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Abstract

This dissertation studies the integrality gap of linear programming relaxations of

integer programs. The integrality gap of a continuous relaxation of the sets of lattice

points corresponding to integer feasible solutions is the worst case ratio between the cost

of an integer feasible solution and the optimal value of the continuous relaxation.

The main focus in the first part of the thesis is on the Traveling Salesperson Problem

(TSP) and the 2-edge-connected multigraph problem (2ECM). In TSP and 2ECM we

are given n vertices with costs on pairs of vertices. We consider cost functions obeying

triangle inequality. In TSP the goal is to find the minimum cost Hamiltonian cycle and

in the 2ECM the goal is to find the minimum cost 2-edge-connected subgraph.

Both problems can be formulated via a linear programming relaxation known as the

subtour elimination relaxation. The most general case for TSP and 2ECM has resisted

approximation algorithms (and upper bounds on the integrality gap with the subtour

elimination relaxation) better than 3
2 for decades.

In Chapter 3 we consider TSP and 2ECM on node-weighted graphs. These are

instances where the cost on the pairs of vertices arise from a shortest path between

the pair in a node-weighted graph, a graph with edge weights arising from adding the

costs of its endpoints. First we show that for 3-edge-connected cubic graphs, there is

a 7
5 -approximation algorithm for the node-weighted TSP and a 13

10 -approximation for

the node-weighted 2ECM. The main tool for both algorithms is the fact that 3-edge-

connected cubic graphs contain 2-factors covering all their small edge cuts. We extend

this result to subcubic graphs by providing a decomposition of a point of the subtour

elimination relaxation into a convex combination of connected multigraphs, each covering

2-edge cuts an even number of times. An application of this decomposition leads to a
17
12 -approximation algorithm for node-weighted 2ECM on subcubic graphs.

Chapter 4 focuses on the Uniform Cover Problem for TSP and 2ECM. We establish

this framework as a way to approach the most general case of TSP and 2ECM. As

a first result, we give the first positive answer to Sebő et al. [SBS14] regarding the

uniform cover problem for TSP by showing that for a 3-edge-connected cubic graph, the

incidence vector of G multiplied by 18/19 can be decomposed into a convex combination

of solutions for the TSP: this is equivalent to a 27
19 -approximation for TSP on such

instances. We also provide a 45
34 -approximation for 2ECM on such instances. This is the

first bound below 4
3 that can be proved via an efficient rounding algorithm. Improving

this factor further requires a technique commonly known as “gluing”. We show how

gluing on 3-edge cuts reduces our problems to more structured instances. For such

structured instances we use a novel application of a rainbow 1-tree decomposition that

serves a top-down coloring algorithm in order to improve the factor of 45
34 ≈ 1.323 to

123
94 ≈ 1.308.

In Chapter 5 our focus is on half-integer points of the subtour elimination relaxation

motivated by the conjecture of Schalekamp, Williamson, van Zuylen [SWvZ13] that the

largest integrality gap is achieved for instances where the optimal solution of the subtour

elimination relaxation is half-integer. Our focus is on fundamental classes that are a
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class of interesting yet highly structured points in the subtour elimination relaxation.

In particular, we study half-square points and half-triangle points. For half-square

points we provide a 9
7 -approximation for 2ECM and for half-triangle points we show a

( 6
5 + 1

120 )-approximation for 2ECM.

In Chapter 6 we investigate the possibility of gluing the solutions for TSP over 3-edge

cuts. Gluing over 3-edge cuts has proven to be successful for 2-edge-connected subgraphs

but there is not much known in this direction for gluing connected multigraphs. We

introduce a novel approach of gluing solutions to the TSP based on different parts of

a tour: (i) the connected skeleton of a solution which is a connected subgraph and (ii)

the parity correction part of the solution that augments the connected skeleton into an

Eulerian connected multigraph. Using this approach we show that for a half-integer

point x of the subtour elimination relaxation, we can reduce the usage of edges with

x-value 1 from the 3
2 of Christofides’ algorithm to 3

2 −
1
20 while keeping the usage of

edges with x-value of 1
2 the same as Christofides’ algorithm. A direct consequence

of this result is for the Uniform Cover Problem for TSP, where we show that for a

3-edge-connected cubic graph, the incidence vector of G multiplied by 17/18 can be

decomposed into a convex combination of solutions for the TSP: In this way we improve

the 27
19 -approximation algorithm in Chapter 4 to a 17

12 -approximation algorithm for TSP

on these instances.

In the final chapter of this thesis, we focus on general binary integer programs (binary

IPs) and show an efficient algorithm, called the Fractional Decomposition Tree Algorithm

(FDT), that provides an upper bound on the integrality gap of an instance of a binary

IP with its linear programming relaxation. As a stepping stone, we design an efficient

algorithm for finding a feasible integer solution to binary IPs with bounded integrality

gap which may be of independent interest. We extend FDT to find convex combinations

of 2-edge-connected multigraphs which is a non-binary problem. We run experiments and

compare upper bounds provided by FDT with that of polyhedral version of Christofides’

algorithm.
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g(I) maxc≥0
zIP (I,c)
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G[U ] Subgraph of G induced by vertex set U
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Hx Set of half-edges of a half-cyclic point x
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Kn The graph ([n], En)
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S(A, b) {x ∈ Zn : Ax ≥ b}
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⋃
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zG min{cx : x ∈ Subtour(G)}
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2ECM 2-edge-connected Multigraph Problem
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fundamental class for TSP A subset of points X in the subtour elimination polytope
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Graph-TSP Graphical Traveling Salesperson Problem

half-cycle point A cyclic point where all edges with fractional values have value 1
2

half-edge An edge in a cyclic point with value 1
2
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Chapter 1

Introduction

In combinatorial optimization the aim is to find the optimal solution in a discrete and usually

finite yet large set of solutions. For many specific combinatorial optimization problems such

a solution can be found efficiently. For many others, finding optimal or in many cases near

optimal solutions is NP-hard. A common approach to deal with such problems is relaxing

the discrete solution set into a continuous set, where the optimization problem becomes

tractable. Obtaining feasible solutions by means of such a relaxation requires an additional

step of rounding the potentially fractional solution of the continuous relaxation into integer

solutions.

In this dissertation, our focus is on linear relaxation of combinatorial optimization

problems. Combinatorial optimization was pioneered by Edmonds even before efficient

algorithms for solving linear programming problems where introduced by Khachiyan [Kha80]

and later by Karmarkar [Kar84]. For problems such as the Minimum Cost Spanning Tree

Problem there are linear programming relaxations whose basic feasible solutions coincide

with integral solutions, i.e. spanning trees. For other problems the value of the linear

programming relaxation provides a bound (lower bound for a minimization problem and

upper bound for a maximization problem) on the optimal solution. A common and successful

approach is to round these (potentially) fractional solutions into integer solutions for the

combinatorial optimization problem at hand. The Integrality gap of a linear relaxation of

an integer programming problem is the worst case ratio between the objective values of the

discrete problem and the continuous problem. Equivalently, the integrality gap of the linear

programming relaxation is a limit to the rounding approach: rounding a fractional solution

into an integer solution incurs a multiplicative cost proportional to the integrality gap. In

this dissertation we study integrality gaps for different combinatorial optimization problems

and introduce new rounding algorithms that imply bounds on their respective integrality

gaps.
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1.1 Integrality Gap

Let S denote the set of feasible solutions to a combinatorial optimization problem. For

instance, for many problems in network optimization, set S is a subset of {0, 1}n where each

coordinate of a point in S indicates the absence or presence of the corresponding edge in a

solution, and n is the number of edges in the network. Suppose set S can be described as

S = {x ∈ Zn : Ax ≥ b, x ≥ 0} for some A ∈ Rm×n and b ∈ Rm. (Pure) Integer Programming

(IP) asks for minx∈S cx for some c ∈ Rn. Integer programming is NP-hard and in fact, it

is even NP-complete to decide whether set S is empty or not [GJ90]. The convex hull of

S denoted by conv(S) is the minimal convex set containing S and can be formulated as

follows.

conv(S) = {
k∑
i=1

λix
i : xi ∈ S for i = 1, . . . , k, λi ≥ 0 for i = 1, . . . , k, and

k∑
i=1

λi = 1}.

A fundamental fact in polyhedral theory is that minc∈S S = minc∈S conv(S). Notice that

conv(S) is a polyhedron and optimizing a linear function subject to the points lying in a

polyhedron can be done in polynomial time in the number of variables and constraints in

the description of conv(S). Such a description, however, might have exponential size in the

description of set S.

A natural way to bound the solution to the integer program minx∈S cx is to relax

the integrality constraints. Let L = {x ∈ Rn : Ax ≥ b, x ≥ 0}. Contrary to integer

programming, the optimal solution to minx∈L cx can be efficiently found. Set L is called the

linear programming relaxation of S. Since we relaxed the integrality requirement on x, we

have

min
x∈L

cx ≤ min
x∈S

cx. (1.1)

For most relevant applications and for the entirety of this dissertation we assume c is a

non-negative vector and c 6= 0, i.e. c has a positive value in at least one coordinate. Following

this assumption we can rewrite (1.1) as

minx∈S cx

minx∈L cx
≥ 1. (1.2)

Since we are concerned with the worst-case analysis, we consider

g = max
c∈Rn≥0

minx∈S cx

minx∈L cx
. (1.3)
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If g = 1, we say that the linear programming formulation is a perfect formulation.

Otherwise we have g > 1. In this case, we cannot hope to achieve an integer solution with

cost lower than (g − ε) · (minx∈L cx), for any constant ε > 0. Thus, a lower bound on g

provide a certificate for impossibility of approximation via the linear relaxation for which

the gap is g. On the other hand, an upper bound of α for g is often accompanied with an

α-approximation algorithm. This is not always the case, as we will later discuss in details.

We refer to g as the integrality gap of the linear relaxation. For a polyhedron P ∈ Rn

let dominant of P be {x ∈ Rn : ∃y ∈ P : x ≥ y} and denote it by D(P ). Goemans

[Goe95] gave a characterization of integrality gap based on convex combinations when

conv(S) = D(conv(S)). Carr and Vempala [CV04] generalized this characterization.

Theorem 1.1 ([CV04]). Let S = {x ∈ Zn : Ax ≥ 0, x ≥ 0}, and L = {x ∈ Rn : Ax ≥
0, x ≥ 0} be the linear relaxation of S. Then

max
c∈Rn≥0

minx∈S cx

minx∈L cx
= min{α : α · x ∈ D(conv(S)) for all x ∈ L}.

A polynomial time algorithm for proving an upper bound on integrality gap is called an

LP-based approximation algorithm. For many well studied problems, we still do not know

the exact integrality gap and the gap between the best known lower bound and the upper

bound on the integrality gap are open. In some cases, there are known upper bounds, yet

there is no known approximation algorithm, meaning that the proofs do not yield polynomial

time algorithms.

In this dissertation we provide new bounds on the integrality gap for some of these

problems in their interesting special cases (i.e. interesting cost vectors c). We also find

polynomial time proofs of upper bounds on integrality gap for cases that are known to have

a lower gap, but for which no approximation algorithm is known.

Our focus is mainly on network design problems, namely the Traveling Salesperson

Problem (TSP), and 2-edge-connected Subgraph Problem (2ECS). However, we

use various polyhedral results in connection with b-matching, spanning trees, 1-trees, and

tree augmentation. These network design problems serve as canonical problems for the

problems in the field of approximation algorithms. In fact, the development of the field of a

combinatorial optimization has been around theoretical and practical study of the Traveling

Salesperson Problem and its linear programming relaxation. The massive success that we

enjoy today with the commercial mixed integer programming solvers is in part due to the

study of cutting planes which was started for the TSP.
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Our focus in this thesis is to provide rounding approaches for different types of fractional

points for different optimization problems. Let us describe our main problems in more detail

to establish the plan in this dissertation.

1.2 Traveling Salesperson Problem

In the Traveling Salesperson Problem (TSP) we are given a integer n ≥ 3 as the

number of vertices and a non-negative cost vector c defined on the edges of the complete

graph Kn = (Vn = {1, . . . , n}, En =
({1,...,n}

2

)
). So we have c ∈ REn≥0 .1 We wish to find the

minimum cost Hamiltonian cycle of graph Kn with respect to costs c. This problem is

NP-hard and it is NP-hard to approximate within any constant factor [WS11]. A natural

assumption is that the cost vector c is metric: cij + cjk ≥ cik for i, j, k ∈ Vn. This special

case of TSP is called metric TSP. Metric TSP is NP-hard [GJ90]. In fact, metric TSP is

APX-hard and NP-hard to approximate with a ratio better than 220/219 [PV06].

Since we never deal with non-metric TSP in this thesis, we henceforth refer to metric

TSP by TSP. The integer programming relaxation for the TSP was introduced by Dantzig,

Fulkerson and Johnson [DFJ54]. Their formulation used a different notation but it essentially

had the following form.

min{cx :
∑

j∈Vn\{i}

xij = 2 for i ∈ Vn,
∑

i∈U,j /∈U

xij ≥ 2 for ∅ ⊂ U ⊂ Vn, x ∈ {0, 1}En}

It is easy to see that the solution to the IP above is the minimum cost Hamiltonian cycle

of Kn. In fact, the convex hull of feasible solutions of the IP above is the convex hull of

incidence vectors of Hamiltonian cycles of G. We denote this convex hull by Hamilton(n).

Relaxing the integer constraints on x in the formulation above we obtain the famous Subtour

Elimination Relaxation for the TSP.

min{cx :
∑

j∈Vn\{i}

xij = 2 for i ∈ Vn,
∑

i∈U,j /∈U

xij ≥ 2 for ∅ ⊂ U ⊂ Vn, x ∈ [0, 1]En}

We denote by SEP(n) the feasible region of the linear programming relaxation above. The

integrality gap of the subtour elimination relaxation for the TSP is hence defined as

g(TSP) = max{
minx∈Hamilton(n) c · x

minx∈SEP(n) c · x
: n ∈ Z≥3, c ∈ REn≥0 , c is metric}.

The following well-known example provides a lower bound of 4
3 on g(TSP) (See Figure 1.1).

1We use Rp≥0 to denote {x ∈ Rp, x ≥ 0, x 6= 0}
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As for upper bounds, a polyhedral analysis of the classical algorithm of Christofides’ proves

. . .

. . .

. . .

Figure 1.1: In the figure above each of the three paths contain t vertices, hence the instance
has 3t vertices. We define ct ∈ RE3t

≥0 as follows: for each edge ij depicted in the figure we have
ctij = 1. For edge ij not depicted above, ctij is the length shortest path between the endpoints

of ij in the graph above. Clearly, ct is metric. Define vector xt to be such that xtij = 1
2 for

each dashed edge ij, xtij = 1 for each solid edge ij, and xtij = 0 for each edge ij not depicted
in the figure. Note that xt ∈ SEP(3t), and ctxt = 3t. On the other hand, any Hamiltonian

cycle of K3t has cost at least 4t− 2. Thus, limt→∞
minx∈Hamilton(3t) c

t·x
minx∈SEP(3t) c

t·x = limt→∞
4t−2

3t = 4
3 .

g(TSP) ≤ 3
2 , as well as providing a 3

2 -approximation algorithm for the TSP [Chr76, Wol80].

Before discussing this result we need a few definitions and some key observations.

Let G = (V,E) be a graph. For a subset U of vertices δ(U) = {uv ∈ E : u ∈ U, v /∈ U}.
For a vector x ∈ RE and subset F of edges we denote

∑
e∈F xe by x(F ). A multi-subset

(henceforth multiset for brevity) of edges of E, is a set that can contain multiple copies of

edges in E.

Definition 1.2. Let G = (V,E) be a graph. A multi-subgraph (henceforth multigraph of G

for brevity) of G is the graph with vertex set V with edge set specified by a multiset of E, i.e.

a multigraph can contain multiple copies of each edge in G.

When graph G is clear from the context, we might treat a multigraph F as a multiset of

edges of G, or treat a multiset F as a multigraph of G.

Definition 1.3. Let G = (V,E) be a graph and F be a multigraph of G. The incidence

vector of F , denoted by χF is a vector in RE where χFe is the number of copies of edge e

contained in F .

Since we are working with multiset of edges, we need to establish the multiset notation.

Let F and F ′ be two multigraphs of G = (V,E). Then F + F ′ is the multigraph that

contains χFe +χF
′

e copies of edge e for e ∈ E. When we say
∑

e∈F f(e) we consider the edges

that have multiple copies, so the contribution of edge e to the summation is χFe · f(e). For a

multigraph F , let c(F ) = c(χF ).

Definition 1.4. Let G = (V,E) be a graph and F be a multigraph of G. We say F is

connected if χF (δ(U)) > 0 for ∅ ⊂ U ⊂ V .

Observe that by the definition above a connected multigraph of G is also spanning since

it is connected on the vertex set of G.
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Definition 1.5. Let G = (V,E) be a graph and F be a multigraph of G. We say F is

k-edge-connected if χF (δ(U)) ≥ k for ∅ ⊂ U ⊂ V .

Definition 1.6. Let G = (V,E) be a graph and F be a multigraph of G. We say F is

Eulerian if χF (δ(v)) is even for all v ∈ V .

Definition 1.7. Let G = (V,E) be a graph. A tour F of G is a multigraph of G that is

connected and Eulerian.

The next key observation follows from the fact that c obeys the triangle inequality.

Observation 1.8. Consider integer n ≥ 3. Let c ∈ REn≥0 be a metric cost vector. For any

tour F of Kn, there is a Hamiltonian cycle H of Kn such that c(H) ≤ c(F ). Moreover,

given F we can find H in time polynomial in n.

Proof. We proceed with proof by contradiction. However, it is easy to see the efficient

algorithm implied by this proof.

Let F be the collection of all tours of Kn such that c(F ′) ≤ c(F ) for F ′ ∈ F . Among

all the graphs in F , choose F ′ to be the one with the minimum number of edges. If F ′ is

a Hamiltonian cycle of Kn, we are done. Otherwise, there is a vertex i ∈ Vn such that F ′

has at least four edges with i as one endpoint. Let ij1, ij2, ij3, and ij4 be first four edges

incident on i in the order they are traversed by the Euler tour defined by F ′ on Kn. Notice

that F ′′ = F ′ − {ij3, ij4}+ {i3i4} is Eulerian and connected and has fewer edges than F ′.

Also

c(F ′′) = c(F ′)− cij3 − cij4 + cj3j4 ≤ c(F ′).

Therefore, F ′′ ∈ F . This is a contradiction to the choice of F ′.

For a graph G, let TSP(G) be the convex hull of incidence vectors of tours of G.

Observation 1.8 implies that minx∈Hamilton(n) c · x = minx∈TSP(Kn) c · x. As a consequence

we can define g(TSP) in the following equivalent form.

g(TSP) = max{
minx∈TSP(Kn) c · x
minx∈SEP(n) c · x

: n ≥ 3, c ∈ REn≥0}. (1.4)

Note that, the above definition does not require c to obey triangle inequality. This

follows from the fact that for any pair i, j such that cij > cik + ckj for some k ∈ Vn, any tour

F of Kn that contains ij can be transformed to multigraph F ′ = F − {ij}+ {ik, kj}. Note

that F ′ is also a tour of Kn (this is not true for Hamiltonian cycles). Inspired by Theorem

1.1 we can give yet another equivalent definition for g(TSP).

g(TSP) = min{α : α · x ∈ D(TSP(Kn)) : n ≥ 3 and for all x ∈ SEP(n)}. (1.5)
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We can further simplify (1.5) by using the following observation first made in [CV04].

Observation 1.9. Let G = (V,E) be a graph. We have D(TSP(G)) = TSP(G).

Proof. It is trivial that TSP(G) ⊆ D(TSP(G)). Thus, we only need to show thatD(TSP(G)) ⊆
TSP(G). Consider y ∈ D(TSP(G)). By definition there is x ∈ TSP(G) such that y = x+ z,

z ∈ RE≥0. We have x =
∑k

i=1 λiχ
Fi where Fi is a tour of G for i = 1, . . . , k, λi ≥ 0 for

i = 1, . . . , k, and
∑k

i=1 λi = 1. For each edge e ∈ E, we can assume ze = 2t+ 2f , where t is

a non-negative integer and 0 ≤ f < 1. Add 2t copies of edge e to all the tours F1, . . . , Fk.

Next, take tours F1, . . . , F` such that
∑`

i=1 λi = f . Note that we can assume without loss

of generality that ` exists as otherwise we could let ` be the index for which
∑`−1

i=1 λi < f

and
∑`

i=1 λi > f an split λ` into λ1
` = f −

∑`−1
i=1 λi and λ2

` = λ` − λ1
` . Now, add two copies

of e to F1, . . . , F`. Observe that
∑k

i=1 λiχ
Fi after the transformation would increase by

2t + 2f = ze. Also, since we only add doubled edges, F1, . . . , Fk all remain tours of Kn.

Repeating this process for e ∈ E with ze > 0, we can show that x+ z ∈ TSP(G). Therefore,

D(TSP(G)) ⊆ TSP(G).

Based on Observation 1.9 we have

g(TSP) = min{α : α · x ∈ TSP(Kn) for all n ≥ 3 and for all x ∈ SEP(n)}. (1.6)

Notice that in the definition above if for some i, j ∈ Vn we have xij = 0, then if

α · x ∈ TSP(Kn) for some α, when writing α · x as a convex combination of tours of Kn,

none of the tours can contain edge ij of Kn. This motivates the definition of support of a

solution. For a vector x ∈ REn≥0 , let Gx be the subgraph of Kn induced by the set of edges

Ex = {e : xe > 0}. We might also abuse notation and treat x as a vector in REx , which

corresponds to the non-zero coordinates of x. For a graph G = (V,E) define

SEP(G) = {x ∈ [0, 1]E : x(δ(v)) = 2 for v ∈ V, x(δ(U)) ≥ 2 for ∅ ⊂ U ⊂ V }. (1.7)

Note that SEP(Kn) = SEP(n). We have

min{cx : x ∈ SEP(|V (Gx)|)} = min{
∑
e∈Ex

cexe : x ∈ SEP(Gx)}. (1.8)

Hence, we give an alternative definition for g(TSP) as follows.

g(TSP) = min{α : α · x ∈ TSP(Gx) for all x ∈ SEP(Gx)}. (1.9)

We mostly work with this definition of integrality gap. Note that the 4
3 lower bound on

g(TSP) that was illustrated in Figure 1.1 can be interpreted as follows: for any constant
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ε > 0, there is a vector x with Gx = (V,Ex) such that x ∈ SEP(Gx) and (4
3−ε)x /∈ TSP(Gx).

Theorem 1.10 (Polyhedral proof of Christofides’ algorithm [Chr76, Wol80]). If x ∈
SEP(Gx), then 3

2x ∈ TSP(Gx).

We prove Theorem 1.10 later in Section 2.4 of Chapter 3. After more than four decades,

there is no result that shows for all x ∈ SEP(Gx), the vector (3
2 − ε)x ∈ TSP(Gx) for some

constant ε > 0. Motivated by the lower bound presented in Figure 1.1 the following has

been conjectured and is wide open.

Conjecture 1 (The four-thirds conjecture). If x ∈ SEP(Gx), then 4
3x ∈ TSP(Gx).

Despite the lack of progress towards resolution of Conjecture 1, there has been great

success in providing new bounds on g(TSP) for special cases in the past decade.

In the remainder of this section we present the well-studied special cases where the

existence of upper bounds better than 3
2 have been investigated.

1.2.1 Graphical Traveling Salesperson Problem

In Graphical Traveling Salesperson Problem (Graph-TSP) we are given a connected

graph G = (V,E). Then, define c ∈ R(V2) as follows: for u, v ∈ V , let cuv be the shortest

path between u and v in G. Such a cost vector is called the shortest path metric of graph

G. The goal is to find the integrality gap restricted to x ∈ SEP(|V |) optimizing such cost

vectors:

g(Graph-TSP) = max{
minx∈TSP(K|V |) c · x
minx∈SEP(|V |) c · x

: c is the shortest path metric of a graph G}.

(1.10)

Consider a graph G = (V,E) with c ∈ RE≥0, we can define cmet ∈ R(V2)
≥0 as follows:

cmete is the minimum cost path between the endpoints of e in graph G with respect to c.

Cunningham (see [MMP90, GB93]) showed that the degree constraints are redundant for

in SEP(n) on such cost functions. This is referred to as the parsimonious property of the

subtour elimination relaxation [GB93].

min{cmetx : x ∈ SEP(|V |)} = min{cx : x(δ(U)) ≥ 2 for ∅ ⊂ U ⊂ V, x ∈ RE≥0}.

This motivates us to define the following polyhedron.

Subtour(G) = {x ∈ RE≥0 : x(δ(U)) ≥ 2 for ∅ ⊂ U ⊂ V }. (1.11)
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Based on the result of Cunningham presented above we have an equivalent formulation for

g(Graph-TSP).

g(Graph-TSP) = max{
minx∈TSP(G)

∑
e∈E xe

minx∈Subtour(G)

∑
e∈E xe

: G = (V,E)}. (1.12)

The has been considerable effort in bounding g(Graph-TSP). The first improvement

was due to Gamarnik et al [GLS05] who proved g(Graph-TSP) is at most (3
2 −

5
389) when

restricted to 3-edge-connected cubic graphs. After a series of papers, Sebő and Vygen [SV14]

proved that g(Graph-TSP) is at most 7
5 . Notice that the example in Figure 1.1 is indeed an

instance of Graph-TSP, hence 4
3 ≤ g(Graph-TSP) ≤ 7

5 . Furthermore, the example in Figure

1.1 comes from an instance of Graph-TSP where the input graph is subcubic. Mömke and

Svensson [MS16] proved that the integrality gap for Graph-TSP when restricted to subcubic

graphs is at most 4
3 closing the gap between the upper bound and the lower bound in this

case. We will review the results for Graph-TSP in more details in Chapter 3.

The study of Graph-TSP for subclass of cubic and subcubic graphs has also received

considerable attention in the quest of finding shorter tours (closer to Hamiltonian cycle)

beyond the lower bound on integrality gap of 4
3 . We discuss the extensive line of work in

this area in Chapter 3.

1.2.2 Node-weighted Traveling Salesperson Problem

Similar to Graph-TSP, in Node-weighted Traveling Salesperson Problem (NW-

TSP) we are given a graph G = (V,E). In addition, we are given a node-weight vector

f ∈ RV≥0. In NW-TSP the goal is to find the integrality gap of TSP over cost vectors that

arise from the shortest path of node-weighted graphs. More formally

g(NW-TSP) = max{
minx∈TSP(G)

∑
v∈V fvx(δ(v))

minx∈Subtour(G)

∑
v∈V fvx(δ(v))

: G = (V,E), f ∈ RV≥0}.

Node induced costs have been suggested as a bridge between graphical cost vectors and

general cost vectors for connectivity problems [Fra90, Sve15]. Observe that Graph-TSP is a

special case of NW-TSP, when fv = 1 for v ∈ V .

1.2.3 The Uniform Cover Problem for TSP

In contrast to Graph-TSP and NW-TSP where the focus is on an explicit restriction on

the cost vector, in the Uniform Cover Problem for TSP we consider special types of

solutions to the subtour elimination relaxation. Let us illustrate this more formally with the

following proposition that was first made by Carr and Vempala [CV04]. For a vector x ∈ REn ,
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let Gx = (Vn, Ex) be the graph induced on Kn by the edges Ex = {e ∈ En : xe > 0}. Recall

that graph Gx is called the support of vector x.

Proposition 1.11. The following statements are equivalent.

(a) g(TSP) ≤ α,

(b) For x ∈ SEP(Gx) we have α · x ∈ TSP(Gx),

(c) For any positive integer k and any k-edge-connected k-regular graph G we have 2α
k ·χ

G ∈
TSP(G).

Proof. We established the equivalence between (a) and (b) earlier, so we just show that

(b) and (c) are equivalent. (b) =⇒ (c): If G is a k-edge-connected k-regular graph, then

let y = 2
k · χ

G. We have y ∈ SEP(Gy). By (b), we have α · y ∈ TSP(Gy) = TSP(G), since

Gy = G. Note that α · y = 2α
k · χ

G.

(c) =⇒ (b): Let x ∈ SEP(G) for graph G = (V,E). Define k as the smallest integer such

that xe is a multiple of 1
k for every edge e ∈ Ex. Let G′ = (V,E′) be such that E′ has kxe

copies of each e ∈ Ex. It is easy to observe that G′ is 2k-regular and 2k-edge-connected.

Let y = α
k · χ

G′ . So by (c), y ∈ TSP(G′): y =
∑`

i=1 λiχ
Fi , where

∑`
i=1 λi = 1, λi > 0, and

Fi is a tour of G′ for i = {1, . . . , `}. Notice that each Fi corresponds to a tour in Gx, and∑`
i=1 λiχ

Fi
e = α

k · kxe = α · xe.

Proposition 1.11 motivates us to define a 2
k -uniform point.

Definition 1.12. For k ∈ Z≥2 a point x is called a 2
k -uniform point if Gx is k-edge-connected

and k-regular and xe = 2
k for e ∈ Ex. Notice that Gx is not necessarily a simple graph and

can contains multiple edges.

Clearly, for any k ∈ Z≥2, a 2
k -uniform point x is in SEP(Gx). Proposition 1.11 provides

a framework for approaching the four-thirds conjecture: find smallest value α such that

vector αx ∈ TSP(G) for any 2
k -uniform point x.

We call this the Uniform Cover Problem for TSP. Let us describe the problem

more formally.

The Uniform Cover Problem for TSP, given an integer k ≥ 2, asks for the smallest α such

that αx ∈ TSP(Gx) for any 2
k -uniform point x.

This problem was first proposed by Sebő et al. [SBS14] but only for the case when k = 3.

They observed that for a 3-edge-connected cubic graph G = (V,E), vector 2
3 · χ

G ∈ SEP(G).

By Theorem 1.10, we have 3
2 · (

2
3χ

G) ∈ TSP(G). Thus, they asked if for a 2
3 -uniform point x

whether (3
2 − ε) · x is in SEP(Gx) for any constant ε > 0. Sebő et al. [SBS14] asked if the

following relaxation of the four-thirds conjecture can be resolved.
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Conjecture 2. Let x be a 2
3 -uniform point. Then 4

3x ∈ TSP(Gx).

In light of Proposition 1.11 one can restate the four-thirds conjecture (Conjecture 1) in

the following way.

Conjecture 3. For any integer k ≥ 2 and any 2
k -uniform point x, we have 4

3x ∈ TSP(Gx).

Notice that Theorem 1.10 implies that for any integer k ≥ 2 and any 2
k -uniform point x,

we have 3
2x ∈ TSP(G).

Consider the graph in example in Figure 1.1. Let Gt = (V t, Et) be the graph obtained

from taking two copies every edge e with x∗e = 1 and one copy of every edge with x∗ = 1/2.

Observe that the resulting graph Ht is 4-edge-connected and 4-regular. Notice that 2
4χ

Ht
is

a 2
4 -uniform point. Yet, (4

3 − ε)(
2
4χ

Ht
) /∈ TSP(Ht), for any constant ε > 0 for large enough

t. We will discuss this problem in more details in Chapter 4.

1.2.4 Fundamental Classes for TSP

Another approach to the four-thirds conjecture is to consider Fundamental Classes for

TSP. Fundamental classes of points were introduced by Carr and Ravi [CR98] and further

developed by Boyd and Carr [BC11] and Carr and Vempala [CV04].

Definition 1.13. Consider a class of vectors X such that for every x ∈ X we have x ∈
SEP(Gx). The class of points X is called a fundamental class for TSP, if α · x ∈ TSP(Gx)

for all x ∈ X implies g(TSP) ≤ α.

Notice that by definition if X ⊆ Y and X is a fundamental class for TSP, then Y is a

fundamental class for TSP.

The most trivial fundamental class {x : x ∈ SEP(Gx)} is the set of all points in the

subtour elimination relaxation of all instances. We have already implicitly introduced a

more special fundamental class for TSP in Proposition 1.11, by showing that class

X = {x : x is a
2

k
-uniform point, for all k ∈ Z≥2}

is a fundamental class for TSP. However, there are fundamental classes that are even more

structured.

Cyclic Points

A cyclic point is defined as follows.

Definition 1.14. A point x is called a cyclic point if x ∈ SEP(Gx), Gx is cubic, and for

each vertex v ∈ V (Gx) we have exactly one edge e ∈ δ(v) with xe = 1.

11



Observe that for a cyclic point x we have: (i) in Gx the set of edges Wx = {e : xe = 1}
forms a perfect matching of Gx, (ii) in Gx the fractional edges Hx = {e : xe < 1} form a

2-factor of Gx.

The set of all cyclic points forms a fundamental class. The class of cyclic points is a very

general and contains many fundamental classes as it special cases.

Schalekamp, Williamson and van Zuylen [SWvZ13] conjectured that the largest lower

bound for g(TSP) occurs for a point x in SEP(Gx) such that xe ∈ {0, 1/2, 1} for e ∈ Ex.

This motivates the following conjecture.

Conjecture 4. If x ∈ SEP(Gx) and xe ∈ {0, 1/2, 1} for e ∈ Ex, then 4
3x ∈ TSP(Gx).

If the conjecture of Schalekamp et al. [SWvZ13] holds, then Conjecture 4 implies

Conjecture 1.

A cyclic point x is called a half-cycle point if xe = 1
2 for e ∈ Hx. A result of Carr

and Vempala [CV04] implies that a proving 4
3x ∈ TSP(Gx) for any half-cycle point implies

Conjecture 4. This motivates the study of half-cycle points.

Carr-Vempala Points: A point x is called a Carr-Vempala point if x is cyclic and the

set of fractional edges Hx, forms a Hamiltonian cycle of Gx. Carr and Vempala [CV04]

showed that the set of Carr-Vempala points is fundamental for TSP.

Boyd-Carr Points: A point x is called a Boyd-Carr point if x is cyclic and the set of

fractional edges Hx, forms 4-cycles of Gx. Boyd and Carr [BC11] proved that the set of

Boyd-Carr points is fundamental for TSP.

For a Boyd-Carr point one can replace the edges in Wx (1-edges of x) with paths of

1-edges of arbitrary length and obtain a vector y (in a higher dimension that x) such that

y ∈ SEP(Gy). The set of points obtained in this way are called square points. A square

point is called a half-square point if xe = 1
2 for e ∈ Hx.

Half-square points are an interesting class of points, since they achieve the best known

lower bound for g(TSP) [BS19]. Proving 4
3x ∈ TSP(Gx) for all half-square point x does not

imply Conjecture 4, however, as discussed by Boyd and Sebő [BS19] they are an interesting

yet under studied class of points in the subtour elimination relaxation.

Triangle Points: Let x be a cyclic point where the fractional edges of x form 3-cycles of

Gx. Replacing 1-edges of x with arbitrary long paths of 1-edges we obtain a triangle point

y. Triangle points are the set of all points obtained in this manner. A half-triangle point

x is a triangle point where xe = 1
2 for e ∈ Hx. Notice that the example in Figure 1.1 is a

half-triangle point.

12



Boyd and Carr [BC11] showed that for a half-triangle point x, we have 4
3 · x ∈ TSP(Gx).

Moreover, this class of points achieves the lower bound of 4
3 on g(TSP) as illustrated in

Figure 1.1.

1.3 2-edge-connected Multigraph Problem

In the 2-edge-connected Subgraph Problem (2ECS) we are given an integer n ≥ 3

together with cost vector c ∈ REn≥0 . We want to find the minimum cost 2-edge-connected

subgraph on Kn = (Vn, En) with respect to costs c.

The natural linear programming relaxation for 2ECS is the following.

min{cx : x ∈ [0, 1](
n
2), and x ∈ Subtour(Kn)}. (1.13)

Let 2ECS(G) denote the convex hull of incidence vectors of 2-edge-connected subgraph

of graph G. The integrality gap for 2ECS with the formulation above is

g(2ECS) = max{
minx∈2ECS(Kn) cx

min0≤x≤1, x∈Subtour(Kn) cx
: n ≥ 3, c ∈ RE≥0}. (1.14)

The best known approximation algorithm and upper bound on the integrality gap is the

2-approximation of Jain [Jai01] since 2ECS is a special case of the survival network design

problem.

If the cost vector c is metric, then any 2-edge-connected multigraph of Kn can be

transformed into a 2-edge-connected subgraph of G with lower cost. Thus, we define the 2-

edge-connected multigraph problem (2ECM). In 2ECM we want to find the minimum

cost 2-edge-connected multigraph of Kn.

The linear programming relaxation for 2ECM is min{cx : x ∈ Subtour(Kn)}. Let

2ECM(G) be the convex hull of incidence vectors of 2-edge-connected multigraphs of G.

Similar to Section 1.2 we can define the integrality gap of this relaxation for 2ECM.

g(2ECM) = max{
minx∈2ECM(Kn) cx

minx∈Subtour(Kn) cx
: n ≥ 3, c ∈ RE≥0}. (1.15)

Carr and Ravi [CR98] gave an alternative definition based on the parsimonious property

of the subtour elimination relaxation [GB93] and Theorem 1.1.

g(2ECM) = min{α : α · x ∈ 2ECM(Gx) for all x ∈ SEP(Gx)}. (1.16)

Trivially, Theorem 1.10 shows that if x ∈ SEP(Gx), then 3
2 · x ∈ TSP(Gx) ⊆ 2ECM(Gx).

Surprisingly, there is no proof that shows for all x ∈ SEP(Gx), the vector (3
2 − ε) · x ∈
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Figure 1.2: Graph Gt = (V t, Et) for t = 4. Define ct as follows: cte = t/2 for a solid edge
e, cte = t for a dashed edge e, and cte = 1 for a dotted edge e. Define xt ∈ REt as follows:
xte = 1/2 for dashed edges, and xte = 1 for dotted and solid edges. Note that xt ∈ SEP(Gt).
Hence, minx∈SEP(Gt) c

tx ≤ ctxt = 5t + 1. On the other hand, for any 2-edge-connected
multigraph F of Gt we have ct(F ) ≥ 6t+ 1, so minx∈2ECM(Gt) c

tx ≥ 6t+ 1. This means that

limt→∞
minx∈2ECM(Gt) c

tx

minx∈SEP(Gt) c
tx = limt→∞

6t+1
5t+1 = 6

5 .

2ECM(Gx) for some constant ε > 0. As a relaxed version of the four-thirds conjecture

(Conjecture 1) the following conjecture has been proposed.

Conjecture 5. If x ∈ SEP(Gx), then 4
3 · x ∈ 2ECM(Gx).

However, the largest lower bound on g(2ECM) is even smaller than the one for g(TSP).

Figure 1.2 shows a class of points proving for any constant ε > 0, there is a vector x ∈ SEP(Gx)

such that (6
5 − ε) · x /∈ 2ECM(Gx). This example is due to Alexander et al. [ABE06].

There is another example that attains this lower bound for g(2ECM) [CR98] which we

discuss in Chapter 5. This motivates the following conjecture.

Conjecture 6 (The six-fifths conjecture). If x ∈ SEP(Gx), then 6
5 · x ∈ 2ECM(Gx).

Our focus in this thesis is mainly on TSP and 2ECM (rather than 2ECS in general).

However, we show how our techniques can be used to obtain approximation algorithms for

2ECS in the special cases we consider.

2ECM and g(2ECM) have been studied along the same lines as TSP for the past twenty

years. We unwrap these special cases of the 2ECM in more detail.

1.3.1 Smallest 2-edge-connected Subgraph

In the Smallest 2-edge-connected Subgraph Problem (S2ECS) given a graph G =

(V,E) the goal is to find the 2-edge-connected subgraph of G with the least number of edges.

In other words, S2ECS is an instance of 2ECS where ce = 1 for all e ∈ E, and is the analogue

of Graph-TSP.
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An observation by Cheriyan et al. [CSS01] showed that in the definition above (also in

definition presented in (1.12) for g(Graph-TSP)) one only needs to consider x such that Gx is

2-vertex-connected. Furthermore, any 2-edge-connected multigraph of a 2-vertex-connected

graph G can be transformed into a 2-edge-connected subgraph of G with no more edges.

Hence, S2ECS can be seen as a special case of both 2ECS and 2ECM. Define

g(S2ECS) = max{
minx∈2ECM(G)

∑
e∈E xe

minx∈Subtour(G)

∑
e∈E xe

: G = (V,E)}. (1.17)

Cheriyan, Sebő and Szigeti [CSS01] proved a 17
12 -approximation algorithm for S2ECS

while proving that g(S2ECS) ≤ 17
12 . This was later improved by Sebő and Vygen [SV14] to a

4
3 upper bound and approximation factor for S2ECS.

Similar to Graph-TSP, S2ECS has also been studied for different subclasses of cubic and

subcubic graphs. We review this line of work in Chapter 3.

1.3.2 Node-weighted 2-edge-connected Spanning Multigraph Problem

We define Node-weighted 2-edge-connected Multigraph Problem (NW-2ECM)

similar to NW-TSP. We are given a graph G = (V,E). In addition, we are given a node-weight

vector f ∈ RV≥0. The goal is to find bounds for g(NW-2ECM) define as below.

g(NW-2ECM) = max{
minx∈2ECM(G)

∑
v∈V fvx(δ(v))

minx∈Subtour(G)

∑
v∈V fvx(δ(v))

: G = (V,E), f ∈ RV≥0}.

1.3.3 The Uniform Cover Problem for 2ECSM

Recall Proposition 1.11 that established the framework for the Uniform Cover Problem for

TSP. For 2ECM we have a similar proposition.

Proposition 1.15. The following statements are equivalent.

(a) g(2ECM) ≤ α,

(b) For x ∈ SEP(Gx), we have α · x ∈ 2ECM(Gx).

(c) For any positive integer k and any k-edge-connected graph G we have 2α
k · χ

G ∈
2ECM(G).

Hence, the Uniform Cover Problem for 2ECM is as follows: given k ≥ 2, find the

smallest value α such that for 2
k -uniform point x, we have αx ∈ 2ECM(G). We investigate

this question in more detail in Chapter 4.
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1.3.4 Fundamental Classes for 2ECM

Similar to Fundamental Classes for TSP we can define the Fundamental Classes for

2ECM as follows.

Definition 1.16. Consider a class of vectors X such that for every x ∈ X we have x ∈
SEP(Gx). The class of points X is a fundamental class for 2ECM, if α · x ∈ 2ECM(Gx) for

all x ∈ X implies g(2ECM) ≤ α.

Boyd and Carr [BC11] showed that Carr-Vempala points and Boyd-Carr points are

fundamental classes for 2ECM. Carr and Ravi [CR98] provided a class of half-square points

that attain the best known lower bound of 6
5 for g(2ECM). Also, notice that the example in

Figure 1.2 is a half-triangle point. We discuss fundamental classes for 2ECM in Chapter 5.

1.4 Contributions of the Thesis

The rest of the thesis is organized as follows. In Chapter 3 we consider TSP and 2ECM on

node-weighted graphs. In Node-weighted TSP and 2ECM we are given a graph G = (V,E)

together with f ∈ RV≥0. The cost of each edge e = uv in E is the sum of the node-weights fv

and fu. The goal in NW-TSP and NW-2ECM is to find the minimum cost tour and minimum

cost 2-edge-connected multigraph of G, respectively. We begin our study of NW-TSP and

2ECM by considering 3-edge-connected cubic graphs. With a simple argument we show the

following theorem.

Theorem 1.17. There is a 7
5 -approximation algorithm for NW-TSP on 3-edge-connected

cubic graphs. Moreover, g(NW-TSP) ≤ 7
5 when restricted to 3-edge-connected cubic graphs.

With a same approach we prove a 13
10 -approximation algorithm for NW-2ECM on the

same class of graphs as well as an upper bound of 1.3 on g(NW-2ECM). These results

improve upon the 3
2 -approximation algorithm of Christofides’ for TSP. Both of these results

use the fact that in cubic graphs, we can find 2-factors that intersect every 3-edge cut and

4-edge cut in the graph.

