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Abstract

Entertainment consumption has changed drastically in the last decade, presenting new problems

and questions to the entertainment industry. My research addresses three different problems in

this industry. First, we study how to rank products optimally in a trial-offer marketplace where

consumers present heterogeneous preferences and are influenced by past purchases. Second, we

study the strategic implications of binge consumption of entertainment for advertising video on

demand platforms. And third, we study the optimal release timing of movies between theatrical

and home video (DVD and Blu-ray) markets, as the quality of the latter approaches the quality of

the former.

In the first chapter, we study optimal ranking policies in a stylized trial-offer marketplace model,

in which a single firm offers multiple products and has consumers who express heterogeneous

preferences. The platform owner needs to devise a ranking policy to display the products to

maximize the number of purchases in the long run, and to decide whether to display the number

of past purchases. We find that when past purchases are displayed, consumer heterogeneity makes

buyers try sub-optimal products, reducing the overall sales rate. We then show that consumer

heterogeneity makes the ranking problem NP-hard (under Turing reductions) and we analyze the

benefits of market segmentation. We find tight bounds to the expected benefits of offering a distinct

ranking to each consumer class and we show that the market segmentation strategy always benefits

from social influence. The firm is better off using an aggregate ranking policy when the variety of

consumer preference is limited, but it should perform a market segmentation policy when consumers

are very heterogeneous. This result is robust to relatively small consumer classification mistakes;

when these are large, an aggregate ranking is preferred.

In the second chapter, we study the strategic implications of binge consumption of entertainment

for advertising video on demand (AVOD) services. As on-demand video streaming services succeed,
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traditional television-based media companies have begun to look for new methods to reach viewers.

One such method is for these companies to distribute show episodes through a newly launched

online AVOD service (e.g. NBCUniversal’s Peacock, ViacomCBS’s Pluto TV, Roku Inc., or Fox

Corp.’s Tubi), which provides a new release timing strategy for episodes of shows. Besides the

traditional sequential releases (e.g. week to week), episodes can now be released simultaneously (all-

at-once), which lowers a consumers’ viewing costs relative to the sequential releases but at the cost

of diminished responsiveness to advertising. In this paper, we study the impact of the introduction

of this new release timing decision in an AVOD setting with a signaling model. Specifically, we

analyze whether the release timing of episodes signals show quality and moderates advertising levels.

We show that by using an AVOD service that allows for sequential and simultaneous releases of

show episodes, there exists a separating equilibrium under which higher and lower quality shows

choose different release timing strategies. Furthermore, the introduction of the simultaneous release

timing reduces the advertising level that high quality shows need to incur in order to signal their

quality through the traditional sequential release schedule. Meanwhile low quality shows select an

all-at-once release timing. Although high quality shows do not release episodes simultaneously,

with a more profitable alternative for lower quality shows, they are better-off.

In the third chapter, we study how innovations in the home video viewing experience affect the

optimal release timing strategies of the movie industry. We specifically analyze versioning through

home video release windows - the time between theater market exit and home video release - when

there are two home video products with different technological qualities; DVDs and Blu-rays. We

develop a dynamic discrete choice model for action movies in theaters and home videos. This model

connects theater and home video markets through the home video window, theatrical performance,

and the discounted value of waiting. Our model differentiates from the current literature in that

consumers are forward looking and may postpone their purchases for higher expected utility periods

in the future. Furthermore, all markets are connected to each other, so changing the release date

for one technological quality home video will have an impact on the box office revenue, which

will impact all other technological quality home videos. We estimate the model parameters using

panel data on the weekly level for home videos and box office. We conduct a counterfactual

analysis in which the home video windows for DVDs and Blu-rays are jointly optimized. We find

that decreasing the home video window increases the home video demand by increasing freshness
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and the advertising spillover from the theatrical run. However, this change can simultaneously

cannibalize some demand from theaters as consumers have a larger home video discounted value.

This cannibalization of theater demand has further impact on home video demand because the

box office revenue - a driver for home video demand - is reduced. We find that an immediate

after-theater release of lower technological quality home videos (DVDs) combined with a 5-week

delay on higher technological quality home videos (Blu-rays) is optimal. We attribute this result

to consumer heterogeneity, where there is greater substitution between higher technological quality

home videos and theaters.
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Introduction

Entertainment consumption has changed progressively over the last few decades due to technological

developments. The rise of the internet has created marketplaces for digital products as well as

different video-on-demand platforms. With every newly created medium of consumption a new

business model arises with its own complications. This dissertation studies three different problems

that are consequences of changes in media/digital product consumption.

Technology allowed for the creation of digital markets which generate several additional chal-

lenges in comparison to traditional physical markets. First, in traditional physical markets, product

positioning was a simpler decision in which all consumers were exposed to products in the same way.

With digital markets this exposure changes, as the platform owners can devise different product

positioning for different types of consumers. Second, digital markets allow for the use of social sig-

nals, such as ratings and total product purchases, in order to persuade customers to buy products.

The effects of social influence on consumer behaviour have been observed in a wide range of set-

tings (Salganik et al. 2006, Tucker and Zhang 2011, Viglia et al. 2014). Moreover, these popularity

signals can be amplified through product visibilities (Craswell et al. 2008). The combination of

popularity signals and product visibilities have been extensively studied in the past few years, both

theoretically and experimentally: See, for instance, Abeliuk et al. (2016), Krumme et al. (2012),

Abeliuk et al. (2015), Maldonado et al. (2018), Van Hentenryck et al. (2016a).

In the first chapter of this dissertation, we analyze a trial offer market for digital products

motivated by Google Play, Steam, ITunes and the Apple Store among others.1. We analyze the

effect that social influence, product positioning, and market segmentation strategies have on the

overall purchase rate for the market platform owner. We add consumer heterogeneity to a simple

1The applications of this chapter also transfers to other online marketplaces for physical products which have free
returns, such as Amazon.com or Nike.com
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Multinomial Logit (MNL) trial-offer market studied in the past, and we analyze whether the results

obtained in this simple model transfer to when consumers exhibit heterogeneous preferences. Con-

trary to the homogeneous case, we show that finding the ranking that maximizes the probability

that the next customer will make a purchase is NP-Hard under Turing reduction. Furthermore, we

show that popularity signals may be detrimental to the total number of purchases. We finally show

that these negative results can be addressed by a simple segmentation strategy where customers are

shown a quality ranking dedicated to their own consumer segment and only observe the popularity

signal for their own market segment.

The second and third chapters of this dissertation analyze the impact that technological inno-

vations have on optimal release timing strategies of media in two different contexts. Technology

generates new ways to release content, and for traditional TV companies this meant expanding

to advertising video on demand platforms. These platforms allow for the simultaneous release

of episodes, which is unprecedented for traditional TV, and generate new viewing habits such as

binge-watching behavior. In the movie industry, the technological improvement of home viewing

technology (TV screen sizes, resolution, home audio systems, and home video quality) has made

the home viewing experience closer to that of theaters. This technological improvement affects the

interaction patterns that consumers have between the theatrical and the home video markets, so

aligning the release timing strategies of home videos with technology updates is critical.

The development of internet-based technologies allowed for traditional broadcast networks to

shift the way in which they release episodes of shows. Now they can release their episodes through

advertising video on demand (AVOD) platforms (e.g. Pluto TV, Peacock, and Tubi), which still

generate revenue through commercials but encourage a different type of viewing behavior. Using

these platforms, the companies can decide how to release their episodes of shows, whether its a

simultaneous release on premiere date, or a sequential (e.g. weekly) release that has been traditional

for TV. The new problem is that these two release timing strategies encourage different viewing

habits which affect consumer responsiveness to advertising. Simultaneous releases encourage binge-

watching behavior, and several studies suggest that advertising becomes less efficient when such

behavior is established (Schweidel and Moe 2016). The trade-off these companies face is whether

they should give more flexibility to viewers by releasing their episodes simultaneously, at the cost

of a lower advertising revenue, or release their episodes sequentially giving less flexibility to viewers
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but generating a larger advertising revenue.

In Chapter 2, we analyze the strategic implications of the simultaneous release strategy within

an AVOD setting. We study an analytical model that captures the interactions between a single

show with multiple episodes, and consumers. We exploit the asymmetry of information about the

quality of the show using a signaling model in which show quality may be of two possible types,

high or lower quality. We illustrate that adequate levels of advertising alone2 may signal quality,

and for this to happen, the higher-quality show must incur a sizable cost. We then show that the

release timing strategy may act as a signal for show quality. In equilibrium, lower quality shows

select the simultaneous release strategy as it is more profitable than the sequential strategy. We

then determine that the introduction of the simultaneous release timing reduces the advertising

level that higher quality shows need to incur in order to signal their quality (compared to having

sequential releases alone).

The time between theatrical and home video releases has been decreasing over the last few

decades, while at the same time, the improvement of home video viewing technology makes the

home video viewing experience closer to that of theaters. This poses the natural question on

whether decreasing the time between theatrical and home video release is optimal for studios,

as it is not clear whether these markets are substitutes or complements. In Chapter 3 of this

dissertation, we study how to optimally release home videos of different technological qualities

(DVDs and Blu-rays). We develop a dynamic structural model for the box office market and the

home video market, consisting of two technological qualities, DVDs and Blu-rays3. We use the

framework of Gowrisankaran and Rysman (2012) to build the infinite horizon home video market,

while we make an unknown-finite horizon modification for the box office market. We connect both

markets through the value of waiting and the theatrical revenue which is known to be a driver

for home video demand. We estimate the model using panel data for a set of 149 action movies.

After estimation is completed, the model is able to quantify the change in revenue associated with

advancing or delaying home video releases in a series of counterfactuals.

We find that without versioning (releasing DVDs and Blu-rays simultaneously), the time be-

tween theatrical and home video releases should be decreased in order to achieve a 4.47% increase

2This advertising is different from the one that generates revenue, it informs viewers about the show.
3This can be seen as a proxy for Full HD and 4K videos today. It is simple to add other home videos as the data

becomes available
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in studio revenue, while having insignificant impact on theater revenue. When versioning becomes

available, DVDs should be released within a week of theatrical exit, while Blu-rays should be re-

lease about 5 weeks after exit. This strategy increases studio revenue by about 5.4% compared to

the data. The implication of this result is that higher technological quality home videos, such as

Blu-rays, are stronger substitutes to theaters than lower technological quality home video, such as

DVDs. So studios should release the lower technological quality home videos as soon as possible,

since these don’t have a substantial impact on box office sales. Meanwhile they should hold-off the

release of higher technological quality home videos for later, since these will impact box office ticket

sales.

In Chapter 4, we summarize the contributions of this thesis and suggest future research oppor-

tunities.
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Chapter 1

Market Segmentation in Online

Platforms

1.1 Introduction

The effects of social influence on consumer behaviour have been observed in a wide range of settings

(Salganik et al. 2006, Tucker and Zhang 2011, Viglia et al. 2014). Depending on the market and/or

the marketing platform, social influence may be induced by different signals, including the number

of past purchases, consumer ratings, and consumer recommendations. Moreover, these popularity

signals can be amplified through product visibilities. Indeed, in digital markets, the impact of

visibility on consumer behavior has been widely observed, including in internet advertisement where

sophisticated mathematical models have been developed to determine the relative importance of

the various product positions (Craswell et al. 2008). Positioning effects are also of high significance

in online stores such as Expedia, Amazon, and iTunes, as well as physical retail stores (see, e.g.,

Lim et al. (2004)).

The combination of popularity signals and product visibilities have been extensively studied in

the past few years, both theoretically and experimentally: See, for instance, Abeliuk et al. (2016),

Krumme et al. (2012), Abeliuk et al. (2015), Maldonado et al. (2018), Van Hentenryck et al. (2016a).

This research stream considered trial-offer markets in which consumers have the opportunity to try

products or services for free and later decide whether to purchase them. Prominent examples of

online trial-offer markets include the following: music markets such as iTunes where users can
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listen to songs prior to the purchase decision, phone apps stores such as Google Play1 or the

Apple Store where “apps” have a free trial-version (limited by the functionality or with an

expiration deadline), video on demand platforms such as Netflix, where consumer try episodes of

series and finish watching them if they like them, and game platforms, such as Steam, where games

may be returned for free within 2 hours of usage. Furthermore, other examples of trial-offer markets

include online stores offering physical products that have free shipping (sometimes for purchases

above a threshold) and free returns, such as Amazon.com or Nike.com. Previous studies have

shown that social influence2, in conjunction with the optimization of product visibilities, can have

significant benefits on market efficiency. Moreover, simple ranking policies, e.g., giving the most

visibility to products with the best estimated qualities, are needed to realize these benefits. These

positive results however assume that customer preferences are homogeneous and can be modeled

by a multinomial logit.

This chapter studies a more realistic model with heterogeneous customers that follow a latent

class multinomial logit model (McFadden and Train 2000, Rusmevichientong et al. 2014) and at-

tempts to understand whether the results obtained earlier in simple models would still hold under

this new setting. It presents both negative and positive results. First, contrary to the homogeneous

case, this chapter shows that, in mixed Multinomial Logit (MNL) trial-offer markets, computing

the ranking of products that maximizes the probability that the next customer will make a purchase

is NP-Hard under Turing reductions. Moreover, the chapter shows that popularity signals, that are

beneficial in the homogeneous case, may become detrimental to market efficiency in mixed MNL

trial-offer markets. However, this chapter also shows that these negative results can be addressed

by a simple segmentation strategy where customers are shown a quality ranking dedicated to their

own consumer segment and only observe the popularity signal for their own market segment (i.e.,

the past purchases of customers of the same segment). This market segmentation strategy can be

implemented easily by collecting information on customers and/or by providing customers differ-

ent rankings based on various demographic features. Indeed, a recent analysis performed by the

online travel agent Orbitz has shown that Mac users spend up to about 30% more in hotel book-

ings than their PC counterparts (Mattioli 2012), suggesting that it is beneficial to show different

1Google Play’s refund policy allows consumers to get full refunds on app purchases if the claim is made within 48
hours.

2Almost all examples of trial-offer markets show some form of popularity signal (rating and/or number of purchases)
of its products when consumers browse through them.
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Figure 1.1: Rankings Averaging Scores of a Consumer Segment at Booking.com.

rankings to customers depending on the computer they use. Moreover, the major online travel

agent Booking.com allows users to rank hotels according to the average consumers score of a

particular segment such as couples, families, and solo travelers. See Figure 1.1 for an illustration

of this feature. Although hotels are not a trial-offer market, the benefits of market segmentation

extend to trial-offer markets, as Netflix, Google Play and Steam, among others, implement target-

ing strategies, giving different product recommendations based on past consumer behavior (India

2019, Loten 2020).

The contributions of this chapter can be summarized as follows:

1. The chapter constructs the first trial-offer market model with social influence and position

biases in which consumers preferences can follow any finite mixture of multinomial logits.

2. The chapter shows that, in mixed MNL trial-offer markets, computing the ranking of products

that maximizes the probability that the next customer will make a purchase is NP-Hard under

Turing reductions.

3. The chapter shows that the popularity signal may, under some circumstances, decrease the

expected market efficiency. In other words, the display of past purchases may reduce the

number of sales by confusing consumers about which products to try.

4. The chapter studies the average quality ranking, which ranks the items in decreasing order of

average quality. It shows that the average quality ranking converges to a unique equilibrium

when consumers are shown the number of past purchases (the popularity signal). This proof

is rather involved as it requires to show that the mixed MNL model can be seen as a special

MNL model in which some parameters (appeal and quality) are no longer constants but
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functions of the past purchases vector, and that these quantities can be upper and lower

bounded in order to demonstrate convergence.

5. The chapter presents a simple segmentation strategy, where customers are shown a quality

ranking dedicated to their own segment and only observe the popularity signal for their own

market segment (i.e., the past purchases of customers of the same segment). The chapter

quantifies the potential benefits in market efficiency of this strategy. Specifically, it proves

that the expected purchases can increase up to a factor of K, where K is the number of

segments of the mixed MNL model.

6. These theoretical results are complemented by a series of computational experiments which

provide several managerial insights about trial-offer markets.

The remaining of this chapter is organized as follows. Section 1.2 reviews the literature most

related to this work. Section 1.3 introduces the model of the dynamic trial-offer market. The

most relevant ranking policies for this model are described in Section 1.4, which also presents the

NP-hardness results for performance ranking in mixed multinomial logit models. Section 1.4.2

describes the convergence and the impact of social influence for the quality ranking in the same

setting. Section 1.5 presents our segmentation strategy and its benefits. Section 1.6 presents results

of computational experiments and Section 1.7 concludes the chapter. The proofs are deferred to

the Appendix A.1. In Appendix A.2, we consider an extension of the model in which the platform

owner makes mistakes during the customer classification process. Appendix A.3 shows that a local

search heuristic for solving the ranking optimization problem does not bring much benefit with

respect to the much less costly average quality ranking policy studied in Section 1.4.2. Appendix

A.4 analyzes an extension in which the firm’s objective is to maximize the expected revenue instead

of purchases. Finally, Appendix A.5 analyzes an extension in which the platform owner may show

a subset of products to all consumer segments.

1.2 Related literature

This work is related to the MusicLab experiment performed by Salganik et al. (2006). In that

experiment, participants were presented a list of unknown songs from unknown bands, each song

being described by its name and band. The participants were partitioned into two groups exposed to
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two different experimental conditions: the independent condition and the social influence condition.

In the independent group, participants were shown the songs in a random order and they were

allowed to listen to each of them and then download them if they wish. In the second group (social

influence condition), participants were shown the songs in popularity order, i.e., allocating the

most popular songs to the most visible positions. Moreover, these participants were also shown a

popularity signal, i.e., the number of times each song was downloaded too. In order to investigate

the impact of social influence, participants in the second group were distributed in eight “worlds”

evolving completely independently. In particular, participants in one world had no visibility about

the downloads and the rankings in the other worlds. The MusicLab is an ideal experimental example

of a trial-offer market where each song represents a product, and listening and downloading a song

represent trying and purchasing a product respectively. The results by Salganik et al. (2006) show

that the different worlds evolve significantly differently from one another, providing evidence that

social influence may introduce unpredictability in a market.

To explain these results, Krumme et al. (2012) proposed a framework in which consumer choices

are captured by a multinomial logit model whose product utilities depend on songs appeal, position

bias, and social influence. Abeliuk et al. (2015) provided a theoretical and experimental analysis of

such trial-offer markets using different ranking policies following the framework of Krumme et al.

(2012). They proved that social influence is beneficial in order to maximize the expected number of

purchases when using a greedy heuristic known as performance ranking. The performance ranking

selects the ranking that maximizes the expected number of purchases at the next time period, i.e.

it maximizes the short-term market efficiency. Abeliuk et al. (2015) have also illustrated experi-

mentally that the popularity ranking 3 is outperformed by the performance ranking in a variety of

settings. Still based on the model of Krumme et al. (2012), Van Hentenryck et al. (2016a) have

studied the performance of the quality ranking which ranks products by their intrinsic quality (the

quality of a product is here defined as the probability that a consumer would purchase/download

the product once she has tried the product out). They show that the quality ranking is in fact

asymptotically optimal and has a considerably less unpredictability than the popularity ranking.

Maldonado et al. (2018) studied the impact of the popularity signal strength on a market with

multiple products and social influence. In their model, the popularity signal strength is a an

exogenous parameter r > 0. The authors provide a complete characterization of the long-term

3The popularity ranking ranks (dynamically) products by the number of purchases in decreasing order.
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market share of each of the products and show that the market is completely predictable as long

as r ≤ 1.

The relative importance of different popularity signals have been recently investigated by En-

gström and Forsell (2018) and Viglia et al. (2014). The first paper focuses on how consumers choose

apps in the Google Play platform, and the second one studies how people select hotels. Both

experiments arrived to the same conclusion, namely that the popularity signal (i.e., the number of

purchases) has a much stronger impact on consumer behavior than the average consumer rating

signal.

Our work is related to the recent paper by Hu et al. (2015) who consider a monopolist facing

a newsvendor problem with two substitutable products with the same quality in which consumer

preferences are affected by past purchases. The authors showed that the market is unpredictable

but it can become less so if one of products has an initial sales advantage (such as for example by

providing an initial discount). Our model has considerable differences including the incorporation of

position biases, highly richer consumer preferences (Mixed MNL), an arbitrary number of products,

and the allowance of products to have difference qualities.

Ghose et al. (2012) proposed a ranking system for hotels which takes into account the economic

value of different locations and service-based characteristics, as well as consumer heterogeneity. In

a follow-up paper, Ghose et al. (2014) studied the effects of three ranking policies on consumer

behaviour using archival data analysis and randomized experiments. The general idea of both

papers is to build a simultaneous equations model of clickthrough, conversion (purchase decision),

ranking (performed by the platform owner), and customer rating. In their model, the demand for

the different hotels (i.e., the products) is independent between the different hotels (apart from the

fact that each hotel is assigned a different position in the ranking) whereas, the model we study in

this chapter, the different products are in direct competition to attract the demand.

In another related paper, Gopal et al. (2016) perform a quantitative study on how a firms can

strategically alter malleable networks such as enterprise social networks (ESN) or consumer social

networks (CSN) in order to increase the transmission of ideas, innovation, or other information. In

our setting, we focus on comparing a complete network (consumers observe all purchases) versus a

network where consumers are partitioned in K classes or clusters (and a consumer only observes

purchases of individuals from their own cluster).
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Vaccari et al. (2018) studied a model consumers where arrive in sequence and estimate the

quality of products based on product reviews (likes and dislikes). In their model, consumers like

a product if the product’s quality exceeds their expectation (which is calculated based on past

ratings). The authors provide conditions that allow consumers to learn the true quality of products

in the long run. Our work is also related to recent studies of theoretical choice models that

incorporate position biases. As in our model, they consider situations in which the probability of

selecting a product does not only depend on the offer set but also on the way products are displayed

(Abeliuk et al. 2016, Aouad and Segev 2015, Davis et al. 2013, Gallego et al. 2020).

Recently, Golrezaei et al. (2018) considered a similar framework to ours in which the firm needs

to decide how to rank a set of products to sell to consumers. Similar to our setting, sorting products

by utility in their model is not always optimal 4. Moreover, finding the optimal ranking of products

to maximize short-term sales (or revenue) can be found in polynomial time when there is a single

consumer type, but the problem becomes NP-hard when the number of consumer types is more

than one. In their work, the authors constructed the choice probabilities from a two-stage consumer

search model based on a seminal work by Weitzman (1979) on the Pandora’s problem. As a result,

the resulting mathematical expression for the choice probabilities is different from the one we study.

Another difference is that Golrezaei et al. (2018) considers the problem of maximizing welfare (not

studied here) whereas a fundamental focus of this work is on segmentation strategies which are

presented in Section 1.5.

Another recent paper that models the dynamics of customers influenced by social influence is

due by Chen et al. (2019). An important difference to our work is that social influence signal are

product ratings rather than purchases, and that their choice model is based on the MNL model

rather than on any finite mixture of MNLs.

Other papers related to our work are Lee and Eun (2020), who uses sales transaction data

to estimate the parameters of a Mixed MNL through which are able to identify heterogeneous

consumers groups, Zhen et al. (2019), Capuano et al. (2017), and Molinero et al. (2015) who

studied social influence models, and Lutz and Newlands (2018) and Anderson and Xie (2014) who

focused on market segmentation of customers.

4Although the underlying reasons for it under each of the models are different.
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1.3 The Model

Motivation We consider a firm running a marketplace that sells a set of products. Following

Krumme et al. (2012) and Salganik et al. (2006), we focus our attention to trial-offer markets,

i.e., markets in which consumers can try the product for free before deciding to make a purchase.

Consumers are position-biased in the following sense: the likelihood of trying a specific product

is affected by the position of the product, as well as the position of the other products in the

market. We also consider that in this marketplace it is possible to display information about

product popularity. In particular, we assume that the firm shows the total number of purchases

for each product at each point in time.

Unlike Krumme et al. (2012), we consider that there are different segments of consumers. More

precisely, the probability that a given consumer tries a product follows a Mixed Multinomial Logit

(MMNL). Since McFadden and Train (2000) proved that every random utility model can be well

approximated by a MMNL, our model of consumer preferences is indeed very general.

Formalization We now formally describe a dynamic model for this marketplace. Let [N ] =

{1, 2, . . . , N} denote the set of items in the marketplace and SN denote the set of the permutations

of these items. At any point in time, the firm decides how to position the items in the market

by selecting a permutation σ ∈ SN such that σ(i) = j implies that item i is placed in position j

(j ∈ [N ]).

The consumer behavior can be described as follows. There are K different segments of con-

sumers. At any point in time the probability that the next arriving customer belongs to segment

k ∈ [K] is given by wk, the segment’s weight5. Consumers from the same segment exhibit different

purchase profiles due to idiosyncratic shocks. This is captured with the MNL model.

When consumer t enters the market, she observes all the items and a popularity vector dt =

(dt1, d
t
2, . . . , d

t
N ) ∈ NN , where dti is the number of times item i has been bought prior to her arrival

at time t. When the consumer arrives, each of the N items have been given a position through

a permutation σ ∈ SN . The consumer selects an item to try and then decides whether to buy it.

Following Krumme et al. (2012) and extending their model to multiple segments, if the consumer

5A special case of this is a Poisson arrival process with arrival rate λk for each consumer segment k ∈ [K], such
that wk = λk∑

j λj
.
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belongs to segment k, the probability that she tries item i is given by

pi,k(σ, d
t) =

vσ(i)(ai,k + dti)∑N
j=1 vσ(j)(aj,k + dtj) + zk

(1.1)

where zk ∈ R≥0 for all k ∈ [K] is fixed to a constant for the duration of the process, vj ∈ R≥0

represents the visibility of position j ∈ [N ] regardless of the consumer class (the higher the value vj

the more visible the item in that position is), and ai,k ∈ R>0 captures the intrinsic appeal of item

i for consumer segment k for all i ∈ [N ] (higher values correspond to more appealing items)6. The

value zk represents the outside option for those consumers of segment k that enter the market. As

the total number of purchases increases, the fraction of consumers choosing the outside option will

decrease.

If a consumer from segment k has selected item i for a trial, the probability that she would

purchase the item is given by qi,k ∈ [0, 1]. Observe that this probability is independent of both

the appeal vector (a1,k, . . . , aN,k) and the visibility vector v. Intuitively, this assumption which has

been validated in the MusicLab experiment, captures the fact that it is more difficult to influence

consumers after they have tested a product than before.

When the consumer decides to purchase item i, the popularity/sales vector d is increased by

one in position i. To analyze this process, we divide time into discrete periods such that each new

period begins when a new consumer arrives. Hence, the length of each time period is not constant.

The objective of the firm running this market is to maximize the total expected number of

purchases. To achieve this, the key managerial decision of the firm is what is known as the ranking

policy (Abeliuk et al. 2015), which consists in deciding at each point in time the permutation

σ ∈ SN to display the items. The next section describes a number of relevant ranking policies for

this model.

A key aspect of this chapter is to study the potential benefits of the popularity signal in terms

of the rate of purchases (market efficiency) and compare the ranking policies with and without this

signal. In this work, we always assume that the popularity signal is used as specified in Equation

(1.1). When the popularity signal is not used, the probability of trying (or sampling) a product is

obtained as if the popularity signal is simply the vector 〈0, . . . , 0〉.

6Note that the expression in Equation (1.1) is the special case of a MMNL when the consumer utilities are
logarithmic.
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We conclude this section with several comments about the model described above. First, under

the trial-offer market model, a customer who tries, but does not like, a product simply walks away

without trying any other product. An alternative model would be to allow the customer to try

another product with probability ci every time she tried but did not like a product i. Perhaps

surprisingly, one can show that under mild conditions7, the resulting model is equivalent to the

original trial-offer market with a single trial per consumer Van Hentenryck et al. (2016b) 8. Second,

although there are many different ways to model consumer trial and purchase probabilities as a

function of the previous purchases, intrinsic appeal, etc; the way we model the problem in this

chapter is a natural extension to an MNL model that has been empirically tested (Krumme et al.

2012): it has succeeded to fit the data from a large scale randomized experiment where over 14, 000

users listened and downloaded songs from an assortment 48 song pieces. The participation in the

experiment was unpaid and voluntary and therefore, the setup is arguably closer to a genuine

internet platform than if individuals were paid to participate (see Salganik et al. (2006) for more

details). Third, the model studied here could potentially be useful in markets that do not have the

trial-offer structure. Indeed, this model can be captured as a function whose inputs are (1) market

observations (current product ranking and past product purchases) and (2) some parameters subject

to estimation (product appeals, product qualities, and position visibility values). The function then

returns each product purchasing probability. Thus, even for non-trial-offer markets, it is an open

empirical question on whether this model is better or worse than other choice models that also

consider product rankings and/or popularity signals such as Golrezaei et al. (2018) and Vaccari

et al. (2018), in terms of predictive accuracy of the purchasing probabilities. Finally, it is worth

observing that our model assumes there is an independence between trying a product and buying

it. Although this assumption was not problematic to fit the large-scale experiment carried out in

Salganik et al. (2006), a model extension that incorporates a correlation between the two steps

would be interesting.

7The probability ci is a polynomial function on the product quality qi.
8The equivalence is based on a redefinition of product appeal and quality.
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1.4 Ranking Policies

Consider without loss of generality that the N locations are sorted by their visibility such that

v1 ≥ v2 ≥ . . . ≥ vN . A ranking policy is a function f : NN → SN which, given a vector of past

purchases, returns a ranking of the items.

Ranking policies can be partitioned into two groups: static and dynamic. A ranking policy g is

said to be static if the output ranking does not depend on the popularity signal, i.e., if f(d) = f(d′)

for all d, d′ ∈ NN . On the other hand, a dynamic ranking policy is one in which the output ranking

depends on this signal.

1.4.1 Performance ranking

The performance ranking is a dynamic policy that greedily selects a ranking that maximizes the

expected number of purchases in the following period. This strategy was first proposed by Abeliuk

et al. (2015) for the special case with K = 1 (where they show it is asymptotically optimal) and we

now generalize its definition for the more general model considered in this chapter. The probability

that the next incoming consumer belongs to segment k is given by wk, therefore the performance

ranking at time period t consists of finding the permutation σ∗ ∈ SN maximizing the probability

of a purchase in the next time period, i.e.,

σ∗ = arg max
σ∈SN

K∑
k=1

wk ·
N∑
i=1

pi,k(σ, d
t) · qi,k. (1.2)

The probability ΠPR of a purchase in the next time period is thus given by

ΠPR = max
σ∈SN

{ K∑
k=1

(
wk ·

N∑
i=1

(pi,k(σ, d
t) · qi,k)

)}
(1.3)

= max
σ∈SN

{ K∑
k=1

(
wk ·

N∑
i=1

( vσ(i)(ai,k + dti)∑N
j=1 vσ(j)(aj,k + dtj) + zk

· qi,k
))}

. (1.4)

Abeliuk et al. (2015) showed that when K = 1, this greedy ranking policy can be computed

efficiently, i.e., in strongly polynomial time (Theorem 1 in Abeliuk et al. (2015), they assumed

z = 0 but their proof can be easily generalized for any z ∈ R≥0). Moreover, despite the myopic

focus of the performance ranking, a series of computational experiments performed by Abeliuk

21



et al. (2015) showed that, for the special case of K = 1, the performance ranking was superior than

the standard popularity ranking both in terms of unpredictability as well as in terms of number of

purchases. Unfortunately, the performance ranking cannot be computed efficiently when there are

at least two classes of consumers. More precisely, we can show that the assortment problem under a

2-segment Mixed Multinomial Logit choice model which is known to be NP-hard (Rusmevichientong

et al. 2014) can be reduced (under Turing reductions) to computing the performance ranking in

our setting.

Theorem 1.1. Computing the performance ranking is NP-hard under Turing reductions. This is

true even when K = 2 and the product qualities are the same for all consumer classes.

