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Abstract

In recent years, data-driven methodologies have enjoyed great success due in large part to the in-
creasing accessibility of highly accurate machine learning tools. The challenge, however, is that
such tools generally offer little interpretability in their learning tasks. This is a significant con-
cern in many applications, such as scenarios with ethical implications or high risk. On the other
hand, current interpretable learning algorithms are typically less accurate for prediction tasks, and
comparably not scalable to accommodate large size datasets. This motivates the theme of this
dissertation, which is to develop interpretable, yet accurate and scalable learning algorithms and
apply them to real-life data-driven applications in management science.

As our first problem, we investigate the Multiple Sequence Alignment (MSA) problem. Our aim
is to learn the optimal alignment between sequences of data. Applications of MSA include bioinfor-
matics, high frequency trading, speech recognition, and computer vision. Although higher quality
alignments offer significantly more insight for practitioners, most MSA algorithms are heuristic,
and have been shown to often generate alignments far below the accuracy of an optimal solution on
benchmark instances. In fact, only one viable exact algorithm has been developed for MSA, which
is limited to solving small sized instances with five sequences and a total of 600 data entries. Using
tools from dynamic programming, mathematical programming, constraint programming, and de-
composition techniques, we develop a novel exact alignment algorithm capable of aligning up to ten
sequences and 1,600 total data entries. Our method is able to close 37 out of 51 real-life benchmark
instances to optimality for the first time, and considerably improves the alignment quality on the
remaining instances.

In the next chapter, we develop novel techniques for constraint-based sequential pattern mining
(SPM). SPM is an unsupervised learning algorithm that involves finding frequent patterns in data.
Frequent patterns are used, e.g., to extract knowledge from data, and to develop novel association
rules. Constraint satisfaction is often critical in the practice of SPM, to prevent overwhelming the
practitioner with millions of uninteresting patterns. Unfortunately, the literature accommodates
only simple constraints, and is further limited to databases with up to a million data entries.
Using novel modelling techniques, we increase the scalability of our SPM algorithm by an order of
magnitude, and further design and prove constraint-specific information for a number of complex
constraints common in practice. Our algorithm is the first to handle complex constraints such as
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average and median, but is also competitive or more efficient when compared to a state-of-the-art
SPM algorithms with simple constraints.

We next study data-driven sequential decision making with an emphasis on interpretability and
sequential structure in SPM. Using a novel data tree model of the database, we are able to increase
the capability of SPM algorithms from databases with ten million to three billion data entries.
We leverage data trees to design a pattern mining algorithm capable of extracting novel sequential
patterns from large datasets, and design an interpretable knowledge tree equipped with statistical
hypothesis tests, to increase reliability in data-driven decision making. Using our approach, we
investigate two large-size real-world applications in marketing and finance. In marketing, we consider
reducing the skip rate of users in an online music streaming platform. We find that almost all one
billion user skips in the database can be explained using an average of 6,400 sequential patterns,
with an average likelihood of 83%. In finance, we assess using historical sequential patterns of
price change to aid investment decision making in the stock market. We find that, at best, 80%
of nine hundred thousand monthly price change events can be explained using approximately 7,000
sequential patterns, with a low average likelihood of 53%.

In the final chapter, we study the provider network selection and insurance design problem faced
by a major healthcare insurance provider. The provider network consists of physicians and hospitals
that are under contract by the insurer and offer a wide range of healthcare services to insured
patients. The problem involves choosing/changing the physicians and hospitals to contract, and
designing insurance plans to target patients under competition with a rival firm. We provide a novel
methodology that incorporates the literature’s interpretable utility approach for patient behavior
into a simultaneous multi-column-and-row generation optimization framework. By optimizing the
provider network as a whole, we compose higher quality insurance plans that increase the profit of
the insurer by an average of 548% on test instances, while decreasing the overall patient healthcare
costs by 36% and the overall premiums payed by patient by 21%. We showed how interpretable
information can be extracted from the optimization framework to aid decision making, and lastly
analyzed the impact of inaccurate patient predictions on the insurer. Our results show that a more
accurate yet interpretable predictor of patient choice can greatly enhance insurance plan design.
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Chapter 1

Introduction

Predictive models have significantly impacted the way information is organized and leveraged in
the practice of management, including areas such as retail (Akter and Wamba, 2016), accounting
(Appelbaum et al., 2017), sports (Coleman, 2012), and finance (Corea, 2016). Of notably prevalence
are sequential applications, i.e., in which predictions (and subsequent managerial actions) are made
consecutively over time based on past observed events. Examples include buying/selling decisions
in financial markets (Pang et al., 2018) and recommender systems for products and services that
account for observed consumer behavior (Cheng and Shen, 2016).

The growth of data-driven sequential approaches is due in large part to the increasing accessi-
bility of highly accurate machine learning tools, specifically deep-learning and ensemble frameworks
(Wu et al., 2019; Sagi and Rokach, 2018). The challenge, however, is that such tools generally offer
little interpretability in their learning tasks and predictions. This is a significant concern in scenar-
ios with ethical implications or higher risk. For instance, Vayena et al. (2018) argue that the lack
of transparency is one of the primary barriers to the use of artificial intelligence in healthcare, with
half of the United States decision makers at healthcare organizations believing it would produce
fatal errors and not meet expectations. Similar issues are also raised, e.g., in marketing and finance
(Drew et al., 2019; Hajek and Henriques, 2017; Cui et al., 2006).

In such cases, practitioners may be more inclined to use simpler and more interpretable ma-
chine learning models, such as rule-based learning and decision trees. While such algorithms are
comparably less accurate for predictive tasks, they provide descriptive results and often expose in-
sightful relationships in data. Interpretability further allows practitioners to explain the outcome
of machine learning algorithms, resulting in higher reliability and accountability in decision-making
tasks. These benefits have led to a growing research in interpretable machine learning (see, e.g.,
Došilović et al. 2018; Murdoch et al. 2019; Molnar et al. 2018).

Despite recent advancements in interpretable machine learning, unsupervised algorithms are
still faced with major challenges when used for management science applications. In particular,
interpretable learning algorithms are limited by design to simple procedures and methodologies.
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Consequently, interpretable algorithms are generally less accurate than their supervised counter-
parts for prediction tasks, as they cannot capture complex relationships in data. Lower prediction
accuracy may be critical in many applications, e.g., in healthcare and finance, where decision making
depends highly on the predicted outcome. Lower accuracy can thus be a barrier to the application
of interpretable learners in management science.

Another challenge faced by interpretable learners is limited scalability in the size of the input
dataset. Unlike supervised algorithms which can recursively split and train on batches of the
dataset, unsupervised algorithms generally require to fit the entire dataset in memory. For large-
size datasets, e.g., ones commonly found in real-world application, unsupervised algorithms are thus
either not a viable option, or are executed on a subset of the dataset. The latter entails generating
suboptimal results and the discovery of only a subset of the knowledge hidden in data.

The above challenges motivate the work of this dissertation. In particular, we focus on the
design of interpretable, yet accurate and scalable learning algorithms, and show their benefit when
used to solve real-life applications in management science. Using a range of techniques in optimiza-
tion and statistics, such as mathematical programming, constraint satisfaction, decision diagrams,
dynamic programming, decomposition techniques, and hypothesis tests, we design novel methods
that increase the scalability and accuracy of results generated by a number of unsupervised algo-
rithms. We show the benefits of our developed algorithms and solution methods for applications in
bioinformatics, marketing, finance, and healthcare. We produce novel results that show orders of
magnitude improvement and solve benchmark instances to optimality for the first time.

1.1 Outline of Dissertation

The outline of this dissertation may be categorized into two themes:

(i) Developing interpretable, accurate, and scalable learning algorithms with the objective of
accommodating management science applications.

(ii) Using the developed algorithms as a basis to design interpretable data-driven approaches for
decision making tasks in marketing, finance, and healthcare.

Interpretable, Accurate, and Scalable Learning Algorithms

In the second chapter of the dissertation we develop an exact solution algorithm for the Multiple
Sequence Alignment (MSA) problem. The MSA problem involves comparing the similarity between
a number of sequences, which are strings of characters with a meaningful order. The objective
is to extract interpretable insights into the relationships of the sequences, with better alignments
exposing richer information. To solve the problem we initially design a dynamic programming
model and use it to construct a novel Multi-valued Decision Diagrams (MDD) representation of all
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pairwise sequence alignments (PSA). PSA MDDs are then synchronized using side constraints to
model the MSA problem as a Mixed-Integer Program (MIP), for the first time, in polynomial space
complexity. Two bound-based filtering procedures are developed to reduce the size of the MDDs,
and the resulting MIP is solved using logic-based Benders decomposition. For a more effective
algorithm, we develop a two-phase solution approach. In the first phase we use optimistic filtering
to quickly obtain a near-optimal bound, which we then use for exact filtering in the second phase
to prove or obtain an optimal solution. Numerical results on benchmark instances show that our
algorithm solves several instances to optimality for the first time, and in case optimality cannot
be proven, considerably improves upon a state-of-the-art heuristic MSA solver. Comparison to an
existing state-of-the-art exact MSA algorithm shows that our approach is more time efficient and
yields significantly smaller optimality gaps. This work is accepted for publication in INFORMS
Journal on Computing (Hosseininasab and van Hoeve, 2019).

In the third chapter of the dissertation, we focus on Constraint-based sequential pattern mining.
Constrained sequential pattern mining aims at identifying frequent patterns on a sequential database
of items while observing constraints defined over the item attributes. Frequent patterns are used,
e.g., to expose interpretable knowledge hidden in data, which are then used to aid decision making
tasks. We introduce novel techniques for constraint-based sequential pattern mining that rely on
a multi-valued decision diagram representation of the database. Specifically, our representation
can accommodate multiple item attributes and various constraint types, including a number of
non-monotone constraints. To evaluate the applicability of our approach, we develop an MDD-
based prefix-projection algorithm and compare its performance against a typical generate-and-check
variant, as well as a state-of-the-art constraint-based sequential pattern mining algorithm. Results
show that our approach is competitive with or superior to these other methods in terms of its
scalability and efficiency. This work is published in the conference proceedings of AAAI 2019
(Hosseininasab et al., 2019).

Data-Driven Decision Making and Applications

In the fourth chapter of the dissertation, we study data-driven sequential decision making with an
emphasis on interpretability and sequential structure. We first develop a novel data tree model
of the database that is able to fit in memory orders of magnitude larger datasets compared to
traditional tabular encodings. We leverage data trees to design a pattern mining algorithm capable
of extracting novel sequential patterns from large datasets. We then assess sequential patterns on
the likelihood that they are associated to an outcome of interest, and use patterns that satisfy a
minimum likelihood constraint as interpretable explanations on why those outcomes occurred. Using
statistical hypothesis tests, we provide a reliability measure for such explanations, and analyze the
trade-off between the imposed minimum likelihood and the percentage of outcomes that can be
explained by feasible patterns. Lastly, we show how patterns can be aggregated into a knowledge

3



tree to provide a structural view of the decision making process. Using our approach, we investigate
two large-size real-world applications in marketing and finance. In marketing, we consider reducing
the skip rate of users in an online music streaming platform. We find that almost all one billion
user skips in the database can be explained using an average of 6,400 sequential patterns, with
an average likelihood of 83%. In finance, we assess using historical sequential patterns of price
change to aid investment decision making in the stock market. We find that, at best, 80% of
nine hundred thousand monthly price change events can be explained using approximately 7,000
sequential patterns, with a low average likelihood of 53%. This work is submitted for publication,
and under review.

In the final chapter of the dissertation, we consider the provider network selection problem in
healthcare insurance plan design. Provider network selection takes the perspective of an insurance
firm that is tasked with finding the optimal subset of healthcare providers to contract. The set of
contracted providers are used to compose the insurer’s health insurance plans, which are then offered
to patients for selection. Patients select to enroll in an insurance plan among the ones offered by
the insurer and its competitor, possibly generating revenue for the insurer. To solve this problem,
we develop a novel methodology based on optimization. We incorporate the interpretable utility
function approach of the literature for predicting patient behavior into our optimization framework,
and develop a simultaneous multi-column-and-row generation algorithm. The algorithm involves
recursively generating new insurance plans that improve on the current set of plans offered by
the insurer. This is challenging, as the benefit of adding a newly composed insurance plan to the
optimization model depends on the dual information of constraints that are simultaneously added to
the model. We provide and prove a sufficient and necessary condition for newly composed insurance
plans to be profitable, and discuss how the optimization model can be used to extract interpretable
knowledge for decision making. Our numerical tests show that our approach improves over the
literature in all considered instances. We lastly evaluate the effects of inaccuracies in the utility
function in predicting patient choice. Our results show that inaccurate prediction of patient utilities
can be detrimental in the provider selection framework, motivating the need for an interpretable
yet accurate prediction methodology.
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Chapter 2

Exact Multiple Sequence Alignment

2.1 Introduction

Sequence alignment is a fundamental problem in computational biology, but also finds application in
other fields such as high frequency trading, speech recognition, and computer vision. The problem
involves comparing a number of sequences, with the objective of finding their best alignment. A
sequence s is defined as a string of characters s :=

〈
c1, . . . , c|s|

〉
with a meaningful order, for example,

representing a DNA, RNA, or protein molecule in the context of computational biology. The optimal
alignment of a set of sequences S is obtained by inserting gaps “−" into each sequence s ∈ S, such
that all sequences achieve the same length and their similar regions overlap.

The Pairwise Sequence Alignment (PSA) problem consists of finding the best alignment between
a pair of sequences (s, s′), and as a generalization, the Multiple Sequence Alignment (MSA) problem
involves aligning a set S ≥ 3 of sequences. The output of the sequence alignment problem is a matrix
with |S| rows, where each row corresponds to a sequence s ∈ S, and each column corresponds to a
set of aligned characters. Two characters cis, c

j
s′ , or a character cis and a gap symbol “−", are aligned

if they are placed in the same column of the MSA matrix. An alignment is feasible if and only if it
satisfies the following two requirements:

1. Order requirement: Ignoring the gap characters “−", the row associated with a sequence s ∈ S
must be identical to sequence s, and preserve the order of its characters

〈
c1
s, . . . , c

|s|
s

〉
.

2. Column alignment requirement: Each set of aligned characters belongs to exactly one column,
and any column must contain at least one character cis ∈ s, s ∈ S.

A feasible alignment is optimal if it gives the highest objective value with respect to the scor-
ing function. The scoring function assigns a reward for matching two characters, and penalizes
alignments of characters to gaps. The reward of aligning different characters is determined by a
predefined substitution matrix. Different substitution matrices result in different optimal solutions,
and are used to accommodate various user objectives.
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The penalty of aligning characters to gaps is primarily dependent on the user objective, and may
be a constant, or a function of the number of consecutive gap alignments (Vingron and Waterman,
1994). In affine or convex gap penalty functions, an opening gap alignment, i.e., a gap alignment
immediately after an alignment of characters, is penalized by the opening penalty. An extension of
a gap alignment is thereafter penalized by the extension penalty, which is a linear function in affine,
or a convex function in convex gap penalties.

To obtain the overall alignment score for MSA, a popular technique is the Sum-of-Pairs objective
template. In this template, the objective value is the sum of the rewards or penalties assigned to
all pairs of aligned characters and gaps. Note that a pair of aligned gaps is not assigned any reward
or penalty. Regardless of the scoring template, solving MSA is proven to be NP-complete (Wang
and Jiang, 1994), and is also challenging in practice. Thus, the majority of research in solving
MSA is dedicated to heuristic algorithms (Katoh et al., 2017; Hung et al., 2015; Sievers et al., 2011;
Chakraborty and Bandyopadhyay, 2013; Magis et al., 2014). Although heuristic methods are fast
and accommodate large-size problems, they fail to give any guarantee on the solution quality. In
fact, the quality of heuristic solutions has been shown to be often far below the optimal solution on
benchmark instances (Thompson et al., 2011; Nuin et al., 2006). As higher quality alignments offer
significantly more insight into relationship of sequences, it is desirable to develop algorithms with
higher accuracy. This motivates the development of algorithms that attempt to solve MSA exactly
and guarantee optimality.

To the best of our knowledge, three exact solution approaches exist for MSA. Namely, the
Dynamic Programming (DP) approach introduced by Needleman and Wunsch (1970); the Integer
Programming (IP) approach of the Maximum Weight Trace (MWT) problem introduced by Kece-
cioglu (1993) and solved exactly by Althaus et al. (2006); and the convex optimization approach
of Yen et al. (2016). Although exact approaches may be slow compared to heuristics, they are
guaranteed to reach the optimal solution eventually, even for large-size problems. However, a ma-
jor bottleneck of existing exact MSA algorithms is their exponential space requirement, which is
generally too high to allow the solution algorithm to fit in memory for large-size problems.

The DP algorithm models the MSA problem as a |S| dimensional cube of size n = max
s∈S
{|s|}, with

a memory requirement of O(n|S|) which is too space consuming to even model small sized instances.
The convex optimization approach also has exponential space requirements, and is limited to solving
small-sized sequences of length below 50 in practice. Similarly, the MWT approach has exponential
space requirements, with a worst-case O(|S|n|S|) space complexity.

The most successful exact approach for MSA is the branch-and-cut algorithm developed for the
MWT problem (Althaus et al., 2006). Althaus et al. (2006) consider small to medium sized problems
with 4 to 6 sequences and a total number of 300 to 600 characters. The branch-and-cut algorithm
works well on benchmark instances with high degrees of similarity, and is able to solve those to
optimality within a short amount of time. However, the algorithm does not converge for instances
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with lower degrees of similarity within 10 hours of computation, and terminates with 16-580% gaps
to optimality. For such instances, heuristic solutions with good quality are generated by optimizing
over a carefully chosen subset of the feasible solutions.

In this work, we follow the Sum-of-Pairs template and develop an algorithm for global se-
quence alignment (Needleman and Wunsch, 1970). As in most MSA algorithms, our algorithm
may accommodate local alignment (Smith and Waterman, 1981) or any objective template using
straightforward modifications.

In the first step, we develop a DP model and use it to construct a novel representation of the
MSA problem using Multi-valued Decision Diagrams (MDD). Decision diagrams were originally
used for circuit design problems as a compact graphical representations of Boolean functions (Lee,
1959; Bryant, 1986). In recent years, decision diagrams have been successfully used to represent the
set of feasible solutions of discrete optimization problems (Becker et al., 2005; Bergman et al., 2014,
2016b; Cire and van Hoeve, 2013; Darwiche and Marquis, 2004; Bouquet and Jégou, 1995; Cayrol
et al., 1998).

An MDD approach to MSA possesses a number of advantages not available for existing DP, IP,
or convex optimization approaches. Using the order preserved in MDDs, the structure of sequences
may be exploited to remove a set of infeasible alignments prior to optimization. This is not case
in the MWT algorithm for example, which identifies and removes such solutions iteratively by
branch and cut on a linear program (Reinert et al., 1997; Althaus et al., 2006; Kececioglu et al.,
2000). Using the MDD representation of PSA of all pairs (s, s′) : s, s′ ∈ S, we model the MSA
problem in worst-case O(|S|2n3) space for affine gap penalty functions and O(|S|2n4) for convex
gap penalty functions, while existing exact approaches require a worst-case exponential space. This
is a significant improvement, as it allows to model and potentially solve larger sized problems (in
particular for affine penalty functions), even though they may not be solved to optimality in a
reasonable amount of time.

We consider the MSA problem as the synchronized PSA of all pairs (s, s′) : s, s′ ∈ S. More
specifically, PSA MDDs are used as the underlying network structure to formulate the MSA prob-
lem as a Mixed-Integer Program (MIP), and their solution is synchronized using side constraints.
Transforming DP models into an equivalent MIP formulation was introduced by Martin (1987);
Martin et al. (1990), and shown to be an effective modeling approach. The resulting MIP in our
approach is a collection of longest path problems with side constraints, and hard to solve in general.

To lower the solution difficulty, we first attempt to reduce the size of the feasible solution set
by removing non-optimal solutions embedded in the PSA MDDs. We develop two bound-based
filtering procedures using the Carrillo and Lipman (1988) lower bound, and an upper bound based
on linear programming strengthened through additive bounding (Fischetti and Toth, 1989). To
the best of our knowledge, this is the first upper bounding procedure used to prune infeasible or
non-optimal solutions in the MSA problem. We show that these filtering procedures complement
each other, and in particular, additive bounding filtering is able to prune a significant number of
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solutions even after the Carrillo-Lipman filtering procedure is used. The MSA MIP is defined on
the filtered PSA MDDs, and solved using a logic-based Benders decomposition algorithm (Hooker
and Ottosson, 2003).

For a more effective solution algorithm, we develop a two phase approach. In the first phase,
we aggressively filter the PSA MDDs using an optimistic guess for the optimal solution objective.
This allows us to optimize over a considerably smaller solution set and quickly find quality solutions
(in most considered instances, optimal or near-optimal). Using the bound obtained by the optimal
solution of the first phase, we exactly filter the PSA MDDs in the second phase to prove optimality
of the first phase solution, or find an optimal solution.

We show that our algorithm is able to solve several benchmark instances to optimality (with re-
spect to our considered objective functions). For instances not solved withing the imposed time limit,
a primal heuristic embedded in the Benders decomposition algorithm generates feasible MSA solu-
tions, which significantly improve alignment accuracy compared to a state-of-the-art MSA heuristic
solver. The solution algorithm is compared to the best exact approach of the literature, and shown
to optimally solve or reach lower gaps to optimality on almost all considered instances.

The rest of the chapter is structured as follows. §2.2 models the PSA problem as a DP model,
and uses that model to represent the PSA problem as an MDD. In §2.3 we show how to synchronize
PSA MDDs to model the MSA problem as an MIP, discusses the filtering procedures used to prune
non-optimal solutions, and designs the two phase solution algorithm. In §2.4, we develop the logic-
based Benders decomposition and primal heuristic algorithms. We give the numerical results on
benchmark instances in §2.5, and the chapter is concluded in §2.6.

2.2 A Dynamic Programming Model and MDD Representation for
the PSA Problem

In this section, we develop a DP model for the PSA of sequences s, s′ ∈ S. Our model is similar to
the matrix-format DP model of Needleman and Wunsch (1970) (in particular when gap penalties
are linear); however, our DP model is better suited to develop an MDD representation of PSA. For
clarity, we first define the DP model for the case of linear gap penalty functions, and thereafter
expand the model to affine and convex settings.

2.2.1 Dynamic Programming Model for the PSA Problem

For a PSA alignment of sequences (s, s′), we define x as a tuple of discrete variables (x1, . . . , xi,

. . . , x|s|), one for each character cis : 1 ≤ i ≤ |s|. Variables xi are associated with finite domains Di,

defined as the possible alignment decisions for cis, i.e., Di =
{
c1
s′ , . . . , c

|s′|
s′ ,−

}
. Assigning xi to a

value in Di represents aligning character cis to some character cjs′ , 1 ≤ j ≤ |s
′|, or to the gap symbol

“−". For example, for the PSA of the sequences in Figure 2.1.a, we define three variables x1, . . . , x3
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𝒙𝟏 = 𝑻𝒙𝟐 = −𝒙𝟑 = 𝑮

Figure 2.1: Example variable association and assignment, and corresponding output PSA matrix.

with the domains Di = {G,T,R,−} , i = 1, . . . , 3. A PSA solution is thus represented by a feasible
assignment to tuple x. For example, x̄ = (x̄1, x̄2, x̄3) = (T,−, G) represents the alignment made in
Figure 2.1.b, with the output alignment matrix shown in Figure 2.1.c.

To determine the optimal assignment for x, we solve the PSA problem using a DP with i =

1, . . . , |s| stages, where at each stage i, a decision is made for the value of xi. The model is formulated
by backwards induction, i.e., stages i = 1, . . . , |s| (consequently variables x1, . . . , x|s|) correspond to
the alignment decision for characters c|s|s , . . . , c1

s, respectively. The PSA DP model has the following
elements:

• state spaces Si, for i = 0, . . . , |s|+ 1;

• transition functions Ti : Si−1 ×Di → Si, for i = 1, . . . , |s|;

• transition reward functions Ri : Si−1 × Si → R, i = 1, . . . , |s|+ 1;

and is written as:

max
z,x

∑
i=1,...,|s|+1

Ri(zi−1, zi) (2.1)

s.t. zi = Ti(zi−1, xi) i = 1, . . . , |s|, (2.2)

z0 = |s′|+ 1, z|s|+1 = 0 (2.3)

zi ∈ Si, xi ∈ Di i = 1, . . . , |s|. (2.4)

The alignment variables x1, . . . , x|s| are regarded as controls, where a control xi takes the DP sys-
tem from state zi−1 ∈ Si−1 to state zi = Ti(zi−1, xi) and accumulates a reward/penalty Ri(zi−1, zi).
We define states zi as the position j of the last non-gap alignment made to a character cjs′ . That
is, zi = j, where cjs′ is the last non-gap alignment decision for a character ci′s , i′ ≤ i. Following this
definition, the transition functions are defined as:

Ti(zi−1, xi) =

 j if xi = cjs′ , and

zi−1 if xi = −.

The DP model is initiated from state z0 = |s′|+ 1 and terminated at state z|s|+1 = 0. For example,
Figure 2.2 shows the transition values for the example PSA of Figure 2.1.b.
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Figure 2.2: Example DP transition function values.
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𝑠

𝑠′

Figure 2.3: The alignment shown by the dashed arc implies gap alignments of characters
cjs′ , j = 3, 4, 5 (circled).

PSA feasibility is satisfied by ensuring that zi ≤ zi−1 for any transition zi = Ti(zi−1, xi), as
proved in Lemma 2.1. State spaces Si are defined as the set of possible state values for zi at stage
i of the DP model. Therefore, S0 = {|s′|+ 1}, S|s|+1 = {0}, and Si = {|s′|+ 1, . . . , 1} for all
1 ≤ i ≤ |s|.

Lemma 2.1. A transition from a state zi−1 to a state zi is feasible if and only if zi ≤ zi−1.

Proof. The “only if" direction holds due to the well-known Markovian property of the DP solution
for PSA. The “if" direction holds as any alignment such that j = zi−1 > zi = j′ implies an alignment
of character ci′s , i′ ≤ i− 1 to cjs′ , and c

i
s to c

j′

s′ , j > j′, and violates the order requirement.

The transition reward function R(zi−1, zi) is designed to accumulate a gap penalty if zi = zi−1.
To model character alignment rewards, we first point out that the proposed DP model explicitly
determines gap alignment decisions for characters cis only, and it does not explicitly determine the
gap alignment decisions for characters cjs′ . Gap alignments for characters cjs′ are however implied by
non-gap alignment decisions for characters cis. For example, in Figure 2.3 the alignment of c4

s = M

implies that characters c3
s′ , c

4
s′ , c

5
s′ are aligned with gap symbols. To capture the penalty of such

implied gap alignments, R(zi−1, zi) is designed to accumulate a gap penalty of a length zi−zi−1−1

gap, in addition to the explicit character alignment reward for characters cis.

2.2.2 Extension to Affine and Convex Gap Penalty Functions

The state definition zi of the previous section is only sufficient for a linear gap penalty function. To
accommodate more complex penalty functions such as affine or convex, we are required to define
additional state values for variables zi. In particular gap opening and extension penalties are unequal
in such functions. Therefore, to correctly penalize gap alignments at stage i of the DP model, we
are required to distinguish whether a gap or a non-gap alignment is made at stage i− 1. In case a
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Figure 2.4: A PSA MDD with layers Li corresponding to state spaces Si, and variables xi
(transitions Ti) corresponding to arcs (u, v) ∈ Ap. The highlighted path corresponds to an

alignment (x̄1, x̄2, x̄3) = (c1
s′ ,−, c2

s′)
.

non-gap alignment is made at stage i−1, a gap alignment at stage i is penalized by the opening gap
penalty. Similarly, if a gap alignment is made at stage i − 1, an extension gap penalty is incurred
for gap alignments at stage i.

To distinguish gap and non-gap alignments at each stage, we introduce negative state values
zi < 0, and associate them to gap alignments. That is, a negative state zi < 0 denotes that a gap
alignment is made at stage i− 1. In this setting, a character alignment is modeled by a transition
from a positive or negative state value zi−1, to a positive state value zi > 0. Opening gap alignments
are modeled by a transition from a positive state value zi−1 > 0 to a negative state value zi < 0; and
gap extension alignments are modeled by transition between negative state values zi < 0, zi−1 < 0.
Similar to before, a transition zi = Ti(zi−1, xi) is feasible (permitted) if and only if 0 ≤ zi < |zi−1|
for character alignments, or zi = −|zi−1| for gap alignments.

The state spaces Si for the DP model with affine penalty functions are defined as follows. For
stage i = 1, we define S1 = {−(|s′|+ 1), 1, . . . , |s′|}, where a state 1 ≤ z1 ≤ |s′| indicates that
c
|s|
s is aligned to character cz1s′ ; and state z1 = −(|s′| + 1) indicates an opening gap alignment for
c
|s|
s . Note that gap extension alignments are not possible at stage i = 1. For stages i = 2, . . . , |s|,
we define Si = {−(|s′|+ 1),−|s′|, . . . ,−1, 1, . . . , |s′|}, with a negative state value −|s′| ≤ zi ≤ −1

representing a gap alignment at stage i − 1. Figure 2.4.a. shows example transitions (represented
by arcs) between different state values zi (represented by nodes) for affine penalty functions.

Unlike an affine penalty function where gap extension penalties incurred at stage i are equal
regardless of the number of consecutive gap alignments prior to stage i, a convex penalty function
gives different penalties when extending gaps of different lengths. To accommodate a convex penalty

11



function we must thus keep track of the number of consecutive gap alignments prior to stage i, in
addition to representing gap states by negative values. This is done by redefining state variables zi
from single values j, to size-two tuples (j, g). The definition of values j is consistent with the case
of affine penalty functions, and the newly introduced state gap length value g denotes the number
of consecutive gap alignments made prior to state zi. Using values (j, g) we can correctly calculate
the cost of convex gap penalties in Ri(zi−1, zi).

To define the state spaces Si for convex gap penalties, we first define Si =

{(−|s′| − 1, i) , (1, 0), . . . , (|s′|, 0), } , 1 ≤ i ≤ |s′|, which denote character alignments by zi = (j, 0) :

j > 0, and the possibility of no character alignment (i consecutive gap alignments) before stage i by
zi = (−|s′| − 1, i). To represent gap alignment states, we add state values {(−1, i′), . . . , (−|s′|, i′), }
to Si for every value of i′ ∈ {1, . . . , i}, as there are a possible i′ number of possible values for g at
stage i. Figure 2.4.b shows example transitions (represented by arcs) between different state values
zi (represented by nodes) for a convex penalty functions.

This concludes the definition of the proposed DP model for PSA. The next section uses the
designed DP model to represent PSA as a MDD.

2.2.3 MDD Representation for the PSA Problem

This section uses the PSA DP model to represent the PSA of a pair of sequences p = (s, s′) as an
MDD. For succinctness, we mainly discuss the MDD representation for the DP model with affine
penalty functions. The extension to convex penalty functions is straightforward.

A PSA MDDMp = (Up, Ap) is a layered directed acyclic graph, where Up is its set of nodes, and
Ap is its set of arcs. Set Up is partitioned into layers (L0, . . . ,L|s|+1), such that layers Li : 1 ≤ i ≤ |s|
correspond to stages 1 ≤ i ≤ |s| of the DP model, and contain one node per value of state spaces Si.
For example, Layers L0 and L|s|+1 consist of single nodes, namely the root node r ∈ L0 (z0 = |s′|+1),
and the terminal node t ∈ L|s|+1 (z|s|+1 = 0), which are used to initialize and terminate the PSA,
respectively.

Nodes u ∈ Li : 1 ≤ i ≤ |s|, represent the possible values that zi can take at stage i of the
DP formulation. For example, for the DP formulation with affine penalty function, we create
|S1| = |s′| + 1 nodes for layer L1, and |Si| = 2|s′| + 1 nodes for layers Li : 2 ≤ i ≤ |s′|. A node
u ∈ Li : 0 ≤ i ≤ |s|+ 1 thus represents a specific state value in Si, denote as state(u). Transitions
from states in Si−1, i.e., nodes u ∈ Li−1, to states in Si, i.e., nodes v ∈ Li, are represented by arcs
(u, v) ∈ Ap. Arcs (u, v) ∈ Ap model the assignment of a value in Di to control variables xi, and
take the system from state(u) to state(v) = Ti(state(u), xi). As in the DP model, transitioning to
a node v : state(v) > 0 at stage i, implies an alignment of cis to character cstate(v)

s′ . Transitioning
from node u to a node v : state(v) < 0 implies an opening gap alignment if state(u) > 0, or an
extension gap alignment if state(u) < 0.

Following the DP model, PSA feasibility is ensured by creating an arc (u, v) only if state(v) <
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|state(u)| for character alignments, or state(v) = −|state(u)| for gap alignments. By this repre-
sentation, any path from r to t corresponds to a feasible PSA solution, as the satisfaction of the
order and column alignment requirements are guaranteed by the definition of transition functions
state(v) = Ti(state(u), xi). Moreover, the MDD models all possible feasible PSA solutions, as its
arcs model all feasible transitions of the DP model.

Figures 2.4.a, 2.4.b show the MDD representation of the example PSA in Figure 2.1, with the
correspondence of layers Li to state spaces Si, arcs (u, v) to transitions state(v) = Ti(state(u), xi),
and nodes u ∈ Li to state values zi, for affine and convex penalty functions respectively. The example
alignment x = (G,−, T ) corresponds to the highlighted path from the root node r to the terminal
node t in both MDDs. Note that the structure of any two PSA MDDs Mp,Mp′ , respectively
modeling the alignment of sequence pairs (s1, s2), (s3, s4), is identical if |s1| = |s3|, |s2| = |s4|. In
particular, Figure 2.4 shows the MDD structure for any two sequences (s, s′) such that |s| = 3, |s′| =
3.