Extending these results to general cubic graphs and subcubic graphs requires tools for

covering 2-edge cuts. Hence, we show that the solution to the subtour elimination relaxation

can be decomposed into a convex combination of connected multigraphs each covering

2-edge cuts an even number of times (Chapter 3, Theorem 3.9). An application of this

decomposition is a 17
12 -approximation algorithm for NW-2ECM on subcubic graphs. This

algorithm relies on sampling a random connected multigraph from the decomposition result

mentioned above and augmenting it into a 2-edge-connected multigraph by either adding a

parity correction or a tree augmentation.
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Chapter 4 focuses on the Uniform Cover Problem for TSP and 2ECM. As a first result,

we give the first positive answer to Sebő et al. [SBS14] about the uniform cover problem for

TSP on 2
3 -uniform points.

Theorem 1.18. Let x be a 2
3 -uniform point, then 27

19x ≈ 1.421x can be efficiently written

as convex combination of tours of Gx.

As for 2ECM, we can combine the ideas in Theorem 1.18 with the top-down coloring

idea introduced by Iglesias and Ravi [IR17] for the Tree Augmentation Problem to prove

the following.

Theorem 1.19. Let x be a 2
3 -uniform point. The vector 45

34x ≈ 1.323x can be efficiently

written as a convex combination of 2-edge-connected multigraphs of Gx.

This is the first bound below 4
3 that can be proved via an efficient rounding algorithm.

Improving this factor requires a technique commonly known as “gluing”. We show in the

remainder of Chapter 4 how gluing on 3-edge cuts we can obtain more structured 2
3 -uniform

points. For such structured graphs we use a novel application of rainbow 1-tree decomposition

that serves a coloring algorithm for the Tree Augmentation Problem in order to beat the

factor in Theorem 1.19. In the end, we are able to prove the following improved version of

Theorem 1.19.

Theorem 1.20. Let x be a 2
3 -uniform point. The vector 123

94 x ≈ 1.308x can be efficiently

written as convex combination of 2-edge-connected multigraphs of Gx.

In Chapter 5 our focus is on half-integer points of the subtour elimination relaxation

motivated by the conjecture of Schalekamp, Williamson, van Zuylen [SWvZ13] that the

largest integrality gap for g(TSP) is achieved for instances where the optimal solution

of the subtour elimination relaxation is half-integer. In particular, we provide improved

approximation algorithms for 2ECM on half-triangle and half-square points. Both classes

of points achieve the best known lower bound on the integrality gap g(2ECM). The main

result of Chapter 5 is the following.

Theorem 1.21. Let x be a half-square point. Then 9
7x can be efficiently written as a convex

combination of 2-edge-connected multigraphs in Gx.

Notice that 9
7 is below 4

3 , thus giving more credibility that g(2ECM) is strictly smaller

than g(TSP) and to Conjecture 6. Our approach in proving the result above is to reduce

the problem into finding matchings with special properties that guide us in constructing

2-edge-connected multigraphs in the support of the half-square point.

In Chapter 6 we ask whether tours can be glued over the 3-edge cuts of a graph. Gluing

has been used mostly when there is a unique pattern that can occur in a convex combination
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of multigraphs on a 3-edge cut (particularly in the case of gluing 2-edge-connected subgraphs

over proper 3-edge cuts of cubic graphs), and for tours this cannot be the case since we

need to take multiple copies of edges. To this end, we introduce a novel approach of gluing

tours based on different parts of a tour: (i) the connected skeleton of the tour which is

a connected subgraph and (ii) the parity correction part of the tour that augments the

connected skeleton into an Eulerian multigraph. This part of the tour is an O-join. With

our approach we are able to show that one can save on the 1-edges of half-cycle points.

Theorem 1.22. Let x be a half-cycle point. Define vector y ∈ REx as follows: ye = 3
2 −

1
20

for e ∈ Wx and ye = 3
4 f or e ∈ Hx. Then y ∈ TSP(Gx), i.e. y can be written as a

convex combination of tours of Gx. Furthermore, this convex combination can be found in

polynomial time in the size of x.

The theorem above improves Christofides’ algorithm by saving a factor of 1
20 compared

to Christofides’ algorithm on the edges with value 1. Recall that for any constant ε > 0, a

(3
2 − ε)-approximation algorithm for TSP (or 2ECM) on half-cycle points implies a (3

2 − ε)-
approximation algorithm for instances of TSP (or 2ECM) where the optimal solution to the

subtour elimination relaxation has a half-integer optimal solution. Theorem 1.22 is a first

step towards improving Christofides’ algorithm on such instances. A direct consequence of

Theorem 1.22 is for the Uniform Cover Problem for TSP, which is illustrated in Chapter 4,

Section 4.5.

The following table summarizes the result in Chapter 3, 4, 5 and 6.

TSP 2ECM 2ECS

Node-weighted cubic
3-edge-connected graphs 7

5 (Theorem 1.17) 13
10 (Theorem 3.5) 33

25 (Theorem 3.7)

Node-weighted
subcubic graphs 3

2 ([Chr76, Wol80]) 17
12 (Theorem 3.23) 4

3 (Theorem 3.8)

2
3 -uniform points 17

12 (Theorem 4.30) 123
94 (Theorem 1.20) 21

16 (Theorem 4.15)

Half-square points 10
7 ([BS19]) 9

7 (Theorem 1.21) 4
3 (Theorem 5.7)

Table 1.1: Best known LP-based approximation factors for the TSP, 2ECM and 2ECS for
each of the special cases considered.

In the final chapter of this thesis, we focus on general binary integer programs (binary

IPs) and show a polynomial time algorithm for upper bounding the integrality gap of an
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instance of a binary IP with its LP relaxation. We also show an algorithm for finding a

feasible integer solution to binary IPs with bounded integrality gap. In order to extend our

result, we show that our algorithm, called the Fractional Decomposition Tree Algorithm

(FDT), can be used to bound g(2ECM), a non-binary problem. We run experiments and

compare upper bounds provided from FDT with that of polyhedral version of Christofides’

algorithm.
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Chapter 2

Tools

In this chapter we review the tools we need in designing our algorithms throughout the

thesis.

We start in this chapter by reviewing polyhedral prerequisites that are often used

in network optimization problems. A key result for the TSP is the 3
2 -approximation

algorithm due to Christofides [Chr76]. Wolsey [Wol80] presented a polyhedral description of

Christofides’ algorithm to show that it provides an upper bound of 3
2 on g(TSP) [Wol80]. We

first set up the scene for describing Wolsey’s proof, which requires the polyhedral description

of spanning trees and O-joins, which are used for parity corrections. Next, we give the

polyhedral description of the 1-tree polytope that can be used instead of spanning trees

in Wolsey’s analysis of Christofides’ algorithm and have more structure than the spanning

trees. Particularly, we define rainbow 1-trees that satisfy certain properties that are useful

in construction of tours and 2-edge-connected multigraphs. Then, we discuss 2-factors, a

very common tool in the construction of short tours.

We describe the Tree Augmentation Problem (TAP) next and establish the connection

between TAP and 2ECS. We also present a combinatorial approach to TAP that we will use

to obtain our results in Chapter 4. We finish the chapter by showing how gluing can be used

to reduce the problem of finding 2-edge-connected subgraph in general 3-edge-connected

cubic graphs to the same problem in 3-edge-connected cubic graphs with no proper 3-edge

cuts (i.e. essentially 4-edge-connected cubic graphs.)

2.1 Notation

Before diving in, let us describe some necessary notation. For a graph G = (V,E), and a

subset U of V , E(U) is the set of edges with both endpoints in U . For a set V , let ΠV

denote the collection of partitions of V into nonempty subsets.
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For a subset of vertices U we use δ(U) to denote the set of edge in cut U . Formally,

δ(U) = {uv ∈ E : u ∈ U, v /∈ U}. For a multigraph F of G, we might use δF (U) in which

case we refer to the multiset of edges in F that have one endpoint in U and other endpoint

not in U . For a partition P ∈ ΠV , we abuse the δ notation to denote by δ(P) to be the

set of edges in E that have endpoints in two different parts of P. For a multigraph F , the

degree of a vertex v ∈ V in F is the number of edge in F that are incident on v. Consider a

collection of multigraphs F . We say λ ∈ RF≥0 is a convex multiplier for F if
∑

F∈F λF = 1.

For a vector x ∈ RE we say x can be efficiently written as convex combination of multigraphs

in F if we can find convex multiplier λ for F such that x =
∑

F∈F λFχ
F in polynomial

time in the size of x. Here by the size of x we refer to |Ex|, i.e. the number of edges in the

support of x.

For a graph G = (V,E) and e ∈ E, contracting e is the process of identifying the

endpoints of e into a single vertex, and removing the resulting loops. The resulting graph is

denoted by G/e. For a multigraph F of G, G/F is the graph obtained from G by contracting

the edges in F iteratively (in any order). We say G is a k-edge-connected graph if for

∅ ⊂ U ⊂ V we have |δ(U)| ≥ k. A k-edge-connected graph G = (V,E) is an essentially

k′-edge-connected graph if for ∅ ⊂ U ⊂ V with |U | ≥ 2 and |V \U | ≥ 2 we have |δ(U)| ≥ k′,
i.e. every non-vertex cut contains at least k′ edges.

For a positive integer k we use [k] to denote the set {1, . . . , k}.

2.2 The Spanning Tree Polytope

Let G = (V,E) be a graph. A spanning tree of G is an acyclic connected subgraph of G. Let

ST(G) be the convex hull of incidence vectors of all spanning trees of G. Edmonds [Edm70]

proved that ST(G) can be characterized as a system of linear inequalities.

ST(G) = {x ∈ RE≥0 : x(E) = |V | − 1, and x(E(U)) ≤ |U | − 1 for ∅ ⊂ U ⊆ V }. (2.1)

Let ST+(G) be the convex hull of incidence vectors of connected spanning multigraphs

of G (henceforth a connector of G). Clearly, ST(G) ⊂ ST+(G).

Observation 2.1. For any graph G = (V,E), we have ST+(G) = D(ST(G)).

Interestingly, ST+(G) can be described by the following system of linear inequalities (see

Corollary 50.8a in [Sch03]).

ST+(G) = {x ∈ RE≥0 : x(δ(P)) ≥ |P| − 1 for P ∈ ΠV }. (2.2)

This formulation is quite suitable when working with the subtour elimination relaxation
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specially because of the following observation.

Observation 2.2. We have

Subtour(G) = {x ∈ RE≥0 : x(δ(P)) ≥ |P| for P ∈ ΠV }. (2.3)

Proof. Let x ∈ Subtour(G). Consider P ∈ ΠV , with P =
⋃k
i=1 Pi. For i ∈ [k], we have

x(δ(Pi)) ≥ 2. Moreover, x(δ(P)) = 1
2

∑k
i=1 x(δ(Pi)). This implies x(δ(P)) ≥ k = |P|.

Conversely, assume x is in the right-hand-side polyhedron. Suppose x /∈ Subtour(G). This

means there is non-empty set U ⊂ V such that x(δ(U)) < 2. But P = {U, V \ U} ∈ ΠV ,

and x(δ(P)) = x(δ(U)) < 2, which is a contradiction.

We finish with the following observation.

Observation 2.3. We have TSP(G) ⊆ 2ECM(G) ⊆ Subtour(G) ⊆ ST+(G) = D(ST(G)).

2.3 The O-join Polytope and its Dominant

Let G = (V,E) be a graph and O ⊆ V where |O| is even. An O-join of G is a subgraph J of

G where a vertex v ∈ V has odd degree in J if and only if v ∈ O. Let O - JOIN(G) be the

convex hull of incidence vectors of O-joins of G. Edmonds and Johnson [EJ73] showed the

following description for the O - JOIN(G).

O - JOIN(G) = {x ∈ [0, 1]E : x(δ(U) \A)− x(A) ≥ 1− |A| (2.4)

for U ⊆ V,A ⊆ δ(U), |U ∩O|+ |A| odd}.

Edmonds and Johnson [EJ73] also provided a description for D(O - JOIN(G)).

D(O - JOIN(G)) = {x ∈ RE≥0 : x(δ(U)) ≥ 1 for U ⊆ V, |U ∩O| odd}. (2.5)

2.4 Proof of Theorem 1.10: Polyhedral Analysis of Christofides’

Now, we are ready to prove Theorem 1.10.

Theorem 1.10 (Polyhedral proof of Christofides’ algorithm [Chr76, Wol80]). If x ∈
SEP(Gx), then 3

2x ∈ TSP(Gx).

Proof. Observe that SEP(Gx) ⊆ Subtour(Gx), so we have x ∈ Subtour(Gx). By Observation

2.3, x ∈ D(ST(G)). Hence, we can find spanning trees T and convex multiplier λ for T such

that x ≤
∑

T∈T λTχ
T . For each T ∈ T , let OT be the set of odd degree vertices of T . Notice

that x
2 ∈ D(OT - JOIN(Gx)) for all T ∈ T . This implies that there is a convex combination
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of OT -joins of Gx, namely J T such that x
2 ≤

∑
J∈J T θJχ

J . Notice that for T ∈ T and

J ∈ J T , multigraph T + J is a tour of Gx. Hence,
∑

T∈T λT
∑

J∈J T θJχ
T+J ∈ TSP(Gx).

Therefore, 3
2x ∈ D(TSP(Gx)) = TSP(Gx) by Observation 1.9.

2.5 The v-tree Polytope and Rainbow v-trees

A useful object in combinatorial optimization are the 1-trees. We use a different notation

for 1-trees that becomes handy in our proofs.

Definition 2.4. Let G = (V,E) be a graph. For a vertex v ∈ V , a v-tree of G is a subgraph

F of G such that |F ∩ δ(v)| = 2 and F \ δ(v) induces a spanning tree of V \ {v}.

Denote by v-tree(G) the convex hull of incidence vectors of v-trees of G. The v-tree(G)

is characterized by the following linear inequalities.

v-tree(G) ={x ∈ [0, 1]E : x(δ(v)) = 2,

x(E[U ]) ≤ |U | − 1 for all ∅ ⊂ U ⊆ V \ {v}, x(E) = |V |}. (2.6)

Observation 2.5. Let G = (V,E). We have SEP(G) ⊆ v-tree(G) for all v ∈ V .

Observation 2.6. Let G = (V,E) be 3-edge-connected cubic graph and C be a 2-factor

of G. Then the vector x, where xe = 1
2 for e ∈ C and xe = 1 for e /∈ C belongs to

SEP(G) ⊆ v-tree(G).

Proof. Take ∅ ⊂ U ⊂ V . If |δ(U)| ≥ 4, then clearly x(δ(U)) ≥ 2. Otherwise, |δ(U)| = 3.

Since at most two edges in δ(U) belong to C, there is at least one edge e ∈ δ(U) with xe = 1.

Hence, x(δ(U)) ≥ 2. Therefore, x ∈ SEP(G). We have x ∈ v-tree(G) by Observation

2.5.

It can be deduced from the discussion above that a vector x in the subtour elimination

relaxation can be written as a convex combination of v-trees for any vertex v in Gx. In fact,

we can show that the v-trees in this convex combination satisfy some additional properties.

Definition 2.7. Let G = (V,E) and v be a vertex of G. Let P a collection of disjoint

subsets of E. A P-rainbow v-tree of G, namely T , is a v-tree of G such that |T ∩ P | = 1 for

P ∈ P.

The following theorem can be proved via the matroid intersection theorem [Edm70] and

Observation 2.5.

Theorem 2.8 ([BL95],[BS19]). Let x ∈ SEP(Gx) and P be a collection of disjoint subsets

of Ex such that x(P ) = 1 for P ∈ P. Then, x can be decomposed into a convex combination

of P-rainbow v-trees of Gx for any v ∈ V .
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Grötchel and Padberg [GP85] observed that v-trees of a connected graph G = (V,E)

satisfy the basis axioms of a matroid. For x ∈ SEP(Gx) we have x ∈ v-tree(Gx) by

Observation 2.5. Also, P defines a partition matroid where each base intersect each part of

P exactly once. Therefore, vector x is in the convex hull of incidence vector of common basis

of the partition matroid defined by P and the matroid whose basis are the v-trees of Gx.

2.6 2-Factors Covering Small Cuts

One of the keys tools in developing approximation algorithms for Graph-TSP has been via

finding 2-factor with few component in graphs.

For a graph G = (V,E) a 2-factor of G is a subgraph of G where every vertex in V has

degree two in C. Let us begin with a classical theorem of Petersen [Pet91].

Theorem 2.9 ([Pet91]). Let G = (V,E) be a 2-edge-connected cubic graph. The edge set of

G can be partitioned into a perfect matching and a 2-factor.

Finding 2-factors that are closer to Hamiltonian cycles in cubic and subcubic graphs

have been subject of many papers. There are efficient algorithms for finding 2-factors that

do not contain 3-cycles and 4-cycles in subcubic graphs [BV10, HL11]. Takazawa introduces

a common framework for t-matchings excluding prescribed t-factor that unify nonbipartite

matching, triangle-free 2-matching, square-free 2-matching, and the even factor problems

[Tak17]. For 2-edge-connected cubic graphs, the polyhedral characterization of perfect

matchings due to Edmonds and Johnson [EJ73] implies a polynomial time algorithm for

finding a minimum weight 2-factor that covers all 3-edge cuts of G as we show below.

For a graph G = (V,E), a perfect matching of G is a subgraph of G that has degree one

on every vertex v ∈ V (hence a V -join of G). The perfect matching polytope of a graph G,

PM(G), is the convex hull of incidence vectors of perfect matchings of G. Edmonds [Edm65]

showed that

PM(G) = {x ∈ RE≥0 : x(δ(v)) = 1 for v ∈ V, x(δ(U)) ≥ 1 for U ⊆ V, |U | odd}. (2.7)

We say a 2-factor C covers a cut U if δ(U) ∩ C 6= ∅. The characterization above implies

the following observation.

Observation 2.10. Let G = (V,E) be a 2-edge-connected cubic graph. The vector 2
3 · χ

G

can be written as convex combination of 2-factors of G each of which covers all 3-edge cuts

of G.

Proof. Define x = 2
3 ·χ

G. First observe that y = 1
3 ·χ

G = PM(G). Thus, there is a collection

M of perfect matchings of G, such that y can be written as convex combination of M with
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convex multipliers λ. Define C = {E \M : M ∈ M}. For C ∈ C let θC = λE\C. Notice

that
∑
C∈C θCχ

C = 2
3 · χ

G = x. We claim for any C ∈ C every 3-edge cut of G is covered.

Take a 3-edge cut U of G with δ(U) = {a, b, c}. Note that x(δ(U)) = 2. Moreover, for all

C ∈ C , |C ∩ δ(U)| is even, since C is a 2-factor. Now, if |C ∩ δ(U)| = 0 for some C ∈ C , then∑
C∈C θCχ

C(δ(U)) < 2 = x(δ(U)), which is a contradiction.

Kaiser and Škrekovski [Kv08] strengthen Theorem 2.9 and proved that any 2-edge-

connected cubic graph G contains a 2-factor that covers every 3-edge cut and every 4-edge

cut of G. Boyd, Iwata and Takazawa [BIT13] gave an efficient algorithm for finding such a

2-factor using a gluing argument.

Theorem 2.11 ([BIT13]). Let G = (V,E) be a 2-edge-connected cubic graph. There is an

efficient algorithm that computes a 2-factor of G that covers all 3-edge cuts and 4-edge cuts

of G.

For a 2-factor C of a graph G recall that G/C is the graph obtained by contracting

the edges in C iteratively. In other words G/C is the graph obtained by identifying all the

vertices that are in the same cycle in C into a single vertex and removing all the resulting

loops. A straightforward observation is the following.

Observation 2.12. Let G be a 3-edge-connected cubic graph. Let C be a 2-factor that covers

3-edge cuts and 4-edge cuts in the graph. Then G/C is a 5-edge-connected multigraph.

Bipartite cubic graphs exhibit even more structure, allowing for a stronger corollary.

Observation 2.13. Let G be a bipartite cubic graph. Let C be a 2-factor of G. Then the

graph G/C is Eulerian.

Proof. Each vertex in G/C corresponds to a cycle in C and the degree of this vertex has

the same parity as the number of edges in the cycle. Since G is bipartite, every cycle in

C is an even cycle. Therefore, each vertex in G/C has even degree, since it is obtained by

contracting a cycle in C. We can conclude that G/C is an Eulerian graph.

Observation 2.14. Let G be a 3-edge-connected bipartite cubic graph. Let C be a 2-factor

that covers 3-edge cuts and 4-edge cuts in the graph. Then G/C is a 6-edge-connected graph.

Proof. Graph G/C is 5-edge-connected by Observation 2.12. By Lemma 2.13, G/C is Eulerian.

Therefore, G/C does not contain any cuts crossed by an odd number of edges. In particular,

G/C contains no 5-edge cuts.
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2.7 Tree Augmentation Polytope

In the Tree Augmentation Problem (TAP) we are given a tree T and a set L of pairs

of vertices in T called the set of links. We also have costs c ∈ RL≥0. A set A of links is called

a feasible augmentation of T if T + A is 2-edge-connected. In TAP we want to find the

minimum cost feasible augmentation. For an edge e ∈ T , let cov(e) be the set of links in L,

such that e is on the unique path in T between the endpoints of `.

Let TAP(T, L) be the convex hull of feasible augmentations of the instance specified

with tree T and links L. We have

TAP(T, L) = {x ∈ {0, 1}L : x(cov(e)) ≥ 1 for e ∈ T}. (2.8)

The natural linear programming relaxation for this polytope is the cut-LP.

CUT(T, L) = {x ∈ [0, 1]L : x(cov(e)) ≥ 1 for e ∈ T}. (2.9)

Frederickson ad Ja’Ja’ [FJ81] proved that if x ∈ CUT(T, L), then min(2x, 1) ∈ TAP(T, L).

Cheriyan, Jordan and Ravi [CJR99] considered the half-integer solutions of the cut-LP and

proved the following.

Theorem 2.15 ([CJR99]). Let T be a tree and L be a set of links. If x ∈ CUT(T, L) and

x ∈ {0, 1
2 , 1}

L, then min(4
3x, 1) ∈ TAP(T, L).

We prove a generalization of this result later in Chapter 5. [CJR99] conjectured that

indeed for any x ∈ CUT(T, L) we have min(4
3x, 1) ∈ TAP(T, L). This was refuted by

Cheriyan et al. [CKKK08] who gave an instance of tree augmentation T and L together

with a solution x ∈ CUT(T, L) such that min((3
2 − ε)x, 1) /∈ CUT(T, L) for any constant

ε > 0. For the general case of tree augmentation improving the integrality gap of the

cut-LP with respect to TAP to any number below 2 is still open. Recently, Adjiashvili

[Adj18] considered TAP in the case where the costs on the links are bounded achieving

the first approximation algorithm with an approximation factor below 2. Later, Fiorini et

al. presented a 3
2 -approximation algorithm for this case of TAP [FGKS18]. Although both

papers [Adj18] and [FGKS18] use a linear programming relaxation of TAP in the design

of their algorithms, they add extra valid constraints to the cut-LP relaxation. Thus, their

results do not imply an improved upper bound on the integrality gap of the cut-LP. As a

final note on TAP we remark that Nutov [Nut17] proved that the integrality gap of the

cut-LP is at most 2− 2
15 when restricted to instances of TAP with unit link costs.

A very useful way to approach the tree augmentation problem and the cut-LP is the

top-down coloring framework.
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2.7.1 The Top-down Coloring Framework

We describe the top-down coloring framework for the tree augmentation problem, which is

key to proving both our main results in Section 4.4.

Consider an instance of TAP: graph G = (V,E) and a spanning tree T of G. Let

L = E \ T be the set of links, and let c ∈ RL≥0 be a cost vector. The tree augmentation

problem asks for the minimum cost A ⊆ L such that T +A is 2-edge-connected (i.e., A is

a feasible augmentation). Iglesias and Ravi [IR17] generalized Theorem 2.15 in the next

theorem, which they proved via a clever top-down coloring algorithm.

Theorem 2.16 ([IR17]). If y ∈ CUT(T, L) and y` ≥ α for all ` ∈ L, then 2
1+α · y ∈

TAP(T, L). In addition, the vector 2
1+α · y can be efficiently written as a convex combination

of feasible augmentations.

Before describing their top-down coloring framework, we need to introduce some more

terminology. If we choose a vertex r ∈ V to be the root of tree T , we can think of T as an

arborescence, with all edges oriented away from the root. For a link ` = uv in L, a least

common ancestor (henceforth LCA) of ` is the vertex w that has edge-disjoint directed paths

to u and v in T . An edge e is an ancestor of f if there is a directed path from e to f in T .

(Note that e is an ancestor of itself.)

Recall that for a link ` ∈ L, we denote by P` the set of edges in T that are on the unique

path in T between the endpoints of `. For an edge e ∈ T , we denote by cov(e) the set of

links ` such that e ∈ P`, i.e. the links that cover e.

For p, q ∈ Z+ where p ≤ q, a (p, q) coloring of L is a function γ : L →
⋃p
j=1

(
[q]
j

)
, i.e.

a (p, q) coloring of L colors each link ` ∈ L with at most p different colors from a set of

available colors [q].

For a (p, q) coloring of L, an edge e ∈ T , and i ∈ [q], we say e received color i if there is

a link ` such that e ∈ P` and ` has color i as one of its p colors in the coloring. Otherwise

we say e is missing color i. A color i is new for edge e if e is missing color i.

Definition 2.17. Let γ be a (p, q) coloring of L. We say γ is T -admissible (p, q) coloring

of L if for any edge e ∈ T , we have
⋃
`∈cov(e) γ(`) = [q], i.e. every edge in T has received all

the colors {c1, . . . , cq} in γ.

Observation 2.18. Let T be a tree and L be a set of links. If there exists a T -admissible

(p, q) coloring of L, namely γ, then the vector z ∈ RL where z` = p
q for ` ∈ L dominates a

convex combination of feasible augmentations of T . Also, this convex combination can be

found in polynomial time given γ.

Proof. Let Ai be the subset of links that have color ci as one their colors for i ∈ [q]. By

the definition of T -admissibility, for every e ∈ T and every color c ∈ {c1, . . . , cq} there is at
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least one link ` ∈ L ∩ cov(e) such that ` has c as one of its p colors. Hence, Ai is a feasible

augmentation for i ∈ [q]. Moreover, a link ` is in at most p of A1, . . . , Aq since every link is

colored with exactly p colors. Therefore
∑q

i=1
1
qχ

Ai ∈ TAP(T, L). Also,
∑q

i=1
1
qχ

Ai = z.

The following lemma follows directly from Observation 2.18.

Theorem 2.19. Suppose x ≤ 1 dominates a convex combination of spanning trees of

G = (V,E). If for each tree T in the convex combination there is a T -admissible (p, q)

coloring of E \ T , then vector z ∈ RE with ze = xe + (1− xe)pq = (1− p
q )xe + p

q dominates a

convex combination of 2-edge-connected subgraphs of G.

Theorem 2.19 establishes the connection between the tree augmentation problem and

the 2-edge-connected subgraph problem.

A (p, q) coloring algorithm of L is a sequence of (p, q) colorings of L, namely γ1, . . . , γk

such that γi(`) ⊆ γi+1(`) for ` ∈ L and i ∈ [k − 1] and γ1(`) = ∅ for ` ∈ L. Another way

to think about a (p, q) coloring algorithm is a sequence of links `1, . . . , `k and set of colors

Q1, . . . , Qk such that γj+1(`) = γj for ` ∈ L \ {`j} and γj+1(`j) = γj(`j)∪Qj for j ∈ [k− 1].

We say that in iteration j of the coloring algorithm we are coloring `j with color i if i ∈ Qj .
When coloring a link ` we say e receives a new color i if for e ∈ P`, edge e was missing i

before coloring `.

Observation 2.20. Let γ be a (p, q) coloring of L. Let e be an edge in T such that γ(`) = ∅
for ` ∈ cov(e), i.e. none of the links covering e are colored in γ. For any ` ∈ cov(e), if we

color ` with t colors, then e receives t new colors.

A (p, q) coloring algorithm of L is T -admissible if the last coloring in the sequence is

T -admissible. One easy way to achieve a T -admissible coloring algorithms is the top-down

coloring algorithm.

Definition 2.21. Let T be a tree and L be the set of links. A top-down (p, q) coloring

algorithm of L is a (p, q) coloring algorithm of L specified by the sequence (`1, i1), . . . , (`k, ik)

such that LCA of `j is not higher than LCA of `j′ for j′ ≤ j, i.e. the coloring respect the

LCA ordering of the links.

Observation 2.22. Consider a (p, q) coloring in an iteration of a T -admissible top-down

(p, q) coloring of L. Let e and f be edges in T such that e is an ancestor of f . The set of

colors that e is missing is a subset of the colors that f is missing. In other words, if the

algorithm gives link ` a color c that is new for e, then color c is also new for f .
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2.8 Gluing Over 3-edge Cuts

Legault [Leg17] proved 7
6x for a 2

3 -uniform point x is a a convex combination of 2-edge-

connected subgraphs of G. An essential tool used in [Leg17] is gluing solutions over 3-edge

cuts. However, the number of times this gluing procedure is applied is possibly non-

polynomial and this is the reason why the algorithm does not run in polynomial time. For

example, in the proof of (a key) Lemma 1 in [Leg17], gluing is first applied on proper

3-edge cuts to reduce to a problem on essentially 4-edge-connected cubic graphs. In order to

continue applying the gluing procedure, they must remove edges to introduce new 3-edge

cuts. But the number of 3-edge cuts encountered in this process could be exponential.

The gluing approach used in [Leg17] was first introduced by Carr and Ravi [CR98] who

proved that the integrality gap for half-integer solutions of 2EC is at most 4
3 . Carr and

Ravi asked if one can apply their ideas to design an efficient 4
3 -approximation algorithm

for 2EC on half-integer points, but for 20 years there was no efficient algorithm with an

approximation factor of (3
2 − ε) for any ε > 0. This seems to be due—at least in part—to the

fact that we have not yet developed the tools necessary to circumvent the gluing approach.

(Recently, Karlin, Klein and Oveis Gharan proved a (3
2 − 0.00007)-approximation algorithm

for TSP on half-integer points, which also implies a better bound for 2EC on half-integer

points [KKG19].)

We take a different approach to ensure a polynomial-time running time. While we do

use a gluing procedure in the proof of Theorem 4.15, we use it more sparingly (i.e., only

over proper 3-edge cuts and therefore only a polynomial number of times). The following

lemma has been used in different forms in [CR98, BL15, Leg17], but always for the purpose

of reducing to the problem on essentially 4-edge-connected cubic graphs.

Definition 2.23. For a graph G = (V,E) and subset of vertices U ⊂ V , contract each

connected component induced on V \ U into a vertex and call this vertex XU . We define the

graph GU to be the graph induced on vertex set U ∪XU .

Lemma 2.24. Let G = (V,E) be a 3-edge-connected cubic graph and x ∈ [0, 1]E. Let U

be a 3-edge cut of G. Define xU and xŪ to be vector x restricted to the edges in GU and

GŪ , respectively. If xU and xŪ can be written as convex of 2-edge-connected subgraphs of

GU and GŪ , respectively, then G can be written as convex combination of 2-edge-connected

subgraphs of G.

Proof. By the assumption, vector xU can be written as a convex combination of 2-edge-

connected subgraphs of GU : xUe =
∑k

i=1 λiχ
F iU
e for e ∈ E(GU ). The same holds for GŪ :

xŪe =
∑k̄

i=1 θiχ
F i
Ū
e for e ∈ E(GŪ ).

Note that δ(XU ) = δ(XŪ ) = {a, b, c}, and hence xUe = xŪe = xe for e ∈ {a, b, c}. Let λa,b

be the sum of all λi’s where F iU contains exactly the two edges a and b from δ(XU ). Define
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λa,c, λb,c, and λa,b,c analogously. Notice that these are the only possible outcomes since a

2-edge-connected subgraphs contains at least two edges from the cut around any vertex.

Hence, λa,b + λa,c + λb,c + λa,b,c = 1. Also

λa,b + λa,c + λa,b,c = xa,

λa,b + λb,c + λa,b,c = xb,

λa,c + λb,c + λa,b,c = xc.

This system of equations has a unique solution: λa,b,c = xa + xb + xc − 2, λb,c = 1 − xa,
λa,b = 1−xc, and λa,c = 1−xb. Similarly, we can define and show that θa,b,c = xa+xb+xc−2,

θb,c = 1− xa, θa,b = 1− xc, and θa,c = 1− xb.
So we have λh = θh for h ∈ {{a, b}, {a, c}, {b, c}, {a, b, c}}. This allows us to glue the

two convex combinations in the following way: suppose F iU and F j
Ū

use the same edges

from {a, b, c}. Now we glue
∑k

i=1 λiχ
F iU and

∑k̄
i=1 θiχ

F i
Ū as follows. Let σij = min{λi, θj},

and F ij = F iU + F j
Ū

. Update λi and θj by subtracting σij from both, and continue. The

arguments in the lemma ensure that we can find the i and j pair until all the remaining λi and

θj multipliers are zero. The convex combination with multipliers σij and 2-edge-connected

subgraphs F ij is equal to xe on every edge in E(G). Note that the number of new convex

combinations in the set {F ij} is at most k + k̄. Assuming that the number of the convex

combinations in each of the base cases (i.e., the essentially 4-edge-connected cubic graphs)

is polynomial in the size of G, then the total number of convex combinations produced for

G is polynomial, since the number of 3-edge cuts in a graph is polynomial in the size of the

graph, since the trivial upper bound on the number of 3-edge cut of a graph is
(|E|

3

)
.

A proper 3-edge cut of G is a set U ⊂ V such that δ(U) = 3, |U | ≥ 2 and |V \ U | ≥ 2.

We also need the following theorem due to Boyd, Iwata and Takazawa [BIT13] for our

gluing proofs in Chapters 4 and 6.

Theorem 2.25 ([BIT13]). Let G = (V,E) be a 3-edge-connected cubic graph. There is an

algorithm that finds a proper 3-edge cut U such that GU is essentially 4-edge-connected in

time O(|V |2).

Theorem 2.26. Let G = (V,E) be a 3-edge-connected cubic graph and x ∈ [0, 1]E. Let G
be the collection of graphs obtained from G by iteratively choosing an arbitrary proper 3-edge

cut U of G and contracting G[U ] into a single vertex until the graph becomes essentially

4-edge-connected. Suppose for any G′ ∈ G, vector x restricted to the entries of E(G′) can

be written as a convex combination of 2-edge-connected subgraphs of G′ in polynomial time.

Then, vector x can be written as a convex combination of 2-edge-connected subgraphs of G

in polynomial time.
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Proof. Our proof is by induction on the number of proper 3-edge cuts of G. If G has no

proper 3-edge cuts, then G ∈ G, hence we are done.

Otherwise, G has a proper 3-edge cut. Choose a 3-edge-cut S of G where δ(U) = {a, b, c}
such that GŪ is essentially 4-edge-connected. Such a 3-edge cut can be found via Theorem

2.25. Observe that V \U induces a connected subgraph on G and that GU has fewer proper

3-edge cuts than G, so by the induction hypothesis, vector x restricted to the E(GU ) can

be written as convex combination of 2-edge-connected subgraphs. Also, GŪ ∈ G. Applying

Lemma 2.24 we conclude that x can be written as convex combination of 2-edge-connected

subgraph in polynomial time.

Notice that the induction step is only applied O(|V |) times in the inductive proof above.

In addition, the induction proof only encounters O(|V |) graphs in G due to the choice of U

with the stated properties.
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Chapter 3

TSP and 2ECM on Node-weighted

Graphs

The quest for finding a new upper bound below 3
2 on the integrality gap of the subtour

elimination relaxation for the Traveling Salesperson Problem (and the 2-edge-connected

Multigraph Problem) started by looking at instances where the costs on the pairs of vertices

come from the shortest path metric of undirected graphs. These special cases are referred to

as Graph-TSP and S2ECS (See Sections 1.2.1 and 1.3.1). In this chapter our focus is on a

version of TSP and 2ECM that is more general than Graph-TSP and S2ECS, respectively.

As introduced in Sections 1.2.2 and 1.3.2, In both NW-TSP and NW-2ECM we are given a

graph G = (V,E) and node-weights f ∈ RV≥0. The cost of each edge e ∈ E, with endpoints u

and v is defined as fv +fu. We call an instance of NW-TSP and NW-2ECM a node-weighted

graph. The goal in NW-TSP is to find the minimum cost tour of a node-weighted graph G.

Recall that a tour of G is an Eulerian connected multigraph of G. In NW-2ECM we seek the

minimum cost 2-edge-connected multigraph of a node-weighted graph G. We also introduce

the node-weighted 2-edge-connected subgraph problem (NW-2ECS): given a node-weighted

graph G we wish to find the minimum cost 2-edge-connected subgraph of G. Even though

NW-2ECS is not the main subject of study in this chapter, it will give us some insights in

the development of our algorithms.

Node-weight metrics are a natural next step towards improved approximation algorithms

for TSP and 2ECM given the rich body of work for Graph-TSP and S2ECS over the

past 20 years. Indeed, the first results for Graph-TSP focused only on cubic graph and

subcubic graphs. These classes of graphs continue to capture the hardness of the problem

as Graph-TSP and S2ECS both remain NP-hard and APX-hard on cubic graphs [CKK02].

Also, most of the instances of TSP and 2ECM that attain their respective lower bound of

integrality gap are cubic and subcubic graphs (see Figures 1.1 and 1.2). This motivates us
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to kick off our study of NW-TSP and NW-2ECM with cubic and subcubic graphs.

The rest of this chapter is organized as follows: first we review the extensive line of work

for Graph-TSP and S2ECS in Section 3.1. Section 2.1 presents the necessary preliminaries

and tools that we use throughout this chapter and the next chapters. These tools include the

spanning tree polytope, the O-join polytope, a proof of Christofides’ algorithm (Theorem

1.10), the existence of 2-factors covering small cuts in cubic graphs, the tree augmentation

problem and its linear programming relaxation. In Section 3.2, we show how to apply these

tools to go beyond the approximation guarantee of 3
2 promised by Christofides’ algorithm for

NW-TSP and NW-2ECM on 3-edge-connected cubic graphs and 3-edge-connected bipartite

cubic graphs. In short, we present a simple 7
5 -approximation algorithm for NW-TSP and

a 13
10 -approximation algorithm for NW-2ECM. Both approximation algorithms rely on the

existence of 2-factors in cubic graphs that cover all the small cuts.

The next natural step is to see if we can extend these results to graphs that are 2-edge-

connected and either cubic or subcubic. This is our focus in Section 3.3. Our approach to

input graphs that are 2-edge-connected is to find methods for covering 2-edge cuts. So we

present a procedure to decompose a solution for the subtour elimination linear program into

connected multigraphs that cover each 2-edge cut an even (nonzero) number of times. Then

we demonstrate an application of this decomposition theorem for NW-TSP on cubic graphs;

we show that an algorithm similar to that of Christofides has an approximation factor better

than 3
2 when the optimal value of the subtour relaxation is strictly larger than twice the

sum of the node weights. Next, we give another application of our decomposition theorem,

which allows us to apply a result of Cheriyan, Jordán and Ravi [CJR99] and augment the

connected multigraphs in the decomposition with half-integer tree augmentations. Finally,

we combine the ideas in Section 3.3 to obtain a 17
12 -approximation algorithm for NW-2ECM

on subcubic graphs. We achieve this by augmenting a randomly chosen multigraph from

the decomposition described above and augmenting it with either an O-join or a tree

augmentation.

3.1 Related Work

Since the introduction of the integer programming formulation of the TSP by Dantzig, Fulk-

erson and Johnson [DFJ54] and the subtour elimination relaxation by Held and Karp [HK70],

the 3
2 -approximation algorithm for Christofides algorithm [Chr76] remains unchallenged in

terms of the worst case guarantee for both TSP and 2ECM.

The difficulty in settling this important problem in combinatorial optimization moti-

vated researchers to consider special case of these problems. Cheriyan, Sebő and Szigeti

[CSS01] were the first to breach the 3
2 barrier to S2ECS. They provided a 17

12 -approximation
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algorithm for S2ECS which implied a proof of g(S2ECS) ≤ 17
12 . Their algorithm relies on ear

decomposition of 2-connected graphs.

For Graph-TSP, Ovein Gharan, Saberi and Singh [GSS11] presented a polynomial time

proof of g(Graph-TSP) ≤ (3
2 − 4 · 10−52). One of the key ingredients in this result is the

maximum entropy decomposition of a solution to the subtour elimination relaxation into

spanning trees. This tool was first introduced by Asadpour et al. [AGM+10] to approximate

asymmetric version of TSP (on directed graphs). Later, Mömke and Svensson [MS11]

improved this factor by a combinatorial approach and presented a 1.461-approximation

algorithm for Graph-TSP and a proof that g(Graph-TSP) ≤ 1.461. Mucha [Muc14] refined

the algorithm in [MS11] to obtain an efficient proof of g(Graph-TSP) ≤ 13
9 ≈ 1.444. The

best known upper bound on g(Graph-TSP) and approximation factor for Graph-TSP is
7
5 = 1.4 due to Sebő and Vygen [SV14]. They also show that a variation of their algorithm

implies g(S2ECS) ≤ 4
3 . Figure 3.1 summarizes the best known bounds for g(Graph-TSP)

and g(S2ECS).

Time

Factor

17/12[CSS01]

(3/2− ε)[GSS11]

1.46[MS11]
1.44[Muc14]

1.4[SV14]

4/3[SV14]

6/5, Figure 1.2

4/3, Figure 1.1

3/2, Theorem 1.10

Figure 3.1: The dashed-dotted red line shows the best upper bound on g(Graph-TSP) and
the solid blue line the best upper bound on g(S2ECS). The dashed red line shows the best
known lower bound for g(TSP). The dotted blue line shows the best known lower bound for
g(2ECM).

The first result for Graph-TSP started by looking at subclass of graphs. Gamarnik et al.

[GLS05] showed an efficient algorithm proving g(Graph-TSP) ≤ (3
2 −

5
389) when restricted

to 3-edge-connected cubic graphs. Boyd et al. [BSvdSS11] and Agarwal et al. [AGG11]

independently improved this to 4
3 -approximation for 3-edge-connected cubic graphs. In

addition, Boyd et al. [BSvdSS11] showed g(Graph-TSP) ≤ 7
5 for subcubic graphs. Mömke

and Svensson [MS11] improved the upper bound when restricted to subcubic graphs to
4
3 , thereby closing the gap between the lower bound and upper bound for this class of

graphs (recall that the instance in Figure 1.1 is an instance of Graph-TSP on a subcubic
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graph). Newman [New14] gave an improved analysis of the algorithm in [MS11] to prove a

1.39-approximation algorithm for Graph-TSP on instances with maximum degree of four.

The search for short tours on cubic graphs did not stop here. For instance Correa et

al. [CLS12] showed the integrality gap of Graph-TSP when restricted to cubic graphs is

below 4
3 by proving g(Graph-TSP) ≤ 4

3 −
1

61236 . Karp and Ravi [KR16] showed that any

bipartite cubic graph G = (V,E) has a tour of length at most 9
7 |V |. This was improved by

van Zuylen [vZ16] who showed how to find a tour of length at most 5
4 |V | in cubic bipartite

graphs. This paper also proved that a cubic graph G = (V,E) has a tour of length at

most (4
3 −

1
8754)|V | improving upon the result in [CLS12]. This was improved further by

Candráková and Lukot’ka [CL15] to 13
10 |V |, and finally by Dvorák et al. [DKM17] to 9

7 |V |.
For S2ECS, Boyd et al. [BFS16] used circulations to prove via an efficient algorithm that

g(S2ECS) ≤ 5
4 when restricted to subcubic graphs, extending the 5

4 -approximation for S2ECS

on 3-edge-connected cubic graphs by Huh [Huh04]. Huh also showed that g(S2ECS) ≤ 3k/2−2
k−1

when restricted to k-edge-connected k-regular graphs.

Boyd, Iwata and Takazawa, provided a polynomial time algorithm that find a 2-edge-

connected subgraph of length at most 6
5 |V | for a 3-edge-connected cubic graph G = (V,E).

