDP per capita in log form. Simi t is the similarity
score calculated as in Section 4.3.3. Xi t is a set of controls, including investment-
to-GDP ratio, human capital growth, TFP growth, and world GDP growth in
some specifications to account for common external shocks. We also include
country and time fixed effects in Xi t for some of the regression specifications
(see Section 4.5). The similarity scores, as well as most control variables, are
annual averages over the ∆t time window. In our baseline estimation, we set
∆t = 5 years. The regressions are run with non-overlapping∆t as the time unit.
Our main parameter of interest is β2.

Similarly, we can look at the impact of export structure on the volatility of
growth with the following model:

voli t = β0 + β1voli,t−∆t + β2Simi t + γXi t + εi t (4.2)

where voli t is the standard deviation of annual growth of real GDP per capita
during the∆t time period. And voli,t−∆t is the lagged dependent variable. Con-
trols (Xi t) are broadly the same as in the growth regression, except we replace
world growth with the growth volatility of world GDP, to control for the level of
external volatility.

Alternatively, we can combine the information on the left-hand side of Equa-
tions (4.1) and (4.2), and estimate the impact of export structure on countries’
“risk-adjusted growth”. Here we define country i’s risk-adjusted growth, g ra

i t , as
the deviation of country i’s growth from the world average growth rate, gi t− g t ,
divided by its standard deviation σi t , over the∆t time period. We then estimate
the following equation,

g ra
i t = β0 + β1 g ra

i,t−∆t + β2Simi t + γXi t + εi t

17We are aware of the limit using the growth panel addressing causality. In the rest of the
chapter, “impact” is interpreted in correlation.
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Controls (Xi t) are the same as in the growth regression, except we replace world
growth with the average risk-adjusted growth across countries in Xi t .

For each equation, the estimation is done using simple OLS, country and time
fixed-effect estimator, and a system GMM estimator following Arellano and Bond
(1991) [117]. The system GMM estimator is employed to address the endogene-
ity issue introduced by having the lagged dependent variable on the right hand
side, which likely affects the consistency of OLS and fixed-effect estimators. In
the system GMM estimation, the lagged dependent variable and country-level
controls are treated as endogenous and instrumented as such. Time fixed effect
and world-level controls are treated as exogenous. Section 4.5 presents results
from all three estimators for each regression.

4.4 Data

The country-product level raw export data and the actual export RCA scores
come from the Atlas of Economic Complexity Dataverse (2020 version), which
are in turn sourced from UN Comtrade Database. The macroeconomic variables
come from the World Bank and Penn World Table18. Summary statistics for the
main variables used in the regressions are shown in Table 4.1. The data used for
growth regressions are based on annual frequency covering 1980-2018. Specific
estimations depend on different time-lag experiments as detailed in Section 4.5
and Section 4.6.

Table 4.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Similarity score 0.817 0.179 -0.203 0.995 1203
GDP per capita 8.390 1.505 5.129 11.663 1414
Investment rate 0.219 0.109 -0.479 0.942 1398

TFP growth 0.002 0.028 -0.184 0.222 868
Human capital growth 0.01 0.007 -0.025 0.043 1107
GDP per capita growth 0.017 0.037 -0.247 0.367 1324

Growth volatility 0.015 0.014 0.001 0.142 1177
Risk-adjusted growth 0.705 4.474 -75.438 50.674 1175

The similarity score is calculated at the country-year level, following the steps
described in Section 4.3.3. In the appendix, we show summary statistics for
RCA scores and recommendation scores used to calculate the similarity score
(see Table 4.18 and Table 4.19), as well as the box plots for the distributions of
RCA scores and recommendation scores by SITC 1-digit sector (see Figure 4.10).
Figure 4.8 presents the similarity score distribution around the world in 2018.

18Version 10.0, see Feenstra et al. (2015) for metadata details.
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Figure 4.8: The Global Distribution of Similarity Scores

4.5 Estimation Results

4.5.1 Correlation with growth

Table 4.2 presents our baseline results for the growth regression. Columns (1)
and (2) are results from the OLS estimation with robust standard errors, with-
out and with controls respectively. Column (3) presents results from the fixed-
effect estimation with clustered standard errors. Columns (4) and (5) are results
from the system GMM estimation, with year dummies and world GDP growth
included in the controls, respectively. Standard errors are given in parentheses.
As mentioned earlier, we choose a time window of 5 years in the baseline esti-
mations, to account for the fact that export structure is a slow moving variable
whose impact may take some time to show. This gives us over 700 observations
in the GMM estimation.

