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Abstract

Time is an essential component of many operations. Any good or service provided by its producers
must be delivered on time. Advancements in information technology and urban development through
years has only exacerbated the demand and importance of timely operations. For certain good and
services being timely is a new feature that was not required before whereas for others being timely is
at the core of their value proposition. This dissertation examines three problems that have arisen in
response to these advancements in information technology and urban development.

In the first chapter, we study the dispatching problem faced by the dispatchers in Emergency
Medical Services (EMS). Decision making in 911 dispatching of EMS plays a critical role in potentially
saving patients’ lives during time-sensitive emergencies. Getting resources to a patient as quickly
as possible is essential to this task, and any delays can be life-threatening. Motivated by the
challenges faced by the dispatchers in EMS, we develop a novel data-driven framework by combining
ideas from Machine Learning and Optimization to guide dispatcher decisions. First, we propose a
novel omniscient optimization model for ambulance dispatching that incorporates forward-looking
decisions. Second, we employ Scenario Based Robust Optimization framework that utilizes ideas
from Stochastic Programming and Robust Optimization where the uncertainty sets and associated
scenarios are built using our novel Closest Neighbours Clustering method. This method first uses
past data to select a set of similar calls to the current emergency call to build a set of future scenarios.
Then it clusters the set of scenarios using the scenario metric we developed. These clusters are later
fed into Scenario Based Robust Optimization model to produce a dispatch decision under future
uncertainty. Experimental results show that our framework can improve the percentage of late
responses as much as 25% compared to current dispatch methods.

In the second chapter, we study an on-demand platform’s delay information disclosure policy
when the platform serves two classes of users—consumers and providers—who seek matches to each
other using the platform. We model the platform as maximizing the average rate at which these users
are successfully matched by choosing one of three information regimes —- occupancy (disclosing the
current system occupancy to both user classes), and two asymmetric information regimes (disclosing
no information to one user class and occupancy information to the other). Arriving users are strategic
and decide whether to join the system or not based on the delay information that the platform
provides. In our base model, we consider users of each class as being either patient (will wait to
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be matched) or impatient (will join only if they expect to be matched immediately). We find that
depending on the parameter setting, any of the three information disclosure policies could emerge
as optimal; however, the optimal policy has a complicated dependence on the parameters. We
analytically establish sufficient conditions driving the platform’s decision. We also examine two
limiting settings: (i) patience profile discrepancy between the two user classes; and (ii) market
size imbalance between the two user classes. For these two limiting settings, we characterize the
platform’s optimal information regime and show that all three disclosure policies may emerge in
equilibrium. We then numerically examine the impact of the platform’s choice of information regime
on users’ welfare and find that the platform’s choice can also maximizes the welfare of both user
classes, but only if this choice is to disclose occupancy information to both classes. We extend our
base model to study how the platform’s information regime choice changes when user patience levels
are more heterogeneous.

In the third chapter, we study the problem of balancing efficiency and risk in multi-class
screening systems. Security screening systems aim to identify malevolent people and illicit goods.
But screening operations may also result in long wait times at checkpoints. Selecting appropriate
screening procedures thus creates a trade-off between efficiency and risk. This is complicated by the
heterogeneity of screening jobs (which pose various threat levels) and the strategic behaviors of human
agents (who may renege prior to screening if perceived risk levels are too high). We apply a speed-
quality trade-off perspective to security operations and extend the speed-quality trade-off literature
to a multi-class setting with heterogeneous and strategic agents. From a practical standpoint, our
work supports tactical decision-making for dynamically selecting screening procedures, and strategic
decision-making for designing pre-screening profiling programs. We formulate this problem with
continuous-time infinite-horizon Markov decision processes to optimize service rates in an M/M/1

queue with heterogeneous jobs, as a function of observed queue lengths and a threat level estimate
for each job. We propose an extension to capture endogenous strategic behaviors of heterogeneous
agents, given information asymmetries between agents and the screening operator. We show that the
optimal policy exhibits a double threshold behavior: the shorter the queue length and/or the larger
the risk, the stricter the screening. Leveraging job-level risk information can reduce expected costs
by up to 6-7%, as compared to single-class decision-making schemes. Moreover, anticipating agents’
strategic behaviors results in more intensive screening in an attempt to force malevolent agents to
renege. Slower screening mitigates expected risks and may also, surprisingly, reduce expected queue
lengths.
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Chapter 0

Introduction

“Time waits for no one” – Folklore.
Time is an essential component of many operations. Any good or service provided by its producers

must be delivered on time. Advancements in information technology and urban development through
years has only exacerbated the demand and importance of timely operations. For certain good and
services being timely is a new feature that was not required before whereas for others being timely is
at the core of their value proposition. This dissertation examines three problems that have arisen in
response to these advancements in information technology and urban development.

In the first chapter we tackle the problem faced by Emergency Medical Service dispatchers
who assign ambulances to emergency calls for a timely response. Their decision play a critical
role in the lives of patients. For example, in instances of cardiac arrests, for every minute without
cardiopulmonary resuscitation (CPR - an emergency lifesaving procedure performed when the heart
stops beating), the chance of patient’s death increases by 10% (Larsen et al., 1993). In instances of
motor vehicle crashes (MVC) - another common cause of need for EMS, longer response times were
significantly associated with higher rates of mortality (Byrne et al., 2019). Accordingly, preventing
late responses and improving response times in a EMS system are life-saving measures we aim to
provider in this chapter.

In order to help decision making of dispatchers, we propose a data-driven approach combining
principles from machine learning and optimization. We collaborated with the University of Pittsburgh
Medical Center (UPMC) and Allegheny County EMS in building our solution approach, specifically,
we utilize data on past emergency calls provided by the Allegheny County EMS. Given a current
emergency call, our method leverages past emergency call data to form a set of representative scenarios
using conditional clustering and feeds these scenarios into a scenario based robust optimization model
to produce a dispatch decision for the current emergency call. We propose four contributions in this
chapter: First, we develop a novel omnisicient optimization model for the ambulance dispatching
problem that incorporates forward-looking decisions. Second, we model and solve the dispatch
decision problem with future uncertainty by employing scenario-based robust optimization - a novel

1



approach combining principles of stochastic programming and robust optimization. Third, and
in conjunction with the scenario based robust optimization framework, we introduce conditional
clustering - a data-driven clustering approach for forming of the uncertainty sets. Last, through
thorough experimentation, we show that our solution method to the EMS dispatching problem
out-performs existing benchmarks and state-of-the art methods introduced in the literature.

In the second chapter, motivated by the rise of so-called “on-demand platforms”, we study the
information sharing problem faced by the managers of these platforms. On-demand platforms
facilitate matches between two user classes: Consumers, who seek service through the platform,
and providers, who supply the service to the consumers through the platform. An important
operational tool for these platforms is to disclose delay information to their users to induce desirable
joining/balking behaviors. By using information as an operational lever platforms maintain acceptable
delays in the system and deliver timely services and products to their users. However, It is not
immediately clear how best a platform can use the leverage of sharing delay information and this
problem is further complicated by the fact that, there are various types of information to disclose.

We model the operations of an on-demand platform as a two-sided queue and we investigate
the platform’s optimal delay information disclosure policy when users on both sides of the market
are delay-sensitive. This optimal policy seeks to maximize the average rate at which the platform
successfully matches consumers with providers (match rate); we use the match rate as a proxy for
the platform’s revenue and profitability. We focus on three information regimes—the occupancy
information where both consumers and providers are informed of the current occupancy level in the
platform, and two asymmetric information regimes where either consumers or providers are provided
with occupancy information, while the other side is provided with no information. We study how
the choice of information regime affects the platform’s profitability by analyzing and comparing the
match rates resulting from employing each of these regimes. In our model, users obtain a reward
for receiving service and incur a delay cost. Arriving users form an expectation of the delay cost
they will incur based on the delay information provided to them by the platform. Based on this
expectation, they decide whether to join the platform or balk in order to maximize their utility.

In summary we propose three contributions in chapter two: First, we model an on-demand
platform as a two-sided queuing system that facilitates matches between two user classes. Users in
each class are heterogeneous in their delay sensitivities. We contribute to the literature by studying
the platform’s information regime choice, that determines what information to disclose to users of
both user classes. Second, we compute the effective match rates associated with each information
regime. We characterize sufficient conditions for each regime to emerge in equilibrium and provide
insight into the conditions under which the platform prefers to hide information from one user class.
Third, as an extension, we demonstrate that for systems with higher levels of user heterogeneity
(a larger number of distinct patience sensitivity levels), the platform prefers to provide occupancy
information to at least one of its user classes for a wider range of parameters.

Motivated by the long delays experienced at security lines at airports, we study the problem
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of balancing efficiency and risk in multi-class screening systems. In general, security screening
systems at land borders, airports, seaports and other military and civil facilities aim to identify
malevolent people and illicit goods to mitigate downstream risks. The global scale of these operations
is enormous. For example, an estimated 1.1 million passengers cross US borders every day, resulting
in the seizure of around 8,000 drugs, $300,000 worth of currency and $3.8 million worth of products
in violation of Intellectual Property Rights laws on a typical day (US Customs and Border Protection,
2016). At the same time, screening operations often create long queues at checkpoints, which
impose significant system-wide costs. Screening systems thus need to balance the objectives of risk
management—i.e., ensuring reliable operations to identify threats—and operating efficiency—i.e.,
maintaining appropriate screening speeds to avoid long wait times.

In this chapter, we formulate decision-making models to select screening procedures in multi-class
settings. It takes the viewpoint of a screening operator who must balance efficiency and risk by
selecting one procedure for each job (person or package) from a menu of available ones. We first
consider instances with non-strategic agents, to determine how the selection of screening procedures
can leverage real-time information on queue lengths and each job’s perceived threat level. We then
extend our model to determine how anticipating agents’ strategic decisions to go through screening
or renege may impact the optimal selection of screening procedures. In both instances, we identify
the value of pre-screening information with respect to expected queue lengths and risk costs. More
specifically, we propose the following contributions in chapter three: First, we introduce a novel
dynamic decision-making model to balance efficiency and risk in multi-class queuing systems and
show that the optimal policy exhibits a double threshold behavior: All else equal, the shorter the
queue length and/or the higher the risk level, the stricter the optimal screening. Second, we find
that system performance increases by up to 6-7% if the pre-screening risk information is utilized in
the decision making. Third, we extend the base model to account for possible strategic behavior of
screened agents. Fourth, we assess the impact of strategic behavior and pre-screening information on
optimal screening policies and system performance. We find that agents’ strategic behaviors results
in stricter screening to try to deliberately force malevolent agents to renege. Moreover, we find that
better pre-screening information reduces total expected costs by mitigating information asymmetries;
however it does not necessarily reduce expected risks.

3
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Chapter 1

Data-Driven Dispatch Decisions for
Emergency Medical Services

1.1 Introduction

Decisions of dispatchers in Emergency Medical Services (EMS) play a critical role in saving lives of
patients. For example, in instances of cardiac arrests, for every minute without cardiopulmonary
resuscitation (CPR - an emergency lifesaving procedure performed when the heart stops beating),
the chance of the patient’s death increases by 10% (Larsen et al., 1993). It only takes 6-10 minutes
without care for irreversible brain cell damage and death (Weinberger et al., 1940). In instances of
motor vehicle crashes (MVC) or other traumatic injuries, which are other common triggers for EMS
response, longer response times were significantly associated with higher rates of mortality (Byrne
et al., 2019; Sampalis et al., 1999). Accordingly, preventing late responses and improving response
times in an EMS system are life-saving measures that many researchers have worked on in various
disciplines (Aringhieri et al., 2017).

An important component of an EMS system are the dispatchers who assign ambulances to
incoming emergency calls. EMS dispatchers face a complex problem as the decisions they make
impact the response time for the current call as well as the future incoming emergency calls. For
instance, if the only ambulance that is covering a neighbourhood is dispatched to an emergency call
that can be reached by another ambulance in time, this leaves the neighbourhood in a dire situation
for (possibly) incoming new emergency calls. This highlights the significant challenge in dispatchers’
decision making under future uncertainty of when and where next emergency calls will arrive. This
challenge is made more difficult by the fact that prediction of spatial and temporal components of
events such as emergency calls are inherently difficult. While general trends of when and where
emergency calls arrive can be driven using past data, utilization of these trends on the tactical level
is not straightforward as these trends typically lack precision and do not incorporate the current
state of the system.
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Although there is no national standard for pure EMS response, a common measure of performance
for EMS systems is often guided by National Fire Protection Association’s (NFPA) Standard 1710,
recommending the response time of a first responder to be less than 4 minutes from the time of
dispatch 90% of the time (Association et al., 2010). In order to achieve this goal, we propose a
data-driven approach combining principles from machine learning and optimization to tackle the
problem faced by the EMS dispatchers on the tactical level. We collaborated with the University
of Pittsburgh Department of Emergency Medicine and the City of Pittsburgh Bureau of EMS in
designing our solution approach, specifically, we utilized anonymized retrospective emergency calls in
the locale between the date of 2017-2018. Given a current emergency call, our method leverages past
emergency call data to form a set of representative scenarios using Closest Neighbours Clustering
and feeds these scenarios into a scenario based robust optimization model to produce a dispatch
decision for the current emergency call.

The first component of our method is a novel omniscient deterministic binary linear program
that considers forward looking dispatch decisions. In general omniscient models aim to solve the
dispatching problem under perfect future information. However, current state-of-the art omniscient
models do not consider forward-looking dispatch decisions that allow for a busy ambulance to be
queued in response to a new emergency call. We incorporate this feature in a new omniscient model
that we refer to as a Deterministic-Binary Linear Program (D-BLP) which is used as the basis of our
solution method for the dispatching problem under future uncertainty (the locations and timings of
emergency calls yet to arrive). To model future uncertainties, we utilize the past emergency call data
to form representative future scenarios. We refer to this first step of our solution method as Closest
Neighbours Clustering which consists of three stages: (i) Identification of Close Calls, (ii) Formation
of Scenario Sets, (iii) Clustering of Scenarios. Once we have a set of representative future scenarios
we then solve a scenario-based robust optimization model to obtain the dispatch decision for the
current emergency call.

Scenario-based robust optimization is a new modelling approach developed by Wang and Jacquillat
(2020). It combines ideas from stochastic programming and robust optimization by considering
probabilistic scenarios that are adversely chosen from corresponding uncertainty sets. This approach
neatly fits into our framework, as each representative future scenario is chosen from a cluster of
future scenarios that was built in the Closest Neighbours Clustering step. To solve the scenario-based
robust optimization model we employ the cutting plane algorithm proposed in Wang and Jacquillat
(2020), we show that employing this algorithm improves the solution time of our formulation by
around 60%, yielding practical solution times.

We compare our approach to a series of benchmarks from the literature such as the closest
dispatch policy (CDP) and dynamic-maximum-expected-coverage-location heuristic for dispatching
(DMEXCLP-D). Our method’s performance in terms of number of late calls achieves approximately
a 25% improvement over DMEXCLP-D and a 60% improvement over closest dispatch policies. We
also propose several variants of our approach as benchmarks to investigate the benefits of Closest
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Neighbours Clustering, multiple and adverse scenario considerations.
This chapter makes the following contributions. First, we develop a novel omnisicient optimization

model for the ambulance dispatching problem that incorporates forward-looking decisions. Second, we
model and solve the dispatch decision problem with future uncertainty by employing scenario-based
robust optimization - a novel approach combining principles of stochastic programming and robust
optimization. Third, and in conjunction with the scenario based robust optimization framework,
we introduce Closest Neighbours Clustering - a data-driven clustering approach for forming of the
uncertainty sets. Last, through thorough experimentation, we show that our solution method to the
EMS dispatching problem out-performs existing benchmarks and state-of-the art methods introduced
in the literature.

1.2 Literature Review

Our work is related to two streams of literature (i) emergency medical services (ii) data-driven
optimization.

Emergency Medical Services: A variety of strategic and tactical problems faced in EMS
has received significant attention from researchers from the field of management science. Readers
can refer to recent surveys by Aringhieri et al. (2017) and Bélanger et al. (2019) for a general
discussion of the literature. On the strategic level a well-known topic addressed by researchers is the
ambulance station location problem which is a special case of the facility location problem (see Li
et al. (2011), Başar et al. (2012), Ahmadi-Javid et al. (2017) and Güneş et al. (2019) for a survey of
studies). On a tactical level, the problem of where to locate/deploy ambulances that finish serving
patients has been addressed as a problem of relocation/redeployment by following series of papers:
Brotcorne et al. (2003), Gendreau et al. (2006), Andersson and Värbrand (2007), Maxwell et al.
(2010), Alanis et al. (2013), Saydam et al. (2013), Sudtachat et al. (2016), Van Barneveld (2016),
Van Barneveld et al. (2017). Few papers (Schmid (2012) and Nasrollahzadeh et al. (2018)) also
combine the decision of dispatching into their model of relocation, and compare their results with a
series of benchmarks. Using approximate dynamic programming they show that the implementation
of reallocation and redeployment policies leads to improvements in the system while the inclusion of
dispatching decisions into their models provide small improvements when compared to the closest
dispatch policy. In contrast to these papers, we only focus on the problem of dispatching, and assume
that finishing ambulances return back to their bases, which replicates the current practice. Moreover,
when compared to the closest dispatch policy our method provides more significant improvements in
the performance of the system.

Among papers that focus only on dispatching, Carter et al. (1972), Bandara et al. (2012) McLay
and Mayorga (2013a,b), Bandara et al. (2014) Jagtenberg et al. (2017a) and Sudtachat et al. (2014)
propose heuristic, simulation and Markov decision process based dispatching models with various
features such as objectives of patient survivability, coverage level, severity of calls, and different
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types of medical units to show the sub-optimality of closest dispatch policies. A close work to ours
is Jagtenberg et al. (2017b), in which authors propose an offline optimization model in which future
emergency calls are known in advance; they compare the performances of this offline optimization,
the closest-dispatch policy and the DMEXCLP-D heuristic proposed in Jagtenberg et al. (2017a).
Based on experiments using data from a large ambulance provider in Netherlands, they show that
the closest dispatch policy is 2.7 times worse than the offline optimal policy in terms of the fraction
of late calls, whereas this number is dropped down to 1.9 times with the DMEXCLP-D heuristic.
We compare our results with that of DMEXCLP-D heuristic and show that we can improve it by
another 15%.

Data-Driven Optimization: With advancements in information technology, the collection,
availability and utilization of data in business practices have gained significant momentum. Accord-
ingly, data-driven optimization has drawn attention from management science researchers. Readers
can refer to Bastani et al. (2020) for a recent and broad review of the topic. The majority of
related work first makes predictions using supervised learning and then feeds these predictions into
various optimization models (“predict then optimize”). For instance, in the context of supply chain
management a series of papers by Gallien et al. (2015), Ferreira et al. (2016), Alley et al. (2019),
Aouad et al. (2015), and Glaeser et al. (2019) first employ forecasting and then use the outcome of
forecasting in optimization of decisions such as shipment, pricing, assortment and facility location,
respectively. In the context of urban planning, Bertsimas et al. (2019) and Liu et al. (2020) use
supervised learning to predict travel times for school bus routing and last mile delivery.

Beginning with Bertsimas and Kallus (2020), researchers have started to explore incorporating
the prediction step into optimization models. More specifically, Bertsimas and Kallus (2020) employ
a weighted objective for a stochastic optimization problem and derive the associated weights using
supervised learning methods. In follow up work, Elmachtoub and Grigas (2021) generalize this
framework by introducing “Smart Predict then Optimize” (SPO), where the loss function of the
learning step considers the decision error induced by the prediction at the optimization step. Balghiti
et al. (2019) provides generalization bounds. Mandi et al. (2020) and Elmachtoub et al. (2020)
extend the SPO framework to solve large-scale combinatorial optimization problems and tree based
prediction models respectively.

A closely related work to ours is by Wang and Jacquillat (2020), in which the authors propose
the scenario based robust optimization framework for solving problems under categorical uncertainty.
They also develop a cutting plane algorithm for solution of the scenario based robust optimization
problem. We use this approach and algorithm for our work.

While the utilization of supervised learning is prevalent -as seen in the above literature- clustering
is another methodology used in Machine Learning. To our knowledge, only notable work that
employs clustering for estimation of features in optimization is by Bernstein et al. (2019), in which
the authors propose a dynamic clustering policy for estimating customer preferences for personalized
assortment optimization.
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In contrast to the above mentioned literature, we are first to employ clustering as a tool of
preparing the data to feed into the scenario based robust optimization step, and we are first to
employ such a technique in the context of emergency medical services.

1.3 Notation, Data and Normalizations

Throughout the chapter, we denote the emergency calls with letter c. Each emergency call has three
features, longitude, latitude and time of arrival which we denote with x, y and t, respectively, i.e.,
c = (x, y, t).

The data set contains information of emergency calls from January 1st 2018, through February
28, 2019. The information about the calls includes the location in terms of longitude & latitude and
date & time of arrival. The data-set includes a total of 39,957 emergency calls and it is denoted
with P := {c1, c2, . . . , c39,957}. We use the initial six month of this data as the training set denoted
with PTr and the remaining seven months as the test set denoted with PTs.

We apply a normalization to the data in order to better construct scenarios and relate the
magnitude of effects between the location and time variables of the emergency calls. Specifically, we
take the projection of latitude, longitude and time of arrival variables into a simpler three dimensional
space. The projection of longitude and latitude are rather straightforward: We simply project each
x and y into the (0, 1) interval by subtracting xmin and ymin and then multiplying with (1/xmax

and 1/ymax) where:

xmin = min
i∈{1,...,39,957}

xi

ymin = min
i∈{1,...,39,957}

yi

xmax = max
i&j∈{1,...,39,957}

(|xi − xj |)

ymax = max
i&j∈{1,...,39,957}

(|yi − yj |)

We normalize time in two steps. First, we translate the time of arrival of each call to the time of
arrival measured from the beginning of the day. We start each day at 4 am as, this is the time frame
that has the least amount of activity. For instance, if an emergency call arrived at 6:05 am, its time
of arrival would be translated into 125. Then at the second step, we project this value into a (0, 1)

interval by dividing it by 1440 (=24*60).
We denote an ambulance with the letter v; each ambulance is associated with a base. We denote

the set of ambulance bases with B = {1, 2, ..., B} where B is the number of ambulance bases. For
ease of exposition we assume that each ambulance base has exactly single ambulance, i.e., v ∈ B.
Whenever an ambulance responds to a call, it is dispatched from its base location. Accordingly, the
travel time associated with a dispatch decision is calculated using the locations of the ambulance

9



base and the emergency calls. We denote this travel time with ψ(c, v).

1.4 Closest Neighbours Clustering:

The first step of our approach is the formation of the future projections that will be fed into the
optimization model. This is the data-driven step that utilizes the training set. We refer to this step
as Closest Neighbours Clustering and apply it in three stages:

1. Identification of Close Calls: Given an emergency call c, find the N closest calls in PTr. We
denote this set as PN (c).

2. Formation of Scenario Sets: Using the set PN (c) we construct a set of scenarios. We denote
the set of scenarios with S(c).

3. Clustering of Scenarios: We cluster the scenario set S(c) into K subsets Sk(c) where k ∈ K =

{1, 2, . . . ,K} and Sk(c) ∩ Sk
′
(c) = ∅, ∀k, k′ ∈ K and ∪k∈KSk(c) = S(c).

The rationale behind this procedure is to form representative future scenarios from the training
set. In the first stage, we identify similar emergency calls for a given current call; these calls will
form the starting point of each scenario. Once the scenario set is obtained, we apply clustering to
obtain a partition of the larger scenario set. Each partition is a subset of scenarios that look similar
to each other. As part of the optimization, one member from each cluster is adversely chosen as a
representative future scenario. By doing so, the optimization step avoids consideration of similar
scenarios in the larger scenario set while protecting against worst case situations. Below we explain
each stage of Closest Neighbours Clustering in more detail.

1.4.1 Identification of Close Calls

In this stage, we identify the N emergency calls that look most similar to the current emergency
call in request of an ambulance. In order to assess similarity, we define a metric that measures how
similar different emergency calls are to each other. This metric takes into account all the components
of a call, i.e., it incorporates both the spatial and temporal similarities between the calls. More
formally, we refer to this metric as the between-calls-metric and denote it with dc(i, j), for any two
calls ci and cj . We define it as:

dc(i, j) =
√

(xi − xj)2 + (yi − yj)2 + α(ti − tj)2,

where α is weight parameter for the temporal component. We set α = 1 for the remainder of the
chapter.

Using the between-calls-metric we identify the N closest calls to the current emergency call and
construct the set PN (c) = {c1, c2, . . . , cN}. Note that N is a parameter we choose; thus plays an
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important role on the performance of the optimization step. If this parameter is chosen to be too
small, then possibly informative future scenarios may be omitted from the model (under-fitting). If
it is chosen too large, possibly irrelevant future scenarios may be included in the optimization and
blur the decision making (over-fitting). This is similar to the well-known bias-variance trade-off in
the machine learning literature.

1.4.2 Formation of Scenario Sets

A scenario is a set of temporally ordered emergency calls. We form each scenario by taking a call
ci ∈ PN (c) and its successors over the next T minutes from the training set. Accordingly, we denote
a scenario that begins with a call ci ∈ PN (c) as si(c) := {c0

i , c
1
i , c

2
i , . . . , c

Mi
i }, where c1

i , c
2
i , . . . , c

Mi
i

are the successors of the ci in over the next T time units and in an ordered manner. The call c0
i

corresponds to ci. Note that different scenarios can have different number of calls, i.e., Mi can
take different values for different i. Accordingly, by collecting these scenario starting with each call
ci ∈ PN (c), we form the set of scenarios, i.e., S(c) := {s1(c), s2(c), . . . , sN (c)}.

Notice that T is another parameter of the model that determines how forward looking scenarios
are. Similar to the choice of N , choice of too small a T can lead to under-fitting, while choice of too
large a T can lead to over-fitting.

1.4.3 Clustering of Scenarios

Once the scenario set is defined we then cluster the scenario set into subsets of similar scenarios. In
order to do so, we introduce a new metric that measures the similarity between different scenarios.
We refer to this metric as the between-scenarios-metric and denote it with Ds(i, j) for distance
between two scenarios si(c), sj(c) ∈ S(c). Before formally defining the between-scenario-metric we
order the set of scenarios S(c) for ease of exposition: We order the indices of scenarios in S(c) such
that the number of calls in scenarios decrease as the scenario index increases. In other words, the
scenario with the highest number of calls is indexed with 1 and the scenario with the lowest number
of calls is indexed with N . In case of a tie, any arbitrary rule can be applied and does not effect
the outcome of the clustering nor the distance metric. With the given ordered scenario set we now
formally define the between-scenario-metric for scenarios i < j:

Ds(i, j) := max
cm∈si(c)

(
min

cn∈sj(c)
ds(cm, cn)

)
The between-scenario-metric measures the distance between two scenarios by first matching

the closest calls from the smaller scenario for each call in the larger scenario and then taking the
maximum of the shortest distances over the matched calls in the larger scenario. In other words, the
distance between two scenarios is the largest distance among the distances between the closest calls
of the two scenarios. This metric ensures that if two scenarios contain similar calls, the scenarios are
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close to each other due to selection of closest calls from the scenarios. On the other hand if the two
scenarios are not similar due to a dissimilar emergency call in one of the scenarios, this is expressed
in the distance between scenarios by the farthest distance considered among the matched calls. In
Proposition 1.1 we show that our between-scenario-metric Ds(i, j) is a proper metric. The proof is
presented in Appendix A.1.1.

Proposition 1.1. Ds(i, j) is a proper metric.

Using the between-scenarios-metric, we create a distance matrix for a given set of scenarios, which
we give to an off-the-shelf algorithm for partitioning of the scenario set. We employ the Partitioning
Around Medoids (PAM) Algorithm which is a modified version of the well-known K-Means algorithm.
While the K-means algorithm finds the center of a cluster as the mean of the members of the clusters,
the PAM algorithm picks a member of the cluster as the cluster center. It yields a partition of the
scenario set S(c) into K subsets Sk(c) = {sk1(c), sk2(c), . . . , skN(k)(c)} such that k ∈ K = {1, 2, . . . ,K}

and Sk(c) ∩ Sk
′
(c) = ∅, ∀k, k′ ∈ K and ∪k∈KSk(c) = S(c). N(k) represents the number of scenarios

in cluster k. K is the number of clusters and a parameter of the model. An advantage of using the
PAM algorithm is that it allows us to pick the center of each cluster as a representative scenario for
specials cases of the optimization step.

While having a greater number of clusters improves the quality of “clustering” i.e., it decreases
total within cluster distances, it does not necessarily improve the performance the optimization step.
Similar to the parameters N and T , one might over-fit or under-fit the model if the choice of K is
not correct.

At the final stage of clustering we form a probability distribution over the clusters as we will
use this probability distribution in the optimization step. We denote the probability associated
with each cluster with pk ∈ (0, 1) ∀k ∈ K. We set the probability of each cluster to be the number
of scenarios in the cluster normalized by the total number of scenarios in the scenario set N , i.e.,
pk = |Sk(c)|

|S(c)| = N(k)
N .

1.5 Optimization Model for Dispatch Decision

We develop a scenario based robust optimization model to determine which ambulance to dispatch
for a given emergency call. In making this decision, we utilize possible future scenarios that we
derive in Section 1.4.

Before formally defining the model, we introduce following assumptions which are also used in
the literature (see Jagtenberg et al. (2017b)):

Assumption 1: The occurrence of emergency calls are independent of previous incidents. This
is a realistic assumption that can also be verified in the data.

Assumption 2: The travel time between any two points is deterministic and known in advance.
This is a realistic assumption for many cities in developed countries as ambulances have priority in
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traffic and hence are not affected by the traffic congestion.
Assumption 3: The busy time of an ambulance excluding the travel time is known, deterministic

and the same for all emergency calls. While this assumption seems limiting, it does not impact the
comparison of different algorithms as we use this assumption in all of the benchmarks.

We begin by introducing a novel deterministic binary linear program (D-BLP) that determines
the dispatch decisions for all the calls in a single scenario. This model produces an omniscient policy
of dispatches; this dispatch policy serves as the upper bound on the performance of any dispatch
policy for any given scenario. Then, using the deterministic binary linear program as a basis, we
introduce a scenario based robust optimization model that incorporates the future uncertainty into
the decision making.

In all the methods we consider, we aim to minimize the fraction of late calls. However, our
formulation allows consideration of other objectives, such as minimization of average response time
with minimal modifications.

1.5.1 Deterministic Binary Linear Program:

There are two inputs to the D-BLP that must be computed given a real-life scenario S =

{c1, c2, . . . , cS}. The first input is the penalty term for the objective function. Let lcc2v ∈ {0, 1}
denote the penalty associated with assigning ambulance v to call c after state c2. If the ambulance
arrives within the specified threshold time, lcc2v is set to 0 and 1 otherwise. The set of states for a
call ci that an ambulance can respond from consists of c2 ∈ C2(ci) := {A, c1, c2, . . . , ci−1}, where
{c1, c2, . . . , ci−1} corresponds to emergency calls before call ci and A corresponds to the availability
state. To put it in another way, D-BLP model considers the dispatch of a busy ambulance to a new
emergency call ci while it is responding to a prior emergency call c2. This is in contrast to the offline
BLP model of Jagtenberg et al. (2017b), where authors assume that only available ambulances can
be dispatched for an emergency call. We note that, for a given scenario of emergency calls, we
trivially pre-compute lcc2v by calculating the response time of an ambulance v for an emergency
call c using the location information. In doing so, we also account for the delay that is experienced
when ambulance v responds to call c after responding to call c2 if the response time frames of calls c
and c2 overlap. Response time frame is the time span that it takes for an ambulance to reach the
location of the call, take care of the patient and become available at its base again. If response time
frames of two calls overlap for an ambulance, then the ambulance has to finish serving the prior call
before responding to the latter emergency call. Other penalty terms such as response time for a call
c can be easily utilized by setting lcc2v appropriately.

The second input is the indicator term for the logical flow of the ambulances. Let acc2v ∈ {0, 1}
denote the indicator term that is set to 1 if the response time-frames of calls c and c2 for ambulance
v overlap and 0 otherwise. In our experiments, we start a day from a time that all ambulances are
available and hence we assume the indicator term for the availability state, acAv always takes value 1
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for the D-BLP model. We later relax this assumption for our scenario based robust optimization
model. Note that similar to the penalty term lcc2v we trivially pre-compute indicator term acc2v

using the arrival times of calls c and c2 along with response time of ambulance v to these calls.
We note that in the calculation of lcc2v and acc2v we only consider single overlaps, disregard the

possibility of multiple overlaps. For example, if ambulance 1 is responding to calls X, Y and Z in this
order with overlapping time frames of calls X-Y and Y-Z, the delay associated with responding to
call Y after call X is disregarded in the calculation of terms lZY 1 and aZY 1. As a remedy for this, we
inflate the response times by a certain amount for overlapping response time frames when calculating
the penalty term lcc2v. While we try for different values for the inflation of the response time under
overlaps, we find 9 minutes to work well for time threshold of 9 minutes in the experiments we run.
Altogether, these calculations lead to an approximation of dispatch decisions for a real-life scenario,
but provide us with dispatch policies that serve as upper bounds for any online dispatch method as
will be seen in the experimental results.

The decision variables representing the dispatch decisions are denoted with xcc2v ∈ {0, 1}. They
take value 1 if ambulance v is dispatched to emergency call c after state c2 and 0 otherwise.

min
xcc2v

∑
c∈S

∑
c2∈C2(c)

∑
v∈B

lcc2vxcc2v (1.1)

s.t.
∑

c2∈C2(c)

∑
v∈B

xcc2v = 1, c ∈ S (1.2)

∑
c2∈C2(c)

xc′c2v + acc′v +
∑

c2∈C2(c)c2 6=c′
xcc2v ≤ 2, v ∈ B, c, c′ ∈ S c > c

′
(1.3)

xcc2v ≤ acc2v v ∈ B, c ∈ S, c2 ∈ C2(c), c 6= c2 (1.4)

xcc2v ∈ {0, 1} (1.5)

Constraint (1.2) ensures that every emergency call c ∈ S is dispatched an ambulance. Constraint
(1.3) ensures that if ambulance v were to respond to both emergency calls c and c′ (c′ being the
prior one) and if the response time frames of two calls were to overlap, then the decision variable
xcc′v is set to 1. Similarly, constraint (1.4) ensures that decision variable xcc2v is set to 0 if there
are no overlaps between a call c and its prior call c2. Together, constraints (1.3)-(1.4) capture the a
given decision’s impact on the subsequent calls and ensure that decision variables are set to correct
values for the movement of ambulances.