Note that for 3-edge-connected cubic graphs, the optimal solution to the subtour elimi-

nation relaxation is |V |. Takazawa [Tak16] improved this factor to 7
6 when restricted to

3-edge-connected bipartite cubic graphs. Finally, Legault [Leg17] showed that every 3-edge-

connected cubic graph has a 2-edge-connected subgraph of length at most 7
6 |V |; However

this result does not yield an efficient algorithm for finding such a subgraph .

3.2 NW-TSP and NW-2ECM on 3-edge-connected Cubic Graphs

For this section, let G = (V,E) be a 3-edge-connected cubic graph, and f ∈ RV≥0 be a

node-weight vector. For each edge e = uv ∈ E, let ce = fu + fv. Define zG = min{cx : x ∈
Subtour(G)}.

We begin by showing that 2
3 · χ

G is optimal solution for min{cx : x ∈ Subtour(G)}.

Lemma 3.1. We have zG = 2 ·
∑

v∈V fv.

Proof. For any x ∈ Subtour(G), we have x(δ(v)) ≥ 2. So,∑
e∈E

cexe =
∑
v∈V

x(δ(v)) · fv ≥ 2 ·
∑
v∈V

fv.

Thus, zG ≥ 2 ·
∑

v∈V fv. On the other hand, let x′ = 2
3 ·χ

G. Note that x′ ∈ Subtour(G), since

G is 3-edge-connected. Moreover,
∑

e∈E cex
′
e = 2 ·

∑
v∈V fv. Hence zG ≤ 2 ·

∑
v∈V fv.
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The proof of Lemma 3.1 indirectly implies that zG is a lower bound on the cost of the

minimum cost 2-edge-connected subgraph, minimum cost tour and minimum cost 2-edge-

connected multigraph of G since 2
3 · χ

G ∈ Subtour(G) ∩ [0, 1]E . Node-weighted instances

also provide the following property.

Observation 3.2. Let C be a 2-factor of G. Then
∑

e∈C ce = 2 ·
∑

v∈V fv = zG.

Observation 3.3. Let M be a perfect matching of G. Then
∑

e∈M ce =
∑

v∈V fv = zG
2 .

We are now ready to present our first result.

Theorem 1.17. There is a 7
5 -approximation algorithm for NW-TSP on 3-edge-connected

cubic graphs. Moreover, g(NW-TSP) ≤ 7
5 when restricted to 3-edge-connected cubic graphs.

Proof. Let C be a 2-factor of G that covers all 3-edge and 4-edge cuts of G that can be found

efficiently via Theorem 2.11. By Observation 2.12, the graph G/C is 5-edge-connected. Such

a 2-factor can be found via Theorem 2.11. Let ye = 2
5 if e ∈ E(G/C), and ye = 0 otherwise.

Notice that y ∈ Subtour(G/C), since for every U ⊂ V (G/C), we have y(δ(U)) ≥ 2
5 · 5 ≥ 2.

By Observation 2.3, y ∈ ST+(G/C). Let T be a minimum spanning tree of G/C.∑
e∈T

ce ≤
∑

e∈E(G/C)

ceye

≤
∑
e∈E\C

ceye (E(G/C) ⊆ E \ C)

≤
∑
e∈E\C

ce ·
2

5
(ye ≤

2

5
for e ∈ E \ C)

=
zG
2
· 2

5
=

zG
5

(By Observation 3.3; E \ C is a perfect matching of G).

Finally, note that C ∪ 2T is a tour of G and

∑
e∈C∪2T

w(e) ≤
∑
e∈C

ce + 2 ·
∑
e∈T

ce ≤ zG +
2

5
zG =

7

5
zG.

Next we show that we can use a very similar approach to NW-2ECM on 3-edge-connected

cubic graphs.

Lemma 3.4. Let G = (V,E) be a 3-edge-connected graph and C be a 2-factor of G covering

3-edge cuts and 4-edge cuts of G. Define y ∈ RE as follows: ye = 1 for e ∈ C, and ye = 3
5

for e /∈ C. Then, y ∈ 2ECM(G).
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Proof. By Observation 2.12 graph G/C is 5-edge-connected. Define u = 2
5χ

G/C. Notice

that u ∈ Subtour (G/C). By Theorem 1.10 and Observation 2.3, we have 3
2 · y ∈ TSP(G/C).

Hence, 3
2u =

∑`
i=1 λiχ

Fi , where Fi is a tour of G/C and λi ≥ 0 for i ∈ [`]. Also,
∑`

i=1 λi = 1.

Notice that C + Fi is a 2-edge-connected spanning multigraph of G for all i ∈ [`]. Note that∑`
i=1 λiχ

C+Fi ≤ y.

Theorem 3.5. There is a 13
10-approximation algorithm for NW-2ECM on cubic 3-edge-

connected graph. Moreover, g(NW-2ECM) ≤ 1.3 when restricted to 3-edge-connected cubic

graphs.

Proof. Let C be the 2-factor from Theorem 2.11. Define y ∈ RE as follows: ye = 1 for e ∈ C,
and ye = 3

5 for e /∈ C. Lemma 3.4 implies that G has a 2-edge-connected multigraph F with

cost at most c · y. In particular,∑
e∈F

ce ≤
∑
e∈E

ceye

≤
∑
e∈E\C

ceye +
∑
e∈C

ceye (E(G/C) ⊆ E \ C)

≤ 3

5

∑
e∈E\C

ce +
∑
e∈C

ce (ye ≤
3

5
for e ∈ E \ C)

=
13

10
zG (By Observations 3.3 and 3.2).

We note that for g(NW-2ECM) restricted to 3-edge-connected cubic graphs there are

better (i.e., smaller) upper bounds on the integrality gap than those implied by Theorem

3.5. In particular, Boyd and Legault [BL15] and Legault [Leg17] gave bounds of 6
5 and 7

6 ,

respectively, on the integrality gap. While their procedures are constructive, they do not run

in polynomial time. Thus, the best previously known approximation factor for this problem

is 3
2 via Theorem 1.10. Finally one can easily obtain the following theorem using the ideas

in the above theorems together with Observation 2.14.

Theorem 3.6. There is a 4
3 -approximation (respectively, 5

4 -approximation) algorithm for

NW-TSP (respectively, NW-2ECM) on 3-edge-connected bipartite cubic graphs.

Proof. Let G = (V,E) be a 3-edge-connected bipartite cubic graph and f ∈ RV≥0, and

c ∈ RE≥0 be the node-weight cost function cuv = fu + fv for uv ∈ E. Let C be the 2-factor of

G that covers 3-edge cuts and 4-edge cuts of G obtained from Theorem 2.11. By Observation

2.14 G/C is 6-edge-connected. Hence, 1
3χ

G/C ∈ Subtour(G/C). Let T be the minimum

spanning tree of G/C. We have c(T ) ≤ c(1
3χ

G/C) ≤ 1
3 ·

zG
2 by Observation 3.3. Note that

C + 2T is a tour with cost zG + 1
3zG = 4

3zG.
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Let O be the set of odd degree vertices of T in G/C and let J be the minimum O-join of

G/C. Since 1
6χ

G/C ∈ D(O - JOIN(G/C)). The multigraph induced by edge R = C + T + J is

a 2-edge-connected multigraph of G and c(R) ≤ zG + zG
6 + zG

12 = 5
4zG.

For 2ECS we cannot use Christofides algorithm like we do in proof of Theorem 3.5. Thus,

we apply the tree augmentation problem (TAP) that we introduced in Chapter 2 Section

2.7.

Theorem 3.7. There is 33
25 -approximation algorithm for NW-2ECS on 3-edge-connected

cubic graphs.

Proof. Let C be the 2-factor from Theorem 2.11. Notice that G/C is 5-edge-connected and
2
5χ

G/C ∈ ST+(G/C). Thus the minimum spanning tree of G/C, namely T has cost at most
2
5zG.

Let L = E(G/C)\T . Notice that 1
4χ

L ∈ CUT(T, L). Hence, by Theorem 2.16 we can find

a feasible augmentation A for T such that c(A) ≤ 2
5c(L) since 8

5(1
4 ·χ

L) = 2
5χ

L ∈ TAP(T, L).

Notice that c(T ) + c(L) ≤ c(E \ C) ≤ zG. Thus c(T ) + c(A) = c(T ) + 2
5c(L) ≤ c(T )2

5zG −
2
5c(T ) = 3

5c(T ) + 2
5zG. Recall c(T ) ≤ 2

5zG. Hence, c(T +A) ≤ 16
25zG. Observe that C+T +A

is 2-edge-connected subgraph of G and c(C + T +A) ≤ 33
25zG.

3.3 Beyond 3-edge-connectivity

The results in Theorems 1.17 and 3.5 do not apply to 2-edge-connected subcubic graphs. In

this section, we give an alternative tool to the 2-factor result from Theorem 2.11 for graphs

that are not 3-edge-connected (i.e., graphs that contain 2-edge cuts).

Consider the problem of finding the minimum cost 2-edge-connected subgraph (without

doubling edges) of a node-weighted 2-edge-connected subcubic graph G = (V,E). The LP

relaxation for this problem is

min{cx : x ∈ [0, 1]E and x ∈ Subtour(G)}. (3.1)

Let x∗ be the optimal solution to the LP relaxation above. Now, for a 2-edge-cut of G that

contains edges e and f , we have x∗e +x∗f ≥ 2. On the other hand, we have x∗e ≤ 1 and x∗f ≤ 1.

This implies that x∗e = x∗f = 1. In other words, for any edge e of G that is in a 2-edge cut of

G we have x∗e = 1.

Theorem 3.8. There is a 4
3 -approximation algorithm for NW-2ECS on subcubic graphs.

Proof. Let x∗ be the optimal solution to the LP in (3.1), we show there is 2-edge-connected

subgraph F of G with c(T ) ≤ 4
3

∑
e∈E cex

∗
e.

38



Since x∗ ∈ ST+(G), we can decompose x∗ into a convex combination of connected

subgraphs of G: x∗ =
∑

T∈T λTχ
T , where λT ≥ 0,

∑
T∈T λT = 1, and T is a collection

of connected subgraph of G. Let T = arg min{c(T ) : T ∈ T }. Let C be the collection

of cycles of T . Define tree T ′ = T/C. Note that T ′ is a spanning tree of G′ = G/C. Let

L = E(G′) \ T ′. Observe that L ⊆ E \ T .

Claim 1. We have y = 1
2χ

L ∈ CUT(T ′, L).

Proof. Let e be an edge in G that is in a 2-edge cut of G. As argued above we have x∗e = 1

and hence e is in every connected subgraph in T including T .

Let U ⊂ V (G′) be a 1-edge cut of T ′. Note that U corresponds to a subset of vertices U

in G, and we have δG(U)∩ Ti = {e}. Note that it cannot be the case that |δG(U)| = 2. This

is because if δG(U) were a 2-edge cut of G, including another edge f . But since f is in a

2-edge cut of G, f ∈ T . This is a contradiction.

Hence, |cov(e)| ≥ 2 for e ∈ T ′, which means that y ∈ CUT(T ′, L). ♦

By Theorem 2.15 we have 4
3y ∈ TAP(T ′, L). This implies we can find in polynomial

time a feasible augmentation A of T ′ of cost at most 4
3

∑
e∈L ceye = 2

3c(L) ≤ 2
3c(E)− 2

3c(T ).

Notice that T +A is a 2-edge-connected subgraph of G.

We have

c(T +A) ≤ c(T ) +
2

3
c(E)− 2

3
c(T )

≤ 1

3
c(T ) +

2

3
c(E)

≤ 1

3

∑
e∈E

cex
∗
e +

2

3
c(E)

If suffices to show that c(E) ≤ 3
∑

e∈E cex
∗
e. Observe that the vector χG is a feasible solution

to the LP in 3.1, and c(χG) = c(E) ≤ 3
2

∑
v∈V fv. On the other hand, x∗(δ(v)) ≥ 2 for

v ∈ V , hence
∑

e∈E cex
∗
e =

∑
v∈V fv · x∗(δ(v)) = 2

∑
v∈V fv. This completes the proof.

We will revisit a proof very similar to the one above in the context of 2ECM (See

Section 3.3.3). For TSP and 2ECM, it is not trivial that the optimal solution to min{cx x ∈
Subtour(G)} can be decomposed into a convex combination of connected subgraphs that

contain all the edges in the 2-edge cuts of G. In fact, since in the relaxation of TSP

and 2ECM we can have edges with x-value greater than 1. Hence an edge e in a 2-edge

cut we might have xe < 1. In Section 3.3.1 we address this issue. In particular, we find

a decomposition of a point x∗ ∈ Subtour(G) such that this decomposition has certain

properties. Many approaches for TSP decompose x∗ into a convex combination of spanning
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trees, whose average weight does not exceed zG. In this section, we propose an alternate

way of decomposing x∗ into connectors.

3.3.1 A Tool for Covering 2-edge-cuts

Recall from Observation 2.3 that since x∗ ∈ Subtour(G), we have x∗ ∈ ST+(G). Hence,

x∗ can be written as a convex combination of connectors of G. We now show that x∗

can be decomposed into connectors with the additional property that every 2-edge cut is

covered an even number of times. These connectors can be augmented to obtain tours and a

2-edge-connected multigraphs of G in algorithms similar to the ones in the proof of Theorem

1.10 and 3.8, respectively. Under certain conditions, this property can be exploited to bound

the cost of an augmentation.

Theorem 3.9. Let G = (V,E) be a 2-edge-connected graph. Let x∗ ∈ Subtour(G). We can

find a family of connectors F = {F1, . . . , F`} and multipliers λ1, . . . , λ`, in polynomial-time

in the size of the graph G, such that

(a) x∗ ≥
∑`

i=1 λiFi, where
∑
λi = 1 and λi > 0, and

(b) every Fi has an even number of edges crossing each 2-edge cut in G.

We note that G can be assumed to be the support of x∗, so every Fi will actually have

an even number of edges crossing each 2-edge cut in the support of G on x∗.

Proof of Theorem 3.9

To prove Theorem 3.9, we need to understand the structure of 2-edge cuts in a 2-edge

connected graph. Assume G = (V,E) is a 2-edge-connected graph. For U ⊆ V , let G[U ]

denote the subgraph induced on G by vertex set U (i.e., the graph on the vertex set U

containing edges from E with both endpoints in U).

Lemma 3.10. If U ⊆ V and |δ(S)| = 2, then G[U ] is connected.

Proof. Suppose not, then U can be partitioned into U1 and U2, such that there is no edge in

G between U1 and U2. Hence, |δ(U1)|+ |δ(U2)| = 2. However, since G is 2-edge-connected

we have |δ(U1)|+ |δ(U2)| ≥ 4, which is a contradiction.

Lemma 3.11. Let e, f and g be distinct edges of G. If {e, f} and {f, g} are each 2-edge

cuts in G, then {e, g} is also a 2-edge cut in G.

Proof. Let U,W ⊂ V be such that δ(U) = {e, f} and δ(W ) = {f, g}. Without loss of

generality, we can assume that neither endpoint of e belongs to W . (If both endpoints of e
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belong to W , we set W equal to its complement.) Moreover, we can assume that U ∩W 6= ∅
(since otherwise we can set U equal to its complement). We can also assume that U \W 6= ∅
(since one endpoint of e belongs to U but not to W ). Suppose W \ U is not empty. By

Lemma 3.10, G[W ] is connected. Hence there exists an edge h from U ∩W to W \U . Notice

h ∈ δ(U), and h /∈ δ(W ). Therefore, h = e. However, since both endpoints of h are in W ,

this is a contradiction. So we can assume that W \ U = ∅. In other words, W ⊂ U .

Now we show that δ(U \W ) = {e, g}. Since W ⊂ U and neither endpoint of e belongs to

W , it follows that e ∈ δ(U \W ). Moreover, since only one endpoint of g belongs to W (and

therefore to U) and g /∈ δ(U), it follows that g ∈ δ(U \W ). So we have {e, g} ⊆ δ(U \W ).

Suppose there is another edge h ∈ δ(U \W ) with endpoints v ∈ U \W and u /∈ U \W .

Note that h 6= f , because neither endpoint of f belongs to U \W . If u ∈W , then h ∈ δ(W )

which is a contradiction to W being a 2-edge cut. Otherwise if u ∈ V \ U , then h ∈ δ(U)

which is again a contradiction to U being a 2-edge cut.

We will later use these properties when building a family of connectors to delete and

replace edges along the 2-edge cuts of the graph. Next, we need a decomposition lemma for

x∗.

The following observation directly follows from Observations 2.1 and 2.3.

Observation 3.12. A vector x∗ ∈ Subtour(G) can be represented as a convex combination

of connectors of G, and the number of connectors in this convex combination is polynomial

in the number of vertices of G.

The fact that the number of connectors in the convex combination is polynomial follows

from the fact that the constraints in ST+(G) are separable, and hence we can apply the

constructive version of Carathéodory’s theorem to get the result [GLS88, Sch03].

By Observation 3.12, vector x∗ can be written as convex combination of connectors

F = {F1, . . . , F`} with convex multipliers λ = {λ1, . . . , λ`} such that x∗ =
∑`

i=1 λiχ
Fi .

Furthermore, we can find this decomposition in time polynomial in the size of G. Notice F
satisfies (a) in the statement of Theorem 3.9. We will now show that given F we can obtain

a new family of connectors satisfying both (a) and (b) from Theorem 3.9.

Lemma 3.13. Given a family of connectors F1, . . . , F` of G such that x∗ =
∑`

i=1 λiχ
Fi,

λi > 0 for i ∈ [`], and
∑`

i=1 λi = 1, there is a polynomial-time algorithm that outputs

connectors F ′1, . . . , F
′
` such that

(1) x∗ =
∑`

i=1 λiχ
F ′i .

(2) If x∗e ≥ 1, then χF
′
i (e) ≥ 1 for all i ∈ [`].

(3) If x∗e < 1, then there is no i ∈ [`] such that χF
′
i (e) ≥ 2.
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Proof. Call a tuple (e, i, j) where e ∈ E, i, j ∈ [`] bad if

χFi(e) ≥ 2 and χFj (e) = 0.

Let b be the number of bad tuples and let (e, i, j) be a bad tuple. Then

F ′i = Fi − e, F ′j = Fj + e, and F ′p = Fp for p ∈ [`] \ {i, j}

satisfies property (1). Notice that now F ′1, . . . , F
′
` has at most b− 1 bad tuples; no new bad

tuples are created by the above procedure. Thus, after at most b iterations, we have that

for each e ∈ E, there is no i, j ∈ [`] such that χF
′
i (e) ≥ 2 and χF

′
j (e) = 0. This implies

properties (2) and (3) in the statement of the lemma. Finally, it is also easy to see that fixing

each tuple can be done in polynomial time, and that the number of tuples is polynomial in

the size of G.

We now proceed to the proof of Theorem 3.9. By Lemma 3.11, the relation “is in a 2-edge

cut with” is transitive. So, we can partition the edges in 2-edge cuts of G into equivalence

classes via this relation. Let B be the collection of disjoint subsets of edges of G such that

for all B ∈ B: (i) |B| ≥ 2, and (ii) for each pair of edges {e, f} ⊆ B, edges e and f form a

2-edge cut of G. Note that for B ∈ B and any distinct edges e, f ∈ B, it cannot be the case

that both x∗e < 1 and x∗f < 1, since {e, f} is a 2-edge cut and x∗ ∈ Subtour(G). We classify

the subsets in B into two types:

B1 = {B ∈ B : for all e ∈ B, x∗e ≥ 1},

B2 = {B ∈ B : there is exactly one edge e ∈ B such that x∗e < 1}.

Let F1, . . . , F` be a family of connectors satisfying properties (1), (2) and (3) in Lemma

3.13. We propose a procedure to modify these connectors and output F ′1, . . . , F
′
` such that

for each B ∈ B, property (b) in Theorem 3.9 is satisfied while property (a) is preserved. In

particular, by property (1) from Lemma 3.13, we have

∑̀
i=1

χFi(e) = x∗e for e ∈ E.

Our specific procedure depends on whether B ∈ B1 or B ∈ B2.

Case 1 (B ∈ B1): In this case, we have χFi(e) ≥ 1 for all e ∈ B and i ∈ [`], by property

(2) in Lemma 3.13. For i ∈ [`] let F ′i be such that

χF
′
i (e) = 1 for e ∈ B and χF

′
i (e) = χFi(e) for e ∈ E \B.
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Now we reset F1, . . . , F` := F ′1, . . . , F
′
`, and proceed to the next B ∈ B1.

It is easy to see that we can apply this procedure iteratively for B ∈ B1. This is because

after applying this operation on B ∈ B1, properties (2) and (3) in Lemma 3.13 are preserved.

Moreover, property (1) in Lemma 3.13 is also preserved for every edge not in B, i.e.

∑̀
i=1

λiχ
F ′i (e) = x∗e for all e ∈ E \B (and

∑`
i=1 λiχ

F ′i (e) ≤ x∗e for all e ∈ B).

In addition, given any 2-edge cut {e, f} such that {e, f} ⊆ B for B ∈ B1, we have χF
′
i (e) +

χF
′
i (f) = 1 + 1 = 2 for all i ∈ [`].

Case 2 (B ∈ B2): Let e be the unique edge in B with x∗e < 1. By property (3) in

Lemma 3.13, we have χFi(e) ≤ 1 for all i ∈ [`]. Without loss of generality, assume for

χFi(e) = 1 for i ∈ {1, . . . , p} and χFi(e) = 0 for i ∈ {p+ 1, . . . , `}. For i ∈ {1, . . . , p}, let F ′i
be such that

χF
′
i (f) = 1 for f ∈ B and χF

′
i (f) = χFi(f) for f ∈ E \B.

For i ∈ {p+ 1, . . . , `}, let F ′i be such that

χF
′
i (e) = 0, χF

′
i (f) = 2 for f ∈ B \ {e} and χF

′
i (f) = χFi(f) for f ∈ E \B.

Now we reset F1, . . . , F` := F ′1, . . . , F
′
`, and proceed to the next B ∈ B2. After each iteration,

we observe that

∑̀
i=1

λiχ
F ′i (e) =

p∑
i=1

λiχ
F ′i (e) +

∑̀
i=p+1

λiχ
F ′i (e)

=

p∑
i=1

λi = x∗e. (3.2)
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For f ∈ B \ {e}, we have

∑̀
i=1

λiχ
F ′i (f) =

p∑
i=1

λiχ
F ′i (f) +

∑̀
i=p+1

λiχ
F ′i (f)

=

p∑
i=1

λi + 2
∑̀
i=p+1

λi

= x∗e + 2(1− x∗e) (From (3.2))

= 2− x∗e
≤ x∗f (Since x∗ ∈ Subtour(G)).

This also clearly holds for any f ∈ E \B as we do not touch these edges. Note that after the

final iteration, F1, . . . , F` are connected multigraphs of G, because we began with connected

multigraphs and we only remove an edge f from Fi if it contained at least two copies of f .

Finally, note that given any 2-edge cut {e, f} ∈ B for B ∈ B2, we have χFi(e) +χFi(f) =

1 + 1 = 2, χFi(e) + χFi(f) = 0 + 2 = 2 or χFi(e) + χFi(f) = 2 + 2 = 4 for all i ∈ [`]. This

concludes the proof of Theorem 3.9.

3.3.2 An Algorithm for TSP á la Christofides with Simple Deletions

This section and the next section present two applications of Theorem 3.9. In the first

application, we show an algorithm similar to that of Christofides’ has an approximation

better than 3
2 for NW-TSP on subcubic graphs where the optimal value of the subtour

elimination relaxation , denoted by zG, is strictly larger than twice the sum of node weights.

A useful fact about NW-TSP and NW-2ECM on subcubic graphs is that the total edge

weight cannot be too much larger than zG.

Observation 3.14. Let G = (V,E) be a node-weighted subcubic graph. Then c(E) ≤ 3
2zG.

Proof. Observe that c(E) ≤ 3 ·
∑

v∈V fv, where f ∈ RV≥0 is the node-weight vector. Also,

notice that zG ≥ 2 ·
∑

v∈V fv.

Since all graphs are assumed to be 2-vertex-connected (i.e., bridgeless), we can make the

following straightforward observation.

Observation 3.15. Let G = (V,E) be a node-weighted subcubic graph. Then zG ≤ 3 ·∑
v∈V fv.

Proof. This follows from the fact that xe = 1 for all e ∈ E is a feasible solution for Subtour(G)

when G is a 2-vertex-connected subcubic graph.
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For the remainder of this section, let x∗ be an optimal solution for min{cx : x ∈
Subtour(G)}. By Theorem 3.9, we have x∗ ≥

∑`
i=1 λiχ

Fi where Fi is a connector satisfying

(a) and (b) in the statement of Theorem 3.9 for i ∈ [`]. Let x′ =
∑`

i=1 λiχ
Fi . Clearly∑

e∈E w(e)x′e ≤ zG. Define x̄ ∈ RE as follows: x̄e = min{1, x′e}.
In graph metrics (instances of Graph-TSP), every (minimum) spanning tree of input

connected graph G = (V,E) has cost |V |− 1. It follows that in the case where zG ≥ (1 + ε)n,

Christofides’ algorithm has an approximation guarantee strictly better than 3
2 (in fact, at

most (3
2 −

ε
1+ε)). This implies that, in some sense, the most difficult case for Graph-TSP is

when zG = |V |. It seems that this should also be the case for NW-TSP: the most difficult

case should be when zG = 2 ·
∑

v∈V fv; Similarly when zG ≥ (1+ ε) ·2 ·
∑

v∈V fv, Christofides’

algorithm should give an approximation guarantee strictly better than 3
2 .

However, in the case of node-weighted graphs (even for subcubic graphs), a minimum

spanning tree of G may have weight exceeding 2 ·
∑

v∈V fv when zG > 2 ·
∑

v∈V fv. See

Figure 3.2 for an example. Thus, proving an approximation factor strictly better than
3
2 for node-weighted graphs in this scenario does not follow the same argument as in the

graph metric. Nevertheless, we can use connectors to prove that we can beat Christofides’

algorithm (Theorem 1.10) on NW-TSP when the input G is subcubic and zG is much larger

than 2 ·
∑

v∈V fv.

(a)

(b)

Figure 3.2: The graph in (b) has a total of 10t (here t = 6) vertices: each square vertex
corresponds to the gadget in (a). The weight of each circular vertex in (b) is 1, and all other
vertices inside the gadgets have weight zero. A minimum spanning tree (denoted by the
solid edges) has weight 5t− 2 while sum of the node weights is 2t. In this case, Theorem
3.20 yields a tour of weight 7t− 2, providing a 7

5 -approximation for this instance.

Lemma 3.16. There is an efficient algorithm that given G = (V,E) and c ∈ RE≥0 finds a

tour of G with cost at most zG + c(E)
3 .

In fact, we prove something slightly stronger that will be useful in the next section.
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Lemma 3.17. Let G = (V,E) be a graph and cE ∈ RE≥0. There is an efficient algorithm to

find a tour in G with cost at most c(E)
3 + 1

3 ·
∑

e∈E cex
′
e + 2

3 ·
∑

e∈E cex̄e.

Recall that in the proof of Theorem 1.10, we write an optimal solution x∗ for minx∈Subtour(G) cx

as a convex combination of connected spanning multigraphs (see Observation 2.3). Each of

these multigraphs is then augmented with a O-join, where O ⊆ V is the set of odd-degree ver-

tices in the multigraph. In particular, for a multigraph F of G, let O be the set of odd-degree

vertices of F . Then, x
∗

2 ∈ D(O - JOIN(G)). This means the vector x∗+ x∗

2 = 3
2x
∗ ∈ TSP(G).

If we decompose the optimal solution for Subtour(G) into a family of connectors according

to Theorem 3.9, then we can augment each connector by a O-join that is obtained from

writing the vector {1
3}
E as a convex combination of O-joins.

Lemma 3.18. Let F be a family of connectors for G = (V,E) satisfying properties (a) and

(b) from Theorem 3.9. For an F ∈ F , let O denote the odd-degree vertices in F . Then the

vector 1
3χ

G ∈ O - JOIN(G).

Proof. Let F be a connector of G and let O ⊆ V denote the vertices with odd degree in F .

Since all edges have value 1
3 , we only need to check that

|δ(U)|
3

+
|A|
3
≥ 1 for U ⊆ V,A ⊆ δ(U), |U ∩ T |+ |A| odd. (3.3)

Consider U ⊂ V such that |δ(U)| = 2. Note that
∑

e∈δ(U) χ
F
e is even by the properties of

a connector. This implies that |U ∩O| is even. So we need to check the case where |A| = 1.

In this case, we see that Inequality (3.3) is satisfied. Now consider case in which |δ(U)| ≥ 3.

In this case,
|δ(U)|

3
+
|A|
3
≥ |δ(U)|

3
≥ 1.

Hence, 1
3χ

G ∈ D(O - JOIN(G)).

Observe that Lemma 3.18 is sufficient to prove Lemma 3.16. To prove (the potentially

stronger) Lemma 3.17, we modify Christofides’ algorithm further by adding the following

deletion step. Suppose an edge e occurs in a connector F as a doubled edge. If this edge

e also belongs to the O-join J , we remove two copies of e from the multigraph F ∪ J . We

observe that the resulting multigraph remains a tour.

Observation 3.19. Let F be a connector for G = (V,E) and let J be a O-join, where O

is the set of vertices with odd degree in F . Let E′ ⊂ E denote the set of edges that occur

doubled in F and also belong to J . Then the multigraph F ∪ J \ {2E′} is a tour.

Proof. Let H = F ∪ J \ {2E′} denote the multigraph obtained after removing two copies of

each edge in E′ from F ∪ J . Then H is an Eulerian multigraph, since the parity of each

degree does not change. It remains to show that H is connected and spanning.
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To show that H is connected, we will show that |δ(U) ∩H| ≥ 1 for all nonempty U ⊂ V .

Suppose δ(U) ∩ ((F ∪ J) ∩ E′) = ∅. Then δ(U) ∩ H = δ(U) ∩ F ∪ J and it follows that

|δ(U) ∩H| ≥ 2. Now suppose |δ(U) ∩ ((F ∪ J) ∩ E′)| ≥ 1. In particular, suppose for edge

e ∈ E′, e belongs to δ(U) ∩ (F ∪ J). Then, since at least one copy of e remains in H, it

follows that |δ(U) ∩H| ≥ 1. We can therefore conclude that H is connected.

We are now ready to prove Lemma 3.17 via an analysis of the modified Christofides’

algorithm we have just described.

Proof of Lemma 3.17. We have x′ =
∑`

i=1 λiχ
Fi where Fi is a connector satisfying (a) and

(b) in the statement of Theorem 3.9 for i ∈ [`]. Choose i ∈ [`] uniformly at random according

to the probability distribution defined by λ1, . . . , λ`. Let Oi be the set of odd-degree vertices

of Fi. By Lemma 3.18, we have 1
3χ

G =
∑`i

j=1 λ
i
jχ

Jij , where J ij is a Oi-join of G. Choose

j ∈ [`i] at random according to probability distribution defined by λi1, . . . , λ
i
`i

. Let E′ ⊂ E
denote the edges that occur doubled in Fi and also belong to J ij . By Observation 3.19,

H = Fi ∪ J ij \ {2E′} is a tour of G. We have

E[c(H)] = E[c(Fi)] + E[c(J ij)]− 2 · E[c(E′)]

=
∑
e∈E

cex
′
e +

c(E)

3
− 2 ·

∑
e∈E:x′e>1

ce · Pr[χFie = 2] · Pr[e ∈ J ij ]

=
∑
e∈E

cex
′
e +

c(E)

3
− 2 ·

∑
e∈E:x′e>1

ce(x
′
e − 1) · 1

3

=
∑
e∈E

cex
′
e +

c(E)

3
− 2

3

 ∑
e∈E:x′e>1

cex
′
e −

∑
e∈E:x′e>1

ce


=
∑
e∈E

cex
′
e +

c(E)

3
− 2

3

(∑
e∈E

cex
′
e −

∑
e∈E

cex̄e

)

=

∑
e∈E cex

′
e

3
+
c(E)

3
+

2

3
·
∑
e∈E

cex̄e.

This is the desired result.

Theorem 3.20. Let G = (V,E) be a node-weighted subcubic graph. If zG ≥ 2 · (1 + ε) ·∑
v∈V fv, then there is an (3

2 −
ε
3)-approximation algorithm for NW-TSP on G.

Proof. For a node-weighted subcubic graph, we have

c(E) ≤ 3 ·
∑
v∈V

fv. (3.4)
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By the assumption of the theorem and (3.4), we have zG ≥ 2(1 + ε)
∑

v∈V fv ≥
2(1+ε)

3 c(E).

Applying Lemma 3.16, we get a tour of weight at most

zG +
c(E)

3
≤ (

3 + 2ε

2 + 2ε
) · zG

= (
3

2
− ε

2 + 2ε
) · zG

≤ (
3

2
− ε

3
) · zG.

The last inequality comes from the fact that ε ≤ 1
2 since zG ≤ 3 ·

∑
v∈V fv, which follows

from Observation 3.15.

3.3.3 An Algorithm for NW-2ECM

In this section we discuss a second application of the connector decomposition in Theorem

3.9. In the following application, we show that there is a set of edges that can be added

to a connector to yield a 2-edge-connected graph, and this addition can be found via an

application of the tree augmentation problem, which we introduced in Section 2.7. We then

show that combining the approaches in these applications, we can beat the approximation

ratio of Christofides’ algorithm for NW-2ECM on subcubic graphs.

Recall the set-up for NW-2ECM. We are given a graph G = (V,E) with node-weights

f ∈ RV≥0. Then for e = uv ∈ E, we have ce = fu + fv. Our goal is to find a minimum

cost 2-edge-connected spanning multigraph of G with respect to costs c. We now prove the

following lemma.

Lemma 3.21. Let G = (V,E) be a graph and c ∈ RE≥0. We can find a 2-edge-connected

spanning multigraph of G with cost at most
∑

e∈E cex
′
e + 2

3c(E)− 2
3 ·
∑

e∈E cex̄e.

Proof. Recall that we have x′ =
∑`

i=1 λiχ
Fi where Fi is a connector satisfying (a) and (b)

in the statement of Theorem 3.9 for i ∈ [`]. For i ∈ [`], let Hi be a subgraph of G, that

contains a single copy of every edge that is in Fi. Also let Ci be the collection of cycles of Hi.

Define tree Ti = Hi/Ci. Note that Ti is a spanning tree of Gi = G/Ci. Let Li = E(Gi) \ Ti.
Observe that Li ⊆ G \ Fi. Define vector yi ∈ RLi to be 1

2χ
Li .

Claim 2. For i ∈ {i, . . . , `}, we have yi ∈ CUT(Ti, Li).

Proof. Let Ui ⊂ V (Gi) be a 1-edge cut of Ti. Note that Ui corresponds to a subset of vertices

U in G, and we have δG(U) ∩ Fi = {e}. Note that it cannot be the case that |δG(U)| = 2.

This is because if δG(U) were a 2-edge cut of G, then by property (b) in Theorem 3.9, there

would be an even number of edges in Fi that are also in δG(U).
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Hence, |δG(U)| ≥ 3, which means |δGi(U)| ≥ 3. So we have

∑
e∈δGi (U)

ye =
∑

e∈δGi (U)\Ti

1

2
=

∑
e∈δGi (U)\{e}

1

2
=
|δGi(U) \ {e}|

2
≥ 1.

This concludes the proof of the claim. ♦

For i ∈ [`], define vector ri to be 2
3χ

Li .

Claim 3. For i ∈ [`], the vector ri ∈ TAP(Ti, Li), i.e. ri can be written as convex

combination of feasible augmentations of Ti.

Proof. By Claim 2 and Theorem 2.15, since yi ∈ CUT(Ti, Li) we have 4
3y

i = ri ∈ TAP(Ti, Li).

♦

By Claim 3, for i ∈ [`] we can write ri as
∑`i

j=1 λ
i
jA

i
j , where for j ∈ [`i], and Ti + Aij

is 2-edge-connected subgraph of Gi. The latter implies that Fi +Aij is a 2-edge-connected

spanning multigraph of G for i ∈ [`] and j ∈ [`i]. Let Rij = Fi + Aij . To argue that there

exists a low-cost, 2-edge-connected spanning multigraph, we show the following claim.

Claim 4. There exists i ∈ [`] and j ∈ [`i] such that c(Rij) ≤
∑

e∈E cex
′
e + 2

3c(E) − 2
3 ·∑

e∈E c(e)x̄e.

Proof. Pick i ∈ [`] at random according to the probability distribution defined by λ1, . . . , λ`.

Now, pick j ∈ [`i] independently at random according to the probability distribution defined

49



by λi1, . . . , λ
i
`i

. We have

E[c(Rij)] = E[c(Fi)] + E[c(Aij)]

=
∑
e∈E

(
2ce · Pr[χFi(e) = 2] + ce · Pr[χFi(e) = 1]

)
+
∑
e∈E

ce · Pr[e ∈ Aij ]

=
∑
e∈E

(
2ce · Pr[χFi(e) = 2] + ce · Pr[χFi(e) = 1]

)
+
∑
e∈E

2

3
ce · Pr[χFi(e) = 0]

=
∑

e∈E:x′e>1

(
2ce · Pr[χFi(e) = 2]︸ ︷︷ ︸

=(x′e−1)

+ce · Pr[χFi(e) = 1]︸ ︷︷ ︸
=(2−x′e)

+
2

3
ce · Pr[χFi(e) = 0]︸ ︷︷ ︸

=0

)
+

∑
e∈E:x′e≤1

(
2ce · Pr[χFi(e) = 2]︸ ︷︷ ︸

=0

+ce · Pr[χFi(e) = 1]︸ ︷︷ ︸
=x′e

+
2

3
ce · Pr[χFi(e) = 0]︸ ︷︷ ︸

=(1−x′e)

)
=

∑
e∈E:x′e>1

(
2cex

′
e − 2ce + 2ce − cex′e

)
+

∑
e∈E:x′e≤1

(
cex
′
e +

2

3
ce −

2

3
cex
′
e

)
=

∑
e∈E:x′e>1

cex
′
e +

∑
e∈E:x′e≤1

(1

3
cex
′
e +

2

3
ce
)

=
∑

e∈E:x′e>1

ce(x
′
e − 1) +

∑
e∈E

(
1

3
cex̄e +

2

3
ce)

=
∑
e∈E

cex
′
e −

∑
e∈E

cex̄e +
∑
e∈E

1

3
cex̄e +

∑
e∈E

2

3
ce

=
∑
e∈E

cex
′
e +

2

3
c(E)− 2

3
·
∑
e∈E

cex̄e.

♦

This concludes the proof of Lemma 3.21.

Assume c(E) ≤ 3
2zG. In this case, Lemma 3.21 finds a 2-edge-connected spanning

multigraph of cost at most 2zG − 2
3 ·
∑

e∈E c(e)x̄e. If
∑

e∈E cex̄e = zG, then this implies

a 4
3 -approximation for 2ECM. (Note that this is the case if x∗ ≤ 1.) However, there are

instances for which this does not happen. Figure 3.3 illustrates an example where the

algorithm in Lemma 3.21 does not improve the bound of Christofides’ algorithm.

Lemma 3.22. Let G = (V,E) be a graph such that c(E) ≤ β · zG, then there is a (2
3 + β

2 )-

approximation for 2ECM on graph G.

Proof. Taking the best of the guarantees from Lemmas 3.17 and 3.21, we have an algorithm
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v12

v21 v3 0

v4 1

ε 1− ε
2

1− ε
2

ε

2− 2ε

1− ε
2

Figure 3.3: Let G = (V,E) be the node-weighted K4 shown above. For e ∈ E, ce is defined
as the sum of the node-weights of the two endpoints (e.g., cv1v2 = 2 + 1 = 3). The edge
labels represents solution x∗ ∈ Subtour(G). Here we have x′ = x∗. We have c(E) = 12,∑

e∈E cex
′
e = 8,

∑
e∈E cex̄e = 6 + 4ε. For this x∗, Lemma 3.21 yields a (3−ε

2 )-approximation,
which does not outperform Christofides’ algorithm by any constant factor. However, Lemma
3.17 provides a (4+ε

3 )-approximation for 2ECM on the graph G.

that outputs a 2-edge-connected spanning multigraph of cost at most

1

2

(
4

3

∑
e∈E

cex
′
e + c(E))

)
≤ 1

2

(
4

3
zG + c(E)

)
= (

2

3
+
β

2
) · zG.

Note that the above bound is obtained by taking the average of the two guarantees.

Now we are ready to present the main result of this section.

Theorem 3.23. There is a 17
12 -approximation for NW-2ECM on subcubic graphs.

Proof. For a node-weighted subcubic graph G = (V,E), we have c(E) ≤ 3
2zG (by Observation

3.14). By Lemma 3.22, we get a 17
12 -approximation for 2ECM on graph G.
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Chapter 4

Uniform Covers

The four-thirds conjecture (Conjecture 1) is one of the most important problems in combina-

torial optimization. For decades obtaining an upper bound smaller than 3
2 for integrality gap

of the subtour elimination relaxation for the TSP, g(TSP), has been open. As an intermediate

step in proving Conjecture 1, Sebő et al. [SBS14] observed that for any 3-edge-connected

cubic graph G = (V,E), the vector 2
3χ

G ∈ SEP(G). Theorem 1.10 would then imply that
3
2 · (

2
3χ

G) = χG ∈ TSP(G): the edge set of G can be written as a convex combination of tours

of G. Hence, they asserted the following conjecture inspired by the four-thirds conjecture.

Conjecture 2. Let x be a 2
3 -uniform point. Then 4

3x ∈ TSP(Gx).

Recall that for a 2
k -uniform point x, graph Gx is a k-edge-connected k-regular graph,

and xe = 2
k for e ∈ Ex. Based on a Proposition 1.11 one can describe an equivalent version

of the four-thirds conjecture.

Conjecture 3. For any integer k ≥ 2 and any 2
k -uniform point x, we have 4

3x ∈ TSP(Gx).

Conjecture 2 have been investigated in the context of 2ECS (and hence 2ECM) as well

[BL15, Leg17]. This motivates us to define the Uniform Cover Problem for TSP and

Uniform Cover Problem for 2ECM (and generally refer to both as the Uniform Cover

Problem); In the Uniform Cover Problem for TSP, given integer k ≥ 2, we want to find

αTSP
k = min{α : αx ∈ TSP(Gx) for all

2

k
-uniform points x}. (4.1)

In the Uniform Cover Problem for 2ECM, we wish to find

α2ECM
k = min{α : αx ∈ 2ECM(Gx) for all

2

k
-uniform points x}. (4.2)

Most known proofs for the Uniform Cover Problem for 2ECM use subgraphs only (not

doubling any edges), so we also define In the Uniform Cover Problem for 2ECS where we

52



want to find

α2ECS
k = min{α : αx ∈ 2ECS(Gx) for all

2

k
-uniform points x}. (4.3)

A proof αTSP
k ≤ α (resp. α2ECM

k ≤ α) implies that for any k-edge-connected k-regular

graph G = (V,E), vector α( 2
kχ

G) is a convex combination of tours of G (resp. 2-edge-

connected spanning multigraphs of G). We also ask if we can find such a convex combination

efficiently.

4.1 Related Work

In this section we review the known results for the Uniform Cover Problem. In fact, some of

these results are not stated as such and need to be translated into our framework.

The goal in the Uniform Cover Problem is to find improved bounds on αTSP
k and α2ECM

k .

Since 2ECM is a relaxation of TSP and a relaxation of 2ECS we can make the following

observation.

Observation 4.1. For k ∈ Z≥2, we have αTSP
k ≥ α2ECM

k , and α2ECS
k ≥ α2ECM

k .

Moreover, The 3
2 -approximation algorithm of Christofides’ for TSP (Theorem 1.10)

implies the following.

Observation 4.2. For k ∈ Z≥2, we have αTSP
k ≤ 3

2 .

Proof. For a 2
k -uniform point x we have x ∈ SEP(Gx). The result follows from Theorem

1.10.

Also, recall the instances in Figures 1.1 and 1.2.

Observation 4.3. We have αTSP
4 ≥ 4

3 .

