
Essays on Asset Management

Tianyi (Robert) Yang

Submitted to the Tepper School of Business in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Dissertation Committee:

Bryan Routledge (Chair)

Matthew Denes

Brent Glover

Burton Hollifield

Austin Sudbury

May 2020

Copyright c© Tianyi (Robert) Yang, 2020. All rights reserved.



ii

A significant portion of household wealth is managed by financial professionals and investment

companies. How these entities create value for their investors and whether their contributions are

sufficient to justify the compensation are of great interest to both researchers and the general public.

In this dissertation, we seek to further our understanding of the asset management industry.

Chapter 1 explores the relationship between the fee of an investment product and how it is

described by the money manager. To control for variations in dynamic strategies of different

funds, we focus on Unit Investment Trust (UIT), a class of investment product with buy-and-hold

portfolios and fixed life spans. In order to compare different portfolios, we adopt the method of

collaborative filtering to transform the portfolio to a latent representation. A significant portion of

dispersion in fees of UITs is correlated with how the investment objectives are stated, even after

controlling for the variation in the portfolios. UITs whose investment statements include more

persuasive marketing languages and more discussions on stock selection procedures, diversification,

and stock weightings charge higher sales fees.

In Chapter 2, we consider a model of money management that reconciles the investment exper-

tise of institutional investors and the lack of outperformance on their in-house managed capital.

Due to the synergy between institutions’ knowledge and external asset managers’ skill, institutions

never trade on their information directly. Instead, informed institutions delegate investment deci-

sions to external asset managers while passing on their investment knowledge. Only uninformed

institutions invest in-house due to the search cost of finding a skilled asset manager. We discuss

how management fees and the size of the money management industry are related to the number

of institutions with expertise and the value of institution expertise. Price is more informative when

knowledge of institutions is more diffused.

Chapter 3 is based on a joint paper with Bryan Routledge and Matthew Denes. We model the

dynamic decisions of a Venture Capital (VC) fund during fundraising and capital deployment. VCs

with better access and network receive greater deal flows, raise larger funds, and deploy capital

more frequently. On the contrary, VCs with better screening abilities deploy capital at a slower

rate due to the higher expected payoffs of future prospective projects. We estimate the model using
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VC deal data at each fund level. Funds differ mainly in access and are homogeneous in terms of

screening ability. Differences in deal flows alone account for almost all the dispersion in fund values.

By optimally matching estimated deal flow and screening, we can improve the average fund value

by 2.5 percent. This corresponds to the unrealized gain from complementarity.
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CHAPTER 1. Fees and Language of Unit Investment Trusts

1.1 Introduction

We explore how the language money managers use in the marketing material may affect the

fees that they charge. Specifically, can one fund with the same strategy as another charge a higher

fee by describing its strategy differently? If so, what kind of languages are associated with higher

fees?

Understanding the role language plays in how investors shop for funds can provide insight into

the frictions and rationality within the market of asset management. If indeed investors pay higher

fees based on the marketing language alone, this could suggest a novel source of behavior bias

among investors. Alternatively, we can interpret the effect of the language on fees through the lens

of a search model. It is possible that the high-fee funds with well-written documents are flagship

funds with effectively low search costs to the investors. Both explanations shed light on the nature

of interactions between money managers and investors.

Ideally, we would like to compare the fees of two otherwise identical funds that only differ

in their descriptions of the strategies. However, since the strategies money managers employ are

dynamic, no two funds are truly identical. Even if the portfolios of two funds happen to align

at some moment, they will likely diverge once one fund makes a trade. In addition, the dynamic

actions of the money managers are usually unobservable to the economists. As such, it is difficult

to control for the underlying strategies of the funds and isolate the effect of the language on fees.

We address this issue by exploiting the unique features of Unit Investment Trusts(UITs), a class

of investment vehicles legally required to hold fixed portfolios. Consequently, when comparing two

UITs, we only need to look at their initial portfolios. There is no need to control for the difference

in market timing since it is muted for all UITs.
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However, even static portfolios of UITs are hard to compare, thus controlled for. Each portfolio

can be seen as a high dimensional object encompassing which companies to hold and how much of

each to hold. Even if we only consider the binary choice of whether to include any given company

into the portfolio, with 5000 potential companies, there are 25000 possible portfolio configurations.

To address the dimensionality problem, we employ collaborative filtering, a machine learning

technique that projects the portfolio onto a lower-dimensional space. Intuitively, we leverage the

collection of all UIT portfolios. By examining which UITs tend to hold similar companies, and

which companies are generally held by similar UITs, the algorithm picks up the latent structure

between UITs and companies. The resulting latent representations are essentially the most efficient

way of recovering the observed similarity between UITs and companies. We then cluster UITs based

on the latent representations to control for the variation in asset allocation.

To extract information in the investment objectives, we adopt Latent Dirichlet Allocation

(LDA), a generative language model. The outputs of LDA include a set of topics commonly

discussed in the investment objectives, as well as how much the investment objective of each UIT is

devoted to each topic. We have thus transformed each unstructured text into a discrete distribution

over topics, which we can much more easily analyze with the fees.

We interpret the meanings of topics by examining the words most commonly used within each

topic. Upon inspection, certain topics correspond to specific fields such as infrastructure and tech-

nology. Other topics focus on the criterion of stock selection, diversification, and stock weighting.

One topic stands out for the purpose of our paper, which we refer to as “marketing”. The repre-

sentative words under this topic include best, rank, prospect, peer, and favor.

We then regress the fees of UITs on the latent representations of portfolios and topics distribu-

tion of the investment objective. By introducing topic distributions, the adjusted R2 increase from

19% to 31%, even after controlling for the portfolio and other features of UITs. We conclude the

description of the portfolios is significantly correlated to fees, even conditioning on the underlying

portfolios.
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Among topics covered in the investment objective, more discussions on the stock selection

process, benefits of diversification and stock weightings are associated with higher fees. UITs whose

investment statements include more marketing languages also have higher fees. These results are

consistent with the aforementioned behavioral bias of investors and the role language plays in the

context of search frictions.

This paper also contributes to the literature as the first systematic review of UIT portfolios.

In addition to providing main institutional backgrounds on the industry, we document that the

typical UIT holds a 1/N portfolios with around 30 stocks, has a lifespan of 2 years, and charges

an annualized sales load of 2%. Equity UITs tend to invest in blue-chip companies and there is no

evidence of outperformance relative to common benchmarks.

Section 1.2 summarizes the basic institutional backgrounds of the UIT industry. In section 1.3

we discuss the dataset and show some high-level statistics. In section 1.4 we examine the relationship

between the language and the fee. Section 1.5 discusses the results. Section 1.6 reviews related

literature. Section 1.7 concludes.

1.2 Overview of the UIT Industry

A Unit Investment Trust (UIT) is a unique type of investment product with a buy-and-hold

portfolio and predetermined termination date. Like mutual funds, UITs offer redeemable shares

that allow investors to cash out. However, as required by law, there is no trading during the life of

the trusts1.

Despite its low name recognition, UIT is actually one of the four types of registered investment

companies classified under the Investment Company Act of 1940. The others are mutual funds,

exchange-traded funds (ETFs), and closed-end funds (CEFs).

While UITs account for a small fraction of the total market share of investment companies,

they have received an even smaller share of scrutiny from both academia and the public. As of

1There are special scenarios where trading is allowed, as stated in the prospectus. Specifically, if some underlying
company undergoes an M&A or bankruptcy, the issuer of the trust is allowed to liquid the position and substitute
with similar investments.
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2018, total investments in UIT is $70B. For comparison, there is $17T invested in mutual funds,

$3T in ETF, and $250B in closed-end funds. While smaller than its sibling, the absolute amount

of $70B is still sizable and should warrant UITs some attention. However, a keyword search on

SSRN suggests only 6 research papers mention UIT in some capacity (the same numbers are 3421

for mutual fund, 430 for ETF, 150 for CEF).

Given the limited exposure, we highlight in this section some institutional details and common

questions regarding UITs.

1.2.1 History and aggregate trends

The first UIT was issued in 1961. Its portfolio consists of solely tax-exempt municipal bonds.

Historically, the majority of the asset under management of UITs are in bond securities. During

the earlier days, UITs are mainly used for investors to gain exposure while achieving diversification.

In particular, UITs are used to gain access to the bond market, both taxable and tax-exempt.

The recent decades have witnessed a shift in the composition of UIT investments, in particular,

the rise of equity UITs. Equity UITs have taken over the industry, both in terms of the number

of trusts and the total asset under management. As of 2018, equity UITs account for 86% of the

total UIT net assets.

The overall size of the UIT industry has fluctuated between $30B and $100B for the past two

decades. In comparison, the same period has seen a steep increase in the size of both mutual funds

and ETFs. Effectively, the market share of UITs has decreased drastically, in large part because of

the advancement of information technology and alternative trading venues becoming cheaper and

more accessible.

1.2.2 Participants

For each UIT, there are two important parties: the sponsor and the trustee. The sponsor is

the issuer of the UIT, responsible for constructing the underlying portfolio. The trustee is the

custodian of the UIT, who is in charge of bookkeeping and meeting reporting requirements.
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The sponsors are often themselves broker-dealers of the UITs they construct. The entire UIT

industry is dominated by 5 players: First Trust, advisors asset management(AAM), Guggenheim,

Invesco, and Van Kampen. Each of them constructs their own UITs and sell them directly on their

websites. Some also distribute UITs through other verified broker-dealers. As a result, the sponsors

are compensated by the organization costs and the sales fee.

Sponsors are not required to maintain a secondary exchange for the UITs they issue. However,

all of the major sponsors do.

The trustees are usually banks such as BNY Mellon and Chase. Trustees are compensated for

operating expenses. In addition to overseeing the trust, the trustee sometimes serves as the provider

of the seeding capital. In this case, the sponsor first applies for a line of credit from the trustee. The

sponsor then uses the capital to purchase the underlying securities of the UIT portfolio. Finally,

the securities are deposited to the trustees in exchange for the certificates representing the units of

the UIT, which are then sold to the investors.

Since UITs, as required by law, possess buy-and-hold portfolios, there is no trading during the

life of the trusts. As such, there is no board of directors or investment advisers.

The identities of the investors for UIT can not be explicitly found. However, from the minimum

purchasing requirements stated on the prospectus, retail investors are the target demographic.

There is a minimum purchase of $1,000 for each UIT. For investment under the IRA, the amount

drops to $500.

1.2.3 UIT vs. alternatives

The most distinct features of UITs compared with other types of investment vehicles are the

predetermined termination date the absence of trading. According to UIT sponsors’ marketing

materials, investors should invest in a UIT if they value: (a) diversification (b) transparency, and

(c) capital utilization. Investors of UITs are those who seek to achieve the degree of diversification

commensurate to mutual funds, but do not trust money managers enough to make trades on their
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behalves. In this regard, the UITs are similar to index mutual funds, though UITs do not follow

any particular indices.

As UITs are structured as pass-through entities, the tax implication regarding dividends is the

same as if the underlying securities are held by the investors directly. In terms of capital gain,

since the termination date is pre-specified, investors have better control over when the capital gain

is realized. In contrast, mutual funds tend to realize gain at the year-end.

1.3 Data

The main source of data is the collection of Form 487s, the prospectus of UITs. We focus on

equity funds from three of the largest sponsors: First Trust, Advisors Asset Management, and

Guggenheim. Together these three sponsors account for 55% of all Form 487s available in SEC’s

EDGAR database. For each UIT, we extract from its prospectus the complete information on its

portfolio. For each underlying investment, we obtain the ticker, the name, and the portfolio weight.

Also, for each UIT, we observe the inception date, termination date, as well as information on fees,

including sales charge, organization cost, and expense ratio.

We then matched the portfolio information with data on returns from CRSP to construct a

panel data set of monthly UIT returns. In addition, we extract the time series of market returns

from CRSP, factors from Ken French’s website, and benchmark Vanguard index funds from Yahoo

Finance. Doing so allows us to evaluate the performance of the UIT investments against various

benchmark models. From CRSP we also obtain share class (common equity vs. CEF) and the

NAICS industry code for each underlying investment. Doing so enables us to examine asset al-

location across industries and asset types. After the necessary cleaning and formatting, the final

sample consists of 7490 UITs. The earliest UIT in the sample begins in June 2004 and the latest

July 2017.
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1.3.1 Fees and Durations

Table 1.A reports the summary statistics on fees, duration, and net asset. Panel A shows the

aggregate statistics. The average UIT has a life span of 2 years. The annualized organization cost

and sales load paid to sponsors are 0.17% and 2.02%, respectively. The average expense ratio paid

to the trustee is 0.81%. The average net asset as shown on the prospectus is at $164,339. Net assets

tend to cluster around $150,000 because it is the minimum required initial seeding capital for any

investment companies. The trust may receive additional flow after the initial issuing period. Hence

we do not interpret it as the actual size of the UIT.

Panel B reports the same statistics for each trust type. Among all UITs in the data set, 4396

invest solely in common equity; 1744 invest solely in Closed-End Funds; The remaining 1350 are

hybrid UITs investing in a mixture of the common equities and CEFs. We hereafter refer to them

as equity UITs, CEF UITs, and hybrid UITs.

All three types of UITs have similar durations and fees. The only significant difference is

in expense ratio, where CEF UITs and hybrid UITs on average charge 1.45% and 1.75%. In

contrast, the average equity trust charges only 0.25%. This is because the expense ratio reported

on prospectus also includes the expense ratio of the underlying funds if there are CEFs in the

portfolio.

Panel C further breakdowns the sample by sponsor identity. Here we see First Trust (FT)

accounts for over half of the sample. However, there are no significant differences across sponsors

in terms of fees and duration, conditional on the trust types.

Note from above that the sales load accounts for the majority of the total compensation to

the sponsors. In addition, the dispersion in sales load across all UITs is larger than that of the

organization costs: the standard deviation is 0.41% for sales load and only 0.09% for organization

costs. The organization costs can thus be interpreted as a constant overhead. As such, we only

consider the sales load when exploring the variation in the costs of UITs in the later sections.

Here we need to note the correlation between sales load and duration. While the previous

statistics are based on annualized sales load, the prospectus only reports the total sales load. Figure
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1.1 illustrates the schedule of sales charge, which plots the total sales load against the duration of

the UITs. The majority of UITs fall into one of three clusters: 15-month duration charging 2.95%

sales fee; 2-year duration charging 3.95% sales fee; and 5-year duration charging 4.95%. Effectively,

the longer the duration of a UIT, the lower the sales load is in annualized terms.

Since duration and sales load are highly correlated, it will be difficult to disentangle which is

causing which. Here we take the stance that the dispersion in fees is the driver. Specifically, given

the established sales fee schedule, sponsors effectively charge a higher annualized fee by shortening

the duration of the UITs. While the data or the institutional backgrounds provide little clarification,

there is anecdotal evidence in support of this assumption2.

1.3.2 Portfolio and Investment Objectives

We mentioned that UITs have buy-and-hold portfolios. So what kind of securities do they

hold? How many securities do each hold? and how are assets allocated across those securities?

In this section, we describe the portfolios of the UITs in our sample and provide answers to these

questions.

From Panel A of Table 1.2, we see the median UIT portfolio holds 30 different securities. 90%

of the UIT portfolios hold less than 60 securities. Hybrid UITs on average hold more securities

with an average of 40, followed by equity UITs’ 38 and CEF UITs’ 38. The UIT with the most

unique number of holdings is an equity fund holding 187 different securities. Compared with index

funds tracking S$P 500 or Russell 2000’s, UITs are more selective in terms of portfolio formation.