As mentioned earlier, in comparison with the offline BLP model of Jagtenberg et al. (2017b),
our D-BLP model considers forward-looking dispatch decisions which allows the D-BLP model to
produce more flexible dispatch policies. In Proposition 1.2, we formalize this claim. Let us denote
the feasible decisions space of offline BLP and D-BLP with XBLP and XD−BLP , respectively.
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Proposition 1.2. Every feasible decision in offline BLP is a feasible decision in D-BLP:

XBLP ⊂ XD−BLP

In light of Proposition 1.2 an important advantage of D-BLP is that it does not require an
assumption of availability of at least one ambulance whenever an incident occurs (which is assumed
by Jagtenberg et al. (2017b)). In situations that violate this assumption the offline BLP of Jagtenberg
et al. (2017b) becomes infeasible, whereas our model produces a solution.

The D-BLP model finds a dispatch policy for a given scenario. In other words, we find the
dispatch policy for a set of calls in a specific time such as a day. In doing so, D-BLP assumes
perfect knowledge of the future and hence provides an upper bound on the performance of dispatch
methods we consider. Due to the consideration of only two-way overlaps, we cannot guarantee if
the dispatch policy provided by D-BLP is an optimal policy for a given scenario, but as presented
in Section 1.7, its results serve as an upper bound. We next present the scenario based robust
optimization formulation which we build on D-BLP.

1.5.2 Scenario Based Robust Optimization Model

In this section we introduce our scenario based robust optimization model (SBROM) that incorporates
future uncertainty when making a dispatch decision for a given emergency call c. SBROM builds
upon D-BLP and aims to solve the dispatch decision by considering multiple scenarios chosen from
corresponding uncertainty sets.

Note that SBROM outputs a dispatch decision for each emergency call ci in a real-life scenario
s = {c1, c2, . . . , cS}. Accordingly, it must be run S times to form the dispatch policy for real-life
scenario s. This is done in a rolling horizon manner, i.e., dispatch decision is made for calls c1, . . . , cS

in an ordered fashion. Accordingly, when solving for a call ci an ambulance v might be busy. In order
to account for this, we add a busy state B to the set of states, i.e., C2(ci) := {c1, c2, . . . , ci−1, A,B}.

The general idea in SBROM is that a cluster Sk(ci) = {sk1(ci), s
k
2(ci), . . . , s

k
N(k)(ci)} for k ∈ K

(formed by Closest Neighbours Clustering for the emergency call ci ∈ s) forms a future forecast for
the call ci. For the purposes of robust optimization, each cluster forms an uncertainty set. SBROM
aims to make a dispatch decision for call ci given K possible future projections where each future
projection is selected from the cluster Sk(ci) as the worst possible projection. Naturally, each
projection does not have equal weight on the decision as some projections can be more likely to
occur (as some clusters are larger than others). Accordingly, the weight of each projection is the
corresponding probability pk of the cluster to which it belongs. Recall that pk was found at the end
of the Closest Neighbours Clustering step.
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Our formulation is

min
xkn
cc2v

∑
k∈K

pk max
n∈{1,...,N(k)}

∑
c∈C

∑
c2∈C2

∑
v∈B

lkncc2vx
kn
cc2v (1.6)

s.t.
∑
c2∈C2

∑
v∈B

xkncc2v = 1, c ∈ C, k ∈ K (1.7)

∑
c2∈C2

xkn
c′c2v

+ akn
cc′v

+
∑

c2∈C2c2 6=c′
xkncc2v ≤ 2, v ∈ B, c, c′ ∈ C c > c

′
, k ∈ K (1.8)

xkncc2v ≤ a
kn
cc2v v ∈ B, c ∈ C, c2 ∈ C2c 6= c2, k ∈ K (1.9)∑

c2∈C2

xkn1c2v =
∑
c2∈C2

xn
′
k
′

1c2v v ∈ B, c ∈ C, k, k′ ∈ K (1.10)

xkncc2v ∈ {0, 1} (1.11)

Similar to D-BLP the inputs lkncc2v and akncc2v are pre-computed for each future projection s(ci) ∈
S(ci). Accordingly, constraints (1.7)-(1.9) ensure that each call in a projection s(ci) receives an
ambulance and that corresponding decision variables for each decision take the correct value based
on the ambulance movements.

As part of the implementation, we replace the first call of each scenario in S(ci) (hence, the first
call of each scenario in each cluster Sk(ci)) with the current call ci so that the decision variable
corresponding to first call corresponds to the current emergency call that requires an ambulance. In
terms of stochastic programming and robust optimization, xkn1c2v constitutes the first stage decision.
Accordingly, as an addition to the D-BLP model, in SBROM we impose the constraint (1.10) that
ensures the same ambulance is dispatched for the first call in each future projection.

Two special cases of SBROM are (i) Stochastic-BLP (S-BLP) where the clusters Sk(ci) consist
of a single future projection (for instance the cluster center) and (ii) Robust-BLP (R-BLP) where
we have a single cluster. In case of S-BLP, the cluster center of each cluster is taken as the future
projection instead of the worst possible projection. In case of Robust-BLP, the worst member of the
single cluster that yields the highest number of late calls is chosen as the future projection. In our
experimental results we report performance of these models as well.

In Proposition 1.3, we present an equivalent mixed integer optimization model for solving SBROM.
Let N (k) := {1, . . . , N(k)} denote set of indices for projections in cluster k.

Proposition 1.3. SBROM is equivalent to the following mixed-integer linear program (SBROM-
MILP):

min
xkn
cc2v

∑
k∈K

pktempk (1.12)

s.t. tempk ≥
∑
c∈C

∑
c2∈C2

∑
v∈B

lkncc2vx
kn
cc2v k ∈ K, n ∈ N (k) (1.13)
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∑
c2∈C2

∑
v∈B

xkncc2v = 1, c ∈ C, k ∈ K, n ∈ N (k) (1.14)

∑
c2∈C2

xkn
c′c2v

+ akn
cc′v

+
∑

c2∈C2c2 6=c′
xkncc2v ≤ 2, v ∈ B, c, c′ ∈ C c > c

′
, k ∈ K, n ∈ N (k) (1.15)

xkncc2v ≤ a
kn
cc2v v ∈ B, c ∈ C, c2 ∈ C2c 6= c2, k ∈ K, n ∈ N (k)

(1.16)∑
c2∈C2

xkn1c2v =
∑
c2∈C2

xn
′
k
′

1c2v v ∈ B, c ∈ C, k, k′ ∈ K, n ∈ N (k) (1.17)

xkncc2v ∈ {0, 1} (1.18)

The SBROM-MILP formulation can be directly solved by any commercial solver, however, as
the number of neighbourhood calls N increases, the SBROM-MILP formulation quickly becomes
impractical to solve for real life instances. For instance, for a neighborhood of 300 emergency
calls (N = 300), it takes about 45 seconds for the solution, which is not practical for a real-life
decision. In order to bring down the solution time, we employ the algorithm presented in Wang and
Jacquillat (2020) for solving scenario based robust optimization problems. We present the results of
computational performance in section 1.7. In section 1.5.3 we briefly describe the algorithm and its
implementation on our problem. Readers can refer to Wang and Jacquillat (2020) for further details
and accompanying proofs.

1.5.3 Solution Algorithm

The scenario based robust optimization problem we are addressing falls under the realm of decision-
making under categorical uncertainty. A few examples of this problem include logistics operations
under unknown customers with distinct features which are modeled with categorical variables and
disaster response under unknown network disruptions where damaged components of the network
pose a categorical uncertainty. In our case, consideration of scenarios constitute the categorical
uncertainty as scenarios are not expressed with continuous variables but with a series of emergency
calls. Accordingly, we leverage the algorithm developed by Wang and Jacquillat (2020) that aims
to solve problems with categorical uncertainty. Algorithm 1 provides a step-wise procedure for the
proposed algorithm.

At each iteration τ the algorithm considers a subset of scenarios, denoted with Ŝkτ (c) for each
uncertainty set Sk(c). Then it solves the SBROM-MILP with these subset of scenarios as a master
problem, i.e., master problem for the algorithm is the SBROM-MILP with smaller number of future
projections than the original problem. The solution to the master problem provides a valid lower
bound to the original problem. Note that, the solution to the master problem provides a dispatch
decision for the current emergency call c which is the first stage solution. Then, using the first stage
solution, an upper bound for the original problem is obtained by evaluating the recourse function for

17



Algorithm 1 Cutting plane Algorithm for solving SBROM-MILP

Input: Sk(c)
Initialization
(a) Set a tolerance ε = 0.01 (Optimality gap)
(b) Initialize lower bound LB = 0 , upper bound UB =∞, and iteration index τ = 0.
(c) Initialize restricted uncertainty sets Ŝk(c)1 = {sk1(c)}, ∀k ∈ K
while (UB − LB)/LB > ε do
Step 1. τ = τ + 1 Master Problem:
(a) Solve master problem with subset of scenarios Ŝkτ (c)
(b) Update lower bound
(c) Retrieve the dispatch ambulance for the current emergency call
(d) Using the dispatch ambulance solve D-BLP model for all scenarios
(e) Update upper bound.
Step 2. Generate new subset of scenarios Ŝk(c)τ+1

(a) Solve the integer program of Equations (A.10)-(A.13).
(b) Update subset of scenarios Ŝk(c)τ+1

end while
Return the dispatch decision

each scenario in the original uncertainty sets. For our problem, the recourse function corresponds to
the D-BLP model, i.e., we find the upper bound by solving D-BLP model for each future projections
in all of the uncertainty sets given the dispatch decision for the current emergency call. We denote
the objective function value of the second stage solution for each future projection (scenario) s in
the uncertainty set k at iteration τ with Z(τ, s, k). Then, upper bound at iteration τ is found by∑

k∈K pk×maxs∈N (k) Z(τ, s, k). Once an upper bound and a lower bound is obtained for the current
subset of scenarios, the algorithm finds a new subset of scenarios. This step requires a solving an
integer optimization problem which we present in Appendix A.1.4. These two steps are repeated
until the upper bound and the lower bound converge to each other.

1.6 Experimental Setup

In this section we present the experimental setup with which we compare our methods with that
of the benchmarks. Section 1.6.1 describes the series of benchmarks; Section 1.6.2 presents the
simulation environment in which we test the different dispatch methods.

1.6.1 Benchmarks

We begin with introducing the benchmark methods. For a fair comparison, we extend the assumptions
introduced in Section 1.5 to the benchmark methods. The first method is the Closest Dispatch
Policy (CDP), in which the closest available ambulance is dispatched for the emergency call c; the
closest ambulance is determined based on the time it will take ambulance v to respond call c, which
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is calculated using locations of the emergency call c and ambulance base v where v is chosen among
the available ambulances. CDP is the greedy method of dispatching that is most commonly used as
a benchmark in the literature (Jagtenberg et al., 2017b).

The second method is Closest Dispatch Policy with Overlaps (CDP-O). This method is a
modification of the CDP policy in which a busy ambulance can be queued to respond emergency
call c after responding to another call. Similar to CDP, the closest ambulance is determined based
on the time it takes for ambulance v to respond call c while taking into account the time it will
take for ambulance v to become available (which is 0 for already available ambulances). Based on
Assumption 3, the time at which ambulance v becomes available is known in advance and hence
calculation of response time of ambulance v to call c is simply time it takes for ambulance v to
become available at its base plus time its takes ambulance v to reach the location of the call c. Once
respond times of all ambulances are found, ambulance with the smallest response time is dispatched
to call c.

The third method is the Dynamic Maximum Expected Covering Location Problem for Dispatching
(DMEXCLP-D) heuristic that is first introduced in Jagtenberg et al. (2017a). DMEXCLP-D is
the tactical dispatch method that is most close to our method. While there are other methods
that consider dispatching in ambulance location and relocation problems, they are not at the same
tactical level as we are, and further mix the location-relocation decisions into the decision-making
frame. We implement the DMEXCLP-D method and tune its parameters for our data and setting.

The fourth method is D-BLP as it gives the best dispatch policy for a given scenario. Recall
that D-BLP provides the upper bound on the performance of any dispatch policy.

The fifth through ninth methods are variations of the SBROM method by which we display the
benefits of incorporating uncertainty, Closest Neighbours Clustering and worst-scenario considerations.
In the fifth, sixth and seventh methods, we do not employ the worst-scenario selection, i.e., the
maximization over the members of the cluster is removed from the formulation. Accordingly, the
remaining formulations can be considered to be S-BLPs for which we modify the Closest Neighbours
Clustering stages. In the fifth method, we skip the first stage of Closest Neighbours Clustering and
instead of finding a set of close calls for the current emergency call c, we use the whole training data
set in forming of the scenario sets, i.e., we form scenarios starting with each emergency call in the
training data, and cluster these scenarios. In short, in order to make a dispatch for an emergency
call c, we solve the S-BLP with the pre-set future projections that were found by clustering of whole
training set. By having the fifth method as a benchmark we showcase the benefits of using close calls
to the emergency call c, as other calls may dilute the future projection. We refer to fifth method as
S-BLP-F. Note that it is practically impossible to employ the worst-projection in the formulation of
S-BLP-F, as the size of clusters is too large for computations to finish in reasonable amount of time.

In the sixth method, we exclude the third stage of Closest Neighbours Clustering; instead we find
M closest calls to form M future projections with each projection having equal probability. In other
words, we skip the clustering step, and set each scenario starting with the close calls to be the future
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projection for the optimization step. Notice that due to large computational times, the choice of M
is significantly smaller than choice of N . More specifically, we choose M to be close to the choice of
K where M << N and K << N . By having the sixth method as a benchmark, we showcase the
benefits of having a sufficient number of close calls to be able to use clustering on the associated
scenarios to obtain a practical solution time to the problem. We refer to this method as S-BLP-M.

In the seventh method, we employ all stages of the Closest Neighbours Clustering and choose the
center of each cluster as the representative projection from that cluster. We use this method as a
benchmark to showcase the benefits of picking the worst-projection (robustification) when choosing
a member of each cluster. We refer to this method as simply Stochastic-BLP (as mentioned earlier)
and use S-BLP as its abbreviation.

In the eight method, we use a single cluster of future projections and omit the consideration of
different scenarios. By employing this method we highlight the benefits of using multiple clusters of
future projections and considering more than a single scenario. We refer to this method as simply
Robust-BLP (as mentioned earlier) and use R-BLP as its abbreviation.

In the ninth method we use a single future projection to feed into optimization and do not
consider any future uncertainty. We neither consider multiple clusters of future projections nor do
the single cluster have multiple members. We simply take the closest call and in the training data
and form the future projection based on the series of emergency calls that arrived after this call.
In other words, we employ Closest Neighbours Clustering with N = 1 and K = 1 and skip the
clustering step. By employing this method we highlight the benefits of considering multiple future
projections and incorporating uncertainty to the decision making. We refer to this method as Online
Deterministic BLP and use OD-BLP as its abbreviation.

1.6.2 Simulation

In this section we present the simulation procedure with which we test the different dispatch
methods. Algorithm 2 displays a detailed pseuo-code of the simulation procedure. For all dispatch
methods except D-BLP, we employ Algorithm 2 to obtain the dispatch policy and the accompanying
performance measures for a given real-life scenario s. For D-BLP we first compute the required inputs
lcc2v and acc2v and feed these inputs to obtain the dispatch policy for scenario s. We keep track of
two important performance measures, (i) response time for each emergency call; and (ii) whether
if ambulance was late to response, i.e., if the emergency call received the ambulance later than
the threshold response time. Using the response times, we compute the average response time and
average response time for late calls, and using the late responses we compute the total number of
late responses for an experiment. Note that the objective functions of all optimization methods aim
to minimize the number of late responses, but also has an impact on the average response time as
well as average response time for late calls.

The inputs to the simulation procedure are postT ime, timeThreshold, a real-life scenario
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Algorithm 2 Simulation for testing
Input: postT ime, timeThreshold, s = {c1, c2, ..., cs}
Input: travelT imeMatrix[c, v], dispatchMethod(. . . ), conditionalClutering(. . . )
availabilityOfAmbulances[B]← 1
availableT imesOfAmbulances[B]← 0
responseT ime[s]← 0
dispatchedAmbulance[s]← 0
penalty[s]← 0
currentCall← 0
currentT ime← 0
while currentCall ∈ s do
currentT ime← currentCall[t]
for all v ∈ B do
if availableT imesOfAmbulances[v] < currentT ime then
availableT imesOfAmbulances[v]← 0
availabilityOfAmbulances[v]← 1

end if
end for
[clusters, probabilities]← conditionalClutering(currentCall, . . . ,
. . . , availabilityOfAmbulances, availableT imesOfAmbulances)
dispAmb← dispatchMethod(clusters, probabilities)
dispatchedAmbulance[currentCall]← dispAmb
if availabilityOfAmbulances[dispAmb] == 1 then
responsT ime[currentCall]← travelT imeMatrix[currentCall, dispAmb]

else
responsT ime[currentCall] ← availableT imesOfAmbulances[dispAmb] − currentT ime +
travelT imeMatrix[currentCall, dispAmb]

end if
availabilityOfAmbulances[dispAmb]← 0
availableT imesOfAmbulances[dispAmb] ← travelT imeMatrix[currentCall, dispAmb] +
postT ime
if responsT ime[currentCall] < timeThreshold then
penalty[currentCall]← 1

else
penalty[currentCall]← 0

end if
end while
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s = {c1, c2, . . . , cs}, travelT imeMatrix[c, v], conditionalClustering(. . . ) and dispatchMethod(. . . ).
The input postT ime is the simulation parameter for how much time an ambulance becomes busy
after arriving to the scene of an emergency call. As noted in Assumption 3, this parameter is known
and deterministic. We set its value to be 20 minutes for our experiments. The input timeThreshold
is the time threshold for an ambulance response to be considered late. For our main results, we use
the timeThreshold = 9 minutes below.

For testing purposes, we utilize the test data set we have introduced in section 1.3. The real-life
scenarios we consider in experiments consist of emergency calls in a day (24-hour period) starting
from 4 am. We start a day at 4 am because it is time of day with the least amount of activity. This
allows us to set the state of all ambulances to be available at the beginning of a scenario. We note
that the number of calls in each scenario might differ, as these are real life instances. The input
travelT imeMatrix[c, v] is the matrix of travel time for ambulance v to reach emergency call c. For
a given scenario s we pre-compute the travel times between each emergency call and ambulance.
Based on Assumption 2, this computation is trivial.

The inputs conditionalClustering(. . . ) and dispatchMethod(. . . ) take various forms as described
in Section 1.6.1. For instance, for CDP method, the Closest Neighbours Clustering step is not
needed and an ambulance is dispatched based solely on the response times.

1.7 Experimental Results

In this section we present the results of our experiments. In Section 1.7.1 we report our main results
comparing the performance of our methods against the benchmarks for a series of performance
metrics. In Section 1.7.2 we display the sensitivity of our method to the parameters of the Closest
Neighbours Clustering step. In Section 1.7.3 we test the robustness of our method to parameters
of the experimental setting. Finally, Section 1.7.4 presents the comparison of computational times
needed for direct implementation and the algorithm for scenario based robust optimization developed
by Wang and Jacquillat (2020).

1.7.1 Performance Comparisons

The benchmarks methods such as CDP, CDP-O and D-BLP, are non-parametric dispatch methods
and hence do not require parameter tuning, however, our methods and DMEXCLP-D require
parameter tuning. For this purpose, we split the test set PTs into two subsets PTs1 and PTs2 . We
stress that both subsets have no intersection with the training set used for the Closest Neighbours
Clustering: PTs1 ∩PTr = ∅ & PTs2 ∩PTr = ∅. We use the first subset PTs1 to find the best parameters
for our methods and use the second subset PTs2 to compare the performances of our methods. We
report the results for the both subsets. The first subset consist of forty days of experiments with a
total 4552 emergency calls and the second subset consists of a hundred and forty days of experiments
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with a total of 19126 emergency calls. While the objective of the optimization methods is to minimize
the number of late calls, we report the performances of all methods with respect to three different
important metrics (i) number of late calls, (ii) mean response time and (iii) mean response time for
late calls. Late calls refer to the emergency calls that receive an ambulance after a time threshold.
As noted earlier, a single experiments consists of emergency calls in a 24-hour period starting from 4
am and we set the time threshold to be 9 minutes based on Lamb et al. (2014).

Table 1.1 below shows the performances of all methods for the three metrics for both subsets of
test data. Results of the first and second subsets are shown under “In-Sample" and “Out-Of-Sample"
columns respectively. For the In-Sample column, results are shown for the parameter that performs
best in terms of number of late calls.

Methods
Number of
Late Calls

Mean
Response Time

Mean Response
Time of Late Calls

I-S O-o-S I-S O-o-S I-S O-o-S
CDP 81 240 3.24 3.27 10.71 10.51
CDP-O 64 195 3.2 3.22 10.61 10.64
DMEXCLP-D 44 124 5.5 5.58 14.43 14.67
S-BLP-F 40 97 4.97 4.89 20.83 23.26
S-BLP-M 41 99 5.04 4.97 21.36 22.99
S-BLP 38 114 5.03 4.96 20.26 22.05
R-BLP 116 378 5.61 5.63 19.87 19.54
OD-BLP 104 325 5.54 5.58 19.51 19.98
SBROM 33 91 5.15 5.15 19.05 22.21
D-BLP 29 85 5.09 4.8 16.25 17.39

Table 1.1: Performances of all methods. I-S stands for In-Sample and O-o-S stands for
Out-of-Sample

Observe that the performance of the D-BLP method for both subsets are 29 and 85, respectively.
These numbers constitute the upper bound of performance for late calls for the two subsets. With
respect to these upper bounds, the performances of CDP and CDP-O methods perform poorly, with
a total of 321 and 259 late calls, respectively. One observation we derive from examining the number
of late calls under the CDP and CDP-O policies is the potential benefits of allowing future-looking
decisions in dispatching. By allowing overlaps in response time frames, performance of the CDP
policy was improved by around 19%. In practical terms, if dispatchers also consider ambulances
that will become available soon, the system performance in terms of late calls can be significantly
improved. We also observe that the performances of CDP and CDP-O methods compared to the
D-BLP method for mean response time and mean response time of late calls are over-performing
with 3.24-3.27, 3.2-3.22 and 5.15 minutes, respectively. This is an expected result as the CDP and
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CDP-O methods myopically send the closest vehicle to an emergency call. Yet, this difference also
highlights the well known trade-off between the two objectives of minimizing the number of late calls
and minimizing the mean response time (Jagtenberg et al., 2017a). The D-BLP method sacrifices its
performance in mean response time to achieve better performance in number of late calls.

The DMEXCLP-D method requires a single parameter q, that indicates the pre-determined
probability of an ambulance being unavailable. Accordingly, we estimate the parameter q by
computing the total workload of the past emergency calls and dividing it by total number of
ambulances. This value approximately equals to 0.18. We experimented (using In-Sample subset)
with parameter values between 0.1 and 0.3 and saw that the performance of DMEXCLP-D is
unaffacted by small perturbations around 0.18. While the DMEXCLP-D method performs noticeably
better than the CDP and CDP-O methods as noted by Jagtenberg et al. (2017b), there is still room
for improvement as it yields 44 and 124 late calls in the In-Sample and Out-of-Sample subsets,
respectively. Moreover, its performance in mean response time is inferior to the D-BLP method.
This is an important observation as the D-BLP method achieves the minimum number of late
calls by sacrificing the mean response time compared to CDP and CDP-O policies. However, the
DMEXCLP-D method performs worse than the D-BLP in terms of mean response time as well.

Among online methods we note that SBROM performs the best with 33 and 91 late calls in
In-Sample and Out-Of-Sample subsets. Its outcomes achieve 59%-62%, 48%-43% and 25%-26%
performance improvements over CDP, CDP-O and DMEXCLP-D methods. Moreover, we observe
that SBROM achieves a smaller number of late calls compared to the DMEXCLP-D method while
also maintaining smaller mean response times. Given the trade-off between the mean response
time and number of late calls, our method, SBROM, achieves improvement over both metrics when
compared to state of the art methods in the literature. These improvements highlight the benefit of
using the SBROM method for ambulance dispatching. While these improvements are worthwile, one
setback of the SBROM method is its performance in mean response time for late calls: In achieving
a smaller number of late calls, the SBROM methods sacrifices some performance in the response
time of late calls.

Next we compare the performance of the SBROM method with its variants (S-BLP-F, S-BLP-M,
S-BLP, R-BLP and OD-BLP) to understand the benefits of Closest Neighbours Clustering as well
as Stochastic Programming and Robust Optimization. First and foremost, we observe that the
OD-BLP method performs very poorly with 104-325 late calls (higher than even the CDP method)
in In-Sample and Out-Of-Sample subsets. The SBROM method outperforms OD-BLP method by
around 68%. Moreover, the other methods S-BLP-F, S-BLP-M, S-BLP outperform the OD-BLP
method by approximately 61%. These differences highlight the importance of considering future
uncertainties by employing multiple future projections.

In a similar spirit, we observe that the R-BLP method performs even worse than the OD-BLP
method with 116 and 378 late calls. This further highlights the benefits of considering multiple
projections in decision making as well as the poor performance of picking a single worst case among
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available scenarios. Accordingly, when multiple scenarios are considered in the decision making
we observe the performance improvements at S-BLP-F, S-BLP-M and S-BLP methods where they
outperform the DMEXCLP-D, CDP and CDP-O methods with 40-97 41-99 and 38-114 late calls,
respectively.

When comparing the performances of S-BLP-F, S-BLP-M and S-BLP, we observe that S-BLP
achieves the best In-Sample performance with 38 late calls but falls behind both S-BLP-F and
S-BLP-M methods with 114 late calls in the Out-Of-Sample performance. Based on the In-Sample
performance of S-BLP method, we see that all three stages of the Closest Neighbours Clustering
Step are useful in improving performance. However, based on the Out-Of-Sample performance, we
conclude that the choice of parameters related to stages 1 and 3 are key for good dispatch decisions.
(We examine the sensitivity to parameters of Closest Neighbours Clustering for the SBROM method
in section 1.7.2).

Lastly, the SBROM method outperforms S-BLP-F, S-BLP-M, S-BLP and R-BLP methods
by around 18%-7%, 20%-9%, 16%-20% and 67%-73% at In-Sample and Out-Of-Sample subsets,
respectively. Together, these differences highlight the benefit of employing all three stages of Closest
Neighbours Clustering along with combining Stochastic Programming and Robust Optimization
- considering a sample of future projections by utilizing clusters of scenarios and protecting the
dispatch decisions against adversarial situations around the existing scenarios. We stress that the
SBROM method utilizes the clusters as uncertainty sets and weights multiple scenarios that are
chosen adversely from each of the clusters. In doing so it exploits the structure of the data provided
by the Closest Neighbours Clustering. In other words, SBROM model and Closest Neighbours
Clustering steps complement each other in making of the best online dispatch decision.

1.7.2 Sensitivity to Parameters

In Fig. 1.1 we show the sensitivity of SBROM method to two important parameters of the Closest
Neighbours Clustering step: (i) sample size N and (ii) number of clusters N . Sample size N
determines the number of scenarios visited as part of the optimization and number of clusters
determine how many scenarios to choose when taking the expectation for the future projections.
Fig. 1.1 also displays the parameter-tuning of the SBROM method, namely, we show the performance
of SBROM method under various parameter settings for the first subset of the test data set.

Our observations are twofold. First, the best performance of the SBROM method is achieved
with an intermediary sample size. By increasing the sample size from N = 100, the performance
of SBROM method improves until a certain point of N . At sample size N = 400, we see that the
performance of SBROM method deteriorates compared to N = 300 except for 2 instances. This
phenomenon is related to well-known bias-variance trade-off in machine learning literature. When a
small N is chosen, possibly informative future projections are excluded from the decision making
and hence dispatch decision is not prepared for some highly possible situations. On the other hand,
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Figure 1.1: Sensitivity of number of late calls to number of clusters K and number of neighbours N

when N is large, the dispatch decision becomes too conservative for realistic situations as there are
possibly more adverse scenarios in large uncertainty sets.

Second, performance of the SBROM method fluctuates non-monotonically as the number of
clusters K increases. For a sample size N = 300, the performance of SBROM method fluctuates
around 36 late calls. While this is a notable value, we note all the experiments yield better
performance than state-of-the art methods (which had 44 late calls for the same set). Moreover,
based on this, unlike the S-BLP method, we see that SBROM method is more robust to the changes
in the parameters.

1.7.3 Robustness to Experimental Setting

Our results so far showcase the benefits of our SBROM method in comparison with state-of-the art
method DMEXCLP-D as well as variations of the SBROM under a specific experimental setting
(where timeThreshold = 9 and postT ime = 20). We now establish the the robustness of SBROM
method under different experimental settings. By changing timeThreshold, we simply make changes
to the output of the pre-computation step by modification of the penalty term lcc2v. Similarly,
by changing postT ime, we simply make changes to the output of the pre-computation step by
modification of the indicator term acc2v. For all the experiments in this section, we use the best
parameters we have found earlier for all the methods. We utilize the first subset with forty days of
experiments.

Table 1.2a shows the robustness of SBROM method to different timeThreshold values. First,
note that a decrease (increase) in timeThreshold makes the dispatching problem more (less) chal-
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timeThreshold (min)
4 5 6 7 8 9 10

CDP 1261 773 465 257 148 81 43
CDP-O 1218 739 446 240 131 64 33
DMEXCLP-D 1418 790 448 213 107 44 17
S-BLP-F 1246 767 449 206 92 40 15
S-BLP-M 1242 738 429 212 102 41 19
S-BLP 1224 746 428 208 94 38 22
R-BLP 1547 941 597 374 237 116 61
OD-BLP 1486 905 569 321 195 104 55
SBROM 1148 696 416 201 88 33 15
D-BLP 1117 650 389 186 80 29 9

(a) timeThreshold

postT ime (min)
10 15 20 25 30
45 58 81 100 122
35 46 64 88 109
28 35 44 49 71
24 34 40 54 59
24 33 41 57 66
26 34 38 56 65
63 87 116 133 190
56 77 104 132 179
24 32 33 47 54
23 28 29 29 37

(b) postT ime

Table 1.2: Performance of all methods under different timeThreshold and postT ime values.

lenging and accordingly, the number of late calls increase (decrease) for any given method as
timeThreshold increases. Second, the SBROM method out-performs all other online methods for
all the timeThreshold values. An important observation about timeThreshold = 4 column is that
the CDP and CDP-O methods out-perform the DMEXCLP-D as well as variations of SBROM
method. This highlights the difficulty of dispatching problem when the timeThreshold is very small.
Furthermore, the fact that SBROM method out-performs the CDP and CDP-O methods even when
timeThreshold = 4, emphasize the benefit of the SBROM method.

Table 1.2b shows the robustness of SBROM method to different postT ime values. First, note
that an increase (decrease) in the postT ime makes the dispatching problem more (less) challenging
and accordingly, the number of late calls increases (decreases) for any any given method as postT ime
increases. Second, the SBROM method out-performs all other online methods again for all the
postT ime values. An important observation about postT ime = 10 column is that the performances
of SBROM method and its variants S-BLP-F, S-BLP-M and S-BLP are very close to the performance
of the D-BLP. This is because, when ambulances take less time to become available, dispatching
problem becomes easier. However, as postT ime increases, the performance of the SBROM method
over its variants improve and stay closer to the D-BLP. This highlights the benefits of the SBROM
method and showcases its performance even when difficulty of dispatching problem increases.

1.7.4 Computational Time

We conclude the experimental results with the performance of the algorithm we borrowed from
Wang and Jacquillat (2020). While we did not develop the algorithm for this chapter, we find the
discussion of the computational time to be a relevant topic for producing timely dispatch decisions
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as we aim to make a dispatch decision in a matter of seconds.
Table 1.3 reports the test results for a single scenario with 115 emergency calls, i.e, both the

algorithm and direct implementation of SBROM-MILP formulation is run 115 times to produce 115
dispatch decisions. We tested for various problem sizes by changing both the number of clusters K
(Column 1) and sample size N (Column 2). Column 3 reports the average computational time with
Gurobi implementation of the SBROM-MILP formulation. The next four columns show whether
if the algorithm converged, the computational time, number of iterations and number of scenarios
considered for the algorithm.

Gurobi Algorithm Performance
Number of Sample Number of Number of
Clusters Size

CPU (s) (UB-LB)/LB CPU (s)
Iterations Scenarios Considered

1 50 1.55 0 1.08 1.97 2.53
1 100 5.42 0 2.67 2.14 2.62
1 200 20.25 0 4.75 2.19 2.59
1 300 43.12 0 8.79 2.2 2.7
5 50 1.55 0 1.23 1.97 9.93
5 100 5.42 0 2.71 2.24 11.82
5 200 21.47 0 5.61 2.43 12.51
5 300 43.44 0 8.35 2.54 13.06
10 50 1.56 0 1.44 1.99 17.04
10 100 5.32 0 2.93 2.16 20.85
10 200 20.71 0 5.82 2.4 23.56
10 300 43.62 0 8.16 2.43 24.15
20 50 1.56 0 1.76 1.83 28.98
20 100 5.34 0 3.49 2.15 36.21
20 200 19.75 0 6.6 2.35 43.36
20 300 45.86 0 9.15 2.52 45.96
30 50 1.56 0 2.08 1.66 39.69
30 100 5.47 0 4.15 2.09 48.73
30 200 18.48 0 6.75 2.4 62.06
30 300 42.21 0 9.93 2.49 65.96
50 50 1.56 0 2.1 1 50
50 100 5.41 0 5.58 1.87 69.27
50 200 18.5 0 8.68 2.32 89.04
50 300 42.48 0 11.53 2.41 100.15

Table 1.3: Computational Performance of the Algorithm by Wang and Jacquillat (2020)
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First, based on the convergence column, the algorithm converges to the optimal solution in all
instances of the the dispatching problem. Second, as the sample size N increases the computational
time for both direct implementation and algorithm increase. However, the increase in direct
implementation is significantly larger than that of algorithm. Specifically, for a setting that results
in quality results which is highlighted in Table 1.3, the computational time for direct implementation
takes around 45 seconds for a single decision while the it is 9.15 seconds for the algorithm. The
algorithm drops the computational time of dispatch problem by 80%. Given the need for rapid
decision making, the algorithm of Wang and Jacquillat (2020) performs very well for real-life
dispatching circumstances. Third, the algorithm remains stable when the sample size and number of
clusters increase, i.e., the average number of iterations required by the algorithm increase by 1-1.5
while the sample size and cluster size increase by 6-fold and 50-fold.

