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Chapter 1

A General Equilibrium Model of Social

Security with Trust Fund with

Heterogeneous Households

1.1 Introduction

In this chapter, I introduce an Overlapping Generation (OLG) model where the Social Security Security sys-

tem endowed with a Trust Fund. In economic literature, Social Security has traditionally been approximated

as a “pay-as-you-go” (“PAYGO”) system, which fails to take into account the fact that, in reality, retire-

ment benefits depend on the lifetime earnings of each retiree and the solvency of the Social Security fund

itself. These factors are highly relevant for policy purposes because, based on current projections, Social

Security will exhaust its trust fund by 2034, and will no longer be able to pay scheduled benefits to retirees.

Therefore, a model that incorporates these factors represents a significant innovation in the literature and

could serve as a guide for policy makers with regard to potential policy reforms. In Chapter 1, I successfully

develop the proposed model of Social Security, accounting for lifetime earning histories and the potential

for bankruptcy of the fund in a stochastic environment.

The proposed model contributes to the literature by introducing a trust fund, whose balances can

be used to pay benefits when outlays exceed the revenues collected through payroll taxes. In a PAYGO
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system, current benefits paid to the retirees are equal to the payroll taxes levied on the workers, establishing a

generational link only between current workers and current retirees. On the one hand, it is able to accumulate

financial resources in a designated Trust Fund, which holds non-marketable Treasury bills and bonds, but,

on the other hand, the Social Security Administration is not allowed to borrow from either financial markets

or other branches of the federal government if the Trust Fund depletes its resources and is not able to meet

its obligations. In this event, then, under current law, benefits cannot exceed total revenues, making Social

Security an unfunded system in this contingency. The model I present in this chapter takes into account this

contingency, as I explicitly model the potential bankruptcy of the Social Security system by recomputing

benefits to retirees according to both their employment histories and the total resources available to the

Social Security system.

In addition to accounting for the potential for fund bankruptcy, the model proposed in this chapter

also accounts for potential sources of heterogeneity across households. Specifically, the model incorporates

differences in the life-time earnings profile and retirement age among households, and permits those factors

to interact directly with some of the institutional features of the current Social Security system. The model

choice allows me to investigate two potential impacts that Social Security has on households welfare. First,

the inter-generational reallocation of risk from retirees to workers. Second, the redistribution of resources

across households in different groups, which policymakers and the general public have traditionally treated

as being important to protecting the welfare of low- and middle-income households during retirement. The

literature has traditionally investigated the impact of Social Security on household welfare either by us-

ing a homogeneous household framework (see for instance Krueger and Kubler [2006], Hasanhodzic and

Kotlikoff [2018] or Harenberg and Ludwig [2019]), or by not accounting for the dependence of benefits on

earnings histories in the context of a model with ex-ante heterogeneous agents (see for instance Kim [2018]).

My proposed model helps to address this issue by providing a more realistic model of Social Security where

benefits depend on life-time earnings histories.

While the models utilized in the literature are able to account for the redistributional features of

Social Security across generations, they fail to capture the fact that Social Security redistributes resources

within-generations as well. While the marginal tax rate on payrolls is constant1, retirement benefits vary

significantly based on someone’s life-time earnings and the rate at which Social Security retirement benefits

replace labor income generally decreases as individuals earn more money. For example, at the lowest income
1Up to a maximum taxable amount that is determined on a yearly basis. For instance, in 2019, for the retirement portion of

Social Security earnings were capped at $132,900. Above that amount, the marginal tax rate is 0%.
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levels, Social Security retirement benefits can replace up to 90% of labor income, while at the highest levels,

the benefits replace 30% or less than the labor earnings. Ceteris paribus, one may argue that higher income

earners are subsidizing lower income retirees, since the return of retirement benefits (calculated on a yearly

basis per dollar) based on social security taxes paid is higher for low-income earners than for higher income

earners. This observation clearly abstracts from any consideration about differences in retirement age and

life-expectancy across different groups. If, for instance, high-income earners receive retirement benefits for

a longer period on average as compared to low-income earners, then a lower replacement rate may simply

compensate for this factor. We will discuss these matters in greater detail in 3, where we will empirically

quantify differences across household groups. At the same time, the estimation performed in 3 allows us

to identify the relevant source of heterogeneity that are most relevant for the analysis. In assessing how the

current Social Security system and potential policy alternatives impact household welfare, in chapter 3 I

consider how the alternative policies interact with the following forms of household heterogeneity:

• Life-time earnings and retirement age, as Social Security retirement benefits directly depend on each

worker’s earnings history.

• Mortality and life-expectancy, as both impact how long different households will receive benefits on

average and the inclusion of these factors will allow me to better characterize the dynamics of Social

Security expenditures.

The assumption of the PAYGO system interacts with another feature of Social Security that we

believe it is important to capture. In a PAYGO system, the government is forced to balance its budget in

every period, but under the current policy regime, benefits paid by Social Security do not depend on the total

revenues collected by the system. This is especially relevant in the context of a stochastic economy with

aggregate shocks. In this case, the aggregate shocks would determine wages and consequently, the revenues

collected through payroll taxes by Social Security. The balanced budget would then transmit the shock

directly to retirees’ benefits, since Social Security outlays need to match revenues. This does not capture an

important characteristic of Social Security retirement benefits, i.e. that benefits are paid as annuities. Figure

1.1 shows the cyclical deviation from the trend component of the real log Social Security expenditures and

revenues. As we can see, revenues appear to have a strongly cyclical behavior, with major drops associated

with the early 1990s crisis, the dot-com bubble of the early 2000s and the Great Recession of 2008. At

the same time, revenues appear to be far more volatile than expenditures, with the standard deviation of

the cyclical component of the Social Security revenues being nearly three times that of expenditures. This
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Figure 1.1: Cyclical Component of PCE-Deflated Social Security Revenues vs. Expenditures

Period: 1983-2018.

Source: Social Security Administration and Federal Reserve Bank of St. Louis.

evidence supports the fact that modeling Social Security as a PAYGO system introduces excess volatility

in the benefits paid to retirees since aggregate shocks are directly transferred to retirees. This, in turn,

could cause some to underestimate the role of Social Security as a form of income insurance at retirement.

Incorporating a Trust Fund allows us to better capture the role Social Security in reallocating risk across

generations.

There are many computational challenges presented by large-scale OLG models. Indeed, equi-

librium prices and allocation will generally depend on the entire distribution of wealth or capital holdings,

in addition to the varying Social Security contributions of each type and cohort of households. In general,

numerical solutions are characterized by either exploiting the full state space, allowing equilibrium pol-

icy functions to depend on the entire distribution of state variables, or by using state-aggregation methods

(see for instance Krusell and Smith [1998]). Depending on the numerical technique used, an appropriate

equilibrium concept needs to be adopted. For instance, numerical solutions that adopt the full state space

rely on fully rational agents, as they optimally choose their consumption and savings while observing the

entire distribution of state variables. On the contrary, state space aggregation methods rely on quasi-full

rationality, since the policy functions of agents depend only on a subset of the state space. In this Chapter, I
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introduce the relevant equilibrium concepts, and in Chapter 2 I develop an algorithm to numerically compute

the equilibrium policy functions based on a subset of state variables that depend on the household, utilizing

the representational power of deep neural networks.

This chapter is structured as follows. In Section 1.2, I provide an overview of the Social Security

Administration, focusing on its role in providing retirement benefits. In Section 1.3, I review the literature,

focusing on OLG models and Social Security. In Section 1.4, I introduce the proposed model for Social

Security. In Section 1.5, I introduce the relevant equilibrium concepts, and discuss how they interact with

the numerical solution proposed in Chapter 2.

1.2 Overview on the Social Security Administration

Social Security is the largest federal government benefit program, distributing approximately 1 trillion dol-

lars to nearly 52 millions of Americans in 2018 alone. Social Security provides three types of insurance:

retirement insurance under the Old Age Survivors Insurance (OASI) program, Disability Insurance (DI), and

Medicare System Hospitalization Insurance (HI). Benefits to retired workers and their families, in addition

to families of deceased workers are paid through the OASI program. Similarly, benefits to disabled workers

and their families are paid through the DI program.

Figure 1.2 displays the breakdown of the expenses of the federal government in 2018. The chart

clearly shows that the OASI component of the Social Security represents the largest single item in the ex-

penditure side of the federal budget, constituting approximately 22.5% of the total outlays. By way of com-

parison, the budget for defense only constituted 14.6% of the total expenditures. Social Security is financed

through payroll taxes known as FICA and SECA, levied respectively on employed and self-employed indi-

viduals. SECA and FICA both contribute to Social Security retirement and disability programs, as well as

to Medicare. For the OASDI component, employees and employers pay a combined tax rate of 12.4%2 on

employees’ labor income, equally partitioned among the employers and employees. The tax applies up to a

yearly-adjusted cap, above which the marginal tax rate is 0%. For self-employed individuals, the tax burden

fall completely on the individual. Of the 12.4% tax rate, 10.6% contributes to the OASI, while the remaining

1.8% goes to the DI component of Social Security3. The FICA and SECA taxes levy an additional 2.9% tax
2Source: www.ssa.gov/oact/progdata/taxRates.html
3The current tax rates were established in 2000, and, except minor modifications in the 2016-2018 period, they have remained

unchanged until today.
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Figure 1.2: Source: Congressional Budget Office.

rate on payrolls for Medicare (HI portion), up to a maximum of $200,000 (or $250,000, depending on the

filing status)4.

The revenues collected are deposited into three separate trust funds, and each type of program

(OASI, DI and HI) is financed by the respective trust fund. The three trust funds are separate entities by

law. The trust funds, by holding asset reserves, serve a fundamental purpose: these accumulated reserves

provide automatic spending authority to pay benefits, since the Social Security Act of 1935 limits trust fund

expenditures to benefits and administrative costs and does not allow Social Security to borrow in order to

disburse benefits. While the size and the scope of both the DI program and Medicare are very significant, and

interact in significant manners with the OASI program, in this paper I focus only on the retirement portion of

the OASI program. This choice is motivated by the fact that the the payments of benefits to retired workers

represent by far the largest expenditure item in the Social Security budget in 2018. Social Security disburses

benefits to four categories of people: retired workers, based on their earning histories, spouses of retired

workers, survivors of retired workers and disabled workers. As we can from Figure 1.3, the payment of

benefits to retired workers represented 69.4% of the total amount of benefits paid out by Social Security

in 2018. This compares to a total of 16.1% distributed to spouses and survivors5, and 14.5% to disabled

workers. Therefore, in this paper we will abstract from any considerations related to either spousal survivor
4This provision was added in 2013 through the Affordable Care Act. Above this threshold, employees are responsible for paying

an additional 0.9% on payrolls exceeding the cap.
5The number of people claiming spousal benefits peaked at 3.1 million in 1992, and was 2.4 millions in 2018, down by 23.1%

from the peak. This can be at least partially explained by the increased labor participation of women starting from the 1970s,

allowing them to qualify for Social Security benefits trough their earning histories instead of that of their spouses.
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Figure 1.3: Source: Social Security Administration.

benefits or disability and Medicare related benefits.

In order to understand how Social Security interacts with the life-cycle consumption-saving de-

cisions of households, we first need to understand how Social Security retirement benefits are computed.

For this reason, we describe how the retirement benefits are computed, and how this affects the modeling

choices made later in the model presented in Section 1.4. Every worker with at least 10 quarters of eligible

employment history is entitled to receive Social Security retirement benefits based on his or her earning

record. For any worker, the computation of the benefits takes into account two main factors: (1) the entire

earning history, and (2) when the worker files for benefits. Regarding earning history, Social Security uses

the highest 35 years of indexed earnings to compute a worker’s benefits. The system uses the Average Wage

Indexing Series (AWI) for those purposes. Regarding when a worker decides to file for the benefits, anyone

can start collecting retirement benefits as early as 62 years of age, but benefits are adjusted depending on

the age at filing. Full Retirement Age (FRA) is defined as the age at which a worker is entitled to receive

full benefits. FRA has been changed over the last decades to account for increase in life-expectancy and

better health conditions of older workers. The original Social Security Act of 1935 set the FRA at 65. In

1983, lawmakers amended Social Security to create a gradual system of increases to the FRA. Based on

these increases, the FRA reached 66 in 2019 and is slated to increase further to 67 by 2027.

Benefits at FRA are called the Principal Insurance Amount (PIA), and are determined through a

three-step process. First, a worker’s previous earnings are restated in terms of current wages by indexing past
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earnings (up to age 60) to wage growth. Second, the highest 35 years’ earnings are averaged to a monthly

amount called the Average Indexed Monthly Earning (AIME). It is important to keep in mind that nominal

earnings are capped by the contribution and benefit base, which is determined by the yearly-set maximum

taxable income. The PIA is calculated as a piece-wise linear function of AIME. For instance for someone

retiring in 2019, the PIA would be the following function of AIME: 90% of the first $926 of the AIME plus

32% of the AIME between $926 and $5,583 15% of the AIME above $5,583. The maximum AIME in 2019

corresponds to $10,296, as is the result of the cap that is imposed on yearly earnings. While it is clear that

PIA is (weakly) increasing with life-time earnings, Figure 1.4 shows the replacement rate of the PIA as a

function of AIME. As we can see, the replacement rate is weakly decreasing in the AIME. The downward

slope highlights the progressive nature of Social Security benefits: workers with higher life-time earnings

have lower share of labor income replaced by Social Security benefits compared to individuals with lower

life-time earnings. It is important to notice that, in general, a low AIME can be the result of two factors: (1)

a relatively short working history (i.e. the worker worked only a few years), or (2) low annual earnings on

average. In this paper, we are focusing on workers who have displayed a significant attachment to the labor

force. Therefore, in this case, a low AIME will be the result of low annual earnings on average.

Figure 1.4: Replacement Rate at Full Retirement Age, as of 2019.

In addition to life-time earnings, another important factor that affects the computation of retire-

ment benefits is the age at which a person decides to first apply for Social Security benefits. Benefits are

reduced for anyone claiming benefits before FRA, and are increased for anyone who delays collection until

after reaching FRA. Once a worker reaches the age of 70, there are no further adjustments, meaning there
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are no additional incentives for postponing the collections of benefits beyond that age. In case of early re-

tirement, benefits are reduced by 5
9 ×1% for each month before FRA for up to 36 months; if early retirement

anticipates FRA by more than 36 months, then the benefit is further reduced by 5
12 × 1% for each month.

Assuming a FRA of 66, this translates to a deduction of 5% per year between the age of 62 and 63, and

6.7% between the age of 63 and 66. If a worker decides to retire after FRA is reached, benefits will accrue

by 8% a year, until the age of 70 is reached.6 Figure 1.5 shows the amount of benefits received relative to

FRA as a function of the age of the claimant.

The adjustments made for early retirees, i.e. people retiring before reaching FRA, are computed

in such a way to be actuarially fair for a person with the average life-expectancy: the expected present

value of the total benefits received retiring before FRA and at FRA is the same. On the contrary, benefits

are recomputed in an actuarially unfair way for workers deciding to postpone retirement. It is important

Figure 1.5: Share of Social Security benefits at Full Retirement Age as a function of the age of the claimant,

based on a person deciding to retire in 2019.

to consider that the relationship between Social Security benefits and retirement age was designed to be

actuarially fair. The option to retire early was first introduced 1956 by Congress for women, and then

extended to men in 1961. However, the extent to which these adjustment are still actuarially fair for the

average worker depend on the current and future interest rates and on projected life-expectancy. Compared

to the time in which these adjustments where made, life-expectancy has increased and interest rates have
6Retirement credits do not apply after age 70.
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significantly decreased. In addition, the notion of actuarially fair generally applies to the average worker

with an average life-expectancy. As documented in the literature, and explored empirically in Chapter 3,

life-expectancy positively correlates with measures of socio-economic status, like wealth, life-time earnings,

or education. Therefore, actuarial adjustments made in the 1960s are likely to have disparate impacts on

workers at different earnings levels today. If life-expectancy and life-time earnings are positively correlated,

then part of the redistributional effects of a decreasing replacement rate would be offset by the fact that

Social Security benefits do not take into account heterogeneous life expectancy at retirement.

As mentioned above, the OASI benefits are paid by using reserves in the trust fund. These very

reserves give the right to the Social Security Administration to pay benefits. Reserves are invested in special

non-marketable Treasury bonds that are guaranteed by the full faith of the U.S. Government, which pay

a market rate of interest on the held bonds. When Social Security’s trust funds run out of reserves and

expenditures exceed revenues, Social Security will be able to pay out benefits only up to the total value

of revenues. In this case, Social Security will become insolvent, since benefits can only be paid as long

as the trust funds actually have assets to draw on to pay them. There are multiple source of income for

the Social Security OASI fund: payroll taxes, taxes on the benefits themselves, and interest earned on the

Treasury bonds held. In 2019, payroll taxes accounted for the vast majority of Social Security income

(87.7%), followed by interest income (8.5%), and taxes levied on the benefits (3.8%). On the cost side,

benefit payments account for nearly the totality of the outlays (99.1%).

Since 1983, the Social Security Administration has run an annual budgetary surplus, the peak in

the trust funds reserve is expected to be reached sometime in or around 2021. As a result of a nearly thirty-

year long budgetary surplus, the OASI trust fund held reservea of approximately 2.9 trillion dollars at the

end of 2019, representing 13.5% of nominal US G.D.P. Current Social Security forecasts anticipate that the

reserves accumulated in the OASI trust fund will be depleted by 2035.7 After reserve exhaustion, without

policy reform, the Social Security Administration will only be able to pay 73% of the total accrued benefits

in the long-run. In addition, Social Security may, in the short term, incur solvency problems even before

2035. Given that the current policy regime is not sustainable, it becomes important to analyze alternative

policy scenarios to assess how different policies impact household welfare. A policy intervention in this

context is not only advisable, but required in order to keep Social Security alive. We will discuss different

policy alternatives in Chapter 3.
7Source: https://www.ssa.gov/policy/trust-funds-summary.html
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1.3 Literature Review

The literature has long focused on the welfare effects of Social Security, and research on this topic goes

back to Diamond [1965], with a particular focus on the impact of Social Security on inter-generational risk-

sharing. In this context, the welfare implications of Social Security have been analyzed by modeling Social

Security as a PAYGO in the context of OLG with homogeneous and heterogeneous households. Diamond

[1977] acknowledges that Social Security has both inter-generational and intra-generational redistributional

effects. Diamond argues that while Social Security cannot be justified as the sole means of reallocation of

resources between low-earners and high-earners, it can still improve household welfare when markets are

incomplete (for instance, in the case of imperfect annuities markets or in the absence of risk-free assets).

Similarly, Bodie and Shoven [1983] argues that Social Security can improve household welfare when there

is another intrinsic market imperfection.

Krueger and Kubler [2004] show that in an economy with incomplete markets,8 the introduction

of a PAYGO Social Security is Pareto-improving, even when the economy is dynamically efficient,9, if the

crowding out-effect on private capital are not taken into account. If, however, crowding-out of private capital

is included, then a Social Security system delivers a lower ex-ante expected utility. Their analysis abstracts

from redistributional effects across households within the same cohort, since they consider a framework in

which households are ex-ante homogeneous. Kim [2018] investigates the impact of a Social Security system

modeled as a PAYGO system in the context of an OLG model with ex-ante heterogeneous agents, where

households differ in their preferences and life-time incomes. Their analysis shows that the impact of Social

Security varies across households, with some households benefiting from Social Security, and others not.

Under certainty, the computation of the numerical approximation of rational expectations equi-

librium is relatively straightforward and usually involves the use a combination of fixed-point iteration

and backward induction (see for instance Auerbach and Kotlikoff [1987], and, for a specific application

to this setting, please refer to A.1). Popular solutions to stochastic general equilibrium models to projec-

tion methods are first introduced in the economic literature by Judd [1992]. Projection-based algorithms

can be generally divided in two categories: (1) state-space aggregation (see for instance, Krusell and Smith
8Market incompleteness is a key assumption because if markets were complete, then Social Security would be a redundant

financial instrument, that would have no impact on reallocating resources across generations.
9Efficiency follows the definition of Demange [2002] and in the context of incomplete markets refers to the fact that there is no

allocation that can be spanned by markets that can improve upon.
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[1998]), and (2) full state space (see for instance Krueger and Kubler [2004],Krueger and Kubler [2006]).

Aggregation-based methods have been developed to make large-scale problems that suffer the curse of di-

mensionality tractable, and rely on a quasi-full rationality assumption. Krueger and Kubler [2004] show

that the use of the entire state space tends to deliver more precise numerical solutions as compared to state

aggregation based methods. They suggest that the performance of aggregation-based methods is inferior

in models where agents’ propensity to save differs significantly. This is likely to be the case in large-scale

OLG models in which agents borrow when they are young. We discuss alternative equilibrium definitions in

Section 1.5, and we show in Chapter 2 that a numerical solution developed used a reduced state-space and a

quasi-rationality assumption performs well, at par with state-of-the-art full-state space models.

Other techniques have been developed to tackle the curse of dimensionality, and among the most

notable ones, we find the use of sparse grids. Krueger and Kubler [2004] introduces the use of Smolyak

sparse grids (see Smolyak [1963]) in the context of OLG models, and Judd et al. [2014] shows its numerical

properties in a broader context. Hasanhodzic and Kotlikoff [2018] and Reiter [2015] propose solutions of

large-scale OLG models, whose projection algorithm rely on the use of sparse grids, and linear polynomials

as the functional base. Similarly, Kim [2018] also relies on non-aggregation methods and linear polynomials

in the study of the effect of the introduction of a PAYGO Social Security system on heterogeneous welfare

households. The solution algorithm developed in 2 will rely on the use of sparse grids, as well as simulated

data, as in Maliar and Maliar [2015] and Azinovic et al. [2019].

1.4 Model

In this Section, I introduce the OLG model with ex-ante heterogeneous agents where Social Security pays

retirement benefits and is endowed with a Trust Fund.

1.4.1 Households

It is assumed that the economy is closed. Time is discrete, labeled t = 1,⋯,+∞. The economy is populated

by different types of households. Let I denote the set of households. Households are heterogeneous at birth,

and there are I = ∣I∣ types of households. All households live for a maximum of A periods. Let A denote

the set of cohorts. Each period, a new cohort of households in born for each type. Let i ∈ I be the type of
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household, and n the age-cohort they belong to. Households value consumption, and the utility flow from

consumption cin,t for a household of type i is expressed by:

ui(cin,t) =
c1−σiin,t

1 − σi
, cin,t,≥ 0 (1.1)

As we can see from Equation (1.1), households have a Constant Relative Risk Aversion (CRRA) utility

function, whose coefficient of relative risk-aversion σi depends on the household type i. The utility function

expressed in (1.1) is strictly increasing, strictly concave, twice continuously differentiable and satisfies the

Inada conditions, i.e. limc→+∞ u′(c) = 0 and limc→0 u
′(c) = +∞.

Households discount future utility geometrically, and are endowed with a type-specific discount

factor βi. For a household of type i who is born at period t, the total expected life-time utility can be

expressed as:

E0 [
A

∑
τ=1

βτi ui (ciτ,τ)] (1.2)

where the conditional expectation is taken with respect to the information set available to the household at

time t.

I assume that capital and labor markets are perfectly competitive, so that that households act as

price takers. On the capital market side, households have one asset available that can be used to either to

borrow or save; the asset earns a stochastic return of rt. I define as kin,t the amount of the asset held by

household of type i of age n at time t. In the presence of an aggregate shock, this implies that market

are sequentially incomplete, as the capital asset is used to smooth consumption across time and to insure

consumption against aggregate shocks.

Households supply labor inelastically until they reach retirement age Ri < A, after which they

retire and exit permanently from the labor market. Households are characterized by type and age-specific

labor productivities, which are assumed to be a deterministic function of age taking the following form:

nin =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fi(n), n = 1,⋯,Ri − 1

0, n = Ri,⋯,A

∀i ∈ I (1.3)

In each period, workers earn a real wage rate per efficiency unit wt, so that the total labor income they earn

is win,t = wtnin. Labor income is taxed at a marginal rate equal to τ . Retired households collect Social

Security benefits, which are denoted by ssin,t. I assume that households receive inheritances in the form
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of accidental bequests, which I define as bin,t. During the life-cycle, households face the following set of

sequential budget constraints:

cin,t + kin+1,t+1 ≤ win,t(1 − τ) + bin,t for n = 1 (1.4)

cin,t + kin+1,t+1 ≤ win,t(1 − τ) + bin,t + rtkin,t for 2 ≤ n ≤ Ri − 1 (1.5)

cin,t + kin+1,t+1 ≤ ssin,t + bin,t + rtkin,t for Ri ≤ n ≤ A − 1 (1.6)

cin,t ≤ ssin,t + bin,t + rtkin,t for n = A (1.7)

Equation (1.4) shows that each newly born cohort has no capital endowment. In their working year n =

1,⋯,Ri − 1, households receive capital income from their investments kin (Equation (1.5) and from labor.

Once households retire at ageRi, they start collecting Social Security benefits ssin (Equation (1.6)) and stop

earning labor income. Finally, Equation (1.7) shows the budget constraints of the last period of a household’s

life-cycle: households consume all their wealth since they do not value bequests.

At any period t, household (i, n) makes a consumption-saving decision based both on individual

state variables - average earning profiles and capital holdings - and aggregate states variables - the aggregate

shock, the Social Security Trust Fund balance, the distribution of capital holdings and of average earnings

of other households. Given the budget constrains described by Equations (1.4)-(1.7), a household’s (i, n)

problem can be summarized as follows:

Vin(x,z) = max
cin,k′in+1

uin(cin) + βiE [Vin+1 (x
′,z′) ∣ (xin,x,z)] subject to (1.8)

cin + k
′
in+1 = ninw(x,z)(1 − τ) + kinr(x,z) + bin,t(x,z) + 1(n ≥ Ri)ssin

z′ ∼ fz(z
′
∣z)

x′ = π(x,z,z′)

where the mapping π represents the law of motion of:

• households’ capital holdings

• households’ cumulative average life-time earnings

• Social Security Trust Fund balance

We can interpret π as a forecast function that agents use to predict future distribution of endogenous variables

given the stochastic process of the exogenous shock and optimal choice of households.
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1.4.2 Representative Firm

On the production side, I assume that there is a representative firm in the economy. It takes as inputs capital

and labor, which it uses to produce a homogeneous final good that can be used for either consumption or

investment. The firm is assumed to have a Cobb-Douglas Constant Returns to Scale (CRS) technology,

whose output is defined as follows:

Yt = AtF (Kt,Nt) = AtK
α
t N

1−α
t (1.9)

In Equation (1.9),At represents the aggregate technological shock and δt the depreciation shock. Market are

perfectly competitive and the firm acts as a price-taker. The representative firm maximizes profits choosing

capital and labor, given the price for capital rt, the price of labor per efficiency unit wt and the shocks

(At, δt):

max
Kt,Nt

AtF (Kt,Nt) + (1 − δt)Kt − rtKt −wtNt (1.10)

The profit maximization problem of the firm results in wage and rental rate of capital being equalized to the

marginal product of labor and capital respectively in equilibrium. Under the assumption of a Cobb-Douglas

production function, this leads to the following relationships between marginal product of labor and capital

and wage (per unit of efficiency) and the interest rate:

wt = AtFN(Kt,Nt) = (1 − α)AtK
α
t N

−α
t (1.11)

rt = AtFK(Kt,Nt) = αAtK
α−1
t N1−α

t + (1 − δt) (1.12)

1.4.3 Technology

I assume that the aggregate shock At and the depreciation shock δt jointly follow a first-order discrete

Markov process which is exogenously given. I define the vector of aggregate exogenous state variables as

zt = (At, δt). In particular, I assume that:

logAt+1 = ρ logAt + εt+1, εt+1 ∼ N (0, σ2ε) (1.13)

δt ∼ N (δ, σ2δ) (1.14)

As we can see from Equation (1.13), the technology At shock follows an AR(1) process, with the serial-

correlation being ruled by the parameter ρ. From Equation (1.14), the depreciation shock is identically and
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independently distributed through time, following a normal distribution with mean δ and standard devia-

tion σδ. Following Kim [2018] and Hasanhodzic and Kotlikoff [2019], I assume that the technology and

the depreciation shocks are uncorrelated. The introduction of the depreciation shocks allow us to (i) elimi-

nate the perfect correlation between wages and interest rates that would result from the presence of only a

technology shock, and (ii) have different volatilities in wages and interest rates. This allows us to isolate

more explicitly the sources of risk that characterize the stream of income of workers and retirees: while

workers’ main source of income are wages which are subject to the technology shock, retirees finance their

consumption through the Social Security benefits and their returns on savings, whose interest rate is driven

jointly by the technology and the depreciation shock. At the same time, the two sources of shocks have clear

impacts on both retirees and workers. For retirees, a negative depreciation shock hurts them as they tend to

be the primary savers in the models. As for workers, the depreciation shocks translates into a reduction in

the capital stock, leading to a decrease in wages in the short-term.

1.4.4 Demographics

I assume that demographic variables evolve in a deterministic way. In each period t, a new cohort of size

Pi1,t is born for household of type i ∈ I. Households are subject to mortality risk, which is both age and

type specific. In each period, a fraction µin of households belonging to type i and cohort n die. It is assumed

that the mortality rate does not depend on time. Finally, I assume that once a household reaches the age of

A they die with probability one. I define Pin,t as the measure of households of type i belonging to cohort n

that are alive at time t. Given these assumptions, the population dynamics can be described as follows:

Pin,t = (1 − µin−1)Pin,t−1 ∀i, ∀n

Pi1,t = P i1 (1.15)

It is worth noting in Equation (1.15) that the size of the newly born household does not depend on time.

Considering that households face mortality risk, they leave accidental bequests to the surviving households.

I make the following assumption about the timing at which death occurs, and how wealth of the deceased

households is redistributed across the surviving agents.

1. At the beginning of each period t, the aggregate shock zt is realized, agents supply labor and capital

to the representative firm, earn labor and capital income, and pay payroll taxes to Social Security.
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2. A fraction µin of type i households belonging to cohort n dies; the net assets rtkin,t + win,t(1 − τ)

of the deceased households become accidental bequests, which is redistributed across the surviving

households.