UITs usually assign portfolio weights of 1/N to all the securities in the portfolio. Let [w1, w2, . . . , wN ]

be the portfolio weights (in percentage) of a UIT investing in N distinct companies (such that∑N
i wi = 100). We define the maximum 1/N deviation as maxi=1,...,N |wi − 100/N |. 3 Panel B of

table 1.2 reports that 75% of the UITs have maximum 1/N deviation less than 0.87. In particular,

2“Raymond James Agrees to Pay $15 Million for Improperly Charging Retail Investors” Associates at Raymond
James were fined for recommending that customers liquidate their positions earlier than necessary, effectively short-
ening the holding period and incurring higher annualized fee. This suggests sponsors at least are aware that variation
in duration can be used to charge differential fees.

3For example, for a portfolio with five stocks with portfolio weights 16%, 20%, 20%, 22% and 22%, the maximum
1/N deviation is |20− 16| = 4.

https://www.sec.gov/news/press-release/2019-178
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equity UITs have a median maximum 1/N deviation of only 0.03. For comparison, the largest

position in S&P 500 is Apple, which account for more than 4% of the total portfolio value. Thus

the maximum 1/N deviation for an S&P Index would be closed to 4-0.2 = 3.8.

Note that the 1/N portfolio weights apply only at the inception of the UIT. Since UITs have

buy-and-hold portfolios, as the prices of underlying securities change during the trust’s life, the

portfolio weight would typically deviate from 1/N.

Panel C of Table 1.2 briefly comments on the investment objectives of the trusts. Here we only

report the word counts. The average investment objective contains 305 words. The dispersion

in word counts is larger among equity UITs than among CEF or hybrid UITs. We defer a more

detailed analysis of the language in the next section.

Table 1.3 lists the names and counts of the top common equities and Closed-end funds held

by UITs in our sample. Among 4396 equity funds, 1113 have a positive position in Pfizer, 1019

in Chevron, 1018 in AT&T, 999 in Verizon. Each of the above companies appears in more than a

quarter of all the equity trusts. All top 20 companies held by equity UITs are blue-chip companies.

For CEF UITs, closed-end funds from Invesco, Wells Fargo, and Eaton Vance are among the most

held.

While some common equities and CEFs are held frequently by the UITs, most securities in the

universe appear sparingly. Figure 1.2 plots the numbers of appearances for all equities and CEFs.

For equity UITs, the blue-chip companies from Table 3 only represent a tiny slice of the entire set

of firms. Specifically, less than 1% of the companies are held by more than 10% of the equity UITs,

whereas more than 75% of the companies are held by less than 1% of the companies. The difference

within CEFs is smaller. Around 2% of the CEFs are held by more than 10% of the CEF UITs and

only 15% of the CEFs are held by less than 1% of the CEF UITs. In other words, it is much more

likely for CEFs to occur in multiple UITs than common equities.
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1.3.3 Performance

Based on portfolio information, we construct monthly returns for each UIT. We then construct

aggregate UIT portfolios as well as UIT portfolios based on trust types. Specifically, for each

month, the return of the aggregate portfolio is the simple average of all active UITs in that month.

We then evaluate the time series of returns against the CAPM, Fama-French 3 Factor Model, the

Carhart 4-factor model, and the model relative a set of Vanguard Index funds as suggest by Berk

and van Binsbergen (2015). There is no evidence of outperformance or underperformance.

1.4 Language as drivers of dispersion in fees

The main goal of this paper is to show how the description of an investment product by the

money managers can influence the fees investors are willing to pay. If there is a relationship, what

are investors inferring from the descriptions? Are the descriptions informative about the skill of

the managers or are the writings more of a marketing tool that misguides investors into paying a

higher fee?

Isolating the effect of language is difficult since how the investment product is described is

likely correlated with other features of the products. For example, mutual funds focusing on the

energy sector will devote a sizable portion of their marketing materials on topics related to the

energy sector. Without controlling for what is being invested, one might falsely conclude it is the

description on the energy sector that allows a fund to charge a higher fee, whereas it is that the

higher fees reflect the higher transaction cost of trading companies in the energy sector.

For any investment products, two essential features that need to be controlled for are asset

allocation and market timing. In terms of asset allocation, even though certain mutual funds are

required to disclose their holding on a quarterly basis, there is a concern of window dressing. So even

if two funds disclose similar holdings on the reports, they could have different positions most of the

remaining time. Market timing is even more problematic. When an investor invests with a certain

active fund, she is trusting the dynamic decisions of the money manager. Two money managers can
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trade different assets at different times, charge different prices, and provide different descriptions of

their strategies. Correlation cannot be established if the first two cannot be reasonably controlled.

The unique legal features of UITs allow us to plausibly control for asset allocation and market

timing. Specifically, the law prohibiting interim trading eliminates any variation in market timing.

Given the buy-and-hold nature of the portfolios, it suffices to compare only UITs at their inceptions.

Our goal is to investigate whether two UITs with similar portfolios indeed charge similar fees. If

not, how much of the difference in fees is correlated with the difference in how they are described?

1.4.1 Portfolio representation

By focusing on UITs, we decrease the number of controls significantly. However, even for buy-

and-holding portfolios, the dimensionality problem still exists. For equity trusts, there are over

4000 potential securities. Even if we only consider the binary choices of whether to invest in each

company, there are still more than 24000 possible combinations. As such, rarely are two portfolios

identical. It is then impossible to explore the additional impact of language since fees can already

be explained by the portfolio alone. In this section, we lay out our procedure of projecting portfolios

onto a much more manageable lower-dimensional latent space.

In addition to dimensionality concerns, there is another reason for finding latent representations

of the portfolios. Since our goal is to investigate the effects of portfolio description on consumers, we

should summarize the portfolio with the level of sophistication comparable to the mental capacity

of the UIT investors. It is unlikely that the investors of the UITs scrutinize every single holding

when comparing two UIT. The latent representation essentially captures the investors’ perception

of the portfolio. The assumption is that two UITs with the identical latent representations are the

same subject to investors’ mental bandwidth.

To obtain the latent representation, we employ collaborative filtering, a class of algorithms

for detecting patterns in large sparse datasets. Collaborative filtering is most commonly used in

recommender systems by Netflix and Amazon. In Netflix’s case, they maintain a sparse dataset

connecting a set of users and a set of movies. In order to decide which movies a given user is
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more likely to enjoy, the algorithm ranks all movies based on ratings of other users with similar

preferences. To determine which users have similar preferences, the algorithm compares their

existing ratings on movies.

In the context of collaborative filtering, each dimension of the latent representation should

capture an aspect of the movie that best explains the observed rating patterns. For Netflix, each

dimension might represent a particular genre, say thrillers. For each movie, the value along that

dimension in its latent representation captures how closely that movie can be categorized as a

thriller. And for the latent representation of a user, the value would represent how much the user

prefers thrillers.

In our context, for the underlying companies, each dimension of latent representation could

represent its industry, size, or other characteristics. For the UITs, the same latent dimension could

correspond to how much of the strategy prioritizes the specific characteristics.

The advantage of collaborative filtering is that it imposes no prior on how we should compare

different portfolios. As we saw in the previous section, UITs portfolios do not fall cleanly into

sector buckets. While companies differ in numerous ways, the features derived from the latent

representations are what UIT managers and investors deem the most important.

The specific algorithm we use is Non-negative Matrix Factorization (NMF). Formally, The

collection of all portfolios can be considered as an aggregate holding matrix H with n rows and m

columns. Here n is the number of equity UITs and m is the number of companies that appears in

at least one UIT. The ij’th entry of H is 1 if the ith UIT has a positive position in security j, and

0 otherwise. Figure 1.3 illustrates the aggregate holding matrix of all equity UITs. The matrix

is sparse as the average UIT invests only 30 out of more than 4000 potential companies. Certain

columns are relatively dense with dots – these correspond to the popular blue-chip companies listed

in Table 1.3.
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Let k be the number of latent dimensions. We can express the collection of latent representations

of the UIT as T =



T1

T2

...

Tn


where Ti =

[
Ti1 Ti2 . . . Tik

]
is the latent representation for the ith

trust. Similarly let S be representation for the securities. NMF can be formulated as the following

minimization problem:

min
T,S
||H − TS′||22 =

n∑
i

m∑
i

(
Hij −

k∑
l

TilSjl

)2

(1.1)

where T is n× k, S is m× k. Both T and S have non-negative entries.

There are two reasons why we use a binary entry for H instead of the actual portfolio weight.

First, as noted in the previous section, since most trusts tend to hold 1/N portfolios, conditioning

on the number of holdings, there is little variation in portfolio weights. Secondly, a binary entry

offers an intuitive interpretation. The latent representation of a UIT and each company can be

regarded as a vector of unit length. Each entry Hij in the holding matrix approximated by the

inner product of Ti and Sj . Note the inner product is at most 1 when Ti = Sj and at least 0 when

Ti and Sj are orthogonal. In this case, the entries in H are indeed the similarity measures.

Alternatively, NMF provides an estimator to the following underlying data generating process:

Hij = Ti × Sj + εij (1.2)

with the added assumption that εij are iid and satisfies the regularity conditions.

An iterative algorithm is used for estimation. The algorithm also sheds light on the intuition

of what we are trying to achieve. Within each step, the algorithm first fixes T and optimizes with

respect to S; the algorithm then fixes S and optimizes with respect to T . The former embodies

the idea that a UIT should invest in companies consistent with its objective; the latter states the

objective of a UIT is informed by the companies it invests in.
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Table 1.4 summarizes the estimation results when k is 20.4 To interpret what each dimension

represents, we list the names of the top UITs and securities that load the most along the particular

dimension. The order in Table 1.4 has no particular meaning since all dimensions are estimated

simultaneously. Certain dimensions represent specific industries. Examples are dimension 2 for

Health Care, 3 For Real Estate, 5 for financial firms, 6 for agriculture, 16 for technology, 18 for

utility, and 20 for energy.

More interesting are the dimensions representing other characteristics of the underlying com-

panies. From the names of representative UITs for dimension 4,9,14,15,17, all seem to aim for high

dividend or equity income. However, the estimation results suggest they are different enough. In-

deed, by examining the top 2 representative companies, we see that these 5 dimensions are picking

up different companies.

The above highlights the advantage of employing collaborative filtering as a tool for dimension

reduction. Since the market for UITs is separated from the market of the typical investment

products, the metrics UIT investors use to compare companies are not known to us. We could have

used a set of common controls like industries and key financial variables as the latent representation.

However, we would capture certain features that UIT investors are indifferent about, and overlook

certain features normally not used to describe the firms – like the features that distinguish companies

with high dividends.

For robustness checks, we also implement the same algorithms (1) without the non-negativity

conditions (2) with Principal Component Analysis instead of NMF, and (3) use actual portfolio

weights. The results are robust to different specifications.

In the subsequent sections, we will use these latent representations T for UITs as inputs for

further analysis and assume that they capture all significant variations in portfolios.

4Here the number 20 is chosen as a heuristics. We run the same exercise for k = 10, 20, 30 and obtain similar
results.
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1.4.2 Text Representation

We adopt a bag-of-words model. Conceptually, we deconstruct a block of text into word counts,

ignoring their orders. For example, ”When you invest in a Trust you are purchasing a quality

portfolio of attractive common stocks in one convenient purchase” will be translated into [When :

1, Y ou : 2, invest : 1, T rust : 1, purchasing : 1, . . .]. In practice, we remove stop words such as

the, a, in since they provide little insight. We also combine derivationally related words. In the

previous example, both purchase and purchasing would then be counted toward the same token.

Similar to the portfolio, texts even simplified as bags of words are still high dimensional objects.

Hence we rely on Latent Dirichlet Allocation (LDA), a generative language model commonly used

in topic modeling. The most prevalent usage of LDA is to classify news articles into topics such as

politics, sport, and entertainment. The idea is that certain words appear often and concurrently

only in certain contexts. Here we are doing the same thing for the collection of investment objectives.

Similar to collaborative filtering, LDA lets the texts speak for themselves what the common topics

should be.

We formally describe the underlying model of LDA. Suppose there are k topics. For each

document i, let Pi = {pi1, pi2, . . . , pik} be the distribution over the potential topics. Intuitively, pij

measures the fraction of document i written on topic j.
∑k

j pij = 1

For each topic j, let Qj = {qj1, qj2, . . . , qjN} be the discrete distribution over the dictionary

of all available words. Here N is the number of distinct words in the corpus, the collection of all

documents. Let W = [w1, w2, . . . , wN ] be the dictionary. qj1 measures how often word w1 appears

under topic j.

Under LDA, each document i is generated in the following fashion. For each word in document

i, a topic j is sampled according to the topic distribution Pi. Then based on the selected topic j,

a word is chosen according to Qj .
5

5In fact, the topic distribution for each document, Pi, is first sampled from a Dirichlet distribution characterized by
parameter αi, i = 1, 2, . . . , k. α and q are the parameters estimated by LDA. Pi is in fact the latent topic distribution
that is neither the parameter nor observable.
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Here we combine the investment objectives of all UITs when estimating the LDA model. Specifi-

cally, we do not distinguish between equity UITs and CEF UITs as we did for the portfolio represen-

tation. Even though the portfolios of equity UITs and CEF UITs do not overlap, the language the

sponsor use to describe them could share common themes. By estimating over the entire sample,

we are capturing these commonalities. We estimate the model with 14 topics.6

To best interpret each topic, we find words that are most representative of the topic. Specifically,

for each word w, we compute the conditional distributions for all topics. That is

rjw = P (topic j|word w) =
qjw∑k
i=1 qiw

(1.3)

In figure 1.4, for each topic, we show the word cloud consisted of the top 15 words based on the

words’ conditional probability. The size of the words reflects the magnitudes of the conditional

probability.

Here it is important to note the difference between qjw, P (word w|topic j) and rjw, P (topic j|word w).

Though the former is defined as part of the data generating process, it is not useful in uncovering

the meanings of the topics. In fact, words like stock and invest rank consistently high for multiple

topics. And that is precisely why they are not informative about the unique aspects of each topic.

In Figure 1.4, the overall frequency of a word is represented by its darkness. We see most words

that are reliable signals of certain topics are not frequently observed words, with the exceptions of

closed, end, fund, and tax.

From the word clouds, we can infer the meaning of each topic. In the Appendix, we also provide

the sample investment objectives for each topic. Similar to the latent representation of portfolios,

certain topics are industry-specific. For example, there is one topic dedicated to REIT, one to

infrastructure, two on different aspects of the tech industry, and one for CEF overall.

The majority of the topics, however, are not industry-specific. For example, the topic which

we denote stock basic includes basic accounting and finance terms typically used to analyze a

stock – cap, style, book, analyst; The topic stock Selection include words associated with the exact

6There is no strict guideline regarding what the optimal number of topics should be. Here choose 14 based on
perpexity, which measures the performance of language model over the holdout sample.
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steps of constructing a portfolio – method, step, target, inclusion. Topics Diversification and

Stock Weighting are self-explanatory and echos the features of UITs discussed in the previous

sections.

Perhaps the most interesting is the topic which we call marketing. Word best ranks highest

within this group. Based on other signal words such as rank, favor, insider, and prospect, and

the representative documents, we can infer that this topic is less about objective description and

more about subjective persuasion, hence the name marketing7. As we investigate the effects of

language, we will pay particular attention to the specific impact of this topic.

Figure 1.5 shows the average topic allocation for both equity UITs and CEF UITs. Topics such

as Stock Basic and Stock Selection are mainly included in equity UITs whereas CEF and Tax

are only discussed in CEF UITs’ investment objective.

The result of LDA yields 14 topics with our inferred meaning. For each UIT, the estimated

topic distribution Pi informs how the entire investment objective is split among discussions on these

14 topics. In the next section, we will use Pi, the distribution over 14 discrete topics as input for

text.