Proof. Presented in Appendix A.1.1

In order to deal with this negative result, this chapter explores two options. The first is to rank

products based on their average quality, a strategy we called average quality ranking and is studied

in the next section. The second avenue is to explore a greedy local search heuristic which worked

as follows. In the first period, we set the average quality ranking as initial solution, and then, we

evaluate possible ways to exchange the position of two products in the ranking (2-swaps) and select

the first swap that improves the objective function. The local search process is then repeated until

there are no more improvements. In each consecutive period, we use the previous period ranking

as the starting solution. Notice that this heuristic will finish in a finite number of steps. This is

because the objective function increases with each swap and there exist finitely many assortments

of products. Our experimental results have shown that the additional benefit of the local search is

minimal (see Appendix A.3), we thus used the average quality ranking as our approximate method

which is several orders of magnitude faster.

1.4.2 Average quality ranking

The average quality ranking (or quality ranking for short) is a simple and natural static policy: it

consists in ranking the products by the weighted average quality (among the different customer

segments), ignoring the appeals and popularity signal. The quality ranking for the MMNL model

thus consists in placing in position j the item with the jth highest weighted average quality, where
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the weighted average quality of item i ∈ [N ] is

q̄i =
K∑
k=1

wkqi,k. (1.5)

For the special case K = 1, the quality ranking is optimal asymptotically and always benefits from

the popularity signal used in our model (Van Hentenryck et al. 2016a). The next section studies

whether this continues to hold in richer contexts when K > 1. Note that, in the following, the

ranking which orders the products by decreasing values of q̄i is called the average quality ranking.

Before analyzing some fundamental properties of the MMNL it is important to first make the

following definition.

Definition 1.1. The MMNL model goes to a monopoly using a ranking policy f if, for each

realization of the N random sequences {φti}t∈N (i ∈ [N ]), there exists a product i∗ such that the

realized sequence {φti∗}t∈N converges almost surely to 1 as t goes to infinity. In this case, we also

say that item i∗ goes (predictably) to a monopoly.

We now study some fundamental properties of the quality ranking for the MMNL model. We

first show that the average quality ranking converges to a monopoly (under weak conditions). We

then study the benefits of displaying the popularity signal for the average quality ranking.

Given a ranking policy f , the random variable

φti =
dti∑
j d

t
j

is known as the market share of item i at time t: It represents the ratio between the number of

times that item i was purchased and the total number of purchases up to time t.

We can now show that the MMNL model goes to a monopoly when using the average quality

ranking. The proof is quite technical: Its key idea is to show that the Mixed Multinomial Logit

Model (MMNL) can be reduced to a generalized case of the Multinomial Logit Model (MNL)

where the appeal and the quality of an item at time t depend on the popularity signal at t (This

is shown in Theorem 1.2). Then these generalized appeals and qualities can be bounded to obtain

the result. The proof relies on the following lemma that generalizes the convergence result of the

quality ranking for the MNL model by Van Hentenryck et al. (2016a) to the case where the appeal

and quality of an item depend on the popularity ranking provided that the resulting functions are
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bounded by above and below. In Theorem 1.2 we show that there exists a time period t∗ after

which the time dependent qualities and appeals of this modified MNL model are bounded as in

1.6 and that these bounds satisfy 1.7. Thus, by using Lemma 1.1, we can show that this modified

MNL model goes to a monopoly which implies that the MMNL goes to a monopoly.

Lemma 1.1. Consider a different Multinomial Logit Model, i.e., a setting with K = 1 where the

appeal and quality of each item i are functions of the purchases vector dt, i.e., ãti = ãi(d
t) and

q̃ti = q̃i(d
t) respectively. Suppose that there exists a time period t∗ such that these two quantities

are upper and lower bounded by constants for any period t > t∗ independent of the realizations of

ãti and q̃ti , i.e.,

qi,min ≤ q̃ti ≤ qi,max and ai,min ≤ ãti ≤ ai,max ∀i ∈ [N ], t > t∗. (1.6)

Let σ ∈ SN denote a static ranking policy. If there exists an item i∗ and an instant t̂ such that

vσ(i∗)qi∗,min > vσ(i)qi,max ∀ i 6= i∗ and ∀ t > t̂, (1.7)

then item i∗ goes to a monopoly when using the ranking policy σ.

Proof. Presented in Appendix A.1.2

The main result of this section is about the convergence to a monopoly of a large class of static

ranking policies. For simplicity, we assume a weak condition to break potential ties between items.

Definition 1.2. A static ranking policy σ is tie-breaking for a MMNL model if there exists a

unique item i∗ with the highest product of visibility and weighted average quality, i.e.,

∃ i∗ ∈ [N ] : q̄i∗vσ(i∗) > q̄ivσ(i) ∀i ∈ [N ], i 6= i∗. (1.8)

Note that this tie-breaking property is a very mild assumption: If the quality for each pair (consumer

class, product) is a realization from a (different or the same) continuous probability distribution

over some interval (regardless of how small), the probability that a ranking policy is tie-breaking

is indeed 1. We are now ready to prove the main result of this section.
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Theorem 1.2. Consider a MMNL model M and a static, tie-breaking ranking policy σ ∈ SN for

M. ModelM goes to a monopoly using σ and the item i∗ that goes predictably to a monopoly using

σ in M is given by

i∗ = arg max
1≤i≤N

vσ(i)q̄i.

Proof. Presented in Appendix A.1.3

The following corollary asserts that the average quality ranking converges to a monopoly for the

product of highest average quality. This result is particularly interesting since it shows that the

average quality ranking is asymptotically optimal, and that it generalizes the quality ranking from

the MNL to the MMNL model. By asymptotically optimal we mean that it is the global rank-

ing with global social influence that maximizes the purchase probability as time goes to infinity,

limt→∞ P
t, where P t is the expected purchase probability at period t.

Corollary 1.1. (Asymptotic Optimality of the Average Quality Ranking). Whenever the average

quality ranking is used, a MMNL model goes to a monopoly for the product with the highest weighted

average quality.

Proof. Presented in Appendix A.1.4

We end this section with some comments about the implications of Theorem 1.2 and Corollary 1.1.

In general, market monopolies are not a desirable outcome from a consumer perspective. A key

aspect of Theorem 1.2 is that the monopoly outcome does not come as a result of a restriction on the

product offer variety (every product is always offered in our model), but because the consumer’s

utility ratio between the most popular product and the other product utilities tends to infinity.

Although such monopoly convergence is somewhat surprising, it naturally applies to the very long

run dynamics of these trial-offer markets (i.e., when time tends to infinity). In practice, however, it

takes a very long time to even get close to a monopoly. It is not simple to find the convergence rate

to a monopoly, even for the case K = 1. This model can be seen as an unbalanced and irreducible

Pólya Urn Process for which the convergence rate is an open problem except for a few special cases

of replacement matrices (see remark 4.7 in Janson (2004), where they conjecture a convergence rate

of o(nγ) with γ = min{1/2, 3(1/2−Re(λ2/λ1)}), with λ1 and λ2 being the greatest and second

greatest eigenvalues of the replacement matrix respectively). As an illustration of the dynamics,
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we have performed a variety of computational experiments which are reported in Section 1.6. In

all those experiments, the convergence to a monopoly of a single product was not yet achieved at

the end of the simulation. From a practical point of view, the main insight obtained from Theorem

1.2 and Corollary 1.1 is that, as time goes by, consumers are more likely to purchase the product

that has the greatest average quality, which is due to the effect of the popularity signal in the

market dynamics. An interesting question that arises is whether the effect of the popularity signal

is beneficial to the firm. Specifically, what is the effect of the popularity signal on the expected

rate of products purchased? This question is addressed in the following subsection.

The Impact of the Popularity Signal

In the previous subsection, we have shown that the average quality ranking for the MMNL model

inherits the asymptotic convergence of the quality ranking for the MNL. Under the MNL model, the

probability (in expectation) that the next individual purchases some product is always increasing

if the popularity signal is used (Van Hentenryck et al. 2016a). In other words, the information

of past purchases is helping consumers to make better choices on which products to try, meaning

that they are more likely to purchase them. Unfortunately, this result does not always hold when

consumers follow the more general MMNL model.

Theorem 1.3. When using the average quality ranking, the MMNL model can perform (1) up to

K times better if the popularity signal is not shown, where K is the number of classes; and (2) can

perform arbitrarily worse without showing the popularity signal than by showing it.

Proof. Presented in Appendix A.1.5

Theorem 1.3 provides an upper bound on how much the expected sales per period can be reduced

due to the impact of the popularity signal (part (1)). In addition, it shows that sometimes, showing

the social influence can be extremely beneficial (part (2)). For the latter, it is important to note

that not showing the popularity signal can perform arbitrarily worse than showing it even when

z = 0. This implies that this reduction is not caused by having consumers switching from the

outside option to other products, but because consumers under social influence can sometimes try

popular products that have low quality for them (relatively to other products). In Proposition 1.1

we show that the bounds in Theorem 3 are tight, and this happens when we choose z = 0 (however,
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for different values of z, not showing the popularity signal can still perform arbitrarily worse than

by showing it).

Proposition 1.1. The bounds in Theorem 1.3 are tight.

Proof. Presented in Appendix A.1.6

This result shows that, depending on the specific parameters of the trial offer market (i.e. con-

sumer’s appeals, product qualities and weights of the different consumer segments), the popularity

signal can enhance the number of sales or it can be detrimental to them. Specifically, the expected

number of purchases under the average quality ranking policy can decrease by a factor of K if the

popularity signal is used (for some settings) but they can also be increased by an arbitrarily large

factor in other settings. In Proposition 1.1, the first tight bound occurs in a trial-offer market where

each of the K different classes of consumers have a unique product in which they are interested;

Moreover, this product is different for each consumer segment and there is a perfect alignment

between product appeal and product quality for each class. In such a setting, the global popularity

signal would be detrimental for the firm as well as for the consumers. The reason is that in the

long run product 1 will become a monopoly (since its average quality ranking is higher than all

the others). This means that in the long run, consumers will tend to try product 1. But this is

problematic because, except for one consumer segment, all consumers segments do not like this

product. In the limit, only a 1/K fraction of the consumers would purchase this product. In short,

in this scenario a global popularity signal will persuade consumers to try products they do not like.

On the other hand, the second bound in Proposition 1.1 was obtained in a similar market

setting but in which there is negative correlation between the products appeal and their quality. In

that setting, the market converges slowly to a monopoly in the case the popularity signal is used.

If no social influence is used, the rate of purchases tends to zero as the products have essentially

no appeal. Thus, an heterogeneous set of customers complicates the managerial decisions in the

marketplace: Whether or not social influence is beneficial in trial-offer markets depends on the

particular structure of preferences among consumers. We recall that this is in sharp contrast to

the results in (Van Hentenryck et al. 2016a) where it is shown that the popularity signal is always

beneficial in the case consumers share preferences (i.e K = 1). We now quantify the benefit (or cost)

of showing the popularity signal given the specific model parameters. The asymptotic purchase
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probability ratio between the average quality ranking with no social influence (AQNSI) and the

average quality ranking with social influence (AQGSI) is (see the proof of Theorem 1.3):

limt→∞ P
t
AQNSI

limt→∞ P tAQGSI
=

∑K
k=1wk

∑N
i=1 qi,k

vσ(i)ai,k∑N
j=1 vσ(j)aj,k+zk

max1≤i≤N
∑K

k=1wkqi,k
. (1.9)

If the expression in 1.9 is smaller (greater) than 1 showing the popularity signal under the

average quality ranking is beneficial (detrimental). Proposition 1.1 shows that under different

model parameters, the ratio in Equation (1.9) could be equal to zero, K, or any number between

them. This is important for the platform owner and has to be decided particularly for each market

settings, since social influence may hurt or benefit purchases in the long run.

1.5 Market Segmentation and its Benefits

In the previous section, we have shown a number of negative results for the MMNL model. In

particular, we have shown that, in MMNL models, computing the performance ranking is intractable

and that displaying the popularity signal to customers may significantly reduce the asymptotic

market efficiency (i.e. the expected rate of purchases) of the average quality ranking. In this

section, we show that the widely used marketing strategy known as market segmentation remedies

these limitations, while retaining the original benefits of quality ranking for the Multinomial Logit

Model.

The market segmentation considered here assumes that the firm has the ability to know the

segment of each arriving consumer. This is a natural assumption in a number of online markets

(e.g., Amazon, online retail stores, iTunes, Google Play and Netflix) where firms are able to learn

information about their customers over time. Armed with this information, the firm will now

propose item rankings dedicated to each customer segment. Moreover, and equally important,

the popularity signal will be tailored to each segment. In other words, the firm will only show

the popularity signal derived from purchases of customers of the same segment as the incoming

customer, not the popularity obtained from the entire customer pool. As shown in Figure 1.1,

websites such as Booking.com already give customers the option of selecting their peer groups to

refine the site recommendations (although hotels bookings are not a trial-offer market, segmentation

is an important factor in their revenue maximizing strategies). Under this new strategy where
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each consumer segment has its own quality ranking and observes the past purchases of its own

segment only, the policy is called the segmented quality ranking. The firm uses K permutations

σk ∈ SN (k ∈ [K]), where σk sorts the products in decreasing order according to their quality for

consumer segment k. In addition, the probability of trying item i for a customer of segment k is

given by

pi,k(σ, d
t
k)

where dtk = (dt1,k, . . . , d
t
N,k) and dti,k denotes the number of purchases of item i by customers from

segment k up to time t.

We now study the benefits of this market segmentation. Observe first that each market segment

can be viewed as evolving independently and hence directly inherits the original benefits identified

for the quality ranking under the MNL model: The market share of the highest quality product

converges asymptotically to 1. This observation will enable us to quantify the benefits of market

segmentation. We begin by providing some key definitions that will be required later.

Definition 1.3. The segmented quality ranking policy σk ∈ SN (k ∈ [K]) is tie-breaking if, for

each segment k, there exists a unique item i∗k with the highest quality:

∀k ∈ [K] ∃i∗k ∈ [N ] ∀j ∈ [N ], j 6= i∗k : qi∗k,k > qj,k. (1.10)

Assuming a MMNL model for which the average quality ranking and the segmented quality ranking

are tie-breaking, we compare the probability of a purchase at time t in both settings. More precisely,

we compare two quantities:

� P tAQGSI : the probability of a purchase at time t when the firm uses the average quality ranking

and the “global” popularity signal dt;

� P tSQSSI : the probability of a purchase at time t when the firm uses the segmented quality

ranking with the consumer segment’s popularity signal dtk.

The probabilities P tAQGSI and P tSQSSI concern the behavior of the consumer arriving to the market

at time t independently from the customer class. Comparing P tAQGSI and P tSQSSI for any time t

is a very challenging task. Instead, we compare both variables in the limit. The following theorem

shows that the market segmentation strategy is always beneficial for the firm and the benefit it
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provides is upper bounded by a factor of K.

Theorem 1.4. Assume that the average quality ranking and its segmented version are tie-breaking

for a MMNL model. Then,

1 ≤ lim
t→∞

P tSQSSI
P tAQGSI

≤ K. (1.11)

Proof. Presented in Appendix A.1.7

The following proposition shows that there are settings in which the (multiplicative) benefits of

market segmentation are indeed equal to the upper bound provided in Theorem 1.4.

Proposition 1.2. The upper bound of Theorem 1.4 is tight.

Proof. Presented in Appendix A.1.8

These results show that the segmented quality ranking always outperforms (or it is equal to) the

average quality ranking in expectation, and that the improvement in market efficiency can be up

to a factor of K. As it can be seen from the proof of Proposition 1.2, the market settings in which

the segmentation strategy beats by the most the global ranking is when each consumer segment

k ∈ {1, . . . ,K} of consumers have a single product with a non-zero quality and it is pairwise

different between any two classes. Thus, the different segments of the market have very distinct

preferences, which is the setting where the strategy of market segmentation is generally used in

practice (Dickson and Ginter 1987). Proposition 1.2 means that there are settings under which a

segmented ranking performs the same, or up to K times better than a single ranking. This imposes

a maximum cost rate to what the platform owner may be willing to pay for information about

consumer segments, and deploying a segmented ranking. It is important to remark that these

results hold for the very long run (i.e. asymptotic in nature). They don’t necessarily imply that

the segmented quality ranking is always better, since the popularity signal is weaker early in the

market evolution. This will be illustrated in the computational experiments presented in the next

section.

It is important to remark that the results of this section can be extended to the case where there

are classification mistakes while performing the segmentation policy. This situation is analyzed in

Appendix A.2. We formulate the problem using a mistake probability matrix and show that the

system converges to a monopoly, analogous to Theorem 1.2 but incorporating the values of the error
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probability matrix. Assuming that classification mistakes occur with an exogenous probability β0

evenly distributed among all products, we find an analogous bound as Theorem 1.4, which becomes

K(1−β0). For an example, if we make classification errors 10% of the time with 5 consumer classes

of equal weights, the maximum benefit of segmentation is 5(1 − 0.1) = 4.5, while its maximum

benefit is 5 with perfect classification. This extension generalizes our model to a more realistic

setting where we can analyze the trade-off between segmenting the market and taking the risk of

making classification errors versus being risk averse and showing an average quality ranking. We

performed a numerical simulation to analyze the impact of having different mistake probabilities

for the SQSSI policy and we find that the average quality ranking AQGSI outperforms the SQSSI

policy when β0 > 10% for a parameter set (see Figure A.1 in Appendix A.2).

We end this section with two additional comparisons. First, we compare how the average

quality ranking without social influence (AQNSI) performs in comparison to the segmented quality

segmented social influence ranking (SQSSI). It is no surprise that SQSSI outperforms AQNSI as

the number of purchases goes to infinity: this is because under SQSSI, in the limit, each consumer

segment will try the product that maximizes its purchase probability. Finally, we analyze how

SQSSI performs in comparison to its counterpart without social influence (SQNSI). Again here,

it should be no surprise that SQSSI outpeforms SQNSI. Both of these results are shown in the

following theorem.

Theorem 1.5. The ratio between the asymptotic purchase probability of the average quality or the

segmented quality ranking without social influence (AQNSI or SQNSI), and its segmented quality

ranking with segmented social influence (SQSSI) is always less than 1,

limt→∞ P
t
AQNSI

limt→∞ P tSQSSI
≤ 1 and

limt→∞ P
t
SQNSI

limt→∞ P tSQSSI
≤ 1.

Proof. Presented in Appendix A.1.9

We have shown that SQSSI outperforms AQGSI, AQNSI and SQNSI, and that AQGSI can

outperform or underperform AQNSI. Figure 1.2 shows a pictogram with the ranking policies studied

in this chapter.
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Figure 1.2: Pictogram of the ranking policies studied and where to find them.

1.6 Computational Experiments

This section presents the results of computational experiments to illustrate the theoretical results

and complement them by depicting how the markets evolve over time for different types of rankings.

1.6.1 The Experimental Setting

The Agent-Based Simulation The experimental setting uses an agent-based simulation to

emulate the MusicLab (Salganik et al. 2006). It generalizes prior results which simulated the

MusicLab through the use of a MNL model (e.g., Krumme et al. (2012), Abeliuk et al. (2015)) to

a MMNL model. Each simulation consists of T iterations and, at each iteration t (1 ≤ t ≤ T ), the

simulator

1. randomly selects a customer segment k according to the classes weights wk;

2. randomly selects an item i for the incoming customer according to the probabilities pi,k(σ, d),

where σ is the ranking proposed by the policy under evaluation and d is the popularity signal;

3. randomly determines, with probability qi,k, whether the selected item i is purchased. In the

case of a purchase, the simulator increases the popularity signal for item i, i.e., di,t+1 = di,t+1.

Otherwise, di,t+1 = di,t.
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Figure 1.3: The quality qi (blue) and appeal Ai (green and yellow) of product i for settings 1 and
2 for both classes of consumers. The settings only differ in the appeal of items, and not in the
quality of items. In Setting 1, the appeals are negatively correlated with quality, so that the sum
between them is always 1. In Setting 2, the appeal is correlated to the quality with a small noise.

The experimental setting aims at being close to the MusicLab experiments and it considers 50 items

and simulations with T = 200, 000 steps. The reported results in the graphs are the average of

400 simulations. The analysis in Krumme et al. (2012) indicated that participants are more likely

to sample products with better ranking positions. More precisely, the visibility decreases with the

ranking position, except for a slight increase at the bottom positions. To have a fair comparison

between the settings with and without social influence we set z = 0 for all simulations, in that way

the fraction of customers choosing the outside option does not change over time.

Qualities and Appeals To highlight and complement the theoretical results, we consider four

different schemes, the schemes share the following characteristics: They have two customer classes

with the same weight and they use 50 products. They differ in how the values for the item appeals
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Figure 1.4: The quality qi (blue) and appeal Ai (green and yellow) of product i in settings 3 and
4 for both classes of consumers. The settings only differ in the appeal of items, and not in the
quality of items. In Setting 3, the appeals are negatively correlated with quality, so that the sum
between them is always 1. In Setting 4, the appeal is correlated to the quality with a small noise.
All appeals were then multiplied by a factor of 200 to use in the model.

and qualities are chosen. The schemes are depicted visually in Figures 1.3 and 1.4 and were obtained

as follows:

1. Scheme 1: The product qualities for each consumer segment were chosen randomly with a

standard uniform distribution (qi,1 and qi,2 are independent for all i ∈ [N ]). Appeals were

negatively correlated with quality, i.e., ai,k = 1− qi,k for all i ∈ [N ].

2. Scheme 2: Product qualities are similar to Scheme 1. Appeal vectors are now correlated

with the quality vectors. More precisely, the appeal vector for each consumer segment was

set to 0.8 times the quality plus a random uniform vector between -0.4 and 0.4, i.e., ai,k =

qi,k(0.8 + 0.4 ∗ εi) for all i ∈ [N ], where εi is a standard uniform random variable.

3. Scheme 3: The product quality for segment 1 is a random vector, while qi,2 = 1−qi,1 +0.01∗εi
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for all i ∈ [N ], where εi is a standard uniform random variable. Appeals are negatively

correlated with quality, i.e., ai,k = 1− qi,k for all i ∈ [N ].

4. Scheme 4: The product qualities are the same as in Scheme 3 but the appeals are correlated

with qualities, ai,k = qi,k(0.8 + 0.4 rand(1, 50)) for all i ∈ [N ].

Observe that, in Schemes 3 and 4, customers in the two classes associate fundamentally different

qualities with the products. For the simulations, the appeals vector were multiplied by a factor of

200.

The Policies The simulations compare the average and segmented quality rankings with and

without the popularity signal. We use the following notations:

� SQSSI: Segmented quality ranking with segmented popularity signal;

� SQNSI: Segmented quality ranking without popularity signal;

� AQGSI: Average quality ranking with global popularity signal;

� AQNSI: Average quality ranking without popularity signal.

1.6.2 Market Efficiency

Figure 1.5 depicts the results for Schemes 1 and 2. For Scheme 1, the popularity signal is beneficial

for both the segmented and average quality rankings. SQSSI is the most efficient ranking policy.

It is also interesting to observe that AQGSI outperforms SQSSI early on before being overtaken as

highlighted in Figure 1.6. Scheme 2 exhibits similar results but the benefit of the popularity signal

is lower.

Figure 1.7 depicts the results for Schemes 3 and 4 and they are particularly interesting. Recall

that, in Schemes 3 and 4, the two classes of customers have opposite preferences in terms of product

qualities. For Scheme 3, the popularity signal is again beneficial for the segmented and average

quality rankings. SQSSI is again the best ranking policy, and particularly is almost twice as efficient

than AQGSI, nicely illustrating Theorem 1.4, since the improvement is close to the best possible

ratio. Once again, AQNSI performs the worst. For Scheme 4, SQSSI is again the best ranking policy

but the second best policy is SQNSI, the segmented quality ranking with no popularity signal. The
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Figure 1.5: The Number of Purchases over Time for the Various Rankings. The x-axis represents
the number of items tried and the y-axis represents the average number of purchases over all
experiments. The left figure depicts the results for Scheme 1 and the right figure for Scheme 2.

worst policy is AQGSI, providing a compelling illustration of Theorem 1.3: The popularity signal

may be detrimental to the average quality ranking.

These results can be summarized as follows:

1. SQSSI (segmentation with the popularity signal) is clearly the best policy and it dominates

all other policies. Market segmentation with the popularity signal is very effective in these

trial-offer markets.

2. The global popularity signal may be beneficial or detrimental to the average quality ranking.

It is detrimental when the market has customers with very different product preferences.

1.6.3 Purchase Profiles

We now illustrate the customer and market behaviors for the SQSSI and AQGSI rankings, which

exhibit some significant differences. For Scheme 4, the results are presented in Figures 1.8, 1.9,

and 1.10. Figure 1.8 depicts separately the purchase profiles of customers of segments 1 and 2 for

policy SQSSI. The products are sorted by increasing quality for each segment: i.e., the products of

highest quality for customers of segment 1 (resp. segment 2) is in the rightmost position in the left

(resp. right) picture. Since the market is segmented, the results are not surprising and consistent

with past results: The number of purchases is strongly correlated with quality. Figure 1.9 is more
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Figure 1.6: The number of purchases over time for the various rankings. The x-axis represents
the number of items tried and the y-axis represents the average number of purchases over all
experiments. The figure depicts the results for Scheme 1 in the early part of the simulation.

interesting and depicts the same information for policy AQGSI. Here the number of purchases is

no longer correlated with quality for a specific customer segment. Figure 1.10 compares SQSSI and

AQGSI over all customers and the products are sorted by average quality. The figure highlights a

fundamental difference in market behavior between the two policies, with very different products

emerging as the “best sellers”.

Schemes 3 and 4 feature customer classes with opposite preferences. It is thus interesting to

report the results on Scheme 2 where the product qualities were generated independently for the

two classes. Figure 1.11 depicts these results. We already know from Figure 1.5 that policy SQSSI

outperforms AQGSI but it is interesting to see how different the market behaves under these two

policies. For AQGSI, as expected, the products of best average quality receives the most purchases:

Asymptotically the market goes to a monopoly for that product. For SQSSI, the purchases at this

stage of the market are distributed through a larger number of products, each of which have fewer

purchases. Asymptotically, the market will go to a monopoly for two products (one for segment 1

and one for segment 2) but the popularity signal is weaker for SQSSI since it is spread across the

two classes. It is interesting to observe that the segmentation policy SQSSI is still more efficient

37



Samples #105
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Pu
rc
ha
se
s

#105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Scheme 3

SQSSI
AQGSI
SQNSI 
AQNSI

Samples #105
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Pu
rc

ha
se

s

#105

0

0.2

0.4

0.6

0.8
1

1.2

1.4

1.6

1.8

2
Scheme 4

SQSSI
AQGSI
SQNSI 
AQNSI

Figure 1.7: The number of purchases over Time for the various rankings. The x-axis represents
the number of items tried and the y-axis represents the average number of purchases over all
experiments. The left figure depicts the results for Scheme 3 and the right figure for Scheme 4.
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Figure 1.8: The purchase profiles of SQSSI on Scheme 4 for consumer segments 1 (left) and 2
(right).

than policy AQGSI despite this weaker popularity signal. Figure 1.12 depicts the profiles for policy

SQSSI and nicely highlights that many products are receiving significant purchases.

We finish this section with a set of managerial insights that can be observed from the theoretical

results and the computational experiments. First, whenever consumer segment information is

available and the goal is to maximize long term purchases, it is optimal to segment the consumers

and to rank the products within each segment according to their quality, while using a social
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Figure 1.9: The purchase profiles of AQGSI on Scheme 4 for consumer segments 1 (left) and 2
(right).
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Figure 1.10: The purchase profiles of SQSSI and AQGSI on Scheme 4 for both segments of cus-
tomers.

signal that is only shown across consumers within the same segment (Theorems 1.3 and 1.5). The

first theorem shows that a segmented quality ranking with social influence within each segment

(SQSSI) always outperforms the unique average quality ranking with the same social signal across

all consumer segments (AQGSI). The second theorem shows that using social influence with a

segmented quality ranking (SQSSI) always outperforms doing a segmented quality ranking without

social influence (SQNSI). In the computational experiments we observe similar results. However,

the platform owner may be better off in the short term using a unique average quality ranking
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Figure 1.11: The purchase profiles of SQSSI and AQGSI on Scheme 2 for both Classes of Customers.
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Figure 1.12: The purchase profiles of SQSSI on Scheme 2 for consumer segments 1 (left) and 2
(right).

with a global social signal (AQGSI) (Scheme 1, Figure 1.6). This is because the aggregate ranking

AQGSI enhances the social signal instead of distributing it across different segments as seen with

the segmented ranking SQSSI. But in the long run the segmented ranking is optimal whereas the

aggregate ranking may lead to a monopoly of suboptimal products. Finally, when consumer segment

information is not available, it is not always beneficial to show social influence. This is proved in

Theorem 1.3 and nicely illustrated with the experiments, where the average quality ranking with a

social signal (AQGSI) outperforms its counter-part without a social signal (AQNSI) in all schemes

except for Scheme 4 (when consumer segments exhibit opposite preferences, and product appeals
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are positively correlated with qualities). On aggregate rankings, the platform owner should use

social influence carefully, and mainly when consumer segments have similar product preferences,

as otherwise social influence may confuse consumers on which products to try and reduce the rate

of purchases.

1.7 Conclusions and Future Research

In this chapter, we studied a trial-offer market where consumers choices about which products to

try are affected by the display of past product purchases and by product positions. Specifically,

we focused on studying the case in which consumer choices follow a mixed multinomial logit model

(MMNL), which generalizes the multinomial logit model proposed by Krumme et al. (2012) to

explain the behavior in an online cultural market (Salganik et al. 2006). Unlike the case for the

Multinomial Logit, we showed that finding the best way to rank products at every step in order to

maximize the purchases is a computationally hard problem.

The chapter then studied the performance of a ranking policy (AQGSI) which ranks the products

by the average quality (in decreasing order). Under such policy, we proved that the trial-offer

market in the long run converges predictably to a monopoly by transforming the MMNL model

into a traditional MNL model whose appeals and qualities depends on the popularity signal at each

time step but are bounded from below and above. Unfortunately, this average quality ranking policy

is no longer guaranteed to benefit from the popularity signal in all cases. In other words, the rate of

product purchases can sometimes be reduced as time passes due to the fact that consumers are able

to observe (and their decisions are affected by) the number past purchases for each product. This is

in sharp contrast to the case where there is a unique consumer segment (K = 1) (Van Hentenryck

et al. 2016a).

The chapter also studied a market segmentation policy for settings in which the firm is capable

of detecting the consumer segment in advance. Under the segmentation policy, the products are

presented to each consumer according to the quality ranking for their own class. In addition, the

popularity signal displayed only aggregates the past purchases associated to the customers of the

same class. The resulting policy (SQSSI) is optimal asymptotically in expectation and may improve

the market efficiency up to a factor K over AQGSI, where K is the number of customer classes.

Computational experiments have been presented to illustrate our theoretical results and to show
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the market dynamics in the short term. These experiments, which were carried over four different

settings, showed that there are settings in which the popularity signal is indeed detrimental to policy

AQGSI and that the segmentation strategy produces the best possible improvement predicted by

the theory.

Overall, the chapter shows that, in trial offer markets, the decision to display or not the pop-

ularity signal to consumers has to be analyzed very carefully. In markets where consumers have

very different product preferences, we showed that the display of past purchases can be detrimental

to the rate of purchases. Intuitively, this is because consumers watching past purchases become

confused about which products to try. On the other hand, in markets where the preferences of

the different consumer classes are not very distinct, the display of aggregated past purchases is

beneficial. Nevertheless, our theoretical (asymptotic) results and our short-term simulation results

indicate that the segmentation policy SQSSI outperforms all other policies. Moreover, these results

highlight the fact that AQGSI and SQSSI produce very different market behavior, even in settings

where the overall market efficiency is relatively close.

The chapter leaves some interesting questions for future research. The first is to study the

market-share dynamics of the different ranking policies for more complex consumer choice models.