1.8 Conclusion

In this chapter we study the problem of ambulance dispatch in Emergency Medical Services with a
novel data-driven methodology that combines ideas from machine learning and decision making under
uncertainty. Our method extends the operations literature on dispatching of emergency medical
services and sets a new benchmark for dispatching problem. In collaboration with University of
Pittsburgh Department of Emergency Medicine and the City of Pittsburgh Bureau of EMS we test
our methodology on unique data set from city of Pittsburgh, Pennsylvania.

As part of the solution methodology, we first propose a omniscient deterministic binary linear
program that incorporates forward looking dispatch decisions. Using the deterministic model as a
basis we build a scenario based robust optimization formulation that produces dispatch decisions
under future uncertainty. Scenario based robust optimization is a novel modelling approach that
combines ideas from stochastic programming and robust optimization by constructing probabilistic
scenario sets and protecting against adversarial scenarios within the scenario sets. To this end, we
also develop the Closest Neighbours Clustering method, a data-driven methodology for building the
scenario sets from real data. We show the benefits of using scenario based robust optimization along
with Closest Neighbours Clustering against a series of benchmarks including stochastic programming
and robust optimization. Moreover, our methodology outperforms the state-of-the art dispatching
methods in the existing literature by a significant margin.

This chapter successfully develops and uses the Closest Neighbours Clustering and scenario based
robust optimization on the dispatching problem with real data. Our results for this unique data set
are significant and promising for application of our methodology on new data sets. It would be an
interesting future research direction to employ these methods on a different context. For instance,
investment decisions in financial markets is an interesting data-rich context on which these methods
could be utilized.
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Chapter 2

Analysis and Comparison of Two-Sided
Queues with Different Levels of Delay
Information

2.1 Introduction

A service firm can disclose delay information to its customers to induce desirable joining/balking
behavior. A considerable amount of research has studied delay information disclosure policies
in traditional one-sided markets where a firm provides service to its users (i.e., customers); see
Ibrahim (2018) for a review. With the rise of so-called “on-demand platforms”, which are typically
two-sided markets, the decision of sharing delay information with users has become richer in its scope.
On-demand platforms facilitate matches between two user classes: Consumers, who seek service
through the platform, and providers, who supply the service to the consumers through the platform.
Examples of on-demand platforms include ride-sharing services (e.g., Uber and Lyft), on-demand
food and grocery delivery (e.g., GrubHub, Doordash, and Instacart), and labor marketplaces (e.g.,
TaskRabbit). In this chapter, we model the operations of an on-demand platform as a two-sided
queue and we investigate the platform’s optimal delay information disclosure policy when users on
both sides of the market are delay-sensitive. This optimal policy seeks to maximize the average rate
at which the platform successfully matches consumers with providers (match rate); we use the match
rate as a proxy for the platform’s revenue and profitability.

An important aspect of on-demand platforms is the voluntary nature of users’ participation. The
providers are not employees of the platform but rather independent contractors who make their own
decisions regarding when they work, when they take a break, and when they call it a day. Consumers
are also often not loyal to a specific platform and can easily switch to other platforms to receive
service for various reasons, including long delays to be matched with a provider. In response to

31



this challenge of “at-will participation,” platforms have employed a variety of incentive structures to
influence users’ participation decisions to maximize profitability. For example, through surge pricing
mechanisms, platforms vary their service price to balance the supply and demand. We study another
mechanism that influences participation decisions, which is the type of delay information that the
platform shares with consumers and/or providers.

It is not immediately clear how best a platform can use the leverage of sharing delay information.
Indeed, firms have been indecisive about such decisions in the past: for example, Uber, for a brief
period, revoked its drivers’ ability to see how many other drivers were in the vicinity (UberPeople.net,
2017). This decision was hotly contested by the drivers as it diminished their ability to estimate
how long they would have to wait to receive a ride request. Furthermore, there are various types of
information to disclose. For example, ride-sharing platforms provide riders with a current estimate
of their wait time, and provide drivers with coarser information through heat maps, where different
colors indicate different levels of anticipated delay.

In this chapter, we focus on three information regimes—the occupancy information where both
consumers and providers are informed of the current occupancy level in the platform (equivalently,
the expected delay conditioned on the current number of users in the platform), and two asymmetric
information regimes where either consumers or providers are provided with occupancy information,
while the other side is provided with no information. We study how the choice of information
regime affects the platform’s profitability by analyzing and comparing the match rates resulting
from employing each of these regimes. In our model, users obtain a reward for receiving service and
incur a delay cost. Arriving users form an expectation of the delay cost they will incur based on
the delay information provided to them by the platform. Based on this expectation, they decide
whether to join the platform or balk in order to maximize their utility.

Below, we summarize the main contributions of this chapter:

- We model an on-demand platform as a two-sided queuing system that facilitates matches
between two user classes. Users in each class are heterogeneous in their delay sensitivities.
We contribute to the literature by studying the platform’s information regime choice, that
determines what information to disclose to users of both user classes.

- We compute the effective match rates associated with each information regime. We characterize
sufficient conditions for each regime to emerge in equilibrium and provide insight into the
conditions under which the platform prefers to hide information from one user class. Specifically,
we examine the optimal information regime for two limiting settings. First, we examine a
setting where the two user classes are highly imbalanced in their patience profiles. Second, we
examine a setting where users of one class are relatively abundant. We identify the conditions
for the platform to prefer sharing no delay information to one of its user classes in both these
limiting settings.

- In an extension, we demonstrate that for systems with higher levels of user heterogeneity (a
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larger number of distinct patience sensitivity levels), the platform prefers to provide occupancy
information to at least one of its user classes for a wider range of parameters—this complements
the results of Guo and Zipkin (2007) and Dobson and Pinker (2006) for one-sided queuing
systems.

2.2 Literature Review

We contribute to the recent literature on on-demand platforms. Wang and Yang (2019) survey
literature on different aspects of on-demand platforms. The aspects of this literature that have
received the most attention in the Operations Management literature are (i) pricing (e.g., Cachon
et al., 2017; Taylor, 2018; Hu and Zhou, 2019); (ii) matching (e.g., Dickerson et al., 2018; Lyu
et al., 2019; Özkan and Ward, 2020); and (iii) the impact of sharing different types of information
with the users of such platforms. The existing papers on information sharing mostly focus on (i)
disclosing fare or destination information to drivers in ride-sharing platforms (e.g., Rosenblat and
Stark, 2016; Chu et al., 2018) and (ii) sharing customers’ attributes with providers (e.g., Romanyuk,
2017; Romanyuk and Smolin, 2019); they all conclude that, under some conditions, full disclosure
could hurt the platforms’ performance. Unlike the mentioned information sharing papers, our focus
is on sharing delay information. Furthermore, we consider the implications of sharing such delay
information with both classes of users (consumers and providers). Delay information sharing has
received extensive attention in traditional one-sided queues, but has not yet received much attention
in the two-sided settings.

Hassin (2016) provides a comprehensive review of literature on one-sided queuing systems in the
presence of strategic customers, who make joining decisions using the delay information available
to them (strategic queues). Ibrahim (2018) provides a comprehensive review of literature on delay
announcement in strategic queues, some of which analyze the accuracy of various types of delay
information structures (Armony et al., 2009; Ibrahim et al., 2017) and some of which empirically
study the impact of delay information on users’ behavior (Akşin et al., 2013; Batt and Terwiesch,
2015; Yu et al., 2017). The stream of delay announcement literature which most closely relates
to our work studies how various delay announcement structures can improve system performance.
For instance, Hu et al. (2018) consider the impact of informing only a fraction of customers about
real-time delay in a single-server queue, and find that some amount of information heterogeneity can
increase both throughput and social welfare. Dimitrakopoulos et al. (2019) study a single-server
system in which the queue visibility alternates between ‘observable’ and ‘unobservable’ periods,
and find that setting the duration of these periods optimally improves, in general, the equilibrium
throughput and social welfare, compared to a purely observable or a purely unobservable queue.
Lingenbrink and Iyer (2019) study the structure of the optimal information disclosure policy in a
single-server queue where the strategic customers estimate their expected delay based on Bayesian
updating. They find that the throughput-optimal delay signalling mechanism is of threshold type,
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i.e., the platform’s delay signal must induce customers to join only up to a certain occupancy level.
The papers that study delay announcement structures most similar to ours are Guo and Zipkin

(2007) and Dobson and Pinker (2006). Like ours, both papers analyze and compare different richness
levels of the provided delay information, however, in a one-sided setting. In a single-server queue, Guo
and Zipkin (2007) employ a general model of customer patience heterogeneity, and find that when
customers are sufficiently heterogeneous, disclosing richer information leads to higher throughput.
Similarly, Dobson and Pinker (2006) consider sharing lead-time information in a supply chain and
show that when users are more heterogeneous in their patience levels, sharing richer lead-time
information improves throughput. We find that this result extends to a two-sided setting: By
comparing the throughput (which in our case is the effective match rate) under three specific patience
heterogeneity distributions, we show that sharing richer delay information benefits the platform if
the users are more heterogeneous. Similar to the results of Guo and Zipkin (2007) for a one-sided
queue, we find that, in a two-sided setting, the platform’s optimal information structure can be in
the best interest of the users.

2.3 Model

We consider a two-sided queuing system (the platform) with two classes of users—consumers and
providers—where consumers arrive to one side of the system and providers arrive to the other
side. Consumers use the services/products offered on the platform, while providers supply these
services/products. A match occurs instantly if a consumer (resp., provider) arrives while a provider
(resp., consumer) is waiting to be matched; waiting users are cleared based on the first-come-first-
served (FCFS) discipline. Matched user pairs leave the system instantly. Therefore, the system
never has both consumers and providers waiting to be matched at any given time. Users of both
classes are delay-sensitive and seek to maximize their utility (we define the utility functions in
Section 2.3.2). The platform may decide to relay delay information to one or both user classes, based
on which arriving users form an expectation of their system delay (time to match) and accordingly
make irreversible join/balk decisions. The types of relayed delay information form an information
regime, I, which induces a mapping from the current system state (the number and class of users
waiting to be matched) to delay signals provided to each user class. In Section 2.3.1, we describe the
information regimes that we consider in the chapter. Subsequently, in Section 2.3.2 we introduce our
model for users and explain how they make joining/balking decisions.

2.3.1 Information Regimes

The platform’s manager chooses an information regime that maximizes the effective match rate (i.e.,
the rate at which users are matched and leave the system), which can be considered as a proxy for
revenue in on-demand platforms. Based on the “No Information” and “Partial Information” regimes
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studied for the one-sided queuing setting in Guo and Zipkin (2007), we construct and study the
following information regimes for our two-sided setting:

- Occupancy information (Regime O): In this regime, the platform signals to arriving users
of both classes the current system state (which can be, equivalently, considered as signaling
the current queue-length based expected delay under the FCFS discipline).

- Occupancy information to consumers only (Regime C): In this regime, the platform
relays the current system state to consumers, and relays no information to providers.

- Occupancy information to providers only (Regime P): In this regime, the platform
relays the current system state to providers, and relays no information to consumers.

When no information is provided to either user class (the fourth possible combination), users of
each class arrive at fixed rates (independent of the system state). Since the arrival rate of one user
class functions as the service rate for the other user class in a two-sided queue, the resulting system
cannot be stable, and for this reason, we disregard this information regime.

2.3.2 Users’ Joining Decisions

We denote a user by superscript u ∈ {c, p} where c and p stand for consumers and providers,
respectively. Consumers and providers arrive to their side of the platform with independent Poisson
rates Λc and Λp, respectively. Users receive zero utility from balking, and join only if doing so yields
a positive expected utility. Joining decisions are irreversible, i.e., users who join wait till they are
matched (no abandonment). A user’s utility depends on her valuation for a match (Ru ≥ 0) and her
expected delay cost, which itself depends on:

1. The user’s individually drawn delay sensitivity θu, which is a realization of the random
variable Θu ∼ fu(θu); the probability distribution fu(θu) captures the heterogeneous delay
sensitivity of users of the same class, and it has a finite support [0, 1].

2. The expectation of a common cost function cu(·) of the delay W u
I that the user will experience;

this expectation is based on the signal s that the user observes and the information Regime I.
We denote this expectation by E[cu(W u

I (s))], and for tractability, we consider a linear function
for it, i.e., E[cu(W u

I (s))] = au E[W u
I (s)] + bu, where au and bu parametrize this cost function.

Therefore, the expected utility of user u with delay sensitivity θu who receives signal s under
information Regime I follows:

UuI (s) = Ru − θu (au E[W u
I (s)] + bu) , u ∈ {c, p}. (2.1)

We set bu = Ru to ensure that UuI (s) ≥ 0 when E[W u
I (s)] = 0 and UuI (s) < 0 when E[W u

I (s)] > 0

and θu = 1; this excludes those users who would balk even when the signal indicates no delay,
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and ensures that the most delay sensitive users (θu = 1) balk when the signal indicates delay. For
convenience and without loss of generality, we scale time by a multiplicative factor of ac/Rc, and
then to leave the utility function unchanged, we scale au by a factor of Rc/ac. The resulting utility
functions follow:

U cI (s) = Rc (1− θc (1 + E[W c
I (s)])) ,

UpI (s) = Rp
(
1− θp

(
1 +Kp E[W p

I (s)]
))
,

(2.2)

where Kp = (ap/ac)(Rp/Rc) represents the relative value of time for the providers compared to
the consumers; i.e., for the same Ru and θu values, if Kp > 1 then providers value time more than
consumers do, and therefore, they are willing to wait less to be matched than consumers are.

We assume that users can compute their expected delay (a typical assumption in the strategic
queuing literature; for example, see unobservable queueing models in Hassin, 2016) based on the
signal that they observe. This computation, in turn, depends on the equilibrium joining behavior of
users of both classes. We formalize this behavior by defining an equilibrium joining strategy as a set
of probabilities, {JI(θu|s);∀θu, s}, each specifying the probability that a user of class u with delay
sensitivity θu joins upon observing the signal s under information Regime I. For this set of joining
probabilities to form an equilibrium, it must be that every focal user has no incentive to deviate from
the equilibrium joining probability JI(θu|s), keeping all other equilibrium joining probabilities fixed.

We now turn to the issue of modeling the heterogeneity in users’ delay sensitivities using fu(θu).
For tractability and clarity of insights, our base model considers two user types within each class:
patient and impatient; patient users are willing to wait for a match, while impatient users are not.
Formally,

fu(θu) =

δu for θu = tu < 1

1− δu for θu = 1
, u ∈ {c, p}.

Under this two-point user heterogeneity model, impatient users (for whom θu = 1) arrive at
rate Λu(1 − δu) and patient users (for whom θu = tu < 1) arrive at rate Λuδu. Under this
distribution, impatient users join with a positive probability, in equilibrium, if and only if they expect
a delay of zero. On the other hand, patient users may join with positive probability in equilibrium
even if they expect a positive delay (see Eq. (2.2)). This two-point distribution allows us to tractably
capture the impact of user heterogeneity on the platform’s information regime choice. We consider
extensions where one or both user classes have delay sensitivities that follow a continuous uniform
distribution in Section 2.6.

2.4 Analyzing the Information Regimes

As discussed earlier, the choice of information regime influences the equilibrium joining strategies of
consumers and providers, and consequently, the platform’s effective match rate. As a step towards

36



obtaining the effective match rates under each regime, we first construct a general underlying
Continuous Time Markov Chain (CTMC) that we use later to represent and analyze the dynamics
of the system under each information regime. As matches occur instantaneously, there are either
no users, or providers, or consumers (but never both providers and consumers) in the system
at any point. Therefore, the CTMC of the system under any of the information regimes has a
one-dimensional state space with the state variable n ∈ N = {. . . ,−1, 0, 1, . . . }, which represents
that there are currently |n| consumers (resp. providers) in the system if n < 0 (resp. n > 0), and no
consumers or providers when n = 0. For a specific state n, we denote the signal that the platform
broadcasts to user class u under information Regime I as suI (n). We denote the set of such signals
as SuI = ∪nsuI (n).

The users’ instantaneous equilibrium arrival rate depends on the signal suI (n), and we denote it
by λuI (suI (n)). Accordingly, the long-run average arrival rate of users (consumers or providers) is
obtained as the weighted average of the instantaneous arrival rates λuI (suI (n)), where the weights are
the steady-state probabilities πI(n), n ∈ N; in turn, these probabilities depend on the information
Regime I through the instantaneous arrival rates λuI (suI (n)) that I induces. Since any user who joins
will be matched eventually, the long-run average arrival rate is equal to the effective match rate.
Therefore, we can write the effective match rate under information Regime I as:

MI =
∑
n∈N

πI(n)λuI (suI (n)), I ∈ {O,C,P}, (2.3)

where u may be either c or p. In Sections 2.4.1-2.4.2, we derive the effective match rates for all
information regimes. Trivially, users can, in equilibrium, opt not to join given any signal, leading to
an effective match rate of zero. Unless directly implied by the information regime, we disregard this
trivial equilibrium joining strategy in the remainder of the chapter. If the system can accommodate a
non-zero match rate, we assume that the users’ equilibrium joining strategy will lead to this non-zero
match rate.

2.4.1 Occupancy Information (Regime O)

Under Regime O, the platform provides the current system state to the arriving users; i.e., scO(n) =

spO(n) = n, leading to ScO = SpO = Z. A positive (resp. negative) signal indicates that providers (resp.
consumers) are currently waiting to be matched. An alternative that results in identical joining
behavior is to signal to providers (resp. consumers) the number of providers (resp. consumers) when
there are no consumers (resp. providers) and to signal “no delay” when there are consumers (resp.
providers). This roughly mimics the queue position information that ride-hailing platforms provide
to drivers in airports (Paul, 2015), and also roughly mimics the expected delay information that
those platforms provide to riders.

Under Regime O, the expected delay of an arriving user from class u is entirely determined
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Figure 2.1: Regime O CTMC

by the signal s the user observes; the expected delay does not depend on the equilibrium joining
probability JO(θu|s) of other users of the same class receiving signal s. Accordingly, each arriving
user either balks or joins with probability one (i.e., there is no mixed strategy equilibrium). More
explicitly, each arriving consumer who observes scO(n) = n > 0 faces a zero expected delay, regardless
of the joining probability of other consumers in state n; therefore, they will join with probability one
regardless of their type (i.e, whether their θc = tc or θc = 1), which leads to an instantaneous joining
rate λcO(scO(n)) = Λc for n > 0. Following a similar argument for providers, we have λpO(spO(n)) =

Λp, n < 0. However, users join differently when their signal indicates a delay. Specifically, an
arriving consumer who observes scO(n) = n ≤ 0 faces an expected delay of E[W c

O(n)] = (|n|+ 1)/Λp

(each consumer ahead of them takes an exponentially distributed amount of time with mean 1/Λp

to be matched). If this user is impatient, she will not join; otherwise, she joins with probability
one when |n| is sufficiently small. Accordingly, λcO(scO(n)) = δcΛc when |n| is sufficiently small,
and λcO(scO(n)) = 0 otherwise. Formally, patient consumers join with probability one if and only if
U cO(n) ≥ 0, which yields the condition:

0 ≤ |n| ≤ Λp (1− tc)
tc

− 1. (2.4)

By an analogous argument, when n ≥ 0, impatient providers balk and patient providers join with
probability one if and only if:

0 ≤ n ≤ Λc (1− tp)
tpKp

− 1. (2.5)

Observe in Eqs. (2.4)-(2.5) that patient consumers and providers only join until a threshold system
state on their side of the platform (i.e., when the signal indicates a delay). Therefore, the resulting
CTMC will be bounded on both sides, as illustrated in Fig. 2.1 where bcO and bpO are the respective
bounding states on the consumers’ and providers’ sides. From Eqs. (2.4)-(2.5), those bounding states
follow:

bcO = bΛp (1/tc − 1)c ,

bpO = b(Λc/Kp) (1/tp − 1)c .
(2.6)
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Note that when bcO = 0 (resp., bpO = 0), patient consumers (resp., providers) balk even at state 0, i.e.,
they balk given any signal that indicates a non-zero expected delay. We characterize the instantaneous
arrival rates and the effective match rates under Regime O in Proposition 2.1, depending on whether
each bounding state is zero or not.

Proposition 2.1. The instantaneous arrival rates and effective match rates in Regime O follow:

Case Condition
λcO(scO(n)) λpO(spO(n))

MO
−bcO < n < 0 ∨ n = 0 n > 0 n < 0 n = 0 ∨ 0 < n < bpO

1 bcO > 0 & bpO > 0 δcΛc Λc Λp δpΛp Eq. (2.7)

2 bcO > 0 & bpO = 0 δcΛc 0 Λp 0 Eq. (2.8)

3 bcO = 0 & bpO > 0 0 Λc 0 δpΛp Eq. (2.9)

4 bcO = 0 & bpO = 0 0 0 0 0 0

where Eqs. (2.7)-(2.9) follow:

MO = Λp
δc (Λc − δpΛp)

(
1− (δcΛc/Λp)b

c
O

)
+ δp (Λp − δcΛc)

(
1− (δpΛp/Λc)b

p
O

)
δc (Λc − δpΛp)

(
1− (δcΛc/Λp)b

c
O

)
+ (Λp − δcΛc)

(
1− (δpΛp/Λc)b

p
O+1
) , (2.7)

MO = δcΛc +
Λp − δcΛc

1− (Λp/δcΛc)b
c
O+1

, (2.8)

MO = Λc − Λc − δpΛp

1− (δpΛp/Λc)b
p
O+1

. (2.9)

2.4.2 Asymmetric Information Regimes (Regimes C and P)

In the asymmetric regimes, the platform shares the current system state with one user class and
shares no information with the other. For brevity, we present our analysis for the regime where
the current system state information is shared with providers (Regime P); we present results for
Regime C at the end of this section. Under Regime P, spP(n) = n and scP(n) = ∅ (i.e., no information),
∀n ∈ N. This leads to signal sets SpP = Z and ScP = ∅.

Since consumers receive no information under Regime P, their joining behavior is identical in
all system states, i.e., λcP(scP(n)) = λcP(∅), ∀n ∈ N. However, the providers’ joining behavior is
state-dependent. Similar to Regime O, when the state indicates no delay for providers, i.e., spP(n) =

n < 0, an arriving provider joins with probability one (independent of whether she is patient or
impatient); hence, λpP(spP(n)) = Λp for n < 0. On the other hand, if an arriving provider receives
a signal spP(n) = n ≥ 0, her expected delay depends on the equilibrium arrival rate of consumers
(which is λcP(∅)), and we have E[W p

P(n)] = (n+ 1)/λcP(∅) (each provider already in the system and
ahead of the arriving provider takes an exponentially distributed amount of time with mean 1/λcP(∅)
to be matched). If this provider is patient, she joins with probability one if n is sufficiently small;
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if she is impatient, she balks. Accordingly, λpP(n) = δpΛp if n is sufficiently small, and λpP(n) = 0,
otherwise. Formally, patient providers join with probability one if and only if UpP(n) ≥ 0, which
yields the condition:

0 ≤ n ≤
λcP(∅) (1− tp)

Kptp
− 1. (2.10)

Based on (2.10), the bounding state bpP up to which patient providers join with probability one is
given by:

bpP = bλcP(∅) (1− tp)/(Kptp)c . (2.11)

The bounding state bpP depends on the equilibrium arrival rate λcP(∅) of consumers given that they
receive no information. We now explain how λcP(∅) is obtained. Any equilibrium with λcP(∅) > 0

involves consumers joining at state 0 (otherwise, consumers would never join resulting in a trivial
equilibrium with zero effective match rate). For consumers observing no information, joining at
state 0 entails a positive conditional expected delay and joining at other states entails a non-negative
conditional expected delay. Therefore, the expected delay of an arriving consumer observing no
information will be positive, i.e., E[W c

P(∅)] > 0. As a result, impatient consumers balk as U cP(∅) =

Rc (1− 1 (1 + E[W c
P(∅)])) < 0. On the other hand, patient consumers either join with a positive

probability or balk completely, depending on the impact of their equilibrium joining behavior on
their expected delay. Fig. 2.2 shows the resulting CTMC for Regime P. The expected delay faced by
an arriving consumer is given by:

E[W c
P(∅)|JP(tc|∅)] =

0∑
i=−∞

|i|+ 1

Λp
πP(i), (2.12)

where the stationary probabilities πP(i) can be obtained in terms of bpP and λcP(∅), which need to be
found such that they are consistent with each other. For this, we examine different cases depending
on the consumers’ joining probability (JP(tc|∅) = 0, 0 < JP(tc|∅) < 1, or JP(tc|∅) = 1) and the
bounding state for providers (bpP = 0 or bpP > 0). For each case, we characterize the effective match
rate in Proposition 2.2 using Eq. (2.3), which simply yields MP = λcP(∅) since the signal is the same
in all states. For ease of exposition, we define Hc = tc/(1− tc) and Hp = Kptp/(1− tp).

-2· · · -1 0 1 · · · bpP

Λp Λp δpΛp δpΛp δpΛp

λcP(∅) λcP(∅) λcP(∅) λcP(∅) λcP(∅)

Consumers Providers

Figure 2.2: Regime P CTMC
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Proposition 2.2. Define the following cases: (1) JP(tc|∅) = 1, bpP > 0, (2) 0 < JP(tc|∅) < 1, bpP > 0,
(3) JP(tc|∅) = 1, bpP = 0, (4) 0 < JP(tc|∅) < 1, bpP = 0, and (5) JP(tc|∅) = 0. The effective match
rate under Regime P follows:

Case Conditions MP

1 δcΛc < Λp ∧ Hc ≤
(Λp−δcΛc)

(
δcΛc(1−δp)−δp(Λp−δcΛc)(δpΛp/δcΛc)bδ

cΛc/Hpc
)

δcΛc−δpΛp ∧ Hp ≤ δcΛc δcΛc

2

(
δcΛc ≥ Λp ∨ Hc ≤

(Λp−δcΛc)
(
δcΛc(1−δp)−δp(Λp−δcΛc)(δpΛp/δcΛc)bδ

cΛc/Hpc
)

δcΛc−δpΛp

)
∧ Hp ≤ lp m that solves (2.14)

3 δcΛc < Λp ∧ Hc ≤ Λp − δcΛc ∧ Hp > δcΛc δcΛc

4
(
δcΛc ≥ Λp ∨ Hc > Λp − δcΛc

)
∧ Hc ≤ Λp ∧ Hp +Hc > Λp Λp −Hc

5 Otherwise 0

where lp in the condition of case 2 and Eq. (2.14) follow:

lp =
Λp(1− 2δp)−Hc +

√
Hc2 − 2Λp(1− 2δp)Hc + Λp2

2(1− δp)
, (2.13)

1− Hc(δpΛp −m)

(Λp −m)
(
m(1− δp)− δp(Λp −m) (δpΛp/m)bm/H

pc
) = 0. (2.14)

Two cases of overlaps occur among the cases of Proposition 2.2. First, the match rate associated
with Case 2, which is the solution to Eq. (2.14), is not necessarily unique; i.e., Case 2 may yield
multiple equilibria (multiple combinations of bpP and λcP(∅) that are consistent with each other). To
illustrate, we plot the left hand side of Eq. (2.14) against m for a particular parameter setting
in Fig. 2.3a, in which m crosses zero four times at m ∈ {1.53, 2.92, 3.75, 4.23} corresponding to
providers’ bounding states bpP ∈ {1, 2, 3, 4}. Second, the cases of Proposition 2.2 are not mutually
exclusive, i.e., there are parameter settings under which more than one case holds, which again leads
to multiple equilibria. We illustrate this in Fig. 2.3b, which highlights the regions corresponding
to the different cases as a function of tc and tp. When there are multiple equilibria, we choose the
equilibrium that produces a higher match rate. In Proposition 2.3, we list the possible overlaps
between the cases of Proposition 2.2, and identify the case that results in a higher match rate.

Proposition 2.3. There are only two possible overlaps between the cases of Proposition 2.2: (i)
The conditions for cases 1 and 4 could hold together; if so, the effective match rate under Case 1 is
higher. (ii) The conditions for cases 2 and 4 could hold together; if so, the effective match rate under
Case 2 is higher.

By interchanging the roles of consumers and providers in Proposition 2.2 and scaling time
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(a) {Λc,Λp,Kp, tc, tp, δc, δp} =
{8, 9, 1.5, 0.97, 0.4, 0.6, 0.68}
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0.4

0.6

0.8

1.0

tc

tp

(b) {Λc,Λp,Kp, δc, δp} = {9, 8.5, 1.5, 0.75, 0.9}

Figure 2.3: Cases of Multiple Equilibria in Regime P

appropriately (we describe this process in Appendix B.1), we can derive the match rates under
Regime C as in Proposition 2.4.

Proposition 2.4. Define the following cases: (1) JC(tp|∅) = 1, bcC > 0, (2) 0 < JC(tp|∅) < 1,
bcC > 0, (3) JC(tp|∅) = 1, bcC = 0, (4) 0 < JC(tp|∅) < 1, bcC = 0, and (5) JC(tp|∅) = 0. The effective
match rate under Regime C follows:

Case Conditions MC

1 δpΛp < Λc ∧Hp ≤
δc(Λc − δpΛp)

(
δcΛc

δpΛp

)bδpΛp/Hcc − δpΛp(1− δc)
δcΛc/(δpΛp)− 1

∧Hc ≤ δpΛp δpΛp

2

δpΛp ≥ Λc ∨Hp >
δc(Λc − δpΛp)

(
δcΛc

δpΛp

)bδpΛp/Hcc − δpΛp(1− δc)
δcΛc/(δpΛp)− 1

 ∧Hc ≤ lc m that solves (2.16)

3 δpΛp < Λc ∧Hp ≤ Λc − δpΛp ∧Hc > δpΛp δpΛp

4 (δpΛp < Λc ∨Hp > Λc − δpΛp) ∧Hp ≤ Λc ∧Hc +Hp > Λc Λc −Hp

5 Otherwise 0

where lc and Eq. (2.16) follow:

lc =
Λc(1− 2δc)−Hp +

√
Hp2 − 2Λc(1− 2δc)Hp + Λc2

2(1− δc)
, (2.15)

1− Hp(δcΛc −m)

(Λc −m)
(
m(1− δc)− δc(Λc −m) (δcΛc/m)bm/H

cc
) = 0. (2.16)
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2.5 Platform’s Optimal Information Regime

Equipped with the match rate expressions derived in Section 2.4, we now compare the match rates
under the three regimes in order to determine which regime maximizes the platform’s effective match
rate. A general characterization of when one information regime outperforms the others is complicated
due to the conditions governing the case-dependent match rates (given in Propositions 2.1, 2.2,
and 2.4) and the intractability of Eqs. (2.14) and (2.16). Fig. 2.4a illustrates this complication: for
fixed values of all other parameters, the optimal regime switches several times from one regime to
another as Λp increases. (We observe a similar phenomenon with respect to the other parameters.)
Furthermore, unlike Fig. 2.4a in which Regime O outperforms the other regimes for most Λp values,
Regime O is sub-optimal for all Λp values in the example shown in Fig. 2.4b. Although these
difficulties preclude the possibility of obtaining necessary and sufficient conditions under which
each regime is optimal, we present sufficient conditions under which each regime is optimal in
Proposition 2.5.

6 8 10 12 14
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7

(a) {tc, tp, δc, δp} = {0.8, 0.7, 0.8, 0.8}
6 8 10 12 14

2.25

2.30

2.35

2.40

2.45

(b) {tc, tp, δc, δp} = {0.7, 0.88, 0.34, 0.67}

Figure 2.4: Complicated structure of the optimal information regime; illustration for Λc = 7, Kp = 1

Proposition 2.5. (i) Under the conditions for Case 1 of Proposition 2.2 (resp., Proposition 2.4), if
δcΛc > δpΛp (resp., δpΛp > δcΛc) and (2.17) (resp. (2.18)) holds, then Regime P (resp. Regime C)
is optimal. (ii) Regime O is optimal if neither of (2.17) and (2.18) holds.

δc (Λcδc/Λp)b
c
O >

δpΛp(1− δc)
Λc − δpΛp

(
1− (Λpδp/Λc)b

p
O

)
(2.17)

δp (Λpδp/Λc)b
p
O >

δcΛc(1− δp)
Λp − δcΛc

(
1− (Λcδc/Λp)b

c
O

)
(2.18)

We now explain the intuition behind the sufficient conditions for the optimality of Regime P in
Proposition 2.5; the intuition behind the conditions for Regime C and O follow similarly. When the
Case 1 conditions of Proposition 2.2 hold, the match rate of Regime P is δcΛc. When δcΛc > δpΛp,
Regime P outperforms the best possible match rate of Regime C (δpΛp). So it remains to compare
Regime P to Regime O. In doing so, observe that switching from Regime P to Regime O results in
two major changes that impact the match rate: (i) Impatient consumers will join when they observe
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zero delay, thereby inducing providers to be willing to join when the queue is longer; and (ii) There
will be a maximum queue length on the consumers’ side beyond which patient consumers will not
join (i.e., the consumers’ bounding state becomes finite). While the first change favors Regime O,
the second change favors Regime P. When the first effect is insignificant (i.e., when there are not
many impatient consumers), the net effect of both changes will be in favor of Regime P. Accordingly,
there is a threshold on δc above which Regime P is preferable to Regime O. Ineq. (2.17) reflects this
intuition: the left hand side of Ineq. (2.17) is increasing in δc and the right hand side of Ineq. (2.17)
is decreasing in δc.