While there are other state-of-the-art language models that can account for structure and

grammar, the bag-of-word model we use here serves as a first pass. In the next section we will

show that even after discarding some information within the text, the remained still captures a

significant portion of the variation in fees, conditional on the portfolio. Future extensions could

employ more complex language models and see if more insights can be drawn.

1.4.3 Do Portfolio Descriptions Matter for Fee?

One direct way of testing whether the texts in investment objectives can explain the dispersion

in fees beyond the portfolios is to regress fee with and without text and compare the adjusted R2.

7Here the appearance of insider may seem surprising. A sample usage is “our conviction related to companies
which may have had recent insider buying in open market purchases by officers and directors” the UIT managers are
not claiming access to insider information. The above usage is more akin to the usage of best
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If the adjusted R2 increases significantly, then we can conclude that at least a portion of the fees

is correlated with the language that is used.

Specifically, for both samples of equity UITs and CEF UITs, we estimate the following 5 spec-

ifications:

Feei = β0 + Controlsi + εi (1.4)

Feei = β0 + Controlsi + β1Port Basicsi + εi (1.5)

Feei = β0 + Controlsi + β1Port Basicsi + β2C (Ti) + εi (1.6)

Feei = β0 + Controlsi + β1Port Basicsi + β2C (Ti) + β3Text basicsi + εi (1.7)

Feei = β0 + Controlsi + β1Port Basicsi + β2C (Ti) + β3Text basicsi + β4Pi + εi (1.8)

For each UIT i, Controli includes sponsor and year fixed-effects. Port Basics are basic portfolio

characteristics outlined in Table 1.2, which includes how many securities are in the portfolio, and

how close are the portfolio weights to 1/N. Text Basics include word counts as reported in Panel

C of 1.2. Pi is the output of LDA.

Unlike Pi, which are distributions operating in a linear fashion, Ti, the latent representation of

portfolio is an non-linear object that cannot be directly feed into the linear specification. As a result,

we assign each UIT into one of 20 groups corresponding to the dimension of the latent representation

that Ti loads the most on. Specifically, we assign UIT i to group C (Ti) = arg maxj∈{1,2,...,k}Tij .

We then use group C (Ti) to capture the variation in portfolio compositions.

Figure 1.6 shows the level of R2 for each of the 5 specifications on both Equity trusts and

CEF trusts. For Equity trusts. The fixed effects alone explain less than 5% of the total variation.

Introducing basic portfolio variables does little. By introducing the C(Ti), which by assumption

encompass all there is about the portfolio, we increase the adjusted R2 by 12 percentage points. We

then investigate the effect of including text features. Adding word counts alone has little effects.

However, once we introduce topic distribution Pi into the right-hand side, the adjusted R2 increases

by an additional 12 percentage points from 19% to 31%. We conclude that for equity UITs, the
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language used in the investment objective is indeed correlated with the fee, even after accounting

for the actual portfolio.

For CEF UITs, however, we do not observe an increase in adjusted R2 of the same magnitudes.

Sponsor and year fixed effects alone can already account for 30% of the total variations in fees.

Introducing text into the specification increases the adjusted R2 by less than 3 percentage points.

One valid critique on constructing portfolio groups C(Ti) is that certain variation in the latent

representation is lost in the clustering process. If so, the increase in adjusted R2 from texts could

be the result of fees and texts both correlating to the omitted portion of the portfolio. To address

this concern, we run a robustness test with Ti as the input instead C(Ti). We see similar levels of

adjusted R2 across all 5 specifications.

1.4.4 Which topics have the most impact on fees?

The previous section establishes that language is correlated with fees for equity UITs. In this

section, we further investigate which topics are associated with higher fees and which with lower fees.

We adopt the full specification in (1.8). We exclude the element in Pi corresponding to Stock Basic

since it is the most common topic among equity UITs. As such, the coefficient corresponding to

other topics is measured relative to Stock Basic.

Figure 1.7 plots β̂4, the estimated vector of coefficients for all 14 topics other than Stock Basic.

We also highlight the significance by drawing the confidence interval. Among all topics, Marketing,

Diversification, Stock Selection, and Stock Weighting have the largest significant estimates.

Specifically, a 1% increase in the portion of investment objective devoting to marketing is associated

with a 1.42 basis point increase in the annualized sales fee charged. Similarly, an 1% increase in

the discussions on stock selection, stock weighting, and diversification is associated with 0.97, 0.84,

0.79 basis points, respectively.

The effects of these four topics are also economically significant. The standard deviations in

the fraction spent on these topics are 4.2% for marketing, 3.4% for Diversification, 11% for stock

selection, 9% for stock weighting. Hence one standard deviation increase in each of the above topics
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is associated with 6.00, 3.34, 9.77, 7.80 basis points increase in annual load, all of which are sizeable

relative to the sample standard deviation of 42 basis points among fees of equity UITs.

In contrast, discussions on Technology, CEF, and options are associated with lower fees, with

corresponding coefficients of -1.13, -0.96, -0.86. The magnitudes here are also economically signifi-

cant.

1.4.5 Heterogeneous Effect of Language

So far the specification assumes the topic distributions Pi affect the fees of UIT homogeneously.

In this section, we allow for heterogeneous effects on different types of portfolios. Specifically, we

estimate the following specification:

Feei = β0 + Controlsi + β1Port Basicsi + β2 (Ti) + β3Text basicsi + β4 (Ti)× Pi + εi (1.9)

Here β4 is a 20 by 13 matrix of coefficients. The ij’th entry of β4 measures the correlation between

topic j and fee for UITs in group i. Figure 1.8 reports the estimated coefficients for the above

mentioned topic with positive average correlation with fees. For each topic, we plot its coefficient

in each sub sample of portfolios.

The positive effects of marketing language on fees are most pronounced in certain sector UITs

such as R&D, Foreign Finance, and Utility, Tech, and Health. In particular, among R&D UITs, a

1% increase in the proportion document devoted to marketing is associated with an almost 6 basis

point increase in annual fees.

As for stock selection, stock weighting, and diversification, the positive average correlation with

fees is driven largely by the subsample effects over certain strategy UITs. For example, all three

topics have larger than the average correlation with fees among the group of income UITs labeled

as Income2.
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1.5 Discussion

1.5.1 Why are fees and language correlated?

The results in the previous sections imply how the investment objective is written have signif-

icant explanatory power in the variation in fees, even after controlling for all relevant features of

the underlying investment product. There are several potential reasons. The first is behavioral.

Investors are blinded by the sales pitch that they forgot the underlying portfolio is what matters

at the end of the day. This is consistent with the average effects of the discussions on marketing

on the fees.

Alternatively, the correlation can be rationalized under an environment with search friction.

Consider a sponsor issuing several funds with one flagship fund. The prospectus of the flagship

fund likely provides more detailed descriptions of how stocks are selected, more thoroughly reviews

the benefits of diversification, and makes a more convincing marketing pitch. The flagship fund

can also charge a higher fee because it is likely the first option a prospective investor encounters.

This effectively reduces its search cost to investors. Hence investors are willing to pay higher for

the flagship fund even if the underlying portfolios are identical. Under this setup, the correlation

between language and fees are rooted in the common correlation with the status of the flagship.

1.5.2 Why haven’t money managers exploits the effect of language?

If how the prospectus is written can influence how much investors are willing to pay for a fund,

why aren’t all UIT portfolios described optimally? In particular, if a higher fraction of marketing

languages can increase fees charged, we should expect its usage to be much more prevalent and take

a larger portion of the investment objective. It is unlikely, though possible, that UIT managers

simply have not fully understood the effect of the descriptions themselves.

One explanation is that the fees can only be altered by the investment objectives to a certain

degree. While the UIT managers can marginally devote a larger portion of the text on marketing

and charge a higher fee, there is an upper bound over which the usage of marketing becomes

excessive and lose its effectiveness. After all, the investment objective needs to be about the
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strategy. It is possible the amount of marketing we observe in the description of each UIT is

already optimal given this constraint.

Alternatively, money managers may use different styles of descriptions to achieve price discrim-

ination. Suppose only some UIT investors are influenced by the descriptions while the others are

unaffected. With the same portfolio, the UIT managers can retain the latter group with a low

fee option with plain description, and exploit the former group with a high fee option with flashy

languages.

1.6 Related Literature

There are many papers in the finance literature investigating the roles of text. Antweiler

and Frank (2004) shows that the texts extracted from online stock trading boards can significantly

predict future trading volumes. Loughran and Mcdonald (2011) shows that sentiment analysis used

elsewhere cannot be directly applied to financial reports since words take on different sentiments.

Loughran and Mcdonald (2016) provides a survey of recent applications of textual analysis to

problems in finance and accounting. Papers closest to ours are Hwang and Kim (2017), who show

that closed-end funds with easier-to-read disclosure documents tend to have higher values, and

Hillert et al. (2014), who show the tone mutual fund managers use in the letters to their investors

significantly affect flow. This paper is the first to look at the texts in investment objectives of

funds, and examine its relationship with fees.

This paper provides an explanation of the enormous dispersion in mutual fund fees, as first

documented by Hortacsu and Syverson (2004). Under the friction-less model of Berk and Green

(2004), the dispersion in fee reflects the discrepancies in money managers’ skill. Empirical evidence

from Bailey et al. (2011) and others suggest that behavioral biases of investors also play a significant

role8.

8Choi et al. (2010) and Beshears et al. (2009) conducted experiments and found investors confused or overlook fees.
Bergstresser et al. (2009) shows that broker-sold stocks perform worse but charge higher fees. Cronqvist (2006) and
Aydogdu and Wellman (2011) show a significant effect of advertising on fund flows despite no relationship between ad
expenditure and fund performance. GENNAIOLI et al. (2015) propose a theory where the trust the money managers
provide can also justify a portion of the fees. All of the above are consistent with the behavior bias of investors.
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Alternatively, the dispersions in fees can be interpreted as the equilibrium outcome featuring

search frictions. Hortacsu and Syverson (2004) structurally estimate a search model and quantify

the magnitudes of investor search cost. Carlin (2009) develops a similar model featuring endogenous

product complexity and differentiation. Armstrong et al. (2009) in their model show that high-

quality funds have the greatest incentive to become prominent, which is associated with the lowest

search cost. The results of this paper provide additional support for both the behavioral and the

search cost stories.

Methodology wise, this paper relies on the work of Blei et al. (2003) on Latent Dirichlet Alloca-

tion. Lee and Seung (1999) first outlines the implementation of non-negative matrix factorization

as a way to learn parts of faces and semantic features of texts. To measure fund performance, we

rely on the 4-factor model put forth in Carhart (1997). We also use a set of Vanguard index funds

as alternatives for benchmark assets as suggested by Berk and van Binsbergen (2015).

1.7 Conclusion

We explore the relationship between UIT sales fees and how the investment objectives are

stated. By focusing on UITs and leveraging collaborative filtering and LDA, we can isolate and

quantify the relationship between texts and the fees. Under our statistical assumptions, how a

UIT is described can affect the fee charged. In particular, more marketing languages, discussion

on stock selection, diversification are associated with higher fees. The above results are consistent

with investors possessing behavior bias. It also sheds light on the role strategy descriptions play in

an environment with search frictions.

While the environment of UITs provides a laboratory where the effect of market timing is

eliminated, the external validity concern arises. After all, UITs constitute a rather small and

obscure segment of the much larger asset management market. How UIT investors behave may not

be representative of the average investor. Information on the identities of the UIT investors may

be informative regarding the severity of this concern.
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Overall, UITs deserve much more attention from researchers. While this paper constructs the

first UIT dataset containing portfolio information, future researches including additional informa-

tion on size, flow, and investor identity will be better equipped to leverage the its unique features.

1.A Figures and Tables

.



25

P
an

el
A

:
A

gg
re

ga
te

S
ta

ti
st

ic
s

d
u
ra
ti
on

a
n
n
u
a
l
or
g
co
st

ex
p
en
se

a
n
n
u
a
l
lo
a
d

n
et
a
ss
et

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
N

24
.1

5
11

.6
1

0.
18

0
.0

9
0
.8

2
0
.7

4
2
.0

2
0
.4

1
1
6
4
3
3
9
.0

3
5
8
5
3
3
.0

9
7
4
9
0

P
an

el
B

:
B

re
ak

d
ow

n
b
y

tr
u

st
ty

p
es

d
u
ra
ti
on

a
n
n
u
a
l
or
g
co
st

ex
p
en
se

a
n
n
u
a
l
lo
a
d

n
et
a
ss
et

tr
u

st
ty

p
e

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
N

C
E

F
25

.7
0

10
.8

3
0.

15
0
.0

7
1
.7

6
0
.3

4
1
.9

8
0
.3

6
1
5
6
6
1
5
.0

7
1
1
0
0
3
.8

1
1
7
4
4

eq
u

it
y

22
.6

0
10

.7
9

0.
19

0
.1

0
0
.2

6
0
.1

4
2
.0

7
0
.4

2
1
6
9
9
2
9
.0

8
7
4
4
1
4
.3

4
4
3
9
6

h
y
b

ri
d

27
.1

6
14

.0
5

0.
16

0
.0

8
1
.4

4
0
.5

6
1
.9

4
0
.4

2
1
5
6
1
1
4
.3

9
2
4
0
0
2
.1

7
1
3
5
0

P
an

el
C

:
b

re
ak

d
ow

n
b
y

tr
u

st
ty

p
es

an
d

sp
on

so
r

d
u
ra
ti
on

a
n
n
u
a
l
or
g
co
st

ex
p
en
se

a
n
n
u
a
l
lo
a
d

n
et
a
ss
et

sp
on

so
r

tr
u

st
ty

p
e

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
m

ea
n

st
d

m
ea

n
st

d
N

A
A

M
C

E
F

22
.6

6
5.

75
0
.2

5
0
.0

6
1
.9

6
0
.4

2
2
.0

2
0
.2

5
1
4
8
9
3
4
.1

3
5
5
6
.3

0
2
1
2

eq
u

it
y

18
.7

7
4.

55
0
.3

0
0
.0

7
0
.3

0
0
.0

4
2
.1

7
0
.2

8
1
8
1
2
3
2
.0

1
1
2
0
5
0
9
.5

7
8
3
7

h
y
b

ri
d

21
.9

4
6.

46
0
.2

6
0
.0

7
1
.8

1
0
.5

6
2
.0

6
0
.2

5
1
4
8
7
8
6
.1

4
6
8
5
.3

0
2
0
5

F
T

C
E

F
26

.5
5

11
.6

8
0
.1

6
0
.0

5
1
.7

3
0
.3

1
1
.9

6
0
.3

8
1
5
8
5
2
0
.6

8
1
1
8
4
8
.3

6
1
3
4
5

eq
u

it
y

24
.0

5
12

.1
1

0
.1

9
0
.0

8
0
.2

3
0
.0

5
2
.0

3
0
.4

6
1
6
7
9
6
7
.6

4
5
8
1
3
7
.2

6
3
0
3
7

h
y
b

ri
d

29
.2

3
15

.5
3

0
.1

5
0
.0

6
1
.3

7
0
.4

9
1
.8

9
0
.4

6
1
5
7
5
9
9
.3

2
2
5
4
1
1
.6

9
9
8
5

G
u

gg
en

C
E

F
23

.0
7

7.
29

0
.0

4
0
.0

1
1
.7

4
0
.2

9
2
.0

5
0
.2

7
1
5
1
6
1
6
.8

2
1
1
4
7
.9

5
1
8
7

eq
u

it
y

20
.3

4
7.

25
0
.0

5
0
.0

1
0
.3

8
0
.3

5
2
.1

2
0
.2

9
1
6
3
2
1
7
.0

9
5
8
6
6
0
.5

8
5
2
2

h
y
b

ri
d

21
.1

4
5.