One weakness of the current model is that the consumer choice model only depends on the displayed

vector of past purchases and the current ranking (as well as the appeal of the products). However,

a more sophisticated choice model could incorporate into the consumer choice, the type of past

purchase information displayed: A consumer who observes a past purchase vector d might change

the behavior depending on whether she/he knows that the vector d comes from all consumer

purchases or if only comes from consumers of it own type or class. The second one is to extend

the model to scenarios when the trial probabilities depend non-linearly on the past purchases, this

is studied in Maldonado et al. (2018) for the special case of a unique consumer segment (K = 1).

Another interesting research direction is to study the firm potential incentives to hide or mis-report

some reviews and how it this affects the outcomes in terms of market share dynamics and consumer

welfare.
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Chapter 2

Strategic Implications of Binge

Consumption of Entertainment

Goods: an Analysis of AVOD Services

2.1 Introduction and Review

The success of streaming services like Netflix and Amazon has led to major changes in the television

(TV) industry. Subscription-based video on-demand (SVOD) streaming services release episodes

of their original content all-at-once allowing viewers to binge-watch a series without having to wait

until the following weeks to watch additional episodes.1 As a result, rival television based media

companies, such as ViacomCBS, NBCUniversal and Fox, have begun to look for new methods to

reach viewers because their traditional TV distribution channel restricts viewers to a sequential

viewing schedule.

The difference in the level of viewer commitment/flexibility across SVODs and traditional TV

may be one reason why subscription based video on-demand streaming services are successful. In

response “networks are changing the way they develop and release new shows...as they seek to adapt

to new TV viewing habits and profit from the ‘binge-watching’ made popular by video streaming

services” Toonkel and Richwine (2016). One such method is for traditional television based media

companies to mimic their digital streaming counterparts (e.g., Netflix and Amazon) and create

1binge watching, the act of watching several episodes in one sitting
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a digital distribution service that would enable a content provider to also release new content

all-at-once. Such an offering has been successful—ViacomCBS has a subscription free advertising-

based video on demand (AVOD) service named Pluto TV which has more than 43 million monthly

active users.2 NBCUniversal also entered the subscription free AVOD space with the launch of

its streaming service Peacock.3 Fox also has a subscription free AVOD service named Tubi which

made more than $300 million in ad revenue in 2020 and has more than 33 million users.4

The AVOD space has grown by offering repackaged content, but now they are in a position

with enough capital base to fund their own original series. Tubi, Roku Inc., and Pluto TV started

looking at developing originals.5 6 The AVOD business model is exhibiting similarities to that of

SVOD’s, where Netflix Inc. and Hulu started offering reruns and licensed programs, and now rely

on original content to attract new customers.

But once such an AVOD service like Pluto TV, Peacock, Roku Inc. or Tubi creates original

content7, how does it determine which shows should be released sequentially (like in traditional

TV) or all-at-once? Why did NBCUniversal decide to release reboots of “Saved By the Bell” and

“Punky Brewster” on Peacock with an all-at-once release timing strategy, and not sequentially?8

Currently, there is little understanding as to the strategic implications of the all-at-once release

strategy, particularly within an AVOD setting and more specifically of the type of shows (high

or lower quality) that should implement such a strategy. This chapter studies the profitability

impact of simultaneous and sequential releases for shows within a subscription free AVOD service.

Our model exploits the asymmetry of information about show quality between the entertainment

companies and viewers to analyze the optimal release strategy for high- and low-quality shows. We

focus on AVOD distribution rather than a paid subscription service due to the close similarities an

AVOD service has to the existing TV market and the fact that AVOD revenue is projected to hit

56 billion in 2024.9

With new advances in technology, especially the ability to watch on demand, binge consumption

2https://www.cordcuttersnews.com/pluto-tv-reaches-43-million-monthly-active-users/
3https://www.cnet.com/news/peacock-tv-everything-to-know-premium-free-app-plus-watch-wwe/
4https://www.fool.com/investing/2021/03/10/fox-is-understating-tubis-potential/
5https://www.msn.com/en-us/money/companies/fox-e2-80-99s-tubi-made-millions-with-reruns-now-it-wants-

original-programming/ar-BB1ey3pQ
6https://www.theverge.com/2021/3/13/22329368/tubi-streaming-original-programming-fox
7https://www.cordcuttersnews.com/tubi-is-interested-in-creating-original-content/
8https://www.tomsguide.com/news/how-to-watch-punky-brewster-reboot-on-peacock-release-date-cast-trailer-

and-more
9https://www.mediaplaynews.com/ad-supported-vod-revenue-to-reach-56-billion-by-2024-driven-by-u-s/
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of entertainment has attracted a lot of attention. Also, millennials who are comfortable with

technology are more likely to engage in this behavior. This is an emerging area of interest to

researchers with limited analysis. As with any new substantive area of interest, any attempt to

model the phenomenon immediately raises several interesting research possibilities and a desire to

capture the richness of the phenomena. Early researchers, however, need to carefully carve out the

issues to ensure tractability and gain meaningful insights. (In contrast, mature research projects

have already addressed several issues and hence it becomes easy to focus on the remaining ones.) In

that same spirit, we elect to focus on the issue in the context of one content and channel provider.

Traditional TV networks generate most of their profits through advertising. A 30-second spot

during a hit TV show can cost as high as $400, 000 Nathanson (2013). It is reasonable to think that

the cost per advertising spot would be different across the two release timing strategies that lead to

different viewing behavior (binging vs. not-binging). Schweidel and Moe (2016) studies the impact

of binge-watching on advertising through an empirical model based on Hulu user data. Their

conclusion is that advertisements in a viewing session discourage binge-watching, and that binge-

watchers are less responsive to advertisements compared to non-binge-watchers. Additionally, the

satiation literature suggests that high rates of consumption lead to less enjoyment than consuming a

good less often Galak et al. (2013). These results may have an interesting implication for the role of

advertisements with different release timing strategies: in all-at-once releases, ads are consumed at

a higher rate than in traditional weekly releases; thus, the efficacy of ads in all-at-once releases may

be reduced compared to a traditional weekly release timing. These two lines of research support

an assumption we hold throughout the chapter: users show less ad responsiveness in simultaneous

releases compared to a sequential release timing. In our model, we translate this deterioration in

advertisement responsiveness into a monetary value.

To study the impact a simultaneous release strategy could have on a traditional television based

media company, we analyze the trade-off between the boost in ad efficiency via sequential (linear)

releases and the increase in the cost of watching. For instance, watching a show that is released

all-at-once gives viewers the possibility to binge-watch in a convenient way, which is not possible

with a sequential release timing.

We assume viewers are unaware of the quality of a show until they watch it. One possible

method in which an entertainment company can signal a show’s quality to viewers is through
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advertising about its show. The show-specific advertising level is a decision for the firm, which can

act as a signal of show quality to viewers. In addition to advertising, the release timing decision

may also act as a signal about show quality to viewers due to the advertising revenue difference

between the two release timing options we are considering.. Networks have more information about

their shows than viewers, which influences their decisions on how to advertise and how to release its

shows. Viewers see these decisions and experience imperfect information about the show quality.

We therefore analyze this problem with a signaling model. It is important to note that in our

analysis, quality measures are relative. The relative nature of our analysis is a direct result of the

model and occurs in all signaling papers.

This chapter illustrates that adequate levels of advertising alone may signal quality, and for

this to happen, the higher-quality show must incur a sizable cost. We then show that by adding

the simultaneous release timing in a AVOD channel, in equilibrium lower quality shows select this

release strategy since it is more profitable than the sequential strategy. Thus, we find that there

exists a separating equilibrium under which release timing strategies signal quality. Furthermore, we

determine that the introduction of the simultaneous release timing reduces the advertising level that

higher quality shows need to incur in order to signal their quality (compared to having sequential

releases alone). Even though the higher quality show does not apply a simultaneous release strategy,

by providing a more profitable release strategy for low quality shows, they are better-off. This is

because the incentive compatibility constraints are relaxed, allowing higher quality shows to reduce

their equilibrium advertising level under sequential releases.

In our model, the traditional television based media company is tasked with selecting which

release timing strategy to use for new content, and thereby determines what show quality types

are binged and which are not. An interesting result of our analysis is that in equilibrium binge

watching occurs with lower quality shows, not high quality. Fascinatingly, this result has direct

parallels to work where consumers are found to binge low quality foods and/or beverages Boggiano

et al. (2014). Our results also have important managerial implication; because release strategies

may signal quality, it is beneficial for a firm to find a way in which to open new strategies that

are profitable for its lower quality content. By doing this, the firm reduces the necessity of costly

signaling through other mechanisms (i.e., advertising) for their higher quality content, and enjoys

greater profits on all quality levels.
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Literature Review

Our model contributes to the signaling literature by illustrating that the release timing of shows

can be a signal of quality. To the best of our knowledge, there are no other papers that analyze

the release timing decision of episodes as a signal of quality. This is an important result because it

provides television networks with another mechanism to informatively separate their content. Fur-

thermore, we show that release timing strategies reduce the advertising expenditure shows must

incur in order to signal their quality. Other signals of quality that have been studied in the literature

include price Bagwell and Riordan (1991), money-back guarantee Moorthy and Srinivasan (1995),

umbrella branding Wernerfelt (1988), slotting allowances Lariviere and Padmanabhan (1997), ad-

vertising and price Linnemer (2002), Abe (1995), Milgrom and Roberts (1986), Desai (2000), Zhao

(2000), Erdem et al. (2008), advertising frequency Erdem et al. (2008), warranty Lutz (1989),

Gal-Or (1989), Balachander (2001), price image Simester (1995), product scarcity Stock and Bal-

achander (2005), brand extension Moorthy (2012) and price discrimination Anderson and Simester

(2001). Among these papers, the closest to our work is Moorthy and Srinivasan (1995). In this

paper, the authors analyze how money-back guarantees can signal product quality. They show that

money-back guarantees signal quality by exploiting the higher probability of returns for a lower

quality product, and the attendant higher transaction costs. However, if the seller’s transaction

costs are too large, other mechanisms (like price) are needed to signal quality.

An important distinction between our model and most papers in the signaling through adver-

tising literature is that we consider multiple consumption instances that lead to consumer learning,

and the fact that advertisements can act as explicit and implicit provisions of information as well as

generate prestige effects for consumers–similar to Ackerberg (2005), Stigler (1961), Butters (1977),

and Grossman and Shapiro (1984) were some of the first papers to analyze the use of advertisements

as explicit provisions of information. These papers analyzed the effect of firms explicitly informing

their consumers of their brands’ existence and observable characteristics through advertising. In

our setting, such advertising would explicitly informs consumers of who the leading actors or actress

are of the show, the genre of the show, and a synopsis of the show’s plot. On the other hand, the

initial literature of advertising of experience goods, led by Nelson (1974), Milgrom and Roberts

(1986) and Kihlstrom and Riordan (1984), analyze the use of advertising as means to implicitly

signal information to consumers about a brand’s unobserved quality. They find that firms are able
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to signal unobserved quality via advertisement levels. Moraga-González (2000) analyzes quality

signaling through informative advertising in an experience good in a one period model. He finds

that no separating equilibrium exists in advertising. This contrasts with the result of this chapter,

where we find a separating equilibrium in advertising. This is because we consider an experience

good with multiple periods of consumption, including quality learning, which permits the feasibility

of the incentive compatible constraints under a separating equilibrium.

Stigler and Becker (1977) and Becker and Murphy (1993) follow the earlier work of Stigler (1961),

Butters (1977), and Grossman and Shapiro (1984) by examining models in which advertising levels

interact with a consumer’s utility function for a particular brand. Such an impact might occur

through a prestige or image effect whereby consumers garner greater utility for a brand due to the

content of the advertisement–e.g. a celebrity endorsement (Chung et al. (2013), Derdenger et al.

(2018)) or highlighting the leading actors or actresses in a movie or TV show. Given this work and

the relevance to our setting, it is important that we model this aspect of advertising by allowing it

to impact a viewer’s utility directly, independently of their beliefs of show quality.

Among signaling games, there exists an interesting difference between deterministic and stochas-

tic signaling mechanisms. In the former, consumption gives complete information about the un-

known feature to the responding agent, whereas in the latter, the responding agent is still not

completely sure about the true value of the unknown feature. This work stands in the middle: de-

pending on the experience draw a consumer receives from a particular episode, she will have perfect

or imperfect information about the true show type. A similar model to the one in this chapter may

be found in Jeitschko and Normann (2012). This paper contrasts a standard deterministic signaling

game with a stochastic signaling mechanism. They find that in the stochastic setting, a unique

equilibrium exists that separates agent types, whereas with a deterministic signaling mechanism,

both pooling and separating equilibria exist. The main difference with this paper is that our model

is suitable for a TV show-viewer interaction. We consider sequential trials (consumers receive a

quality sample for each episode they watch), that the samples received may be deterministic or

noisy depending on the realization of a random variable, and two different signaling mechanisms,

advertising and release timing. It is also interesting to note that our equilibrium strategies are

optimal in expectation, but there might be some sample paths in which they are not optimal. This

is due to the randomness in the experienced episode quality; it could happen that a low quality
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show mimicking a high quality show gets lucky and does not perfectly inform certain viewers about

its true quality, ending up better-off than in its equilibrium strategy.

Given our model setting, the area of research focused on binge behavior is quite relevant. Such

an area is also steadily increasing in number of papers. Recent papers such as Trouleau et al.

(2016) models user episode playback through a regression model on event counts that is contrasted

with a dataset from a on-demand video streaming service. Their model includes several features

that are key aspects of binge behavior, including episode data censorship (whether a viewer has

watched all episodes available to her or not), deviations in the population, and external influences on

consumption habits. They observe different types of binge behavior: that binge watchers often view

certain content out-of-order, and that binge watching is not a consistent behavior among users. Lu

et al. (2017) analyzes binge behavior in an educational setting through content in Coursera (one of

the world’s most popular online education platforms), in which they observe individual-level lecture

and quiz consumption patterns across multiple courses. They generate a utility maximization

decision process for individual consumers that features the contemporaneous utility of consumption

and the long-run accumulation of knowledge. By examining consumption in certain courses, their

model is able to predict consumption patterns in other courses, which has implications for new

product launch, cross-selling, and bundling. Schweidel and Moe (2016) studies the impact of binge-

watching on advertising through an empirical model based on Hulu user data. This is the closest

paper to our work, since it analyzes the relationship between advertising effectiveness and binging-

behavior. Their conclusion is that advertisements in a viewing session discourage binge-watching,

and that binge-watchers are less responsive to advertisements compared to non-binge-watchers.

There is also extensive literature that studies the optimal release timing of media through same

or different channels. Hennig-Thurau et al. (2007) present a model of revenue generation across

four sequential distribution channels, combining choice-based conjoint data with other information.

Under the conditions of the study, the authors find that the simultaneous release of movies in the-

aters and on rental home video generates maximum revenues for movie studios in the United States,

but has devastating effects on other players, such as theater chains. Prasad et al. (2004) studies

the entry time of goods in different channels. In their model, they include the discounting of future

profits, the foresight of the firm, customers’ expectations, and the possibility of cannibalization,

and find an optimal closed form solution for the optimal sequential timing. Das (2008) analyzes
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the optimal release timing of movies in the context of piracy. Krider and Weinberg (1998) studies

the release timing of movies as a competitive game and look for an equilibrium during high season.

The remaining literature can be found in Chiou (2008), Gerchak et al. (2006), Frank (1994).

In addition to signaling, this work considers viewer learning. Previous papers that model

consumer learning and advertising jointly are Erdem and Keane (1996) and Ackerberg (2005). As

viewers watch episodes, they experience a random quality from each episode and update their

beliefs about the show type, according to Bayesian update. Depending on the sample path, some

viewers might take more or less time in identifying the true show type.

2.2 Model

As was discussed in the introduction, it is important for researchers analyzing new substantive areas

to carefully carve out the issues to ensure tractability and gain meaningful insights. We believe the

model presented to you below does exactly that.

Consider a traditional television based media company, such as NBCUniversal, Fox, or Via-

comCBS, which used to have no alternative rather to release episodes sequentially through TV,

but now has an advertising-based video on demand service which allows for two different release

timing strategies (sequential vs. simultaneous). The “television” company in our model is assumed

to produce only one show and knows its quality, but consumers do not. Similarly to the existing

literature Bar-Isaac (2003), we assume show quality can come from two different types: “good”

shows and “bad” shows. Additionally, the company decides its advertising expenditure (a ≥ 0)

and the release timing of its show to a homogeneous group of viewers. Without loss of generality,

we normalize the size of the group to 1. For tractability and model simplicity we assume there

are two release timing options: i) simultaneous releases, which we will denote by B, and ii) linear

sequential releases, which we will denote by W . In simultaneous releases, all episodes from the show

are offered to the viewer on premiere day (period 1), whereas in sequential releases, a new episode

is released each subsequent period. The “television” company earns revenue from outside firms

advertising within show episodes, the revenue per eyeball for sequential releases without loss of

generality will be set to 1. The efficiency from advertisements is different between the two release

timing strategies; simultaneous releases have an ad efficiency of δ compared to linear sequential

releases. We see this as if the revenue per ad view for simultaneous shows is a fraction δ < 1
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of what it is for sequential shows.10 Again, as highlighted in the introduction, this modeling as-

sumption is also based on the literature of Schweidel and Moe (2016), Galak et al. (2013). This

literature indicates that high rates of consumption lead to less enjoyment than consuming a good

less often (Galak et al. (2013)), and that binge-watchers are less responsive to advertisements than

to non-binge-watchers (Schweidel and Moe (2016)).

Additionally, the firm chooses its advertising expenditure for its own show. Firm revenue is

dependent on how many people watch the show, the release timing choice, and its advertising

expenditure; we can write a general expression for the expected profit of a type t (good or bad)

show as follows:

πt(a,W ) = E[# of views|a,W and t]− a (2.1)

πt(a,B) = δE[# of views|a,B and t]− a. (2.2)

At this point, it is important to remark that the advertising that generates revenue is completely

different to the advertising level chosen by the firm. This latter advertising is specific to the

show and release timing strategy, whereas the advertising revenue is generated from exposing

viewers to different advertisements from independent and unrelated firms to viewers during the

show. Additionally, as we already mentioned, the advertising revenue per eyeball is exogenous,

independent of show quality and constant over time. This is because prices for advertising are set

before the actual shows are finished and its quality is realized by the advertisersNathanson (2013).

Again, viewers do not know the show’s type before watching episode 1, i.e., before watching

they cannot determine the show’s overall quality, and even after watching episode 1, there might

be some residual uncertainty. Viewers have initial prior beliefs about show quality that will be

updated directly after the firm announces its release timing strategy X ∈ {B,W} and advertising

level a ≥ 0. Given the chosen strategy X ∈ {B,W} and the advertising level a ≥ 0, the viewers’

priors before watching episode 1 are that with probability µ{1,a,X} they are viewing a “good” show,

and (1 − µ{1,a,X}) that they are viewing a “bad” show. Consumers have a cost CX of viewing

each episode that depends on the release timing strategy X ∈ {B,W}, where CB ≤ CW because

10A March 11, 2016 Fortune Magazine article on “How Network TV Figured Out Binge-Watching” indicates that
“binging viewers are also less likely to watch ads...”
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all-at-once releases provide more flexibility to viewers than weekly releases. The experience each

viewer has about a particular episode is completely independent across viewers, i.e., two different

viewers might have different perceptions about the same episode. Furthermore, the experience of

a particular viewer across different episodes is completely independent as well. The probability a

viewer perceives an episode from a “good” show with high quality (θH) is g, whereas the probability

of experiencing medium quality (θM ) is (1−g). For a “bad” show, the probability a viewer perceives

an episode as medium quality (θM ) is b, whereas the probability of experiencing low quality (θL) is

(1− b). Note that θL < θM < θH . We assume that the probabilities g and b, and the qualities θL,

θM and θH are common knowledge, so that the uncertainty for viewers relies only on which type

of show they are watching, and not on the quality distributions of those shows.

After viewing an episode, viewers update their beliefs about a show’s type. If they have ex-

perienced a high quality episode (θH) in the past, they know they are watching a “good” show

and will update their beliefs appropriately, whereas if they have experienced a low quality episode

(θL) in the past, they know the show is “bad.” On the other hand, if their past experiences about

episode quality were all medium (θM , the degenerate quality), viewers update their beliefs, based

on a Bayesian update. If the past i ≥ 0 experienced episode quality was θM under release timing

X ∈ {W,B} and advertising level a ≥ 0, then the probability they give to the show being “good”

when deciding to watch episode i+ 1 is

µ{i+1,a,X} =
µ{1,a,X}(1− g)i−1

µ{1,a,X}(1− g)i−1 + (1− µ{1,a,X})bi−1
, (2.3)

with probability 1− µ{i+1,a,X} that the show is “bad.”

Viewers decide to watch an episode based on the utility they expect from that episode which

is a function of a show’s advertising. This advertisement directly affects the viewer’s utility of the

show through a prestige effect and may also affect a consumer’s expected utility through a signaling

effect. The modeling of advertising in such a fashion is consistent with the complementary view

where advertising may contain information as well as lead to social prestige that influences consumer

behavior (Bagwell (2007)). We incorporate a prestige effect into the consumer’s utility function due

to a show’s advertisements usually highlight its staring actors or actresses. The incorporation and

interpretation of the prestige effect in our context is similar to the celebrity endorsement work of

(Chung et al. (2013), Derdenger et al. (2018)) where consumers derive direct utility from a celebrity
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endorsing a given product. For simplicity we choose a linear form equal to γa, where γ > 0. If a

viewer decides not to watch an episode, she quits the show and does not watch any of the following

episodes. Consumer decisions on whether to watch an episode are based on their show quality

perception, cost of watching, and advertising level. The viewer expected utility from watching

episode i given release timing X ∈ {B,W} and advertising level a ≥ 0 is

u{i,a,X} = µ{i,a,X}E[Qg] + (1− µ{i,a,X})E[Qb]− CX + γa, (2.4)

where Qg and Qb are the random qualities experienced in “good” and “bad” show respectively,

Qg =


θH w.p. g

θM w.p. (1− g),

(2.5)

Qb =


θM w.p. b

θL w.p. (1− b).
(2.6)

Then, E[Qg] = gθH + (1− g)θM and E[Qb] = bθM + (1− b)θL.11

We can address this problem using a model of seller-consumer interaction as a sequential game

of incomplete information and look for a modified Perfect Bayesian Equilibrium Gibbons (1992).

The game would be as follows: nature chooses the firm’s show type, with probability µ0 it is “good”

and with probability 1−µ0 it is “bad.” Then, the firm moves by choosing a release timing strategy,

as well as an advertisement level for its show; the viewer moves second with her decision to watch

or not to watch the first episode. The viewer’s decision about watching the first episode will be

based on her posterior assessment of the probability of dealing with a “good” show, after seeing

the show’s release timing signal and advertisement level, as that will determine the viewer’s utility.

If the addition of the expected quality and advertisement utility from the first episode is greater or

equal to the cost of watching, the viewer will watch such an episode; otherwise not. If the viewer

decides to watch the first episode, she performs a Bayesian update on her belief about the show

11Under the current model structure, if viewers included future show utility into their decision making process,
the utility would simply be a rescaled amount of the presented utility in equation (4) due to the viewers expecting
to receive a constant flow utility across each episode. For instance, in the infinite episode case, the expected utility
associated with all future episodes would simply be a scaled utility of equation (4), specificially by a factor of 1/(1-β)
where β is the discount factor of future utility.
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being good, forms an expected utility for episode 2 and decides to watch it or not based on the

same criterion. Viewers will stop watching the show when their expected utility from watching the

next episode is negative.

2.3 Signaling Through Advertising Alone

To identify the impact of the simultaneous release timing, we first study the traditional release

timing setting in which show episodes are released sequentially in an AVOD service. In this setting,

the only way a show can signal its quality to viewers is through advertising. We make a simplification

to the model by setting g = 1 and b = 0, which implies that E[Qg] = θH and E[Qb] = θL. Viewers

perceive episodes from “good” shows with high quality (θH), whereas they perceive episodes from

“bad” shows with low quality (θL). The probability that a viewer receives the degenerate quality

θM from an episode is zero, so by watching the first episode they will know the show’s true type.

We first analyze the setting in which we have a unique episode (N = 1). Then, we analyze the case

in which we have three episodes (N = 3), which we believe is general enough. 12

2.3.1 Single Episode Model

Our first exercise is to illustrate that signalling via advertising does not occur with only one period

but rather multiple periods or episodes is required. A separating equilibrium in which a high quality

show chooses an advertising level ag, while a low quality show chooses an advertising level ab, must

satisfy the incentive compatibility constraints. In this scenario, the equilibrium profits from a high

and a low quality show are πg(ag,W ) = 1 − ag and πb(ab,W ) = 1 − ab respectively. If a low

(high) quality show were to mimic the equilibrium advertising level of the high (low) quality show,

viewers would watch the first episode, after which they would find out the true quality show, but

because there is only one episode to watch, this information does not affect the revenue. Thus, the

mimicking profits are: πg(ab,W ) = 1− ab and πb(ag,W ) = 1− ag.

The incentive compatibility constraints are πg(W,ag) = 1 − ag ≥ πg(W,ab) = 1 − ab and

πb(ab,W ) = 1 − ab ≥ πb(ag,W ) = 1 − ag, which may only be satisfied when ag = ab. Thus, we

12We analyze all possible equilibria in which both show types participate in the market and attract viewers; first
under complete information, and then under incomplete information, where we find the parameter sets that lead to
separating and pooling equilibria. We also include three episodes as to allow for an extension that incorporates a
viewer’s urge to close.
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cannot have a separating equilibrium on the advertising level alone when there exists a unique

episode.

2.3.2 Complete Information With Multiple Episodes

We now study the setting with three episodes. When information is symmetric, the game becomes

simple. The profit from a high quality show with advertising expenditure ag is

πg(ag,W ) = 31(θH − CW + γag ≥ 0)− ag, (2.7)

while the profit that a low quality show earns advertising ab is

πb(ab,W ) = 31(θL − CW + γab ≥ 0)− ab. (2.8)

Each show type would choose the minimum advertising level that attracts viewers while generating

a non-negative revenue, otherwise they don’t participate in the market. We can represent the

equilibrium advertising levels for a “good” and a “bad” show with

a∗gW =


[(CW − θH) /γ]+ if πg

(
[(CW − θH) /γ]+ ,W

)
≥ 0

0 otherwise

, (2.9)

and

a∗bW =


[(CW − θL) /γ]+ if πb

(
[(CW − θL) /γ]+ ,W

)
≥ 0

0 otherwise

(2.10)

respectively, where f+ = max{0, f} ∀f ∈ R.

If we consider the situation in which both firms need to advertise to attract viewers while making

non-negative profit, we have that 3 ≥ a∗gW = (CW − θH) /γ > 0 and 3 ≥ a∗bW = (CW − θL) /γ > 0.

Thus, even in the complete information case, the firms need to advertise in order to enhance

consumer utilities and encourage viewers to watch the show. In the next section we analyze the

case of incomplete information.
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2.3.3 Incomplete Information with Multiple Episodes

When there is asymmetry of information, high quality shows may want to separate from the first

best strategies in order to inform viewers about its high quality by incurring a cost that the low

quality show is not willing to afford. In the following two sections, we analyze the possible separating

and pooling equilibria respectively.

Separating Equilibria

Under a separating equilibrium, as soon as the firm chooses an equilibrium strategy, viewers will

have absolute beliefs about the show’s type. We now look into a separating equilibrium in which

both show types attract viewers; high quality shows choose an advertising level agW > 0 whereas

low quality shows choose an advertising level abW > 0.

In order to attract viewers and obtain a non-negative profit in equilibrium, 3 ≥ agW ≥ a∗gW

and 3 ≥ abW ≥ a∗bW , where a∗gW and a∗bW are the first best solutions previously defined. To set

the incentive compatibility constraints, we must derive the expected equilibrium profits as well as

the expected profit of each show type mimicking the other. If a high quality show were to mimic

the behavior of a low quality show, its profit would be the same as a low quality show receives in

equilibrium πg(abW ,W ) = 3− abW . Whereas, if a low quality show were to mimic the behavior of

a high quality show by choosing advertising level agW , viewers would watch the first episode, after

which they would realize that the show is bad, and then there are two possibilities:

(A) The quality of the low-type show is good enough, so that viewers would still watch the

remaining episodes even after determining that the show is of low quality. This happens

when θL − CW + γagW ≥ 0.

(B) The quality of the low-type is not good enough, and viewers stop watching the show after

watching episode 1 and determining that the show is of low quality. This happens when

θL − CW + γagW < 0.
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We can write the payoffs as follows:

πg(agW ,W ) = 3− agW (2.11)

πg(abW ,W ) = 3− abW (2.12)

πb(abW ,W ) = 3− abW (2.13)

πb(agW ,W ) = 1− agW + 21(agW ≥ a∗bW ) (2.14)

Equations (2.11) and (2.13) represent the equilibrium profits for a high and low quality show

respectively, each of them attracting 3 views. Equation (2.12) represents the case where the high

quality show mimics the low quality show, which would lead to the same number of views. Equation

(2.14) represents the case where the low quality show mimics the high quality one; viewers would

watch the first episode, find out that the show is of low quality, and then, depending on their

expected utility from episode number 2, would continue watching the show or not. Thus, if agW

is sufficiently large (greater than a∗bW ), viewers would watch all episodes, but if it is not, they will

exit after watching episode 1.

The incentive compatibility constraints ensure that each show type is better-off by sticking with

its equilibrium strategy rather than mimicking the other type’s equilibrium strategy. We write these

constraints as follows:

πg(agW ,W ) = 3− agW ≥ 3− abW = πg(abW ,W ) and (2.15)

πb(abW ,W ) = 3− abW ≥ 1− agW + 21(agW ≥ a∗bW ) = πb(agW ,W ). (2.16)

We may simplify them to abW ≥ agW ≥ abW − 2
(

1 − 1(agW ≥ a∗bW )
)

. Note that if agW ≥ a∗bW

we have no separating equilibrium. In this case, the incentive compatibility constraints (2.15) and

(2.16) lead to agW = abW , in which consumers cannot know the show quality by observing the

advertising level. We restrict ourselves to the set where agW < a∗bW . This means that if a low

quality show were to mimic the behavior of a high quality show, then the low quality show would

only get one view, since the advertising level is not large enough to attract viewers after determining

the show is of low quality.
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We may finally write the conditions for a separating equilibrium as follows:

max{a∗gW , abW − 2} ≤ agW < min{abW , a∗bW } (2.17)

with 0 < a∗bW ≤ abW ≤ 3 and a∗gW > 0. Under these conditions, there exist out-of-equilibrium

beliefs that allow for the existence of a separating equilibrium in which both show types advertise

and attract viewers. This depends highly on the parameters, since the constraints are not feasible

for all parameter values. From constraint (2.17) and the non-negative equilibrium profit conditions,

we can find the parameter set that allows for the existence of this type of separating equilibrium;

this set is:

0 < a∗gW < a∗bW ≤ 3. (2.18)

According to constraint (2.17) there can be infinitely many separating equilibria supported by

different out-of-equilibrium beliefs. However, in our case, all such equilibria except one are ruled

out or refined away by specifying what beliefs are “unreasonable” using the “intuitive criterion”

by Cho and Kreps (1987). An in depth application of the “intuitive criterion” can be found in

Jiang et al. (2011). Proposition 2.1 shows that any separating equilibrium with positive advertising

levels and viewership (i.e., satisfying constraint (2.18)) must be such that abW = a∗bW and agW =

max{a∗gW , a∗bW − 2} in order to be able to survive the intuitive criterion. This is because this

equilibrium is the one that provides the minimum cost separation.

Proposition 2.1. A separating equilibrium in which high quality shows advertise agW > 0 while

low quality shows advertise abW > 0 survives the intuitive criterion as long as abW = a∗bW and

either

� agW = a∗gW and a∗gW ≥ a∗bW − 2, or

� agW = a∗bW − 2, a∗gW < a∗bW − 2 and µ0 <
(CW−θL−γagW )

θH−θL = 2γ
θH−θL .