The sufficient conditions in Proposition 2.5 show that providing more information can, in fact,
hurt the platform. While these conditions provide a partial characterization of when (and why)
information can hurt, we further investigate the system under limiting settings to better understand
when the platform prefers one of the asymmetric information regimes, i.e., when information can
hurt. In Section 2.5.1, we examine a situation where the patience profile discrepancy between the
two user classes (which is based on tc and tp) is taken to the limit. Subsequently, in Section 2.5.2,
we study a situation where the market size on one side (which is based on Λc and Λp) is taken to
the limit.

2.5.1 Patience Profile Discrepancy

In this section, we demonstrate that the discrepancy in patience profiles between providers and con-
sumers determines whether disclosing more information (Regime O) hurts the platform. Specifically,
in Proposition 2.6 we show that when there is a large discrepancy between the patience profiles of
providers and consumers, it is optimal to hide information from one of them.

Proposition 2.6. (i) When tp ∈ ( Λc

Kp+Λc , 1), tc → 0 and δcΛc < δpΛp, Regime C is optimal for the
platform. (ii) When tc ∈ ( Λp

1+Λp , 1), tp → 0 and δpΛp < δcΛc, Regime P is optimal for the platform.

We now explain the intuition behind Proposition 2.6(i); the intuition behind Proposition 2.6(ii)
is analogous. First, note that since tp is large, providers, when given information, do not join at
state 0. Accordingly, impatient consumers (whether they are given information or not) never join
the system, leading to a maximum possible match rate of δcΛc under Regimes O and P. On the
other hand, under Regime C, providers can be induced to join at a higher rate than δcΛc regardless
of state (if there are enough patient providers to allow this), because patient consumers, who have a
very low delay sensitivity (tc → 0), join up to a very high bounding state, driving the expected delay
of providers to zero.

While Proposition 2.6 presents results for limiting scenarios (i.e., taking tc or tp to the limit),
we check whether the insight that a high patience profile discrepancy leads to an asymmetric
regime being optimal holds more generally. To do this, we perform a large set of numerical
experiments: We compute the match rates under Regimes O, C, and P for the following parameters:
Λc ∈ {1.1, 5, 10.1, 15}, Λp ∈ {1, 5.1, 10, 15.1}, Kp = 1, tc ∈ {0.15, 0.35, 0.55, 0.75, 0.95}, tp ∈
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{0.15, 0.35, 0.55, 0.75, 0.95}, δc ∈ {0.15, 0.35, 0.55, 0.75, 0.95} and δp ∈ {0.15, 0.35, 0.55, 0.75, 0.95},
for a total of 10,000 experiments. We define more information as hurting the system if the match rate
under Regime C or P is at least τ% higher than the match rate under Regime O. A positive value of τ
allows us to draw meaningful insights on Regime O’s possible sub-optimality, by isolating only those
cases where Regime O is far from optimal (i.e., it is not near-optimal). We use a classification tree
to understand under what settings more information hurts; we denote the classes as H (Regime O

hurts) and N (Regime O does not hurt as is it near optimal). Setting τ poses a trade-off: a higher
value of τ causes fewer parameter settings to be classified as H, while those settings that are labelled
as H correspond to Regime O hurting more strongly. We try τ ∈ {5, 8, 10}, and we find that τ = 8

yields a reasonable accuracy and an interpretable classification tree. Fig. 2.5 presents the resulting
classification tree, where the nodes labeled 1 to 4 highlight the parameter settings that are classified
as H. For nodes 1 and 2, Regime C is preferred by the platform for 70% and 86% of experiments,
respectively, while for nodes 3 and 4 Regime P is preferred by the platform for 87% and 96% of
the experiments, respectively. In the figure, class H nodes correspond to the following parameter
settings:

- Nodes 1, 2: δp ≥ 0.55, tp = 0.95, δc ≤ 0.35, Λc ≥ 10.1, and tc ≤ 0.35,Λp ≥ 5.1 (Node 1) or
0.55 ≤ tc ≤ 0.75, Λp = 15.1 (Node 2): These can be interpreted as relaxed versions of the
conditions presented in Proposition 2.6(i), where the additional conditions on Λc and Λp ensure
that the effects driven by the discrepancy are strong enough.

- Nodes 3, 4: δc ≥ 0.35, tc = 0.95, δp = 0.15, Λp ≥ 10, and tp ≤ 0.35, Λc ≥ 5 (Node 3) or
0.55 ≤ tp ≤ 0.75, Λc = 15 (Node 4): These can be interpreted as relaxed versions of the
conditions presented in Proposition 2.6(ii), where the additional conditions on Λc and Λp

ensure that the effects driven by the discrepancy are strong enough.

In summary, the results of our classification tree generalize the insight we obtained in Proposition 2.6:
a high patience profile discrepancy results in more information hurting the platform. Accordingly, for
a platform serving user classes with very different delay sensitivities, it is (perhaps counter-intuitively)
optimal to hide occupancy information from the user class with highly delay sensitive users.

2.5.2 Market Size Imbalance

In this section, we examine how the match rates compare under a limiting scenario where the arrival
rate of one user class is unbounded. For ease of exposition, we consider the case of Λc →∞; results
for the other case (Λp →∞) can be derived analogously. We now discuss the impact of Λc →∞ on
each regime’s performance. Under Regime C, patient providers do not receive any delay information
upon arrival and they join at rate δpΛp when Λc → ∞ (regardless of their delay sensitivity) as
they expect to be matched almost instantly; this leads to a match rate of δpΛp. Under Regime P

when Λc →∞, consumers employ a mixed strategy to avoid crowding; this leads to a match rate
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Figure 2.5: Classification tree for when occupancy information hurts the platform.
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between 0 and Λp depending on the delay sensitivity of the patient consumers. Under Regime O

when Λc →∞, the joining behavior of patient consumers at state 0 determines the match rate: If
they are patient enough, the CTMC in Fig. 2.1 has its mass concentrated at a non-zero bounding
state −bcO leading to a match rate of Λp; otherwise, the mass is concentrated at state 0 leading to a
match rate of δpΛp. We formalize this discussion in Lemma 2.7.

Lemma 2.7. (i) lim
Λc→∞

MC = δpΛp. (ii) δpΛp < lim
Λc→∞

MP < Λp if tc < TP (given in (2.19))

and 0 < lim
Λc→∞

MP < δpΛp, otherwise. (iii) lim
Λc→∞

MO = Λp if tc < TO (given in (2.20)) and
lim

Λc→∞
MO = δpΛp, otherwise.

TP =

1 +
1

Λp(1− δp)
(

(1− δp)
⌊
δpΛp(1− tp)

Kptp

⌋
+ 1

)

−1

, (2.19)

TO =
Λp

1 + Λp
. (2.20)

Using the characterization in Lemma 2.7, we compare the match rates among the three information
regimes in Proposition 2.8.

Proposition 2.8. When Λc →∞, the effective match rates under the three information regimes are
ordered as follows:

Case Conditions Ordering

1 tc < min{TP, TO} MO > MP > MC

2 TP ≤ tc < TO MO > MC > MP

3 TO ≤ tc < TP MP > MO = MC

4 tc ≥ max{TP, TO} MO = MC > MP

We illustrate the findings of Proposition 2.8 in Fig. 2.6, where we plot the match rates under
the three information regimes against the consumer delay sensitivity tc when Λc = 1000. Fig 2.6a
displays a scenario where TP > TO (Case 2 does not apply for any tc). When tc < TO, consumers are
patient enough to join at state 0 under Regime O, and therefore, providers almost always arrive to a
system with zero delay. This in turn leads to Regime O achieving the highest possible match rate
(i.e., Λp). When tc = TO, MO drops sharply to δpΛp because consumers now balk at state 0, inducing
impatient providers to always balk; this leads to Regime P being optimal. As tc continues to increase,
Regime P continues to be optimal (but with decreasing match rates, as patient consumers join with
lower probability) until tc = TP, at which point MP = MO. A further increase in tc causes MP to

47



continue to drop, while MO remains stable at δpΛp. Therefore, for the setting shown in Fig 2.6a,
Regime O yields the (weakly) best match rate, except when TO ≤ tc < TP.

On the other hand, Fig 2.6b displays a scenario where TP < TO (Case 3 does not apply for
any tc). Here, Regime O yields the (weakly) best match rate for all values of tc. This is because the
discontinuous drop in the match rate of Regime O occurs for a value of tc large enough that the
match rate under Regime P is already below δpΛp.

(a) Λp = 6, Kp = 0.41, δc = 0.6, δp = 0.27, tp =
0.38

(b)
Λp = 10, Kp = 0.41, δc = 0.6, δp = 0.8, tp = 0.8

Figure 2.6: Match Rate plots for Λc = 1000

In summary, when consumers are plentiful compared to providers, the platform always enjoys
a higher match rate when it informs providers of the abundance of consumers. However, whether
the platform benefits from sharing or hiding information from consumers depends on the patient
consumers’ delay sensitivity. When this delay sensitivity is very low, sharing information can take
advantage of the consumers’ willingness to join, while hiding information from them forgoes this
opportunity. Similarly, when the delay sensitivity is very high, sharing information with consumers
induces them to join when their delay is relatively low, while hiding information from them dissuades
them from joining with high probability; therefore, the platform benefits from sharing information
with consumers. These effects lead to the insight that when consumers are plentiful, sharing
information with them is optimal when consumers are either very patient or very impatient. On the
other hand, when consumers are neither very patient nor very impatient, hiding information from
them may turn out to be optimal depending on the parameter setting.

2.5.3 Comparison with Users’ Preferences

We now study the effect of the platform’s regime choice on the users by examining the users’ welfare
under the three information regimes. First, we derive expressions for the users’ welfare under each
regime. Then, we numerically study whether and when the platform’s choice of optimal regime also
maximizes the welfare of both user classes (we call this situation full alignment). The expected

48



8 9 10 11 12 13 14 15

2

4

6

8

(a) Consumers’ Welfare
8 9 10 11 12 13 14 15

2

4

6

(b) Providers’ Welfare
8 9 10 11 12 13 14 15

3

4

5

6

7

8

9

10

(c) Match Rate for the Platform

Figure 2.7: Λp = 12, Rc = Rp = 100,Kp = 0.8, tc = 0.8, tp = 0.85, δc = 0.6, δp = 0.7.

welfare of user class u ∈ {c, p} under information Regime I ∈ {O,C,P} is given by

E[UuI ] =
∑
s∈SuI

Pr (s)E[UuI (s)], (2.21)

where Pr (s) is the probability that the user class u receives signal s under information Regime I.
Since the expressions for users’ welfare under the three information regimes are unwieldy, we present
them in Appendix B.3. We use these expressions to characterize the platform’s and users’ possible
alignment. We perform this analysis numerically, as we do not have closed-form expressions for the
users’ utilities under Case 2 of Regimes C and P.

Fig. 2.7 presents a representative example of our numerical analysis for the three information
regimes. For consumers and providers, we plot the expected welfare against Λc in Figs. 2.7a-2.7b, and
for the platform, we plot the effective match rate against Λc in Fig. 2.7c. As seen in Figs. 2.7a-2.7b,
a user class might receive the highest utility in a regime where information is hidden from one user
class. For example, in the setting of Fig. 2.7a, consumers are best-off when information is hidden from
providers when Λc is between approximately 10.8 and 11.6. It is even more interesting to observe
that a user class may be best-off when information is hidden from their own class; for instance, this
occurs for consumers when Λc is approximately between 7.5 and 9.1 in Fig. 2.7a. We can understand
why this is the case by examining the CTMCs in Figs. 2.1 and 2.2. Changing from Regime P to O

has three different effects: (1) The bounding state for providers is higher under Regime O than under
Regime P (bpO > bpP). (2) The bounding state for consumers, bcO, becomes finite (this bounding state
is infinite under Regime P). Both (1) and (2) reduce the expected delay (and hence increase the
utility) of consumers. (3) The rate at which providers are cleared from the system increases, because
consumers now join at a rate Λc > λcP(∅) when providers are in excess: this causes consumers to be
less likely to arrive at a system with providers, and therefore, decreases their utility. When the third
effect is stronger than the first two, consumers obtain higher expected utility under Regime P than
under Regime O. Our observation that users might prefer less information in a two-sided setting
complements a similar effect noted for one-sided settings in Guo and Zipkin (2007).

Although a user class’s welfare may be maximized under a regime where one user class (as
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explained, possibly themselves) receives no information, either the other user class or the platform
does not find the same regime optimal. Specifically, Fig. 2.7 illustrates our general observation that
full alignment, when it occurs, only occurs for Regime O (the shaded regions in the figure correspond
to parameters where the same regime yields maximal utility for users and maximal match rate for
the platform). As a corollary, when the platform finds Regime C (resp., Regime P) optimal, at least
one user class favors Regime P or Regime O (resp., Regime C or Regime O).

2.6 Extension to More Heterogeneous User Populations

In this section, we examine how the choice of the optimal information regime varies as the user
populations become more heterogeneous with respect to their delay sensitivity. If one thinks of
different values that users’ delay sensitivities could take as the degree of heterogeneity in patience
levels (similar to Guo and Zipkin, 2007), the distribution that models the most heterogeneous user
population is a continuous distribution. We restrict our attention to uniform distributions, and
we compare the optimal regime choice under our base model (a two-point uniform distribution) to
that under a continuous uniform distribution with the same mean (to allow for a fair comparison).
Formally, for user class u ∈ {c, p} and tu ∈ [0, 1), the two distributions follow:

fu2 (θu) = 1/2 for θu ∈ {tu, 1},

fuuni(θ
u) = 1/(1− tu) for θu ∈ [tu, 1] .

(2.22)

We consider three different settings: (a) Two-point: both providers’ and consumers’ delay sensitivities
follow uniform two-point distributions; (b) hybrid: consumers’ delay sensitivities follow the continuous
uniform distribution while providers’ delay sensitivities follow the uniform two-point distribution
(for conciseness, we skip the symmetric analogue of this setting); (c) continuous: both user classes’
delay sensitivities follow continuous uniform distributions. Going from setting (a) to (c) represents
an increase in the extent of heterogeneity in the users’ delay sensitivities.

Fig. 2.8 depicts the optimal information regime for the three mentioned settings as tc and tp

vary, for a representative setting of Λc, Λp and Kp. Note that both the two-point and hybrid
settings exhibit a complicated optimal information regime structure, while in the continuous setting,
Regime O outperforms the other regimes for all tc and tp values. We observe in Fig. 2.8 that as we
switch from the two-point setting to the hybrid setting and then to the continuous setting, Regime O

is optimal for a wider set of parameters (although there are specific combinations of tc and tp for
which Regime O is optimal for the two-point setting, while Regime C or P is optimal for the hybrid
setting). To verify whether these observations hold more generally, we conduct 3125 experiments
with parameters Λc ∈ {1, 5, 10, 15, 20}, Λp ∈ {1.5, 5.5, 10.5, 15.5, 20.5}, Kp ∈ {0.2, 0.7, 1, 1.9, 6},
tc ∈ {0.15, 0.35, 0.55.0.75, 0.95} and tp ∈ {0.15, 0.35, 0.55.0.75, 0.95}. Of these, we remove the 165
experiments in which all three regimes result in an effective match rate of 0, leaving us with 2960
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(a) Two-point (b) Hybrid (c) Continuous

Figure 2.8: Optimal regimes; Λc = 15,Λp = 10.5, Kp = 1.5;
(Blue, Orange, Green) correspond to (P, C, O). The uncolored top-right corners are regions where

the match rate is zero in all three information regimes.

Table 2.1: Number of experiments under which each regime is optimal

Two-point Hybrid Continuous

Regime P 555 512 0
Regime C 413 69 0
Regime O 1992 2379 2960

experiments. Aligned with our observations in Fig. 2.8, we find that Regime O is optimal in more
experiments as the patience levels become more heterogeneous (as with Fig. 2.8, there are, however,
specific experiments for which Regime O is optimal in the two-point setting and either Regime P or
C is optimal in the hybrid setting). Furthermore, we verify that Regime O is always optimal in the
continuous setting. Table 2.1 summarizes our experimental results.

The main insight from these experiments is that as the users’ heterogeneity (the number of
distinct user types) increases, the platform tends to prefer sharing occupancy information. This
complements the findings of Guo and Zipkin (2007) and Dobson and Pinker (2006) for one-sided
settings. For example, Guo and Zipkin (2007) conclude that sharing occupancy information (or, in
their terminology, “partial information”) outperforms no information sharing when “the cost-scale
distribution is spread out, so customers are heterogeneous.” Similarly, Dobson and Pinker (2006) find
that a firm benefits from sharing more detailed lead time information when customers’ tolerances for
waiting are sufficiently heterogeneous.
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2.7 Conclusion

In this chapter, we study an on-demand platform’s optimal delay information disclosure when the
platform matches two classes of users (consumers and providers) with the objective of maximizing the
effective match rate (as a proxy for revenue). We study three information regimes— occupancy, where
both consumers and providers are informed of the current system occupancy, and two asymmetric
information regimes, where either only consumers or only providers are informed of the current
system occupancy, while the other is provided with no information.

Our base model considers users of each class as being either patient or impatient; we analytically
compute and compare the platform’s match rates under the three information regimes and provide
sufficient conditions for each regime’s optimality. We further find that it is optimal for platform to
share no delay information with its users under certain limiting settings. Through numerical analysis,
we show that user’s welfare is not always aligned with platform’s profitability and only aligned
under occupancy information regime. We extend our base model by studying how the platform’s
information regime choice changes with higher levels of user heterogeneity (a larger number of distinct
patience sensitivity levels). As users become more heterogeneous, the platform finds it optimal to
disclose occupancy information to at least one of its user classes for a wider range of parameters.

We discuss a few interesting directions in which our models may be extended. First, it would
be interesting to study the effect of users having non-linear delay cost functions. This analytically
difficult extension would supplement the work of Guo and Zipkin (2007), who study the effect of
customer delay cost functions on information disclosure in a one-sided system. Second, the bulk of our
study is restricted to studying the platform’s decision when user delay sensitivity follows a two-point
distribution. Although we consider an extension to three-point and uniform distributions, it will be
useful to find a general link between the distribution of user delay sensitivity and the firm’s optimal
policy; this problem is only partially solved even for one-sided queuing systems: Guo and Zipkin
(2007) provides a partial characterization by finding sufficient conditions with respect to the patience
distribution function. While our model considers three information regimes, it would be useful to
expand the space of regimes to find the structure of the “optimal” information regime. Finally,
another interesting extension would be to study service disciplines other than first-come-first-served
(for example, a random service discipline), to better suit particular applications (for example, ride
sharing).
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Chapter 3

Dynamic Balancing of Efficiency and
Risk in Multi-Class Screening Systems

3.1 Introduction

Security screening systems at land borders, airports, seaports and other military and civil facilities
aim to identify malevolent people and illicit goods to mitigate downstream risks. The global scale of
these operations is enormous. For example, an estimated 1.1 million passengers cross US borders
every day, resulting in the seizure of around 8,000 drugs, $300,000 worth of currency and $3.8 million
worth of products in violation of Intellectual Property Rights laws on a typical day (US Customs
and Border Protection, 2016). At the same time, screening operations often create long queues at
checkpoints, which impose significant system-wide costs.1 Screening systems thus need to balance the
objectives of risk management—i.e., ensuring reliable operations to identify threats—and operating
efficiency—i.e., maintaining appropriate screening speeds to avoid long wait times.

This problem falls under the broad umbrella of speed-quality trade-offs in service operations,
where human operators dynamically adjust service levels to ensure quality (through service slowdowns)
while minimizing wait times (through service speedups). Screening systems involve similar dynamics,
as operators solve the efficiency-risk trade-off by dynamically selecting the intensity of the screening
procedure—by applying, for instance, a simple document check vs. a full body search. However, two
unique features need to be considered in screening systems management: (i) the heterogeneity of
people and goods being screened, and (ii) the strategic behaviors of agents when people (not goods)
are subject to screening procedures.

First, all people and goods do not pose the same threat. For instance, many travelers have no
intention of harm and carry appropriate travel documents; others may carry illicit items ranging
from agricultural products to drugs; a few travelers might also pose extremely high threats by

1See, e.g., http://www.dispatch.com/news/20180609/legal-immigrants-can-wait-weeks-to-cross-us-mexico-border;
http://time.com/4349766/airline-70000-passengers-missed-flights-due-to-security-lines/
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bringing firearms or planning terrorist attacks. Operators obviously cannot identify benevolent vs.
malevolent agents with certainty before applying screening procedures. Yet, operators often have
access to some information on threat levels from initial screenings or from formal pre-screening
programs developed to overcome information deficiencies—such as the Automated Targeting System
and Secure Flight programs in the United States. This heterogeneity provides opportunities for
operators to differentiate screening procedures based on pre-screening information. For instance,
speeding up service for high probability benevolent agents, even when the system is near empty, can
mitigate future wait times and avoid situations where service speedups are made necessary by long
queues—with resulting high risk levels if malevolent agents benefit from speedups.

Second, many systems deal with the screening of human agents. Unlike packages, people can
observe the screening procedures being applied and make strategic decisions regarding whether to go
through the screening process or not. For instance, strict screenings may add small travel delays
for benevolent agents but have more severe financial or penal consequences for malevolent agents,
who may thus decide to leave the system prior to screening. From the perspective of the operators,
the selection of screening procedures can be made more effective by anticipating these endogenous
decisions from the agents. However, a major challenge lies in information asymmetries between
the agents—who know their intentions with accuracy—and screening operators—who, despite some
pre-screening information, can only assess agent types with uncertainty.

This chapter formulates decision-making models to select screening procedures in multi-class
settings. It takes the viewpoint of a screening operator who must balance efficiency and risk by
selecting one procedure for each job (person or package) from a menu of available ones. We first
consider instances with non-strategic agents, to determine how the selection of screening procedures
can leverage real-time information on queue lengths and each job’s perceived threat level. We
then extend our model to determine how anticipating agents’ strategic decisions to go through
screening or renege may impact the optimal selection of screening procedures. In both instances, we
identify the value of pre-screening information with respect to expected queue lengths and risk costs.
Before proceeding further, we provide three examples of multi-class screening systems with different
screening procedures, job heterogeneity, pre-screening information and various extents of strategic
behaviors:

Package and container screening: Up to 1 million bags and 75,000 containers are inspected per day
with large-scale x-ray machines, gamma ray machines and radiation detection devices. Item-level
information can be obtained from such characteristics as size, weight and point of origin. The
system balances efficiency and risk in the presence of non-human, hence non-strategic agents.

Airport security: Airport security checkpoints are a major bottleneck of travel operations. Screenings
are performed with x-ray machines, full body scanners, and human pat-downs. Pre-screening
information stems from such programs as the Secure Flight and TSA Precheck in the United States.
Here, only a tiny portion of malevolent agents are expected to pose high threats and to react
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strategically to screening procedures.

Border Crossings: Screening procedures range from document checks to body searches, vehicle
searches and canine searches. Agent heterogeneity stems from the array of possible custom laws
violations, from minor offenses (e.g., carrying undeclared merchandise) to major ones (e.g., carrying
drugs or firearms). Here, a higher proportion of travelers may exhibit strategic behaviors.

This chapter makes the following contributions:

• Developing a dynamic decision-making model to balance efficiency and risk in multi-class
queuing systems (Section 3.3). We consider an M/M/1 queue with heterogeneous jobs. The
operator controls the service rate by selecting the screening procedure applied to each job.
We formulate the model as a continuous-time infinite-horizon Markov decision process that
optimizes these decisions as a function of observed queue lengths and the threat level of each
job. We show that the optimal policy exhibits a double threshold behavior: All else equal, the
shorter the queue length and/or the higher the risk level, the stricter the optimal screening.

• Assessing the impact of pre-screening risk information on system performance (Section 3.4).
We compare the optimal multi-class policy (with heterogeneous risk profiles) to a baseline
single-class decision-making scheme based on queue length alone. Leveraging job-level risk
information results in a Pareto improvement by mitigating both risk costs and queuing costs,
with reductions in total expected costs of up to 6-7%. These savings increase with the
granularity of risk profiles (i.e., the number of classes) and with the flexibility granted to
screening operators (i.e., the number of available screening procedures).

• Extending the model to account for agents’ strategic behaviors (Section 3.5). When the system
deals with the screening of people (as opposed to goods), each agent can renege from the system
prior to screening if the estimated risk of being flagged exceeds the benefits of successfully
going through security. The model captures information asymmetries between agents and the
screening operator. We formulate the operator’s problem as a Markov decision process that
incorporates the endogenous strategic behaviors of heterogeneous agents.

• Assessing the impact of strategic behaviors and pre-screening information on optimal screening
policies and system performance (Section 3.6). Anticipating agents’ strategic behaviors results
in stricter screening to try to deliberately force malevolent agents to renege. By reducing
service rates, the operator mitigates expected risks and may also, surprisingly, reduce expected
queue lengths when the proportion of malevolent agents is significant—thus achieving a Pareto
improvement. Moreover, better pre-screening information reduces total expected costs by
mitigating information asymmetries; however it does not necessarily reduce expected risks.

From a practical standpoint, this chapter highlights the value of differentiating screening proce-
dures over heterogeneous agents distinguished by pre-screening information, and provides decision-
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making tools to support these decisions. Specifically, results underscore two benefits of pre-screening
information: (i) characterizing agent heterogeneity through multi-class job profiles, and (ii) reducing
information asymmetries between agents and system operators. As a result, pre-screening information
can mitigate security risks and system congestion. At the same time, pre-screening information stems
primarily from profiling programs, which raise broader questions of potential biases and privacy
implications. This chapter contributes to this discussion by providing a transparent assessment of
the operational impacts of pre-screening information.

3.2 Literature Review

This chapter bridges three streams of research: (i) security operations, (ii) quality-speed trade-offs
in service operations, and (iii) strategic queuing. Specifically, it builds upon the security operations
literature to optimize the selection of screening procedures, but extends it to capture the trade-off
between risk and queuing costs and the impact of strategic customers.

Security Operations. Extensive research has focused on security systems at airport and seaport
management, border control, counter-terrorism, etc. This literature falls into two broad categories.
The first category designs screening procedures to mitigate security risks and operating costs. Several
studies employ cost-benefit analyses to assess the effectiveness of screening procedures and pre-
screening profiling programs (Barnett, 2004; Wein et al., 2006; Bakır, 2008; Cavusoglu et al., 2010).
Researchers have also used security games to design defense strategies and detect malevolent agents,
given attackers’ strategic incentives (Sinha et al., 2016; Wrzaczek et al., 2017; Sinha et al., 2018).
At the operational level, several studies aim to optimize the assignment of screening procedures to
travelers, which is also focus of this chapter. McLay et al. (2007) and Nikolaev et al. (2007) propose
integer programming models to optimize the screening of passengers and carry-on bags at airports,
when passengers are heterogeneous in their risk profiles. McLay et al. (2010) and Lee and Jacobson
(2012) address a similar problem when heterogenous passengers arrive sequentially, and formulate it
as a stochastic Markov decision process.

The second category of research employs queuing models to estimate the impact of various
screening strategies on system operations. Gilliam (1979) applies queuing theory to design passenger
screening facilities at a large international airport. Atkinson and Wein (2008) use a spatial queuing
model to shield cities from terrorist attacks with detection-interdiction systems. Zhang (2009) propose
a congestion-based staffing policy at border crossings. Zhang et al. (2011) develop a two-stage
inspection procedure, by optimizing the proportion of travelers subject to secondary screening and
then the time spent in secondary screening.

This chapter bridges these two categories by dynamically selecting screening procedures applied
to heterogeneous agents, while balancing risk and congestion mitigation in a queuing setting.
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Speed-Quality Trade-Off. Service operations often involve a trade-off between wait times and
service levels (Gans et al., 2003; Aksin et al., 2007). This literature considers queuing systems where
the operator exercises dynamic control (Hopp et al., 2007a), such as systems of experts (Debo et al.,
2008) or case managers (Campello et al., 2016). Our work relates to the literature on the control
of service rates in queuing systems, balancing the operational benefits of shorter queue lengths vs.
the implementation costs of faster service—in our case, the costs of higher security risks. Stidham
and Weber (1989) and George and Harrison (2001) show that the optimal policy is monotonic, i.e.,
optimal service speeds increase as the queue gets longer. This has been extended to incorporate
congestion pricing decisions (Ata and Shneorson, 2006), continuous decisions to keep working on
a job or to stop (Hopp et al., 2007b), and returning customers when service quality is low (Chan
et al., 2014). Our work extends this body of work by incorporating the heterogeneity of risk profiles
and strategic agents in a multi-class setting.

Strategic Queuing. Naor (1969) proposes the first model of strategic queuing, in which customers
trade off prices and wait times. Hassin and Haviv (2003) and Hassin (2016) survey the subsequent
literature on this topic. Closely related to our setting, Anand et al. (2011) analyze the quality-
speed trade-off in a strategic queuing setting, where the firm optimizes its pricing and service rates
and customers make purchasing decisions based on prices, wait times and service quality. Wang
et al. (2010) study a similar problem in the context of health diagnostic centers. They optimize
staffing levels and a “certainty threshold” that nurses need to reach about patient pathologies before
completing the diagnostic, given patients’ strategic decisions when joining the system. Alizamir
et al. (2013) incorporate Bayesian learning into the optimization of the “certainty threshold”. In
call centers, Zhan and Ward (2013) solve the problem between wait times and call resolution by
optimizing the routing of calls when operators are heterogenous.

In Sections 3.5 and 3.6, we follow a similar approach by integrating agents’ strategic decisions to
remain in the system or renege into the selection of screening procedures. Two differences with the
aforementioned studies are that (i) we model strategic behaviors in terms of reneging (i.e., agents
leaving the system after joining) rather than balking (i.e., agents deciding not to join the system),
and (ii) the operator’s decisions are made dynamically for each job rather than statically.

3.3 Selection of Screening Procedures with Non-Strategic Agents

We propose an analytical model to dynamically optimize the selection of screening procedures in a
setting with multiple classes of jobs and non-strategic agents. Job heterogeneity reflects the various
risk levels, as assessed by the operators from pre-screening information. Non-strategic agents may
include items such as packages, bags and containers, which do not adjust their behaviors in response
to the screening procedure applied by the operator. In Section 3.5, we relax this assumption by
considering human agents’ strategic behaviors.
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We formulate the model in Section 3.3.1. We then characterize the optimal policy in Section 3.3.2,
and show that it exhibits a double threshold behavior. Specifically, the longer the queue and/or the
lower the risk level of the job under consideration, the faster the optimal screening procedure.

3.3.1 Model Development

We formulate the problem as a continuous-time Markov decision process. We consider a first-come
first-served M/M/1 queuing system.2 Screening jobs arrive according to an exogenous Poisson
process, and service is provided by one operator. For each job, the operator selects one out of
several screening procedures. Procedures vary with respect to service speeds and risk costs: More
conservative procedures (e.g., full body search) induce a lower service speed but a lower risk cost
than more expedited ones (e.g., document check). Therefore, the operator controls both the service
rate of the queue and the risk costs faced by the system.

The operator selects the screening procedure based on the queue length and the perceived risk
level of the job under consideration. Queue length information can be obtained in real-time by
counting the number of jobs in queue or through sensors. Risk levels are available from pre-screening
programs and any relevant real-time observation of the operator. We assume that operators assess
the risk level of jobs when they reach service.

We introduce the following notation to describe job arrivals, risk heterogeneity, and screening
procedures. Let λ denote the arrival rate of jobs. The perceived risk level of each job—observable
by the screening operator—is denoted by r ∈ <+; higher values of r reflect higher risk levels. We
assume that the risk level r is sampled from a known probability distribution function, denoted
by f . For each job, the operator chooses a screening procedure φ ∈ Θ, where Θ denotes a set of
available procedures (e.g., document check, x-ray scanning, full body search). For each procedure φ,
the service time follows an exponential distribution, whose rate is denoted by µφ.

We denote by Rφ(r) the risk cost resulting from screening a job with a risk level r ∈ <+ using
screening option φ ∈ Θ. The risk costs can be interpreted as the expected cost of false negatives,
i.e., the expected security costs resulting from a malevolent item not being detected by the system.3

Specifically, we denote by pφ the probability of a false negative when procedure φ is applied, and
by C(r) the cost of a false negative for a job with risk level r. Note that we assume, for analytical
tractability, that the probability of false negatives is independent of the risk profiles. We have:

Rφ(r) = pφC(r), ∀r ∈ <+, ∀φ ∈ Θ. (3.1)

We make the following assumptions to reflect the trade-off between efficiency and risk:

Assumption 1. For any φ, ψ ∈ Θ: If µψ ≥ µφ, then Rψ(r) ≥ Rφ(r), ∀r ∈ <+.
2Our insights can hold in more general settings with two or more operations. However, we consider an M/M/1 system
for analytical tractability. This is consistent with the literature (Ata and Shneorson, 2006).

3We assume that the cost of false positives (i.e. increased delay of benevolent jobs) is reflected in increased delay.
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Assumption 2. For any r1, r2 ∈ <+ such that r1 ≤ r2: Rφ(r1) ≤ Rφ(r2),∀φ ∈ Θ.

These assumptions are motivated as follows. First, the faster a screening procedure, the lower its
reliability and, hence, the larger the probability of false negatives. In other words, for each φ, ψ ∈ Θ

such that µφ ≤ µψ, we have: pφ ≤ pψ.4 This assumption is consistent with the literature on the
quality-speed trade-off, where higher speeds of service induce lower quality. Second, the higher the
risk level of a job, the larger the security costs in case of a false negative. In other words, for each
r1, r2 ∈ <+ such that r1 ≤ r2, we have: C(r1) ≤ C(r2). This assumption is consistent with security
operations literature where higher costs are associated with more risky profiles. Assumptions 1 and 2
provide more general conditions than these statements.