Proof. Let xt be the vector and Gt = (V t, Et) be the graph described in Figure 1.1. Define

a graph Ht with vertex set V t and two copies of each edge e ∈ Et with xte = 1, and

a single copy of e ∈ Et with xte = 1
2 . Note that Ht is a 4-edge-connected 4-regular

graph, so 2
4χ

Ht
is a 2

4 -uniform point. For any ε > 0, there is a t large enough such that

(4
3 − ε)(

2
4χ

Ht
) /∈ SEP(Ht).

Observation 4.4. We have α2ECM
4 ≥ 6

5 .

Proof. Let xt be the vector and Gt = (V t, Et) be the graph described in Figure 1.2. Let Ht

be the graph with two copies of each edge e ∈ Et with xte = 1, and one copy of e ∈ Et with

xte = 1
2 . Graph Ht is a 4-edge-connected 4-regular graph. So 2

4χ
Ht

is a 2
4 -uniform point.

Also, for any ε > 0, there is a t large enough such that (6
5 − ε)(

2
4χ

Ht
) /∈ SEP(Ht).
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Theorem 4.5 (Cheriyan et al. [CKKK08]). We have α2ECS
4 ≥ 4

3 and α2ECS
6 ≥ 3

2 .

Observation 4.6. We have αTSP
2 = α2ECS

2 = α2ECM
2 = 1.

Observation 4.7. For k ∈ Z+ we have αTSP
2k ≥ αTSP

k and α2ECM
2k ≥ α2ECM

k .

Proof. We prove αTSP
2k ≥ αTSP

k . The inequality α2ECM
2k ≥ α2ECM

k follows from a similar

argument. Let x be a 2
k -uniform point. Doubling every edge in Gx we obtain a graph G′:

notice that G′ is 2k-edge-connected and 2k-regular. Hence, 1
kχ

G′ is a 2
2k -uniform point.

This implies that αTSP
2k ( 1

kχ
G′) ∈ TSP(G′). A tour of G′ corresponds to a tour of Gx where

each of the two copies of an edge e ∈ Ex in G′ are replaced by e. This implies that

αTSP
2k · x ∈ TSP(Gx).

Carr and Ravi [CR98] proved that α2ECS
4 ≤ 4

3 . Following a similar approach, Boyd and

Legault [BL15] showed α2ECS
3 ≤ 6

5 . This was later improved to α2ECS
3 ≤ 7

6 [Leg17]. None of

these proofs yield an efficient decomposition.

Lukotka and Mazák [LM17] constructed a family of 3-edge-connected cubic graphs

{Gt}∞t=0 such that for any constant ε > 0 there is a t large enough such that any tour of

Gt contain strictly more than (9
8 − ε)|V (Gt)| edges. This implies that integrality gap of

Graph-TSP when restricted to 3-edge-connected cubic graphs is at least 9
8 . Note 2

3χ
Gt is

the optimal solution to subtour elimination relaxation for any 3-edge-connected cubic graph

with unit cost. Therefore, αTSP
3 ≥ 9

8 .

Recently, Boyd and Sebő [BS17] showed that αTSP
3 ≤ 9

7 , when restricted to 2
3 -uniform

points with a Hamiltonian cycle in their support.

The remainder of this chapter is organized as follows. In Section 4.2 we obtain the first

upper bound that is strictly below 3
2 for αTSP

3 . The proof is simple and can be extended

to obtain an upper bound below 4
3 for α2ECM

3 . This is not the best known upper bound

on α2ECM
3 , but it is the best bound that also yields an efficient approximation algorithm.

We then exhibit a proof of α2ECS
3 ≤ 4

3 using the top-down coloring algorithm described in

Chapter 2 Section 2.7.1 by showing that 8
9χ

G for a 3-edge-connected cubic graph G can be

decomposed into nine 2-edge-connected subgraphs of G. In order to improve these bounds,

we pursue an inductive approach known as gluing. Using a simple gluing argument we

reduce the uniform cover problem for 2ECS (in the case of 2
3 -uniform points) into a simpler

problem, and use this reduction to improve the bounds of the previous section. In particular,

we show that for a 2
3 -uniform point x, the vector 21

16x can be efficiently written as convex

combination of 2-edge-connected spanning subgraphs of Gx, and the vector 123
94 x can be

efficiently written as convex combination of 2-edge-connected spanning multigraphs of Gx .

This result is presented in Section 4.4.1. Finally, in Section 4.5 we use a forward reference

to Chapter 6 to slightly improve the bound on αTSP
3 compared to the one we present in

Section 4.2.
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4.2 Finding Uniform Covers via 2-factors

Recall that the polyhedral proof of Christofides’ algorithm can be used to prove αTSP
k ≤ 3

2 .

The problem of reducing this factor to anything less than 3
2 has been open for decades. In

the case where k = 3, we can improve this result.

Theorem 1.18. Let x be a 2
3 -uniform point, then 27

19x ≈ 1.421x can be efficiently written

as convex combination of tours of Gx.

Proof. Let G = (V,E) be the support Gx of x. By Theorem 2.11, graph G has a 2-factor C
such that C covers every 3-edge and 4-edge cut of G. Let G/C be the graph obtained by

contracting each cycle of C in G. By Observation 2.12, G/C is 5-edge-connected. Define

vector y ∈ RE(G/C) as follows: ye = 2
5 for e ∈ E(G/C). Observe that y ∈ Subtour(G/C).

Thus, y ∈ D(ST(G/C)). More precisely, we can write y ≥
∑`

i=1 λiχ
Ti , where Ti is a spanning

tree of G/C,
∑`

i=1 λi = 1, and λi > 0 for i ∈ [`]. Consequently, we have 2y ≥
∑`

i=1 λiχ
2Ti

(i.e., the vector 2y dominates a convex combination of doubled spanning trees of G/C).
Let M be the set of edges in E \ C that are not in G/C; these are the edges that connect

two vertices of the same cycle in C. Define vector v ∈ RE as follows: ve = 1 for e ∈ C, and

ve = 4
5 for e ∈ E \ (M ∪ C). Note that v ≥

∑`
i=1 λiχ

C∪2Ti . For i ∈ [`], the graph induced by

C ∪ 2Ti is a tour.

Now we define u ∈ RE as follows: ue = 1
2 for e ∈ C and ue = 1 for e ∈ E \ C. We

have u ∈ SEP(G) : for each cut D of G, if |D| ≥ 4, clearly
∑

e∈D ue ≥ 2. If |D| = 3, then

|C ∩D| = 2, so
∑

e∈D ue = 2 · 1
2 + 1 = 2. By Theorem 1.10 we can write 3

2u as a convex

combination of tours.

Now vector 15
19v + 4

19(3
2u) can be written as convex combination of tours of G. For

edge e ∈ C we have 15
19ve + 4

19(3
2ue) = 15

19 + 4
19(3

2 ·
1
2) = 18

19 . For e ∈ E(G/ ∈ C) we have
15
19ve + 4

19(3
2ue) = 15

19 ·
4
5 + 4

19(3
2) = 18

19 . For e ∈M , we have 15
19ve + 4

19(3
2ue) = 0 + 4

19(3
2) = 6

19 .

Therefore 15
19v + 4

19(3
2u) ∈ D(TSP(G)) which implies 27

19x ∈ TSP(G) by Observation 2.3.

Corollary 4.8. We have αTSP
3 ≤ 27

19 ≤ 1.422.

If G is also bipartite, then by Observation 2.14, the graph G/C in the proof of Theorem

1.18 is 6-edge connected. We can therefore improve Theorem 1.18 in this case.

Theorem 4.9. Let x be a 2
3 -uniform point and Gx be bipartite, then 18

13x can be efficiently

written as convex combination of tours of Gx.

Proof. Let C be the 2-factor in G that covers 3-edge and 4-edge cuts of G. By Observation

2.14, G/C is 6-edge-connected. Let M be the set of edges that have both endpoints in the

same cycle in the 2-factor C. Similar to the proof of Theorem 1.18, define vector v ∈ RE
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as follows: ve = 1 for e ∈ C and ve = 2
3 for e ∈ E(G/C). The vector v can be written as a

convex combination of tours of G.

Now define u ∈ RE as follows: ue = 1
2 for e ∈ C and ue = 1 for e ∈ E \ C. Since

u ∈ SEP(G), this implies that 3
2u ∈ TSP(G) can be written as a convex combination of

tours of G.

Finally, vector 9
13v + 4

13(3
2u) can be written as a convex combination of tours of G. For

e ∈ C, 9
13ve+ 4

13ue = 9
13 + 4

13(3
4) = 12

13 . For e ∈ E(G/C) we have 9
13ve+ 4

13ue = 9
13 ·

2
3 + 4

13(3
2) =

12
13 . Finally, if e ∈M , 9

13ve + 4
13ue = 4

13(3
2) = 6

13 . This proves the result.

The bound in Corollary 4.8 is the first upper bound below 3
2 for αTSP

3 . As for α2ECM
3 ,

Carr and Ravi [CR98] proved a stronger result that α2ECM
4 ≤ 4

3 . It is not completely trivial

why α2ECM
3 ≤ α2ECM

4 , so we present a proof here.

Theorem 4.10. Let k ∈ Z≥2. We have αTSP
2k−1 ≤ αTSP

2k and α2ECM
2k−1 ≤ α2ECM

2k .

Proof. We prove αTSP
2k−1 ≤ αTSP

2k . The proof for 2ECM is similar. Let x be a ( 2
2k−1)-uniform

point. Let G = (V,E) be the (2k − 1)-edge-connected (2k − 1)-regular graph that is the

support of x. Notice that x
2 = 1

2k−1 · χ
G ∈ PM(G). Hence, there is a collection of perfect

matchings M of G with convex multipliers λ for M such that ( 1
2k−1) · χG =

∑
M∈M λMχ

M .

For each M ∈M define GM = (V,E +M), i.e. GM contains two copies of each edge e ∈M ,

and one copy of each e ∈ E \M .

We claim for M ∈ M, graph GM is 2k-edge-connected 2k-regular. The 2k-regularity

is trivial. Now, consider a cut U in GM , and assume δGM (U) < 2k. Notice 2k − 1 ≤
δG(U) ≤ δGM (U) < 2k since GM is (2k − 1)-edge-connected. Then, it must be the case

that δG(U) = δGM (U) = 2k − 1. However, a perfect matching must cross an odd cut an

odd number of times. Thus, M ∩ δG(U) ≥ 1. This implies δG(U) > δGM (U) which is a

contradiction.

Since GM is 2k-edge-connected 2k-regular for M ∈ M, we have αTSP
2k ( 2

2kχ
GM ) ∈

TSP(GM ), as 2
2kχ

GM is a 2
2k -uniform point. Clearly, any tour in GM corresponds to

a tour in G. Thus, uM = αTSP
2k ( 2

2kχ
G) + αTSP

2k ( 2
2kχ

M ) ∈ TSP(G). This implies that∑
M∈M λMu

M ∈ TSP(G). We have

∑
M∈M

λMu
M =

∑
M∈M

[
λMα

TSP
2k (

2

2k
χG) + λMα

TSP
2k (

2

2k
χM )

]
= αTSP

2k (
2

2k
χG) + αTSP

2k

2

2k

∑
M∈M

λMχ
M

= αTSP
2k (

2

2k
χG) + αTSP

2k

2

2k
(

1

2k − 1
χG)

= αTSP
2k (

2

2k − 1
χG).
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We conclude for every ( 2
2k−1)-uniform point x, we have αTSP

2k · x ∈ TSP(Gx). Therefore,

αTSP
2k−1 ≤ αTSP

2k .

Corollary 4.11. We have α2ECM
3 ≤ 4

3 .

Proof. Immediate consequence of Theorem 4.10 and the result of Carr and Ravi [CR98] that

α2ECM
4 ≤ 4

3 .

However, since the proof in [CR98] does not yield a polynomial-time decomposition of

multigraphs, Corollary 4.11 does not imply an efficient decomposition. In fact, Legault

proved a result that is stronger than Corollary 4.11: for a 2
3 -uniform point x, the vector

7
6x ∈ 2ECM(G) [Leg17]. Notice that the result of Legault is stronger not only because the
7
6 is smaller than 4

3 , but also in the sense that it restricts the multigraphs to subgraphs, i.e.

no edge in G is doubled. However, the proof in [Leg17] also does not give an efficient way to

write the decomposition of 2-edge-connected subgraphs.

We now present a stronger version of Corollary 4.11.

Theorem 4.12. Let x be a 2
3 -uniform point. The vector 4

3x can be efficiently written a

convex combination of 2-edge-connected subgraphs of Gx.

Proof. Let G = (V,E) be the support of a 2
3 -uniform point x. Since x ∈ D(ST(G)), we can

find in polynomial time spanning trees T1, . . . , T` of G and positive multipliers λ1, . . . , λ`

such that
∑`

i=1 λi = 1 and x ≥
∑`

i=1 λiχ
Ti . For i ∈ [`] define Li = E \ Ti and vector

yi = 1
2χ

Li . Since G is 3-edge-connected, we have yi ∈ CUT(Ti, Li) for i ∈ [`]. By Theorem

2.15, there is a polynomial-time algorithm that finds feasible augmentations Ai1, . . . , A
i
`i

of Ti

for i ∈ [`] and positive multipliers λi1, . . . , λ
i
`i

such that
∑`i

j=1 λ
i
j = 1 and 4

3y
i =

∑`i
j=1 λ

i
jχ

Aij

for i ∈ [`]. Note that Ti + Aij is a 2-edge-connected subgraph of G for i ∈ [`] and j ∈ [`i].

Hence,

u =
∑
i∈[`]

∑
j∈[`i]

λiλ
i
jχ

Ti∪Aij , where
∑
i∈[`]

∑
j∈[`i]

λiλ
i
j = 1

is a convex combination of 2-edge-connected spanning multigraphs of G. By construction,

an edge cannot belong both to a tree Ti and to a feasible augmentation Aij . Thus, there are

no doubled edges in any solution. Vector u is the everywhere 8
9 vector for G: for e ∈ E, we

have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Aij

λiλ
i
j ≤

2

3
+

1

3
· 2

3
=

8

9
.

Hence 8
9χ

G = 4
3x dominates a convex combination of 2-edge-connected subgraphs.

Observe that in the proof of Lemma 4.12, we never double any edge in any of the

2-edge-connected subgraphs. (Hence, the statement of lemma uses subgraph rather than

57



multigraph.) If we relax this and allow doubled edges, we can indeed improve the factor by

combining the ideas from Theorem 1.18 and Theorem 4.12 to improve the bound in Theorem

4.12 from 4
3 to 45

34 ≈ 1.32.

Theorem 1.19. Let x be a 2
3 -uniform point. The vector 45

34x ≈ 1.323x can be efficiently

written as a convex combination of 2-edge-connected multigraphs of Gx.

Proof. Let G = (V,E) be the support of x. Let C be a 2-factor of G that covers every 3-edge

and 4-edge cut of G. Define vector v ∈ RE where ve = 1 for e ∈ C, ve = 3
5 for e ∈ E(G/C).

By Lemma 3.4, v ∈ 2ECM(G).

Now define y ∈ RE as follows: ye = 1
2 for e ∈ C and ye = 1 for e ∈ E \ C. Since

y ∈ Subtour(G), we can efficiently find spanning trees T1, . . . , T` of G and convex multipliers

λ1, . . . , λ` such that y ≥
∑`

i=1 λiχ
Ti . For i ∈ [`] define yi ∈ RE as follows: yie = 1

2 for e /∈ Ti
and yie = 0 otherwise. Notice, that yi ∈ CUT(Ti, E \ Ti), hence by Theorem 2.15, there is

a polynomial-time algorithm that finds feasible augmentations Ai1, . . . , A
i
`i

of Ti for i ∈ [`]

and positive multipliers λi1, . . . , λ
i
`i

such that
∑`i

j=1 λ
i
j = 1 and 4

3y
i =

∑`i
j=1 λ

i
jχ

Aij for i ∈ [`].

Note that Ti +Aij is a 2-edge-connected subgraph of G for i ∈ [`] and j ∈ [`i]. Hence,

u =
∑
i∈[`]

∑
j∈[`i]

λiλ
i
jχ

Ti∪Aij , where
∑
i∈[`]

∑
j∈[`i]

λiλ
i
j = 1

is a convex combination of 2-edge-connected spanning multigraphs of G. For e ∈ C, we have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Aij

λiλ
i
j ≤

1

2
+

1

2
· 2

3
=

5

6
.

For e /∈ C, we have

ue =
∑
i:e∈Ti

`i∑
j=1

λiλ
i
j +

∑
i:e/∈Ti

∑
j:e∈Aij

λiλ
i
j ≤ 1 + 0 = 1.

Finally we conclude that the vector 5
17v + 12

17u can be efficiently written as convex

combination of 2-edge-connected multigraphs of G. For e ∈ C we have 5
17ve + 12

17ue =
5
17 + 12

17 ·
5
6 = 15

17 . For e /∈ C we have 5
17ve + 12

17ue = 5
17 ·

3
5 + 12

17 = 15
17 . Therefore 5

17v + 12
17u is

dominated by 15
17χ

G = 45
34(2

3χ
G).

We note that in the proof of Theorem 1.19, since the vector y is half integer, we can apply

the result of Carr and Ravi [CR98] to conclude that 4
3y dominates a convex combination of

2-edge-connected multigraphs of G. This shows that 21
16x dominates a convex combination

of 2-edge-connected multigraphs. (Specifically, 3
8(4

3y) + 5
8v is dominated by 21

16x.) But this
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approach does not produce a convex combination in polynomial-time. In the next sections

of this chapter, specifically in Theorems 4.15 and 1.20, we show how to do this (and even

better than 21
16) via an efficient algorithm using new techniques. Using our current tools, we

can achieve the 21
16 factor efficiently if the support of the 2

3 -uniform point x is also bipartite.

Theorem 4.13. Let x be a 2
3 -uniform point where Gx is bipartite. The vector 21

16x can be

efficiently written as convex combination of 2-edge-connected spanning multigraphs of G.

Proof. Let G = (V,E) be the support of x. Let C be the 2-factor in G that covers 3-edge

and 4-edge cuts of G. Let M be the set of edges in G that have both endpoints in the same

cycle of C. Since G/C is 6-edge-connected, the vector r with re = 1
3 for e ∈ E(G/C) is in

Subtour(G/C). Therefore, we can show, similarly as in the proof of Theorem 1.19, that

the vector v such that ve = 1 for e ∈ C and ve = 3
2 ·

1
3 = 1

2 for e ∈ E(G/C) and ve = 0 for

e ∈M can be written as a convex combination of 2-edge-connected spanning multigraphs

of G in polynomial time. Furthermore, as in the proof of Theorem 1.19, the vector u,

where ue = 5
6 for e ∈ C, ue = 1 for e ∈ E \ C, can be written as a convex combination

of 2-edge-connected subgraphs of G in polynomial time. Note that the vector 1
4v + 3

4u is

dominated by 7
8χ

G = 21
16x.

4.3 A simple application of the top-down coloring algorithm

To illustrate the utility of the top-down coloring framework, we show how it can be used to

state a short proof of a theorem of DeVos, Johnson and Seymour [DJS03]. Here, the key fact

is that for each spanning tree T of graph G = (V,E), the top-down (p, q) coloring algorithm

of E \ T produces only q feasible augmentations as described in the proof of Observation

2.18.

Theorem 4.14 ([DJS03]). Let G = (V,E) be a 3-edge-connected graph. Then there exists a

partition of E into sets {X1, X2, · · · , X9} (where Xi is allowed to be empty) such that the

graph Gi = (V,E \Xi) is 2-edge-connected for i ∈ [9].

Before we can prove Theorem 4.14, we need to prove the following claim, which directly

follows from [IR17]. We remark that the theorem above also provides a proof for Theorem

4.12.

Claim 5. Let G = (V,E) be a 3-edge-connected graph, let T be a spanning tree of G with

root r, and let L = E \ T . Then there is a T -admissible (2, 3) coloring of L.

Proof. We want to apply the top-down coloring algorithm. So we order the links by the

height of their LCA. Suppose in an iteration of the algorithm we want to color link ` with
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endpoints u and v, where s is the LCA of u and v. Let L` be the edges in T on the path

from s to u, and let R` be the edges in T on the path from s to v. If s = u or s = v, in

which case we abuse notation and assume L` = R` to avoid L` or R` to be empty. This

notation makes the description of the algorithm simpler.

Coloring Rule: Let fu be the highest edge in L` that is missing a color. Let cu be one

of the colors that fu is missing. Give color cu to `. Let fv be the highest edge in R` that is

missing a color (e.g., other than cu, which all edges in R` have just received) say cv. Give cv

to `. At any point, if such a color does not exist (e.g., if L` is empty), give ` an arbitrary

color that ` does not already have.

We now prove that this (2, 3) coloring algorithm is T -admissible. Consider an edge e ∈ T .

Since the graph is 3-edge-connected we have |cov(`)| ≥ 2. Let `1, `2 be two of the links in

cov(e) with the highest LCAs.

When coloring `1, edge e receives two new colors, since `1 is colored with two colors and

before coloring `1, edge e was missing all the colors. Now consider the iteration in which the

algorithm colors `2. At the time of coloring `2, the coloring algorithm described above will

give `2 at least one color that an ancestor of e is missing since e is either in R`2 or L`2 . By

Observation 2.22, we can conclude that e receives a new color after coloring `2. Thus, after

we have colored link `2, edge e has received at least 2 + 1 = 3 colors. ♦

Proof of Theorem 4.14. From the theorem of Nash-Williams [NW61], we know that 2G

contains three edge-disjoint spanning trees of G. Call these trees T1, T2 and T3. Observe that

each edge in E is absent from at least one of the three spanning trees. For each i ∈ {1, 2, 3},
we want to show that there is a T -admissible (2, 3) coloring of Li = E \ Ti. Since G is

3-edge-connected, we can apply Claim 5. Observe that each link receives two colors and the

algorithm uses three colors in total.

For each i ∈ [3], we obtain three augmentations Aji ⊂ Li for j ∈ [3] such that Aji ∪ Ti is

2-edge-connected. The set Aji contains all links in Li that received color j as one of their

two colors. Let Xj
i = Li \ Aji be the set of links in Li that did not receive color j. Then

for each e ∈ Li, e belongs to Xj
i for some j ∈ [3]. Since each edge e ∈ E belongs to Li for

some i ∈ [3], we conclude that each edge e ∈ E belongs to at least one of the nine sets Xj
i

for i, j ∈ [3].

The top-down coloring framework and more generally the coloring approach to tree

augmentation might have further applications for problems in which the objective is to

obtain a convex combination of few subgraphs. DeVos et al. [DJS03] showed this problem

is related to the problem of upper bounding the Frank number of a graph: In a strongly

directed digraph an arc is deletable if its deletion leaves a strongly connected digraph. Given
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an undirected graph G, the Frank number of G is the minimum number k such that G has

k orientations where each edge is deletable in at least one of the k orientations. It is easy to

see that Theorem 4.14 implies that the Frank number of 3-edge-connected graphs is at most

9 [DJS03]. Hörsch and Szigeti [HS20] recently explored such problems and showed that the

Frank number of 3-edge-connected graph is at most 7.

4.4 Finding Uniform Covers for 2ECM via Gluing

The main goal of this section is to prove the following theorem.

Theorem 4.15. Let x be a 2
3 -uniform point. Vector 21

16x can be efficiently written as convex

combination of 2-edge-connected subgraphs of G.

Note that 21
16 ≈ 1.312 improves upon then bound of 4

3 from Theorem 4.12. Recall that

Legault [Leg17] that for a 2
3 -uniform point x, vector 7

6x ∈ 2ECS(Gx), but the proof does

not imply an efficient way of finding a convex combination of 2-edge-connected subgraphs of

Gx. The proof of Theorem 4.15 relies on the gluing algorithm we described in Section 2.8

which allows us to reduce the problem to 2
3 -uniform points with essentially 4-edge-connected

support.

To prove the result for 2
3 -uniform points with essentially 4-edge-connected support, we

use a decomposition of rainbow 1-trees that serves a top-down coloring algorithm for finding

feasible augmentations yielding 2-edge-connected subgraphs when added to the 1-trees.

We prove Theorem 4.15 in the next section based on two main lemmas: the first lemma

concerns finding the rainbow 1-tree decomposition and the second lemma is the top-down

coloring algorithm for construction the feasible augmentations. We prove these lemmas for

an easier case when the support of the 2
3 -uniform point is additionally 3-edge-colorable. The

proofs in this case are easier and illustrative of our approach. Next, we prove the lemmas

for general 2
3 -uniform points. Finally, we combine the ideas in this section with the ones in

the previous section to improve the bound in Theorem 4.15.

Theorem 1.20. Let x be a 2
3 -uniform point. The vector 123

94 x ≈ 1.308x can be efficiently

written as convex combination of 2-edge-connected multigraphs of Gx.

We remark that the approximation factor of 123
94 ≈ 1.308 improves the bound of 45

34 ≈ 1.323

from Theorem 1.19.

4.4.1 Proof of Theorem 4.15: An Efficient Gluing Approach to 2ECS

Based on the gluing procedure described in Section 2.8, our main goal in this section is to

prove the following.
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Theorem 4.16. Let G = (V,E) be an essentially 4-edge-connected cubic graph. The

vector 7
8χ

G can be efficiently written as a convex combination of 2-edge-connected spanning

subgraphs of G.

Notice that Theorem 4.15 is a direct consequence of Theorems 2.26 and 4.16. In contrast

with [BL15] and [Leg17], we avoid gluing completely when dealing with an essentially

4-edge-connected cubic graph. Instead, our approach is based on the top-down coloring

framework introduced in Section 2.7.1. In particular, in an essentially 4-edge-connected

graph, if we consider any spanning tree T , then any edge e ∈ T that is not adjacent to

a leaf is covered by at least three links (i.e., |cov(e)| ≥ 3), as opposed to only two links

if the graph is only 3-edge-connected. Therefore, assigning fewer colors to each link still

satisfies the requirements of the top-down coloring algorithm for most of the edges in T .

The problematic links are those that are adjacent to two leaves, since we cannot satisfy

the color requirements of both adjacent tree edges using fewer colors on these links. These

problematic links (called leaf-matching links) must be assigned more colors. However, using

a rainbow 1-tree decomposition, we can assure that there are few such links.

First, we present some necessary definitions. We let r denote a fixed (root) vertex in G.

For a spanning tree T of G, we use the term rooted (spanning) tree T to denote the spanning

tree T rooted at r.

Definition 4.17. Let T be a connected subgraph of G and let L = E \ T denote the set of

links. We say an edge e = uv ∈ L is a leaf-matching link for T if both u and v are degree

one vertices of T and u, v 6= r (i.e., u and v are leaves of rooted tree T ).

Remark (Converting r-trees to spanning trees). Let T be a r-tree of G = (V,E), for some

vertex r of G. Then we have T ∩ δ(r) = {e, f}. Moreover both T − e and T − f are spanning

trees of G.

For a 2
3 -uniform point x we can show that x dominates a convex combination of connected

subgraphs of Gx where leaf-matching links of each of the connected subgraphs are vertex-

disjoint. The key tool in obtaining such a convex combination is the rainbow 1-tree

decomposition. We present a proof of the following lemma in Section 4.4.3.

Lemma 4.18. Let G = (V,E) be an essentially 4-edge-connected cubic graph. Then 2
3χ

G

dominates a convex combination of spanning trees {T1, . . . , Tk} of G such that for each

i ∈ [k], the leaf-matching links in E \ Ti for the rooted tree Ti are vertex-disjoint.

For each of the connected subgraphs in the decomposition presented in Lemma 4.18,

we use a top-down coloring algorithm to augment each connected subgraph into a 2-edge-

connected connected subgraph.
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Lemma 4.19. Let G = (V,E) be an essentially 4-edge-connected cubic graph and let T be a

spanning tree of G rooted at r. If the set of leaf-matching links for T contained in L = E \ T
are vertex-disjoint, then there is a T -admissible (5, 8) coloring of L. This coloring can be

efficiently obtained via the top-down coloring algorithm .

A direct consequence of Lemma 4.19 is the following observation.

Observation 4.20. Let G = (V,E) be an essentially 4-edge-connected cubic graph. Suppose

y ∈ RE dominates a convex combination of spanning trees of G such that the leaf-matching

links for each of these rooted trees are vertex-disjoint. Then the vector z with ze = 3ye+5
8 for

e ∈ E can be written as a convex combination of 2-edge-connected subgraphs of G.

Proof. Let y′ ≤ y be the vector that is equal to the convex combination. By Theorem 2.19

and Lemma 4.19 we have that y′e + (1 − y′e)5
8 can be written as a convex combination of

2-edge-connected subgraphs of G when G is essentially 4-edge-connected. Observe that

y′e + (1− y′e)5
8 = 3

8y
′
e + 5

8 ≤
3ye+5

8 .

Proof of Theorem 4.15. Follows directly from Lemma 4.18 and Observation 4.20.

4.4.2 Rainbow Trees and Top-down Coloring for 3-edge-colorable 2
3
-uniform

points

Before diving into the proof of Lemmas 4.18 and 4.19, we present a simpler version of

the proofs specific to 2
3 -uniform points with 3-edge-colorable support. The proofs in this

section are illustrative of our approach. The following is the the analogue of Lemma 4.18 for
2
3 -uniform points with 3-edge-colorable support.

Lemma 4.21. Let G = (V,E) be a 3-edge-connected 3-edge-colorable cubic graph. Then
2
3χ

G dominates a convex combination of spanning trees {T1, . . . , Tk} of G such that for each

i ∈ [k], E \ Ti contains no leaf-matching links for the rooted tree Ti.

Proof. The first step in the proof is to decompose 2
3χ

G into v-trees.

Claim 6. For any vertex v ∈ V the vector 2
3χ

G can be written as a convex combination of

v-trees {T1, . . . , Tk} of G such that for each i ∈ [k], E \ Ti contains no leaf-matching links

for Ti.

Proof. Since G is 3-edge-colorable, each pair of color classes form a 2-factor containing only

even-cardinality cycles. Thus, 2
3χ

G can be written as a convex combination of three 2-factors.

Let C denote one of these 2-factors. Define ye = 1
2 for e ∈ C, ye = 1 for e /∈ C. By Lemma

2.6, y ∈ SEP(G).
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For each cycle C ∈ C, partition the edges into adjacent pairs. For each such pair of edges,

we call the common endpoint a rainbow vertex.1 By Theorem 2.8, we can decompose y into

a convex combination of v-trees {T1, . . . , Tk} containing exactly one edge from each pair

(i.e., y =
∑`

i=1 γiχ
Ti). Consider any edge e ∈ C such that e /∈ Ti for some i ∈ [k]. Note that

e = uv was paired with an adjacent edge e′ ∈ C. Without loss of generality, we assume that

edges e and e′ share vertex u. In this case, e′ belongs to Ti. Vertex u is a rainbow vertex and

therefore has degree two in Ti, since the third edge incident on u, namely e′′ has ye′′ = 1 and

therefore e′′ ∈ Ti for i ∈ [k]. We conclude that edge e is not a leaf-matching link for Ti. ♦

Let r ∈ V . We obtain the set of r-trees {T1, . . . , Tk} via Claim 6, where r is a rainbow

vertex. Thus, in each r-tree Ti, there is a half-edge ei adjacent to r. Let v be the other

endpoint of ei. Then we obtain spanning tree T ′i by setting T ′i = Ti− ei. The other half-edge

e′i adjacent to v cannot become a leaf-matching link for the spanning tree T ′i rooted at r,

because its other endpoint u of e′i (i.e., not v) is a rainbow vertex with degree two in Ti and

T ′i (See Figure 4.1.)

r

v

u

ei

e′i

Figure 4.1: Both dashed edge in the figure above are in Ti for i ∈ [k]. The white vertices
above are the rainbow vertices. Thus, u has degree two in Ti and T ′i . This implies that e′i
has at least one endpoint of degree two (namely u) so it is not a leaf-matching link in T ′i .

The following lemma is analogous to Lemma 4.19.

Lemma 4.22. Let G = (V,E) be an essentially 4-edge-connected cubic graph and let T be

a spanning tree of G with root r such that L = E \ T contains no leaf-matching links for

T . Then, there is a T -admissible (3, 5) coloring of L that can be efficiently obtained by the

top-down coloring algorithm.

Proof. We want to show that there is a T -admissible top-down (3, 5) coloring algorithm of L.

Recall that in a T -admissible (3, 5) top-down coloring algorithm of L we assign each link in

L at most three colors from a set of five colors and ensure that for each edge e ∈ T and each

of the five colors, we have a link ` ∈ cov(e) such that ` has that color among its assigned

colors.
1Notice that the choice of pairing is not unique; if we partition the half-edges into adjacent pairs, there

are exactly two choices for pairing all the half-edges in a cycle of half-edges in y.
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Suppose we want to color link ` with endpoints u and v, where s is the LCA of u and

v. Let L` be the edges in T on the path from s to u, and let R` be the edges in T on the

path from s to v. Without loss of generality, assume that the degree of u in T is at least the

degree of v in T . This means that u is not a leaf since L contains no leaf-matching links for

T . Moreover, it is possible that s = u, in which case we abuse notation and assume L` = R`,
since L` is empty. This simplifies our description of the algorithm.

The coloring rules below are similar to the one in Section 4.3 in the proof of Theorem

4.14.

Coloring Rule: Let fu be the highest edge in L` that is missing a color. Let cu be one

of the colors that fu is missing. Give color cu to `. Let f1
v be the highest edge in R` that is

missing a color (e.g., other than cu, which all edges in R` have just received) say c1
v. Give

c1
v to `. Now, let f2

v be the highest edge in R` that is missing a color other than cu and c1
v.

Give c2
v to `. At any point, if such a color does not exist (e.g., if L` is empty), give ` an

arbitrary color that ` does not already have.

We now prove that this top-down coloring algorithm is admissible. Consider an e ∈ T .

If e is an internal edge of T (not incident on any leaf), then since the graph is essentially

4-edge-connected we have |cov(`)| ≥ 3. Let `1, `2, `3 be three of the links in cov(e) with the

highest LCAs. When coloring `1, edge e receives three new colors since `1 will be colored

with 3 colors and before coloring `1, edge e was missing all the colors. Now consider the

iteration in which the algorithm colors `i for some i ∈ {2, 3}. At the time of coloring `i, the

top-down coloring algorithm that we described above will give `i at least one color that an

ancestor of e is missing since e is either in R`i or L`i . By Observation 2.22, we can conclude

that e receives a new color after coloring `i. Thus, after we have colored link `3, edge e has

received at least 3 + 1 + 1 = 5 colors.

If e is incident to a leaf, then |cov(e)| ≥ 2. Let `1, `2 be two of the links in cov(e) with

the highest LCAs. When coloring `1, edge e receives three new colors as it is initially missing

every color and `1 gets three colors by the coloring rules above. When coloring `2, two

ancestors (potentially the same) of edge e receive new colors. By Observation 2.22 both

these colors are new for e. So in total e receives at least 3 + 2 = 5 colors.

If e is the unique edge incident on r, let `1 and `2 be the two links in cov(e). Notice that

L`1 = R`1 and L`2 = R`2 . Then, when coloring `1 edge e receives three new colors, and

when coloring `2 it receives two new colors, which totals to 5 colors.

We remark that the lemma above is in fact true for any essentially 4-edge-connected

cubic graph (not just 3-edge-colorable), but since Lemma 4.21 only works for 2
3 -uniform

points with 3-edge-colorable support we cannot apply Lemma 4.22 in the proof of Lemma

4.16.
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Let G = (V,E) be an essentially 4-edge-connected 3-edge-colorable cubic graph. By

Lemma 4.21 vector 2
3χ

G can be efficiently written as convex combination of spanning trees

of Gx without any leaf-matching links. By Lemma 4.22, for each tree T in the convex

combination we have a T -admissible top-down (3, 5) coloring algorithm of E \ T . Therefore,

by Theorem 2.19 we conclude that 13
15χ

G can be efficiently written as convex combination of

2-edge-connected subgraphs of G.

4.4.3 An Extended Top-down Coloring Approach for General 2
3
-uniform

points

For general 2
3 -uniform points, we do not know how to obtain spanning trees with no leaf-

matching links (as in Lemma 4.21). However, we can show that the leaf-matching links are

sparse in the sense that they are vertex disjoint (i.e., they form a matching). The key tool

here is again the rainbow spanning tree decomposition. Using the fact that G is essentially

4-edge-connected and the fact that a resulting 1-tree has vertex disjoint leaf-matching links,

we can design an admissible top-down (5, 8) coloring algorithm of the links. The proof

requires a few technicalities beyond what is needed for the proof of Lemma 4.22.

Proof of Lemma 4.18

In order to prove Lemma 4.18 we first prove the following lemma that will become handy

later in this section.

Lemma 4.23. Let G = (V,E) be a 3-edge-connected cubic graph. Let C be a 2-factor of G.

Define y as follows: ye = 1
2 for e ∈ C and ye = 1 for e /∈ C. Then, y dominates a convex

combination of spanning trees {T1, . . . , Tk} such that for each i ∈ [k], the leaf-matching links

in E \ Ti for the rooted tree Ti are vertex-disjoint.

Proof. By Lemma 2.6, we have y ∈ r-tree(G). For each cycle C ∈ C, partition the edges

into adjacent pairs, leaving at most one edge eC alone if C is an odd cycle while ensuring

that the root r is a rainbow vertex. Let P be the collection of disjoint pairs of edges obtained

from this procedure. We apply Theorem 2.8 and find a set of 1-trees {T1, . . . , Tk} such that

each 1-tree uses exactly one edge from each pair.

For each Ti there is exactly one edge ei incident on r such that ei is a half-edge and

ei ∈ Ti. Let T ′i = Ti − ei. We claim that the leaf-matching links for T ′i are vertex-disjoint.

Assume for contradiction there are e, f ∈ E \ T ′i that are leaf-matching for T ′i and are not

vertex disjoint. This implies that e and f belong to the same cycle C ∈ C. Notice that since

e and f are leaf-matching, neither edge is incident on r. Hence, e, f /∈ Ti (since otherwise,

they must belong to Ti \ T ′i ⊂ δ(r)). So we can determine that e and f were not paired

together. Without loss of generality, assume f was paired with another link g in C. (At
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least one edge from the set {e, f} was paired within cycle C.) Let v denote the common

endpoint of f and g. Notice that v is a rainbow vertex and therefore has degree two in Ti.

Thus it must be the case that g = ei. This implies that g is incident on r. Note that r and v

cannot both be rainbow vertices, since they are adjacent. Thus, f cannot be a leaf-matching

link in T ′i which is a contradiction to our assumption.

Proof of Lemma 4.18. Follows from Observation 2.10 and Lemma 4.23.

Proof of Lemma 4.19

To extend Lemma 4.22 to general cubic graphs, we need a strategy to handle the leaf-

matching links. In fact, there is only one case in which coloring a leaf-matching link is

problematic, which we describe next. Recall that the top-down coloring algorithm colors the

links in any order that respects the partial order according to their LCAs.

Definition 4.24. Let link ` = uv ∈ L be a leaf-matching link for T . Let `u be the other link

that is incident on u and `v be the other link incident on v. If ` is colored after both `u and

`v, then we say that link ` is a bad link.

For example, if the LCA of ` is lower than that of either `u or `v, then ` is a bad link.

We call such links “bad” for the following reason. Suppose that both `u and `v have been

colored before ` (which can happen if the LCA of ` is not higher than that of either `u or `v).

In a top-down coloring with factor p
q , right before we color link `, the leaf edges eu and ev (a

leaf edge is the unique edge in T incident to a leaf) adjacent to `u and `v, respectively, are

each missing q − p colors. If these two sets of missing colors are disjoint and p < 2(q − p), 2

then we will not be able to color the link ` with p colors so that `u and `v receive all q colors.

To address this issue, consider the case in which our algorithm colors the links `u, `v, `

in this order. When we color `v, we want the respective set of p colors to sufficiently overlap

with the set of p colors already assigned to `u; in other words, we want the set of colors

missed by eu and ev to overlap. This way, we will be able to ensure that eu and ev receive

all q colors when we finally color the link ` with p colors. This is the intuition behind the

proof of Lemma 4.19 presented below.

Lemma 4.19. Let G = (V,E) be an essentially 4-edge-connected cubic graph and let T be a

spanning tree of G rooted at r. If the set of leaf-matching links for T contained in L = E \ T
are vertex-disjoint, then there is a T -admissible (5, 8) coloring of L. This coloring can be

efficiently obtained via the top-down coloring algorithm .

Proof. We introduce a top-down (5, 8) coloring algorithm of L, and then we prove that it is

T -admissible.
2If p ≥ 2(q − p), then p/q ≥ 2/3, which is not small enough for our applications.
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Our algorithm sorts the links by the height of their LCA (like a generic top-down coloring

algorithm). When we color a link ` we give it 5 different colors before moving to the next

link. Hence, the algorithm runs in |L| iterations. In each iteration i = 1, . . . , |L| of the

algorithm we have a (p, q) coloring of L, namely γi.

We show that our coloring algorithm will maintain two additional invariants:

(a) for any coloring γi in an edge e can only miss 8, 3, 1, or 0 colors for i = 1, . . . , |L|,

(b) if ` = uv is a leaf-matching link for T , and eu and ev are the leaf edges in T incident

on u and v, respectively, then in any γi for which both eu and ev are missing a color,

they miss a common color under γi.

Suppose we are at iteration i of the algorithm and we want to color link `. Let u and v be

the endpoints of `. Let s be the LCA of `. Let L` be the edges in T on the path from s to

u. Let R` be the edges in T on the path from s to v. If one of R` or L` is an empty path,

assume R` = L`.
By invariant (a) and Observation 2.22, we can partition L` into four subpaths: L0

` ,L1
` ,L3

`

and L8
` with the following properties: (1) for i ∈ {0, 1, 3, 8}, the edges in Li` miss exactly i

colors, and (2) all the edges in Li` miss the same i colors. Let ci(L`) be the set of i colors

that Li` misses for i ∈ {1, 3, 8}. Also by Observation 2.22, if L1
` , L3

` and L8
` are nonempty,

then we have c1(L`) ⊂ c3(L`) ⊂ c8(L`). This gives us a partially sorted list of colors. We

define R0
` ,R1

` ,R3
` ,R8

` analogously, and let ci(R`) be the set of i colors that Ri` misses for

i ∈ {1, 3, 8}.

Coloring Rules: Depending on u and v we will do one of the following. We consider the root

to be an internal vertex.

Case 1. If both u and v are internal vertices in T , give ` all the colors in c1(L`) ∪ c1(R`).
Observe that |c1(L`) ∪ c1(R`)| ≤ 2. Now, take one color from c3(L`) \ c1(L`) and one

color from c3(R`) \ c1(R`). At this point ` would have at most four colors. Give a

color that ` does not already have until it has five colors.

Case 2. If u is a leaf in T and v is an internal vertex of T , then we consider two cases.

Case 2a: Assume u has a leaf-mate w (i.e., uw is a leaf-matching link). Let `uw be the link

between u and w, and `w be the other link incident on w. If `w is already colored,

let C5 be the set of the five colors of `w. By Claim 10 we can choose five colors

C ′ for ` such that c1(L`) ∈ C ′, c1(R`) ∈ C ′, |C ′ ∩ c3(L`)| ≥ 2, |C ′ ∩ c3(R`)| ≥ 2,

and |C ′ ∩ C5| ≥ 3. (Specifically, let a = c1(L`), b = c1(R`), A = c3(L`), B =

c3(R`), C5 = C5 and S = C ′.)
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Case 2b: Otherwise, give ` color c1(R`), a color from c3(R`) \ c1(R`) and all three colors

in c3(L`). If ` has fewer than five colors, we give it any color it does not already

have until it has five colors.

Case 3. If both u and v are leaves in T , then let eu and ev be the edges in the tree incident on

u and v, respectively. By invariant (b) of the algorithm there is a color c that both eu

and ev are missing. We first give color c to `. Then we give colors c3(L`) \ {c} and

c3(R`) \ {c} to `.

Claim 7. The above top-down coloring algorithm preserves invariant (a).

Proof. We proceed by induction on the iteration of the above top-down coloring algorithm.