Proof. Presented in Appendix B.1.1

In Proposition 2.1 we refine our separating equilibrium into a unique one, as long as µ0 is

low enough when a∗gW < a∗bW − 2. The intuitive criterion leads to the minimum cost separating

equilibrium. We find that when a∗gW ≥ a∗bW − 2, the only separating equilibrium that survives the

intuitive criterion is {a∗gW , a∗bW }. Therefore no show types deviates from their first best solution,
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which is uninteresting. In the case that a∗gW < a∗bW − 2, the unique separating equilibrium that

survives the intuitive criterion is {a∗bW − 2, a∗bW } and it holds as long as µ0 <
2γ

θH−θL . Compared to

the first best solution, here the high quality show is incurring a cost in order to signal its quality

to viewers; this cost is a∗bW − 2 − a∗gW = θH−θL
γ − 2 > 0. The intuition behind the upper bound

of µ0 comes from the following argument: there exist out-of-equilibrium beliefs under which the

strategy a∗gW dominates for both show types, thus the intuitive criterion sets a belief of µ0 to such

strategy. If µ0 was large enough, shows might be willing to deviate to this strategy; by setting an

upper bound on µ0, the shows refrain from deviating.

It is important to note that we have separation because of the multi-period nature of this

model. When a low quality show mimics the behavior of a high quality show, viewers would find

out the true quality of the show after watching episode 1 (in this simple case when E[Qg] = θH).

So, from period 2 onwards, consumers expect episodes of low quality, E[Qb], but since this show

decided to choose a lower advertising level than their equilibrium strategy (by mimicking the high

type), their expectations of the show are not strong enough to have viewers continue watching

the show. The penalty that the low quality show receives from mimicking the high type comes

from multiple periods of consumption. This separating equilibrium could never hold in a one-shot

game. Moreover, we also find separation without having customer heterogeneity or differences in

the marginal advertising costs of each firm type.

Finally, if we were to consider only implicit provisions of information through advertising (not

explicit provision nor prestige effects), we would not find a separating equilibrium in advertising

in which both firms participate. This is because under the first best solution, we would already

have that both firms advertise 0 achieving 3 views; thus, there is no benefit in deviating under

imperfect information. The separating equilibrium we could find is one in which the low quality

show does not participate under the first best solution, while the high quality show advertises 0.

When information becomes imperfect, the high quality show needs to increase their advertising level

so that it is not profitable for the low quality show to enter the market and mimic its advertising

level. Thus, we would still see that the high quality show separates to an advertising level that

achieves the minimum cost separation with the low quality show not participating. 13

13The results of this chapter differ with much of the existing literature that analyzes the effects of advertising as a
signal of quality in absolute values, but in relative values (respect to the first best solution) they are consistent.
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Pooling Equilibria

In this section we analyze the conditions under which we have a pooling equilibrium; that is, when

the equilibrium advertising levels of both show types are equal to some ap. When consumers see

an advertising level ap they form a belief µ(ap) = µ0, and both show types are worse-off deviating

to any other strategy. We are interested in a pooling equilibrium where both types of shows get

views with a positive advertising level (ap > 0). Lemma 2.1 finds the lowest equilibrium advertising

level at which both show types could pool. Any advertising level below aµ0
.
= µ0a

∗
gW + (1−µ0)a∗bW

would make viewer expected utilities from the first episode negative, so no consumer would start

watching the show.

Lemma 2.1. In a pooling equilibrium where both show types advertise and attract viewers, the

equilibrium advertising level ap is always greater or equal to aµ0
.
= µ0a

∗
gW + (1− µ0)a∗bW .

Proof. Presented in Appendix B.1.2

Depending on model parameters and out-of-equilibrium beliefs, there exist a continuum of

pooling equilibria. In Proposition 2.2, we refine these equilibria using the intuitive criterion. We

find that the unique advertising level that may survive the intuitive criterion is ap = aµ0 , and that

happens as long as µ0 >
2γ

θH−θL .

Proposition 2.2. In a pooling equilibrium where both show types advertise and attract viewers,

then ap = aµ0 is the unique equilibrium advertising level that survives the intuitive criterion, and

that happens as long as µ0 >
2γ

θH−θL .

Proof. Presented in Appendix B.1.3

Through this Proposition we find that if a pooling equilibrium that survives the intuitive cri-

terion exists, then it must have an equilibrium advertising level ap = aµ0 . It is important to note

that ap = aµ0 is between the first best equilibrium advertising levels a∗gW and a∗bW . Here the cost of

separating for the high quality show is extremely high, and it’s not worth the benefit of incurring

such separation.

To illustrate how different parameter sets may lead to a separating equilibrium, to a pooling

equilibrium or to none (no market entry or null advertising), we plot these equilibrium regions in

a specific example. Figure 2.1 shows the equilibrium regions in (µ0, θH/θL) under which we have a
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pooling or a separating equilibrium that survives the intuitive criterion when the other parameters

are CW = 0.7, θL = 0.26 and γ = 0.15. The regions in blank represent parameter spaces in which

the optimal advertising levels are not positive, or there is no market entry. As we see in the plot,

there is a clear division between pooling and separation. We may find a pooling equilibrium when

µ0 is sufficiently large, and for lower values of µ0 we find a separating equilibrium. This is because

of the threshold we found in Propositions 2.1 and 2.2, 2γ
θH−θL .

Figure 2.1: Regions in (µ0, θH/θL) in which we find a separating or pooling equilibrium in the
advertising level that survives the intuitive criterion when the only release timing possibility is
sequential releases. The parameters are such that CW = 0.7, θL = 0.26 and γ = 0.15.

2.4 Multiple Release Timings: a Simple Case

In this section we allow the shows to change its release timing strategy by introducing the possibility

of simultaneous releases (B). We continue to assume that g = 1 and b = 0, which implies that

E[Qg] = θH and E[Qb] = θL. In section 2.4 we analyze shows with a single episode, where we

show that a separating equilibrium cannot exist. In all of the following sections, we analyze a

setting with three episodes per show (N = 3). In section 2.4.1 we analyze a benchmark case

of complete information, in which viewers know the true quality of the show before making the

viewing decision. In that section we particularly focus on the scenario in which both show types
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pool under simultaneous releases. The reason behind this decision is that we find this scenario the

most interesting and realistic. A pooling equilibrium on sequential releases as the first best solution

would require a low value for the simultaneous advertising efficiency (δ) and the sequential viewing

cost (CW ), which we know is unrealistic. In section 2.4.2 we analyze our focal case of asymmetric

information, in which the high quality show signals its quality by deviating to sequential releases.

Single Episode Model

A separating equilibrium in which high quality shows choose an advertising level ag and sequential

releases, whereas low quality shows choose an advertising level ab and simultaneous releases, must

satisfy the incentive compatibility constraints. In this scenario, the equilibrium profits from a high

and a low quality show are πg(ag,W ) = 1− ag and πb(ab, B) = δ − ab respectively. If a low (high)

quality show were to mimic the equilibrium advertising level and release timing strategy of the high

(low) quality show, viewers would watch the first episode, after which they would find out the true

quality show, but because there is only one episode to watch, this information does not affect the

revenue. Thus, the mimicking profits are: πg(ab, B) = δ − ab and πb(ag,W ) = 1− ag.

The incentive compatibility constraints are πg(ag,W ) = 1 − ag ≥ πg(ab, B) = δ − ab and

πb(ab, B) = δ − ab ≥ πb(ag,W ) = 1 − ag, which may only be satisfied if ag = ab. Like in the

traditional release timing setting where episodes can only be released sequentially, we cannot have

a separating equilibrium when there is a unique episode. However, under a multiple period game,

we find separation; this shows that the separation in this model is driven by the multi-period setting

and not by some other means.

2.4.1 Complete Information With Multiple Episodes

Without information asymmetry, the game becomes simple to solve even with multiple episodes.

For any release timing strategy and advertising level, viewers either watch all episodes or none,

since they know the true quality of a show before they start watching. We can write firm profits
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as follows:

πg(a,W ) = 31(θH − CW + γa ≥ 0)− a (2.19)

πg(a,B) = 3δ1(θH − CB + γa ≥ 0)− a (2.20)

πb(a,W ) = 31(θL − CW + γa ≥ 0)− a (2.21)

πb(a,B) = 3δ1(θL − CB + γa ≥ 0)− a. (2.22)

The optimal advertising level for each show type and release timing strategy comes from choosing

either a = 0 or the advertising level that that makes null the argument of the corresponding

indicator function. Let atX be the optimal advertising level for a type t show (“good” or “bad”)

choosing release timing strategy X. Then

atX =


[(CX −E[Qt]) /γ]+ if πt

(
[(CX −E[Qt]) /γ]+ , X

)
≥ 0

0 otherwise.

(2.23)

These advertising levels maximize the expected profit for each show type and release timing strategy,

because they are the minimum advertising levels that guarantee views. We restrict our parameter

set such that both show types could attract viewers under both release timing strategies with a

positive advertising level; agB > 0, abB < 3δ, agW > 0 and abW < 3. Under this parameter set

the profit functions simplify to πt(atW ,W ) = 3 − atW and πt(atB, B) = 3 − atB where atX =

(CX −E[Qt]) /γ for (t,X) ∈
{
{g, b}, {W,B}

}
. Lemma 2.2 establishes the regions under which we

may see both firm types choosing sequential releases, simultaneous releases or both. In order to

have pooling on simultaneous releases, the difference in the equilibrium advertising levels between

simultaneous releases and sequential releases, (CW−CB)
γ , must be greater than the extra revenue

obtained from the increased advertising efficacy in sequential releases, 3(1 − δ). Depending on

how these two terms compare to each other, we will be in a different regime; Figure 2.2 shows the

different regimes.

Lemma 2.2. Under complete information in a parameter set where both show types could attract

viewers under both release timing strategies with a positive advertising level, then:

� If 1
γ (CW − CB) < 3(1− δ) both show types would choose sequential releases (W ).

63



� If 1
γ (CW −CB) = 3(1− δ) both show types are indifferent between choosing sequential releases

(W ) and simultaneous releases (B), so we may have separation or pooling in release timing.

� If 1
γ (CW − CB) > 3(1− δ) both show types would choose simultaneous releases (B).

Proof. Presented in Appendix B.1.4

Figure 2.2: Regions in (δ, (CW −CB)/γ) with complete information under which we find pooling to
sequential linear or simultaneous releases, as well as where we may find both or separating release
timing strategies (the black line).

As the value of δ increases (compared to (CW − CB)/γ)), there is less cost to choosing simul-

taneous releases, and we see that shows switch from pooling on sequential releases to simultaneous

releases. We now analyze pooling on simultaneous releases as our first best solution, and we find

the parameter set under which both release timing strategies are profitable for both show types

with positive advertising levels.

Pooling on Simultaneous Releases

We analyze the equilibria in which low quality shows choose simultaneous releases and advertising

level a∗b
.
= abB > 0, while high quality shows choose the same release timing strategy but advertising
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level a∗g
.
= agB > 0. We do so by setting the incentive compatibility constraints to have a pooling

equilibrium around Simultaneous releases:

πg(agW ,W ) < πg(a∗g, B) and (2.24)

πb(abW ,W ) < πb(a∗b , B), (2.25)

where agW and abW are defined according to Equation (2.23).

Furthermore, in order to have positive advertising levels in equilibrium, we must have that both

firms make non-negative revenue: πg(a∗g, B) ≥ 0 and πb(a∗b , B) ≥ 0. From Lemma 2.2 we can

rewrite the incentive compatibility constraints as 1
γ (CW − CB) ≥ 3(1− δ).

As described previously, we are interested in the case where both show types would be able to

attract viewers and make profit under any release timing strategy, then atX = (CX −E[Qt]) /γ for

(t,X) ∈
{
{g, b}, {W,B}

}
with a∗g > 0, a∗b < 3δ, agW > 0 and abW < 3. We require that both

firms could make profit under both release timing strategies with a positive advertising level, so

that deviations from release timing strategies are still profitable and advertising is needed. We can

finally write the parameter set that yields our first best solution as:

1

γ
(CW − CB) ≥ 3(1− δ)

agW > 0 and abW < 3

with a∗g = CB−θH
γ > 0 and a∗b = CB−θL

γ ∈ (0, 3δ] as equilibrium advertising levels with simultaneous

releases for the high quality and low quality shows respectively. The equilibrium profit functions

under this equilibrium are

πg(a∗g, B) = 3δ − 1

γ
(CB − θH) and

πb(a∗b , B) = 3δ − 1

γ
(CB − θL)

according to Equations 2.20 and 2.22. Now that we have identified the parameter set that yields

our first best solution, we may analyze what happens under incomplete information in the same

parameter set, and particularly whether we may have deviations from these first best strategies.
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2.4.2 Incomplete Information With Multiple Episodes

When we have information asymmetry, high quality shows may want to change their first best

strategies in order to inform viewers about their high quality, incurring a cost that low quality

shows may not afford. Sticking with the first best solution might not be a good strategy for high

quality shows, because the low quality shows might be better off mimicking their behavior. The next

subsection analyzes the separating equilibrium in which high quality shows separate to sequential

releases, while low quality shows remain with their first best strategy. As discussed earlier, we focus

on the parameter set that yields a pooling equilibrium on simultaneous releases as our first best

solution.

Separating Equilibrium on Release Timing

Our focus is on separating equilibria, in such an equilibria the show’s type is revealed by the chosen

strategies. As soon as the firm chooses an equilibrium strategy, viewers will have absolute beliefs

about the show’s type. We look into equilibria where high quality shows choose a sequential release

timing (W ) with advertising level ag, while low quality shows choose the all-at-once release timing

(B) with equilibrium advertising level ab. We say that the high quality show is separating from the

first best solution (under which its equilibrium strategy is {a∗g, B}), incurring a cost by choosing

a strategy which would be not-optimal under perfect information. In Lemma 2.3 we show that

in equilibrium the low quality show would not have any incentives to deviate from its first best

solution with advertising level a∗b > 0, so we have that ab = a∗b = 1
γ (CB − θL).

Lemma 2.3. If the first best solution for a low quality show is (a∗b , B), under incomplete informa-

tion any equilibrium strategy in a separating equilibrium will be such that the low quality show still

chooses its first best solution (a∗b , B).

Proof. Presented in Appendix B.1.5

In equilibrium both firm types advertise, attract viewers and make non-negative profit; thus,

we have that πg(ag,W ) = 3 − ag ≥ 0 and πb(ab, B) = 3δ − ab ≥ 0. Lemma 2.4 shows that

in order to have a separating equilibrium which attracts viewers, ag must be greater or equal to

aW
.
= 1

γ (CW − θH). If ag was less than aW , then we would have that the viewers’ expected utility

from the first episode of a high quality show is negative, which generates no views and leads to a
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negative profit function. However, the strategy of choosing the equilibrium advertising level would

be dominated by not advertising at all, which breaks the equilibrium conditions.

Lemma 2.4. If there exists a separating equilibrium where high quality shows choose (ag,W ) with

ag > 0 while low quality shows choose their first best solution, then ag ≥ aW
.
= 1

γ (CW − θH).

Proof. Presented in Appendix B.1.6

Through Lemmas 2.3 and 2.4 we find that a separating equilibrium in release timing strategies

which attracts viewers must satisfy ab = a∗b and ag ≥ aW . Now we look into the profit functions of

each type mimicking the other to set up the incentive compatibility constraints.

If a high quality show were to mimic the behavior of a low quality show, their profit would be

the same as a low quality show would obtain in equilibrium

πg(ab, B) = 3δ − a∗b (2.26)

since a low quality show would already obtain 3 views. Whereas if a low quality show were to

mimic the behavior of a high quality show, viewers would watch the first episode, after which they

would realize that the show is bad and then there are two possibilities:

(A) The low quality is good enough, so that viewers would still watch the remaining episodes even

after finding out that the show is of low quality. This happens when θL − CW + γag ≥ 0.

(B) The low quality is not good enough, and viewers stop watching the show after watching episode

1 and finding out that the show is of low quality. This happens when θL − CW + γag < 0.

We can write the off-equilibrium profit of a low quality show mimicking the behavior of a high

quality show as follows:

πb(ag,W ) = 1− ag + 21(ag ≥ abW ), (2.27)

where abW = 1
γ (CW − θL) is defined in Equation (2.23). When ag ≥ abW we are in case (A) and

Equation 2.27 becomes πb(ag,W ) = 3−ag, whereas when ag < abW we are in case (B) and Equation

2.27 becomes πb(ag,W ) = 1− ag.

We may now write the incentive compatibility constraints, which removes incentives for each
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show type to mimic the equilibrium behavior of the other show’s type:

πg(ag,W ) = 3− ag ≥ 3δ − ab = πg(ab,W ) and (2.28)

πb(ab, B) = 3δ − ab ≥ 1− ag + 21(ag ≥ abW ) = πb(ag,W )). (2.29)

We rewrite the incentive compatibility constraints with the following inequalities: 3−ag ≥ 3δ−ab ≥

1− ag + 21(ag ≥ abW ) and condition on whether ag ≥ abW in case A or ag < abW in case B.

Case A: ag ≥ abW , then the incentive compatibility constraints become an equality constraint in which

both show types obtain the same profit

3− ag = 3δ − ab.

Then the conditions for a separating equilibrium can be written as

3 ≥ ag = ab + 3(1− δ) ≥ abW and ag, ab > 0, (2.30)

where ab = 1
γ (CB − θL) according to Lemma 2.3. The first inequality ensures the equilibrium

revenue from high quality shows is non-negative (3 − ag ≥ 0). The second inequality meets

the incentive compatibility constraints at equality, which also implies non-negative revenue

for the equilibrium strategies of the low quality show. The second inequality ensures we meet

the conditions from Lemma 2.4 (ag ≥ aW ), because abW > aW , and at the same time we

are in the set corresponding to case A (ag ≥ abW ). In this parameter set, both show types

obtain the same equilibrium profit; this is because the low quality show obtains no penalty

in mimicking the high quality one. We now show that this equilibrium cannot survive the

intuitive criterion.

Take the first best solution {(a∗g, B), (a∗b , B)} and a separating equilibrium {(ag,W ), (a∗b , B)}

where ag ≥ abW . Then, according to this equilibrium ag = 3(1 − δ) + a∗b . Suppose there

is a deviation to (a∗b − ε, B) with an ε > 0. There exists ε > 0 such that for no out-of-

equilibrium belief, the low quality show would be better-off deviating strategy, because it

would only obtain one view. On the other hand, for some out-of-equilibrium beliefs, the

high quality show could be better-off when ε is sufficiently small and a∗b − ε > a∗g, then
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3δ − a∗b + ε = 3− ag + ε > 3− ag. Thus, consumers should not believe that such a deviation

could come from the low quality show, but from the high quality show. Given this, the high

quality show is better-off deviating, so this equilibrium does not survive the intuitive criterion.

Case B: ag < abW , then the incentive compatibility constraints become

3− ag ≥ 3δ − ab ≥ 1− ag

This case leads to a continuum of advertising levels for which the high quality show could

signal its quality. From the incentive compatibility constraints we get 3(1 − δ) + ab ≥ ag ≥

1 − 3δ + ab. Including constraints for positive advertising levels and non-negative profit

functions, the set that leads to this separating equilibrium is:

3(1− δ) + ab ≥ ag ≥ max{1− 3δ + ab, aW }, abW > ag and 3δ ≥ ab. (2.31)

The upper bound on ag ensures that the incentive compatibility constraint for a “good” show

holds, whereas abW > ag ensures that we are in case B. The lower bound on ag satisfies

the incentive compatibility conditions for a “bad” show and also ensures that Lemma 2.4

(ag ≥ aW ) is satisfied. Finally, the upper bound on 3δ ≥ ab ensures that the equilibrium

revenue from “bad” shows is non-negative, which, in conjunction with the other constraints,

ensure non-negative revenue for the equilibrium strategy of a “good” show. Throughout this

section we focus on this equilibrium.

From now on we focus on Case B in which ag < abW . A continuum of perfect Bayesian equilib-

ria depending on customer’s out-of-equilibrium beliefs can be obtained from case B (Inequalities

(2.31)). We show here that any separating equilibrium with sequential releases for the high quality

show and advertising level ag ∈
(

max{1− 3δ + ab, aW }, min{3(1− δ) + a∗b , abW },
]

can be elimi-

nated by the intuitive criterion Cho and Kreps (1987). Suppose that the high quality show deviates

from (ag,W ) to some strategy (a,W ) with a ∈
[

max{1− 3δ + ab, aW }, ag
)
. This new advertising

level a with release timing strategy W is equilibrium-dominated for the low quality show, regard-

less of what customers believe about the show’s type. This is because this new advertising level a

satisfies the incentive compatibility constraints. Therefore, customers should not believe that the

show which voluntarily made such a deviation can be the low quality type with a positive proba-
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bility. Consequently, the high quality show indeed prefers deviating to such an advertising level,

as long as customers believe that such deviation cannot come from the low quality show. That is,

the equilibria involving advertising level ag ∈
(

max{1− 3δ + ab, aW },min{3(1− δ) + a∗b , abW },
]

fails the intuitive criterion, leaving ag = max{1− 3δ + ab, aW } as the only possible advertising

level that may survive this refinement. In Lemma 2.5 we show that under which conditions

ag = max{1− 3δ + ab, aW } survives the intuitive criterion to deviations to sequential releases.

This Lemma tries to do the same as Proposition 2.1 does for the traditional release timing setting,

but now for deviations that can switch release timing strategies (i.e., from simultaneous releases to

sequential releases).

Lemma 2.5. A separating equilibrium in which high quality shows advertise ag > 0 and choose

sequential releases whereas low quality shows stick with their first best solution (a∗b > 0, B) survives

the intuitive criterion for deviations to sequential releases, as long as ag = max{aW , 1 + ab − 3δ}

and either; µ0 < γ 3δ−1
θH−θL and aW < 1 + ab − 3δ, or aW ≥ 1 + ab − 3δ.

Proof. Presented in Appendix B.1.7

Clearly, among all separating equilibria ag = max{1− 3δ + ab, aW } gives the greatest profit

for the high quality show. We still need to check whether this equilibrium survives the intuitive

criterion for any deviation to simultaneous releases (a,B); in Lemma 2.6 we find the conditions

under which it does.

Lemma 2.6. Let āg
.
= 3δ − πg(ag,W ) = ag − 3(1 − δ). If both release timing strategies are

profitable for either show type, and we have a first best solution where both show types choose

simultaneous releases with a positive advertising level, the separating equilibrium in which high

quality shows choose strategy (ag,W ) while low quality shows choose strategy (a∗b , B), with ag =

max{1− 3δ + a∗b , aW }, survives the intuitive criterion for deviations to simultaneous releases as

long as

µ0 < γ
a∗b − āg

(θH − θL)
and δ − āg ≥ 3δ − a∗b . (2.32)

Proof. Presented in Appendix B.1.8

The intuition behind Lemma 2.6 is that we need the high quality shows to separate from their

first best solution described in the previous section. In order for such an equilibrium to survive
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the intuitive criterion, we need the existence of out-of-equilibrium beliefs that make the low quality

show better-off for any strategy (a,B) under which the high quality show could be better-off. If

there exists a strategy (a,B) that is equilibrium-dominated for the low quality show, but there

exists off-equilibrium beliefs such that the high quality show is better off, then our equilibrium

would not survive the intuitive criterion. This Lemma ensures that such strategies do not exist

for simultaneous releases. Furthermore, it ensures that the belief viewers give to the strategies

(a,B) in which both show types could be better off, µ0, is sufficiently low so that viewers don’t

start watching the show in case either show deviates. Lemma 2.5 performs the same task but for

deviations to linear sequential releases. In Proposition 2.3, we state the parameter set under which

we have a separating equilibrium on release timing strategies that survives the intuitive criterion.

It comes from merging the last two Lemmas.

Proposition 2.3. When both release timing strategies are profitable for either show type, and we

have a first best solution where both show types choose simultaneous releases with a positive adver-

tising level, then there exists a separating equilibrium on release timing strategies {(ag,W ), (ab, B)}

that survives the intuitive criterion as long as ag = max{aW , 1 + ab − 3δ} < abW , ab = a∗b ,

ag ≤ 3 + ab − 3δ, µ0 < γ
a∗b−āg

(θH−θL) , a∗b − āg ≥ 2δ and

µ0 < γ
3δ − 1

(θH − θL)
if aW < 1 + ab − 3δ.

Proof. Presented in Appendix B.1.9

In order to provide intuition from the separating equilibrium and the impact of having a release

timing decision, we provide the following example. Consider the case where θH = 1.85, θL = 0.6,

γ = 0.55, CB = 1.9, CW = 2.15, δ = 0.9, µ0 = 0.1, g = 1 and b = 0. First, we study what happens

when the only release timing strategy possible is sequential releases (W). In this situation, the first

best solution for a high and low quality show is a∗Wg = 0.5455 and a∗Wb = 2.8182 respectively.

When information becomes incomplete, the high quality show separates to aWg = 0.8182 in order

to satisfy the incentive compatibility constraints and signal its quality. The equilibrium profit for a

high and a low quality show under incomplete information is 2.1818 and 0.1818 respectively. Now

we analyze what happens when shows may also be released simultaneously. The parameter set

is such that for the first best solution we have pooling on simultaneous releases, the high quality
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show chooses (a∗g = 0.0909, B) whereas the low quality show chooses (a∗b = 2.3636, B). When

information is incomplete, the high quality show separates to (ag = 0.6636,W ), changing its release

timing strategy to W. The equilibrium profit for the high quality show becomes 2.3364, whereas

the low quality one obtains 0.3364. Under traditional sequential releases, the high quality show

may separate by incurring a cost. When simultaneous releases are allowed, both firms types are

better off. The low quality enjoys a release timing strategy for which they become more profitable;

this relaxes the incentive compatibility constraint, and now the high quality show may reduce

their advertising level and still signal its quality (aWg = 0.8182 vs ag = 0.6636). The separating

equilibrium comes from having the least cost separation under the linear sequential release timing.

If the high quality show were to separate using simultaneous releases, their overall profit would

be less. It is interesting to notice that a television media company with a high quality show has

incentives to provide this highly profitable release timing strategy for lower quality shows, because

this would reduce the advertising level threshold at which lower quality shows would be interested in

mimicking them. We plot the different advertising parameters obtained from this model in Figure

2.3.

Figure 2.3: Advertising values according to the described example: θH = 1.85, θL = 0.6, γ = 0.55,
CB = 1.9, CW = 2.15, δ = 0.9, µ0 = 0.1, g = 1 and b = 0. a∗Wg = 0.5455, a∗Wb = 2.8182,

aWg = 0.8182, a∗g = 0.0909, a∗b = 2.3636, ag = 0.6636 and āg = 0.3636.

a∗g is the first best advertising level for a high quality show. āg is the maximum advertising level

under simultaneous releases at which the high quality show could be better off by deviating from

their separating equilibrium strategy (ag,W ). a∗b is the first best and the separating equilibrium

strategy for the low quality show, (a∗b ,W ). ag is the equilibrium advertising level for the high quality

show. a∗Wg and a∗Wb are the first best solution for the high and low quality shows, respectively,

in the traditional sequential releases setting. aWg is the advertising level at which the high quality

show separates to when information is imperfect in the traditional sequential releases setting.
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Note, if the high quality show were to deviate from (ag,W ), any advertising level a other than

a ∈ [a∗g, āg] under simultaneous releases is dominated by its equilibrium strategy. If consumer

beliefs were high enough, the high quality show would be better-off deviating to an a ∈ [a∗g, āg) in

simultaneous releases, but given that δ − a ≥ δ − āg = 0.5364 > 3δ − a∗b = 0.3364, the low quality

show would also be better off. Thus, consumer beliefs for any advertising level in that region would

be set to µ0, and since µ0 = 0.1 < γ
a∗b−āg

(θH−θL) = 0.8800, viewers would not start watching the show.

To observe what happens when we perturb the parameters of the previous example, we show in

Figure 2.4 the regions in (δ, CW−CBγ ) under which we obtain separation on release timing strategies

from the initial first best solution that pools on simultaneous releases. As one can see there exists

a region under which we have separation to W (red), while on another portion separation may not

exist (blank space), or it occurs through advertising on simultaneous releases (black).

Figure 2.4: Regions in (δ, CW−CBγ ) under which the high quality show separates to sequential
releases or not, from a first best solution where both shows pool on simultaneous releases.

So far we have analyzed the simple case in which g = 1 and b = 0. In the next section we

analyze the general case where we relax this assumption.
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2.5 Multiple Release Timings: General Model

The next step is to analyze the general model, which incorporates the randomness in the perceived

quality of each episode. Randomness gives more space for low quality shows to mimic the behavior

of high quality shows, since viewers may now be uncertain about the show’s true quality even after

watching all episodes within the show. This would happen if the quality draw for a viewer for

all three episodes was θM . We start with the same first best solution as in the previous section,

where both shows pool on simultaneous releases. Then we analyze the existence of a separating

equilibrium in which it is always better for high quality shows to choose sequential releases, and

for low quality shows to choose simultaneous releases.

We look for separating equilibria in which high quality shows choose strategy (ag,W ) whereas

low quality shows choose (ab, B), but for the situation in which, under complete information, both

show types pool on simultaneous releases, as described in section 2.4.1.

If a separating equilibrium of this type exists, the expected payoff of a low quality show mim-

icking the behavior of a high quality one can be obtained using Lemma 2.7. The intuition behind

this lemma is that if consumers see a signal (ag,W ), their initial belief about the show being of high

quality remains set to 1. However, if a viewer watches the first episode, she will obtain a random

quality realized from Qb, taking values θL or θM . If the realization is θM , then the belief about

the show being good will remain absolute, due to the Bayesian update. However, if the realization

is θL, then the belief about the show being of high quality would turn to zero, because θL is not

a possible outcome for the quality of an episode of a high quality show. It could be the case that

after realizing that the show mimicking the behavior of the high quality one is of low quality, the

consumer keeps on watching. The different branches of πb(a,W ) in Lemma 2.7 consider these two

possibilities. i) If ag ≥ CW−E[Qb]
γ viewers would continue watching the show regardless of when

they determine that the show is of low quality; ii) If CW−E[Qb]
γ > ag viewers would stop watching

as soon as they determine that the show is of low quality.

Lemma 2.7. In a separating equilibrium in which high quality shows choose advertising level ag ≥

aW and sequential releases, whereas low quality shows choose simultaneous releases and advertising
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level ab, the expected profit of a low quality show mimicking the behavior of a high quality one is:

πb(ag,W ) =


3− ag if ag ≥ CW−E[Qb]

γ

(1 + b+ b2)− ag if CW−E[Qb]
γ > ag

(2.33)

Proof. Presented in Appendix B.1.10

We may now write the incentive compatibility constraints which remove incentives for each

show type to mimic the equilibrium behavior of the other show type. We consider two separate

cases that come from the two branches of Equation (2.33). For simplicity, we use the following

notation abW
.
= 1

γ (CW −E[Qb]).

Case A: ag ≥ abW

Good: πg(ag,W ) = 3− ag ≥ 3δ − ab = πg(ab, B) and

Bad: πb(ab, B) = 3δ − ab ≥ 3− ag = πb(ag,W ).

In case A the incentive compatibility constraints imply that the equilibrium profit for both

show types is the same, 3 − ag = 3δ − ab, then ag = 3(1 − δ) + ab ≥ abW > agW . We now

show that these equilibria does not survive the intuitive criterion.

From Lemma 2.3 we have that ab = a∗b in order for these equilibria to survive the intuitive

criterion. Then take the first best solution {(a∗g, B), (a∗b , B)} and a separating equilibrium

{(ag,W ), (a∗b , B)} where ag = 3(1− δ) +a∗b ≥ abW . Suppose there is a deviation to (a∗b − ε, B)

with an ε > 0. There exists ε > 0 such that for no out-of-equilibrium belief the low quality

show would be better-off deviating to such a strategy. In the best case scenario, the expected

profit of such deviation for the low quality show would be (1 + b + b2)δ − a∗b + ε, which

is less than 3δ − a∗b for a sufficiently small ε. On the other hand, a high quality show

could be better-off by performing such deviation. With a sufficiently small ε, we have that

a∗b − ε ≥ a∗g, hence the expected profit would be 3δ − a∗b + ε, which is greater by ε compared

to its equilibrium strategy. Consumers should not believe that the deviation to (a∗b − ε, B)

comes from a low quality show, because it is an equilibrium dominated strategy for that show

type. Depending on out-of-equilibrium beliefs, the high quality show is better off with such
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deviation. Therefore, consumers will assess that the high quality show is the one performing

the deviation, and then this equilibrium does not survive the intuitive criterion.