As expected, the control variables– investment rate, TFP and human capital
growth, world GDP growth– are positive and mostly significant. The lagged
GDP per capita variable is negative and significant in the OLS and fixed effect
estimations, consistent with the prediction of economic convergence theory that
poorer countries should grow faster than richer countries. But the variable has
a negative and insignificant coefficient in the system GMM specifications.

Consistent with our hypothesis, the similarity score variable is positive and
significant in all regression specifications, i.e., higher alignment between actual
export structure and recommended export structure is good for growth. The
magnitude of the coefficient does not vary too much across different specifica-
tions. According to the system GMM estimation (Column 5), a 0.1 increase in
the similarity score (Simi t) is associated with a 0.22 percentage point increase
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in the annual growth rate of real GDP per capita. The coefficient is statistically
significant at 1% level. This is equivalent to a move from the median to the 90th
percentile of the similarity score distribution.

The choice of the time window potentially affects the magnitude and sig-
nificance of the result.19 We will explore alternative specifications for the time
window in the robustness section (Section 4.6).

4.5.2 Correlation with growth volatility

Table 4.3 gives the results for the volatility regression, where the dependent vari-
able is the standard deviation of annual growth during each ∆t period. Similar
to Table 4.2, Columns (1)-(3) are results from OLS and fixed effect estimations.
And Columns (4)-(5) are system GMM results, with year dummies and volatility
of world growth in the controls respectively.

The lagged volatility variable is positive and significant across all regression
specifications, even in the fixed effect and system GMM specifications, where
persistent and country specific volatility differences are supposed to be accounted
for. This suggests significant stickiness in growth volatility. The control variables
of investment rate, TFP growth, and human capital growth do not appear to
have any material influence on the growth volatility, ceteris paribus. However,
the dependent variable is shown to be highly correlated with the external envi-
ronment, as indicated by the positive and significant coefficient for the variable
of world growth volatility.

Turning to the similarity score, the results show a negative and significant
coefficient for the variable under two OLS and two system GMM estimation
specifications, i.e., higher alignment between actual export structure and rec-
ommended export structure helps growth to be more stable. The coefficient is
negative but not significant in the fixed effect estimation.

In terms of the magnitude of impact, the system GMM estimator in Column
5 suggests that a 0.1 increase in the similarity score is associated with a 0.0015
decrease in the standard deviation of growth rate in a 5-year window. This is
statistically significant at 1% level. In the robustness section, we will explore
whether changing ∆t alters the sign and significance of the baseline results.

4.5.3 Correlation with risk-adjusted growth

Instead of looking at growth rate and growth volatility separately, we can also
summarize a country’s growth performance in one variable, which we call the
risk-adjusted growth. This is calculated as the average annual growth divided
by the standard deviation of growth during∆t period. Table 4.4 presents results

19Note that the default setting, with ∆t = 5 years, is by our choice to start with considering
the trade evolution and the panel data structure.
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for the risk-adjusted growth regression. The columns are structured similarly as
in Tables 4.2 and 4.3.

The lagged dependent variable shows up with a positive coefficient in all
regression specifications, though it is not significant except in the OLS specifi-
cation without controls and the fixed effect specification. Among the control
variables included, investment rate and TFP growth are shown to be associated
with higher risk-adjusted growth, while the human capital variable is insignifi-
cant and its sign varying across different estimations. In addition, the dependent
variable is strongly correlated with the risk adjusted growth at the world level.

Consistent with our hypothesis, the similarity score variable has a positive
coefficient across all specifications. The coefficient is significant in the basic OLS
and the system GMM estimations. The system GMM result (Column 5) suggests
that a 0.1 increase in the similarity score is associated with 20.95 percentage
points increase per standard deviation in the annual growth rate. To put it in an
alternative way, an increase of 0.8 in the similarity score moves a country from
the world medium in the risk-adjusted growth spectrum to the 75th percentile
level. The result is statistically significant at 5% level.