It is easy to see that before we have colored any of the links, the invariant holds. So we

assume the invariant holds before the iteration in which we color link ` = uv. Consider an

edge e ∈ P`, and assume without loss of generality e ∈ R`. By the induction hypothesis, e is

missing 8, 3, 1 or 0 colors before coloring `. If e is missing 8 colors, all the colors we give to

` are new for e, hence after coloring `, e will miss 3 colors. Otherwise if e is missing three

colors, e ∈ R3
` . But notice in all coloring rules ` will be colored with at least two colors from

c3(R`). This means that after coloring `, edge e will miss at most one color. So invariant

(a) holds after coloring `. ♦

Next, we show that invariant (b) also holds after coloring `.

Claim 8. The above top-down coloring algorithm preserves invariant (b).

Proof. Again, we proceed by induction. We assume the invariant holds before the iteration

in which we color link ` = uv. If neither u nor v have leaf-mates, then the invariant holds

after coloring link `. Thus, either (i) ` is leaf-matching or (ii) without loss of generality, u is

a leaf and has a leaf-mate and v is an internal vertex.

Suppose ` is a leaf-matching link for T . Let eu and ev be the leaf edges incident on u

and v, respectively. Also let `u and `v be the other links incident on u and v, respectively.

Since leaf-matching links for G are disjoint, neither `u nor `v is leaf-matching. If ` is not a

bad link, then ` is colored before either `u or `v. Before we color `, either eu or ev is missing

8 colors. After we color `, either eu and ev are missing the same 3 colors, or one is missing 3

colors and the other is missing 0 colors. Otherwise, ` is a bad link. Now, consider the case

in which ` is colored after both `u and `v have already been colored. Since both eu and ev

are missing a common color, after coloring `, eu and ev are each missing 0 colors.

Now consider the case in which u is a leaf in T and v is an internal vertex of T . Suppose

u has leaf-mate w adjacent to link `w (which is not a leaf-matching link). If `w is to be

colored after `, then ew is missing 8 colors both before and after coloring `. Therefore,
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clearly there is a color that both eu and ew are missing after coloring `. Now, consider the

remaining case: assume that `w was colored before ` in the partial coloring. Then, when

coloring ` the coloring rule is that of Case 2a. This rule ensures that the set of colors we

give to ` has three common elements with the set of colors we gave to `w. After coloring `,

the set of the colors that eu and ew received are exactly the colors in ` and `w, respectively.

In addition eu and ew each miss exactly three colors in this partial coloring. Therefore, the

set of colors eu is missing is not disjoint from the colors that ew is missing, and both eu and

ew are missing a common color. ♦

Claim 9. The above top-down coloring algorithm is T -admissible.

Proof. We now prove admissibility. Let e be an edge in T . First assume |cov(e)| ≥ 3. So

there are at least three links `1, `2, and `3 in cov(e) labeled by their LCA ordering. When

the algorithm colors `1 since edge e is missing all 8 colors before coloring `1 and all the five

colors we use for `1 are distinct, edge e receives 5 new colors. Later, the algorithm colors `2

and e receives at least two more new colors. This is because of the following: in every case

of the coloring rules, two ancestors of edge e receive new colors. By Observation 2.22 both

these colors are new for e. With a similar argument, when `3 is colored, if e is still missing a

color, it receives its final missing color.

If on the other hand we have |cov(e)| = 2, edge e is a leaf or it is incident on the root.

First assume that e is incident on r. In this case, the links that cover e are `1 and `2. We

have L`1 = R`1 , and L`2 = R`2 , since the LCA of `1 and `2 is r, which is an endpoint of `1

and `2. When `1 is colored, e receives 5 colors since before coloring `1, edge e is missing all

the colors. Later, when we color `2, we have L`2 = R`2 which means that edge e will receive

up to four new colors, but it is only missing three, so e receives the three missing colors.

Now assume e is incident on a leaf. Let `1 and `2 be the two links that are covering e

labeled by the LCA ordering. When `1 is colored, e receives 5 new colors since all colors are

new for e. At the iteration that we color `2, the algorithm either applies a rule in Case 2 or

in Case 3. In both cases, three missing different missing colors from ancestors of e are given

to `2. Hence, by Observation 2.22 edge e receives the 3 missing colors. ♦

In order to finish the proof we just need to prove the following claim.

Claim 10. Let C denote a set of eight distinct colors. Let a, b ∈ C and let A,B,C5 ⊂ C

such that a ∈ A, b ∈ B and |A| = |B| = 3 and |C5| = 5. Then we can find S ⊂ C such that

|S| = 5 and

1. a ∈ S and b ∈ S,

2. |S ∩A| ≥ 2,
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3. |S ∩B| ≥ 2, and

4. |S ∩ C5| ≥ 3.

Proof. If |A ∩B| = 0, then observe that |(A ∪B) ∩ C5| ≥ 3. If |(A ∪B) ∩ C5| = 3, then set

S = (A ∪B) \ c where c 6= a, b and c /∈ C5. If |(A ∪B) ∩ C5| ≥ 4, then set S = (A ∪B) \ c
where c 6= a, b.

If |A ∩B| = 1, then if |(A ∪B) ∩ C5| ≥ 3, let S = A ∪B. So assume |(A ∪B) ∩ C5| = 2.

Then A ∪B contains a color c such that c 6= a, b and c /∈ C5. Let S = (A ∪B) \ c and add

an arbitrary new color from C5 to S.

If |A ∩B| = 2, then if |(A ∪B) ∩C5| ≥ 2, let S = A ∪B and add an arbitrary new color

from C5. If |(A ∪ B) ∩ C5| = 1, then there is some color c ∈ A ∪ B such that c 6= a, b and

c /∈ C5. Let S = (A ∪B) \ c and add two new colors from C5 to S.

If |A ∩ B| = 3, then let c1, c2 and c3 be any three colors in C5 \ {a, b}. Set S =

{a, b, c1, c2, c3}. ♦

This concludes the proof.

4.4.4 Proof of Theorem 1.20: A Convex Combination of Multigraphs

Thus far, all the proofs in this section have avoided doubling edges since we are using the

techniques in Sections 2.8 and 4.4.1. The following lemma, however, relies on doubling edges

and was stated in Lemma 3.4. We emphasize that the proofs in Section 4.4.1 fail to work

with the presence of doubled edges since they rely on Lemma 2.24 which only works with

subgraphs. We will explore the possibility of gluing multigraphs in Chapter 6 to be able to

enjoy the properties of essentially 4-edge-connected cubic graphs.

In this section, we combine the ideas in Theorem 4.15 with the fact that 3-edge-connected

cubic graphs have 2-factors covering all 3-edge cuts and 4-edge cuts (Theorem 2.11) to

improve the factor of 21
16 from Theorem 4.15 when we are allowed to double edges.

Theorem 1.20. Let x be a 2
3 -uniform point. The vector 123

94 x ≈ 1.308x can be efficiently

written as convex combination of 2-edge-connected multigraphs of Gx.

Let G = (V,E) be the support of x. By Theorem 2.11, G has a 2-factor C∗ that covers

3-edge cuts and 4-edge cuts of G. Let y1 be the vector defined as follows: y1
e = 1 for e ∈ C∗

and y1
e = 3

5 for e ∈ E \ C∗. By Lemma 3.4 in Chapter 3, we have y1 ∈ 2ECM(G). Observe

that y1 is “saving” on the edges that do not belong to C∗. The ideas that we presented in

the proof of Theorem 4.15 can be used in order to save on the edges that belong to C∗.
Let G = (V,E) be a 3-edge-connected cubic graph and C be a 2-factor of G. Define xC

as follows: xCe = 1 for e ∈ E \ C, and xCe = 1
2 for e ∈ C. By Lemma 2.6, x ∈ SEP(G). Notice
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that xC has greater value on the edges that do not belong to C. This is the basis of saving

on such edges.

Lemma 4.25. Let G = (V,E) be a 3-edge-connected cubic graph and C be a 2-factor of G.

Define y as follows: ye = 13
16 for y ∈ C and ye = 1 for e ∈ E \ C. Then, y can be written as a

convex combination of 2-edge-connected subgraphs of G in polynomial time.

The vector provided in Lemma 4.25 can be used to prove Theorem 1.20. Apply Lemma

4.25 to 2-factor C∗: vector y2 defined as y2
e = 13

16 for y2 ∈ C∗ and y2
e = 1 for e ∈ E \ C∗ is in

2ECM(G). Notice that z = 15
37y

1 + 32
47y

2 is convex combination of 2-edge-connected spanning

multigraphs of G. Moreover, z = 123
94 x.

Finally, we note that since the proofs in this section can all be done in polynomial time

and the 2-factor that covers 3-edge cuts and 4-edge cut can be found in polynomial time

(Theorem 2.11), the convex combination of multigraph can also be written in polynomial

time.

It remains to prove Lemma 4.25. The main idea here is to show that we can assume

without loss of generality that graph G in the statement of Lemma 4.25 is essentially

4-edge-connected. The following observations ensures that the gluing approach presented in

Theorem 2.26 works for a point defined by 2-factor.

Observation 4.26. Let G = (V,E) be a 3-edge-connected cubic graph and C be a 2-factor

of G. Let ∅ ⊂ U ⊂ V be such that |δ(U) ∩ C| = 2, and |δ(U)| = 3. Then, the graph GU is

3-edge-connected cubic and CU 3 is a 2-factor of GU .

Observation 4.27. Let G = (V,E) be a 3-edge-connected cubic graph and C a 2-factor of

G. Let ∅ ⊂ U ⊂ V be such that |δ(U) ∩ C| = 2 and |δ(U | = 3. Then, xC restricted to the

entries of E(GU ) is in SEP(GU ).

Proof. Directly from Lemma 2.6 and Observation 4.26.

Observation 4.27 together with Theorem 2.26 implies that we can reduce the graph in

Lemma 4.25 to an essentially 4-edge-connected cubic graph.

Lemma 4.28. Let G = (V,E) be an essentially 4-edge-connected cubic graph and C be a

2-factor of G. Define y as follows: ye = 13
16 for y ∈ E(C) and ye = 1 for e /∈ E(C). Then, y

can be written as a convex combination of 2-edge-connected subgraphs of G in polynomial

time.

Proof. Let z be the following vector: ze = 1
2 for e ∈ C and ze = 1 for e ∈ E \ C. Then, by

Lemma 4.23, vector z dominates a convex combination of spanning trees {T1, . . . , Tk} such

3Let G′ = (V, C), then CU = G′U .
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that for each i ∈ [k], the leaf-matching links in E \Ti for the rooted tree Ti are vertex-disjoint.

Hence, we can apply Lemma 4.19 and conclude that y can be decomposed into a convex

combination of 2-edge-connected subgraphs of G in polynomial time.

Lemma 4.25 is a direct consequence of Lemma 2.26, Observation 4.27 and Lemma 4.28.

4.5 Finding Uniform Covers for TSP via Gluing

Recall that in Theorem 4.10 we showed that the Uniform Cover Problem when restricted to

( 2
2k−1)-uniform points reduces to the Uniform Cover Problem for TSP restricted to 2

2k -uniform

points. Specifically, αTSP
3 ≤ αTSP

4 . In the following lemma we show a stronger reduction.

Recall from Section 1.2.4 that for a half-cycle point x, set of edge Wx = {e ∈ Ex : xe = 1}
and Hx = {e ∈ Ex : xe = 1/2}. Recall that Hx forms a 2-factor of Gx and Wx forms a

perfect matching in Gx.

Lemma 4.29. If for any half-cycle point x vector y ∈ REx defined as: ye = 3
2 − ε for e ∈Wx

and ye = 3
4 − δ for e ∈ Hx for constants ε, δ ≥ 0 belongs to TSP(Gx), then αTSP

3 ≤ 3
2 −

ε
2 − δ.

Proof. Let x be a 2
3 -uniform point, and let G = (V,E) be its support. By Lemma 2.10, x

can be written as a convex combination of 2-factors C . For C ∈ C , define zC to be such that

zCe = 1 for e ∈ C and zCe = 1
2 for e ∈ E \ C. Notice that zC is a half-cycle point. Define yC

as follows: yCe = 3
2 − ε for e ∈ WzC and yCe = 3

4 − δ for e ∈ HzC . By assumption, we have

yC ∈ TSP(GzC) = TSP(G). Therefore,

ẑ =
∑
C∈C

λCy
C ∈ TSP(G).

Observe that

ẑe =
1

3
· (3

2
− ε) +

2

3
· (3

4
− δ)

=1− ε

3
− 2δ

3

=(
3

2
− ε

2
− δ) · 2

3
= (

3

2
− ε

2
− δ) · xe.

Notice that doubling every 1-edge of a half-cycle point results in a 2
4 -uniform point. A

consequence of Theorem 1.22 that we will prove in Chapter 6 is that (3
2 −

1
40)x ∈ TSP(G)

for any 2
3 -uniform point x. Also, we can combine the ideas in the proof of Theorem 1.18

with the gluing approach presented in Chapter 6 to prove the following.
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Theorem 4.30. Let x be a 2
3 -uniform point. Then 17

12x ∈ TSP(Gx). If Gx is Hamiltonian,

then 87
68x ∈ TSP(Gx).

Proof. Suppose G = (V,E) is the support of x. By Theorem 2.11, G has a 2-factor C that

covers all 3- and 4-edge cuts of G. Define vector z as follows: ze = 1 for e ∈ C and ze = 4
5

for e ∈ E \ C and ze = 0 otherwise. As observed in Theorem 1.17, we have z ∈ TSP(G).

On the other hand, we can define x̄ ∈ RE where x̄e = 1
2 for e ∈ C and x̄e = 1 for e ∈ E \ C.

Vector x̄ is a half-cycle point, hence we can apply Theorem 1.22 in Chapter 6 to obtain

vector y ∈ TSP(G) such that ye = 3
4 for e ∈ C, ye = 3

2 −
1
20 for e ∈ E \ C. Notice that

7
9z + 2

9y ∈ TSP(G) and is equal to 17
12x.

If G is Hamiltonian, we can assume C is the Hamiltonian cycle of G. Hence χC ∈ TSP(G).

In this case 7
17 · χ

C + 10
17 · y ∈ TSP(G) and is equal to 87

68x.

We remark that 17
12 ≈ 1.417 and 87

68 ≈ 1.28. The first result in Theorem 4.30 improves

upon the bound of 27
19 ≈ 1.422 in Corollary 4.8 and the second result improves the upper

bound of 9
7 ≈ 1.286 by Boyd and Sebő [BS19].
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Chapter 5

Approximating 2ECM on

Fundamental Classes

Another approach to the six-fifths conjecture (Conjecture 6) is to consider so-called funda-

mental extreme points introduced by Carr and Ravi [CR98] and further developed by Boyd

and Carr [BC11]. A Boyd-Carr point is a point x ∈ SEP(Gx) that satisfies the following

conditions.

• The support graph of x is cubic and 3-edge-connected.

• There is exactly one 1-edge incident to each node.

• The fractional edges form disjoint 4-cycles.

Boyd and Carr proved that in order to bound g(2ECM) (e.g., to prove the six-fifths

conjecture), it suffices to prove a bound for Boyd-Carr points [BC11]. A generalization

of Boyd-Carr points are square points, which are obtained by replacing each 1-edge in a

Boyd-Carr point by an arbitrary-length path of 1-edges. Half-integer square points are

particularly interesting for various reasons. For every ε > 0, there is a half-integer square

point x such that (6
5 − ε)x does not dominate a convex combination of 2-edge-connected

multigraphs in the support of x. In other words, the lower bound for g(2ECM) is achieved

for half-integer square points. (This specific square point is discussed in Section 5.2.4).

Furthermore, half-integer square points also demonstrate the lower bound of 4
3 for the

integrality gap of TSP with respect to the Held-Karp relaxation [BS19]. Recently, Boyd and

Sebő initiated the study of improving upper bounds on the integrality gap for these classes

and presented a 10
7 -approximation algorithm (and upper bound on the integrality gap) for

TSP in the special case of half-integer square points. They pointed out that, despite their

significance, not much effort has been expended on improving bounds on the integrality gaps

for these classes of extreme point solutions.
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In this chapter, we focus on 2ECM and improve the best-known upper bound on g(2ECM)

for half-integer square points. The best previously-known upper bound on g(2ECM) for

half-integer square points is 4
3 , which follows from the bound of Carr and Ravi on all

half-integer points [CR98]. We note that there is also a simple 4
3 -approximation algorithm

using the observation from [BS19] that the support of a square point is Hamiltonian. Our

main result is to improve this factor.

Theorem 1.21. Let x be a half-square point. Then 9
7x can be efficiently written as a convex

combination of 2-edge-connected multigraphs in Gx.

Recently, Boyd and Sebő [BS19] considered half-square points and showed that for a

half-square point x, vector 10
7 x ∈ TSP(Gx). They first show that the support of a half-square

point x contains a Hamiltonian cycle that includes all the 1-edges. They combine this tour

with tours obtained from a variation of Christofides’ algorithm. We also use the Hamiltonian

cycle as part of our convex combination of 2-edge-connected multigraphs. For the other part

of the convex combination we construct 2-edge-connected multigraphs guided by matchings

in the graph obtained by contracting all the squares in the half-square point.

Another class of fundamental extreme points that are studied in the literature are

half-triangle points. Recall that a cyclic point is a point x ∈ SEP(Gx), where the edges

with 0 < xe < 1 form a 2-factor of Gx and edges with xe = 1 form a perfect matching of

Gx. A triangle point is a point x obtained from a cyclic point where the fractional edges

form 3-cycles by replacing every 1-edge of x with arbitrarily long paths of 1-edges. If x is a

triangle point and the value of fractional edges of x are {0, 1
2 , 1}, then x is a half-triangle

point.

In fact, the lower bound of 4
3 for g(TSP) and 6

5 for g(2ECM) are achieved for half-triangle

points (see Figure 1.1 and Figure 1.2, respectively). Boyd and Carr [BC11] showed that in

fact g(TSP) ≤ 4
3 for half-triangle point. More specifically, they showed that if x is a half-

triangle point, 4
3x can be written as convex combination of tours of Gx in polynomial time.

Boyd and Legault [BL15] also studied half-triangle points. They showed that g(2ECM) ≤ 6
5

when restricted to half-triangle points. However, their result does not yield an efficient

way to decompose a half-triangle point into a convex combination of 2-edge-connected

multigraphs. In fact, their approach is based on a reduction to the uniform cover problem

for 2ECM. Using the same reduction and a variant of Theorem 4.15 from Chapter 4 we

show the following.

Theorem 5.1. Let x be a half-triangle point. Then (6
5 + 1

120)x dominates a convex combi-

nation of 2-edge-connected multigraphs in Gx. Moreover, this convex combination can be

found in polynomial time.
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We continue this chapter by a short review of the tools required to obtain the proofs.

Then, we give a proof of Theorem 1.21 in Section 5.2. We finish this chapter by proving

Theorem 5.3.

5.1 Preliminaries

We need the following theorem of Boyd and Sebő [BS19] for our algorithm for half-square

points.

Theorem 5.2 ([BS19]). Let x be a square point. The graph Gx has a Hamiltonian cycle that

contains all the 1-edges of x and opposite half-edges from each half-square in Gx. Moreover,

this Hamiltonian cycle can be found in time polynomial in the size of Gx.

Another tool that we need is a classical result of Nash-Williams [NW61].

Theorem 5.3. Let G = (V,E) be a 2k-edge-connected graph. Then G contains k edge

disjoint spanning trees.

5.2 2ECM on Half-Square Points

In this section we want to prove the following.

Theorem 1.21. Let x be a half-square point. Then 9
7x can be efficiently written as a convex

combination of 2-edge-connected multigraphs in Gx.

5.2.1 Proof of Theorem 1.21: an Algorithm for 2ECM on Half-Square

Points

Let H be the Hamiltonian cycle of Gx that can be found via Theorem 5.2. For simplicity,

let A be the set of 1-edges of Gx, B be the set of half-edges of Gx that are in H, and C be

the half-edges of Gx that are not in H. Thus, the incidence vector of H is

χHe =


1 if e ∈ A;

1 if e ∈ B;

0 if e ∈ C.

In order to use H as part of a convex combination in proving Theorem 1.21, we need to be

able to save on edges in B. To this end, we introduce the following definitions.
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Definition 5.4. For α > 0, let rα,x to be the vector in REx where

rα,xe =


1 + α if e ∈ A;

1
2 if e ∈ B;

1− α if e ∈ C.

Definition 5.5. We say property P (G,α) holds if the vector α·χG can be written as a convex

combination of matchings M1, . . . ,Mk of G such that G′1 = (V,E \M1), . . . , G′k = (V,E \Mk)

are 2-vertex-connected subgraphs of G.

Let Gx be the support graph of a square point, and let G = (V,E) be the 4-edge-

connected 4-regular graph obtained from Gx by replacing each path of 1-edges with a single

1-edge and contracting all of its half-squares.

Lemma 5.6. If P (G,α) holds for the graph G obtained from Gx, then the vector rα,x can

be efficiently written as a convex combination of 2-edge-connected multigraphs of Gx.

Theorem 5.7. Let x be a half-square point. Then 4
3x can be efficiently written as a convex

combination of 2-edge-connected subgraphs in Gx.

Proof. It is clear that P (G, 0) holds. By Lemma 5.6, the vector r0,x dominates a convex

combination of 2-edge-connected multigraphs of Gx. Hence any convex combination of

vectors r0,x and χH also dominates a convex combination of 2-edge-connected multigraphs.

Thus, 2
3r

0,x + 1
3χ

H dominates a convex combination of 2-edge-connected subgraphs of Gx.

We have 2
3r

0,x + 1
3χ

H ≤ 4
3x.

To go beyond 4
3 , we need to use the half-edges less and thus, we need to account for this

by sometimes doubling 1-edges. The property P (G,α) will allow us to double all the 1-edges

in Gx that belong to a particular matching in G (i.e., an α-fraction of the 1-edges). In this

section, our main goal is to prove the following theorem.

Theorem 5.8. For any 4-edge-connected 4-regular graph G, P (G, 1
10) holds.

By Lemma 5.6, we have the following corollary.

Corollary 5.9. For a half-square point x, r
1
10
,x dominates a convex combination of 2-edge-

connected multigraphs of Gx and this convex combination can be found in time polynomial

in the size of Gx.

From Corollary 5.9, the proof of Theorem 1.21 follows: any convex combination of

r
1
10
,x and χH also dominates a convex combination of 2-edge-connected multigraphs of
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Gx. Consider the combination 5
7r

1
10
,x + 2

7χ
H . It is easy to see this convex combination is

dominated by 9
7x.

It remains to prove Lemma 5.6 and Theorem 5.8. We will prove Lemma 5.6 in Section

5.2.2, where we describe how to construct the convex combination. Regarding Theorem 5.8,

note that P (G, 1
10) is equivalent to saying that the vector 9

10χ
G can be written as a convex

combination of 2-vertex-connected subgraphs of minimum degree three. This equivalent

statement will be proved using Lemma 5.10.

Lemma 5.10. Let G be a 4-edge-connected 4-regular graph. Let T be a spanning tree of G

such that T does not have any vertex of degree four. The vector y ∈ RG, where ye = 4
5 for

e /∈ T and ye = 1 for e ∈ T , dominates a convex combination of edge sets F1, . . . , Fk such

that T + Fi is a 2-vertex-connected subgraph of G where each vertex has degree at least three

in T + Fi for i ∈ [k].

In order to prove Lemma 5.10, we need a way to reduce vertex connectivity to edge-

connectivity. This is done in Section 5.2.3. The main tool in the proof of Lemma 5.10 is a

top-down (4, 5) coloring algorithm. This is detailed in Section 5.2.3. From Lemma 5.10, one

can easily prove Theorem 5.8.

Proof of Theorem 5.8. Consider square point x. Let G = (V,E) be the graph obtained from

contracting the half-squares in Gx. Graph G is 4-edge-connected, so by Theorem 5.3 G

has two edge-disjoint spanning trees T1 and T2. Notice that T1 and T2 cannot have any

vertex of degree four, since for all vertices v ∈ V , we have |δT1(v)| ≥ 1 and |δT2(v)| ≥ 1 while

|δT1(v)|+ |δT2(v)| ≤ 4. Hence, by Lemma 5.10 we can write vector yi ∈ RG, with yie = 1 for

e ∈ Ti, and yie = 4
5 for e /∈ Ti as a convex combination of 2-vertex-connected subgraphs of G

where every vertex has degree at least three, for i = 1, 2. Now consider 1
2 · y

1 + 1
2 · y

2: it

dominates a convex combination of 2-vertex-connected subgraphs of G where every vertex

has degree at least three. Also, 1
2 · y

1 + 1
2 · y

2 = 9
10χ

G. This concludes the proof, since the

complement of the solutions in the convex combination form the desired convex combination

of matchings.

In the remainder of this section we present the proof for Lemmas 5.6 and 5.10 in order

to complete the proof of Theorem 1.21.

5.2.2 Proof of Lemma 5.6: From Matching to 2ECM

Recall Lemma 5.6.

Lemma 5.6. If P (G,α) holds for the graph G obtained from Gx, then the vector rα,x can

be efficiently written as a convex combination of 2-edge-connected multigraphs of Gx.
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Proof. Recall that G = (V,E) is the 4-regular graph obtained from Gx by contracting all the

half-squares in Gx. Since P (G,α) holds, we can find λ1, . . . , λk ∈ R≥0 where
∑k

i=1 λi = 1,

such that α =
∑k

i=1 λiχ
Mi where Mi is a matching in G such that graph G′i = (V,E \Mi) is

2-vertex-connected for i ∈ [k]. Specifically, for each i ∈ [k], we create two 2-edge-connected

multigraphs F i1 and F i2 as follows. Notice that each edge in Mi corresponds to a 1-edge (an

edge in A) in Gx. For each e ∈Mi we add two copies of the 1-edge corresponding to e in Gx

to F i1 and F i2. For each e /∈Mi we add one copy of the 1-edge corresponding to e in Gx to

F i1 and F i2. Additionally, we assign an arbitrary orientation to each edge e ∈Mi. For each

edge e ∈Mi, there are two squares Q1 and Q2 incident on e. We say e→ Q1 and e← Q2 if

e is oriented from the endpoint in Q2 towards the endpoint in Q1.

Consider a half-square Q with vertices u1, u2, u3 and u4 in Gx. There are four 1-edges

incident on Q, namely fj for j ∈ [4], where fj is incident to uj . Since Mi is a matching in

G, at most one of f1, f2, f3, f4 belongs to Mi. If one of f1, . . . , f4 are in Mi we can assume

without loss of generality that f1 ∈Mi. If f1 → Q, then we add to F 1
i the two half-edges

in Q that do not have as endpoint u1. If f1 ← Q, then we add to F 1
i the two half-edges in

Q that are not incident to u1 together with the other half-edge in Q ∩ C. For F 2
i we do

the opposite: If f1 ← Q, then we add to F 2
i the two half-edges in Q that do not have as

endpoint u1, and if f1 → Q, then we add to F 2
i the two half-edges in Q that are not incident

to u1 together with the other half-edge in Q ∩ C. See Figure 5.1 for an illustration. If none

of {f1, . . . , f4} belong to Mi, we add both edges in C ∩Q to F i1 and F i2. We also arbitrarily

choose an edge in Q ∩B to add to F i1 and add the other edge in Q ∩B to F i2.

Q

(a) F i
1

Q

(b) F i
2

Figure 5.1: Solid edges belong to B and dashed edges belong to C. The directed edge
belongs to the matching. Thick edges represent those half-edges that are added to F i1 and
F i2, respectively.

We conclude this proof with the following two key claims.

Claim 11. The graph induced on Gx by edge sets F i1 and F i2 are 2-edge-connected multigraphs

of Gx for i ∈ [k].

Proof. Since the construction of F i1 and F i2 are symmetric, it is enough to show this only for

F i1. First notice that for every vertex v ∈ Gx, we have |F i1 ∩ δ(v)| ≥ 2. Let e be the 1-edge

incident on v. If e ∈Mi, then we have two copies of e in F i1 so we are done. If e /∈Mi, then
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F i1 contains only one copy of e. However, by construction, in the half-square that contains v,

we will have at least one half-edge in F i1 that is incident to v.

We proceed by showing that for every set of edges D in Gx that forms a cut (i.e., whose

removal disconnects the graph Gx), we have |D∩F i1| ≥ 2. Clearly, if D contains two or more

1-edges, since F i1 contains all the 1-edges, we have |D ∩ F i1| ≥ 2. So assume |D ∩ A| = 1;

D contains exactly one 1-edge e of Gx. If e ∈ Mi, we are done as the matching will take

two copies of e. Thus, we may assume e /∈Mi. Notice that for any edge cut D, D contains

either zero or two edges from every half-square. Hence, we can pair up the half-edges in D.

Let e1, . . . , en, f1, . . . , fm and e′1, . . . , e
′
n, f

′
1, . . . , f

′
m be the half-edges in D such that ej and

e′j belong to the same half-square and are opposite edges, and fj and f ′j belong to the same

half-square and share an endpoint. Notice that while we can have m = 0 or n = 0, it must

be the case that n+m > 0, since Gx is 2-edge-connected and hence D must contain two

edges from at least one half-square. Note that D ∩ F i1 contains edge e. For a contradiction,

suppose that |D∩F i1| = 1. In this case, we must have n = 0 since in our construction we take

at least one half-edge from every pair of opposite half-edges. (In other words, if n ≥ 1, then

D and F i1 must have at least one half-edge in common.) For j ∈ [m], let uj be the endpoint

that fj and f ′j share and let gj be the 1-edge incident to uj . Notice that D′ = e∪ {
⋃m
j=1 gj}

forms a cut in Gx that only contains 1-edges. Thus, D′ is also a cut in G. This implies that

there is an edge gj for some j ∈ [m] such that gj /∈Mi. Otherwise, e is the unique edge of

cut D′ that is not in Mi. This means that G′i = (V,E \Mi) has a cut with only one edge,

which implies that it is not 2-vertex-connected. Since gj /∈Mi, by construction F i1 contains

an edge in the half-square that contains uj . This implies that |F i1 ∩ {fj , f ′j}| ≥ 1, which is a

contradiction to the assumption that |D ∩ F i1| = 1 (See Figure 5.2.)

D′

D . . .e
fj f ′j

gj

f1 f ′1

g1

fm f ′m

gm

. . .

Figure 5.2: Edges in the cuts D and D′.

Finally, assume that D does not contain any 1-edges. In this case, let e1, . . . , en, f1, . . . , fm

and e′1, . . . , e
′
n, f

′
1, . . . , f

′
m be the half-edges in D such that ej and e′j belong to the same

half-square and are opposite edges, and fj and f ′j belong to the same half-square and share

one endpoint. For j ∈ [m] let uj be the endpoint that fj and f ′j share and gj be the 1-edge

incident on uj .

Notice that we can have m = 0 or n = 0 but n+m > 1, because D must contain at least

two edges from half-squares (since Gx is 2-vertex connected). If n = 0, then D′ =
⋃m
j=1 gj
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forms a cut in G. Hence, there are two edges gj and gk such that gj , gk /∈Mi. This implies

that |F i1 ∩ {fj , f ′j}| ≥ 1, and |F i1 ∩ {fk, f ′k}| ≥ 1. Therefore, |D ∩ F i1| ≥ 2. If n = 2, then

by construction |F i1 ∩ {e1, e
′
1}| ≥ 1, and |F i1 ∩ {e2, e

′
2}| ≥ 1, so we have the result. It only

remains to consider the case when n = 1. Notice as before we have |F i1 ∩ {e1, e
′
1}| ≥ 1. If

there is gj for some j ∈ [m] such that gj /∈ Mi, then we have |F ii ∩ {fj , f ′j}| ≥ 1 in which

case we are done. Thus, we may assume gj ∈Mi. Let Q be the half-square that contains e1

and e′1. In G′i = (V,E \Mi) the vertex corresponding to Q will be a cut vertex, which is a

contradiction. ♦

Now we conclude the proof by proving the second and last claim.

Claim 12. Let r =
∑k

i=1
λi
2 χ

F i1 +
∑k

i=1
λi
2 χ

F i2 . We have re = 1 + α for e ∈ A, re = 1
2 for

e ∈ B, and re = 1− α for e ∈ C, i.e. r = rx,α.

Proof. Let e ∈ A (a 1-edge in Gx). We have
∑

i∈[k]: e∈Mi
λi = α. Therefore,

k∑
i=1

λi
2
χ
F i1
e +

k∑
i=1

λi
2
χ
F i2
e =

k∑
i∈k: e∈Mi

2λi
2

+
k∑

i∈k: e/∈Mi

λi
2

+
k∑

i∈k: e∈Mi

2λi
2

+
k∑

i∈k: e/∈Mi

λi
2

= α+
1

2
− α

2
+ α+

1

2
− α

2

= 1 + α.

Now consider a half-edge e ∈ B. Let f and g be the 1-edges incident on the endpoints of

e. If f ∈Mi and f is incoming to e, then e /∈ F i1 and e ∈ F i2, otherwise if f ∈Mi and f is

outgoing of e, then e ∈ F i1 and e /∈ F i2. This means that if f ∈Mi, then λi
2 χ

F i1
e + λi

2 χ
F i2
e = λi

2 .

Similarly, if g ∈Mi, we have λi
2 χ

F i1
e + λi

2 χ
F i2
e = λi

2 . Notice that if f ∈Mi, then g /∈M i, since

in G, edges f and g share an endpoint and Mi is a matching.

Now, assume f, g /∈ Mi. Let f ′, g′ be the other 1-edges incident on the square Q that

contains e. If f ′ ∈Mi, then if f ′ is incoming to Q, then e ∈ F i1 and e /∈ F i2. If f ′ is outgoing

from Q, then e /∈ F i1 and e ∈ F i2. In both case, λi
2 χ

F i1
e + λi

2 χ
F i2
e = λi

2 . Similarly, if g′ ∈Mi. If

f, g, f ′, g′ /∈Mi, then exactly one of F i1 and F i2 will contain e. Hence, λi
2 χ

F i1
e + λi

2 χ
F i2
e = λi

2 .

We have,

k∑
i=1

λi
2
χ
F i1
e +

k∑
i=1

λi
2
χ
F i2
e =

k∑
i=1

λi
2

=
1

2
.

Now consider edge e ∈ C. Let Q be the square in Gx that contains e. Let f, g, f ′, g′ be

the 1-edges incident on Q such that f, g are the 1-edges that are incident on the endpoints

of e. If f ∈Mi and f is incoming to Q, then e /∈ F i1. Also, if g ∈Mi and g is incoming to Q,
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then e /∈ F i1. In all other cases e ∈ F i1. Similarly, if f ∈Mi and f is outgoing from Q, then

e /∈ F i2. Also, if g ∈Mi and g is outgoing from Q, then g /∈ F i2. In all other case e ∈ F i2. We

conclude

k∑
i=1

λi
2
χ
F i1
e +

k∑
i=1

λi
2
χ
F i2
e =

1

2
−

∑
i∈k: f∈Mi,f→Q

λi
2
−

∑
i∈k: g∈Mi,g→Q

λi
2

+
1

2
−

∑
i∈k: f∈Mi,f←Q

λi
2
−

∑
i∈k: g∈Mi,g←Q

λi
2

= 1−
∑

i∈k: f∈Mi

λi
2
−

∑
i∈k: g∈Mi

λi
2

= 1− α.

♦

This concludes the proof.

5.2.3 Proof of Lemma 5.10: A Top-down Coloring Approach

In this section we prove Lemma 5.10.

Lemma 5.10. Let G be a 4-edge-connected 4-regular graph. Let T be a spanning tree of G

such that T does not have any vertex of degree four. The vector y ∈ RG, where ye = 4
5 for

e /∈ T and ye = 1 for e ∈ T , dominates a convex combination of edge sets F1, . . . , Fk such

that T + Fi is a 2-vertex-connected subgraph of G where each vertex has degree at least three

in T + Fi for i ∈ [k].

In order to prove this lemma, we need a way to reduce vertex connectivity to edge-

connectivity to be able to employ the top-down coloring approach.

Reducing 2-vertex connectivity to 2-edge connectivity

Let G = (V,E) be a 4-edge-connected 4-regular graph. Note that G must be 2-vertex-

connected. Let T be a spanning tree of G such that T does not have any vertices of degree

four and let L = E \ T be the set of links. We can assume that T is rooted at a leaf of T .

For a link ` in L, let P` be the set of edge in T on the unique path in T between the

endpoints of `. For e ∈ T , let cov(e) be the set of links ` such that e ∈ P`. Since G is

4-edge-connected, |cov(e)| ≥ 3 for all e ∈ T .

Definition 5.11. The subdivided graph G′ = (V ′, E′) of G is the graph in which each edge

e = uw of T is subdivided into uve and vew. Then T ′ is a spanning tree of G′ in which for
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each edge uw ∈ T , we include both uve and vew in T ′. We define L′ = E′ \ T ′ as follows.

For each link ` ∈ L, we make a link `′ ∈ L′ as follows. Let u be an endpoint of `.

1. If u is the root or a leaf of T , then u is an endpoint of `′.

2. If u is an internal vertex, let e be the edge in P` such that u is also an endpoint of e.

(Note that there is only one such e, since P` is a unique path and e is the first, or last,

edge in P`.) Then ve is the endpoint of `′.

The procedure outlined in Definition 5.11 defines a bijection between links in L and L′.

Thus, for every set of links F ′ ⊂ L′, we let F ⊂ L denote the corresponding set of links. We

use this bijection to go from 2-edge-connectivity to 2-vertex-connectivity.

Lemma 5.12. Given a graph G = (V,E) with spanning tree T of G and links L = E \ T ,

and a subdivided graph G′ = (V ′, E′) with spanning tree T ′ and links L′ = E′ \ T ′, we have

• For any F ′ ⊂ L′ such that T ′ + F ′ is 2-edge-connected, T + F is 2-vertex-connected.

• For every edge e′ ∈ T ′, there are at least two links `′1, `
′
2 ∈ L′ such that `′1, `

′
2 ∈ cov(e′).

Proof. Let us show that this reduction satisfies the first property. Suppose for contradiction

that there is F ′ ⊆ L′ such that T ′ + F ′ is 2-edge-connected, but the corresponding set of

links F , is such that T + F has a cut-vertex, namely u. Clearly u cannot be a leaf of T ,

since T − u is a connected graph. Similarly, r 6= u since we chose r to a leaf. Hence, we can

assume that u is an internal vertex of T .

Since u is a cut-vertex of T + F , we can partition V \ {u} into S1 and S2 such that

there is no edge in T + F − δ(u) that has one endpoint in S1 and one endpoint in S2. Let

δT (u) be the set of edges in T incident on u. Since u is an internal vertex of T , we have

2 ≤ |δT (u)| ≤ 3. Suppose u has a parent v. Label the vu edge in T with e. Assume first that

|δT (u)| = 2: let f be the child edge of u in T . There is no link `′ ∈ F ′ such that `′ covers

the edge uvf , because such a link `′ corresponds to a link in ` ∈ L that has one endpoint

in S1 and other in S2. Now, assume |δT (u)| = 3: let f1 and f2 be the child edges of u in

T . Let w1 and w2 be the endpoints of f1 and f2 other than u. Again, let S1 and S2 be the

partition of V \ {u} such that no edge in T + F − δ(u) that has one end in S1 and other in

S2. Without loss of generality, assume v ∈ S1 and w1, w2 ∈ S2. Consider edge veu in T ′: if

there is a link `′ ∈ L′ covering veu, then the link ` corresponding to `′ has one end in S1

and the other in S2. Hence, we get a contradiction.

Now we show the second property holds: for each edge e′ ∈ T ′, there are at least two

links `, `′ ∈ L′ that are in cov(e′). Suppose there is an edge e′ such that e′ does not have

this property. Edge e′ corresponds to one part of a subdivided edge e in the tree T . Let v

and ve be the endpoints of e′.
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First, assume that ve is a parent of v in T ′. If v is a leaf, we are done, as there are 3

links in ` that cover edge e in T , all these links will cover e′ in the new instance as we do

not change the leaf endpoints. Thus we may assume that v has children.

If v has only one child edge, then let edge f be the child edge of e in T . Let ` be a link

in L such that e and f are both covered by `. If `′ ∈ L′ is the link corresponding to `, then

`′ covers e′. Hence we can suppose there is at most one link ` in L that covers both e and f .

Therefore, there are distinct links `1, . . . , `4 such that `1, `2 cover f and `3, `4 cover e. But

then vertex v has degree six in G as every link that covers e and does not cover f or vice

versa must have v as an endpoint. Thus, we may assume that v has degree three in T , which

means e has exactly two child edges f and g. Let `1, `2, `3 be the links that cover e. Suppose

without loss of generality that `1 and `2 cover either f or g. Then, the corresponding links

`′1 and `′2 in L′ will cover e′. However, if `1 does not cover f or g if must be the case that `1

has an endpoint in v. The same holds for `2. This implies that v has degree five, which is a

contradiction.

e

f

v

(a)

e

g f

(b)

Now suppose v is the parent of ve. If v is the root we are done, as there are at least

three links that cover edge e in L, all these links in L′ will have the same endpoint v and

will cover e′. Thus, we can assume edge e has a parent edge, namely f . If v has degree two

in T , then any link in L that covers both of e and f has a corresponding link in L′ that

covers e′, so if there are less than two such links, vertex v will have degree six. Thus we may

assume that v has degree three in the tree (i.e., f has child edges e and g). Any link in L

that covers both e and f has a corresponding link in L′ that covers e′. Similarly, any link in

L that covers both e and g has a corresponding link in L′ that covers e′. There are at least

three links `1, `2, `3 in L that cover e. Suppose for contradiction that `1 and `2 cover neither

f nor g. Then, `1 and `2 have v as an endpoint, which implies that v has degree five in G.

This is a contradiction to 4-regularity of G.

The Top-Down Coloring

We want to find a set of links F ′ ⊂ L′ such that i) T ′ + F ′ is 2-edge-connected, and ii) each

vertex in T + F has degree at least three. Now we expand our terminology for a top-down
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coloring algorithm to address these additional requirements. For each `′ ∈ L′, where ` is the

link in L corresponding to `′, we define end(`′) to be the two endpoints of ` in G.

For a vertex v in G, we say v received a color c in a partial coloring if there is a link

`′ such that v ∈ end(`′) and `′ has color c in the partial coloring. We say a vertex v of G

received a color twice, if there are two links `′ and `′′ such that v ∈ end(`′) and v ∈ end(`′′)

and both `′ and `′ have c as one of their colors. Similarly, we say v is missing a color c if

there is no link `′ such that v ∈ end(`′) and `′ has color c in the partial coloring. Moreover,

we say v is missing a color c for the second time, if there is exactly one link `′ with v ∈ end(`′)

that has color c in the partial coloring.

Lemma 5.13. Let G = (V,E) be a 4-edge-connected 4-regular graph and let T be a spanning

tree of G with maximum degree three. Let G′ and T ′ be the subdivided graph and spanning

tree. Then there is a T ′-admissible (4, 5) top-down coloring of L′ such that for a vertex v

of G, if v has degree two in T , then v receives all the five colors, and if v is a degree one

vertex in T , then v receives all the five colors twice.

Proof. By definition of top-down coloring, our algorithm sorts the links by the height of

their LCA. When we color a link `′ ∈ L′ we give it 4 different colors before moving to the

next link in the sorted order of links. Therefore, the algorithm runs in |L′| iterations. In

each iteration i = 1, . . . , |L′| we have a (4, 5) coloring γi of L′.

Consider iteration i of the algorithm. An support `′ = `i, the link that we want to color

in iteration i of the algorithm. Let u′, v′ be the endpoints of `′ in G′. Let s′ be the LCA of

`′ in T ′. Let L`′ be the s′u′-path in T ′ and R`′ be the s′v′-path in T ′. Let end(`′) = {u, v}.

Coloring Rules:

1. If there is a color c that u has not received we set one color on `′ to be c. If u is not

missing a color, but missing a color c for the second time, give color c to `′.

2. If there is a color c that v has not received we set one color on `′ to be c. If v is not

missing a color, but missing a color c for the second time, give color c to `′.

3. Let e′ be the highest edge in L`′ that is missing a color c. Give color c to `′. If there is

no such edge, and vertex u is missing a color c for the second time, give color c to `′.