Case B: abW > ag

Good: πg(ag,W ) = 3− ag ≥ 3δ − ab = πg(ab, B) and

Bad: πb(ab, B) = 3δ − ab ≥ 1 + b+ b2 − ag = πb(ag,W ).

The incentive compatibility constraint translates to 1 + b+ b2− 3δ+ ab ≤ ag ≤ 3(1− δ) + ab.

We finally can set the conditions to have a separating equilibrium as:

3(1− δ) + ab ≥ ag ≥ max{1 + b+ b2 − 3δ + ab, aW }, abW > ag and 3δ ≥ ab,

where aW = 1
γ (CW − θH). The upper bound on ag ensures the incentive compatibility

constraint for a “good” show holds, whereas abW > ag ensures that we are in case B. The

lower bound on ag satisfies the incentive compatibility conditions for a low quality show and

also ensures that Lemma 2.4 (ag ≥ aW ) is satisfied. Finally, the upper bound on 3δ ≥ ab

ensures that the equilibrium revenue from “bad” shows is non-negative, which in conjunction

with the other constraints ensure non-negative revenue for the equilibrium strategy of a

“good” show. Throughout this section we focus on this equilibrium.

We now focus exclusively on case B, and we refine it using the intuitive criterion. As in the

previous section, we have that the unique equilibrium that may survive the intuitive criterion

is ag = max{1 + b+ b2 − 3δ + ab, aW }. If ag was greater than max{1 + b+ b2 − 3δ + ab, aW },

that would leave the region [max{1 + b+ b2 − 3δ + ab, aW }, ag) equilibrium dominated for the low

quality show, whereas it would dominate the equilibrium strategy for the high quality show. Then

it would never be able to survive the intuitive criterion. Therefore, we need to find under which

conditions ag = max{1 + b+ b2 − 3δ + ab, aW } survives the intuitive criterion; in Proposition 2.4

we find such conditions.

Proposition 2.4. When both release timing strategies are profitable for either show type, and we

have a first best solution where both show types choose simultaneous releases with a positive adver-

tising level, then there exists a separating equilibrium on release timing strategies {(ag,W ), (ab, B)}
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that survives the intuitive criterion as long as ag = max{aW , 1 + b+ b2 + ab − 3δ} < abW , ab = a∗b ,

ag ≤ 3+ab−3δ, µ0 < γ
a∗b−āg

(E[Qg ]−EQb) , a∗b−āg ≥ 2δ−b−b2, and µ0 < γ 3δ−1
(E[Qg ]−EQb) if aW < 1+ab−3δ.

Proof. Presented in Appendix B.1.11

Proposition 2.4 describes the parameter set under which we see separation in release timing

strategies, surviving the intuitive criterion from the first best pooling equilibrium on simultaneous

releases. In this equilibrium a high quality show signals its quality through sequential releases

and a specific advertising level ag, while a low quality show sticks with its first best strategy. An

interesting aspect of this model is that there exist sample paths in which a low quality show is better

off by mimicking the behavior of a high quality show, but in expectation it is better staying with

its equilibrium strategy. The randomness in the episode experienced quality by viewers, creates

different sample paths of quality draws per episode, in which it might make a viewer take too

long to determine the show’s true quality (θM , θM , θL), or not at all (θM , θM , θM ). As such, this

gives an incentive for a low quality show to behave like a high quality one, given that there exists

the possibility that the low quality show can hide its quality from viewers. Consequently, under

this setting, for separation to occur, we must have a greater advertising efficiency threshold, δ,

than in the classical signaling game without randomness described in Section 2.4. Another way of

seeing this is by checking the separation cost that the high quality show must incur in order to

signal its high quality. In Section 2.4 we found that ag = max{aW , 1 + ab − 3δ} < abW , whereas in

this section we have that ag = max{aW , 1 + b+ b2 + ab − 3δ} < abW . Therefore, the difference in

separation costs could be as high as b+b2. Consequently, with randomness, high quality shows must

incur a higher seperation cost in order to make the actions of the low quality showing (mimicing

the high quality show) less profitable than the low quality show’s first best solution

2.6 Extension: Urge to close

We now analyze qualitatively the effects of adding a new term in the viewer’s utility function, which

increases as the episode consumed gets closer to the season finale. This term captures a viewer’s

urge to finish a season, and it enters the model as an addition to the base quality. Under complete

information, we expect the advertising levels to be reduced compared to the original model. This

is because the urge to close provides an extra base utility, which may be seen as an increase in
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quality. When we have imperfect information, lower quality shows have greater incentives to mimic

the behavior of higher quality shows. This is because when a low quality show mimics a high

quality one, viewers may stop watching the show if they realize its true quality early on, whereas

they might keep on watching it if they realize its true quality later. This consumer behavior was

not captured by the previous model, and it increases the expected profit low quality shows get

from mimicking the behavior of the high quality shows. Given this, if separation were to exist, the

separation costs for the higher quality content will be larger, similar to the case where randomness

in show quality is introduced.

2.7 Conclusion

We have shown that under certain scenarios, high quality shows may use a sequential release timing

in conjunction with a suitable advertising level to credibly inform consumers about their show

quality. Furthermore, we analyze a situation in which, under complete information, both shows

pool on simultaneous releases, whereas when information is private, the high quality show uses the

linear sequential releases channel in order to achieve minimum cost separation. The release timing

strategy affects consumers in their viewing cost, whereas the advertising level persuades viewers to

watch the show. We find that there exists a separating equilibrium surviving the intuitive criterion

under which release timing strategies signal quality. Furthermore, we find that the introduction

of the simultaneous release timing reduces the advertising level high quality shows need to incur

in order to signal their quality. Even though the high quality show does not use the simultaneous

release timing, by providing a more profitable release timing strategy for low quality shows, they

are better-off. This is because the incentive compatibility constraints are relaxed, and high quality

shows may now reduce their equilibrium advertising level under sequential releases. Moreover,

in our model the traditional television based media companies, such as NBCUniversal, Fox, and

ViacomCBS, are tasked with selecting which release timing strategy to use for new content, and

thereby determine what show quality types are most likely to be binged. An interesting result

of our analysis is that in equilibrium binge watching occurs with lower quality shows, not high

quality. Fascinatingly, this result has direct parallels to work where consumers are found to binge

low quality foods and/or beverages Boggiano et al. (2014).

Our results also have important managerial implication; because release timing may signal
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quality, it is beneficial for a firm to find a way in which to open new channels that are profitable for

its lower quality content. By doing this, the firm reduces the necessity of costly signaling through

other mechanisms (i.e., advertising) for their higher quality content, and enjoys greater profits on

all quality levels.

Finally, as we noted in the Introduction, research on binge consumption is in the nascent stage.

A natural and important issue to study are the strategies associated with traditional television

based media that now have online streaming channels, in the context of binge consumption. Static

signaling models are challenging, with multi-period models even more complex. Thankfully, even

with the added complexity, we have been able to achieve tractability and meaningful insights.

Adding competition will enormously complicate our analysis and will remain an important but

challenging future research topic.
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Chapter 3

Optimal Timing of Home Video

Releases: A Dynamic Model of Movie

Distribution

3.1 Introduction

Home video release timing is arguably the most important decision for movie distribution; as a

market segmentation strategy, it separates two different consumer experiences, theaters and home

videos. For the last few decades the home video window, the time between theater market exit and

home video release, has been decreasing. At the same time the technological quality of the home

video experience has improved, from VHS in the 1990s to 4K Ultra HD today. This poses a question

for the movie industry; is it optimal to decrease the home video window as the technological quality

of home videos increase? Furthermore, as several technologies of home videos are available at the

same time, e.g. DVD and Bluray during the 2010’s, which technological quality home video should

be released first in order to maximize studio revenue?

Besides release timing, advertising plays an important role in movie distribution. In general,

80% of the advertising budget is spent during theatrical release, while the remaining 20% is left

for the home video release. This generates incentives for studios to release their home videos early,

as the advertising expenditure in theaters will have a stronger effect on home video consumption.

However, at the same time, some consumers may be willing to delay the box office purchase decision
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to the home video market, reducing the box office revenue. This impacts the home video market

as well, as it is well known that the box office revenue serves a quality signal that drives home

video demand. This trade-off clearly illustrates how difficult it is to choose an optimal home video

window, which might differ between different technological quality home videos.

In the past few years we have seen several efforts from distributors to shrink the home video

window. With the start of the COVID-19 pandemic in December 2019 and the limited market

power of theaters, these efforts expanded. In July 2020 AMC (the world’s largest movie theater

chain) and Universal struck an agreement to release home videos just 17 days after theatrical

release (Watson 2020). Similar agreements were implemented by other studios, with Warner Bros.

announcing they will release all of their year 2021 films simultaneously in theaters and on the HBO

Max platform (Schwartzel and Flint 2020). Recently ViacomCBS launched their own streaming

platform, Paramount+, which will release Paramount and some MGM titles just 45 days after

theatrical release (Kit 2021). These changes were made in the midst of a market dominanted by

home viewing; it remains uncertain whether theaters will regain their influence on the market.

This chapter develops a dynamic structural model for the box office market and the home video

market, consisting of two technological qualities, DVDs and Blu-rays1. The model is built around

release timing strategies, and it is able to quantify the change in revenue associated with advancing

or delaying home video releases. In order to do this, modeling consumer forward looking behavior

is critical. We model the home video market as an infinite horizon model for each movie and

technological quality, where consumers decide whether to buy the disc, or to delay their purchase

in each period. We model the box office market for each movie as a dynamic program with a finite

horizon. During each period consumers face the decision whether to buy a ticket or wait for the

next period. The terminal continuation value of the box office market is set to the discounted value

of the home video market, which depends on whether the consumer owns a DVD or Blu-ray player.

Consumer forward looking behavior is critical to model distribution in the movie industry. The

time a movie remains in theaters is not a decision the studios make, but one each theater decides on

their own, depending on performance. Thus, consumers in the box office market do not know the

horizon of such market, and have to form expectations on its duration in each period. Under our

setting, consumers form dynamic expectations about the time a movie remains in theaters. These

1This can be seen as a proxy for Full HD and 4K videos today. It is simple to add other home videos as the data
becomes available
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expectations depend on movie performance and time since release. Consumers are also forward

looking in the evolution of the movie quality over time, the home video market value, and the home

video window, which determine the terminal continuation value of the box office market.

Once the consumer decision problem in terms of movie qualities is solved, we recover movie/medium

fixed effects, and time dependent characteristics that depend on each market, such as age, adver-

tising build-up, average price and seasonality. In a second stage, we regress the fixed effects on

time independent characteristics, such as the home video window, theatrical revenue, production

budget, distributor, release year and poster colors. We analyze the poster image for each movie and

identify the percentage of pixels that belong to each color in a 12 color palette. We then analyze the

correlation between using specific colors, and pairs of a color and its complement, with consumer

preference for a movie.

With the demand estimates for the box office, DVD and Blu-ray markets, we are able to perform

a series of counterfactuals. First, we estimate the impact of modifying the simultaneous release

of DVDs and Blu-rays, which was the industry practice at the time of data collection. We leave

everything constant, while adjusting the advertising build-up, (as having a shorter home video

window increases the advertising build-up coming from theaters), and the box office revenue signal.

We find that it is optimal to set the DVD and Blu-ray release 2.3 weeks after theatrical exit to

achieve a 4.47% increase in studio revenue2, while having little impact for theaters with respect

to the data. Second, we estimate the impact of separately modifying the home video window for

DVDs and Blu-rays. This allows the exploit of market segmentation strategies, as consumers express

heterogeneous preferences depending on the technological quality of the home video player they

possess. We find that the optimal strategy is to release DVDs within a week of theatrical exit, while

to delay Blu-rays about 5.15 weeks from theatrical exit. This strategy increases studio revenue by

5.36% with respect to the data, and again, the impact to theaters is minimal. This result is driven

by the different substitution patterns that different technological quality home videos present to

theaters. Lower technological quality home videos, such as DVDs, have a low ex-ante value function

for their market compared to the market of higher technological quality home videos, such as Blu-

rays. This makes DVD owners less likely to delay the box office purchase decision compared to

Blu-ray player owners when shortening the home video window. Thus, the studios can reap all

2Studio revenue is capturing all of the home video revenue, and a share of the box office revenue that comes from
imposing a standard theater-distributor contract.
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the benefits of the advertising spillover effect from theaters while posing minimal competition to

theaters. The trade-off is more balanced for Blu-rays. Shortening their home video window will

increase substitution from theater, and will have further impact on the DVD market, as the quality

signal coming from box office revenue is reduced. This result captures consumer heterogeneity in

the box office market; Blu-ray player owners value picture quality above everything else, while DVD

player owners value timing and pricing above picture quality. This allows the studios to perform

market segmentation strategies on releases to boost revenue.

The remainder of this chapter is organized as follows; Section 3.2 presents the related literature,

Section 3.3 describes the industry and shows the main attributes of the dataset used, Section 3.4

presents the structural model including consumer utility specifications and the consumers’ optimal

purchase problem, Section 3.5 explains the estimation and identification procedure for the model

parameters, Section 3.6 shows and describes the parameter estimates of the model, and Section 3.7

presents the counterfactual analysis on the home video windows.

3.2 Literature Review

In the past few decades, several researchers have studied the motion picture industry, which inter-

sects several fields such as marketing, operations management, and economics. We separate the

relevant literature for this chapter into two groups, demand estimation and release timing. Within

each of these groups we discuss the papers related to the movie industry.

3.2.1 Demand Estimation

This chapter uses the frameworks of Nevo (2000), Gowrisankaran and Rysman (2012) and Berry

et al. (1995) to present and estimate a dynamic discrete choice model for movie distribution that

captures consumer forward looking behavior. Unlike these papers, we consider a setting with two

different markets, box office and home video, that are connected to each other through the home

video window and the home video market value. In a similar fashion to this chapter, Derdenger

(2014) has analyzed the technological tying of software and hardware in the 128-bit video game

industry.

Advertising plays a critical role in this chapter, as it drives a side of the home video window

trade-off. We treat advertising as exogenous, where it enters the model as a covariate, following
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Dubé et al. (2005) to analyze the long-term effects of advertising. In a different setting, Yan (2020)

analyzes equilibrium advertising and theatrical releases while treating advertising as endogenous.

Its setting is quite different from ours, as it finds equilibrium advertising levels and release dates in

a competitive environment with consumers that are not forward looking, whereas in our chapter we

focus in finding optimal release timing strategies in a dynamic monopolistic setting that captures

consumer forward looking behavior in theater and home video markets.

There is an abundant number of papers that do an empirical analysis of demand in the movie

industry. This includes Eliashberg and Shugan (1997), Eliashberg et al. (2000), Elberse (2007),

Eliashberg et al. (2014) and Packard et al. (2016) studying the impact of critics’ reviews, star

actors, networks of cast and crew, and opening weekend box office on overall revenue performance.

Lehmann and Weinberg (2000), Elberse and Anand (2007) and Rao et al. (2017) analyze the impact

of advertising on box office revenue.

3.2.2 Release Timing

The problem of finding the optimal inter-release times of sequentially released products has been

widely studied in several industries. Moorthy and Png (1992) analyze the optimal timing and

quality of sequential product releases. Lehmann and Weinberg (2000) analyze the problem of

demand cannibalization between box office and home videos while trying to reap gains as quickly

as possible. This line of work is extended by Luan and Sudhir (2006) capturing box office consumer

forward looking behavior. This is the closest line of research to this chapter, as they study the

optimal inter-release time between box office and DVDs using box office sales, and DVD sales

and rental data. However, their analysis only uses advertising expenditure and does not capture

advertising build up over time, which lowers the incentives to shorten inter-release times. In

our work, advertising build up is a major driver for shorter inter-release times. We specifically

focus on how the optimal inter-release times change as the technological quality of home videos

increases from DVDs to Blu-rays, while creating heterogeneous consumer preferences between these

products. Another distinction with Luan and Sudhir (2006), is that in our model, consumers also

form expectations about the evolution of movie quality during each market, as well as on the

time a movie remains in theaters. We develop a discrete hazard model to asses the probability

distribution of the remaining time in theaters of a movie, that is dependent on the time since
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release and performance.

Other relevant work on movie release timing may be found in the study of the trade-off between

seasonality and freshness for DVDs, see Mukherjee and Kadiyali (2018). August et al. (2015) and

Calzada and Valletti (2012) analyze, through theoretical models in different settings, the conditions

under which day-and-date, direct-to-video, or delayed home video releases are optimal release timing

strategies for the movie industry.

3.3 Industry Setting and Data

The motion picture industry consists of three stages: production, distribution and exhibition. The

production stage consists of the development of a motion picture and is a creative process with

important economic implications for the parties involved. The process usually begins with an idea,

concept or true event, which a writer captures in a screenplay. If a producer is interested in the

screenplay, it may sign an option agreement with the writer, which gives the producer the possibility

of purchasing the complete screenplay, and provides an upfront payment for the writer. Substantial

financing is needed to begin production, which is lowered when the producer is affiliated with a

studio. Upon the signature of a studio contract, the producer gives up several rights, including

sequels, spin-offs, and merchandising. At the same time, the producer increases its chances of

obtaining bank loans and securing favorable distribution and exhibition deals. These contracts

benefit the studios, as they provide a constant inflow of products from successful firms. Many

producers face financing issues when they cannot reach a deal with a studio; in such case the

studio must obtain financing from other sources, which is difficult when no distribution deals are

guaranteed (Vogel 2014).

The distribution stage begins once a movie has completed production, and it includes the

distribution to theaters, home video markets, as well as the marketing activities in each market

where the movie is released. Distributors face a wide range of decisions in this stage, including

when to release the movie in each channel and the advertising strategy for the motion picture.

Among distributors there is a clear distinction between major and independent firms. The major

distributors, usually referred to as “The Big Six”, include Paramount, Sony, Twentieth Century

Fox, Universal, Walt Disney and Warner Bros.. These studios produce, finance and distribute their

own movies. At the same time, they also finance and distribute films produced by independent
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film makers that are associated with the studio. Ensuring a strong US theatrical box-office gross

is very important for these studios, because it is a performance metric to indicate sales potential

in other distribution channels such as global theatrical, home video, and pay television (Eliashberg

et al. 2006). Simultaneously, the growing importance of non-theatrical channels as a source of

revenue is generating incentives for the studios to reduce the time between theatrical and non-

theatrical releases. Figure 3.1 shows the evolution of the average DVD release windows, (time

between theatrical and DVD releases), for major studios and years. This reduction in non-theatrical

windows poses several questions, which we address in this chapter. One of them was proposed by

Eliashberg et al. (2006), “To what extent are theatrical and nontheatrical windows substitutes or

complements (i.e., either negatively or positively affecting each other’s revenue potential)? For

example, does the availability of DVDs deter people from going to the theater?”. Building upon

this question, we analyze the optimal non-theatrical window across different technological quality

home videos, which present different substitution patters with theaters.

Figure 3.1: Evolution of the number of days between theatrical and DVD release for major studios.
Source: https://www.natoonline.org.

The exhibition stage is the only stage in which major studios have limited control. The con-

tractual agreements between exhibitors and distributors only involve a minimum playing time, as

well as terms on how the box office revenue is shared between the parties involved. In the end, it
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is up to each individual theater to control the total playing time for each movie (beyond that set

minimum). Studios generate a strong buzz prior to and during their theatrical release - combining

advertising, word of mouth, and media attention - which drives demand for the motion picture in

other distribution channels (Eliashberg et al. 2006).

3.3.1 Data Discussion

We estimate our model using panel data for box office, DVD and Blu-ray sales. The data is at

the weekly level for all panels. For each week that a movie is in the box office, our data includes

revenue ($), ticket sales, number of theaters, and other characteristics. For each movie and week in

a home video environment, our data includes unit sales, revenue ($) and average price. We observe

149 movies, across box office, DVD and Bluray, with observations between the years 2009 and

2018. Out of those 149 movies, only 113 had Blu-ray releases, while all of them had a DVD release.

We also obtain advertising expenditure data for each movie at the monthly level from Ad$pender.

For each movie we also have information on its characteristics, such as distributor, domestic box

office revenue, production budget, home window lengths and release dates. We also scraped poster

images from www.themoviedb.org and applied color theory on them to extract hue information,

the procedure is described in section 3.5.3. We create market shares by dividing the unit sales

with the number of consumers, for the box office, or number of DVD/Blu-ray player owners for the

home videos. We use data from the U.S. Census Bureau to get the number of consumers within

each movie rating per year, and data from the Consumer Electronic Association to get information

on DVD/Blu-ray player ownership. This data is interpolated to the monthly level, assuming a

linear growth rate. We adjust inflation in all revenues to January 2019 dollars using data from the

Bureau of Labor Statistics. To create our final dataset, we remove box office panel weeks with less

than 100 theaters and we define the start of the home window as the week in which a movie is in

less than 100 theaters. The final dataset consists of 1, 797 observations across 149 movies for the

box office, 44, 800 for DVDs (across the same 149 movies), and 25, 373 observations for Blu-rays

across a subset of 113 movies. Table 3.1 presents a summary statistics of the production budget,

advertising expenditure, and revenue per medium of the final dataset, while Table 3.2 presents a

summary of the home windows and time in theaters. It is important to note that the difference

between the DVD and Blu-ray home video windows is due to the different sample sizes, and not
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due to different home video release dates for the same movie.

Mean Median Standard Deviation

Production budget $ 121,775,960 $99,979,420 $ 77,255,980
Domestic box office revenue $ 122,169,272 $ 82,897,417 $ 106,867,804

Total DVD revenue $ 37,480,615 $ 26,050,639 $ 42,840,121
Total Blu-ray revenue $ 22,478,904 $ 16,729,886 $ 19,335,287

Total advertising expenditure $ 27,612,363 $ 27,170,200 $ 11,091,510

Table 3.1: Data summary on revenues, advertising and budgets.

Mean Median S.D. Maximum Minimum

DVD home window (weeks) 6.6951 6.2857 3.6906 16.2857 0.2857
Blu-ray home window 6.1871 6.2857 3.6453 16.2857 0.2857

Time in theaters (weeks)) 11.4007 11.0000 3.1829 22.0000 6.0000

Table 3.2: Data summary on timing characteristics.

3.3.2 Data Analysis

In this section we present reduced form results that show the connection between relevant covariates

and revenue. We retrieve estimates in a two stage process; with a first stage fixed effects regression

that includes time dependent characteristics, and a second stage retrieval of movie characteristics

from movie fixed effects.

Table 3.3 shows the box office reduced form using panel data on weekly box office ticket sales. It

shows the first stage regression on top, while the fixed effect GLS (General Least Squares) retrieval

of static movie characteristics at the bottom. The sign of the coefficients is quite intuitive; as a

movie ages, the demand for it decreases, while an increase in advertising expenditure yields greater

demand 3. The average box office price per week is not significant, probably due to the low variation

of price across both, time and titles4. The “lag 1st3weeks box revenue” covariate represents the

total lagged box office revenue until the current period, or period 3 included, whichever comes first.

This shows that if a movie performs well in the first few weeks since release, it will drive demand

up for the consecutive weeks, but with diminishing returns as the quadratic component is negative.

The fixed effects regressions shows that production budget and time in theaters are major drivers

3We create advertising covariates following Dubé et al. (2005), we describe the procedure in Section 3.5.3.
4To control for price endogeneity we used lagged prices as an instrument.
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for box office demand. The home window contribution is smaller in magnitude, but presents the

expected substitution pattern with a positive sign, which means that box office revenue increases

by delaying home video releases.

Box office: two-stage reduced form

Time Dependent Variables Estimates

Age (weeks) -0.8184 (0.0161)***
Age2 (weeks2) 0.0223 (0.0008)***
Price ($) -0.6720 (0.5636)
Advertising 0.50933 (0.1361)***
log(lag 1st3weeks box revenue) 0.23651 (0.0474)***
log(lag 1st3weeks box revenue) 2 -0.0128 (0.0027)***

Movie fixed effects
Month fixed effects

N 1,797

Time Independent Variables Estimates

Constant 7.3604 (1.3068)***
log(production budget) 0.2551 (0.0343)***
Time in theaters (week) 0.4945 (0.0297)***
Time in theaters2 (week2) -0.0111 (0.0011)***
Home window (week) 0.0039 (0.0170)
Home window2 (week2) 0.0024 (0.0010)***

Release year fixed effects
Distributor fixed effects
Color fixed effects

N 149

***p < .01, **p < 0.05, *p < .1

Table 3.3: Reduced form estimates of a two stage fixed effects model on weekly box office ticket
sales.

Table 3.4 shows the home video reduced form using panel data on home video sales. The top

of the table shows the first stage regression in which DVD and Blu-ray weekly sales are regressed

against time dependent covariates, and an interaction between them and a Blu-ray indicator variable

with movie/medium fixed effects. We then run a fixed effects GLS regression for DVDs and Blu-rays

separately on time independent characteristics. In the first stage regression we controlled for price

endogeneity using lagged prices as instrumental variables. We can see that home video demand

lowers with age and price. Advertising expenditure has a positive impact on home video sales, but
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this effect is lower for Blu-rays. The fixed effects GLS regression shows an increasing demand for

home videos with an increase in box office opening revenue within the ranges of box office revenues

observed. As for the home video window, DVD demand seems to be larger with lower windows,

while Blu-rays exhibit concave demand shape with a maximum in around 8 weeks.

Home video: two-stage reduced form

Time Dependent Variables Estimates Home Video Estimates Blu-ray Indicator

Age (weeks) -0.0119 (0.0035)*** -0.0866 (0.0263)***
Age2 (weeks2) 0.0000 (0.0000)*** -0.1119 (0.0365)***
Price ($) -0.0182 (0.0012)*** -0.2212 (0.0499)***
Advertising 0.6462 (0.0078)*** -0.2832 (0.0647)***

Movie fixed effects X X
Month fixed effects X X
Year fixed effects X X

N 70,253 25,373

Time Independent Variables Estimates DVD Indicator Estimates Blu-ray Indicator

Constant 33.3590 (0.5997)*** 51.2524 (0.9777)***
log(1st3week box revenue) -3.3500 (0.0705)*** -5.6018 (0.1139)***
log(1st3week box revenue)2 0.1030 (0.0021)*** 0.1709 (0.0033)***
Home window (week) -0.0233 (0.0053)*** 0.0989 (0.0061)***
Home window2 (week2) 0.0015 (0.0003)*** -0.0056 (0.0004)***

Release year fixed effects X X
Distributor fixed effects X X
Color fixed effects X X

N 149 113

***p < .01, **p < 0.05, *p < .1

Table 3.4: Reduced form estimates of a two stage fixed effects model on weekly home video sales.

With these reduced form results, we can see several features that are important to embed into

a structural model. These include expectations about the home video window and time in theaters

during the theatrical market, box office revenue as a signal of movie quality for the home video

market, and advertising. Furthermore, the significant coefficients for age in both markets, show

that consumers should be able to form expectations about movie quality evolution, which would

be relevant in the case they decide to delay their purchase decision to later periods.
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3.4 Demand model

In this section we discuss the structural model that captures the relationship between box office

ticket sales, home video sales, and the forward-looking behavior of consumers. The box office

and home video markets are linked through the home video window, which is the time between

theatrical exit and home video release. Shrinking this window leads to higher freshness on the home

video market and a greater spillover of advertising spent for the theatrical market, but it may lead

to demand cannibalization from theaters. Consumers in the box office market form expectations

about this home video window and decide whether to watch the movie in the current week, or delay

their decision to the following one. Consumers form expectations about the home video window, as

well as the evolution of prices, movie quality and the theatrical run time. Since we are interested

in analyzing the aforementioned trade-off disregarding competition, we consider each movie to be

a monopoly.

The timing of the model is as follows: Consumers own either a DVD or a Blu-ray player when

a movie is released in theaters. In each week of the theatrical market, consumers decide whether or

not to buy a box office ticket. They continue to make such a decision until they elect to watch the

movie, or until the theatrical run time is over. After the theatrical runtime is over, we enter the

home video window. During this period, consumers are not able to watch the movie in theaters,

nor buy a home video for this movie. Then, the home video is released and we enter the video

time. In each period (week) of the home video market, consumers decide whether or not they will

purchase the their respective disc (DVD or Blu-ray). They continue to make such a decision in

each period until they elect to purchase the home video. Figure 3.2 shows the described timeline

of the model. In order to estimate the model involving the discussed forward-looking behavior,

we use the frameworks of Gowrisankaran and Rysman (2012) and Derdenger (2014). The former

paper embeds consumer expectations about price, movie characteristics and unobservable factors

that might evolve over time. The later paper is used to link the utilities between the theatrical and

home video markets.

Next, we present the utility specifications for the home video and theatrical markets, first

discussing the associated utilities for home videos and then for box office tickets.
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Figure 3.2: Timeline of movie distribution.

3.4.1 Home video utility

We now outline the utility model for home video consumption. The home video utility specification

follows that of Gowrisankaran and Rysman (2012); it is an infinite horizon model. Our specification

allows for model parameters to differ between DVDs and Blu-rays so that the expected value of

the home market for users who hold a DVD or a Blu-ray player are different. This term plays an

important role in the box office market, since it enters through the terminal continuation value of

such finite horizon model.

In the home video market, each consumer decides in each time period t whether or not to

purchase a home video for movie/medium j. If consumer i decides to purchase a home video for

movie/medium j of technological quality k ∈ {DVD, Blu-ray}5 in time period t, she obtains a

utility given by

uhi,j,t = fhj,t + αp,hk phj,t + εhi,j,t (3.1)

where fhj,t is the flow utility from the home video, phj,t is the price of the home video, and εhi,j,t is an

idiosyncratic shock which we assume to be the realization of a Type-1 Extreme Value distribution

which is independent and identically distributed across consumers, products, and time periods.6

A consumer who does not purchase a movie/medium j of technological quality k ∈ {DVD, Blu-ray}

in period t receives

uh0,j,t = βE[V h
k (Ωh

j,t+1)|Ωh
j,t] + εh0,j,t, (3.2)

5Movie/medium j includes information about the technological quality of the home video, so we defer from adding
subscript k to denote such technological quality when subscript j is present.

6Let superscript h and b denote utility specification for home video and box office respectively.
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where Ωh
j,t, is industry state of movie/medium j at period t; involving the flow utility, price disu-

tility, and all history factors that influence the home video’s future attributes. Finally, V h
k (Ωh

j,t)

represents the value of having the purchase possibility of home video j of technological quality

k ∈ {DVD, Blu-ray}, when the state of home video j is Ωh
j,t.

The home video flow utilities depend on movie characteristics with the following relation:

fhj,t = αfe,hj + αx,hk xhj,t + ξhj,t, (3.3)

where xhj,t are time dependent observable movie characteristics (for DVD and Blu-ray), such as

age, advertising expenditure, price, month and year, αfe,hj are movie/medium fixed effects, αx,hk are

time dependent characteristics coefficients which depend on whether the technological quality of

the home video is a DVD or a Blu-ray, and ξhj,t are unobservable characteristics that vary both over

time and across movies. It is important to remark that we don’t explicitly express the dependence

of fhj,t on k since j (movie/medium) already includes that information.

The estimation of the model parameters involves a second stage in which the movie medium

fixed effects are regressed on time fixed movie characteristics following Nevo (2000). Examples

of movie characteristics involve opening box office revenue, distributor, the home window length,

poster colors and release year.