3. Social Security disburses payments to the surviving households in the form of retirement benefits.

4. The surviving households make a consumption/investment decision.

It is assumed that each surviving household (i, n) receives a share ηin of the aggregate bequest Bt. There-

fore, it is possible to express the bequests received by household i belong to cohort n at time t as follows:

Bt =
∑
I
j=1∑

A
m=1 µjmPjm,t (wjm,t (1 − τ) + rtkjm,t)

Pin,t(1 − µin)

bin,t = ηinBt ∀(i, n) ∈ I ×A (1.16)

As we can see from Equation (1.16), I assume that each household bequest is a constant fraction ηin of the

total bequests, depending on the type and the cohort, that is time independent. For simplicity, I assume that

each household receives the same share of aggregate bequests, so that we express ηin as follows:

ηin =
1

∑j∈I ∑m∈A µjmPjm
∀(i, n) ∈ I ×A

1.4.5 Government and Social Security Administration

Households pay payroll taxes on their wages, so that total receipts Tt of the government at time t are:

Tt =
I

∑
i=1

Ri−1
∑
n=1

τPin,twin,t = τNtwt (1.17)

Social Security pays retirement benefits to households once they reach retirement age. The benefits depend

on the average life-time earning at retirement age eiRi,t and the retirement age Ri. From a state-space

perspective, we need to keep track of the distribution of cumulative average labor income, whose dynamic

can be summarized as follows:

ein,t =
n − 1

n
ein−1,t−1 +

1

n
win,t ∀t ≥ 0, ∀n = 1,⋯,R − 1, ∀i ∈ I (1.18)

I assume Social Security benefits ŝsin,t are proportional to the average-indexed lifetime earning through a

factor of θi, so that we can establish the following relationship between average life-time income, retirement

age and Social Security benefits:

ŝsiRi,t = θieRi−1,t−1 ∀i ∈ I (1.19)
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The coefficient θi is called replacement rate; it represents the share of the Social Security benefits to the

average life-time income, and, as we can see from Equation (1.19), it is an exogenous parameter. It captures

two different features of Social Security. First, the amount of benefits received by retirees does not depend

linearly on the average life-time labor income. Thus, θi decreases with eRi,t−1. Second, the benefit amounts

also depends on retirement age. The earlier a household starts collecting retirement benefits, the lower

the benefits will be. In this model, given that both income profiles and retirement age are type-specific,

θi will also depend on the household type. A lower θi (determined by either a lower retirement age or

higher life-time income) will increase private savings. Thus, the Social Security system will directly interact

with households’ consumption savings decision depending on the size of the replacement rate θi. Once

households have reached retirement ageRi, they stop paying payroll taxes, and their Social Security benefits

will remain unchanged for the rest of their lives:

ŝsiRi+τ,t+τ = ŝsiRi,t 0 ≤ τ ≤ A −Ri, ∀i ∈ I (1.20)

As previously mentioned, Social Security pays retirement benefits to households after the mortality shock

is realized, and it is distributed only to the surviving households. Therefore, the total amount of retirement

entitlements St can be expressed as follows:

Ŝt =
I

∑
i=1

A

∑
n=Ri

ŝsin,t(1 − µin)Pin,t (1.21)

Social Security balances are invested in the representative firm, and they are paid a return on investment

equal to the equilibrium interest rate. This assumption departs from how Social Security invests the resources

accumulated in its trust fund. Social Security funds are invested in non-marketable government securities,

whose interest rates can be considered risk-free. On the contrary, in this model, the return to investment for

Social Security is stochastic, and subject to aggregate uncertainty.

Social Security is able to fulfill its obligation toward retirees only if it is solvent; that is, if Social

Security expenses do not exceed the sum of the taxes levied on households’ payrolls and the accumulated

assets of the trust fund. When that is no longer the case, the Social Security system is considered to be

insolvent or in a state of bankruptcy. In light of these assumptions, I define the Social Security expenditures

as follows:

St =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Tt + rtHt if Ŝt > Tt + rtHt

Ŝt if Ŝt ≤ Tt + rtHt

(1.22)
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If Social Security is insolvent, then it will pay only a fraction of the benefits. The ratio is determined by the

share of (total revenues + asset) to the total entitlements, which can be expressed as follows:

ssin,t = ŝsin,t
St

Ŝt
(1.23)

This assumption is made to better capture how Social Security currently works. Let Ht be the balance

accumulated on the Trust Fund at time t. Then its law of motion can be expressed as follows:

Ht+1 =Htrt + Tt − St (1.24)

As we can see from Equation (1.24), the Social Security Trust Funds earns the prevailing market interest

rates on the invested assets.

1.4.6 Markets

At equilibrium, the following market clearing conditions need to hold:

Nt =
I

∑
i=1

A

∑
n=1

ninPin,t ∀t ≥ 0 (1.25)

Kt =
I

∑
i=1

A

∑
n=1

kin,tPin,t +Ht ∀t ≥ 0 (1.26)

Ct =
I

∑
i=1

A

∑
n=1

cin,t(1 − µin,t)Pin,t ∀t ≥ 0 (1.27)

Kt+1 =
I

∑
i=1

A−1
∑
n=1

kin+1,t+1(1 − µin,t)Pin,t +Ht+1 ∀t ≥ 0 (1.28)

Yt = Ct +Kt+1 − (1 − δt)Kt ∀t ≥ 0 (1.29)

Equations have been derived by taking into account the fact that a mortality shock hits each cohort and type

of households after they supplied labor and capital to the market, but before the investment-consumption

decision is made.

1.5 Equilibrium

We now discuss the equilibrium definition chosen in the context of the problem, and how it interacts with

the solution algorithm.
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Definition 1 (Recursive Competitive Equilibrium). A recursive competitive equilibrium is characterized by

a forecast function π, a pair of individual functions (Vin,Cin) for each household, and pricing functions

(w, r), such that:

i) (Vin, cin) solves the consumer problem defined in Equation (1.8) for each (i, n) ∈ I ×A

ii) prices (r,w) are competitive, i.e., determined by the respective marginal productivity

iii) forecast functions are consistent with the exogenous dynamics and the collection of policy functions

While a formal characterization of the equilibrium definition is important, ultimately our goal is to

obtain a numerical approximation of the policy functions, since the stochastic nature of this framework does

not allow us to derive a closed-form solution. Therefore, the appropriate choice of the equilibrium definition

will be crucial, as it will guide the construction of the numerical algorithm used to approximate the agents’

optimal behavior.

When we build a numerical solution in which policy functions depend on the entire state space,

we rely on a fully rational expectation equilibrium. Agents that populate the economy are able to observe

the entire distribution of state variables, and their optimal choices depend on the whole set of observed

state variables. In general, the policy functions are approximated using parametrized functional forms,

and the goal of the numerical algorithm is to find the set of parameters that best approximate a set of

equilibrium conditions. This equilibrium definition has been introduced by Spear [1988] and Krueger and

Kubler [2004]. Many numerical applications have since used it in the context of large scale OLG models,

including Krueger and Kubler [2006], and more recently Hasanhodzic and Kotlikoff [2018] and Kim [2018].

In a fully-rational expectation equilibrium, agents make predictions regarding future prices conditional on

the entire distribution of endogenous and exogenous state variables. We now formally define the full-rational

expectation equilibrium.

Definition 2. (Functional Rational Expectation Equilibrium) In the context of this problem, we define it as

follows:

• a hyper-rectangle B ⊂ X ;

• a collection of real-valued policy functions (cin)i∈I,n∈A, defined as cin ∶ B ×Z → R and belonging to

the class of functions Cp
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• a forecast function: πf ∶ B × Z ×Z → B and to the class of function Cf

with (cin)i∈I,n∈A and πf satisfying the following conditions:

• Optimality of the policy functions given the forecast function

u′ (cin(x,z)) = βiE [r(x′,z′)u′ (cin+1(x
′,z′)) ∣x,z]

x′ = πf (x,z,z
′)

z′ ∼ F (⋅∣z), ∀(x,z) ∈ B × Z

∀(i, n) ∈ I ×A

• πf (x,z,z′) is consistent with the policy functions (cin(x,z))i∈I,n∈A, the stochastic process repre-

sented by F (⋅∣z) and exogenous dynamics of the state variables

It is important to highlight that in a fully-rational expectation equilibrium, consistency between

forecast function πf and agents’ policy functions is guaranteed by the fact that the policy functions depend

on the entire state space. In other words, the forecast function defined here are redundant, as they are implied

by the policy functions and the exogenous equations ruling the dynamics of the state variables.

Using the full state and thus relying on agents’ full rationality involves some numerical challenges,

especially in large-scale OLG models. As we increase the dimension of the state space, the computational

burden necessary to obtain the numerical solution increases as well, as we are subject to the well-known

curse of dimensionality. At the same time, a subset of the state space can be sufficient to derive numerical

solutions that are sufficiently precise. This has motivated the development of state-space aggregation meth-

ods, which rely on the quasi-fully rational equilibrium concept. First introduced by Grandmont [1977], it

became popular thanks to Krusell and Smith [1998]. In this equilibrium framework, agents’ policy functions

and expectations about future prices depend on a subset of the state space, which are usually agent-specific.

The subset includes some agent-specific state variables, namely xin, and some aggregate state variables xa

that are shared across agents. Applications of this numerical solution strategy can be found in Storeslet-

ten et al. [2007] and Harenberg and Ludwig [2019] in the context of OLG models. This framework is not

consistent with agents’ full rationality, as the information set they have access to when making the opti-

mal decision is restricted. It is in the discretion of the economist to appropriately select the relevant state

variables representing the signal, and this level of discretion is the source of one of the major pitfalls of an
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equilibrium concept relying on quasi full-rationality. We now proceed by providing a formal definition of

the quasi-fully rational expectation equilibrium.

Definition 3. (Functional Quasi-Fully Rational Expectations) In the context of this problem, we define it as

follows:

• a collection of hyper-rectangles (Bin)i∈I,n∈A for agent-specific state variables;

• a hyper-rectangle Ba for the aggregate state variables;

• a collection of real-valued policy functions (cin)i∈I,n∈A, defined as cin ∶ Bin ×Ba ×Z → R belonging

to the functional class Cp

• a forecast function: πf ∶ Ba × Z × Z → Ba and a collection of agent-specific forecast functions

(Γin)i∈I,n∈A, defined as: Γin ∶ Bin × Ba ×Z → Bin belonging to the functional class Cf

with the policy functions (cin,Γin)i∈I,n∈A and the forecast functions πf satisfying the following conditions:

• Optimality of the policy functions given the aggregate and household-specific forecast functions:

u′ (cin(xin,xa,z)) = βiE [r(x′a,z
′
)u′ (cin+1(x

′
in+1,x

′
a,z

′) ∣xin,xa,z]

x′a = πf (xa,z,z
′) , x′in+1 = Γin(xin,xa,z)

z′ ∼ F (⋅∣z), ∀(xin,xa,z) ∈ Bin × Ba ×Z

∀(i, n) ∈ I ×A

• πf (xa,z,z′) is consistent with the policy functions (cin(xin,xa,z))i∈I,n∈A, the stochastic process

represented by F (⋅∣z) and exogenous dynamics of the state variables Γin.

This is different than the fully rational equilibrium, because the consistency between forecast func-

tion πf and agents’ policy functions is not guaranteed, but approximated numerically. While consistency

between policy and forecast functions is important from a theoretical perspective, it usually comes with

significant computational costs in large-scale OLG models. In particular, in some of large-scale models,

the use of the entire state space does not allow it to go beyond linear policy functions, (see for instance

Hasanhodzic and Kotlikoff [2019] and Kim [2018]), since the state space includes hundreds of variables.

The framework proposed in this chapter is no different, since policy functions will generally depend on the
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entire distribution of average lifetime incomes, Social Security benefits and capital holdings. This leads to

a state space whose size is in the order of O(2AI). Thus, the choice of the equilibrium concept depends

on how it interacts with the complexity of the numerical solution, and it is of particular relevance when we

believe that the policy functions display some significant non-linearities.

In Chapter 2, we will show that we can successfully develop a numerical solution that relies

on a reduced state space while simultaneously achieving state-of-the-art numerical performance. As the

results will show in Chapter 2, policy functions will display some non-negligible non-linearities that capture

households’ precautionary savings in anticipation of the insolvency of the Social Security Administration.

1.6 Conclusion

In this Chapter, I propose a novel model for Social Security, where I depart from the traditional assumption

made in the OLG literature that models Social Security as a PAYGO system. My proposed model incorpo-

rates two elements that better capture the current institutional features of Social Security: (1) a Trust Fund;

and (2) the dependence of retirement benefits on average-life earnings and when agents retire. In Chapter

2, I propose a novel algorithm to obtain the numerical solution of large-scale OLG models, and I show that

it can be successfully used in the context of our problem. The use of neural networks as functional approx-

imators, together with and deep-learning techniques to train them, allow us to solve a complex numerical

problem. In Chapter 3, I estimate the relevant structural parameters, and I conduct some counterfactual

analysis aimed at evaluating the different policy alternatives on household welfare.
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Chapter 2

Policy Approximation with Deep Neural

Networks in Large Scale OLG Models

2.1 Introduction

In the previous chapter, I proposed a model of Social Security accounting for lifetime earning histories and

the potential for bankruptcy of the fund in a stochastic environment. Upon creating the model, however, an

additional challenge was presented by the fact that the complexity of the model made it difficult to solve

using traditional economic methods. To address this issue, I turned to the field of machine learning and,

specifically, a tool known as neural networks.

Neural networks are a form of real-value mapping, and they have been the workhorse of some of

the most important results in artificial intelligence in the last decade. They have been successfully employed

for a variety of purposes, from image and text classification to speech recognition, from cell phone apps

to self-driving cars. The success of neural networks in empirical applications can be attributed to both

theoretical and practical considerations. On the theoretical side, neural networks are considered universal

approximators (Hornik et al. [1989],Cybenko [1989] and Hornik et al. [1990]), able to represent irregular,

high-dimensional functions. On the practical side, the compositional nature of neural networks combined

with gradient-based optimization methods make the fitting process straightforward and suitable for many

applications.
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While neural networks have been very popular in machine learning settings, their use in economics

has, thus far, been very limited (see Maliar et al. [2019], Azinovic et al. [2019] and Duarte [2018]). This

can be explained by the fact that training neural networks presents some computational challenges, but

recent developments in the Open Source Software community have significantly decreased the cost of entry,

making the use of neural networks for empirical and computational purposes significantly more accessible to

economists. In particular, companies like Google (Tensorflow) and Facebook (Pytorch) have made Python

libraries readily available to those with a working knowledge of programming, thus permitting economists

to more easily utilize and apply neural networks to any set of custom data with just a few lines of code.

When evaluating the ways in which I could potentially solve my advanced Social Security model, I

determined that neural networks may be applicable as they, and other deep-learning techniques, have proven

successful when working with non-linear behavior. This is relevant as my intuition in the context of my

model was that agents tend to modify their consumption-saving behavior if they anticipate that the Social

Security system will go bankrupt in their lifetime. In particular, a consumption smoothing argument would

suggest that agents would tend to save more if they expect lower retirement benefits (triggered, for instance,

by insolvency). However, this relationship is unlikely to be linear in nature, as agents’ consumption savings

behavior will not linearly depend on a measure of distance from bankruptcy. If agents correctly predict

that bankruptcy is far away, then they will make little or no adjustment to their savings. On the contrary,

if they anticipate that insolvency is on the near horizon, they may decrease their current consumption and

save more to compensate for the inevitably lower retirement income from Social Security. Considering the

non-linear behavior involved, the application of neural networks seemed a potentially good fit, so I decided

to experiment with neural networks to solve my complex model for Socially Security.

The application of neural networks, especially “deep” networks, to my model for Social Security

proved highly successful. As such, in this paper I show how economists can take advantage of the approx-

imation power of neural networks in economic applications and, specifically, in the context of large-scale

OLG models. Computational issues, especially in models that do not allow for a closed-form solution and in

applications where we need to characterize highly dimensional policy or value functions numerically, have

always represented one of the major bottlenecks in economic research. This is particularly true with regard

to large-scale OLG models, i.e. OLG models populated by a large number of different types of agents or by

agents living long lifespans. This type of model is becoming more and more popular, as the development of

more detailed microdata has increased the interest in macroeconomic models characterized by a significant

source of observed heterogeneity with regard to preferences, income, retirement age, mortality etc. Conse-

25



quently, the successful application of neural networks to these models could have wide-ranging implications

for the future of economic research.

From a methodological perspective, my proposed approach relies on the transformation of an eco-

nomic problem, characterized by Euler equations, into non-linear regressions, which are suitable to serve

as objective functions of a deep-learning framework. More specifically, I plug the policy and forecast func-

tions into the agents’ Euler equations, and use a derivative-free projection method to iteratively update the

policy functions. The training happens by minimizing the error on a least-square objective function through

standard mini-batch stochastic gradient descent, where the use of a global objective function allows me to

simultaneously train hundreds of neural networks. The grid of points used is agent-specific and based on

Smolyak sparse grids (Smolyak [1963], Krueger and Kubler [2004] and Judd et al. [2014]). The algorithm

then proceeds by using the generated policy function to simulate hundreds of economies to train the forecast

functions and to update the policy functions based on training points that belong to the ergodic set. In this

way, I guarantee that policy and forecast functions are internally consistent numerically, which is a neces-

sary property of any rational expectation general equilibrium problem. In addition, this allows to concentrate

the computation of the forecast in the ergodic region to obtain better approximations in regions of the state

space that are actually crossed. With regard to this application, deep networks perform better than shallow

networks, however, the performance of neural networks characterized by different architectures largely de-

pends on the specific application. Among the different possible neural network architectures, I compare the

performance of shallow and deep networks, which are used to approximate policy and forecast functions,

and I show that the use of deep networks, together with a reduced state space produce very precise numeri-

cal approximations for the policy and forecast functions characterizing the general equilibrium behavior of

households. While it is possible to rank the performance of alternative selections of the hyper-parameters

characterizing the architectures of policy and forecast functions and the optimization algorithm, ultimately

our results are very robust to different specifications. In particular, the results presented in this chapter show

that very little fine-tuning is required to achieve a state-of-the-art performance.

As outlined above, in this Chapter, I successfully contribute to the literature by showing how

economists can take advantage of the approximation power of neural networks in economic applications

and, specifically, in the context of large-scale OLG models. This Chapter is related to the contribution of

Maliar et al. [2019] and Azinovic et al. [2019] (discrete time models), and Duarte [2018] (continuous time),

who introduce deep-learning in the context of the numerical approximation of policy and value functions.

More specifically, this paper shares the use of neural networks as global approximators for policy functions,
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and methodologically uses a framework similar to the one proposed by Maliar et al. [2019] based on the

use of Euler equations and non-linear regression to iteratively compute the numerical approximation of the

policy functions. The application is similar to the deep-learning framework in the context of OLG models

proposed by Azinovic et al. [2019], although the solution algorithm developed relies on a different and more

parsimonious equilibrium definition.

This chapter is structured as follows. In Section 2.2, I introduce some relevant terminology. In

Section 2.3, I present an overview of results using approximation properties of shallow networks 2.3.1,

deep networks 2.3.2 and the backpropagation algorithm 2.3.3. In Section 2.4, I introduce the specific deep-

learning framework utilized to numerically solve the Social Security model introduced in Chapter 1. In

Section 2.6, I describe the algorithm I used to solve the model numerically. In Section 2.7, I discuss the

main results. Finally, in Section 2.8, I provide some potential avenues for future research.

2.2 Terminology

Definition 4 (Neural Network). Let σ ∶ R → R be any continuous (non-linear) real-valued function. Let L

be the number of hidden layers characterizing the neural network. For each hidden layer l, letHl denote the

number of neurons. Let y denote the output of the neural network. I define neural network as the following

mapping Rd → R:

First Hidden Layer:

• For each neuron in the first hidden layer k = 1,⋯,H1:

h1k = σ (w1kx + b1k) , x ∈ Rd

Second to Lth Hidden Layer:

• For each hidden layer l = 2,⋯, L:

– For each neuron k = 1,⋯,Hl in the lth hidden layer:

hlk = σ (wlkhl−1 + blk)

Output Layer:

y = wL+1hL + bL+1
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Definition 4 introduces the type of neural networks that I use in this paper. It is worth making

two observations. First, considering that I am interested in approximating functions with a uni-dimensional

output, I restrict y to be a real-valued scalar. Second, I assume that all of the hidden-layers are characterized

by the same activation function σ, while the output layer has a linear activation function.1

Definition 5 (Activation Function). An activation function is a continuous, non-linear, real-valued mapping

σ ∶ R→ R. The following functions are commonly used as activation functions in the literature:

• Sigmoidal activation function:

σ(x) =
1

1 + exp(−x)

• Rectified Linear Unit (ReLU):

σ(x) = max (x,0)

• Hyperbolic Tangent:

σ(x) =
exp(2x − 1)

exp(2x + 1)

Definition 5 shows that activation functions can have have different forms: they can be smooth and

bounded (sigmoidal and hyperbolic tangent), or they can be unbounded with discontinuous first derivative

(ReLU). Their purpose is to introduce non-linearities into the neural network. As I will discuss later, the

choice of activation is important, since it is likely to affect the performance of the neural network in the

specific task for which it is used. I now turn to the definition of the neurons, which we can think of as the

computational units of the neural network.

Definition 6 (Neuron). Let nnet be a neural network as described in Definition 4. A neuron is the output of

a real-valued mapping which takes as input the neurons of the previous layer hl−1. The real-valued mapping

consists of the composition of a linear transformation and a non-linear transformation (activation function),

which can be described as follows:

hlk = σ (wlkhl−1 + blk)

where hlk is the kth neuron in the lth hidden layer. The linear transformation takes as input the neurons

in the previous layer hl−1 ∈ RNl−1 (or the input of the neural network, if l = 1), and is parametrized by a
1In general, the output of a neural network can be multi-dimensional.
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Nl−1-dimensional vector of weights wlk ∈ RNl−1 and a bias blk ∈ R. The transformation that each neuron

operates is parametrized by the following vector:

θlk ∶= (wlk, blk) , θlk ∈ RNl−1+1

hl−1,2 wlk,2 σ

Activation

function

hlk = σ(wlkhl−1 + blk)

output

hl−1,1 wlk,1

hl−1,3 wlk,3

weights

bias

blk

input = hl−1

Figure 2.1: Representation of a neuron.

Figure 2.1 shows an example of a neuron. From Definition 6, we can see that the number of

parameters characterizing the transformation operated by the neuron depends linearly on the number of

neurons in the previous layer. I now proceed by providing definitions aimed at characterizing two classes of

neural networks based on the number of hidden layers they have.

Definition 7 (Shallow Neural Network). A Shallow Neural Network (SNN) is a feed-forward neural network

(Definition 4) with one hidden-layer (L = 1).

Definition 8 (Deep Neural Network). A Deep Neural Network (DNN) is a feed-forward neural network

(Definition 4) with at least two hidden-layers (L ≥ 2).

2.3 Literature Review

In this Section, I review some important theoretical results related to neural networks. First, I introduce some

of the classic results regarding the representational power of shallow and deep neural networks, explaining

why neural networks can be used as functional approximators. I then proceed by giving an overview of

backpropagation, the workhorse algorithm used in deep-learning to train neural networks. While theoretical
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Figure 2.3: Feed-Forward Neural Network

properties are important to justify the consideration of a particular class of functional approximators, they are

not, alone, sufficient to explain why neural networks have become successful in many AI applications, and

why economists should consider them as functional approximators. Indeed, the development of algorithms

tailored to the training of neural networks was an essential component of the success of neural networks.

For this reason, in this Section, I describe how the theoretical properties of neural networks interact with the

algorithms developed to train them.

2.3.1 Functional Approximation Through Shallow Nets

The main objective of this subsection is to show that neural networks can be chosen as global functional

approximators in economic applications. In economics, Chebyshev polynomials are the most widely used
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class of functional approximators. Their popularity is justified by the fact that (1) they can achieve any

desired degree of accuracy in the limit, and (2) it is possible to compute bounds for their approximation

errors with finite degrees. The two theorems presented below show that shallow neural networks can be

used as global approximators of any continuous function and that (in the limit) they can achieve any desired

level of accuracy. In other words, Theorem 1 and 2 show that shallow neural networks can be used as global

approximators, like more traditional Chebyshev polynomials.

Theorem 1 (Superimposition Theorem, Kolmogorov [1957]). Given any continuous function f defined on

the n-dimensional compact hyper-cube:

f ∶ In → R, f ∈ C
0
(In) , In =

n

⨉
i=1

[0,1]

then, it is possible to find collections of continuous functions

χp ∶ [0,1] → R, χp ∈ C
0
([0,1]), p = 1,⋯, n

ψp,q ∶ R→ R, ψp,q ∈ C0(R), p = 1,⋯, n, q = 1,⋯,2n,

such that:

f (x) =
2n

∑
q=1

χq
⎛

⎝

n

∑
p=1

ψpq(xp)
⎞

⎠
∀x ∈ In and

ψp,q do not depend on f.

Theorem 1 shows that any continuous function defined on a compact subset of Rn can be exactly

represented by using a shallow neural network whose size, measured by the number of neurons used in the

first layer, depends linearly on the dimensionality of the input. From Theorem 1 we can see that while the

collection of activation functions in the first hidden layer does not depend on the specific function f that

we want to represent, the activation functions in the output layer χp depend on it. This is not a desirable

property, since in a numerical approximation exercise, we would like to be able to pick ex-ante the activation

function. Cybenko [1989] and Hornik et al. [1989] show that we can choose activation functions from the

class of continuous and bounded functions to approximate any continuous function with a shallow network,

and we can achieve any approximation error provided that the neural network is large enough. This result is

presented in Theorem 2.

Theorem 2 (Universal Approximation Theorem, Cybenko [1989],Hornik et al. [1989]).

31



Given any continuous function f defined on the n−dimensional compact hypercube:

f ∶ In → R, f ∈ C
0
(In) , In =

n

⨉
k=1

[0,1]

any approximation error ε > 0, and any continuous, bounded and non-constant activation function σ ∈

C0(R), then

∃ N ∈ N+, (w1i, bi,w2i)
N
i=1, w1i ∈ Rn, bi,w2i ∈ R s.t.

F (x) =
N

∑
i=1
w2iσ (w1ix + bi) , ∣F (x) − f(x)∣ < ε ∀x ∈ In

Theorem 2 shows that any continuous function can be approximated by a shallow neural network,

where the number of neurons in the hidden layer N depends on the target approximation error ε, the target

function itself f and the activation function σ. It is important to highlight the fact that this result holds for

any (non-constant) bounded activation function,2 allowing the researcher to fix ex-ante the choice of the

functional form of the activation function. However, Theorem 2 does not provide any intuition as to how

to construct weights and the biases of the neural network, nor does it provide any guidance with regard to

the choice of the specific activation function or the number of neurons. The literature has tried to address

these issues, investigating the relationship between the number of neurons required to approximate a target

function with a shallow net, and the regularity and the size of the input of the target function. For instance,

Barron [1993] derives bounds on the approximation error for a shallow neural network with a given number

of neurons and sigmoidal activation function, and relates it to the regularity of the function (in a Fourier

sense) and to the dimensionality of its input. In particular, it shows that a shallow network can achieve a

L2-error in the order of O( 1
N ), independently of the size of the input. On the contrary, polynomial-based

approximations have errors that depend positively on the size of the input, making them more suitable for

applications in which the state space is small.

While these results help us understand some of the properties characterizing shallow neural net-

works, the vast majority of the results in empirical applications rely on the use of deep neural networks

(see Lecun et al. [2015]). As noted by Mhaskar and Poggio [2016], both deep and shallow neural networks

are universal approximators, and therefore, from a theoretical perspective, both can be used as global func-

tional approximators. From a practical perspective, however, it is important to account for the computational

constraints. In the next subsection, I describe how deep neural networks can help us mitigate this problem.
2Cybenko [1989] shows the result for shallow networks with a sigmoidal activation function, while Hornik et al. [1989] extends

the result to any continuous, bounded activation function.
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2.3.2 Functional Approximation through Deep Nets

The deep-learning literature has investigated the relationship between neural network architectures and their

representational power. By referring to the architecture of a neural network, I summarize the information

about the number of layers, the number of neurons per layer, the activation function in each neuron, how

neurons across different layers are connected, etc. This area of research was motivated by two issues arising

from empirical applications. First, the choice of the architecture appears to be an important determinant in

the success (or failure) of a specific application, potentially undermining the generalization of the results.

Second, computational constraints need to be taken into account.

The literature has not reached a general consensus with regard to which architecture to deploy in

any given circumstance. That said, the literature does seem to agree on one key point: higher representational

power can be more easily achieved through depth than through width.3 For instance, Cohen et al. [2016]

makes this point, but acknowledges that evidence supporting this claim relies either on empirical grounds,

or on the construction of functions with pathological behavior. Indeed, while Delalleau and Bengio [2011],

Cohen et al. [2016] and Mhaskar et al. [2017] show that deep neural networks can approximate specific

classes of functions more parsimoniously4 than shallow networks, these results only hold for specific classes

of functions.

The deep-learning literature has tried to address the question of how to measure the representa-

tional power of neural networks by counting the number of regions in the output space that a neural network

is able to shatter. In particular, studies have provided estimates of upper and lower bounds on the maxi-

mum number of piece-wise linear functions that a neural network is able to generate when ReLU activation

functions are used. For instance, Pascanu et al. [2014] show that deep nets separate their input space into

exponentially more linear response regions than their shallow counterparts when deep and shallow nets have

the same number of neurons. Montúfar et al. [2014], Arora et al. [2018] and Serra et al. [2018] built on

these results, providing sharper estimates for the bounds. However, as noted by Serra et al. [2018], the

representational power of deep nets is not necessarily superior to those of shallow nets, but in general, it

depends on the specific architecture. In addition, they provide an intuition as to how the maximal number

of regions is sensitive to the number of neurons in different layers of the neural net. This result gives us

some guidance with regard to the best practices for designing the architecture of a deep neural network.
3I.e., by increasing the number of layers of the neural network instead of increasing the number of neurons per layer.
4The measure of complexity considered here is the total number of neurons.
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While the theoretical results are far from conclusive, neural networks have been used extensively to ap-

proximate high-dimensional functions. This has led to the use of deep neural networks combined with

reinforcement-learning techniques to solve dynamic optimization problems with hundreds of state variables

(see for instance Mnih et al. [2013],Mnih et al. [2015]).