4. Let f ′ be the highest edge in R`′ that is missing a color c. Give color c to `′. If there

is no such edge, and vertex v is missing a color c for the second time, give color c to `′.

5. If after applying all the above 4 rules, `′ has still less than four colors, give `′ any color

that it does not already have until `′ has four different colors.
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First we show that the top-down coloring algorithm above is T ′-admissible. Consider an

edge e′ in T ′. We know by Lemma 5.12 that there are links `′ and `′′ in L′ such that

`′, `′′ ∈ cov(e′). Without loss of generality, suppose that `′ has a higher LCA. When we color

`′, e′ receives four new colors. When we color `′′ we give at least one new color to e′ so it

receives all the five colors. Therefore, the coloring algorithm is T ′-admissible.

Now, we show the extra properties hold as well. Consider a vertex v of degree two in T .

Notice that since G is 4-regular, there are at least two links `′ and `′′ such that v ∈ end(`′)

and v ∈ end(`′′). At the iteration the algorithm colors `′, vertex v receives four new colors,

and later when the algorithm color `′′, vertex v receives its fifth missing color.

Finally, assume v is a vertex of degree one in T . This implies that v′ is also a degree one

vertex in T ′ (since in the reduction we do not change the endpoints for degree one vertices).

Let e′v′ be the leaf edge in T ′ incident on v′. By 4-regularity there are three links `′1, `
′
2, `
′
3

labeled in LCA order such that v ∈ end(`′i) for i = 1, 2, 3. In the iteration that `′1 is colored,

v receives four new colors. Later, when `′2 is colored, v receives its last missing color. In

other words, after coloring `′2, vertex v has received all five colors and has received three

colors twice. This means that after coloring `′2, vertex v is missing exactly two colors for

the second time. Furthermore, `′1, `
′
2 ∈ cov(e′v′). This implies by the argument above, when

the algorithm colors `′2, edge e′v′ has received all the five colors. Consider the time when

the algorithm wants to color `′3. Notice that all the ancestors of e′v′ has received all the five

colors, and e′v′ is the lowest edge in R`′3 . Therefore, there is no missing color in R`′3 . Also, v

has received all five color. Therefore, when coloring `′3, vertex v will receives two new colors

for the second time.

Now we finish the proof of Lemma 5.10.

Proof of Lemma 5.10. Let G′ = (V ′, E′) and T ′ be the subdivided graph of G and the

subdivided spanning tree T , respectively. Let L′ = E′ \ T ′ By Lemma 5.13 we have a T ′-

admissible (4, 5) coloring of L′. This implies by Observation 2.18 that 4
5χ

L′ can be efficiently

written as a convex combination of feasible augmentations A1, . . . , A5. This implies that

T ′ + Ai is a 2-edge-connected subgraph of G′ for i ∈ [5]. By Lemma 5.11, T + Ai is a

2-vertex-connected subgraph of G, and by construction every vertex in V has degree at least

three in T +Ai for i ∈ [5]. Notice that
∑5

i=1
1
5 · χ

T+Ai is a desired convex combination of

2-vertex-connected subgraphs of G and
∑5

i=1
1
5 · χ

T+Ai = y

5.2.4 Hard to Round Half-Square Points

As discussed in the beginning of the chapter, g(2ECM) ≥ 6
5 . An example achieving this

lower bound is given in [ABE06] (see Figure 1.2). However, a more curious instance is the

k-donut. A k-donut point for k ∈ Z, k ≥ 2, is a graph Gk = (Vk, Ek) that has k half-squares
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Figure 5.4: The k-donut for k = 4: bold (blue) edges are the half edges and remaining edges
are 1-edges.

arranged around a cycle, and the squares are joined by paths consisting of k 1-edges (See

Figure 5.4 for an illustration of the 4-donut.)

Define the edge cost ce of each half-edge in the outer cycle and the inner cycle to be 2.

All other half-edges have cost 1. All the 1-edges have cost 1
k . Therefore,

∑
e∈Ex cexe = 5k,

while the optimal solution is 6k − 2: this is because every path of 1-edges (there are 2k such

paths) incurs a cost of 1 since every vertex has degree at least two in any 2-edge-connected

multigraph of Gk. We claim that all but at most two of the half-squares incur a cost of 4. If

there exists two half-squares where both half-edges on the outer and inner cycle are not in

the solution, then the cut induced by these four edges is not crossed, which is a contradiction

to feasibility of the solution. This implies that all but one of the half-square have at least

one half-edge on the inner or outer cycle in every solution. If the other half-edge on the

inner or outer cycle is also in a solution, then the half-square contributes 4 to the cost of the

solution. Otherwise, for all but one such half-squares both of the half-edges that connect

the outer cycle and inner cycle must be in a solution. In any case, the cost that most cycles

contribute to the objective is 4.

We note that this instance was discovered by the authors of [CR98], but due to the page

limit of their conference paper they did not present it and just mentioned that they know

a lower bound. Recently, Boyd and Sebő used k-donut points with different costs to show

a new instance that achieves a lower bound of 4
3 for the integrality gap of TSP, and we

attribute the term “k-donut” to them [BS19].

We remark that if x is the k-donut point and G is the graph obtained from Gx by

contracting the half-square, then P (G, 1
4 −

1
2k ) holds: graph G is a Hamiltonian cycle where

every edge is doubled. For each of the two Hamiltonian cycles of G, we can take the

matching that contains each edge in the cycle and every other edge in the cycle (expect for

at most one). We can similarly find the matching for the other cycle of G. This implies

that z = 1
5χ

H + 4
5r
x, 1

4
− 1

2k is a convex combination of 2-edge-connected multigraphs of Gx.

We have ze = 6
5 −

2
5k for e ∈ A, ze = 3

5 for e ∈ B, and ze = 3
5 + 2

5k for e ∈ C. As k → ∞,
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this approaches 6
5x and thus shows that our approach can verify the six-fifths conjecture for

k-donut points. We conclude with the following corollary of Theorem 1.21.

Corollary 5.14. The integrality gap g(2ECM) is between 6
5 and 9

7 for half-square points.

5.3 2ECM for Half-Triangle Points

Our goal in this section is to prove the following.

Theorem 5.1. Let x be a half-triangle point. Then (6
5 + 1

120)x dominates a convex combi-

nation of 2-edge-connected multigraphs in Gx. Moreover, this convex combination can be

found in polynomial time.

Our approach in proving the theorem above is similar to our proof of Theorem 1.21 (and

similar to the proof in [BL15]): recall that in the case of a half-square point we contracted

the half-squares to obtain a 4-regular graph. In the 4-regular graph, we found matchings

whose complements are 2-vertex-connected and used the matching to expand the subgraphs

into 2-edge-connected multigraphs in the support of the half-square point.

Here we pursue a similar approach: contracting all the half-triangles in a half-triangle

point we obtain a cubic graph. In addition a subcubic graph is 2-vertex-connected if and

only if it is 2-edge-connected. In other words, we want to find 2-edge-connected subgraphs

in the cubic graph obtained from contracting half-triangles of a half-triangle point. Recall

that we showed how to do this in Theorem 4.15 in Chapter 4 in the case where the cubic

graph is 3-edge-connected.

Notice that the support Gx of a half-triangle point x, is not necessarily 3-edge-connected.

To be able to deal with the 2-edge cuts of Gx we need a refined version of Lemma 4.18 which

requires a more technical proof and results in a refined version of Theorem 4.15.

The following Lemma is a refined version of Theorem 4.15.

Lemma 5.15. Let G = (V,E) be a 3-edge-connected cubic graph and e∗ ∈ E. De-

note by {a, b, c, d} the set of four edges that share an endpoint with e∗. Then vector

y = 7
8χ

E\{a,b,c,d,e∗} + 19
24χ

e∗ + 13
16χ
{a,b,c,d} can be written as a convex combination of 2-

edge-connected subgraphs of G.

With Lemma 5.15 we can prove Theorem 5.1

Proof of Theorem 5.1. For a half-triangle point x, let e∗ ∈Wx. Define

zx,e
∗

e =


29
24 if e ∈Wx \ {e∗};
19
24 if e = e∗;

29
48 if e ∈ Hx.
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Note that zx,e
∗ ≤ (6

5 + 1
120)x for e∗ ∈ Wx. In order to prove Theorem 5.1 we prove a

slightly stronger statement that allows us to complete an inductive proof (for gluing on

2-edge cuts). The following claim implies Theorem 5.1.

Claim 13. Let x be a half-triangle point and e∗ be an edge in Wx such that e∗ is not in a 2-

edge cut of Gx. Then vector zx,e
∗

can be written as a convex combination of 2-edge-connected

multigraphs of G all of which use at most one copy of edge e∗.

Proof. Let Gx = (Vx, Ex) be the support of x. Denote by G = (V,E) the graph obtained

from Gx by contracting the half-triangles of Gx. Notice that G is a 2-edge-connected cubic

graph. We proceed by induction on the number of 2-edge cuts of G.

The base case is when G is 3-edge-connected. Let a, b, c, and d be the four edges sharing

an endpoint with e∗. Applying Lemma 5.15 we have 7
8χ

E\{a,b,c,d,e∗} + 13
16χ
{a,b,c,d} + 19

24χ
e∗ =∑k

i=1 λiχ
Fi where

∑k
i=1 λi = 1 and for i ∈ [k], we have λi ≥ 0 and Fi is a 2-edge-connected

subgraph of G.

From each Fi, we construct 2-edge-connected multigraphs of Gx. We describe the

construction as a random choice to make the description simpler, but one can see that from

each Fi we obtain six 2-edge-connected multigraphs for Gx. In addition, it is elementary to

prove that the 2-edge-connected multigraphs constructed are all 2-edge-connected, so we

skip the proof.

Choose F ∈ {F1, . . . , Fk} uniformly at random according to the probability distribution

defined by {λ1, . . . , λk}.

Claim 14. For a vertex v in G. Then Pr[|F∩δ(v)| = 3] ≤ 5
8 and Pr[F∩δ(v) = δ(v)\{e}] ≥ 1

8

for e ∈ δ(v).

Proof. Suppose Pr[|F ∩ δ(v)| = 3] = α. We have

E[|F ∩ δ(v)|] = 2 · Pr[|F ∩ δ(v)| = 2] + 3 · Pr[|F ∩ δ(v)| = 3]

= 2 · (1− α) + 3α = 2 + α

On the other hand E[|F ∩ δ(v)|] = y(δ(v)) ≤ 3 · 7
8 . Therefore, 2 + α ≤ 21

8 and α ≤ 5
8 . For

e ∈ δ(v) observe that 1− ye = Pr[e /∈ F ] = Pr[F ∩ δ(v) = δ(v) \ {e}]. Notice that ye ≤ 7
8 , so

1− ye ≥ 1
8 . ♦

Claim 15. Let v be a vertex in G such that δ(v) = {e∗, f, g}. Then Pr[|F ∩ δ(v)| = 3] ≤ 5
12 .

Proof. Suppose Pr[|F ∩ δ(v)| = 3] = α. We have

E[|F ∩ δ(v)|] = 2 · (1− α) + 3α = 2 + α.
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On the other hand E[|F ∩ δ(v)|] ≤ 19
24 + 13

16 + 13
16 = 29

12 . Therefore, 2 +α ≤ 29
12 and α ≤ 5

12 . ♦

For edge e ∈ Ex \ {e∗} with xe = 1, if e ∈ F , then take one copy of e, otherwise take

two copies of e. For e∗, take one copy of e∗ if e∗ ∈ F and zero otherwise (hence e∗ is never

doubled).

For each 1-edge e ∈ Ex \ {e∗} we have E[χF
′

e ] ≤ 19
16 ≤

29
24 by the argument below.

E[χF
′

e ] = Pr[e ∈ F ] + 2 · Pr[e /∈ F ] ≤ 13

16
+ 2 · (1− 13

16
) =

19

16
.

Also, by construction E[χF
′

e∗ ] = Pr[e∗ ∈ F ] = 19
24

In order to describe how to expand F to half-triangles, consider a triangle in Gx with

vertices u, v and w. Notice that |F ∩{eu, ev, ew}| ≥ 2 since F is a 2-edge-connected subgraph

of G. We consider two cases.

Case 1: e∗ /∈ {eu, ev, ew}.

Case 2: e∗ = eu.

Case 1

In Case 1, if |F ∩{eu, ev, ew}| = 2, without loss of generality assume eu /∈ F . Choose between

{vw} and {uv, uw} uniformly at random and add it to the 2-edge-connected multigraph.

(See Figures 5.5a and 5.5b.) If |F ∩ {eu, ev, ew}| = 3, then take a random pair of edges from

{uv, vw, uw}. (See Figures 5.5c and 5.5d.) We need to show E[χF
′

e ] ≤ zx,e∗ for a half-edge e

for which e∗ is not incident on half-triangle that contains e.

Consider a half-edge e with endpoints i, j ∈ {u, v, w} in triangle with vertex set {u, v, w}.
We can assume without loss of generality i = u and j = v. We use D to denote the set

{eu, ev, ew}. We have

E[χF
′

e ] ≤ Pr[{uv, vw} chosen from {{vw}, {uv, uw}}] · Pr[|F ∩D| = 2]

+ Pr[uv is in the pair chosen from {{uv, vw}, {uv, uw}, {uv, uw}}] · Pr[|F ∩D| = 3]

≤ 1

2
· (1− Pr[|F ∩D| = 3]) +

2

3
· Pr[|F ∩D| = 3]

≤ 1

2
+

1

6
Pr[|F ∩D| = 3]

≤ 29

48
(Pr[|F ∩D| = 3] ≤ 5

8 by Claim 14)

Case 2

In Case 2, assume without loss of generality that e∗ = eu. If ev /∈ F choose between {uw}
and the pair {vw, uv} uniformly at random. For ew we do a similar thing. If e∗ /∈ F , then
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ev

ew

eu

(a) The pattern |F ∩ {eu, ev, ew}| =
{ev, ew} which happens with probabil-
ity at least 1/8 by Claim 14

v

w

u
v

w

u

(b) Each of the patterns above happen
with probability 1/2 given that the we
are in Case 1 and F ∩ {eu, ev, ew} =
{ev, ew}.

ev

ew

eu

(c) This pattern happens with probability
at most 5/8 by Claim 14.

v

w

u
v

w

u
v

w

u

(d) Expansion from F to a half-triangle
in Case 1 when F ∩ {eu, ev, ew} =
{ev, ew}.

Figure 5.5: Expansion from F to a half-triangle in Case 1 when e∗ /∈ {eu, ev, ew}. Red edges
are taken in F and in the 2-edge-connected multigraph.

add the pair {uv, uw}. Otherwise if |F ∩ {e∗, ev, ew}| = 3, choose between pairs {uv, vw}
and {uw, vw} uniformly at random (See Figure 5.6.) Let F ′ be the random multigraph

obtained by the process above. We need to show E[χF
′

e ] ≤ zx,e∗ for half-edges e for which e∗

is incident on the half-triangle that contains e. Denote the set {e∗, ev, ew} with D′.

In Case 2, we need to distinguish between three cases. Case 2a: i = u and j = v, Case

2b: i = v and j = w and Case 2c: i = u and j = w.

In Case 2a we have

E[χF
′

e ] = Pr[{uv, vw} chosen from {{uw}, {uv, vw}}] · Pr[ev /∈ F or ew /∈ F ]

+ Pr[{uv, uw} chosen from {{uv, uw}}] · Pr[e∗ /∈ F ]

+ Pr[{uv, vw} chosen from {{uv, vw}, {uw, vw}}] · Pr[|F ∩D′| = 3]

=
1

2
· Pr[ev /∈ F or ew /∈ F ] + Pr[e∗ /∈ F ] +

1

2
· Pr[|F ∩D′| = 3]

≤ 1

2
· 3

8
+

5

24
+

1

2
· 5

12
=

29

48
. (By Claim 15)
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ev

ew

e∗

(a) The pattern F ∩ {e∗, ev, ew} =
{e∗, ew}.

v

w

u
v

w

u

(b) Each of the patterns above happen
with probability 1/2 given that the we
are in Case 2 and F ∩ {e∗, ev, ew} =
{e∗, ew}.

ev

ew

e∗

(c) The pattern F ∩ {e∗, ev, ew} =
{ev, ew}.

v

w

u

(d) Expansion from F to a half-triangle
in Case 2 when F ∩ {e∗, ev, ew} =
{ev, ew}.

ev

ew

e∗

(e) The pattern |F ∩ {e∗, eu, ew}| = 3.

v

w

u
v

w

u

(f) Expansion from F to a half-triangle
in Case 2 when |F ∩ {e∗, ev, ew}| = 3.

Figure 5.6: Expansion from F to a half-triangle in Case 2 when e∗ = eu. Red solid edges
are taken in F and in the 2-edge-connected multigraph.

In Case 2b, we have e = vw.

E[χF
′

e ] = Pr[{uv, vw} chosen from {{uw}, {uv, vw}}] · Pr[ev /∈ F or ew /∈ F ]

+ Pr[vw is in a the set chosen from {{uv, vw}, {uw, vw}}] · Pr[|F ∩D′| = 3]

=
1

2
· Pr[ev /∈ F or ew /∈ F ] + Pr[|F ∩D′| = 3]

≤ 1

2
(1− Pr[e∗ /∈ F ]) +

1

2
· Pr[|F ∩D′| = 3]

≤ 1

2
· 19

24
+

1

2
· 5

12
=

29

48
. (By Claim 15)
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Finally, for Case 2c, we have e = uw.

E[χF
′

e ] = Pr[{uw} chosen from {{uw}, {uv, vw}}] · Pr[ev /∈ F or ew /∈ F ]

+ Pr[{uv, uw} chosen from {{uv, uw}}] · Pr[e∗ /∈ F ]

+ Pr[{uw, vw} chosen from {{uv, vw}, {uw, vw}}] · Pr[|F ∩D′| = 3]

=
1

2
· Pr[ev /∈ F or ew /∈ F ] + Pr[e∗ /∈ F ] +

1

2
Pr[|F ∩D′| = 3]

≤ 1

2
+

1

2
Pr[e∗ /∈ F ]

≤ 1

2
· 19

24
+

1

2
· 5

12
=

29

48
.

This completes the base case.

Now assume that Gx has a 2-edge cut U ⊂ V such that δ(U) = {uw, vz}, where u, v ∈ U .

Graph G1 = Gx[U ] + uv is the support of the half-triangle point x induced on U extended

to E(G1) by putting 1 on uv, henceforth x[U ]. Similarly define G2 = Gx[Ū ] + wz and half-

triangle point x[Ū ]. Observe that both G1 and G2 have fewer 2-edge cuts than Gx. Apply

induction to show that zx[U ],e∗ can be written as convex combination of 2-edge-connected

multigraphs of G1. We apply another induction to show that zx[Ū ],wz can be written as a

convex combination of 2-edge-connected multigraphs of G2. The fraction of 2-edge-connected

multigraphs in the convex combination corresponding to G1 that have two copies of uv are

exactly z
x[U ],e∗
uv − 1 = 5

24 , and the fraction of 2-edge-connected multigraphs of G2 that do

not contain wz are 1− zx[Ū ],wz
wz = 5

24 . In this case we glue the 2-edge-connected multigraphs.

In particular we drop the two copies of uv and add two copies of uw and vz. Moreover, the

fraction of the time that uv appears in the 2-edge-connected multigraphs of G1 is the same

as the fraction of time that wz appears in the 2-edge-connected multigraphs of G2, which

is 19
24 . We glue these 2-edge-connected multigraphs together to obtain 2-edge-connected

multigraphs for G by dropping uv and wz and adding one copy of uw and vz. ♦

This completes the proof.

It remains to prove Lemma 5.15.

Proof of Lemma 5.15. The proof is similar to the proof of Lemma 4.18 in Chapter 4. We

begin with the following claim.

Claim 16. Let e′ be an edge in E that share the endpoint r with e∗. Then the vector
2
3χ

E\{e∗,e′} + 1
3χ

e′ dominates a convex combination of spanning trees {T1, . . . , T`} such that

for each i ∈ [`], the leaf-matching links in E \ Ti for the rooted tree Ti are vertex-disjoint.
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Proof. Let f = δ(r) \ {e∗, e′}. For h ∈ δ(r), denote by vh the endpoint of h that is not r. As

in the proof of Lemma 4.18, we write 2
3χ

G as a convex combination of 2-factors of G. Take

a 2-factor C from this convex decomposition, and let ye = 1
2 for e ∈ C and ye = 1 for e /∈ C.

We have y ∈ SEP(G) by Lemma 2.6. We will pair the half-edges in y to obtain a rainbow

1-tree decomposition. In particular, for each cycle C ∈ C, partition the edges into adjacent

pairs, leaving at most one edge eC alone if C is an odd cycle. Notice that this choice is not

unique. We always require r to be a rainbow vertex. Now we carefully choose the rainbow

vertices among ve∗ , ve′ and vf depending on the construction.

If e′ /∈ C, then we ensure that ve′ not be a rainbow vertex. If e∗ /∈ C, then we ensure

that ve∗ not be a rainbow vertex. If f /∈ C, then we do not care whether or not vf is a

rainbow vertex. Decompose y into a convex combination of 1-trees {T1, . . . , Tk}. If e∗ ∈ Ti,
let T ′i = Ti − e∗. Otherwise, if e∗ /∈ Ti, then let T ′i = Ti − e′.

Assume for contradiction that `1 and `2 are leaf-matching for T ′i and `1, `2 ∈ C for some

C ∈ C. Notice, `1, `2 /∈ T ′i and `1, `2 /∈ δ(r). Hence, `1, `2 /∈ Ti (since otherwise, they must

belong to Ti \ T ′i ⊂ {e∗, e} ⊂ δ(r)), and therefore `1 and `2 are not paired with each other.

Without loss of generality, this implies that `2 is paired with another edge `3. Then it must

be that `3 ∈ Ti. Let u be the common endpoint of `2 and `3. There are two cases to consider.

The first case is when `3 /∈ T ′i , which implies that `3 ∈ δ(r). However, this is a contradiction

since r and u would then be adjacent and since r is a rainbow vertex, u cannot be a rainbow

vertex. The second case is when `3 ∈ T ′i . Then an edge adjacent to both `2 and `3 has been

removed (i.e., belongs to Ti \ T ′i ). Call this edge g and note that g is a 1-edge (because `2

and `3 are adjacent half-edges) and that g ∈ {e∗, e}. Thus, g = e∗ and u = ve∗ or g = e′ and

u = ve′ . However, in both cases we deliberately chose u not to be a rainbow vertex.

Note that e∗ belongs to Ti two-thirds of the time and e∗ never belongs to T ′i . By

construction, e′ belongs to Ti two-thirds of the time and belongs to Ti \ T ′i exactly when

e∗ /∈ Ti, which is one-third of the time. Thus, edge e′ belongs to T ′i one-third of the time. ♦

Apply the claim above by choosing e1 = e∗ and e2 ∈ {a, b, c, d} implies that 7
8χ

E\{e∗,e2}+
3
4χ

e∗ + 5
8χ

e2 can be written as a convex combination of 2-edge-connected subgraphs of G.

Hence y ≥
∑

e2∈{a,b,c,d}
1
4

(
7
8χ

E\{e∗,e2} + 3
4χ

e∗ + 5
8χ

e2
)

= 7
8χ

E\{a,b,c,d,e∗} + 3
4χ

e∗ + 13
16χ
{a,b,c,d}

can be written as a convex combination of 2-edge-connected subgraphs of G.

95



Chapter 6

Towards Improving Christofides’

Algorithm for TSP on

Fundamental Classes

One interesting special case of the TSP is when the solution x ∈ SEP(n) that minimizes the

objective function is half-integer. In the case of graph-weighted metrics, if a half-integer

extreme point x ∈ SEP(n) minimizes the objective function, then the support graph Gx is

subcubic. Hence there is a 4
3 -approximation algorithm for TSP in this case [MS16]. This

gives rise to the following question: For x ∈ SEP(n) ∩ {0, 1
2 , 1}

(n2), henceforth a half-integer

point, can we have αx ∈ TSP(Gx) for some constant α ∈ [1, 3
2)?

Consider a half-integer point x and let G = (V,E) = Gx. Let Hx = {e ∈ E : xe = 1
2}, the

set of half-edges of x, and Wx = {e ∈ E : xe = 1}, the set of 1-edges of x. Carr and Vempala

[CV04] showed that in order to address the question above, we can assume without loss of

generality a stronger condition for x ∈ SEP(G): Recall that a half-integer Carr-Vempala

point is a half-integer point such that the support graph Gx is a cubic graph and for every

vertex u ∈ V , there is exactly one edge e incident on u with xe = 1 and two edges f, g

incident on u with xf = xg = 1
2 . Moreover, Hx forms a Hamiltonian cycle of Gx, and

Wx forms a perfect matching of Gx. If for any half-integer Carr-Vempala point x we have

αx ∈ TSP(Gx), then for any half-integer point y we have αy ∈ TSP(Gy) [CV04, BS19].

6.1 Motivation and Results

In Section 1.2.4 of Chapter 1 we introduced a generalization of a half-integer Carr-Vempala

point called a half-cyclic point, which is a half-integer point x ∈ SEP(Gx) such that the

graph Gx is a cubic graph and for every vertex u ∈ V , there is exactly one edge e incident
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on u with xe = 1 and two edges f, g incident on u with xf = xg = 1
2 . This implies that Hx,

the half-edges in Gx, forms a 2-factor of G (in which the minimum cycle length is three).

Schalekamp, Williamson and van Zuylen conjectured that the largest lower bound for

g(TSP) occurs for half-cycle points in which the 2-factor consists of odd-cycles [SWvZ13].1

This gives rise to the problem we call the half-integer TSP : For a half-cycle point x, can

we show αx ∈ TSP(Gx) for constant α ∈ [1, 3
2)? The problem can in fact be restated as

follows: Let x be a half-cycle point. Define vector y ∈ REx as follows: ye = 3
2 − ε for e ∈Wx

and ye = 3
4 − δ for e ∈ Hx. Our goal is to show that there exists constants ε, δ > 0 such that

y ∈ TSP(Gx).

The polyhedral analysis of Christofides algorithm implies the following theorem.

Theorem 6.1 ([Chr76, Wol80, WS11]). Let x be a half-cycle point. Define vector y ∈ REx

as follows: ye = 3
2 for e ∈Wx and ye = 3

4 for e ∈ Hx. Then y ∈ TSP(Gx).

Our main result in this chapter is the following.

Theorem 1.22. Let x be a half-cycle point. Define vector y ∈ REx as follows: ye = 3
2 −

1
20

for e ∈ Wx and ye = 3
4 f or e ∈ Hx. Then y ∈ TSP(Gx), i.e. y can be written as a

convex combination of tours of Gx. Furthermore, this convex combination can be found in

polynomial time in the size of x.

While Theorem 1.22 is not strong enough to improve on the half-integer TSP, it does

have several applications. For example, given an edge cost function c for which a half-cycle

point x ∈ SEP(Gx) minimizes the objective function, if the total edge costs of the 1-edges is

a constant fraction of the total cost of the half-edges, then by Theorem 1.22, we obtain an

approximation factor better than 3
2 .

Another application is related to the Uniform Cover Problem for TSP. Recall that in

Theorem 1.18 we proved that αTSP
3 ≤ 27

19 ≈ 1.421. Boyd and Sebő [BS19] showed that if x is

a 2
3 -uniform point and Gx is Hamiltonian, then 9

7x ≤ (1.286)x ∈ TSP(Gx). We use Theorem

1.22 to improve the upper bound on αTSP
3 to 17

12 ≈ 1.417. For 2
3 -uniform point x where

Gx is Hamiltonian we show that αx ∈ TSP(Gx) where α = 87
68 ≈ 1.28. This application of

Theorem 1.22 was presented in Theorem 4.30.

On a high level, our proof of Theorem 1.22 is based on Christofides algorithm: We show

that a half-cycle point x can be written as a convex combination of connected subgraphs

with certain properties and then we show that vector y ∈ REx , where ye = 9
20 for e ∈ Wx

and ye = 1
4 for e ∈ Hx, can be used for parity correction. Our main new tool is a procedure

to glue tours over critical cuts.

1Their precise conjecture is that instances of TSP that have an optimal solution x ∈ SEP(G) that is also
an optimal fractional 2-matching exhibit the largest integrality gap for SEP(G). The extreme points of the
fractional 2-matching polytope are half-cycle points in which all cycles in the 2-factor are odd [Bal65].
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Definition 6.2. Let x be a half-cycle point. A proper cut U ⊂ V in Gx is called critical if

|δ(U)| = 3 and δ(U) contains exactly one edge e with xe = 1. Moreover, for each pair of

edges in δ(U), their endpoints in S (and in V \ U) are distinct.

Observe that a critical cut in Gx is a proper 3-edge cut that is tight: the x-values of the

three edges crossing the cut sum to 2. Thus, critical cuts are difficult to handle using an

approach based on Christofides algorithm. In particular, using (1
2 − ε)x would be insufficient

for parity correction of a critical cut if it is crossed by an odd number of edges in the

connected subgraph.

Applying our gluing procedure, we can reduce TSP on half-cycle points to a problem

where there are only two types of tight 3-edge cuts. There are the base cases of our induction

proof. The first type of cuts belong to vertex cuts, which we show to be easier to handle.

In particular, the parity of vertex cuts can be addressed with a key tool used by Boyd and

Sebő [BS19] called rainbow v-trees (see Theorem 2.8). We refer to the second type of cuts as

a degenerate tight cut, which is a cut U ⊂ V such that |δ(U)| = 3, |U | > 3 and |V \ U | > 3

and the two half-edges in δ(U) share an endpoint in either U or V \ U . For a degenerate

tight cut U , let δ(U) = {a, b, c}, such that a and b are the half-edges that share an endpoint

v. Let ev be the unique 1-edge incident on v. Observe that {c, ev} forms a 2-edge cut of

G. These cuts are also easier to handle. Using this in combination with a decomposition of

the 1-edges into few induced matchings, which have some additional required properties, we

can prove Theorem 1.22 for the base case. We discuss gluing procedures in more detail in

Section 6.1.1.

Let us look back at Proposition 1.11 in Chapter 1. Recall that a point x ∈ SEP(Gx) if

xe = 1
2 for each e ∈ Ex. Another equivalent version of the half-integer TSP is the uniform

cover problem for TSP when restricted to 2
4 -uniform points.

If we assume that the only 4-edge cuts of Gx are its vertex cuts and the number of

vertices is even, we can answer this problem.

Theorem 6.3. Let x be a 2
4 -uniform point. If Gx has an even number of vertices, and Gx

does not have any proper 4-edge cuts, then (3
2 −

1
42)x ∈ TSP(Gx).

In the case of a 2
4 -uniform point, Theorem 6.3 could serve as the base case if we were

able to glue over proper 4-edge cuts of Gx. However, the main difference here is that the

gluing arguments we presented for half-cycle points can not easily be extended to this case

due to the increased complexity of the distribution of patterns. The proof of Theorem 6.3

can be found in Section 6.3.
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6.1.1 Gluing Tours Over Cuts

The approach of gluing solutions over (often) 3-edge cuts and thereby reducing to an instance

without such cuts has been used previously for TSP (e.g., [CNP85]) and extensively in the

case of two related problems: the 2-edge-connected spanning multigraph problem (2ECM)

and the 2-edge-connected subgraph problem (2ECS). Recall that in 2ECM, we want to find

a minimum cost 2-edge-connected multigraph and in 2ECS, we want to find a minimum cost

2-edge-connected subgraph (i.e., we are not allowed to double edges). Recall that for a graph

G = (V,E), 2ECS(G) denotes the convex hulls of incidence vectors of 2-edge-connected

subgraphs of G. Observe that TSP(G) ⊆ 2ECM(G) and 2ECS(G) ⊆ 2ECM(G).

For example, consider the problem of showing 6
5x ∈ 2ECS(Gx) for a 2

3 -uniform point

x [BL15]. Here, we can assume that Gx is essentially 4-edge-connected due to the observation

made in Section 2.8 Chapter 4. We describe the process again but less formally: Let U ⊂ V
be a subset of vertices such that |δ(U)| = 3 in Gx. We construct graphs, GU and GŪ by

contracting the sets Ū and U , respectively, in Gx to a pseudovertex. Suppose that the

graphs GU and GŪ contain no proper 3-edge cuts and suppose we can write αx restricted to

the edge set of each graph as a convex combination of 2-edge-connected subgraphs of the

respective graph.

Let v be a vertex in Gx. Label the three edges in δ(v) with {a, b, c} with xe = 1 and

xb = xc = 1
2 . For a multigraph F of Gx, a pattern around v in F is the multiset of edges in

δ(v) is used in F . For a generic 2-edge-connected subgraph F of G, the patterns around v

in F comes from

{a, b}, {a, c}, {b, c}, {a, b, c}

since every vertex in Gx including v must have degree at least 2 in F and only one copy of

each edge in allowed in a subgraph of Gx. Now consider the patterns around a pseudovertex

in a 2-edge-connected subgraphs that comes from a convex combination of 2-edge-connected

subgraphs: as illustrated above there are only four possible patterns around a vertex of

degree 3. Moreover, as we are able to argue that each pattern appears the same percentage

of time (in the respective convex combinations) for each pseudovertex. Hence the 2-edge-

connected subgraphs with corresponding patterns can be glued over the 3-edge cut. Thus,

for 2ECS, this gluing procedure is quite straightforward. Gluing has also been used for

2ECM, but here it is necessary to make certain extra assumptions to control the number of

patterns around a vertex, due to the fact that the number of possible patterns around a

vertex in a 2-edge-connected multigraph is not as simple as in a 2-edge-connected subgraph

due to the possible existence of doubled edges. The patterns around vertex v in a generic

2-edge-connected multigraph of Gx is any multiset of δ(v) with at least two elements since

every vertex has degree at least two in a 2-edge-connected multigraph. However, it is well
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known that a 2-edge-connected multigraph (or a tour) only needs to contain at most two

copies of every edge (if a multigraph contains three copies of an edge we can drop two copies

and maintain connectivity as well as parity of vertex degrees). Hence, the pattern around

vertex v in a “minimal” 2-edge-connected multigraph can be any of

{a, a}, {b, b}, {c, c}, {a, b}, {a, c}, {b, c},

{a, a, b}, {a, a, c}, {a, b, b}, {b, b, c}, {a, c, c}, {b, c, c}, {a, b, c},

{a, a, b, c}, {a, b, b, c}, {a, b, c, c},

{a, b, b, c, c}, {a, a, , b, c, c}, {a, a, b, b, c},

{a, a, b, b}, {a, a, c, c}, {b, b, c, c}, {a, a, b, b, c, c}

Carr and Ravi proved that the vector 4
3x ∈ 2ECM(Gx) for a half-integer point x [CR98]. To

control the number of patterns around a vertex in 2-edge-connected multigraph so that they

can use gluing, they require some strong assumptions on the multigraphs in their convex

combinations: for example, no edge e with xe = 1
2 is doubled and some arbitrarily chosen

edge is never used. Notice by just considering the first assumption (that a half edge in never

doubled) they reduce the set of possible patterns around a vertex. For such a multigraph F ,

the set of possible pattern around v in F is

{a, a}, {a, b}, {a, c}, {b, c},

{a, a, b}, {a, a, c}, {a, b, c},

{a, a, b, c}.

In contrast, it appears that no such gluing procedure has been used in approximation

algorithms for TSP. One aspect of the difficulty in applying the gluing procedure above

for TSP is the complexity of set of possible patterns around a vertex. Evidently, the set of

possible pattern around a vertex v in a generic “minimal tour” can be any of

{a, a}, {b, b}, {c, c}, {a, b}, {a, c}, {b, c},

{a, a, b, c}, {a, b, b, c}, {a, b, c, c},

{a, a, b, b}, {a, a, c, c}, {b, b, c, c}, {a, a, b, b, c, c}

The complexity of the set of possible patterns around a vertex in a tour limits the application

of the gluing procedure that we described from 2-edge-connected subgraph. Now think of a

tour F obtained via Christofides’ algorithm (Theorem 6.1). Notice that F = T + J where T

is a connected subgraph obtained from a convex decomposition of x with set of odd degree

vertices O and J is an O-join of Gx that is obtained from a convex decomposition of x
2 .
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Since xa = 1, we have a ∈ T . This implies that any tour obtained via Christofides’ algorithm

contains at least one copy of a. Moreover, if a, b, c ∈ T , then v ∈ O. Hence for any J in the

convex decomposition of x
2 we have |J ∩ δ(v)| ∈ {1, 3}. On the other hand 1

2 · x(δ(v)) = 1.

Therefore, for any O-join J in the convex decomposition of x
2 we have |J ∩ δ(v)| = 1. This

implies that for any tour obtained from applying Christofides’ algorithm on x, we cannot

have the pattern {a, a, b, b, c, c} around v. In summary, the set of possible patterns around a

vertex v in a tour constructed via applying Christofides’ algorithm to x are

{a, a}, {a, b}, {a, c},

{a, a, b, c}, {a, b, b, c}, {a, b, c, c},

{a, a, b, b}, {a, a, c, c}

Henceforth, we denote the multiset

{e1, . . . , e1︸ ︷︷ ︸
t1

, . . . , ek, . . . , ek︸ ︷︷ ︸
tk

}

of {e1, . . . , ek} with {t1e1, . . . , tkek}. Using this notation we can denote the set of possible

patterns around vertex v in a tour obtained from Theorem 6.1 as

{2a}, {a, b}, {a, c},

{2a, b, c}, {a, 2b, c}, {a, b, 2c},

{2a, 2b}, {2a, 2c}.

This observation above is key in reducing the complexity of patterns happening around each

vertex in a tour.

In summary, gluing proofs for 2ECS and 2ECM [CR98, BL15, Leg17] can not be easily

extended to TSP for several reasons: (1) As just discussed, they are used for gluing subgraphs

(no doubled edges), while for multigraphs, there are often too many different patterns around

a vertex. (For TSP, we must allow doubled edges.) (2) They do not necessarily preserve

parity of the vertex degrees. Finally, (3) many of the results for 2ECS and 2ECM based on

gluing do not result in polynomial-time algorithms.

The main technical contribution of this chapter is to show that for a carefully chosen set

of tours (as hinted above), we can design a gluing procedure over critical cuts. In particular,

we can fix a critical cut U ⊂ V in Gx and find a convex combination of tours for GU .

Then we can find a set of tours for GŪ such that the distribution of patterns around the

pseudovertex corresponding to U matches that of the pseudovertex corresponding to Ū in

GU . This is done by separately matching the pattern for the connected subgraphs and for
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the parity correction. In fact, while each vertex may have a different set of patterns around

it, we show that the patterns around each vertex can be encapsulated by a single parameter:

the fraction of times in the convex combination of connected subgraphs that a vertex is a

leaf. There can be some flexibility in this degree distribution for some arbitrarily chosen

vertex, and this is what we exploit to sufficiently control the patterns around a pseudovertex

to enable gluing.

6.2 Saving on 1-edges for Half-Cycle Points

Let x be a half-cycle point. In this section, we present an algorithm for finding a convex

combination of tours of Gx that use the 1-edges of x to a extent less than 3
2 .

Theorem 1.22. Let x be a half-cycle point. Define vector y ∈ REx as follows: ye = 3
2 −

1
20

for e ∈ Wx and ye = 3
4 f or e ∈ Hx. Then y ∈ TSP(Gx), i.e. y can be written as a

convex combination of tours of Gx. Furthermore, this convex combination can be found in

polynomial time in the size of x.

6.2.1 Proof of Theorem 1.22: Gluing Tours Over 3-edge Cuts

Let x be a half-cycle point and G = (V,E) be the support of x. For a vertex u ∈ V , denote

by eu the unique 1-edge in x that is incident on u. For a vertex u ∈ V , let γ(u) be the two

vertices adjacent to u via a half-edge. Let δ(u) = {eu, f, g} where f and g are the half-edges

incident on u. Denote by Pu the set of possible pattern around a vertex u in a tour that

contains at least one copy of the 1-edge eu and u has degree at most 4 (see Figure 6.1)

Pu = {{2eu}, {eu, f}, {eu, g}, {2eu, 2f}, {2eu, 2g}, {2eu, f, g}, {eu, 2f, g}, {eu, f, 2g}}.

We make sure that a tour that we construct intersects every vertex u ∈ V , with a pattern in

Pu. For example, let δ(u) = {eu, f, g}. Generally a pattern {f, g} can be the intersection

of a generic tour with δ(u). However in our construction this pattern can never be the

intersection of a tour with δ(u) as we always include at least one copy of eu in the tour. In

addition, we show that the fraction of tours that intersect δ(u) with each of the patterns in

Pu can be controlled. Let P = ∪u∈V Pu. For 0 ≤ α, ρ ≤ 1, define the function ζα,ρ : P→ [0, 1]
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as follows.

ζα,ρ(pu) =



2−α
8 for pu = {2eu, f, g};

ρ
2 for pu = {2eu};
α+4ρ

16 for pu ∈ {{eu, 2f, g}, {eu, f, 2g}};
4+α−4ρ

16 for pu ∈ {{eu, f}, {eu, g}};
2−α−4ρ

16 for pu ∈ {{2eu, 2f}, {2eu, 2g}},

(6.1)

for pu in P. We will later show that for each vertex u ∈ V there exists ρ, such that the

fraction of tours that intersect δ(u) with pattern pu ∈ Pu is exactly ζα,ρ(pu).

u
eu

f

g
{2eu}

u
eu

f

g
{eu, f}

u
eu

f

g
{eu, g}

u
eu

f

g
{2eu, 2g}

u
eu

f

g
{2eu, 2f}

u
eu

f

g
{2eu, f, g}

u
eu

f

g
{eu, f, 2g}

u
eu

f

g
{eu, 2f, g}

Figure 6.1: The different patterns in Pu. Solid edges are in the tour and dashed edges are
not used in the tour.

We prove Theorem 1.22 with an inductive (gluing) approach. To be able to have more

inductive power we will prove something stronger.

Proposition 6.4. Let x be a half-cycle point such that Gx = (V,Ex) and u ∈ V . Define

y ∈ RE as ye = 3
2 −

1
20 for e ∈ Wx and ye = 3

4 if e ∈ Hx. Then there is a set of tours of

Gx denoted by F and a probability distribution φ = {φF }F∈F such that {φ,F} is a convex

combination for y. In addition, for each F ∈ F , the multiset of edges F \ {δ(u)} induces

a connected multigraph on V \ {u}. Moreover, this convex combination has the following

property.

For each vertex u ∈ V , there is a some constant ηu where 0 ≤ ηu ≤ 2
5 and∑

F∈F :F∩δ(u)=pu

φF = ζ 1
5
,ηu

(pu) for pu ∈ Pu.
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Observe that Proposition 6.4 implies Theorem 1.22. One should think of the vertex u in

the statement above to be a pseudovertex. The additional property stated above enables

us to perform gluing over the critical cuts of a half-cycle point. Hence, our inductive proof

is on the number of critical cuts in a half-cycle point. Thus, the base case is the set of all

half-cycle points without critical cuts where we prove the following.

Lemma 6.5. Let x be a half-cycle point such that Gx = (V,Ex) contains no critical cuts.

Fix any vertex in v ∈ V and Λ with 0 ≤ Λ ≤ 2
5 . Define y ∈ RE as ye = 3

2 −
1
20 for e ∈Wx

and ye = 3
4 if e ∈ Hx. Then there is a set of tours of Gx denoted by F and a probability

distribution φ = {φF }F∈F such that {φ,F} is a convex combination for y. Moreover, this

convex combination has the following properties.

(i) For each vertex u ∈ V , there is a some constant ηu where 0 ≤ ηu ≤ 2
5 and∑

F∈F :F∩δ(u)=pu

φF = ζ 1
5
,ηu

(pu) for pu ∈ Pu.

(ii) ηv = Λ.

(iii) F \ δF (v) induces a connected multigraph on V \ {v} for each F ∈ F .

Notice that Lemma 6.5 implies Proposition 6.4 for half-cycle points without critical cuts.

We prove Lemma 6.5 in the next section. In the remainder of this section, we show how

Lemma 6.5 implies Proposition 6.4.