3.4.2 Box office utility

Unlike the home video market, the box office market has a finite horizon. The consumer type

is denoted by the subscript k ∈ {DVD, Blu-ray}, which provides a source of heterogeneity that

depends on the technological quality of the home video player owned. This heterogeneity enters

exclusively in the outside option and not in the purchase utility, as we assume that the box office

ticket purchase continuation value is zero for both consumer types. In each period t, consumer i

considers whether or not to watch a particular movie j. Once a consumer watches movie j, she

exits the box office market for movie j. If consumer i decides to purchase a box office ticket for

movie j in time period t, she obtains utility given by

ubi,j,t = φ(f̃ bj,t + α̃p,bpbj,t) + εbi,j,t

= f bj,t + αp,bpbj,t + εbi,j,t, (3.4)
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where f bj,t is the flow utility from observable and unobservable box office characteristics, pbj,t is the

price of the box office ticket, εbi,j,t is an idiosyncratic shock, and β is the weekly discount factor.

The parameter φ is a scaling parameter which permits the comparison between the home video and

box office markets, it serves as a utility normalization factor, since we forced the error terms for

both markets to have the same variance.

A consumer who does not watch movie j in period t, and owns a home video player of techno-

logical quality k ∈ {DVD, Blu-ray} receives

ub0,k,j,t = βE[V b
k (Ωb

j,t+1)|Ωb
j,t] + εb0,j,t, (3.5)

where Ωb
j,t, is industry state of movie j in theaters at period t; involving the flow utility, price

disutility, and all history factors that influence the movie’s future attributes (for instance, revenue

and time since release, number of theaters available, etc. are important to form expectations about

the last period of the market). Finally, V b
k (Ωb

j,t) represents the value of having a box office ticket

purchase possibility when the state of movie j is Ωb
j,t and the consumer has a home video player of

technological quality k ∈ {DVD, Blu-ray}. Note that the outside option depends on j since we are

modeling each movie as a monopoly, and the continuation value of delaying the box office purchase

decision is different for each movie.

The box office flow utilities depend on the movie features with the following relation:

f bj,t = αfe,bj + αx,bxbj,t + ξbj,t, (3.6)

where xbj,t are observable box office movie characteristics that vary over time, αx,b are the coefficients

of observable time dependent movie characteristics, αfe,bj are movie fixed effects and ξbj,t are the

unobservable components of the flow utility that vary both over time, and across movies. Examples

of time-dependent box office movie characteristics include advertising expenditure, average price,

month, age, and performance up to current period. Similarly to the home video market, the

estimation of the model parameters involves a second stage in which fixed effects are regressed on

movie characteristics. Examples of movie characteristics involve distributor, production budget,

and release year. Note that in (3.4) and (3.6) we assume that the consumer purchase utility

specification about movies in theaters does not depend on the type of home video owned (DVD or
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Blu-ray), but this heterogeneity enters in (3.5), the outside option.

This utility specification generates a challenge. The box office market has a finite horizon, thus

the model has to embed consumer’s expectations about the market’s horizon, the home window

length, and the value of the home video market in order to quantify continuation values. To embed

consumer’s expectations we must make assumptions on what factors affect the movie’s industry

state Ωb
j,t. This is analyzed within the consumer’s problem, in section 3.4.3.

3.4.3 Consumer’s problem

We now outline the consumer’s decision process, which incorporates the forward looking behavior

about the evolution of the movie industry states Ωb
j,t. We begin by describing the decision process

for the home video market as it is independent of the value functions of the box office market. We

then describe the finite horizon model of the box office market, where the home video value enters

through the terminal continuation value.

Home video market

The home video market consists of two separate markets that differentiate on the technological

quality, we distinguish between them with subscript k ∈ {DVD, Blu-ray}. Each of them can be

seen as an optimal stopping problem with an infinite horizon. In each period, consumers have the

possibility to purchase their respective home video disc, or to wait. Following Equations (3.1) and

(3.2), the value function prior the realization of ~εhj,t
.
= (εhi,j,t, ε

h
0,j,t) for consumer that owns home

video player k ∈ {DVD, Blu-ray} can be written as

V h
k (Ωh

j,t) =

∫
max

{
fhj,t + αp,hk phj,t + εhi,j,t, βE[V h

k (Ωh
j,t+1)|Ωh

j,t] + εh0,j,t
}
gε(~ε

h
j,t)d~ε

h
j,t. (3.7)

From (3.7), the first element of the max operator indicates the purchase utility, while the second

indicates the expected discounted value of delaying the purchase decision to the next period.

We proceed by using the aggregation properties of the extreme value distribution to express

(3.7) in a rather simpler form, and then we make assumptions on how consumers form expectations

about future movie industry states. Specifically, we can write

V h
k (Ωh

j,t) = ln
(

exp(δhj,t) + exp(βE[V h
k (Ωh

j,t+1)|Ωh
j,t])
)
, (3.8)
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where δhj,t = fhj,t + αp,hphj,t, the logit inclusive value, is defined as the ex-ante present discounted

lifetime value of buying a home video at period t, as opposed to waiting for the next period. We

make the assumption that consumers only take into account the current value of δhj,t to form the

expectations of the evolution of V h to the next period. So the history of the past values of δhj,t does

not matter. Thus, we have

V h
k (δhj,t) = ln

(
exp(δhj,t) + exp(βE[V h

k (δhj,t+1)|δhj,t])
)
. (3.9)

We employ rational expectations for future values of δhj,t by imposing a simple linear autoregressive

specification:

δhj,t+1 = νh1,k + νh2,kδ
h
j,t + ηhj,t+1,k, (3.10)

where ηhj,t+1 is normally distributed with zero mean and unobserved at time t, while νh1,k and

νh2,k are general parameters to be estimated for k ∈ {DVD, Blu-ray}. This assumption ensures

consumers are on average correct about the movie quality evolution. It is important to remark that

the optimal consumer decisions, given a movie state δhj,t, will depend on the joint solution of the

Bellman equation (3.9) and the movie state regression (3.10).

Once these two equations are solved, we can obtain the value functions V h
k (δhj,t), and we then use

them to estimate the individual purchase probabilities. The movie/medium j purchasing probability

for a consumer at period t is given as a function of δhj,t, and is

ŝhj,t(δ
h
t ) =

exp(δhj,t)

exp(V h
k (δhj,t))

. (3.11)

Box office market

The box office market is similar to the home video market, but with a few differences. First, the

market has a finite horizon which is unknown by the consumers, and second, the discounted home

video value enters the box office model through the terminal continuation value of this unknown

horizon. This allows for consumers to substitute between the box office market and the home

video market, if this terminal continuation value is large enough. Furthermore, the home video

value differs between the technological quality of the home video, i.e. DVD or Blu-ray, which may

97



drive different substitution patterns between the different technological quality markets and the

box office.

In order to model the unknown finite horizon, we use the time and revenue since release as drivers

for a distribution of possible horizons. We use the data in order to fit a discrete hazard model that

gives the probability for each possible horizon. This captures the endogeneity of theatrical runtime,

where each theater decides based on performance whether to keep a movie in theaters or not. This

procedure is described in Section 3.4.3

Following Equations (3.4) and (3.5) and using the aggregation properties of the extreme value

distribution, similarly to how we arrived to Equation (3.8) in the home video market, we obtain the

following value function equation for V b
k,|T , the box office value function at time period t conditional

on having an horizon at T and owning a home video player of type k ∈ {DVD, Blu-ray};

V b
t,k|T (Ωb

j,t) = ln
(

exp(δbj,t) + exp(βE[V b
t+1,k|T (Ωb

j,t+1)|Ωb
j,t])
)
∀t = 1, . . . , T − 1, (3.12)

where δbj,t = f bj,t +αp,bk pbj,t, (Ωb
j,t is the state of industry of movie j at time t, and T is the unknown

horizon of the market, following a probability distribution that depends on t and the revenue since

release. Finally, the terminal value function is set using expectations on the home video window

(NT), and the home video value of movie j with technological quality k (V h
k,j);

V b
T,k|T (Ωb

j,T ) = ln
(

exp(δbj,T ) + exp(E[βNTV h
k,j ])

)
. (3.13)

Since the horizon of the problem is unknown, consumers form a probability distribution over

probable horizons, gT (Ωb
j,t), which depends on the industry state of the movie Ωb

j,t at time t.

Then Equations (3.12) and (3.13) can be solved for each T and aggregated using the probability

distribution over possible horizons for each time period. Finally we have

V b
t,k(Ω

b
j,t) =

∑
T

V b
t,k|T (Ωb

j,T )gT (Ωb
j,t) ∀t = 1, . . . , T, and k ∈ {DVD, Blu-ray} (3.14)

where the probability distribution over values of T is created from data using a hazard model that

depends on the revenue and weeks since release. Subsection 3.4.3 provides details on this procedure.

We assume that consumers only take into account the current value of δbj,t, the time since

release, t, and the revenue since release, rt, to form expectations about the future values of purchase
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decisions. Then our state variables can be assumed to be (t, rt, and δbj,t), since time (t) and revenue

since release (rt) are important to determine the probability distribution over possible horizons.

Then, Equations (3.12), (3.13) and (3.14) can be rewritten as

V b
t,k|T (δbj,t) = ln

(
exp(δbj,t) + exp(βE[V b

t+1,k|T (δbj,t+1)|δbj,t]
)

(3.15)

∀t = 1, . . . , T − 1,∀k ∈ {DVD, Blu-ray},

V b
T,k|T (δbj,T ) = ln

(
exp(δbj,T ) + exp(E[βNTk,jV h

j ])
)
, and (3.16)

V b
t,k(δ

b
j,t, rt) =

∑
T V

b
t,k|T (δbj,t)gT (t, rt) ∀t = 1, . . . , T, and k ∈ {DVD, Blu-ray}. (3.17)

Once again, we employ rational expectations for future values of δb, by imposing a linear autore-

gressive specification:

δhj,t+1 = νb1 + νb2δ
h
j,t + ηbj,t+1 (3.18)

where ηbj,t+1 is normally distributed with zero mean and unobserved at time t, while νb1 and νb2

are general parameters for all movies to be estimated. This assumption ensures consumers are on

average correct about the movie quality evolution.

We assume that consumer expectations about the home video window and the home video value

to quantify E[βNTk,jV h
k,j ] in (3.13), are based on perfect foresight. This is because if we did not

use perfect foresight we would need to model consumer beliefs, and when we run a counterfactual

analysis on these home video windows, they won’t be consistent with the estimated beliefs. By

using perfect foresight we ensure that estimated beliefs are consistent with our counterfactual home

window lengths video windows.

Note that equations (3.12), (3.13), (3.14) and (3.18) must be solved jointly. This is because a

change in the Bellman equation will yield different νb1 and νb2 coefficients, and that will impact the

Bellman equations. Specifically, these equations need to be solved twice, one time for DVD player

owners, and another time for Blu-ray player owners. The difference between these two comes in

the terminal continuation values used in (3.13)7. The fixed point will depend on the continuation

value used, but we refrain from using it as a variable for V b
t . Note that both consumer types have

the same quality vector, δbj,t, since the difference between types lies in the outside option.

7Both, the home video value as well as the home window length may differ between DVDs and Blu-rays.
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Once these equations are solved, we can compute the individual purchase probabilities for each

consumer segment. For simplicity, we now refrain from using k to identify consumer types and we

use the suprascript b− dvd for DVD player owners and b− blu for Blu-ray player owners instead.

The probabilities that a DVD and a Blu-ray player owner purchase a ticket for movie j in period t

is given by

ŝb−dvdjt (δbj,t, rt) =
exp(δbj,t)

exp(V b−dvd
t (δbj,t, rt))

and ŝb−blujt (δbj,t, rt) =
exp(δbj,t)

exp(V b−blu
t (δbj,t, rt))

, (3.19)

respectively. And based on the remaining weight of Blu-ray player owners for movie j at time

period t, wb−bluj,t we can compute the purchase probability of a random consumer

ŝbjt(δ
b
jt) = (1− wb−bluj,t )ŝb−dvdjt (δbjt, rt) + wb−blujt ŝb−blujt (δbjt, rt). (3.20)

Discrete-Time Proportional Hazard Model for time in theaters

Theaters decide when to stop showing a movie, which is dependent on how the movie is performing.

To capture this, we build a Discrete-Time Proportional Hazard Model following Cameron and

Trivedi (2005) (section 17.10.1). This model gives a probability distribution for the remaining time

in theaters, given the number of weeks the movie has been in theaters and the total revenue until

then. Let T be the number of weeks a movie is in theaters, and R(t) the box office total revenue

by period t, we define the discrete time hazard function

λd(t|Rt−1) = Pr[T = t|T ≥ t, Rt−1], t = 1, . . . ,M,

which denotes the probability t is the last week this movie is in theaters, given it is in theaters

in week t and the the total revenue until week t − 1 is Rt−1. Then, the associated discrete-time

survivor function is

Sd(t|Rt−1) = Pr[T ≥ t|Rt−1] =
t−1∏
s=1

(
1− λd(s|Rs−1)

)
.
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We can then specialize the continuous PH model to obtain the following expression for the discrete

time hazard

λd(t|Rt−1) = 1− exp
(
− exp (lnλ0t + β log(Rt−1))

)
,

where λ0t for t = 1, . . . ,M and β are parameters to be estimated. The associated discrete-time

survivor function is

Sd(t|Rt−1) =
t−1∏
s=1

exp
(
− exp (lnλ0t + β log(Rt−1))

)
.

We can finally write the likelihood function as

L(β, λ01, . . . , λ0M ) =

N∏
i=1

[ Ti−1∏
s=1

exp
(
− exp (lnλ0s + β log(Rs−1))

)]
×
(

1−exp
(
− exp (lnλ0Ti + β log(RTi−1))

))
,

where i refers to each individual movie, and Ti for the time in theaters of such movie. We can the

use the data to maximize this function over the parameters, and obtain our final Discrete-Time

Proportional Hazard Model.

3.5 Estimation and identification

The estimation procedure to recover model parameters follows that of Gowrisankaran and Rysman

(2012) and Derdenger (2014). Since the estimation of the box office market depends on the home

video value, we estimate the home video market first and then we proceed with the box office

market.

We will use ~αb and ~αh to denote (αfe,b, αx,b, αp,b) and (αfe,h, αx,h, αp,h), respectively, these

are the vector of all fixed effects and observable characteristics coefficients. We now discuss the

identification of the structural parameters (~αh, ~αb, β), which requires solving the home video market

and use its results to solve the box office market. We do not attempt to estimate β, since it is well

known that estimating the discount factor in dynamic decision models is a notoriously difficult task

(Gowrisankaran and Rysman 2012, Magnac and Thesmar 2002). This is because consumer waiting

can be explained by moderate preferences for movies, or by little discounting of the future. Thus,

we set β = 0.9995 on a weekly level (equivalent to 0.974 yearly), leaving (~αh, ~αb, φ) to estimate.

In order to allow for the comparison between box office and home video utilities, we must
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identify the scaling parameter φ. To do so, we must impose the following constraint in estimation.

αp,b = φαp,dvd. (3.21)

With φ identified, we redefine ~αb
.
= (αfe,h, αx,h), since αp,b is not to be directly estimated.

Following Berry (1995) and Gowrisankaran and Rysman (2012), we specify a generalized method

of moments (GMM) function

G(~αh, ~αb, φ) = Z ′~ξ(~αh, ~αb, φ), (3.22)

where ~ξ(~αh, ~αb, φ) is the stacked vector unobserved characteristics of the box office market (ξbjt),

DVD market (ξdvdjt ) and Blu-ray market (ξblujt ), for which the predicted shares equal the observed

shares, and Z is a matrix of exogenous instrumental variables. These instrumental variables consist

of lagged home video prices, and box office prices which control for price endogeneity. We estimate

the parameters to satisfy

(α̂h, α̂b, φ̂) = arg min
(~αh,~αb,φ)

{
G(~αh, ~αb, φ)′WG(~αh, ~αb, φ)

}
, (3.23)

where W is a weighing matrix. Thus, to estimate (~αh, ~αb, φ) we must first solve for ξ(~αh, ~αb, φ),

which requires solving for the shares of all markets. We first discuss how to solve for home

video shares and then for box office shares. In the following sections, we explain how to obtain

α̂h, α̂b(φ) and ~ξ(α̂h, α̂b(φ), φ) based on an initial guess of φ. The optimal value α̂h is independent

of φ and can be solved separately. Given a guess for φ, one can solve for the optimal α̂b(φ) easily,

which will depend on the chosen φ. Finally, the optimal solution for φ̂ can be obtained by solving

a single variable optimization problem, that includes a subproblem that finds α̂b(φ),

φ̂ = arg min
φ

{
G(α̂h, α̂b(φ), φ)′WG(α̂h, α̂b(φ), φ

}
. (3.24)

3.5.1 Home video shares

The consumer decision problem for the home video market is defined in Section 3.4.3 as the fixed

point of the Bellman equation (3.9), and the market evolution equation (3.10). We stack the
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DVD and Blu-ray panel data, to find the vector δhj,t for which the predicted shares (ŝhjt) equals the

observed shares (ŝhjt) for each movie and time period, namely

shj,t = ŝhj,t(δ
h
j,t) ∀j, t. (3.25)

Following Gowrisankaran and Rysman (2012) and Berry et al. (1995) the solution to equation

(3.25) can be solved using a fixed point iteration:

δh.newj,t = δh.oldj,t + ψh ·

(
log(shj,t)− log

(
ŝhj,t
(
δhj,t)

)))
, (3.26)

where ψh is a tuning parameter set to 0.6.

After finding the vector δhj,t that satisfies the Bellman equation (3.9), the market evolution

equation (3.10), and makes the predicted shares equal the observed shares, we compute the home

video value for each movie j and medium k, DVD or Blu-ray, at the beginning of this market. We

then use this value, V h
k,j , as the terminal continuation value for the box office market as used in

equation (3.13).

3.5.2 Box office shares

Once the home video market is solved, the home video values enter the terminal continuation

values in the box office market and we seek a fixed point between equations (3.12), (3.13), (3.14)

and (3.18). This is done for DVD and Blu-ray player owners separately, and then we use (3.19)

and (3.20) to compute the predicted box office market shares.

Like in the home video market, we wish to find a vector δbj,t for which the predicted shares

equals the observed shares for each movie and time period, namely

sbj,t = ŝbjt(δ
b
j,t) ∀j, t. (3.27)

We solve (3.27) by iterating over

δb.newjt = δb.oldjt + ψbox ·

(
log(sbj,t)− log

(
ŝbj,t
(
δbj,t
)))

, (3.28)

103



where ψh is a tuning parameter set to 0.6.

3.5.3 Recovery of ~ξ, ~αh and ~αb

We use the estimated δb and δh on a set of regressions involving different movie characteristics.

We begin by exposing the retrieval of characteristic coefficients for the home video market, and we

proceed with the box office market. By the end of this subsection we describe our procedure to

generate advertising and poster color covariates.

Home video

To recover the unobserved characteristics ξdvd and ξblu, which are required to compute the GMM

objective function (3.24), we regress δhv as the purchase utility from equations (3.1) and (3.3) on

a set covariates. The covariates involve movie-technology specific dummy variables 8 (αfe,hj ), age

and the squared age of the movie in weeks, goodwill advertising stock, price, and, month and year

dummies. The formation of the goodwill advertising stock follows that of Dubé et al. (2005) and it

is explained in detail in subsection 3.5.3. For each covariate, we create a new one that is multiplied

by a Blu-ray dummy as shown in (3.3).

Like other studies of market power since Bresnahan (1981), we allow price to be endogenous

to unobserved characteristics (ξh), but we assume that movie characteristics are exogenous. This

assumption is justified when movie characteristics are determined in advance, independently of

unobserved ones at the moment the home videos are sold. As it is common in the literature, we

use lagged prices and price differences from the mean as instruments in a two stage least squares

regression.

This first stage regression to identify the contribution of time-dependent characteristics, must

be performed after every fixed point on δhj,t is achieved. This is because we need αp,h to obtain αp,b

according to equation (3.21) in order to obtain the flow utilities for the box office after finding a

fixed point in such market.

A second stage regression of our model can be performed after estimating φ̂ to recover estimates

of non-time varying characteristics. This involves regressing the fixed effects obtained in the first

stage regression with movie specific characteristics such as logarithm of total first three weeks box

8A movie that is both on DVD and Bluray will have separate dummy variables for the panel rows that correspond
to DVD and Bluray.
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office revenue and its squared term, home window and its square term, logarithm of the production

budget for the film, distributor dummies, and poster color dummies (subsection 3.5.3 explains in

detail the creation of the poster color dummies). Following Nevo (2000), we perform a minimum

distance procedure, let y = (y1, . . . , yJ)′ denote the J×1 vector of fixed movie-technology coefficients

(αfe,hj ) from Equation (3.3), X be the J ×K(K < J) matrix of movie characteristics, and ξfe,h is

the movie specific deviation of the unobserved characteristics. Then, we have

y = Xβh + ξfe,h. (3.29)

We do not make any assumptions on the error variance covariance matrix (Ω) since we can compute

it from our first stage regression, thus, instead of of using an Ordinary Least Squares (OLS)

procedure we perform a Generalized Least Squares (GLS) one. The GLS estimator is defined as

βhGLS = arg min
b

(y −Xb)′Ω−1(y −Xb), (3.30)

which can be rewritten as arg minb[Ω
−1/2(y − Xb)]′[Ω−1/2(y − Xb)]. This can be seen as OLS

objective function of ỹ = X̃b + ξ̃fe,h, with ỹ
.
= Ω−1/2y, X̃

.
= Ω−1/2X and ξ̃fe,h

.
= Ω−1/2ξfe,h.

Thus, the GLS estimator can be written as β̂hGLS = (X̃ ′X̃)−1X̃ ′ỹ = (X ′Ω−1X)−1XΩ−1y, with

ξ̂fe,h = ŷ−Xβ̂hGLS . Furthermore, we can write the variance of the GLS estimator as V AR(β̂hGLS) =

(X ′ΩX)−1.

Box office

For each value of φ, we impose constraint (3.21) and regress δ̂bj,t
.
= δbj,t − φαp,dvdpbj,t as the flow

utilities in equation (3.6), which involves movie specific dummy variables, the logarithm of the first

three week revenue9, age and the squared age of the movie in weeks, goodwill advertising stock and

current month. This yields ξb(φ) which allows for the computation of the GMM objective function

(3.24). We refrain from using a two stage least squares regression as used in the home video market

because the endogeneity of price has already been subtracted with the use of the utility scaling

parameter.

We then perform a second stage regression that finds the taste components for the movie specific

9For the first week we set this covariate as 0, while for weeks 2 and 3 we add all revenue in previous weeks until
then.
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characteristics, i.e. release year, logarithm of production budget, distributor dummies, and poster

color dummies. We use the same GLS regression as in the home video second stage regression.

The procedure to compute the GMM objective function and estimate φ may be summarized as

follows:

1. Recover δ̂bj,t = δbj,t − φαp,dvdpbj,t given φ.

2. Run a movie fixed effects regression of δ̂bj,t on time dependent movie characteristics to estimate

αfe,bj and αx,b from equation. (3.6)

3. Compute ξbj,t(~α
b(φ)) = δ̂bj,t − α

fe,b
j + αx,bxbj,t.

4. Construct ξ(~αh, ~αb, φ) and compute the objective function of equation (3.24).

Goodwill advertising stock

Following Dubé et al. (2005), we implement a simple advertising model that captures the “carry-

over” of advertising to posterior periods. Let Aj,t, gj,t and gaj,t denote the advertising expenditure,

goodwill stock and augmented goodwill stock for movie j in period t. The augmented goodwill

stock is what enters in the consumers’ utility function, and it is increased by advertising over an

already present goodwill stock:

gaj,t = gj,t + ψ(Aj,t), (3.31)

where ψ is the goodwill production function. Dubé et al. (2005) discuss some possibilities for ψ,

we particularly assume that ψ(x) = log(1 + x). Augmented goodwill stock in period t depreciates

over time, with a discount rate λ ∈ (0, 1) per period, and becomes the beginning of goodwill stock

in period t+ 1:

gj,t+1 = λgaj,t. (3.32)

Our advertising data shows advertising expenditure per movie per month. Given the difficulty of

estimating discount rates, we assume λ = 0.75. Once we find the augmented goodwill for a given

month, we use that amount for all weeks that start during such month.

106



Poster Colors

In this section we describe the procedure to apply color theory in consumer preferences for movie

posters. Several online articles discuss the importance of color choices in marketing, see Morton

(2012), O’Grady (2019) and Hauff (2018), suggesting that color theory might be used as a persuasion

mechanism to increase purchases. Generally, color theory suggests that the use of complementary

colors is used to drive sales.

In order to apply color theory in our model, we downloaded poster images with a resolution of

500 × 750 for each movie in the data using the API at https://www.themoviedb.org/. Following

Ivasic-Kos et al. (2014), we extract color information from each movie poster by transforming the

RGB values of pixels to HSV (hue/saturation/value) and extracting its hue. Then, we transform

the hue from each pixel to a color by using a discretized 12 color palette, and finally we obtain

a 12-color spectrum for each movie poster. As an example, Figure 3.3 shows the hue spectrum

obtained for the poster of the movie “Iron Man 2”. We can see that this poster makes use of

complementary colors - two hues positioned exactly six spaces away from each other - using orange

and azure to attract viewers. This a common practice in action pictures - most of them make use

of red/orange/yellow explosions and contrast it with some form cyan/azure/blue.

Figure 3.3: Discretized hue spectrum for the poster of the movie “Iron Man 2” seen on the right.

In order to identify consumer preference for different poster colors and to identify preference

for the use of complementary colors, we first create a dummy variable for the color peak in each

movie spectrum. We then create two different covariates:

1. peak color strength: we generate it by multiplying a peak color dummy with the percentage
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of pixels that belong to this color in the poster.

2. complement color strength: we generate it by multiplying a peak color dummy with the

percentage of pixels that belong to this color’s complement in the poster.

3.6 Results

We present our time dependent parameter estimates in Table 3.5. For all markets, the average

price coefficient is negative, which means consumers have marginal disutility towards price. Con-

sumers dislike consuming older products, as seen with the negative values in the age coefficients.

Advertising affects utility with a positive effect on all markets, and based on the coefficients it

affects Blu-ray purchase utility the most, followed by DVDs and then box office tickets. The “lag

1st3weeks box revenue” variable represents the total box office lagged revenue until a given period

or week 4, whichever comes first. The overall contribution of the linear and quadratic logarithmic

terms of this variable is increasing with revenue. This means that movies that perform better

during the first few weeks since release drive purchase utility up for the upcoming weeks.

Time Dependent Characteristics

Variable Box Office Home Video Blu-ray Indicator

log(lag 1st3weeks box revenue) 0.2356 (0.0459)*** - -
log(lag 1st3weeks box revenue)2 -0.0126 (0.0026)*** - -
Age (weeks) -0.8158 (0.0157)*** -0.0154 (0.0042)*** -0.0004 (0.0069)
Age2 (weeks2) 0.0221 (0.0009)*** 0.0000 (0.0000)*** -0.0000 (0.0000)***
Advertising 0.5048 (0.1334)*** 0.6645 (0.0009)*** 0.1043 (0.0159)***
Price -0.0113 (-) -0.0330 (0.002)*** -0.0194 (0.0037)***
φ 0.3421 (0.2705) - -

Month fixed effects X X X

Year fixed effects X X

Movie medium fixed effects X X X

N 1,797 70,253 25,373

***p < .01, **p < .05, *p < .1

Table 3.5: Time dependent parameter estimates.

We present time independent parameter estimates in Table 3.6. The estimates for the logarithm

opening box office revenue show a convex response for the utility, and specifically for the ranges of
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box office revenue dealt in the data, it is increasing for both DVDs and Blu-rays. This means that

the better a movie performs in theaters, the better it will perform in the home video market. The

home video window coefficients for DVD and Blu-ray show a concave response to utility. DVDs

present a maximum at 5.2 weeks, while Blu-rays present a maximum 9.1 weeks. These non-zero

maximums could be capturing the effects of word of mouth, and it is important to note that this

is the case when everything else is held constant, as the advertising spillover effect from theaters

will most likely shift these maximums to lower values. The production budget estimate for the

box office and Blu-rays is positive, suggesting that higher production budget films generate greater

revenue for the box office and Blu-rays. This effect is opposite for DVDs, showing that increasing

the production budget reduces the DVD revenue.

Our results on movie colors are significant and present some interesting features. The use of

yellow and its complement in a poster yields the largest contribution to purchase utility for both

box office and Blu-rays. This is not surprising, as action movies exhibit explosions and fires in their

posters, (which contribute to the yellow hue), and use a complementary color to make these stand

out. What is interesting to note is that for DVDs, the contribution of yellow and complement is

negative, which suggests that DVD consumer behavior is different from the behavior of box office

and Blu-ray consumers.

3.7 Counterfactuals

For this section we use the 113 movies for which we have DVD and Blu-ray sales data. We modify

the data by setting the DVD and Blu-ray home windows to a specific number of weeks NTdvd and

NTblu, respectively. At the same time, we readjust the advertising goodwill by discounting through

longer or shorter periods of time. For each market (box office and home video), we must reach

an equilibrium described in Section 3.4.3, the Consumer’s problem. As both markets depend on

the box office revenue during the first three weeks of the theatrical run, and the box office market

terminal continuation value depends on the home video value, this becomes a challenge. We begin

with a guess of the box office revenue during the first three weeks of the theatrical run, and solve

the home video market. We use that home video value and box office revenue to solve the box

office market. We iterate between both markets until we find a fixed point in box office revenues

and home video values. This must be done for each counterfactual set of values of the home video
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Time Independent Characteristics

Variable Box Office DVD Blu-ray

log(1st3weeks box revenue) - -3.8676 (0.0884)** -5.2108 (0.1340)***
log(1st3weeks box revenue)2 - 0.1226 (0.0027)*** 0.1580 (0.0041)***
Home window (weeks) - 0.0263 (0.0065)*** 0.0752 (0.0076)***
Home window2 (weeks2) - -0.0025 (0.0004)*** -0.0042 (0.0005)***
log(production budget) 0.4902 (0.0324)*** -0.2251 (0.0122)*** 0.1652 (0.0187)**

Red indicator × % 0.5099 (0.1055)*** 0.1034 (0.0371)*** 0.1120 (0.0614)**
Orange indicator × % 0.0635 (0.1146) 0.0797 (0.0384)** -0.0345 (0.0729)
Yellow indicator × % -0.3011 (0.2506) 0.2615 (0.0803)*** 1.7793 (0.1225)***
Cyan indicator × % 0.5175 (0.1822)*** 0.6823 (0.0807)*** 1.5314 (0.0985)***
Azure indicator × % 0.2789 (0.0962)*** -0.0409 (0.0404) 0.2504 (0.0618)***
Red indicator × complement% -2.8862 (0.7920)*** 6.1720 (0.3358)*** -0.5325 (0.4289)
Orange indicator × complement% -1.1732 (0.4195)*** 1.0549 (0.1668)*** 2.3883 (0.2000)***
Yellow indicator × complement% 14.1576 (3.2520)*** -3.3738 (1.0169)*** 21.6641 (1.1852)***
Cyan indicator × complement% -5.8510 (0.7074)*** -1.31377 (0.2467)*** -1.9363 (0.2581)***
Azure indicator × complement% -2.6716 (0.3524)*** 0.4767 (0.1268)*** 0.9212 (0.1793)***

Distributor fixed effects X X X

Release year fixed effects X X X

N 149 149 113

***p < .01, **p < 0.05, *p < .1

Table 3.6: Time dependent parameter estimates.
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window.

We first analyze the case where both technological qualities, DVD and Blu-ray, are released

simultaneously, and then we allow for versioning, where each of them may have different release

strategies. We take the point of view of the studios and try to maximize their revenue from both

box office and home videos. In order to split the box office revenue between studios and theaters we

impose a standard contract (Vogel 2014). This contract involves a house nut of $2,000 per theater

per week, and after subtracting the nut the split starts at 70% in favor of the studios, decreasing

10% every two weeks until it reaches 0%. These contracts generate incentives for theaters to exhibit

movies for a longer period of time, as the share they keep from box office revenue is greater with

the age of the movie.