2.3.3 Backpropagation

Theoretical properties themselves are not sufficient to justify why neural networks have been successfully

used in a wide range of applications in machine learning and AI. When we use neural networks in empirical

applications, we are ultimately solving an optimization problem where we want to find the neural network

that minimizes the value of some loss function. For what concerns the optimization component, virtually

all applications rely on some variant of the stochastic gradient descent (SGD) algorithm. In this context,

as stated by Lecun et al. [1998], the success of practical applications of neural networks relies on the ease

of the optimization process. Backpropagation is the workhorse algorithm used in the AI literature when

we are fitting neural networks. While backpropagation was first introduced in the 1960s-1970s, it became

popular thanks to Rumelhart et al. [1986]. The mechanics are simple: it exploits the chain rule to derive an

analytical formulation of the gradient thanks to the compositional nature of the neural network. This is used

in conjunction with the application of a gradient-descent method. I will provide more details in Section 2.4,

where I describe the specific optimization routine I selected for my model.

2.3.4 Deep Learning in Economic Applications

While the use of neural in economic applications dates back to Kelly and Shorish [2000], only very recently

new development in deep learning have started to attract the attention of economists. In particular, the

literature has started to gain interest in understanding how neural network can be used as functional approx-

imators of policy functions in the context of economic problems characterized by strong non-linearities. The

literature has focused on continuous on both discrete time and continuous time applications (for continuous

time, see for instance Duarte [2018]. For what concerns discrete time applications, Maliar et al. [2019]

show how neural networks can successfully approximate policy functions in the context of large-scale mod-

els with infinitely lived agents. On the contrary, Azinovic et al. [2019] focus on applications centered around

larger OLG models. Their approach differs from the one proposed in this chapter on multiple dimensions.
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Firstly, both Maliar et al. [2019] and Azinovic et al. [2019] rely on policy functions depending on the full

state space, while the algorithm proposed in this chapter builds on a reduced and household specific state

space. This is motivated by the fact that in this application, I want to characterize each policy function using

a single neural network. This issue is automatically taken into account by Maliar et al. [2019], since in their

application only one multi-dimensional policy function needs to be approximated; however in Azinovic

et al. [2019], the author decide to exploit a neural network with multi-dimensional output to characterize

the policy functions of agents in different cohort. In this way, all cohorts share the same parameters in

the neural network up to the last hidden-layer. While the authors are able to show the numerical solution

achieves a very good performance, our proposed solution is ultimately more parsimonious, as the number

of parameters to be computed is significantly lower.

2.4 Deep-Learning Framework

The computation of the equilibrium policy functions characterizing the stochastic economy relies on several

steps. In general, convergence is more likely to be achieved if a good initial guess for the policy functions

for which we are solving. For this reason, I start from the deterministic version of the model, where there

are no aggregate or depreciation shock, and then we proceed by using the policy functions obtained for the

deterministic economy as initial guesses of the fixed point algorithm. More details about the initialization

are presented in Appendix A.1.

I characterize the policy functions in a neighborhood of the steady state (see A.1.1), by finding

the a local linear approximation of the policy function for consumption and transition of the state variables

(A.1.2). I then use these functions as the initial guesses for the iterative, derivative-free fixed-point algorithm

(see for instance Hasanhodzic and Kotlikoff [2019], or Maliar et al. [2019] for an application in the context

of deep-learning). Given the large state space, I decide to reduce the dimension of the input of each policy

function a smaller subset of state variable that household-specific, following the approach first proposed

Krusell and Smith [1998]. In addition, I use Smolyak sparse grids as proposed by Krueger and Kubler

[2004, 2006] and Judd et al. [2014] to mitigate the curse of dimensionality, since even the reduced state

space contains seven state variables.

35



2.4.1 Neural Network Architecture

Households’ Consumption Policy Functions

I use feed-forward neural networks to approximate the consumption policy function for household (i, n); it

is assumed that the input is a seven-dimensional vector xin, which contains household-specific and aggregate

variables:

(xin,z,xa) = (kin, ein,A,K,H,σ(K), S) ∈ Bin ×Z × Ba (2.1)

I define the parametrized policy function as Cin (xin∣θin), where the trainable parameters are defined as:

θin = (Wi,n
l ,bi,nl )

L

l=1

The matrix Wi,n
l represents nl−1 × nl weights connecting the neurons in the hidden layer l − 1 to the input

activation function in layer l for the policy function of household (i, n). The vector bi,nl represents the nl-

dimensional vector of biases for hidden layer l. For each household, the total number of trainable parameters

is:

L−1
∑
l=0

(nl × nl+1 + nl+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hidden Layers

+ (nL + 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Output Layer

where n0 denotes the size of the input of the neural network. Figure 2.4 shows an example of a fully

connected 2-hidden layer DNN representing the policy function for households for households (i, n).

In each hidden layer I utilize a sigmoidal activation function, as introduced in Definition 5. The

output layer is obtained via linear activation. The choice comes from the desirable smoothness that policy

functions would inherit from the use of such activation, as the output of the DNN would be the composition

of linear combinations of smooth functions.

It is important to keep in mind that, in general, I can use any moment of the distribution of the

endogenous state variables as an additional aggregate variable fed in the household’s policy function. In the

limit, I could resort to the use of the entire distribution of endogenous state variables. The inclusion of the

standard deviation of the cross-sectional distribution of households’ savings is motivated by performance

considerations, as illustrated in Section 2.7.
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Figure 2.4: Representation of a two-hidden layer neural network for the policy function for household (i, n)

consumption.

2.4.2 Forecast Functions

As discussed in Chapter 1, the solution algorithm requires that agents use a forecast function to predict

the future value of the endogenous aggregate variables. For this reason, I introduce the additional neural

network πf ∶ R5 → R4, mapping (K,z,H,S, σ(K)′) → (K ′,H ′, S′, σ(K)). With the values of K ′, H ′

and S′, the households are able to forecast the amount of benefits they would receive under both a solvent

and insolvent regime, while the aggregate state variable σ(K) has been added since it increases the fit.

In this model I have introduced mortality, and as a consequence, accidental bequests. Given that,

in general, aggregate bequest B left by the deceased households will depend on the distribution of wealth

(weighted by the population shares and the mortality rate of each age-type specific household), I also need to

forecast the value of aggregate bequests. Given that aggregate bequests are uniformly distributed across the

surviving households, agents will be able to use this information to predict the total amount of the bequest

bin = ηinB they receive. For this reason, I introduce the bequest function πB ∶ Ba ×Z → R.
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In addition, I assume that all households share the same forecast function πf to predict the future

aggregate state variables and the same bequest function πB to infer the current value of aggregate bequests.

This assumption extends the quasi-fully rational expectation equilibrium approximation proposed by Krusell

et al. [2000], where policy and forecast functions were assumed to be linear in the relevant state variables,

and the only moment used to describe the distribution of savings is the mean. Here, on the contrary, I assume

that the forecast function is a non-fully connected neural network, and I augment the aggregate state space

to include the cross-sectional standard deviation of households’ savings.
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Figure 2.5: Representation of a two-hidden layer neural network forecast function πf .

As we can see from Figure 2.5, each aggregate variable in the output depends on a subset of

weights and biases. Therefore, I can partition the set of parameters according to the variable in the output

to which they contribute. In terms of the activation function, I choose ReLUs for both the bequest and the

forecast function. In light of these assumptions, I can represent the forecast function depicted in Figure 2.5

as follows:
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• The input of the forecast functions is defined as:

(xa,z) = (K,H,S, σ(K)
′,A)

and includes both exogenous and endogenous aggregate state variables.

• For the first hidden layer:

h1H = max (0,W1H(xa,z) + b1H) h1K = max (0,W1K(xa,z) + b1K)

h1S = max (0,W1S(xa,z) + b1S) h1σ = max (0,W1σ(xa,z) + b1σ)

• For hidden layer l = 2,⋯, L:

hlH = max (0,WlHhlH + blH) hlK = max (0,WlKhlK + blK)

hlS = max (0,WlShlS + blS) hlσ = max (0,Wlσhlσ + blσ)

• The output layer can be expressed as follows:

H ′
= WLHhLH + bLH K ′

= WLKhLL + bLK

S′ = WLShLS + bLS σ(K)
′
= WLσhLσ + bLσ

2.4.3 Objective Functions

As the objective function for each household (i, n), I use the sum of the square residuals over the N -

dimensional grid of points Xin:

Lin(θin) =
1

N

N

∑
j=1

(ĉjin − cin(x
j
in,x

j
a,z

j
∣θin))

2
∀(i, n) ∈ I ×A (2.2)

Given the equation for the household-specific policy function (2.2), I now define the global objective func-

tion used in the optimization routine:

L(θ) =
1

∣I∣∣A∣
∑
i∈I
∑
n∈A
Lin(θin) (2.3)

where θ denotes the collection of parameters characterizing households policy functions. Similarly, for the

forecast function and bequest function I define:

La(θf) =
1

JT

J

∑
j=1

T−1
∑
t=0

∣∣x̂′ja,t+1 − πf(xja,t∣θf)∣∣
2 (2.4)

Lb(θb) =
1

JT

J

∑
j=1

T

∑
t=0

(B̂jb,t − πb(xja,t∣θb))
2

(2.5)

39



where (Xjt)
T
t=1 represents the j-th sequence of aggregate variables obtained by simulating the economy for

T periods using the consumption policy functions. As we can see from equations (2.4) and (2.3), training

the neural network involves optimizing a non-linear least regression over the set of choice variables, which

are represented by the parameters characterizing the different neural networks.

2.4.4 Optimization and Hyperparameters Tuning

I will now describe the algorithm and the hyperparameters used to train the policy and the forecast func-

tions. One of the main advantages of polynomial-based approaches is that the optima of the loss functions

introduced above are characterized by a closed-form solution, usually resulting from linear least-square

problem. In addition, the solution is a global optimum within the class of chosen polynomials. When neural

networks are used instead, the optimization process differs in two dimensions. First, the global optimum is

not unique, as the architecture of neural networks are invariant to permutation of the nodes in the hidden

layers. Second, given the composition of neural networks, their output is highly non-linear in the parame-

ters for which we are optimizing. This makes the search for a global optimum not achievable in practice. In

addition, the choice of the optimization algorithm and its hyperparameters is crucial. As noted by Orr and

Müller [1998], while backpropagation is ”conceptually simple, computationally efficient, and often works,”

training a DNN using backpropagation requires making many seemingly arbitrary assumptions about the

architecture and the training such as the number and types of nodes, layers, learning rates, training sets, etc.

Clearly, researchers’ discretion in the selection of the hyperparameters represents a disadvantage, since, as

noted by Orr and Müller [1998], ”the choices can be critical, yet there is no foolproof recipe for deciding

them because they are largely problem and data dependent.” Simply put, what may deliver good results in

a specific application, may fail poorly in another one, undermining the generality of the methodology used.

While this problem was acknowledged early on in deep-learning literature, it is still an issue in the more

recent applications (Lecun et al. [2015]). While the deep-learning literature does not provide definitive an-

swers as to how to structure the training process and select the architecture of the of the neural networks,

recent contributions in the literature have tried to establish a set of best practices. Here, I discuss some of

the practices that practitioners have agreed on to facilitate the training process, and I describe how their

properties interact with the model I proposed.
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Parameters Initialization and Input Normalization It is widely accepted in the literature that the ini-

tialization of the neural network parameters plays a fundamental role in both the convergence and precision.

The reason behind this is very intuitive. For sigmoidal activation functions, the gradients vanish for either

very small or very large input values; similarly, for ReLU activation functions, the gradient is 0 when the

input is negative. Therefore, it is important for both types of activation functions that the inputs are some-

what centered around 0, as first suggested by Rumelhart et al. [1986]. They propose to initialize the weights

according to a distributionN (0,1). While this initialization works in some applications, it has been shown

that it often leads to vanishing gradients, especially in deep neural networks. In order to counteract this issue,

Orr and Müller [1998] recommend drawing the weights from the uniform distribution W l
ij ∼ U[

−
√
1√
Nl
,
√
1√
Nl

].

The proposed initialization depends on the structure of the neural network itself, since the bounds of the

uniform distribution depend on the number of neurons in the layer.

Building on this result, Glorot and Bengio [2010] modified the initialization of weights by allow-

ing the bounds to depend on the number of neurons in the previous layer as well: W l
ij ∼ U[

−4
√
6√

Nl−1+Nl
, 4

√
6√

Nl−1+Nl
]5.

This initialization ensures that the variance of the input and output of each layer is similar, reducing the risk

of incurring a vanishing gradient during the training process. They show that networks initialized in this way

perform better in the training process, achieving faster convergence to the local optimum. Glorot initializa-

tion (also known as Xavier) has become one of the most common initialization schemes in the deep-learning

literature, and in this paper I adopt it for all of the neural networks. In addition, I initialize all biases to be 0.

To further reduce the risk of incurring in vanishing gradients, I follow Lecun et al. [1998]. I

normalize the input of the neural networks along each dimension, so that the grid points have mean 0 and

variance 1. As shown by Ioffe and Szegedy [2015], this improves the convergence speed, as it decrease

the likelihood of remaining in a local minimum. More advanced normalization techniques, like batch-

normalization, did not improve our results. I want to emphasize that the lack of normalization of the input

of both the policy functions and forecast function will negatively impact performance in a significant way

in this particular application, since the scale of the variables used as input varies dramatically, from units

(households’ savings) to hundreds (aggregate capital).

Optimization Algorithm Given the large number of parameters with which a neural network is endowed,

standard second-order optimization methods are unlikely to be successful. This has led to widespread use of
5This is the distribution for sigmoidal activation function, the one used for the consumption policy functions.
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the backpropagation algorithm discussed in Section 2.3.3. Backpropagation is paired with gradient-descent,

and the deep-learning literature has developed a wide range of first-order stochastic optimization algorithms

aimed at training neural networks. In this application, I use the momentum-based Adam algorithm proposed

by Kingma and Ba [2015], whose adaptive learning rate has been widely used in deep-learning applications.

Adam presents two major advantages. First, it is able to characterize a learning rate for different parameters

by using estimations of first and second moments of gradient, helping to equalize the learning speeds across

parameters. Second, the use of a momentum-based algorithm improves the training speed when the objective

function is highly non-spherical. In exploiting the momentum, the Adam gradient-descent algorithm does

not only take into account the current gradient, but also use take previous gradients. The weight that previous

gradients and momentum have are ruled by two hyperparameters: the momentum decay (set to 0.9) and the

scaling decay hyper-parameter (set to 0.999).

Considering that I simultaneously train hundreds of DNNs approximating consumption policy

functions using the global objective function described in Equation (2.3), it is important to choose an al-

gorithm that updates learning rates, as each DNN is likely to have a different contribution to the objective

function. This decreases the risk that the objective function remains stuck at local optimum during the op-

timization process. Table 2.1 shows the average absolute error at the initialization step of our algorithm,

compared to standard stochastic gradient descent and RMSprop: as we can see, the use of Adam and RM-

Sprop greatly improves on the basic SGD in terms of convergence speed. After 15 epochs, the approximation

error of the policy functions using Adam is approximately 0.1% of that obtained using SGD. This suggests

that the selection of update rule is fundamental in determining the speed of convergence, and motivates my

choice. Also, the results suggest that Adam performs better than RMSprop, supporting the choice of Adam.

With regard to the learning rate, i.e. the weight used determine the size gradient update, it is set to be 0.001

(the default value).

N. of Grad. Steps SGD RMSprop ADAM

1 98.9% 6.4% 7.8%

5 81.7% 0.9% 1.2%

10 65.5% 0.8% 0.5%

15 50.5% 0.7% 0.4%

Table 2.1: Average Absolute % Error vs. Number of Gradient steps, Computed at the Initialization Step
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Grid I use Smolyak sparse grids to train the policy functions as in Judd et al. [2014]. The choice of the

sparse grid is motivated by the fact that, even if the state space for each individual policy function is reduced

to include only a subset of the cross-sectional distribution of savings and average life-time earnings, the

input of the policy function is still high-dimensional, since it includes seven state variables. It is important to

notice that at the beginning of the iterative procedure, it is not possible to identify where the ergodic set lives.

For this reason I choose the bounds on the grids based on the values of the state variables at the deterministic

steady state for the median productivity value for two scenarios: a Social Security system that is always able

to pay out the benefits, and a Social security system that always pay out benefits proportional to the ratio

of total revenues to entitlements. During the iterative procedure, I make sure that during simulation step,

the values fall within the boundaries of the grid. The choice of the grid is very important. While neural

networks do well with approximating functions on the points of the grid, it is not clear whether outside that

domain, their approximation can be considered reliable. Therefore, it is important to ensure that the ergodic

set is contained within the grid.

2.5 Policy Approximation through Projection Methods

Projection methods have been the workhorse numerical technique used in macroeconomics to find numerical

policy approximations via fixed-point iterations since Judd [1992] introduced them to the economics litera-

ture. The general idea is to find the function π̂ within a specified class of functions F that bests fits a loss

function L. The class of functions F is chosen a priori, and determines the degrees of approximation that we

are seeking in our approximation for the policy functions. In general, we can describe the implementation

of a fixed-point algorithm in the context of projection methods as follows:

Step 1. Choose a functional class F to approximate the policy function π, parametrized by the vector θ ∈

Rd, and initialize it θ0. Choose an appropriate finite dimensional grid X, and a loss function L ∶ Rd →

R.

Step 2. For k = 0,⋯,N :

1. Generate yk, consistently with X and π(⋅∣θk):

yk = F (X, π(X∣θk))
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2. Given yk and X, and the loss function L, solve optimization problem:

θk+1 ← arg min
θ∈Θ
L(π (X∣θ) ,yk)

3. If ∣∣θk+1 − θk∣∣ < ε, convergence is achieved, terminate; else go back to step 1.

With regard to our numerical solution, we first need to choose:

• the functional class Fc parametrized by Θc used to approximate the consumption policy functions:

cin ∶ Bin × Ba ×Z → R cin(⋅, ⋅, ⋅∣θin) ∈ Fc

∀(i, n) ∈ I ×A

• the functional class Ff parametrized by Θf for the forecast functions:

πf ∶ Ba ×Z ×Z → Ba πf(⋅, ⋅, ⋅∣θf) ∈ Ff

• the household specific state variables xin = (ein, kin), including the average cumulative earnings ein

and savings kin;

• the aggregate state variables xa = (K,H,S, σ(k)), including the aggregate capital K and Social

Security Trust Fund Balance H , the total amount of Social Security benefits due if the system was

solvent S, which allows us to pin down the share of benefits Social Security is able to pay, and the

cross-sectional standard deviation of savings σ(k).

The goal now is to find collection of parameters (θin)(i,n)∈I×A for the policy functions and θf for

the forecast functions that well approximates the following set of conditions:

• cin(⋅∣θin) optimize given πf and Γin, ∀(i, n) ∈ I ×A

u′ (cin(xin,xa,z∣θin)) = βiE [r(x′a,z
′
)u′ (cin+1(x

′
in,x

′
a,z

′
∣θin+1) ∣xin,xa,z]

x′a = πf (xa,z,z
′∣θf), x′in+1 = Γin(xin,xa,z)

z′ ∼ F (⋅∣z)

∀(xin,xa,z) ∈ Bin × Ba ×Z,

∀(i, n) ∈ I ×A

• Consistency between (cin(⋅∣θin),Γin)(i,n)∈I×N and πf
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2.6 Numerical Algorithm

Here I describe the algorithm I use to numerically compute the equilibrium policy functions of the model.

It is composed of two steps. The first step involves the initialization of the policy and forecast functions

to fit the deterministic economy. The second step comprises of the iterative procedure in which policy and

forecast functions for the stochastic economy are computed.

2.6.1 Initialization

In the initialization step, I choose an architecture (layers, neurons per layer, activation functions) for the

policy functions (cin)i∈I,n∈A, the forecast function πf and the bequest function πb. I then set the boundaries

for the ergodic sets of the household-specific state variables (Bin)i∈I,n∈A, and aggregate state variables Ba.

Based on these boundaries, I build Smolyak sparse grids as Judd et al. [2014] for each household based on

the variables in Bin × Ba × Z . The initialization of the household-specific X0
in grids is based on the values

computed for deterministic steady states described below.

Two deterministic steady states are considered. The reason why we are considering two steady

states is because we use their linearized local dynamics as educated guesses regarding the policy functions.

In the first one, the Social Security system is always solvent, no matter whether the revenues collected

and the assets in the trust fund are sufficient to cover the expenditures. In this scenario, we abstract from

dynamics of the trust fund, in the sense that the deficits are not accumulated.6 This economy is constructed

to provide an educated guess as to the optimal consumption of agents when the economy is sufficiently

far from Social Security insolvency, but, at the same time, the accumulated balances are sufficiently low

such that their impact on prices is negligible. In the second steady state, Social Security is assumed to

be insolvent, so that the benefits paid out to retirees not only depend on the their earnings histories, but

also on the ratio between total expenditures and revenues. I characterize two different steady states in

the deterministic dynamics because I want to exploit the log-linearized dynamics as educated guesses for

the policy functions. The deterministic dynamics are clearly likely to experience severe non-linearities,

especially in the transition, so the choice of linear policy functions in the deterministic setting is likely to

poorly capture dynamics of the economy. However, by considering the two economies, we are implicitly
6In a sense, we are assuming that if expenditures exceed revenues at the steady state, a transfer of resources from outside of the

economy is completed to ensure that the system is solvent.
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considering two limit cases.

In terms of the bounds for the values of the grids, we use very conservative estimates. First, we

compute the steady states and the log-linearized dynamics for every value of the exogenous shock. Then,

for each type of household, I compute the maximum level of capital holdings and average life-time earnings.

I use the following value to compute the bounds for the grid points:

kLin = min
ss

kssin − [(
1

10
+

6

10

n

Ri
)1(n ≤ Ri) + (

3

10
+

4

10

A − n

A −Ri
)1(n > Ri)] ×max

n,ss
kssin

kHin = max
ss

kssin + [(
1

10
+

6

10

n

Ri
)1(n ≤ Ri) + (

3

10
+

4

10

A − n

A −Ri
)1(n > Ri)] ×max

n,ss
kssin

The bounds are chosen to guarantee that in the sparse grids the ergodic set is included. The bounds for the

other variables are chosen so that the lower bound is 2
3 of the lowest values among the deterministic steady

states and the upper bound is 7
4 the highest values among the deterministic steady states. Finally, the level

of the trust fund balance is assumed to range between 0 and 1
2 the aggregate capital.

I proceed by initializing the parameters of the policy functions, forecast function and bequest

function by finding the (θ0in)i∈I,n∈A, θf0 and θb0 that best approximates the linear policy and forecast function

around the log-linearized steady states (for more details about the derivation of the linear policy functions,

refer to the subsections A.1.1 and A.1.2 in the Appendix). This provides an educated guess as to the policy

functions in the stochastic steady state. Considering that neither of the two steady states are able to account

for the transition between solvency regimes, I make the following assumptions about how policy and forecast

functions are related to the two identified deterministic steady states. For strictly positive values of the Social

Security trust fund, I assume the policy and forecast functions behave consistent with the regime wherein the

Social Security system is always solvent and initialize them accordingly. When Social Security trust fund

resources reach zero, I assume that policy and forecast functions behave consistent with the regime wherein

the Social Security system is never solvent, and initialize them accordingly.

Finally, the initialization allows me to assess some of the properties of the hyperparameters that I

have chosen, and to choose the appropriate optimization algorithm based on the convergence speed. In this

case, given that I am using linearized dynamics to characterize policy and forecast functions, I know what

to expect from the target function, which allows me to conduct experiments on the hyper-parameters in a

relatively controlled environment. The choice of the optimization algorithm used to update parameters was

based on the speed of convergence, as reported in Table 2.1.
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2.6.2 Iterative Procedure

The iterative procedure is based on three steps, which are repeated until convergence is achieved:

1. Update the parameters of the households’ consumption policy functions;

2. Simulation of the economy;

3. Update the parameters of the forecast and bequest functions.

Convergence is reached when the changes in the consumption predicted value are sufficiently small, or when

the maximum number of iterations has been achieved. I now describe the algorithm used to compute the

policy functions.

Policy Function Update As discussed later, this step is performed only for the first 10 iterations of the

algorithm.

• First, I use the forecast functions to obtain the future values of the aggregate state variables and

bequests:

X′
a = πf(Xa,Z,Z

′
∣θkf) B = πb(Xa,Z∣θkb )

• For each household (i, n) ∈ I × A, I compute the target values for the consumption policy functions

by using the Euler equations and the transition equation characterized by Γin:

cin = cin(Xin,Xa,Z∣θkin)

X′
in+1 = Γin(Xin,Xa,Z,cin,B)

c′in+1 = cin+1(X
′
in+1,X

′
a,Z

′
∣θkin+1)

ĉkin = u
−1
in (βiE [u′in+1 (c

′
in+1) r(X

′
a,Z

′
)∣Iin])

• I define the global objective function according to Equation (2.3) for the policy functions:

L(θ) = ∑
i∈I
∑
n∈A

∣∣ĉkin − cin (Xin,Xa,Z∣θin) ∣∣
2
2
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• For each household (i, n) ∈ I × A, I update the coefficients of the policy functions through batch-

gradient descent, where the update rule depends on the function Fin:

θk+1in ← θkin − F
k
in (∇θinL(θin)) ∀(i, n) ∈ I ×A

It is important to note that the update of the parameters characterizing the policy functions is com-

pleted in parallel thanks to the definition of a global objective function.

Forecast and Bequest Function Update

• Using cin(⋅∣θk+1in ), I simulate J economies for T periods, and I collect the values of the simulated

aggregate variables Xk
a and bequest bk.

• Based on Equations (2.3) and (2.5), I define the objective function:

La(θf ,θb) = ∣∣X′
a
k
− πf(X

k
a,Z

k,Z′k
∣θf)∣∣

2
2 + ∣∣bk − πb(X

k
a,Z

k
∣θb)∣∣

2
2

• I update the coefficients of the forecast function through batch-gradient descent based on the the

update rules F kb and F kf :

θk+1f ← θkf − F
k
f (∇θfLa(θ))

θk+1b ← θkb − F
k
b (∇θbLa(θ))

• Based on the simulated values for Xa, (Xin)(i,n)∈I×A, compute:

cin = cin(X
k
in,X

k
a,Z

k
∣θk+1in )

cin+1 = cin+1(X
k
in+1

′,Xk
a
′,Zk′∣θk+1in+1)

ĉkin = u
−1
in (βiE [u′in+1 (c

′
in+1) r(X

k
a
′,Z′

)∣Iin])

• I define the global objective function according to Equation (2.3) for the policy functions:

L(θ) = ∑
i∈I
∑
n∈A

∣∣ĉkin − cin (Xk
in,X

k
a,Z

k
∣θin) ∣∣

2
2

• I update, for each household (i, n) ∈ I × A, the coefficients of the policy functions through batch-

gradient descent:

θk+1in ← θkin − F
k
in (∇θinL(θin)) ∀(i, n) ∈ I ×A
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It is important to note that the policy functions are updated twice. In the first update, the points of the state

space are selected ex-ante based on a guess about where the ergodic lives. This allows us to stabilize the

algorithm in the first steps of the iterative procedure. The second update, on the contrary, is based on the

state space points obtained through simulation. This step is aimed at increasing the precision of the solution

for areas of the state space that are relevant, i.e. belong to the ergodic set. This double update method,

while inspired by Maliar and Maliar [2015], departs significantly from it, since the created sparse grids are

ultimately discarded. It is also worth noting that, in the second step, there is no use of the forecast functions.

Consumption policy functions are updated based on the realized values of the future (endogenous) aggregate

state variables, rather than the one predicted using the forecast functions. Finally, we perform the update

described in the Policy Function Update subsection only for the first 10 iterations. We do so for two reasons.

First, the grid of points used to approximate the ergodic set is chosen ex-ante, and while the bounds are

chosen very conservatively to minimize the risk of excluding part of the ergodic set, the risk cannot be

completely eliminated, since the deterministic dynamics only gives us an educated guess as to where the

ergodic dynamics actually live. Second, we find that numerically, the error on the test data stops decreasing

after 8-10 iterations when we continue to updated the policy functions based loss functions derived using

the sparse grids. This suggests that while the use of a fixed grid of point can help us stabilize the training of

the neural networks in the early stages of the training process, it can also represent a detriment in the later

stages, since it may contain points that are rarely traversed by the stochastic dynamics of the model.

2.7 Results

In this Section, I present the numerical results related to the policy approximations of my model. I first

introduce the estimation procedure I use to obtain the relevant parameters that I feed into the benchmark

model. I then discuss the performance of the algorithm in the fitting of the policy functions and the forecast

functions.

2.7.1 Policy Functions

In order to assess the quality of the numerical solution, I use the residuals computed using the Euler equations

(see Judd [1992], Krueger and Kubler [2004] and Maliar et al. [2019]). I simulate J economies for T periods
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of time. For each period t = 0,1,⋯, T , and for each household (i, n) ∈ I ×A, I compute:

ε̂in,t = 1 −
u′in

−1
(E [βiu

′
in+1(ĉin+1,t+1)rt+1∣Iin,t])

ĉin,t
(2.6)

∀t = 0,⋯, T and ∀(i, n) ∈ I ×A

As we can see from Equation (2.6), the overall performance of the model is assessed by computing

the percentage deviation of the actual predicted consumption versus the consumption implied by the Euler

equation, a standard practice in the OLG literature. I then define the following two metrics:

errt =
1

∣A∣∣I∣
∑
j∈I

∑
m∈A

∣ε̂jm,t∣ ∀t = 0,⋯, T (2.7)

errin =
1

T

T

∑
t=1

∣ε̂in,t∣ ∀(i, n) ∈ I ×A (2.8)

The metric defined in Equation (2.7) aims at measuring the average deviation in the cross section for a

specific period of time t. With this measure, I aim at capturing the performance of the numerical solution

pre- versus post-insolvency. Differently, Equation (2.8) aims at measuring the average residual over time for

each household. With this measure, I aim at assessing whether the approximation is more (or less) accurate

for specific groups of households. In general, the insolvency of the Social Security system is more likely

to impact retirees’ consumption as compared to that of workers’. Table 2.2 displays the hyperparameters

used to set the architecture of the policy functions and to train them, and all the results are based on those

hyperparameters.

In terms of network architecture, I test different specifications, since there is a trade-off between

approximation power and computational costs. Neural networks with more complex architectures are gen-

erally endowed with a higher approximation power, but they are more computationally intensive to train.