The first step in the proof of Proposition 6.4 is to ensure that gluing the tours over

critical cuts does not result in disconnected Eulerian multigraph. For a graph G = (V,E)

and nonempty subset of vertices U ⊂ V , contract the component induced on Ū = V \ U
into a vertex and call this vertex vŪ . We define the graph GU to be the graph induced on

vertex set U ∪ vŪ . The graph GŪ is analogously defined on the vertex set Ū ∪ vU .

Lemma 6.6. Consider a graph G = (V,E) and nonempty U ⊂ V such that δ(U) is a

minimum cardinality cut in G = (V,E). Let FU be a tour in GU and let FŪ be a tour

in GŪ such that χFUe = χ
FŪ
e for e ∈ δ(U). Moreover, assume that FU \ δ(vŪ ) induces a

connected spanning multigraph on U and FŪ \ δ(u) induces a connected spanning multigraph

on Ū \{u}. Then the multiset of edges F defined as χFe = χFUe for e ∈ E(GU ) and χFe = χ
FŪ
e

for e ∈ E(GŪ ) is a tour of G and F \ {δ(u)} induces a connected spanning multigraph on

V \ {u}.

Proof. It is clear that F induces an Eulerian spanning multigraph on G, but we need to

ensure that F is connected. For example, the tour induced on FŪ \ δ(vU ) might not be

connected. However, since the subgraph of FU induced on the vertex set U is connected, the

tour F is connected: each vertex in Ū is connected to some vertex in U .

104



Proof of Proposition 6.4. If Gx does not contain a critical cut, we apply Lemma 6.5. Other-

wise, set G := Gx and conduct the following procedure: Find a cut U1 ⊂ V (G) such that

G1 = GU1 contains no critical cuts. This can be done in polynomial time (See [BIT13]).

Then set G := GŪ and find a cut U2 ∈ V (G) such that G2 = GU2 contains no critical cuts,

etc.

At the end of this procedure, we have a series of graphs {G1, . . . , Gk} such that for each

j ∈ [k], Gj is the support graph of a half-cycle point and contains no critical cuts. Therefore,

each Gj is a base case and we can find a convex combination of tours applying the procedure

described in Section 6.2.2.

We glue the tours together in reverse order according to their index beginning with Gk

and Gk−1. The graph Gk−1 corresponds to GU for some vertex set U of G, where G is the

graph at the beginning of iteration k − 1 of the above procedure. Note that GŪ equals Gk

and it has no critical cuts. Therefore, after invoking Lemma 6.5 to find a convex combination

of tours for GŪ , we invoke Lemma 6.5 on GU with v = vŪ and Λ = ηvU based on the convex

combination of tours returned for GŪ . Now in the tours returned, the patterns on vertex vŪ
match those of vU in the convex combination of tours previously found for GŪ .

After having glued together the tours from Gk−1 and Gk in this manner, we glue the

resulting tours with those in Gk−2, etc., until we have found a convex combination of tours

for Gx.

The remainder of this section is dedicated to the proof of Lemma 6.5. First we show how

to find the convex combination of connected subgraphs, that can be augmented into tours

via cheaper O-joins. Then we describe how in the base case of the gluing procedure we can

save on 1-edges. Here, we establish the next step that is gluing on critical cuts. A missing

part of the proof of Theorem 1.22 is finding the partition of 1-edges into a few induced

matchings, which we prove in Section 6.2.5.

6.2.2 Proof of Lemma 6.5: Finding Tours in the Base Case

In this section we present the proof of Lemma 6.5. In fact, we prove a slightly more general

statement that might be useful for further research in this direction.

For a graph G = (V,E) we call M an induced matching of G if M is a vertex induced

subgraph of G and M is a matching, i.e. there is no edge in G sharing an endpoint with two

different edges in M .

We show that the 1-edges of a half-cycle point x can be partitioned into five induced

matching in Gx with additional technical properties. For each induced matching M , we

find a convex combination of connected subgraphs T where for all 1-edges e in M , every

tight cut of x that contains e is crossed an even number of times in every T ∈ T . Hence, for
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each 1-edge e we can reduce usage of e in the parity correction from 1
2 to 1

4 . Therefore, each

1-edge saves 1
4 exactly 1

5 of the times. This yields the saving of 1
20 on the 1-edges as stated

in Lemma 6.5.

Let x be a half-cycle point such that Gx = (V,Ex) has no critical cuts. Let v be a fixed

vertex in V and let γ(v) = {w1, w2}. Let {M1, . . . ,Mh} be a partition of Wx into induced

matchings such that |Mi ∩ {ev, ew1 , ew2}| ≤ 1 for all i ∈ [h], ev ∈ M1, each 3-edge cut of

Gx contains at most one edge from each Mi, and each 2-edge cut of Gx contains an even

number of edges from each Mi. Let α = 1
h and Λ be some constant where 0 ≤ Λ ≤ 1−α

2 . We

will later set α to 1
5 because of the following lemma.

Lemma 6.7. Let x be a half-cycle point, and assume Gx = (V,Ex) does not have any

critical cuts. Let r be a vertex in V and let γ(r) = {w1, w2}. The set of 1-edges in Gx,

Wx, can be partitioned into five induced matchings {M1, . . . ,M5} such that for i ∈ [5], the

following properties hold.

(i) |Mi ∩ {er, ew1 , ew2}| ≤ 1,

(ii) For U ⊆ V such that |δ(U)| = 3, |δ(S) ∩Mi| ≤ 1.

(iii) For U ⊆ V such that |δ(U)| = 2, |δ(U) ∩Mi| is even.

The properties that we required for the edges in M ensure that we can save on these

edges when augmenting connected subgraphs of Gx into tours. We present the proof of

Lemma 6.7 in Section 6.2.5.

The proof of Lemma 6.5 consists of two main parts: first we need to show there are

connected subgraphs of Gx that satisfy certain properties.

Definition 6.8. Let x be a half-cycle point and let v be a vertex of Gx. Suppose M ⊂Wx is a

subset of 1-edges of Gx. Let 0 ≤ Λ ≤ 1
2 . Let T be a set of spanning connected subgraphs of Gx

and let λ = {λT }T∈T be a probability distribution such that {λ, T } is a convex combination

for x. Then we say P (v,M,Λ) holds for the convex combination {λ, T } if it has the following

properties.

1.
∑

T∈T :|δT (v)|=1 λT =
∑

T∈T :|δT (v)|=3 λT = Λ and
∑

T∈T :|δT (v)|=2 λT = 1− 2Λ.

2. For each edge st ∈M , |δT (s)| = |δT (t)| = 2 for all T ∈ T .

3. T \ δT (v) induces a connected subgraph on V \ {v}.

Let us describe why the properties described above are useful in our construction. The

first condition of this property is going to help us perform the gluing procedure. This

condition allows us to manipulate the convex combination of connected subgraphs to have
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the desirable sets of patterns on the cut around the pseudovertex. The second condition

ensures that no 1-edge of M is part of a tight cut that is crossed an odd number of times in

a connected subgraph T ∈ T . Lastly, the third condition in this property guarantees that

we do not lose connectivity of the tours after gluing them over critical cuts.

We will prove the next two lemma later in Section 6.2.3.

Lemma 6.9. Let x be a half-cycle point. Suppose M ⊂Wx forms an induced matching in

Gx and edge ev ∈ M . Then there is a set of spanning connected subgraphs T of Gx and

a probability distribution λ = {λT }T∈T such that {λ, T } is a convex combination for x for

which P (v,M, 0) holds.

Lemma 6.10. Let x be a half-cycle point where Gx = (V,Ex) is the support of x. Consider

v ∈ V with γ(v) = {w1, w2}. Let Λ be any constant such that 0 ≤ Λ ≤ 1
2 . Suppose M ⊂Wx

forms an induced matching in Gx, ev /∈M and |M ∩ {ew1 , ew2}| ≤ 1. Then there is a set of

spanning connected subgraphs T of Gx and a probability distribution λ = {λT }T∈T such that

{λ, T } is a convex combination for x for which P (v,M,Λ) holds.

For i = 1, let T1 be a set of connected subgraphs of Gx and let {θ, T1} be a convex

combination for x for which P (v,M1, 0) holds (by Lemma 6.9). For i ∈ {2, . . . , h}, let Ti
be a set of connected subgraphs of Gx and let {θ, Ti} be a convex combination for x for

which P (v,Mi,
Λ

1−α) holds (by Lemma 6.10). Notice that Λ
1−α ≤

1
2 since Λ ≤ 1−α

2 . Let

T = {T ∈ Ti : for i ∈ [h]}.
For each T ∈ T let OT be the set of odd degree vertices of T . In the second part of the

proof we show that we can find OT -joins for T ∈ T . The following observation shows that a

convex combination of O-join in a cubic graph, has the property that for each vertex v, the

pattern of the edges used in the convex combination uniquely depends on whether v ∈ O or

not.

Observation 6.11. Let G = (V,E) be a cubic graph, and let O ⊆ V be a subset of vertices

such that |O| is even. Let z ∈ O - JOIN(G), and z(δ(u)) ≤ 1 for all u ∈ V . Then there

exists a set of O-joins of G, namely J , and a probability distribution ψ = {ψJ}J∈J such

that {ψ,J } is a convex combination for z. Moreover, for each vertex v ∈ V , the following

properties hold.

1. If u ∈ O, then we must have z(δ(u)) = 1. Also, for each J ∈ J we have |J ∩ δ(u)| ≥ 1.

Therefore, |J ∩ δ(u)| = 1 for each J ∈ J . So,∑
J∈J :J∩δ(u)=h

ψJ = zh for h ∈ δ(u).
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2. If u /∈ O and δ(u) = {e, f, g}, then we have the following (four) cases. (Notice that

sum of the right hand sides is exactly 1.)

∑
J∈J :J∩δ(u)=∅

ψJ = 1− z(δ(u))

2
,

∑
J∈J :J∩δ(u)={h,h′}

ψJ =
z(δ(u))

2
− zh′′ for any distinct h, h′, h′′ ∈ δ(u).

We can write x as a convex combination of the connected subgraphs in T , by weighting

each set Ti by α. In particular, we have x = α
∑h

i=1

∑
T∈Ti θTχ

T . For each T ∈ T , let

σT = α · θT . Then {σ,T } is a convex combination for x. From Definition 6.8 and Lemmas

6.9 and 6.10, we observe the following.

Claim 17. For each T ∈ T , T \ δ(v) induces a connected, spanning connected on V \ {v}.

Now, we need to show that each connected subgraphs T ∈ T have a “cheap” convex

combination OT -joins.

Lemma 6.12. Let x be a half-cycle point and assume that Gx = (V,Ex) has no critical

cuts. Let M ⊂Wx be a subset of 1-edges of Gx such that each 3-edge cut in Gx contains at

most one edge from M . Let O ⊆ V be a subset of vertices such that |O| is even and for all

e = st ∈M , neither s nor t is in O. Also suppose for any set U ⊆ V such that |δ(U)| = 2,

both |U ∩ O| and |δ(U) ∩M | are even. Define vector z as follows: ze = 1
2 if e ∈ Wx and

e /∈M , and ze = 1
4 otherwise. Then vector z ∈ O - JOIN(Gx).

For each i ∈ [h], define zie = 1
2 if e ∈Wx \Mi and zie = 1

4 otherwise. For each T ∈ Ti, let

OT ⊆ V be the set of odd-degree vertices of T . By construction, we have V (Mi) ∩OT = ∅.
By Lemma 6.12, we have zi ∈ OT - JOIN(G), so there exists a set of OT -joins JT and a

probability distribution ψ = {ψJ}J∈JT such that {ψ,JT } is a convex combination for zi.

This implies that x+ zi can be written as a convex combination of tours of Gx. We denote

this set of tours by Fi and we let F = ∪i∈[h]Fi. We claim that
∑h

i=1 α(x + zi) can be

written as a convex combination of tours of Gx in F using the probability distribution

φ = {φF }F∈F , constructed as follows: For a tour F that is the union of T ∈ T and J ∈ JT ,

set φF = σT · ψJ .

Claim 18. Let x be a half-cycle point such that Gx = (V,Ex) contains no critical cuts.

Define vector y ∈ RE as ye = 3
2 −

α
4 for e ∈ Wx and ye = 3

4 for e ∈ Hx. Then {φ,F} is a

convex combination for y.

Proof. We need to show that y =
∑h

i=1 α(x+ zi). First, let e be a 1-edge of Gx and Mj be

the induced matching that contains e. Then, xe = 1, zie = 1
2 for i ∈ [h] \ {j} and zje = 1

4 .
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Hence,
h∑
i=1

α(xe + zie) =

h∑
`=1

α · 3

2
− α · 1

4
=

3

2
− α

4
.

For a half-edge e of Gx, we have xe = 1
2 and zie = 1

4 for i ∈ [h], so
∑h

i=1 α(xe + zie) = 3
4 . ♦

Now we prove some additional useful properties of the convex combination {φ,F}. For

0 ≤ α, ρ ≤ 1, Recall ζα,ρ : P→ [0, 1] is defined as follows.

ζα,ρ(pu) =



2−α
8 for pu = {2eu, f, g};

ρ
2 for pu = {2eu};
α+4ρ

16 for pu ∈ {{eu, 2f, g}, {eu, f, 2g}};
4+α−4ρ

16 for pu ∈ {{eu, f}, {eu, g}};
2−α−4ρ

16 for pu ∈ {{2eu, 2f}, {2eu, 2g}}.

(6.2)

Claim 19. The convex combination {φ,F}, has the following properties.

(i) For each vertex u ∈ V there is a some constant ηu where 0 ≤ ηu ≤ 1−α
2 and∑

F∈F :F∩δ(u)=pu

φF = ζα,ηu(pu) for pu ∈ Pu.

(ii) ηv = Λ.

Proof. We claim that for the following choice of ηu for u ∈ V statements (i) and (ii) hold.

ηu =
∑

T∈T :|T∩δ(u)|=1

σT .

In words, ηu is the fraction of time a vertex u is degree one is the previously described convex

combination of x corresponding to {σ,T }. Since σT = α · θT , notice that for a vertex u, we

have the following upper bound on ηu.

ηu =
h∑
i=1

α
∑

T∈Ti:|T∩δ(u)|=1

θT ≤
∑

i:eu /∈Mi

α

2
= (h− 1)

α

2
=

1− α
2

.

First, we show that (ii) holds. Observe that by construction (since ev ∈M1), we have

|T ∩ δ(v)| = 2 for T ∈ T1. For i ∈ {2, . . . , h}, we have
∑

T∈Ti:|T∩δ(v)|=1 θT = Λ
1−α . Hence,

ηv = (1− α) · Λ
1−α = Λ.
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Now we prove (i). Consider vertex u ∈ V , with δ(u) = {eu, f, g}. Suppose that eu ∈Mj

for some j ∈ [h]. We show that if we choose a random tour F ∈ F with probability φF ,

then the probability that F ∩ δ(u) = pu for some pu ∈ Pu is exactly ζα,ηu(pu). Recall that F

is the union of two subgraphs: the connected subgraph T ∈ T and the OT -join J ∈ JT (for

parity correction).

We have to consider the following cases: Case 1. |T ∩ δ(u)| = 1, Case 2. |T ∩ δ(u)| = 3,

and Case 3. |T ∩ δ(u)| = 2.

Case 1: First, consider the case where |T ∩ δ(u)| = 1. Notice that this is equivalent to the

event T ∩ δ(u) = eu and observe that Pr[T ∩ δ(u) = eu] = ηu. This implies that T ∈ Ti such

that i 6= j (otherwise |T ∩ δ(u)| = 2). By Observation 6.11, we have

Pr[J ∩ δ(u) = eu | T ∩ δ(u) = eu] =
1

2
,

Pr[J ∩ δ(u) = f | T ∩ δ(u) = eu] = Pr[J ∩ δ(u) = g | T ∩ δ(u) = eu] =
1

4
.

Equivalently,

Pr[F ∩ δ(u) = {2eu} | T ∩ δ(u) = eu] =
1

2
,

Pr[F ∩ δ(u) = {eu, f} | T ∩ δ(u) = eu] = Pr[T ∩ δ(u) = {eu, g} | T ∩ δ(u) = eu] =
1

4
.

Case 2: This case is similar to Case 1. Observe that |T ∩ δ(u)| = 3 is equivalent to the

event T ∩ δ(u) = δ(u). We have Pr[T ∩ δ(u) = δ(u)] = ηu. In this case we have

Pr[F ∩ δ(u) = {2eu, f, g} | T ∩ δ(u) = δ(u)] =
1

2
,

Pr[F ∩ δ(u) = {ev, 2f, g} | T ∩ δ(u) = δ(u)] = Pr[F ∩ δ(u) = {ev, f, 2g} | T ∩ δ(u) = δ(u)] =
1

4
.

Case 3: Consider the event |T ∩ δ(u)| = 2. Notice that Pr[|T ∩ δ(u)| = 2] = 1− 2ηu. We

have

Pr[T ∩ δ(u) = {eu, f} | T ∈ Tj ] = Pr[T ∩ δ(u) = {eu, g} | T ∈ Tj ] =
1

2

and

Pr[T ∩ δ(u) = {eu, f} | T /∈ Tj ] = Pr[T ∩ δ(u) = {eu, g} | T /∈ Tj ] =
1− α− 2ηu

2(1− α)
.
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Recall that eu ∈Mj and zjeu = 1
4 . Applying Observation 6.11 we obtain

Pr[F ∩ δ(u) = {eu, f} | T ∩ δ(u) = {eu, f} and T ∈ Tj ] =
5

8
,

Pr[F ∩ δ(u) = {2eu, 2f} | T ∩ δ(u) = {eu, f} and T ∈ Tj ] =
1

8
,

Pr[F ∩ δ(u) = {2eu, f, g} | T ∩ δ(u) = {eu, f} and T ∈ Tj ] =
1

8
,

Pr[F ∩ δ(u) = {eu, 2f, g} | T ∩ δ(u) = {eu, f} and T ∈ Tj ] =
1

8
.

Switching f with g above we get the same result. Now, if T ∈ Ti for i 6= j, we have zieu = 1
2 .

In this case, we obtain

Pr[F ∩ δ(u) = {eu, f} | T ∩ δ(u) = {eu, f} and T /∈ Tj ] =
1

2
,

Pr[F ∩ δ(u) = {2eu, 2f} | T ∩ δ(u) = {eu, f} and T /∈ Tj ] =
1

4
,

Pr[F ∩ δ(u) = {2eu, f, g} | T ∩ δ(u) = {eu, f} and T /∈ Tj ] =
1

4
.

We obtain the same result if we swap f and g above. This concludes the case analysis.

Denote by Fpu the event that F ∩ δ(u) = pu for pu ∈ Pu.

Pr[Fpu ] = Pr[Fpu | T ∩ δ(u) = eu] · Pr[T ∩ δ(u) = eu]

+ Pr[Fpu | T ∩ δ(u) = {eu, f}, T ∈ Tj ] · Pr[T ∩ δ(u) = {eu, f}|T ∈ Tj ] · Pr[T ∈ Tj ]

+ Pr[Fpu | T ∩ δ(u) = {eu, f}, T /∈ Tj ] · Pr[T ∩ δ(u) = {eu, f}|T /∈ Tj ] · Pr[T /∈ Tj ]

+ Pr[Fpu | T ∩ δ(u) = {eu, g}, T ∈ Tj ] · Pr[T ∩ δ(u) = {eu, g}|T ∈ Tj ] · Pr[T ∈ Ti]

+ Pr[Fpu | T ∩ δ(u) = {eu, g}, T /∈ Tj ] · Pr[T ∩ δ(u) = {eu, g}|T /∈ Tj ] · Pr[T /∈ Tj ]

+ Pr[Fpu | T ∩ δ(u) = {eu, f, g}] · Pr[T ∩ δ(u) = {eu, f, g}].

We can conclude that

Pr[F{2eu}] =
ηu
2
,

Pr[F{eu,f}] = Pr[F{eu,g}] =
1

4
· ηu +

5

8
· 1

2
· α+

1

2
· 1− α− 2ηu

2(1− α)
· (1− α) =

4 + α− 4ηu
16

,

Pr[F{2eu,2f}] = Pr[F{2eu,2g}] =
1

8
· 1

2
· α+

1

4
· 1− α− 2ηu

2(1− α)
· (1− α) =

2− α− 4ηu
16

.

Pr[F{2eu,f,g}] = 2 · 1

8
· 1

2
· α+ 2 · 1

4
· 1− α− 2ηu

2(1− α)
· (1− α) +

1

2
· ηu =

2− α
8

,

Pr[F{eu,2f,g}] = Pr[F{eu,f,2g}] =
1

8
· 1

2
· α+

1

4
· ηu =

α+ 4ηu
16

.
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So for all pu ∈ Pu we have Pr[Fpu ] = ζα,ηu(pu) as required. ♦

Claims 17, 18 and 19 yield Lemma 6.5. It remains to prove Lemmas 6.9, 6.10 and 6.12.

6.2.3 Proof of Lemmas 6.9 and 6.10: Construction of Connected Sub-

graphs

In this section, we show how to construct a convex combination of connected subgraphs for

a half-cycle point with property P described in Definition 5.5.

Lemma 6.9. Let x be a half-cycle point. Suppose M ⊂Wx forms an induced matching in

Gx and edge ev ∈ M . Then there is a set of spanning connected subgraphs T of Gx and

a probability distribution λ = {λT }T∈T such that {λ, T } is a convex combination for x for

which P (v,M, 0) holds.

Proof. For each st ∈ M , pair the half-edges incident on s and pair those incident on t to

obtain disjoint subsets of edges P. Decompose x into a convex combination of P-rainbow

v-trees T (i.e., x =
∑

T∈T λTχ
T ) via Theorem 2.8. This is the desired convex combination

since for all T ∈ T , we have |δT (v)| = 2 and |δT (u)| = 2 for all endpoints u of edges in M .

Thus, the first and second conditions are satisfied. The third condition holds by definition

of v-trees.

Lemma 6.10. Let x be a half-cycle point where Gx = (V,Ex) is the support of x. Consider

v ∈ V with γ(v) = {w1, w2}. Let Λ be any constant such that 0 ≤ Λ ≤ 1
2 . Suppose M ⊂Wx

forms an induced matching in Gx, ev /∈M and |M ∩ {ew1 , ew2}| ≤ 1. Then there is a set of

spanning connected subgraphs T of Gx and a probability distribution λ = {λT }T∈T such that

{λ, T } is a convex combination for x for which P (v,M,Λ) holds.

Proof. As in the proof of Lemma 6.9, for each st ∈M , pair the half-edges incident on s and

pair those incident on t to obtain a collection of disjoint subsets of edges P . Apply Theorem

2.8 to obtain {λ, T } which is a convex combination for x, where T is a set of P-rainbow

v-trees (i.e., x =
∑

T∈T λTχ
T ). Notice that this convex combination clearly satisfies the

second requirement in Definition 6.8.

Now let δ(v) = {ev, f, g}, where w1 and w2 are the other endpoints of f and g, respectively.

Without loss of generality, assume ew1 /∈M . Since x =
∑

T∈T λTχ
T and xev = 1, we have

ev ∈ T for T ∈ T . In addition, we have |δT (v)| = 2 for all T ∈ T by the definition of v-trees.

Hence,
∑

T∈T :f∈T,g /∈T λT =
∑

T∈T :f /∈T,g∈T λT = xf = 1
2 . Without loss of generality, assume

f ∈ T and g /∈ T for T ∈ Tf , and f /∈ T and g ∈ T for T ∈ Tg, where Tf ∪ Tg = T and

Tf ∩ Tg = ∅.
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We can also assume that there are subsets T 1
f ⊆ Tf and T 1

g ⊆ Tg such that
∑

T∈T 1
f
λT = Λ

and
∑

T∈T 1
g
λT = Λ, since Λ ≤ 1

2 . For T ∈ T 1
f , replace T with T − f . Similarly, for T ∈ T 1

g ,

replace T with T + f . For all T ∈ T \ (T 1
f ∪ T 1

g ), keep T as is. Observe that T \ δT (v)

still induces a connected subgraph on V \ {v} since we did not remove any edge in T \ δ(v)

from the v-tree T . We want to show that the new convex combination {λ, T } is the desired

convex combination for x. Notice that∑
T∈T

λTχ
T
f =

∑
T∈T 1

f

λTχ
T
f +

∑
T∈Tf\T 1

f

λTχ
T
f +

∑
T∈T 1

g

λTχ
T
f +

∑
T∈Tg\T 1

g

λTχ
T
f

= 0 + (
1

2
− Λ) + Λ + 0 = xf .

So x =
∑

T∈T λTχ
T . Also, T ∈ T is a connected subgraph of Gx since each T ∈ T 1

f is

obtained by removing an edge incident on v, which does not disconnect it. Finally, for each

vertex s with es ∈ M , we have |δT (s)| = 2 for all T ∈ T . To observe this, notice that the

initial convex combination satisfies this property for vertex s (since the convex combination

is obtained via Theorem 2.8). In the transformation of the convex combination we only

change edges incident on w1 and w2, so if s 6= w1, w2 the property clearly still holds after the

transformation. If s = w1 or w2, we only remove or add an edge incident on s if es 6= M .

6.2.4 Proof of Lemma 6.12: A Tool for Parity Correction

Let G = (V,E) be a graph and O ⊆ V where |O| is even. Recall the polyhedral characteri-

zation of the convex hull of incidence vectors of O-joins of G from Section 2.3 Chapter 3.

We repeat the formulation here for ease of reading.

O - JOIN(G) = {x ∈ [0, 1]E : x(δ(U) \A)− x(A) ≥ 1− |A| (6.3)

for U ⊆ V,A ⊆ δ(U), |U ∩O|+ |A| odd}.

We want to use O-joins as our tools for parity correction. Recall from our construction of

connected subgraphs that the 1-edges in M are not in any tight cut that is crossed an odd

number of times. This allows us to “save” on such edges in parity correction.

Lemma 6.12. Let x be a half-cycle point and assume that Gx = (V,Ex) has no critical

cuts. Let M ⊂Wx be a subset of 1-edges of Gx such that each 3-edge cut in Gx contains at

most one edge from M . Let O ⊆ V be a subset of vertices such that |O| is even and for all

e = st ∈M , neither s nor t is in O. Also suppose for any set U ⊆ V such that |δ(U)| = 2,

both |U ∩ O| and |δ(U) ∩M | are even. Define vector z as follows: ze = 1
2 if e ∈ Wx and

e /∈M , and ze = 1
4 otherwise. Then vector z ∈ O - JOIN(Gx).
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Proof. By definition, z ∈ [0, 1]Ex . Now we will show that z satisfies the constraint (6.3). We

consider two main cases:

Case 1: |U | = 1 or |V \ U | = 1,

Case 2: |U | ≥ 2 or |V \ U | ≥ 2.

Case 1: In this case, we can assume without loss of generality that |U | = 1, then U = {u}
for some u ∈ V . Let δ(u) = {eu, f, g}. We consider two cases. Case 1i. eu /∈M and Case

1ii. eu ∈M .

Case 1i: If eu /∈ M , then zeu = 1
2 . So z(δ(u)) = 1. If u ∈ O, then we need to

consider |U | even. If U = ∅, then z(δ(u) \ U) − z(U) = z(δ(u)) = 1 = 1 − |U |.
If |U | = 2, we have z(U) ≤ 3

4 . Hence z(δ(u) \ U) − z(U) = z(δ(u))) − 2z(U) ≥
1 − 3

2 ≥ −1 = 1 − |U |. If u /∈ O, then we consider |U | odd. If |U | = 1, then

z(δ(u) \ U)− z(U) = z(δ(u)))− 2z(U) ≥ 1− 1 ≥ 0 = 1− |U |. Finally, if |U | = 3, then

z(U) = 1, and z(δ(u) \ U)− z(U) = −1 ≥ −2 = 1− |U |.

Case 1ii: If eu ∈M , we have zeu = 1
4 and u /∈ O. So we need to consider |U | odd. If

|U | = 1, then we have x(δ(u) \ U)− x(U) ≥ 1
2 −

1
4 = 1

4 ≥ 0 = 1− |U |. If |U | = 3, then

z(δ(u) \ U)− z(U) = −3
4 ≥ −2 ≥ 0 = 1− |U |.

Case 2: Now assume |U | ≥ 2 and |V \ U | ≥ 2. In this case, we consider the following

cases: Case 2i. |δ(S)| ≥ 4, Case 2ii. |δ(S)| = 3 and Case 2iii. |δ(S)| = 2.

Case 2i: In this case z(δ(U)) ≥ 1. Hence, z(δ(U) \A)− z(A) ≥ 1− |A|2 ≥ 1− |A|.

Case 2ii: In this case, since Gx does not contain any critical cuts, there are two

possibilities: (a) δ(U) ⊆ Wx, or (b) U is a degenerate tight cut. In case (a), since

|M ∩ δ(U)| ≤ 1 and δ(U) ⊆ Wx, we have z(δ(U)) ≥ 5
4 . Hence, z(δ(U)) − 2z(A) ≥

5
4 − |A| ≥ 1− |A|. For case (b), suppose δ(U) = {e, f, g} and f, g are half-edges that

share endpoint u and without loss of generality, suppose u ∈ U . Observe that edge

e and eu form a 2-edge cut in Gx. Therefore, by assumption, either e, eu ∈ M or

e, eu /∈ M . In the former case, we have u /∈ O and z(e) = z(f) = z(g) = 1
4 . When

|A| = 1, (6.3) is satisfied, as 1
4 ≥ 0. When |A| = 3, we have −3

4 ≥ −2. The latter case

is when e, eu /∈M . Here, z(e) = 1
2 and z(f) = z(g) = 1

4 . Observe that |U ∩O| can be

either even or odd. When it is even and |A| = 1, the left-hand side of (6.3) is always

nonnegative and right-hand size is zero. When |U | = 3, we have −1 ≥ −2. When

|U ∩O| is odd, then since z(δ(U)) = 1, we satisfy (6.3) when |A| = 0. When |A| = 2,

we have z(δ(U))− 2z(A) ≥ 1− 3
2 ≥ −1. Thus, in all instances we conclude that (6.3)

is satisfied.
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Case 2iii: If |δ(U)| = 2, then |A| is odd as |U ∩ O| is even by assumption. Hence,

|A| = 1. Also by assumption |δ(U) ∩M | is even. Observe that in this case, we have

δ(U) ⊂Wx. This implies that z(δ(U))− 2z(A) = 0 = 1− |A|.

6.2.5 Proof of Lemma 6.7: Partitioning 1-edges into Induced Matchings

The goal of this section is to prove the following lemma.

Lemma 6.7. Let x be a half-cycle point, and assume Gx = (V,Ex) does not have any

critical cuts. Let r be a vertex in V and let γ(r) = {w1, w2}. The set of 1-edges in Gx,

Wx, can be partitioned into five induced matchings {M1, . . . ,M5} such that for i ∈ [5], the

following properties hold.

(i) |Mi ∩ {er, ew1 , ew2}| ≤ 1,

(ii) For U ⊆ V such that |δ(U)| = 3, |δ(S) ∩Mi| ≤ 1.

(iii) For U ⊆ V such that |δ(U)| = 2, |δ(U) ∩Mi| is even.

We say δ(U) is a triangular 3-cut if |U | = 3 or |V \U | = 3, and |δ(U)| = 3. A bad 3-edge

cut is a proper 3-edge cut that is not triangular. We construct the desired partition of Wx

into induced matchings by gluing over the bad cuts of Gx and perform induction on the

number of bad 3-edge cuts. We prove Lemma 6.7 using a two-phase induction. Claim 20 is

the base case and Claims 21 and 22 are the first and second inductive steps.

Claim 20. Suppose Gx is 3-edge-connected and contains no bad 3-edge cuts. Then Lemma

6.7 holds.

Proof. In Gx, contract every edge in Wx. We get a connected 4-regular graph H = (Wx, Hx).

An independent set in H corresponds to a set of edges in Wx that forms an induced matching

in Gx. We consider two cases. If H is the complete graph on five vertices, then partition

the vertex set into five independent sets, which corresponds to five induced matchings in

Gx. Notice that the condition (i) from Lemma 6.7 is satisfied since each induced matching

contains one edge.

If H is not the complete graph on five vertices, by Brook’s Theorem (see Theorem

8.4 in [BM08]) we can partition the vertices of H into four independent sets where each

independent set corresponds to an induced matching {M1, . . . ,M4} in Gx and these four

induced matchings partition Wx. If |Mi ∩ {er, ew1 , ew2}| ≤ 1 for i ∈ [4], then we are done.

Otherwise, assume without loss of generality that {ew1 , ew2} ∈M4. Then let M ′4 = M4\{ew}.
The desired partition is {M1,M2,M3,M

′
4, {ew}}. Thus, condition (i) is satisfied.
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Now we prove condition (ii). First, consider a vertex u ∈ V and the cut δ(u) in Gx.

Clearly |δ(u)∩Mi| ≤ |δ(u)∩Wx| ≤ 1. For a triangular 3-cut, δ(U) = {e1, e2, e3}, we cannot

have |δ(U) ∩ {e1, e2, e3}| ≥ 2, since δ(U) ⊆Wx and no pair of edges from δ(U) can belong

to an induced matching. Since condition (iii) does not apply, this completes the proof of the

claim. ♦

Claim 21. Suppose Gx is 3-edge-connected. Then Lemma 6.7 holds.

Proof. Now let us consider a bad cut. In particular, consider graph Gx with 3-edge-cut

δ(U) = {e1, e2, e3}, and assume without loss of generality that r ∈ U . Let s1, s2 and s3 be

the endpoints of e1, e2 and e3 that are in U , and t1, t2 and t3 be the other endpoints. Notice

that s1, s2, s3 (and analogously t1, t2, t3) are distinct vertices since Gx is 3-edge-connected.

Construct graph G1 = Gx[(V \U)∪{s1, s2, s3}]+{s1s2, s1s3, s2s3} and, symmetrically, graph

G2 = Gx[U ∪{t1, t2, t3}] +{t1t2, t1t3, t2t3}. If both G1 and G2 have no bad 3-edge cuts, then

we can Claim 20 to both G1 and G2. For G1, we find induced matchings {M1
1 , . . . ,M

1
5 } such

that conditions (i) and (ii) hold. Similarly, for G2, we find induced matchings {M2
1 , . . . ,M

2
5 }

such that (i) and (ii) hold.

Notice that for each edge e ∈ {e1, e2, e3}, there is exactly one induced matching in

{M1
1 , . . . ,M

1
5 } and in {M2

1 , . . . ,M
2
5 } that contains e1. Without loss of generality, suppose

M1
i and M2

i each contain edge ei for i ∈ [3]. Then let Mi = M1
i ∪M2

i for i ∈ [5] and notice

that Mi is an induced matching in Gx. We conclude by induction on the number of bad

cuts in Gx, since both G1 and G2 have fewer bad 3-edge cuts than does Gx. ♦

Claim 22. Suppose Gx is 2-edge-connected. Then Lemma 6.7 holds.

Proof. We proceed by induction on the number of 2-edge cuts of Gx. If Gx does not contain

any 2-edge cuts then Gx is 3-edge-connected, so by Claim 21 the claim follows.

For the induction step, consider 2-edge cut δ(U) = {e1, e2}. Since x is a half-cycle point,

note that e1, e2 ∈ Wx. Let s1 and s2 be the endpoints of e1 and e2 that are in U and let

t1 and t2 be the other endpoints. (Observe that neither s1s2 nor t1t2 is an edge in Gx;

otherwise Gx would contain a cut of x-value less than 2.) Consider graphs G1 = G[U ] + s1s2

and G2 = G[V \ U ] + t1t2. The set of 1-edges of G1 is {Wx ∩ E(G1)} ∪ {s1s2}, and the set

of 1-edges of G2 is {Wx ∩ E(G2)} ∪ {t1t2}.
Without loss of generality, assume r ∈ S. Apply induction on G1 to find induced match-

ings {M1
1 , . . . ,M

1
5 } where s1s2 ∈M1

1 , and on G2 to obtain induced matchings {M2
1 , . . . ,M

2
5 }

where t1t2 ∈ M2
1 . Set M1 = {M1

1 ∪M2
1 ∪ {e1, e2} \ {s1s2, t1t2} and set Mi = M1

i ∪M2
i

for i ∈ {2, . . . , 5}. Then {M1, . . . ,M5} partition Wx into induced matchings and satisfy

conditions (i), (ii) and (iii). ♦

The proof of Lemma 6.7 follows from Claim 22.
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6.3 A Base Case for 2
4-uniform points

Due to the fact that we can glue over critical cuts, observe that TSP on a half-cycle point x

is essentially equivalent to the problem with the assumption that Gx contains no critical

cuts. Analogously, in the case of a 2
4 -uniform point, Theorem 6.3 could serve as the base

case if we were able to glue over proper 4-edge cuts of Gx. However, the difference here is

that (1) the gluing arguments we presented for half-cycle points can not easily be extended

to this case (due to the increased complexity of the distribution of patterns), and (2) we

require an even number of vertices for our arguments.

Theorem 6.3. Let x be a 2
4 -uniform point. If Gx has an even number of vertices, and Gx

does not have any proper 4-edge cuts, then (3
2 −

1
42)x ∈ TSP(Gx).

Proof. Let Gx = (V,Ex). We prove the claim by showing that there is a distribution of tours

that satisfies the properties. It is easy to see that the proof yields a convex combination of

tours of Gx. Observe that Gx is essentially 6-edge connected, since it is Eulerian and by

assumption does not contain any proper 4-edge cuts.

Define ye = 1
4 for all e ∈ Ex. Vector y is in the perfect matching polytope of Gx and

can be written as a convex combination of perfect matchings of Gx. Choose a perfect

matching M at random from the distribution defined be the convex multipliers of this convex

combination.

Define vector z as follows: ze = 1 if z ∈ M and ze = 1
3 for z ∈ Ex \M . Observe that

z ∈ SEP(Gx), since z(δ(v)) = 2 and z(δ(U)) ≥ 1
3 · |δ(U)| ≥ 2 if |U | ≥ 2 and |V \ U | ≥ 2.

This implies that for any vertex r ∈ V , z ∈ r-tree(Gx).

Applying Brook’s theorem (similar to the proof of Lemma 6.7) we can find collection

{M1, . . . ,M7} of induced matchings of Gx that partition M . Choose i ∈ [7] uniformly at

random. For each e = st ∈Mi, include the three edges incident on s in one set and the three

edges incident to t in another set. Notice all six edge are distinct since Gx has no proper

4-edge cuts. Apply Theorem 2.8 to decompose z into a convex combination of rainbow r-trees

of Gx with respect to this partition. Take a random r-tree T from this convex combination

using the distribution defined by the convex multipliers. Let O be the set of odd degree

vertices of T . Note that for each e = st ∈Mi, s, t /∈ O by construction. Define vector p to

be such that pe = 1
2 for e ∈ M \ {Mi} and pe = 1

6 otherwise. We have p ∈ O - JOIN(Gx).

Therefore, we can write p as convex combination of O-joins of Gx. Choose one of the O-joins

at random from the convex combination and label it J . Note that F = T + J is a tour of
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Gx. For an edge e ∈M we have

Pr[e ∈ J |e ∈M ] = Pr[e ∈ J |e ∈Mi] Pr[e ∈Mi] + Pr[e ∈ J |e ∈M \Mi] Pr[e ∈M \Mi]

=
1

6
· 1

7
+

1

2
· 6

7

=
19

42
.

If e /∈M , then we have Pr[e ∈ J |e /∈M ] = 1
6 . Hence,

Pr[e ∈ J ] = Pr[e ∈ J |e ∈M ] Pr[e ∈M ] + Pr[e ∈ J |e /∈M ] Pr[e /∈M ]

=
19

42
· 1

4
+

1

6
· 3

4

=
5

21
.

Observe that E[ze] = 1·Pr[e ∈M ]+ 1
3 ·Pr[e /∈M ] = 1

2 . Therefore, Pr[e ∈ T ] = Pr[e /∈ T ] = 1
2 .

E[χFe ] = 2 · Pr[e ∈ T and e ∈ J ] + Pr[e ∈ T and e /∈ J ] + Pr[e /∈ T and e ∈ J ]

= 2 · 1

2
· 5

21
+

1

2
· 16

21
+

1

2
· 5

21

=
31

42
=

62

84
=

3

4
− 1

84
.

Thus, each edge e ∈ Ex has value xe = 1
2 and is used to an extent

31

42
=

3

4
− 1

84
= (

3

2
− 1

42
) · 1

2
= (

3

2
− 1

42
) · xe.

This concludes the proof.
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Chapter 7

Fractional Decomposition Trees

In this chapter we focus on finding solutions to general Integer Linear Programs (IP). Integer

Programming (and more generally Mixed Integer Linear Programming) can be used to model

many practical optimization problems including scheduling, logistics and resource allocation.

Recall that the set of feasible points for a pure IP (henceforth IP) is the set

S(A, b) = {x ∈ Zn : Ax ≥ b}. (7.1)

If we drop the integrality constraints, we have the linear relaxation of set S(A, b),

P (A, b) = {x ∈ Rn : Ax ≥ b}. (7.2)

Let I = (A, b) denote an instance. Then S(I) and P (I) denote S(A, b) and P (A, b),

respectively. Given a linear objective function c, recall that an IP is min {cx : x ∈ S(I)}.
It is NP-hard even to determine if an IP instance has a feasible solution [GJ90]. However,

intelligent branch-and-bound strategies allow commercial and open-source MILP solvers

to give exact solutions (or near-optimal solution with provable bound) to many specific

instances of NP-hard combinatorial optimization problems.

Relaxing the integrality constraints gives the polynomial-time-solvable linear-programming

relaxation: min {cx : x ∈ P (I)}. The optimal value of this linear program (LP), denoted

zLP (I, c), is a lower bound on the optimal value for the IP, denoted zIP (I, c). The solutions

can also provide some useful global structure, even though the fractional values might not

directly meaningful.

Many researchers (see [WS11, Vaz01]) have developed polynomial-time LP-based ap-

proximation algorithms that find solutions for special classes of IPs whose cost are provably

smaller than C · zLP (I, c). The approximation factor C can be a constant or depend on

the input parameters of the IP, e.g. O(log(n)) where n is the number of variables in the
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formulation of the IP (the dimension of the problem). However, for many combinatorial

optimization problems there is a limit to such techniques based on LP relaxations, repre-

sented by the integrality gap of the IP formulation. Recall that integrality gap g(I) for

instance I is defined to be g(I) = maxc≥0
zIP (I,c)
zLP (I,c) . An example of instance specific integrality

gap is the integrality gap of the subtour elimination relaxation for the 2-edge-connected

spanning multigraph problem on n vertices. The instance is the complete graph on n vertices.

Alexander et al. [ABE06] showed the instance specific integrality gap of 2ECM for n = 10 is

at most 7
6 .

This value depends on the constraints in (7.1). We cannot hope to find solutions for the

IP with objective values better than g(I) · zLP (I, c).

More generally we can define the integrality gap for a class of instances I as follows.

g(I) = max
c≥0,I∈I

zIP (I, c)

zLP (I, c)
. (7.3)

For example, g(2ECM) is the maximum integrality gap over all instances of the 2-edge-

connected multigraph problem, with respect to the subtour elimination relaxation. This

gap is at most 3
2 [Wol80] and at least 6

5 [ABE06]. Therefore, we cannot hope to obtain an

LP-based (6
5 − ε)-approximation algorithm for this problem using this LP relaxation.

Our methods apply theory connecting integrality gaps to sets of feasible solutions.

Instances I with g(I) = 1 has P (I) = conv(S(I)), the convex hull of the lattice of feasible

points. In this case, P (I) is an integral polyhedron. The spanning tree polytope ST(G)

and the perfect-matching polytope PM(G) have this property ([Edm70, Edm65]). For such

problems there is an algorithm to express vector x ∈ P (I) as a convex combination of points

in S(I) in polynomial time [GLS93].

Proposition 7.1. If g(I) = 1, then for x ∈ P (I) there exists θ ∈ [0, 1]k, where
∑k

i=1 θi = 1

and x̃i ∈ S(I) for i ∈ [k] such that
∑k

i=1 θix̃
i ≤ x. Moreover, we can find such a convex

combination in polynomial time.