42
0
.0

5
0
.0

1
1
.3

7
0
.7

6
2
.1

4
0
.2

2
1
5
6
3
6
2
.0

8
2
8
4
2
3
.5

5
1
6
0

T
a
b

le
1
.1

.
S

u
m

m
a
ry

st
a
ti

st
ic

s
D
u
ra
ti
on

is
th

e
n
u
m

b
er

of
m

on
th

s
b

et
w

ee
n

th
e

in
ce

p
ti

on
d

at
e

an
d

th
e

te
rm

in
at

io
n

d
at

e;
a
n
n
u
a
l
or
g
co
st

is
th

e
a
n

n
u

a
li

ze
d

o
rg

a
n

iz
a
ti

on
co

st
in

p
er

ce
n
ta

ge
;
ex
p
en
se

is
th

e
an

n
u

al
ex

p
en

se
ra

ti
o

in
p

er
ce

n
ta

ge
;
a
n
n
u
a
l
lo
a
d

is
th

e
a
n
n
u

a
li

ze
d

m
ax

sa
le

s
ch

a
rg

e
in

p
er

ce
n
ta

ge
;
n
et
a
ss
et

is
th

e
to

ta
l

p
or

tf
ol

io
va

lu
e

in
d

ic
at

ed
on

th
e

p
ro

sp
ec

tu
s.

N
is

th
e

n
u

m
b

er
of

tr
u

st
s.

P
an

el
A

re
p

o
rt

s
th

e
ag

gr
eg

at
e

m
ea

n
an

d
st

an
d

ar
d

d
ev

ia
ti

on
fo

r
al

l
ab

ov
e

va
ri

ab
le

s.
P

an
el

B
re

p
or

ts
th

e
sa

m
e

st
at

is
ti

cs
fo

r
g
ro

u
p

s
b

a
se

d
o
n

tr
u
st

ty
p

es
.

C
E

F
U

IT
s

ar
e

th
os

e
in

ve
st

in
g

so
le

ly
in

C
lo

se
d

-E
n

d
fu

n
d

s;
E

q
u

it
y

U
IT

s
so

le
ly

in
co

m
m

on
eq

u
it

ie
s;

H
y
b
ri

d
U

IT
s

h
av

e
p

os
it

io
n

s
in

b
ot

h
C

E
F

s
an

d
eq

u
it

ie
s.

P
an

el
C

p
ro

v
id

es
fu

rt
h

er
b

re
ak

d
ow

n
b

as
ed

on
th

e
sp

o
n

so
r.



26

Figure 1.1. Scatter plot of UIT duration and max sales charge Duration is the number

of months between the months of inception and termination. Max sales charge is how much the

sponsor of the UIT is compensated for the construction of the UIT. The size of the dots indicate the

number of UIT with corresponding sales charge and duration. sales fees and duration are highly

correlated and form three clusters. UIT with around 15 months duration typically charge total sales

fee of 2.95%; UIT with around 24 months duration typically charge total sales fee of 3.95%; UIT

with around 60 months duration typically charge total sales fee of 4.95%. Therefore, the shorter

the UIT, the higher the effect annualized sales fee.
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Panel A: Number of Holdings

mean std min 10% 25% 50% 75% 90% max

Aggregate 35.25 24.41 5 15 25 30 39 60 187

CEF 23.78 9.43 7 11 16 24 30 36 78

equity 38.30 26.90 5 20 25 30 40 70 187

hybrid 40.15 24.75 8 16 25 32 50 75 140

Panel B: Portfolio Weights distribution

mean std min 10% 25% 50% 75% 90% max

Aggregate 0.83 1.69 0.00 0.00 0.01 0.06 0.87 2.46 12.61

CEF 1.44 1.88 0.00 0.02 0.18 0.80 1.83 3.74 12.56

equity 0.51 1.49 0.00 0.00 0.00 0.03 0.11 1.41 12.38

hybrid 1.06 1.80 0.00 0.00 0.01 0.33 1.21 3.20 12.61

Panel C: Investment Objective Word Count

mean std min 10% 25% 50% 75% 90% max

Aggregate 451.77 305.23 0 44.50 231 437.00 647.00 773 2559

CEF 398.97 166.42 0 76.00 335 423.00 487.25 601 924

equity 497.62 361.24 0 39.00 157 566.25 719.00 889 2559

hybrid 370.66 198.09 0 76.00 223 386.00 492.50 642 1340

Table 1.2. Portfolio and Text Overview Panel A outlines the number of unique securities each
UIT holds. The median UIT holds 30 different securities; Panel B illustrates how portfolio weights
are distributed across portfolio companies. The entry measures the max deviation in percentage
from 1/N allocation. For example, for a portfolio holding 20 companies, the average portfolio
weight is 5%. A max deviation of 1% would indicates each securites portfolio weight is between 4%
and 6%. We can see that for the median UIT, this is 0.06%, which close to 0. This shows almost all
UITs hold close to 1/N . For reference, the SP500 index fund hold around 500 companies with the
biggest position Apple accounting for 4% of the overall portfolio, which yields a 4% max deviation.
Panel C describes the number of words used in the investment objective.
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Figure 1.2. Sorted number of appearance in UITs The graph on the left illustrates equities;
the graph on the right illustrates the CEF trusts. On the x-axis is the indices corresponding to
portfolio companies, sorted by number of appearances in UIT portfolios. For each company, the
value on the graph is the number of UITs with positive position in the company. Specifically, 32
companies (< 1%) that are held by more than 400 UITs (10% of equity UIT) . 3287 companies
(> 75%) are held by less than 40 UITs. (1% of equity UIT); On the CEF side, 39 (2%) CEFs are
held by more than 180 CEF UITs (10% of CEF UIT), 220 (15%) are held by less than 18 CEFs (1
% of total CEF UITs)
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Figure 1.3. Visualization of portfolios of all equity UITs The above graph illustrates
the aggregate holding matrix H for all equity UITs. Rows correspond to UITs and the columns
represents portfolio companies. Each row is the portfolio for the corresponding UIT. A dot on row
i and column j indicates UIT i has a positive position in security j. The graph is sparse since
the average UIT holds less than 40 copmanies(out of more than 4000 possible securities). Certain
columns are dense relative to others. They correspond to the blue chip companies shown in Table
1.3
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Figure 1.4. Word Clouds of LDA Topics The above are the visualizations of the results from

LDA estimation. Each word cloud selects the top 15 associated with the given topic. The size of

the word reflects the the conditional probability of the word being drawn from the particular topic.

For example, the word best is a strong indicator of the topic named marketing. We use both the

word cloud and the representative documents in the Apppendix to infer the meaning of each topic.
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Figure 1.5. Average Topic Distributions for equity trusts and CEF Trusts The above
bar graph plots the average topic distribution for both equity trusts and CEF trusts. The topics
correspond to those in Figure 1.4
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Figure 1.6. Adjusted R2 when regressing fee on portfolio and text characteristics The
topic graph plots the adjusted R2 when regressing UIT fees over equity UITs. The label indicates
the independent variables. Controls include sponsor and year fixed effects. Port. basic inlcude
number of holdings and the portfolio weights; Port. Full is the clusters constructed from the
output of Matrix Factorization on portfolio; Text. Basic is the word count of investment objective;
Text Full is the topic distribution learned from LDA. The bottom graph do the same for CET UITs
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Figure 1.7. Effects on fee for different topic probabilities Each line plots the point estimate
along with the confidence interval for the coefficient corresponding to the label. For example, the
first row means that an 1% increase in the amount spent discussing the marketing is associated
with a 1.41 basis increase in fee.
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Figure 1.8. Effects on fee for different topic probabilities for various groups of port-

folios The graphs should be read similarly as Fig 1.7. The title of each subplots represents the

language topic; the y labels correspond to different portfolio groups.
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1.B Sample investment objective

Topic 1: Market Cap and Growth vs. Value

The objective of the Trust is to provide investors the potential for above-average capital appre-
ciation by investing in equity securities.

Based on the composition of the portfolio on the Initial Date of Deposit, the Trust is considered
a Large-Cap Blend Trust.

From time to time in the prospectus or in marketing materials we may identify a portfolio’s
style and capitalization characteristics to describe a trust. These characteristics are designed
to help you better understand how the Trust fits into your overall investment plan. These
characteristics are determined by the Sponsor as of the Initial Date of Deposit and, due to
changes in the value of the Securities, may vary thereafter. In addition, from time to time,
analysts and research professionals may apply different criteria to determine a Security’s style
and capitalization characteristics, which may result in designations which differ from those
arrived at by the Sponsor. In general, growth stocks are those with high relative price-to-book
ratios while value stocks are those with low relative price-to-book ratios. At least 65% of the
stocks in a trust on the trust’s initial date of deposit must fall into either the growth or value
category for a trust itself to receive the designation. Trusts that do not meet this criteria are
designated as blend trusts. Both the weighted average market capitalization of a trust and at
least half of the Securities in a trust must fall into the following ranges to determine its market
capitalization designation: Small-Cap-less than $2.5 billion; Mid-Cap- $2.5 billion to
$10 billion; Large-Cap-over $10 billion . Trusts, however, may contain individual stocks
that do not fall into its stated style or market capitalization designation. Of course, as with any
similar investments, there can be no assurance that the objective of the Trust will be achieved.
See ”Risk Factors” for a discussion of the risks of investing in the Trust.

Topic 2: Real Estate Investment Trusts (REIT), finance, and utility

The sponsor, with the assistance of Guggenheim Partners Investment Management, LLC (”GPIM”),
an affiliate of the sponsor and Guggenheim Partners, LLC, has selected the securities to be in-
cluded in the trust’s portfolio The U.S.-listed common stocks held by the trust may include
the common stocks of U.S. and non-U.S. companies. The trust may include securities of real
estate investment trusts (”REITs”) . As a result of the strategy, the trust is concentrated
in the financial sector and invests significantly in the utilities sector.

Topic 3: Stock Selection Criterion

When you invest in a Trust you are purchasing a quality portfolio of attractive common stocks in
one convenient purchase. Each Trust seeks above-average total return. To achieve this objective,
each Trust will invest in the common stocks of companies which are selected by applying a
unique specialized strategy. While the Trusts seek above-average total return, each follows
a different investment strategy. We cannot guarantee that a Trust will achieve its objective or
that a Trust will make money once expenses are deducted.

The Dow(R) Target 5 Portfolio invests in stocks with high dividend yields. By selecting
stocks with the highest dividend yields, The Dow(R) Target 5 Strategy seeks to uncover stocks
that may be out of favor or undervalued. Investing in stocks with high dividend yields may
be effective in achieving the investment objective of the Trust, because regular dividends are
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common for established companies, and dividends have historically accounted for a large portion
of the total return on stocks. The Dow(R) Target 5 Strategy seeks to amplify this dividend yield
strategy by selecting the five lowest priced stocks of the 10 highest dividend-yielding stocks in
the Dow Jones Industrial Average (”DJIA(R)”).

The Dow(R) Target 5 Strategy stocks are determined as follows:

• Step 1: We rank all 30 stocks contained in the DJIA(R) by their current indi-
cated dividend yield as of the business day prior to the date of this prospectus.

• Step 2: We then select the 10 highest dividend-yielding stocks from this group.

• Step 3: From the 10 stocks selected in Step 2, we select an equally-weighted
portfolio of the five stocks with the lowest per share stock price for The Dow(R)
Target 5 Strategy.

Topic 4: Diversification

The objective of the Trust is to provide investors with the potential for a high rate of current
monthly income, with capital appreciation as a secondary objective. In addition, based on
current publicly available information, none of the closed-end funds selected for the portfolio
are reporting the use of leverage. Closed-end funds which employ leverage are more volatile
than those that do not. However, certain or all of these Closed-End Funds may have utilized
leverage in the past and may elect to utilize leverage in the future.

The Multi-Sector Approach.

The Trust is designed to enable investors who are seeking a high rate of current monthly income
to reduce some of the volatility typically associated with high-income investments. To accom-
plish this, the portfolio is diversified across a broad range of closed-end funds including
convertible securities funds, general bond and equity funds, high-yield bond funds, investment
grade bond funds, specialized equity funds, and world equity and income funds. Because dif-
ferent sectors follow different cycles and react differently to changes in global economies and
interest rates, spreading assets across this spectrum of closed-end funds has the potential to
reduce the overall risk of the portfolio.

Closed-End Advantages.

- - Portfolio Control. Unlike open-end mutual funds, closed-end funds maintain a relatively fixed
pool of investment capital. This allows portfolio managers to better adhere to their investment
philosophies through greater flexibility and control. In addition, closed-end funds don’t have to
manage fund liquidity to meet potentially large redemptions.

- - Diversification. The portfolio offers investors diversification by investing in a
broad range of closed-end funds that are further diversified across hundreds of
individual securities. Diversification does not guarantee a profit or protect against
loss.

- - Income Distributions. Because they are not subjected to cash inflows and outflows, which
can dilute income distributions over time, closed- end funds can generally provide a more stable
income stream than other managed fixed-income investment products. However, stable income
cannot be assured.

Topic 5: Equal weighting

The trust seeks to provide total return, through dividend income and capital appreciation, by
investing in a portfolio consisting of the 10 stocks with the highest dividend yield chosen from
among the 30 stocks in the Dow Jones Industrial Average(SM) (”DJIA(SM)”) as of February
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16, 2011. The stocks are held in approximately equal dollar amounts as of the trust’s
inception.

Please note that the strategy was applied to select the portfolio at a particular time. If we*
create additional units of the trust after the trust’s inception date, the trust will purchase the
securities originally selected by applying the strategy. This is true even if a later application of
the strategy would have resulted in the selection of different securities. We disregard any stock in
the DJIA(SM) where the U.S. government or any of its agencies can exercise any veto power over
any current or future dividends, whether common or preferred, to be distributed in connection
with such stock. In such cases, we will automatically select the next highest dividend yielding
stock in the DJIA(SM). In addition, companies which, based on publicly available information as
of two business days prior to the date of this prospectus, are the target of an announced business
acquisition which are expected to happen within six months of the date of this prospectus have
been excluded from the universe of securities from which the trust’s securities are selected.

Topic 6: Balance sheet and valuation

Under normal circumstances, the trust will invest at least 80% of the value of its assets in
common stocks of European companies. The trust invests in a diversified portfolio of 30 Euro-
pean companies that the sponsor believes have had strong valuations, returns on capital and
balance sheets. To determine whether a company has an attractive valuation, the sponsor
compares valuation metrics against the selected company’s peer group. Strong returns on capi-
tal are evidenced by the company’s return on capital compared to the selected company’s peer
group. Companies with strong balance sheets are typically those entities that are less levered
than their peers. The trust’s investment process is designed to favor strong cash flow gener-
ating companies that trade at reasonable multiples of their excess profits. However, their can
be no assurance that the trust’s investment strategy will identify companies that will perform
well in the future. See ”Investment Policies” in Part B of the prospectus for more information.

Topic 7: Options

The objective of Covered Call Closed-End Portfolio, Series 3 is to provide investors with
the potential for income and, to a lesser extent, capital appreciation.

Covered Call Closed-End Portfolio, Series 3 invests in Closed-End Funds whose investments
are diversified among common stocks and, on an ongoing and consistent basis, will sell covered
call options to seek a more controlled risk/reward outcome.

What is a Covered Call Option? A call option is a contractual obligation which gives the
buyer of the option the right to purchase a certain number of shares of common stock from the
writer (seller) of the option at a predetermined price. If the predetermined price is reached,
the buyer has the right, depending on the type of option, to exercise the option at the option’s
expiration date or at any time up until the option’s expiration.

An option is considered ”covered” when a Closed-End Fund owns the equity securities
against which the options are sold. You should be aware that a product which includes Closed-
End Funds utilizing covered call strategies may not be suitable for all investors. It may not
be appropriate for investors seeking preservation of capital or high current income. Before
investing, you should make sure you understand the risks of this type of product, and whether
it suits your current financial objectives.