To implement the reward/penalty of alignments we use weighted MDDs, where arcs (u, v) ∈ Ap

are associated to values wuv = Ri(state(u), state(v)). The length of an r-t path is thus the objective
value

∑
i=1,...,|s|+1

Ri(zi−1, zi). Consequently, the longest r-t path corresponds to optimal PSA solution

x̂. Proposition 2.2 proves that the PSA MDD correctly models the PSA problem.

Proposition 2.2. The PSA MDD is a valid representation for the PSA problem.

Proof. The PSA MDD mimics the DP model for the PSA problem by modeling all states by nodes
u ∈ Ap, and all feasible transitions by arcs (u, v). The transition reward functions are also captured
by weights wuv on arcs (u, v) ∈ Ap. As the DP model is valid for the PSA problem, the PSA MDD
is a valid representation of the PSA problem.

We next prove in Proposition 2.3 that our PSA MDDs are reduced. An MDD is reduced if there
are no equivalent nodes in any of its layers Li (Wegener, 2000). Two nodes u, u′ in a layer Li are
equivalent if there is a one to one equivalence between the set of u-t paths, and the set of u′-t paths.
For equivalent nodes u, u′, we can delete node u′ and all its outgoing arcs (u′, v) : v ∈ Li+1, and
redirect its incoming arcs (v, u′) : v ∈ Li−1 to node u, without altering the decision structure of the
MDD.

Proposition 2.3. The PSA MDD representation above is reduced by construction.

Proof. By construction, state(u) 6= state(u′) for any pair of nodes u, u′ ∈ Li, i = 0, . . . , |s| + 1. As
arcs (u, v) ∈ Ap are constructed based on state(u), no two single nodes u, u′ ∈ Li have a common
set of outgoing arcs (i.e., arcs representing the same decision and the same weights wuv). Therefore,
no two paths u-t, u′-t are equivalent for any nodes u′, u ∈ Up.

The current definition of a PSA MDD models all feasible PSA solutions in O(n3), O(n4) space
complexity for affine and convex penalty functions, respectively. Although the entire PSA MDDs
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are required in order to model an exact solution approach for MSA (discussed in the next section),
the space complexity of the algorithm may be reduced if we are interested in only finding an optimal
PSA. To that end, we prove in Lemma 2.4, that for PSA the only required information at stage i
of the DP model is the longest path values leading to nodes u ∈ Li−1.

Lemma 2.4. Let I↓(u) denote the value of a longest r-u path. Values I↓(u) ∈ Li are the only
information required to solve the PSA problem.

Proof. Proof is by induction on stages i of the DP model. The statement is trivial for stage i = 1.
Assume the statement holds for stage i > 1. For any node v ∈ Li+1 we have by definition of the
longest path, I↓(v) = max

u:(u,v)∈Ap

{
I↓(u) + wuv

}
. By the principal of mathematical induction, the

statement holds for any stage i.

The DP model is thus only required to keep in memory |Li−1| + |Li| number of values at each
stage i, and update the partial optimal PSA at every step similar to the algorithm of Hirschberg
(1975). This gives a space complexity of O(n), O(n2) for the PSA problem with affine or convex
penalty gaps, which is consistent with the best complexity proven for the PSA problem with linear
penalty costs in Hirschberg (1975).

2.3 Solving the MSA Problem using Synchronized PSA MDDs

2.3.1 Modeling the MSA Problem as an MIP

The MSA problem may be viewed as the simultaneous alignment of all possible PSAs. In this
section, we show how to synchronize all PSA MDDs for an exact solution to the MSA problem. We
consider 1 ≤ s ≤ |S| − 1 and s+ 1 ≤ s′ ≤ |S|, and let set P be the union set of all pairs p = (s, s′).
We construct all pairwise MDDsMp : p ∈ P, and define M = (U c, Ac) as the union of all pairwise
MDDsMp, where U c =

⋃
p∈P

Up, Ac =
⋃
p∈P

Ap. Observe that the worst-case space complexity of M is

O(|S|2n3), O(|S|2n4) for affine and convex penalty functions, respectively. To simultaneously solve
the PSA MDDs, we first formulate the MIP model below, defined on set M:

max
∑

(u,v)∈Ac
wuvyuv (2.5)

s.t.
∑

u:(r,u)∈Ap
yru = 1 ∀p ∈ P, (2.6)

∑
u:(u,t)∈Ap

yut = 1 ∀p ∈ P, (2.7)

∑
u:(u,v)∈Ap

yuv −
∑

u:(v,u)∈Ap
yvu = 0 ∀p ∈ P, ∀v ∈ Up \ {r, t} , (2.8)

yuv ∈ {0, 1} ∀(u, v) ∈ Ac. (2.9)
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Here, yuv is a binary variable defined for arcs (u, v) ∈ Ac, determining whether arc (u, v) is part
of the optimal solution or not. The objective function (2.5) maximizes the reward of all pairs of
character alignments (sum-of-pair score), and constraints (2.6)-(2.8) preserve the required flow in
the longest path problems defined on M, the union of disjoint directed acyclic graphsMp.

Solving the above MIP corresponds to finding the shortest paths in all PSA problems indepen-
dently, and is likely infeasible with respect to the order requirement in MSA. To enforce the order
requirement, we add additional continuous column variables πis ≥ 0, which denote the column place-
ment of character cis in the output MSA matrix. We enforce constraints (2.10) and (2.11), which
ensure that any aligned characters cis, c

j
s′ are placed into the same column of the MSA matrix (i.e.,

πis = πjs′). Here, M denotes a big number, defined asM =
∑
s∈S
|s| in our computational experiments.

πis ≤ π
j
s′ +M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

yuv

 ∀p = (s, s′),∀(i, j) ∈ (s, s′), (2.10)

πjs′ ≤ π
i
s +M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

yuv

 ∀p = (s, s′),∀(i, j) ∈ (s, s′). (2.11)

Finally, we add constraints (2.12), which enforce the order requirement between columns of the
MSA matrix:

πis ≤ πi+1
s − 1 ∀k, ∀i = {1, . . . , |s| − 1} . (2.12)

This gives a constrained longest path formulation:

P: {(2.5)|(2.6)− (2.12), π ≥ 0} ,

to solve MSA. Note that although variables πis are continuous, in a solution for P they take integer
values due to their integer upper and lower bounds. The worst-case space complexity of model P is
consistent with the size of M, which is lower than the worst-case exponential space requirements of
all current exact MSA algorithms for |S| > 3, in particular for linear or affine gap penalty functions.
To prove correctness, Proposition 2.5 proves that constraints (2.6)-(2.12) are sufficient to enforce
the feasibility requirements of MSA, and Corollary 2.6 proves that the solution of P is an exact
MSA solution.

Proposition 2.5. An MSA matrix satisfies the MSA feasibility requirements, if and only if con-
straints (2.6)-(2.12) are satisfied.

15



Proof. If the MSA matrix satisfies the MSA feasibility requirement, we can construct solution vector
ȳ by setting π̄is = j,∀s ∈ S,∀i ∈ s, where character cis is placed in column j of the MSA matrix.
Solutions ȳ, π̄ satisfy constraints (2.6)-(2.12), as all aligned characters are placed in the same column
of the matrix, and the order of columns satisfy constraint (2.12). For the converse, we can construct
a feasible MSA matrix using the ordering given by solution π̄. All aligned characters have equal
π̄ and thus fall into the same column, and all columns satisfy the order requirement enforced by
constraint (2.12).

Corollary 2.6. The solution of P is an exact MSA solution.

Proof. By Theorem 2.5, P optimizes over the set of all feasible MSA solutions. Thus, the optimal
solution to P is an optimal MSA solution.

Despite its polynomial model size, solving P to optimality is only practically feasible for small-
sized instances when using a generic MIP solver. To increase the solution efficiency, we next
introduce filtering algorithms to prune and reduce the size of M by removing arcs (u, v) ∈ Ac

(consequently variables yuv) which cannot be part of an optimal MSA solution.

2.3.2 MDD Filtering Procedures for the MSA Problem

Bound-based filtering is an effective method in reducing the size of large-scale problems (Detienne
et al., 2016, 2015). For decision diagrams, filtering refers to the process of identifying and deleting
arcs (u, v) which do not contribute to a feasible or optimal solution (Hoda et al., 2010; Andersen
et al., 2007; Cayrol et al., 1998). Any r-t path using such arcs is either infeasible or not optimal.
Therefore, we may delete arc (u, v) without removing any feasible or optimal solution. By construc-
tion, all arcs (u, v) ∈ Ap may be part of a feasible MSA solution. Therefore, the the PSA MDDs
are already filtered in that sense. However, not all arcs can participate in an optimal MSA solution.
We use two bounds to filter M based on optimality, namely the Carrillo and Lipman (1988) lower
bound, and the additive bounding Fischetti and Toth (1989) upper bound.

Carrillo-Lipman Lower Bound

As the first method, we use the well-known Carrillo and Lipman (1988) lower bound to reduce the
size of each pairwise MDDMp. The procedure generates a lower bound on the objective value of
anyMp, and removes any solution that violates that lower bound.

Let ȳ be a feasible MSA solution, which may be obtained using any fast heuristic method, e.g.,
MUSCLE (Edgar, 2004). Further, let ŷp be the optimal PSA solution of any Mp, and let f(ȳ)

denote the objective value of solution ȳ. Carrillo and Lipman (1988) prove that f(ȳ)−
∑

p′:p′ 6=p
f(ȳp

′
)

is a valid lower bound for the PSA of pair p, and any PSA solution that violates this bound cannot
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be part of an optimal MSA solution. Formally,

f(ȳp) ≥ f(ȳ)−
∑

p′:p′ 6=p
f(ŷp

′
), (2.13)

holds for all p ∈ P. Now, let I↓(u) denote the value of a longest path from root r to node u ∈ Up.
Similarly, let I↑(u) denote the value of a longest path from a node u ∈ Up to terminal t. Using
lower bound (2.13), we filter PSA MDDsMp by deleting arcs (u, v) such that:

I↓(u) + wuv + I↑(v) < f(ȳ)−
∑

p′:p′ 6=p
f(ŷp

′
).

Lastly, we delete any node u ∈ U c, which does not have any incoming arc (v, u) ∈M or any outgoing
arc (u, v) ∈M.

Additive Bounding Upper Bound

Although solving P is time-consuming, solving its Linear Programming (LP) relaxation is efficient.
The LP relaxation of P is obtained by replacing the binary constraints (2.9), with 0 ≤ yuv ≤ 1.
The solution of this LP relaxation may be used in filtering procedures for decision diagrams, using
the additive bounding procedure (Fischetti and Toth, 1989; Kinable et al., 2017).

Given an optimization problem P, additive bounding solves a series of relaxations P̃1, . . . P̃k

of P, such that P̃1 is defined with respect to the original objective coefficients and P̃k′ receives as
objective coefficients the reduced costs obtained from P̃k′−1, for k′ = 2, . . . , k. Fischetti and Toth
(1989) show that the sum of the bounds from P̃1 to P̃k is a valid bound for P.

In the context of our problem, we combine the LP relaxation of P with the discrete relaxation
defined by (2.5)-(2.9), i.e., the longest path formulation on the pairwise PSA MDDs. First, we solve
the LP relaxation of P, and denote the resulting upper bound by f̃(P), its optimal solution by ỹ,
and the reduced cost of variable yuv by µuv. We then associate with each arc (u, v) ∈ A a weight
w̃uv defined as

w̃uv =

 µuv if ỹuv = 0, and

0 otherwise.

Observe that w̃uv ≤ 0 for all (u, v) ∈ A since P is a maximization problem. Given a feasible solution
ȳ for P with objective value f(ȳ), the additive bound

f̃(P ) +
∑

(u,v)∈A

w̃uvyuv, (2.14)

is a valid upper bound for P, i.e. f(ȳ) ≤ f̃(P ) +
∑

(u,v)∈A w̃uvyuv.
We can now define an MDD arc filtering rule as follows. Let Ĩ↓(u) denote the value of a of a
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Figure 2.5: Example matrix format for PSA, and update procedure for for cell C4,3.

longest path, with respect to weights w̃uv, from root node r ∈ UP to a node u ∈ Up. Similarly,
let Ĩ↑(v) denote the value of a longest path, with respect to weights w̃uv, from a node v ∈ Up to
terminal node t ∈ Up. Using the upper bound (2.14), we filter the MDD Mp by deleting any arcs
(u, v) such that:

Ĩ↓(u) + w̃uv + Ĩ↑(v) < f(ȳ)− f̃(P ).

As before, we delete any node u ∈ U c that does not have any incoming arc (v, u) ∈ M or any
outgoing arc (u, v) ∈M.

Filtering the MDD During Construction

It is more efficient (in both time and memory) to filter M during its construction, rather than build
M and filter it thereafter. To that end, we can use the Carrillo-Lipman filtering procedure to filter
the PSA MDDs during their construction, as its bound can be calculated before construction of the
PSA MDDs. In particular, we can calculate the optimal PSA of all pairs p = (s, s′), and generate
a heuristic solution ȳ (e.g. using MUSCLE) to obtain the Carrilo-Lipman bound (2.13), without
constructing the PSA MDDs. The only MDD-dependant step is calculating values I↓(u), I↑(v) that
are used to determine whether an arc (u, v) is constructed or not (filtered).

Values I↓(u) can be calculated during construction, as the PSA MDDs are built incrementally
from the root node r to the terminal node t. However, values I↑(v) cannot be calculated from the
MDDs before they are fully constructed. Fortunately, it is possible to calculate these values using a
matrix-format PSA DP method, similar to that of Mott (1999) and Needleman and Wunsch (1970).
The matrix-format DP method is suitable to calculate values I↑(v) due to its forward induction
on aligning characters c1

s, c
2
s, . . . , c

|s|
s (recall that the PSA MDD follows a backwards induction). In

the interest of space, we refer the interested reader to Mott (1999) and Needleman and Wunsch
(1970) for thorough explanations of matrix-format PSA procedure, and briefly discuss the modified
algorithm to calculate values I↑(v) in our approach.

We create a (|s|+ 1)× (|s′|+ 1) alignment matrix, such as the example given in Figure 2.5 for
|s| = |s′| = 3. In the matrix-format PSA, the value of cell Cji at row j and column i of the matrix
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gives the objective of the best PSA alignment of the first i − 1 characters cis ∈ s to the first j − 1

characters cjs′ ∈ s′. To accommodate affine and convex penalty functions, we additionally define
gji as the number of consecutive gap alignments contributing to the value of cell Cji. Note that gji
may be reduced to a binary value in affine penalty functions, as the penalty of extending a gap does
not depend on the length of that gap. Lastly, we define function G(g, x) which gives a g length gap
penalty cost plus an alignment reward based on the decision x.

The value of C00 is initialized to zero, with g00 = 0, and the values of the first row and column cells
are calculated as consecutive gap alignments: C0i = G (i,−) , g0i = i, Cj0 = G(j,−), gj0 = j. The rest
of the cells are calculated incrementally by a DP procedure as Cji = max {Fji, Hji}, where Hji =

max
j′<j

{
Cj′,i−1 + G(j − j′ − 1, cj

′

s′)
}
, gji = gj′,i−1 +j−j′−1, and Fji = max

i′<i

{
Cj,i′ + G(i− i′ − 1,−)

}
,

gji = gji′ + i − i′ − 1. Values gji are updated according to whichever value Fji or Hji gives Cji.
Figure 2.5 shows an example schema of determining these values for cell C43. Finally, cell C|s′|+1,|s|+1

gives the optimal PSA objective.
The calculated values of cells Cji can be used to exactly determine values I↑(v). By definition,

I↑(v), v ∈ Li, state(v) = j > 0 is the value of the longest path from node v to terminal t. This path
corresponds to the best PSA alignment of the first i−1 characters cis ∈ s to the first j−1 characters
cjs′ ∈ s

′, i.e. Cji. However, observe that the above procedure assumes no prior gaps leading to a cell
Cji when calculating its value. For example, when calculating C01, the gap penalty is calculated
according to a gap of length 1 in G(1,−), which gives an opening gap penalty. Although this is correct
for I↑(v), v ∈ Li, state(v) = j > 0, it is an incorrect value for I↑(v), v ∈ Li, state(v) = j < 0. This is
because extending a gap leading to node v by g additional gaps is not equal to opening a gap of length
g in affine or convex penalty functions. In order to calculate values I↑(v), v ∈ Li, state(v) = j < 0,
we need to build other matrices.

For affine penalty functions, it is sufficient to build an extra PSA matrix with the assumption
that all cells Cji proceed a gap of length one. The function G(g, x) thus calculates an extension gap
penalty when calculating the value of cells Cji. The values calculated in this new matrix are used
to determine values I↑(v), v ∈ Li, state(v) = j < 0.

For PSA with a convex penalty function, the extension gap penalty additionally depends on the
number of consecutive gaps leading to nodes v : state(v) < 0. To exactly calculate values I↓(u), u ∈
Li, state(u) = (j, g), j < 0 we must solve |s| number of PSA matrices, one per possible value of
gap lengths g, which takes a relatively long time. A compromise between time and quality of our
estimate for values I↓(u) is to solve 2 PSA matrices. The original matrix assumes that i > 0, g = 0

to exactly calculate I↓(u), u ∈ Li, state(u) = (j, 0), j > 0, and for the other matrix we assume
i < 0, g = |s| − i− 1 to give an upper bound for the values of I↓(u), u ∈ Li, state(u) = (j, g), j < 0.
That is, as |s| − i− 1 is the maximum possible value of g at stage i, all values of the second matrix
are an upper bound to the exact values of I↓(u), u ∈ Li, state(u) = (j, g′), j < 0, g′ < g due to the
convex property of the penalty function. Using the values of this second matrix, we estimate all
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values I↑(v), v ∈ Li, state(v) = j < 0 and filter the PSA MDD during construction. After a PSA
MDD is constructed using the estimated values I↑(v), we exactly calculate all values I↓(u), and
re-filter the MDD.

This concludes the procedure to filter the PSA MDDs during construction. The next section
discussed how to use the filtering procedures for a more effective two phase solution for MSA.

Two Phase Solution Algorithm for MSA Based on Optimistic Filtering

Initial numerical results showed that the filtering algorithms do not prune a significant number of
arcs (u, v) ∈M, when using (commercial) heuristic solvers to provide the bound f(ȳ). Unfortunately,
obtaining solutions with higher quality quickly is not possible for large-size instances using any other
method in the literature.

On the bright side, the discussed filtering procedures do not require the explicit alignments of
an MSA solution ȳ, and operate only using its objective value f(ȳ). Therefore, it is not required to
explicitly generate a solution to filter M, and it is possible to use a guess for the value f(ȳ). A guess
fg is valid if fg ≤ f(ŷ), where ŷ is an optimal MSA solution. A valid guess close to the optimal
objective value f(ŷ) leads to considerable pruning of M, and consequently a smaller problem to
solve. On the other hand, if the guess is invalid, i.e., fg > f(ŷ), the filtering procedures may delete
the optimal solution ŷ from M. In case of an invalid guess, the solution of P may turn out to be a
local optimal solution, or in the worst-case P becomes infeasible and does not contain any feasible
MSA solutions.

The validity of fg cannot be determined unless the optimal value f(ŷ) is known. However, it
is possible to ensure that P is feasible after optimistic filtering, by ensuring that it contains at
least one feasible MSA solution. A straightforward, yet time-consuming, approach to determine the
feasibility of P after optimistic filtering is to directly solve P using an MIP solver, and observe the
result. A much faster approach is to check whether the filtered M contains some feasible solution
ȳ, which guarantees that P is feasible. This is done by ensuring all arcs (u, v) corresponding to
variables yuv ∈ ȳ : ȳuv = 1 remain in the filtered M.

We consider checking whether M contains the best found feasible solution ȳ (e.g., the solution
generated by a heuristic solver). If M does not contain ȳ, we reduce the optimistic guess fg by a
step size stp (e.g., one which is chosen heuristically), and re-run the filtering procedures using the
updated guess fg − stp. This procedure is repeated until M contains solution ȳ, in which case the
feasibility of P is guaranteed.

The optimal solution ŷo of P on the resulting optimistically filtered M, may be a local optimal
if fg > f(ŷ). To ensure global optimality, we solve the MSA problem in two phases. In the first
phase, we perform optimistic filtering on M and solve P to generate a possibly local optimal solution
ŷo. In the second phase, we check global optimality by using the first phase solution bound f(ŷo)

to filter M. As ŷo is a feasible MSA solution, the resulting filtered M is guaranteed to contain an
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optimal MSA solution ŷ. The solution of P in the second phase either proves optimality of ŷo, or
generates an optimal solution ŷ for the MSA problem.

The first phase optimal solution ŷo is guaranteed to have a higher objective value f(ŷo) ≥ f(ȳ),
where ȳ is generated by any heuristic MSA solver, proven in Lemma 2.7. In fact, it is noteworthy
to say that our numerical results show that either ŷ = ŷo or f(ŷo) is in worst-case within 97% of
the global optimal objective f(ŷ).

Lemma 2.7. The solution ŷo generated by solving P on an optimistically filtered M satisfies f(ŷo) ≥
f(ȳ), where ȳ is any feasible MSA solution.

Proof. In the first phase M is guaranteed to contain the best found feasible solution, e.g., ȳ. There-
fore, solving P on M generates a solution ŷo which is either ŷo = ȳ, or satisfies f(ŷo) > f(ȳ) due to
the maximization objective (2.5).

This concludes the filtering procedures for M. The filtered M is expected to be of smaller size
and consequently leads to an easier problem to solve. However, solving P on the filtered M is still
hard and time consuming using a commercial MIP solver. Our next step to reduce solution difficulty
is to use Benders decomposition.

2.4 Logic-based Benders Decomposition for Solving Synchronized
PSA MDDs

2.4.1 Logic-based Benders Decomposition

In this section, we design a decomposition algorithm to solve model P more effectively than a
generic MIP solver. Based on the structure of model P, we propose using logic-based Benders
decomposition (Hooker, 2002). We refer the interested reader to Hooker and Ottosson (2003) for a
thorough explanation of logic-based Benders decomposition.

As the first step, P is reformulated such that it only contains binary variables yuv. This is done
by relaxing constraints (2.10)-(2.12), and moving them to subproblem:

SP: max
{

0Tπ | (2.10)− (2.12), π ≥ 0
}
.

This gives the relaxed master problem:

RMP: max {(2.5) | (2.6)− (2.9)} .

The solution ȳ of RMP may or may not satisfy the MSA order requirement, i.e., constraints
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(2.10)-(2.12). To check this, DSP the dual of SP, is solved at ȳ:

min M

1−
∑

(u,v)∈Ap:u∈Lpi ,
state(v)=j

ȳuv


∑

(s,s′)

∑
(i,j)∈(s,s′)

αij(s,s′) − γ
ij
(s,s′)

+
∑

s∈S,i∈s
βis (2.15)

s.t.
∑

s′∈S:s′>s

∑
j∈s′

α1j
(s,s′) −

∑
s′∈S:s′>s

∑
j∈s′

γ1j
(s,s′) + β1

s ≥ 0 ∀s ∈ S, (2.16)

∑
s′∈S:s′>s

∑
j∈s′

αij(s,s′) −
∑

s′∈S:s′>s

∑
j∈s′

γij(s,s′) − β
i
s + βi+1

s ≥ 0

∀s ∈ S, ∀i ∈ s : 2 ≤ i ≤ |s| − 1, (2.17)∑
s′∈S:s′>s

∑
j∈s′

α
|s|j
(s,s′) −

∑
s′∈S:s′>s

∑
j∈s′

γ
|s|j
(s,s′) − β

|s|
s ≥ 0 ∀s ∈ S, (2.18)

αij(s,s′), γ
ij
(s,s′) ≥ 0 ∀(s, s′),∀(i, j) ∈ (s, s′), (2.19)

βis ≥ 0 ∀s, ∀i ∈ s. (2.20)

where variables αij(s,s′), γ
ij
(s,s′), β

i
s correspond to the dual variables associated with constraints (2.10),

(2.11), (2.12), respectively. If DSP is feasible, then ȳ is a feasible solution for P. Otherwise, if
DSP is unbounded, a Benders feasibility cut (2.21) is generated and added to RMP to remove the
infeasible solution.

M

∑
(s,s′)

∑
(i,j)∈(s,s′)

ᾱij(s,s′) − γ̄
ij
(s,s′)


1−

∑
(u,v)∈Ap:u∈Lpi ,
state(v)=j

yuv

 ≥ − ∑
s∈S,i∈s

β̄is (2.21)

We consider any feasible solution generated by the MIP solver when solving RMP, and add a
corresponding cut (2.21) to RMP if that solution is an infeasible MSA solution. The Benders
algorithm iterates until the solution of RMP leads to a feasible (not unbounded) solution for DSP,
which indicates an optimal solution for P.

Solving RMP is significantly easier than solving P. However, the rate of convergence to the
optimal solution is slow, and it takes many feasibility cuts (2.21) to reach the optimal solution. Cuts
(2.21) tend to remove one infeasible solution per iteration of the algorithm, and given the difficulty of
solving RMP at each iteration, this approach is not effective. To generate stronger cuts, we develop
logic-based column alignment cuts, which are added to RMP together with constraints (2.21). Our
column-alignment cuts are in fact a projection of the“generalized transitivity inequalities" used in
Althaus et al. (2006) onto the MDD variable space.

Column alignment cuts are designed to enforce the alignment of a pair of characters cis, c
j
s′ , if

those characters are both aligned with a third character cks′′ . Although this alignment is guaranteed
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for P due to constraints (2.10), (2.11), it is not enforced when constraints (2.10), (2.11) are relaxed,
i.e., in RMP. Cuts enforcing this alignment can thus be used to increase the solution quality of
RMP and aid in improving convergence. We model such cuts by considering a triple of characters(
cis, c

j
s′ , c

k
s′′

)
of sequence pairs p = (s, s′), p′ = (s, s′′), p′′ = (s′, s′′), and imposing the following

constraints: ∑
u:u∈Lp

′
i

∑
v:(u,v)∈Ap′ ,
state(v)=k

yuv +
∑

u:u∈Lp
′′
j

∑
v:(u,v)∈Ap′′ ,
state(v)=k

yuv ≤ 1 +
∑

u:u∈Lpi

∑
v:(u,v)∈Ap,
state(v)=j

yuv (2.22)

Proposition 2.8 proves that the triple consideration of sequences (s, s′, s′′) is sufficient to ensure
correct column alignment for any number of sequences above three.

Theorem 2.8. It suffices to consider all
(|S|

3

)
triples of sequences, to ensure correct column alignment

in MSA, for any number of sequences.

Proof. Consider a graph with nodes denoting characters c and arcs denoting alignment of characters.
A column in the MSA matrix corresponds to a set of connected nodes in the graph. Observe that
aligned characters respect the column alignment requirement if the induced subgraph of their nodes
forms a clique. If constraints (2.22) are satisfied, then for any connected component, all induced
sub-components of size three are cliques. This implies that the component is itself a clique.

It is possible to generate all possible cuts (2.22) a priori and add them to RMP; however, doing
so makes RMP much harder to solve. In fact, adding all such cuts makes the LP relaxation of
RMP unsolvable within 10 hours of computation, even for small instances. On the other hand,
not all cuts (2.22) contribute to the solution of RMP, and most are non-binding for its optimal
solution. We can thus only add a subset of these constraints to RMP, and achieve the same results
in much lower computation time. The problem is that we do not know beforehand which cuts (2.22)
are binding, and this is only observed given a solution to RMP.

We thus add cuts (2.22) to RMP as logic-based cuts within the Benders decomposition algo-
rithm. At each iteration, in addition to Benders feasibility cuts (2.21), we generate violated cuts
(2.22) and add them to RMP. The separation procedure to generate cuts (2.22) involves modeling
the alignment determined by the solution of RMP as a graph (following the same design as in the
proof of Theorem 2.8), and finding any triple of nodes which do not form a clique for any connected
component. As proven in Althaus et al. (2006), the time complexity of finding such cuts is bounded
by O(n4). Figure 2.6 shows the overall Benders decomposition algorithm. Note that the heuristic
procedure shown in Figure 2.6 is discussed in §2.4.3.
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Figure 2.6: Logic-based Benders decomposition algorithm.

2.4.2 Warm-starting the Logic-based Benders Decomposition Algorithm

The Benders decomposition algorithm solves RMP once per iteration. Repeatedly solving RMP
is time consuming, and lowers the effectiveness of the algorithm. Moreover, cuts generated in early
iterations of Benders decomposition tend to be of low quality, and not worth the computational
effort of solving RMP. One approach to increase the effectiveness of Benders decomposition is to
warm-start the relaxed master problem (McDaniel and Devine, 1977). The warm-start algorithm is
an iterative process that consists of solving the LP relaxation of RMP at each iteration, and adding
to it violated column alignments cuts (2.22), and Benders feasibility cuts (2.21). The warm-start
algorithm iterates until there is no improvement in the LP bound f̃(P). Warm-starting enables fast
generation of valid cuts, without the need to solve an MIP problem at each iteration. The resulting
master problem has a tighter linear relaxation, and is used to start the Benders decomposition.

Warm-starting has additional benefits for our problem, as it provides opportunities to further
reduce the size of M using the additive bounding filtering procedure. At each iteration of the warm-
start algorithm, the LP relaxation of RMP gives an updated objective bound f̃(P) and reduced
costs µuv. These solutions can be used in the additive bounding filtering procedure to further filter
M. At each iteration, RMP is redefined to optimize over the newly filtered M, which is smaller in
size and easier to solve. Figure 2.7 gives the overall warm-start algorithm.

2.4.3 Primal Heuristic Procedure to Generate Feasible MSA Solutions

As the last component of our solution framework, we develop a heuristic procedure that modifies an
infeasible MSA solution ỹ derived from RMP, to generate a feasible MSA solution ȳ. The heuristic
is executed within the Benders decomposition, and used to possibly generate solutions ȳ with higher
quality than those generated by heuristic MSA solvers. Such solutions ȳ are used to update the
incumbent, and provide better bounds f(ȳ) for the MDD filtering algorithms.

The heuristic algorithm procedure consists of two steps. In the first step, the algorithm removes
a set of alignments from the infeasible solution ỹ, such that the resulting solution does not violate
MSA requirements. To determine which set of alignments should be removed, we sort all made
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Figure 2.7: Warm-start algorithm.

alignments ỹuv = 1 in ascending order of their objective coefficient wuv. We then remove alignments
in the sorted order until the resulting solution does not violate MSA requirements.

In the second step, we use the feasible solution generated in the first step, and add to it any
possible feasible alignments that improve the overall objective. This is done by feeding the solution
to a heuristic solver, e.g MUSCLE (Edgar, 2004), to refine the alignment.

The heuristic procedure is executed for every feasible solution generated by the MIP solver when
solving RMP, in each iteration of the Benders algorithm. At any point, if the heuristic solution
improves the bound f(x̄) (or fg in optimistic filtering) used in the filtering procedures, we re-filter
M using the new bound.

This concludes all procedures for the complete MSA solution algorithm, summarized in Figure
2.8. The second phase to check global optimality is executed after the first phase converges to an
optimal solution. The second phase is identical to the first phase algorithm, with the exception of
using the generated solution of the first phase for exact filtering, instead of the guessed bounds used
to optimistically filter the PSA MDDs.

2.5 Numerical Experiments

We describe two sets of numerical experiments on our MDD solution approach for MSA. In our first
set of experiments, we consider an affine penalty function and analyze the performance of solving
instances from BaliBASE benchmark version 4 (BaliBASE4, 2017). We evaluate the effects of the
filtering algorithms in reducing the size of Mc, and compare the quality of our solutions to a state-
of-the-art heuristic MSA solver. In our second set of numerical tests, we consider both convex and
affine penalty functions and compare our algorithm to the best exact approach in the literature on
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Figure 2.8: Overall algorithm for solving MSA by synchronized PSA MDDs.

instances from BaliBASE benchmark version 1.

2.5.1 Experimental Setup

For alignment rewards we use the BLOSUM62 substitution matrix, and for our convex penalty
function we use 8 + 2g + 2

√
g, where g is the length of a gap in the alignment. This function

is adopted from Althaus et al. (2006), and shown to provide accurate alignments. For our tests
using an affine penalty function, we use 12 + 2.24g, where the opening and extension penalties are
obtained from a least squares regression approximation of function 8 + 2g + 2

√
g, for gap lengths

g = 1, ..., 50.
For optimistic filtering, we heuristically choose a step size of

stp =

(∑
p
f(ŷp)− f(ȳ)

)
/ (|S| ∗ 75/4− 50), where ȳ is the solution obtained from a heuristic MSA

solver. We use two independent optimistic guesses for the Carrillo-Lipman (fgCL) and additive
bounding (fgAB) filtering procedures. An initial value of

∑
p
f(ŷp)− stp is used for both guesses. At

any time during the warm-start algorithm, if fgAB turns out to be greater than the value of the LP
objective f̃(P), we set fgAB = f̃(P)− stp.

All algorithms are coded in C++, CPLEX 12.7.1 is used as the commercial MIP solver, and
MUSCLE 3.8.31 (Edgar, 2004) is used as the commercial MSA heuristic solver. MUSCLE was
chosen as it consistently provided the best alignment for our objective setting compared to other
heuristic solvers. All tests are executed on a PC with Intel Xeon E5345 2.33 GHz processor, with
24GB of memory on an Ubuntu 14.04.6 platform. Tests are limited to one thread of the CPU, and
a 10 hour time limit is chosen for the overall computation time for each instance. Our algorithm is
open-source and available to download1.

1https://github.com/aminhn/MSAMDD
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Figure 2.9: Effects of filtering algorithms on the size of Mc.

2.5.2 Experiments on Balibase Benchmark 4 and Comparison to Muscle

For our first set of experiments, we use the latest BaliBASE benchmark, i.e. version 4 (BaliBASE4,
2017), and initially limit our tests to instances with at most 1000 total number of characters, i.e.,∑
s∈S
|s| ≤ 1000. We then attempt to solve number of the largest size instance that can fit in our

system memory, to investigate the limits of our algorithm in solving larger sized problems. All test
in this section use an affine gap penalty function, as to the best of our knowledge no commercial
heuristic solver accommodates convex penalty functions.