An equivalent way of describing Proposition 7.1 is Theorem 1.1 from the introduction of

this thesis. Let us restate this theorem.

Theorem 7.2 (Carr, Vempala [CV04]). Let x ∈ P (I). There exists θ ∈ [0, 1]k where∑k
i=1 θi = 1 and x̃i ∈ D(S(I)) for i ∈ [k] such that

∑k
i=1 θix̃

i ≤ Cx if and only if g(I) ≤ C.

Recall that D(P (I)) is the set of points x′ such that there exists a point x ∈ P with

x′ ≥ x, also known as the dominant of P (I). For covering problems the polyhedron is

essentially the same as its dominant (see Observation 1.9 for an example), but this is not

true in general. While there is an exact algorithm for problems with gap 1 as stated in
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Proposition 7.1, Theorem 7.2 is existential, with no construction. To study integrality gaps,

we wish to find such a solution constructively: assuming reasonable complexity assumptions,

a specific problem I with 1 < g(I) <∞, and x ∈ P (I) for some I ∈ I, can we find θ ∈ [0, 1]k,

where
∑k

i=1 θi = 1 and x̃i ∈ S(I) for i ∈ [k] such that
∑k

i=1 θix̃
i ≤ Cx in polynomial time?

We wish to find the smallest factor C as possible.

7.1 Overview of Results

We give a general approximation framework for solving binary IPs. Consider the set

of point described by sets S(I) and P (I) as in (7.1) and (7.2), respectively. Assume

in addition that S(I), P (I) ⊆ [0, 1]n. For a vector x ∈ Rn≥0 such that x ∈ P (I), let

supp(x) = {i ∈ [n] : xi 6= 0}. For an integer β let {β}n be the vector y ∈ Rn with yi = β for

i ∈ [n].

In this chapter, we introduce the Fractional Decomposition Tree Algorithm (FDT) which

is a polynomial-time algorithm that given a point x ∈ P (I) produces a convex combination

of feasible points in S(I) that are dominated by a “factor” C of x in the coordinates

corresponding to x. If C = g(I), it would be optimal. However we can only guarantee a

factor of g(I)| supp(x)|. FDT relies on iteratively solving linear programs that are about the

same size as the description of P (I).

Theorem 7.3. Assume 1 ≤ g(I) <∞. The Fractional Decomposition Tree (FDT) algorithm,

given x∗ ∈ P (I), produces in polynomial time λ ∈ [0, 1]k and z1, . . . , zk ∈ S(I) such that k ≤
| supp(x∗)|,

∑k
i=1 λiz

i ≤ min(Cx∗, {1}n), and
∑k

i=1 λi = 1. Moreover, C ≤ g(I)| supp(x∗)|.

A subroutine of the FDT, called the DomToIP algorithm, finds feasible solutions to any

IP with finite gap. This can be of independent interest, especially in proving that a model

has unbounded gap.

Theorem 7.4. Assume 1 ≤ g(I) < ∞. The DomToIP algorithm finds x̂ ∈ S(I) in

polynomial time.

For a generic IP instance I it is NP-hard to even decide if the set of feasible solutions S(I)

is empty or not. There are a number of heuristics for this purpose, such as the feasibility

pump algorithm [FGL05, FS09]. These heuristics are often very effective and fast in practice,

however, they can sometimes fail to find a feasible solution. Moreover, these heuristics do

not provide any bounds on the quality of the solution they find.

Here is how the FDT algorithm works in a high level: in iteration i the algorithm maintains

a convex combination of vectors in D(L(I)) that have a 0 or 1 value for coordinates indexed

0, . . . , i − 1. Let y be a vector in the convex combination in iteration i of the algorithm.
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We solve a linear programming problem that gives us θ ∈ [0, 1] and y0, y1 ∈ D(L(I)) such

that g(I)y ≥ θ1y
0 + (1 − θ)y1 and y0

i = 0 and y1
i = 1. We then replace y in the convex

combination with θ
g(I)y

0 + 1−θ
g(I)y

1. Repeating this for every vector in the convex combination

from previous iteration yields a convex combination of points that is “more” integral. If

in any iteration there are too many points in the convex combination we solve a linear

programming problem that “prunes” the convex combination. At the end we find a convex

combination of integer solutions D(L(I)). For each such solution z we invoke the DomToIP

algorithm (see Section 7.2) to find z′ ∈ S(I) where z′ ≤ z.
One can extend the FDT algorithm for binary IPs into covering {0, 1, 2} IPs by losing a

factor 2| supp(x)| on top of the loss for FDT. In order to eradicate this extra factor, we need

to treat the coordinate i with xi = 1 differently. For 2ECM we are able to achieve this by

proving the following theorem.

Theorem 7.5. Let G = (V,E) and x be an extreme point of Subtour(G). The FDT algorithm

for 2ECM produces λ ∈ [0, 1]k and 2-edge-connected multigraphs F1, . . . , Fk such that k ≤
2|V | − 1,

∑k
i=1 λiχ

Fi ≤ min(Cx, {2}n), and
∑k

i=1 λi = 1. Moreover, C ≤ g(2ECM)|Ex|.

Recall that g(2ECM) is the integrality gap of the 2-edge-connected multigraph problem

with respect to the subtour elimination relaxation.

Experiments. Although the bound guaranteed in both Theorems 7.3 and 7.5 are very

large, we show that in practice, the algorithm works very well for network design problems

described above. We show how one might use FDT to investigate the integrality gap for

such well-studied problems.

Known polyhedral structure makes it easier to study integrality gaps for such problems.

We use the idea of fundamental extreme point (See Sections 1.2.4 and 1.3.4 in Chapter 1) to

create the “hardest” LP solutions to decompose.

There are fairly good bounds for the integrality gap for TSP or 2ECM. Benoit and Boyd

[BB08] used a quadratic program to show the integrality gap for TSP, g(TSP), is at most
20
17 for graphs with at most 10 vertices. Alexander et al. [ABE06] used the same ideas

to provide an upper bound of 7
6 for g(2ECM) on graphs with at most 10 vertices. Recall

that in a Carr-Vempala point x the fractional edges of x form a Hamiltonian cycle of Gx.

For 2ECM we show that the integrality gap is at most 6
5 for Carr-Vempala points with at

most 12 vertices on the Hamiltonian cycle formed by the fractional edges. Recall that for a

Carr-Vempala point x a fractional edge is an edge e with 0 < xe < 1.

For Carr-Vempala points we assume that 1-edges are replaced by long paths of 1-edges

making these points into potentially harder to round instances.

For TAP, we create random fractional extreme points of the cut-LP (see Section 2.7)
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and round them using FDT. For the instances that we create the blow-up factor is always

below 3
2 providing an upper bound for such instances.

7.2 Finding a Feasible Solution

Consider an instance I = (A, b) of the IP formulation. Define sets S(I) and P (I) as in

(7.1) and (7.2), respectively. Assume S(I) ⊆ {0, 1}n and P (I) ⊆ [0, 1]n. For simplicity in

the notation we denote P (I), S(I), and g(I) with P , S, and g for this section and the next

section. Also, for both sections we assume t = | supp(x)|. Without loss of generality we can

assume xi = 0 for i = t+ 1, . . . , n.

In this section we prove Theorem 7.4. In fact, we prove a stronger result.

Lemma 7.6. Given x̃ ∈ D(P ) and x̃ ∈ {0, 1}n, there is an algorithm (the DomToIP

algorithm) that finds x̄ ∈ S in polynomial time, such that x̄ ≤ x̃.

Notice that Lemma 7.6 implies Theorem 7.4, since it is easy to obtain an integer point

in D(P ): rounding up any fractional point in P gives us a point in D(P ).

7.2.1 Proof of Lemma 7.6: The DomToIP Algorithm

We start by introducing an algorithm that “fixes” the variables iteratively, starting from

from the first coordinate and ending at the t-th coordinate. Suppose we run the algorithm for

` ∈ {0, . . . , t− 1} iterations and in each iteration we find x(`) ∈ D(P ) such that x
(`)
i ∈ {0, 1}

for i = 1, . . . , `. Notice that we can set x(0) = x̃. Now consider the following linear program.

The variables of this linear program are the z ∈ Rn variables.

DomToIP(x(`)) min z`+1 (7.4)

s.t. Az ≥ b (7.5)

s.t. zj = x
(`)
j j = 1, . . . , ` (7.6)

s.t. zj ≤ x(`)
j j = `+ 1, . . . , n (7.7)

s.t. z ≥ 0 (7.8)

If the optimal value to DomToIP(x(`)) is 0, then let x
(`+1)
`+1 = 0. Otherwise if the optimal

value is strictly positive let x
(`+1)
`+1 = 1. Let x

(`+1)
j = x

(`)
j for j ∈ [n] \ {`+ 1} (See Algorithm

1).

The above procedure suggests how to find x(`+1) from x(`). The DomToIP algorithm

initializes with x(0) = x̃ and iteratively calls this procedure in order to obtain x(t).
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Algorithm 1: The DomToIP algorithm

Input: x̃ ∈ D(P ), x̃ ∈ {0, 1}n
Output: x(t) ∈ S, x(t) ≤ x̃

1 x(0) ← x̃
2 for ` = 0 to t− 1 do

3 x(`+1) ← x(`)

4 η ← optimal value of DomToIP(x(`))
5 if η = 0 then

6 x
(`+1)
`+1 ← 0

7 else

8 x
(`+1)
`+1 ← 1

9 end

10 end

We prove that indeed x(t) ∈ S. First, we need to show that in any iteration ` = 0, . . . , t−1

of DomToIP that DomToIP(x(`)) is feasible. We show something stronger. For ` = 0, . . . , t−1

let

LP(`) = {z ∈ P : z ≤ x(`) and zj = x
(`)
j for j ∈ [`]}, and

IP(`) = {z ∈ LP(`) : z ∈ {0, 1}n}.

Notice that if LP(`) is a non-empty set then DomToIP(x(`)) is feasible. We show by induction

on ` that LP(`) and IP(`) are not empty sets for ` = 0, . . . , t − 1. First notice that LP(0)

is clearly feasible since by definition x(0) ∈ D(P ), meaning there exists z ∈ P such that

z ≤ x(0). By Theorem 7.2, there exists z̃i ∈ S and θi ≥ 0 for i ∈ [k] such that
∑k

i=1 θi = 1

and
∑k

i=1 θiz̃
i ≤ gz. Hence,

∑k
i=1 θiz̃

i ≤ gz ≤ gx(0). So if x
(0)
j = 0, then

∑k
i=1 θiz̃

i
j = 0,

which implies that z̃ij = 0 for all i ∈ [k] and j ∈ [n] where x
(0)
j = 0. Hence, z̃i ≤ x(0) for

i ∈ [k]. Therefore z̃i ∈ IP(0) for i ∈ [k], which implies IP(0) 6= ∅.
Now assume IP(`) is non-empty for some ` ∈ [t−2]. Since IP(`) ⊆ LP(`) we have LP(`) 6= ∅

and hence the DomToIP(x(`)) has an optimal solution z∗.

We consider two cases. In the first case, we have z∗`+1 = 0. In this case we have

x
(`+1)
`+1 = 0. Since z∗ ≤ x(`+1), we have z∗ ∈ LP(`+1). Also, z∗ ∈ P . By Theorem 7.2 there

exists z̃i ∈ S and θi ≥ 0 for i ∈ [k] such that
∑k

i=1 θi = 1 and
∑k

i=1 θiz̃
i ≤ gz∗. We have∑k

i=1 θiz̃
i ≤ gz∗ ≤ gx(`+1). So for j ∈ [n] where x

(`+1)
j = 0, we have zij = 0 for i ∈ [k]. This

implies z̃i ≤ x(`+1) for i = 1, . . . , k. Hence, there exists z ∈ S such that z ≤ x(`+1). We claim

that z ∈ IP(`+1). If z /∈ IP(`+1) we must have 1 ≤ j ≤ ` such that zj < x
(`+1)
j , and thus
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zj = 0 and x
(`+1)
j = 1. Without loss of generality assume j is minimum number satisfying

zj < x
(`+1)
j . Consider iteration j of the DomToIP algorithm. Notice that z ≤ x(`+1) ≤ x(j).

We have x
(j)
j = 1 which implies when we solved DomToIP(x(j−1)) the optimal value was

strictly larger than zero. However, z is a feasible solution to DomToIP(x(j−1)) and gives an

objective value of 0. This is a contradiction, so z ∈ IP(`+1).

Now for the second case, assume z∗`+1 > 0. We have x
(`+1)
`+1 = 1. Notice that for each

point z ∈ LP(`) we have z`+1 > 0, so for each z ∈ IP(`) we have z`+1 > 0, i.e. z`+1 = 1. This

means that z ∈ IP(`+1), and IP(`+1) 6= ∅.
Now consider x(t). Let z be the optimal solution to LP(t−1). If x

(t)
t = 0, we have x(t) = z,

which implies that x(t) ∈ P , and since x(t) ∈ {0, 1}n we have x(t) ∈ S. If x
(t)
t = 1, it must

be the case that zt > 0. By the argument above there is a point z′ ∈ IP(t−1). We show

that x(t) = z′. For j ∈ [t − 1] we have z′j = x
(t−1)
j = x

(t)
j . We just need to show that

z′t = 1. Assume z′t = 0 for contradiction, then z′ ∈ LP(t−1) has objective value of 0 for

DomToIP(x(t−1)), this is a contradiction to z being the optimal solution. This concludes

the proof of Lemma 7.6.

7.3 FDT on Binary IPs

Assume we are given a point x∗ ∈ P . For instance, x∗ can be the optimal solution of

minimizing a cost function cx over set P , which provides a lower bound on min(x,y)∈S(I) cx.

In this section, we prove Theorem 7.3 by describing the Fractional Decomposition Tree

(FDT) algorithm. We also remark that if g(I) = 1, then the algorithm will give an exact

decomposition of any feasible solution.

The FDT algorithm grows a tree similar to the classic branch-and-bound search tree for

integer programs. Each node represents a partially integral vector x̄ in D(P ) together with

a multiplier λ̄. The solutions contained in the nodes of the tree become progressively more

integral at each level. In each level of the tree, the algorithm maintain a conic combination

of points with the properties mentioned above. Leaves of the FDT tree contain solutions

with integer values for all the x variables that dominate a point in P . In Lemma 7.6 we saw

how to turn these into points in S.

Branching on a node. We begin with the following lemmas that show how the FDT

algorithm branches on a variable.

Lemma 7.7. Given x′ ∈ D(P ) and ` ∈ [n] where x′` < 1, we can find in polynomial time

vectors x̂0, x̂1 and scalars γ0, γ1 ∈ [0, 1] such that: (i) γ0 + γ1 ≥ 1/g, (ii) x̂0 and x̂1 are in P

,(iii) x̂0
` = 0 and x̂1

` = 1, (iv) γ0x̂
0 + γ1x̂

1 ≤ x′.
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Proof. Consider the following linear program which we denote by LPC(`, x′). The variables

of LPC(`, x′) are γ0, γ1 and x0 and x1.

LPC(`, x′) max λ0 + λ1 (7.9)

s.t. Axj ≥ bλj for j = 0, 1 (7.10)

s.t. 0 ≤ xj ≤ λj for j = 0, 1 (7.11)

s.t. x0
` = 0, x1

` = λ1 (7.12)

s.t. x0 + x1 ≤ x′ (7.13)

s.t. λ0, λ1 ≥ 0 (7.14)

Let x0, x1, and γ0, γ1 be an optimal solution solution to the LP above. Let x̂0 = x0/γ0,

x̂1 = x1/γ1. This choice satisfies (ii), (iii), (iv). To show that (i) is also satisfied we prove

the following claim.

Claim 23. We have γ0 + γ1 ≥ 1/g.

Proof. We show that there is a feasible solution that achieves the objective value of 1
g . By

Theorem 7.2 there exists θ ∈ [0, 1]k, with
∑k

i=1 θi = 1 and x̃i ∈ S for i ∈ [k] such that∑k
i=1 θix̃

i ≤ gx′. So

x′ ≥
k∑
i=1

θi
g
x̃i =

∑
i∈[k]:x̃i`=0

θi
g
x̃i +

∑
i∈[k]:x̃i`=1

θi
g
x̃i. (7.15)

For j = 0, 1, let xj =
∑

i∈[k]:x̃i`=j
θi
g x̃

i. Also let λ0 =
∑

i∈[k]:x̃i`=0
θi
g and λ1 =

∑
i∈[k]:x̃i`=1

θi
g .

Note that λ0 +λ1 = 1/g. Constraint (7.13) is satisfied by Inequality (7.15). Also, for j = 0, 1

we have

Axj =
∑

i∈[k],x̃i`=j

θi
g
Ax̃i ≥ b

∑
i∈[k],x̃i`=j

θi
g

= bλj . (7.16)

Hence, Constraints (7.10) holds. Constraint (7.12) also holds since x0
` is obviously 0 and

x1
` =

∑
i∈[k]:x̃i`=1

θi
g = λ1. The rest of the constraints trivially hold. ♦

This concludes the proof of Lemma 7.7.

We now show if x′ in the statement of Lemma 7.7 is partially integral, we can find

solutions with more integral components.

Lemma 7.8. Given x′ ∈ D(P ) where x′1, . . . , x
′
`−1 ∈ {0, 1} and x′` < 1 for some ` ≥ 1 we

can find in polynomial time vectors x̂0, x̂1 and scalars γ0, γ1 ∈ [0, 1] such that: (i) 1/g ≤
γ0 + γ1 ≤ 1, (ii) x̂0 and x̂1 are in D(P ), (iii) x̂0

` = 0 and x̂1
` = 1, (iv) γ0x̂

0 + γ1x̂
1 ≤ x′,(v)

x̂ij ∈ {0, 1} for i = 0, 1 and j ∈ [`− 1].

126



Proof. By Lemma 7.7 we can find x̄0, x̄1, γ0 and γ1 that satisfy (i), (ii), (iii), and (iv). We

define x̂0 and x̂1 as follows. For i = 0, 1, for j ∈ [` − 1], let x̂ij = dx̄ije, for j = `, . . . , t let

x̂ij = x̄ij .

We now show that x̂0, x̂1, γ0, and γ1 satisfy all the conditions. Note that conditions (i),

(ii), (iii), and (v) are trivially satisfied. Thus we only need to show (iv) holds. We need

to show that γ0x̂
0
j + γ1x̂

1
j ≤ gx′j . If j = `, . . . , t, then this clearly holds. Hence, assume

j ≤ `− 1. By the property of x′ we have x′j ∈ {0, 1}. If x′j = 0, then by Constraint (7.13)

we have x̄0
j = x̄1

j = 0. Therefore, x̂ij = 0 for i = 0, 1, so (iv) holds. Otherwise if x′j = 1, then

we have γ0x̂
0
j + γ1x̂

1
j ≤ γ0 + γ1 ≤ 1 ≤ x′j . Therefore (v) holds.

Growing and Pruning FDT tree. The FDT algorithm maintains nodes Li in iteration

i of the algorithm. The nodes in Li correspond to the nodes in level Li of the FDT tree.

The points in the leaves of the FDT tree, Lt, are points in D(P ) and are integral for all

integer variables.

Lemma 7.9. There is a polynomial time algorithm that produces sets L0, . . . , Lt of pairs

of x ∈ D(P ) together with multipliers λ with the following properties for i = 0, . . . , t: (a)

If x ∈ Li, then xj ∈ {0, 1} for j ∈ [i], i.e. the first i coordinates of a solution in level i are

integral, (b)
∑

[x,λ]∈Li λ ≥
1
gi

, (c)
∑

[x,λ]∈Li λx ≤ x
∗, (d) |Li| ≤ t.

Proof. We prove this lemma using induction but one can clearly see how to turn this proof

into a polynomial time algorithm. Let L0 be the set that contains a single node (root of the

FDT tree) with x∗ and multiplier 1. It is easy to check all the requirements in the lemma

are satisfied for this choice.

Suppose by induction that we have constructed sets L0, . . . , Li. Let the solutions in

Li be xj for j ∈ [k] and λj be their multipliers, respectively. For each j ∈ [k] if xji+1 = 1

we add the pair (xj , λj) to L′. Otherwise, applying Lemma 7.8 (setting x′ = xj and

` = i + 1) we can find xj0, xj1, λ0
j and λ1

j with the properties (i) to (v) in Lemma 7.8.

Add the pairs (xj0, λjλ
0
j ) and (xj1, λjλ

1
j ) to L′. It is easy to check that set L′ is a suitable

candidate for Li+1, i.e. set L′ satisfies (a), (b) and (c). However we can only ensure that

|L′| ≤ 2k ≤ 2t, and might have |L′| > t. We call the following linear program Pruning(L′).

Let L′ = {[x1, γ1], . . . , [x|L
′|, γ|L′|]}. The variables of Pruning(L′) are scalar variables θj for

each node j in L′.

Pruning(L′) {max

|L′|∑
j=1

θj :

|L′|∑
j=1

θjx
j
i ≤ x

∗
i for i ∈ [t], θ ≥ 0} (7.17)

Notice that θ = γ is in fact a feasible solution to Pruning(L′). Let θ∗ be the optimal vertex

solution to this LP. Since the problem is in R|L′|, θ∗ has to satisfy |L′| linearly independent
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constraints at equality. However, there are only t constraints of type
∑|L′|

j=1 θjx
j
i ≤ x∗i .

Therefore, there are at most t coordinates of θ∗j that are non-zero. Set Li+1 which consists

of xj for j = 1, . . . , |L′| and their corresponding multipliers θ∗j satisfy the properties in

the statement of the lemma. Notice that, we can discard the nodes in Li+1 that have

θ∗j = 0, so |Li+1| ≤ t. Also, since θ∗ is optimal and γ is feasible for Pruning(L′), we have∑|L′|
j=1 θ

∗
j ≥

∑|L′|
j=1 γj ≥

1
gi+1 .

From leaves of FDT to feasible solutions. For the leaves of the FDT tree, Lt, we

have that every solution x in Lt has x ∈ {0, 1}n and x ∈ D(P ). By applying Lemma 7.6

we can obtain a point x′ ∈ S such that x′ ≤ x. This concludes the description of the FDT

algorithm and proves Theorem 7.3. See Algorithm 2 for a summary of the FDT algorithm.

Algorithm 2: Fractional Decomposition Tree Algorithm

Input: P = {x ∈ Rn : Ax ≥ b} and S = {x ∈ P : x ∈ {0, 1}n} such that

g = maxc∈Rn+
minx∈S cx
minx∈P cx

is finite, x∗ ∈ P
Output: zi ∈ S and λi ≥ 0 for i ∈ [k] such that

∑k
i=1 λi = 1, and

∑k
i=1 λiz

i ≤ gtx∗

1 L0 ← [x∗, 1]

2 for i = 1 to t do

3 L′ ← ∅
4 for [x, λ] ∈ Li do

5 Apply Lemma 7.8 to obtain [x̂0, γ0] and [x̂1, γ1]

6 L′ ← L′ ∪ {[x̂0, λ · γ0]} ∪ {[x̂1, λ · γ1]}
7 end

8 Apply Lemma 7.9 to prune L′ to obtain Li+1.

9 end

10 for [x, λ] ∈ Lt do

11 Apply Algorithm 1 to x to obtain z ∈ S
12 F ← F ∪ {[z, λ]}
13 end

14 return F

7.4 FDT for 2ECM

In Section 7.3 our focus was on binary IPs. In this section, in an attempt to extend FDT to

{0,1,2} problems we introduce an FDT algorithm for a 2-edge-connected multigraph problem.

Given a graph G = (V,E) a multi-subset of edges F of G is a 2-edge-connected multigraph of
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G if for each set ∅ ⊂ U ⊂ V , the number of edge in F that have one endpoint in U and one not

in U is at least 2. Recall that in the 2ECM, we are given non-negative costs on the edges of G

and the goal is to find the minimum cost 2-edge-connected multigraph ofG. The natural linear

programming relaxation is Subtour(G) = {x ∈ [0, 2]E : x(δ(U)) ≥ 2 for ∅ ⊂ U ⊂ V }. Notice

that, no optimal solution ever takes 3 copies of an edge in 2ECM, hence we assume that we can

take an edge at most 2 times, hence in this chapter (unlike in the previous chapters) we work

with a bounded version of Subtour(G). Notice that D(Subtour(G)) ∩ [0, 2]E = Subtour(G).

Thus, we also assume a multigraph can contain at most 2 copies of any edge in the graph.

We want to prove Theorem 7.5.

Theorem 7.5. Let G = (V,E) and x be an extreme point of Subtour(G). The FDT algorithm

for 2ECM produces λ ∈ [0, 1]k and 2-edge-connected multigraphs F1, . . . , Fk such that k ≤
2|V | − 1,

∑k
i=1 λiχ

Fi ≤ min(Cx, {2}n), and
∑k

i=1 λi = 1. Moreover, C ≤ g(2ECM)|Ex|.

We do not know the exact value for g(2ECM), but we know 6
5 ≤ g(2ECM) ≤ 3

2

[ABE06, Wol80]. The FDT algorithm for 2ECM is very similar to the one for binary IPs,

but there are some differences as well. A natural thing to do is to have three branches for

each node of the FDT tree, however, the branches that are equivalent to setting a variable

to 1, might need further decomposition. That is the main difficulty when dealing with

{0, 1, 2}-IPs.

First, we need a branching lemma. Observe that the following branching lemma is

essentially a translation of Lemma 7.7 for {0, 1, 2} problems except for one additional clause.

Lemma 7.10. Given x ∈ Subtour(G), and e ∈ E we can find in polynomial time vectors

x0, x1 and x2 and scalars γ0, γ1, and γ2 such that: (i) γ0 +γ1 +γ2 ≥ 1/g(2ECM), (ii) x0, x1,

and x2 are in Subtour(G), (iii) x0
e = 0, x1

e = 1, and x2
e = 2, (iv) γ0x

0 + γ1x
1 + γ2x

2 ≤ x,

(v) for f ∈ E with xf ≥ 1, we have xjf ≥ 1 for j = 0, 1, 2.

Proof. Consider the following LP with variables λj and xj for j = 0, 1, 2.

max
∑

j=0,1,2

λj (7.18)

s.t. xj(δ(U)) ≥ 2λj for ∅ ⊂ U ⊂ V , and j = 0, 1, 2 (7.19)

s.t. 0 ≤ xj ≤ 2λj for j = 0, 1, 2 (7.20)

s.t. xje = j · λj for j = 0, 1, 2 (7.21)

s.t. xjf ≥ λj for f ∈ E where xf ≥ 1, and j = 0, 1, 2 (7.22)

s.t. x0 + x1 + x2 ≤ x (7.23)

s.t. λ0, λ1, λ2 ≥ 0 (7.24)
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Let xj , γj for j = 0, 1, 2 be an optimal solution solution to the LP above. Let x̂j = xj/γj

for j = 0, 1, 2 where γj > 0. If γj = 0, let x̂j = 0. Observe that (ii), (iii), (iv), and (v) are

satisfied with this choice. We can also show that γ0 + γ1 + γ2 ≥ 1/g(2ECM), which means

that (i) is also satisfied. The proof is similar to the proof of the claim in Lemma 7.7, but we

need to replace each f ∈ E with xf ≥ 1 with a suitably long path to ensure that Constraint

(7.22) is also satisfied.

Claim 24. We have γ0 + γ1 + γ2 ≥ 1
g(2ECM) .

Proof. Suppose for contradiction
∑

j=0,1,2 γj = 1
g(2ECM) − ε for some ε > 0. Construct graph

G′ by removing edge f with xf ≥ 1 and replacing it with a path Pf of length d2
ε e. Define

x′h = xh for each edge h such that xh < 1. For each h ∈ Pf let x′h = xf for all f with

xf ≥ 1. It is easy to check that x′ ∈ Subtour(G′). By Theorem 7.2 there exists θ ∈ [0, 1]k,

with
∑k

i=1 θi = 1 and 2-edge-connected multigraphs F ′i of G′ for i = 1, . . . , k such that∑k
i=1 θiχ

F ′i ≤ g(2ECM)x′.

Note that each F ′i contains at least one copy of every edge in any path Pf , except for

at most one edge in the path. We will obtain 2-edge-connected multigraphs F1, . . . , Fk of

G using F ′1, . . . , F
′
k, respectively. To obtain Fi first remove all Pf paths from F ′i . Suppose

there is an edge h in Pf such that χ
F ′i
h = 0, this means that for any edge p ∈ Pf such that

p 6= h, χ
F ′i
p = 2. In this case, let χFif = 2, i.e. add two copies of f to Fi. If there are at least

one edge h ∈ Pf with χ
F ′i
h = 1, let χFif = 1, i.e. add one copy of f to Fi. If for all edges

h ∈ Pf , we have χ
F ′i
h = 2, then let χFif = 2. For f ∈ E with xf < 1 we have

k∑
i=1

θiχ
Fi
f =

k∑
i=1

θiχ
F ′i
f ≤ g(2ECM)x′f = g(2ECM)xf . (7.25)
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In addition for f ∈ E with xf ≥ 1 we have χFif ≤
∑
h∈Pf

χ
F ′i
h

d 2
ε
e−1

by construction.

k∑
i=1

θiχ
Fi
f ≤

k∑
i=1

θi

∑
h∈Pf χ

F ′i
h

d2
ε e − 1

=

∑
h∈Pf

∑k
i=1 θiχ

F ′i
h

d2
ε e − 1

≤
∑

h∈Pf g(2ECM)x′h

d2
ε e − 1

=

∑
h∈Pf g(2ECM)xf

d2
ε e − 1

=
d2
ε e

d2
ε e − 1

g(2ECM)xf .

Therefore, since
d 2
ε
e

d 2
ε
e−1
≥ 1, we have

x ≥
∑

i∈[k]:χ
Fi
e =0

θi(d2
ε e − 1)

g(2ECM)d2
ε e
χFi +

∑
i∈[k]:χ

Fi
e =1

θi(d2
ε e − 1)

g(2ECM)d2
ε e
χFi +

∑
i∈[k]:χ

Fi
e =2

θi(d2
ε e − 1)

g(2ECM)d2
ε e
χFi .

(7.26)

Let xj =
∑

i∈[k]:χ
Fi
e =j

θi(d 2
ε
e−1)

g(2ECM)d 2
ε
eχ

Fi and θj =
∑

i∈[k]:χ
Fi
e =j

θi(d 2
ε
e−1)

g(2ECM)d 2
ε
e for j = 0, 1, 2. It is

easy to check that xj , θj for j = 0, 1, 2 is a feasible solution to the LP above. Notice that∑
j=0,1,2 θj =

d 2
ε
e−1

g(2ECM)d 2
ε
e . By assumption, we have

d 2
ε
e−1

g(2ECM)d 2
ε
e ≤

1
g(2ECM) − ε, which is a

contradiction. ♦

This concludes the proof.

In contrast to FDT for binary IPs where we round up the fractional variables that are

already branched on at each level, in FDT for 2ECM we keep all coordinates as they are

and perform a rounding procedure at the end. Formally, let Li for i = 1, . . . , | supp(x∗)|
be collections of pairs of feasible points in Subtour(G) together with their multipliers. Let

t = | supp(x∗)| and assume without loss of generality that supp(x∗) = {e1, . . . , et}.

Lemma 7.11. The FDT algorithm for 2ECM in polynomial time produces sets L0, . . . , Lt

of pairs x ∈ 2ECM(G) together with multipliers λ with the following properties for i ∈ [t]:

(a) If x ∈ Li, then xej = 0 or xej ≥ 1 for j = 1, . . . , i, (b)
∑

(x,λ)∈Li λ ≥
1

g(2ECM)i
, (c)∑

(x,λ)∈Li λx ≤ x
∗, (d) |Li| ≤ t.

The proof is similar to Lemma 7.9, but we need to use property (v) in Lemma 7.10 to

prove that (a) also holds.
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Proof. We proceed by induction on i. Define L0 = {(x∗, 1)}. It is easy to check all the

properties are satisfied. Now, suppose by induction we have Li−1 for some i = 1, . . . , t that

satisfies all the properties. For each solution x` in Li−1 apply Lemma 7.10 on x` and ei to

obtain x`j and λ`j for j = 0, 1, 2. Let L′ be the collection that contains (x`j , λ` · λ`j) for

j = 0, 1, 2, when applied to all (x`, λ`) in Li−1. Similar to the proof in Lemma 7.9 one can

check that Li satisfies properties (b), (c). We now verify property (a). Consider a solution

x` in Li−1. For e ∈ {e1, . . . , ei−1} if x`e = 0, then by property (iv) in Lemma 7.10 we have

x`j = 0 for j = 0, 1, 2. Otherwise by induction we have x`e ≥ 1 in which case property (v)

in Lemma 7.10 ensures that x`je ≥ 1 for j = 0, 1, 2. Also, x`jei = j, so x`jei = 0 or x`jei ≥ 1 for

j = 0, 1, 2.

Finally, if |L′| ≤ t we let Li = L′, otherwise apply Pruning(L′) to obtain Li.

Consider the solutions x in Lt. For each variable e we have xe = 0 or xe ≥ 1.

Lemma 7.12. Let x be a solution in Lt. Then bxc ∈ Subtour(G).

Proof. Suppose not. Then there is a set of vertices ∅ ⊂ U ⊂ V such that
∑

e∈δ(U)bxec < 2.

Since x ∈ Subtour(G) we have
∑

e∈δ(U) xe ≥ 2. Therefore, there is an edge f ∈ δ(U) such

that xf is fractional. By property (a) in Lemma 7.11, we have 1 < xf < 2. Therefore, there

is another edge h in δ(U) such that xh > 0, which implies that xh ≥ 1. But in this case∑
e∈δ(U)bxec ≥ bxfc+ bxhc ≥ 2. This is a contradiction.

The FDT algorithm for 2ECM iteratively applies Lemmas 7.10 and 7.11 to variables

x1, . . . , xt to obtain leaf point solutions Lt. Finally, we just need to apply Lemma 7.12 to

obtain the 2-edge-connected multigraphs from every solution in Lt. Notice that since x is

an extreme point we have t ≤ 2|V | − 1 [BP90]. By Lemma 7.11 we have

∑
(x,λ)∈Lt

λ∑
(x,λ)∈Lt λ

bxc ≤ 1∑
(x,λ)∈Lt λ

∑
(x,λ)∈Lt

λx ≤ gt2ECMx
∗.

7.5 Computational Experiments with FDT

We ran FDT on two network design problems: TAP and 2ECM.

FDT on randomly generated instances of TAP. Recall that in TAP we are given a

tree T = (V,E), and a set of links L between vertices in V and costs c ∈ RL≥0. A feasible

augmentation is L′ ⊆ L such that T + L′ is 2-edge-connected. In TAP we wish to find the

minimum-cost feasible augmentation. The integrality gap of the cut-LP for TAP is defined

as

g(TAP) = max
c∈RL≥0

minx∈TAP(T,L) cx

minx∈CUT(T,L) cx
.
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We know 3
2 ≤ g(TAP) ≤ 2 [FJ81, CKKK08]. Notice that minx∈TAP(T,L) cx is a binary

IP. We ran binary FDT on a set of 264 fractional extreme points of randomly generated

instances of TAP. Table 7.1 shows FDT found solutions better than the integrality-gap

lower bound for most instances.

C ∈ [1.1, 1.2] C ∈ (1.2, 1.3] C ∈ (1.3, 1.4] C ∈ (1.4, 1.5]

TAP 36 66 170 10

Table 7.1: The scale factor C for FDT run on 264 randomly generated TAP instances with
fractional extreme points: 138 instances have 74 variables. The rest have 250.

Computational comparison between Christofides’ algorithm and FDT for 2ECM

on Carr-Vempala points. We implemented the polyhedral version of Christofides’ al-

gorithm [Wol80]. In particular, we implemented the O-join augmentation in Christofides’

algorithm, in a way that minimizes the average usage of every edge in the O-join augmenta-

tion across the convex combination of spanning trees. In particular, let x ∈ SEP(Gx). It is

easy to check that n−1
n x ∈ ST(Gx), hence we can write x =

∑k
i=1 λiχ

Ti where Ti is spanning

tree of Gx,
∑k

i=1 λi = 1, and λi ≥ 0 for i ∈ [k]. Let Oi be the set of odd degree vertices of

Ti. We then solve the following LP that allows us to find parity corrections that are good

for the whole convex combination.

min{α :
k∑
i=1

λiy
i = α · x, (7.27)

yi(δ(U)) ≥ 1 for U ⊆ V (Gx), |V ∩Oi| odd, yi ∈ [0, 1]Ex for i ∈ [k]}.

The variables in the above LP are yi ∈ REx≥0 for i ∈ [k]. For each i ∈ [k] we have yi ∈
D(Oi - JOIN(Gx)). This formulation allows the instance specific approximation ratio of

Christofides’ algorithm to be below 3
2 . Recall that a Carr-Vempala point consists of a

Hamiltonian cycle of fractional edges. Figure 7.1 shows FDT’s solutions on all Carr-Vempala

points with at most 10 vertices on the Hamiltonian cycle formed by the fractional edges are

always better than those from the polyhedral version of Christofides’ algorithm. In more

details, in Figure 7.1 the horizontal axis of the plot is indexed with the 60 Carr-Vempala

points that we considered. For each Carr-Vempala point x, there are two data points. The

value of the first data point depicted by a circle on the vertical axis is n−1
n + α where n is

the number of vertices in the Hamiltonian cycle formed by fractional edges of x and α is

the optimal solution to (7.27). The value of the second data point depicted by a cross on

the vertical axis is C where C is obtained from applying Theorem 7.5 to x. In other words,
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Figure 7.1 is comparing the upper bounds on the instances specific integrality gap certified

by Christofides’ algorithm and FDT algorithm for 2ECM.

Figure 7.1: Polyhedral version of Christofides’ algorithm vs FDT on all Carr-Vempala points
with 10 vertices on the Hamiltonian cycle of the fractional-edges.

FDT for 2ECM on Carr-Vempala points. We ran FDT for 2ECM on 963 fractional

extreme points of Subtour(G). We enumerated all (fractional) Carr-Vempala points with

10 and 12 vertices. Table 7.2 shows that again FDT found solutions better than the

integrality-gap lower bound for most instances.

C ∈ [1.08, 1.11] C ∈ (1.11, 1.14] C ∈ (1.14, 1.17] C ∈ (1.17, 1.2]

2ECM 79 201 605 78

Table 7.2: FDT for 2ECM implemented applied to all Carr-Vempala with 10 or 12 vertices.
A Carr-Vempala point with k vertices has 3k

2 edges. Thus, the upper bound provided by

Theorem 7.5 is g(2ECM)3k/2. The lower bound on g(2ECM) is 6
5 .
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Chapter 8

Concluding Remarks

We started this thesis by studying the integrality gap of the Traveling Salesperson Problem

and the 2-edge-connected Multigraph problem with the subtour elimination relaxation. In

Chapter 3 we showed that for subcubic graphs there is a 17
12 -approximation algorithm for

NW-2ECM and proved that g(NW-2ECM) ≤ 17
12 when restricted to subcubic graphs. A

natural next step is to investigate the existence of (3
2 − ε)-approximation algorithm for

NW-TSP when restricted to subcubic graphs for a constant ε > 0.

In Chapter 4 we improved the known bounds on αTSP
3 from 3

2 to 17
12 . Sebő et al [SBS14]

observed that αTSP
3 ≤ 4

3 is implied by the four-thirds conjecture. On the other hand, the

best known lower bound on αTSP
3 ≥ 9

8 [LM17]. Closing the gap between the upper bound

and lower bound of αTSP
3 would be a big step towards the four-thirds conjecture.

As for the Uniform Cover Problem for 2ECM, we provided efficient algorithms that prove

α2ECM
3 ≤ 123

94 . Carr and Ravi [CR98] proved that α2ECM
4 ≤ 4

3 . However, their proof does

not yield an efficient approximation algorithm. Can we prove α2ECM
4 ≤ 4

3 via an efficient

algorithm? In fact, any efficient algorithm certifying α2ECM
4 ≤ 3

2 − ε for a constant ε > 0

would be interesting. We remark that recently, Karlin et al. [KKG19] presented a polynomial

time algorithm that proves αTSP
4 ≤ 3

2 − 0.00007. Can we improve this factor or make their

proof simpler?

Another question related to α2ECM
4 is to improve the upper bound of Carr and Ravi

[CR98]. Recall that α2ECM
4 ≥ 6

5 (Figures 1.2 and 5.4). We propose the following problem as

a relaxation of the six-fifths conjecture (Conjecture 6).

Open Problem 1. Show that α2ECM
4 = 6

5 .

In Chapter 5 we provided a 9
7 -approximation algorithm for 2ECM on half-square points.

Boyd and Sebő [BS19] also studied half-square points and gave a 10
7 -approximation algorithm

for TSP on half-square points. The next challenge in this direction is to improve these

factors to 6
5 for 2ECM and to 4

3 for TSP.
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Chapter 6 introduced a novel gluing approach of a carefully selected set of tours. We

do not know how to extend the gluing ideas in this chapter to gluing tours over cuts with

more than 3 edges (such as proper 4-edge cuts). Such a result would be vital in proving new

bounds for αTSP
4 via gluing.

A consequence of the four-thirds conjecture (Conjecture 1) is that for a half-cycle point

x we have 4
3x = y ∈ TSP(Gx). This means for an edge e in Gx with xe = 1 we have ye = 4

3 .

Thus, we propose the following problem in the spirit of Theorem 1.22.

Open Problem 2. Let x be a half-cycle point. Define ye = 4
3 for e with xe = 1 and ye = 3

4

for e with xe = 1
2 . Show that y ∈ TSP(G).

We hope that the results in this thesis inspire further research on integrality gaps and

approximation algorithms for network design problems.
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ing weighted tree augmentation via chvátal-gomory cuts. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’18, page 817–831, USA, 2018. Society for Industrial and Applied Mathematics.

[FGL05] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathe-

matical Programming, 104(1):91–104, Sep 2005.

[FJ81] Greg N. Frederickson and Joseph. Ja’Ja’. Approximation algorithms for several

graph augmentation problems. SIAM Journal on Computing, 10(2):270–283,

1981.

[Fra90] A. Frank. Augmenting graphs to meet edge-connectivity requirements. In

Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science,

pages 708–718 vol.2, Oct 1990.

[FS09] Matteo Fischetti and Domenico Salvagnin. Feasibility pump 2.0. Mathematical

Programming Computation, 1(2):201–222, Oct 2009.

140

https://web.math.princeton.edu/~pds/papers/cutcolouring/paper.pdf
https://web.math.princeton.edu/~pds/papers/cutcolouring/paper.pdf


[GB93] Michel X. Goemans and Dimitris J. Bertsimas. Survivable networks, linear

programming relaxations and the parsimonious property. Mathematical Pro-

gramming, 60(1):145–166, Jun 1993.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms

and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.

Springer, 1988.
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[HS20] Florian Hörsch and Zoltán Szigeti. Connectivity of orientations of 3-

edge-connected graphs. https://pagesperso.g-scop.grenoble-inp.fr/

~szigetiz/articles/franknumber13.pdf, 2020. Unpublished manuscript.

[Huh04] Woonghee Tim Huh. Finding 2-edge connected spanning subgraphs. Oper. Res.

Lett., 32(3):212–216, May 2004.

[IR17] Jennifer Iglesias and R. Ravi. Coloring down: 3/2-approximation for special

cases of the weighted tree augmentation problem, 2017.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner

network problem. Combinatorica, 21(1):39–60, 2001.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4):373–395, Dec 1984.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Compu-

tational Mathematics and Mathematical Physics, 20(1):53 – 72, 1980.

[KKG19] Anna Karlin, Nathan Klein, and Shayan Oveis Gharan. An improved approxi-

mation algorithm for TSP in the half integral case, 2019.

[KR16] Jeremy A. Karp and R. Ravi. A 9/7-approximation algorithm for graphic

TSP in cubic bipartite graphs. Discrete Applied Mathematics, 209:164 – 216,

2016. 9th International Colloquium on Graph Theory and Combinatorics, 2014,

Grenoble.
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