For each movie, we find the optimal home video windows and then we compute the average

across optimals.

3.7.1 Simultaneous DVD and Blu-ray Release

In this section we describe the counterfactual analysis in which the DVDs and Blu-rays are released

simultaneously, as this was the current industry practice during the data time period. Figure 3.4

shows a histogram of the home video windows for the data, and for the studio optimals. As we

see, for most movies it is optimal to shrink the home video window to a range between 0 to 4

weeks. This means that advertising spillover effect from theaters and the home video freshness

are dominating over the increased competition to theaters that an early home video release may

provide. Furthermore, the demand cannibalization of the box office, generated by this early release,

reduces the box office signal which could impact home videos, but again the advertising spillover

effect dominates.

Figure 3.5 shows the studio revenue from the box office and home videos for a particular movie

as a function of the home video window. We see a steep increase in the home video revenue

from shrinking the home video window, while the demand cannibalization to theaters is minimal.

Table 3.7 shows the average home video window, studio revenue and theater revenue, under the

optimized strategy and the data. We can see that the average optimal strategy shrinks the home

video window to about 2.3 weeks, providing an increased studio revenue of 4.47% and an increase

in theater revenue of 0.04%.
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Figure 3.4: Histogram of the home window lengths, for the data and the optimal.

Simultaneous Release Revenues

Averages NT (weeks) Studio Revenue ($) Theater Revenue ($)

Optimal Simultaneous 2.3186 124.34M (+4.47%) 64.59M (+0.08%)
Data 6.1960 119.02M 64.45M

Table 3.7: Home video windows and revenue information for the optimal simultaneous release
strategy and the data. Studio revenue accounts for the home video window as well as the box
office revenue studio share, while theater revenue accounts for the portion or box office revenue
that corresponds to theaters.

In the following section we allow for separation between DVD and Blu-ray releases and analyze

its benefits.

3.7.2 Versioning: Separate DVD and Blu-ray releases.

We now analyze the counterfactual in which the home video window may differ for different tech-

nological qualities. We denote NTdvd and NTblu as the home video window for DVD and Blu-ray

respectively.

In order to ensure that Blu-ray player owners benefit from choosing a Blu-ray over a DVD for

each movie, we must impose an incentive compatibility constraint. In general, the value of the Blu-
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Figure 3.5: Studio revenue from the box office, home videos, and both, as a function of the home
video window for a particular movie. The gray circle represents the studio revenue at the data
home video window of 7 weeks.

ray is larger than value of the DVD, but if the Blu-ray release was to be delayed, some consumers

might switch to the DVD. By imposing this constraint we ensure that our market size for Blu-rays

would be better-off choosing Blu-rays over DVDs. This constraint is as follows:

βNTdvdVdvd ≤ βNTbluVblu, (3.33)

the discounted ex-ante value of the Blu-ray has to be greater than or equal to the discounted ex-

ante value of the DVD. This is imposing an upper bound on the difference between home video

windows. We can rewrite constraint (3.33) to

NTblu −NTdvd ≤
log
(
Vblu
Vdvd

)
| log β|

. (3.34)

We now search over (NTdvd, NTblu) to find the optimal studio revenue satisfying the incentive

compatibility constraint (3.34). Figure 3.6 shows the histogram of home video windows for the data,

the DVD optimal and the Blu-ray optimal. We can see a clear difference with the simultaneous
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release from Figure 3.4. Now it is optimal to have an immediate after theater release for DVDs,

while it is optimal to delay the Blu-ray release to an average of about 5 weeks. We see that for

DVDs, the advertising spillover from theaters offsets the increased competition. For Blu-rays, these

two effects are more balanced. This happens because the ex-ante value function for DVDs is smaller

than the one for Blu-rays, so shrinking the home video window for DVDs has very little effect on

box office purchases. Then you can shrink the window and reap the benefits of the advertising

spillover effect. This result supports the idea that higher technological quality home videos are

closer substitutes to Blu-rays. Shrinking the home video window for Blu-rays will not only impact

the box office demand, but it will reduce the box office revenue, reducing the movie quality signal

for the home video market (DVD and Blu-ray).
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Figure 3.6: Histogram of the home window lengths, for the data, and the optimal ones for DVD
and Blu-ray.

Figure 3.7 shows the optimal studio revenue as a function of the DVD and Blu-ray home video

windows for the same movie as in Figure 3.5. We clearly see that there is a greater steepness in

the DVD home video window axis compared to that of the Blu-ray one. This is because DVD

and theaters experience very little competition between each other, and shortening the home video

window allows DVD to benefit from the advertising spillover effect. While for Blu-rays, we see lower
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steepness in the revenue because the trade-off is more balanced. Table 3.8 illustrates the new average

optimal release windows, studio revenues and theater revenues. We can see that the average optimal

DVD and Blu-ray windows are about 0.4 and 5.2 weeks respectively. The studio revenue increases

almost an extra 1% with respect to the simultaneous release in Table 3.7, while the theater revenue

remains almost the same. This result highlights the benefit of exploiting market segmentation

strategies in a consumer base that expresses heterogeneous preferences on home video technological

qualities. Further improvements could be made by optimizing over advertising periods, and home

video pricing, but that is out of the scope of this chapter.

Figure 3.7: Studio revenue from the box office, home videos, and both, as a function of the home
video window for a particular movie. The gray circle represents the studio revenue at the data
home video window of 7 weeks.

Separate Release Revenues

Averages NT (weeks) Studio Revenue ($) Theater Revenue ($)

Optimal (DVD,Blu-ray) (0.3717, 5.1504) 125.40M (+5.36%) 64.56M (+0.03%)
Data 6.1960 119.02M 64.45M

Table 3.8: Home video windows and revenue information for the optimal separate release strategies
and the data. Studio revenue accounts for the home video window as well as the box office revenue
studio share, while theater revenue accounts for the portion or box office revenue that corresponds
to theaters.
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3.8 Conclusion

In this chapter we build and estimate a dynamic discrete choice model about movie distribution

involving the box office, DVDs, and Blu-rays. We capture consumers value for delaying purchase

decisions, allowing for substitution between box office tickets and home videos. We run counterfac-

tuals on the home video windows and we find that releasing DVDs 0.4 weeks after the theatrical

run, and Blu-rays about 5.2 weeks after, is optimal on average. This strategy achieves an average

revenue increase of 5.36% for the studios with respect to the current practice, while having mini-

mal impact on theaters. This analysis suggests that higher technological quality home videos are

closer substitutes to theater, and their release balances advertising spillover effect from theaters

with demand cannibalization. Releasing higher technological quality home videos early cannibalizes

theater demand, which impacts theatrical revenue and further impacts all home video markets. For

lower technological quality home videos such as DVDs, this is not the case, as they don’t compete

with theaters, one can release them early reaping all the benefits of the advertising spillover effect.

These results highlight the benefit of exploiting market segmentation strategies in a consumer base

that expresses heterogeneous preferences on home video technological qualities.
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Chapter 4

Conclusion

In this dissertation, we study three problems that arise in the entertainment industry and digital

markets due to technological innovations. We model and study the strategic interactions in the

entertainment industry to better inform business practice, using tools from game theory, structural

models, and optimization.

In Chapter 1, we analyze the impact of adding consumer heterogeneity to a simple trial offer

market that follows a Multinomial Logit Model and has been empirically validated (Krumme et al.

2012). We detail several complexities that arise due to consumer heterogeneity, including the NP-

hardness of obtaining the dynamic product ranking that maximizes the number of purchases in the

next period, as well as the negative impacts of the use of social signals. We study a simple ranking

which ranks products by the weighted average quality of products (AQGSI), and we show that with

social influence it converges predictably to a monopoly for the product with the largest weighted

average quality. We then analyze the impact of market segmentation, by showing a different ranking

to each consumer segment, and we show that the platform owner can improve market efficiency by

up to a factor K, where K is the number of consumer segments.

Our study reveals that in trial offer markets, the decision on whether or not to display the

popularity signal to consumers has to be analyzed very carefully, as displaying past purchases may

be detrimental to the rate of purchases. We also show that segmentation policies always improve

market efficiency, and they should be used when possible. However, if consumer classification

mistakes are likely, the platform owner should rethink whether market segmentation is the best

strategy.
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In Chapter 2, we analyze the impact that release timing choice may have on advertising video

on demand platforms. We build a signaling model that involves a unique show and a group of

consumers, where shows need to decide the release timing strategy for episodes as well as an ad-

vertising expenditure. The release timing strategy affects consumers in their viewing cost, whereas

the advertising level persuades viewers to watch the show. The show generates revenue through

advertising within the show that depends on the chosen release timing strategy, as binge watching

behavior reduces the efficacy of advertising. We show that under certain scenarios, high quality

shows may use a sequential release timing strategy in conjunction with a suitable advertising level

to credibly inform consumers about their show quality. Furthermore, we analyze a situation in

which, under complete information, both shows pool on simultaneous releases, whereas when in-

formation is private, the high quality show uses the sequential releases channel in order to achieve

minimum cost separation. When the simultaneous release timing channel was unavailable, as seen

in traditional TV, the minimum cost separation was achieved using advertising alone, and it was

larger than the separation incurred when the simultaneous release strategy became available.

Our results have an important managerial implication; because release timing may signal quality,

it is beneficial for a firm to find a way in which to open new channels that are profitable for its

lower quality content. By doing this, the firm reduces the necessity of costly signaling through

other mechanisms (i.e., advertising) for their higher quality content, and enjoys greater profits on

all quality levels.

In Chapter 3, we analyze the optimal time between theatrical and home video releases, as the

technological quality of the later increases. We build and estimate a dynamic discrete choice model

about movie distribution involving the box office, DVD, and Blu-ray markets. We connect the box

office and home video markets through the value of waiting and the theatrical revenue, which is

known to be a driver for home video demand. We run counterfactuals on the home video windows,

the time between theatrical exit and home video release, and we find that releasing DVDs 0.4 weeks

after the theatrical run, and Blu-rays about 5.2 weeks after, is optimal on average. This strategy

achieves an average revenue increase of 5.36% for the studios with respect to the current practice,

while having minimal impact on theaters. This analysis suggests that higher technological quality

home videos are closer substitutes to theater, and their release balances advertising spillover effect

from theaters with demand cannibalization. Releasing higher technological quality home videos
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early cannibalizes theater demand, which impacts theatrical revenue and further impacts all home

video markets. For lower technological quality home videos such as DVDs, this is not the case.

As lower technological quality home videos do not compete with theaters, one can release them

early reaping all the benefits of the advertising spillover effect. These results highlight the bene-

fit of exploiting market segmentation strategies in a consumer base that expresses heterogeneous

preferences on home video technological qualities.

This dissertation leaves room for further exploration. The main weakness of Chapter 1 is that

the consumer choice model only depends on the displayed vector of past purchases and the current

ranking (as well as the appeal of the products). A more sophisticated choice model could incorporate

the type of past purchase information displayed: A consumer who observes a past purchase vector

d might change their behavior depending on whether she/he knows that the vector d comes from

all purchases or only from its own consumer segment. Another potential avenue for research is to

analyze the same model when the trial probabilities depend non-linearly on past purchases; this

is studied in Maldonado et al. (2018) for the special case of a unique consumer segment (K = 1).

A final research avenue may involve studying the potential incentives to hide or mis-report some

reviews, and how it this affects the outcomes in terms of market share dynamics and consumer

welfare.

Chapter 2 is a good start for multi-period signaling models that incorporate binge watching

behavior in a consumer-show interaction setting. A potential avenue for research, however com-

plicated, is to study the effects of platform competition under the same setting. This is becoming

particularly important in an environment where there are multiple advertising video on demand

platforms available, such as Pluto TV, Peacock, Roku Inc. and Tubi.

Chapter 3, also has opportunity for further research. One could assess the impact that piracy

has on optimal home video windows, as studios are trying to shrink windows due to the potential

harm of pirate markets. One could also study the optimal time to video on demand services, as

well as subscription based streaming platforms (e.g HBO Max).
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Appendix A

Additional Material for Chapter 1

A.1 Proofs

A.1.1 Proof of Theorem 1.1

The proof uses the 2-Class Logit problem which is known to be NP-hard (Rusmevichientong et al.

2014). The inputs to a 2-Class Logit instance are N products, two sequences V 1 = (V 1
1 , V

1
2 , . . . , V

1
N )

and V 2 = (V 2
1 , V

2
2 , . . . , V

2
N ) with V 1, V 2 ∈ QN

+ , and a number α ∈ R[0,1]. Each product i has

a revenue ri ∈ Z+. Each sequence V i represents a realization of the product utilities under a

multinomial logit model. Sequence V 1 (resp. V 2) has a realization probability of α (resp. 1− α).

The problem consists in finding a product assortment S ⊆ [N ] maximizing the expected revenue

ΠLogit, i.e.,

ΠLogit = max
S⊆[N ]

α1

∑
i∈S riV

1
i

1 +
∑

i∈S V
1
i

+ (1− α)

∑
i∈S riV

2
i

1 +
∑

i∈S V
2
i

.

The proof shows that, if there exists an oracle to compute the performance ranking for the MMNL

with two classes of consumers (i.e., Equation (1.2) with K = 2), then the 2-Class logit problem can

be solved in polynomial time.

Given an instance of the 2-Class Logit problem, the idea is to create N different instances of

the performance-ranking problem in order to capture the various possible assortments. The N

instances have a common core. Each of them has the same N items and two classes of consumers

(i.e., K = 2). For each consumer segment j ∈ {0, 1} and each item i ∈ [N ], we set the appeal of

item i for segment j to satisfy ai,j = V j
i . Similarly, for each consumer segment j ∈ {0, 1} and each
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item i ∈ [N ], we set the quality of i for segment j to satisfy qi,j = ri. Note that the quality of item

i is the same for both classes. The weights of classes 0 and 1 are α and 1−α respectively. We also

set z = 1 and t = 0 which implies that dt = 0. The N instances differ in the position visibilities.

In instance i (i ∈ [N ]), the visibility of position j ∈ [N ] is:

vj =

 1 if j ≤ i

0 otherwise.

Let ΠPR
i denote the short-term optimal value of the performance ranking for problem instance i

and let Si denote the collection of all possible subsets of products whose size is i, i.e., Si = {S ⊆

[N ] : |S| = i}. Define ΠLogit
i as the following optimization problem:

ΠLogit
i = max

S∈Si
α1

∑
i∈S riV

1
i

1 +
∑

i∈S V
1
i

+ (1− α)

∑
i∈S riV

2
i

1 +
∑

i∈S V
2
i

.

It follows that

ΠLogit = max
i=1,...,N

ΠLogit
i . (A.1)

We now show that ΠPR
i is equal to ΠLogit

i .

ΠPR
i = max

σ∈Sn

{ 2∑
c=1

(
wc ·

N∑
`=1

(pi(σ, 0) · q`,c)
)}

, (A.2)

= max
σ∈Sn

{ 2∑
c=1

(
wc ·

N∑
`=1

( vσ(`)(a`,k)∑N
j=1 vσ(j)(aj,c) + 1

· q`,k
))}

. (A.3)

= max
σ∈Sn

{
α ·

N∑
`=1

( vσ(`)V
1
` r`∑N

j=1 vσ(j)V
1
j + 1

)
+ (1− α) ·

N∑
`=1

( vσ(`)V
2
` r`∑N

j=1 vσ(j)V
2
j + 1

)}
(A.4)

= max
S∈Si

{
α ·
∑
`∈S

( V 1
` r`∑

j∈S V
1
j + 1

)
+ (1− α) ·

∑
`∈S

( V 2
` r`∑

j∈S V
2
j + 1

)}
(A.5)

=ΠLogit
i (A.6)

where the equivalence between (A.4) and (A.5) follows from the fact that the first i positions have

visibility of 1 and the remaining ones have a visibility of 0 and therefore selecting a permutation

σ ∈ Sn reduces to deciding which i items should be assigned the top i positions. As a consequence,
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using (A.1), we have

ΠLogit = max
i=1,...,N

ΠLogit
i = max

i=1,...,N
ΠPR
i . (A.7)

We have shown that, by using an oracle to solve N instances of the performance-ranking problem,

it is possible to solve the original 2-class logit problem instance in polynomial time. Hence, the

performance ranking is NP-hard under Turing reductions.

A.1.2 Proof of Lemma 1.1

The market share of item i∗ at any period of time t > t̂ for this system would be underestimated

by considering the following set of qualities and appeals:

qi,new =

 qi,min if i = i∗

qi,max if i 6= i∗
and ai,new =

 ai,min if i = i∗

ai,max if i 6= i∗
.

If this new set of qualities satisfies that vσ(i∗)qi∗,new > vσ(i)qi,new for all i ∈ [N ] \ {i∗}, it follows

from the convergence result in (Van Hentenryck et al. 2016a) (Theorem 4.3) that the system goes

to a monopoly for item i∗. Therefore, the original system also goes to a monopoly for item i∗.

A.1.3 Proof of Theorem 1.2

The proof first shows that the MMNL model can be reduced to a Multinomial Logit Model whose

item appeals and qualities are functions of the vector of purchases at each time t. It then shows

that these functions stay in the bounded range, so that it is possible to apply Lemma 1.1.

When the same ranking σ and popularity signals are shown to all consumers, the probability

that item i is purchased in time period t is given by

Pi(σ, d
t) =

K∑
k=1

(
wk ·

(
vσ(i)

(ai,k + dti)∑N
j=1 vσ(j)(aj,k + dtj) + zk

· qi,k
))
. (A.8)
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By rearranging the previous expression, it comes

Pi(σ, d
t) =

K∑
k=1

wkqi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

ai,k +
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

dti

=

K∑
k=1

wkqi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

ai,k + dti

(
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

)

=

(
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

)
(∑K

k=1
wkqi,kvσ(i)∑N

j=1 vσ(j)(aj,k+dtj)+zk
ai,k

)
(∑K

k=1
wkqi,kvσ(i)∑N

j=1 vσ(j)(aj,k+dtj)+zk

) + dti



=

(
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

)vσ(i)

(∑K
k=1

wkqi,kai,k∑N
j=1 vσ(j)(aj,k+dtj)+zk

)
vσ(i)

(∑K
k=1

wkqi,k∑N
j=1 vσ(j)(aj,k+dtj)+zk

) + dti



=

(
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

)
(∑K

k=1
wkqi,kai,k∑N

j=1 vσ(j)(aj,k+dtj)+zk

)
(∑K

k=1
wkqi,k∑N

j=1 vσ(j)(aj,k+dtj)+zk

) + dti

 .

Now, for each item i and each time period t, define the function

ãi(t) =

(
K∑
k=1

wkqi,kai,k∑N
j=1 vσ(j)(aj,k + dtj) + zk

)/( K∑
k=1

wkqi,k∑N
j=1 vσ(j)(aj,k + dtj) + zk

)
(A.9)

which depends on the total number of purchases at time t. Using this definition, we have that:

Pi(σ, d
t) =

(
K∑
k=1

wk qi,kvσ(i)∑N
j=1 vσ(j)(aj,k + dtj) + zk

)(
ãi(t) + dti

)
=

(
K∑
k=1

wk qi,k∑N
j=1 vσ(j)(aj,k + dtj) + zk

)
vσ(i)

(
ãi(t) + dti

)
.

By dividing and multiplying by
∑N

j=1 vσ(j)(ãj(t) + dtj), Pi(σ, d
t) becomes

(
K∑
k=1

wk qi,k∑N
j=1 vσ(j)(aj,k + dtj) + zk

) N∑
j=1

vσ(j)(ãj(t) + dtj)

( vσ(i)

(
ãi(t) + dti

)∑N
j=1 vσ(j)(ãj(t) + dtj)

)
.

Now define the following function for each item i at each time period t:

q̃i(t) =

(
K∑
k=1

wk qi,k∑N
j=1 vσ(j)(aj,k + dtj) + zk

) N∑
j=1

vσ(j)(ãj(t) + dtj)

 . (A.10)
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The probability of purchasing product i in the next iteration becomes:

Pi(σ, d
t) =

(
vσ(i)(ãi(t) + dti)∑N
j=1 vσ(j)(ãj(t) + dtj)

)
q̃i(t).

This is almost a multinomial logit model, except that the quality and appeal vectors that depend

on time. When the number of iterations t tends to infinity, the total number of purchases
∑N

j=1 d
t
j

also goes to infinity. Moreover, as t goes to infinity, the generalized appeal (ãi(t)) and quality (q̃i(t))

for every item converges to

āi
.
= lim

t→∞
ãi(t) =

∑K
k=1wkai,kqi,k∑K
k=1wkqi,k

and q̄i
.
= lim

t→∞
q̃i(t) =

K∑
k=1

wkqi,k. (A.11)

In addition, observe that Q̃i(t)
.
= vσ(i)q̃i(t) also converges when t goes to infinity:

Q̄i
.
= lim

t→∞
vσ(i)q̃i(t) = vσ(i)q̄i

The tie-breaking condition (Equation 1.8) guarantees that there exists only one item i∗ such that

i∗ = arg maxi∈[N ] Q̄i. Let i∗∗ be the item with the second highest value Q̄i, i.e., Q̄i∗∗ ≥ Q̄j for all

j ∈ [N ], j 6= i∗. Consider now the following difference ∆Q̄ = Q̄i∗ − Q̄i∗∗ . Equation (A.9) can be

seen as a weighted average on k for ai,k and hence

min
1≤k≤K

ai,k ≤ ãi(t) ≤ max
1≤k≤K

ai,k ∀i ∈ [N ], t ∈ N (A.12)

Moreover, by applying this result to Equation (A.10), we obtain the following bounds for q̃i:

q̃i(t) ≥
K∑
k=1

wkqi,k∑N
j=1 vσ(j)(max1≤k≤K aj,k + dtj) + zk

 N∑
j=1

vσ(j)(− max
1≤k≤K

aj,k + max
1≤k≤K

aj,k + dtj)− zk + zk


=

K∑
k=1

wkqi,k

(∑N
j=1 vσ(j)(max1≤k≤K aj,k + dtj) + zk

)
− wkqi,k

∑N
j=1 vσ(j) max1≤k≤K aj,k − wkqi,kzk∑N

j=1 vσ(j)(max1≤k≤K aj,k + dtj) + zk

≥

(
1−

∑N
j=1 vσ(j) max1≤k≤K aj,k + max1≤k≤K zk∑N

j=1 vσ(j)d
t
j

)
K∑
k=1

wkqi,k

=

(
1−

∑N
j=1 vσ(j) max1≤k≤K aj,k + max1≤k≤K zk∑N

j=1 vσ(j)d
t
j

)
q̄i and
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q̃i(t) ≤
K∑
k=1

wkqi,k∑N
j=1 vσ(j)d

t
j

 N∑
j=1

vσ(j)( max
1≤k≤K

ai,k + dtj)

 ≤ (1 +

∑N
j=1 vσ(j) max1≤k≤K aj,k∑N

j=1 vσ(j)d
t
j

)
q̄i.

As a result, the bounds for Q̃i(t) (∀i ∈ [1, N ], t ∈ N) are given by

(
1 +

∑N
j=1 vσ(j) max1≤k≤K aj,k∑N

j=1 vσ(j)d
t
j

)
Q̄i ≥ Q̃i(t) ≥

(
1−

∑N
j=1 vσ(j) max1≤k≤K aj,k + max1≤k≤K zk∑N

j=1 vσ(j)d
t
j

)
Q̄i.

Notice that these bounds converge to Q̄i, so they could be arbitrary close to Q̄i by choosing a

sufficiently large dt vector.

To conclude the proof, we need to estimate the total number of purchases d̂tot that guarantees that

∀t > t∗ : Q̃i∗(t) > Q̃i∗∗(t)

where t∗ is the time period in which the total number of purchases becomes d̂tot =
∑

i∈[N ] d
t∗
i . The

value d̂tot and its associated vector of purchases dt
∗

must satisfy the following condition

∆Q̄ >

∑N
j=1 vσ(j) max1≤k≤K aj,k(Q̄i∗ + Q̄i∗∗) + Q̄i∗ max1≤k≤K zk∑N

j=1 vσ(j)d
t∗
j

. (A.13)

To verify inequality (A.13), it suffices to choose d̂tot to satisfy

d̂tot >

∑N
j=1 vσ(j) max1≤k≤K aj,k(Q̄i∗ + Q̄i∗∗) + Q̄i∗ max1≤k≤K zk

maxj vσ(j)∆Q̄
. (A.14)

Since d̂tot can be as large as desired, with the previous condition we guarantee the validity of Eq.

(A.13).

We have just shown that the conditions of Lemma 1.1 are satisfied, we can now apply it using

ranking policy σ to prove that the model goes to a monopoly for item i∗, which maximizes the

product of its visibility and its weighted average quality, i.e., vσ(i)q̄i.
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A.1.4 Proof of Corollary 1.1

From Theorem 1.2, a MMNL model goes to a monopoly for the item i that maximizes vσ(i)q̄i.

When the quality ranking is used, the product i∗ that goes to a monopoly is

i∗ = arg max
i

vσ(i)q̄i = arg max
i

(q̄i).

A.1.5 Proof of Theorem 1.3

To prove this result, we need the following property. Let A ∈ RN×K≥0 , then

K∑
k=1

max
1≤i≤N

ai,k ≤ K max
1≤i≤N

K∑
k=1

ai,k (A.15)

where ai,k ∈ A. Its proof follows from the following argument; K max1≤i≤N
∑K

k=1 aik = K max1≤i≤N
∑K

k=1 |aik|

= K ‖A‖∞ = K supv∈RK×1:‖v‖∞=1 ‖Av‖∞ ≥ K
∥∥AIK×1 1

K

∥∥
∞ =

∥∥AIK×1
∥∥
∞ =

∑N
i=1

∑K
k=1 |aik| ≥∑K

k=1 max1≤i≤N |aik| =
∑K

k=1 max1≤i≤N aik, where IK×1 is an all-one vector of dimension K × 1.

At the limit, the probability that an item is purchased under the average quality ranking with

the popularity signal is given by

PAQGSI = max
1≤i≤N

q̄i. (A.16)

When no popularity signal is shown, this probability becomes

PAQNSI =

K∑
k=1

wk

N∑
i=1

qi,k
vσ(i)ai,k∑N

j=1 vσ(j)aj,k + zk
. (A.17)

We can easily bound PAQNSI as follows:

0 ≤
K∑
k=1

min
1≤i≤N

(wkqi,k)

∑N
i=1 vσ(i)ai,k∑N

j=1 vσ(j)aj,k + zk
≤ PAQNSI ≤

K∑
k=1

max
1≤i≤N

(wkqi,k) (A.18)

and hence, by Inequality (A.15),

0 ≤
PAQNSI
PAQGSI

≤ K. (A.19)
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A.1.6 Proof of Proposition 1.1

Consider first the upper bound. Choose a MMNL model where z = 0, K = N , the quality matrix

is diagonal with a value of 1 for the first element and 1− ε for all others, the appeal matrix is the

identity, and the classes have the same weights wi = 1
K . Then,

PAQNSI =
∑

1≤i≤N

1

K
(1− ε(1− δi1)) and PAQGSI =

1

K
,

where δij is the Kronecker delta, thus

lim
ε→0

PAQNSI
PAQGSI

= lim
ε→0

∑
1≤i≤N

(1− εδi1) = lim
ε→0

(K − ε(K − 1)) = K. (A.20)

Consider now the lower bound. Choose a MMNL model where z = 0, K = N with the same quality

matrix as before, the same weights, and an appeal matrix filled with ones except in its diagonal

where each element has a value of εA. Then,

PAQNSI =
∑

1≤i≤N

1

K
(1− ε(1− δi1))

vσ(i)εA

εAvσ(i) +
∑

j 6=i vσ(j)
and PAQGSI =

1

K
,

thus

lim
εA→0

PAQNSI
PAQGSI

= lim
εA→0

∑
1≤i≤N

(1− ε(1− δi1))
vσ(i)εA

εAvσ(i) +
∑

j 6=i vσ(j)
= 0. (A.21)

A.1.7 Proof of Theorem 1.4

By Theorem 1.2, we have

PAQGSI
.
= lim

t→∞
P tAQGSI = max{q̄1, q̄2, . . . , q̄N}.

As mentioned earlier, for the segmented quality ranking, each segment is independent from each

other and all of them will converge to a monopoly for the product with the highest quality in that

class. We have that
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PSQSSI
.
= lim

t→∞
P tSQSSI =

K∑
k=1

wk max
i
qi,k.

As a result,

PSQSSI
PAQGSI

=

∑K
k=1wk max1≤i≤N qi,k

max1≤i≤N
∑K

k=1wkqi,k
=

∑K
k=1 max1≤i≤N wkqi,k

max1≤i≤N
∑K

k=1wkqi,k
.

The lower bound is obviously valid and the upper bound follows from inequality (A.15).

A.1.8 Proof of Proposition 1.2

Consider a model with K items and K consumer classes. Without loss of generality, let the segment

1 be the segment with the lowest weight, i.e., w1 ≤ wk∀k ∈ [K]. Then, for any set of positive appeals

in each class, define the elements qi,k as follows:

qi,k =


minj∈[K] wj

w1
if i = k = 1

minj∈[K] wj
wk

− ε if i = k 6= 1

0 otherwise

where ε is a positive number ensuring that the model is tie-breaking for the quality rankings. Then

lim
ε→0

PSQSSI
PAQGSI

= lim
εA→0

K minj∈[K]wj − ε
∑K

k=2wk

minj∈[K]wj
= K.

A.1.9 Proof of Theorem 1.5

Using the result from Van Hentenryck et al. (2016a), each segment under the SQSSI ranking will

go to a monopoly of the product that maximizes its quality. If this product is not unique, the

market will be shared between such products. Thus, the ratio between the asymptotic purchase

probability of the average quality ranking without social influence and its segmented version with

segmented social influence is given by

limt→∞ P
t
AQNSI

limt→∞ P tSQSSI
=

∑K
k=1wk

∑N
i=1 qi,k

vσ(i)ai,k∑N
j=1 vσ(j)aj,k+zk∑K

k=1wk max1≤i≤N qi,k
.

129



Since
∑N

i=1 qi,k
vσ(i)ai,k∑N

j=1 vσ(j)aj,k+zk
≤ max1≤i≤N qi,k, we have that

limt→∞ P tAQNSI
limt→∞ P tSQSSI

≤ 1.

A similar argument can be made for the second comparison:

limt→∞ P
t
SQNSI

limt→∞ P tSQSSI
=

∑K
k=1wk

∑N
i=1 qi,k

vσk(i)ai,k∑N
j=1 vσk(j)aj,k+zk∑K

k=1wk max1≤i≤N qi,k
≤ 1.

A.2 The impact of misclassification

In this appendix we consider scenarios in which the firm is not always able to identify correctly

the corresponding consumer segment. Misclassification may occur, for example, when there is no

historical data about the incoming consumer and it has to be assigned to one of the classes solely

based on basic information provided by some internet marketing companies (e.g. keywords searched,

geographical region, sex, age, etc). We analyze what is the impact of having some classification

errors under some mild model assumptions. First, we provide some theoretical results about the

convergence under our misclassification model. Finally, using a numerical experiment, we illustrate

what is the impact in performance as a function on the misclassification rate.

We begin describing the model extension. Suppose that every time the system has an arriving

customer of segment l ∈ [K] (this occurs with probability wl), there exists a probability αlk that the

consumer is recognized as segment k ∈ [K]. If a consumer is recognized by the system (or classifier)

as segment k consumer (even if it is not really from segment k), it is said that the consumer is

observed in segment k. Similarly to the policy SQSSI let SQSSIM denote the ranking policy of

classifying consumers (but now misclassification errors occur) and then providing to the consumers

observed as segment k the quality ranking of consumer segment k and updating the popularity

signal locally in each segment.