Therefore, in general, it is preferable to choose a more parsimonious architecture, i.e. an architecture with

fewer layers and fewer neurons per layer. Figure 2.6 displays the average test error computed at each iter-

ation of the training process for different architectures. For each step of the iterative procedure, I simulate

J = 200 economies for T = 250 periods, and for each economy I compute the absolute error measures as

the average cross-section residual. I then average the error across the different economies:

errtest =
1

∣A∣∣I∣J

J

∑
j=1
∑
i∈I
∑
n∈A

T

∑
t=1

∣ε̂jin,t∣ (2.9)

I use this as a metric to assess how the trained neural networks perform on new test data, which allows me

to compare the relative performance of different specifications. As we can see from Figure 2.6, the first 50
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Hyper-parameters

N. of hidden layers (1,2,3)

N. of neurons -

Activation function Tanh

Weights initialization Glorot

Gradient update ADAM

Epochs/iteration 2

Epochs at initialization 20

Batch size 32

Learning rate 0.001

N. Iterations 200

Table 2.2: Hyper-parameters used to fit the consumption policy functions.

Figure 2.6: Mean absolute relative deviation based on simulated data vs. step of the iterative procedure.

iterations are characterized by fast improvements across the entire architecture, followed by slower changes

in the performance over the test data.7 It is also clear that shallow neural networks, despite having a similar

performance over the first 25 iterations, fail to match the performance of deep neural networks once they are

trained for a sufficient number of iterations. Shallow neural networks display significantly larger errors on

the test data throughout the entire training process, regardless of the number of neurons in the hidden layers.
7Test data in this context are generated through simulation.

51



Architecture Mean Error St. dev. Error

(64) 1.14 × 10−3 1.52 × 10−4

(128) 1.19 × 10−3 1.62 × 10−4

(64,16) 7.83 × 10−4 1.01 × 10−4

(64,32) 5.03 × 10−4 3.7 × 10−5

(64,48) 7.16 × 10−4 5.4 × 10−5

(64,32,16) 7.05 × 10−4 6.4 × 10−5

(128,64,32) 8.53 × 10−4 9.8 × 10−5

Table 2.3: Mean and standard deviation of the error compute on the test data over the last 20 iterations of

the algorithm described in Section 2.6. Tanh is used as activation function.

Table 2.3 shows that between iteration 180 and 200, the average test error is ≈ 1.2 − 1.5 higher for shallow

network as compared to deep neural networks, with a higher degree of variability. The results suggest that,

in this application, two hidden layer neural networks display very similar performance as compared to three

hidden layer neural networks. As we can see, the two hidden layer neural network with (64,32) neurons

has the best performance – in terms of point estimate – but if we factor in the volatility of this measure,

this neural network has a very similar performance to a two hidden layer neural networks with 48 neurons

in the second layer, and a three hidden layer neural network with 16 neurons in the third hidden layer.

Among the deep neural networks, the architecture with the worst performance is the larger three hidden

layer architecture – 128 neurons in the first layer, 64 in the second and 32 in the third – followed by the

small two-hidden layer network with 64 neurons in the first layer and 16 in the second. Overall, these results

suggest that a two hidden layer architecture with 64 neurons in the first hidden layer and 32 neurons in the

second achieves the best trade-off in terms of performance and complexity. It is important to notice that

while the performance metrics are generally sensitive to the specific architecture choice, the success of the

training algorithm is not impacted by the architecture itself. It is important to highlight this point because we

do not want our results to be too sensitive to the hyperparameter choice, and, therefore, subject to excessive

fine-tuning.

The choice of the other hyperparameters is also very standard. In all of the experiments, the

learning rate is set to 0.001, the default set in Tensorflow for the ADAM optimization algorithm. The decay

rate for the moments is also set to the Tensorflow default value. The batch size is set to 32, again, the default

value. For each step of the iterative process we train the policy functions for two epochs. The choice of the
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number of epochs has been made considering the trade-off between achieving a better fit at each step of the

iteration (higher number of epochs), and the time required perform a step. I noticed that after two epochs,

the decrease in the objective function was relatively small compared to the decrease between the first and

the second epoch. Therefore I limited the training of the policy functions to a total of two epochs per each

step of the iterative algorithm.

Figure 2.7 shows the average percentage cross-sectional residual implied by households’ Euler

equations as defined by Equation (2.7). The results are based on the hyperparameters presented in Table 2.2,

and on policy functions having two hidden layers, with 64 neurons in the first hidden layer and 32 in the sec-

ond. The activation function for the hidden layers is the hyperbolic tangent. The results are obtained by sim-

ulating an economy for 2000 periods. I use this metric to assess the overall performance of the benchmark

specification, i.e. a two hidden layer neural network with 64 neurons in the first layer and 32 in the second.

As we can see, the average cross-sectional error are between 0.03% and 0.07%. These results clearly show

that our procedure performs very well, as indicated by the results being in line with, if not better than, state-

of-the-art methods developed in the literature (see for instance Krueger and Kubler [2004], Hasanhodzic and

Kotlikoff [2019], Kim [2018] for traditional polynomial based methods, and Azinovic et al. [2019] for neural

network based methods). The spike observed around t = 20 represents the moment in which the Social Secu-

Figure 2.7: Mean absolute relative deviation based on simulated data defined in Equation (2.7) based on

policy functions with ReLu activation functions and 64 neurons in the first hidden layer and 32 in the second

hidden layer.

rity system becomes insolvent. This suggests that the numerical solution underperforms around the regime
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change, as compared to either the pre- or post-bankruptcy regimes. Nevertheless, the maximum average

cross-sectional residual is only 0.065%, indicating that the decrease in performance is small in relative terms.

As a consequence, these results show that neural networks successfully approximate consumption policy

functions in the context of this application. It is worth noting that performance of the numerical solution

does not appear to suffer from the use of a reduced state space. This suggests that the use of a full state space,

while desirable from a theoretical perspective, may not be necessary. If we were to use the same specification

for the neural network for the policy functions specified by Azinovic et al. [2019], then we would need to

compute (634+1)×1000+(1000+1)×1000+(1000+1)×316 = 1,952,316 weights and biases. In our current

specification, the total number of parameters is 312 × ((8 + 1) × 64 + (64 + 1) × 32 + (32 + 1)) = 838,968,

less than half the alternative method.

I now turn to the assessment of the performance of the policy approximations for each household,

since I am interested in understanding whether I can identify variation in the quality of the numerical solution

across either different types or cohorts of households. Figure 2.8 shows the metric defined in Equation (2.8)

based on an economy simulated for 2500 periods. On the x-axis, I distinguish the 4 types of agents. On

the y-axis, I represent different cohorts. As we can see from the chart on the left in Figure 2.8, the mean

Figure 2.8: max and mean percentage error ε̂in, for each household, based on simulated data. On the x-axis,

the type of agent. On the y-axis, ordered from top to bottom, the household cohort.

deviation is comparable across different household types, with older households’ (cohort 78 and 79) policy
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functions being characterized on average by higher approximation errors. At the same time, we can observe

that the average performance varies non-systematically across types or age cohorts. However, the mean

absolute error obtained in the test data is bounded above by 0.25%, in line with literature benchmarks in

terms of numerical performance (see for instance Krueger and Kubler [2004], Krueger and Kubler [2006],

Kim [2018]). Turning to a measure of the lower-bound of the performance, we can see from the chart

on the right side in Figure 2.8 that the policy functions of the last two cohorts have the highest maximum

absolute residuals, but they remain lower than 1%. Again, no specific pattern is observed in different types of

agents. In light of these observations, it is possible to infer that the decrease in the performance of the policy

functions of older agents happens around the period of regime transition. I hypothesize that the higher error

observed is due to the fact that the consumption of older retirees depends more on Social Security benefits as

compared to consumption of younger retirees. Therefore, the higher error rate represents a more imprecise

prediction about the bankruptcy state of the economy and is more likely to deteriorate the performance of

older retirees’ policy functions. Overall, our results indicate that neural networks can be successfully used

as numerical approximators in the context of large-scale OLG models.

I now illustrate the importance of using a flexible class of functional approximators like neural

networks to represent the policy functions. Figure 2.9 and 2.10 shows how older households’ consumption

policy function depends on the Social Security trust fund when hyperbolic tangent and ReLU activation

are used respectively. In particular, Figure 2.9 and 2.10 displays the consumption policy function belonging

respectively to the 76th, 77th, 78th and 79th cohort for each of the agent types. As we can see, for high values

of the Social Security trust fund, the policy function is relatively flat: as we move away from bankruptcy,

retirees’ consumption-saving behavior will be largely unaffected by the trust fund balance, as the funds

accumulated will be sufficient to pay out benefits in the near term. It is important to keep in mind that the

Social Security trust fund affects agents’ decisions through i) prices, as it affects the interest rate that is

charged to borrowers/savers and the market wage and ii) the benefit payments (whether the Social Security

system is insolvent or not, directly affecting the amount of benefits paid out). As we approach bankruptcy,

agents will tend to to decrease consumption and save more, since, as rational agents, they anticipate that

Social Security will not be able to fully pay their retirement benefits, and will cut them according to the ratio

of total revenues to benefit entitlements.

In addition, it is important to notice from Figure 2.9 that the younger the household, the earlier it

will start to decrease consumption, and thus save more, since the bankruptcy (which is an absorbing state

in this model) will decrease the benefits they receive for a longer part of their life. The shape of the policy
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functions around the transition point changes as we change the the activation function used in the hidden

layers. The hyperbolic tangent is a smooth function, and this is reflected in the smooth profile of the implied

policy functions. Similarly, the piece-wise linear nature of ReLU activation functions is reflected in the

policy functions. One may consider this to be an issue, i.e. the lack of smoothness in the ReLU activation

Figure 2.9: Numerical approximation of consumption policy functions for selected groups of retired agents.

On the x-axis the Social Security balance H . The neural network has two hidden layers, with 64 neurons

in the first hidden layer and 32 in the second. The activation function for all of the hidden layers is the

hyperbolic tangent.

function is translated directly into the policy function. However, this particular behavior manifests since

that part of the state space is covered only in the transition: once Social Security reaches insolvency, it

will remain insolvent forever. Therefore, while training the policy functions on the simulated data, rather

than the on grid points, we are implicitly giving higher weight to regions of the state space that belong

to the ergodic set, especially if we are simulating the economies for long period of time. In the economy

presented, insolvency is reached after 10 to 20 periods, depending on the initial conditions and the sequence

of simulated shocks, while in the training process, economies are simulated for 250 periods. This implies

56



Figure 2.10: Numerical approximation of consumption policy functions for selected groups of retired agents.

On the x-axis the Social Security balance H . The neural network has two hidden layers, with 64 neurons in

the first hidden layer and 32 in the second. The activation function for all of the hidden layers is the ReLU.

that less than 10% of the training points belong to the From a theoretical perspective,the choice of the

activation functions is irrelevant, and generally, it is possible to construct an alternative neural network with

a target activation function with the same approximation errors as a corollary of Theorem 2. To further

illustrate this point, I compute the numerical solution of the proposed model using the same architecture

for the consumption policy functions but different activation functions. In the first experiment, I use the

hyperbolic tangent, while, in the second experiment, I ReLU. Figure 2.11 shows the performance over

simulated data of the policy functions during the training process. It is clear that while the ReLU activation

function has a faster convergence rate in terms of test performance in the earlier stages of the training

process, after 150-200 iterations, the performance is virtually the same. These results show that numerically,

the choice of the activation function does not impact the performance at convergence.

In Figure 2.12 I plot the consumption policy functions of retirees against both the Social Security

trust fund H and the total amount of Social Security entitlements S. The reason why I consider the total
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Figure 2.11: Test error on simulated data vs. iteration

amount of Social Security entitlements is because they are a variable that has very low-frequency fluctua-

tions, as, in each period, only a small fraction of retirees die and are replaced by the newly retired cohort

of agents. Therefore, a high level of retirement entitlements is likely to be persistent for multiple periods of

time. At the same time, in the case of insolvency, the level of entitlement determines the share of benefits

that Social Security is able to pay when it is insolvent. Therefore, we expect this variable to play a role

when the system is insolvent (H = 0) or when it is approximating insolvency. In particular, we expect that

consumption of retirees will be negatively impacted by a high level of entitlements, since this will translate

into faster insolvency and a lower level of benefits, keeping all other variables fixed. At the same time,

consumption of the retirees should be largely unaffected when the economy is far from an insolvent Social

Security. As we can see from the plots, a higher level of Social Security entitlements decreases consumption

and therefore increases savings of retired agents since it signals that either bankruptcy is more likely to hap-

pen, or that the Social Security benefits will be reduced by a larger amount, given the high level of current

entitlements. The effect is more pronounced for the older agents, as ceteris paribus have less time to smooth

their consumption. At the same time, as expected, when the Social Security trust fund balance is high, we

can see that S does not greatly impact consumption. It is interesting to notice how the use of neural networks

allows us to approximate functions that display strong non-linearities in a multi-dimensional setting.
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Figure 2.12: Numerical approximation of consumption policy functions for retirees belonging to cohort 73

(left chart) and cohort 79 (right chart). On the x-axis, the total amount of Social Security entitlements S. On

the y-axis the Social Security balance H .

2.7.2 Forecast Functions

Table 2.4 shows the hyperparameters used for the neural networks approximating the forecast and bequest

functions. As in the case of households’ consumption policy functions, I use deep neural networks. Forecast

functions are expected to be characterized by significant non-linearities as well, and thus, require the use

of flexible functional approximators. As previously discussed, the forecast function can be considered a

non-fully connected neural network with a multi-dimensional output. Experimentation in the initialization

Hyperparameters

N. of hidden layers 3

N. of neurons (96,48,32)

Activation function ReLU

Gradient update ADAM

N. Epochs 2

Batch size 32

Learning rate 0.001

N. Observations 30,000

Table 2.4: Hyperparameters used to train the forecast function πf and the bequest function πb.

step indicates that a three-layer deep net performs better than a two-layer neural network or a shallow neural
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network. In particular, the pace at which the objective function decreases in the first steps of the initialization

process is higher in a three hidden layer configuration as compared to shallower neural network. In addition,

forecast functions do not constitute the computational bottleneck of the iterative algorithm. For this reason,

I decide to use a more complex neural network for each bequest and policy function. Nevertheless, it is

important to highlight that our results are not particularly sensitive to specification of the architecture of

either the forecast function or bequest function.

In terms of activation function, I select ReLU as activation function for all the hidden layers, while

the output layer has a linear activation function. The learning rate is set to the default rate in Tensorflow

for Adam optimization algorithm. In the training process, I divide the training sample into batches of size

32. In addition, for each iteration of the, I train the bequest and forecast functions for 5 epochs. Table 2.5

shows the mean squared error of the forecast and bequest function obtained during the training process. The

second row displays the bounds of the interval in which the simulated data live. As we can see, they achieve

a satisfactory level of accuracy.

K S σ(K) B

MSE 2.4 ⋅ 10−1 2.1 ⋅ 10−3 4.4 ⋅ 10−6 1.8 ⋅ 10−1

Interval [400,1200] [10,25] [2,3] [6,10]

Table 2.5: Training performance of the forecast and bequest function.

I now provide further evidence supporting the use of a flexible class of functions to represent the

forecast function. Figure 2.13 displays the forecast function for different levels of expenditure S and current

trust fund balance H . As we can see, the forecast function is piece-wise linear: for a sufficiently low level

of trust fund balance (up to the threshold identified by the kink point), Social Security will not be able to

cover the promised benefits to retirees, and therefore will remain in bankruptcy. However, it is important

to highlight that the deep network was able to approximate a piece-wise linear function without issue, as it

exploited the piece-wise linearity of the ReLU activation functions in the hidden layers. This intuition is

reinforced in Figure 2.14.
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Figure 2.13: Computed forecast function for Social Security trust fund balance. On the x-axis, the current

Social Security trust fund balance.

Figure 2.14: Computed forecast function for Social Security trust fund balance. On the x-axis, the current

Social Security trust fund balance.

2.8 Conclusion

In this chapter, I show how economists can take advantage of neural networks paired with deep-learning

techniques in economic applications and, specifically, in the context of large-scale OLG models. While I use

forecast functions and a reduced state space to alleviate the curse of dimensionality, the proposed approach

61



is able to solve for hundreds of policy functions simultaneously by using a global objective function coupled

with an appropriate moment-based gradient-descent algorithm that is able to iteratively adjust the learning

rate of each parameter of each individual policy functions. This allows us to easily and automatically

parallelize the training of the hundreds of policy functions.

The use of a reduced state space has been criticized in the past, as it has been shown to deliver

inferior results as compared to numerical solutions developed using a full state-space approach in certain

applications (see for instance Krueger and Kubler [2004]). The results presented in this chapter, however,

provide support for the notion that a reduced state space paired with projection-based techniques as intro-

duced by Krusell and Smith [1998] can still be used to decrease the computational burden of the algorithm

characterizing the numerical solution, while at the same time achieving similar, if not better numerical per-

formance as compared to state-of-the-art methods relying on the use of the entire state space. In this regard,

we can conclude that i) the interaction between the choice of the specific equilibrium concept, the numerical

solution, and the relative accuracy depend on the specific problem and the holistic nature of the algorithm

developed; and ii) reduced-state space numerical solutions should not be discarded a priori. In particular,

I complement the contribution of Maliar et al. [2019] and Azinovic et al. [2019] by showing that neural

networks can be easily used even in the context of reduce state-space numerical framework.

In this chapter, we also show that we are able to compute the numerical solution of a complicated

OLG model with relatively little fine-tuning of the parameters characterizing the architecture of the neural

networks and the training process. We show that in general, two hidden layer deep neural networks perform

better than shallow and three hidden layer neural networks in terms of speed of convergence and size of the

residuals at convergence. However, the results presented suggest that the specific architecture of the neural

network is not a major driver in the success of the application, as long as the architecture chosen is expressive

enough. While it is important for economists to take into account the trade-off between computational

complexity and the expressiveness of certain architectures, ultimately our results show little sensitivity to

the neural network architectures. In addition, the majority of the other hyperparameters is left to the default

set in Tensorflow, or follows standard conventions widely shared in deep learning techniques, such as the

use of the Glorot initialization for the weights and biases, or the use of ADAM as a gradient-descent based

optimization method.

The success on this application shows that it is possible to use neural networks to provide global

approximations of non-linear policy functions in the context of large and complex OLG models. Based on
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these results, it is clear that the neural networks can be easily extended to other applications. In particular,

it would be interesting to use neural networks to numerically approximate policy functions in OLG models

where agents face non-linear borrowing costs, or where the non-linearities in the dynamics enter explicitly in

the ergodic sets, rather than simply appearing in the transition between stochastic steady states. In Chapter

3, I will use the techniques developed in this chapter to numerically derive the solution under a variety

of policy alternatives. As my results will show, the numerical solution developed in this chapter is highly

adaptable to different policy scenarios, and requires no additional fine-tuning.
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Chapter 3

Estimation and Counterfactual Analysis

3.1 Introduction

In this chapter, I investigate how potential reforms to Social Security would impact the consumption-savings

behavior of households in a general equilibrium framework in order to better understand the welfare impli-

cations of alternatives policy regimes. The analysis is motivated by the current debate about the future of

Social Security; a debate that has only intensified with the recent forecasts that project Social Security will

be insolvent by the mid-2030s. Policymakers are called to act, and different policy proposals have been put

forward, ranging from the total elimination of Social Security, to long-term reduction in retirement benefits,

to an expansion of the scope of the program. However, no systematic analysis has been performed to assess

the impact on the alternative policies on households’ welfare. As such, to address this void, the goal of this

chapter is to assess the differential impact of alternative policy proposals on the welfare of heterogeneous

households. As discussed in Chapter 1, the rate at which Social Security replaces labor income during re-

tirement varies greatly, and generally depends on the average life-time earnings and retirement age of the

retiree. Therefore, an agent’s socio-economic status will determine how their consumption-savings decision

interacts with Social Security because retirement benefits paid by Social Security tend to replace a higher

percentage of earnings for low-earners as compared to high-earners.

In light of these considerations, it is important to identify and estimate the sources of hetero-

geneity that are most likely to interact with the consumption-savings decision of households and with the

institutional features of the current Social Security system and/or the alternative policy proposals. In section

64



3.2-3.5, I estimate the sources of agents’ heterogeneity described in the OLG model introduced in Chapter

1. In Section 3.2, I estimate the life-time earning profiles, and in Section 3.3, I estimate mortality rates

and average life-expectancy based on a semi-parametric Cox proportional hazard model. In Section 3.4,

average retirement age is estimated assuming that retirement is a terminal state using a semi-parametric Cos

proportional hazard model. In Section 3.5, I use different techniques to pin down parameters characterizing

the discount factor and the coefficient of relative risk aversion. I first rely on the use of linear and non-linear

GMM routine presented by Alan et al. [2009] to estimate agents’ coefficient of relative risk aversion and dis-

count factors using Euler equations as moment conditions. I then propose a novel routine estimation based

on the use of the Expectation-Maximization algorithm aimed at uncovering unobserved heterogeneity in the

coefficient of relative risk aversion using as moment conditions linearized Euler equations. I find evidence

suggesting the presence of heterogeneous coefficient of risk aversion in the population, with the conditional

share of the most risk-averse type being increasing the educational attainment.

Finally, in Section 3.7, I examine three alternative policy scenarios to the current Social Security

regime, since, as discussed in Chapter 1, Social Security is projected to become insolvent in the next 15

years. Specifically, I compare the welfare of households under the following three policy alternatives: (1)

utilizing an endogenously determined tax rate to prevent insolvency; (2) utilizing a permanent reduction

in benefits to prevent insolvency; and (3) embracing insolvency by eliminating Social Security completely.

We will discuss the impacts that each alternative policy scenario has on the different groups of households.

While the majority of our analysis will rely on the welfare at the stochastic steady states, we will also

consider the transition costs that each policy imposes. The analysis will rely on the numerical computation

of households’ optimal consumption, which we obtain using the algorithm proposed in 2. As we will see,

the proposed procedure adapts very well to all of the different scenarios, with no fine-tuning on the hyper-

parameters required. This showcases the versatility of the algorithm developed in Chapter 2. In addition,

the performance of the algorithm in terms of the precision of the numerical solution it achieves is at least as

good as the performance of state-of-the-art methods outlined in the literature. Finally, the analysis proposed

in Section 3.7 shows how the use of neural networks scales well and can easily be used in the context of

large OLG models, since it is able to numerically handle an economy populated by eight types of households

living for eighty periods of time.
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3.2 Estimation of the Life-Cycle Earnings Profiles

As discussed in Chapter 1, retirement benefits depend on the life-time earnings of an individual, given that

the Principal Insurance Amount (PIA) is computed as the average of the indexed life-time earnings. This

in turn has an impact on the the replacement rate of Social Security benefits, that is, the share of average

life-time earnings that Social Security retirement benefits replace. As we have seen in Chapter 1, Figure

1.4 shows that the replacement rate varies significant across income levels, and range from 90% for the

lowest income bracket to less that 30% for the top-income level insured by Social Security. Given that in

the model, retirement coincides with the collection of Social Security benefits, heterogeneous replacement

rates are likely going to affect differently the consumption-savings behavior of households, as consumption

at retirement is financed through capital and retirement benefits. For instance, a lower replacement rate may

induce higher saving rates during the working life to allow for consumption smoothing. In addition, the

profile of the labor earnings interacts itself with household consumption-saving decision; a steeper profile

may lead households to more borrow in the earlier stages of their lives compared to households with a flatter

labor income profile. Therefore, heterogeneity in the life-time income profiles represents an important factor

interacting with the institutional details of how the Social Security retirement benefits.

3.2.1 Data

In this subsection, we describe more in detail the construction of the sample used. For the estimation of the

wage equation, we use the data from the Family-Individual File of the Panel Income of Survey Dynamics

(PSID). The Family-Individual database contains a record for each member of the all the households that

are interviews in a certain year. The survey spans the period between 1968 and 2017, and households have

been interviewed annually from 1968 to 1997, and biannually from 1999 to 2017. This accounts for a total

of 39 years of observations. As of September of 2019, the Family-Individual file has 80666 records. For

each record, the file contains information about socio-economic variables at the individual and household

level.

The hourly earnings of the individuals were obtained from the Family part of the dataset, since

the Individual portion of the file does not contain any information about employment or earnings. The

Family part of the dataset records the hourly earnings of the head of the households, and, if present, the

spouse. The data about earnings for a recorded in a certain year refers to the actual earnings gained the
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year before. The Family part of the survey does not provide any information about the earnings of other

members of the household. Head’s and spouse’s earnings are available for all years but except for 1993.

From the sample, we remove the earnings observations that have been top-coded. The PSID uses different

thresholds over time: 99.99$ before 1993, no top-code between 1994 and 1997, and 999.99$ starting from

1999. In addition, we remove observations of earnings that are lower than a third of the prevailing average

federal minimum wage for non farming workers1 in a certain year. In this way, we exclude individuals who

report low earnings. We experiment with different thresholds (a half and a quarter of the federal minimum

wage), but our results are not affected by this choice. We also remove observation of earnings of individuals

aged below 22 and above 66 at the time of the survey. In this way, we want to exclude transitional jobs

into full employment for the young or out of employment for the elderly. From the total sample, we remove

individuals for which we have less than 15 years of available and (strictly) positive earnings data, of which

at least 5 of them needs to be consecutive. In this way, we remove from the sample individuals who do not

display significant attachment to the labor force. In total, we are left with 7119 individuals who alone satisfy

these criteria, 3974 males and 3325 females. We then convert such nominal quantities into real quantities.

We use the chain-type price deflator CPI-All Urban Consumers.

We use the Family file to obtain information about the total number of hours worked of individuals.

As in the case for hourly earnings, the Family portion of the PSID reports the total number of hours worked

in the year preceding the interview for the head, and if present, for the spouse. In the survey, a value of 0

indicates that the individual was not working for pay, i.e. was not participating in the labor market.

We use the Individual File to construct our measure of educational attainment. The PSID reports

the total number of schooling a person has attained, and values range from 1 to 17 for individuals who have

actually attended at least a year of school. Information about the number of years of schooling is available

for all surveys except for 1969. We code as less than high-school educated, individuals who have attended

less than 12 years of school, as high-school educated individuals who have attended 12 years of education,

as with some college education, individuals who have between 12 and 15 years of schooling, and as college

educated individuals who have at least 16 years of schooling.
1https://fred.stlouisfed.org, series: FEDMINNFRWG.
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3.2.2 Estimation

In this subsection, we describe the estimation strategy for the the life-time earnings profile and the replace-

ment rate of Social Security benefits. Consistently with the assumptions made in Chapter 1, it is assumed

that markets for labor are perfectly competitive, and wages are equalized to the marginal product of labor.

First of all, it is important to start from the earnings equation for individual i in year t:

earningsi,t = wi,tli,t (3.1)

which comprises of two elements: the hourly wage win,t and the total number of hours of labor supplied

in a year lin,t. In the model, it is assumed that labor is supplied inelastically, while the wage rate win,t is

determined by competitive markets. Conditional on individual characteristics xin,t, the wage rate win,t can

be expressed as follows:

wit = ωt exp(β′wxin,t + ε
w
in,t) (3.2)

where εwit represents a shock unobserved to the econometrician. The wage rate for individual depends

on individual labor market experience, summarized in lit, and demographic characteristic in zit, so that

xit = (zit, lit). In Equation (3.2), ωt denotes the wage rate per efficiency unit of labor, and represents

what is determined by the marginal utility of the production function of the representative firm. Our goal is

therefore to estimate the average total hours-efficiency supplied by individuals. By taking the logarithm of

Equation (3.2), we obtain the following linear equation:

log (wit) = β
′
wxit + ε

w
it (3.3)

At the same time, we need to estimate for each type and age-cohort, the the number of hours supplied of

labor. In order to do so, we estimate the following regression:

lit = βlxit + ε
h
i,t (3.4)

where li,t represents the total number of hours worked, and xi,t representes a vector of explanatory variables

that include: a polynomial of age up to the third degree, a categorical variable representing the educational

level, and finally gender. This assumption is consistent with the fact that in the model, that is, labor is

supplied inelastically, so that it does not respond to any aggregate shocks incorporated in ωt.

We now turn to the general estimation strategy for the life-time earning profile: we first estimate

via OLS regression Equation (3.3). Based on the estimates of the wage per unit of efficiency, we then
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compute, for each of the selected group of individuals (type i-age n), the average value of each of the

employment-related explanatory variables in x̂in based on the estimates obtained in (3.4).

n̂in,t = ω̂t exp(β̂wx̂in,t)l̂in,t

l̂in,t = β̂lxin,t

We now describe the variables used in the (1.11). The vector lit contains labor-market participation

type of variables: lagged hours worked (up to 2 lags), lagged labor market participation status, a binary

variable taking the value of 1 if an individual i worked at least 200 hours in a year, and 0 otherwise. In this

way, we aim at capturing the non-linear relationship between wages and past labor market experience. In

the vector zit including demographic variables, we include a polynomial of third degree in age, a categorical

variables representing educational attainment and gender, and interaction terms between age and educational

attainment.

Table 3.1 shows the estimated coefficients for the demographic variables, and Table 3.2 shows

the coefficient for the employment variables. The first column of the two tables displays the coefficients

of a richer representation, where interaction terms between age and educational attainment are added. This

allows us to potentially incorporate a different return to experience (here proxied by age) based on the

educational level. As we can see from Table 3.2, the addition of interaction terms has little impact on the fit

of the regression.