Benefits of Using Options.

Though call options can be used for many investment purposes, they are typically used as a tool
to potentially enhance returns, offer a current yield to investors, and provide limited downside
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protection. A comparison of the Standard and Poor’s (”S&P”) 500 Index to the CBOE S&P
500 BuyWrite Index (”BXM Index”) can illustrate how an options strategy could work.

The S&P 500 Index is an unmanaged index of 500 stocks used to measure large-cap U.S. stock
market performance. The BXM Index is a passive total return index maintained by the Chicago
Board Options Exchange which measures the total return of a hypothetical covered call strategy
applied to the S&P 500 Index. The BXM Index consists of a hypothetical ”long” position in
the S&P 500 Index on which are deemed written a succession of one-month, at-the-money
call options.

Topic 8: Closed-end fund

The Trust seeks a high rate of current monthly income, with capital appreciation as a secondary
objective. One thing that has not changed over the years is the need for some investors to
earn high current income. Investors willing to assume certain credit and market risks have
the potential to earn a high level of current monthly income by investing in high-yield bonds.
The High-Yield Income Closed-End Portfolio is comprised of a well-diversified pool of
closed-end funds that invest in U.S. and foreign high-yield bonds.

Although subject to greater risks, high-yield bond investors have historically received greater
returns from their high-yield investments than investment grade bond investors. Of course,
there can be no assurance that high-yield securities will outperform investment grade bonds in
the future or that the default rate on high-yield securities will not rise.

Closed-End Fund Selection. The Closed-End Funds were selected by our research depart-
ment based on a number of factors including, but not limited to, the size and liquidity of the
Closed-End Fund, the current dividend yield of the Closed-End Fund, the quality and character
of the securities held by the Closed-End Fund, and the expense ratio of the Closed-End Fund,
while attempting to limit the overlap of the securities held by the Closed-End Funds.

Closed-End Features.

- Income Distributions. Closed-end funds are structured to generally provide a more stable
income stream than other managed fixed-income investment products because they are not
subjected to cash inflows and outflows, which can dilute dividends over time. However, as a
result of bond calls, redemptions and advanced refundings, which can dilute a fund’s income,
the Trust cannot guarantee consistent income. Although one of the Trust’s objectives is to seek
a high rate of current monthly income, there is no assurance the objective will be met.

- Portfolio Control. Since closed-end funds maintain a relatively fixed pool of investment capital,
portfolio managers are better able to adhere to their investment philosophies through greater
flexibility and control. In addition, closed-end funds don’t have to manage fund liquidity to
meet potentially large redemptions.

Topic 9: Bond Market, inflation, and interest rates

The Trust seeks above-average total return. Because of an improving economy and the possibility
of rising inflation, we believe there is the potential for rising interest rates in the coming
years. Bonds tend to lose value in a rising interest rate environment. Equities, on the other
hand, have often historically provided positive returns after the Federal Reserve’s initial
rate hike. Like stock returns, economic growth, and inflation, interest rates are one of those
variables that you can’t control. But, as an investor, you can control how your investment
dollars are allocated.

The Interest Rate Hedge Portfolio is a professionally-selected unit investment trust which
invests in common stocks of companies that have a history of dividend growth, as well as closed-
end funds (”CEFs”) which invest in convertible securities, Treasury Inflation Protected
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Securities (”TIPS”), master limited partnerships (”MLPs”), limited duration bonds and real
estate investment trusts (”REITs”). Of course, there can be no assurance that the Trust will
achieve a positive return if interest rates rise.

Topic 10: Technology - I

The Trust seeks above-average capital appreciation. Social media refers to interaction among
individuals in which they create, share and exchange information and ideas in virtual communi-
ties and networks. The Internet is now used by hundreds of millions of people worldwide and
has become something upon which we rely. Social media sites have changed the way entities
circulate information and communicate on a global scale.

The Trust invests in Internet retail and Internet software and services companies that we
believe will benefit as social media becomes more universal.

Topic 11: Technology II

Under normal circumstances, the trust will invest at least 80% of the value of its assets in
companies that the sponsor believes are technologically innovative. Technologically innova-
tive companies are innovative companies that create new technology or use current technology
in a new way to create new growth opportunities. These technological innovations are being
engineered and applied in multiple sectors of the economy to improve corporate profit, mar-
keting and operations as well as the efficiency, productivity and enjoyment in the daily lives of
individuals.

The trust consists of companies that the sponsor feels have demonstrated a capacity to be
innovative or are involved in an industry that has been involved in technological advances
in various fields, including, but not limited to, health sciences, global security,
information access and manufacturing improvements. The U.S.-listed common stocks
held by the trust may include the common stocks of U.S. and non-U.S. companies.

Topic 12: Tax

The Trust seeks monthly income that is exempt from federal income taxes by investing
in a well-diversified portfolio of common stocks of Closed-End Funds that invest in municipal
bonds. However, certain distributions paid by certain funds may be subject to federal in-
come taxes. In addition, a portion of the income may be subject to the alternative minimum
tax.

Americans deal with a number of different taxes in their everyday lives. Perhaps none are
more noticeable than individual income taxes. In fact, individual income taxes comprise the
largest component of Americans’ tax bill. On average, Americans had to work a full 36 days in
the year 2011 just to earn enough money to pay for them.

Tax Freedom Day, the day on which Americans have earned enough money to pay all federal,
state and local taxes for the year, was three days later in 2011 than in 2010. Americans paid
more in taxes in 2011 than they spent on food, clothing, and shelter combined. These examples
are based on an overall average tax rate for the nation which is done by dividing the nation’s
total tax payments by the nation’s income as projected by the Tax Foundation for 2011.

Topic 13: Expertise, Optimism, persuasion

The Trust seeks above-average capital appreciation.

Sabrient Systems, LLC (”Sabrient”) is an independent equity research firm that buildspowerful
investment strategies by using a fundamentals-based, quantitative approach. The strategies
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are used to create rankings and ratings on more than 7,000 stocks, indices, sectors, and ETFs.
Their models are designed to identify those companies that are anticipated to outperform or
underperform the market.

Historically, certain stocks have been able to outperform the market during periods in which the
market itself is declining. The Trust is a unit investment trust that seeks to find companies that
Sabrient believes are positioned to perform well in environments of falling stock prices but
also those companies that have the potential to provide solid performance in rising markets. The
stocks in the portfolio are selected by applying a seven-step investment strategy process
developed by Sabrient.

Topic 14: Infrastructure

The Trust seeks above-average capital appreciation by investing in companies that provide
products or services that aid the development and maintenance of our country’s infras-
tructure system as well as companies that tend to benefit from an increasing economic growth
rate.

A sound infrastructure is fundamental to the quality of life and the economic growth and devel-
opment of a community. Infrastructure assets help provide products and services that have
become essential to everyday life such as water and wastewater systems, roads, railways,
airports, utilities, hospitals, schools and communications systems. Developing coun-
tries realize that infrastructure will play a key role in economic development and in their ability
to attain projected growth rates. However, the need to improve infrastructure extends beyond
rapidly developing countries. The United States, while considered to be a world leader in many
aspects, lags other developed regions, especially Europe, when it comes to the condition of its
aging infrastructure.

The Aging of America.

Infrastructure funding gaps in the United States are immense in comparison to the rest of the
world. Total investment needs for America’s infrastructure are estimated to be approximately
$3.6 trillion by 2020. Our aging infrastructure comes with additional costs in terms of economic
growth.
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CHAPTER 2. Team Production in Money Management

2.1 Introduction

Institutional investors play a vital role in the money management industry: collectively, institu-

tions held 68 percent of the US equity in 2007 1. In addition to managing the majority of household

wealth, institutions also commonly delegate investment decisions among themselves. Entities such

as endowments, pension funds, and foundations, on average delegate $36 trillion in assets to exter-

nal asset management firms between 2000 and 2012, which represents 29% of worldwide investable

capital. 2. This paper seeks to explore the dynamics among institutions where they serve both as

money managers and their clients.

To avoid confusion, in this paper, the word institution is used only when referring to the likes of

pension funds that delegate asset management to other institutions. We will use asset managers,

money managers, managers interchangeably when referring to asset management firms managing

assets of institutions.

Delegation to asset managers from institutions typically takes place via institutional funds.

Unlike retail mutual funds, institutional funds are specialized investment vehicles constructed for

only one or a few clients. Another salient feature of institutional funds is that clients have investment

discretion over the specific holdings of the funds. Such feature suggests these institutional clients

have an edge in investment.3 The following quote taken from the investment objective of Princo

(Princeton University Investment Company) explicitly points out the value-added of institutions

as the clients of institutional funds:

“Princo partners with best-in-class investment management firms across the globe and in diverse
asset categories . . . our strong partnership with managers has led to additional value creation.”

1Computed by Lewellen (2011) using 13F filings.
2Gerakos et al. (2016)
3Sometimes institutions also impose constraints on portfolios to comply with certain regulations.
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However, recent empirical findings seemingly reject the notion that institutions have an edge in

investment: while institutional funds can outperform corresponding strategy benchmarks (Gerakos

et al. (2016)), Lewellen (2011) shows that for the capital managed in-house by institutions them-

selves, there is no evidence of such outperformance. If institutions do have an edge in investment,

why does it not show up when they invest without the help of asset managers?

We consider a model that is able to answer the above question. In the model, some institutions

have private information that can lead to outperformance. In order to generate the observed

outperformance regarding delegated institutional capital through institutional funds and the lack

of outperformance regarding capital managed in-house by institutions themselves, two ingredients

are needed: (a) complementarity between institution’s information and asset manager’s investment

skill, and (b) costly search of skilled managers.

The skill of money managers is better utilized by institutions with private information than

by institutions without. As such, informed institutions are willing to pay a higher search cost for

skilled management. Search frictions then act as a separating mechanism in equilibrium: only

informed institutions choose to invest through the institutional funds, whereas institutions without

private information find the search cost too high and invest on their own instead. As a result, all

clients of institutional funds have private information, hence their investment discretion is justified.

The outperformance of institutional funds is the team production of both institutions and asset

managers. On the other hand, institutions that invest in-house are precisely the ones with no

investment expertise, hence they do not beat the benchmark. In other words, if one concludes from

the lack of in-house outperformance that institutions on average are not skilled, he is ignoring the

underlying selection by institutions on whether to invest via institutional funds4.

We then use the model as a novel lens to examine other questions in money management using

comparative statics. Specifically, (1) What determines the management fee? (2) What determines

4Instead of informed institutions vs. uninformed institution, another interpretation is the specific areas the insti-
tutions are experts in. A common investment approach of institutions is to first determine strategy level allocation.
Then for each strategy, the institutions decide whether to outsource or to manage in house. The model result under
this setting is that institutions delegate portions of their portfolio which that have the most private information.
They do so because the asset managers can make the best use of that information
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the equilibrium number of skilled money managers? Important to our model, relative to previous

models on money management, is that investors (in this case, the institutions) play an active role.

Therefore in answering the above questions, we focus on implications of change in information

allocation across institutions, both in quantity (number of institutions with private information),

and in quality (how precise the private information is).

First consider the case when each institution becomes more informed, holding fixed the number

of informed institutions. As a result, what institutions can earn on their own increases. Therefore

the money managers need to lower the management fee in order to retain their clients. it follows

that there are fewer skill money managers due to lower fee revenue.

When there are more informed institutions, management fees also drop. Since each informed

institution invests through skilled asset managers, there is more trading on managers’ information.

Therefore, price becomes more reflective of managers’ signals. Consequently, managers are forced

to charge a lower fee. The number of skilled managers, however, can either increase or decrease.

While the fee rate decreases, there are also more institutions paying the fee. So the net effect on

total fee revenue is ambiguous.

Lastly, we consider efficiency implication of institutions’ information allocation. Specifically,

is price more informative when there are many moderately informed institutions or a few highly

informed institutions? We show that under team production between institutions and managers,

the quantity has an amplified effect on price informativeness. Therefore, price is more informative

when institutions’ private information is more diffused.

There is an abundance of literature, both empirical and theoretical, that explore whether skill

in investment exists and what skill is5. Berk and Green (2004) use rational arguments featuring

learning and competition among investors to reconcile lack of performance persistence and fund

flows that follow performance.

5Examples of evidences against the existences of investment skill are Carhart (1997), French (2008), FAMA and
FRENCH (2010). Examples in favor of the existences of investment skill include Berk and Green (2004) and Berk and
van Binsbergen (2015). Papers investigating the details of investment skills include BERK et al. (2017), Kacperczyk
et al. (2014), Kacperczyk et al. (2016), Pastor et al. (2017), and Manconi and Spalt (2012).
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Regarding model mechanics, this paper is closely related to Pedersen and Garleanu (2015),

who first considers embedding an asset market equilibrium similar to Grossman and Stiglitz (1980)

in a matching equilibrium of the market of asset managers. Our model’s main distinction is the

investor’s private information. Doing so allows us to explain the puzzle laid out in the beginning.

It also allows for analysis of changes in investors’ information later on.

While in this model only focuses on equilibriums where complementarity exists between investors

and managers, Admati and Pfleiderer (1987) provides the first systematic treatment on when

complementarity and substitutability occurs. Another similar paper is Goldstein and Yang (2015),

who also consider the model with one risky asset and two signals. Their focus is on how the

realization of the signal affects one’s trading of the asset. In their setup, complementarity is

imposed via a functional form. For a more comprehensive survey of similar models, see Veldkamp

(2011).

Lastly, this paper provides insights into the chain of money management. Concretely, consider

a government employee, who invests his saving via a pension fund, who then invest in an asset

manager, who eventually invest in stocks, the model speaks to the role pension funds play as the

middle layer – both in providing additional investment insights and connecting parties with better

skilled. Other papers featuring chains of intermediation includes Glode (to include), who consider

a sequence of bilateral trades, each of which reduces asymmetric information by a little.

The rest of the paper is organized as follows. Section 2.2 describes the model setup and defines

the equilibrium. Section 2.3 focuses on how complementarity and search friction generate the

observed pattern on outperformance. Section 2.4 conducts comparative statics. Section 2.5 deals

with price informativeness. Section 2.6 concludes.
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2.2 Model

2.2.1 Setup

We builds upon the model of Grossman and Stiglitz (1980) featuring noisy rational expectation

equilibrium. The model is static. There is one risky asset with random payoff given by

ṽ ∼ N
(
0, γ−1

0

)
(2.1)

where γ0 captures the prior precision shared among all agents in the economy.

There is a continuum of money managers (henceforth manager for short) with mass M . All

managers are ex-ante identical with risk neutral preference. Each manager can pay cost κ to gain

access to a signal on asset payoff. The signal is given by

s̃m = ṽ + ε̃m, ε̃m ∼ N
(
0, γ−1

m

)
(2.2)

Managers who pay for the signal is said to have acquired skill. We refer them as skilled managers.

Here the signal sm is common across all skilled managers. We can interpret manager skill as the

expertise in processing publicly available data and generating deeper insights. We denote the mass

of skilled manager as M , which is determined in equilibrium.

There is a continuum of institutional investors with identical initial wealth W and CARA

utility6:

U(W ) = − 1

α
log(E(e−αW )). (2.3)

Investors are not endowed with the same information set. Some investors have access to the signal

s̃i = ṽ + ε̃i, ε̃i ∼ N
(
0, γ−1

i

)
(2.4)

si has the same normal structure as sm, with potentially different precision γi
7. Note that

si is the same for all investors8. Furthermore, we assume ε̃i and ε̃m are independent. We refer

6With the normalization by α and the log transformation, U(W̃ ) is equal to the certainty equivalent of W̃
7As we will see later, The difference in precision allows for study of how changes in quality of investor’s information

can impact managers response.
8In this paper, the subscript i is short for investor, or institutional investor. This is to be distinguished from its

common usage as an index.
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to investors endowed with s̃i as informed investors, and rest of the investors as uninformed. Let

λi and λu denote the mass of informed investors and uninformed, respectively. For simplicity, we

assume λi and λu are exogeneous9.