4.6 Robustness

4.6.1 Changing time interval

In the baseline regressions, we set ∆t = 5 years. In this section, we examine
how our results may change with different assumptions for∆t. Tables 4.5 to 4.7
show results with ∆t = 3,5, and 7 years, under the system GMM specification
with all controls. Tables 4.8 to 4.13 present the results with these alternative
time interval assumptions for all estimation specifications.

As Table 4.5 shows, the signs remain the same and the magnitude and signif-
icance level for our variable of interest (Simi t) differ slightly from the baseline
case (∆t = 5). When ∆t = 3, a 0.1 increase in the similarity score is associ-
ated with 0.19 percentage point increase in growth, while this coefficient is 0.13
when ∆t = 7. The results for the cases of ∆t = 3 and 7 under OLS and fixed
effect specifications can be found in Tables 4.8 and 4.9.

Table 4.6 summarizes results for the volatility regression for different time
windows, under the system GMM specification. It shows that a 0.1 increase in
the similarity score is associated with 0.0017 and 0.0013 decrease in the stan-
dard deviation of growth when ∆t = 3 and 7 respectively. These are mostly
consistent with the baseline result. For the estimates of OLS and fixed effect
specifications, see Tables 4.10 and 4.11.

The adjusted-growth regression results with alternative time windows using
the system GMM estimator are summarized in Table 4.7. And Tables 4.12 and
4.13 present the results for other regression specifications. As Tables 4.7 shows,
when ∆t = 3, a 0.1 increase in the similarity score is associated with 21.84
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percentage point increase in the risk-adjusted annual growth rate, at 1% signif-
icance level. However, this value decreases to 13.79 when ∆t = 7, and it is not
statistically significant.20

A summary of estimates with time intervals varying between 3 to 7 can be
found in Figure 4.9. In this plot, we show confidence intervals for the key co-
efficient in growth regressions, volatility regressions, and risk-adjusted growth
regressions against consecutive time intervals.

4.6.2 Winsorization

We also run a set of regressions where we winsorize the dependent variables by
removing the top and bottom 5% from the sample observations. Overall, signs
and significance of the similarity score variable do not change markedly from
the baseline results.

Table 4.14 presents results of the growth regression with the real GDP growth
rate winsorized. The coefficient for the similarity score remains positive and
significant across all specifications. In fact, the magnitude of the coefficient is
slightly lower in four out of the five specifications compared to the baseline.
According to the system GMM estimates (Column 5), a 0.1 increase in the sim-
ilarity score (Sim) is associated with a 0.18 percentage point increase in real
GDP per capita growth.

Table 4.15 show results of the winsorized volatility regression. Overall the
estimates for the similarity score variable are somewhat weaker than in the base-
line in terms of magnitudes, but still point to a negative impact of the similarity
score on growth volatility. The coefficient for Simi t is negative in all five speci-
fications, but not significant in four out of five specifications.

Table 4.16 are results for the winsorized adjusted-growth regression. Similar
to the baseline results, the coefficient of similarity score is positive and signifi-
cant in the system GMM with the world growth control, though the magnitudes
of the coefficient is smaller than in the baseline. According to the system GMM
estimates (Column 5), a 0.1 increase in the similarity score is associated with
9.8 percentage points increase per standard deviation in the annual growth rate.
This is much smaller than 20.95 percentage points increase in the baseline re-
sult. The statistical significance level changes from 1% to 10%. But overall,
the winsorized results still confirm a positive correlation between the similarity
score and countries’ comprehensive growth performance.

20As a further robustness check, we tried ∆t = 8 and this value is 19.89 percentage point
at 5% significance level. Specifically, the estimated coefficient for similarity score in the risk-
adjusted growth regression under the system GMM specification is 1.989 with standard error
0.959.
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4.7 Conclusion

In this chapter, we try to combine machine learning and economics approaches
to shed light on the importance of export structure evolution in the convergence
of growth and income. We first leveraged machine learning methods to char-
acterize the complex patterns in countries’ latent comparative advantages and
create algorithm-based export recommendations accordingly. Specifically, we
used a product-based KNN algorithm to provide annual export product recom-
mendations at the SITC 4-digit level for over 190 economies, from 1980 to 2018.
We then use a standard empirical growth model to evaluate whether a country’s
growth performance is better when the actual portfolio is more aligned with the
algorithm-based portfolio.