The regression results obtained are also used to compute the replacement rate of Social Security

retirement benefits and are based on the assumption that individual has always participated to the labor

market, so that the dummy indicator in lit for lagged labor market participation are all set to 1. This as-

sumption is justified by the fact that we are interested at looking at individuals who have Social Security

benefits through their working history, and therefore have displayed significant attachment to the labor force

throughout their career. Considering that the we have included a time component in the wage regression,

and in light of the fact that the Social Security Administration changes every year they way the it indexes

and cap earnings, we make the following additional assumptions to compute the replacement rates. First of

all, we replace the time dummy with a time trend, since the PSID becomes bi-annually after 1999. Secondly,

we compute the replacement rate for a person who is 19 is 1973, starts working at the age of 22 (compat-

ibly with age at which agents are born in the model), and works until the age of 66. We then compute

the life-time earnings and labor supply profile, we index them to make it in real 2019 dollars, we take the

highest 35 years, and so we obtain the ˆAIMEin for each group of individuals. We then compute the Social
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Table 3.1: Estimated Coefficients for the Wage Equation, Demographic Variables

Dependent variable:

Real Log Earnings

(1) (2)

HS 0.0050 0.2365∗∗∗

(0.0666) (0.0044)

Some College −0.1835∗∗ 0.3993∗∗∗

(0.0748) (0.0050)

College+ −0.5401∗∗∗ 0.7239∗∗∗

(0.0776) (0.0048)

Age 0.0320∗∗∗ 0.0317∗∗∗

(0.0069) (0.0062)

Age Sq −0.0005∗∗∗ −0.0002

(0.0002) (0.0001)

Age Cub 0.000002 −0.000002

(0.000001) (0.000001)

Female −0.3166∗∗∗ −0.3172∗∗∗

(0.0035) (0.0035)

HS x Age 0.0088∗∗∗

(0.0032)

Some College x Age 0.0244∗∗∗

(0.0036)

College+ x Age 0.0527∗∗∗

(0.0037)

HS x Age Sq −0.0001∗∗

(0.00004)

Some College x Age Sq −0.0002∗∗∗

(0.00004)

College+ x Age Sq −0.0005∗∗∗

(0.00004)
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Table 3.2: Estimated Coefficients for the Wage Equation, Employment Variables

Dependent variable:

Real Log Earnings

(1) (2)

HRS(t-1) −0.00001∗∗∗ −0.00001∗∗∗

(0.000003) (0.000003)

HRS(t-2) 0.00004∗∗∗ 0.00005∗∗∗

(0.000003) (0.000003)

HRS(t-3) 0.00001∗∗ 0.00001∗∗∗

(0.000003) (0.000003)

Employed(t-1) 0.1939∗∗∗ 0.1928∗∗∗

(0.0103) (0.0104)

Employed(t-2) 0.1426∗∗∗ 0.1390∗∗∗

(0.0093) (0.0093)

Employed(t-3) 0.1023∗∗∗ 0.0975∗∗∗

(0.0093) (0.0093)

Time Dummy Yes Yes

Observations 139,611 139,611

R2 0.2716 0.2686

Adjusted R2 0.2715 0.2686

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Security retirement benefits that it would collect at FRA, namely ˆSSBin, and from there, we compute the

replacement rate as the ratio between the average life-time earnings the the Social Security at FRA:

ˆSSBin =0.9 ⋅ 1 [ ˆAIMEin]+

0.32 ⋅ 1( ˆAIMEin ≥ 926) [ ˆAIMEin − 926]+

0.15 ⋅ 1( ˆAIMEin ≥ 5583) [ ˆAIMEin − 5583]

θ̂i =
ˆSSBin

earningsin

Table 3.3 shows the wage index-adjusted (in 2019$) life-time earnings used by Social Security to compute

the PIA, by sex and educational attainment. The estimates are based on the average regression results

obtained from Equation (3.3). As we can see from Table 3.3, there is a significant gender gap in life-

time earnings, even after controlling for educational achievement and labor market participation. Also, as

expected, the AIME is increasing in the educational attainment.

<HS HS Some College College+

AIME (Men) 2,980 4,393 5,230 7,356

Replacement Rate at FRA (Men) 0.500 0.442 0.423 0.352

‘ AIME (Women) 1,522 2,335 2,903 4,222

Replacement Rate at FRA (Women) 0.673 0.550 0.505 0.447

Table 3.3: Average AIME, Wage Index Adjusted in 2019 dollars and estimated replacement by gender and

educational attainment.

In Table 1.18 we compute the replacement rate at FRA, i.e. the ratio between the PIA and the

AIME, that is the share of income that Social Security benefits replace at full retirement age. As we have

seen in Chapter 1, Figure 1.4, the replacement rate is decreasing in income. Male high-school graduates

and with some college education have similar replacement rates (44.2% and 42.3% respectively). For both

men and women, estimates show that the replacement rate of college graduates is approximately two-thirds

the one of their counterparts with less than high-school education. This leads to the conclusion that there is

substantial heterogeneity in the replacement rate of individuals across genders and educational groups.
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3.3 Mortality Risk and Life Expectancy

Literature results have empirically shown that there exists a positive correlation between life-expectancy and

various measures of socio-economic status. For instance, Waldron [2013, 2007] show that the mortality rates

of men exhibits an inverse relationship with different measures of earnings using Social Security records.

According to their estimates, men born in 1941 in the top half of the earnings distribution have a life-

expectancy higher by 5.8 than men in the bottom half. In a related study, Bound et al. [2015] arrives to a

quantitatively similar conclusion, although their sample includes also women. Interestingly, they document

that life-expectancy gap between top and bottom earners has increased over time, as low- and high-earners

of the cohort of 1912 had only an estimated 1.2 years gap in life-expectancy, compared to the cohort of 1932,

where the difference in life-expectancy has reached 4.7 years. A more recent study by Bosworth et al. [2016],

while supporting the results of the previous studies, consider alternative definitions of socio-economic status,

including education, income and earnings, and wealth, and investigates whether they could be used proxy for

each other in the context of studies of mortality and life-expectancy. Their results suggest that predicted mid-

career earning and educational attainment are strongly predictive for mortality risk, and therefore can be both

used as explanatory variables in regressions aimed at capturing the relationship between socio-economic

status and life-expectancy. In the context of the model presented, this allows us to characterize the mortality

risk of the agents populating the economy by using their educational attainment. This assumption allows

us to simplify our framework, since in this way population dynamics, which are governed by mortality, can

be considered as ex-ante assigned at the birth of our agents. In this subsection, we estimate the mortality

risks of different groups of individuals, grouped by age, sex and educational attainment, where education

represents the proxy for socio-economic status. In our framework, the use of income-based measures or

education is equivalent, since agents are homogeneous within the group they are born in, but as argued

before, is supported empirically by multiple findings in the literature. The computation of the mortality risk

has two purposes in our model. Firstly, it allows to better characterize the expenditure side of the Social

Security system, letting the total amount benefits disbursed is a decreasing function of the age of the cohort.

Secondly, it allows characterize more precisely the weights of each cohort, and this is relevant if we want to

use the type-cohort specific weights as welfare-weights.
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3.3.1 Data

In order to compute the mortality rates, we use the Individual file of the PSID. The Individual file collects,

for each individual in the sample, the year at which death has occurred (for deceased individuals). In the

Individual file of the PSID, there are 6832 individuals that have died between 1968 and 2017 and have exact

year of death recorded, 73544 that have a recorded year of death equal to 0 (corresponding to being currently

alive), and 290 individuals who are deceased is not recorded precisely, but belongs to an interval. We remove

from the sample individuals for which we do not the exact age at death recorded. Another important variable

that we construct is age of the individual. We define as age as the age at death for individuals who have

died, and for individuals who have not deceased, their age in 2017. To compute the variable age, we need

to infer what the year of birth is. The Individual File of the PSID starts reporting the year of birth starting

from 1983. We are able to infer, directly from this part of the data, the year of birth of 68814 individuals in

the sample. In total, we can compute the age of death of 4961 individuals who are deceased directly from

the year of birth and year of death. Nevertheless, we can infer the age of death of some of the individuals

for which the PSID reports the year of death but not the year of birth by inferring the year of birth from the

recorded age. For each of such individuals, we compute the year of birth as the average of the difference

between their age and the year for which the individual has a recorded age. We take the average as the age

variables recorded in the Personal File represents the age at the moment of the survey, and the survey can be

administered in different parts of the year. In this way, we are able to extrapolate the year of birth for all but

181 individuals. In particular, our sample contains the age at death of 6756 individuals.

3.3.2 Estimation

In light of these considerations, we estimate the conditional survival probabilities as a function of age and

educational attainment and sex. From an estimation perspective, we use as the Cox proportional hazard

model, which represent the risk of dying at time t conditional on the individual-specific explanatory variables

xi:

λ(t∣xi) = lim
dt→0

P (t ≤Di ≤ t + dt∣Di ≥ 0∣xi)

dt
= λ0(t) exp (β′dxi) (3.5)

where xi = (sexi, educi) represents the set of time-invariant demographic variables, and Di represents the

event of death for individual i. The variable educi is categorical, and represent four different educational

attainments: less than high-school (less than 12 years of education), high-school (12 years of education),
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some college (13 to 15 years of education), and college and above (16+ years of education).

Table 3.4: Cox Proportional Hazard Rates, Estimated Coefficients

Dependent Variable

Age Death

(1) (2)

HS −0.127∗∗∗ −0.076∗

(0.029) (0.041)

Some College −0.316∗∗∗ −0.228∗∗∗

(0.042) (0.056)

College+ −0.740∗∗∗ −0.777∗∗∗

(0.048) (0.062)

Female −0.501∗∗∗ −0.459∗∗∗

(0.025) (0.035)

Female x HS −0.101∗

(0.058)

Female x Some College −0.196∗∗

(0.085)

Female x College+ 0.111

(0.097)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Table 3.4, we show the estimates of the coefficients presented in Equation (3.5): in the first

specification, we include the dummies for educational attainment and sex; in the second one, we also in-
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corporate an interaction term between sex and educational attainment. As we can see from the estimated

coefficients in column (1) and (2) of Table 3.4, educational attainment has a negative impact on the hazard

rates, and women have uniformly lower hazard rates than men, as the negative coefficient on Female shows.

From column (2) we can observe that overall, the interaction between educational attainment and sex do not

appear to be uniformly significant at the 5% level across educational levels. As we can see, the interaction

between Female×HS is negative but significant at a 10% level, while the coefficient Female×College is not

significant at any standard level. We can conclude that in general, hazard rates seem to depend on sex and

the selected proxy (educational attainment) for life-time socio-economic status.

Given Equation 3.5, we can compute the conditional survival probability at age n as:

Ŝ(n∣xi) = P̂ (Di ≥ n∣xi) = exp(−∫

n

0
λ̂(u∣xi)du) = exp(− exp(β̂

′
dxi)∫

n

0
λ̂0(u)du) (3.6)

We use Equation (3.6) to estimate the survival probabilities of each group. Given that we do not find the

interaction terms between sex and educational attainment to be significant, we use the coefficients estimated

from the more parsimonious specification presented in column (1) of Table (3.6). Figure 3.1 shows the

estimated conditional survival rates based on educational group and sex. As we can see from Figure 3.1,

men have uniformly lower conditional survival probabilities than women, and conditional on sex, they are

monotonic in educational attainment. We can now compute the average life-expectancy of the different

Figure 3.1: Conditional survival probability. Source: Panel Survey of Income Dynamics. Period: 1968-

2018.

demographic groups. Given Equation (3.6), we can compute the conditional life-expectancy as follows:

E [D∣xi] = ∫
+∞

0
Ŝ(n∣xi)dn (3.7)

Table 3.5 displays the computed average life-expectancy for each demographic group based on Equation

(3.7) and the estimates presented in Table 3.4. Considering that there is not closed-form expression, I
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numerically integrate using the treapezoid method. Results show that conditional on education attainment,

women have higher life-expectancy than men. The smallest gender gap is among the college educated group

(2.9 years), while the biggest one is recorded among the group with some college education (6.5 years). Sim-

ilarly, life-expectancy is strictly monotonic in the educational attainment conditional on sex. Our estimates

point to an approximate difference life expectancy of around 7.5 years between high-school dropouts and

college educated men. The biggest gap for men is recorded between the group with some college education

and college graduates, which is estimated to be of 4.9 years, compared to 1.1 years difference between high-

school dropouts and high-school graduates, and 1.5 difference between high-school graduates and the ones

with some college education. For what concerns women, the estimated difference in life-expectancy is 5.2

years between the most- and least-educated groups. The gap is 1.6 years between high-school dropouts and

high-school graduates, 2.3 years between high-school graduates and women with some college education,

and 1.4 years between women with some college education and college graduates.

<HS HS Some College College+

Men

Life Expectancy 74.3 75.4 76.9 81.8

# Years. Benefits (Ret. age 66) 8.3 9.5 10.9 15.8

% rel. to HS Men Dropouts 100% 114% 131% 190%

Women

Life Expectancy 79.5 81.1 83.4 84.7

# Years. Benefits (Ret. age 66) 13.3 16.1 17.4 18.7

% rel. to HS Men Dropouts 160% 194% 210% 225%

Table 3.5: In the first row average Life Expectancy, calculated using Cox proportional hazard rates, con-

ditional on educational attainment and sex. In the second row, the expected number of retirement benefits

received if they were to retired at the current FRA of 66. In the third row, the number of years in benefits

relative to male high-school dropouts.

Table 3.5 displays the number of years each demographic group is expected to receive retirement

benefits, conditional on retiring at the current FRA of 66. A college-educated man receives benefits for 7.5

more years than a high-school dropout, since the high-school drop-out would collect benefits for an average

of 8.3 years, while college-graduate for 15.8 years. This implies that a college graduate men would collect

retirement benefits for period that is nearly twice as long as the one of a high-school dropouts. The difference

between high-school graduates and dropouts is only 14%. Similar patterns are observed for women. Women

in the high-school dropouts category expect to receive benefits for 13.3 years, a 60% increase to their male
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counterparts, while for women with college education the average collection would last for 18.7 years.

Overall, these computations show differences in life-expectancy are non-negligible across dif-

ferent demographic groups, and they significantly interact with Social Security in the number of expected

years of retirement. In particular, while the computation of the benefits is progressive, differences in life-

expectancy seem to clearly favor demographic groups in higher socio-economic status. In Section 3.4, we

investigate whether differentials in retirement age accentuate or mitigate this factor.

Finally, we use the estimated hazard rates and survival probabilities to characterize the population

dynamics. We define mortality rate at age n as:

µ̂(n∣xi) = P̂ (Di < n + 1∣xi,Di ≥ n) =
P̂ (n ≤Di < n + 1∣xi)

P̂ (Di ≥ n∣xi)
=
Ŝ(n∣xi) − Ŝ(n + 1∣xi)

Ŝ(n∣xi)
(3.8)

where the survival probabilities are computed using Equation (3.6). Equation (3.8) rules the population

dynamics described in Section 1.4 of Chapter 1.

To fully characterize the population dynamics, we need now to compute the population share of

the initial cohort, namely Pi1. In order to do so, I use the individual files from the PSID, specifically from

1972 to 2017. For each year of the survey, I compute the population shares by educational attainment

conditional on sex and on age cohort. I then average the yearly shares for each education level to estimate

the composition of the initial cohort. Table 3.6 reports the computed separately for two separate waves of

surveys: 1972-1997 and 1999-2017, for the cohort group aged 22-30. By doing so, we want to investigate

whether there have been significant changes over time in the composition of the initial cohort. As we can

Men Women

Educational attainment
1999-2017 1972-1997 1999-2017 1972-1997

High-School Dropouts 8.16% 14.40% 7.67% 15.70%

High-School Graduates 34.88% 40.01% 29.88% 41.90%

Some College 29.34% 24.13% 29.10% 23.51%

College+ 27.06% 21.39% 33.31% 18.89%

Table 3.6: Population shares by educational attainment conditional on sex for the cohorts aged 22-30.

from the two row, the share of high-school dropouts and graduates has significantly decreased for both men

and women. High-school dropouts constituted 14.4% (15.70%) of the young men (young women) in the

sample in the waves between 1972-1997, while the amounted to only 8.2% (7.7%) of the sample in the 1999-
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2017 waves. A similar pattern can be observed among high-school graduates: the share decreased by 5.1%

for men, and nearly 12% for women. From the third and the fourth row, we can see that share of individuals

with at least some college educations has increased over time: for men, then gains amount to approximately

11% while for women are nearly double, 20.0%. These results suggest the following: the composition of

the population has changed over time, and on average, has achieved higher educational attainments. These

results are largely in line with literature findings (see for instance Krusell et al. [2000]). At the same time,

they indicate that while it is not clear whether the educational composition has reached the steady state, for

the purposes of our analysis it better to consider only the most recent waves of the PSID survey. For this

reason, in the counterfactual analysis I use the population shares obtained from the 1999-2017 waves.

3.4 Retirement

The effect of differential mortality rates on the redistributional effects of Social Security can be partially

mitigated by the negative correlation between retirement age and to measures of economic status. For

instance, Bosworth et al. [2016] estimate that a twelve year gap in life expectancy between top and bottom

earners translate in only a difference in eight years in the length of the period during which retirement

benefits are collected. At the same time, differentials in retirement age affects the actual computation of the

benefits received, as they depend on the actual age

The applied microeconomics literature has widely studied the determinants of retirement deci-

sions, and how that affects labor supply. In particular, study suggest that changes in institutional features

characterizing Social Security are likely to affect labor supply of older workers on the extensive margin. For

instance, Gustman and Steinmeier [2011] estimate that a combination of the incremental increase in the Full

Retirement Age and the elimination of the earning test after Full Retirement Age helps explain the increase

participation in the labor market of workers aged recorded in the 1990s and early 2000s. Similarly, French

[2005] estimate that by permanently reducing retirement benefits by 20% would lead to a postponement in

the retirement of an average of three months. French and Jones [2011] investigate how employer related

insurance, Medicare and Social Security jointly impact retirement. They estimate that by raising Medicare

eligibility by two years (from 65 to 67), would increase the labor supply by 0.074 years of workers aged

between 60 and 69. They estimate a similar response in magnitude if the total amount of benefits were

reduced by two years. Gustman and Steinmeier [2002] builds a structural model that helps explaining how

the individual retirement decision is affected by the spouse retirement decision; their analysis show that cou-
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ples with double careers tend to coordinate, with women more likely to anticipate retirement if their spouse

decides to retire.

As described in the previous paragraph, results in the literature suggest that labor supply is likely

to increase as a response to a cut in benefits, a scenario that we consider in our counterfactual analysis.

The question now becomes on whether the impact is likely or not to be meaningful from a macroeconomic

perspective, i.e. if alternative counterfactual scenarios would trigger a change in labor supply that affect

wages and interest rates. From the evidence presented above, it appears that the overall macroeconomic

effects are small for two reasons. First, the supply of labor only changes for workers in the later stages of

their careers as a response to changes in the institutional secondly, the changes are small in absolute terms,

in the order of months at most. Therefore, in this subsection, I estimate the retirement age through a reduced

form model, that does not incorporate as variable of interest institutional characteristic of the Social Security

system.

3.4.1 Data

In order to estimate the expected retirement ages across different demographic groups, we use the Health

and Retirement Study (HRS), a biennial survey that spans the period between 1992 and 2016. In this

particular application, we define as retirement age as the age at which a person first starts to collect Social

Security retirement benefits. It is important to highlight that, in the U.S. a person can continue to work

while collecting retirement benefits: depending on the age and the earnings, a penalization can be applied

by Social Security and retirement benefits may be decreased as a consequence of a continued participation

in the labor market. To be more specific, the earning test acts as a temporary disincentive for people who

want to continue working after they decide to claim their Social Security benefits before full retirement age

(FRA). The penalization depends on the age at which the person decides to claim the benefits while working:

after FRA is reached, no penalization is applied. Before then, Social Security withholds 1$ in benefits for

every 2$ of earnings in excess of the lower exempt amount (17,640$ in 2019), and 1$ in benefits for every

3$ of earnings in excess of the higher exempt amount (46,920$ in 2019).

In light of these factors, we can make two observations. First, the collection of Social Security

does not necessarily coincide with the exit from the labor market. Second, Social Security benefits can

change if someone apply for them before FRA but continues working: in general, benefits will increase

once someone reaches FRA to account for the withholding of benefits determined by the earning test. These
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are important considerations to take into account when define what retirement means in this context, and

how it is associated to labor market participation and Social Security benefits.

As documented in the literature, a non-negligible share of workers rejoins the labor market after

considering themselves as retired. This leads to the possibility of adopting multiple definitions for retire-

ment. In general, retirement definitions can be based on the employment status and the degree to which a

person participates to the labor market (based on actual labor market supply, or on measure of earnings);

alternatively, can be based on the respondent subjective perception, or on when the respondent has actu-

ally started receiving Social Security benefits from the OASI. Considering that this study focuses on Social

Security, we use as retirement age the age at which HRS respondents started to receive Social Security.

Occupation Classification Group <HS HS Some College College+

Never work

All 0.635 0.585 0.542 0.479

Men 0.573 0.527 0.487 0.430

Women 0.702 0.631 0.593 0.552

Work only PT

All 0.202 0.248 0.272 0.300

Men 0.223 0.251 0.283 0.300

Women 0.180 0.246 0.263 0.301

Work FT

All 0.162 0.167 0.185 0.221

Men 0.204 0.222 0.230 0.270

Women 0.118 0.123 0.144 0.147

≤1 period of empl.

All 0.772 0.727 0.711 0.636

Men 0.727 0.671 0.668 0.582

Women 0.822 0.772 0.750 0.717

>1 period of empl.

All 0.228 0.273 0.289 0.364

Men 0.273 0.329 0.332 0.418

Women 0.178 0.228 0.250 0.283

N. obs.

All 2733 4455 2717 2541

Men 1420 1989 1296 1530

Women 1313 2466 1421 1011

Table 3.7: Source: Health and Retirement Study. Period: 1992-2016. Share of individuals who never work

again, only work part-time, work part-time or full-time by gender or educational attainment.

81



Table 3.7 shows some descriptive statistics about employment post collection of Social Security

for different demographic groups, divided by educational attainment. The employment definition are based

on the self-reported status. In particular, the HRS asks to each respondent whether she/he is in the labor

force, and if in the labor force, whether she/he worked part-time or full-time. For each respondent, we com-

pute the number of positive answers for each of the questions. The first row shows the share of individuals

in the sample that never work after starting collecting Social Security benefits; the second one displays the

share of individuals in the sample that only work part time. Finally, one the third row, we present the share

of individuals who continue on working either part time or full time.

As we can see from the first row, for each level of educational attainment, the relative majority

of people does participate in the labor force either in full-time or part-time capacity after starting collecting

Social Security benefits. The share is decreasing in the educational attainment, with 63.5% of high-school

dropouts permanently exiting the labor force after starting collecting Social Security benefits vs. 47.9%

of college graduates. If we restrict our attention to full-time employment, only between 16.2% to 20.2%

of Social Security recipients either continue to work full-time or go back to full-time employment. In this

case, the share of individuals working full-time is decreasing in educational attainment. Similar patterns

can be observed for part-time employment: 20.2% of high school dropouts hold a part-time position after

starting collecting Social Security benefits, compared to 30.0% of college graduates. This suggests that while

retirement as defined by starting receiving Social Security benefits does not determine a permanent exit from

the labor market, 77.9% to 83.7% of individuals in the sample neither continue to work full time nor go back

to a full-time employment position. It is important to notice the existence of a gap between men and women:

on average, women are less likely to be in the labor force after they start collecting Social Security benefits.

The gap appear significant, and it is in the order of 10% if we consider the difference in share of women

and men who never work again after starting to collect retirement benefits. Minor differences are observed

in part-time employment. This suggests that women tend to be less attached to the labor force once they file

for Social Security benefits.

The second part of the Table (row 4 and 5) displays the average tenure for different types of

employment (part-time or full-time). As we can see from row 4, the majority of workers hold an employment

position for at most one year after starting collecting Social Security benefits. The ratio is decreasing in

the educational attainment, with 77.2% of high-school dropouts working for at most one year, 72.7% of

high-school graduates, 71.7% of individuals with some college education, and 63.6% of college graduates.

Similar patterns are observed for mean and women: men on average work a longer period of time compared
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to women: 27.3% work for more than one period compared to only 22.8% of women. Altogether, the

evidence suggest we can proxy the starting collecting Social Security retirement benefits with exit from

the labor market and that the exit from the labor market is permanent. This result is in agreement with

literature results (see for instance Gustman and Steinmeier [2002],Gustman and Steinmeier [2004]) that

show a coordination effect in couples in the joint decision of retirement.

Given the we have established a definition for retirement, i.e. the start of collection of Social

Security benefits, we can now describe the steps taken to compute average retirement age. From the HRS,

we can infer the age at which a survey respondent started receiving Social Security benefits. The issue comes

from the fact that the survey does not specify whether the first received benefit is related to the disability

insurance or the old-age and survivor insurance. A person can start collecting Social Security retirement

benefits related to his own working career at the age of 62; therefore, we exclude every from the sample

every individual who reports an earlier collection age. This selection rule can be problematic, especially

if for instance there is a correlation between the occurrence of disability, early retirement and education

attainment or sex. Suppose for instance, that low-educated male are more likely to be employed in jobs that

are physically demanding, and this increases their chances to apply for disability benefits before the age of

62; by excluding these individuals from the sample, we would likely obtain an upper biased estimate of the

average retirement age of male high-school drop-outs, as we would include in the sample only healthy ones.

While this is a reasonable concern, the limitation of the data does not allow us to provide a better solution.

Secondly, we exclude all individuals who have never reported a Social Security age, and are older

that 70 in the latest survey in which they participate. Considering that Social Security retirement benefits

do not accrue after the age of 70, it is hard to envision why someone would not collect benefits starting the

age of 70. In addition, we focus on individuals who have shown a relatively strong attachment to the labor

force throughout their life. Therefore, we exclude from the sample everyone who has not reported at least

20 years of professional experience. We experiment with different threshold, but we find that our results do

not significantly change based on the different thresholds. In addition, we exclude all individual who have

not reported a starting age of collection Social Security benefits, but who Social Security retirement income

has been positive at least in one wave. This leaves us with a sample of 12,808 observations, with 10,488 of

them classified has having retired at a certain point in time.
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3.4.2 Estimation

Using the Health and Retirement Study, we estimate the average retirement age for different educational

groups, separately for men and women. By doing so, we achieve two goals: on the one hand, we assess

whether differences in life-expectancy are directly translated into differences in the expected of years of

benefits received; on the other, we use these estimates to compute the share of Principal Insurance Amount

that each demographic group would receive if it were to retire at the estimated age. Our estimates are

based on Cox proportional hazard rates defined in Equation (3.5), where retirement is considered to be the

event/terminal status. As explanatory variables, we use dummies for educational attainment and gender as

in the survival analysis carried out in the previous subsection.

Table 3.8 shows the estimates for the coefficients of the relevant demographic variables. We run

two different specifications: in the first one (column 1), we specify a richer model in which the interaction

term between the gender dummy and the four educational attainments is introduced; in the second one

(column 2), we consider a parsimonious version of the model, where no interaction terms are considered. As

we can see from specifications, the hazard rate is decreasing in the educational attainment. The coefficients

for high-school graduates (HS), female high-school dropouts (Female) and for female high-school dropouts

(Female ×HS) are not statistically significantly different from 0 at any standard level; this implies that, given

that male high-school dropouts represent reference group, that the hazard rate of men and women with at

most high-school education is very close. At the same time, from column (1) we can see that the coefficient

for men with some college education and with at least a bachelor degree are negative statistically significant

at the 1% level. In particular, we can notice that as we increase the educational level, the size of the relative

coefficient becomes more negative. Given the relationship between hazard rate and expected duration of the

event, this implies that the average age at which retirement benefits are collected is increasing in educational

level. From column (2) of Table 3.8, we can see that the coefficient for the dummy women in negative.

Therefore, we can infer that on average women start collecting benefits at older ages. In addition, as column

(1) shows, the interaction terms between gender and educational attainment do not appear to be significant

at 1% level, suggesting that there is no strong interaction between educational level and gender. Therefore,

in estimating the average retirement age, use the coefficients column (2) of Table 3.8.

Table 3.9 displays the estimated ages at which different groups start collecting Social Security

benefits. While clearly there is a positive relationship between age at first collection of Social Security

benefits and educational the difference between the least and the most educated groups is approximately
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Table 3.8: Cox Proportional Hazard Rates, Retirement Age

Dependent Variable

Age First SS Retirement Benefits

(1) (2)

HS −0.033 −0.019

(0.036) (0.028)

Some College −0.192∗∗∗ −0.245∗∗∗

(0.040) (0.030)

College+ −0.449∗∗∗ −0.480∗∗∗

(0.038) (0.031)

Female −0.065 −0.103∗∗∗

(0.047) (0.020)

Female x HS 0.020

(0.057)

Female x Some College −0.116∗

(0.062)

Female x College+ −0.082

(0.063)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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<HS HS Some College College+

Men

Avg. Retirement Age 63.7 63.8 64.1 64.7

Share of PIA 84.7% 85.3% 87.3% 91.3%

Women

Avg. Retirement Age, Women 63.9 63.9 64.5 65.0

Share of PIA, Women 86.0% 86.0% 90.0% 93.3%

Table 3.9: Average Retirement Age, by Sex and Educational Attainment, implied by Cox proportional

hazards model.

one year, for both men and women. Therefore, while college educated individuals are expected to receive

retirement benefits for an average of a year less compared to college dropouts based on their retirement

age, the difference in number of years of collections is mostly driven by a differential in life-expectation

across different groups. As shown in Table 3.5, the average life-expectancy gap between male high-school

dropouts and college graduates is 7.5 years, which translates into a 6.5 years different in the average number

of retirement years. Our estimate therefore suggest that differentials in retirement age mitigate little the

gap in years of retirement benefits stemming from difference in life-expectancy. Our results differ from

Bosworth et al. [2016], as their estimate point to a larger retirement gaps among individuals belonging to

different socio-economic groups. However, they use life-time earnings to capture socio-economic status,

while here we assume it is represented by educational attainment.

Based on the results presented in Table 3.9, we can compute the penalization that would derive

from retiring before FRA. Assuming a full retirement age of 66 years (which is currently applied to the

cohorts of 1943-1954), men with less that college degree would receive a Social Security benefit that is

approximately 85% of the PIA based on our estimates. For college graduates, with a average retirement

age of 12 months higher than non-college graduate, this would translate with a only 9% deduction of the

PIA. This implies that the retirement age affects in a non-negligible way the amount of retirement benefits

received on a yearly basis. Given the estimates presented in Table 3.9 and in Table 3.3, we can compute the

effective replacement rate for the eight identified groups taking into account the penalization that is applied

when retiring before full retirement age is reached. Results are displayed in Table 3.10. As we can see,

the estimated replacement rate is decreasing in educational attainment, and women have a uniformly higher

replacement rate compared to men. Conditional on sex, the gap between the highest and lowest educated

groups is significant. For men, the replacement rate of college graduates is 30.13%, while for high-school

dropouts is 42.35%, a 29.9% difference in relative terms. High-school graduates men and men with some
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<HS HS Some College College+

Men 42.35% 35.83% 34.92% 30.13%

Women 57.88% 47.30% 45.45% 41.71%

Table 3.10: Social Security benefits replacement rate, conditional on educational attainment and sex. Re-

placement rate is defined as the ratio between the estimated retirement benefits at retirement and the index-

adjusted average life-time income. Estimates computed taking into account group-specific retirement ages.

college experience display very similar replacement rates (35.83% and 34.92% respectively). Similarly, the

replacement rate for college educated women is significantly lower than high-school dropouts (respectively

57.88% and 41.71%), corresponding to a relative difference of 27.8%. These computations indeed show

how Social Security is redistributive in the way it computes monthly retirement benefits (i.e. abstracting

from any consideration about differential life expectancy).