Effects of Filtering Algorithms

To evaluate the effects of the filtering algorithm, we report in Figure 2.9 the relative size of the
filtered Mc compared to its original size, in terms of number of arcs |Ac| and nodes |N c|. Results
are reported both for optimistic filtering in the first phase, and exact filtering in the second phase
(for instances that did not reach the time limit in the first phase).

Results show that the filtering algorithms filter a considerable number of nodes and arcs in most
instances, in particular using the additive bounding filtering procedure. On average, the Carrillo-
Lipman filtering procedure filters a considerable 94.5% of arcs, and 74.6% of nodes in M for opti-
mistic filtering. The additive bounding filtering procedure is performed after the Carrillo-Lipman
filtering, and filters on average 47.3% of the remaining arcs, and 31.1% of the remaining nodes in
the filtered M. In exact filtering for the second phase, the Carrillo-Lipman filtering procedure filters
75.4% of arcs, and 52.8% of nodes, with the additive bounding filtering procedure filtering 98.2%,
88.9% of the remaining arcs and nodes, respectively. It is noteworthy that in some instances the
Carrillo-Lipman filtering procedure does not filter many nodes and arcs, but the additive bounding
procedure is still able to considerably filter M.
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Comparison to MUSCLE

Table 2.1 reports results on the CPU time, and accuracy of the proposed algorithm compared to the
heuristic MSA solver MUSCLE. Instances are divided into two groups, with the first group reporting
results for any instance in the benchmark with less than 1000 total characters, and the second group
reporting results for a number of larger-sized instances, up to 1500 total number of characters. The
“Tot-CPU" column reports the total CPU time (phase one plus phase two). The “Conv-Gap" column
reports the Benders convergence gap of the first phase, calculated as 100(f(RMP)−f(ȳ))

f(ȳ) , where ȳ is
the best found solution. Note that f(RMP) may not be the global upper bound in phase one due

to optimistic filtering. Column “Impr-Mus" reports the percentage of improvement 100(f(ȳ)−f(ȳh))
f(ȳh)

made by our algorithm compared to the initial heuristic solution ȳh generated by MUSCLE. The
final columns report the CPU time, global optimality gap, and improvement of solution ȳ in the
second phase compared to the optimal solution of the first phase. For the latter, a 0% improvement
indicates that the first phase solution was in fact the global optimal MSA solution, and a dash
indicates that the second phase was not executed, as the first phase reached the imposed time limit.

The majority of CPU-time was spent in the warm-start algorithm and solving the MIP formu-
lation of RMP. On average, 50.5% of the time was consumed in the warm-start algorithm, and
42.8% of the total CPU time was spent solving RMP. The primal heuristic procedure generally
spends a few minutes, on average 3.9% of total CPU-time, and on average improves the solution
generated by MUSCLE by 33.3%. Improvement is as high as 285.8% such as in instance BB11001,
which was solved within 7 seconds.

Out of the 24 considered instances, the algorithm solves 12 instances to optimality. This is true
for instances with as many as 9 sequences, or 1467 total characters. In 11 of the 12 instances solved,
the solution found in phase one proved to be the global optimum, with the remaining instance within
99.16% of global optimality. To the best of our knowledge, our algorithm is the first to solve these
Benchmarks to global optimality, for our considered affine objective function. The convergence gap
is generally low for instances that did not converge within the 10 hour time limit, with the exception
of instances BB12041. Our conjecture is that the upper bound in such instances is relatively tight,
and the gap percentages are mainly due to lower quality incumbents solutions.

It is noteworthy that all instances with less than 1000 total characters used at most 4GB of
memory, with the larger instances using up to 9GB of memory. Attempting to solve larger instances
with 2000 total characters failed due to the algorithms exhausting the 24GB system memory.

2.5.3 Experiments on Balibase Benchmark 1 and Comparison to MWT

For a comparison to the best exact approach in the literature, we compare to the MWT algorithm
of Althaus et al. (2006). We do not compare to the DP approach as it does not scale to the size of
our considered instances, or the convex optimization approach of Yen et al. (2016) which is limited
to aligning sequences of length at most 50. We also do not report results of solving the original
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Table 2.1: Results on Balibase benchmark 4, and comparison to MUSCLE. CPU time is given for
the overall algorithm, phase one, and phase two. The convergence gap (Cnv-Gap) in phase one,
and improvement of the best found solution compared to MUSCLE (Imp-Mus). The last columns
give the CPU time and global optimality gap in phase two, and improvement of the best found

solution compared to phase one (Impr-Ph1).

Instance Tot-CPU
Phase one Phase two

CPU Cnv-Gap% Imp-Mus% CPU Gap% Imp-Ph1%

BB11001 (4/345) 7 4 0 285.8 3 0 0
BB11002 (8/784) 36,993 36,993 24.4 17.5 - - -
BB11009 (4/864) 36,553 36,553 13.0 0 - - -
BB11013 (5/358) 36,140 36,140 13.2 19 - - -
BB11021 (4/469) 36,176 36,176 35.8 0 - - -
BB11022 (4/472) 36,234 36,234 11.3 4 - - -
BB11025 (4/331) 36,106 36,106 11.0 16.4 - - -
BB11029 (4/408) 13,030 7,998 0 22.2 5,033 0 0
BB11035 (5/487) 36,118 36,118 39.0 0 - - -
BB12003 (8/570) 1,474 327 0 12.3 1,147 0 0
BB12006 (4/928) 490 384 0 9.2 106 0 0
BB12009 (5/563) 2,302 669 0 25.7 1,633 0 0.84
BB12014 (9/875) 36,645 36,645 6.7 16.2 - - -
BB12020 (4/502) 104 66 0 28.6 38 0 0
BB12021 (6/454) 378 105 0 33 272 0 0
BB12024 (4/973) 649 493 0 17.7 156 0 0
BB12025 (4/808) 36,268 36,268 28.0 0 - - -
BB12032 (9/595) 12,419 9,561 0 165 2,858 0 0
BB12040 (5/661) 261 123 0 20.2 138 0 0
BB12041 (7/795) 36,114 36,114 684.8 76.9 - - -
BB40010 (9/981) 38,258 38,258 0 0.9 - - -

BB11012 (4/1456) 5,329 4,806 0 21.4 523 0 0
BB11028 (10/1588) 36,215 36,215 46.0 0 - - -
BB12012 (4/1494) 38596 38596 20.1 0 - - -
BB12036 (7/1467) 3,873 1,558 0 6.8 2,315 0 0
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model P directly using a commercial solver (e.g. CPLEX), or a classical Benders decomposition
algorithm without logic-based cuts 2.21. These algorithms performed poorly, and terminated with
considerably high gaps to optimality within the imposed time limit, even smaller instances.

Unfortunately, Althaus et al. (2006) were not able to find and send us the MWT algorithm, and
so we base our comparison on their reported results for the BaliBASE benchmark version 1. We
remark that CPU time results of Althaus et al. (2006) were reported in 2006, and although their
CPU has higher clock speed of 3.06GHz compared to our 2.33GHz (note that we limit our tests
to one core of the CPU for fairer comparison), their results are still likely faster when executed on
today’s PCs. Moreover, for a fairer comparison, we analyzed the speedup from CPLEX 9.0 used
in the MWT branch-and-cut algorithm to CPLEX 12.7.1 used in our algorithm.2 This is measured
by the speedup of solving the linear relaxation of our RMP for all considered instances. Note that
the only relevant speedup involves the solution of linear programs, as “the running time for the
branch-and-cut algorithm was dominated by the time required for solving the LPs" (Althaus et al.,
2006), and no MIP is solved in any part of the MWT algorithm to the best of our understanding.
Our results showed that the geometric mean of CPU time for CPLEX 12.7.1 is 15.4% to 24.0%
faster than CPLEX 9. This range is obtained by considering all instances (15.4%), or only instances
which had a solution time above 1 second (24%). We therefore adjust the CPU time of (Althaus
et al., 2006) by a reporting a speedup range between 15.4% to 24% for their reported times.

Table 2.2 reports the comparison of the MDD and MWT approaches. Following the setting
of Althaus et al. (2006), instances are divided into three groups, where the first group consists of
similar sequences with identity > 35%, group two sequences have 20 − 40% identity, and group
three consists of dissimilar sequences with < 25% identity. Results are evaluated based on the
total CPU time, and gap to optimality (Gap%). We also report the convergence gap (Cnv-Gap) of
our MDD approach in the first phase. We perform test under both an affine and convex penalty
function. For the remainder of this section, we refer to the MDD algorithm under the convex or
affine penalty function as the convex or affine MDD algorithm, respectively. Results of the convex
MDD algorithm are used as comparison to the results of the MWT approach, and results of the
affine MDD algorithm serve as an approximation to the optimal convex solution. To evaluate the
quality of this approximation, the last column of Table 2.2 reports the improvement of the best
found solution using the convex MDD algorithm ȳcnv, over the best found solution of the affine
MDD algorithm ȳaff . This is done by calculating the objective of ȳaff using the convex penalty
function, and obtaining the percentage of improvement compared to ȳcnv.

Results show that our algorithm is competitive with the MWT approach in aligning the highly
similar sequences of the first two group of instances. The MWT approach is effective for such
instances, as the root node value of its branch-and-cut tree is near optimal (in some instances
optimal), and not many cuts and branches are required to converge to the the optimal solution. For

2We thank Ed Klotz for sharing the CPLEX 9.0 library.
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Table 2.2: Results on Balibase benchmark 1 and comparison to MWT. Results include the
reported CPU time, adjusted CPU time due to CPLEX version (CPU-adj) and optimality gap for
MWT, CPU time, convergence gap (phase one gap), and global optimality gap (phase two gap)
for our MDD approach under affine and convex penalty functions. The last column (Imp-Aff)

gives the improvement of the best found solution under the convex penalty function, over the best
found solution under the affine penalty function evaluated by the convex function.

Instance
MWT (convex) MDD (affine) MDD (convex)

CPU CPU-adj Gap% CPU Cnv-Gap% Gap% CPU Cnv-Gap% Gap% Imp-Aff%

1aho (5/320) 194 [147, 165] 0 17 0 0 44 0 0 0.02
1csp (5/339) 2 [2, 2] 0 14 0 0 28 0 0 0
1dox (4/374) 428 [325, 364] 0 29 0 0 43 0 0 1.35
1fkj (5/517) 315 [239, 268] 0 64 0 0 186 0 0 0
1fmb (4/400) 2 [2, 2] 0 20 0 0 26 0 0 0
1krn (5/390) 17 [13, 14] 0 35 0 0 44 0 0 0
1plc (5/470) 34 [26, 29] 0 49 0 0 91 0 0 0
2fxb (5/287) 4 [3, 3] 0 5 0 0 15 0 0 0
2mhr (5/572) 30 [23, 26] 0 76 0 0 215 0 0 0
9rnt (5/499) 20 [15, 17] 0 40 0 0 78 0 0 0

1aab (4/291) 16 [12, 14] 0 2 0 0 8 0 0 0
1fjlA (6/398) 471 [358, 400] 0 67 0 0 91 0 0 0.32
1hfh (5/606) 1,782 [1,354, 1,515] 0 188 0 0 1,352 0 0 0.16
1hpi (4/293) 469 [356, 399] 0 9 0 0 19 0 0 0.94
1csy (5/510) 564 [429, 479] 0 120 0 0 430 0 0 0
1pfc (5/560) 2,438 [1,853, 2,072] 0 287 0 0 1,106 0 0 0.92
1tgxA (4/239) 128 [97, 109] 0 17 0 0 27 0 0 0.38
1ycc (4/426) 36,124 [27,454, 30,705] 14.1 505 0 0 1,584 0 0 0.59
3cyr (4/414) 415 [315, 353] 0 37 0 0 102 0 0 0.83
451c (5/400) 45,186 [34,341, 38,408] 582.7 21,482 0 0 37,184 88.3 - -11.02

1aboA (5/297) 36,494 [27,735, 31,020] 38.1 36,002 18.8 - 36,003 39.3 - -21.01
1idy (5/269) 37,402 [28,426, 31,792] 24.2 22,776 0 0 36,003 4.1 - -2.01
1r69 (4/277) 36,375 [27,645, 30,919] 17.2 5,554 0 0 12,647 0 0 0
1tvxA (4/242) 37,713 [28,662, 32,056] 60.06 36,005 0 1.9 36,006 12.3 - -10.06
1ubi (4/327) 37,851 [28,767, 32,173] 37.7 19,541 0 0 36,001 7.0 - -7.52
1wit (5/484) 38,264 [29,081, 32,524] 16.2 1,098 0 0 12,281 0 0 1.27
2trx (4/362) 36,006 [27,365, 30,605] 50.05 158 0 0 479 0 0 0
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such instances, MUSCLE is also able to produce high quality solutions which are either optimal or
near optimal. Using the initial heuristic solutions, The convex MDD approach is able to significantly
filter Mc, and also solves all instances within a few minutes.

The MWT approach is not effective for instances with low similarity, and does not solve such
instances withing 10 hours of computation. The convex MDD algorithm solves 22 out of the 27
instances to optimality, and reaches relatively low optimality gaps in the remaining instances, except
for instances 451c and 1aboA. In general, the MWT approach requires many cuts and branches to
reach the optimal solution if its root node objective is not near optimal. For this reason, it may be
the case that the results of the MWT algorithm do not improve significantly when solving harder
instances, even using today’s faster PCs.

The MDD approach performs well under an affine penalty function setting. The affine MDD
algorithm is able to solve all but 2 of the instances, and reaches low gaps in the unsolved instances.
The solution time is also considerably lower compared to the convex MDD algorithm, while solution
quality remains high. The solutions obtained from the affine MDD algorithm are in most cases
within 99% of the optimal convex solution. In fact, for harder instances not solved to optimality
by the convex MDD algorithm, the affine MDD algorithm generates better results evaluated under
a convex penalty function.

In terms of memory requirements, the affine MDD algorithm uses at most 4GB for any instance
solved using the affine penalty function. The memory requirement is much higher for the convex
MDD algorithm, with the 451c instance consuming close to 22GB of memory. This shows that
although our MDD approach has a worst-case polynomial space complexity, its initial memory
consumption is much higher compared to the MWT algorithm.

To summarize the numerical experiments, our MDD approach to MSA gives favorable results
compared to the best exact approach in the literature, and closes a number of benchmark instances
for the first time under our considered convex and affine penalty functions. For instances not solved
to optimality, our algorithm is able to generate solutions with much higher quality compared to a
state-of-the-art heuristic MSA solver.

2.6 Conclusion

This chapter developed an exact solution approach for the Multiple Sequence Alignment (MSA)
problem. We considered MSA as the simultaneous solution to all Pairwise Sequence Alignments
(PSA), which are modeled by dynamic programming and represented using Multi-valued Decision
Diagrams (MDD). We used the collection of all PSA MDDs as the underlying graph structure to
represent the MSA problem as a Mixed-Integer Program (MIP). The MIP problem synchronizes the
solution to all PSA MDDs using side constraints, for the first time, in polynomial space complexity.

We designed two filtering procedures to reduce the size of the feasible set and lead to easier
problems to solve. Using the filtering procedures, we increased the effectiveness of our algorithm
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by developing a two phase solution approach. In the first phase, the PSA MDDs are filtered
aggressively using an optimistic guess for the bound used in the filtering procedures, resulting in
a heuristic optimization. The advantage of optimistic filtering is that it filters a considerable size
of the feasible solution set and enables a relatively fast algorithm to obtain near optimal solutions.
On average, 96.3% of arcs, and 81.1% of nodes in our PSA MDDs were pruned using optimistic
filtering, while not pruning the optimal solution in almost all solved instances. Global optimality
is ensured by re-running the algorithm in a second phase with exact filtering using the bound from
the first phase optimal solution.

Lastly, we designed a logic-based Benders decomposition algorithm to solve P. We developed
a fast primal heuristic and integrated it into the Benders decomposition algorithm. On average,
our heuristic solver improved the solution quality of a state-of-the-art MSA heuristic solver by
33.3%, and was able to improve the solution of 19 out of the 25 instances considered. The logic-
based Benders algorithm was able to solve 37 out of 51 Benchmark instances for an affine penalty
function, and close them for the first time.
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Chapter 3

Constraint-based Sequential Pattern
Mining

3.1 Introduction

Sequential Pattern Mining (SPM) is a fundamental data mining task with a large array of applica-
tions in marketing, health care, finance, and bioinformatics, to name a few. Frequent patterns are
used, e.g., to extract knowledge from data within decision support tools, to develop novel association
rules, and to design more effective recommender systems. We refer the reader to Fournier-Viger
et al. (2017) for a recent and thorough review of SPM and its applications.

In practice, mining the entire set of frequent patterns in a database is not of interest, as the
resulting number of items is typically large and may provide no significant insight to the user.
It is hence desirable to restrict the mining algorithm search to smaller subsets of patterns that
satisfy problem-specific constraints. For example, in online retail click-stream analysis, we may seek
frequent browsing patterns from sessions where users spend at least a minimum amount of time
on certain items that have specific price ranges. Such constraints limit the output of SPM and
are much more effective in knowledge discovery, as compared to an arbitrary large set of frequent
click-streams.

A naïve approach to impose constraints in SPM is to first collect all unconstrained frequent pat-
terns, and then to apply a post-processing step to retain patterns that satisfy the desired constraints.
This approach, however, may be expensive in terms of memory requirements and computational
time, in particular when the resulting subset of constrained patterns is small in comparison to the
full unconstrained set. Constraint-based sequential pattern mining (CSPM) aims at providing more
efficient methods by embedding constraint reasoning within existing mining algorithms Pei et al.
(2007); Negrevergne and Guns (2015). Nonetheless, while certain constraint types are relatively
easy to incorporate in a mining algorithm, others of practical use are still challenging to handle in
a general and effective way. This is particularly the case of non-monotone constraints representing,
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e.g., sums and averages of attributes.
Contributions. In this chapter, we propose a novel representation of sequential database using

a multi-valued decision diagram (MDD), a graphical model that compactly encodes the sequence
of items and their attributes by leveraging symmetry. The MDD representation can be augmented
with constraint-specific information, so that constraint satisfaction is either guaranteed or enforced
during the mining algorithm. Finally, as a proof of concept, we implement a general prefix-projection
algorithm equipped with an MDD to enforce several constraint types, including complex constraints
such as average (“avg”) and median (“md”). To the best of our knowledge, this work is the first to
consider the “sum,” “avg,” and “md” constraints with arbitrary item-attribute association within the
pattern mining algorithm. Lastly, we provide an experimental comparison on real-world benchmark
databases, and show that our approach is competitive with or superior to a state-of-the-art CSPM
algorithm.

3.2 Related Work

Research in CSPM has primarily focused on exploiting special properties of constraints, such as
monotonicity or anti-monotonicity, to guarantee the feasibility of pattern extensions in the mining
algorithm Garofalakis et al. (1999); Zaki (2000); Lin and Lee (2005); Bonchi and Lucchese (2005);
Chen and Hu (2006); Pei et al. (2007); Nijssen and Zimmermann (2014); Mallick et al. (2014); Aoga
et al. (2017). Constraint types that do not possess such properties remain a challenge for CSPM
algorithms, although some of these have been successfully incorporated in more general item-set
mining on databases where events have no specific order Soulet and Crémilleux (2005); Bistarelli
and Bonchi (2007); Bonchi and Lucchese (2007); Le Bras et al. (2009); Leung et al. (2012), as well
as in CSPM when items and attributes are interchangeable Pei et al. (2007).

Recently, constraint programming (CP) has emerged as a successful tool for CSPM Negrevergne
and Guns (2015); Kemmar et al. (2016, 2017); Aoga et al. (2017); Guns et al. (2017). CP search
techniques, albeit general, can potentially be more efficient when compared to specialized CSPM al-
gorithms. Nonetheless, they still rely on constraint-specific properties to effectively prune undesired
patterns.For example, Aoga et al. (2017) show how to effectively implement a number of prefix anti-
monotone constraints into CP, but indicate that post-processing is still required to handle monotone
constraints such as the minimum span.

Graphical representations of a database have been shown to be effective in item-set mining
Han et al. (2004); Pyun et al. (2014); Borah and Nath (2018) and SPM Masseglia et al. (2009).
Previous works have also applied binary decision diagrams as a database modeling tool Loekito and
Bailey (2006, 2007); Loekito et al. (2010); Cambazard et al. (2010), which are effective when the
sequences of the database are similar, but typically do not scale otherwise. We show that our MDD
representation retains its size regardless of the similarity between sequences, and provides a more
concise representation in the context of SPM.

36



Table 3.1: Example SD, with attributes of time and price.

SID Sequence: {(item, time, price)}

1 〈(B, 1, 5), (B, 3, 3)〉
2 〈(B, 3, 3), (A, 8, 1), (B, 9, 3)〉
3 〈(C, 2, 1), (C, 5, 2), (A, 8, 3)〉

3.3 Problem Definition

We next formally describe the SPM problem and then discuss the handling of constraints.

3.3.1 The SPM Database and Mining Algorithm

The SPM database consists of a set of events, which are modeled by a set of literals I denoted
by items. Items i ∈ I are associated with a set of attributes A =

{
A1, ...,A|A|

}
; for example,

attributes can be price, quality, or time. A sequence database SD is defined as a collection of N
item sequences {S1, S2, . . . , SN}, where all sequences are ordered with respect to the same attribute
A ∈ A; e.g., occurrence in time. Table 3.1 illustrates an example SD with N := 3, |I| := 3, and
M := max

n∈{1,...,N}
{|Sn|} = 3, where items i ∈ I are associated with time and price attributes.

The SPM task asks for the set of frequent patterns within SD. A pattern P = 〈i1, i2, . . . , i|P |〉
is a subsequence of some S ∈ SD. Let S[j] denote the jth position (i.e., item) of sequence S. A
subsequence relation P � S holds if and only if there exists an embedding e : e1 ≤ e2 ≤ ... ≤ e|P |

such that S[ej ] = ij , ij ∈ P . For example, P = 〈A,B〉 is a subsequence of S = 〈A,B,C,B〉 with two
possible embeddings (1, 2) or (1, 4). We define a super-sequence relation S � P analogously, with
“≤” replaced by “≥”. A pattern is frequent if it is a subsequence of at least θ number of sequences
in SD, where θ is a given frequency threshold.

The two best-known mining algorithms for SPM are the Apriori algorithm introduced by Agrawal
et al. (1994), and the prefix-projection algorithm introduced by Han et al. (2001). Both are iterative
procedures and operate by extending frequent patterns one item at a time. In Apriori, candidate
patterns are generated by expanding a pattern with all available items, and thereafter checking the
frequency of generated candidates. As candidates may or may not be frequent, the Apriori algorithm
suffers from the exponential explosion of the number of generated candidates and redundancy. The
prefix-projection algorithm, in turn, operates by projecting each sequence S ∈ SD onto a smallest
subsequence S̄ = 〈i1, i2, . . . , ij〉, denoted by prefix, and searching for frequent items in this reduced
database. Any sequence that is obtained by extending a frequent prefix is guaranteed to be frequent
in the original database. Prefix-projection is more efficient than the Apriori algorithm as it rules
out infrequent patterns more effectively, but it requires the full database to be in memory Han et al.
(2001).
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Table 3.2: Characterization of constraints as monotone (M), anti-monotone (AM), or
non-monotone (NM) for SPM.

Name Constraint := definition M AM NM

Maximal Cmxl(P ) := @P ′ ∈ SD : P ≺ P ′ •
Sup-Patt Cspt(P ) := ∃P ′ ∈ SD : P ′ ≺ P •

Length
Clen(P ) ≥ c := |P | ≥ c •
Clen(P ) ≤ c •

Reg Expr Creg(P ) := P [i] ∈ Ī ⊂ I ?

Gap
Cgap(A) ≤ c := αj − αj−1 ≤ c, ?

αj ∈ A, 2 ≤ j ≤ |P |
Cgap(A) ≥ c •

Span
Cspn(A) ≤ c := max {A} −min {A} ≤ c •
Cspn(A) ≥ c •

Max/Min
Cmax(A) ≥ c, Cmin(A) ≤ c •
Cmax(A) ≤ c, Cmin(A) ≥ c •

Stats Csum(A), Cavg(A), Cvar(A), Cmed(A) •
?Not anti-monotone, but prefix anti-monotone.

3.3.2 Constraint Satisfaction in CSPM

A constraint Ctype(·) is a Boolean function imposed on either the patterns or their attributes. A
pattern P satisfies a constraint if and only if Ctype(P ) = true. The objective of CSPM is to find all
frequent patterns that satisfy a set of user-defined constraints. In particular, the challenge of CSPM
is to impose constraints during the mining algorithm, rather than post-processing mined patterns
for constraint satisfaction.

The standard framework for CSPM is to classify constraints as being monotone or anti-monotone,
as such constraint are easy to handle within the mining algorithm Pei et al. (2007).1 A constraint
is monotone if its violation by a sequence S implies that all subsequences S̄ � S also violate the
constraint.

A constraint is anti-monotone if its violation by a sequence S implies violation by all super-
sequences Ŝ � S. Table 3.2 lists common constraint types with their characterization. The concepts
of monotonicity, anti-monotonicity, and violation are analogously extended to prefixes.

Constraints that are neither monotone nor anti-monotone are called non-monotone and are the
1A third classification is succinctness, which allows immediate pattern generation using a formula rather than an

algorithm.
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most challenging to enforce during mining. While dedicated approaches have been developed for cer-
tain non-monotone constraints Pei et al. (2007), they are otherwise handled by post-processing Aoga
et al. (2017). Our goal is to develop a generic platform to handle non-monotone constraints effec-
tively.

3.4 An MDD Representation of the Database

MDDs are widely applied as an efficient data structure in verification problems Wegener (2000)
and were more recently introduced as a tool for discrete optimization and constraint program-
ming Bergman et al. (2016a). Here, we use an MDD to fully encode the sequences from SD; we
refer to such data structure as an MDD database. We show how constraint satisfaction is achieved
by storing constraint-specific information at the MDD nodes, thereby removing the need to impose
constraint-specific rules in a mining algorithm.

3.4.1 MDD Construction for the SPM Problem

An MDD M = (U,A) is a layered directed acyclic graph, where U is the set of nodes, and A is
the set of arcs. Set U is partitioned into layers (l0, l1, ..., lm+1), such that layers li : 1 ≤ i ≤ m

correspond to position (item) i of a sequence S ∈ SD. Layers l0, and lm+1 consist of single nodes,
namely the root node r ∈ l0, and the terminal node t ∈ lm+1. The root and terminal node are used
to model the start and end of all sequences, respectively. Figure 3.1.a shows the MDD database
model for the SD of Table 3.1.

Layers lj , 1 ≤ j ≤ m, contain one node per item i ∈ I : ∃S ∈ SD, S[j] = i, and model the
possible items at position j of all sequences S ∈ SD. For example, layer 1 of the MDD database
in Figure 3.1.a has two nodes corresponding to items B,C, and no node associated to item A. To
distinguish which nodes are associated to which sequences S ∈ SD, we define labels du for nodes
u ∈ U , and store the associated sequence index SID in du. The first label of node B at layer 1 of
Figure 3.1.a, indicates that sequences 1 and 2 contain item B at their first position. In addition,
we store the attribute labels associated with the item, one per SID at each node. For example, in
Figure 3.1.a we store the time and price attributes.

An arc a = (u, v) ∈ A, is directed from a node u ∈ lj to a node v ∈ lj′ : j′ > j, and represents
the next possible item after node u, for all sequences in SD. Similar to nodes u ∈ U , labels da are
defined for arcs a ∈ A and store their associated sequences. A sequence S is thus represented by a
path from r to t, following the nodes and arcs associated to SID. As we will search the MDD for
patterns during the mining algorithm, we explicitly allow arcs to skip layers. That is, arc (u, v) ∈ A
can refer to any pair of nodes u, v on an r-t path P representing a sequence S. In Fig. 3.1 we
only depict the arcs that represent the original sequences in SD, for clarity. For example, the arc
between node B at layer 1 and node B at layer 3 (following sequence SID = 2) is formally defined

39



B
1,2
<1,3>
<5,3>

C
3
<2>
<1>

A B C
3
<5>
<2>

A B

1

2

3

32

r

t

1, 2
3

ID

<time>

<price>

3
<8>
<3>

1
<3>
<3>

2
<9>
<3>

B
2
<3>
<3>

C
3
<2>
<1>

A C
3
<5>
<2>

A

2

3

2
<8>
<1> 3

r

t

2
3

3
<8>
<3>

2
3

2
<8>
<1>

a) Original MDD b) MDD with imposed constraints

Figure 3.1: MDD database for the example SD in Table 3.1. Arcs skipping layers in Figure a) are
not shown for clarity.

but omitted from the picture. Observe that any prefix or subsequence is represented by a partial
path in the MDD, possibly using the arcs that skip layers. Lastly, we note that the MDD database
(without imposed constraints) is built by a single scan of the database.

3.4.2 Imposing Constraints on the MDD Database

We use the MDD structure to enforce certain constraints on the MDD database itself. This has
three main benefits, as follows. First, constraint satisfaction is performed only once, and not
once per projected database as in the prefix-projection algorithm. Second, several constraints
can be considered simultaneously, as opposed to iterative methods that consider each constraint
individually and incur larger computational costs. Lastly, imposing constraints results in a smaller
MDD, and consequently reduced computational requirements for the mining algorithm.

A constraint Ctype can be imposed directly on the MDD if it is prefix monotone or prefix anti-
monotone. That is, the feasibility of extending a pattern P ending at item i by an item i′, is only
dependent on the relationship between consecutive items i, i′. Examples of such constraints are the
gap and regular expression constraints. An infeasible extension of such constraints is prevented by
not creating an arc between their respective nodes. For example, if item i cannot be followed by
item i′, then no arc of the MDD database is constructed between their corresponding nodes.

Constraints on the MDD database are incorporated during its construction. In particular, the
MDD database is built in increments using a backwards induction on the position j of a sequences
S ∈ SD. A backwards induction is chosen, as it allows us to gather constraint-specific information,
used for constraint satisfaction later in the mining algorithm. For sequence S, the algorithm starts
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from the node corresponding to the item at position S[j] : j = |S|, and checks whether this item may
be used to extend a pattern ending in any of the sequence’s previous items i ∈ lj′ < lj . Whenever
an extension is feasible, an arc (u, v) is created between the items’ respective nodes in the MDD.
The algorithm then increments and repeats the same procedure for the item in position j − 1.

By the construction above, a node connects to all nodes representing a feasible extension with
respect to the imposed constraints. Thus, the mining algorithm needs only to search the children
of a node u ∈ U to extend any pattern ending at u. Figure 3.1.b shows an example of imposing
constraint Cgap(time) ≥ 3 on the MDD database of Figure 3.1.a.

Imposing constraints on the MDD database can be made more efficient by exploiting their prop-
erties such as anti-monotonicity. For example, given an anti-monotone constraint, if the extension
of item i at S[j] to an item at position S[j′] is infeasible, it is guaranteed that any extension of i
to items S[k] : k ≥ j′ is also infeasible. If a constraint is non-monotone, we are required to check
its satisfaction for all possible extensions, which is done only if all monotone and anti-monotone
constraints are satisfied.

Algorithm 3.1 gives the overall procedure to construct the MDD database.
Not all constraints can be imposed on the MDD database. The satisfaction of such constraints

is performed during the mining algorithm, discussed in the next section.

3.5 Pattern Mining with MDD Databases

In this section, we discuss how to perform constraint reasoning by incorporating specific information
into the MDD nodes. Such information is used to establish conditions to efficiently remove infeasible
patterns from the database.

3.5.1 Information Exploitation for Effective Mining

By construction, an r-u path in the MDD database represents the prefix of a pattern ending at
node u. Similarly, any extension of this prefix is modeled by a u-t path. Post-processing patterns
for constraint satisfaction corresponds to checking the feasibility of all u-t paths. We can, however,
exploit the MDD structure to determine whether it is possible to extend an infeasible pattern to a
feasible one. This is achieved by augmenting the MDD nodes with constraint-specific information
that allow us to perform such reasoning.

For instance, consider a constraint Cmin(price) ≥ 5 and the extension of an infeasible pattern
ending at node u, as shown in Figure 3.2. Observe that only one u-t path results in a feasible
pattern. Instead of explicitly searching all u-t paths, we can store the minimum price reachable
from nodes u ∈ U , during the MDD construction, and then use it to guarantee that a feasible
extension exists.
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Algorithm 3.1 MDD construction with constraints
1: procedure BuildMddDatabase(Item attributes α, Constraint set C)
2: for Sequences S ∈ SD do strp = |S| − 1; endp = |S|; antmon = 0
3: while strp > 0 do
4: while antmon == 0 do
5: if (strp, endp) satisfies anti-mon constraint then
6: antmon = 1;
7: else
8: endp = endp− 1
9: if strp == endp then

10: strp = strp− 1;
11: if strp == 0 then
12: break;
13: if antmon == 1 then
14: lastp = endp
15: while endp! = strp do
16: if (strp, endp) satisfies monotone constraint then
17: Add an arc from node at strp of S to node at endp of S
18: Associate nodes with labels and attributes
19: Add an arc from root node r to node at position strp of S;
20: else
21: break;
22: endp = endp− 1;
23: strp = strp− 1
24: antmon = 0
25: endp = lastp;

3.5.2 Categories of Constraint-specific Information

We now describe constraint-specific information for a number of practical constraint classes. We
only present the proof for lower bound constraints; upper bound conditions can be established
analogously. We define αu ∈ A to be the attribute value of item i at node u of the MDD.

Span Constraint:

Let βu1 and βu2 denote the minimum and maximum values of α reachable from u, respectively.
Values βu1 are initially set to αu. When adding an arc (u, v), we update βu1 ← βv1 if βu1 > βv1 , and
βu2 ← βv2 if βu2 < βv2 for node v. By this procedure, βu1 , βu2 give the minimum and maximum values
of α reachable from u. Proposition 3.1 proves that by using these variables, we can guarantee the
satisfaction of the span constraint.