Both informed and uninformed investors have the option to invest with a skilled manager.

However, screening of managers and the related due diligence on asset managers are costly. This

is modeled by the search cost that all investors face:

c(M) = c̄M−ψ (2.5)

where ψ > 0. Following the literature on searching, the search cost is increasing inM . Naturally,

as there are more skilled managers, it becomes less costly to search for them. Let Ii ∈ [0, λi] , Iu ∈

[0, λu] denote the mass of informed and uninformed investors that search for skilled management.

Ii, Im are determined in equilibrium, as is M .

Paying the search cost, c(M), allows the investor to find a skilled manager. When investing

with an skilled manager, the investor first disclose her own information si (if she is informed). The

manager then combines any information shared from the investor to his own signal sm, and fulfills

his fiduciary duty by investing each clients asset exactly according to their’ CARA utility. As such,

from the investor’s perspective, searching and investing through a skilled manager is equivalent to

acquiring sm indirectly. Investor who invest with the skilled manager also needs to pay a fee of f .

The fee is determined via Nash Bargaining, as we will see.

On the other hand, if an investor does not search for a skilled manager, his only option is to

invest directly in the asset market 10.

9Though this assumption is mainly for tractability, we provide one rational.
For managers, skill can be acquired because the public information is available to all to process. However, unin-

formed institutions may not be
This is due to the innate heterogeneity among institutions. Whereas it is more likely that all money managers can

exert effort and dissecting public information in the same depth, (or compete for the same pool of talented investment
professionals), institutions are more different – the very source of information for some institutions, which rely on its
place in the network, could be drastically different from that of the other institution. For example, the endowment
of some small university simply cannot obtain the information available to Yale endowment, regardless of the cost of
acquiring it.

10Alternatively, an investor may choose to invest with an arbitrary manager without searching, thus avoiding the
search cost c. Doing so results in a positive probability where the manager happens to be skilled. This additional
choice is discussed in Pedersen and Garleanu (2015). TODO: consider this extension in this model
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To prevent a fully revealing equilibrium, we assume the supply of asset is noisy:

q̃ ∼ N
(
1, γ−1

q

)
(2.6)

As the mean of q̃ suggests, we normalize the supply of asset and suppose there is one share of

asset on average.

Throughout the paper, we will use tilde to denote random variables. symbols without tilde (i.e.

v, si) are used to denote specific realizations of the random variables. This distinction helps with

clarification when we consider investor’s problems in the next section.

Throughout the paper, we only consider equilibrium featuring linear price specified as follows:

p = a0 + aisi + amsm + aqq (2.7)

Events unfold in four stages. At t = 1, managers decide whether to acquire sm, and investors

decide whether to search for skilled managers, both taking place simultaneously. At t = 2, investors

who has found a skilled manager negotiate fees with their money manager. At t = 3, signals arrive;

Investors (either directly or indirectly through money managers) trade for the asset based on their

available information. At t = 4, asset value realizes and all agents consume.

2.2.2 Investor’s Problem

Each institutional investor faces two decisions. First, each investor needs to decide whether

to search and pay for skilled management; then, based on the investor’s knowledge, which could

include sm if she chooses to invest with a manager, the investor formulates the demand for the

asset. We analyze investor’s problem backwards and first consider the asset demand.

For any given investor, let F be her the information set at t = 3. Recall from the time line,

trading takes place after signal has realized, so inside F are the realizations of the signals, si and

sm, as well as the realization of price, p. Investor’s CARA utility, coupled with normal random

variables, in addition to the zero interest rate and no borrowing constraint, yields the following

demand function:

D =
E[ṽ|F ]− p
α var[ṽ|F ]

(2.8)
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which is increasing in the conditional expectation, decreasing in risk aversion and conditional

uncertainty, and independent of initial wealth. The derivation of (2.8) is deferred to the Appendix.

Investors’ trading decision at t = 3 is then given by the demand function (2.8). Note that implicitly

we have assumed zero interest rate and no borrowing constraint. The interior solution for demand

arises not because of budget constraint, but because of the trade-off between perceived risk and

return.

We now consider investors’ decision at t = 1 of whether to search and invest with a skilled

manager. With demand function known, we first calculate investor’s value function for each re-

alization of the signals. We then integrate over all realizations and calculate the investor’s ex-

ante utility based on what signals are known. Explicitly, the information sets of interest are

{{p̃} , {s̃i, p̃} , {s̃m, p̃} , {s̃i, s̃m}}. There are 4 (2 by 2) possibilities since investors can either be in-

formed or uninformed and choose either invest with managers or not. Note that unless the investor

is herself informed and search for skilled manager, price p̃ will enter her asset demand. Also note

that each of the above information set contains price and signals as random variables (as indicated

by )̃, not their realizations. This is because searching takes place before signals are realized, so

investors need to formulate ex-ante utility.

For each F̃ ∈ {{p̃} , {s̃i, p̃} , {s̃m, p̃} , {s̃i, s̃m}}, the value function at t = 1 is a function of F̃

and is given by :

U(F̃) =
1

2α
log

(
var(ṽ − p̃)
var(ṽ|F̃)

)
+ constant (2.9)

The only dependency of ex-ante utility on F̃ is through var(ṽ|F̃). Hence when comparing

value functions corresponding to two information sets F̃1 and F̃2 , the difference has the following

convenient expression

U(F̃1)− U(F̃2) =
1

2α
log

(
var(ṽ|F̃2)

var(ṽ|F̃1)

)
(2.10)

When we plug F̃1 = {s̃i, p̃}, F̃2 = {s̃i, s̃m} into the above expression, the outcome represents

the gain from skilled management to an informed investor. Whether or not an informed investor
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would want to search depends on its magnitude relative to the search cost and the fee rate. That

is, an informed investor’s decision to search for skilled manager at t = 1 depends on whether the

following inequality holds:

1

2α
log

(
var(ṽ|s̃i, p̃)
var(ṽ|s̃i, s̃m)

)
> fi + c (2.11)

The left-hand-side is the certainty-equivalent from knowing s̃m, whereas the right-hand-side

represents the sum of search cost and the fee. Thus, an informed investor search if and only if

(2.11) holds.

Similarly, uninformed investors search iff

1

2α
log

(
var(ṽ|p̃)

var(ṽ|s̃m, p̃)

)
> fu + c (2.12)

Note the distinction between fee paid by informed investor fi and uninformed investor fu. We

will examine the process in which fees are determined and how they may be different for different

investors.

2.2.3 Management Fee

The management fee paid by the investors to their money managers is determined from Nash

Bargaining. Fee negotiation takes place after the managers have already acquired the information

and investors have already conducted the due diligence. Therefore both manager’s cost of skill, κ,

investors cost of search c are sunk and do not affect the Bargaining outcome. For simplicity, we

assume equal Bargaining power.11 This sets fee as:

f = arg max
f

(investor’s gain from s̃m − f) · (f − 0) =
1

2
· investor’s gain from s̃m

The objective of the maximization is the product of investor’s net gain (gain less fee), and manager’s

gain (fee collected) from delegation. Conceptually, given the outside option of the investor, which

11Whereas managers are skilled by default given the matching process, we also assume whether the investor is
informed or not is known to the manager. This simplifies the bargaining analysis. As we will see, informed and
uninformed investors could pay different fee. If investor’s type is not known to the managers, there may be incentive
for investors to mask their true type if possible. Managers would then need to incorporate the potential untruthful
reporting into their Bargaining decision.
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is to invest directly in the asset market without the knowledge of s̃m, and the outside option of

the manager, which is to collect zero fee from the said investor, the total gain from combining

their capital and expertise is investor’s gain in certainty equivalent from knowing s̃m. And from

the assumption of equal bargaining power and manager’s risk-neutral preference, the resulting fee

distributes the total gain equally between the investor and the manager, which is precisely half the

gain from s̃m.

The bargaining solution also sheds light on why informed investors and uninformed investors

might pay different fees. This is because they value skilled management differently – value of

knowing s̃m depends on whether s̃i is also known. From expressions on the gain from sm, the fee

paid by informed investor is given by:

fi =
1

4α
log

(
var(ṽ|s̃i, p̃)
var(ṽ|s̃i, s̃m)

)
(2.13)

Similarly for uninformed investor, the fee is given by:

fu =
1

4α
log

(
var(ṽ|p̃)

var(ṽ|p̃, s̃m)

)
(2.14)

2.2.4 Manager Equalizing Condition

While skilled managers make a portfolio decision, the portfolio decision is mechanical from

the assumption of fiduciary duty and is covered in the analysis of investor’s asset demand. The

remaining choice for any given manager is whether to pay the skill cost κ and acquire s̃m at t = 1.

The marginal manager will become skilled if and only if

fuIu + fiIi
M︸ ︷︷ ︸

Expected fee revenue

> κ︸︷︷︸
Cost of becoming skilled

When deciding whether to acquire skill or not, each manager takes as given other managers and

investors decision at t = 1 regarding matching. In addition, all managers foresee the ex-ante value

function based on the size Ii, Im and can compute the fees that will arise at t = 2.

On the left hand side is the benefit from becoming skilled, which is the total fee revenue collected

from investors who search for skilled management, normalized by the size of skilled management.
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If the benefit is greater than the cost, more manager will become skilled. As we will see in the

equilibrium, this in turn reduces the net gain of becoming skilled. Managers will keep adjusting

until the indifference condition is satisfied:

fuIu + fiIi
M

= κ (2.15)

2.2.5 Equilibrium

An equilibrium is defined as the mapping from the set of parameters {α, γ0, γi, γm, γq, λi, λu, c̄, ψ, κ}

to equilibrium objects {Ii, Iu,M, fi, fu, p(·)} such that

1. Each investor’s decision on whether to search for skilled management maximizes the ex-ante

utility specified in (2.9), taking Ii, Iu,M, fi, fu, p(·) as given; after both signals s̃m and s̃i

realize, each investor’s demand for asset follows the demand function specified in (2.8).

2. The marginal manager is indifferent on whether to acquire skill. That is, the indifference

condition (2.15) holds.

3. For any investor that invest through a skilled manager, the management fee is determined

via Nash Bargaining between the two parties and is as specified in (2.13) and (2.14).

4. Market for asset clears for all realizations of the signals:

q = D{si,sm}Ii +D{si,p}(λi − Ii) +D{sm,p}Iu +D{p}(λu − Iu) (2.16)

For simplicity, we restrict our following analysis to equilibrium that are interior and symmetric.

Here we refer interior equilibrium as those where there are positive mass of investors who search,

and positive mass of managers who are skilled (The economy where no managers are skilled and

no investors search for skilled managers naturally sustains an equilibrium. The marginal manager

is content with not acquiring skill since no investor is searching; the marginal investor is content

with not searching because the search cost is infinity with no skilled managers)
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2.3 Equilibrium Featuring Complementarity

In our following analysis, we focus on equilibrium where investor’s information is a complement

to manager’s skill. Here complementarity is defined similarly as in Admati (1985). That is

1

2α
log

(
var(v|si, p)
var(v|sm, si)

)
︸ ︷︷ ︸

Gain from sm knowing si

>
1

2α
log

(
var(v|p)

var(v|sm, p)

)
︸ ︷︷ ︸
Gain from sm not knowing si

(2.17)

The primary reason for focusing on this type of equilibrium is that it better represents the in-

vestments settings between institutions and their asset managers. As we will see, the results on

investment performance in these equilibriums are able to replicate some empirical findings that are

hard to reconcile otherwise.

2.3.1 Existence

While the model laid out in the previous section does not inherently assume complementarity,

the following result shows that for certain general ranges of parameter, the complementarity do

arise in equilibrium.

PROPOSITION 2.1. Given parameter values Θ = {α, γ0, γi, γm, λi, λu, c̄, ψ}, there are open sets

of Γq such that for each γq ∈ Γq, in the resulting equilibrium with Θ and γq, investor information

and manager skill are complements as in (). In addition, for each γq, there exists K such that for

any κ ∈ K, there exists symmetric equilibrium with Θ, γq, κ, where all informed investors invest

through skilled managers, whereas all uninformed investors invest directly on their own.

The proof is given in the Appendix, part of which borrows from Proposition 6.2 of Admati and

Pfleiderer (1987). The idea is that when there is little noise in asset supply, signals are complements.

This is because the value of a certain signal, from expression of the demand function and conditional

expectations, is proportional to how much weight the agent put on it when forming their demand.

When there is little noise in the asset supply, price become a near-perfect summary statistics of si

and sm. Therefore unless both si and sm are observed, the agent will put significant weight on the

information reflect in price. As a result, uninformed investor, who do not observe si, assign little
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value to sm. On the other hand, informed investor values sm greatly since once sm is acquired, p

will no longer be used in formulating demand. As a result, significant weight is put on sm and thus

their valuation of skilled management. This discrepancy is the main driver of the complementarity.

The second part of the Proposition shows that whenever complementarity holds, there are

regions of manager’s skill cost κ where the resulting equilibrium is symmetric and separating.

The proof is constructive. We first compute the value of skilled management sm, taking investors

searching decision as given. In particular, we assume Ii = λi and I0 = 0. From complementarity,

informed investor necessarily receive a higher value from sm than uninformed investors. The search

cost that can sustain this separating searching pattern then must lie between the values. From the

cost function (2.5), the range in searching cost translates to an upper and lower bound for the size

of skilled management M , which then can be translated to a range in terms of κ when fed into the

manager indifference condition (2.15).

2.3.2 Outperformance relative to benchmark

In this section we analyze the investment performance of investors and managers in an equilib-

rium featuring complementarity. First we define benchmark performance as the ex-ante expected

earning when only source of information is price. That is, all value function will be measured rela-

tive to U({p̃}) where U(·) is given in (2.9). As such, uninformed investors, who also choose not to

invest with managers in equilibrium, invest observing only p and earn benchmark by definition. On

the other hand, informed investors, who search for skilled managers, do beat the benchmark. Par-

ticularly, the magnitude of gross outperformance (i.e. outperformance before fee) can be dissected

in the following way:

1

2α
log

(
var(v|p)

var(v|sm, si)

)
︸ ︷︷ ︸

Gross outperformance

=



1

2α
log

(
var(v|p)
var(v|si, p)

)
︸ ︷︷ ︸

Value of si

+
1

2α
log

(
var(v|p)

var(v|sm, p)

)
︸ ︷︷ ︸

Value of sm

+
1

2α
log

(
var(v|si, p)var(v|sm, p)
var(v|p)var(v|si, sm)

)
︸ ︷︷ ︸

Synergy

(2.18)
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The first two terms on the right are values of si and sm on their own, conditioning on the price.

The third term is the synergy term and is positive due to complementarity.

The results above on outperformance relative to benchmark replicate the empirical findings.

From Gerakos et al. (2016), institutional funds generate above benchmark returns. In our model,

managers managing (institutional) investors capital always beat the market. This is because in

equilibrium, only informed investors invest with skilled managers. Hence the outperformance is a

combination of investors’ private information, managers’ skill, and the synergy.

On the other hand, the result where uninformed investors receiving benchmark is consistent

with findings on performance of institutions overall (i.e. Lewellen (2011) from 13F). In particular,

one puzzling fact is the lack of outperformance on the capital managed in-house by the institutions

themselves, despite the implications from interactions between institutions and their asset managers

that institution do possess advantage in investing. Supposedly if institutions have any advantage

in investment, it should be reflected through outperformance. According to the model, this is

because the institutions who invest directly are precisely the ones without private information.