3.5 Structural Estimation of the Coefficient of Relative Risk Aversion and

the Discount Factor

In order to understand the welfare implications of potential changes in Social Security affect households

welfare, it is important to uncover households preferences for time and risk. The identification and the

estimation of preference parameters has been at the center of the structural estimation literature for more

than 30 years. In particular, the use of Euler equations, i.e. the first-order conditions from the dynamic

optimization problem of the household, has been widely exploited as moment conditions in the context of

linear and non-linear GMM methods.

The imposition of moment conditions allows econometricians to not fully specify the market en-

vironment in which households live and the distributions of the underlying stochastic processes. The esti-

mation relies on the parametrization of the utility function that is usually modeled with a iso-elastic form:

u (cht ,x
h
t ) = exp (θ′xht )

(cht )
1−σ

1 − σ
(3.9)

where σ represents the coefficient of relative risk aversion and its inverse 1
σ denotes the elasticity of inter-

temporal substitution. As described in Chapter 1, households maximize expected utility, which is inter-

temporally additive, and discounted at a geometric discount rate β. Under the assumption of rational expec-
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tations, agents optimization of the problem presented in Equation (3.9) leads to the following equilibrium

conditions:

Et [β (
cht+1
cht

)

−σ
exp(θ′∆xht,t+1)Rt+1] = 1 (3.10)

where Rt+1 is the real return of a generic asset that is available for trade to the household. By deriving

Equation (3.10) as an optimality condition, we are implicitly assuming that households do not face a liquidity

constraint at any period. Although this is a standard assumption in the literature, its validity depends on the

sample of households that is considered. As stated by Alan et al. [2018], traditional data sources do not allow

to satisfactorily deal with the liquidity constraint, and therefore, the assumption is motivated by empirical

feasibility.

We can define ηt+1 as the expectation error (or the innovation in the discounted value of the

marginal utility):

ηht+1 = β (
cht+1
cht

)

−σ
exp(θ′∆xht,t+1)Rt+1 − 1 (3.11)

where clearly Et [ηt+1] = 0 by construction. Economic theory implies that the expectation error ηht+1 is

orthogonal to any variable that belongs to the information set of household. In general, GMM estimations

rely on the orthogonality of the expectation error ηt+1 expressed in Equation (3.11) with respect to a set

of variables that belong to the information set of the households. Therefore, in order to implement the

estimation through a GMM approach, we need to find a vector of instruments that are included in the in

the information set of the household. If we assume that the demographic variables are orthogonal to the

forecast error, then it would sufficient to use only one instrument to identify the structural parameters (σ,β)

in addition to the constant.

3.5.1 Data

As the main source of household-level data, we use the Panel Survey of Income Dynamics (PSID). This

survey contains information about food expenditures, and it has been widely exploited in the literature for

the purposes of estimating the discount factor and the coefficient of relative risk aversion. As our baseline,

we use the food consumption data available from 1974 to 1987. We limit ourselves to this specific window

of time since food data are hard to interpret before 1974, and expenditure related questions where suspended

until 1999. In addition, starting from 1999, the survey has been conducted only on a biannual basis, and
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the definition of some of the relevant expenditure categories has changed. For this reason, I decide to only

consider the earlier data available. As a measure of food consumption, we use total value of food consumed

at home, food away from home, and food stamps. The data is collected on a yearly basis, and the individual

level considered is the household. For the purposes of the empirical analysis, I select households that satisfy

the following criteria:

• appear in the sample for at least 5 periods;

• whose head is married and does not change over time.

It is assumed that all households face the same interest rate, that is calculated as the yearly average US 3-

month T-bill rate deflated by the Consumer Price Index. The sample contains a total of 3382 households, for

a total of 31969 observations. We identify the educational level of a household as the educational attainment

of its head. The sample contains 1018 high-school dropouts, 1419 high-school graduates, 697 with some

college degree and 677 with college education.

Non-Linear GMM Let ηht+1 be the forecast error represented in Equation (3.11) and let zhit a vector of

instruments belonging to household h information set. Then, the orthogonality condition implied by the

Euler equation implies:

Et [ηht+1z
h
t ] = 0 (3.12)

We estimate a non-linear GMM to recover the structural parameters of interest. In terms of demographic

variables, we assume that the vector xht contains only the number of individuals in the household, as assumed

by Alan et al. [2009]. We assume that the vector of instruments contains the constant, the first and second

lag of the real risk free interest rate, and under the assumption that household are able to perfectly forecast

the future number of family members, the change in the actual number of household members. Under these

assumptions, we define the vector of instruments as zht = (1,Rt,Rt−1,∆n. peopleh), so that we can set the

empirical moment conditions as follows:

1

T

T

∑
t=1
∑
h∈H

ztη
h
t+1 (σ,β, θ)

whereH denotes the set of households in the sample.
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As discussed by Alan et al. [2009], problems arise if we assume that consumption is measured

with a multiplicative error that takes the following form:

cht = c
0h
t µ

h
t (3.13)

where c0ht represents the true consumption of the household. In particular, the presence of measurement error

would lead to a biased estimate in the discount factor. For this reason, we follow Alan et al. [2009] and we

account for the possibility that the consumption expenditure observed by the econometrician is affected by

a household specific measurement error. As an identification assumption, we impose that the measurement

error is independent from any other variable, either observed or unobserved by the econometrician. In this

case, the household’s Euler equation would take the following form:

ηht+1 = β (
cht+1
cht

)

−σ
(
µht
µht+1

)

−σ
exp(θ′∆xht,t+1)Rt+1 − 1 (3.14)

where Et [η
h
t+1] = 0, where the measurement shocks (µht , µ

h
t ) are not observed. In this case, even if ηht+1 and

(µht , µ
h
t+1) are independent (as postulated), the moment condition used for the non-linear GMM estimation

would depend on the higher-order moments of the measurement error. Following Alan et al. [2009], we

assume that i) µt is stationary and independent from any other variable and ii) µt is log-normally distributed

µht ∼ N (µ, γ). This allows to the derive the following analytical solution for the expectations of the error

terms:

Et [(
µht+1
µht

)

−σ
] = E [(

µht+1
µht

)

−σ
] =

E [(µht+1)
−σ]

E [(µht )
−σ]

= eσ
2γ (3.15)

where we replace the conditional expectation with the unconditional one given, and we obtain a closed-form

solution for expected value given the independence assumption and the log-normality of µht . In a similar

fashion, we can obtain the following analytical formulation between measurement errors at time t and t+ 2:

Et [(
µht+2
µht

)

−σ
] = eσ

2γ (3.16)

By using Equations (3.15) and (3.16), it is straightforward to derive the following moment conditions:

Et [β (
cht+1
cht

)

−σ
Rt+1 − e

σ2γ
] = 0 (3.17)

Et [β
2
(
cht+2
cht

)

−σ
Rt+1Rt+2 − e

σ2γ
] = 0 (3.18)

In terms of instruments, for the first moment condition (3.17), I use the constant, and the values of the real

interest rate lagged one time and two times respectively. I define zh1t = (1,Rt,Rt−1,∆N. peoplet,t+1). For
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σ β θ γ

GMM-Measurement Error 1.8018 0.8414 0.1069 0.0030
(0.7100) (0.1049) (0.0398) (0.0062)

GMM 1.3943 0.9793 0.4822 –
(0.4749) (0.0700) (0.27675)

Table 3.11: Estimates of the coefficient of relative risk-aversion σ, the discount factor β obtained by solving

for the exact non-linear GMM and the non-linear GMM with approximation error. In parentheses, standard

errors obtain through bootstrapping.

the second moment condition (3.18), I choose as instruments zh2t = (1,Rt,∆N. peoplet,t+2). In total, we

estimate 4 structural parameters with 7 moment conditions. In Table 3.11 I report the estimated coefficients

using non-linear GMMs, when consumption expenditure is measured with and without error. In the first

row, I report the estimates for the specification with no measurement error, while the second row shows the

parameters for the specification that incorporate the multiplicative error. The reported standard errors are

obtain through a bootstrapping procedure. I resample with replacement the same number of households from

the original sample, creating an artificial sample from which I then estimate the two different specifications

of the non-linear GMM. Standard errors are then obtained as follows:

ˆSt. Dev (σ̂) =

¿
Á
ÁÀ 1

B

B

∑
b=1

(σ̂b − σ
B)

2
, σB =

1

B

B

∑
b=1
σ̂b

ˆSt. Dev (β̂) =

¿
Á
ÁÀ 1

B

B

∑
b=1

(β̂b − β
B
)
2
, β

B
=

1

B

B

∑
b=1
β̂b

First, the estimation of the parameters proves to be particularly challenging, since the objective function

is non-linear in the parameters of interest. In particular, I observe that the objective function is very flat

in large portions of the parameter space, leading to a significant volatility at the convergence of the of the

optimization algorithm. In particular, traditional gradient based optimization methods seem to fail, deliver-

ing values for the coefficient of relative risk aversion smaller than 1. For this reason, I resort to the use of

Bayesian optimization type of techniques, which prove to be particularly useful when the objective function

is not necessarily well behaved, or when the objective function is expensive to evaluate. In particular, I use

the algorithm developed by Bergstra et al. [2011] to search for the optimal set of parameters. The use of this

algorithm alleviates the difficulty encountered by gradient based methods.

As we can see from the results in Table 3.11, the GMM with no measurement error provides a

lower point estimate for the coefficient of relative risk (1.39) aversion compared to the GMM with measure-
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ment error (1.80). On the contrary, the estimate for the discount factor in the exact GMM (0.97) is higher

than for the GMM with measurement error (0.84), the latter looking implausibly low for a yearly discount

factor. In both cases the parameter that accounts for family size is positive, but the magnitude differ quite

significantly across specifications. In particular, in the exact GMM case the estimate for θ appears to be

imprecise, given the large standard deviation that is obtained via bootstrapping. Overall, our results are not

particularly satisfactory, since our moment condition seem to be able to only weakly identify the parameters

of interest in the context of a non-linear optimization problem.

For this reason, I decide to resort to a linear GMM estimation based on a log-linearized version

of the Euler equation presented in Equation ?. The choice is motivated by two reasons. First, in the case

of linear GMM, we are able to obtain estimates in a closed-form fashion. Secondly, Attanasio and Low

[2004] show in a Montecarlo study that the log-linearized Euler equations delivers unbiased estimates for the

coefficient of relative risk-aversion under a variety of assumptions regarding the underlying data-generating

process, and in general, performs better than a non-linear GMM. The only downside of this estimation

routine comes from the fact that in general, it is not possible to separately identify the discount factor.

Linear GMM Another common approach in the literature to estimate households preferences starts from

the log-linearization of Equation (3.14):

∆cht,t+1 =
1

σ
logβ +

1

σ
logRt+1 + θ

′∆xt,t+1 + log(1 + ηt+1) + σ (log(µht+1) − log(µht )) (3.19)

The unobserved component of Equation (3.19) depends on two terms: the expectation error log(1 + ηt+1)

and the measurement error logµht+1 − µ
h
t . In general, it is easy to see that unless we are willing to make

some assumptions about the distribution of the expectation error and the measurement error, then:

Et [log (1 + ηt+1) + σ (log(µht+1) − log(µht ))] ≠ 0 (3.20)

For instance, the assumption of stationarity helps us remove the measurement error from (3.19) even if we

did not assume that the measurement error follows a 0 mean process or a particular distribution. At the

same time, in (3.11) the expectation error enters in a non-linear way. Given that the McLaurin expansion of

log(1 + ηt+1) takes the following form:

log(1 + ηht+1) =
+∞
∑
n=1

(−1)n
(ηht+1)

n

n
(3.21)
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it is easy to see that in general, the expected value log(1+ηt+1) will depend on the second- and higher-order

moments of ηt+1. In particular, let define

νht+1 = η
h
t+1 −

+∞
∑
n=2

(−1)n
Et [(η

h
t+1)

n]

n
(3.22)

given that Et [ηt+1] = 0 by construction. Therefore, we can rewrite Equation (3.19) using (3.22), and obtain

the following expression:

∆cht,t+1 =
+∞
∑
n=2

Et [(η
h
t+1)

n]

n
+

1

σ
logβ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constant

+
1

σ
logRt+1 + θ

′∆xt,t+1 + ν
h
t+1 + σ (log(µht+1) − log(µht ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error term

(3.23)

From Equation (3.23) we can see that the model-implied constant in Equation (3.23) captures the higher

moments of the conditional expectation error of the household; at the same time, under the assumption of

stationarity of the measurement error, the model-implied error term has now mean 0. We can see that if

we were to run an IV regression based on this relationship, then the constant would capture the discount

factor and the means of higher order moments, even if we assumed that the log measurement error had a 0

conditional mean Et [log(µht+1)] = 0. It is worth highlighting that without further assumption, in the case of

a log-linearized Euler equation as in (3.23) it is not possible to separately identify the discount factor. The

residual term would contain the measurement error, and an error deriving from the first-order approximation

and including higher moments of consumption growth and interest rates conditional on past information.

For estimation purposes, we can rewrite:

∆cht,t+1 = γ0 + γ1 logRt+1 + θ∆xt,t+1 + ε
h
t+1 (3.24)

γ0 =
+∞
∑
n=2

Et [(η
h
t+1)

n]

n
+

1

σ
logβ

γ1 =
1

σ

εt+1 = ν
h
t+1 + σ (log(µht+1) − log(µht ))

As first noted by Chamberlain [1984], and discussed by Altug and Miller [1990] and Attanasio

and Low [2004] there is no reason to believe that those cross-section means of forecast errors are zero at any

point time, especially in the presence of an aggregate shocks (or in Chamberlain [1984] words, “economy-

wide innovations”). Therefore, this would translate to a error εht+1 in equation (3.24) whose average is not

0 in the cross section. Under the assumption of a stationary stochastic process for the expectation error,

the household expectation error should be 0 over time, so a sufficiently long panel should be able to deliver
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consistent estimates. This leads to the following condition moment condition:

lim
T→+∞

1

T

T

∑
t=1
zht εt

p
Ð→ 0 (3.25)

for any variable zht that belongs to the information set of the household at time t.

A log-linearized Euler equations as in (3.24) produces unbiased estimates of the parameters

(γ0, γ1,θ) through standard IV if the instruments used are uncorrelated with the residuals, which are com-

posed by the measurement error, and the the innovation to the conditional second and higher-moment of

consumption growth and interest rates. A difficulty in choosing the right set of instruments arises from the

fact that the higher moments of consumption growth are determined as part of the optimization problem

of the consumer, and therefore, are endogenous. This leads to the problem of determining analytically for

which variable this condition holds true, which cannot bet usually solved. In general, lagged values of con-

sumption growth or interest rates represent preferred choices in the literature: two lags represent a preferred

choice in many papers (see Alan et al. [2009]), but first lags are allowed under the generally accepted as-

sumption that measurement errors are uncorrelated with any other variable. However, Attanasio and Low

[2004] notes that consumption growth can exhibit very persistent heteroskedasticity, and therefore, the use

of lagged instruments would potentially introduce bias in the estimates of the parameters. The question

then becomes on what is the size of the bias, in particular, in the EIS, the structural parameter that we

can identify without further assumption. Attanasio and Low [2004] stress the importance of having data

covering long-horizons to estimate structural parameters from Euler equations. In comparing the perfor-

mance between linear IV estimates based on (3.24), and non-linear GMM estimates based on (3.17) (with

no measurement error), they show that linear IV-estimates of the EIS outperform non-linear GMM2. While

they recognize that the discount factor cannot be separately due to the presence of higher order moment

of consumption growth and returns in the constant, they recognize that IV estimates are very close to the

underlying parameter used in their Montecarlo study.

In light of these considerations, I estimate the coefficient of relative risk aversion σ using the

log-linearized equation described in Equation (3.24). In the vector xt,t+1, I only include the change in

the size of the household. I assume that households have perfect forecast on their future composition,

leading to the orthogonality between the residual vt+1 and ∆xt,t+1. As instruments, the value of the

log real risk-free interest rate, with one and two lags. The vector of instruments therefore includes zht =

(1,∆N. Peopleh, log(Rt), log(Rt−1)). Table 3.12 reports the estimates from the linear-GMM. In the first

2They note that their GMM estimates appear to be extremely volatile.
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Education level γ0 γ1 σ θ Nobs

Whole Sample −0.0133 0.4352 2.2978 0.0647 31,969
(0.0021) (0.0575) (0.3036) (0.0041)

High-School Dropouts −0.0294 0.4610 2.1692 .0494 8,530
(0.0043) (0.1195) (0.5626) (0.0071)

High-School Graduates −0.0147 0.4343 2.3026 0.0810 11,790
(0.0035) (0.0944) (0.5009) 0.0105

Some College −0.0021 0.3438 2.9086 0.0811 5,252
(0.0054) (0.1427) (1.2073) (0.0150)

College+ 0.0016 0.3740 2.6738 0.0783 6,397
(0.0043) (0.1154) (0.8247) (0.0091)

Table 3.12: GMM estimates from log-linearized Euler equation described in Equation (3.24). In parenthesis,

estimates standard errors. Estimated mean and standard errors for the σ coefficient are based on the δ-

method, where
√
N ( 1

γ̂ 1
− σ) → N (0, 1

(γ̂1)4
σ̂2(γ̂1)).

row, I report the coefficients obtained using the entire sample. Standard errors for the coefficient of relative

risk aversion are obtained using the δ method. As we can see, the estimate for coefficient of relative risk

aversion is 2.30, which is higher than both estimates based on non-linear GMM. In row (2-5), I estimate

the parameters separately for each educational group. The sample is divided into subsamples based on the

educational attainment of the head, and I carry out separately an estimation for each of the subsamples. This

experiment is motivated by the fact that I am interested in understanding whether we can measure some

heterogeneity in preferences using panel data, in particular, in the coefficient of relative risk aversion. Stud-

ies have documented a positive relationship between coefficient of relative risk aversion and educational

attainment (see for instance Alan et al. [2018]). As we can see from column (3), the point estimates of

the coefficient of relative risk aversion for households whose head is less than high-school educated are

lower than the other the households who have at least some college education. However, the standard de-

viations of the estimates are high, and they do not allow to distinguish the coefficients at any statistically

significant level. This suggests that our results do not seem to support the hypothesis of preference het-

erogeneity across different educational groups. This result however, does not rule out the possibility that

households have heterogeneous preferences. In the next subsection, I assume that households can be divided

into different sub-populations, characterized by heterogeneous preferences. While the number of groups is

set ex-ante, the actual division across groups is the result of the optimization algorithm. Therefore, instead

of characterizing the source of heterogeneity based on some arbitrary observable variable (like education
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in the example provided above), we let the algorithm sort households across different types based on the

observed consumption patterns.

3.5.2 Risk Preferences and Unobserved Heterogeneity

In this subsection, I explore how an application of the Expectation-Maximization algorithm (see Do and

Batzoglou [2008]) can help us disentangle heterogeneity in preferences for risk exploiting a log-linearized

version of the Euler equations in the context of panel data. The estimation routine we exploit here presents a

novel way to approach the task of uncovering unobserved heterogeneity in preferences. In fact, the literature

has mostly focused on estimating heterogeneity based on some observable variables, such as age, education

level, income, etc. On the contrary, in this application, I do not put any restriction as to which type of group

an agents belong to, and only ex post I infer whether there is a relationship between the different unobserved

types and some relevant observable variables. This exercise is inspired by the work of Arcidiacono and

Miller [2011], who propose an estimator aimed at uncovering unobserved heterogeneity in the structural

parameters ruling the agents utility function in the context of dynamic discrete choice models.

The question of preference heterogeneity has been explored in the experimental and the structural

applied-micro literature. Findings in both fields of research document substantial heterogeneity in individ-

ual preferences for both time (discount factor) and risk (coefficients of risk aversion). The experimental

literature elicits preferences through the administration of tasks aim at eliciting individual risk-aversion

and discount factors (see Andersen et al. [2008] for experiment-based identification of risk-preferences and

time-preferences). Evidence of preference heterogeneity is also found in the empirical literature, but it is

common to attribute the sources of heterogeneity to some observable variables. For instance, Blundell et al.

[2008] estimates risk-preferences and discount factors by dividing the sample into different sub-samples

according to certain individual-level observable variables, like their educational attainment, age cohort etc.,

similarly to what we have performed in the previous analysis. Similarly, Cagetti [2003] performs a simu-

lated method of moments estimation in which he estimates preferences according to three main educational

groups, namely high-school drop outs, high-school graduates, and college graduates. Their estimates point

to a monotonic relationship between educational attainment, risk-aversion and discount factor, with more

educated individuals being on average more risk-averse and having higher discount factors. Alan et al.

[2009] clusters individuals by educational attainment into two groups, and estimate the parameters ruling

the underlying distribution of the risk-aversion and discount factor structural parameters. They conclude
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that individuals with higher educational attainment tend to display on average, higher levels of risk aversion

and a higher discount factor. Alan et al. [2018] posits a relationship between individual risk-preferences and

the stochastic income process; again, they find substantial heterogeneity across households in time and risks

preferences.

3.5.3 Model

In this subsection, I introduce the framework at the base of the estimation routine used to identify unobserved

heterogeneity in risk-preferences. The data structure we are focusing on is a panel, where there is a set I

of individuals, spanning a period of time denotes by T . The panel does not need to be balanced, i.e. each

individual i can have a different number of observation available. For notational convenience, I assume that

the panel is balanced, but this assumption is not needed.

Let yit represents the endogenous variable, xit the k-dimensional vector of exogenous variables,

zit and the l-dimensional vector of the instruments. I assume that there are K unobserved types of agents,

and that the type of an agent si is unobserved to the econometrician. In addition, it is assumed that the type

of the agent is time-invariant. The agents differ in relationship between yit and xit, in the sense if individual

i belongs to group k, the following relationship between exogenous variables

yit = x′itβk + ε
k
it (3.26)

where εkit denotes the stochastic shock that is unobserved by the econometrician, whose distribution depends

on the specific group. Equation (3.26) shows that heterogeneity across groups is modeled by different

parameters βk and distribution of the unobserved shock εkit for each group k ∈K.

Given the panel structure of the data, we define (Xi,yi) = (xit,yit)t∈T . Let Θ represent the set

of parameters to be estimated, i.e. Θ = (βk, σk)
K
k=1. The expected log-likelihood for individual i takes the

following form:

Esi [logL(yi, si∣Xi,Θ)] = ∑
k∈K

logL(yi∣si = k,Xi,θk)Pr(si = k∣Xi,θk) (3.27)

where P (si = k∣Xi,θk) represents the probability that agent i belongs to group k, and L(yi∣Xi, zi = k,θk)

represents the type-conditional likelihood, which under the assumption of serially-uncorrelated error terms,

can be written as follows:

logL(yi∣si = k,Xi,Θ) = ∑
t∈T

logL(yit∣si = k,xit)
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If in addition we assume that the unobserved shocks are uncorrelated across individuals, we can now write

the full log-likelihood of the data:

logL(y∣X, θ) =∏
i∈I
L(yi∣xi,θ) (3.28)

where (X,y) = (Xi, yi)i∈I . Given the expression for the log-likelihood function in (3.28), it follows that:

logL(y∣X,Θ) = ∑
i∈I

log(∑
k∈K
L(yi∣si = k,Xi)Pr(si = k∣Xi,θk))

= ∑
i∈I

log [∑
k∈K

(∏
t∈T
L(yit∣si = k,xit,θk))Pr(si = k∣xi,θk)] (3.29)

Introducing unobserved heterogeneity involves some computational challenges, as the solution of the objec-

tive function will not be in a closed form. In addition, the objective function of the optimization problem, i.e.

the log-likelihood will possibly be not globally concave, leading to the possibility of reaching local-optima

through gradient-based optimization methods. For this reason, we implement the Expectation-Maximization

algorithm in the the context of linear regression. In the following sub-sections, we describe the implemen-

tation of the two main steps of the algorithm, respectively, expectation and maximization, in the context of

linear regression

First Step: Expectation

In the Expectation step of the algorithm, we simplify the problem of computing the conditional likelihood of

the data. In order to do this, we start computing the joint conditional likelihood of the endogenous variable

(y, s). For individual i, we can derive the following expression:

L(yi, si∣xi,Θ) = ∏
si∈K

(Pr(si = k∣Xi,Θ)L(yi∣si = k,Xi,θk))
1(si=k) (3.30)

By taking the logarithm of equation (3.30), we can write the following expression for the log-likelihood:

logL(yi, zi∣Xi,Θ) = ∑
si∈K

1(si = k) (logPr(si = k∣Xi, θ) + logL(yi∣si = k,Xi,θk))

so that the full conditional joint-likelihood of the data is:

logL(y, s∣X, θ) = ∑
i∈I
∑
si∈K

1(si = k) (logPr(si = k∣Xi,θk) + logL(yi∣si = k,Xi,θk)) (3.31)

We need to remove the uncertainty around the type si, since it unobserved to the econometrician. Therefore,

we compute the expectation of z, conditional on all observable (x, y). We define ηki as the conditional
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probability of belonging to group k given the observable variables (Xi, yi) for individual i:

η (si = k∣ yi,Xi,Θ) = E [1 (si = k) ∣yi,Xi,θk]

= Pr (si = k∣yi,Xi,θk)

=
L(yi, si = k∣Xi,θ)

L(yi∣Xi,Θ)

=
L(yi∣si = k,Xi,θk)Pr(si = k∣Xi,θk)

∑k∈K L(yi∣si = k,Xi,θk)Pr(si = k∣Xi,θk)
(3.32)

where the derivation follows by simply applying Bayes rule. Finally, taking into account what we have

derived in (3.32), we can derive the objective function:

Es [logL(y, s)X,Θ] = ∑
i∈I
∑
si∈K

η(si = k∣Xi,yi,Θ) [logL(yi∣si = k,Xi,θk) + logPr (si = k∣Xi,θk)]

(3.33)

As we can see from equation (3.33), the objective function exhibits a non-trivial dependence on the underlying-

parameters to be estimated. Therefore, at the j + 1 step of the algorithm:

• we first compute the values of ηj+1(si = k∣yi,Xi,Θ
j), conditional on the the values of the parameters

Θj obtained at step j, for each individual i and unobserved group k;

• we use equation (3.33) to derive the objective function for the maximization step by plugging in

ηj+1(si = k∣yi,Xi,Θ
j)

In this way, we obtain the following objective function for the maximization step at iteration j + 1:

∑
i∈I
∑
si∈K

ηj+1(si = k∣Xi,yi,Θ
j
) [logL(yi∣si = k,Xi,θk) + logPr (si = k∣Xi,θk)] (3.34)

It is clear from equation (3.34) that we can interpret the η(si = k∣Xi, yi, θ
j) individual i has in the part of

the objective function associated group k, given that we observed data (yi,Xi), and the parameters Θj was

estimated in the previous step.

Second Step: Maximization

We now make that the dependent variable yit is conditionally homeskedastic given the explanatory variable

xit and the type si:

yit∣xit, si = k ∼ N (x′itβk, σ
2
k) , ∀k ∈K
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which leads to the following representation of the conditional likelihood likelihood function for individual

i:

L(yi∣si = k,Xi,θk) = ∏
t∈T

1
√

2πσk
e
− (yit−x

′

itβk)
2

2σ2
k =

1
√

2πσTk
e
−∑t∈T

(yit−x
′

itβk)
2

2σ2
k (3.35)

Also, we assume that the type si is independent from the set of explanatory variables Xi, so that we can

define:

πk = Pr(zi = k∣Xi,θk) ∀k ∈K, ∀i ∈ I (3.36)

The assumptions made in equations (3.35) and (3.36) lead to the following definition of parameters: Θ =

(βk, σ
2
k, πk)k∈K . In order to obtain the values for Θj+1, we solve the following optimization problem:

max
Θ
∑
i∈I
∑
si∈K

ηj+1(si = k∣Xi,yi,Θ
j
) [logL(yi∣si = k,Xi,θk) + logPr (si = k∣Xi,θk)]

s.t ∑
k∈K

πk = 1 (3.37)

where the objective function comes from the equation derived in (3.35). Given the optimization problem

defined in (3.37), we define the Lagrangian as follows:

Λ(Θ, λ) = ∑
i∈I
∑
si∈Z

η(zi = k∣Xi,yi,Θ
j
) [logL(yi∣si = k,Xi,θk) + logPr (si = k∣Xi,θk)] + λ(1 − ∑

k∈K
πk)

(3.38)

Given the assumption about the likelihood made in equation (3.35), equation (3.38) becomes:

max
Θ
∑
i∈I
∑
k∈K

ηj+1(si = k∣yi,Xi,Θ
j
) [∑

t∈T
(−

1

2
log 2πσ2k −

(yit − x′itβk)
2

2σ2k
) + logπk] + λ(1 − ∑

k∈K
πk)

(3.39)

As it is clear from equation (3.39), once ηj+1(si = k∣yi,Xi,θ
j) has been computed in the Expectation step,

we can find analytical solutions for the other variables of the optimization problem. In particular, first order

conditions are sufficient to characterize optimality:

πj+1k =
∑i∈I η(si = k∣yi,Xi,Θ

j)

∑k∈K ∑i∈I η(si = k∣yi,Xi,Θ
j)

βj+1k = (∑
i∈I
η(si = k∣yi,Xi,Θ

j
)XiX

′
i)

−1
(∑
i∈I
η(si = k∣yi,Xi,Θ

j
)X′

iyi)

σj+1k =

¿
Á
Á
ÁÀ
∑i∈I η(si = k∣yi,Xi,Θ

j) [∑t∈T (yit − x′itβ
j+1
k )2]

T ∑i∈I η(si = k∣yi,Xi,Θ
j)

100



for each group k ∈K. It is interesting to notice that the maximization step can be equivalently expressed as

K separate Generalized Least Square (GLS) regressions, where weights are individual specific, represented

by the posterior probability of belonging to the group. It is easy to see that by defining the matrix:

ωjik = 1iη(si = k∣yi,Xi,Θ
j
)

Ωj
k = diag [(ωjik)i∈I

]

where 1i denotes a vector of 1 with length Ti, representing the number of observations that are available for

individual i. We can reformulate the coefficients as follows:

βj+1k = (X′Ωj
kX)

−1
(X′Ωj

ky) , k ∈K (3.40)

As we can see from Equation (3.40), this formulation allows to have a more clear interpretation of the

estimation routine. The application of the Expectation Maximization here proposed can be seen as an

iterative continuously updated sequence of K GLS regressions, where the weights are different for each of

the groups, and depend on the posterior probabilities to belong to each group computed in the previous steps

and summarized in the matrix Ωj
k. The higher the probability of a certain individual i to belong to a specific

group k, the higher its weight is going to be in the kth GLS regression, reducing at the same time its weight

in the other k − 1 GLS regressions.