Proposition 3.1. An infeasible pattern P can be extended to a feasible pattern with respect to

Cspn(α) ≥ c if and only if max

{
max
α∈P
{α} , βu2

}
−min

{
min
α∈P
{α} , βu1

}
≥ c.
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Figure 3.2: Extending a pattern ending at node u, with constraint Cmin(A) ≥ 5. The label at each
node represents the attribute of the item.

Proof. The necessity is straightforward. For the converse, assume αmax − αmin < c. Then no u-t
path contains values of α such that P can become feasible.

Sum Constraint:

Let βu denote the maximum sum of values α reachable from u. We first initialize βu ← αu. Next,
when adding an arc (u, v), we update βu ← βv +αu if βu < βv +αu, which results in the maximum
sum possible to be stored for node u. Proposition 3.2 proves that this information is sufficient.

Proposition 3.2. There exists a feasible extension from node u with respect to each individual
constraint if and only if

∑
α∈P

α+ βu ≥ c.

Proof. The necessity is straightforward. For the converse, assume
∑
α∈P

α+βu < c. By the construc-

tion of βu, we can conclude
∑
α∈P

α+
∑

α∈(u,t)

α < c, for all u- paths.

Average Constraint:

Let βu1 denote a sum of values α on a u-t path, and βu2 denote the number of attributes α contributing
to the sum in βu1 . For constraint Cavg(α) ≥ c, and any pattern P ending at node u, our objective is

to generate values of βu1 , βu2 that give the maximum possible average

∑
α∈P

α+βu1

|P |+βu2
above the threshold

c.
The generation of βu1 depends on the value c of constraint Cavg(α) ≥ c. Initially we set βu1

= αu, and βu2 = 1. When adding an arc (u, v) during the construction of the MDD, we update
βu1 ← αu + βv1 , β

u
2 ← βv2 + 1 if (αu + βv1)− c (1 + βv2) > βu1 − cβu2 . This ensures that the best values

to maximize

∑
α∈P

α+βu1

|P |+βu2
are generated, proven in Lemma 3.3.
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Lemma 3.3. For constraint Cavg(α) ≥ c, the update procedure above generates values βu1 , β
u
2 that

give the maximum average

∑
α∈P

α+βu1

|P |+βu2
above threshold c, for a pattern p ending at node u.

Proof. Proof by induction. By the initial definitions of βu1 , βu2 , the statement is true for any u in the
last layer lm of the MDD. Now assume the statement holds for all nodes in layer greater than lj .

For nodes u in layer lj we choose the path giving the maximum average max
u-t

{ ∑
α∈P

α+βv1 +αu

|P |+βv2 +1 − c

}
=

max
u-t {β

v
1 + α− c (βv2 + 1)}.

Proposition 3.4 shows that β1
i , β

2
u are the only required information to check satisfaction of the

maximum average constraint. The proof for the minimum average constraint is similar, and omitted
for brevity.

Proposition 3.4. It suffices to record βu1 , β
u
2 as defined above, to check satisfaction for the minimum

average constraint Cavg(α) ≥ c.

Proof. The maximum average reachable from node u is βu1
βu2

by definition. Therefore, if

∑
α∈P

α+βu1

|P |+βu2
< c,

then no (u, t) paths exists that satisfies Cavg(α) ≥ c for a pattern ending at node u.

Median Constraint:

Let βu1 denote the maximum difference of the number of values α ≥ c and the number of values
α < c, between all possible paths u-t, i.e. βu1 = max

u-t
{∣∣ {α ∈ u-t : α ≥ c}

∣∣ − ∣∣ {α ∈ u-t : α < c}
∣∣}.

Further, let βu2 denote the maximum of values α < c contributing to the count in βu1 , and βu3 denote
the minimum of values α ≥ c contributing to the count in βu1 . Observe that the satisfaction of
Cmed(α) ≥ c can be determined using values βu1 to βu3 . Namely, if βu1 > 0 then there exists more
values α above c than below it, guaranteeing satisfaction. Similarly if βu1 < 0 the median constraint
is violated. If βu1 = 0 then we calculate the average βu2 +βu3

2 which gives the median.
The generation of βu1 to βu3 depends on the constant c. Initially, we set βu1 = 0, βu2 = min

α∈S
{α} −

1, βu3 = αu for all nodes u : αu ≥ c, and βu1 = 0, βu2 = αu, βu3 = max
α∈S
{α} + 1 for all remaining

nodes. Next, during the construction of the MDD, for a node u, we find the path u-t that has
the highest potential to extend an infeasible pattern P ending at u to a feasible one. The best
path u-v-t, denote v-t, is a path that contains a feasible extension for P given any other feasible
extensions available by the remaining u-v′-t paths, denote v′-t. We prove four dominance rules that
when satisfied, guarantee this for v-t.

The first rule is if βv1 > βv
′

1 , proven valid in Lemma 3.5.

Lemma 3.5. If βv1 > βv
′

1 holds, and extension of a pattern P by path v′-t is feasible, so is the
extension of P by path v-t.
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Proof. Let βp1 denote the difference of the number of values α ∈ P : α ≥ c to the number of values
α ∈ P : α < c. Then, βp1 + βv1 > βp1 + βv

′
1 , meaning there is a greater number of values α ≥ c on

path v-t, compared to path v′-t.

All other conditions require βv1 = βv
′

1 . For these conditions, we first calculate medv′ =
βv
′

2 +βv
′

3
2 ,

medv =
βv2 +min{βv3 ,αv}

2 . Conditions two to four are proved in 3.6.

Lemma 3.6. Given βv1 = βv
′

1 , any feasible extension of an infeasible pattern P by path v′-t is also
feasible for path v-t, if one of the following three conditions hold: 1. medv ≥ c,medv′ < c, 2.
medv ≥ c,medv′ ≥ c, βv2 > βv

′
2 , 3. medv < c,medv′ < c, βv3 > βv

′
3 .

Proof. Let βp1 to βp3 be defined as before. For condition 1, as medv′ < c and P is infeasible, any
extension of P by u-t must have βp1 +βv

′
1 > 0, which is also satisfied by path v-t. For condition 2, if

an infeasible pattern P can be extended to a feasible pattern by v′-t, then either βp1 +βv
′

1 > 0 which

implies feasibility of v-t, or βp1 +βv
′

1 = 0. In this case, the only value of
max

{
βp2 ,β

v′
2

}
+min

{
βp3 ,β

v′
3

}
2 (i.e.,

the median of pattern P extended by v′-t), which is not guaranteed to be feasible or infeasible is
βv
′

2 +βp3
2 . However, if βv

′
2 +βp3

2 ≥ c, we also have βv2 +βp3
2 ≥ c. The proof of the third rule is similar to

the second rule, and omitted due to space limits.

If any of the above rules are satisfied, we update βu1 ← βv1 + 1, βu2 ← max {βv2 , α} , βu3 ← βv3 if
αu ≥ c, or βu1 ← βv1 − 1, βu2 ← βv2 , β

u
3 ← max {βu3 , βv3} otherwise. Proposition 3.7 shows that these

values are sufficient to determine whether an infeasible pattern P can be extended to a feasible one.

Proposition 3.7. Let βp1 − β
p
3 be defined as before. There exists a feasible extension from node u

with respect to Cmed(α) ≥ c if and only if βu1 + βp1 > 0, or βu1 + βp1 = 0,
min{βp3 ,βp3}+max{βp2 ,βu2 }

2 ≥ c.

Proof. The necessity is straightforward. For the converse, first assume βp1 +βv1 < 0, then by Lemma
3.6, no u-t path contains enough values α ≥ c to satisfy Cmed(α) ≥ c. For the second condition, if

βu1 + βp1 = 0,
min{βp3 ,βu3 }+max{βp2 ,βu2 }

2 < c, then by Lemma 3.6, the maximum median between all u-t
paths is below threshold c.

3.6 Mining the MDD Database with Prefix-projection

We now present our MDD prefix-projection (MPP) algorithm, which performs prefix-projection on
the MDD database. The first step of the algorithm is to find all frequent items i, i.e. patterns of
size one, using a depth-first-search. This is automatically done during the construction of the MDD
database, and modeled by the children of root node r. In the next steps, the algorithm attempts
to expand a frequent pattern generated in previous iterations. Using the stored information in the
MDD, we prune extensions that cannot lead to a feasible pattern. In particular, for an infeasible
pattern P ending at node u ∈ U , the algorithm uses the information stored at u to determine
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whether P may be extended to a feasible pattern. If a feasible extension does not exist, the search
is pruned. Otherwise, pattern P is extended and investigated in future iterations.

In contrast to searching the database rows in prefix-projection, the MPP algorithm follows
feasible paths in the MDD database. This leads to a more efficient search, as some infeasible
extensions have been removed when constructing the MDD database. The trade-off is that finding
paths corresponding to a sequence S requires a search on labels du, au, thereby incurring additional
computational cost. For efficient memory utilization, the MDD is not physically projected, but
rather pseudo projected Han et al. (2001). In pseudo projection, only the initial SD is stored in
memory, and search is initiated from “projection pointers” pointing to the MDD nodes.

In prefix-projection, all N sequences are searched in each iteration, and an item i ∈ I is frequent
if its final count is at least θ. As opposed to searching all N sequences, we propose to stop when it
is guaranteed that an item i is not frequent. Let n denote the number of sequences searched so far
when searching for i, and let Sup(P ) denote the number of sequences that contain pattern P . We
use the following proposition to detect that item i cannot be frequent, given a frequent pattern P :

Proposition 3.8. If n− Sup(i) > Sup(P )− θ, item i cannot be frequent in the projected database.

Proof. The left-hand-side is the number of searched sequences that do not contain i, and the right-
hand-side is the maximum number of sequences that do not contain i while it remains frequent.

Algorithm 3.2 Extending frequent patterns in MPP.
1: procedure ExtendFreqPattern(Frequent pattern P .)
2: for Sequences S ∈ SD do
3: for Nodes u : P ends at u do
4: for Nodes v : (u, v) ∈ A and v is associated to S do
5: if (u, v) gives a feasible extension for P then
6: Store v as end point for potential pattern P ′;
7: else if Extension by v violates an anti-monotone constraint then
8: No other children of u satisfy constraints, Break;
9: else if A feasible extension exists from v then

10: Conditionally store v as starting point for potential pattern P ′;
11: for Potential patterns P ′ do
12: if More than θ sequences contain P ′ without condition then
13: Store P ′ as new frequent pattern;
14: else if More than θ sequences contain P ′ with condition then
15: Conditionally store P ′ as new frequent pattern;
16: if No potential pattern is stored, and P is not conditionally stored then
17: P is a maximal frequent pattern;

Projecting the minimal prefix containing a pattern P (as done in SPM) is not sufficient for
CSPM Aoga et al. (2017). Extensions from the minimal prefix may violate a constraint, while it
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Table 3.3: Five real-life datasets and their features.

SD N |I| M avg(|S|)*

Kosarak 837,206 41,001 2,498 9.3
MSNBC 989,818 19 29,591 10.5
Kosarak (small) 59,261 20,894 796 9.2
BMSWebView1 26,667 497 267 4.4
BMSWebView2 52,619 3,335 161 6.3

*Average length of sequences

may be the case that another larger prefix of the sequence satisfies such extensions. For example,
the minimal prefix containing item C in sequence 3 of Table 3.1 cannot be extended by item A

under a constraint Cgap(time) ≤ 3. However, extending the larger prefix containing C is feasible.
We are thus required to store all prefixes and their extension at each iteration of MPP.

A time-consuming task of the general prefix-projection algorithm is to determine whether a
specific item i exists in sequences of the projected database. To avoid searching the entire sequence
for every item, Aoga et al. (2017) store the last position of items i ∈ I for sequences S ∈ SD. An
MDD database enables search for the extension of all items i ∈ I simultaneously, resulting in more
efficient search. That is, as opposed to searching for a specific item i, all children of node u are
searched, and record the items which enable a feasible extension.

Algorithm 3.2 gives the procedure to extend a frequent pattern using the MDD database.

3.7 Numerical Results

For our numerical tests, we use real-life click-stream benchmark databases2, listed in Table 3.3.
We note that two of these databases, Kosarak and MSNBC, are considerably larger than those
typically reported in the CSPM literature, with about 900,000 sequences of length up to 29,500,
and containing up to 40,000 items. None of these standard benchmark datasets are annotated with
attributes. To be able to evaluate our approach, we therefore generate three attributes of time,
price, and quality, as follows. For the time attribute, we randomly generate a number between 0
and 600 seconds, to represent the time spent by users at each click. With a probability of 5%, we
model the user leaving the session by setting the time between clicks to a value between 1 to 10
hours. For the price and quality attributes, we generate a number between 1 and 100 for each item
i ∈ S,∀S ∈ SD.

All algorithms are coded in C++, with the exception of PPICt which is coded in Scala.3 All
experiments are executed on the same PC with an Intel Xeon 2.33 GHz processor, 24GB of memory,

2http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
3We thank the developers of PPICt for sharing their code.
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using Ubuntu 12.04.5 as operating system. We limit all tests to use one core of the CPU. The MPP
code is available and open source.4

3.7.1 Comparison with Prefix-projection and Constraint Checks

Our first goal is to evaluate the impact of the MDD database and the associated constraint reasoning,
especially in presence of more complex constraints. However, no other CSPM system accommodates
constraints such as average and median and multiple item attributes. Because simple generate-
and-test (via post-processing) does not scale due to the size of the databases, we developed a
prefix-projection algorithm for the original database, that can handle multiple item attributes and
effectively prune the search space for anti-monotone constraints such as gap and maximum span.
We name this algorithm Prefix-Projection with Constraint Checks (PPCC). PPCC operates by
prefix-projection and extends a pattern P if it satisfies all anti-monotone constraints, and prunes
the extension otherwise. For non-monotone constraints, PPCC extends infeasible patterns with the
hope that a feasible super-pattern exists, and performs a constraint check at the end.

In Figure 3.3 we compare the performance of MPP and PPCC in terms of total CPU time
(MDD construction plus mining algorithm), given minimum support (Min supp) as a percentage of
the total number of sequences. The experiment uses three scenarios with constraints on one, two,
and three attributes, respectively:

time: 30 ≤ Cgap(time) ≤ 900, 900 ≤ Cspn(time) ≤ 3600,

price: 30 ≤ Cavg(price) ≤ 70, 40 ≤ Cmed(price) ≤ 60,

quality: 40 ≤ Cavg(quality) ≤ 60, 30 ≤ Cmed(quality) ≤ 70.

Scenario one (PPCC1 and MPP1) only considers the time constraints. Scenario two (PPCC2
and MPP2) considers the time and price constraints. Scenario three (PPCC3 and MPP3) considers
all time, price, and quality constraints. The results in Figure 3.3 show that mining more constrained
patterns takes more time for both methods. However, MPP is always more efficient than PPCC,
and often considerably. For example, finding all frequent patterns with minimum support of 4%
with all constraints (scenario three) in the MSNBC database takes PPCC about 4,000s while MPP
only needs about 2,000s. Moreover, Table 3.4 shows that the time required to construct the MDD
database and generate constraint specific information is quite small. This indicates that our MDD
database can be used to effectively and efficiently handle constraints such as average and median.

3.7.2 Comparison with PPICt

We next compare our approach to the state-of-the-art CSPM algorithm PPICt, which is imple-
mented in the CP framework OscaR5 Aoga et al. (2017). PPICt accommodates a wide range of

4https://github.com/aminhn/MPP
5https://bitbucket.org/oscarlib/oscar/wiki/Home
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Figure 3.3: Mining with constraints 30 ≤ Cgap(time) ≤ 900, 900 ≤ Cspn(time) ≤ 3600, 30 ≤
Cavg(price) ≤ 70, 40 ≤ Cmed(price) ≤ 60, 40 ≤ Cavg(quality) ≤ 60, 30 ≤ Cmed(quality) ≤ 70.

Attributes and their corresponding constraints are added incrementally from 1 to 3.
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Figure 3.4: Mining with one item attribute (time) and constraints
30 ≤ Cgap(time) ≤ 900, Cspn(time) ≤ 3600.

constraints, including gap and maximum span constraints, but is restricted to a single attribute.
We therefore evaluate MPP and PPICt for mining patterns with the following gap and maximum
span constraints over the time attribute:

30 ≤ Cgap(time) ≤ 90, 900 ≤ Cspn(time) ≤ 3600.

Initial tests indicated that the PPICt code is unstable when executed on the full databases Kosarak
and MSNBC. We therefore executed the codes on the smaller benchmark variant of Kosarak (which
is also used in Aoga et al. (2017)), BMSWebView1, and BMSWebView2. The results are presented
in Figure 3.4, which follows the same format as Figure 3.3.

A first observation is that MPP and PPCC produce almost identical results, as they both benefit
from the same pruning rules for anti-monotone constraints. The time required to build the MDD
database, shown in Table 3.4, is made up by a faster prefix-projection algorithm due to implementing
the gap constraints on the MDD itself. Both MPP and PPCC also outperform PPICt on Kosarak
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Table 3.4: Time (in seconds) required for MDD construction and information generation.

Algorithm Kosarak MSNBC BMS2 BMS1 Kosarak(small)

MPP1 47 45 2 - -
MPP2 106 103 4 - -
MPP3 151 158 5 - -
MPP - - 2 0.5 4

(small) and BMSWebview2, but all three methods perform similarly on BMSWebView1. However,
PPICt uses significantly more memory, up to 14Gb, while MPP uses up to 1Gb, and PPCC consumes
the lowest with at most 0.5Gb. We conclude that on this benchmark our approach is competitive
with or more efficient than PPICt.

3.8 Conclusion

In this chapter, we developed a novel MDD representation for CSPM. We prove how constraint
satisfaction is achieved for a number of constraints, including sum, average, and median, by storing
constraint-specific information at the MDD nodes. Moreover, our approach is able to accommodate
several item attributes with constraints, which occur frequently in real-world problems.

We embedded our MDD representation within a prefix-projection algorithm, called MPP, and
performed an experimental evaluation on real-life benchmark databases with up to 980,000 sequences
and 40,000 items. The results showed that the MPP mining algorithm is always more efficient than
a prefix-projection algorithm with constraint checks. The benefits of MPP become larger as we
increase the size of the database, the number of constraints, or the number of attributes. Although
MPP is primarily designed for efficient constraint satisfaction of rich constraints and multiple item
attributes, it remains competitive with a CP-based state-of-the-art CSPM algorithm, for databases
with only one item attribute and anti-monotone constraints.
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Chapter 4

Pattern Mining for Interpretable
Data-driven Sequential Decision Making

4.1 Introduction

Predictive models have significantly impacted the way information is organized and leveraged in
the practice of management, including areas such as retail (Akter and Wamba, 2016), accounting
(Appelbaum et al., 2017), sports (Coleman, 2012), and finance (Corea, 2016). Of notable prevalence
are sequential applications, i.e., in which predictions (and subsequent managerial actions) are made
consecutively over time based on past observed events. Examples include buying/selling decisions
in financial markets (Pang et al., 2018) and recommender systems for products and services that
account for observed consumer behavior (Cheng and Shen, 2016).

The growth of data-driven sequential approaches is due in large part to the increasing accessi-
bility of highly accurate machine learning tools, specifically deep-learning and ensemble frameworks
(Wu et al., 2019; Sagi and Rokach, 2018). The challenge, however, is that such tools generally offer
little interpretability in their learning tasks and predictions. This is a significant concern in scenar-
ios with ethical implications or high risk. For instance, Vayena et al. (2018) argue that the lack of
transparency is one of the primary barriers to the use of artificial intelligence in healthcare, with
half of the United States’ decision makers at healthcare organizations believing it would produce
fatal errors and not meet expectations. Similar issues are also raised, e.g., in marketing and finance
(Drew et al., 2019; Hajek and Henriques, 2017; Cui et al., 2006).

In such cases, practitioners may be more inclined to use simpler and more interpretable machine
learning models, such as rule-based learning and decision trees. While such algorithms are compara-
bly less accurate for predictive tasks than state-of-the-art black-box tools, they provide descriptive
results and expose simpler but often insightful relationships in data. Interpretability further allows
practitioners to explain the outcome of machine learning algorithms, resulting in higher reliability
and accountability in decision-making tasks. These benefits have led to a growing research in inter-
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pretable machine learning (see, e.g., Došilović et al. 2018; Murdoch et al. 2019; Molnar et al. 2018).
Nonetheless, the literature on interpretable learning for sequential tasks is still scarce.

In this paper, we study methodologies for identifying patterns in large-scale sequential datasets
for interpretability and descriptive purposes. We focus on sequential decision-making tasks that
aim at maximizing the probability of an outcome of interest, such as increasing product sales in a
retail recommender system. The objective of our approach is to learn the association between the
sequence of decisions (e.g., product recommendations) and the occurrence of the desired outcome
(e.g., product sales). In particular, we build on the assumption that such associations are best
described by a frequent sequence of decisions that leads to its occurrence (Cheng and Shen, 2016).
Finding and extracting such patterns, in turn, fall under the umbrella of the extensive field of
sequential pattern mining, an unsupervised learning task (see, e.g., Han et al. 2000).

Our first contribution is a data tree model for extracting frequent sequential patterns from large
datasets. A data tree is a network embedding of the database that leverages the sequential structure
for higher space compression. From a practical perspective, data trees address the size limitations
of current state-of-the-art sequential pattern mining algorithms (Han et al., 2001). In particular,
we show that the memory required for a data tree model can be orders of magnitude smaller than a
traditional tabular encoding, and in the worst case never larger. From a managerial perspective, we
exploit the network encoding of our model to reveal structured frequent patterns that, to the best
of our knowledge, cannot be identified by existing algorithms. Thus, data trees may potentially
strengthen explanations and insights associated with desired outcomes.

Our second contribution is to use sequential patterns (e.g., as identified through our methodol-
ogy) to analyze the likelihood that a sequence of decisions is associated with an outcome of interest.
Specifically, we propose that patterns satisfying a given minimum likelihood constraint are consid-
ered as interpretable explanations on why different outcomes occurred. To test the reliability of
such explanations, we design a p-value hypothesis test that generates likelihood probabilities with
a guaranteed statistical confidence. Furthermore, using regression hypothesis tests, we evaluate the
trade-off between the minimum likelihood constraint imposed on patterns and the percentage of all
possible outcomes explained by feasible patterns.

Finally, we show how mined patterns can be aggregated into a knowledge tree to provide an
interpretable decision support tool for sequential decision making. Similar to a data tree model of
the dataset, knowledge trees lead to higher space compression as well as more efficiency in analytical
tasks performed over mined patterns. More importantly, knowledge trees provide a structural
view of the decision making process by displaying the transition of likelihood probabilities between
decisions (or events) and outcomes of interest. Using the path structure of knowledge trees, we
calculate expectations of future sequence of likelihood probabilities to provide more concise and
interpretable knowledge to practitioners. The result of our approach is a visual, interpretable, and
statistically guaranteed data-driven decision support tool for sequential decision making tasks.

We investigate our approach on two real-world large-size applications in marketing and finance.
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Figure 4.1: Path from data to knowledge.

In marketing, we study an online music streaming platform with the objective of reducing user skip
rates. Using data trees, we model and fit 2.2 billion track recommendations in memory, while a
tabular encoding of the database can fit at most a couple of million events. We perform pattern
mining over the data tree and generate frequent patterns of musical track recommendations based on
their audio features. We then analyze sequences of track audio features based on the likelihood that
they lead to user skips, and use patterns with a high likelihood to explain skip outcomes. Lastly,
we aggregate frequent patterns into a knowledge tree and show how the resulting interpretable view
can be used to aid the recommendation process.

In finance, we identify novel patterns associated with price changes to derive insights for se-
quential investment decisions in the stock market. In particular, our model is based on a data tree
that encodes a large-scale time series of stock prices. We analyze whether our generated patterns
can indeed be used to explain price change events in the database through hypothesis tests with
statistical guarantees. The resulting knowledge tree provides a decision support tool for technical
analysis in investment decision making.

The remainder of the paper is organized as follows. We review related work in §4.2 and develop
data trees and the pattern mining algorithm in §4.3. We discuss how patterns are used for inter-
pretable explanations and knowledge discovery in §4.4, and apply the developed framework to our
marketing and finance applications in §4.5 and §4.6. The paper is finally concluded in §4.7.

4.2 Background and Related Work

Our work contributes to the field of interpretable machine learning, which has been receiving a
growing interest in management science in recent years. We refer to Murdoch et al. (2019) and
Molnar et al. (2018) for a review of distinct interpretable tasks. In this study, we perceive inter-
pretability as an explanation on why an outcome of interest has occurred. Specifically, we generate
sequential patterns of events and analyze their association with the occurrence of a certain outcome.
If the association between the sequential pattern and the desired outcome is strong, we consider the
sequence of events in the pattern as an explanation for the outcome.

Pattern discovery and data mining have long been used for knowledge discovery tasks. For
example, data mining is the key step prior to interpretation of patterns in the classical path from
data to knowledge by Fayyad et al. (1996), as depicted in Figure 4.1. Pattern mining was first
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introduced by Agrawal et al. (1993, 1994) and used to develop association rules for market basket
analysis, i.e., statements of the form if-then that identify products that are purchased in bundles by
consumers. The field has since grown significantly with over 50,000 papers to date. Our study refers
to an area of data mining known as sequential pattern mining, in which the data is semi-structured,
i.e., in our case represents a temporal or sequential set of events.

While the literature on sequential pattern mining mostly emphasizes computational efficiency
(e.g., Lin and Lee 2005; Aoga et al. 2017; Hosseininasab et al. 2019; Han et al. 2000; Ayres et al.
2002), state-of-the-art sequential mining algorithms still face challenges in memory requirements
and are limited to relatively small-sized datasets. In particular, the two dominant pattern mining
methodologies, Apriori (Agrawal et al., 1994) and prefix-projection (Han et al., 2001), suffer from
the explosion of candidate patterns or require an explicit representation of the entire database in
memory, respectively. They are therefore limited in usage for knowledge discovery in applications
with larger data requirements.

In this paper, we design a novel tree model of the database that is able to accommodate orders
of magnitude larger datasets. Network models and graphical models of the database have been
shown to be effective in item-set mining (Han et al., 2004; Pyun et al., 2014; Borah and Nath, 2018)
and pattern mining (Masseglia et al., 2009; Hosseininasab et al., 2019; Loekito and Bailey, 2007).
In particular, our pattern-mining methodology is motivated by the work of Hosseininasab et al.
(2019), where a prefix-projection algorithm (Han et al., 2001) is applied over a decision-diagram
network model of the database. Although data trees are different from the decision diagram model
of the database by Hosseininasab et al. (2019), our proposed mining algorithm over the network
structure is similar. The main focus of such models is, however, time efficiency and they do not
show noticeable gains in memory requirements. Other network-based data mining frameworks, e.g.,
webpage ranking, anomaly detection, and time-stamped social networks (Lambiotte et al. (2018),
Rozenshtein and Gionis (2019), and references therein) investigate how networks evolve with time,
such as links between pairs in a social network. Our work, in turn, does not assume that the dataset
has a priori network structure. Instead, our approach models any general sequential database as a
tree model that exploits equivalence classes within the data for higher space compression.

From an application point of view, the pattern mining literature shows a large focus on the
development of domain-specific association rules as an intermediate step in recommender systems
(e.g., Lin et al. 2002, 2000; Najafabadi et al. 2017; Suchacka and Chodak 2017). Our work builds
upon this literature by generating sequential association rules and developing interpretable explana-
tions for the occurrence of outcomes, as well as pattern aggregation schemes to provide a structural
and graphical view of the decision making process.

Lastly, this paper is related to supervised learning tasks for sequential prediction. The state-
of-the-art machine learning models for such tasks are neural networks and deep learning, such as
recurrent neural networks (Bengio et al., 2015; Lipton et al., 2015; Martinez et al., 2017). Recurrent
neural networks are generally applied to extend a sequence of observed data with one or multiple
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events (Rather et al., 2015; Bahdanau et al., 2016; Bengio et al., 2015). The main focus of such al-
gorithms is prediction accuracy, which in turn decreases as the size of the desired predicted sequence
increases. Specifically, an incorrect prediction early in the sequence negatively impacts future pre-
dictions and consequent decisions. In contrast, the focus of our proposed method is interpretability
and knowledge discovery, where sequential patterns are used to anticipate and analyze the entire
set of significant future events and outcomes. Any change in future events is therefore anticipated
and analyzed to aid decision making.

4.3 Data Trees and Pattern Mining

In this section, we develop a novel data tree model of a sequential dataset and use it to mine
frequent patterns from large datasets. Data trees form the basis for our pattern mining algorithm
and are key to its scalability. We begin in §4.3.1 with the formalization of the sequential database
and frequent patterns, and in §4.3.2 we define a data tree model for a given sequential database.
Next, in §4.3.3 we characterize the minimum-sized data tree and conditions for which it will lead
to memory savings, developing in §4.3.4 a procedure to build such a data tree efficiently. Finally,
in §4.3.5 we discuss the pattern mining algorithm tailored to a data tree model of the database.

4.3.1 Sequential Database and Sequential Patterns

Let E be a finite set encoding the possible events or decisions within an application of interest. A
sequential database is a set S := {S1, . . . ,SN} where each Si := 〈ei1, . . . , ei|Si|〉 is a sequence of
events ei1, . . . , ei|Si| ∈ E for all i = 1, . . . , N . Each j-th event of a sequence Si is also associated
with an observed outcome uij ∈ U. Without loss of generality, we restrict our attention to a binary
set U = {0, 1} indicating if an outcome occurred (uij = 1) or not (uij = 0) at event eij , focusing on
the case uij = 1 as the desired outcome to investigate. We denote by Si[j] and Si{j} the j-th event
and its associated outcome, respectively, of a sequence Si. Moreover, let M := maxi=1,...,N |Si| be
the size of the largest sequence stored in the database.

We wish to identify patterns that are frequently associated with the desired outcome in a se-
quential database S . We define a pattern P := 〈e1, . . . , e|P|〉 as an ordered contiguous subsequence
of some sequence Si ∈ S . That is, for any pattern P, there exists some Si ∈ S and integer k ∈ Z≥0

such that P[j] = Si[k + j] for all j = 1, . . . , |P|, where P[j] denotes the j-th event of P. The fre-
quency f(P) ∈ Z≥0 of a pattern P is the number of times it can be identified in S , i.e., the number
of distinct indices i and integers k for which the subsequence P is a pattern of Si. The outcome
frequency f̂(P) ∈ Z≥0 is the number of such occurrences that result in the desired outcome, i.e.,
for which Si{k + |P|} = 1. Finally, a pattern is considered frequent if f(P) ≥ θ, where θ is chosen
a priori based on domain knowledge.

Example 4.1 presents a hypotension prediction case motivated by the study in Ghosh et al.
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Table 4.1: Sequential database consisting of ten sequences of blood pressure events (H:high,
N:normal, L:low) and associated hypotension outcomes (1:hypotension occurred, 0:hypotension

did not occur).

Seq# Events

S1 H L L
S2 L L N L
S3 H L
S4 L L N L
S5 L H N H
S6 H L L L
S7 L L
S8 L H N
S9 H L L L
S10 L H N H

Seq# Outcomes

S1 0 0 1
S2 0 0 0 1
S3 0 1
S4 0 0 0 0
S5 0 0 0 0
S6 0 0 0 1
S7 0 1
S8 0 0 0
S9 0 0 0 1
S10 0 0 0 0

(2015). We use it as a running example throughout this paper.

Example 4.1. Consider a sequential database which records measurements of blood pressure events
and hypotension outcomes for 10 patients as depicted in Table 4.1. The sequential database S is
composed of 10 sequences S1, . . . ,S10 of events within the space E := {L,N,H}. Each event indicates
whether the blood pressure was low (L), normal (N), or high (H). The pattern P = 〈L,L〉 has a
frequency of f(P) = 8, occurring once in sequences S1,S2,S4,S7 and twice in S6 and S9. The
maximum length of any sequence is M = 4. The j-th outcome Si{j} records whether the patient
was diagnosed with hypotension (Si{j} = 1) or not (Si{j} = 0) at its j-th event. The outcome
frequency of P is f̂(P) = 4 from S1, S6 (k = 2), S7, and S9 (k = 2). �

4.3.2 Data Tree Model of Sequential Databases

A data tree D is a compressed network model of a sequential database S . Specifically, D :=

(N ,A,H) is a directed tree with node set N , arc set A, and node label set H. Given the maximum
sequence length M of S , the node set N is partitioned into M + 1 subsets N0, . . . ,Nm denoted
by layers. In particular, N0 := {r} is a singleton containing an auxiliary root node r. With each
node n ∈ N \ {r} we associate an event en ∈ E, a frequency fn ∈ Z≥0, and an outcome frequency
f̂n ∈ Z≥0 that compose H. Definition 4.2 formalizes the model D in terms of such node labels.

Definition 4.2. A data tree D models a sequential database S if conditions (1)-(3) are satisfied:

1. There is a one-to-one correspondence between patterns of S and paths in D . That is, for any
pattern P of S , there exists a path (n1, . . . , n|Si|) in D with n1 6= r that encodes the events of
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Figure 4.2: Example of a naïve and minimum size data tree model of the sequential database in
Table 4.1.

P, i.e., enj = P[j] for all j = 1, . . . , |P|. Conversely, any sequence S = 〈en1 , . . . , enk〉 encoded
by a path (n1, . . . , nk) of D with n1 6= r and k ≤M is a pattern of S .

2. Let N (P) := {n|P| ∈ N : (n1, . . . , n|P|) ∈ D , enj = P[j], ∀j = 1, . . . , |P|} be the set of
terminal nodes of the paths in D encoding a pattern P. Then,

∑
n∈N (P) fn is the frequency

of P in S , ∑
n∈N (P)

fn = f(P).

3. Analogously,
∑

n∈N (P) f̂n is the outcome frequency of the pattern P in S , i.e.,

∑
n∈N (P)

f̂n = f̂(P).