The operator selects a screening procedure each time an event occurs, i.e., each time a new service
is initiated, or a new job arrives.5 This is formulated as a continuous-time infinite-horizon Markov
decision process. Let tk denote the time at which the kth event (job arrival or service completion)
occurs. The state variable characterizes the observed number of jobs in the system (i.e., in queue
and in service), denoted by i, and, if i ≥ 1, the risk profile of the job being screened, denoted by r.
Therefore, the state space of the problem S is given by:

S = {0} × {(i, r), i ≥ 1, r ∈ <+}. (3.2)

At each epoch tk, the decision space includes the elements of the set Θ if i ≥ 1; no decision is made
if i = 0 (i.e., the system is empty). Let ik be the number of jobs in the system at time tk; let rk be
the risk level of the next agent at time tk, if ik ≥ 1; and let φk be the screening procedure selected
at time tk, if ik ≥ 1. We denote by π a policy that associates an element of Θ to any element of S.

The cost function comprises two terms: (i) a queuing cost accrued continuously over time, and
(ii) the risk cost, incurred upon completion of each service. We denote the queuing cost per unit of
time by g(i). The risk cost is equal to Rφk(rk) if the next transition is a service completion and 0
otherwise. We denote by δk a Bernoulli variable that is equal to 1 if the transition from tk to tk+1 is
a service completion, and 0 otherwise. Let β > 0 be the operator’s continuous discount rate. The
model’s objective function, denoted by z, is thus given by:

z = E

[ ∞∑
k=0

(∫ tk+1

tk

g(ik)e
−βtdt+ e−βtk+1Rφk(rk)δk)

)]
. (3.3)

The transition rates are non-uniform, i.e., the time interval between two consecutive transition
epochs depends on the operator’s screening decisions. Indeed, transitions follow a Poisson process
with rate λ+µφk when the system is non-empty, and with rate λ when the system is empty. We apply
the method of uniformization (Bertsekas, 2005, 2012): Let µ̄ = max {µφ, φ ∈ Θ} denote the fastest

4Any service procedure for φ such that µφ ≤ µψ and pφ > pψ can be removed from the set under consideration.
5Note that this enables the operator to change its procedure during an inspection if a new job arrives. Practically
there is nothing to prevent this if the jobs being considered are goods.
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screening rate among all available procedures. Then λ+ µ̄ provides an upper bound of the transition
rate from each state and under any policy π. We consider a modified Markov decision process,
where the rate of each transition is equal to λ+ µ̄ by adding self-transitions. Specifically, we add
self-transitions with rate µ̄−µπ(i,r) in each state (i, r) and with rate µ̄ in state 0. The corresponding
state transition probabilities in any state s ∈ S under policy π, denoted by (Ps→s′(π))s′∈S , are given
as follows, where 1 denotes the indicator function:

P(i,r0)→(i+1,r)(π) = λ
µ̄+λ1(r = r0) ∀i ≥ 1, r0, r ∈ <+ P0→(1,r)(π) = λ

µ̄+λf(r) ∀r ∈ <+

P(i,r0)→(i,r)(π) =
µ̄−µπ(i,r0)

µ̄+λ 1(r = r0) ∀i ≥ 1, r0, r ∈ <+ P0→0(π) = µ̄
µ̄+λ

P(i,r0)→(i−1,r)(π) =
µπ(i,r0)
µ̄+λ f(r) ∀i ≥ 2, r0, r ∈ <+ P(1,r0)→0(π) =

µπ(1,r0)
µ̄+λ ∀r0 ∈ <+

Figure 3.1 illustrates the transition diagram of the system under policy π with two risk levels
denoted by r1 and r2, each occurring with probability h1 and h2 = 1− h1, respectively.
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Figure 3.1: State-transition diagram under policy π.

Based on the problem’s re-formulation as a continuous Markov decision process with uniform
transition rates, we derive the discrete and recursive formulation of the Bellman equation in
Lemma 3.1, by decomposing the cost function from one decision epoch to the next. The proof follows
the procedure from Bertsekas (2005, 2012), and thus omitted for conciseness.

Lemma 3.1. Let J(i, r) denote the cost-to-go function for the problem. Let J(i) be the expected
cost-to-go across all risk profiles when i jobs are present in the system, i.e.:

J(0) = J(0) and J(i) = Er[J(i, r)] =

∫
r∈<+

J(i, r)f(r)dr, ∀i ≥ 1. (3.4)
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The Bellman equation of the problem is given as follows:

J(i, r) =
1

β + µ̄+ λ

(
g(i) + λJ(i+ 1, r)

+ min
φ∈Θ
{µφRφ(r) + µφJ(i− 1) + (µ̄− µφ) J(i, r)}

)
∀i ≥ 1,∀r ∈ <+, (3.5)

J(0) =
1

β + µ̄+ λ
(g(0) + λJ(1) + µ̄J(0)) . (3.6)

The Bellman equation comprises five terms. First, g(i)
β+µ̄+λ captures the discounted queuing cost,

incurred continuously between two consecutive decision epochs. Second, λ
β+µ̄+λJ(i+ 1, r) refers to

the discounted cost-to-go following the arrival of the next job. Next, µφ
β+µ̄+λRφ(r) and µφ

β+µ̄+λJ(i− 1)

represent the discounted risk cost and cost-to-go following a job completion. The cost-to-go function
is averaged over all risk levels, reflecting the uncertainty regarding the risk level of the next job.
Last, µ̄−µφ

β+µ̄+λJ(i, r) reflects self-transitions.
We denote the optimal cost-to-go function by J∗ and the optimal policy by π∗. Also, let J∗(i)

be the optimal value of J(i). From Equation (3.5), we obtain that for each i ≥ 1 and each r ∈ <+:

π∗(i, r) = φ ⇐⇒ (µφ − µψ) [J∗(i, r)− J∗(i− 1)] ≥ µφRφ(r)− µψRψ(r), ∀ψ ∈ Θ. (3.7)

3.3.2 Characterization of Optimal Policy

We now characterize the optimal policy as a function of the observed queue length i ≥ 1 and risk
level r ∈ <+. To simplify the exposition, we assume that |Θ| = 2. In other words, the operator can
select one of two screening procedures: “fast” and “slow” which we index by “F” and “S”, respectively.
We denote by µF and µS the corresponding screening rates. We have µF ≥ µS , so µ̄ = µF . For any
risk level r, the corresponding risk costs are denoted by RF (r) and RS(r). Computational results in
Section 3.4.1 indicate that all our results hold with three or more screening procedures.

Due to (3.7) the optimal policy is given by:

π∗(i, r) = "fast" ⇐⇒ J(i, r)− J(i− 1) ≥ µFRF (r)− µSRS(r)

µF − µS
.

We now introduce additional structural assumptions on the queuing and risk costs:

Assumption 3. The waiting cost function g(i) is non-decreasing and convex in i. This is a standard
assumption in the literature, also supported by empirical evidence (Van Mieghem, 1995).

For any risk level r, the risk under fast service is larger than the risk under slow service, i.e.,
RF (r) ≥ RS(r) for all r ∈ <+ (Assumption 1); and the risk costs RF (r) and RS(r) are both
increasing in r (Assumption 2). In addition, we impose Assumptions 4 and 5.

Assumption 4. RS(r) ≤ g(1)−g(0)
β , ∀r ∈ <+ .
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Assumption 5. µF
µF+β (RF (r2)−RF (r1)) ≥ µS

µS+β (RS(r2)−RS(r1)) ∀r1 < r2 ∈ <+ .

Assumption 4 ensures that whenever there is a single job of any risk level r in the system, the
screening operator will always process it even with the slowest option and incur cost RS(r), rather
than keeping the job waiting indefinitely. In other words, the slowest screening procedure is always
preferable to no screening at all. Note that Assumption 4 is satisfied with β sufficiently small.
Next, as β nears 0, Assumption 5 can be written as RF (r2) − RF (r1) ≥ RS(r2) − RS(r1) for all
r1 < r2 ∈ <+: The marginal increase in risk costs with high and low risk levels is larger under
fast screening than under slow screening. Equivalently, RF (r2)−RS(r2) ≥ RF (r1)−RS(r1) for all
r1 < r2 ∈ <+: The marginal increase in risk costs between slow and fast screening is higher for
riskier profiles than less risky ones. Assumption 5 provides a more relaxed condition as β > 0.

We now show that the optimal policy exhibits a double threshold behavior in queue lengths
and risk levels in Propositions 3.2 and 3.3. First, Proposition 3.2 shows that the optimal policy is
monotonic in queue lengths: all else equal, the longer the queue length, the faster the screening. In
other words, for any risk level r, there exists a value îr such that the “fast” procedure is employed
when i ≥ îr, and the “slow” procedure is employed when i < îr. This result extends Stidham and
Weber (1989) and George and Harrison (2001) to a multi-class setting with heterogeneous jobs.

Proposition 3.2. The optimal policy π∗ exhibits the following threshold pattern: For any risk level
r ∈ <+ and any queue length i ≥ 0, we have:

If π(i, r) = µF then π(i+ 1, r1) = µF . (3.8)

Second, Proposition 3.3 shows that the optimal policy is monotonic in the risk level: all else equal,
the riskier the job, the slower the screening. In other words, for any queue length i, there exists a
value r̂i such that the “fast” procedure is employed when r ≤ r̂i, and the “slow” procedure is employed
when r > r̂i. This threshold behavior further extends the literature on the speed-quality trade-off
to multi-class settings by underscoring the dependencies of the screening policy on available risk
information. It also suggests potential operational benefits resulting from differentiating the screening
policies with respect to risk profile information. Specifically, relaxing the screening requirements
for low-risk jobs—even when the system is near empty—can enable system operators to apply
stricter screening for higher-risk jobs later. This is further discussed in Section 3.4.1. Together,
Propositions 3.2 and 3.3 provide decision-making support regarding when to switch from a given
screening procedure to an alternative one by considering both operational factors (e.g., queue length,
service rates) and risk factors (e.g., risk profile information, risk costs).

Proposition 3.3. The optimal policy π∗ exhibits the following threshold pattern: For any queue
length i ≥ 0 and risk levels r1, r2 ∈ <+ such that r1 ≤ r2, we have:

If π(i, r2) = µF then π(i, r1) = µF . (3.9)
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Propositions 3.2 and 3.3 are proved by induction using the value iteration algorithm, by showing,
respectively, that µF−µS

β+λ+µF
J(i, r) − RF (, r) + RS(r) is decreasing in r for any value of i, and that

J(i, r)− J(i− 1) is increasing in i for any value of r. Both proofs are reported in Appendix C.2.

3.4 Computational Results

We now show computational results to illustrate the optimal policy and extend our analytical insights
to a setting with three or more screening options (Section 3.4.1), and to identify the benefits of the
multi-class model developed in this chapter, vs. existing single-class models (Section 3.4.2). We
obtain the optimal policy by applying a value iteration algorithm (Bertsekas, 2005, 2012; Powell,
2007), with a finite state space approximation obtained by placing an upper bound on the queue
length. The full experimental setup is detailed in Appendix C.1.

We refer to the optimal policy as multi-class policy, and to a baseline policy that does not leverage
risk information as single-class policy. The single-class policy is obtained by solving Equations (3.5)
and (3.6) with a one-dimensional state i representing the number of jobs in the system, i.e., by
selecting the screening procedure for each value of i regardless of the current job’s risk level.

3.4.1 Optimal Policy

Figure 3.2 shows the optimal multi-class and single-class policies as a function of the observed queue
length and risk level. We consider here five screening options, and a discrete risk distribution with
eight risk profiles. The optimal policies are indicated by the color of the region, with red (resp.
purple) representing the slowest (resp. fastest) screening option. The single-class policy (“SCP”) is
shown at the top of each graph as a function of the number of jobs in the system; the multi-class
policy is shown at the bottom of each graph in a two-dimensional setting representing the number of
jobs in the system and the risk level of a job. Figure 3.2a shows a baseline case to illustrate the
optimal policy in a two-dimensional state space. Figure 3.2b, 3.2c and 3.2d then show the optimal
policy with higher risk costs, greater spread of screening rates across the five available procedures
and higher arrival rate, respectively. Higher risk costs are modeled by multiplying all values of Rφ(r)

by a constant factor; greater spread of screening rates are obtained by increasing the difference
between the largest and the slowest screening rates, while keeping the error rates constant and
distributing the intermediate ones uniformly between the two extremes.

Note the threshold behavior of the optimal multi-class policy with respect to both the queue
length and the risk level: the larger the risk level, the lower the service rate; the larger the number
of jobs in the system, the larger the service rate. This is consistent with our analytical findings
(Propositions 3.2 and 3.3), and extends them to a setting with three or more available procedures.
Moreover, by differentiating the screening procedure based on risk levels, the multi-class policy
results in stricter screening for higher-risk jobs and looser screening for lower-risk jobs than the
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(a) Base case (b) Higher risk costs

(c) High spread of service rates (d) Higher demand

Figure 3.2: Single-class and multi-class policies for different service speeds, risk profiles and job
demand.

single-class policy. For example, in Figure 3.2a, when the system is near empty, the single-class
policy applies the slowest procedure, while the multi-class policy speeds up operations for low-risk
jobs. In contrast, under higher congestion (e.g., i = 40 or i = 90), the multi-class policy applies
strict screenings for high-risk jobs (shown in red and yellow), while the single-class policy applies
faster procedures (shown in green and blue). As we shall discuss next, such differentiation in the
multi-class policy reduces expected queue lengths (through speedups for low-risk jobs) as well as risk
costs (through slowdowns for high-risk jobs).

The figures also show the sensitivity of the optimal policy with respect to the model parameters.
First, slower screening is applied as the risk costs increase (Figures (3.2a) vs (3.2b)): Higher risk
costs require more conservative screening for risk mitigation, at the expense of higher queuing
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costs. Second, faster screening is applied as the spread of the service rates increases (Figures (3.2a)
and (3.2c)): More differentiated screening options increase the marginal benefits of switching from
slower to faster screening for queue length mitigation, at the expense of higher risk costs. Third,
faster screening is applied as the arrival rate increases (Figures (3.2a) and (3.2d)): higher demand
increases future expected queuing costs, hence motivating faster screening at the expense of higher
risk costs. These insights underscore the interplay between the two objectives of efficiency and risk
in screening systems, and the ways operators can trade off these two objectives by adjusting the
queue-based and risk-based thresholds, as a function of the operating environment.

3.4.2 Benefits of Multi-class Risk Information and Screening Flexibility

We now quantify the benefits of accounting for heterogeneous risk profiles when several screening
procedures are available: Several available screening options provides operating flexibility to apply
differentiated procedures based on observed queue lengths (typical in service operations facing a
quality-speed trade-off) and risk levels (a new dimension introduced here). We thus evaluate here
the joint benefits of risk information—captured by the multiple classes of jobs—and screening
flexibility—captured by the availability of several screening options.

To this end, we report, for the multi-class policy and the single-class policy, the value of the
cost-to-go function in state 0, that is J(0). This can be interpreted as the total discounted cost
starting from the beginning of a business day. We further decompose the cost-to-go function into
risk cost and queuing cost, denoted by JR and JQ, respectively. They are defined as follows:

JR(i, r) =
λJR(i+ 1, r) + µπ∗(i,r)Rπ∗(i,r)(r) + µπ∗(i,r)JR(i− 1) +

(
µ̄− µπ∗(i,r)

)
JR(i, r)

β + µ̄+ λ
∀i ≥ 1,∀r ∈ <+,

(3.10)

JQ(i, r) =
g(i) + λJQ(i+ 1, r) + µπ∗(i,r)JQ(i− 1) +

(
µ̄− µπ∗(i,r)

)
JQ(i, r)

β + µ̄+ λ
∀i ≥ 1,∀r ∈ <+, (3.11)

JR(0) =
λJR(1) + µ̄JR(0)

β + µ̄+ λ
, JQ(0) =

g(0) + λJQ(1) + µ̄JQ(0)

β + µ̄+ λ
, (3.12)

where JR(i) and JQ(i) denote the average values of JR and JQ in state i, respectively, over all risk levels
r ∈ <+. By construction, we have: J = JR + JQ. We use the superscripts “S” and “M” to refer to the
single-class policy and the multi-class policy, respectively,

Figures 3.3a and 3.3b compare the performance of the multi-class policy to that of the single-class policy,
for different numbers of risk profiles and screening options, respectively. They show the percent-wise reduction
of the total cost, risk cost and queuing cost obtained with the multi-class policy, i.e.:

JS(0)− JM (0)

JS(0)
,

JSR(0)− JMR (0)

JSR(0)
, and

JSQ(0)− JMQ (0)

JSQ(0)
.

Figures 3.3c and 3.3d show the total expected cost JM (0) for different numbers of risk profiles and screening
options. The dashed lines correspond to JS(0), i.e., the baseline total cost from the single-class policy.

First, note from Figures 3.3a and 3.3b that the multi-class policy reduces total expected costs by up
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(a) Benefits of multi-class policy vs. # of risk profiles (b) Benefits of multi-class policy vs. # of procedures

(c) Total discounted costs vs # of risk profiles (d) Total discounted costs vs # of procedures

Figure 3.3: Joint benefits of risk information and screening flexibility.

to 6-7%, as compared to the single-class policy. Most importantly, the multi-class policy provides a Pareto
improvement by reducing both risk and queuing costs: Leveraging risk information results in both safer
operations and lower expected wait times. By applying faster screening procedures for low-risk jobs, especially
under low congestion, the multi-class policy can prevent the formation of long queues, at a small increase in
risk costs; but this provides opportunities to apply stricter procedures for high-risk jobs, even with longer
queue lengths, which in turn decreases the risk costs faced by the system.

Next, Figures 3.3a and 3.3c show that total expected costs are further reduced as more job classes are
considered, but at a diminishing rate. In our setting, total costs (as well as risk and queuing costs) reach
a plateau with 5-10 risk profiles. This underscores the benefits of even limited risk information, as even
non-granular classifications of jobs based on risk profiles can bridge a significant portion of the gap between
the cost of the single-class policy, on the one hand, and the minimum cost that can be achieved with highly
granular risk information, on the other. This suggests that even relatively unsophisticated pre-screening
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programs could result in significant reductions in both total risk costs and queuing costs.
Similarly, Figures 3.3b and 3.3d show that total expected costs decrease with the number of available

screening options and that returns are again diminishing. In other words, when only a few screening procedures
are available, additional flexibility (i.e., a larger set of screening options) enables the operator to further
differentiate screenings based on queue lengths and risk information. However, when many procedures are
available, the marginal option has a more limited impact on optimal policies. Moreover, Figure 3.3b suggests
that screening flexibility provides higher benefits in a single-class setting than in a multi-class setting, where
risk information already enables granular selection of screening procedures by the operator.

Finally, Figures 3.3c and 3.3d underscore the joint benefits of risk information and screening flexibility.
For any number of screening options, more granular risk information can reduce expected costs, up to a
certain point. Further benefits can then be achieved only through additional flexibility, i.e., more available
screening procedures. At one extreme, when only two screening options are available, the operator is limited
in leveraging risk information due by constraints on screening procedures. The most significant benefits can
thus be achieved by designing more screening procedures. However, more screening options can reduce costs
up to a certain point in the absence of granular risk information. This underscores that the numbers of risk
profiles and screening options have diminishing returns when considered separately, but can complement each
other— yielding more significant benefits when considered together.

In conclusion, leveraging risk information can improve the performance of screening systems by discrim-
inating screening policies based on risk profiles—in addition to queue lengths. Moreover, the multi-class
policy proposed here yields a Pareto improvement by reducing both risk and queuing costs, as compared
to a baseline single-class policy. Finally, our results underscore the interplay between risk information and
screening flexibility, thereby suggesting opportunities for system planners to design screening procedures and
pre-screening programs simultaneously based on implications for risk mitigation and operating efficiency.

3.5 Selection of Screening Procedures with Strategic Agents

We now extend the model presented in Section 3.3 to incorporate strategic behaviors of human agents subject
to the screening procedures. We formulate the model in this section, and characterize the optimal policy and
resulting system dynamics in the following one.

3.5.1 Model of Agents’ Strategic Behaviors

We consider the following setting. Each agent (“she”) joins the system, regardless of the queue length and the
screening policy. Just prior to their service, however, each agent can deduce the procedure to be applied by
the operator, based on the observed queue length and her own risk profile. Accordingly, each agent decides to
remain in the system and go through screening, or to renege and leave before screening.

From the operator’s perspective, accounting for each agent’s endogenous decision to go through screening
or renege may impact the optimal screening policy and resulting system performance. This problem is
complicated by information asymmetries: Each agent knows her true type accurately but the operator can
only assess it probabilistically (again, from pre-screening programs and any other observational information).

We denote by s ∈ <+ the true profile of an agent. The larger the s, the more malevolent the agent. We
denote by r ∈ <+ the perceived risk level of an agent, as assessed by the system’s operator. This is analogous
to the variable r defined in Section 3.3; we still denote by f the (known) probability distribution of risk levels
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r across the population. To capture information asymmetries, we consider a probabilistic mapping between r
and s: let qr(s) be the probability distribution function of the agent’s true profile, conditionally on being
assigned a risk level r by the system’s operator.

Assumption 6. If Agents 1 and 2 are assigned risk levels r1 and r2, respectively, with r1 ≤ r2, then Agent
2’s true profile is more risky than Agent 1’s. Mathematically, qr1(·) is stochastically dominated by qr2(·):

For any r1, r2 ∈ <+ such that r1 ≤ r2, for any s̄ ∈ <+:
∫
s≥s̄

qr2(s)ds ≥
∫
s≥s̄

qr1(s)ds. (3.13)

We denote by K(s) the true risk cost resulting from an agent with true type s ∈ <+ going through the
screening process successfully.

Assumption 7. More risky profiles result in higher expected risk costs, i.e., K(s) is increasing in s:

For any s1, s2 ∈ <+ such that s1 ≤ s2: K(s1) ≤ K(s2). (3.14)

The true risk cost K(s) is related to the function Rφ(r) that was introduced in Section 3.3. Recall that
Rφ(r) was defined as the probability of a false negative under screening procedure φ (i.e., pφ) times the
expected risk cost resulting from an agent of risk level r going through the screening process successfully
(i.e., C(r)). The expected risk cost C(r) is, itself, equal to the expected value of an agent’s true risk costs,
conditional on the agent being assigned to risk level r. Mathematically, we can express Rφ(r) as follows:

Rφ(r) = pφ

∫
s∈<+

qr(s)K(s)ds. (3.15)

Note that, under assumptions (6) and (7), Rφ(r) satisfies Equation (2), i.e., Rφ(r) is non-decreasing in r.
Recall that pφ denotes the probability of a false negative when procedure φ is employed. This probability

is increasing in the speed of the screening procedure, i.e., for all φ, ψ ∈ Θ such that µφ ≤ µψ, we have: pφ ≤ pψ.
Accordingly, from the perspective of an agent, it can be interpreted as the probability of successful screening.
Each agent of type s ∈ <+ decides to go through screening whenever the probability of successful screening
exceeds a threshold denoted by τs, and reneges otherwise. The parameter τs captures the key differentiation
between agent types. At one extreme, for a benevolent agent (with a low value of s) unsuccessful screening
would result in a small travel delay, with low resulting costs. Vice versa, for a malevolent agent (with a
higher value of s) unsuccessful screening may lead to more severe consequences (e.g., financial fine, legal
prosecution). Following that logic, we posit that a benevolent agent will be willing to go through stricter
screening procedures than malevolent agents. Mathematically, this translates into Assumption 8 that τs is
non-decreasing in s ∈ <+, i.e.:

Assumption 8. For any s1, s2 ∈ <+ such that s1 ≥ s2: τs1 ≥ τs2 .

For each screening procedure φ ∈ Θ, we denote by S+
φ and S−φ the set of agents (characterized by their

true profiles s ∈ <+) that will go through the system and renege, respectively:

S+
φ := {s ∈ <+ |pφ > τs}, (3.16)

S−φ := {s ∈ <+ |pφ ≤ τs}. (3.17)

68



Note that the risk faced by the system is zero when an agent decides to renege prior to screening.
Therefore, the effective risk cost faced by the system when procedure φ is selected, denoted by RSφ(r), is
averaged over the risk profiles in S+

φ only and may thus be lower than Rφ(r). Specifically, we have:

RSφ(r) = pφ

∫
s∈S+

φ

qr(s)K(s)ds. (3.18)

3.5.2 Model Formulation

The selection of screening procedures with strategic agents involves the following dynamics: Each time
an agent enters service, the operator selects a screening procedure; then, the agent decides to go through
screening or to renege; if the agent proceeds to screening, the operator applies the selected procedure until
service completion, and the process is repeated. Note that the operator cannot change the screening procedure
during service (e.g., when a new job arrives into the queue)—reflecting the dynamics of screening and reneging
with human agents. This differs from Section 3.3, where the focus was on non-human jobs (e.g., packages,
containers), thus making it possible to change the screening procedure during service. This assumption does
not impact the optimal policy and resulting insights significantly.

To capture the reneging dynamics, we consider the following state space: S = {0} × {(i, r), i ≥ 1, r ∈
<+} × {(i, r, φ), i ≥ 1, r ∈ <+, φ ∈ Θ}. Decisions are made only in any state in the set {(i, r), i ≥ 1, r ∈ <+};
as in Section 3.3, state (i, r) signifies that i ≥ 1 agents are present in the system and the first agent is of type
r ∈ <+. If the operator selects screening procedure φ and the agent reneges (i.e., s ∈ S−φ ), then the system
transitions (instantaneously) to some state (i− 1, r′) (if i ≥ 1), where r′ denotes the risk level of the next
agent and is sampled from distribution f ; if i = 1, the system transitions to state 0. If the agent remains in
the system (i.e., s ∈ S+

φ ), in contrast, the system transitions (instantaneously) to state (i, r, φ). State (i, r, φ)

indicates that i ≥ 1 agents are in the system, that the next agent is of type r ∈ <+, that procedure φ ∈ Θ is
applied, and that the agent did not renege. Note that this state augmentation is necessary because, any time
a service begins, the operator knows that the agent’s true type is in S+

φ and not in S−φ—so information in
state (i, r, φ) is greater than in state (i, r).

For any φ ∈ Θ and r ∈ <+, we denote by w(φ, r) the probability that an agent of risk level r will remain
in the system if screening procedure φ is applied. It is given by:

w(φ, r) =

∫
s∈S+

φ

qr(s)ds. (3.19)

We denote by JS(s) the cost-to-go function of the system with strategic agents, for state s ∈ S. Let JS(i)

be the expected cost-to-go across all risk levels r ∈ <+ when i jobs are present in the system:

JS(0) = JS(0) and JS(i) = Er[J
S(i, r)] =

∫
r∈<+

JS(i, r)f(r)dr, ∀i ≥ 1. (3.20)

We can re-write the Bellman equation for the problem with strategic agents as follows:

JS(i, r) = min
φ∈Θ

(
(1− w(φ, r))JS(i− 1) + w(φ, r)JS(i, r, φ)

)
∀i ≥ 1 r ∈ <+, (3.21)

JS(i, r, φ) =
1

β + λ+ µ̄

(
g(i) + λJS(i+ 1, r, φ) + (µ̄− µφ)JS(i, r, φ) + µφJS(i− 1) + µφR

S
φ(r)

)
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∀i ≥ 1 r ∈ <+ φ ∈ Θ, (3.22)

JS(0) =
1

β + µ̄+ λ

(
g(0) + λJS(1) + µ̄JS(0)

)
. (3.23)

The first term of Equation (3.21) captures the event where the agent reneges, which occurs with probability
1− w(φ, r). The second term captures the event where the agent goes through screening; in this case, the
system transition instantaneously to state (i, r, φ). The associated cost then includes the continuous queuing
cost g(i) and the expected risk cost RSφ(r) if the next event is a service completion. Upon transition, it
will then incur a cost-to-go equal to JS(i + 1, r, φ) if the next event is an arrival, a cost-to-go equal to to
JS(i, r, φ) if the next event is a self-transition, and an expected cost-to-go equal to JS(i− 1) if the next event
is a service completion. This is captured in Equation (3.22). Equation (3.23) treats the case where i = 0.

Note that the problem’s formulation proposed here captures in a single Bellman equation the endogeneity of
agents’ strategic behaviors in response to the selection of screening procedures by the operator. Unfortunately,
the dynamics of the system become much more complex, which hinders the problem’s analytical tractability.
Nevertheless, in the next section, we derive some properties of the dynamics of the system and supplement
these with numerical results assessing system performance in the presence of strategic agents.

3.6 Impact of Strategic Behavior on System Performance:

We now discuss the impact of strategic behaviors on the optimal policy and resulting system performance.
As we shall see, strategic behaviors lead to stricter screening, to force malevolent agents out of the system.
By applying slower screening procedures, the operator can improve system performance by reducing risk
costs, and even by reducing expected queue lengths when the proportion of malevolent agents is large
enough (Section 3.6.1). We then analyze the impact of pre-screening information. We find that more reliable
pre-screening information leads to lower expected costs, but not necessarily to lower risk costs (Section 3.6.2).

To isolate the effects of strategic behaviors and pre-screening information, we consider a setting with two
agent types, with true risk profiles s1 ≤ s2—i.e., agents of type s1 are benevolent and agents of type s2 are
malevolent. We also consider two risk levels r1 ≤ r2. The mapping is shown in Figure 3.4: Any agent in
category r1 has a probability α1 (resp. 1−α1) of being of type s1 (resp. s2) and any agent in category r2 has
a probability α2 (resp. 1− α2) of being of type s2 (resp. s1). We denote by r (resp. 1− r) the probability
that an agent has a risk level r1 (resp. r2). To satisfy Equation (3.13), we assume that the probability an r2

agent is malevolent is greater than that an r1 agent is, or 1− α1 ≤ α2, i.e., α1 + α2 ≥ 1.

Figure 3.4: Mapping between true profiles (s1, s2) and risk levels (r1, r2).
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Note that we focus here on a different aspect of pre-screening information from Section 3.4. Indeed,
Section 3.4 focused on the benefits of greater extents of pre-screening information by comparing the multi-class
policy to a baseline single-class policy. In contrast, we now fix the number of job classes but analyze the
benefits of higher quality pre-screening information—the parameters α1 and α2 control the information
asymmetries between the agents and the screening operators.

On the service side, we consider two screening procedures: “slow” vs. “fast”, represented by subscripts S
and F , respectively. We assume that, under fast service, all agents remain in the system; in contrast, slow
service forces malevolent agents to renege from the system. Mathematically, we have:

pF > τs1 > pS > τs2 , (3.24)

S+
S = {s1} and S+

F = {s1, s2}. (3.25)

Our insights hold in more general instances, but we focus on this setting for expositional ease.

3.6.1 Impact of Strategic Behaviors

We analyze the impact of strategic behaviors on system performance. First, we analytically compare the
impact of two policies—one more conservative than the other—on the dynamics of the system and the
resulting risk and queuing costs. We show that, in the presence of strategic agents, stricter (more conservative)
screening may yield a Pareto improvement, i.e., lower risk costs as well as lower expected queue lengths. This
is unusual, as slower procedures typically result in higher congestion but, in our setting, this can be outweighed
by higher reneging incidence. We then show computationally that the optimal policy with strategic behaviors
is more conservative than the one without strategic behaviors; in other words, reneging induces stricter
screening to force malevolent agents our of the system. Under some conditions, this stricter screening policy
results in lower expected queue lengths than the faster screening policy applied when strategic behaviors are
not considered—confirming that the analytical insights hold under the optimal policy.

Analytical Insights:

We consider two specific policies; they may not be optimal, but they show that, under some conditions,
applying slower screening procedures in the presence of strategic agents may result in lower risk costs as well
as lower expected queue lengths. Specifically, we consider: (i) an “expedited” policy, under which the fast
screening procedure is always applied, and (ii) a more “conservative” policy, under which the fast screening
procedure is applied unless if there is exactly one agent with risk level r2 in the system. We refer to these
two policies with superscript e and c, respectively. Formally, we have:

πe(i, r) = F, ∀i ≥ 1, r ∈ {r1, r2}. (3.26)

πc(i, r) = F, ∀i ≥ 2, r ∈ {r1, r2}, πc(1, r1) = F, and πc(1, r2) = S. (3.27)

We also assume that α1 = 1 and α2 = α. In other words, each agent with risk level r1 is necessarily of
type s1 (i.e., a benevolent agent), and each agent with risk level r2 may be of type s2 (i.e., a malevolent
agent) with probability α or of type s1 (i.e., a benevolent agent) with probability 1− α.

The Markov chain characterizing the system dynamics under each policy is depicted in Figure 3.5. Under
the expedited policy (Figure 3.5a), no reneging occurs as the fast screening is applied regardless of the state
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of the system. In contrast, under the conservative policy (Figure 3.5b), a malevolent agent reneges if she is
screened while no one is in queue. From the perspective of the operator, applying the slow screening in state
(1, r2, S) results in reneging with probability α. For instance, in states (2, r1, F ) and (2, r2, F ), upon each
service completion (occurring at rate µF ), the system transitions to state (1, r1, F ) with probability r (the
next agent is of risk level r1), to state (1, r2, S) with probability (1− r)(1− α) (the next agent is of risk level
r2 and of type s1), and to state 0 with probability (1− r)α (the next agent is of risk level r2 and of type s2).

…0

1,r1,F 2,r1,F 3,r1,F

2,r2,F 3,r2,F 4,r2,F

4,r1,F

1,r2,F

(a) Expedited policy

0

1,r2,S

1,r1,F

2,r2,S

2,r1,F

3,r2,S

3,r1,F

…

4,r2,S

2,r2,F 3,r2,F 4,r2,F

4,r1,F

(b) Conservative policy

Figure 3.5: Markov chain under the expedited and conservative policies.