3.5.4 Iterative Algorithm

We now describe the iterative algorithm based on the two steps introduced in the previous subsection.

1. Set the number of groups to be K ∈ N+.

2. Initialize the values of Θ0 based on the linear GMM with instrumental variables, and perturb them

with a random shock; in this application, I set the random shock to be normally distributed: where

GMM − lin denotes the point estimates obtained using the GMM on the log-linearized moment

conditions.

3. For j = 1,⋯,N :

3.1 Perform the expectation step, and update the values of ηik, i ∈ I , k ∈K

3.2 Perform the maximization and update the values of Θ

101



4. If convergence is achieved, end; else go back to step 3.

Convergence is achieved if ∣∣Θj+1 −Θj ∣∣
2
2 < tol, which I set to be 10−4.

3.5.5 Moment Based Estimator

We refer to the log-linearized Euler equation presented in (3.24). We hypothesize that for each household i

is of type si = k, so that the moment condition given the type can be expressed as follows:

∆cit,t+1 = γ0k + γ1k logRt+1 + θk∆N. Peopleit,t+1 + εit+1,k (3.41)

In this case, xit = (logRt+1). Given that the error term includes the higher moments of the forecast error,

in general it will not be the case that E [εit,t+1∣xit] = 0. This automatically violates the assumption about

conditional normal distribution of the error term. For this reason, we need to make additional assumptions

involving the distribution of the error term and the instruments. Let zit be a vector of instruments. I assume

that:

xit = δ
′zit + ηit, ηit∣zit ∼ N(0, σ2x)

covt(εit,t+1, ηit) = 0

The first-stage estimates based on maximum likelihood are the following:

δ̂1,stage = Z′
(Z′Z)

−1ZX

where zit = (1,Rt,Rt−1,∆N. Peopleit,t+1), xit = (Rt+1), X = (xit)i∈I,t∈T and Z = (zit)i∈I,t∈T . Given the

distributional assumption made, we have that:

δ̂∣Z ∼ N (δ, σ2x (Z
′Z)

−1
)

x̂it∣Z = δ̂′zit ∼ N (δ′zit, σ
2
xz

′
it(Z

′Z)
−1zit)

Under the assumption of no correlation between the error term of the first stage equation and the instrument,

it implies that we have an unbiased estimator for δ. This implies that:

x̂it − xit ∼ N (0, σ2xz
′
it (Z

′Z)
−1

zit)
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We can therefore rewrite:

∆cit,t+1 = γ0k + γ1k ˆlogRt+1 + θk∆N. Peopleit,t+1 + εit+1,k + (γ1k logRt+1 − γ1k ˆlogRt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ε̃it

(3.42)

ε̃it∣zit ∼ N (0, σ2z + σ
2
xz

′
it (Z

′Z)
−1

zit) (3.43)

Let define as σ2it = σ̂
2
xz

′
it (Z

′Z)zit. In light of these considerations, I modify Equation (3.39) as follows:

max
Θ
∑
i∈I
∑
k∈K

ηj+1(si = k∣yi, X̂i,Θ
j
) [∑

t∈T
(−

1

2
log (2π(σ2k + σ

2
it)) −

(yit − x̂′itβk)
2

2(σ2k + σ
2
it)

) + logπk] + λ(1 − ∑
k∈K

πk)

(3.44)

Considering that the only variable that is correlated with the error term is logRt+1, as is instrumented using

aggregate variables, we can drop the dependence of the first stage error from the σ̂2it from the specific

household i, defining with σ2t = σ
2
it. In addition, we can redefine σ2kt = σ

2
t + σ

2
k, so that we can rewrite the

optimization problem of the maximization step as follows:

max
Θ
∑
i∈I
∑
k∈K

ηj+1(si = k∣yi, X̂i,Θ
j
) [∑

t∈T
(−

1

2
log (2πσ2tk)) −

(yit − x̂′itβk)
2

2σ2tk
) + logπk] + λ(1 − ∑

k∈K
πk)

(3.45)

From Equation (3.45), we can see that the two-stage estimation leads to the conditional heteroskedasticity.

Therefore, we need to redefine the estimation routine defined in Equation (3.40) to take into account for this

factor.

βj+1k,OLS = (X̂′Ωj
kX̂)

−1
(X̂′Ωj

ky) (3.46)

σ̂j+1tk,OLS =

¿
Á
ÁÀ∑t∈T ∑i∈I η(si = k∣yi, X̂i,Θ

j)(yit − x̂′itβ
j+1
k )2

∑t∈T ∑i∈I η(si = k∣yi, X̂i,Θ
j)

(3.47)

ωjik,FGLS =
⎛

⎝

1

(σ̂j+11k,OLS)
2
,⋯,

1

(σ̂j+1Tk,OLS)
2

⎞

⎠
η(si = k∣yi, X̂i,Θ

j
) (3.48)

Ωj
k,FGLS = diag [(ωjik,FGLS)i∈I

] (3.49)

βj+1k,FGLS = (X̂′Ωj
k,FGLSX̂)

−1
(X′Ωj

k,FGLSy) (3.50)

In the first step described in Equation (3.46), I perform a GLS regression using as weights the household-

specific group probabilities. In the second step, described in Equation (3.47) based on the estimates obtained

for βj+1k,OLS , we then compute the residuals, which we use to estimate the time-group specific standard errors

σ̂j+1tk,OLS . In the third step (3.48)-(3.49), I adjust the matrix of weights, taking into account the newly com-

puted standard errors. Finally, in the last step described in Equation (3.50), I estimate the new coefficients

based on the updated weights matrix, in what is similar to a Feasible GLS procedure.
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3.5.6 Results

In this subsection, I present the empirical results. Table 3.13 displays the estimated coefficients for K = 1

(standard instrumental GMM), K = 2 and K = 3. The standard errors are obtained through non-parametric

bootstrapping, by resampling with replacement from the original sample of the households keeping the

total number of households fixed (instead of the total number of observations). This choice is motivated

by the fact that in this case, the unit of observation that is relevant to attribute the type is the entire set

of observations pertaining to a household. We need to also specify how we are comparing estimates ob-

tained using different bootstrapping samples. In general, the order of the groups that the algorithm gives

back is random, and is at least in part influenced by the parameters chosen at initialization. If we were to

compute the standard deviation of the parameters based on the bootstrapped estimates based on the group

assignment generated by the algorithm, the estimates obtained would have little sense, since a particular un-

observed group in a bootstrap estimate can very well refer to a different group in another bootstrap estimate.

Therefore, I order the groups based on γ1, i.e. the parameter representing the elasticity of inter-temporal

substitution. In the estimates presented below, group k = 1 always represent the one that has a higher (lower)

elasticity of inter-temporal substitution (coefficient of relative risk aversion).

As we can see from the first column of Table 3.13, the results we obtain are largely in line with

the literature (see for instance Alan et al. [2009]), as the implied of risk-aversion is 2.29, and are similar to

the ones obtained through non-linear GMM (see Table 3.11). As we can see from the second column, when

K = 2 unobserved groups are assume, the coefficients of relative risk-aversion among the two groups differ:

the first group of households display a coefficient of relative risk aversion of 1.78, while for the second one is

2.84. The two groups appear to be equally numerous among the households in the sample, as the estimates

for π̂1 (π̂2) show. Figure 3.2 shows the distribution for the elasticity of inter-temporal substitution (left

panel) and the coefficient of relative risk aversion (right panel). The vertical lines represent the estimated

coefficients from the full sample reported in Table 3.13.

Another way to assess whether the identified groups obtained using the proposed estimation rou-

tine are sensible is to look at the distribution of η(si = k∣yi,Xi, Θ̂) across households. Ideally, for each

household, we would like to assign a high probability of belonging to either one of the two groups, rather

than having an equally split probability. If the probability of belonging for instance to group k = 1 is close

to 0.5, then it would be hard to infer which group that specific households belongs to. We report the results

in Figure 3.3. As we can see, there are two peaks around the values of 0 and 1. This implies that for a large
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Figure 3.2: Bootstrap distribution of γ1 (left) and σ (right) over 1000 samples. The top two charts represent

the bootstraps distribution when K = 2, while the bottom two charts represent the bootstraps distribution

when K = 3. The vertical lines represent the point estimates presented in Table 3.13 column (2) and (3).
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Estimates

Type Parameters K = 1 K = 2 K = 3

Type 1, Low RRA

γ̂11 0.4352 0.5593 0.5718
(0.0575) (0.1137) (0.1046)

γ̂01 -0.0133 -0.0185 -0.01988
(0.0021) (0.0035) (0.0046)

σ̂1 2.2978 1.7876 1.7487
(0.3036) (0.4095) (0.2772)

θ̂1 0.0647 0.0583 0.0479
(0.0041) (0.0092) (0.0170)

π̂1 1.000 0.4941 0.3494
– (0.0038) (0.0498)

Type 2, Med. RRA

γ̂12 – 0.3524 0.4418
(0.0775) (0.0801)

γ̂02 – -0.0079 -0.0108
(0.0023) (0.0048)

σ̂2 – 2.8378 2.2637
(1.2372) (0.4324)

θ̂2 – 0.0725 0.07313
(0.0046) (0.0166)

π̂2 – 0.5058 0.37593
(0.0399) (0.0754)

Type 3, High RRA

γ̂13 – – 0.3220
(0.0639)

γ̂03 – – -0.0079
(0.0030)

σ̂3 – – 3.1055
(1.5444)

θ̂3 – – 0.0767
(0.0112)

π̂3 – – 0.2747
(0.0799)

Table 3.13: Estimates based on PSID Food Consumption Data. Period: 1974-1987.
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Figure 3.3: Distribution of ηi (si = k∣Xi,yi),Θ) across households.

group of households, the probability to belong to group k = 1 is either 0 or 1, suggesting that the output of

the algorithm developed allows us to assign households to either group k = 1 or group k = 2. We now report

the distribution of η(si = 1) conditional on the educational attainment since we want to understand whether

there is any relationship between risk-aversion and educational attainment, as discussed previously. As we

can see from Figure 3.4, for all but one educational group, namely college educated households, the peak

around 0 is lower than the one around 1. In addition, it appears that the difference across the two peaks is

monotonically decreasing in the the educational attainment. In order to reinforce this intuition, we now want

to assess what the the relative share of each type of unobserved household among the four observed educa-

tional attainments. To do so, we need to classify each household based on the implied probability derived in

the Expectation step of the Expectation Maximization algorithm. We define the predicted household group

ŝi as of household i as follows:

ŝi = arg max
k∈K

η(si = k∣yi,Xi, Θ̂) (3.51)

Based on Equation (3.51), we then define the share of the population belonging to group k for each education

attainment:

µ̂k(educ) =
∑i∈I 1(ŝi = k, educi = educ)

∑i∈I 1(educi = educ)
educ ∈ {Lt. HS, HS, Some College, College+} (3.52)

We report the values of x̃i described in Equation (3.52) representing the share of the population that belongs

to each unobserved group for the four levels of educational attainments, based on the results of column (2) in
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Figure 3.4: Distribution of η (si = k∣Xi,yi, Θ̂) across households, for four different level of educational

attainments.

Table 3.13. Table 3.14 reports the results whenK = 2, while in Table 3.15 are displayed the shares forK = 3.

As we can see from Table 3.14, the share of households belonging to the low-risk averse group (k = 1)

decreases with the level of educational attainment: the highest share of households in the first group is among

high-school dropouts (55.4%), while the lowest one is among college graduates (35.3%). High-school

graduates and dropouts display similar conditional distributions across the two groups, with the higher risk-

aversion group being relatively more frequent. Results Table 3.15 suggest that by including a third group,

our conclusions relating risk-aversion and educational attainment do not change. The share of high-school

dropouts in the intermediate (k = 2) and high (k = 3) risk-aversion group is lower than the ones of college

graduates: 34.7% of high-school dropouts are classified in group k = 2 vs. 44.0% of college graduates,

and 27.4% are in group k = 3 vs. 34.8% of college graduates. Similarly, the conditional distribution across

unobserved groups of high-school graduates and households with some college education. The results

presented here support findings in the literature showing a positive correlation between risk aversion and

educational attainment. However, the methodology proposed here uncovers this relationship by establishing

108



Education k = 1 k = 2

High-School Dropouts 55.4% 44.6%

High-School Graduates 46.7% 53.3%

Some College 48.0% 52.0%

College+ 35.3% 64.7%

Table 3.14: Share of Households by Educational Attainment and Unobserved Type based on the estimates

presented in Table 3.13 for column (2), K = 2. Groups are ordered in ascending order of relative risk

aversion, with group k = 1 has the highest (lowest) EIS (CRRA).

Education k = 1 k = 2 k = 3

High-School Dropouts 38.2% 34.7% 27.4%

High-School Graduates 32.2% 38.8% 30.0%

Some College 34.3% 37.6% 28.2%

College+ 21.2% 44.0% 34.8%

Table 3.15: Share of Households by Educational Attainment and Unobserved Type based on the estimates

presented in Table 3.13 for column (3), K = 3. Groups are ordered in ascending order of relative risk

aversion, with group k = 1 has the highest (lowest) EIS (CRRA).

an indirect relationship the estimated unobserved heterogeneity in preferences and the observed variables of

interest.

3.6 Production Technology and Aggregate Shocks

As standard in the literature, I assume that the capital share in the Cobb-Douglas production technology is

α = 0.33. As discussed in Chapter 1, I assume that the technology shock follows a AR(1) process. The

assumption about the independence between the depreciation shock and the technology shock is motivated

empirically. Ambler and Paquet [1994] find that the correlation between the depreciation shock and the

technology shock to be -0.057, but not significant at any standard level. In order to estimate the relevant

parameters (ρ, σ2e), I collect U.S. Total Factor Productivity (TFP)3 data from the online database of the Fed-

3The identifier for the time series is RTFPNAUSA632NRUG.
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eral Reserve Bank of Saint Louis (FRED) from 1970 to 2018. I first detrend the yearly time series assuming

a linear trend in time, and then on the the detrended residuals I estimate an AR(1) process. The estimated

coefficients are (ρ̂, σ̂ε) = (0.851,0.008). The high coefficient for the auto-correlation term suggests a high

persistence in the technological process, while the low standard deviation implies the the TFP shocks will be

subject to relatively little volatility. Although our we use a much more recent sample compared to Hansen

[1985] and Prescott [1986], our estimates are comparable to ones presented in their studies.

In order to compute the average depreciation rate, I use the data on Fixed Assets4 and Depreci-

ation5 in current costs from the U.S. Bureau of Economic Analysis from 1970 to 2018. I take the ratio

between the depreciation costs and total amount of fixed assets, and I compute the average across time. The

estimate is δ̂ = 5.0% on an annual basis. The estimated volatility of the computed yearly depreciation rate

is 0.0035, which is significantly lower than the one estimated by Ambler and Paquet [1994].6 An underes-

timation of the volatility of capital depreciation is not surprising, since the Bureau of Economic Analysis

constructs capital stock data using an accounting methodology that assumes constants rates of depreciation

across various capital categories. At the same time, for our purposes, it is important to try to capture the

volatility of the depreciation rate as carefully, as it directly impacts the volatility of the interest rates, and

therefore it represents and important source of risk for retirees.

For convenience, I use Tauchen method (Tauchen [1986]) to discretize the state space and to

characterize numerically the Markovian distribution of the shocks7. For both shocks, I use five nodes,

leading to a total of 25 possible values for (At, δt) and the two 5 × 5 transition matrices Πδ′∣δ and ΠA′∣A.

The joint transition matrix Πz′∣z is computed through the Kroeneker product of the two individual transition

matrix given the underlying assumption of independence between the two shocks.
4The identifier for the time series in FRED is K1TTOTL1ES000.
5The identifier for the time series in FRED is M1TTOTL1ES000.
6Ambler and Paquet [1994] estimate that the depreciation rate has a volatility of 0.005245 on a quarterly basis, which translates

to 0.0262 on a yearly basis.
7An alternative to this method would involve the use of quadrature methods in the computation of integral using appropriate

bi-dimensional grids.
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3.7 Counterfactual Analysis

In the following analysis, I identify four types of households, namely: high-school dropouts, high-school

graduates, some college educated, and college graduates. The identification of the household groups is

based on the education level of the head of each household. As described in Chapter 1, in this model I

only take into account retirement benefits, and I abstract from any consideration of spousal and survivor

benefits. For this reason, consistent with the literature, I decide to identify the four groups as male high-

school dropouts, male high-school graduates, male with some college education and male college graduates.

This simplification is made for the following reasons. First, the literature and current data suggest that men

are more likely than women to qualify for Social Security benefits based on their own earning histories.

Second, the introduction of women would significantly complicate the solution of the model. The state

space would need to include the entire distribution of women’s average life-time earnings, in addition to two

additional variables capturing whether husband or wife are alive. In addition, the presence of mortality in

this model would significantly increase the number of households in the economy. Suppose that at time t, a

household is composed of both husband and wife. In the next period, four possible scenarios can occur: the

husband dies, the wife dies, they both die, or neither dies. This leads to the generation of three additional

types of households in the next period (if both die, their bequest will be distributed and the household will

cease to exist). If, on the contrary, only one of the two spouses is alive, only two scenarios can occur: the

spouse either survive or dies. The introduction of mortality combined with joint spouse dynamics makes

the problem computationally infeasible. If mortality was not explicitly taken into account, we would only

have 4 × 4 types of ex-ante heterogeneous households in the model. I leave to future studies to explore this

avenue.

In the analysis proposed in this chapter, I make some additional assumptions relative to the lit-

erature. First of all, in this paper I do not consider a market for risk-free bonds, differently for example,

from Kim [2018], Hasanhodzic and Kotlikoff [2018]. As noted in Kim [2018] and Henriksen and Spear

[2019], the consumption allocations computed in the presence of one risky asset and one risk-free asset are

numerically very similar when markets are sequentially incomplete. This implies the following undesirable

property: the implied consumption allocations will vary little as we change the allocations of savings or bor-

rowings in risk-free bonds and risky assets. From a numerical perspective, this implies that while we may

obtain good approximations for the consumption policy functions, the implied policy functions for portfolio

the choice variables may be significantly off. This problem has not been explicitly tackled in the context
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of large scale OLG models, and while multiple recent papers numerically solve for the optimal portfolio, I

decide take a more cautious approach and assume the existence of only one asset. This is motivated by the

fact that I am using a new approach to approximate policy functions based on neural networks and deep-

learning, whose numerical interaction with the households’ portfolio choice is not clear. It is important to

note that in the model proposed, it would be ideal to have a bond market, so that the trust fund assets earn a

risk-free interest rate. We leave this avenue to future research.

Secondly, I do not assume that there are any borrowing costs, differently from Hasanhodzic and

Kotlikoff [2018] and Kim [2018]. The choice is motivated by the fact that the calibration of the parameters

ruling the borrowing cost function is achieved by targeting some empirical moments,8 rather than following

a traditional estimation approach based on micro data. To minimize the number of hand selected parameters,

I decide to avoid introducing any borrowing costs. It is important to note that it would be straightforward

to extend the model presented in Chapter 1 and combine it with the algorithm presented in Chapter 2 to

accommodate for borrowing costs. The only modification required would be the introduction of a household

specific rate of return, which would account for whether a household is borrowing or saving. The use of

neural networks would easily take into account the non-linearities introduced by the borrowing costs, and it

would be interesting to use them to showcase the properties in a context in which non-linearities characterize

policy functions on the ergodic set. That said, to incorporate borrowing in this way would require me to hand

select parameters in a somewhat arbitrary fashion, which would undermine the results to a certain extent.

Finally, as compared to much of the literature, I take a different stance with regard to the policy

analysis in this Section. Several papers have focused on understanding the implications of the introduction of

a PAYGO Social Security system and compare its welfare implication relative to an economy with no Social

Security at all. As discussed at length in 1, however, the current Social Security does not work as a PAYGO

system. Further, the tax rate used in many of these studies has been critiqued as unrealistically low (see

for instance Krueger and Kubler [2004], Krueger and Kubler [2006] and Kim [2018], where a 2% payroll

tax rate is used). In the analysis performed in the next Section, I will consider as the benchmark economy

the current status quo, i.e. a Social Security that is solvent in the short-run but can become insolvent in the

future. Therefore, the analysis proposed will not discuss what happens when we introduce a Social Security

system, but will, instead, focus on understanding the implications of policy reforms on the current Social

Security system. In light of these considerations, I conduct counterfactual analyses aimed at evaluating the
8For instance, Kim [2018] chooses a parametrization for the cost function in order to achieve a peak in the consumption profile

around the age of 30.
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impact of various policies on household welfare. Here I utilize the current system as the benchmark and

propose three different policy alternatives. The numerical solution for the alternative policy scenarios is

derived using the algorithm developed in Chapter 2 and relies on the use of deep-learning techniques in

combination with two hidden-layer neural networks as functional approximators for the forecast and policy

functions.

Benchmark The benchmark scenario is the current Social Security system as described in Section 1.4

of Chapter 1. The tax rate used in this context is 10.6%, which represents the current payroll tax rate that

contributes to the OASI trust fund. In this case, the Social Security system is solvent, but can become

insolvent in the future.

Scenario 1 The first policy alternative examined involves increasing the payroll tax rate. The tax rate is

set so that at the deterministic steady state, the Social Security annual budget is balanced, with revenues

collected through payroll taxes being equal to total outlays. The implied tax rate is computed numerically,

using a binary search method. The resulting tax rate is τ b = 15.14%.

Ht+1 =Htrt + Tt − St ∀t ≥ 0

St = ∑
i∈I

A

∑
n=Ri

Pin(1 − µin)ssin

Tt = ∑
i∈I

Ri−1
∑
n=1

Pinτ
bwtnin

In this scenario, the trust fund is allowed to borrow and accumulate negative balances. It is assumed that the

initial level of assets of the trust fund is around three times the cost of the current retirement program. As

the simulation will show, the transition from the initial state to the new stochastic steady state will take some

time. Therefore, in the welfare analysis, it will be important to distinguish between the transitory dynamics

and the stochastic steady state.

Scenario 2 In the second policy alternative, I reduce the benefits uniformly across households so that at

the deterministic steady state, the budget of the Social Security system is balanced, while at the same time

I keep the tax rate steady at 10.6%. The implied reduction rate ρb in the benefits is computed numerically

through binary search, and amounts to 70.0%. The model implied reduction in the benefits is 30%, an
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estimate that is very close to the projected cut of 27%9 in benefits estimated by Social Security necessary to

achieve long-term solvency. This policy alternative can be characterized by the following set of equations:

Ht+1 =Htrt + Tt − St ∀t ≥ 0

St = ∑
i∈I

A

∑
n=Ri

Pin(1 − µin)s̃sin

Tt = ∑
i∈I

Ri−1
∑
n=1

Pinτwtnin

s̃siRi,t = ρb × θieiRi−1,t−1 ∀i ∈ I

Scenario 3 In the third policy scenario, I eliminate Social Security completely: retirement is financed

through personal savings, and no taxes are collected from workers nor are retirement benefits distributed

to retirees. In this scenario, there is no redistribution of income across households of different groups, as

everyone is responsible for their own retirement savings, with no subsidization of retirement benefits from

richer to poorer households. This represents a major departure from the current setting, since, as discussed

in Chapter 1 and estimated in Table 3.3, the replacement rate is decreasing in the average life-time income,

and varies significantly across groups. In this policy alternative, the tax rate is set to τ = 0. The other

relevant equations are defined as follows:

Ht = St = Tt = 0 ∀t ≥ 0

ssin,t = 0 ∀t ≥ 0, i ∈ I, n ≥ Ri

For what concerns the numerical solution of the economy with no Social Security, I use the same techniques

discussed in Chapter 2. Considering that in this case, there is no need to track workers’ average life-time

earnings nor Social Security expenditures, we can use a reduced version of the state space as compared to

the economies with Social Security. Therefore, I can set the input of the policy functions to include only

the aggregate shocks, the household-specific capital holdings, the aggregate level of private savings and the

cross-sectional standard deviation of households’ capital holdings. Similarly, for the forecast functions, I

only need to predict the future values of the endogenously determined aggregate variables, namely the first

and second moment of the of the households’ savings distributions.

For the first, second and third policy alternatives, I use the methods discussed in Chapter 2. In

particular, I used the same architecture for the neural networks as described in Table 2.2 and Table 2.4 for

policy and forecast functions respectively.
9Source: Social Security Administration.
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The benchmark regime and three policy alternatives described in the previous subsection are eval-

uated according the impact each has on the welfare of different types of households populating the economy.

In terms of welfare measures, similarly to Kim [2018] and Hasanhodzic and Kotlikoff [2019], I use ex-ante

utility as expressed in Equation (3.53):

Wi,standard = E0

⎡
⎢
⎢
⎢
⎢
⎣

A−1
∑
t=0

βti
c1−σiin+t,t
1 − σi

⎤
⎥
⎥
⎥
⎥
⎦

∀i ∈ I (3.53)

To evaluate welfare, I numerically compute the household’s expected utility at the stochastic steady state.

By appealing to the ergodic theorem, I consider the simulated data as representing the Markov distribution

at the stochastic equilibrium. While the results presented in the next subsection refer to long-term, I will

discuss the implications of the different policy alternatives in the transition as well. This will help us better

understand whether some costs are paid in the transition by households.

3.7.1 Results

In this subsection, I present the results for two alternative assumptions about agents’ risk preferences. In

the first case, I assume that there is no unobserved heterogeneity in risk-preferences. I assume that all

households have the same coefficient of relative risk aversion, σi = 2.30 ∀i ∈ I, as estimated in the first

column (K = 1) of Table 3.13. The population shares are based on the first column of Table 3.6. In the

second case, I assume that the population is divided into two groups, the first one having a lower coefficient

of relative risk aversion σl, and the second having a higher coefficient of relative risk-aversion σh. I set

σl = 1.78 and σh = 2.84 based on the estimates presented in the second column (K = 2) of Table 3.13.

I assume that each household type is divided into the low and high risk-aversion groups according to the

population shares derived in Table 3.14. As a result, the low risk aversion group is comprised of 55.4% of

high-school dropouts, 46.7% of high-school graduates, 48.0% of individuals with some college education,

and 35.3% of college graduates. In contrast, the high risk aversion group is comprised of 44.6% of high-

school dropouts, 53.3% of high-school graduates, 52.% of individuals with some college education, and

64.7% of college graduates.

Under these assumptions, the economy is populated by eight types of agents, which we can dis-

tinguish by their risk preferences and their level of educational attainment. For the discount factor, I choose

the value estimated trough standard non-linear GMM in Table 3.11, setting β = 0.97. Under either of the

assumptions about risk-preferences, the discount factor is always kept fixed at this value. The aim of this
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Figure 3.5: Capital holdings by household type in the four alternative policy scenarios.

analysis is to understand whether heterogeneity in risk-preferences potentially impacts our analysis.

Homogeneous Risk Preferences

I present the results based on the assumption of no unobserved heterogeneity, i.e. risk preferences are uni-

form across the households in the population. Figure 3.5 displays the capital holdings by type of household

at the new stochastic steady state under the alternative policy scenarios discussed in the previous subsection.

As we can see, the presence of retirement benefits significantly crowds out private investment. In all of the

scenarios in which Social Security pays retirement benefits, regardless of the solvency status, private capital

holdings are lower than the scenario with no Social Security. In particular, the more generous the retirement

benefits, the smaller the incentives are for households to save to finance their retirement. While private in-

vestment is crowded out by Social Security, in both of the long-term balanced policy scenarios, the trust fund

accumulates a significant amount of assets once it reaches the stochastic steady state. The elimination of

Social Security achieves the highest levels of total savings in the economy. As we can see from Table 3.16,
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under the first alternative policy scenario, i.e. a tax increase aimed at achieving a balanced Social Security

that maintains the current level of benefits, private savings Kp constitute only 25.9% of the total capital in

the economy. The remaining 74.9% is represented by public savings accumulated in the Social Security

trust fund. Total capital holdings, which includes both private and public savings, is 43.4% higher than the

benchmark case. In the second policy alternative, when benefits are reduced but the Social Security system

is long-term solvent, households hold a larger share of capital, with private savings accounting for 75.1% of

aggregate capital. At the stochastic steady state, the average level of aggregate capital is 35.9% higher than

the benchmark case. If we compare the size of the trust fund to the total cost of the Social Security program

under the two long-term balanced scenarios, the trust fund accumulates resources that are approximately 20

to 40 times higher than the total expenditures in retirement, depending on how the long-term solvency is

achieved. For comparison, as of December 2020, the Social Security trust fund held assets worth 3 times

the value of yearly retirement benefits. Therefore, the long-term balanced scenarios presents an undesirable

property, that is they both lead to an over-accumulation of savings that is not realistic, which leads to a

sizeable decrease in the average rate of return of capital.

Compared to the benchmark case, the three alternative policy scenarios proposed achieve higher

aggregate levels of savings: while more generous retirement benefits decrease the propensity of households

to save, the presence of a Social Security trust fund drives up aggregate savings through the accumulated

assets. The higher level of aggregate capital drives up the marginal product of labor per unit efficiency, and,

consequently, wages. At the same time, the higher level of aggregate capital decrease the interest rate that is

paid to households’ investments. It is important to note that an increase in wages in the long-run translates

to higher Social Security benefits as well, since benefits are keyed to retirees’ lifetime income. An increase

in the average wage in the first scenario translates to an increase in similar magnitude of retirement benefits,

given the linear relationship between the two. At the same, the decrease in the interest rate lowers capital

income, which represents the additional source of income that retirees have in addition to Social Security

retirement benefits. Overall, the introduction of a balanced Social Security has a mixed effect on retirees’

income, as it both increases Social Security benefits while decreasing investment income, since retirees both

hold less private savings and earn a lower average interest rate. Relative to the benchmark case, the average

interest rate drops by approximately 1.50% in both long-term balanced policy alternatives.