�

Example 4.3. Figure 4.2(a) depicts a naïve data tree for the sequential database from Table 4.1.
For each node n ∈ N , the label within the circle represents the event en ∈ {L,N,H}, and the
label below the circle indicates f̂n. As we have fn = 1 for all n ∈ N , node frequencies are omitted
for clarity. There is a one-to-one correspondence between sequences in S and paths from r to leaf
nodes of D ; the sequence Si associated with each path is depicted on the left-hand side of the figure.
Because each r-leaf path maps to exactly some Si ∈ S , condition (1)-(3) are satisfied. �
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Figure 4.2(a) in Example 4.3 suggests a straightforward procedure to generate D . Specifically,
we start by constructing one path for each sequence Si ∈ S , i = 1, . . . , N , where the j-th node nj
of such a path satisfies enj = Si[j], fnj = 1, and f̂nj = uij for all j = 1, . . . , |Si|. Finally, we add
an artificial root node r and connect it to the first node of each path. This procedure yields a data
tree with size polynomial in S , since the number of nodes and arcs is bounded by O

(∑N
i=1 |Si|

)
.

However, such a tree is not necessarily of minimum size. Figure 4.2(b), for example, depicts a
significantly more compact tree for S , where the labels above each circle indicate node frequencies.

4.3.3 Minimum-sized Data Trees

We now characterize the structure of the minimum-sized data tree for S . In particular, such a
result also yields a simple procedure to transform any valid data tree into the smallest one. The
size of a data tree is defined as the number of nodes |N |. This follows from the fact that a tree
has equal number of nodes and arcs, and its size is bounded by O(|N |). Theorem 4.4 provides the
necessary and sufficient conditions for a data tree to be of minimum size.

Theorem 4.4. A data tree D that models S is of minimum size if and only if en 6= en′ for any
two nodes n, n′ ∈ N with the same parent node in D . Moreover, the minimum-sized data tree for
S is unique.

Proof. Proof. Assume D is of minimum size, and assume by contradiction there exist two nodes
n, n′ ∈ D : en = en′ with the same parent node n̂. As data trees are acyclic (by definition of a
tree), the path (r, . . . , n̂) from root node r to parent node n̂ is unique. Let P be any pattern of
S that is encoded by a path (n1, . . . , n̂, n) : n1 6= r. As en = en′ , P is also encoded by path
(n1, . . . , n̂, n

′). Node n′ and can thus be merged into node n by redirecting arcs from n′ to n and
updating frequencies fn = fn + fn′ and f̂n = f̂n + f̂n′ . This results in a smaller data tree that
satisfies all conditions of Definition 4.2, a contradiction.

For the converse, we prove that nodes n, n′ ∈ N that satisfy the statement cannot be merged
into a single node, concluding that D is of minimum size. Merging any two nodes with a different
parent leads to a cycle in D and violates its definition. On the other hand, any two nodes n, n′

with the same parent and en 6= en′ , encode different patterns P 6= P ′ and cannot be merged while
maintaining conditions of Definition 4.2.

The proof of uniqueness is by induction on the uniqueness of layers N0, . . . ,NM for a minimum
sized data tree D . The statement trivially holds for singleton layer N0 = {r}. Assume the statement
holds for layersN1, . . . ,Nk : k < M . As the data tree is of minimum size, any two nodes n, n′ ∈ Nk+1

are unique in their parent or their labels en, en′ , giving a unique set of nodes in layer Nk+1. By the
principle of mathematical induction, the statement holds for all layers of the data tree.

Theorem 4.4 indicates that, if D is not minimum, the tree contains two nodes n, n′ that are
redundant with respect to their encoded patterns. For example, in Figure 4.2(a) the sequence S3
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Algorithm 4.1 Data Tree Compression Procedure
1: procedure CompressDataTree(Input: D)
2: for each layer l = 1, . . . ,M + 1 do
3: while there exists n, n′ ∈ Nl with the same parent such that en = en′ do
4: For each arc (n′, n′′) emanating from n′, add an arc (n, n′′) to A;
5: Update fn := fn + fn′ and f̂n := f̂n + f̂n′ .
6: Remove node n′ and its arcs, updating N and A accordingly.

could be incorporated into the first two nodes of the path encoding S1 by adjusting their frequency
and outcome frequency accordingly, thereby obtaining a smaller valid data tree without the nodes
encoding S3. This could be initially identified, e.g., because the first non-root nodes of S1 and S3

have the same parent r and event H.
To compress a given D , we therefore must merge nodes that violate the minimality condition

stated by Theorem 4.4. Merging a node n′ into n consists of redirecting arcs from n′ to n and
updating the corresponding pattern frequencies. The procedure in Algorithm 4.1 applies such a
node merging one layer at a time starting from N1, which we show in Proposition 4.5 always yields
the minimum-sized data tree for S . Example 4.6 exemplifies Algorithm 4.1 for our running example.

Proposition 4.5. For any data tree D that models S , the compressed data tree that results from
Algorithm 4.1 also models S and is of minimum size. Moreover, Algorithm 4.1 can be implemented
in linear-time complexity on the original data tree size, i.e., O(|N |).

Proof. Proof. The procedure of Algorithm 4.1 ensures that for any two nodes n, n′ ∈ Ni,∀i =

1, . . . ,M + 1 either have a different parent or satisfy en 6= en′ . As nodes in different layers cannot
have the same parent, the statement of Theorem 4.4 holds for all nodes, ensuring the minimum size
of the resulting data tree. Checking the merge condition of the algorithm is performed once per
node of the data tree and takes O(|N |) time. A merge operation, in the worst case, redirects all arc
in A using O(|A|) time. As |N | = |A| in a tree, the algorithm takes O(|N |) total time.

Example 4.6. Consider the naïve data tree model of Figure 4.2(a). In the first iteration of Algo-
rithm 4.1, the set of nodes in layer N1 (i.e., all nodes n with r as parents) can be partitioned into
two classes, one for event H and another for event L. Nodes in each class are then merged, resulting
in layer N1 of Figure 4.2(b) with their updated frequency (shown above each circle) and outcome
frequency labels (shown below each circle). This process is repeated one layer at a time until the
data tree of Figure 4.2(b) is obtained. �

Lastly, we provide a characterization of the memory requirement of the minimum-sized tree
D as compared to a traditional tabular (i.e., explicit) representation of S . Theorem 4.7 below
indicates that D is guaranteed to be more compact whenever the event space E is smaller than
the number of sequences N in the database. Thus, as the number of events |E| is typically orders

59



of magnitudes smaller than the number of sequences N in a large databases, data trees are also
expected to be orders of magnitude more memory efficient than a tabular encoding. We indeed
observe such memory savings, e.g., in our studied large-scale applications in §4.5 and §4.6.

Theorem 4.7. A minimum sized data tree model D of a sequential database S is more memory
efficient than a tabular encoding of S whenever |E| < N , and otherwise never larger.

Proof. Proof. The worst case size of a data tree D is when all N sequences S ∈ S are modelled by
exactly N unique paths in D , i.e., a naïve data tree model of S . In such a case, a node n ∈ N uses
two units of memory, one for node label en and the other for label f̂n. Note that in a naïve data tree
fn = 1, ∀n ∈ N and may be omitted. This space complexity is consistent with the memory used by
a tabular encoding, one to store event eij and the other to store outcome uij . Arcs (n, n′) ∈ A may
be defined as linked lists between nodes n ∈ N , to not consume extra memory. The exact space
requirement of a naïve data tree is thus bounded by that of a tabular encoding.

We now prove that if |E| < N , at least one merge operations can be performed the worst-case
size of a data tree (naïve data tree) leading to a lower memory requirement. A merge operation
is guaranteed to lower memory requirements, as it merges two nodes that use at least two units of
memory into one node that uses three units of memory, one per labels en, fn, f̂n. Now, assume by
contradiction that no merge operation can be performed for any two nodes in D . By Theorem 4.4,
this implies that for any two nodes n, n′ ∈ N1 (which have the same parent r) we have en 6= en′ .
Moreover, as each sequence S ∈ S is non-empty and has at least one event, we have |N1| = N .
Given |E| < N , and by assigning one event e ∈ E to each of the N nodes n ∈ N1, we are thus
guaranteed to have en = en′ for at least one pair of nodes n, n′ ∈ N1 according to the pigeon hole
principle, a contradiction.

4.3.4 Incremental Compilation of Minimum-sized Data Trees

While Algorithm 4.1 efficiently minimizes the size of any given data tree, the procedure still re-
quires some initial D as input (e.g., the naïve representation of Figure 4.2(a)), which may not be
computationally feasible for large-scale databases due to memory considerations. In this section, we
provide an alternative procedure that iteratively builds a minimum-sized data tree by incorporating
one sequence at a time from S . Such a construction methodology is also more appropriate for
dynamic databases that are often updated with new sequences.

The incremental procedure is depicted in Algorithm 4.2. Given a sequence Si = 〈ei1, . . . , ei|P|〉,
the procedure iterates over each eij to check if a subpath of D matches all the events up to j. If such
a path exists, it suffices to update the associated frequencies at each node. Otherwise, new nodes
are added to incorporate Si into D . Proposition 4.8 states the validity of Algorithm 4.2 by showing
that the conditions of Definition 4.2 and Theorem 4.4 hold at every iteration of the procedure.
Example 4.9 exemplifies Algorithm 4.2 for our running example.
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Algorithm 4.2 Incremental Data Tree Compilation
1: procedure IncrementalCompilation(Input: S )
2: Initialize D with N := {r}, A := ∅
3: Let n∗ := r
4: for each Si ∈ S and j = 1, . . . , |Si| do
5: if there exists (n∗, n) ∈ A for some n ∈ N such that en = Si[j] then
6: Update fn := fn + 1 and f̂n := f̂n + Si{j}
7: Update n∗ := n
8: else
9: Add new node n to Nj with en = Si[j], fn = 1, and f̂n = Si{j}

10: Update n∗ := n

11: return D .

Proposition 4.8. The incremental compilation of Algorithm 4.2 outputs a valid minimum-sized

data tree model of S . Moreover, its run-time complexity is linear in the size of S , i.e., O(
N∑
i=1
|Si|).

Proof. Proof. The validity of Definition 4.2 is proved by induction over the iterations of Algorithm
4.2. All conditions trivially hold at iteration 1, as the algorithm outputs a single path identical to the
first sequence S1 ∈ S . Assume that the data tree built up to iteration i < N is valid with respect
to the conditions of definition 4.2. Let (n1, . . . , nj , . . . , n|Si+1|) be the path constructed in iteration
i+1, where nodes n1, . . . , nj were built in previous iterations, and nodes nj+1, . . . , n|Si+1| were built
in iteration i+1. Condition 4.2-(1) holds for every node of path (n1, . . . , nj , . . . , n|Si+1|) due to Step
4.2-9. Conditions 4.2-(2) and 4.2-(3), hold for any pattern P with terminal node nj′ : j′ ≤ j due to
Step 4.2-6, and for any pattern with terminal node nj′ : j′ > j due to Step 4.2-9. By the principle
of mathematical induction, the statement holds for every iteration of Algorithm 4.2.

Algorithm 4.2 ensures that a node n ∈ D has no two children n, n′ such that en = en′ , thus
satisfying the conditions of Theorem 4.4. The algorithm constructs the minimum size data tree by

one scan of the sequential database, i.e., in O(
N∑
i=1
|Si|) time.

Example 4.9. Using Algorithm 4.2, we model the sequential database S of Table 4.1 in ten
iterations, one per sequence Si ∈ S , i = 1, . . . , 10. In the first iteration, sequence S1 is modelled
by creating path (r, n1, n2, n3), such that en1 = H; en2 = L; en3 = L; fnj = 1 for all j = 1, 2, 3;
f̂nj = 0 for all j = 1, 2 and f̂n3 = 1. This path is depicted in Figure 4.2(b). The second iteration is
similar to the first iteration and creates path (r, n5, n6, n7, n8) to model sequence S2. In the third
iteration, sequence S3 is modelled by updating the frequency labels fn1 = 2, fn2 = 2, and outcome
frequency f̂n1 = 0, f̂(n2) = 1 of the path built in the first iteration. The process is repeated up to
sequence S10, resulting in the minimum sized data tree of Figure 4.2(b). �
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Algorithm 4.3 Sequential Pattern Mining over D

1: procedure SequentialFrequentPattern(Input: D)
2: Initialize F :=

{
(P,N (P)) : P = 〈e〉, ∀e ∈ E,

∑
n∈N (P) f(P) ≥ θ

}
3: for each pair (P,N (P)) ∈ F not yet verified do
4: for each event e′ ∈ E do
5: Let N ′ := {n′ ∈ N : en′ = e′, ∃(n, n′) ∈ A for some n ∈ N (P)}
6: if

∑
n∈N ′ f(P) ≥ θ then

7: Add (〈P, e′〉,N ′) to F

8: return F .

4.3.5 Mining Sequential Patterns from Data Trees

We now present a methodology to exploit the compression provided by a data tree D to extract
frequent patterns more efficiently than using a tabular encoding of S . We restrict our attention to
patterns P that satisfy f(P) ≥ θ for a given threshold θ as discussed in §4.3.1. For an application
that defines the frequency threshold with respect to outcomes, i.e., f̂(P) ≥ θ, the procedure below
can be adapted directly by replacing the functional f(·) by f̂(·) throughout.

Our procedure is a special case of a prefix-projection algorithm applied to the data tree model
of the database. Specifically, it follows from Definition 4.2-(2) that a pattern P is frequent if∑

n∈N (P)

f(P) ≥ θ,

where N (P) is the set of terminal nodes of the subpaths in D that encode P. To identify these
patterns, the procedure maintains a set of pattern-node pairs (P,N (P)) that are already known to
be frequent. For each such pair (P,N (P)), it then verifies if it is possible to extend P into a new
frequent pattern P ′ = 〈P, e′〉 for each possible event e′ ∈ E. To that end, and due to Definition
4.2-(1), it suffices to verify the frequency condition over the nodes n′ that are children of N (P) and
such that en′ = e′.

The full procedure is depicted in Algorithm 4.3. For the initial set of frequent patterns, we
start with single-pattern events 〈e〉 for all e ∈ E that are frequent. Such sets are readily available
during the construction of the data tree by Algorithm 4.2. Each iteration of the mining algorithm
consists of extending such patterns with one additional event by checking the children of the nodes
in N (P). The validity of the procedure follows from the conditions of Definition 4.2, and the validity
of the prefix-projection algorithm (Han et al., 2001). We provide a lower bound on the efficiency of
Algorithm 4.3 in comparison to existing techniques that operate directly on S in Proposition 4.10.

Proposition 4.10. The run-time complexity of Algorithm 4.3 is at least
∑N

i=1 |Si|/|N | times more
efficient than a prefix-projection algorithm performed over a tabular encoding of S .

Proof. Proof. Extending a pattern P by mining a data tree D , involves scanning the children of
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Table 4.2: Frequent patterns (with θ = 2) mined from data tree of Figure 4.2(b) (or sequential
database of Table 4.1).

Pattern Events f(P) f̂(P)/f(P) PH0(P) Adj. f(P) Adj. PH0(P)

P1 H L 4 0.25 0.05 400 0.21
P2 H L L 3 0.33 0.07 300 0.29
P3 H L L L 2 1 0.42 200 0.98
P4 H N 3 0 0 300 0
P5 H N H 2 0 0 200 0
P6 L L 8 0.5 0.24 800 0.47
P7 L L N 2 0 0 200 0
P8 L L N L 2 0 0 200 0
P9 L L L 2 1 0.42 200 0.98
P10 L N 2 0 0 200 0
P11 L N L 2 0 0 200 0
P12 L H 3 0 0 300 0
P13 L H N 3 0 0 300 0
P14 L H N H 2 0 0 200 0
P15 N H 2 0 0 200 0
P16 N L 2 0.5 0.12 200 0.44

nodes in N (P). A scan of a node n in D is equivalent to scanning fn sequences in a sequential
database S . The prefix-projection over a sequential database S scans each event eij ∈ S at
least once (Han et al., 2001). Similarly, the algorithm scans each node of the data tree at least
once. Therefore, the minimum |N | scans of all nodes n ∈ N is equivalent to

∑
n∈N

fn =
∑

i∈{1,...,N}
|Si|

number of scans on the sequential database S . Pattern mining over a data tree is thus at least∑
i∈{1,...,N}

|Si|/|N | times more efficient than pattern mining over a sequential database S .

Example 4.11. Consider a minimum frequency θ = 2. When applying Algorithm 4.3 to D from
Figure 4.2(b), we initialize F with three pairs (H, {n1, n9, n11}), (L, {n2, n3, n4, n5, n6, n8}), and
(N, {n7, n10}). Next, the algorithm takes, e.g., the pair (H, {n1, n9, n11}), which has a frequency
fn1 +fn9 +fn11 = 9 ≥ θ, and verifies the children of nodes {n1, n9, n11} for three possible extensions
of event H to patterns 〈H,H〉, 〈H,L〉, or 〈H,N〉. The frequent extensions are 〈H,L〉 with frequency
4 (fn2 = 4), and 〈H,N〉 with frequency 3 (fn10 = 3). The pairs (〈H,L〉, {n2}), and (〈H,N〉, {n10})
are thus added to F . The procedure is repeated until all patterns in Table 4.2 are found. �
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4.4 Interpretable Explanations and Knowledge Trees

In this section, we leverage the same principles of the network encoding of §4.3 to extract knowledge
from frequent sequential patterns. We begin in §4.4.1 with a generalization of association rules for
interpreting sequential outcomes and develop a p-value test to estimate likelihood probabilities.
Next, we formally define the concept of explanatory patterns in §4.4.2 and present a regression test
to establish statistical guarantees of its validity. Based on these concepts, we develop in §4.4.3 a
structural view of frequent patterns and their resulting association rules in the form of knowledge
trees. A knowledge tree provides a graphical and compact tool of the (possibly many) frequent
patterns and can be used either for deriving insights or directly as a decision support tool. We note
that the concepts presented in this section only require a set of frequent patterns that are generated,
e.g., using the data tree procedure from §4.3.

4.4.1 Sequential Association Rules and Likelihood Probabilities

We recall from §4.3.1 that we wish to identify patterns that typically lead to a desired outcome
1 ∈ U. Such an association is represented here through a rule of the form P → 1, which indicates
that a pattern P of S frequently leads to the outcome 1. A straightforward measure of the strength
of this association could be obtained, e.g., by the ratio between the number of desired outcomes
following P and the frequency of P, that is, f̂(P)

f(P) .
Nonetheless, since a sequential database S encodes a sample of observations, such a ratio is

only an estimate of the true association probability between P and the desired outcome. In order to
generate more accurate estimates, we propose to use p-value hypothesis tests to derive a likelihood
probability of the desired outcome given the pattern P. Hypothesis tests have been previously used
to determine whether generated association rules are statistically significant (Klayman and Ha,
1989; Riondato and Upfal, 2012; Hämäläinen and Nykänen, 2008). Statistically significant rules are
then approved and considered valid, while non-significant rules are disregarded.

Specifically, let P(P) be the true probability of the association between a pattern P and the
desired outcome. For a frequent pattern P (i.e., one with frequency larger than θ), we state the null
hypothesis as H0 : P(P) < PH0(P), where we denote by PH0(P) the desired likelihood probability of
the outcome given P. The task is to find the minimum PH0(P) such that the hypothesis test gives
a 95% or higher confidence to reject H0. Thus, to obtain PH0(P), we initialize PH0(P) = f̂(P)

f(P) , and
incrementally decrease PH0(P) until the p-value test gives a confidence of at least 95% for rejecting
H0. Example 4.12 exemplifies this calculation for our running example.

Example 4.12. Consider the output patterns in Table 4.2. Each pattern is a sequential association
rule leading to hypotension with a ratio of f̂(P)/f(P), given in the fourth column, and a likelihood
of PH0(P), given in the fifth column. Observe that the likelihood probabilities are considerably
lower than ratios f̂(P)/f(P) due to the low frequencies f(P). For example, although pattern
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〈L,L,L〉 leads to hypotension in 100% of its occurrences, its likelihood probability is only 42% with
a statistical confidence of 95%.

For illustration purposes, we multiply the frequency (and outcome frequency) of all patterns
in Table 4.2 by a 100, and re-run the p-value hypothesis test to observe the change in pattern
likelihoods. We observe that while ratios f̂(P)/f(P) remain unchanged, the adjusted likelihood
probabilities increase as shown in column seven. For example, adjusting the frequency and outcome
frequency of pattern 〈L,L,L〉 from 2 to 200, increases its likelihood probability from 42% to 98%.
�

4.4.2 Explanation of Outcomes and Regression Testing

A high likelihood probability PH0(P) suggests a possible explanation of the outcome in the form of
the pattern P. We formalize this concept in Definition 4.13 below.

Definition 4.13. A pattern P explains the outcome Si{j∗} = 1 for a sequence Si ∈ S , j∗ ≤ |Si|,
if

1. P is a pattern of Si that ends in j∗, i.e., there exists some integer k such that P[j] = Si[k+ j]

for j = 1, . . . , |P| and k + |P| = j∗.

2. PH0(P) ≥ P(1) + α, where P(1) is the probability of the outcome 1 (i.e., number of events eij
in S with Si{j} = 1 divided by the total number of events eij in S ) and α > 0 is a constant
probability chosen a priori based on domain knowledge. �

Condition (2) from Definition 4.13 above allows us to evaluate outcomes that rarely occur in
S , since we consider a high marginal change in outcome probabilities (in the form of α) to regard
a pattern as a possible explanation of an outcome. We show its application in Example 4.14.

Example 4.14. Observe that the overall probability of hypotension is P(1) = 6/34 = 17.6% in
the database of Table 4.1. Using α = 5% and the original pattern frequencies, only pattern 〈L,L〉
is feasible. In other words, pattern 〈L,L〉 increases the probability of hypotension by at least 5%.
However, 5% may be too low to consider pattern 〈L,L〉 as an explanation for hypotension.

Given the adjusted pattern frequencies and a higher value α = 80%, patterns 〈H,L,L, L〉 and
〈L,L,L〉 are feasible with a high likelihood of 98%. Both patterns increase the probability of
hypotension by at least 80% and may be considered as interpretable explanations for hypotension,
e.g., hypotension followed after three consecutive low blood pressure events, regardless of an initial
high blood pressure. �

A key aspect for obtaining useful explanations, thus, consists of defining an appropriate α.
Imposing a higher α leads to a stronger and more concise set of patterns that can explain a desired
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outcome. Nonetheless, if α is too high, we may be left with little or no explaining patterns. This
trade-off between values of α and the percentage of explained outcomes can be evaluated using
regression hypothesis tests. Specifically, we determine if there exists a statistically significant linear
relationship between the occurrence of outcome 1 in S , denoted by Y , and the number of those
outcomes that can be explained using a pattern P satisfying the α constraint, denoted by X. Note
that we have N measurements for each X and Y , i.e., one for each sequence Si in S . Thus, our
null hypothesis is if β = 0 in the best-fit line Y = βX + β0.

The result of the regression hypothesis test is assessed using two measures. The first is the
statistical confidence that the null hypothesis can be rejected. The second measure is the coefficient
of determination, i.e., R2, which determines the goodness of fit in linear regression. In the context
of our analysis, R2 is the percentage of the desired outcomes that can be explained by patterns
satisfying Definition 4.13. Example 4.15 performs a regression hypothesis test for our case study.

Example 4.15. From Example 4.14, α = 80% leads to two explanatory patterns 〈H,L,L, L〉 and
〈L,L,L〉 (for patterns with adjusted frequency). Counting the number of hypothesis outcomes
(Si{j} = 1) in each row of the original S gives the vector Y = [1, 1, 1, 0, 0, 1, 1, 0, 1, 0]. Counting
the number of times a hypotension outcome is explained by either of the patterns gives the vector
X = [0, 0, 0, 0, 0, 1, 0, 0, 1, 0]. A regression hypothesis test results in the linear relationship of Y =

0.5X + 0.5 with a confidence of 24%, and R2 = 17%. The two patterns are thus not statistically
significant nor sufficient to explain hypotension outcomes in S .

In order to explain hypotension outcomes, we decrease α to 25% leading the addition of 〈L,L〉
and 〈N,L〉 to the set of explanatory patterns. Using these new additions we have vector X =

[1, 1, 0, 0, 0, 1, 1, 0, 1, 0]. The regression hypothesis test now gives the linear relationship of Y =

0.8X + 0.2 with a confidence of 99%, and R2 = 67%. The new four explanatory patterns are thus
statistically significant, and sufficient to explain 67% of hypotension outcomes in S . �

The coefficient of determination R2, also indicates the degree to which variations in X, i.e.,
occurrences of explanatory patterns, influence Y , i.e., the occurrence of outcome. Therefore, a
high value of R2 indicates that by following (or avoiding) the sequence of events/decisions in mined
patterns, we are statistically guaranteed to influence the occurrence of our outcome of interest 1 ∈ U.
This provides the basis on using patterns as a decision support tool for sequential decision making,
which we further exemplify in our case studies in §4.5 and §4.6.

4.4.3 Knowledge Trees for Decision Making

Our structural view of the decision making process is based on aggregating frequent patterns to
construct a knowledge tree. Similar to data trees, knowledge trees provide a compact tree model
of patterns and are more efficient in memory and analytical tasks performed over mined patterns.
The main contribution of knowledge trees is, however, a visual representation of the overall decision
making process for deriving insights.
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Figure 4.3: Knowledge tree model of patterns mined from the database of Table 4.1, and the
expected probability of hypotension within next two events.

A knowledge tree K is equivalent to a data tree D and is built using the same procedure
depicted in Algorithm 4.2, except that the input database is substituted by the output patterns of
the pattern mining algorithm. A path (r, n1, . . . , nk) in a knowledge tree thus models k frequent
patterns, i.e., P = 〈en1 , . . . , enj 〉, ∀j = 1, . . . , k, each with a frequency of fnj . Furthermore, we let
P(nj) := PH0(P) be the likelihood probability of the pattern P corresponding to j = k.

The knowledge tree brings to light how the sequence of events e1, . . . , ek affects the progression of
outcome probabilities P(n1), . . . ,P(nk). This information can aid decision making, e.g., by providing
guidelines on how the next sequence of decisions should be made. For example, paths with increasing
likelihood probabilities P(n1) ≤ · · · ≤ P(nk) serve as an example of the sequence of events that are
increasing the chance of occurrence of the outcome. Example 4.16 shows the knowledge tree model
of output patterns for our hypotension example, and how likelihood probabilities factor into a
structural view of blood pressure events and their progression towards hypotension.

Example 4.16. Figure 4.3(a) shows the knowledge tree model K of the frequent patterns in Table
4.2. As with data trees, the label within each circle represents event en, and the label above the
circle indicates frequency fn. However, the label below the circle in knowledge trees indicates P(n)

rather than outcome frequency f̂n. Path (r, n1, n2, n3, n4) ∈ K models patterns P1,P2,P3, with
likelihood probabilities 0.21, 0.29, 0.98 associated to nodes n2, n3, n4, respectively. We can observe
that the probability of hypotension increases as the number of low blood pressure events increase.
Therefore, in order to prevent hypotension, the patient must be treated to avoid consecutive low
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blood pressure events. �

Knowledge trees are primarily designed to provide a simple and interpretable view of the decision
making process. However, as the number and length of outgoing paths from a node n ∈ K increases,
the complexity of analyzing future events and outcome probabilities increases. Consequently, the
interpretability of the knowledge tree may decrease. A possible solution to mitigate the complexity
resulted from the size of a knowledge tree is to equip its nodes with statistics generated from future
paths. For example, we can equip each node with the expected probability that an outcome occurs
within a specific number of future events. This expected probability provides an estimate of future
outcome probabilities after node n, without the need to analyze all its outgoing paths.

Formally, the expected probability PExp(n, j) is defined as the percentage of the next j nodes
n′, following node n, that are associated with the desired outcome. That is,

PExp(n, j) =

∑
n′:∃(n,...,n′)∈K ,|(n,...,n′)|≤j

fn′ × P(n′)∑
n′:(n,n′)∈K

fn′

where |(n, . . . , n′)| is the length of the path from node n to node n′. The expected probability
PExp(n, j) thus averages the likelihood probabilities of the j future events. Moreover, PExp(n, j)

compliments the immediate probabilities P(n) by providing a possible way to anticipate outcome
1 ∈ U earlier in the decision making process and hedge against myopic decision making. Example
4.17 demonstrates how expected probabilities are calculated and used for our hypotension case
example.

Example 4.17. Consider the knowledge tree of Figure 4.3(a). A high blood pressure H followed
by a drop to low blood pressure L leads to hypotension in all patients within the next 1-3 periods,
and has an expected likelihood of PExp(n2, 2) = 3×0.29+2×0.98

3 = 94.3%. Similarly, two consecutive
low blood pressure events L lead to hypotension in three patients out of a possible six, giving an
expected hypotension likelihood of PExp(n10, 2) = 47% within the next 2 periods. This information
can be integrated into the knowledge tree as shown in Figure 4.3(b). �

4.5 Application: User Skips in Music Streaming Platforms

As our first application, we study online music streaming platforms where musical tracks are se-
quentially recommended to a user. The sequential decision making problem involves determining
the next track to recommend based on the user’s previously streamed songs. As with any recom-
mender systems, the objective is to maximize user satisfaction through recommendations. Higher
user satisfaction leads to higher opportunities to increase profits, e.g., with more user tolerance for
advertisement. On the other hand, if a track recommendation does not satisfy the user’s preference,
he or she may skip the song or leave the platform.
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The literature is rich with research on music recommender systems, which generally profile users
by musical taste and recommend tracks similar to that profile (Van den Oord et al., 2013; Chen
and Chen, 2001; Logan, 2004; Hijikata et al., 2006). Interestingly, despite the high accuracy of
recommender systems and their capability to consider the user’s contextual factors (e.g., Cheng and
Shen (2016); Hariri et al. (2012); Wang et al. (2012)), the skip rate of users remains high in practice.
A study published by Spotify,1 one of the largest and most successful music streaming platforms
with 190 million active users, shows that an astonishing 50% of recommended tracks are skipped by
their users. Moreover, 25% of tracks are skipped within the first five seconds of streaming, which
suggest recommendations may not be optimal.

Recently, Spotify released a “sequential skip prediction challenge"2 where contestants were asked
to predict whether users will skip their recommended track given their immediately preceding in-
teractions with the system. The winning criteria was to maximize skip prediction accuracy, which
entailed roughly 700 submissions of complex prediction models. In particular, the winning model
was a recurrent neural network with 81.2% overall accuracy on test instances. The recurrent neural
network model also achieved the highest weighted average accuracy of 65.1%, where skip predictions
for tracks later in the user session were given higher weight.

Although the recurrent neural network model achieves high prediction accuracy, it faces two main
challenges when used to reduce user skips rates. First, recurrent neural networks are highly non-
linear supervised learners and do not provide an interpretable explanation for their prediction, i.e.,
why a skip outcome is predicted. Thus, it is difficult to use their prediction to determine how user
skips may be prevented, e.g., by changing the recommendation sequence. Secondly, the prediction of
recurrent neural networks, by design, only apply to the next immediate recommendation, and hence
myopic for decision making beyond the next period. This is confirmed by the drop of accuracy from
81.2% to 65.1% in the winning model for Spotify when used to predict longer future sequences.

To better understand user skip behavior, we focus on generating interpretable explanations on
why a skip outcome occurred. In particular, we find frequent patterns of track recommendation
and analyze their association to user skip likelihoods. Moreover, we design a knowledge tree of
frequent recommendations as a decision support tool for the track recommendation task. We begin
by analyzing the sequential database provided by Spotify, its data tree model, and tailored pattern
mining algorithm.

4.5.1 Data Tree Model of the Spotify Database and Pattern Mining

For our experiments, we use the database provided by Spotify for the sequential skip prediction
challenge.3 The database consists of approximately 130 million user sessions of 10-20 track rec-
ommendations, resulting in over 2 billion listening events. Each event is associated with user

1https://musicmachinery.com/2014/05/02/the-skip/
2https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge
3https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge/dataset_files
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Table 4.3: Audio features of tracks, and discretization thresholds.

Feature Data range Discretization threshold Feature Data range Discretization threshold threshold

Acousticness 0-100 0-5, 5-20, 20-50, 50-100. Beat strength 0-100 0-30, 30-45, 45-55, 55-70, 70-100.
Bounciness 0-100 0-30, 30-45, 45-55, 55-70, 70-100. Danceability 0-100 0-30, 30-45, 45-55, 55-70, 70-100.
Dynamic range 0-53 0-5, 5-9, 9-12, 12-15, 15-53. Energy 0-100 0-30, 30-45, 45-55, 55-70, 70-100.
Flatness 0-117 0-95, 95-99, 99-102, 102-104, 104-108, 108-117. Instrumentalness 0-100 0, 1-100.
Key Pitch Class* C, C] (D[), D, D] (E[), E, F, F] (G[), G, G] (A[), Liveness 0-100 0-15, 15-100.

A, A] (B[), B. Loudness 0-66 0-40, 40-55, 55-66.
Mechanism 0-100 0-30, 30-45, 45-55, 55-70, 70-100. Organism 0-100 0-30, 30-45, 45-55, 55-70, 70-100.
Popularity 90-100 90,91,92,93,94,95,96,97,98,99,100. Speechiness 0-100 0-30, 30-45, 45-55, 55-70, 70-100.
Time signature 1-6 1,2,3,4,5,6. Tempo 0-250 0-75, 75-90, 90-105, 105-120, 120-135,
Release Year 1950-2019 1950-1969, 1970-1979, 1980-1989, 1990-1999, 135-150, 150-165, 165-250.

2000-2009, 2010-2015, 2015-2017, 2018, 2019. Valence 0-100 0-30, 30-45, 45-55, 55-70, 70-100.