Since SQSSIM has misclassification, the benefits of segmentations might be deteriorated depend-

ing on how often segments are mistakenly recognized. Under SQSSIM, which product will become

the most popular in each of the segments? To answer this question, we rely on the important result

obtained in Theorem 1.2. Namely, it provides the long term convergence of using a static ranking

with global social influence among all consumer segments. The following corollary identifies the

product in each segment that will become the most popular in the long term.
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Corollary A.1. Suppose the solution to arg max1≤i≤N vσk(i)

∑K
l=1wlαlkqi,l is unique for segment

k where σk(·) denotes a static ranking associated to segment k. Then, under the SQSSIM policy, the

product i∗k that converges to a monopoly for the observed segment k is:

i∗k = arg max
1≤i≤N

vσk(i)

K∑
l=1

wlαlkqi,l. (A.22)

Proof. Consumers observed in segment k may belong to K different segments due to classifications

mistakes, thus, each observed segment k can be seen as a MMNL. Given a consumer is observed

in segment k, the probability that this customer belongs to l ∈ [K] is given by wlαlk. Then,

the purchase probability of product i for a consumer observed in segment k, with ranking σk and

purchase vector dt,k is given by

P ki (σk, d
t,k) =

K∑
l=1

(
wlαlk ·

(
vσk(i)

(ai,l + dt,ki )∑N
j=1 vσk(j)(aj,l + dt,kj ) + zl

· qi,l
))
.

This probability resembles Eq. (A.8) in the proof of Theorem 1.2. Thus, we know that each

observed segment k of consumers converges to a monopoly for product

i∗k = arg max
1≤i≤N

vσk(i)

K∑
l=1

wlαlkqi,l.

Now that we have found the long term behavior of the model with classifying errors, we analyze

the impact of errors in market efficiency. From now on we assume that the probability of committing

a mistake in classifying a segment is the same for every segment, and is equally likely to identify it

as any other segment. Then we may define the mistake probabilities with two parameters, α0 and

β0:

αlk =


α0 if l = k

β0
K−1 otherwise

. (A.23)

Equation (A.23) means that every customer has a probability α0 of being recognized as their correct

segment, while a probability β0 that the consumer’s segment is mistaken for another one. Naturally,

α0 = 1− β0.
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Similarly to the definition of P tSQSSI , let P tSQSSIM denote the probability of a purchase at time

t when the firm applies the segmented quality ranking with the local popularity signal dtk under a

classifier with errors. We are now ready to prove the following:

Theorem A.1. Assume that the average quality ranking and its segmented version are tie-breaking

for a MMNL model with mistake probability matrix α given by (A.23), and that α0 >
β0
K−1 (the

probability than an observed segment is classified correctly is greater than the probability of misclas-

sifying it with any other segment). Then,

K

K − 1
β0 ≤ lim

t→∞

P tSQSSIM
P tAQGSI

≤ Kα0 (A.24)

Proof. As mentioned earlier, when we have segmentation, each segment is independent from each

other and every recognized segment k will converge to a monopoly for the product i∗k given by Eq.

(A.22). If each observed segment k is ranked according to the new qualities q̂i,k
.
=
∑K

l=1wlαlkqi,l,

then

lim
t→∞

P tSQSSIM =
K∑
l=1

K∑
k=1

wlαlkqi∗k,l =
K∑
k=1

max
1≤i≤N

K∑
l=1

wlαlkqi,l

≤
K∑
k=1

[ max
1≤l≤K

αlk] max
1≤i≤N

K∑
l=1

wlqi,l =
K∑
k=1

max{α0,
β0

K − 1
} max

1≤i≤N
q̄i

= Kα0 max
1≤i≤N

q̄i,

and

lim
t→∞

P tSQSSIM =
K∑
l=1

K∑
k=1

wlαlkqi∗k,l =
K∑
k=1

max
1≤i≤N

K∑
l=1

wlαlkqi,l

≥
K∑
k=1

[ min
1≤l≤K

αlk] max
1≤i≤N

K∑
l=1

wlqi,l =
K∑
k=1

min{α0,
β0

K − 1
} max

1≤i≤N
q̄i

= K
β0

K − 1
max

1≤i≤N
q̄i.
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Figure A.1: The Number of Purchases over time for various SQSSIM rankings with different α0

values, and the AQGSI ranking for Scheme 2. The x-axis represents the number of items tried and
the y-axis represents the average number of purchases over all experiments. We can see that only
when the classifications errors are small (α ≥ 0.8), the segmentation policy outperforms the global
ranking policy (average quality ranking AQGSI).

Since limt→∞ P
t
AQGSI = max1≤i≤N q̄i, we finally have that

K

K − 1
β0 ≤ lim

t→∞

P tSQSSIM
P tAQGSI

≤ Kα0.

To illustrate the effects of classifications mistakes in the market, we perform a simulation for

Scheme 2 under the ranking policy SQSSIM with different values of α0. We also plot the ranking

policy AQGSI in the same graph, the results are shown in Figure A.1. As expected, the performance

of the ranking policy SQSSIM decreases as the percentage of correct consumer segment classification

(α0) decreases. Furthermore, it is interesting to see that the AQGSI ranking policy outperforms

SQSSIM with an α = 0.8 or less. The managerial insight is that segmentation in this setting is

better than showing a single ranking, but only as long as the misclassification errors are relatively

small. In cases where α = 0.8 or lower, market segmentation is harmful.
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A.3 2-Swap, a Performance Ranking Heuristic

In order to assess the average quality ranking policy (AQGSI), we performed computational ex-

periments and compare it to a substantially more computationally expensive heuristic: the 2-swap

heuristic. In all our experiments using the different schemes, the results obtained with the 2-

swap heuristic were not significantly better than those obtained with the average quality ranking

(AQGSI). Figure A.2 shows the average total purchases over 400 simulations as a function of the

number of trials using the both methods. For completeness we also included the segmented ranking

policy SQSSI.
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Figure A.2: Average total purchases vs trials of 400 simulations under SQSSI, SQSSI and the
2-swap heuristic with global social influence using Scheme 2.
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A.4 Revenue Maximization

In this appendix we analyze an extension of the model in which each product i ∈ [N ] generates a

profit ri to the platform owner. Consumers are aware of the product prices and those are taken

into account in the consumer choice probabilities of our model (Equation (1.1)).

Since now the firm is interested in maximizing profit, we need to modify the previous objective

(Equation (1.2)) to the following one:

ΠPR = max
σ∈SN

{ K∑
k=1

(
wk ·

N∑
i=1

( vσ(i)(ai,k + dti)∑N
j=1 vσ(j)(aj,k + dtj) + zk

· riqi,k
))}

. (A.25)

Observe that when ri = 1 for all i = 1, . . . , N the above problem reduces to the original setting

in which the firm tries to maximize the expected number of purchases. This means that our

NP-hardness result (Theorem 1.1) for the original model still holds for this new setting. Moreover,

Theorem 1.2 (the monopoly convergence) 1.1 still hold, since consumer preferences under the Mixed

MNL already account for the product’s prices/revenues and the market dynamics is only dependent

on those mixed MNL preferences (as previously). What is interesting to note is that in this model

extension, the average quality ranking may lead to a monopoly for a product that doesn’t yield the

greatest revenue rate. This is because the product with the largest average quality, may not be the

one that generates the largest expected revenue conditional on a trial. This lead us to analyze a

new ranking heuristic, the “Average Expected Revenue Ranking”, which ranks products based on

their expected revenue conditional on a trial, namely
∑

k wkqi,k × ri. To obtain analytical results,

we analyze this policy under an important assumption: the average quality ordering is the same

as the revenue ordering. This assumption is reasonable in multiple settings: it says that higher

quality products have a higher price. With this assumption, the average expected revenue ranking

is the same as the average quality ranking, and thus, from Theorem 1.2, the market converges

to monopoly for the product with the largest expected revenue conditional on a trial (asymptotic

optimality). In addition, for the Average Expected Revenue Ranking, Theorem 1.3 still holds. The

Average Expected Revenue Ranking with the same ordering between average product qualities

and product revenues, can perform up to K (the number of consumer segments) times better, or

arbitrarily worst, by not showing the popularity signal. The proof is straightforward from Theorem

1.3’s proof, in which qi,k is exchanged by qi,kri each time.
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For Theorem 1.4 to hold with the Average Expected Revenue Ranking, we need a stronger

assumption. If the average quality ordering is just the same as the revenue ordering, it could

happen that for some consumer segments product qualities and revenues are not ordered the same

way. Thus, ranking by expected revenue conditional on a trial for each segment might not achieve

asymptotic optimality in each consumer segment. In order to guarantee asymptotic optimality of

each consumer segment we need that the quality ordering for each them is the same as the revenue

ordering. Thus, the results from Theorem 1.4 hold only when all consumer segment product

qualities follow the same ordering as the product revenue ordering.

A.5 Assortment Optimization

In this section we analyze the extension in which in each time period the platform owner chooses

a subset S ⊆ [N ] of products to show to consumers, as well as a ranking σS among them. We

particularly focus in the case where the platform owner has no information on consumers segments,

and thus, needs to display the same assortment of products to all consumers. If there is only one

consumer segment, this problem can be solved efficiently (see Abeliuk et al. (2016) and Sumida et al.

(2019)). However, when there are at least two segments, the problem becomes a generalization of

the classical assortment optimization under the latent class MNL model which is already NP-hard

(see Bront et al. (2009) and Rusmevichientong et al. (2014)).

Given the impossibility of finding efficiently an optimal assortment, we study a heuristic which

we called the Average Quality Threshold Heuristic. This heuristic first ranks products by their

average quality, so let product i denote the product with the ith highest average quality. Then,

at each time period, it chooses how many products to show with the following condition: if it

shows k products, those must be {1, 2 . . . , k} and they should be ranked in the same order: higher

quality products are placed in positions with higher visibility. This heuristic is computationally

more intensive than the standard average quality, since for each time period, we need to evaluate

N different scenarios and choose the best one. Nevertheless, it is still computational practical since

it takes at most O(N3) time.

Observe that the number of products shown by the Average Quality Threshold Heuristic is

sensitive to the values associated to the outside option zk’s. In one extreme, very large values of

the outside option (in comparison to the value associated to the products) means that the products
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offered by the platform owner face a rather weak cannibalization. In those scenarios, adding an

extra product to an assortment is likely to be beneficial since it will probably increase overall sales.

On the other extreme, when the outside option values are very small, products offered by the firm

face a strong cannibalization: in these scenarios it is likely that offering only a few products is the

optimal strategy.

We performed the same computational experiments as those in Section 1.6 on Scheme 1 and

Scheme 2, but using the Average Quality Threshold Heuristic and varying the outside option value

(z). A large outside option value means that at the early stages a higher number of consumers will

decide not to try a product at all. In the long run, the effect of the outside option diminishes as

some products become popular and their overall appeal increases. Figures A.3(a) and A.3(b) show

the optimal number of products that are shown at each period (on average) for Schemes 1 and 2

respectively. As expected, observe that the optimal number of products shown increases when the

outside option increases. However, as the number of purchases increase (and the social influence

signal becomes stronger), the offer sets shown tend to reduce in size to exhibit only the products

with the highest average quality.

In all our computational experiments, the offer sets offered by the average quality threshold

heuristic are always reduced in size or they stay the same as times goes by. This suggests to us that

even under the average quality threshold heuristic, which is a dynamic ranking policy, the market

will also converge to a monopoly for the product with the highest weighted average quality. We

leave this conjecture below.

Conjecture A.1. (Asymptotic optimality of the Average Quality Threshold Heuristic) Whenever

the average quality threshold heuristic is used, the market goes to a monopoly for the product with

the highest weighted average quality.

We conclude this section by assessing the performance of the Average Quality Threshold Heuris-

tic with Global Social Influence (AQTGSI) and we compare against the performance of the Average

Quality with Global Social Influence (AQGSI). Figures A.4(a) and A.4(b) display the average num-

ber of purchases under AQTGSI for Schemes 1 and 2 respectively. We can observe that more sales

occur in settings where the outside option value is small, but this difference is reduced as time goes

by. Figures A.5(a) and A.5(b) show the percentage improvement (or deterioration) that AQTGSI

has over AQGSI for Schemes 1 and 2 respectively. Our experiments show that these two policies
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Figure A.3: Average threshold for the AQTGSI policy versus trials. On the left (a) we have it for
Scheme 1, while on the right (b) we have it for Scheme 2.

have approximately the same performance for all the outside option values we tried, with less than

0.75% improvement in 200,000 trials.
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Figure A.4: Number of purchases versus trials using the AQTGSI policy for scheme 1 on the left
(a) and Scheme 2 on the right (b).
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Scheme 1 on the left (a) and Scheme 2 on the right (b).
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Appendix B

Additional Material for Chapter 2

B.1 Proofs

B.1.1 Proof of Proposition 2.1

First we prove that abW = a∗bW is the only advertising level for the low quality show that may

survive the intuitive criterion. Let {agW , abW } be a separating equilibrium satisfying the incentive

compatibility constraints (2.15) and (2.16) with abW 6= a∗bW . If abW < a∗bW then the equilibrium

revenue for the low quality show would be πb(abW ) = −abW . Because a∗bW ≤ 3, and with such an

advertising level it would obtain three views, the low quality show is better-off choosing strategy

a∗bW , achieving a profit of 3−a∗bW ≥ 0. If abW > a∗bW , we have that πb(abW ) = 3−abW < πb(a∗bW ) =

3− a∗bW , so the low quality show is again better off deviating to a∗bW . This is a contradiction; any

separating equilibrium must be of the form {agW , a∗bW } in order to be able to survive the intuitive

criterion.

Now we show that agW = max{a∗gW , a∗bW − 2} is the only advertising level for the high qual-

ity show that may survive the intuitive criterion. Let {agW , a∗bW } be a separating equilibrium

satisfying the incentive compatibility constraints (2.15) and (2.16), which we can rewrite using con-

straint (2.17) as max{a∗gW , abW − 2} ≤ agW < a∗bW . Suppose agW ∈
(

max{a∗gW , abW − 2}, a∗bW
)

,

then the equilibrium profit for the high quality show is πg(agW ,W ) = 3 − agW . There al-

ways exists ε > 0 such that agW − ε satisfies the incentive compatibility constraints, agW − ε ∈(
max{a∗gW , abW − 2}, a∗bW

)
and achieves a greater profit for the high quality show. Since the low

quality show would be worse off deviating to such an advertising level, by observing a deviation
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to agW − ε, consumers’ beliefs about show quality will be high. Thus, any equilibrium advertising

level agW ∈
(

max{a∗gW , abW − 2}, a∗bW
)

cannot survive the intuitive criterion.

Now we show that the separating equilibrium {max{a∗gW , a∗bW − 2}, a∗bW } indeed survives the

intuitive criterion. A high quality show would never deviate to a > max{a∗gW , a∗bW − 2} because,

under its equilibrium strategy, it already obtain the maximum number of views, and at a lower

advertising level than any advertising level in such set.

We now consider two cases: If a∗gW < a∗bW −2 then agW = a∗bW −2. Any advertising level below

a∗gW is dominated for both show types, thus no show would deviate to such advertising levels. Any

advertising level a ∈ [a∗gW , a
∗
bW − 2) dominates both show types (i.e., there exist beliefs such that

both shows would be better-off by deviating to such advertising levels). Thus µ(a) = µ0 for all

a ∈ [a∗gW , a
∗
bW − 2), so in order to have no interest in deviations µ0 must be low enough. We need

that any deviation to agW − ε with any small ε > 0 must satisfy u{1,agW−ε} < 0, which can be

rewritten as µ0θH + (1 − µ0)θL − CW + γagW < 0 ⇐⇒ µ0 <
(CW−θL−γa∗bW+2γ)

θH−θL = 2γ
θH−θL . Thus,

in this way this equilibrium survives the intuitive criterion.

If a∗gW ≥ a∗bW − 2 then agW = a∗gW . All deviations for the high quality show are dominated

by the equilibrium strategy, thus µ(a) = 0 for any a 6= agW . The low quality show would always

be better off choosing its first best solution a∗bW ; therefore this equilibrium survives the intuitive

criterion.

B.1.2 Proof of Lemma 2.1

Suppose there exists a pooling equilibrium on ap such that 0 < ap < aµ0 . Then u{1,ap} =

µ0θH + (1 − µ0)θL − CW + γap < µ0θH + (1 − µ0)θL − CW + γaµ0 = µ0θH + (1 − µ0)θL − CW +

γ
[
µ0a

∗
gW + (1− µ0)a∗bW

]
= 0. Nobody would start watching the show, thus, both show types are

always better-off by choosing no advertising level at all. Therefore, if both shows advertise and

attract viewers we must have that ap ≥ aµ0 .

B.1.3 Proof of Proposition 2.2

From Lemma 2.1 we have that ap ≥ aµ0 . Suppose we have a pooling equilibrium on ap > aµ0 that

survives the intuitive criterion. For both show types, there exist out-of-equilibrium beliefs under

which they are better of by deviating to aµ0 , thus, consumer belief about an advertising level of
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aµ0 would be µ0. Then both show types would be better-off by deviating to aµ0 , so any pooling

equilibrium on ap > aµ0 does not survive the intuitive criterion. This shows that aµ0 is the unique

equilibrium advertising level that could survive the intuitive criterion.

To show that ap = aµ0 can survive the intuitive criterion, we first show that for any deviation

under which the high quality show could be better-off, the low quality show is also be better-off.

Depending on out-of-equilibrium beliefs, the high quality show is only better-off deviating to any

advertising level in [a∗gW , aµ0) (any advertising level below a∗gW , regardless of out-of-equilibrium

beliefs, would achieve zero views). Depending on out-of-equilibrium beliefs, low quality shows are

also better off with such deviations. Thus, consumer belief for any deviation to [a∗gW , aµ0) would

be set to µ0 generating no views. Second, we must find the conditions under which the low-quality

show is better off staying at its equilibrium aµ0 and obtaining 1 view, over deviating to its first

best solution a∗bW and achieving 3 views. This happens as long as 1 − aµ0 > 3 − a∗bW , which may

be reduced to a∗gW > 2
µ0

+ a∗gW and finally to µ0 >
2γ

θH−θL . Now both show types don’t have any

incentives to deviate from aµ0 , generating a pooling equilibrium.

B.1.4 Proof of Lemma 2.2

The parameter sets are such that πt(atW ,W ) = 3 − atW and πt(atB, B) = 3 − atB where atX =

(CX −E[Qt]) /γ for (t,X) ∈
{
{g, b}, {W,B}

}
.

� If 1
γ (CW − CB) < 3(1 − δ) then agW − agB = abW − abB = 1

γ (CW − CB) < 3(1 − δ). So

3 − agW = πg(agW ,W ) > 3δ − agB = πg(agB, B) and 3 − abW = πb(abW ,W ) > 3δ − abB =

πb(abB, B). Both shows prefer linear releases to non-linear releases.

� If 1
γ (CW − CB) = 3(1 − δ) then agW − agB = abW − abB = 1

γ (CW − CB) = 3(1 − δ). So

3 − agW = πg(agW ,W ) = 3δ − agB = πg(agB, B) and 3 − abW = πb(abW ,W ) = 3δ − abB =

πb(abB, B). Both shows are indifferent between linear releases and non-linear releases.

� If 1
γ (CW − CB) > 3(1 − δ) then agW − agB = abW − abB = 1

γ (CW − CB) > 3(1 − δ). So

3 − agW = πg(agW ,W ) < 3δ − agB = πg(agB, B) and 3 − abW = πb(abW ,W ) < 3δ − abB =

πb(abB, B). Both shows prefer non-linear releases to linear releases.
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B.1.5 Proof of Lemma 2.3

Under B release timing, any advertising level below a∗b would attract no viewers, whereas any

advertising level above a∗b will generate lower profits. The best they could do by having W as their

release timing strategy is to choose an advertising level agW , but we already know from the first

best solution argument that this strategy is dominated by (a∗b , B).

B.1.6 Proof of Lemma 2.4

We prove it by contradiction. Suppose there exist a separating equilibrium in which high quality

shows choose (ag,W ) with a positive advertising level ag < aW and low quality shows choose their

first best solution. Then we have that the expected utility for a high quality show choosing (ag,W )

is u{1,ag ,W} < u{1,aW ,W} ≤ 0. Thus, the equilibrium profit of the high quality show is −ag, so

they are better-off deviating to a lower advertising level. Therefore, ag < aW does not satisfy the

equilibrium conditions.

B.1.7 Proof of Lemma 2.5

Suppose ag > max{1− 3δ + ab, aW }. Then any deviation to some strategy (a,W ) with a ∈(
max{1− 3δ + ab, aW }, ag

)
would be equilibrium-dominated for the “bad” show, regardless of

what customers believe about the show’s type. This is because this new advertising level a satisfies

the incentive compatibility constraints. Therefore, customers should not believe that the show,

which voluntarily made such a deviation, can be the low quality type with a positive probability.

Consequently, the high quality show indeed prefers deviating to such an advertising level, as long as

customers believe that such deviation cannot come from the low quality show. That is, the equilib-

rium involving advertising level a > max{1− 3δ + ab, aW } fails the intuitive criterion. So, the only

value for ag that might survive the intuitive criterion to deviations to W is max{1− 3δ + ab, aW }.

Let us show under which conditions ag = max{1− 3δ + ab, aW } survives the intuitive criterion to

deviations around linear releases (W ).

If 1−3δ+ab > aW then ag = 1−3δ+ab, any deviation to (a,W ) with a ∈ [aW , ag) dominates both

show types, thus the belief consumers would give to the show being good would be µ{1,a,W} = µ0.

Then, in order for this equilibrium to survive the intuitive criterion, viewers need to refrain from

watching. We impose u{1,a,W} < 0 for all a ∈ [aW , ag) ⇐⇒ µ0 <
(CW−θL−α3−γag)

θH−θL = γ(3δ−1)
θH−θL .
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If 1 − 3δ + ab ≤ aW then ag = aW , then any deviation to any other (a,W ) strategy would be

equilibrium dominated for both show types. Any advertising level below aW obtains no views,

whereas the high quality show has no incentives in increasing their advertising level. Thus, any

advertising level above aW has null belief, so that the low quality show has no incentives in deviating

from their first best solution.

B.1.8 Proof of Lemma 2.6

First note that āg = 3δ − πg(ag,W ) is the advertising level under non-linear releases that would

achieve the same revenue as the equilibrium strategy for a high quality show. Since the first best

solution from the high quality show is (a∗g, B) achieving a revenue of 3δ−a∗g, from Inequality (2.24)

we have that 3δ − a∗g > 3− ag = 3δ − āg, which implies that āg > a∗g.

Also note that the incentive compatibility constraints ensure that āg ≤ a∗b . Thus, there exist

consumer beliefs in which a high quality show choosing strategies (a,B) with a ∈ [a∗g, āg) would

make greater profit than its equilibrium revenue πg(ag,W ) = 3 − ag (this holds because under

perfect information, the equilibrium strategy for the high quality show is (a∗g, B)). If a low quality

show chooses strategy (a,B) with a < a∗b , viewers would watch a maximum of one episode (with

the most optimistic belief) making at most δ − a of profit.

If we had that δ− āg < 3δ−ab, then there exist off-equilibrium strategies (a,B) with a ∈ [a∗g, āg)

that are dominated for the low quality show, while making the high quality show better off (for

certain beliefs); thus, this equilibrium does not satisfy the intuitive criterion. If δ − āg ≥ 3δ − ab,

there exist off-equilibrium beliefs that make the strategy (a,B) with a ∈ [a∗g, āg) dominate the

low quality show’s equilibrium; thus, the belief for such advertising levels would be µ0. Therefore,

in order to dissuade the shows to deviate, we must have that u{1,āg ,B} < 0, which translates to

µ0 < γ
a∗b−āg
θH−θL .

B.1.9 Proof of Proposition 2.3

This Proposition follows immediately from using Case B (ag < abW ), Lemmas 2.5 and 2.6 and the

incentive compatibility constraints (2.31).
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B.1.10 Proof of Lemma 2.7

The expected profit in this situation is given by

πb(a,W ) =
3∑
i=1

iP(watching exactly i episodes)− a. (B.1)

A viewer would watch exactly 1 episode, if she watches episode 1 and does not watch episode

2. The only way for this to happen is if the quality draw from episode 1 is θL, then consumer

beliefs would be updated to µ{2,a,W} = 0 (since the viewer now knows the show is bad), and if the

expected utility from episode 2 is negative. Therefore, we have that

P(watching exactly 1 episode) = 1(u{1,a,W} ≥ 0)(1− b)

[
1− 1

(
γa+E[Qb] ≥ CW

)]
(B.2)

A viewer would watch exactly 2 episodes, if she watches episode 1, then 2 and leaves. If the draw

from episode 1 is θL, a viewer that watches episode 2, would also watch episode 3. In this case, the

draw from episode 1 must be θM . In order for the viewer to stop watching after episode 2, we need

her to draw a θL from this episode, and have a negative expected utility from episode 3. Then

P(watching exactly 2 episodes) = 1(u{1,a,W} ≥ 0)b(1− b)

[
1− 1

(
γa+E[Qb] ≥ CW

)]
. (B.3)

A viewer would watch all 3 episodes if either of these scenarios holds: the draw from episode 1 is θL

and the expected utility from episode 2 is non-negative, the draw from episode 1 is θM , the draw

from episode 2 is θL and the expected utility from episode 3 is non-negative, or the draws from

episodes 1 and 2 is θM . Then

P(watching exactly 3 episodes) =1(u{1,a,W} ≥ 0)

[
(1− b)1

(
γa+E[Qb] ≥ CW

)
(B.4)

+ b
[
b+ (1− b)1

(
γa+E[Qb] ≥ CW

)]]
.

Finally, using Equations (B.2), (B.3) and (B.4) in Equation (B.1), and knowing that in a

separating equilibrium u{1,ag ,W} ≥ 0, we obtain the result we are looking for.
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B.1.11 Proof of Proposition 2.4

The proof of this Proposition is very similar to the ones of Lemmas 2.5 and 2.6. We want to

show that a separating equilibrium {(ag,W ), (ab, B)} may survive the intuitive criterion when

ag = max{aW , 1 + b+ b2 + ab − 3δ} < abW and ab = a∗b . The first needed are the conditions for a

separating equilibrium, so we need the other incentive compatibility constraint ag ≤ 3 + ab − 3δ.

First, we analyze deviations to non-linear releases. The advertising levels that dominate the

high quality show are in the region [a∗g, āg). If these advertising levels did not dominate the low

quality show as well, this equilibrium would be ruled out by the intuitive criterion. Thus, we need

to impose δ(1 + b + b2) − āg > 3δ − a∗b . This inequality is necessary for the existence of out-of-

equilibrium beliefs that would make the low quality show better off (in expectation) by deviating

to any strategy in non linear releases with advertising level in [a∗g, āg). Given this set dominates,

for some out-of-equilibrium beliefs, the equilibrium strategies for both show types, consumers will

believe that a deviation to such set is from the high quality show with probability µ0. In order to

ensure that viewers don’t start watching the show, we set the expected utility of the first episode

to be negative, µ0E[Qg] + (1− µ0)E[Qb]− CB + γāg < 0 ⇐⇒ µ0 < γ
a∗b−āg

E[Qg ]−E[Qb]
.

Second, we analyze deviations to linear releases. If aW < 1 + ab − 3δ, there exist out-of-

equilibrium beliefs for which the advertising levels in the region [aW , 1 + ab − 3δ) dominate the

equilibrium strategies for both show types. This is because this region does not satisfy the incentive

compatibility constraints for the low quality show, whereas for the high quality show, it reduces the

advertising level. Thus, when seeing such deviation, consumers would give a probability of µ0 to the

show being of high quality. In order to prevent both show types from performing such deviation,

we must make the utility from watching the first episode negative, µ0E[Qg]+(1−µ0)E[Qb]−CW +

γ(1 + ab− 3δ) < 0 ⇐⇒ µ0 < γ 3δ−1
E[Qg ]−E[Qb]

. If aW ≥ 1 + ab− 3δ, there is no other advertising level

on linear releases which could dominate (depending on out-of-equilibrium beliefs) the high quality

show.
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Stochastic Processes and their Applications, 110:177–245, 2004.

Thomas D Jeitschko and Hans-Theo Normann. Signaling in deterministic and stochastic settings. Journal

of Economic Behavior & Organization, 82(1):39–55, 2012.

Baojun Jiang, Kinshuk Jerath, and Kannan Srinivasan. Firm strategies in the mid tail of platform-based

retailing. Marketing Science, 30(5):757–775, 2011.

Richard E Kihlstrom and Michael H Riordan. Advertising as a signal. journal of Political Economy, 92(3):

427–450, 1984.

Borys Kit. ’a quiet place part ii,’ ’mission: Impossible 7’ to debut on paramount+ 45 days after theatrical

launch. https://https://www.hollywoodreporter.com/news/paranormal-activity-pet-sematary-movies-

in-the-works-for-paramount, 2021.

Robert E Krider and Charles B Weinberg. Competitive dynamics and the introduction of new products:

The motion picture timing game. Journal of Marketing Research, pages 1–15, 1998.

Coco Krumme, Manuel Cebrian, Galen Pickard, and Sandy Pentland. Quantifying social influence in an

online cultural market. Plos One, 7:e33785, 2012.

Martin A Lariviere and V Padmanabhan. Slotting allowances and new product introductions. Marketing

Science, 16(2):112–128, 1997.

Haengju Lee and Yongsoon Eun. Discovering heterogeneous consumer groups from sales transaction data.

European Journal of Operational Research, 280:338–350, 2020.

Donald R Lehmann and Charles B Weinberg. Sales through sequential distribution channels: An application

to movies and videos. Journal of Marketing, 64(3):18–33, 2000.

Andrew Lim, Brian Rodrigues, and Xingwen Zhang. Metaheuristics with local search techniques for retail

shelf-space optimization. Management Science, 50:117–131, 2004.

153

https://www.hollywoodreporter.com/news/paranormal-activity-pet-sematary-movies-in-the-works-for-paramount


Laurent Linnemer. Price and advertising as signals of quality when some consumers are informed. Interna-

tional Journal of Industrial Organization, 20(7):931–947, 2002.

Angus Loten. Retailers use ai to improve online recommendations for Shoppers. Wall Street Journal, 2020.

Tong Lu, Eric T. Bradlow, and J. Wesley Hutchinson. Binge consumption of online content. In Working

Paper, 2017.

Jackie Y Luan and K Sudhir. Optimal inter-release time between sequentially released products. Technical

report, Working Paper. Yale University, New Haven, CT, 2006.

Christoph Lutz and Gemma Newlands. Consumer segmentation within the sharing economy: The case of

Airbnb. Journal of Business Research, 88:187–196, 2018.

Nancy A Lutz. Warranties as signals under consumer moral hazard. The Rand journal of economics, pages

239–255, 1989.

Thierry Magnac and David Thesmar. Identifying dynamic discrete decision processes. Econometrica, 70(2):

801–816, 2002.

Felipe Maldonado, Pascal Van Hentenryck, Gerardo Berbeglia, and Franco Berbeglia. Popularity signals in

trial-offer markets with social influence and position bias. European Journal of Operational Research,

266:775–793, 2018.

Dana Mattioli. On Orbitz, Mac users steered to pricier hotels. The Wall Street Journal, 2012.

Daniel McFadden and Kenneth Train. Mixed MNL models for discrete response. Journal of Applied Econo-

metrics, 15:447–470, 2000.

Paul Milgrom and John Roberts. Price and advertising signals of product quality. Journal of political

economy, 94(4):796–821, 1986.

Xavier Molinero, Fabián Riquelme, and Maria Serna. Cooperation through social influence. European Journal

of Operational Research, 242:960–974, 2015.

K Sridhar Moorthy and Ivan PL Png. Market segmentation, cannibalization, and the timing of product

introductions. Management science, 38(3):345–359, 1992.

Sridhar Moorthy. Can brand extension signal product quality? Marketing science, 31(5):756–770, 2012.

Sridhar Moorthy and Kannan Srinivasan. Signaling quality with a money-back guarantee: The role of

transaction costs. Marketing Science, 14(4):442–466, 1995.
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