Our results confirm the merits of such algorithm-based export portfolio. We
find that economies with a higher similarity score between algorithm-based rec-
ommended and actual export portfolios achieve better growth performance. In
our baseline estimation, an increase in the similarity score is associated with an
increase in the annual growth of real GDP per capita, a decrease in the standard
deviation of growth rate over five-year time windows, and an increase in risk-
adjusted growth. These results are overall robust with respect to changing time
intervals and winsorization.

To understand detailed mechanisms driving comparative advantages, one
needs to utlize structural models for further aggregate analyses and decompo-
sitions. The algorithm-produced export recommendations are no substitutes for
detailed and multidimensional analyses of the viability of any industry in a coun-
try. In addition, it goes without saying that knowing which industries a coun-
try may have comparative advantages in does not automatically translate into
specific policy recommendations. Neither are we advocating for direct policy
interventions in shaping a country’s export structure. How a country can best
support the growth of its tradable sectors to leverage the country’s comparative
advantages requires model-based analyses and is likely a case-by-case discus-
sion, depending on many country-specific factors. We have considered this in
the methodology design, and we acknowledge that specific institutional chal-
lenges vary significantly across the world. Therefore, there still remain gaps be-
tween the algo-based recommendations and policy recommendations in terms of
diversification advisory and policy tools under different country circumstances.

Nonetheless, our paper provides cross-country empirical evidence on direc-
tions of diversification with positive correlation with growth performance. Our
study also raises interesting questions on potential structural changes and eco-
nomic reforms for different countries. When considering greater accession to the
global market, small open economies with weak fundamentals confront trade-
offs about what products to diversify into. Large emerging markets could face
challenges associated with either short-term or long-term bottlenecks. Further
quantitative studies can be conducted to identify potential policy gaps and re-
forms on the path to achieving better growth.
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4.8 Appendix

Table 4.2: Growth Regression (baseline)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged GDP Per Capita -0.002∗∗ -0.008∗∗∗ -0.016∗∗∗ -0.001 -0.001
(0.001) (0.003) (0.004) (0.001) (0.001)

Similarity Score 0.023∗∗∗ 0.036∗∗∗ 0.035∗∗ 0.023∗∗∗ 0.022∗∗∗

(0.008) (0.011) (0.014) (0.006) (0.006)
Inv. Rate 0.016∗∗∗ 0.014∗∗∗ 0.021∗∗∗ 0.021∗∗∗

(0.002) (0.002) (0.004) (0.004)
TFP Growth 0.716∗∗∗ 0.689∗∗∗ 0.745∗∗∗ 0.742∗∗∗

(0.063) (0.057) (0.064) (0.061)
Human Capital Growth 0.426∗∗∗ 0.420∗∗∗ 0.600∗∗∗ 0.571∗∗∗

(0.127) (0.133) (0.149) (0.153)
World Growth 0.381∗ 0.263

(0.195) (0.193)
No. of Obs. 1168 732 732 732 732
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.01 0.02
Hansen-J (p-value) 0.79 0.80

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.3: Volatility Regression (baseline)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Volatility 0.443∗∗∗ 0.272∗∗∗ 0.268∗∗∗ 0.468∗∗∗ 0.468∗∗∗

(0.071) (0.075) (0.059) (0.056) (0.055)
Similarity Score -0.010∗∗∗ -0.023∗∗ -0.022 -0.014∗∗ -0.015∗∗∗

(0.004) (0.011) (0.014) (0.006) (0.006)
Inv. Rate -0.001 -0.001 -0.003∗∗ -0.002

(0.001) (0.001) (0.001) (0.001)
TFP Growth -0.011 -0.013 -0.012 -0.011

(0.035) (0.026) (0.023) (0.027)
Human Capital Growth 0.136∗ 0.138 0.112 0.082

(0.080) (0.090) (0.083) (0.078)
World Volatility 0.675∗∗∗ 0.464∗∗

(0.190) (0.209)
No. of Obs. 966 614 613 614 614
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.51 0.53
Hansen-J (p-value) 0.58 0.38