Alternatively, for institutions who is experienced and able to provide value-added to only some

segments of the market, they will choose to delegate that part of the asset under management to

external managers, who they deem would make better use of their information. The assets they

end up investing themselves will earn benchmark return.

Put differently, had the investors of the institutional funds invested themselves, they would

still beat the benchmark because of their private information. They choose to invest through the

managers because of the additional synergy. Similarly, had institutions allocate their in-house asset

to external managers, they would also earn an above benchmark return. However, they chose not

to do so due to the high search cost.

2.4 Comparative Statics

In this section, we study how certain equilibrium objects vary with respect to changes in the

underlying parameters. Throughout this section, we will emphasize the effect of change in infor-
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mation allocation among investors. Note that all comparative statics discussed here are local, in

that all equilibrium must still lie in the regime where complementary holds.

2.4.1 Gross outperformance

We first examines the gross outperformance received by skilled managers with private informa-

tion of the investors. For simplicity, we will refer it as the gross outperform and denote it as πg.

πg is defined as the left-hand side of (2.18). The following proposition states how πg changes with

respect to the underlying parameters.

PROPOSITION 2.2. Within regions of parameters where resulting equilibriums featuring com-

plementarity, equilibrum gross outperformance πg is increasing in investors’ risk aversion α, and

decreasing in mass informed investors λi, and precision in asset supply γq. πg is increasing in γi

and γm only when γi + γm is sufficiently small. Specifically,

∂πg
∂γi

=
∂πg
∂γm

> 0 iff γ0︸︷︷︸
Precision of prior

>
(γi + γm)2γqλ

2
i

α2︸ ︷︷ ︸
Precision of price

(2.19)

The results on α, λi and γg are intuitive. Since gross outperformance originates from the unique

access to si and sm, it is less when price is more reflective of these underlying signals, which occurs

if there is more informed trading, either because there are more informed investor λi, or that each

informed investor is trading a greater amount due to lower risk aversion α. Price is also more

reflective when there is less noise in the supply, that is, when the prior precision on supply γq is

greater.

The interesting result is how πg varies when the same mass of informed investors and skilled

managers each hold better signals. On the one hand, having better signals leads informed investors

and skilled managers to formulate better asset demands, which would exert an upward pressure

to the outperformance. On the other hand, the equilibrium effects of better signal translate to

less noise in price, which allow uninformed investors to better infer the underlying signals. This in

turn pushes up benchmark performance and in turn reduces outperformance. The net effect is thus

ambiguous and would depend on the relative magnitudes of the two mechanism. As the expression
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suggests, the condition in which the directly effect dominates the equilibrium effect is rather simple

– we only needs to compare γ0, which is the prior precision on asset payoff, to the precision of price

as the noisy signal of the summary statistics.

Intuitively, prior precision γ0 proxies the direct impact of a unit increase in signal precision

(either γi or γm) has on informed investor’s absolute performance; Similarly, the precision of price

proxies the indirect impact the increase in signal precision has on the performance of the uninformed.

Concretely, when γm+γi is small, the condition in (2.19) will hold. This suggests that when informed

investors and skilled managers do not have much of an edge in investments, an increase in the quality

of either’s signal would always generate a net improvement in terms of gross outperformance. On

the contrary, suppose investors and managers collectively have precise signals, then γm + γi is

large and (2.19) would not hold. As such, agents have incentive to lower the quality of signal by

(creditably) not fully utilize their signals.

2.4.2 Management Fee

Whereas the previous section focuses on the total benefit of edge in investment shared among

skilled managers and informed managers, this section sheds light on how the benefit is split between

the two parties. Specifically, we examine how the fee (managers’ share of reward for their skill)

varies when the underlying parameter varies. Note that since only the informed investors invest

through money managers, by fee we refer to the fee paid by informed investors, which is given in

(2.13).

We first state the proposition:

PROPOSITION 2.3. Within regions of parameters where resulting equilibrium featuring com-

plementarity, equilibrium fee f is increasing in investors’ risk aversion α, and decreasing in mass

informed investors λi, and precision in asset supply γq. f is decreasing in γi, and is increasing in

γm only when γm is sufficiently small. Specifically,

∂f

∂γm
=
∂πg
∂γm

> 0 iff γ0 + γi︸ ︷︷ ︸
Precision of prior

>
γ2
mγqλ

2
i

α2︸ ︷︷ ︸
Precision of price

(2.20)
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To better understand the results in Proposition 3, we interpret it along side Proposition 2.

For many underlying parameters, change in them result in the same qualitative change in f as in

πg. This is driven by the Bargaining outcome: fee represents manager’s share from the bargaining

outcome, which is proportional to the total gain πg. As such, the same comparative statics arises

for many parameters for πg and f .

However, for γi and γm, things are different because they affect how the total gain is splitted

between investors and managers. Intuitively, as γi (γm) increases, investors (managers) are con-

tributing more to the team production of outperformance, resulting in a smaller (larger) portion

of the outperformance going to the managers in the forms of fee. Mechanically, Proposition 2.3 is

the c

Indeed, proposition states that f is decreasing in γi, this is in spite of the fact that greater

γi can drive up the total outperformance πg – though the total size of the pie becomes larger,

managers end up receiving less fee. This is because investor’s outside option of investing directly

also increases as the result of the improvements in the quality of investors’ signal.

Similarly, there are regions for γi, γm such that condition in (2.20) holds whereas (2.19) does

not. That is, an increase in γm leads to a smaller total outperformance, yet manager receives a

higher level of fee.

2.4.3 Mass of skilled managers

What portion of the money managers are actually skilled? In particular, how would the money

managers as a whole respond in terms of skill acquisition with regard to changes in investors’

information structure. In this section, we focus on two aspects on the investors side: how many of

investors are informed— size of λi, and the quality of those investor’s information — level of γi.

As before, we focus on equilibrium where all informed investors invest with skilled managers.

From manager’s indifference (2.15), since manager’s skilled cost κ is fixed, M is proportional to

the total fee revenue λif . Therefore it is equivalent to consider comparative statics of λif .
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First consider a change in γi, the quality of each informed investor’s information. Here the

number of informed investors λi is fixed. From Proposition 3, each investor will pay a lower fee rate

due to their improved outside option. As such, total fee revenue for all skilled managers decrease.

To restore manager indifference, there must then be a smaller number of skilled managers. In this

sense, the increase in investor ability crowds out manager skill.

On the other hand, when there are more informed investors, holding the quality of their infor-

mation fixed, how the number of skilled managers change is ambiguous. There are two opposing

forces at work. First, more informed investors mechanically increase fee revenue, since informed

investors are the ones paying the fee in equilibrium; secondly, as proposition 3 stated, as there

are more informed investors that invest with managers, manager signal sm is reflected more in the

price, driving down both πg and f . Therefore the net effect of increase in λi on total fee revenue

depends on which of the two forces are dominant.

The above analysis can be summarized in the following Proposition.

PROPOSITION 2.4. Within regions of parameters where resulting equilibrium featuring comple-

mentarity, equilibrium mass of skilled manager M is decreasing in the quality of investors’ private

information γi. M can be increasing or decreasing with respect to λi

2.5 Price informativeness and Information concentration

The previous section shed light on how change in investor’s information endowment can affect

managers skill acquisition in equilibrium. In this section, we take a normative perspective, and

examine how a policy maker, whose goal is to maximize the informativeness of price, may want

to change the initial information structure of the investors. Specifically, would the policy maker

prefer more and moderately informed investors, or less but significantly informed investors?

First we define price informativeness as the inverse of the conditional variance of asset payoff,

conditioning only on the price. We denote price informativeness as η. Explicitly

η =
1

var(v|p)
= γ0 + γi + γm −

(γi + γm)A

γi + γm +A
(2.21)
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where A = α2

λ2i γq
. This definition of price informativeness is natural and is similar to the price

efficiency in Grossman and Stiglitz (1980). As η increases, there is less uncertainty regarding asset

payoff when conditioning only on price.

It is straightforward to check that η is increasing in both γi and λi. That is, price will become

more informative if more investors are endowed with information, or if quality of information

endowed to each investor is better. Both are expected. However, how do the quantity and quality

trade off is less obvious.

In order to quantify and compare the effects of change in γi and λi, we introduce of the notion of

the amount of investor information for an economy with given set of parameters. Specifically,

consider the following two economies 1 and 2. Let (λi,1, γi,1), (λi,2, γi,2) be the parameters related to

investor information structures for economy 1 and 2, respectively. Furthermore, suppose all other

parameters are identical. Economy 1 and 2 are said to have the amount of investor information

if η1 = η2 absent any money managers. That is, if

γ0 + γi,1 −
γi,1A1

γi,1 +A1
= γ0 + γi,2 −

γi,2A2

γi,2 +A2
(2.22)

Now with the amount of investor information fixed as the unit of analysis, we can discuss the

optimal concentration of quality and quantity of investor information. Result can be summarized

in the following proposition

PROPOSITION 2.5. Holding fixed the amount of investor information, price informativeness is

greater when investor information is diffused.

The proof consider marginal rates of substitution between γi and λi, first holding fixed the

amount of investor information, then holding fixed the price informativeness. We can show that

one always dominates the other. Intuitively, consider an increase in λi and decrease in γi that

keep the amount of investor information unchanged. As we introduce skilled managers into the

analysis, and focus on equilibrium where informed investors all search for skilled managers, the

effect of quantity λi has on price informativeness is amplified since each informed investors will end
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up trade on manager’s signal sm as well. As such, the resulting price informativeness increases due

to the spillover effects of increase in λi.

From a policy maker’s perspective, if the goal is to maximize price informativeness, he should

prefer quantity of investor information over quality of investor information. More concretely, sup-

pose there are a few small circles of elite institutions, whose board members are closely connected

and often shares private information, the policy maker should have incentive to, to the extent

possible, break apart the coalitions. As a result, each institution’s private information will be less

valuable, but there will be more institutions with the private information.

2.6 Conclusion

In this paper, we consider a model where asset managers collaborate in generating returns.

In doing so, we provide an explanation of the lack of in-house outperformance by the skilled

institutional investors. Specifically, institutions act on their information by passing it onto external

asset managers. Hence evaluating institutions’ investment expertise based solely on their in-house

performance likely leads to understatements.
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2.A Proofs

2.A.1 Preliminaries

FACT 1 (Conditional Moments of Multivariate Normal Distribution). Consider the multivariate

normal vector Y ∼ N (µ,Σ). Consider partitioning µ and Y into µ =

µ1

µ2

 Y =

y1

y2

 with

a similar partition of σ into

Σ11 Σ12

Σ21 Σ22

. Then, (y1|y2 = a), the conditional distribution of the

first partition given the second, is N (µ,Σ), with mean µ = µ1 + Σ12Σ22
−1(a−µ2) and covariance

matrix Σ = Σ11 − Σ12Σ22
−1Σ21.

FACT 2. If y ∼ N (µy, σy), then E[e−ay] = exp
(
−aµy +

a2σ2
y

2

)
Proof.

E[e−ay]

=
∫
e−at 1√

2πσy
e
− (t−µy)2

2σ2y

=
∫

1√
2πσy

exp(− (t−µy)2

2σ2
y
− at)

=
∫

1√
2πσy

exp(− t2−2µyt+µ2y
2σ2
y

− at)

=
∫

1√
2πσy

exp(− t2−2(µy−aσ2
y)t+µ2y

2σ2
y

)

=
∫

1√
2πσy

exp(− t2−2(µy−aσ2
y)t+(µy−aσ2

y)2−a2σ4
y+2µyaσ2

y

2σ2
y

)

=
∫

1√
2πσy

exp(− [t−(µy+aσ2
y)]

2

2σ2
y

+
a2σ2

y

2 − aµy)

= exp(−aµy +
a2σ2

y

2 )

FACT 3. If z ∼ N (µz, σz), then E[e−
1
2
z2 ] = 1√

1+σ2
z

· exp
(
− µ2z

2(1+σ2
z)

)
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Proof.

E[e−
1
2
z2 ] =

∫
1√

2πσz
exp

(
−(t− µz)2

2σ2
z

)
exp

(
−1

2
t2
)
dt

=

∫
1√

2πσz
exp

(
− t

2 − 2µzt+ µ2
z + t2σ2

z

2σ2
z

)
dt

=

∫
1√

2πσz
exp

(
−
(
1 + σ2

z

)
t2 − 2µzt+ µ2

z

2σ2
z

)
dt

=

∫
1√

1 + σ2
z

1√
2π σz√

1+σ2
z

exp

− t
2 − 2 µz

(1+σ2
z)
t+ µ2z

(1+σ2
z)

2

(
σz√
1+σ2

z

)2

 dt

=

∫
1√

1 + σ2
z

1√
2π σz√

1+σ2
z

exp

− t
2 − 2 µz

(1+σ2
z)
t+ µ2z

(1+σ2
z)2
− µ2z

(1+σ2
z)2

+ µ2z
(1+σ2

z)

2

(
σz√
1+σ2

z

)2

 dt

=
1√

1 + σ2
z

· exp

−− µ2z
(1+σ2

z)
+ µ2

z

2σ2
z


=

1√
1 + σ2

z

· exp

(
− µ2

z

2 (1 + σ2
z)

)

LEMMA 1. The maximizer of the CARA objective in (??) is given by

xD =
E(v|D)− p
γvar(v|D)

(2.23)

if D contains only realizations of normal variables

Proof. Since D only contain information about other normal variables. Fact 1 implies v|D is also

normal. Hence we can apply Fact 2 to the objective and obtain:

− 1
γ logE(e−γx(v−p)|D)

= − 1
γ logE(e−γxv · eγxp|D)

= −xp− 1
γ logE(e−γxv|D)

= −xp− 1
γ

[
γ2x2var(v|D)

2 − γxE(v|D)
]

= x [E(v|D)− p]− γx2var(v|D)
2
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Demand xD can then be obtained from the first order condition.

LEMMA 2. The ex-ante value of CARA utility in ?? with access of information D is given by

uD =
1

γ
log

(
σv−p
σv|p

)
+

1

2γ

(v̄ − θ0)2

σ2
v−p

Proof. Using demand xD in 2.23 we have

E
[
e−γxD(v−p)|D

]
= E [exp (−γxD(v − p)) |D]

= E

[
exp

(
−E (v − p|D)

var(v|D)
(v − p)

)
|D
]

= exp

[
−E (v − p|D)

var(v|D)
E(v − p|D) +

1

2

[E (v − p|D)]

var(v|D)

2
]

= exp

[
−1

2

[E (v − p|D)]

var(v|D)

2
]

where the equality between second and third line uses Fact 2. Furthermore, since E (v|D) and

p are normal, and var(v|D) only depend on parameters, [E(v−p|D)]
var(v|D)

2
has chi-squared distribution.

Specifically E(v−p|D)
σv|D

∼ N
(
µ, σ2

z

)
where

µ =
E [E (v − p|D)]

σv|D
=
E [v − p]
σv|D

=
v − θ0

σv|D

σ2
z =

var [E (v − p|D)]

σ2
v|D

=
var (v − p)− E [var (v − p|D)]

σ2
v|D

Applying Fact 3, we have

exp

[
−1

2

[E (v − p|D)]

var(v|D)

2
]

=
1√

1 + σ2
z

· exp

(
− µ2

z

2
(
1 + σ2

z

))

=
σv|D

σv−p
· exp

(
−(v − θ0)2

2σ2
v−p

)
Hence

uD = −1

γ
logED

[
E(e−γx(v−p)|D)

]
= −1

γ
logED

[
exp

[
−1

2

[E (v|D)− p]
var(v|D)

2
]]

= −1

γ
logED

[
σv|D

σv−p
· exp

(
−(v − θ0)2

2σ2
v−p

)]

=
1

γ
log

(
σv−p
σv|p

)
+

1

2γ

(v̄ − θ0)2

σ2
v−p
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2.A.2 Proofs of Propositions

2.A.2.1 Proposition 1

Proof. We begin by positing a symmetric equilibrium where only informed investors search for

skilled managers at t = 1. Then we will show that at t = 3, the linear price exists that would clear

the market. Lastly, we use the derived equilibrium price to show that there exists ranges of γq and

k such that the presumed searching pattern are indeed optimal at t = 1.