*The interested reader is referred to Apel (2003) for pitch class definition. Only major key notes are shown, minor notes are defined analogously with
lower case letters.

interactions, for example, whether the recommendation was skipped, or paused. In addition to user
interactions, the dataset includes a set of track meta-data which are estimates of twenty one audio
features for each track in the database, given in Table 4.3. The interested reader is referred to the
Spotify website for the definition of these audio features.4 We provide in Figure 4.4 the summary
statistics of user interactions and distribution of example track audio features.

We consider finding frequent patterns of track recommendations based on track audio features.
That is, we represent the recommended tracks by their audio feature in Table 4.3. For example,
using the tempo audio feature, we represent recommended tracks by the value of their tempo as
our sequential database. Next, for each derived database of audio feature values, we discretize the
continuous values of audio features into a set of events E. In particular, we represent similar audio
feature values by the same event. For example, from a human perspective, a track with a tempo
value of 45 is likely not distinguishable from track with a tempo value of 48. Such tracks should
thus be considered as the same event.

To discretize an audio feature, we use any domain knowledge available from the Spotify website.5

If no information is given, we use an equal-width discretization (Dougherty et al., 1995) with larger
discretization intervals for the tails of the event distribution. The larger intervals are chosen to
avoid events with little or no frequency, similar to the minimum frequency discretization approach
(e.g., refer to Kotsiantis and Kanellopoulos (2006)). Figure 4.4 shows example thresholds used to
discretize the continuous tempo and energy audio features. All discretization thresholds used in our
experiments are given in Table 4.3.

An event e in our marketing application is thus the discretized value of audio features for a
recommended track, and the associated outcome u is whether the track was skipped (u = 1) or not
(u = 0). A regular tabular encoding of such a database is too large to fit in our system memory of
24 GB (ignoring the memory required for the pattern mining algorithm). On the other hand, a data

4https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
5https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
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Figure 4.4: Example distribution of user interactions, audio feature distribution, and discretization
thresholds.

tree model of the database fits the entire database in memory using as little as 4GB of memory. We
note that, in general, memory requirements vary based on the number of discretized events |E| for
different audio features.

For each constructed data tree, we perform pattern mining under a set of constraints as follows.
First, we restrict the pattern mining algorithm to find patterns that consist of contiguous events in
the data tree, with |P| ≥ 2. Furthermore, we impose a constraint on patterns P = 〈e1, . . . , e|P|〉
to ensure events e1, . . . , e|P|−1 are all non-skipped. These constraints are imposed to capture the
association of patterns P to user skip outcomes in the last events e|P|. The output of the mining
algorithm is a set of patterns per audio feature, which we analyze in the following sections.

4.5.2 Sequential Association rules for User Skips

Given a data tree D (e.g., one constructed from a discretized audio feature representation of rec-
ommendations), we use our pattern mining algorithm to find all frequent patterns P : f(P ) ≥ θ.
We set θ = 100 as it is the minimum sample size required for a p-value hypothesis test with 95%
confidence. For a frequent pattern P, the skip likelihood probability of P is calculated using our
p-value hypothesis tests from §4.4.1. Results show that PH0(P) is on average 2.7% lower than the
ratio f̂(P)

f(P) . Patterns that satisfy a minimum likelihood constraint PH0(P) ≥ P(1) +α are then used
as interpretable explanations for user skips, as shown in Example 4.18.

Example 4.18. Table 4.4 gives a sample of patterns with high likelihood of user skips. Note
that the average skip probability is P(1) = 55% in the database, and all patterns in Table 4.4
satisfy PH0(P) ≥ P(1) + 35%. In other words, the occurrence of these patterns increases user skip
probability by at least 35%, and each individual probability is at least 90%. Patterns of Table 4.4
may be interpreted to provide insights into why users skip their recommended tracks. For example,
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Table 4.4: Selection of significant patterns from audio features with high skip rates. The last event
(or set of events) in patterns are frequently skipped by users.

Audio feature First |P| − 1 events of Pattern P Last event e|P| (skipped) f(P) f̂(P)
f(P) PH0(P)

Speechiness 3→ 2→ 3→ 1→ 1→ 2→ 1 → 1 22,851 .98 .98
Dynamic range 5→ 5→ 5→ 3→ 4→ 3→ 4 → 3 18,195 .98 .98
Accousticness 2→ 4→ 3→ 4→ 1→ 2→ 2→ 3 → 3 12,462 .98 .98
Energy 2→ 4→ 2→ 4→ 5→ 5→ 3 → 5 10,129 .96 .96
Mechanism 3→ 3→ 3→ 3→ 3→ 3→ 3 → 5 20,518 .96 .96
Key C] (D[) → a] (b[) → B → {F](G[),G} 43,211 .95 .95
Time signature 6→ 6→ 6→ 6 → 5 21,705 .94 .94
Bounciness 3→ 3→ 3→ 3→ 3→ 3→ 3 → 5 16,555 .94 .94
Danceability 2→ 2→ 2→ 2→ 2→ 2 → 5 16,784 .94 .94
Tempo 8→ 8→ 8→ 8→ 8→ 8→ 8 → {1, . . . , 7} 33,089 .91 .91

if the user has listened to a series of high tempo tracks, recommending a track with even slightly
lower tempo leads to a skip with 91% likelihood. Or, if the sequence of track energy follows a sinus
patterns, it is 96% likely that she or he will skip the next recommendation. Overall, our observation
is that the recommendation process should remain relatively stable with respect to audio features,
and sudden changes generally lead to user skips. We emphasize that all patterns are interpretable,
in that they provide an explanation for the user skip. Whether that explanation is valid and reliable
beyond likelihood statistics depends on domain knowledge and judgment of the practitioner. �

We next analyze the trade-off between the imposed minimum likelihood threshold P(1) + α

and the percentage of user skips in the database that can be explained by feasible patterns. As
previously discussed, this is done using regression hypothesis tests between vector Y and X. Here,
Y denotes the total number of skips per user session, and X denotes the number of those skips
that can be explained by a pattern. For our regression hypothesis test, we consider six different
percentages of α = {18, 20, 25, 30, 35, 40} for the minimum likelihood threshold. For each value of
α, we give the average number of feasible patterns over all audio features in Figure 4.5(a), and
the average likelihood probability of the those patterns in Figure 4.5(b). The regression hypothesis
results including the regression equation and goodness of fit R2 are given in Figure 4.5(c).

All hypothesis tests give a near 100% confidence measure for a significant linear relationship
between X and Y , which is expected given the high number of user sessions. Furthermore, the
coefficient of determination R2 shows that with a skip threshold of α = 18%, near 100% of variability
in Y can be explained by variability in X. This means we are able to explain almost all one billion
user skips in the database by approximately 6,400 patterns (number of patterns is averaged over
all audio features), with an average 83% likelihood probability. Increasing the minimum likelihood
threshold to PH0(P) ≥ P(1)+20% = 75% results in approximately 5,900 average number of patterns
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Figure 4.5: Music knowledge tree statistics and results of regression hypothesis tests.

with an average of 84% likelihood probability, that are able to explain 84% of the variability in Y .
Further increasing α gives 3,000 niche feasible patterns, with high 94% average likelihood, that are
however not sufficient to explain the majority of user skips in the database.

4.5.3 Knowledge Tree for the Track Recommendation Process

To develop a structural view of the track recommendation process, we aggregate mined patterns into
a knowledge tree for each audio feature. Given a knowledge tree, we can now view the transition of
skip likelihood probabilities PH0(P) based on the audio feature of recommendations. This can be
used to support decision making, e.g., by displaying sequence of recommendation as guidelines to
follow or avoid based on their associated skip likelihood. Example 4.19 gives an example of using
knowledge trees as decision support tools in the recommendation process.

Example 4.19. Figure 4.6(a) displays a branch of the knowledge tree with three layers for the
loudness audio feature. Here, we view the decision making task when the user has listened to
four consecutive tracks with high loudness of 3. For illustration purposes, we color a number of
recommendation paths with low skip likelihood in green, and with high skip likelihood in red. The
path with the least skip likelihood is associated to recommendations (3,3,3) with skip likelihoods
(34%,30%,27%), suggesting the recommender system should continue recommending tracks with
high loudness. If a track with loudness of 2 is recommended, the next sequence of recommendations
with minimum skip likelihood are (3,2) with (37%,33%) skip likelihood. Lastly, when lowering the
loudness of the next immediate recommendation to 1, the knowledge tree still suggests to resume
recommending tracks with high loudness of (3,3), giving a 28% likelihood of skip for both. On
the other hand, in almost all cases, recommending a track with a low loudness of 1 has high skip
likelihood, and should be avoided. �

As shown in Figure 4.6(a), the complexity of the knowledge tree grows with every layer, possibly
displaying too much information to the decision maker and resulting in lower interpretability. For-
tunately, paths of the knowledge tree can be used to generate more concise information for decision
making, such as the expected skip probability of future recommendations. Example 4.20 gives an
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Figure 4.6: A branch of the recommendation knowledge tree for the loudness audio feature with
three layers, and a concise representation of skip likelihoods using the expected skip probabilities.
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example of such probabilities for the knowledge tree of Figure 4.6(a), and how it complements the
information provided by the knowledge tree.

Example 4.20. Figure 4.6(b) gives the expected skip probability of recommendations for the
knowledge tree of Figure 4.6(a). The expected skip probability is given for the next 3 or 10 recom-
mendation. Results show that although the immediate skip likelihood is minimum for track recom-
mendations with high loudness, the user eventually grows frustrated with loud recommendations. In
particular, following a recommendation with loudness of 3, 60% of users skip any recommendation
within the next three periods, with this growing to 92% within the next ten recommendations. In
fact, in order to lower the expected skip likelihood for the next sequence of recommendations, the
recommender system should recommend a track with lower loudness. Although such a recommen-
dation has a higher likelihood of being skipped immediately, it avoids the long-term dissatisfaction
of the user, and allows possible future recommendations with lower skip likelihoods. �

4.6 Application: Explaining Price Change Events in the Stock Mar-
ket

For our next application, we consider sequential investment decision making in the stock market.
Many factors influence a stock price and investment decisions, e.g., interest rates, dividends, econ-
omy, and political climate, to name a few. A compliment to using such factors in investments
decisions are data-driven approaches, i.e., technical analysis of the market. Technical analysis is
debated in the literature, with some believing that the market is perfect and thus impossible to pre-
dict future changes using historical data, and others believing that there is strong evidence for the
contrary in practice. In this section, we take an unbiased stance, and investigate the effectiveness
of technical analysis using historical patterns of stock price change events.

The most accurate price predictors for the stock market use deep neural networks (Kimoto et al.,
1990; Pang et al., 2018; Selvin et al., 2017; Rather et al., 2015). However, the prediction process of
such methods cannot be interpreted, and relying solely on a prediction value may be detrimental in
the high risk environment of the market. In addition, the accuracy of such models decreases as the
number of predicted future prices increase, lowering their effectiveness for long term investments.

On the other hand, a body of literature considers using interpretable and sequential price pre-
dictors and claims the existence of stock chart patterns (Bulkowski, 2011). Stock chart patterns are
sequences of price changes that are used for stock price prediction, and are prevalent in technical
analysis of the market. Although a number of papers study the detection of specific patterns in
stock data and measure their confidence with positive results (e.g., refer to Leigh et al. (2007); Liu
and Kwong (2007); Wu et al. (2014)), to the best of our knowledge, there is no explanation on how
stock chart patterns were originally detected or how reliable they are in their prediction.

We analyze whether stock chart patterns exist, and if so, what is the likelihood that they
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Table 4.5: Stock categories and number of their companies in the NASDAQ database.

Category Number of stocks Category Number of stocks

Basic Industry 312 Capital goods 389
Consumer durables 134 Consumer non-durables 222
Consumer services 824 Energy 290
Finance 1,074 Healthcare 907
Technology 636 Transportation 117
Utilities 267 Total 5,172

correctly predict future prices. Unlike the literature, we do not assume the existence of any such
patterns with a search and detect methodology, but rather rely on pattern mining and statistical
significance to investigate their relevance to investment decision making. We find frequent patterns
of price change events and analyze the likelihood they correctly predict future prices. Moreover,
we design a knowledge tree of frequent patterns for a decision support tool in technical analysis.
We begin by analyzing the sequential database, its data tree model, and tailored pattern mining
algorithm.

4.6.1 Data Tree Model of Stock Price Changes and Pattern Mining Algorithm

For our database, we acquired the weekly closing price of a number of stocks, from January 1st

2000 to January 1st 2019. Stocks were derived from all available companies in the official NASDAQ
website,6 from 11 categories as shown in Table 4.5. The closing price of these companies were
downloaded from Yahoo finance,7 using an online bulk stock price download tool.8

In general, time series data are large, high dimensional, and noisy. Consequently, almost all
pattern detection algorithms use a data transformation step to lower noise and memory require-
ments. Data transformation involves abstracting the database into a lower dimension by mitigating
changes which are perceived to be noise. Many transformation methods are proposed in the liter-
ature, with the interested reader referred to Keogh et al. (2004) for a thorough review. Regardless
of the method used, any type of transformation looses some aspects of the data due to abstraction,
which may consequently remove valid patterns in data.

A common method of transformation for pattern mining in the stock market is linear interpo-
lation between contiguous price changes (Linsay, 1991). In this approach, the difference between
contiguous prices are calculated and discretized into symbolic events. A disadvantage of linear inter-
polation is its inability to distinguish noise in the data. For example, Table 4.6 shows two sequence

6https://www.nasdaq.com/screening/industries.aspx
7https://finance.yahoo.com
8http://finance.jasonstrimpel.com/bulk-stock-download/
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Table 4.6: Sequence transformation by multilevel linear interpolation with maximum gap of one.

Original Sequence Linear interpolation Events used Multilevel linear interpolation Events used

< 10, 10, 12, 13, 12 > < 0,+2,+1,−1 > e1, e2, e3, e4, e5 < 0,+2,+1,−1 > e1, e2, e3, e4, e5

< 0,+2, 0 > e1, e2, e3, e5

< 0,+3,−1 > e1, e2, e4, e5

< +2,+1,−1 > e1, e3, e4, e5

< +2, 0 > e1, e3, e5

< 10, 10, 12, 12 > < 0,+2, 0 > e1, e2, e3, e4 < 0,+2, 0 > e1, e2, e3, e4

< 0,+2 > e1, e2, e3 or e1, e2, e4

< +2, 0 > e1, e3, e4

of stock prices, which are identical with the exception of an insertion of price 13 in the fourth
position of the first sequence. This single insertion results in two different transformations by linear
interpolation, and prevents the pattern mining algorithm from detecting their similar structure.

To detect common structure between noisy sequences of time series data and increase our chance
of finding novel patterns, we propose a multilevel linear interpolation method. Multilevel linear
interpolation involves allowing a gap between the interpolation of prices, and generates multiple
transformations of a time series. For example, a maximum gap of one for the interpolation of
sequences in the first column of Table 4.6, gives the transformations in the fourth column. Each
transformation by multilevel interpolation is a possible abstraction by linear interpolation.

Using all such transformations, the pattern mining algorithm can detect similarities between
sequences if any of their multilevel linear interpolation representations are identical. For example,
two of the transformations 〈0,+2, 0〉, 〈+2, 0〉 of the sequences in Table 4.6 are identical and used to
detect their common pattern. Using multilevel linear interpolation, we can thus transfer the noise
detection task to the pattern mining algorithm, where, prices that are not part of any frequent
pattern are considered noise. For example, price 13 in the first sequence of Table 4.6 is considered
noise, as it is not part of any common pattern with the second sequence. Although a multilevel
linear interpolation considerably increases the already large database size of time series data, the
larger memory requirement is mitigated by the compression provided by data trees.

As in §4.5, we next discretize price changes events using both domain knowledge and equal width
distribution with larger tails. The distribution of price changes and the discretization thresholds are
given in Figure 4.7. An event e ∈ E is thus a discretized price change in our finance application. The
pattern mining task is to find frequent patterns of price change events that frequently lead to other
price change events e ∈ E. The outcome space in our finance application is thus the event space
itself, i.e., U = E. Accordingly, sequential association rules are of the form 〈e1, . . . , e|P|−1〉 → e|P|,
and fn = f̂n, ∀n ∈ N . Lastly, the ratio that a pattern 〈e1, . . . , e|P|〉 leads to its outcome e|P| is
defined by f(P)/

∑
e′∈E

f
(
〈e1, . . . , e|P|−1, e

′〉
)
.
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Figure 4.7: Distribution of stock price changes, and their discretization. Price changes are
truncated to their integer part for clarity.

4.6.2 Sequential Association Rules for Stock Price Changes

Given a data tree D of price change events, we use our pattern mining algorithm to find all weekly
and monthly frequent patterns of price change event such that P : f(P) ≥ θ. As before, we set
θ = 100 as it is the minimum sample size required for a p-value hypothesis test with 95% confidence.
In the multilevel linear interpolation procedure, we impose a maximum gap of 4 weeks. In other
words, the maximum linear interpolation is between monthly stock prices. We restrict any pattern
to a minimum span of 1 month and a maximum span of 12 months.

For a frequent pattern P, the event likelihood probability of P is calculated using p-value
hypothesis tests from §4.4.1. Results show that PH0(P) is on average 3% lower than ratios
f(P)/

∑
e′∈E

f
(
〈e1, . . . , e|P|−1, e

′〉
)
. Patterns that satisfy a minimum likelihood constraint PH0(P) ≥

P(e) + α, are then used as interpretable explanations for event e ∈ E, as shown in Example 4.21.

Example 4.21. Table 4.7 gives a sample of example patterns with high likelihood of leading to
events e ∈ E. Patterns are also depicted in Figure 4.8. The average probability of occurrence P(e)

for all events is given in Figures 4.7(c) and 4.7(d), and all patterns in Table 4.7 satisfy at minimum
PH0(P) = P(e) + 10%. No patterns are given for events (−5,−3] and [3, 5), as no frequent patterns
exist (by our definition of patterns). Patterns of table 4.7 may be used as interpretable explanations
on why an event e ∈ E occurred, namely, due the preceding sequence of price change events in each
pattern. As shown in Table 4.7, the likelihood of these explanations are relatively low, except for
event (−1, 1). The overall trend of patterns shows that almost all price change events continue
an increasing, decreasing, or a sinus trend. This trend is consistent for both monthly and weekly
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Table 4.7: Selection of significant patterns for weekly and monthly stock price changes.

Type First |P| − 1 events of pattern P Last event e|P| f(P) f(P)∑
e′∈E

f(〈e1,...,e|P|−1,e
′〉)

PH0(P → e|P|)

Weekly

[10,∞)→ (−∞,−10]→ (−∞,−10]→ (−∞,−10]→ (−∞,−10]→ (−∞,−10]→ [10,∞) → (−∞,−10] 2,699 0.54 0.52
(−10− 5]→ [5, 10)→ (−10− 5]→ [5, 10) → (−10,−5] 577 0.15 0.13
[1, 3)→ [3, 5)→ [1, 3)→ (−1, 1)→ [1, 3)→ [1, 3) → (−3,−1] 888 0.22 0.21
(−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1) → (−1, 1) 2,411,382 0.91 0.9
[1, 3)→ (−3,−1]→ (−1, 1)→ [1, 3)→ [1, 3)→ (−1, 1)→ (−1, 1)→ (−3,−1] → [1, 3) 518 0.25 0.23
[5, 10)→ [1, 3)→ (−∞,−10]→ (−10,−5] → [5, 10) 326 0.13 0.12
[10,∞)→ [10,∞)→ [10,∞)→ (−∞,−10]→ [10,∞)→ (−∞,−10]→ [10,∞)→ 8 → [10,∞) 642 0.46 0.43

Monthly

(−∞,−10]→ [10,∞)→ (−∞,−10]→ [10,∞)→ (−∞,−10]→ (−∞,−10]→ [10,∞) → (−∞,−10] 696 0.55 0.52
[10,∞)→ (−∞,−10]→ [5, 10) → (−10,−5] 308 0.15 0.14
[1, 3)→ (−1, 1)→ (−1, 1)→ [1, 3)→ (−1, 1)→ [3, 5)→ [1, 3) → (−3,−1] 245 0.24 0.21
(−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1)→ (−1, 1) → (−1, 1) 153,495 0.84 0.84
[1, 3)→ [1, 3)→ [1, 3)→ (−3,−1]→ (−1, 1)→ [1, 3)→ (−1, 1) → [1, 3) 378 0.26 0.24
[5, 10)→ [5, 10)→ [5, 10) → [5, 10) 447 0.14 0.13
[10,∞)→ [10,∞)→ [10,∞)→ (−∞,−10]→ [10,∞)→ [10,∞) → [10,∞) 450 0.41 0.38

b) Monthly stock price change patterns.
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Figure 4.8: Graphical representation of significant patterns given in Table 4.7.
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Figure 4.9: Stock knowledge tree statistics and results of regression hypothesis tests.

patterns. �

In the next step, we analyze the trade-off between imposed minimum likelihood thresholds
PH0(P) ≥ P(e) + α and the percentage of stock price change events in the database that can be
explained by feasible patterns using regression hypothesis tests. Here, Y denotes the total number
of events in a sequence that may be explained using a pattern P, i.e., Y is a vector with |Si| − 1 for
all Si ∈ S . This follows from constraint |P| ≥ 2, where no single event e1 ∈ S can be explained by
a pattern. As before, vector X contains the number of events that can be explained using any of
our mined patterns satisfying the minimum likelihood threshold. We consider nine different values
for α, ranging from α = 10% to α = 50% and increasing in increments of 5%. Figure 4.9(a) gives
the number of feasible patterns, with the average likelihood of such patterns given in Figure 4.9(b).
The regression hypothesis test results including the regression equation and goodness of fit R2 are
given in Figures 4.9(c) and 4.9.(d).

All hypothesis tests give a near 100% confidence rate for a significant linear relationship between
X and Y , which is expected given the high number of considered stocks. Figures 4.9(a) to 4.9(c),
show that close to 100% of the four million weekly price changes can be explained using approxi-
mately 30,000 patterns. However, the average occurrence probability of such patterns is considerably
low at 27%. Increasing α to 35% gradually decreases the percentage of explained events to 50%
using approximately 5,000 patterns with an average 40% likelihood. Further increasing α drops the
percentage of explained events close to zero, as only hundreds of patterns satisfy the higher thresh-
old. This shows that explaining all weekly stock prices using patterns remains difficult, although a
number of patterns have high likelihood probabilities. Figures 4.9(a), 4.9(b), 4.9(d) show that long
term monthly patterns are even less explained by mined patterns. For example, with α = 10%,
approximately 7,000 patterns explain at most 80% of 900,000 monthly price changes, with a low
average likelihood of 53%.

The results of our regression hypothesis tests show that only a few niche stock chart patterns
have a high likelihood probability, and the average likelihood of anticipating price change events is
generally low and at most 55%. Moreover, stock chart patterns are overall not sufficient to explain
all price change events in the database. In other words, using a distinct number of patterns with
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Figure 4.10: A branch of the stock price change knowledge tree with three layers, and a concise
representation of price increase using the expected event probabilities.

high likelihood may be accurate for rare events, but not for all events.

4.6.3 Knowledge Tree for Stock Price Change Events

We aggregate patterns of price changes to construct a knowledge tree and develop a structural
view of the stock price movements. Given a knowledge tree, we can now view the transition of
price change likelihoods PH0(P). This can be used to support investment decision making, e.g., by
displaying the most probable future sequence of price changes. Example 4.22 shows how a knowledge
tree can be used to provide insights for investment decision making.

Example 4.22. Figure 4.10(a) displays a partial branch of the knowledge tree for monthly price
movements. Here, we analyze whether the decision maker should make an investment given a
sequence of observed events 〈[1, 3), [10,∞)〉. For succinctness, we only display the four most probable
price changes in the first two future periods after 〈[1, 3), [10,∞)〉, and only the price change with
maximum likelihood in the last layer. Following an observation of 〈[1, 3), [10,∞)〉, all future price
change events are equally likely with a 12% likelihood. If a sharp decrease of (−∞,−10] occurs, the
future outgoing paths from (−∞,−10] show that the price decrease is likely to continue, regardless
of any intermediate price increase. If a price decrease of (−10,−5] occurs, future paths show that
price change most likely stabilizes to (−1, 1) within the next two periods. The highest price increase
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is most likely for a future sequence of [10,∞), [10,∞), [10,∞), while an initial increase of [10,∞) is
most likely followed by a sharp decrease of (−∞,−10]. �

The stock price knowledge tree can be used to provide more concise and interpretable information
to the decision maker, e.g., by generating expected probabilities PExp(P). Here, we analyze the
expected probability that a stock price increases above its price at time of decision making. Note
that this is different to observing a future price increase event e, as, e.g., the overall price change
may still be negative despite a price increase event. Example 4.23 shows how expected likelihood
probabilities are used to complement the insights of the knowledge tree in Figure 4.10(a).

Example 4.23. Figure 4.10(b) gives the expected likelihood probability of price increase within
the next five periods, after the events following 〈[1, 3), [10,∞)〉 in Figure 4.10(a). The expected
probabilities show that unless a decrease between (−∞,−3] is observed, it is likely that the overall
trend of price change is positive in the next five periods. In particular, the expected probabilities
show that an investment may eventually payoff in the next five months, despite early intermediate
price decrease events. �

4.7 Conclusion

In this paper, we developed a data-driven framework for sequential decision making with an em-
phasize on interpretability and sequential structure. We designed a novel data tree model of the
database for pattern mining algorithms, that is able to fit in memory orders of magnitude larger
datasets compared to traditional tabular encodings. We tailored the prefix-projection algorithm
to mine patterns from data trees, and showed its efficiency compared to traditional algorithms.
Using the capability of our pattern mining algorithm, we mined novel sequential patterns from
data that are otherwise not possible using a tabular encoding of the database. We showed how
sequential patterns can be used to develop interpretable explanations for events and outcomes in
the database. We generated statistically guaranteed likelihood probabilities for such explanations,
and analyzed the trade-off between minimum likelihood constraints and overall explainability of
patterns. Lastly, we showed how patterns can be aggregated into a knowledge tree to provide an
interpretable data-driven decision support tool for sequential decision making.

Using our methodology, we studied two applications in marketing and finance. In marketing, we
considered explaining user skips in online music streaming platforms. We generated interpretable
explanations on why users may skip their recommended tracks, and showed how the knowledge tree
can be used to provide guidelines to avoid recommendations with high-skip likelihood. By using an
average 6,400 sequential patterns, we can explain all one billion user skips in the database with a
high average likelihood of 83%. In our finance application, we assessed whether sequential patterns
of price change can be used to aid technical analysis for investment decision making in the stock
market. Our results show that although we can find a number of explanations with high likelihood of
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leading to specific price changes, most price change events cannot be reliably explained by patterns.
In particular, at best 80% of nine hundred thousand monthly price changes can be explained using
7,000 patterns with a lower average likelihood of 53%.
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Chapter 5

Provider Network Selection and
Transition under Competition

5.1 Introduction

The United States healthcare market is the largest in the world with $3.6 trillion expenditure in
2018. The United States healthcare costs continue to grow with an estimated annual rate of 5.4% for
2019-28, to reach $6.2 trillion by 2028.1 Adhering to this changing environment, health insurance
firms in the united states annually revisits the design of their healthcare plans. This includes the
evaluation of contracts made with healthcare providers such as hospitals, physicians, retail clinics,
and pharmacies; and the premiums charged to patients for insurance plans.

An insurance plan is generally characterized by its set of in-network providers and the restrictions
on receiving care from outside providers. For example, a Health Maintenance Organization (HMO)
plan restricts patients to only visit in-network providers, with the exception of an emergency. Pa-
tients enrolled in an HMO plan who visit an outside provider must pay the entire healthcare cost out
of pocket. Similarly, a Point of Service (POS) plan requires patients to visit in-network providers,
but also provides the option to visit an outside provider if referred to by the patient’s Primary
Care Physician (PCP). The least restrictive plans are perhaps Preferred Provider Organizations
(PPO), where patients benefit from lower rates if they receive care from in-network providers, and
are charged higher out of pocket costs for visiting outside providers.

Insurance firms are thus tasked with strategically composing different insurance plans for tar-
geted patients, including their set of in-network providers and their type of insurance. Insurance
plans are then offered to patients, who evaluate and choose them by an unobserved internal mecha-
nism. This involves patients negotiating the insurance premium paid to the insurer for their desired
plan, generally through their employer. After enrolling in a plan, patients who require medical care
may visit one of their in-network providers at zero or little cost.

1https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/
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Under competition, insurance firms compete over profitable patients, while trying to guide costly
patients to their rival. This strategy is known as cream skimming (Barros, 2003) and controlled
by the design and plan premium for different individuals. For example, by excluding the desirable
providers for costly patients, or increasing their premium, insurers hope to evade such patients. On
the other hand, designing poor provider networks leads to the loss of profitable patients to rival
firms and decrease profits.

Furthermore, healthcare providers are generally affiliated with different insurance firms, and
accordingly, charge a higher contract fee to rival firms. This brings a different layer of decision
making into the network provider selection problem, where the insurer seeks to mainly contract its
affiliated providers while avoiding those of its competitor. The challenge is that a provider affiliated
with a rival firm may be popular among patients, and excluding it from the provider network may
prove to be detrimental.

In this chapter, we focus on the above challenges faced by health insurance companies in design-
ing optimal HMO plans. Unlike the literature which evaluates and selects providers on an individual
basis, we take an optimization approach and optimize the provider network as a whole. This allows
us to capture the relationships between providers, together with the joint preference of patients in
provider selection. Moreover, instead of generating one insurance plan for the entire set of patients,
our optimization framework designs and generates several insurance plans. Each plan targets a
specific set of customers with the objective of maximizing the insurer’s profit while maintaining
patient satisfaction.

An instrumental factor in provider network selection is predicting patient choice. Our emphasis is
on developing an accurate yet interpretable methodology for patient behavior, that can be exploited
in the network provider selection model. Interpretability is important in our approach as prediction
is performed as an intermediate step to better design the provider network. It is thus required
that the results of prediction can be analyzed to accommodate the provider selection model. On
the other hand, the prediction methodology should have high accuracy, as inaccurate predictions
may result in a sub-optimal provider network where patients differ from predictions and enroll in
unintended plans. Indeed, we analyze and show the effects of such inaccurate predictions in our
numerical results.

Our optimization model for provider network selection is of large size, and hard to solve in
practice. We thus develop a simultaneous multi-column-and-row generation approach to effectively
solve our model. More importantly, a simultaneous multi-column-and-row scheme allows us to
model the transition of the provider network and insurance plans from the current settings of the
insurer. We provide interpretable insights into this transition, and discuss how they can be user for
data-driven decision making.

Finally, we test our solution procedure and compare the results in two aspects. First, we compare
the possible gains in an optimization approach towards provider network selection compared to an
individual and heuristic evaluation of providers. Second, we analyze the consequences of inaccurate
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prediction in patient behavior and discuss its the disadvantages.
The rest of this chapter is organized as follows. In §5.2 we review the relevant literature on

provider network selection and patient choice prediction. In 5.3 we layout our approach towards
provider network selection, and develop its multi-column-and-row generation solution algorithm in
§5.4. Numerical results are given in §5.5 and the chapter is concluded in §5.6.

5.2 Literature Review

The literature prominently addresses the provider selection problem using discrete choice models
(Robinson and Gardner, 1995; Shepard, 2016; Raval et al., 2016). Discrete choice models assess
providers based on factors such as service type, cost, quality, overall patient demand, or bargaining
and contract price. Providers are evaluated individually, and either pass or fail the evaluation. The
provider network of a discrete choice model approach is thus the union of all providers that pass
the evaluation.

Provider network selection may also be implicitly considered in insurance plan design. For
example, Ho and Lee (2017) consider insurance design as a game between the insurer and patients,
where providers are strategically chosen to attract or exclude certain patient segments (McGuire
et al., 2014). Bargaining games are studied between the insurer and provider by exploiting the
possibility of substituting providers and the strategies it entails in the bargain (Ho and Lee, 2019).
Provider network selection is also studied using demand and price equilibrium, and the shift of
demand/price given a change in the provider network (Geruso and Layton, 2017; Ho and Lee, 2019).
In this perspective, a provider is analyzed by the change in demand and price of the insurance plan
when it is selected to be in-network.

An important aspect of provider network selection is predicting patient behavior given a change
in the network. The literature analyzes patients based on factors such as their distance to different
providers, their healthcare expectations and loyalty to their current provider (McGuire et al., 2014;
Raval et al., 2016; Raval and Rosenbaum, 2018). These factors contribute to an overall “switching
cost" for patients that is used to determine the likelihood a patient would switch their current
provider given a change in the insurance plan. In that regard, Shepard (2016); Crespin (2016)
show that patients are generally more influenced by price of insurance and not quality of service or
provider reputation. In other words, patients generally have low switching costs between providers if
the price is right. Similarly, Irace (2018) shows that patients generally choose to receive service from
their most recently visited provider, and not their most long-standing provider. Such results show
that it may beneficial to design optimal provider networks with higher profit and guide patients to
switch their providers to the newly designed plans while maintaining their satisfaction. For example,
Shepard (2016) show that it is profitable for insurers to design limited networks that exclude costly
“star providers", and guide patients to choose lower cost healthcare provider in-network of the newly
designed plans.
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5.3 Provider Network Selection under Competition

Let I be a finite set of patients seeking to purchase an HMO health insurance plan, and J be
a finite set of healthcare providers. The provider network selection problem involves selecting a
subset of providers j ∈ J to contract in order to compose insurance plans. An insurance plan
P, is characterized by its in-network providers that are a subset of contracted providers, and the
premiums rip charged to patients i ∈ I. The insurer may compose many such insurance plans in
order to target different patient segments and maximize its profit.

Let P = {P1, . . . ,P|P|} be the set of all potential plans composed by the insurer, indexed by p.
The insurer is next tasked by choosing which of the insurance plans p ∈ P to offer to patients i ∈ I.
If the insurer decides to offer a plan p ∈ P to patients, it incurs the fixed cost

∑
j∈Pp

fj of contracting

its in-network providers j ∈ Pp. Thereafter, if a patient i ∈ I chooses to enroll in an offered plan
p ∈ P, the insurer receives an insurance premium rip, and additionally incurs an expected cost of
service cip for the enrolled patient i.