We denote by νe(i, r, φ) (resp. νc(i, r, φ)) the steady-state probability of state (i, r, φ) and by νe(0) (resp.
νc(0)) the steady-state probability of state 0 under the expedited (resp. conservative) policy. We denote
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by E[Ne] and E[N c] the expected queue lengths and by ξe(r) and ξc(r) the expected risk cost induced by
screening an agent of risk level r, under the expedited and conservative policies, respectively. The expected
risk cost is equal to the expectation of RSφ(r) given the agent’s risk level r, conditionally on the operator
being busy. Mathematically, these performance metrics are given by:

E[N j ] =
∑
i≥0

∑
r∈{r1,r2}

∑
φ∈{S,F}

i× νj(i, r, φ) ∀j ∈ {e, c}. (3.28)

ξj(r) =

∑
φ∈{S,F}

∑
i≥1 ν

j(i, r, φ)×RSφ(r)∑
φ∈{S,F}

∑
i≥1 ν

j(i, r, φ)
∀j ∈ {e, c}. (3.29)

Proposition 3.4 (proved in Appendix C.3) compares the impact of the expedited policy and the conservative
policy on system performance, in the presence of strategic agents.

Proposition 3.4. Under policies πe(i, r) and πc(i, r), the following results hold:

ξe(r1) ≥ ξc(r1) and ξe(r2) ≥ ξc(r2). (3.30)

Ec[N ] ≤ Ee[N ] if and only if α ≥ (λ+ µS)(µF − µS)

λ(µF − µS) + µFµS
. (3.31)

First, the conservative policy leads to a lower expected risk cost for both agent types than the expedited
policy. This is intuitive, as slower screening leads to a smaller cost of false negatives as well as a greater
incidence of reneging. More surprisingly, the conservative policy may also lead to lower expected queue
lengths when α exceeds a threshold given by (λ+µS)(µF−µS)

λ(µF−µS)+µFµS
. In other words, stricter screening might lead to

a Pareto improvement. This stems from the fact that, for higher values of α, more malevolent agents may
renege under the conservative policy; the resulting reduction in the number of agents going through screening
can offset the negative impact of slower screening on queue lengths. In contrast, for lower values of α, the
expected queue lengths are lower under the expedited policy—i.e., the increased reneging is not sufficient to
outweigh the queue length increase resulting from slower screening.

We note, the threshold (λ+µS)(µF−µS)
λ(µF−µS)+µFµS

decreases with µS , increases with µF , and increases with λ. First,
as the slow screening procedure gets faster, the conservative policy gives up less when utilizing slow service
and thus is more likely to lead to smaller expected queue lengths than the expedited one. Conversely, as
the fast screening option gets faster, the negative effect on queue lengths of the conservative policy becomes
relatively stronger, and the conservative policy is thus less likely to reduce expected queue lengths. Finally, as
demand increases, higher probability mass is assigned to states with i ≥ 2 jobs in the system; as a result, the
incidence of reneging diminishes, and the conservative policy is less likely to reduce expected queue lengths.

In conclusion, slower screening policies can lead to lower risk costs as well as lower expected queue lengths,
due to the opposite effects of slower service vs. higher incidence of reneging. Next, we identify the impact of
agents’ strategic reneging on the operator’s optimal policies and resulting system performance.

Computational Results

We identify the optimal policy with reneging behavior (referred to as “Policy R”), and compare it to the
baseline policy obtained without the reneging behavior (referred to as “Policy NR”). We initially consider the
same mapping as earlier, i.e., α1 = 1 and α2 = α ∈ [0, 1].
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Note that we have proved formally that Policy NR exhibits a threshold behavior (Section 3.3) but, due to
the complexity of the system dynamics with strategic agents, we have not shown that Policy R also exhibits
a threshold behavior. Nonetheless, this is verified numerically across a range of parameter values, as long as
information on risk levels is not extremely inaccurate (Assumption 6).

Table 3.1 characterizes the two policies by showing their thresholds as a function of α and model
parameters (a “Base” setting, settings with higher risk and queuing costs, and settings with more or less
differentiated screening speeds). For instance, in the Base setting with α = 0.3, Policy NR applies the “slow”
procedure when i < 2 and the “fast” procedure when i ≥ 2 for agents of risk level r2; it applies the “fast”
procedure for agents of risk level r1 regardless of the queue length. When no threshold is reported, then the
“slow” policy is applied for all values of i ≥ 1.

Table 3.1 shows that Policy NR has a consistently lower threshold than Policy R. This suggests that, for
all parameter values, accounting for agents’ strategic behaviors induces slower (i.e., more conservative) optimal
policies than those obtained in the absence of strategic behaviors. In other words, Policy R deliberately
deters malevolent agent from going through screening by applying stricter screening.

Table 3.1: Thresholds of Policy R and Policy NR, above which fast service is applied.

Base High Risk High Queuing High Spread Low Spread
r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

α NR R NR R NR R NR R NR R NR R NR R NR R NR R NR R
0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.1 1 1 1 2 1 1 2 4 1 1 1 1 1 1 1 1 1 1 2 3
0.2 1 1 1 4 1 1 3 7 1 1 1 1 1 1 1 2 1 1 2 6
0.3 1 1 2 6 1 1 4 12 1 1 1 2 1 1 1 3 1 1 3 14
0.4 1 1 2 14 1 1 5 28 1 1 1 5 1 1 1 6 1 1 4 85
0.5 1 1 3 85 1 1 6 86 1 1 1 83 1 1 2 13 1 1 4 92
0.6 1 1 3 91 1 1 6 91 1 1 1 90 1 1 2 84 1 1 5 -
0.7 1 1 4 - 1 2 7 - 1 1 1 - 1 1 2 89 1 1 5 -
0.8 1 1 4 - 1 2 8 - 1 1 1 - 1 1 3 - 1 1 6 -
0.9 1 1 4 - 1 2 8 - 1 1 2 - 1 1 3 - 1 1 6 -
1.0 1 1 5 - 1 2 9 - 1 1 2 - 1 1 3 - 1 2 7 -

Next, Figure 3.6 shows the expected queue length as a function of α in the same settings as Table 3.1;
Policy NR and Policy R are depicted with dashed and straight lines, respectively. Note that Policy R leads to
lower expected queue lengths than Policy NR for the larger values of α. This is consistent with the insights
derived in Proposition 3.4, but extends them to the optimal policies: When the effect of reneging behaviors is
large enough (i.e. for the larger values of α), then a slower screening policy (i.e., Policy R) may lead to lower
expected queue lengths than a faster screening policy (i.e., Policy NR) and thus Pareto improvement under
strategic behavior, by reducing both risk levels and expected queue lengths. In contrast, for lower values of
α, the effect of reneging is not sufficient to compensate the slower screening speeds, and Policy R results
in longer expected queues than Policy NR. Moreover, note from Figure 3.6b that Policy R is more likely
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to lower expected queue lengths (in addition to risk levels) as the service rates become less differentiated
—which is, again, consistent with the analytical results.

(a) Variations in risk and queuing costs (b) Variations in spreads in service speeds

Figure 3.6: Expected queue lengths as a function of α [Policy NR in dashed lines, Policy R in solid
lines].

Finally, we extend these findings to a more general mapping function by varying the values of α1 and α2

jointly (instead of fixing α1 = 1). Results are shown in Table 3.2 and Figure 3.4. As in Table 3.1, Policy
R has higher threshold levels than Policy NR, confirming that incorporating agents’ strategic behaviors
results in slower screening. As α1 decreases, Policy R becomes more conservative for agents with risk level
r1, reflected by the higher thresholds in Table 3.2—since a higher fraction of agents of risk level r1 are
malevolent—resulting in higher expected queue lengths. Nevertheless, Policy R (i.e., stricter screening) may
still lead to lower expected queue lengths than Policy NR but at higher values of α2, than the α2 = 1 case.

Summary

Agents’ strategic behaviors have a significant impact on optimal screening policies and resulting system
performance. First, strategic agent behaviors lead to stricter (more conservative) screening than non-strategic
agents. This mitigates expected risk costs by deterring some malevolent agents and reducing the probability
of false negatives for each screening. However, the effect on queue lengths is unclear. On the one hand, slower
screening has a negative impact on queue lengths but, at the same time, more conservative screening can
reduce queue lengths by inducing a higher incidence of reneging among malevolent agents. As our results
show, the net impact of more conservative policies on queue lengths may actually be positive. In other words,
stricter, slower screening procedures may achieve a Pareto improvement in the presence of strategic agents
by simultaneously reducing the expected risk costs and the expected queue lengths. Importantly, stricter
screening is more likely to reduce expected queue lengths when reneging behaviors are stronger (higher values
of α2) and information asymmetries are weaker (higher values of α1).

From the system’s perspective, appropriate screening policies depend on the underlying risk profiles of
the population and the information available to the system operator. For instance, at border crossings with
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α1 = 0.65 α1 = 0.8 α1 = 1

r1 r2 r1 r2 r1 r2

α2 NR R NR R NR R NR R NR R NR R
0.50 4 17 6 86 3 6 6 86 1 1 5 86
0.55 4 17 7 88 3 6 7 88 1 1 6 89
0.60 4 17 7 91 3 6 7 91 1 1 6 91
0.65 4 17 8 - 3 6 7 - 1 1 7 -
0.70 4 17 8 - 3 7 8 - 1 1 7 -
0.75 4 17 9 - 3 7 8 - 1 1 7 -
0.80 4 17 9 - 3 7 9 - 1 1 8 -
0.85 4 17 10 - 3 7 9 - 1 1 8 -
0.90 4 18 10 - 3 7 9 - 1 1 8 -
0.95 4 18 11 - 3 7 10 - 1 1 9 -
1.00 4 18 11 - 3 7 10 - 1 1 9 -

Figure 3.7 & Table 3.2: Thresholds of Policy R and Policy NR, and expected queue lengths.

a significant proportion of travelers carrying potentially illicit items (from minor custom law violations to
major ones), strict screening may deter a number of malevolent behaviors—either by inducing reneging, as
modeled here, or by deterring people from joining the system in the first place. Thus, conservative screening
may lower expected risk costs as well as congestion levels. At the other extreme, airport security operations
typically face a much lower proportion of malevolent agents. As a result, more conservative policies can
mitigate risk by preventing false negatives, but typically also increase system congestion.

3.6.2 Impact of Pre-screening Information

We conclude this section by examining the value of pre-screening information and its effect on system
performance. We model the quality of pre-screening information by varying information asymmetries between
the agents and the operator. Specifically, we fix the proportion of agents of type s2 in the population, and
denote it by σ. We then parametrize the mapping function by setting α1 = α2 = α, so α measures the
accuracy of the profiling information—with α > 0.5 to satisfy Equation (6). The distribution of risk profiles
is then determined by the parameter r = α−σ

2α−1 ∈ [0, 1], which is the probability a customer has profile r1.
Figure 3.8 shows the optimal policy, the total discounted cost, the expected queue lengths, and the risk

levels as a function of α, for various values of σ, the probability that an agent is malevolent, Figure 3.8a plots
the threshold for fast service of the optimal policy for agents of risk level r1 and r2 with straight and dashed
lines, respectively. The total discounted cost is shown as J(0), as in Section 3.4.2. The expected risk and
expected queue length are computed from Equations (3.28) and (3.29).

First, note from Figure 3.8a that, as α increases, the optimal screening policy becomes looser for agents
with risk level r1 and stricter for agents with risk level r2. In other words, better pre-screening information,
i.e., lower information asymmetries, result in better screening discrimination across risk categories. Second,
as expected, better profiling information leads to lower total costs, as shown in Figure 3.8b. Note also that
total costs are decreasing in σ, due to the system’s ability to induce higher reneging for larger proportions
of malevolent agents of type s2. Next, better profiling information leads to lower expected queue lengths
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(a) Threshold Levels (b) Total Costts

(c) Queue Length (d) Risk Levels

Figure 3.8: Optimal policy and metrics for different service speeds and risk profiles.

(Figure 3.8c). This stems from the facts that looser screening for agents with risk level r1 directly increases
service speeds, and that stricter screening for agents with risk level r2 increases the incidence of reneging.

More surprisingly, Figure 3.8d shows that the expected risk cost does not vary monotonically with α,
i.e., risk costs do not necessarily decrease as information asymmetries get lower. This stems from two main
factors. On the one hand, better information enables the operator to discriminate across the two risk profiles,
thus applying stricter screenings for agents with risk level r2 and reducing the corresponding risk. At the
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same time, this discrimination results in looser screening for agents with risk level r1. When information
asymmetries are fairly strong (i.e., for lower values of α) and the underlying population exhibits high risks
(i.e., for high values of σ), a high proportion of malevolent agents of type s2 are in risk category r1. As a
result, looser screenings can induce a high risk cost—which can, in fact, dominate the risk mitigation resulting
from applying stricter screening to agents of type r2. In this case, the system is willing to tolerate increased
risks in order to accelerate service of mostly benevolent r1 agents. In contrast, when information asymmetries
are lower and the overall population is less risky, enhanced information achieves a Pareto improvement by
mitigating both risk and queuing costs because malevolent agents are more concentrated in risk profile r2.

In summary, enhanced pre-screening information enables the operator to apply differentiated screening
procedures across the various risk categories—e.g., looser screening for low-risk agents and stricter screening
for high-risk agents. This reduces expected queue lengths by speeding up screening for low-risk agents
and inducing more reneging from high-risk agents. However, it does not necessarily result in lower risk
costs—especially when information asymmetries are strong and the underlying population induces high risks.

3.7 Conclusion

This chapter has proposed an original approach to balance efficiency and risk in security screening operations.
On the one hand, faster service can mitigate wait times but creates higher risks of false negatives. Vice versa,
more conservative screening can mitigate security risks but come at the expense of slower service. We have
formulated Markov decision processes to dynamically select screening procedures as a function of observed
queue lengths and the risk level of each job. This chapter extends the literature on speed-quality trade-offs
in two ways. First, it considers a multi-class setting with heterogeneous jobs, leveraging pre-screening
information on heterogeneous risk levels. Second, it captures strategic behaviors of the agents, who may elect
to renege prior to screening if the risk of being caught is too high.

The main results from this chapter fall into four main categories. First, the optimal policy exhibits a
double threshold behavior: All else equal, stricter screening is applied when the queue is shorter and/or when
the job is associated with a higher risk level. Second, leveraging job-level risk information can reduce expected
costs by up to 6-7%, compared to baseline single-class decision-making schemes based on queue lengths alone.
Third, anticipating agents’ strategic behaviors results in stricter screenings. These slower procedures lower
expected risks but may also, surprisingly, lower expected queue lengths by forcing malevolent agents out of
the system. Fourth, reductions in information asymmetries between agents and operators through better
pre-screening information lowers expected costs; however, this may come with increased expected risks.

From a practical standpoint, this chapter provides decision-making tools to support screening operations
at major security checkpoints (e.g., seaports, airports, land borders, military facilities, etc.). At the tactical
level, the proposed models can be used to select differentiated screening procedures for heterogeneous agents.
Our results also motivate the use of stricter screening procedures in settings with human agents (e.g., border
crossings) than in those without (e.g., package and container screening). At the strategic level, our results
stress the benefits of designing a menu of screening procedures, and granting flexibility to screening operators
to select the appropriate procedure as a function of observed queue lengths and risk information. Finally,
this chapter highlights two operational benefits of pre-screening risk information: (i) characterizing agent
heterogeneity by creating multi-class job profiles, and (ii) reducing information asymmetries between agents
and system operators.

78



Our results also motivate further research on risk-efficiency trade-offs in screening systems. First, the
model developed in this chapter involves a number of assumptions and simplifications; in future work, these
could be relaxed by considering additional complexities arising in practice, such as systems with multiple
screening operators, priorities among jobs, dedicated lanes for some jobs, sequential screenings, etc. Second,
the policies considered here could be enhanced with probabilistic selections of screening procedures. Third,
this chapter has assumed simplified functional forms to characterize agent types and system-wide risk costs;
such assumptions should be validated empirically. Finally, an important question for empirical researchers
lies in the characterization of screening procedures applied in practice by operators, and how they compare
with the analytical predictions developed in this chapter. This study lays the foundations to tackle these
questions, potentially facilitating more efficient and robust security screening systems.
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Chapter 4

Conclusion

Timeliness is a key value proposition of operations. In this dissertation we have examined three problems
that require timely delivery of service operations. Using game theory, queuing theory, machine learning and
optimization we propose policies and solution methodologies with the goal of real-life implementations.

In Chapter 1, we propose a solution to the problem of ambulance dispatch in Emergency Medical Services
with a novel data-driven methodology that combines ideas from machine learning and decision making under
uncertainty. Our method extends the operations literature on dispatching of emergency medical services
and sets a new benchmark for dispatching problem. In collaboration with University of Pittsburgh Medical
Center and Allegheny County Emergency Medical Services we test our methodology on unique data set from
city of Pittsburgh, Pennsylvania.

As part of the solution methodology, we first develop a omniscient deterministic binary linear program that
incorporates forward looking dispatch decisions. Using the deterministic model as a basis we build a scenario
based robust optimization formulation that produces dispatch decisions under future uncertainty. Scenario
based robust optimization is a novel modelling approach that combines ideas from stochastic programming
and robust optimization by probabilistic scenario sets and protecting against adversarial scenarios within
the scenario sets. To this end, we also develop the Closest Neighbours Clustering method, a data-driven
methodology for building the scenario sets from real data. We show the benefits of using scenario based
robust optimization along with Closest Neighbours Clustering against a series of benchmarks including
stochastic programming and robust optimization. Moreover, our methodology outperforms the state-of-the
art dispatching methods in the existing literature by a significant margin.

In Chapter 2, we study an on-demand platform’s optimal delay information disclosure when the platform
matches two classes of users (consumers and providers) with the objective of maximizing the effective match
rate (as a proxy for revenue). We study three information regimes— occupancy, where both consumers and
providers are informed of the current system occupancy, and two asymmetric information regimes, where
either only consumers or only providers are informed of the current system occupancy, while the other is
provided with no information.

Our base model considers users of each class as being either patient or impatient; we analytically compute
and compare the platform’s match rates under the three information regimes and provide sufficient conditions
for each regime’s optimality. We further find that it is optimal for platform to share no delay information
with its users under certain limiting settings. Through numerical analysis, we show that user’s welfare is not
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always aligned with platform’s profitability and only aligned under occupancy information regime. We extend
our base model by studying how the platform’s information regime choice changes when user delay sensitivity
has a higher heterogeneity than in the two-point distribution. As users become more heterogeneous in their
patience, the platform finds it optimal to disclose occupancy information for a larger region of the parameter
space.

In Chapter 3, we propose an original approach to balance efficiency and risk in security screening
operations. On the one hand, faster service can mitigate wait times but creates higher risks of false negatives.
Vice versa, more conservative screening can mitigate security risks but come at the expense of slower service.
We have formulated Markov decision processes to dynamically select screening procedures as a function of
observed queue lengths and the risk level of each job. This chapter extends the literature on speed-quality
trade-offs in two ways. First, it considers a multi-class setting with heterogeneous jobs, leveraging pre-screening
information on heterogeneous risk levels. Second, it captures strategic behaviors of the agents, who may elect
to renege prior to screening if the risk of being caught is too high.

The main results from this chapter fall into four main categories. First, the optimal policy exhibits a
double threshold behavior: All else equal, stricter screening is applied when the queue is shorter and/or when
the job is associated with a higher risk level. Second, leveraging job-level risk information can reduce expected
costs by up to 6-7%, compared to baseline single-class decision-making schemes based on queue lengths alone.
Third, anticipating agents’ strategic behaviors results in stricter screenings. These slower procedures lower
expected risks but may also, surprisingly, lower expected queue lengths by forcing malevolent agents out of
the system. Fourth, reductions in information asymmetries between agents and operators through better
pre-screening information lowers expected costs; however, this may come with increased expected risks.

This dissertation also opens a series of new questions to the researchers for the problems we have examined.
Related to Chapter 1, the dispatching problem of Emergency Medical Services, different urgency levels for
emergency calls as well as different types of ambulances that provide different levels of care are two features we
have not included in our modeling. Moreover, implementation of Closest Neighbour Clustering and scenario
based robust optimization for other data-sets could be an interesting research avenue for showing benefits of
these methodologies. Related to Chapter 2, we have looked at the problem of information delay in a setting
with linear cost structure for user’s utility. It would be an interesting to study the effect of users having
non-linear delay cost functions. While we study only three practical information regimes, it would be useful
to expand the space of regimes to find the structure of the “optimal” information regime. Finally, another
interesting extension would be to study service disciplines other than first-come-first-served (for example, a
random service discipline), to better suit particular applications (for example, ride sharing). Lastly, related
to Chapter 3, the model developed in this chapter involves a number of assumptions and simplifications;
in future work, these could be relaxed by considering additional complexities arising in practice, such as
systems with multiple screening operators, priorities among jobs, dedicated lanes for some jobs, sequential
screenings, etc. Moreover, the policies considered here could be enhanced with probabilistic selections of
screening procedures.
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Appendix A

Appendices for Chapter 1

A.1 Proofs of Propositions

A.1.1 Proof of Proposition 1.1

There are 4 properties we show for Ds(i, j):

• Non-negativity i.e., Ds(·, ·) > 0.

• Symmetry, i.e., Ds(i, j)) = Ds(j, i).

• Identity of indiscernibles i.e., Ds(i, j) = 0 ⇐⇒ i = j.

• Triangle inequality, Ds(i, k) ≤ Ds(i, j) +Ds(j, k)

The first two properties are trivial and they are direct result of definition of Ds and the fact that Ds is driven
based on between-calls-metric dc.

We prove the third and fourth properties below. Without loss of generality we assume that k ≤ j ≤ i.
Hence we can write the distances of three scenarios as follows:

Ds(i, j) = max
cm∈sj(c)

(
min

cn∈si(c)
dc(cm, cn)

)
Ds(i, k) = max

cm∈sk(c)

(
min

cn∈si(c)
dc(cm, cn)

)
Ds(j, k) = max

cm∈sk(c)

(
min

cn∈sj(c)
dc(cm, cn)

)
We start with the third property i.e., Ds(i, j) = 0 =⇒ i = j. First, assume that Ds(i, j) = 0, then we have
that mincn∈si(c) d

c(cm, cn) = 0 ∀cm ∈ sj(c). Then arg mincn∈si(c) d
c(cm, cn) = cji∀cm ∈ sj(c). Since dc is a

proper metric we have that dc(cm, cji ) = 0 ⇐⇒ cm = cji . Then for every cm ∈ sj(c) there is a call cji ∈ si(c)
such that cm = cji . Since we also know that j ≤ i, we conclude that j = i

Next assume that si(c) = sj(c). Then for each cm ∈ sj(c), we have that mincn∈si(c) d
c(cn, cm) = 0. Then

taking the maxcm∈sj(c) mincn∈si(c) d
c(cm, cn) = 0. Hence, we are done for the third property.

Next we show the fourth and the last property which is the triangle inequality:

Ds(i, k) ≤ Ds(i, j) +Ds(j, k) (A.1)
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Let us first define the following calls:

• ck∗ = arg maxcm∈sk(c)

(
mincn∈si(c) d

c(cm, cn)
)
.

• c̄j = arg mincn∈sj(c) d
c(cn, ck∗).

• c̄i = arg mincn∈si(c) d
c(cn, c̄j).

Next, observe the followings inequalities:

dc(ck∗, c̄
i) ≥ Ds(i, k), due to inner minimization. (A.2)

dc(ck∗, c̄
j) ≤ Ds(k, j), due to outer maximization. (A.3)

dc(c̄i, c̄j) ≤ Ds(i, j), due to outer maximization. (A.4)

dc(ck∗, c̄
i) ≤ dc(c∗, c̄j) + dc(c̄j , c̄i) due to triangular inequality of dc(i, j). (A.5)

Then, we combine these inequalities as follows:
Using (A.2) and (A.5) we obtain:

Ds(i, k)

due to (A.2)︷︸︸︷
≤ dc(ck∗, c̄

i)

due to (A.5)︷︸︸︷
≤ dc(ck∗, c̄

j) + dc(c̄j , c̄i)

Then using (A.3) and (A.4) we obtain:

Ds(i, k) ≤ dc(ck∗, c̄j) + dc(c̄j , c̄i) ≤ Ds(i, j) +Ds(j, k)︸ ︷︷ ︸
due to (A.3) and (A.4)

Hence we are done.

A.1.2 Proof of Proposition 1.2:

For reference, we first present the offline BLP of Jagtenberg et al. (2017b):

min
xcv

∑
c∈S

∑
v∈B

lcvxcv (A.6)

s.t.
∑
v∈B

xcv = 1, c ∈ S (A.7)

occ′v(xcv + xc′v) ≤ 1, v ∈ B, c, c
′
∈ S c 6= c

′
(A.8)

xcv ∈ {0, 1} (A.9)

In this formulation, similar to term acc2v , occ′v is an indicator term that takes value 1 if emergency calls’ c
and c

′
have overlapping time frames when responded by ambulance v. Jagtenberg et al. (2017b) assume that

if there is an overlap, occ′v = 1, than vehicle v can respond to only one of two emergency calls c and c
′
.

Let xBLP := {xcv|c ∈ S, v ∈ B} ∈ XBLP be a feasible solution in the offline BLP of Jagtenberg et al.
(2017b). We show that xBLP ∈ XD−BLP . We will do so by constructing an equivalent feasible solution
in our model. We construct xD−BLP := {xcc2v|c ∈ S, c ∈ C2(c), v ∈ B} ∈ XD−BLP such that xcAv = xcv

∀c ∈ S, v ∈ B and xcc2v = 0 ∀c ∈ S, v ∈ B, c2 ∈ C(c)/{A}.
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Note that (A.7) ensures that every call c ∈ S is responded to by 1 ambulance and accordingly, the feasible
solution xD−BLP sends an ambulance to every call c ∈ S from the availability state. This satisfies constraint
(1.2). By construction of xD−BLP and the definition of term acc2v (in which acAv = 1) (1.4) is trivially
satisfied. In similar spirit, due to implications of (A.8) that no two calls are responded to by same ambulance
if their response time frames overlap, the constraint (1.3) is also satisfied. Hence, the constructed solution
xD−BLP which is equivalent to xBLP is feasible in our formulation. Hence we are done.

A.1.3 Proof of Proposition 1.3:

In transitioning the SBROM into SBROM-MILP, we simply define an auxiliary variable:

tempk = max
n∈{1,...,N(k)}

∑
c∈C

∑
c2∈C2

∑
v∈B

lkncc2vx
kn
cc2v.

A.1.4 Integer Program to Generate New Subset of Scenarios

Let us denote the upper bound at each iteration with ν̄τ . We denote the number of current iteration with L.
Let φk,s and µτ,k,s be the decision variables where k and s correspond to uncertainty set and scenario indices.
Then the integer optimization problem to find the new sets is given as follows:

min
φk,s&µτ,k,s

∑
k∈K

∑
s∈N (k)

φk,s (A.10)

s.t. φk,s ≥ µτ,k,s ∀k ∈ K, ∀s ∈ N (k), ∀τ = 1, . . . , L (A.11)∑
s∈N (k)

µτ,k,s = 1, ∀k ∈ K, ∀τ = 1, . . . , L (A.12)

∑
k∈K

pk ×

 ∑
s∈N (k)

µτ,k,sZ(τ, s, k)

 ≥ ν̄L, ∀τ = 1, . . . , L (A.13)

φk,s, µτ,k,s ∈ {0, 1} ∀k ∈ K, ∀s ∈ N (k), ∀τ = 1, . . . , L (A.14)

Let φk,s and µτ,k,s denote the optimal solution. Then the new subset of scenarios for iteration τ + 1 are:

Ŝk(c)τ+1 = {sks(c) : φk,s = 1, s ∈ N (k)} ∀k ∈ K (A.15)
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Appendix B

Appendices for Chapter 2

B.1 Conversion to Regime C from Regime P

In order to use the effective match rate expressions for Regime C by simply switching the roles of providers
and consumers, we transform this system to an equivalent system. We carry out this transformation by
simply speeding up time by a factor of Kp, so that (i) the potential arrival rate of providers (resp. consumers)
is now Λp/K

p (resp. Λc/K
p), and (ii) the multiplier for the expected delay in the utility functions (Eq. (2.2))

is 1/Kp for the consumers and 1 for the providers (after this transformation, Kp remains the relative value
of time for the providers compared to the consumers). This system is identical to the original system, i.e.,
providers and consumers obtain identical utilities at each state (relative to the original system), but where
time is sped up by a factor of Kp. Accordingly, the match rate we obtain from this system must be multiplied
by Kp to obtain the match rate in the original unit of time. Thus, we can use this equivalent construction
to write expressions for the effective match rate in Regime C using the effective match rate expressions for
Regime P by following these steps: Replace (i) Λc with Λp/Kp; (ii) Λp with Λc/Kp; (iii) tc with tp; (iv) tp

with tc; (v) δc with δp; (vi) δp with δc; and (vii) Kp with 1/Kp. Subsequently, compute the effective match
rate in this transformed system and multiply the result by Kp.

B.2 Proofs of Propositions

B.2.1 Proof of Proposition 2.1

For states n ∈ {0, 1, . . . , bpO − 1}, providers join at instantaneous rate δpΛp, and for states n ≤ −1, they
join at rate Λp. For states n ∈ {−bcO + 1, . . . ,−1, 0}, consumers join at instantaneous rate δcΛc, and for
states n ≥ 1, they join at rate Λc. The resulting state-dependent instantaneous arrival rates are tabulated in
Proposition 2.1 in which the cases represent whether the bounding states are zero or greater than zero.

Eq. (2.3) gives the general expression for the effective match rate. In Regime O, we have a truncated
state-space, i.e., some terms in Eq. (2.3) are zero. We compute the effective match rates as the weighted
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average of the providers’ instantaneous arrival rates with the weights being the steady-state probabilities:

MO =



−1∑
n=−bcO

πO(n)Λp +
bpO−1∑
n=0

πO(n)δpΛp for bcO > 0, bpO > 0

−1∑
n=−bcO

πO(n)Λp for bcO < 0, bpO = 0

bpO−1∑
n=0

πO(n)δpΛp for bcO = 0, bpO > 0

0 otherwise

(B.1)

The steady state probabilities are obtained by solving the set of balance equations and the normalization
equation (check the CTMC in Fig. 2.1):

πO(n) = πO(0)

(
δpΛp

Λc

)n
, ∀n ∈ {0, 1, . . . , bpO},

πO(n) = πO(0)

(
δcΛc

Λp

)|n|
, ∀n ∈ {−bcO, . . . ,−1, 0},

bpO∑
n=−bcO

πO(n) = 1.

By solving the normalization equation we obtain πO(0) as:

πO(0) =



Λc−Λpδp(Λpδp/Λc)b
Λc−tpΛc

Kptp c
Λc−Λpδp −

Λcδc
(

1−(Λcδc/Λp)b( 1
tc
−1)Λpc)

Λcδc−Λp

−1

for bcO > 0, bpO > 0

Λp−Λcδc

Λp−Λcδc(Λcδc/Λp)b( 1
tc
−1)Λpc for bcO > 0, bpO = 0

Λc−Λpδp

Λc−Λpδp(Λpδp/Λc)b
Λc−tpΛc

Kptp c
for bcO = 0, bpO > 0

0 otherwise

(B.2)

Substituting the resulting steady-state probabilities into Eq. (B.1), we derive the match rates in Regime O.

B.2.2 Proof of Proposition 2.2

We begin by describing the three possible joining strategies that patient consumers can employ:

- Strategy (i): All arriving patient consumers join with probability one, resulting in the instantaneous
arrival rate δcΛc. This occurs if the consumers’ resulting expected delay is small enough, given their
delay sensitivity parameter tc:

U cP(∅) = Rc (1− tc (1 + E[W c
P(∅)|JP(tc|∅) = 1])) > 0. (B.3)
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- Strategy (ii): All arriving patient consumers join with probability j ∈ (0, 1), resulting in the instanta-
neous arrival rate jδcΛc. This occurs if the consumers’ resulting expected delay is such that they are
indifferent between joining and not joining, given their delay sensitivity parameter tc:

U cP(∅) = Rc (1− tc (1 + E[W c
P(∅)|JP(tc|∅) = j])) = 0. (B.4)

- Strategy (iii): All arriving patient consumers do not join, resulting in an instantaneous arrival rate zero.
This occurs if patient consumers joining with any positive probability results in a negative expected
utility, given their delay sensitivity parameter tc:

U cP(∅) = Rc (1− tc (1 + E[W c
P(∅)|JP(tc|∅) = ε])) < 0,∀ε > 0. (B.5)

These strategies, taken together with the joining behavior of providers, result in five distinct cases:
Case 1 (JP(tc|∅) = 1 and bpP > 0): In this case, the instantaneous arrival rate of consumers is λcP(scP(n) =

∅) = δcΛc, ∀n and the instantaneous arrival rate of providers is λpP(spP(n) = n) = δpΛp, for 0 ≤ n < bp and
λpP(spP(n) = n) = Λp, for n < 0.

Case 2 (JP(tc|∅) = j ∈ (0, 1) and bpP > 0): The instantaneous arrival rate of consumers is λcP(scP(n) =

∅) = jδcΛc, ∀n and the instantaneous arrival rate of providers is λpP(spP(n) = n) = δpΛp, ∀0 ≤ n < bp and
λpP(spP(n) = n) = Λp, ∀n < 0.

Case 3 (JP(tc|∅) = 1 and bpP = 0): The instantaneous arrival rate of consumers is λcP(scP(n) = ∅) =

δcΛc, ∀n and the instantaneous arrival rate of providers is λpP(spP(n) = n) = Λp, ∀n < 0.
Case 4 (JP(tc|∅) = j ∈ (0, 1) and bpP = 0): The instantaneous arrival rate of consumers is λcP(scP(n) =

∅) = jδcΛc, ∀n and the instantaneous arrival rate of providers is λpP(spP(n) = n) = Λp, ∀n < 0.
Case 5 (JP(tc|∅) = 0): If none of the above cases holds, patient consumers join the system with

probability JP(tc|∅) = 0 (this automatically implies that the bounding state for providers is zero, i.e., bpP = 0).
In this case, no user joins the system and the system is empty.

For each case in Proposition 2.2 we show how to obtain the required conditions and the effective match
rates. For cases under which the arrival rate λc(∅) for consumers is either δcΛc or 0 (Cases 1, 3 and 5), we
use these arrival rates to find the providers’ bounding state. Given the bounding state and the instantaneous
arrival rates of both user classes, we solve for the stationary probabilities of the CTMC, from which we
obtain the expected delay for an arriving consumer using Eq. (2.12). We use this expected delay to find the
parameter conditions that are consistent with the specific case. For cases under which consumers employ a
mixed strategy (Cases 2 and 4), we use an alternative approach.