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.4: Risk-adjusted Growth Regression (baseline)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Adj. Growth 0.311∗∗∗ 0.073 0.086∗ 0.066 0.050
(0.111) (0.045) (0.048) (0.052) (0.046)

Similarity Score 3.406∗∗∗ 3.270 2.604 1.985∗∗ 2.095∗∗

(0.627) (2.589) (2.568) (0.863) (0.853)
Inv. Rate 1.989∗∗∗ 2.247∗∗∗ 1.775∗∗∗ 1.721∗∗∗

(0.487) (0.527) (0.482) (0.541)
TFP Growth 33.794∗∗∗ 38.395∗∗∗ 36.424∗∗∗ 29.998∗∗∗

(8.458) (11.167) (10.365) (8.329)
Human Capital Growth 1.194 -11.629 -25.097 -14.007

(29.750) (28.030) (34.874) (34.170)
World Adj. Growth 0.508∗∗ 0.578∗∗∗

(0.218) (0.215)
No. of Obs. 964 613 612 613 613
AR1 (p-value) 0.01 0.02
AR2 (p-value) 0.49 0.17
Hansen-J (p-value) 0.49 0.43

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.5: Robustness: Growth

(1) (2) (3)
+3 +5 +7

Lagged GDP Per Capita -0.001 -0.001 -0.001
(0.001) (0.001) (0.002)

Similarity Score 0.019∗∗∗ 0.022∗∗∗ 0.013∗∗

(0.007) (0.006) (0.007)
Inv. Rate 0.021∗∗∗ 0.021∗∗∗ 0.018∗∗∗

(0.003) (0.004) (0.004)
TFP Growth 0.797∗∗∗ 0.742∗∗∗ 0.758∗∗∗

(0.067) (0.061) (0.076)
Human Capital Growth 0.650∗∗∗ 0.571∗∗∗ 0.530∗∗∗

(0.158) (0.153) (0.183)
World Growth 0.391∗∗∗ 0.263 0.613∗∗∗

(0.085) (0.193) (0.210)
Constant 0.034∗∗ 0.030∗∗ 0.030

(0.015) (0.015) (0.019)
No. of Obs. 1258 732 523
AR1 (p-value) 0.00 0.00 0.01
AR2 (p-value) 0.89 0.02 0.10
Hansen-J (p-value) 1.00 0.80 0.01

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.6: Robustness: Volatility

(1) (2) (3)
+3 +5 +7

Lagged Volatility 0.417∗∗∗ 0.468∗∗∗ 0.243∗∗∗

(0.058) (0.055) (0.073)
Similarity Score -0.017∗∗∗ -0.015∗∗∗ -0.013∗∗∗

(0.005) (0.006) (0.004)
Inv. Rate -0.002 -0.002 -0.002

(0.001) (0.001) (0.001)
TFP Growth -0.116∗∗∗ -0.011 0.088∗∗

(0.032) (0.027) (0.035)
Human Capital Growth 0.075 0.082 -0.058

(0.102) (0.078) (0.102)
World Volatility 0.526∗∗∗ 0.464∗∗ 0.532∗∗

(0.132) (0.209) (0.234)
Constant 0.010∗ 0.008∗ 0.009∗

(0.006) (0.005) (0.005)
No. of Obs. 1231 614 409
AR1 (p-value) 0.00 0.00 0.00
AR2 (p-value) 0.05 0.53 0.31
Hansen-J (p-value) 1.00 0.38 0.23

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.7: Robustness: Risk-adjusted Growth

(1) (2) (3)
+3 +5 +7

Lagged Adj. Growth 0.265∗∗∗ 0.050 0.253∗∗∗

(0.055) (0.046) (0.059)
Similarity Score 2.184∗∗∗ 2.095∗∗ 1.379

(0.679) (0.853) (0.893)
Inv. Rate 1.483∗∗∗ 1.721∗∗∗ 0.442

(0.320) (0.541) (0.400)
TFP Growth 36.657∗∗∗ 29.998∗∗∗ 58.120∗∗∗

(7.757) (8.329) (11.848)
Human Capital Growth 49.083∗∗ -14.007 73.046∗

(21.635) (34.170) (40.394)
World Adj. Growth 0.528∗∗∗ 0.578∗∗∗ 0.715∗∗∗

(0.156) (0.215) (0.164)
Constant 0.358 1.486 -1.217

(0.703) (1.020) (0.900)
No. of Obs. 1230 613 408
AR1 (p-value) 0.00 0.02 0.00
AR2 (p-value) 0.14 0.17 0.01
Hansen-J (p-value) 1.00 0.43 0.10