From an insurance perspective, the introduction of a long-term balanced Social Security decreases

consumption volatility of retirees. It is important to keep in mind that in the benchmark scenario, retirement

benefits are subject to shocks in the aggregate technology At, since it impacts wages and consequently the
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Policy
Private Savings Social Security Trust Fund Total Wage Interest rate

Kp (H) (K +H) w r

Benchmark
759.3 0 759.3 1.44 1.49%
(–%) (–%) (–%) (–%) (–%)

Scenario 1
282.0 806.1 1088.2 1.63 -0.01%

(-62.8%) (–%) (+43.3%) (13.2%) (-1.50%)

Scenario 2
570.4 461.7 1032.1 1.59 +0.02%

(-24.9%) (–%) (+35.9%) (+10.4%) (-1.47%)

Scenario 3
1293.4 0 1293.4 1.72 -0.62%

(+70.3%) (–%) (+70.3%) (+18.1%) (-2.11%)

Table 3.16: Average private savings Kp = ∑i∈I ∑n∈A kinPin, assets in the Social Security Trust Fund H ,

and total capital holdings Kp +H under different policy scenarios at the stochastic steady states. In paren-

thesis, differences compared to the benchmark. For total capital holdings and wages, we present the relative

difference; for the interest rate, the absolute difference.

total revenues collected. The mechanism is broken in a long-term balanced Social Security system, since

trust fund assets can used to pay benefits in this case. For this reason, we expect consumption of retirees to be

less volatile, since it is subject only to the depreciation shock. Figure 3.6 displays the average consumption

volatility relative to the benchmark case under the two long term balanced policy alternatives. The chart on

the left represents Scenario 1 (long-term balanced with tax increase), while the chart on the right depicts

scenario 2 (long-term balanced with benefits cut). The data is obtained by simulating 100 economies for

2000 periods. The first 300 periods for each economy are discarded to make sure that the stochastic steady

state has been reached.

As we can see from the top charts in Figure 3.6, both scenarios redistribute consumption risk

from younger and middle-aged cohorts to older cohorts. In particular, we can observe the change in con-

sumption volatility relative to the benchmark is a decreasing function of age: the younger the household

(independently on the type) the higher its consumption volatility relative to the benchmark. The risk trans-

fer from old to young is more marked for the scenario that has more generous retirement benefits. These

results suggest that a long-term balanced Social Security system decreases consumption risk for the retirees

at the expense of the young, and the effect is more pronounced in a scenario with more generous benefits.

The bottom chart of Figure 3.6 shows that the elimination of Social Security would, on average, increase

consumption volatility relative to the benchmark regardless of the age. There is no clear pattern related to
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age. This does not come as a surprise, since in a scenario without Social Security, retirees’ consumption

at retirement depends entirely on their savings, whose return is subject to both the technology shock and

the depreciation shock. Additionally, it is interesting to note that younger cohorts experience an increase in

the consumption volatility as well. This is driven by their higher level of private capital holdings across all

cohorts as displayed in Figure 3.5.

Figure 3.6: Consumption volatility relative to the benchmark scenario by household type (x-axis) and cohort

(y-axis). On the top left, Scenario 1 vs. Benchmark. On the top right, Scenario 2 vs. Benchmark. On the

bottom, Scenario 3 vs. Benchmark.

I now discuss the impact of different policy alternatives on the measure of ex-ante utility presented

in Equation (3.53). The computations of the welfare measures are based on the simulation of 100 economies

for 2000 periods. The first 300 periods for each economy are discarded to ensure that the stochastic steady

state has been reached. As the results make clear, the elimination of Social Security completely represents

the worst policy alternative of the three considered. In this scenario, welfare decreases uniformly across

all types of households, with the absolute magnitude decreasing in the educational attainment. High-school

dropouts experience the biggest welfare loss relative to the benchmark (-4.93%), followed by high-school
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graduates (-4.71%) and the group with some college education (-3.79%). College graduates experience the

smallest drop (-1.66%). It is not surprising to observe that the magnitude of the losses are decreasing as the

educational attainment increases. As described in Chapter 1 and in Section 3.4 of this chapter, the current

Social Security system is redistributive in the way it pays benefits: lower income high-school dropouts have

a higher replacement rate than higher income college graduates.10. Therefore, the elimination of Social

Security will penalize low earners more as the current Social Security system is more generous to low

earners with regard to the replacement rate. It is interesting to note that the variation in terms of realized

utility when Social Security is eliminated is also the largest across all policy alternatives. The standard

deviation in realized utility is 1.27, 61% higher relative to the benchmark. This suggests that the presence of

retirement benefits, and in general Social Security, increases the degree to which risk is reallocated across

generations. Table 3.18 shows the maximum, minimum and the standard deviation of the realized utility in

our simulated data. While the lucky cohorts are better off in a world with no Social Security, the unlucky

cohorts are significantly worse off compared to all scenarios wherein Social Security exists. This suggests

that either version of the Social Security system (solvent or insolvent) is better at reallocating risk across

generations.

We now turn to the welfare analysis of the two long-term balanced Social Security systems. As we

can see from the second and third rows of Table 3.17, either a tax increase or a benefit reduction decreases

the welfare of all types of agents with the exception of college graduates, who experience a 0.62% gain

in the case of a tax increase and a 0.74% increase in the case of a reduction of benefits. The losses for

the other three groups are minor, in the order of 1.2%-1.4% for high-school dropouts and graduates and

0.10%-0.40% for the group with some college education. Table 3.18 shows that the dispersion in realized

utility is uniformly lower for an economy with a long-term balanced Social Security achieved through a tax

increase. The highest (lowest) realized utility is lower (higher) than the corresponding one in the benchmark

case, suggesting that an increase in taxes (maintaining the same level of benefits) achieves the best inter-

generational risk-sharing.

The analysis of the stochastic steady states does not suggest there is a clear policy winner among

the benchmark or three policy alternatives. While the benchmark scenario achieves the highest level of ex-

ante utility for all but the college graduates, it is not operationally viable in the long-run. As explained in

Chapter 1, the assets accumulated in the trust fund give the power to Social Security to pay benefits. Consid-

ering that payroll taxes are paid on a monthly or bimonthly basis, the share of benefits that Social Security
10The replacement rate of male college graduates relative to high-school dropouts is 70%.
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would be able to pay would vary monthly. Looking at the transition between stochastic steady states can be

helpful in this context, since every change in the policy regime will take some time to occur, and currently

living households will pay the transition costs. And if the transition costs are high enough, the welfare

analysis at the stochastic steady state may not be a highly relevant metric to consider for policymakers.

Two considerations are in order. First, it takes 100 to 300 periods to achieve the new steady states,

depending on the type of policy implemented and the initial conditions imposed. This corresponds to 100

to 300 years in this model, which is a very long time-horizon for any policy consideration. Second, in the

transition, households’ ex-ante utility may be significantly different from that of the steady state. Therefore,

households living in the transition will pay the policy cost. For instance, an increase in the payroll tax rate

will trigger a transition that lasts between 200 and 250 periods, with a simulated realized utility ranging

from -19.40 to -19.00 for high-school dropouts, -14.80 and -14.40 for high-school graduates, -12.10 and

-11.60 for the group with some college education, and between -8.40 and -8.00 for college graduates. If we

compare these values to those presented in Table 3.17, we can see that, in the transition, households’ realized

utility is significantly lower than that of their counterparts at the stochastic steady state. The difference is

only slightly less marked for the second policy alternative that cuts benefits to achieve long-term solvency:

utility of high-school dropouts in this case ranges from -19.20 to -18.90, -14.65 and -14.40 for high-school

graduates, -11.85 and -11.60 for the group with some college education, and -8.20. and -8.00 for college

graduates.

Policy <HS HS Some College College+

Benchmark
-18.67 -14.21 -11.60 -8.05
(–%) (–%) (–%) (–%)

Scenario 1
-18.91 -14.41 -11.61 -8.00

(-1.29%) (-1.41%) (-0.09%) (+0.62%)

Scenario 2
-18.93 -14.41 -11.64 -7.99

(-1.39%) (-1.41%) (-0.35%) (+0.74%)

Scenario 3
-19.60 -14.88 -12.05 -8.15

(-4.93%) (-4.71%) (-3.79%) (-1.24%)

Table 3.17: Average households’ ex ante utility obtained under the assumption of no unobserved heterogene-

ity in risk-preferences across households. The welfare measure used is based on Equation (3.53). Bench-

mark: Insolvent Social Security. Scenario 1: Social Security, long-term balanced (tax increase). Scenario 2:

Social Security, long-term balanced (benefits reduction). Scenario 3: No Social Security.
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Policy Statistics <HS HS Some College College+

Benchmark

Max -15.98 -12.21 -10.01 -6.98

Min -21.84 -16.55 -13.44 -9.27

St. dev 0.79 0.58 0.46 0.31

Scenario 1

Max -16.01 -12.30 -9.94 -6.92

Min -21.77 -16.63 -13.38 -9.24

St. dev 0.73 0.55 0.44 0.30

Scenario 2

Max -15.88 -12.09 -9.77 -6.71

Min -22.26 -16.91 -13.6 -9.28

St. dev 0.76 0.58 0.46 0.31

Scenario 3

Max -15.34 -11.67 -9.47 -6.43

Min -25.27 -19.12 -15.4 -10.35

St. dev 1.27 0.94 0.75 0.49

Table 3.18: Maximum, minimum and standard deviation of the realized utility based on simulated data for

alternative policy scenarios at the stochastic steady state under the assumption of no unobserved heterogene-

ity in preferences.

Heterogeneous Risk Preferences

In this subsection, I will present the results based on the assumption of unobserved heterogeneity, i.e. risk

preferences are different across households. As explained in the previous subsection, there are two types of

agents within each group, one having low risk aversion σl and one having high risk aversion σh. In total, the

economy is populated by eight types of households. The goal of the analysis presented here is to understand

the extent to which risk preferences impact the analysis performed in the previous subsection.

The algorithm described in Chapter 2 is used to characterize the numerical solution of the bench-

mark and each of the three policy alternatives. No fine-tuning in the hyper-parameters is necessary, which

displays that it scales very well, since in this application, we are numerically computing the policy functions

of 79 = 632 agents simultaneously. This shows that the approach developed is particularly promising in the

context of large-scale OLG models, since the set of models introduced in this subsection is already at the

frontier of the literature in terms of state space size and computational complexity.
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Table 3.19 displays the average ex-ante utility defined in Equation (3.53) for the eight identified

groups of households. The tax rate and the benefit reduction aimed at obtaining a long-term balanced Social

Security are again endogenously determined. The tax rate and the reductions in the benefits are virtually the

same as those computed in the economy with homogeneous risk preferences. As we can see, the long-term

increase in the payroll tax rate (Scenario 1) leads to the largest welfare gains across the low-risk aversion

group if compared with other policy alternatives. Gains increase nearly uniformly as education increases:

high-school graduates experience slightly lower gains compared to high-school dropouts (0.40% vs. 0.28%),

while individuals with some college and college graduates ex-ante utility is respectively 1.02% and 1.35%

higher than in the benchmark case. A similar pattern (but with opposite signs) is observed among the group

with high-risk aversion: high-school graduates experience the biggest welfare loss relative to benchmark in

this regime (-2.74%), followed by high-school graduates (-2.51%), individuals with some college education

(-1.09%) and college graduates (-0.31%). The utility levels achieved in Scenario 2, which involves a cut

in benefits, are uniformly lower than those in Scenario 1. Conditional on the risk-aversion level, changes

relative to benchmark are monotonic in the educational attainment. The only two groups achieving welfare

gains are the low risk-averse agents with some college education and college graduates, who experience

gains relative to the benchmark equal to 0.63% and 1.27% respectively. The elimination of Social Security

(Scenario 3) is the policy alternative that achieves the lowest level of utility, regardless of the risk-aversion

or the educational attainment. Welfare losses relative to the benchmark are particularly significant among

the high risk aversion group, ranging from -10.8% for high-school dropouts to -5.21% for college graduates.

Similar patterns are observed for the low risk-aversion group, although losses are generally smaller in size.

Table 3.20 shows that this policy regime achieves the highest dispersion in realized utility, strengthening

the conclusions reached in the analysis with no unobserved heterogeneity. While it is not surprising that

the estimated coefficient of relative risk aversion σ absent any assumption of unobserved heterogeneity

is between σl and σh, it is interesting to note changes of households’ welfare relative to the benchmark

when risk preferences are homogeneous are somewhat in between the ones of high- and low- risk-averse

households in the case of heterogeneity in preferences.

Similarly to the case with no unobserved heterogeneity, results in Table 3.20 show that an econ-

omy with no Social Security is the least effective in transferring risk across different generations. Compared

to the alternative policy scenarios incorporating Social Security, the standard deviation of the ex-ante re-

alized utility is significantly higher. Similarly, the policy alternative with no Social Security achieves the

highest and the lowest realized levels of ex-ante utility. From a risk-sharing perspective, the best policy is
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Policy
<HS HS Some College College+

σl σh σl σh σl σh σl σh

Benchmark
-37.95 -10.74 -32.23 -7.3 -28.53 -5.48 -22.91 -3.26
(–%) (–%) (–%) (–%) (–%) (–%) (–%) (–%)

Scenario 1
-37.81 -11.01 -32.15 -7.51 -28.25 -5.54 -22.6 -3.27

(0.40%) (-2.51%) (0.28%) (-2.74%) (1.02%) (-1.09%) (1.35%) (-0.31%)

Scenario 2
-37.98 -11.13 -32.24 -7.57 -28.36 -5.59 -22.62 -3.28

(-0.05%) (-3.63%) (0.00%) (-3.56%) (0.63%) (-2.01%) (1.27%) (-0.61%)

Scenario 3
-38.46 -11.9 -32.6 -8.04 -28.71 -5.96 -22.7 -3.43

(-1.32%) (-10.8%) (-1.12%) (-9.99%) (-0.6%) (-8.76%) (0.92%) (-5.21%)

Table 3.19: Households welfare obtained using cohorts’ weights under the assumption of unobserved het-

erogeneity in risk-preferences across households, withK = 2 unobserved groups. The welfare measure used

is based on Equation (3.53). Benchmark: Social Security, insolvent. Scenario 1: Social Security, long-term

balanced (tax increase). Scenario 2: Social Security, long-term balanced (benefits reduction). Scenario 3:

No Social Security.

represented by a balanced Social Security achieved with an increase tax rate, like in the case with homo-

geneous preferences. The dispersion of the realized ex-ante utility is the lowest across the policy options,

independent of the level of risk-aversion and the socio-economic group.

3.8 Conclusion

In this chapter, I estimate the parameters necessary to conduct counterfactual analyses aimed at assessing

the welfare implications of alternative policy regimes on ex ante heterogeneous households. The source

of ex-ante heterogeneity is educational attainment, which is used as a proxy for socio-economic status and

interacts significantly with important institutional features of the current Social Security system, including:

i) with the rate at which retirement benefits replace labor income after retirement, and ii) mortality rates

and life-expectancy. In addition, in this chapter I show how the algorithm developed in Chapter 2, based

on the use of neural networks as policy and forecast function approximators, together with deep learning

optimization techniques, is successful in computationally solving large-scale OLG models, with four or

eight types of households living for eighty periods.
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Policy Statistics
<HS HS Some College College+

σl σh σl σh σl σh σl σh

Benchmark

Max -34.17 -8.4 -29.13 -5.76 -25.87 -4.35 -20.88 -2.62

Min -41.93 -13.77 -35.63 -9.4 -31.48 -7.02 -25.26 -4.18

St. dev 0.94 0.63 0.77 0.42 0.66 0.3 0.51 0.17

Scenario 1

Max -34.39 -9.02 -29.42 -6.12 -25.88 -4.51 -20.75 -2.66

Min -41.27 -13.5 -35.11 -9.22 -30.85 -6.8 -24.69 -4.0

St. dev 0.9 0.59 0.74 0.39 0.65 0.29 0.51 0.17

Scenario 2

Max -34.51 -8.8 -29.32 -5.99 -25.86 -4.44 -20.7 -2.63

Min -41.38 -13.74 -35.13 -9.38 -30.88 -6.92 -24.64 -4.07

St. dev 0.91 0.64 0.77 0.43 0.66 0.32 0.52 0.18

Scenario 3

Max -33.0 -8.27 -28.04 -5.63 -24.79 -4.21 -19.71 -2.45

Min -44.19 -17.02 -37.29 -11.52 -32.68 -8.46 -25.79 -4.83

St. dev 1.43 1.13 1.18 0.75 1.01 0.54 0.77 0.30

Table 3.20: Maximum, minimum and standard deviation of the realized utility based on simulated data for

alternative policy scenarios at the stochastic steady state under the assumption of unobserved heterogeneity

in preferences with K = 2 groups.

In terms of policy analysis, I consider a policy environment where Social Security reaches insol-

vency in the short-run as the benchmark scenario, consistent with current forecasts. I also examine three

policy alternatives, including i) balancing social security utilizing a tax increase, or ii) balancing social

security utilizing a reduction in benefits, and iii) the elimination of Social Security altogether. I analyze

the impact of the alternative policies under two alternative assumptions about households preferences. In

the first, I assume that households in the economy are homogeneous in their risk preferences. In the sec-

ond, households are treated as having different coefficients of relative risk aversion, which are estimated by

applying the Expectation Maximization algorithm to a GMM estimator developed in Section 3.5.

The results presented in this chapter show that the elimination of Social Security would represent

the worst policy option, with large welfare losses relative to the benchmark independently of the level of

socio-economic status and little inter-generational risk-sharing. The variability in realized utility is signifi-

cantly higher in this scenario as compared with any policy regime that maintains a Social Security system,

regardless of the solvency status. Under both assumptions about risk preferences, the magnitude of the wel-
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fare losses relative to the benchmark is decreasing in the educational attainment, which is expected, given

the progressive nature in which the current Social Security system computes benefits. When risk prefer-

ences are assumed to be homogeneous, welfare losses range from -4.9% for high-school dropouts to -1.2%

for college graduates. When heterogeneous preferences are assumed, high risk-averse agents experience

larger welfare losses as compared to low risk-averse agents.

With regard to the two policy alternatives that result in a long-term balanced Social Security sys-

tem, the conclusions reached are sensitive to the underlying assumption made about households preferences.

Both policies transfer consumption risk from older to younger cohorts, with the size of the transfer depend-

ing on the generosity of the retirement benefits. In addition, a balanced Social Security achieved through an

increase in the payroll tax rate leads to the lowest dispersion in realized utility across generations, showing

that a more generous retirement benefit system achieves the best inter-generational risk-sharing among the

proposed policy options. Under the assumption of homogeneous preferences, the insolvent Social Security

appears to be the best policy alternative for all households except for college graduates, who experience wel-

fare gains of similar magnitude in the two long-term balanced policy alternatives. However, as compared

to the elimination of Social Security, the welfare losses relative to the benchmark are smaller, ranging from

-1.4% for high-school graduates to -0.1% for individuals with some college education. When heterogeneity

in risk-preferences is introduced, the low risk aversion group experiences small welfare gains when taxes

are raised, ranging from 0.3% for high-school graduates to 1.4% for college graduates. On the contrary, the

high risk aversion group experiences losses interdependently on the socio-economic status. Therefore, our

results indicate that selection of the coefficients of relative risk aversion plays an important role in assessing

the welfare implications of the two long-term balanced scenarios.

While the results presented rely on welfare comparisons at the stochastic steady state, policymak-

ers may need to consider accounting for transition costs in evaluating which alternative policy to implement.

In both long-term balanced scenarios with Social Security, the stochastic steady state is reached after an

average of 100 to 250 periods, depending on whether taxes are raised or benefits are reduced. In both policy

alternatives, the balance of the Social Security trust fund is 20 to 40 times larger than the total retirement

entitlements upon reaching the new stochastic steady state. Clearly, this sets an unrealistic level of public

savings in the economy. In addition, the analysis presented suggests that welfare losses in the transitional

dynamics are particularly marked for the policy alternative that raises taxes to achieve a long-term balanced

Social Security system. This poses additional challenges for policymakers in redesigning Social Security,

as current generations would need to bear the brunt of the cost of a restructured program.
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In terms of future research, it would be interesting to incorporate elastic labor supply into this

framework, to examine how the labor supply decision interacts with the consumption-savings decisions of

households in a policy environment in which retirement benefits depend on the history of workers’ earnings.

It is easy to adapt the framework developed in Chapter 2 to incorporate endogenous labor supply. The

forecast functions would need to be modified to account for the aggregate level of labor supply, while

policy functions for labor supplies would need to be introduced, but neural networks can easily tackle this

numerical challenge. The residuals of the Euler equations linking current labor supply and consumption can

then be used to optimize and numerically derive the labor policy functions in an iterative fashion similar to

what we do for the consumption function.
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A.1 Numerical Solution of the Deterministic OLG Model

The solution algorithm described below is composed of two steps. First, steady-state equilibrium is com-

puted for the deterministic economy. Second, I use a log-linearized approximation of the dynamics of the

steady state to compute the linearized policy functions for an economy in a neighborhood of the steady state.

A.1.1 Steady-State

At the steady state of the deterministic economy, the Euler equation for household belonging to group i and

cohort n can be expressed as follows:

(cin)
−σi = βi (cin+1)

−σi r 1 ≤ n ≤ A − 1, ∀i

where r represents the steady-state value of the interest rate, determined marginal value of capital for the

representative firm. Agents are born with no capital endowment. In the last period of their life, they leave no

bequests to future generations, so that their consumption can be expressed by ciA = wiA(1−τ)+rkiA+ssin.

It is convenient to define the cash-on-hand of household (i, n) as follows:

ωin = wnin(1 − τ) + rkin + bin + 1(n ≥ Ri)ssin ∀1 ≤ n ≤ A, ∀i ∈ I

where w represents the steady state value of the wage per efficiency unit. This implies that I obtain the

following set of Euler equations:

(ωi1 − ki2)
−σi = βi (ωi2 + ki2r − ki3)

−σi r j = 1

(ωin + kinr − kin+1)
−σi = βi (ωin+1 + kin+1r − kin+2)

−σi r n = 2,⋯,A − 1

(ωiA−1 + kiA−1r − kiA)
−σi = βi (ωiA + kiAr)

−σi r j = A

The numerical solution adopted to find the steady state relies on fixed-point iteration, in which I iteratively

update the values of aggregate capital and aggregate bequest. The algorithm can be described as follows.

First, rearranging the Euler equation for the households belonging to cohort A − 1, and I obtain:

kiA =
(ωiA−1 + kiA−1r)(βir)

1
σi −wiA

(βir)
1
σi + r

(54)
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As we can see from Equation (54), kiA is linear in kiA−1. Therefore, I can rewrite it in more explicit terms

as follows:

kiA = δiA + γiAkiA−1

δiA =
ωiA−1 (βir)

1
σ − ωiA

(βir)
1
σi + r

γiA =
(βir)

1
σi r

(βir)
1
σi + r

It is easy to see that it is possible to express the future capital holdings of household (i, n), kin+1, as a linear

function of the current capital holdings kin:

kin+1 = δin+1 + γin+1kin (55)

Replacing Equation (55) in the Euler equations, I obtain the following relationship between kin+1 and kin:

kin+1 =
(ωin + kinr) (βir)

1
σi − (ωin+1 − δin+2)

(r − γin+2) + (βir)
1
σi

In light of this, I can express the parameters ruling the linear relationship between current and future capital

in a recursive manner:

δin+1 =
ωin (βir)

1
σi − (ωin+1 − δin+2)

(r − γin+2) + (βr)
1
σi

γin+1 =
r (βir)

1
σi

(r − γin+2) + (βir)
1
σi

, n = 2,⋯,A − 2

Finally, for n = 1, we have the following relationship:

δi2 =
ωi1 (βir)

1
σi − (ωi2 − δi3)

(r − γi3) + (βir)
1
σi

γi2 = 0

Given that the sequence of (γin+1, δin+1) depend on the steady-state value of the interest rate, wage (both

depending on aggregate capital) and aggregate bequests (depending on the entire wealth distribution), the

fixed-point algorithm needs to iterate over different values of aggregate capital and bequests. To see this
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more clearly, we have that the cash-on-hand variable depends on:

ωin = ninw(z,K)(1 − τ) + kinr(z,K) + 1(n ≥ Ri)θiein + bin where

ein =
1

Ri − 1

Ri−1
∑
j=1

ninw(z,K)

bin = ηin
I

∑
i=1

A

∑
n=1

(r(z,K)kin +w(z,K)nin(1 − τ))Pin(1 − µin)

As we can see, households bequests depend on the entire distribution of capital through the heterogeneous

mortality rate. Therefore, the algorithm needs to iterate over the value of bequest as well. Given aggregate

capital and bequest, we can compute the rental rate of capital, the wage, and therefore obtain the cash-on-

hand variable ωin for each household. Once we have that, we can determine the entire distribution of capital

allocations, and we can check whether it is consistent with the original guess for aggregate capital. If it

is, then the algorithm has found a solution for the steady state; if not, we update the guess for aggregate

capital and bequest, and iterate until convergence is achieved. The fixed-point algorithm can be described

as follows:

1. Initialize a guess for K0 and b0.

2. For k ≥ 0, given (Kk, bk), compute rk, and ω0
in for each household, and derive the sequence of γin

and δin.

3. Given the sequence of γin and δin, compute the implied capital holdings for each household, kk+1in

using Equation (55).

4. Compute the new value of aggregate capital Knew and bequest Bnew based on the new distribution of

capital holdings.

5. Check:

• If max{
∣Kk−Knew ∣
∣1+Kk ∣ ,

∣Bk−Bnew ∣
∣1+Bk ∣ } ≥ ε, then update the values of aggregate variables using the

dampening parameter λ = 0.9:

Kk+1
= λKK

k
+ (1 − λK)Knew

Bk+1
= λbb

k
+ (1 − λb)Bnew

and go back to 2.

• If max{
∣Kk−Knew ∣
∣1+Kk ∣ ,

∣bk−bnew ∣
∣1+bk ∣ } < ε, then convergence has been achieved. Exit the loop.
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A.1.2 Local Linear Dynamics around the Steady State

I use the method proposed by Klein [2000] in order to develop the numerical approximation of the deter-

ministic dynamics of the model around the steady state. As standard in macroeconomics, the method relies

on the first-order approximation of the dynamics of the system through a linear system of equations.

By using the I ⋅ (A− 1) Euler equations, the I ⋅A budget constraints and the I ⋅ (A− 1) equations

ruling the law of motion of the Social Security contribution, the equilibrium conditions can be summarized

as follows:

H(c′,k′, s′,c,k, s) = 0 (56)

I define as x = (c,k, s) as a AI + 2I ⋅ (A − 1) dimensional vector of households savings, consumption

allocations, and average lifetime earnings. By linearizing (56) around the steady state, I obtain the following

first order approximation of the dynamic system representing the economy:

A (x′ − x∗) = B (x − x∗) where (57)

A = Hx′ (x
∗,x∗)

B = Hx (x∗,x∗)

A,B ∈ R(3AI−2)×(3AI−2)

In order to obtain the linearized consumption policy functions, I perform the generalized Schur decomposi-

tion of the matrix pencil (A,B), as described by Klein [2000]. Given (A,B), the generalized eigenvalues

λi can be expressed as follows :

Bx = λiAx, λi ∈ C (58)

The complex generalized Schur form a regular matrix pencil guarantees the existence of of a quadruple of

matrices (Q,Z,S,T):

QAZ = S

QBZ = T

λ(A,B) = {
tii
sii

∶ sii ≠ 0}

The matrices S and T are complex-valued upper-triangular, while Q and Z are unitary complex matrices.

Given that A is not invertible, I assign to the missing generalized eigenvalues the value of infinity. The
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generalized eigenvalue is table if ∣λi∣ < 1, and unstable if ∣λi∣ > 1. A value of infinity would correspond to

an unstable eigenvalue.

Now, I verify that the number of unstable generalized eigenvalues is equal to the number of con-

sumption allocations of households, in this case IA. Alternatively, I check that the number stable general-

ized eigenvalues is equal to the number of state variables, in this case 2I(A − 1). If the number number of

stable eigenvalues is equal to the dimension of the state space, then it is possible to characterize uniquely a

linearized equilibrium around the steady state, obeying the following equations:

c = −Z21Z
−1
11

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k

s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k′

s′

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Z11S
−1
11T11Z

−1
11

⎡
⎢
⎢
⎢
⎢
⎢
⎣

k

s

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In the following paragraphs, I show how to derive the matrices B and A.

Euler Equations By taking the logarithm of the Euler equations, I obtain:

− σi log cin = logβi + log r′ − σi log c′in+1

∀i = 1,⋯, I

∀n = 1,⋯,A − 1

By taking a first-order Taylor approximation around the steady-state, I can write:

−σi(log c∗in +
1

c∗in
(cin − c

∗
in)) = logβi + log r +

1

r
∇kr(k

∗
) ⋅ (k − k∗) − σi log c∗in +

1

c∗in
(c′in+1 − c

∗
in+1)

At the steady state, we have:

−σic
∗
in = logβi + log r − σic

∗
in+1

Given this relationship, I can simplify:

−
σi
c∗in

(cin − c
∗
in) =

1

r
∇kr

′
(k∗) ⋅ (k′ − k∗) −

σi
c∗in+1

(c′in+1 − cin+1)
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Budget Constraints At equilibrium, budget constraints need to hold with equality. Therefore, with the

assumption of no-bequest left once age A is reached, we have the following budget constraints:

cin = win + kinr − 1(j < A)k′in+1 + bin + θisin1(n ≥ Ri)

∀i = 1,⋯, I

∀j = 1,⋯,A

A first-order Taylor approximations around the steady state implies that:

cin − c
∗
in = (∇kwin(k

∗
) + k∗in∇kr(k

∗
) + ∇kbin(k

∗
)) ⋅ (k − k∗)+

+ (kin − k
∗
in)r − 1(j < A) (k′in+1 − k

∗
ij+1) + 1(j ≥ Ri)θi (sin − s

∗
in)

We define p ∈ RMA
+ as the vector representing the population distribution and dRM(A−1)+ as the vector

representing the distribution of premature deaths, where deaths are computed as:

din = Pinµin

For what concerns the wage, the gradient with respect to households capital holdings is:

∇kw(k∗) =
∂w

∂K
∇kK = α(1 − α)zK∗α−1N−αp

Turning to the interest rate, its gradient with respect to households capital holding is:

∇kr(k
∗
) =

∂r

∂K
∇kK = α(α − 1)zK∗α−2N1−αp

Finally, for each household (i, n), the gradient of the households bequests with respect to capital holding is:

∇kbin(k
∗
) = ∇k (ηinb(k

∗
))

= ηin [rd + (∇Kr(k
∗
)
I

∑
i=1

A

∑
n=1

dink
∗
in +∇Kw(k∗)

I

∑
i=1

A

∑
n=1

dinnin)p]

Social Security Contributions Average-indexed lifetime earnings evolve according to the following law

of motion:

s′ij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

j−1
j sij−1 +

1
jwij ∀i, 1 < j ≤ Ri

sij−1 ∀i, Ri < j ≤ A

Therefore, we have that:

s′ij − s
∗
ij =

j − 1

j
(sij−1 − s

∗
ij−1) +

1

j
∇kwij ⋅ (k − k∗) 1 < j ≤ Ri
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