Case 1: We re-arrange the expression (2.10), substituting λcP(∅) = δcΛc to obtain the required condition
on tp.

1 ≤ δcΛc (1− tp)
Kptp

=⇒ tp ≤ δcΛc

δcΛc +Kp

Next, we substitute λcP(∅) = δcΛc and bpP =

⌊
δcΛc (1− tp)

tpKp

⌋
to find the probabilities πi for the CTMC in

Fig. 2.2. Note that in order for the resulting steady state probabilities to be valid, the CTMC must be stable,
i.e. Λp > Λcδc. Otherwise, the arrival rate of consumers is too high for the chain to be stable, leading to
an unbounded expected delay for the consumers. Accordingly Case 1 requires that Λp > Λcδc. Under this
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condition, we use the steady state probabilities πi to calculate E[W c
P(∅)|JP(tc|∅) = 1] using Eq. (2.12). We

then substitute this into expression (B.3) to obtain the following condition on tc.

tc ≤ 1

1 + δcΛc−δpΛp

(Λp−δcΛc)
(
δcΛc(1−δp)−δp(Λp−δcΛc)( Λpδp

δcΛc )
b
p
P

) where bpP =

⌊
δcΛc (1− tp)

tpKp

⌋
. (B.6)

By substituting Hc = tc/(1− tc) and Hp = tpKp/(1− tp) we obtain the required condition. The resulting
match rate is equal to λcP(∅) = δcΛc.

Case 2: We first derive the conditions on tc and tp that are consistent with Case 2. Since the joining
decisions of consumers and providers are intertwined, we derive conditions for Case 2 by considering the
behavior of consumers and providers together. In order for Case 2 to occur, consumers must join the system
with a probability less than 1, i.e., their patience level is too small for them to join the system with probability
1. This either occurs when tc is larger than the upper bound on tc presented for Case 1 or when Case 1
results in an unstable system. In the former case, the upper bound on tc presented for Case 1 forms a lower
bound on tc (which in turn depends on tp through the bounding state bpP as in Eq. (B.6)). In the latter case,
consumers join the system with a probability less than 1 because the underlying CTMC is not stable under
Case 1, i.e., Λp ≤ Λcδc.

Now, we describe how to find an upper bound on tc and tp. As consumers become more impatient (as tc

increases from its lower bound), consumers join with a lower rate λcP(∅), leading to a smaller bounding state
bpP for the providers’ side. Therefore, the upper bound on tc corresponds to the lowest possible value of bpP
that it induces that is consistent with Case 2, i.e., bpP = 1. When the bounding state is 1, we can find the
expected delay E[W c

1 (∅)|λtcP (∅)], and the arrival rate λt
c

P (∅) that are consistent with each other in closed form
by solving the system of equations (B.7) -(B.8) for the arrival rate l:

E[W c
1 (∅)|λt

c

P (∅) = l] =
l

(Λp − l)(l(1− δp) + Λpδp)
(B.7)

(1− tc(1 + E[W c
1 (∅)|λt

c

P (∅) = l])) = 0 (B.8)

Solving the above equations, we obtain:

l =

Λp
(
−
√
Kp2tc2 − 2ΛcKp(1− 2δp)(1− tc)tc + Λc2(1− tc)2 −Kptc + Λc(1− 2δp)(1− tc)

)
2Λc(1− δp)(1− tc)

. (B.9)

Then, we ensure that providers are patient enough to join at state 0 when consumers join at rate l. (If
they are, the resulting l is strictly positive.) From Eq. (2.10), we obtain this condition as:

tp ≤ l

Kp + l
, where l is as given in Eq. (B.9) (B.10)

This condition can equivalently be formulated as an upper bound on tc, in terms of tp; this version is provided
in Eq. (B.11).

tc ≤
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(Kptp − Λp + Λptp)(Kpδptp −Kptp − Λpδp + Λpδptp)

Kp2δptp2 − 2Kp2tp2 +Kp2tp + 2ΛpKpδptp2 − 2ΛpKpδptp − ΛpKptp2 + ΛpKptp + Λp2δp + Λp2δptp2 − 2Λp2δptp

(B.11)

By substituting Hc = tc/(1− tc) and Hp = tpKp/(1− tp) we obtain the required condition.
Although we can obtain the conditions under which Case 2 holds in closed form, we cannot find the resulting

effective match rate in closed form. This is because the consumers’ expected delay E[W c
P(∅)|JP(tc|∅) = j]

depends on both the consumers’ instantaneous arrival rate at every state λcP(∅) = jδcλc and the providers’
bounding state. However, in order to find the equilibrium joining strategy of consumers, we must find the
value of JP(tc|∅) that solves Eq. (B.4). This equation cannot, in general, be solved in closed-form, because
the expression for the expected delay E[W c

P(∅)|JP(tc|∅)] contains the providers’ bounding state bp in the
exponent, in which the unknown JP(tc|∅) appears inside a floor function as well as outside the exponent.
Note that the Eq. (2.14) is what must be solved to obtain consumers’ instantaneous arrival rate; the result
corresponds to the effective match rate of the system.

Case 3: Under this case, the system reduces to the well-known M/M/1 queuing system with arrival rate
δcΛc and service rate Λp. Similar to Case 1, the first condition for this case is the stability of the CTMC, i.e.,
Λp > δcΛc. If this condition is violated, the expected delay for consumers is unbounded, leading to Case 3
not holding (consumers must join with some probability less than one to ensure a bounded delay). Given
that the system is stable, we use off-the-shelf closed form expressions for expected delay in an M/M/1. We
re-arrange Eq. (2.10) to obtain a lower bound on the providers’ patience level, ensuring that the resulting
bounding state is 0 in equilibrium:

δcΛc (1− tp)
Kptp

< 1 =⇒ tp >
δcΛc

δcΛc +Kp

Similarly, we re-arrange Eq. (B.3) to obtain an upper bound on the consumers’ patience level, ensuring that
they join at rate δcΛc in equilibrium:

tc ≤ Λp − δcΛc

1 + Λp − δcΛc

By substituting Hc = tc/(1 − tc) and Hp = tpKp/(1 − tp) we obtain the required condition. As with
Case 1, the resulting effective match rate is λcP(∅) = δcΛc.

Case 4: Under this case, note that consumers’ expected delay E[W c
P(∅)|JP(tc|∅) = j] is dependent on

their own instantaneous arrival rate λcP(∅) = jδcλc but not dependent on the providers’ bounding state (which
is 0 in Case 4). Accordingly, in order to find the equilibrium joining strategy of consumers, we must find the
value of JP(tc|∅) that solves Eq. (B.4). Fortunately, unlike in Case 2, since the bounding state for providers is
0, the system simplifies to an M/M/1 queuing system with an arrival rate of λcP(∅) and a service rate of Λp.
Hence, the expected delay in terms of the unknown consumers’ instantaneous arrival rate can be easily found

to be E[W c
P(∅)|JP(tc|∅) = j] =

1

Λp − jδcΛc
. Then, using Eq. (B.4) we solve for the consumers’ equilibrium

joining probability j and obtain the consumers’ arrival rate as λcP(∅) = Λp − tc

1− tc
. In order for Case 4 to be

valid, providers must be unwilling to wait in the system. Using the derived consumers’ arrival rate, we derive
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this condition using Eq. (2.10) to obtain:

(Λp − tc

1−tc ) (1− tp)
Kptp

< 1 =⇒ tp >
Λp(1− tc)− tc

Kp(1− tc) + Λp(1− tc)− tc

Next, we must ensure that that consumers’ joining probability is between 0 and 1. As explained in Case
3, this could occur if the arrival rate of patient consumers is higher than that of providers, i.e. Λp ≤ δcΛc,
but the remaining conditions for Case 3 hold. If this is not the case (i.e., Λp > δcΛc), consumers join with
probability between 0 and 1 if the arrival rate expression Λp − tc

1−tc yields an arrival rate for consumers that
is between 0 and δcΛc:

0 < λcP(∅) = Λp − tc

1− tc
< δcΛc =⇒ Λp − δcΛc

1 + Λp − δcΛc
< tc <

Λp

1 + Λp

By substituting Hc = tc/(1− tc) and Hp = tpKp/(1− tp) we obtain the required condition. As discussed

above, the expected match rate in Case 4 is equal to λcP(∅) = Λp − tc

1− tc
.

Case 5: In Cases 1-4, we presented conditions under which users are willing to join with positive
probability. If none of these cases applies, then we conclude that users are not willing to join the system and
hence the system is empty, leading to an effective match rate of 0.

B.2.3 Proof of Proposition 2.3

We first show that the only two possible case overlaps are between Case 1 and Case 4, and between Case
2 and Case 4. To do so, we first consider every possible pair of cases below, and discuss whether they can
overlap:

Case 1 and Case 2: Note that the conditions for tc are negations of each other, hence there doesn’t
exist any tc that satisfies both of the conditions.

Case 1 and Case 3: Note that the conditions for tp are negations of each other, hence there doesn’t
exist any tp that satisfies both of the conditions.

Case 2 and Case 3: Note that the RHS of the condition for tp under Case 2 is increasing in l, i.e.,
l

Kp+l is increasing in l. Also note that l is bounded above by δcΛc, i.e., l ≤ δcΛc. Accordingly, the RHS of
the tp condition for Case 2 is smaller than the RHS of the tp condition for Case 3. Hence, there does not
exist any tp value that satisfy both conditions.

Case 3 and Case 4: Note that the upper bound for tc for Case 3 is the lower bound for tc for Case 4.
Hence there does not exist any tc value that satisfies both of the conditions.

Therefore, the possible candidates for overlap are Cases 1 and 4 and Cases 2 and 4. Both these overlaps
are possible, as shown in Fig. 2.3, which uses parameters Λc = 9,Λp = 8.5,Kp = 1.5δc = 0.75 and δp = 0.9.

Now, we compare the effective matching rate between the overlapping cases. First, note that, under Case
4 patient consumers join with probability JP(tc|∅) = j ∈ (0, 1) while under case 1 they join with probability
JP(tc|∅) = 1. Therefore, it is immediate that the effective match rate under Case 1 is higher than that of
under Case 4.

Next we show that the effective match rate (equivalently, the consumers’ effective arrival rate) under
Case 2 is higher than that under Case 4. In particular, consider a Case 2 equilibrium in which providers join
up to state B − 1 such that bounding state is B ≥ 1. We will show that:

(i) For a fixed arrival rate λc, the consumers’ utility is weakly increasing in bounding state B.
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(ii) For a fixed bounding state, the consumers’ utility is weakly decreasing in the arrival rate λc.
Part (i) implies that fixing the arrival rate at the equilibrium arrival rate corresponding to Case 4 (B = 0),

and increasing the bounding state to B > 0 leaves consumers with excess utility, implying that consumers’
equilibrium joining rate is different from λc. Part (ii) then implies that in order to find the equilibrium arrival
rate under Case 2, λc needs to increase to a higher value than the Case 4 equilibrium arrival rate.

Proof of Part (i): Showing Part (i) is equivalent to showing that for a fixed λc the consumers’ expected
delay E[W c

P(∅)|λc] decreases in the bounding state B. In order to do so, we take the first derivative of the
delay under Case 2 with respect to bounding state B and show that it is non-positive. With some abuse of
notation, we have:

E[W c
P(∅)|λc] =

Λpδp − λc

(λc − Λp)
(
δp(λc − Λp)

(
Λpδp

λc

)B
+ λc − λcδp

)

∂E[W c
P(∅)|λc]
∂B

= −
δp
(
δpΛp

λc

)B >0︷ ︸︸ ︷
(Λpδp − λc) log

(
δpΛp

λc

)
(
δp(λc − Λp)

(
Λpδp

λc

)B
+ λc − λcδp

)2 ≤ 0

Proof of Part (ii): We equivalently show that for a fixed bounding state B, the consumers’ expected
delay E[W c

P(∅)|λc] increases in their arrival rate λc. Observe that the CTMC in Fig. 2.2 is a birth-death
process. As a direct consequence of Theorem 5 in Smith and Whitt (1981) we have that:

Pr(i ≤ j) is increasing in λc, ∀j, (B.12)

where i and j are state indices corresponding to the CTMC in Fig. 2.2. (In particular, the result in Smith and
Whitt (1981) implies a likelihood ratio ordering between the Markov chain with a lower λc and that with a
higher λc; this in turn implies the first-order stochastic dominance in Eq. (B.12).) From Eq. (B.12), we have:

0∑
j=−∞

Pr(i ≤ j) is increasing in λc

⇔
0∑

j=−∞
(i+ 1) Pr(i = j) is increasing in λc

⇔
0∑

j=−∞

i+ 1

Λp
Pr(i = j) is increasing in λc

⇔E[W c
P(∅)|λc] is increasing in λc.

This completes the proof.

B.2.4 Proof of Proposition 2.5:

We begin by proving the conditions for Regime P’s optimality. Given that the Case 1 conditions hold for
Regime P, the effective match rate under Regime P is δcΛc and effective match rate under Regime C is
bounded above by δpΛp. Accordingly, the first and trivial condition for Regime P to yield a higher match
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rate than Regime C is that δcΛc > δpΛp.
Next, we derive conditions under which the match rate under Regime O is lower than δcΛc. We we write

the match rate for Regime O in general form:

MO =

0∑
n=−bcO+1

δcΛcπO(n) +

bpO∑
n=1

ΛcπO(n),

where the first term vanishes if bcO = 0 and the second term vanishes if bpO = 0. Using the fact that
πO(−bcO) +

∑0
n=−bcO+1 πO(n) +

∑bpO
n=1 πO(n) = 1, algebraic manipulation yields:

δcΛcπO(−bcO) +MO − (1− δc)Λc
bpO∑
n=1

πO(n) = δcΛc = MP. (B.13)

Eq. (B.13) allows us to derive conditions for comparing the match rates under Regimes P and O. More
specifically, we derive that Regime P yields higher match rates than Regime O when:

δcΛcπO(−bcO) > (1− δc)Λc
bpO∑
n=1

πO(n). (B.14)

Substituting the value of the stationary probabilities and the bounding states, Ineq. (B.14) becomes:

δc
(

Λcδc

Λp

)b( 1
tc−1)Λpc

>

Λp(δc − 1)δp
(

1−
(

Λpδp

Λc

)bΛc−tpΛc

Kptp c
)

Λpδp − Λc
. (B.15)

The proof for Regime C follows very similar steps to the proof for Regime P. For that reason we just show
the expressions that change below.

First, it is trivial that the first condition needed for Regime C to be optimal is δpΛp > δcΛc.
The inequality corresponding to Ineq. (B.14) becomes:

Λpδp
(

Λpδp

Λc

)bΛc−tpΛc

Kptp c
>

ΛcΛpδc(δp − 1)

(
1−

(
Λcδc

Λp

)b( 1
tc−1)Λpc

)
Λcδc − Λp

(B.16)

Then for Regime O to be optimal we simply reverse the conditions presented in ineqs. (B.15) and (B.16).

B.2.5 Proof of Proposition 2.6

We prove only part (i) of Proposition 2.6; the proof of part (ii) is symmetric to that of part (i) with consumers
and providers switching roles. We will first show that when tp ∈ ( Λc

Kp+Λc , 1), the effective match rates under
Regimes P and O are bounded above by δcΛc. Subsequently, we will show that when tc → 0 δcΛc < δpΛp,
the effective match rate under Regime C is greater than δcΛc.

We begin with Regimes P and O. Note that under both regimes, the providers receive information and
that the patient users’ delay sensitivity is large i.e., tp ∈ ( Λc

Kp+Λc , 1). Under this setting, based on (2.6), the
bounding state for providers in both regimes is 0. Accordingly, in both regimes, impatient consumers do not
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join the system as there will always be a delay for consumers in the system. Hence, only patient consumers
can potentially join the system and accordingly, the patient consumers’ maximum arrival rate δcΛc becomes
the best possible match rate under Regimes P and O

Next we show that the match rate under Regime C is greater than δcΛc. We show this by examining the
utility of providers when they join with rate δcΛc (i.e., with probability JP(tp|∅) = δcΛc

δpΛp < 1): if their utility
is greater than 0 when they join with this probability, the equilibrium joining probability will be higher than
δcΛc

δpΛp . Lastly, the providers’ arrival rate is the effective match rate of the system under Regime C.
Using the Markov Chain for Regime C and replacing the providers’ arrival rate by δcΛc, we obtain

expressions for the steady state probabilities, the resulting expected delay and providers’ expected utility as
follows:

πC(0) =
δc − 1

δcbc − bc − 1
(B.17)

E[W p
C(∅)] =

1

Λc(δc − 1) (δcbc − bc − 1)
(B.18)

E[UpC(∅)] = 1− tp
(

Kp

Λc(δc − 1) (δcbc − bc − 1)
+ 1

)
, (B.19)

where bc =
⌊
δcΛc(1−tc)

tc

⌋
.

Note that delay (B.18) is decreasing in bc (and utility (B.19) is increasing in bc), and bc contains a floor
function. Accordingly, replacing bc by δcΛc(1−tc)

tc − 1 yields an upper bound on the delay (B.18), and hence a
lower bound on the utility (B.19):

E[UpC(∅)] ≥ 1− tp
 Kp

Λc(δc − 1)
(
δc
(

Λcδc(1−tc)
tc − 1

)
−
(

Λcδc(1−tc)
tc − 1

)
− 1
) + 1

 .

We now show that this lower bound on the utility is larger than 0 by taking its limit when tc approaches
0 from above:

lim
tc→0+

1− tp
 Kp

Λc(δc − 1)
(
δc
(

Λcδc(1−tc)
tc − 1

)
−
(

Λcδc(1−tc)
tc − 1

)
− 1
) + 1

 = 1− tp > 0

This completes the proof.

B.2.6 Proof of Lemma 2.7:

We show for each information regime how to obtain the limiting match rate.
Under Regime O, consumers receive occupancy information and hence their behavior is independent of

other consumers’ behavior. Accordingly, an unbounded increase in the arrival rate of consumers does not
impact whether consumers join the system at state 0 or not. Furthermore, patient providers are incentivized
to join the system at state 0 due to negligible delays. Accordingly, the bounding state for providers is
guaranteed to be positive. This leaves us with only Cases 1 and 3, depending on the delay sensitivity of
consumers. If the delay sensitivity of consumers is small enough, i.e., the Case 1 conditions for tc hold in
Proposition 2.1, the bounding state for both consumers and providers are positive, and if the delay sensitivity
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of consumers is sufficiently large, i.e., the Case 3 conditions for tc hold in Proposition 2.1, the bounding state
for consumers is 0.

Under the first parameter setting, which occurs when tc ≤ Λp

1+Λp , the arrival rate of consumers increasing
unboundedly causes the probability of system being in the bounding state for consumers to approach 1:

lim
Λc→∞

πO(bcO) =
Λp−b(

1
tc−1)Λpc(Λcδc)b(

1
tc−1)Λpc

Λc−ΛpδpΛc
−bΛc−tpΛc

Kptp c(Λpδp)b
Λc−tpΛc

Kptp c
Λc−Λpδp −

Λcδc
(

1−Λp
−b( 1

tc
−1)Λpc(Λcδc)b( 1

tc
−1)Λpc)

Λcδc−Λp

= 1 (B.20)

Note also that at the bounding state for consumers, providers join with rate Λp as there is no delay for
providers in this state. Accordingly, under this setting the match rate of the system becomes Λp.

Similarly, under the second parameter setting, (which corresponds to Case 3 in Proposition 2.1, corre-
sponding to tc > Λp

1+Λp ), we examine probability of system being at state 0, since the bounding state for
consumers is 0. Indeed, probability of system being at state 0 approaches 1 as Λc →∞:

lim
Λc→∞

πO(0) =
Λc − Λpδp

Λc − ΛpδpΛc−b
Λc−tpΛc

Kptp c(Λpδp)b
Λc−tpΛc

Kptp c
= 1 (B.21)

In this state, providers join at rate δpΛp due positive delays. Accordingly, in this setting , the match rate of
the system becomes δpΛp.

Next, we study Regime C. As with Regime O, consumers receive occupancy information and hence their
behavior is independent of other consumers’ behavior. Accordingly, an unbounded increase in the arrival
rate of consumers does not impact whether consumers join the system or not. However, the unbounded
increase in the arrival rate of consumers leads to negligible delays for providers (as both δcΛc and Λc are
unbounded), which leads to patient providers always joining the system at their maximum possible rate, i.e.,
at rate δpΛp. In more technical terms, due to negligible delays, the system is in either Case 1 or Case 3 of
Proposition 2.4. Both cases yield an effective match rate of δpΛp. Hence the effective match rate becomes
δpΛp under Regime C.

Under Regime P, consumers do not receive the state information and hence their behavior is dependent on
how other consumers behave. Accordingly, an unbounded increase in the arrival rate of consumers necessarily
leads to mixed strategy joining behavior where only some consumers join the system, putting the system
in either Case 2 or Case 4. However, since providers see negligible delays at state 0, the bounding state bpP
for providers is strictly positive, placing the system in Case 2. Unfortunately, a closed form solution for
this arrival rate does not exist as shown in Proposition 2.2. Hence we use other methods to compare this
match rate with the match rate under other regimes. First, we note that the arrival rate that results from the
mixed strategy is bounded above by Λp (from stability considerations). Second, we check whether consumers’
mixing results in a match rate lower or higher than δpΛp. We do so by calculating the expected utility of
consumers if they join with arrival rate δpΛp. If this utility is positive, then there are more consumers willing
to join the system which results in a match rate higher than δpΛp and vice versa. Accordingly, there exists a
threshold consumer delay sensitivity t̄ above which the match rate of consumers is less than δpΛp and below
which the match rate of consumers is more than δpΛp. t̄ is found by setting utility of consumers equal to 0
when their arrival rate is δpΛp.

U cP(−) = Rc(1− t̄(1 + E[W c
P(−)|λc = δpΛp])) = 0 (B.22)
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=⇒ t̄ =
1

1 + E[W c
P(−)|λc = δpΛp]

=

1 +
1

Λp(1− δp)
(

(1− δp)
⌊
δp(1−tp)Λp

Kptp

⌋
+ 1
)
−1

. (B.23)

As a result, when tc > t̄, MP < δpΛp and when tc < t̄, MP > δpΛp. This completes the proof

B.2.7 Proof of Proposition 2.8

We compile together the conditions given in Lemma 2.7 to produce the comparison table in Proposition 2.8.

B.3 Users’ Welfare Expressions

The users’ welfare expressions for Regimes O, C, and P are presented in Tables B.1-B.3, respectively. We
note that the cases presented in Tables B.1-B.3 are identical to the cases presented in Propositions 2.1, 2.2
and 2.4. (Note that as with Propositions 2.2 and 2.4, the expected utilities under Case 2 for Regimes P and
C cannot be found in closed-form.)
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Table B.1: Users’ Welfare Under Regime O

Case Consumers: E[U cO]

1

δcRc

Λp
(

(Λcδc/Λp)
bcO − 1

)
(tc − (Λp − Λcδc)(1− tc)) + bcOt

c(Λp − Λcδc) (Λcδc/Λp)
bcO

(Λp − Λcδc)2
+

Λpδp(1− tc)
(

1− (Λpδp/Λc)
bpO
)

Λc − Λpδp


Λc − Λpδp (Λpδp/Λc)

bpO

Λc − Λpδp
−

Λcδc
(

1− (Λcδc/Λp)
bcO
)

Λcδc − Λp

2 δcRc
(

(Λcδc)b
c
O(Λp − Λcδc − bcOtc + tc(Λcδc − Λp − 1))

(Λcδc)b
c
O+1 − Λpb

c
O+1

− tc
(

1

Λp − Λcδc
+ 1

)
+ 1

)

3 δcRc
Λpδp(1− tc)

(
Λcb

p
O − (Λpδp)b

p
O

)
Λcb

p
O+1 − (Λpδp)b

p
O+1

4 0

Case Providers: E[UpO]

1

δpRp

Λcδc(1− tp)
(

1− (Λcδc/Λp)
bcO
)

Λp − Λcδc
+
bpOK

ptp(Λc − Λpδp) (Λpδp/Λc)
bpO

(Λc − Λpδp)2
− Λc

(
1− (Λpδp/Λc)

bpO
)

(Kptp − (1− tp)(Λc − Λpδp))


Λc − Λpδp (Λpδp/Λc)

bpO

Λc − Λpδp
+

Λcδc
(

1− (Λcδc/Λp)
bcO
)

Λp − Λcδc

2 δpRp
Λcδc(1− tp)

(
Λpb

c
O − (Λcδc)b

c
O

)
Λpb

c
O+1 − (Λcδc)b

c
O+1

3
δpRp

(
bpOK

ptp(Λpδp)b
p
O(Λc − Λpδp)− Λc

(
Λcb

p
O − (Λpδp)b

p
O

)
(Kptp − (1− tp)(Λc − Λpδp))

)
(Λc − Λpδp)

(
Λcb

p
O+1 − (Λpδp)b

p
O+1
)

4 0

where bpO and bcO are given in (2.6).
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Table B.2: Users’ Welfare Under Regime P

Case Consumers: E[U cP]

1 δcRc

tc
1− Λcδc−Λpδp

(Λp−Λcδc)

(
Λcδc(1−δp)−δp(Λp−Λcδc)( Λpδp

Λcδc )
b
p
P

)
+ 1


2 0

3 δcRc
(
tc
(

1− 1
Λp−Λcδc

)
+ 1
)

4 0

Case Providers: E[UpP]

1

δpRp
(

(Λp − Λcδc)
(

Λpδp

Λcδc

)bpP (bpPK
ptp(Λcδc − Λpδp) + Λcδc(Kptp − (1− tp)(Λcδc − Λpδp)))

)
Λp(Λpδp − Λcδc)

(
δp(Λp − Λcδc)

(
Λpδp

Λcδc

)bpP − Λcδc(1− δp)
) +

δpRp (Λcδc(Λp(1− δp)(1− tp)(Λcδc − Λpδp)−Kptp(Λp − Λcδc)))

Λp(Λpδp − Λcδc)
(
δp(Λp − Λcδc)

(
Λpδp

Λcδc

)bpP − Λcδc(1− δp)
)

2
δpRp(m(Λp(1− δp)(1− tp)(m− Λpδp)−Kptp(Λp −m)))

Λp(Λpδp −m)

(
δp(Λp −m)

(
Λpδp

m

)b mKp 1−tp
tp c −m(1− δp)

)+

(Λp −m)
(

Λpδp

m

)b mKp 1−tp
tp c (Kptp(m− Λpδp)

⌊
m
Kp

1−tp
tp

⌋
+mKptp −m(1− tp)(m− Λpδp)

)
Λp(Λpδp −m)

(
δp(Λp −m)

(
Λpδp

m

)b mKp 1−tp
tp c −m(1− δp)

)
3 δpRp Λcδc(1−tp)

Λp

4 0

where m is found by solving (2.14) and bcP is given in (2.13).
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Table B.3: Users’ Welfare Under Regime C

Case Consumers: E[U cC]

1

δcRc
(

(Λc − Λpδp)
(

Λcδc

Λpδp

)bcC (bcCt
c(Λpδp − Λcδc) + Λpδp(tc − (1− tc)(Λpδp − Λcδc)))

)
Λc(Λcδc − Λpδp)

(
δc(Λc − Λpδp)

(
Λcδc

Λpδp

)bcC − Λp(1− δc)δp
) +

δcRc(Λpδp(Λpδp(Λc(δc−1)(tc−1)+tc)+Λc(−Λc(δc−1)δc(tc−1)−tc)))
Λc(Λcδc−Λpδp)

(
δc(Λc−Λpδp)( Λcδc

Λpδp )
bcC−Λp(1−δc)δp

)

2
mδcRc

(
(δcΛc)2Λp(1− tc) +mΛcΛp − δcΛcΛp(1− tc)(Λc +m)−mtc(Λc(1 + Λp)−m)

)
ΛcΛp(Λcδc −m)

(
δc(Λc −m)

(
Λcδc

m

)b( 1
tc−1)mc

+m(δc − 1)

) +

mδcRc(m− Λc)
(

Λcδc

m

)b( 1
tc−1)mc (

tc
⌊(

1
tc − 1

)
m
⌋

(Λcδc −m) + ΛcΛpδc(tc − 1)−m(Λp(tc − 1) + tc)
)

ΛcΛp(Λcδc −m)

(
δc(Λc −m)

(
Λcδc

m

)b( 1
tc−1)mc

+m(δc − 1)

)
3 ΛpδcδpRc(1−tc)

Λc

4 0

Case Providers: E[UpC]

1 δpRp
(
tp
(

1− Kp(Λcδc−Λpδp)

(Λc−Λpδp)
(
δc(Λc−Λpδp)( Λcδc

Λpδp )
bcC−Λp(1−δc)δp

))+ 1

)
2 0

3 δpRp
(
tp
(

1− Kp

Λc−Λpδp

)
+ 1
)

4 0

where m is found by solving (2.16) and bpC is given in (2.15).
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Appendix C

Appendices for Chapter 3

C.1 Experimental Setup and Parameter Settings

We report the experimental setup used throughout the chapter. As noted in the main text, we have used a
value iteration algorithm with a finite state approximation by applying an upper bound on the state variable
i, denoted by Nmax. We use a convergence threshold of ε = 0.001, i.e., the algorithm terminates when the
L0-distance between two cost-to-go functions obtained at consecutive iterations lies within ε = 0.001.

Throughout the experiments, we use a polynomial function for the queuing cost:

g(i) = KQ × ix.

We introduce a penalty for the last queuing state Nmax, denoted by P , i.e., g(Nmax) = P ×KQ × (Nmax)x.
We use a discrete space for risk profiles, where the corresponding risk profiles are sorted from the “least

risky” one to the “most risky” one. We consider the following functional form to capture risk costs:

Rφ(r) = A+B

(
µφ −minφ∈Θ µφ

minφ∈Θ µφ

)C
rD.

C.1.1 Setting for Figure 3.2

We consider a discount rate of β = 0.6 per unit of time. The arrival rate is λ = 15 per unit of time.
The queuing cost is set to g(i) = 20 × i1.5 per unit of time, with a penalty P = 10. The risk cost is set

to 5 + 75 ×
(
µφ−10

10

)3

r2. We consider 8 risk profiles, with a discrete probability distribution f equal to
[0.0002, 0.0068, 0.092, 0.55, 0.32, 0.026, 0.0009, 0.00012]. We consider 5 screening options, with service rates µφ
equal to 10, 12.5, 15, 17.5, 20 per unit of time.

To obtain Figure 3.2b, we multiply the base risk costs with 5 and obtain higher risk costs. For Figure 3.2c
we modify the service rates to 2, 8.5, 15, 21.5, 28. And to obtain Figure 3.2d, we increase λ from 15 to 19.

C.1.2 Setting for Figure 3.3

Figure 3.3 relies on a more complex experimental setting to compare the results of the multi-class policy to
those of the single-class policy, with various numbers of screening options and risk profiles.
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We consider a discount rate of β = 0.2 per unit of time. The arrival rate is λ = 18 per unit of time. The
queuing cost is set to g(i) = 7× i1.2 per unit of time, with a penalty P = 10.

We consider varying numbers of screening options in the set Θ as follows. We first create a menu of 20
screening options, with service rates µφ equally distributed between 10 and 20 per unit of time. When we
consider a fixed number of screening options, we select a subset of these 20 options—again, with service rates
equally distributed between 10 and 20 per unit of time. For instance, when we consider 2 screening options,
we select options 1 and 20; when we consider 3 screening options, we select options 1, 10 and 20; when we
consider 5 screening options, we select options 1, 6, 10, 14 and 20; etc.

We consider varying numbers of risk profiles by defining an underlying population and aggregating it into
a fixed number of categories. Specifically, we consider a population with 120 risk “bins”. Let fp(j) denote the
probability of risk bin j, drawn from a triangular distribution with parameters 0, 55 and 121. We define a

baseline risk cost for each of the 120 bins as follows: Rbase
φ (j) = 5 + 75×

(
µφ−10

10

)1.2

j1.1,∀j = 1, · · · , 120.
We then use this granular representation to define the risk profiles and associated risk costs, denoted by

Rsingle
φ . For any screening option φ, we define the single-class risk cost, denoted by Rsingle

φ . It is equal to the
expected risk cost resulting from the screening of any individual randomly chosen among the 120 risk bins
according to distribution fp, i.e.:

Rsingle
φ =

120∑
r=1

Rbase
φ (j)× fp(j).

In the multi-class setting, we first aggregate the 120 risk bins into the various classes to define the
probability distribution f . Let R be the number of risk profiles to select. We partition the population of 120
bins into ρ subsets, such that each of the ρ subset includes the same number of risk bins (this is possible
because, by design, 120 is a common multiplier of all the numbers of risk profiles considered). Let us denote
each subset by Sr ⊂ {1, · · · , 120} where r ∈ {1, .., ρ}. Then, the probability density function f is given by:

f(r) =
∑
s∈Sr

fp(s), ∀r = 1, · · · , ρ.

For instance, if we select 2 risk profiles, the first 60 bins and the last 60 bins are lumped into the safest risk
profile and the riskier profile, respectively, with corresponding probabilities

∑60
r=1 f

p(r) and
∑120
r=61 f

p(r).
We now define the risk cost of each profile as follows:

Rφ(r) =

∑
s∈Sr R

base
φ (s)× fp(s)
f(r)

, ∀r ∈ {1, ..., ρ}.

Note that, by construction, the average cost in the multi-class setting matches the cost estimate in the
single-class setting, for each screening option φ, i.e.:

Rsingle
φ =

∑
r=1,··· ,ρ

Rφ(r)× f(r).

C.1.3 Setting for Figures 3.6, 3.7 and 3.8

In the last part of the chapter, we consider 2 risk profiles (r1 and r2), 2 agent types (s1 and s2) and 2
screening options. The two screening options are defined by service rates of 10 and 20 per unit of time
and probabilities of success of 0.3 and 0.95, respectively. Recall that, for each agent type s, τs denotes the
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minimal probability of success for the agent to remain in the system instead of reneging; we assume here that
τs1 = 0.2 and τs2 = 0.35. Therefore, agents of type s1 remain in the system regardless of whether the slow or
the fast screening is applied while agents of type s2 remain in the system only if the fast screening is applied
(Assumption 8). We consider a discount rate of β = 0.9 per unit of time.