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.8: Growth Regression (fwd+3)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged GDP Per Capita -0.001∗ -0.008∗∗∗ -0.015∗∗∗ -0.002 -0.001
(0.001) (0.002) (0.005) (0.001) (0.001)

Similarity Score 0.025∗∗∗ 0.022∗∗ 0.023∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.007) (0.010) (0.010) (0.007) (0.007)
Inv. Rate 0.019∗∗∗ 0.018∗∗∗ 0.022∗∗∗ 0.021∗∗∗

(0.002) (0.003) (0.004) (0.003)
TFP Growth 0.764∗∗∗ 0.740∗∗∗ 0.779∗∗∗ 0.797∗∗∗

(0.050) (0.069) (0.070) (0.067)
Human Capital Growth 0.492∗∗∗ 0.486∗∗∗ 0.566∗∗∗ 0.650∗∗∗

(0.121) (0.167) (0.196) (0.158)
World Growth 0.422∗∗∗ 0.391∗∗∗

(0.101) (0.085)
No. of Obs. 2030 1258 1258 1258 1258
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.95 0.89
Hansen-J (p-value) 1.00 1.00

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.9: Growth Regression (fwd+7)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged GDP Per Capita -0.002∗∗ -0.011∗∗∗ -0.024∗∗∗ -0.001 -0.001
(0.001) (0.003) (0.006) (0.002) (0.002)

Similarity Score 0.015∗∗ 0.019 0.021∗∗ 0.014∗∗ 0.013∗∗

(0.007) (0.015) (0.010) (0.007) (0.007)
Inv. Rate 0.014∗∗∗ 0.012∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.002) (0.002) (0.005) (0.004)
TFP Growth 0.686∗∗∗ 0.622∗∗∗ 0.770∗∗∗ 0.758∗∗∗

(0.076) (0.093) (0.093) (0.076)
Human Capital Growth 0.481∗∗∗ 0.496∗∗∗ 0.580∗∗ 0.530∗∗∗

(0.176) (0.187) (0.239) (0.183)
World Growth 1.054∗∗∗ 0.613∗∗∗

(0.301) (0.210)
No. of Obs. 838 523 522 523 523
AR1 (p-value) 0.01 0.01
AR2 (p-value) 0.13 0.10
Hansen-J (p-value) 0.01 0.01

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.10: Volatility Regression (fwd+3)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Volatility 0.444∗∗∗ 0.304∗∗∗ 0.329∗∗∗ 0.450∗∗∗ 0.417∗∗∗

(0.044) (0.061) (0.055) (0.054) (0.058)
Similarity Score -0.014∗∗∗ -0.011 -0.011 -0.015∗∗ -0.017∗∗∗

(0.003) (0.009) (0.011) (0.006) (0.005)
Inv. Rate -0.001 -0.002 -0.003∗∗ -0.002

(0.001) (0.001) (0.002) (0.001)
TFP Growth -0.113∗∗∗ -0.117∗∗∗ -0.117∗∗∗ -0.116∗∗∗

(0.031) (0.029) (0.033) (0.032)
Human Capital Growth 0.025 0.059 0.084 0.075

(0.089) (0.108) (0.121) (0.102)
World Volatility 0.661∗∗∗ 0.526∗∗∗

(0.118) (0.132)
No. of Obs. 1948 1231 1231 1231 1231
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.04 0.05
Hansen-J (p-value) 1.00 1.00

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.11: Volatility Regression (fwd+7)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Volatility 0.453∗∗∗ -0.013 -0.017 0.235∗∗∗ 0.243∗∗∗

(0.098) (0.096) (0.058) (0.069) (0.073)
Similarity Score -0.009∗∗ -0.016 -0.017 -0.013∗∗∗ -0.013∗∗∗