Under competition, patients i ∈ I have available an additional set of insurance plans Pc offered
by the insurer’s competitors. Patients thus evaluate and select the best plan on offer from the set
P∪Pc, according to their unobserved internal decision making mechanism. We follow the literature
in using a utility-based approach to predict patient behavior (see, e.g., Capps et al. (2003); Ho and
Lee (2017, 2019); Geruso and Layton (2017); Raval and Rosenbaum (2018)). In a utility-based
approach, we measure the value of a provider j ∈ J for a patient i ∈ I by a value uij . Similarly, the
value of a plan p ∈ P ∪ Pc for a patient i ∈ I is measured by the utility Uip. Higher utility values of
utility Uip indicate a higher worth of plan p for patient i. In particular, patient i selects the highest
value plan p∗ : Uip∗ = max

p∈P∪Pc
{Uip}. From the selected plan p∗, patient i selects the highest utility

provider j∗ : uij∗ = max
j∈Pp∗

{uij}. We detail the procedure to estimate utility values in Appendix 5.A,

and use their estimated values in our provider selection optimization model.

5.3.1 Provider Network Selection Model

In this section, We develop an optimization model that takes as input the current provider network
of the insurer, and transitions it into an optimized network. The provider network selection problem
may be naturally considered as a bilevel optimization program. In a bi-level setting, the insurer
acts as the leader, and selects the providers j ∈ J to contract, and plans p ∈ P to offer to patients.
Patients act as the follower, and select among the plans offered by the insurer (and its competitor)
to enroll in.

We recall that if a patient i ∈ I selects a plan p ∈ P, the insurer receives a premium rip,
and incurs an expected cost of healthcare cip. This cost is calculated based on the provider j∗ ∈ p
selected by patient i, if patient i selects to enroll in plan p. Specifically, by the utility theory, patient
i chooses to receive care from the provider j∗ ∈ Pp that has the maximum utility uij∗ = max

j∈p
{uij}.
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The expected cost of service for patient i ∈ I that selects plan p ∈ P is thus cip = cij∗ . Cost cij∗
may be estimated using any method, such as the one detailed in Appendix 5.C. = Ci × Ii × JTj∗ ,
where j∗ : uij∗ = max

j∈Pp
{uj}.

We can now define our bilevel optimization model. Let xj be a binary variable that denotes
whether providers j ∈ J is contracted by the insurer. Further let zp be a binary variable that denotes
whether the insurer offers plan p to patients, and binary variable yip denote whether patient i selects
to enroll in plan p ∈ P ∪ Pc. The bilevel model BL is formulated as:

BL : max
∑
i∈I

∑
p∈P

(rip − Cip) yip −
∑
j∈J

fjxj (5.1)

s.t. zp ≤ xj ∀j ∈ J, ∀p ∈ P : j ∈ Pp, (5.2)∑
p∈P

zp ≥ 1 (5.3)

xj ∈ {0, 1} ∀j ∈ J, (5.4)

zp ∈ {0, 1} ∀p ∈ P, (5.5)

where yip,∀i ∈ I,∀p ∈ P ∪ Pc solve:

max
∑
i∈I

∑
p∈P∪Pc

Uipyip (5.6)

s.t. yip ≤ zp ∀i ∈ I, ∀p ∈ P, (5.7)∑
p∈P∪Pc

yip = 1 ∀i ∈ I, (5.8)

yip ∈ {0, 1} ∀i ∈ I, ∀p ∈ P ∪ Pc. (5.9)

The objective function (5.1) maximizes the profit of the insurer, composed of the revenue generated
by insurance premiums ripminus the expected cost of patient healthcare cip (calculated in Appendix
5.A), and a fixed annual cost of contracting providers fj . Constraints (5.2) restrict the insurer from
offering a plan P that includes a provider j ∈ J not contracted by the insurer. Constraint (5.3)
enforces the insurer to offer at least one plan p ∈ P to patients. This constraint is imposed to analyze
the quality of plans in our numerical tests, when no profitable plan is available for the insurer. The
second level objective function (5.6) models patient choice, and maximizes the utility of patients
i ∈ I in selecting a plan p ∈ P∪Pc. Constraints (5.7) permit patients to choose a plan p ∈ P, only if
plan p is offered by the insurer. Note that constraints (5.7) do not impose any restriction on patient
choice for plans p ∈ Pc. Constraints (5.8) ensure that all patients choose exactly one insurance plan,
and constraints (5.4), (5.5) and (5.9) are binary restrictions on the decision variables.

The bilevel program may be transformed into a single level program by exploiting the fact
that patients choose the offered insurance plan that maximizes their utility. Specifically, we may
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reformulate the bilevel program BL into a single level model SL using constraints (5.10)-(5.12):

SL : max (5.1)

s.t. (5.2)− (5.5), (5.7)− (5.9),∑
p∈P∪Pc:
Uip<0

yip′ ≤ 0 ∀i ∈ I, (5.10)

∑
p′∈P∪Pc:
Uip′<Uip

yip′ ≤ 1− zp ∀i ∈ I,∀p ∈ P, (5.11)

∑
p′∈P∪Pc:
Uip′<Uip

yip′ ≤ 0 ∀i ∈ I,∀p ∈ Pc. (5.12)

Constraint (5.10) restricts the selection of any plan with negative utility, and constraints (5.11)
ensure that patients do not choose a plan with lower utility than any plan offered by the insurer.
Similarly, constraints (5.12) ensure that patients do not select a plan with lower utility than any
competitor plan p ∈ Pc.

If set P contains every possible plan P ⊆ J, i.e., every 2|J| subset of providers, the solution
of model SL determines the best plan the insurer should offer to patients in order to maximize
profits. Such a solution approach is however inefficient, and impractical in practice. We thus use a
simultaneous multi-column-and-row generation algorithm to solve SL.

5.4 A Simultaneous Multi-Column-and-Row Generation Algorithm
for Network Provider Selection

Our algorithm to converge to the optimal solution of SL involves solving the linear relaxation of
SL, under a restricted number of plans p ∈ P. The solution of this restricted mater problem RMP
is then used to determine whether the addition of new plan P improves the objective of RMP, or
prove that no other improving plan exists. A possible plan that improves the solution of RMP is
found by solving a subproblem SP defined based on the dual information of a RMP solution, and
the structure of a feasible plan P. The algorithm recursively solves RMP and SP until the plan
generated by SP does not improve the objective of RMP. This indicates that no other improving
plan exists, providing the optimality condition of the RMP solution.

Let P̄ ⊂ P be a restricted plan set populated by an initial number of plans, e.g., the ones currently
offered by the insurer. We define the restricted master problem RMP, as the linear-relaxation of
model SL:

RMP : max (5.1)
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s.t. (5.2), (5.3), (5.7), (5.8), (5.10)− (5.12),

0 ≤ xj ≤ 1 ∀j ∈ J, (5.13)

0 ≤ zp ≤ 1 ∀p ∈ P̄, (5.14)

0 ≤ yip ≤ 1 ∀i ∈ I, ∀p ∈ P̄. (5.15)

RMP is a linear program, and its optimal solution may turn out to be fractional. Although this
is common in column generation algorithms, we prove that under a price-out strategy, the solution
of RMP is integral or can be made integral by inspection. As our first step, we define the notion
of patient targeting by a plan P.

Definition 5.1. A plan P targets a patient i ∈ I if

1. UiP > 0, and

2. UiP > Uip, ∀p ∈ Pc.

The set of all such patients define the set of targeted patients ĪP of plan P. �

We next define the price-out strategy as

Definition 5.2. A price-out strategy of plan P involves:

1. increasing the premiums riP for all i ∈ I \ ĪP, until UiP becomes negative.

2. increasing the premiums rip for all i ∈ ĪP,∀p ∈ P : Pp 6= P, until Uip becomes negative. �

A price-out strategy ensures that at most one plan p ∈ P targets a patient i ∈ I. This is not a
restricting assumption, as proved in Proposition 5.3.

Proposition 5.3. The optimal plan premiums and access to in-network providers determined by
model SL remains unchanged for all patients i ∈ I under a price-out strategy.

Proof. Let zp∗ be the optimal plan offered to a patient i ∈ I. An optimal solution of SL thus
satisfies zp = 1, yip∗ = 1, and by constraint (5.8) we have yip = 0,∀p ∈ P : p 6= p∗. Under a
price-out strategy, we increase premiums rip : ∀p ∈ P : p 6= p∗ to enforce Uip < 0 and consequently
yip = 0, ∀p ∈ P : p 6= p∗ by constraints (5.10). A price-out strategy thus has no effect on the optimal
plan offered to patients, and the optimal premium and in-network access for patients remains
unchanged.

We can now show that under a price-out strategy the optimal solution of RMP is integral if it
has a positive objective value, or otherwise, can be made integral by inspection. This is proved in
Theorem 5.4.
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Theorem 5.4. Under a price-out strategy, either an optimal solution (ȳip, z̄p, x̄j) of RMP is inte-
gral, or can be made integral by inspection.

Proof. We first prove that if an optimal solution (ȳip, z̄p, x̄j) of RMP has positive objective value, it
is integral. Due to a price-out strategy, we can only have ȳip > 0 for a single plan p ∈ P̄. Moreover,
as ȳip ≤ z̄p ≤ x̄j , ∀i ∈ I,∀p ∈ P̄, ∀j ∈ J : j ∈ Pp imposed by constraints (5.7) and (5.2), and due to
optimality, we must have ȳip = z̄p = x̄j ,∀i ∈ I,∀p ∈ P̄, ∀j ∈ J : j ∈ Pp. Otherwise, we can increase
the values of ȳip and z̄p up to x̄j and obtain a higher objective value in (5.1). Now, as solution
(ȳip, z̄p, x̄j) has positive objective value, we can conclude that

∑
i∈I

∑
p∈P̄

(rip−cip) >
∑
j∈J

fj . Therefore, a

marginal increase in variables yip, zp such that ȳip > 0, z̄p > 0, ∀i ∈ I, ∀p ∈ P̄ increases the objective
value in (5.1). An optimal solution must thus satisfy ȳip = 1 for all ȳip > 0. Consequently, z̄p = 1

and x̄j = 1 for all z̄p > 0 and x̄j > 0.
We now prove that if an optimal solution (ȳip, z̄p, x̄j) of RMP has negative objective value, it

can be made integral by inspection. As shown in the proof of Theorem 5.5, we have
∑
p∈P̄

zp = 1 in

the optimal solution of RMP. To obtain an integral solution, we can thus inspect each p ∈ P̄ by its
profit

∑
i∈Īp

(rip − cip) −
∑
j∈p

, and select the plan P∗ with the maximum (negative) profit. By setting

yip = 1∀i ∈ Īp∗ , zp∗ = 1 and xj = 1,∀j ∈ Pp∗ , we obtain an integral optimal solution of RMP.

Our next task is to use the dual information from RMP to possibly generate a plan that
improves its solution. This is done using pricing subproblems SP.

5.4.1 Pricing Subproblems

A plan P in our setting corresponds to a tuple of variables (y0P, . . . , y|I|P, zP) in RMP. This is
unlike column generation algorithms, where the addition of a new column involves adding only a
single variable. In particular, in the formulation of RMP, variables yip and zp are dependent on
one another and the addition of one variable to RMP is meaningless without the other. Moreover,
the addition of a variable yip to RMP also entails adding new constraints (5.7) to RMP. Similarly,
the addition of a new variable zp to RMP involves adding new constraints (5.2), (5.7), and (5.11)
to RMP. This means the reduced cost of a new variable yip or zp not only depends of the value
of dual variables generated by the current formulation of RMP, but also depends on the value
of dual variables associated to the newly added constraints. Converging to an optimal solution of
SL using the relaxation RMP thus require a simultaneous multi-column-and-row algorithm, where
multiple columns (y0P, . . . , y|I|P, zP), and multiple corresponding rows (5.2), (5.7), and (5.11) are
simultaneously added to RMP. The challenge, however, is to determine the reduced cost of adding
a new plan to RMP using only the information of the dual variables from its current solution.

Our price-out strategy can be further used to simplify the procedure of calculating the reduced
cost of a new plan P. This procedure involves determining its objective value (5.1) of RMP after
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the addition of plan P, and comparing it to its current value. If the objective value increases with
the addition of plan P, then plan P has a positive reduced cost; otherwise, it has a reduced cost
of zero. Theorem 5.5 employs this procedure and shows how to determine whether a plan P has
positive reduced cost.

Theorem 5.5. Under a price-out strategy and given a solution (x̄j , z̄p, ȳip) of RMP, a tuple
(y0P, . . . , y|I|P, zP) has positive reduced cost if and only if∑

i∈ĪP
(riP − CiP)−

∑
j∈P

fj(1− x̄j)−
∑
i∈ĪP

∑
p∈P̄

(rip − Cip) ȳip +
∑
j∈J

fj x̄j1{P⇒xj=0} −∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0} > 0.

Proof. See Appendix 5.B.

Here, 1{P⇒xj=0} denotes whether the addition of plan P to RMP leads to the value of variable
xj that has a positive value x̄j > 0 in the current solution of RMP, to become zero. Similarly,
1{P⇒zp=0} denotes the same for variable zp. The outcome of both scenarios can be determined under
a price-out strategy, as shown in the proof of Theorem 5.5. However, determining the outcome of
these scenarios is computationally costly. For a more effective solution algorithm, we use corollary
5.6 which gives a sufficient condition for a positive reduced cost plan P.

Corollary 5.6. Under a price-out strategy and given a solution (x̄j , z̄p, ȳip) of RMP, a tuple
(y0P, . . . , y|I|P, zP) has positive reduced cost if∑

i∈ĪP
(riP − CiP)−

∑
j∈P

fj(1− x̄j)−
∑
i∈ĪP

∑
p∈P̄

(rip − Cip) ȳip > 0.

Proof. As discussed in the proof of Theorem 5.5, we have 1{P⇒xj=0} = 1 or 1{P⇒zp=0} = 1 only
when

∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip > 0.

Using Corollary 5.6 we define the first subproblem of our simultaneous multi-column-and-row
procedure, to possibly generate a new positive plan P for RMP. Subproblem SP1 generates a
new plan P with positive reduced cost, with the assumption that the addition of plan P to RMP
satisfies 1{P⇒xj=0} = 1{P⇒zp=0} = 0. We later relax this assumption to ensure the optimality of
the solution by RMP for model SL.

Let ri be a non-negative continuous variable that denotes the premium charged to patient i ∈ I
for plan P under construction, and wij be a binary variable that denotes whether patient i chooses
to receive care from provider j ∈ P. Further, let vj be a binary variable that denotes whether
provider j ∈ J is selected in-network of plan P, and bi be a binary variable that denotes whether
plan P targets patient i ∈ I. Subproblem SP1 is defined as:

SP1 : max
∑
i∈I

ri −
∑
i∈I

∑
j∈J

cijwij −
∑
j∈J

fj(1− x̄j)vj −
∑
i∈I

∑
p∈P̄

(rip + Cip) ȳipbi (5.16)
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s.t. wij ≤ vj ∀i ∈ I, ∀j ∈ J, (5.17)∑
j∈J

wij = bi ∀i ∈ I, (5.18)

∑
j′:uij′<uij

wij′ ≤ 1− vj ∀i ∈ I, ∀j ∈ J, (5.19)

ri ≤Mbi ∀i ∈ I, (5.20)

βn

 ∑
j∈J:uij>0

uijvj

− βrri ≥ bi − 1 + ε ∀i ∈ I, (5.21)

βn

 ∑
j∈J:uij>0

uijvj

− βrri ≥ (Uip + ε)bi ∀i ∈ I,∀p ∈ Pc, (5.22)

ri ≥ 0, bi ∈ {0, 1} ∀i ∈ I, (5.23)

vj ∈ {0, 1} ∀j ∈ J, (5.24)

wij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J. (5.25)

Objective function (5.16) maximizes the reduced cost of a tuple (y0p, . . . , y|I|p, zp) for plan P, ac-
cording to corollary 5.6. Constraints (5.17)-(5.19) model patient choice of in-networks providers. In
particular, constraint (5.17) ensures that patients i ∈ I only visit in-network providers, constraint
(5.18) ensure that if a patient i ∈ I is targeted by plan P it visits exactly one in-network provider,
and otherwise restricts the patient from visiting any provider. Constraints (5.19) model patient
preference and ensure that a patient i selects to receive care from the provider that gives him/her
the maximum utility uij . Constraint (5.20) restricts the insurer from charging a premium to pa-
tients i ∈ I who are not targeted by plan P. Such patients are later priced-out of plan P to ensure
they do not enroll in it. Constraints (5.21) impose feasibility of a plan for a targeted patient i, such
that his/her utility is positive for plan P. Here, ε is a small number to enforce strict positivity.
Similarly, constraints (5.22) ensure that if a patient i is targeted by plan P, then their utility for
plan P is higher than any competitor’s plan. Constraints (5.23)-(5.25) are non-negative and binary
restrictions on the decision variables.

If a tuple (y0p, . . . , y|I|p, zp) generated by SP has positive reduced cost, we add it to RMP.
Adding a plan P to RMP involves a price-out strategy for the plan itself, and for all plans p ∈ P.
For tuple (y0p, . . . , y|I|p, zp) corresponding to plan P, we increase premiums riP for non-targeted
patients i ∈ I \ ĪP such that uiP < 0. That is, we set

riP = βn

 ∑
j∈J:uij>0

uijvj

 /βr + ε, ∀i ∈ I \ ĪP. (5.26)

Next, we price-out all patients i ∈ ĪP from all plans p ∈ P̄, by increasing their premiums rip
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according to (5.26). Finally, we add plan P to set P̄ by adding its corresponding columns and rows
to RMP and repeat the multi-column-and-row generation procedure. The algorithm iterates until
no positive reduced column is found by SP1.

To ensure no other positive reduced cost plan exists, we next solve subproblem SP2, which is a
generalization of SP1 and takes into account the possibility that 1{P⇒xj=0} = 1{P⇒zp=0} = 1. To
consider these scenarios, we define additional variables as follows. Let aj be a binary variable that
denotes 1{P⇒xj=0}, and hp be a binary variable that denotes 1{P⇒zp=0} = 1. Subproblem SP2 is
formulates as

SP2 : max (5.16) +
∑
j∈J

fj x̄jaj −
∑
i∈I

∑
p∈P̄

(rip − cip)ȳipz̄p(1− bi)hp (5.27)

s.t. (5.17)− (5.25),

aj ≤ 1− vj ∀j ∈ J : x̄j > 0, (5.28)

aj ≤ hp ∀p ∈ P̄ : z̄p > 0, ∀j ∈ Pp, (5.29)∑
i∈I

(rip − cip)ȳip(1− bi)−
∑
j∈Pp

fj ≤M(1− hp) ∀p ∈ P̄ : z̄p > 0, (5.30)

aj ∈ {0, 1} ∀j ∈ J : x̄j > 0, (5.31)

hp ∈ {0, 1} ∀p ∈ P̄ : z̄p > 0. (5.32)

The objective function (5.27) maximizes the reduced cost of a new plan P, and unlike objec-
tive (5.16), takes into account the possibility that the addition of plan P to RMP may satisfy
1{P⇒xj=0} = 1{P⇒zp=0} = 1. Constraints (5.28) and (5.29) model the scenario where 1{P⇒xj=0} =

1. For a new plan P and a provider j ∈ J : x̄j > 0, we have 1{P⇒xj=0} = 1 if j 6∈ P, and all plans
p ∈ P̄ : j ∈ Pp, z̄p > 0 satisfy zp = 0. The former condition is imposed by constraints (5.28), and
the latter by constraints (5.29). Constraints (5.30) model the scenario where 1{P⇒zp=0} = 1. This
scenario may occur when the cost of offering a plan p ∈ P̄, i.e.,

∑
j∈Pp

fj , is higher than its revenue∑
i∈I

(rip − cip)ȳip(1− bi). As discussed in the proof of Theorem 5.5, if the revenue of all plans p ∈ P̄

that include a provider j ∈ J become negative, then it is optimal not to contract provider j. This
scenario satisfies 1{P⇒xj=0} = 1{P⇒zp=0} = 1, and is modelled by the combination of constraints
(5.29) and (5.30). Lastly, constraints (5.31) and (5.32) are binary restrictions on the subproblem
variables.

We note that the objective function (5.27) is nonlinear due to the multiplication of binary
variables (1−bi)hp. However, this can be made linear by introducing a new variable eip = (1−bi)hp,
and constraints

eip ≤ hp, eip ≤ 1− bi, hp − bi ≤ eip,

for all i ∈ I, ∀p ∈ P̄.
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Figure 5.1: Overall Multi-column-and-row generation algorithm.

Solving subproblem SP2 is computationally more expensive than solving subproblem SP1. We
therefore, only solve SP2 when SP1 does not generate any positive reduced cost plan. This ensures
that we find all positive reduced plans by subproblem SP2, while avoiding its computational burden
at every iteration of the multi-column-and-row generation algorithm. The overall solution algorithm
is depicted in Figure 5.1.

5.4.2 Interpretable Insights for Decision Making

In addition to optimal provider network selection and insurance plan design, our framework provides
valuable insights for data-driven decision making. In particular, we can use the sensitivity report of
the relaxed master problemRMP to identify and analyze key aspects of its decision making process.
This section discusses a number of such benefits and how they can be used for better decision making
by the insurer. We assume the reader has sufficient knowledge on sensitivity analysis, and otherwise
refer to Saltelli et al. (2004) for a thorough explanation of sensitivity analysis concepts and practices.

We first consider the information generated for providers currently contracted by the insurer,
i.e., j ∈ J : x̄j = 1 in RMP. The allowable increase of the objective coefficients fj for variable
xj , gives the maximum contract fee that provider j can ask for while remaining profitable for the
insurer. That is, the insurer can guarantee optimality of the current solution despite an increase
of fee fj is within the range of the allowable increase. The insurer can accommodate the increase
of fj without needing to re-optimize its provider network, and possibly remove provider j from its
network.

Similarly, the insurer has information on the allowable decrease of contract fees fj for providers
currently not contracted, i.e., x̄j = 0. This information gives the minimum decrease in the contract
fee fj , such that including provider j becomes profitable for the insurer. On the other hand, any
change of fj within the allowable decrease has no effect on the optimal solution, and is not worth
anything to the insurer. Such interpretable information is particularly useful in the negotiations
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between the insurer and providers on contract fees, and may provide an edge to the insurer in its
bargaining power.

We next analyze the the information generated byRMP for variables yip. The allowable increase
of objective coefficient for variables ȳip = 0, gives the required increase in premium rip such that
patient i becomes profitable in plan p. That is, if patient i is willing to pay the extra cost of the
allowable increase, it can be offered to enroll in plan p without changing the optimal objective value.
In the case that patient i is enrolled in a competitor plan, the reduced cost of variable yip implies
how costly it is to attract patient i to plan p using its current premium rip. This information can
thus be used, e.g., in the premium negotiations between the insurer and patients i ∈ I.

All such information may additionally be used to hedge against uncertainty in patient utility
predictions. For targeted patient by plan p ∈ P, i.e., yip = 1, we can determine using the allowable
decrease of its objective coefficient, the degree to which an inaccuracy in utility uij affects the
optimal solution. For example, if the decrease in premium rip, due to a decrease in utility Uip, is
within the allowable decrease, the optimal provider network and plans remain unchanged. This
information can be used, e.g., in price-out strategies to determine premiums rip that can be charged
to patient i to ensure he/she does not enroll in plan p.

Lastly, we can analyze the impact of offering plans that are currently not offered by the insurer,
i.e., z̄p = 0. The reduced cost of a variables zp : z̄p = 0 gives the marginal change in the objective
function if plan p were to offered by the insurer. This information can be used, e.g., to analyze the
quality of different plans and provider networks, such as the ones currently used by the insurer.

5.5 Numerical Results

We test our multi-column-and-row generation approach for the provider network selection problem
by two sets of experiments. In the first set, we compare the plans generated by our solution
approach to plans generated by heuristic and individual provider selection methods. In our second
set of experiments, we evaluate the effect of inaccurate patient utility predictions on the outcome
of the multi-column-and-row generation approach. We evaluate the results in terms of the insurer’s
profit and market share, and the social welfare of patients in paid premiums and healthcare costs.

We generate test data based on the number of patients |I| ∈ {100, 200} and number of providers
|J| ∈ {10, 20, 30}, using the procedure detailed in Appendix 5.C. We generate three datasets for
each possible size of the database, giving a total of 18 test instances.

5.5.1 Comparison to Heuristic and Individual Provider Selection

This sections evaluates the performance of the multi-column-and-row generation solution approach
for the provider network selection problem, compared to heuristic solutions used in practice and the
literature. In particular, we first generate a number of potential insurance plans for the insurer and
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its competitor using heuristic algorithms and add them to sets P̄,Pc. Furthermore, we generate an
additional plan for the insurer and its competitor based on individual provider selection motivated
by the literature (Geruso and Layton, 2017), and add it to sets P̄,Pc. Sets P̄,Pc are then fed into the
relaxed master problem RMP, where it is assumed that all competitor plans P ∈ Pc are available to
patients, while the insurer must decide which plans P ∈ P̄ to offer to patients. After determining the
best plans to offer among the ones in set P̄, we use our multi-column-and-row generation framework
to possibly construct new insurance plans and optimize the provider network to improve over the
initial set of plans in P̄.

To evaluate the impact of the multi-column-and-row generation approach, we assume exact
information is available for patient utilities uij and coefficients βn, βr. This allows us to evaluate
the results without the influence of prediction accuracy and pricing decisions. Exact information is
thus used in both the multi-column-and-row generation framework and all heuristic and individual
provider selection methods.

We use four heuristic approaches for provider selection motivated by strategies currently em-
ployed by a major health insurance provider in the USA. Each heuristic approach evaluates a
provider j ∈ J by a specific set of criteria such as quality and affiliation, cost efficiency, patient
demand, and the combination of quality and efficiency. The same strategies are used by the insurer
and its competitor, but result in distinct plans due the different affiliations of providers j ∈ J to
the insurer or its competitor. For succinctness we detail each plan with the perspective of only the
insurer. The perspective of the competitor is defined analogously. The heuristic provider selection
frameworks are as follows.

(i) The quality and affiliation heuristic selects to contract a provider j ∈ J if it meets a high quality
threshold on its healthcare services, i.e., qj ≥ 2, or satisfies a minimum quality threshold qj ≥ 1

but is affiliated with the insurer.

(ii) The efficiency heuristic selects to contract a provider j ∈ J if it meets a maximum threshold on
the average healthcare costs and contract cost charged to the insurer. Recall that a provider
j may charge different prices to the insurer based on whether it is affiliated with the insurer
or its competitor. In this heuristic algorithm, the insurer determines an average price for the
provider, and selects to contract the provider if their contract fee does not exceed its expected
cost.

(iii) The demand heuristic selects to contract a provider j ∈ J if a minimum of α% of the patients
have a positive utility uij > 0 for that provider. The value of α is 60% for providers affiliated
to the insurer and is increased to 80% otherwise.

(iv) The last heuristic strategy combines the first two heuristics and selects to contract a provider
if it satisfies both their conditions.
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Following the pricing setting of the subproblems SP1 and SP2, we set premiums riP as

riP = βn

∑
j∈P

uij − ε

 /βr.

for all heuristically created plans. That is, we charge patients i ∈ I by the highest possible premium
that gives them a minimum plan utility of UiP = ε. Moreover, if riP − cij < 0, we price-out patient
i from plan P by charging a higher premium according to (5.26). This ensures that the insurer
receives the maximum possible profit from any of the plans generated by the heuristic or individual
selection methodologies, and any improvement in the multi-column-and-row generation algorithm
is due to higher quality plans, rather then higher charged premiums.

All above heuristic strategies evaluate providers j ∈ J individually, with no analysis on how
the inclusion or exclusion of a provider may affect the overall insurance plan. Motivated by the
literature (see e.g., Geruso and Layton (2017) and references therein) we next evaluate a provider
j ∈ J by the effect that its exclusion entails for the insurance plan under construction. We start
with a plan P = J, i.e., one that included all providers j ∈ J. We next compare for a provider j ∈ P,
whether excluding it from plan P results in positive savings. The savings of excluding provider j is
defined as:

fj −
∑
i∈I

(
max{0, riP − cij}1{uij=max

j∈P
{uij},uij>0} + max{0, riP\j − cij′}1{uij′= max

j∈P\j
{uij},uij′>0}

)
.

Here, excluding a provider j from plan P, initially saves on the contract fee fj . The rest of the
savings depend on whether provider j is the highest utility provider for patients i ∈ I. We recall
that by the utility theory, patients i ∈ I select to receive care from the provider j ∈ P that gives
them the highest utility uij > 0. Therefore, if 1{uij=max

j∈P
{uij},uij>0} = 1 for a patient i ∈ I, excluding

provider j from plan P loses the premium riP patient i is willing to pay for plan P and saves on
its expected healthcare costs cij . This is conditioned on riP − cij > 0, as otherwise patient i is
priced out from plan P. Given the exclusion of provider j, we next calculate the expected profit the
insurer may generate from plan P \ j. Let j′ be the possible substitute provider patient i chooses
to receive care from given the exclusion of their highest utility provider j. If such a provider exists,
i.e., 1{uij′= max

j∈P\j
{uij},uij′>0} = 1, then we generate a profit of max{0, riP\j − cij′} from patient i.

Analyzing this effect for all patients i ∈ I gives us the above total savings for excluding provider j.
If the total savings from excluding a provider j ∈ J is positive, then we exclude provider j from

plan P. We perform this analysis for all providers j ∈ P, in the order of providers with the highest
contract fee fj . This procedure results in a set of providers that are all beneficial to keep in plan
P, not just based on individual evaluation but also their individual effect on the entire plan P.

Using the above heuristics, we generate five insurance plans for the insurer and its competitor.
We assume the competitor offers all such plans to patients to maximize its competition on market
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Table 5.1: Improvements for the insurer by the multi-column-and-row generation framework.
Results include the number of plans offered (#Pln) and the percentage of providers contracted

(%Cont Prv) for the heuristic and multi-column-and-row generation approaches, the percentage of
increase in the insurer’s profit made by multi-column-and-row generation (%Profit), the

percentage of change in contract fees incurred by the insurer (%Cont Cost), the percentage of
change in patient healthcare costs incurred by the insurer (%Pat Cost), and the percentage of

change in the insurer’s revenue from patient premiums (%Pat Prem).

Instance
Heuristic Selection Multi-Column-and-Row Generation

#Pln %Cont Prv #Pln %Cont Prv %Profit %Cont Cost %Pat Cost %Pat Prem

I100J10 1 33 4.3 53 526 200 550 1,677
I100J20 1 40 7.6 57 296 97 160 1,020
I100J30 1 26 8.6 52 722 319 95 13,934
I200J10 1 23 3.3 33 265 25 699 1,524
I200J20 1 22 13.3 55 1057 213 319 2,796
I200J30 1 43 25.3 67 423 467 108 1,125

share with the insurer, without considering its profit or loss. The insurer, on the other hand, decides
which of the potential plans to offer patients in order to maximize its profit. We then use our multi-
column-and-row generation approach to determine whether better plans may be added to P̄. We
analyze results by the effects on the insurer given in Table 5.1, its competition with the competitor
and patient market share in Table 5.2, and the social welfare of patients given in Table 5.3.

Results of Table 5.1 compare the decisions of the insurer when set P̄ includes only the plans
generated by the heuristic algorithms, to the final optimal set of plans generated by the multi-
column-and-row generation algorithm. Comparison is on the number of plans offered by the insurer
given in columns (#Pln), and the percentage of providers contracted by the insurer given in columns
(%Cont Prv). Furthermore, we give the percentage of increase in the insurer’s profit using the plans
generated by multi-column-and-row generation in column (%Profit), and the percentage of change
in contract fees incurred by the insurer in column (%Cont Cost). Lastly, we give the percentage of
change in average patient healthcare costs incurred by the insurer (%Pat Cost), and the percentage
of change in the insurer’s average charged premiums to patients(%Pat Prem).

Results of Table 5.1 show that the multi-column-and-row generation algorithm is able to signif-
icantly improve the provider network selection of the insurer. When the insurer is limited to the
five plans generated by the heuristic procedures, its best decision is to only offer one plan, often
incurring a loss in profits. Using the multi-column-and-row generation algorithm, the insurer is
able to offer on average 10.4 insurance plans that effectively target different subsets of patients, and
increase profits by an average of 548%. The higher profit is due to higher market share and better
patient targeting, that results in an average increase revenue by 3,679%. The increase in revenue
is also accompanied by an increase in contract costs, on average by 22%, and patient healthcare
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Table 5.2: Effects of multi-column-and-row generation on market share between the insurer and
competitor. Results include market share of patients for the insurer (Insr) and competitor (Comp)

using heuristic and individual provider selection, and the multi-column-and-row generation
framework.

Instance
Heuristic Selection Multi-Column-and-Row Generation

%Share Insr %Share Comp %Share Insr %Share Comp

I100J10 4 89 65 30
I100J20 2 93 71 27
I100J30 2 91 73 26
I200J10 4 87 47 47
I200J20 1 93 70 28
I200J30 8 87 77 22

costs, on average by 322%. Note that premiums and patient healthcare costs of Table 5.1 only give
the change in cost for the insurer, and do not represent the welfare costs and premiums incurred
by patients. The overall results of the multi-column-and-row generation algorithm show that the
insurer should broaden the set of contracted providers, but tailor its insurance plans to different
customer segments to maximize its profits.

Results of Table 5.2 compare the market share between the insurer and its competitor when the
insurer is limited to offering plans generated heuristically, and when it has the optimal set of plans
to offer generated by the multi-column-and-row generation algorithm. Results show that due to
negative profit, the insurer should only offer a single plan when limited to heuristically generated
plans. Recall that we do not consider the profits of the competitor in our numerical tests, and enforce
the competitor to offer all its heuristically generated plans to patients. In such a case, the insurer
cannot capture a large portion of patients, as most patient find the plans offered by competitor more
attractive. The competitor is able to capture on average 90% of the health insurance market, albeit
by incurring a negative profit. On the other hand, when the insurer is able to offer plans generated
by the multi-column-and-row generation algorithm it can effectively capture on average 67% of the
market and make a positive profit. Despite the broader network offered by the competitor, the
insurer is able to attract specific patients segments, and conclude that the remaining patients are
not profitable and should be priced out. Priced out patients remain with the competitor, which
captures on average 30% of the market.