In Figures 3.6 and 3.7, the arrival rate is λ = 15 per unit of time. The queuing cost is set to g(i) = 3× i2,
with a penalty P = 20. Each agent is of type r1 with probability 0.7 and of type r2 with probability 0.3. The
true risk cost resulting from agents going through the system successfully are K(s1) = 10 and K(s2) = 70.

In Figure 3.6a, the high risk cost is obtained by multiplying K(s) by 2; the high queuing cost is obtained
by considering g(i) = 6× i2.1 and P = 25. In Figure 3.6b, the high and low spreads of screening rates are
obtained by changing the service rate of slow screening from 10 to 8 and 12 per unit of time, respectively.

In Figures 3.8, the arrival rate is λ = 18 per unit of time. The queuing cost is set to g(i) = 5 × i2,
with a penalty P = 20. The true risk cost resulting from agents going through the system successfully are
K(s1) = 20 and K(s2) = 200. As detailed in the text, the probability of agents’ risk profiles is calibrated to
keep the underlying population unchanged. In other words, the probability that an agent is of risk profile r1

is given by f(r1) = α−σ
2α−1 , where σ is the proportion of the malevolent agents.

C.2 Proofs of Statements from Section 3.3

We first prove Proposition 3.3, and then Proposition 3.2—as the proof of Proposition 3.2 uses Proposition 3.3.

C.2.1 Proof of Proposition 3.3

We assume that Assumptions 3, 4 and 5 are satisfied. Recall that the optimal policy is such that π∗(i, r) =

“fast” ⇐⇒ J∗(i, r)− J̄(i− 1) ≥ µFRF (r)−µSRS(r)
µF−µS . It suffices to show that (µF − µS)

[
J∗(i, r)− J̄(i− 1)

]
−

(µFRF (r)− µSRS(r)) is decreasing in r0 for all i ≥ 1. Let r1, r2 ∈ <+ be such that r1 < r2, and show that
(µF − µS) (J∗(i, r1)− J∗(i, r2)) ≥ µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2).

We proceed by value iteration. We consider an initial cost-to-go function J0 such that J0(0) = 0 and
J0(i, r) = 0 for all i ≥ 1 and r ∈ <+. We iteratively update the cost-to-go functions as follows, where J̄k denotes
the expected value of Jk(i, r) across all values of r, i.e., J̄k(i) = Er[Jk(i, r)] =

∫
r∈<+

Jk(i, r)f(r)dr, ∀i ≥ 1.

Jk+1(i, r0) =
1

β + µF + λ

(
g(i) + λJk(i+ 1, r0)

+ min
φ∈Θ

{
µφRφ(r0) + µφJ̄k(i− 1) + (µF − µφ) Jk(i, r0)

})
∀i ≥ 1 (C.1)

Jk+1(0) =
1

β + µF + λ

(
g(0) + λJ̄k(1) + µFJk(0)

)
(C.2)

We denote by ∆k(i) = (µF − µS)(Jk(i, r1) − Jk(i, r2)) for all i ≥ 1. We show by induction over k
that ∆k(i) ≥ µFRF (r1) − µFRF (r2) − µSRS(r1) + µSRS(r2),∀i ≥ 1. This is satisfied for k = 0 because
µF (RF (r2)−RF (r1)) ≥ µS(RS(r2)−RS(r1)), which is implied by Condition (5). We now assume that it
holds for a given k ≥ 0 and show that it holds for k + 1.

Let us first consider a given value of i ≥ 1 and show that ∆k+1(i) ≥ µFRF (r1)−µFRF (r2)−µSRS(r1) +

µSRS(r2). We denote by πk the policy induced by the cost-to-go function Jk. From the induction hypothesis,
we know that for any i, if πk(i, r2) = “fast”, then πk(i, r1) = “fast”. Therefore, we need to consider three cases
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to compute Jk+1(i, r1) and Jk+1(i, r2): (i) πk(i, r1) = “fast” and πk(i, r2) = “fast” (ii) πk(i, r1) = “fast” and
πk(i, r2) = “slow” (iii) πk(i, r1) = “slow” and πk(i, r2) = “slow”

Before proceeding further, we note that Condition (5) implies that:

λ+ µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))− λ

β + µF + λ
µS (RS(r1)−RS(r2))

≥ µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2) (C.3)

Case 1 πk(i, r1) = “fast” and πk(i, r2) = “fast”

∆k+1(i) =
µF − µS
β + µF + λ

[
g(i) + λJk(i+ 1, r1) + µFRF (r1) + µF J̄(i− 1)− g(i)− λJk(i+ 1, r2)− µFRF (r2)− µF J̄(i)

]
=

λ

β + µF + λ
∆k(i+ 1) +

µF − µS
β + µF + λ

[µF (RF (r1)−RF (r2))]

≥ λ

β + µF + λ
(µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2)) +

µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))

per the induction hypothesis

=
λ+ µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))− λ

β + µF + λ
µS (RS(r1)−RS(r2))

≥ µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2) from Equation (C.3)

Case 2 πk(i, r1) = “fast” and πk(i, r2) = “slow”

∆k+1(i) =
µF − µS
β + µF + λ

[
g(i) + λJk(i+ 1, r1) + µFRF (r1) + µF J̄(i− 1)

− g(i)− λJk(i+ 1, r2)− µSRS(r2)− µSJ̄(i− 1)− (µF − µS)Jk(i, r2)
]

=
λ

β + µF + λ
∆k(i+ 1) +

µF − µS
β + µF + λ

µFRF (r1)− µSRS(r2)− (µF − µS)(Jk(i, r2)− J̄(i− 1))︸ ︷︷ ︸
≤µFRF (r2)−µSRS(r2)


≥ λ

β + µF + λ
(µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2)) +

µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))

per the induction hypothesis

=
λ+ µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))− λ

β + µF + λ
µS (RS(r1)−RS(r2))

≥ µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2) from Equation (C.3)

Case 3 πk(i, r1) = “slow” and πk(i, r2) = “slow”

∆k+1(i) =
µF − µS
β + µF + λ

[
g(i) + λJk(i+ 1, r1) + µSRS(r1) + µSJ̄(i− 1) + (µF − µS)Jk(i, r1)

− g(i)− λJk(i+ 1, r2)− µSRS(r2)− µSJ̄(i− 1)− (µF − µS)Jk(i, r2)
]

=
λ

β + µF + λ
∆k(i+ 1) +

µF − µS
β + µF + λ

∆k(i) +
µF − µS
β + µF + λ

µS [RS(r1)−RS(r2)]

≥ λ+ µF − µS
β + µF + λ

(µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2)) +
µF − µS
β + µF + λ

µS (RF (r1)−RF (r2))
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per the induction hypothesis

=
λ+ µF − µS
β + µF + λ

µF (RF (r1)−RF (r2))− λ

β + µF + λ
µS (RS(r1)−RS(r2))

≥ µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2) from Equation (C.3)

Therefore, ∆k+1(i) ≥ µFRF (r1) − µFRF (r2) − µSRS(r1) + µSRS(r2) for any i ≥ 1. This shows that,
for any value of k, (µF − µS)(Jk+1(i, r1) − Jk+1(i, r2)) ≥ µFRF (r1) − µFRF (r2) − µSRS(r1) + µSRS(r2),
for each i ≥ 1. By taking the limit when k → ∞, we obtain that (µF − µS)(J∗(i, r1) − J∗(i, r2)) ≥
µFRF (r1)− µFRF (r2)− µSRS(r1) + µSRS(r2), for each i ≥ 1.

C.2.2 Proof of Proposition 3.2

We assume that Assumptions 3 and conditions, (4) and (5) are satisfied. We denote by J̄∗ the expected value
of J∗(i, r) across all values of r, i.e., J̄∗(i) = Er[J∗k (i, r)] =

∫
r∈<+

J∗(i, r)f(r)dr, ∀i ≥ 1. It suffices to show
that, for any given r0 ∈ <+, J∗(i, r0)− J̄∗(i− 1) is a non-decreasing function of i. Specifically, we show that
the optimal cost-to-go function satisfies the following two properties:

J∗(i+ 1, r0)− J̄∗(i)− J∗(i, r0) + J̄∗(i− 1) ≥ 0 ∀i ≥ 1 ∀r0 ∈ <+ (C.4)

J∗(1, r0)− J∗(0) ≥ RS(r0) ∀r0 ∈ <+ (C.5)

We proceed by value iteration. We initialize the cost-to-go function with J0(i, r0) = RS(r0),∀i ≥ 1, r0 ∈
<+, and J0(0) = 0. We then update it as follows, with J̄k(i) = Er[Jk(i, r)] for all i ≥ 1:

Jk+1(i, r0) =
1

β + µF + λ

(
g(i) + λJk(i+ 1, r0) + min

{
µFRF (r0) + µF J̄k(i− 1);

µSRS(r0) + µSJ̄k(i− 1) + (µF − µS) Jk(i, r0)
})

∀i ≥ 1 (C.6)

Jk+1(0) =
1

β + µF + λ

(
g(0) + λJ̄k(1) + µFJk(0)

)
(C.7)

Let us consider a given r0 ∈ <+ and denote by ∆k(i) = Jk(i + 1, r0) − J̄k(i) − Jk(i, r0) + J̄k(i − 1), for
each i ≥ 1. We show by induction over k that ∆k(i) ≥ 0 for all i ≥ 1 and that Jk(1, r0)− Jk(0) ≥ RS(r0).
By construction, we considered J0(i, r0) = RS(r0) and J0(0) = 0, so these two properties are satisfied for
k = 0. We now assume that ∆k(i) ≥ 0 for all i ≥ 1 and Jk(1, r0) − Jk(0) ≥ RS(r0). We will show that
∆k+1(i) ≥ 0 for all i ≥ 1 and that Jk+1(1)−Jk+1(0) ≥ RS(r0). We denote by πk the optimal policy given the
cost-to-go function Jk, for any value k. Specifically, πk(i, r0) = “fast” if Jk(i, r0)− J̄k(i− 1) ≥ µFRF−µSRS

µF−µS ,
and πk(i) = “slow” otherwise.

We first consider i ≥ 2 and show ∆k+1(i, r0) ≥ 0. From Proposition 3.3 and the induction hypothesis, we
know that, for any i ≥ 1, if r1 < r2 and πk(i, r2) = “fast”, then πk(i, r1) = “fast” and that, for any r ∈ <+,
if πk(i, r0) = “fast”, then πk(i+ 1, r0) = “fast”. In other words, there exists r̂i such that πk(i, r) = “fast” if
r ≤ r̂i and πk(i, r) = “slow” if r > r̂i, and that r̂i ≤ r̂i+1. Mathematically, we have:

r ≤ r̂i ⇐⇒ Jk(i, r0)− J̄k(i− 1) ≥ µFRF (r0)− µSRS(r0)

µF − µS
(C.8)

Consistently, we define three cases to compute ∆k+1(i, r0): (i) πk(i, r0) = “fast” and πk(i+ 1, r0) = “fast”
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(ii) πk(i, r0) = “slow” and πk(i+ 1, r0) = “fast” (iii) πk(i, r0) = “slow” and πk(i+ 1, r0) = “slow”
Let us first write out J̄k+1(i):

J̄k+1(i) =

∫ ∞
0

Jk+1(i, r)f(r)dr =

∫ r̂i

0

Jk+1(i, r)f(r)dr +

∫ ∞
r̂i

Jk+1(i, r)f(r)dr

=
1

β + µF + λ

[∫ r̂i

0

(
g(i) + λJk(i, r) + µFRF + µF J̄k(i− 1)

)
f(r)dr

]

+
1

β + µF + λ

[∫ ∞
r̂i

(
g(i) + λJk(i, r) + µSRS + µSJ̄k(i− 1) + (µF − µS) J(i, r)

)
f(r)dr

]
=

g(i)

β + µF + λ
+

λ

β + µF + λ
J̄k(i+ 1) +

∫ r̂i

0

µF
β + µF + λ

RF (r)f(r)dr +

∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr

+

∫ ∞
r̂i

µS
β + µF + λ

RS(r)f(r)dr +

∫ ∞
r̂i

µS
β + µF + λ

J̄k(i− 1) +
µF − µS
β + µF + λ

Jk(i, r)f(r)dr

Case 1 πk(i, r0) = “fast” and πk(i+ 1, r0) = “fast”

∆k+1(i) =
1

β + µF + λ

g(i+ 1)− 2g(i) + g(i− 1)︸ ︷︷ ︸
≥0 by Assumption 3

+
λ

β + µF + λ

Jk(i+ 2, r0)− J̄k(i+ 1)− Jk(i+ 1, r0) + J̄k(i)︸ ︷︷ ︸
≥0 per the induction hypothesis


+

µF
β + µF + λ

RF (r0)− µF
β + µF + λ

RF (r0)︸ ︷︷ ︸
=0

+
µF

β + µF + λ
(J̄k(i)− J̄k(i− 1))

−
∫ r̂i

r̂i−1

µF
β + µF + λ

RF (r)f(r)dr +

∫ r̂i

r̂i−1

µS
β + µF + λ

RS(r)f(r)dr

−
∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr −
∫ ∞
r̂i

(
µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i, r)

)
f(r)dr

+

∫ r̂i−1

0

µF
β + µF + λ

J̄k(i− 2)f(r)dr +

∫ ∞
r̂i−1

(
µS

β + µF + λ
J̄k(i− 2) +

µF − µS
β + µF + λ

Jk(i− 1, r)

)
f(r)dr

≥
∫ r̂i−1

0

µF
β + µF + λ

Jk(i, r)− J̄k(i− 1)− Jk(i− 1, r) + J̄k(i− 2)︸ ︷︷ ︸
≥0 per the induction hypothesis

 f(r)dr

+

∫ ∞
r̂i

µS
β + µF + λ

Jk(i, r)− J̄k(i− 1)− Jk(i− 1, r) + J̄k(i− 2)︸ ︷︷ ︸
≥0 per the induction hypothesis

 f(r)dr

+
1

β + µF + λ

∫ r̂i

r̂i−1

−µS (Jk(i− 1, r)− J̄k(i− 2)
)︸ ︷︷ ︸

≤µFRF (r)−µSRS(r)

µF−µS

+µF
(
Jk(i, r)− J̄k(i− 1)

)︸ ︷︷ ︸
≥µFRF (r)−µSRS(r)

µF−µS

−µFRF (r) + µSRS(r)

 f(r)dr

≥ 0
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Case 2 πk(i, r0) = “slow” and πk(i+ 1, r0) = “fast”

∆k+1(i) =
1

β + µF + λ

g(i+ 1)− 2g(i) + g(i− 1)︸ ︷︷ ︸
≥0 by Assumption 3

+
λ

β + µF + λ

Jk(i+ 2, r0)− J̄k(i+ 1)− Jk(i+ 1, r0) + J̄k(i)︸ ︷︷ ︸
≥0 per the induction hypothesis


+

µF
β + µF + λ

RF (r0)− µS
β + µF + λ

RS(r0) +
µF

β + µF + λ
J̄(i)− µF − µs

β + µF + λ
Jk(i, r0)− µS

β + µF + λ
J̄(i− 1)

−
∫ r̂i

r̂i−1

µFRF (r)f(r)dr +

∫ r̂i

r̂i−1

µSRS(r)f(r)dr

−
∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr −
∫ ∞
r̂i

(
µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i, r)

)
f(r)dr

+

∫ r̂i−1

0

µF
β + µF + λ

J̄k(i− 2)f(r)dr +

∫ ∞
r̂i−1

(
µS

β + µF + λ
J̄k(i− 2) +

µF − µS
β + µF + λ

Jk(i− 1, r)

)
f(r)dr

Note that:

µFRF (r0)− µSRS(r0) + µF J̄(i)− (µF − µS)Jk(i, r0)− µSJ̄(i− 1)

= µF
(
J̄k(i)− J̄k(i− 1)

)
+ µFRF (r0)− µSRS(r0)− (µF − µS)

(
Jk(i, r0)− J̄(i− 1)

)
≥ µF

(
J̄k(i)− J̄k(i− 1)

)
because πk(i, r0) = “slow”

Therefore:

∆k+1(i) ≥ µF
β + µF + λ

(J̄k(i)− J̄k(i− 1))−
∫ r̂i

r̂i−1

µFRF (r)f(r)dr +

∫ r̂i

r̂i−1

µSRS(r)f(r)dr

−
∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr −
∫ ∞
r̂i

(
µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i, r)

)
f(r)dr

+

∫ r̂i−1

0

µF
β + µF + λ

J̄k(i− 2)f(r)dr +

∫ ∞
r̂i−1

(
µS

β + µF + λ
J̄k(i− 2) +

µF − µS
β + µF + λ

Jk(i− 1, r)

)
f(r)dr

≥ 0 by proceeding as in Case 1

Case 3 πk(i, r0) = “slow” and πk(i+ 1, r0) = “slow”

∆k+1(i) =
1

β + µF + λ

g(i+ 1)− 2g(i) + g(i− 1)︸ ︷︷ ︸
≥0 by Assumption 3

+
λ

β + µF + λ

Jk(i+ 2, r0)− J̄k(i+ 1)− Jk(i+ 1, r0) + J̄k(i)︸ ︷︷ ︸
≥0 per the induction hypothesis


+

µS
β + µF + λ

RS(r0)− µS
β + µF + λ

RS(r0)︸ ︷︷ ︸
=0

+
µS

β + µF + λ
J̄k(i)− µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i+ 1, r0)− µF − µS
β + µF + λ

Jk(i, r0)

−
∫ r̂i

r̂i−1

µFRF (r)f(r)dr +

∫ r̂i

r̂i−1

µSRS(r)f(r)dr

−
∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr −
∫ ∞
r̂i

(
µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i, r)

)
f(r)dr
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+

∫ r̂i−1

0

µF
β + µF + λ

J̄k(i− 2)f(r)dr +

∫ ∞
r̂i−1

(
µS

β + µF + λ
J̄k(i− 2) +

µF − µS
β + µF + λ

Jk(i− 1, r)

)
f(r)dr

Note that:

µSJ̄k(i)− µSJ̄k(i− 1) + (µF − µS)Jk(i+ 1, r0)− (µF − µS)Jk(i, r0)

= (µF − µS)
(
Jk(i+ 1, r0)− J̄k(i)− Jk(i, r0) + J̄k(i− 1)

)
+ µF

(
J̄k(i)− J̄k(i− 1)

)
≥ µF

(
J̄k(i)− J̄k(i− 1)

)
per the induction hypothesis

Therefore:

∆k+1(i) ≥ µF
β + µF + λ

(J̄k(i)− J̄k(i− 1))−
∫ r̂i

r̂i−1

µFRF (r)f(r)dr +

∫ r̂i

r̂i−1

µSRS(r)f(r)dr

−
∫ r̂i

0

µF
β + µF + λ

J̄k(i− 1)f(r)dr −
∫ ∞
r̂i

(
µS

β + µF + λ
J̄k(i− 1) +

µF − µS
β + µF + λ

Jk(i, r)

)
f(r)dr

+

∫ r̂i−1

0

µF
β + µF + λ

J̄k(i− 2)f(r)dr +

∫ ∞
r̂i−1

(
µS

β + µF + λ
J̄k(i− 2) +

µF − µS
β + µF + λ

Jk(i− 1, r)

)
f(r)dr

≥ 0 by proceeding as in Case 1

This completes the proof for any i ≥ 2. We now proceed to show that Jk+1(1, r0)− Jk+1(0) ≥ RS(r0) for
all r0 ∈ <+. Per induction, we consider two cases: Case 1 πk(1, r0) = “fast” Case 2 πk(1, r0) = “slow”

Case 1 πk(1, r0) = “fast”

Jk+1(1, r0)− Jk+1(0)

=
1

β + µF + λ

(g(1)− g(0)) + λ
(
Jk(2, r0)− J̄k(1)

)︸ ︷︷ ︸
≥Jk(1,r0)−J̄k(0)

+µFRF (r0)



≥ 1

β + µF + λ

 (g(1)− g(0))︸ ︷︷ ︸
≥βRS(r0) (Assumption 3)

+λRS(r0) + µFRF (r0)

 per the induction hypothesis

≥ RS(r0)

Case 2 πk(1, r0) = “slow”

Jk+1(1, r0)− Jk+1(0)

=
1

β + µF + λ

(g(1)− g(0)) + λ
(
Jk(2, r0)− J̄k(1)

)︸ ︷︷ ︸
≥Jk(1,r0)−JJ̄k(0)

+µSRS(r0) + (µF − µS) (Jk(1)− Jk(0))



=
1

β + µF + λ

 (g(1)− g(0))︸ ︷︷ ︸
≥βRS(r0) (Assumption 3)

+µSRS(r0) + (λ+ µF − µS)RS(r0)

 per the induction hypothesis

≥ RS(r0)
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Last, we show that ∆k+1(1, r0) ≥ 0. Per the induction hypothesis, we consider three different cases:
Case 1 πk(2, r0) = “fast”, πk(1, r0) = “fast”, Case 2 πk(2, r0) = “fast”, πk(1, r0) = “slow”, Case 3 πk(2, r0) =

“slow” , πk(1, r0) = “slow”.
Before proceeding, note that for each r ≤ r̂1, we have Jk(1, r)− Jk(0) ≥ µFRF (r)−µSRS(r)

µF−µS ≥ RF (r).
Case 1 πk(2, r0) = “fast”, πk(1, r0) = “fast”

∆k+1(1, r0) =
1

β + µF + λ

(g(2)− 2g(1) + g(0))︸ ︷︷ ︸
≥0 by Assumption 3

+λ(Jk(3, r0)− J̄k(2)− Jk(2, r0) + J̄k(1)︸ ︷︷ ︸
≥0 per the induction hypothesis

)


+

1

β + µF + λ

−µFJk(0) + µFJk(0) + µFRF (r0)− µFRF (r0)︸ ︷︷ ︸
=0

+µF J̄k(1)


+

1

β + µF + λ

(
−
∫ r̂1

0

(µFRF (r) + µFJk(0)) f(r)dr −
∫ ∞
r̂1

(µSRS(r) + µSJk(0) + (µF − µS)Jk(1, r)) f(r)dr

)

≥ 1

β + µF + λ

µF ∫ r̂1

0

(Jk(1, r)− Jk(0)−RF (r))︸ ︷︷ ︸
≥0

f(r)dr + µS

∫ ∞
r̂1

(Jk(1, r)− Jk(0)−RS(r))︸ ︷︷ ︸
≥0 per the induction hypothesis

f(r)dr


≥ 0

Case 2 πk(2, r0) = “fast”, πk(1, r0) = “slow”

∆k+1(1, r0) =
1

β + µF + λ

(g(2)− 2g(1) + g(0))︸ ︷︷ ︸
≥0 by Assumption 3

+λ(Jk(3, r0)− J̄k(2)− Jk(2, r0) + J̄k(1)︸ ︷︷ ︸
≥0 per the induction hypothesis

)



+
1

β + µF + λ

µFRF (r0)− µSRS(r0)− (µF − µS) (Jk(1, r0)− Jk(0))︸ ︷︷ ︸
≤µFRF (r0)−µSRS(r0)

µF−µS

+µF J̄k(1)


+

1

β + µF + λ

(
−
∫ r̂1

0

(µFRF (r) + µFJk(0)) f(r)dr −
∫ ∞
r̂1

(µSRS(r) + µSJk(0) + (µF − µS)Jk(1, r)) f(r)dr

)

≥ 1

β + µF + λ

(
µF J̄k(1)−

∫ r̂1

0

(µFRF (r) + µFJk(0)) f(r)dr

−
∫ ∞
r̂1

(µSRS(r) + µSJk(0) + (µF − µS)Jk(1, r)) f(r)dr

)
≥ 0 by proceeding as in Case 1

Case 3 πk(2, r0) = “slow” , πk(1, r0) = “slow”

∆k+1(1, r0) =
1

β + µF + λ

(g(2)− 2g(1) + g(0))︸ ︷︷ ︸
≥0 by Assumption 3

+λ(Jk(3, r0)− J̄k(2)− Jk(2, r0) + J̄k(1)︸ ︷︷ ︸
≥0 per the induction hypothesis

) + µSRS(r0)− µSRS(r0)︸ ︷︷ ︸
=0
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+
1

β + µF + λ

µSJ̄k(1) + (µF − µS)Jk(2, r0)− µSJk(0)− (µF − µS)Jk(1, r0) + µFJk(0)︸ ︷︷ ︸
=(µF−µS)(Jk(2,r0)−J̄k(1)−Jk(1,r0)+Jk(0))+µF J̄k(1)≥µF J̄k(1)


+

1

β + µF + λ

(
−
∫ r̂1

0

(µFRF (r) + µFJk(0)) f(r)dr −
∫ ∞
r̂1

(µSRS(r) + µSJk(0) + (µF − µS)Jk(1, r)) f(r)dr

)

Therefore:

∆k+1(1, r0) ≥ 1

β + µF + λ

(
µF J̄k(1)−

∫ r̂1

0

(µFRF (r) + µFJk(0)) f(r)dr

−
∫ ∞
r̂1

(µSRS(r) + µSJk(0) + (µF − µS)Jk(1, r)) f(r)dr

)
≥ 0 by proceeding as in Case 1

This shows that, for any value of k and for any r0 ∈ <+, we have Jk(i + 1, r0) − J̄k(i) − Jk(i, r0) +

J̄k(i− 1) ≥ 0, for each i ≥ 1, and Jk(1, r0)− Jk(0) ≥ RS . By taking the limit when k →∞, we obtain that
J∗(i+1, r0)−J̄∗(i)−J∗(i, r0)+J̄∗(i−1) ≥ 0,∀i ≥ 1,∀r0 ∈ <+, and J∗(1, r0)−J∗(0) ≥ RS(r0),∀r0 ∈ <+.

C.3 Proof of Proposition 3.4

C.3.1 Comparison of Risk Metrics:

Based on Equation (3.29), each risk metric ξe(r1), ξe(r2), ξc(r1) and ξc(r2) is expressed as follows:

ξe(r1) =

∑
i≥1 ν

e(i, r1, F )pFK(s1)∑
i≥1 ν

e(i, r1, F )
= pFK(s1)

ξe(r2) =

∑
i≥1 ν

e(i, r2, F )pF ((1− α)K(s1) + αK(s2))∑
i≥1 ν

e(i, r2, F )
= pF ((1− α)K(s1) + αK(s2))

ξc(r1) =

∑
i≥1 ν

c(i, r1, F )pFK(s1)∑
i≥1 ν

c(i, r1, F )
= pFK(s1)

ξc(r2) =

∑
i≥1 ν

c(i, r2, S)pS(1− α)K(s1) +
∑
i≥1 ν

c(i, r2, F )pF ((1− α)K(s1) + αK(s2))∑
φ∈{S,F}

∑
i≥1 ν

c(i, r2, φ)

= pS(1− α)K(s1)

∑
i≥1 ν

c(i, r2, S)∑
φ∈{S,F}

∑
i≥1 ν

c(i, r2, φ)
+ pF ((1− α)K(s1) + αK(s2))

∑
i≥1 ν

c(i, r2, F )∑
φ∈{S,F}

∑
i≥1 ν

c(i, r2, φ)

Notice that ξe(r1) = ξc(r1). Also note that pSK(s1)(1 − α) < pF (K(s1)α + K(s2)(1 − α)) because
pS < pF and K(s1) < K(s2). Then we can bound ξc(r2) with

ξc(r2) < pF (K(s1)α+K(s2)(1− α))

( ∑
i≥1 ν

c(i, r2, S)∑
φ∈{S,F}

∑
i≥1 ν

c(i, r2, φ)
+

∑
i≥1 ν

c(i, r2, F )∑
φ∈{S,F}

∑
i≥1 ν

c(i, r2, φ)

)
= pF (K(s1)α+K(s2)(1− α)) = ξe(r2)

This concludes that ξc(r2) < ξe(r2), and shows Equation (3.30).
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C.3.2 Comparison of Queue Lengths:

Next we derive expected queue lengths Ee[N ] and Ec[N ]. In order to compute these metrics we first need
the probability distributions corresponding the policies. Note that aggressive policy’s Markov Chain can be
reduced to that of M/M/1 queuing system with arrival rate λ and service rate µF . Hence, Ee[N ] = λ

λ+µF
.

The balance equations of the conservative policy are as follows:

νc(0) (λr + λ(1− r)(1− α)) = µF ν
c(1, r1, F ) + µSν

c(1, r2, S)

+ µF (1− r)α(νc(2, r1, F ) + νc(2, r2, F )) + µS(1− r)ανc(2, r2, S) (C.9)

νc(1, r1, F )(λ+ µF ) = νc(0)λr + µF r(ν
c(2, r1, F ) + νc(2, r2, F )) + µSrν

c(2, r2, S) (C.10)

νc(1, r2, S)(λ+ µS) = νc(0)λ(1− r)(1− α)

+ µF (1− r)(1− α)(νc(2, r1, F ) + νc(2, r2, F )) + µS(1− r)(1− α)νc(2, r2, S)

(C.11)

νc(2, r1, F )(λ+ µF ) = µF r(ν
c(3, r1, F ) + νc(3, r2, F )) + µSrν

c(3, r2, S) + λνc(1, r1, F ) (C.12)

νc(2, r2, F )(λ+ µF ) = µF (1− r)(νc(3, r1, F ) + νc(3, r2, F )) + µS(1− r)νc(3, r2, S) (C.13)

νc(2, r2, S)(λ+ µS) = λνc(1, r2, S) (C.14)

νc(3, r1, F )(λ+ µF ) = µF r(ν
c(4, r1, F ) + νc(4, r2, F )) + µSrν

c(4, r2, S) + λνc(2, r1, F ) (C.15)

νc(3, r2, F )(λ+ µF ) = µF (1− r)(νc(4, r1, F ) + νc(4, r2, F )) + µS(1− r)νc(4, r2, S) + λνc(2, r2, F )

(C.16)

νc(3, r2, S)(λ+ µS) = λνc(2, r2, S) (C.17)

· · ·

For expositional ease, we denote by νc(i, F ) the sum νc(i, F ) = νc(i, r1, F ) + νc(i, r2, F ). By examining the
repeating portion of the Markov chain, note that νc(i, r2, S) can be written as:

νc(i, r2, S) = νc(1, r2, S)

(
λ

λ+ µS

)i−1

, ∀i ≥ 1 (C.18)

We obtain after simplification of the non-repeating portion of the chain:

µF ν
c(2, F ) = λνc(1, r1, F ) +

λ2

λ+ µS
νc(1, r2, S) from Equations (C.10),(C.11) and (C.9) (C.19)

µF ν
c(3, F ) = λνc(2, F ) +

λ3

(λ+ µS)2
νc(1, r2, S) from Equations (C.12),(C.13) and (C.19) (C.20)

µF ν
c(i, F ) = λνc(i− 1, F ) +

λi

(λ+ µS)i−1
νc(1, r2, S) by applying the same method recursively (C.21)

Using Equation (C.21), we obtain the following formula—which can be shown by a simple recursion:

νc(i, F ) = νc(1, r1, F )

(
λ

µF

)i−1

+ νc(1, r2, S)λi
i−1∑
j=1

1

(λ+ µS)i−jµjF
(C.22)
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Having obtained the expressions for each of the states νc(i, F ) and νc(i, r2, S) in terms of νc(1, r1, F ),
νc(1, r2, S), we can now write the normalization equation in terms of these variables and νc(0):

νc(0) + νc(1, r1, F )
∑
i≥1

(
λ

µF

)i−1

+ νc(1, r2, S)
∑
i≥1

(
λ

λ+ µS

)i−1

+ νc(1, r2, S)
∑
i≥2

λi
i−1∑
j=1

1

(λ+ µS)i−jµjF
= 1

(C.23)

We use Equations (C.9) and (C.10), in which we plug the expression of νc(2, F ) from Equation (C.19). This
yields:

νc(0)λ(r + (1− r)(1− α)) −νc(1, r2, S)(µS + λ(1− r)α) −νc(1, r1, F )(µF + λ(1− r)α) = 0

νc(0)λr +νc(1, r2, S)λr −νc(1, r1, F )(µF + λ(1− r)) = 0

Solving these equations, we obtain νc(0), νc(1, r1, F ) and νc(1, r2, S) as:

νc(0) =
µS(µF − λ)(µS(λ+ µF ) + αλ(1− r)(λ+ µF ) + λr(µF − µS))

(α− 1)λ2µF (r − 1)(λ+ µF ) + µ2
S (µ2

F + λ2(r − 1)) + λµS (µ2
F + λ2(r − 1))

νc(1, r1, F ) =
λµSr(λ− µF )(λ+ µS)

(1− α)λ2µF (r − 1)(λ+ µF ) + µ2
S (µ2

F + λ2(r − 1)) + λµS (µ2
F + λ2(r − 1))

νc(1, r2, S) =
(α− 1)λµS(r − 1)(λ− µF )(λ+ µF )

(1− α)λ2µF (r − 1)(λ+ µF ) + µ2
S (µ2

F + λ2(r − 1)) + λµS (µ2
F + λ2(r − 1))

Then we compute Ec[N ] =
∑
i≥1 i(ν

c(i, r2, S) + νc(i, F )). Following some algebra, we obtain:

Ec[N ]− Ee[N ] =
λ(1− r)(λ+ µF )(λ+ µS)((1− α)λ(µF − µS) + µS((1− α)µF − µS))

µS ((1− α)(1− r)λ2µF (λ+ µF ) + µ2
S (µ2

F − λ2(1− r)) + λµS (µ2
F − λ2(1− r)))

(C.24)

The denominator is always positive (because µF > λ); by examining the numerator, we obtain:

Ec[N ]− Ee[N ] < 0 ⇐⇒ (1− α)λ(µF − µS) + µS((1− α)µF − µS) < 0

⇐⇒ (λ+ µS)(µF − µS)

λ(µF − µS) + µFµS
< α

This shows Equation (3.31), and completes the proof.
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