(0.004) (0.010) (0.011) (0.005) (0.004)
Inv. Rate -0.002 -0.002 -0.003∗ -0.002

(0.001) (0.001) (0.001) (0.001)
TFP Growth 0.065 0.068∗ 0.102∗∗∗ 0.088∗∗

(0.039) (0.038) (0.033) (0.035)
Human Capital Growth 0.167 0.129 -0.121 -0.058

(0.123) (0.151) (0.098) (0.102)
World Volatility 0.908∗∗∗ 0.532∗∗

(0.247) (0.234)
No. of Obs. 645 409 402 409 409
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.25 0.31
Hansen-J (p-value) 0.30 0.23

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.12: Risk-adjusted Growth Regression (fwd+3)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Adj. Growth 0.407∗∗∗ 0.156∗∗∗ 0.164∗∗∗ 0.280∗∗∗ 0.265∗∗∗

(0.050) (0.043) (0.038) (0.056) (0.055)
Similarity Score 2.641∗∗∗ 2.259∗ 2.870∗∗ 2.403∗∗∗ 2.184∗∗∗

(0.418) (1.167) (1.311) (0.824) (0.679)
Inv. Rate 2.084∗∗∗ 2.257∗∗∗ 1.520∗∗∗ 1.483∗∗∗

(0.322) (0.321) (0.318) (0.320)
TFP Growth 35.252∗∗∗ 37.052∗∗∗ 40.304∗∗∗ 36.657∗∗∗

(4.555) (7.304) (7.740) (7.757)
Human Capital Growth 57.144∗∗∗ 38.695∗∗ 31.331 49.083∗∗

(19.311) (18.272) (24.025) (21.635)
World Adj. Growth 0.410∗∗∗ 0.528∗∗∗

(0.137) (0.156)
No. of Obs. 1946 1230 1230 1230 1230
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.16 0.14
Hansen-J (p-value) 1.00 1.00

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.13: Risk-adjusted Growth Regression (fwd+7)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Adj. Growth 0.234∗∗ 0.137∗∗ 0.153∗∗∗ 0.289∗∗∗ 0.253∗∗∗

(0.107) (0.054) (0.045) (0.060) (0.059)
Similarity Score 3.283∗∗∗ 1.676 0.965 1.189 1.379

(0.680) (2.548) (2.452) (0.993) (0.893)
Inv. Rate 1.251∗∗∗ 1.321∗∗∗ 0.457 0.442

(0.446) (0.448) (0.393) (0.400)
TFP Growth 44.795∗∗∗ 49.179∗∗∗ 65.872∗∗∗ 58.120∗∗∗

(11.965) (15.320) (13.691) (11.848)
Human Capital Growth 43.964 25.323 58.270 73.046∗

(53.825) (55.088) (42.408) (40.394)
World Adj. Growth 0.732∗∗∗ 0.715∗∗∗

(0.191) (0.164)
No. of Obs. 643 408 401 408 408
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.03 0.01
Hansen-J (p-value) 0.13 0.10

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.14: Growth Regression (winsorized)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged GDP Per Capita -0.000 -0.008∗∗∗ -0.018∗∗∗ -0.002∗∗ -0.002∗∗

(0.000) (0.003) (0.006) (0.001) (0.001)
Similarity Score 0.023∗∗∗ 0.019∗ 0.018∗ 0.018∗∗∗ 0.018∗∗∗

(0.006) (0.010) (0.009) (0.007) (0.007)
Inv. Rate 0.017∗∗∗ 0.015∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.002) (0.002) (0.003) (0.003)
TFP Growth 0.676∗∗∗ 0.651∗∗∗ 0.695∗∗∗ 0.693∗∗∗

(0.062) (0.074) (0.075) (0.071)
Human Capital Growth 0.325∗∗∗ 0.306∗∗ 0.391∗∗∗ 0.367∗∗

(0.117) (0.120) (0.138) (0.147)
World Growth 0.339∗∗ 0.313∗

(0.168) (0.165)
Constant 0.001 0.076∗∗∗ 0.177∗∗∗ 0.048∗∗∗ 0.041∗∗∗

(0.007) (0.025) (0.049) (0.013) (0.013)
No. of Obs. 931 631 627 631 631
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.04 0.11
Hansen-J (p-value) 0.85 0.81