Lastly, we compare the social welfare of patients when the insurer can select among the heuris-
tically generated plans, or the plans generated by the multi-column-and-row generation algorithm.
We observe in Table 5.3 that despite an increase of revenue by the insurer from patient premiums,
patients on average pay 21% less for their health insurance. This indicates that the higher revenue
by the insurer is not due to an overall increase in charged premiums, but rather due to better in-
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Table 5.3: Effects of multi-column-and-row generation on patient welfare. Results include the
percentage of patients insured by the insurer or competitor (%Insured) using heuristic and

individual provider selection, the percentage of change in total healthcare costs (%Pat Cost) by
multi-column-and-row generation, and the percentage of change in total premium (%Prem) payed

by patients to the insurer or the competitor by multi-column-and-row generation.

Instance
Heuristic Selection Multi-Column-and-Row Generation

%Insured %Insured %Pat Cost %Prem

I100J10 93 95 -29 -8
I100J20 95 98 -41 -27
I100J30 94 99 -53 -30
I200J10 91 93 -31 -43
I200J20 94 98 -47 -29
I200J30 95 99 -17 12

surance plan design. In particular, the insurer is able to target patients by the optimal plan that is
both attractive to the patient and provides the highest profit for the insurer. Moreover, healthcare
costs of the entire set of patients decreases under an optimal plan design by the insurer. This is due
to better plan design, where patients are guided to receive care from more cost efficient providers.
The total number of patients that choose to enroll in any healthcare plans also increase from 93%
to 97%, meaning that the new insurance plans are able to attract on average 4% of patients that
previously has negative utility for the plans offered by the insurer and competitor.

In summary, using multi-column-and-row generation significantly impacts the profit made by
the insurer, increases its market share, and also increases social welfare by decreasing healthcare
costs and patient premiums.

5.5.2 Effects of Utility Prediction Accuracy

The multi-column-and-row generation algorithm outputs the optimal set of plans to offer to patients.
The optimality of the plans, however, is conditional on the accuracy of predicting patient behavior
in the utility function approach. An inaccurate prediction of patient utilities leads to sub-optimal
plans that cannot target the intended patients. Inaccuracies in coefficients βn, βr further lower
solution quality as they influence pricing and price-out strategies. In particular, patients predicted
to have positive utility UiP > 0 for plan P may turn out to have negative utility UiP < 0 due to
higher prices. Consequently, such patients turn to other unintended insurance plans P ∈ P by the
insurer or even a plan P ∈ Pc from the competitor. Similarly, patients predicted to be priced-out of
a plan P may turn out to have positive utility UiP > 0 due to an underestimation of utility values,
and lead to loss for the insurer. Such consequences motivate us to evaluate the influence of utility
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Table 5.4: Effect of inaccurate utility predictions on provider network selection. Results include
the percentage of change in profit (%Profit), percentage of change in market chare (%Share),

percentage of change in patient healthcare costs (%PAt Cost), and percentage of change revenue
from patient premiums (%Prem), for the actual choice of patients on the plans generated by the

insurer using estimated data.

Uncertainty Instance %Profit %Share %Pat Cost %Pat Prem

uij

I100J10 -215 -54 -73 -72
I100J20 -185 -76 -99 -100
I100J30 -166 -75 -98 -99
I200J10 -176 -62 -67 -99
I200J20 -140 -70 -93 -94
I200J30 -142 -75 -98 -99

I100J10 -243 -100 -100 -100
I100J20 -267 -100 -100 -100

uij , I100J30 -167 -100 -100 -100
βn, βr I200J10 -615 -100 -100 -100

I200J20 -411 -100 -100 -100
I200J30 -237 -100 -100 -100

prediction accuracy on the outcome of the multi-column-and-row generation algorithm.
We consider two uncertainty settings in evaluating the effects of utility inaccuracies. In our first

setting, we assume that utility values uij are unknown and estimated, but coefficients βn, βr are
known with certainty for all patients i ∈ I. This allows us to evaluate the influence of inaccurate
utility predictions with less emphasis on the pricing decisions made based on coefficients βn, βr.
We next consider uncertainty in both utility values uij and coefficients βn, βr. Using the estimated
values of these parameters, we generate the initial set of plans using the heuristic approaches. Esti-
mated parameters are then passed to the multi-column-and-row generation framework to construct
and optimize the insurance plan and provider network. After the multi-column-and-row generation
algorithm terminates with the optimal set P̄ of plans based on the estimated parameters, we use
the exact knowledge of utility values uij and coefficients βn, βr to determine the actual selection
of patients i ∈ I for plans P̄ ∪ Pc. We compare the actual selection of patients to their predicted
behavior, and evaluate its influence on the profit and market share of the insurer and its competitor.

Table 5.4 gives the percentage of change in profits, market share, patient healthcare costs, and
patient premiums, when actual patient choice is taken into account over the plans optimized using
estimated utilities and possibly coefficient βn, βr. Results show that despite patient targeting and
better plan design by the multi-column-and-row generation algorithm, patients do not choose their
intended plans due to inaccurate predictions. In fact, when all parameters are uncertain, the insurer
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Table 5.5: Effects of inaccurate utility predictions on market share between the insurer and
competitor. Results include the estimated and actual market share of patients for the insurer

(Insr) and competitor (Comp).

Uncertainty Instance
Estimated Actual

%Share Insr %Share Comp %Share Insr %Share Comp

uij

I100J10 70 30 15 84
I100J20 77 23 1 98
I100J30 78 22 3 97
I200J10 62 38 1 99
I200J20 76 24 6 94
I200J30 78 23 3 97

I100J10 24 76 0 84
I100J20 42 58 0 86

uij , I100J30 50 50 0 85
βn, βr I200J10 9 91 0 90

I200J20 46 54 0 91
I200J30 50 50 0 87

is not able to capture any of the market share and its revenue from patient premiums decreases
by 100%. Results generally remain the same when coefficients βn, βr are known with certainty,
where on average, the insurer looses 74% of the estimated market with an average -171% decrease
in profits. In both cases, the insurer generally incurs negative profits as it wrongly chose to contract
a broad network of providers. Patients in this case choose to receive care from the competitor or
remain uninsured, as they have negative utility for the plans offered by the insurer, or have higher
utility for the plans offered by the competitor.

As shown in Table 5.5, when all parameters are uncertain the estimated market share of the
insurer is on average 37% lower than when exact information is available. This is due to restrictions
on optimal design of insurance premiums and utility predictions of patients. This market share,
however, is in fact 0%, as the insurer incorrectly predicted patient choice and optimized on estimated
values. When parameters βn, βr are know with certainty, the insurer is able to retain 5% of its
original market share but still looses the majority to the competitor.

In summary, results show that despite the high attractiveness of the utility function approach
to estimate and explain patient choice, its low accuracy is problematic in optimizing the provider
network selection problem. Under the inaccuracy of the utility function approach, neither the
heuristic selection methods nor the multi-column-and-row generation algorithms are able to exploit
patient behavior for better provider selection and insurance design. This motivates future work on
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developing a more accurate prediction method for patient choice, which is also interpretable and
suitable to be used in the multi-column-and-row generation framework.

5.6 Conclusion

We studied the provider network selection problem through an optimization lens, where providers
are selected based on an overall optimized network model. We developed a multi-column-and-row
generation algorithm to solve our model, and proved properties of positive reduced plans and inte-
grality of the relaxed master problem. We showed that our optimal solution significantly improves
over heuristic provider selection methods, and individual selection algorithms used in the literature.
Our results show that under accurate prediction of patient choice, the multi-column-and-row gen-
eration algorithm increases the insurer’s profit by an average 548%, while decreasing the overall
healthcare costs by 36% and the overall insurance premium payed by patient by 21%. In addition,
the multi-column-and-row generation algorithm is able to attract and increase overall insurance
enrollment from an average of 93% to 97%.

We used the utility function approach of the literature as an interpretable method to predict
patient choice, and showed how it can be incorporated into our multi-column-and-row generation
framework for optimal provider selection. We discussed how interpretable knowledge can be ex-
tracted from the multi-column-and-row generation model to aid decision making and increase the
bargaining power of the insurer over providers and patients. Lastly, we showed that the accuracy
of utility prediction significantly impacts the results of the multi-column-and-row generation al-
gorithm, motivating the need to research more accurate models of patient behavior that are also
interpretable.
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5.A Predicting Patient Choice

We seek to learn patient behavior in selecting the plans offered by the insurer. This is done by
taking as input characteristics of the patient and the plans offered by the insurer, and training
a learning algorithm to predict patient choice. For example, we seek to learn patient choice by
considering patient demographics, income, and healthcare history together with the breadth, quality,
and distance of in-network providers for each plan p ∈ P ∪ Pc.

One approach to learning patient choice is to use the accurate prediction capabilities of super-
vised learners, such as deep learning methodologies. By using enough data entries and the right
learning architecture, it is possible to use their complex learning procedure to accurately predict
patient choice. The challenge, however, is that such methods provide little interpretability. This
means limited analysis can be done on the underlying reasons behind patient decisions, which we
seek to learn and use in the provider selection model.

To learn patient choice in their preferred in-network provider, we consider using the utility
theory (Fishburn, 1968). In a utility-based approach, patients i ∈ I evaluate the offered plans by
the insurer or its competitor based on a number of factors, e.g., based on in-network providers and
charged premium, and select to enroll in a plan P∗ with the highest perceived utility UiP∗ . Patients
then select to receive healthcare from the in-network provider j∗ ∈ P∗ of their selected plan P∗,
that they perceive to have the highest utility uij∗ . Our observed data is thus the current choice of
provider j∗ per patient i ∈ I, among the in-network providers of their current plan P∗.

Accordingly, we estimate patient choice in two steps. First, we consider learning how patients
select their preferred in-network provider j∗ from their chosen plan P∗. This gives a generic utility
function uij that can be used to evaluate the fit of any provider j ∈ J. Next, by evaluating the
total utility of in-networks of providers for a plan p ∈ P supPc, and the premium rip, we learn how
patients select their preferred insurance plan.

The first step to learn patient behavior by the utility theory is to identify the most influential
factors in patient choice. Following the literature, (e.g., see works of Ho (2006); Shepard (2016);
Ericson and Starc (2015); Raval and Rosenbaum (2018) and references therein), we consider factors
such as quality of service qj , patient loyalty li, distance of patients to providers dij , and fit of provider
j to patient i. The fit of a provider j ∈ J to patient i ∈ I is determined by the types of services that
are of value for patients i ∈ I, and the the types of services offered by provider j. In particular, let S
be the set of all possible healthcare services that may be of interest to patients i ∈ I or provided by
providers j ∈ J; e.g., primary care, emergency room, ancillary facilities, surgical, women’s hospital,
children’s hospital, and/or specialty physicians. A patient i ∈ I may be interested in any number
of these healthcare services, and a provider j ∈ J may offer any number of such service to patients.

To identify which services are offered by a provider j ∈ J, we define Jj as a 1 × |S| vector of
binaries where the s-th cell has value 1 if provider j offers service s ∈ S, and zero otherwise. To
estimate the interest of patients i ∈ I for different services s ∈ S, we use their healthcare history and
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let Ii be a 1× |S| vector of integers where the s-th cell gives the number of times patient i received
care of type s ∈ S in the past year. Vector Ii may be used as an estimation of the value a patient
i ∈ I has for a service s ∈ S. That is, the value of service type s ∈ S for a patient i ∈ I is indicated
by the number of times patient i has received healthcare of type s. Given vectors Ii and Jj , we can
thus estimate the fit of a provider j ∈ J for a patient i ∈ I in terms of healthcare services s ∈ S.
Specifically, the sum Ii × JTj gives a comparable value of providers j ∈ J for patients i ∈ I.

Using all considered factors on patient utilities, we can estimate values uij by any concave
non-decreasing function, such as

uij = βsIi × JTj + βqqj + βllij − βddij + εij .

Here, εij is a patient-provider error term, and βs, βq, βl, βd are coefficients of factors that are con-
sidered to be influential in decision making, and must be estimated. Assuming that error terms εij
have a standard type I extreme value distribution with density

f(εij) = exp(−exp(−εij)),

it can be shown (see e.g., Maddala (1986)) that the probability that patient i selects to receive care
from provider j is given by

Pr(i, j∗) =
exp(uij∗ − εij∗)∑
j∈J

exp(uij − εij)
.

This is commonly known as the conditional logit model (McFadden et al., 1973). Given probabilities
Pr(i, j), we can define the overall likelihood function of patient provider selection as

L(β) =
∏
i∈I

∏
j∈J

Pr(i, j)w̄ij .

where w̄ij is a binary variable indicating whether patient i selected provider j in the observed dataset.
Using maximum likelihood estimation, we can estimate coefficients β = βs, βq, βl, βd. Note that
unlike linear regression, an exact analytical solution does not exist. As the utility function is concave
and non-decreasing, coefficients β can be estimated using a step-wise gradient ascent algorithm, e.g.,
such as the Newton-Raphson algorithm.

Having estimated utility values for each provider j ∈ J, we can now estimate patient utilities
Uip for plans p ∈ P supPc. We consider two influential factors in patient plan selection, namely,
network breadth and the charged premium. Similar to Ericson and Starc (2015), network breadth
is determined by the sum of positive utility values uij > 0 : j ∈ p. The utility of a plan p ∈ P ∪ Pc
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for patient i ∈ I can be calculated using any concave non-decreasing function such as:

Uip = βn

 ∑
j∈P:uij>0

uij

− βrrip + εip.

Coefficients βn, βr are estimated using the same procedure discussed above.
A utility function approach has several benefits in our framework. It generates a utility value

for all providers j ∈ J and not just the current chosen provider. A utility value is interpretable, in
that patients select the highest utility provider available to them, and are also reluctant to pick a
provider with negative utility. Furthermore, as the process of generating utility values is known, we
can determine the precise reasons why a patient i ∈ I has high or low utility for a provider j ∈ J
or a plan p ∈ P ∪ Pc. In particular, coefficients βn, βr allow us to analyze how the composition of
a plan and its charged premium affects patients. This information can be used, e.g., in insurance
plan design to target specific patient segments, as we do in our optimization framework.

On the other hand, a utility function may turn out to be an under-estimation of the complex
decision making mechanism of patients i ∈ I. The relationship between the different factors may not
be linear as imposed in the utility function, and there may be more important factors not considered
in its calculation. Furthermore, estimates of coefficients β are generally not optimal, and may lead
to inaccuracies in estimating the utility values. We evaluate the accuracy of the utility function
approach and its effects on the provider network selection problem in §5.5.
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5.B Proof of Theorem 5.5

Proof. The addition of a tuple (y0P, . . . , y|I|P, zP) to RMP, involves a price-out strategy for all
yip : i ∈ ĪP, the additions of |I| variables yiP, and variable zP to RMP. As sensitivity analyzes
is valid only for the change or addition of a single variable, we proceed by pricing-out variables
yip : i ∈ ĪP, and adding variables zP and yiP, ∀i ∈ I to RMP one by one. The overall change
in the objective of RMP by performing these steps gives the total reduced cost of adding tuple
(y0P, . . . , y|I|P, zP) to RMP. Without loss of generality, we first perform the price-out strategy, add
variable zP, and thereafter add variables yiP to RMP.

We recall that a price-out strategy performed for the addition of plan P to RMP, increases the
premiums rip, ∀p ∈ P̄ to ensure yip = 0,∀p ∈ P̄ by constraints (5.10). Pricing-out all patient i ∈ ĪP
thus decreases the objective (5.1) of RMP by∑

i∈ĪP

∑
p∈P̄

(rip − cip) ȳip.

A possible consequence of decreasing the revenue generated from offering plan p ∈ P̄ by∑
i∈ĪP

(rip − cip) ȳip, is that the total profit from plan p may become negative. That is,∑
i∈I

(rip − cip) ȳip −
∑
i∈ĪP

(rip − cip) ȳip −
∑
j∈J

fj x̄j =
∑

i∈I\ĪP
(rip − cip) ȳip −

∑
j∈J

fj x̄j < 0. Now, if for

a provider j ∈ J : x̄j = 1, the profit of all plans p ∈ P̄ : j ∈ Pp become negative, and we
have

∑
p∈P̄

zp > 1, then the optimal solution of RMP updated by the addition of plan P satisfies

xj = 0, zp = 0,∀p : j ∈ Pp. Consequently, the objective (5.1) is increased by the contract cost fj of
provider j, and decreased by the revenue of all remaining patients serviced by plan p. This changes
the objective value (5.1) by∑

j∈J
fj x̄j1{P⇒xj=0} −

∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

1{
∑
p∈P̄

zp>1}.

The overall change in objective (5.1) by performing a price-out strategy is thus

−
∑
i∈ĪP

∑
p∈P̄

(rip − cip) ȳip +

∑
j∈J

fj x̄j1{P⇒xj=0} −
∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

1{
∑
p∈P̄

zp>1}.

(5.33)

We next add variable zP toRMP, which involves adding new constraints (5.2) ∀j ∈ P, updating
constraint (5.3), and adding new constraints zP ≥ 0,∀i ∈ I (corresponding to constraints (5.7)
without variables yip) to RMP. Note that unlike traditional column generation where it is assumed
that an added variable takes a positive value, we add zP to RMP despite it possibly taking a zero
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value zP = 0 in RMP. This is because the addition of zp is only part of adding plan P to RMP,
and its reduced cost does not reflect its overall effect on RMP. The reduced cost of adding zP to
RMP is thus its final value in RMP multiplied by its objective coefficient 0 minus the sum of dual
values for all added and updated constraints, i.e.,0−

∑
j∈P

δjP − α−
∑
i∈I

λiP

 z̄P.

Here, δjP, α, and λiP are the dual values of constraints (5.2), (5.3), and (5.7), respectively. We
propose and prove the value for each dual value as follows.

(i) δjpz̄P = fj(1− x̄j)z̄P.

Assume x̄j = 1 in the solution of RMP. The addition of variable zP to RMP adds a new
constraint (5.2) of the form zP ≤ xj to RMP that enforces xj = 1 if zP = 1. If x̄j = 1

in the current solution of RMP the added constraint (5.2) is redundant and has dual value
δjP = fj(1− x̄j) = 0. On the other hand if x̄j = 0, the addition of the new constraint (5.2) to
RMP with variable zP = 1 incurs the contract cost of provider j, with dual value δjP = fj z̄P.
Combining both cases gives the statement.

(ii) αz̄P =

(∑
j∈J

fj x̄j1{P⇒xj=0} −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

)
1{

∑
p∈P̄

zp=1}.

To prove this statement, we first prove that α = max {0,
∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip}.

Assume first that
∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip < 0. It is thus profitable and optimal to

have zp = 1 for at least one p ∈ P̄ which also satisfies
∑
p∈P̄

zp ≥ 1 regardless of the restriction

imposed by constraint (5.3). Constraint (5.3) is thus redundant and has shadow price α = 0.

Now assume
∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip > 0. This implies that offering any plan p ∈ P̄

has negative profit, and it is optimal to offer exactly one plan p ∈ P̄ with minimum loss,
due to the restriction imposed by constraint (5.3). Constraint (5.3) is thus binding, and its
removal from RMP gives a solution xj = 0,∀j ∈ J and yip = 0,∀i ∈ I,∀p ∈ P̄ with objective
0. Therefore, we have α =

∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip. Combining both cases gives the

statement α = max {0,
∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip}.

It is now sufficient to prove that max {0,
∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip}z̄P =(∑
j∈J

fj x̄j1{P⇒xj=0} −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

)
1{

∑
p∈P̄

zp=1}. A value of z̄P = 0 im-

plies that the addition of variable zP has no effect on the current solution of RMP, i.e.,
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1{P⇒xj=0} = 1{P⇒zp=0} = 0. Therefore, given z̄P = 0, the equation holds with both
sides taking value 0. A value of z̄P = 1 implies that offering plan P which incurs a con-
tract cost of

∑
j∈P

fj with no revenue, is more beneficial than the current solution of RMP.

This occurs when the current objective of RMP is more costly than the cost of setting
zP = 1, i.e.,

∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip >
∑
j∈P

fj > 0. Moreover, when the objective

of RMP is negative we have
∑
p∈P̄

zp = 1, as discussed above. Therefore, the addition of vari-

able zP satisfies 1{P⇒xj=0} = 1{P⇒zp=0} = 1. Both sides of the equation thus take value∑
j∈J

fj x̄j −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip for the case where z̄P = 1, which concludes this part of the

proof.

(iii) λiP = 0.

The addition of variable zP to RMP adds new constraints (5.7) to RMP. However, as no
variable yiP is yet added to RMP, all constraints (5.7) are of the form zP ≥ 0, which are
redundant and have shadow price of zero.

Due to proofs (i)-(iii), we have the reduced cost of adding variable zP to RMP as∑
j∈J

fj x̄j1{P⇒xj=0} −
∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

1{
∑
p∈P̄

zp=1} + fj(1− x̄j)z̄P. (5.34)

We next add variables yiP,∀i ∈ I to RMP one by one. Note variables yiP are independent on
patients, in that the addition of one yiP does not affect the value of any other yi′P : i′ 6= i. We thus
propose and prove the reduced cost of variable yiP for a single patient i, and the remaining patients
follow analogously.

The addition of a variable yiP : i 6∈ ĪP to RMP has zero reduced cost, as it satisfies yiP = 0

due to constraints (5.10). The reduced cost of adding variable yiP : i ∈ ĪP to RMP is its objective
coefficient riP − ciP minus the sum of dual values for all updated constraints, i.e.,

riP − ciP − λiP − µi.

where µi are the dual variables associated to constraints (5.8). Note that due to the price-out
strategy, we have uiP > 0, uiP > uip, ∀i ∈ ĪP,∀p ∈ P ∪ Pc and thus variables yiP : i ∈ ĪP do not
update any of the constraints (5.10)-(5.12). We propose and prove the value for each shadow price
as follows.

(iv) λiP =
∑
j∈P

fj(1− x̄j)(1− z̄P).

Assume z̄P = 1, then adding variable yiP to its corresponding constraint (5.7) is equivalent to
adding redundant constraint yiP ≤ 1 to RMP, and has dual value of λiP = 0. On the other
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hand, if z̄P = 0, adding variable yiP = 1 to its corresponding constraint (5.7) sets zP = 1

and changes the objective of RMP by the reduced cost of zP, i.e.,
∑
j∈P

fj(1− x̄j). Combining

both cases gives the statement.

(v) µi = 0.

Due to the price-out strategy, patients i ∈ ĪP are priced-out of all plans p ∈ P̄ and are
currently served by a plan p ∈ Pc. Therefore, the addition of variable yiP to constraint (5.8),
which sets some yip : p ∈ Pc to zero and has no effect on the objective value (5.1). This
implies µi = 0.

Due to proofs (iv),(v), we have the reduced cost of variable yiP as

riP − ciP −
∑
j∈P

fj(1− x̄j)(1− z̄P). (5.35)

We can now determine the overall reduced cost of adding a tuple (y0P, . . . , y|I|P, zP) to RMP.
In particular, by (5.33)-(5.35), the sum of reduced costs of pricing out patients i ∈ ĪP, and adding
variables zP, yiP∀i ∈ I to RMP, gives the reduced cost of tuple (y0P, . . . , y|I|P, zP) as∑

i∈ĪP
(riP − ciP)−

∑
j∈P

fj(1− x̄j)(1− z̄P)−
∑
i∈ĪP

∑
p∈P̄

(rip − cip) ȳip +(∑
j∈J

fj x̄j1{P⇒xj=0} −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

)
1{

∑
p∈P̄

zp>1} +(∑
j∈J

fj x̄j1{P⇒xj=0} −
∑

i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}

)
1{

∑
p∈P̄

zp=1} + fj(1− x̄j)z̄P =

∑
i∈ĪP

(riP − CiP)−
∑
j∈P

fj(1− x̄j)−
∑
i∈ĪP

∑
p∈P̄

(rip − Cip) ȳip +
∑
j∈J

fj x̄j1{P⇒xj=0} −∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0}.

We lastly prove the converse, that if tuple (y0P, . . . , y|I|P, zP) has positive reduced cost, the
statement of the theorem holds. The statement gives the change in the objective function (5.1) if
plan P were to be offered to patients. As the tuple (y0P, . . . , y|I|P, zP) has positive reduced cost, its
addition to RMP must increase its objective and thus∑

i∈ĪP
(riP − CiP)−

∑
j∈P

fj(1− x̄j)−
∑
i∈ĪP

∑
p∈P̄

(rip − Cip) ȳip +
∑
j∈J

fj x̄j1{P⇒xj=0} −∑
i∈I\ĪP

∑
p∈P̄

(rip − Cip) ȳip1{P⇒zp=0} > 0

.
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5.C Generating Patients and Providers

A patient i ∈ I is identified by its demographics, healthcare history, and coefficients β of the utility
function denoting his/her internal preference. Patients demographics include age, gender, location of
residence, expected interest in healthcare quality, overall frequency of healthcare visits, and loyalty
to the insurer or its competitor. Patients healthcare history includes the types of healthcare services
the patient received and their frequency.

Table 5.6: Patient demographic classes, labels, and classification probability thresholds.

Demographic Class Class label Probability threshold

Age [[0− 20), [20− 30), [30− 40), [40− 50), [50− 60), [60− 70), [70,∞)] [1, . . . , 7] (25,39,52,65,78,89,100)
Gender [Male, Female] [1,2] (50,100)
Location [Central,North,East,West,South] [1,2,3,4,5] (20,40,60,80,100)
Quality [Low, High] [1,2] (30,100)
Frequency [Low, Medium, High] [1,2,3] (20,80,100)
Loyalty [Insurer, Competitor] [1,2] (50,100)

Patient demographics are generated according Table 5.6, where the second column gives the
classifications, the third column gives a numerical label for each class, and the last column gives
the probability thresholds (Pr1, . . . ,Prk) used to classify a random probability into each class.
For example, patient age is categorized into six categories of [[0 − 20), [20 − 30), [30 − 40), [40 −
50), [50−60), [60−70), [70,∞)], labeled [1, . . . , 7], and classified according to probability thresholds
(25, 39, 52, 65, 78, 89, 100). To classify a patient into an age class [1, . . . , 7], we generate a random
probability Pr according to a uniform distribution Pr = unif{0, 100} and classify it into class k∗

such that Prk∗ is the minimum probability threshold that satisfies Pr ≤ Prk∗ . Wherever possible,
probability thresholds are generate using real data from the demographics of the United State’s
population, e.g., in the case of age distribution.

The frequency of healthcare services received by a patient i ∈ I primarily depends on patient i’s
age, and a random frequency class of healthcare visits that may be low, medium, or high according
to Table 5.6. The total frequency of each patient is calculated based on the functions given in Table

Table 5.7: Frequency of healthcare visits by patient age and frequency.

Frequency class
Age Class

1 2 3 4 5 6 7

Low [0,...,1] [0,...,2] [0,...,3] [0,...,4] [0,...,5] [0,...,6] [0,...,7]
Medium [3,...,7] [3,...,8] [3,...,9] [3,...,10] [3,...,11] [3,...,12] [3,...,13]
High [6,...,14] [6,...,15] [6,...,16] [6,...,17] [6,...,18] [6,...,19] [6,...,20]
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Table 5.8: Class of healthcare services for categories of patients.

Patient Category Types of healthcare services Probability threshold

Younger Male [Emergency services, Primary care, Ancillary, Surgical, Children’s, Specialty] (10,60,70,80,90,100)
Younger Female [Emergency services, Primary care, Ancillary, Surgical, Women’s, Children’s, Specialty] (10,40,50,60,80,90,100)
Older Male [Emergency services, Primary care, Ancillary, Surgical, Specialty] (20,50,70,80,100)
Older Female [Emergency services, Primary care, Ancillary, Surgical, Women’s, Children’s, Specialty] (20,50,70,80,100)

Table 5.9: Patient coefficients for utility generation.

Coefficient Probability distribution

βd unif{2, 10}
βq unif{1.2, 2.8} + 1qi≥1

βl unif{0.2, 2}
βs unif{1, 10}
βn unif{1, 10}
βr unif{0.25, 2.5− βn/4}

5.7. As shown in Table 5.7, older patients are modelled to have higher frequency of healthcare visits.
The types of healthcare services received by each patient depends on the patient’s age and

gender, as shown in Table 5.8. The first column of Table 5.8 gives the possible class of services for
each category of patients, and the second column gives the probability threshold used in classifying
a healthcare visits. Lastly, the coefficients of the utility function theory are generated randomly
according to the probability thresholds given in Table 5.9.

We now discuss the generation of providers j ∈ J. A provider j ∈ J is identified by its character-
istics including location, affiliation to the insurer or its competitor, overall quality of its healthcare
services, the types of healthcare services it offers to patients, and its minimum annual cost of con-
tract for the insurer and its competitor. The provider characteristics are generated according to
Table 5.10. We assume that a provider j ∈ J affiliated with an insurer charges the competitor a
20% higher contract fee fj .

As the final step, the types of services offered by a provider j ∈ j are generated independently

Table 5.10: Provider characteristics and probability thresholds.

Characteristic Class Class label Probability threshold

Location [Central,North,East,West,South] [1,2,3,4,5] (20,40,60,80,100)
Affiliation [Insurer, Competitor] [1,2] (50,100)
Quality [Low, Medium, High] [1,2,3] (33,66,100)
Frequency [Low, Medium, High] [1,2,3] (20,80,100)
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Table 5.11: Provider services and probability thresholds.

Type of service Probability that provider provides service

Emergency services 20%
Primary care physician 70%

Ancillary services 30%
Surgical services 30%
Women’s hospital 10%
Children’s hospital 10%
Specialty services 30%

as binary values according to the probability thresholds given in Table 5.11.
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Chapter 6

Conclusion

Interpretable machine learning is a powerful tool for data-driven decision making. This dissertation
studied algorithms and applications of interpretable learning, with an emphasis on pattern mining
algorithms and data-driven applications. Our focus was on developing interpretable, accurate,
and scalable algorithms, with the final goal of accommodating large-size real-world problems in
management science.

We contributed to the multiple sequence alignment problem by developing a novel exact solution
algorithm that improves both the scalability and accuracy of results generated in the literature.
Our algorithm is the first to model and solve multiple sequence alignment in polynomial space
requirements in the size of the problem. We further close 37 out of 51 benchmark instances to
optimality for the first time, and significantly increase the accuracy of alignments in the remaining
instances.

We contributed to Constraint-based Sequential Pattern mining, by developing a novel algorithm
which is able to handle complex constraints over the mined patterns. We showed that our algorithm
is scalable both in time and space, and provides a concise set of patterns that are better fit for
decision making tasks. While our algorithm is primarily designed to focus on complex constraint
satisfaction, we showed that it remains competitive with algorithms tailored to handle more simple
constraint. We solved instances with up to 10 million data entries, increasing the size of instances
solved in the literature by an order of magnitude.

We next developed an interpretable data-driven decision making framework using pattern min-
ing. As our first contribution we developed novel methodologies and models to accommodate large
size datasets in pattern mining, which common in the practice of management. We then showed
how pattern mining can be used to mine knowledge for sequential decision making tasks. Our
approach focused on generating interpretable explanations with statistical guarantees for the occur-
rence of outcomes that are of interest to the practitioner. We showed how such explanations are
generated, statistically guaranteed by hypothesis tests, and aggregated into a knowledge tree for an
interpretable and visual decision support tool for decision making.
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We applied our methodology to two large-size problems in marketing and finance. While the
pattern mining algorithms in the literature are limited to datasets with at most millions of data
entries, we showed that our methodology scales up to three billion data entries. We used this
capability to generate interpretable explanations for user skips in online music streaming platforms,
and evaluated the role of technical analysis in the stock market. We showed that by using an
average number of 6,400 patterns, we can explain 100% of approximately 1.1 billion user skips in
our marketing application. On the other hand, despite novel pattern mining techniques to find
hidden patterns in data, we showed that technical analysis in the stock market is generally not
sufficient for investment decision making.

As our final contribution, we focused on the provider network selection model in insurance
plan design. We developed a novel solution methodology based on a simultaneous multi-column-
and-row generation algorithm and interpretable learning of patient behavior. We showed that our
algorithm significantly increases solution quality for the insurer compared to individual provider
selection strategies used in the literature. Moreover, we showed that inaccuracies in predicting
patient behavior using the utility function approach of the literature considerably decreases solution
quality in the provider network selection model.

The contributions of this dissertation show how techniques from optimization and mathemati-
cal programming can benefit interpretable learning methodologies in accuracy and scalability. In-
terpretable learning algorithms such as pattern mining are, however, still faced by challenges in
prediction accuracy.

In the multiple sequence alignment problem, the scalability of exact algorithms is still far be-
low the requirements of their application, and the accuracy of heuristic learners is far below the
optimal solution. Therefore, exact algorithms for sequence alignment remain highly desirable. In
pattern mining, we showed the power that interpretability brings in solving real-life applications in
management science. Numerous unexplored applications exist, e.g., in healthcare and clinical trials,
where interpretability is critical for decision making while no such algorithm exists for knowledge
discovery. Another interesting line of future work for pattern mining is to integrate the inter-
pretability provided by sequential patterns into accurate learning models. This may benefit both
the accuracy of prediction in supervised learners, while maintaining the interpretability provided
by sequential patterns. Similarly, an integration of interpretable and supervised algorithms may
increase the prediction accuracy for the provider network selection problem. Our results show that
despite the attractiveness of the utility function approach, its results are often not accurate enough
for the provider network selection problem. This motivates the need to design and integrate a more
accurate predictor of patient choice in order to achieve optimal provider network design.
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