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.15: Volatility Regression (winsorized)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Volatility 0.329∗∗∗ 0.141∗∗ 0.129∗∗∗ 0.311∗∗∗ 0.300∗∗∗

(0.044) (0.069) (0.043) (0.038) (0.038)
Similarity Score -0.004∗ -0.005 -0.005 -0.008 -0.007

(0.002) (0.006) (0.006) (0.005) (0.005)
Inv. Rate -0.002 -0.002 -0.002∗∗ -0.002

(0.001) (0.001) (0.001) (0.001)
TFP Growth -0.011 -0.014 0.001 0.002

(0.029) (0.022) (0.023) (0.024)
Human Capital Growth 0.029 0.026 -0.023 -0.034

(0.056) (0.054) (0.057) (0.058)
World Volatility 0.560∗∗∗ 0.449∗∗∗

(0.147) (0.160)
Constant 0.011∗∗∗ 0.014∗ 0.011∗ 0.010∗ 0.004

(0.002) (0.007) (0.006) (0.005) (0.005)
No. of Obs. 816 530 524 530 530
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.32 0.29
Hansen-J (p-value) 0.24 0.26

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.16: Risk-adjusted Growth Regression (winsorized)

(1) (2) (3) (4) (5)
OLS OLS-X FE(t),X GMM-(t) GMM-X(t)

Lagged Adj. Growth 0.435∗∗∗ 0.225∗∗∗ 0.274∗∗∗ 0.388∗∗∗ 0.313∗∗∗

(0.038) (0.051) (0.046) (0.058) (0.058)
Similarity Score 1.878∗∗∗ 0.478 -0.181 0.699 0.980∗

(0.403) (1.661) (1.654) (0.503) (0.507)
Inv. Rate 0.850∗∗∗ 1.083∗∗∗ 0.467∗ 0.245

(0.268) (0.288) (0.273) (0.295)
TFP Growth 28.479∗∗∗ 31.456∗∗∗ 37.499∗∗∗ 32.498∗∗∗

(6.663) (8.919) (8.468) (6.919)
Human Capital Growth 22.874 13.397 20.382 31.930

(18.292) (16.395) (25.115) (25.516)
World Adj. Growth 0.374∗∗∗ 0.438∗∗∗

(0.110) (0.113)
Constant -1.136∗∗∗ 0.502 2.163 -0.287 -0.680

(0.331) (0.666) (1.588) (0.731) (0.710)
No. of Obs. 804 522 517 522 522
AR1 (p-value) 0.00 0.00
AR2 (p-value) 0.81 0.22
Hansen-J (p-value) 0.23 0.26

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.17: Classification according to SITC 1 - Section

SITC Code Sector Name

0 Food and live animals
1 Beverages and tobacco
2 Crude materials, inedible, except fuels
3 Mineral fuels, lubricants and related materials
4 Animal and vegetable oils, fats and waxes
5 Chemicals and related products, n.e.s.
6 Manufactured goods classified chiefly by material
7 Machinery and transport equipment
8 Miscellaneous manufactured articles
9 Commodities and transactions not classified elsewhere in the SITC
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Figure 4.9: Robustness: Confidence Intervals in Main Regressions
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Table 4.18: Summary of Actual RCA by Year

N Mean Q1 Median Q3
year

1985 61160 0.136 0.024 0.158 0.844
1990 69130 0.133 0.024 0.156 0.788
1995 84213 0.144 0.027 0.168 0.798
2000 96925 0.138 0.027 0.163 0.780
2005 100931 0.128 0.024 0.155 0.744
2010 104069 0.120 0.023 0.152 0.735
2015 101789 0.117 0.022 0.143 0.708

Table 4.19: Summary of Recommendation Scores by Year

N Mean Q1 Median Q3
year

1985 133722 0.269 0.140 0.328 0.648
1990 134504 0.308 0.161 0.370 0.686
1995 152281 0.350 0.202 0.403 0.712
2000 159444 0.365 0.217 0.438 0.754
2005 160218 0.348 0.198 0.419 0.749
2010 160784 0.342 0.195 0.416 0.747
2015 160576 0.337 0.194 0.393 0.702



Appendix 208

Figure 4.10: Distribution of Actual RCA and Algorithm-Based Recommen-
dation Scores by SITC Sector
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