1. Existence of equilibrium price Suppose Ii = λi, Iu = 0. Then whomever have access

to s̃i also has access to s̃m and vice versa. The resulting information structure is equivalent to the

setting with only one signal on the asset payoff, namely the summary statistics of s̃i and s̃m:

s̃ =
γis̃i + γms̃m
γi + γm

(2.24)

with the property

s̃ = ṽ + ε̃ where ε̃ ∼ N
(
0, γ−1

s

)
(2.25)

where γs = γi + γm By assumption, there are mass λi of investors with access to signal s̃ and λu

without the signal. As such, we can rewrite linear price (2.7), which is in terms of both si and sm,

to the following price function, which only depends on s:

p = b0 + bs(s+ bqq) (2.26)

By GS (1980), there exists unique solution (b0, bs, bq) such that the resulting linear price (2.7)

always lead to market clearing as defined in (2.16). We briefly outline the arguments here.

First derive the conditional expectations and variances of asset payoff for investors with the

signal s. This is straightforward since p is not used:

E(v|s) = − γss

γs + γ0
(2.27)
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var(v|s) = (γs + γ0)−1 (2.28)

On the other hand, the uninformed investors need to infer s from price. It is helpful to consider

the linear transformation of p:

p′ =
p− b0
bs

= s+ bqq (2.29)

which can be interpreted as a signal of v with precision from which it is easy to compute that

γp =
[
(γi + γm)−1 + b2qγ

−1
q

]−1
(2.30)

As such, we have:

E(v|p) = −γp(p− b0)/bs
γp + γ0

(2.31)

var(v|p) = (γp + γ0)−1 (2.32)

We can then plug the conditional expectations and variances into the right-hand side of the market

clearing condition (2.16). As such, both sides will be linear in s and q. In order to market clearing

to always hold, we match coefficients for s, q, and the constant, and solve the following system of

equations in term of b0, bs and bq:



0 = λi

γs
γs+γ0

− bs
αvar(v|s)

+ λu

γp
γp+γ0

− bs
αvar(v|p)

1 = λi
−bsbq

αvar(v|s)
+ λu

γp
γp+γ0

bq − bsbq
αvar(v|p)

0 = λi
−b0

αvar(v|s)
+ λu

−b0
αvar(v|p)

Multiply the first equation with bq then subtract it from the second equation. Rearranging the

terms yields:

bq = − α

λiγs
(2.33)

Given the above expression for bq, both var(v|p) and γp can be computed directly. Rearranging

the second yields solution for bs, and rearranging the third equation yields solution for b0.
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To map the solutions to the original price (2.7), apply the following transformation

a0 = b0 (2.34)

ai = bs
γi

γi + γm
(2.35)

am = bs
γm

γi + γm
(2.36)

aq = bsbq (2.37)

Hence the equilibrium price exists by construction.

2. Demonstrate complementarity Our goal is to show that given any parameters other

than γq, there exists γ̄q such that (2.17) holds as long as γq ∈ (0, γ̄q).

From equilibrium price derived above, we can derive conditional variances used in the comple-

mentarity condition (2.17) as functions of parameters. Below we express the precisions (reciprocal

of conditional variances) for convenience and more insights:

var(v|si, sm)−1 = γ0 + γi + γm (2.38)

var(v|si, p)−1 = γ0 + γi + γm −
γmA

γm +A
(2.39)

var(v|sm, p)−1 = γ0 + γi + γm −
γiA

γi +A
(2.40)

var(v|p)−1 = γ0 + γi + γm −
(γi + γm)A

γi + γm +A
(2.41)

where

A =
α2

λ2
i γq

(2.42)
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can be interpreted as the overall noise in equilibrium price.

The above expression of precisions provide direct interpretation. For instance, var(v|si, p)−1

can be decomposed as the precision when all three signals are known, less the noise in infering sm

from price. The term representing the magnitude of the reduction in precision due to noise, xA
x+A

is increasing in both x and A. That is, the lost in precision is greater if either the unknown signal

carries more information itself, or if the price is more noisy in general.

Going back to the complementarity condition (2.17), it is equivalent to show

var(v|p)−1var(v|si, sm)−1 − var(v|si, p)−1var(v|p, sm)−1 > 0

plugging in the expression for the precisions to the left hand side we have

var(v|p)−1var(v|si, sm)−1 − var(v|si, p)−1var(v|p, sm)−1

=

(
γ0 + γi + γm −

(γi + γm)A

γi + γm +A

)
(γ0 + γi + γm)−

(
γ0 + γi + γm −

γiA

γi +A

)(
γ0 + γi + γm −

γmA

γm +A

)
=A

[
(γ0 + γi + γm)

(
γm

γm +A
+

γi
γi +A

− (γi + γm)

γi + γm +A

)
− γiγmA

(γi +A)(γm +A)

]
which evaluates to 0 when A = 0. Furthermore, its derivative with respect to A at A = 0 is given

by γ0 + γi + γm > 0. Since the entire expression is continuous in A, for any γ0, γi, γm, there exists

Ā small enough such that for all A < Ā, complementarity condition (2.17) holds.

3. Verifying searching pattern Now suppose with γ0, γi, γm given, and A < Ā so that

complementarity holds. We show that there exists region of k such that the presupposed searching

pattern — only informed investors invest through skilled managers — is indeed incentive compat-

ible. Using expressions on precisions (2.38) - (2.41), we can compute the gain from sm both for

informed and uninformed investors. By complementarity, the gain for informed investors is greater

than the gain for uninformed investor. (Note that since fee will be precisely half of the gain. this

ordering is sustained even accounting for the fee). As such, we can denote c̄ as the gain from sm

for the informed, and c for the uninformed. From cost function (2.5), we can find M and M̄ that

correspond to c and c̄. Lastly, from manager’s indifference condition (2.15), since total revenue is
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fixed, we can find k and k̄ such that

k ∈ [k, k̄]⇒M ∈ [M, M̄ ]⇒ c(M) ∈ [c, c̄]

which implies the assumed searching pattern is indeed incentive compatible.

Detail derivation on var(v|si, p), (var(v|sm, p) is almost identical)

var(v|si, p)−1 = γ0 + γi +

(
γ−1
m +

(
aq
am

)2

γ−1
q

)−1

= γ0 + γi +

(
γ−1
m +

(
bq

(γi + γm)

γm

)2

γ−1
q

)−1

= γ0 + γi +

(
γ−1
m +

(
α

λiγm

)2

γ−1
q

)−1

= γ0 + γi +
(
γ−1
m +Aγ−2

m

)−1
where A =

α2

λ2
i γq

= γ0 + γi +
γ2
m

γm +A

= γ0 + γi + γm −
γmA

γm +A

2.A.2.2 Proposition 2

Proof. We can write πg explicitly in terms of parameters by plugging (2.38) and (2.41) into left-hand

side of (2.18):

πg =
1

2α

[
log (γi + γm + γ0)− log

(
γi + γm + γ0 −

(γi + γm)A

γi + γm +A

)]
(2.43)

First, we have

∂πg
∂A

=
1

2αvar(v|p)
· (γi + γm)2

(γi + γm +A)2
> 0 (2.44)

It then follows from (2.42) and the chain rule that
∂πg
∂α > 0,

∂πg
∂λi

,
∂πg
∂γq

< 0

We also have
∂πg
∂γ0

< 0 from direct computation:

∂πg
∂γ0

=
1

2α

 1

γi + γm + γ0
− 1

γi + γm + γ0 − (γi+γm)A
γi+γm+A

 < 0.



72

We now investigate
∂πg
∂γi

and
∂πg
∂γm

. For
∂πg
∂γi

, we have

∂πg
∂γi

=
1

2α

 1

γi + γm + γ0
− 1

γi + γm + γ0 − (γi+γm)A
γi+γm+A

·
(

1− A2

(γi + γm +A)2

)
∝
(
γi + γm + γ0 −

(γi + γm)A

γi + γm +A

)
− (γi + γm + γ0)

(
1− A2

(γi + γm +A)2

)
= (γi + γm + γ0)

A2

(γi + γm +A)2
− (γi + γm)A

γi + γm +A

∝ (γi + γm + γ0)A− (γi + γm)(γi + γm +A)

∝ γ0 −
(γi + γm)2

A

Note that in the above derivations each ∝ corresponds to scaling by a positive number. Hence

∂πg
∂γi

> 0⇔ γ0 >
(γi + γm)2

A

We can also verify that
∂πg
∂γi

=
∂πg
∂γi

.

2.A.2.3 Proposition 3

Proof. We first write f explicitly in terms of parameters by plugging (2.38) and (??) into left-hand

side of (2.13):

f =
1

4α

[
log (γi + γm + γ0)− log

(
γi + γm + γ0 −

γmA

γm +A

)]
(2.45)

Note the connection the above expression has with equation 2.43. Explicitly, f can be written

as 1
2πg (γ′0, γ

′
i, γ
′
m) where γ′i + γ′m = γm and γ′0 = γ0 + γi. Therefore

∂f

∂A
=

1

2

∂π

∂A
> 0,

∂f

∂γ0
=
∂f

∂γi
=

1

2

∂πg
∂γ0

< 0,

and

∂f

∂γm
> 0 ⇔ γi + γ0 >

γ2
m

A



73

2.A.2.4 Proposition 4

Proof. From manager indifference condition (2.15),

M =
λif

k

Hence

∂M

∂γi
=
λi
k

∂f

∂γi
< 0

where the last inequality rely on results from Proposition 2.3

And

∂M

∂λi
=

1

k

[
λi ·

∂f

∂λi
+ f

]
The sign of the term inside the bracket is ambiguous since f > 0 and ∂f

∂λi
< 0.

2.A.2.5 Proposition 5

Proof. We first derive the price informativeness absent money manager

η′ = γ0 + γi −
γiA

γi +A

Conceptually, it is equivalent to the setting where manager signals are white noise, that is, γm =

0. Note that the dependence on λi is through A. As such, the problem of maximizing price

informativeness fixing amount of investor information can be formulated as

max
γi,λi

γ0 + γi + γm −
(γi + γm)A

γi + γm +A

subject to

γ0 + γi −
γiA

γi +A
= η̄′

The constraint can be transformed into a function A(γi), we can then plug A(·) into the objective

and consider its derivative with respect to γi. We have

∂η

∂γi
=

∂η

∂γi
+
∂η

∂A
· ∂A
∂γi

= =

(
1− A2

(γi + γm +A)2

)
+

γ2
i

(γi +A)2
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The marginal rate of substitution between γi and λi, fixing the amount of investor information,

is given by

MRSγi,λi,η′ = −∂η
′/∂γi

∂η′/∂λi
= −

1− A2

(γi+A)2

γ2i
(γi+A)2

· ∂A∂λi
=

(
1 +

2A

γi

)
·
(
− 1

∂A/∂λi

)

Similar derivation yields the marginal rate of substitution between γi and λi, fixing the price

informativeness:

MRSγi,λi,η =

(
1 +

2A

γi + γm

)
·
(
− 1

∂A/∂λi

)
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CHAPTER 3. Venture Capital Skill, Size, and Capital Deployment

3.1 Introduction

The venture capital (VC) industry serves a vital role in the growth of the economy. Though the

relative size of the VC industry is small compared to other asset classes1, startups receiving VC

funding go on to become some of the largest companies in the world. Given the potential impact

VCs have on the economy through growth and innovation, understanding how VCs create value

and identifying superior VCs is important.

However, the uniqueness of VC operation and limitation on return data make the evaluation

of VCs difficult. Unlike other forms of investment companies such as mutual funds, payoffs of

VC portfolio companies are sporadic (at the single point of exit) and skewed (a small fraction of

start-ups account for the majority of the gains). Therefore it is difficult to evaluate VC based on

return data.

Moreover, the “skill” of VCs depends on many things. Some common traits of a successful VC

include the ability to screen promising start-ups from others and providing value-added expertise

and support. In this paper, we highlight another important component of VC skill: access/deal

flows. While both value-added and screening are important for VC, both assume an existing

pool of start-ups for VC to select from and improve upon. In reality, different VCs face different

options. The most prestigious VC firms tend to get early access to investments. Not only do their

connections allow them to discover promising early-stage companies, but their reputations also lead

more founders to voluntarily come to their ways.

The co-existence of better deal flow and better screening ability makes the evaluation of VC

more difficult. For example, consider Sequoia, one of the most respected firms in the VC industry

with a proven track record. Precisely due to its established reputation, it is hard to pin down

1In 2018, global VC investments totaled $254B according to “Venture Pulse Q4 2018”, KPMG



76

the root of its success. On the one hand, the partners at Sequoia likely have years of experience

and industry expertise, which will play huge roles in identifying promising start-ups and providing

invaluable support. On the other hand, Sequoia receives more than average deal flows because of

its reputation. It is not obvious how much one can attribute Sequoia’s success to each of the above

components.

How do we distinguish better deal flows from better screening abilities? In which aspects do

funds differ more? Can we evaluate VCs without relying on return data? In this paper, we answer

the above questions by developing and structurally estimating a dynamic model of VC fundraising

and capital deployments. Deal flows/access is modeled as the arrival probability of investment

opportunities (capital commitment) during the investment (fundraising) stage. Screening ability

is modeled as the precision of the signal on the NPV of a prospective start-up. Fund size and

deployment frequency are endogenously determined based on these parameters.

Both network and evaluations affect the size and frequency of fund deployment. When funds

have a better network, they meet with prospective startups more frequently, thus shortens the

average wait time between deals. The network effect also affects fund initial size through its impact

on the fundraising speed – funds that raise funds quicker set a higher initial fundraising target.

On the other hand, better screening leads to longer waiting times between deals. For VCs

that are aware of their abilities to spot a better investment opportunity in the future, there is an

incentive to be more selective regarding start-ups that they encounter. In contrast, to a VC with

limited screening capability, all start-ups (are perceived to) have similar prospects. Hence there is

little gain from reserving capital for future investments. This leads to shorter waiting times. On

the other hand, because screening capability has little impact on the fundraising stage, its influence

on fund size is orders of magnitude smaller than that of the network effect.

We then use actual VC deal data from VentureXpert to estimate the model parameters. For each

fund, based on the actual dates of the deal, we can obtain the time intervals between consecutive

deals. We then obtain estimates for deal flow and screening ability as the outcomes of maximum

likelihood estimators.
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The results suggest the difference in deal flows across funds is much more significant than

the difference in screening abilities. Variation in deal flows alone accounts for almost the entire

dispersion in estimated fund values. This is consistent with the notion that connection in VC is

key.

We also conduct the counterfactual experiment where we assume the deal flows and the screening

technology of any given VC is separable. By reallocating greater deal flows to funds with better

screening technology, we increase the overall fund value by 2.5%. The improvement in fund value

corresponds to the unrealized synergy between better screening technology and greater deal flows.

Our paper contributes to the VC skill literature. similar to Sorensen, we apply a structural

model to pass the lack of return data. We can separately identify two attributes of VC: deal flow

and screening.

The rest of the paper is organized as follows. Section 3.2 sets up and solves the problems for

a VC fund. In Section 3.3, we describe the data used in the exercise. Section 3.4 outlines our

estimation procedures. Section 3.5 discusses the estimation results. Section 3.6 concludes.

3.2 Model

There are two distinct stages in a VC’s lifecyle– fund raising and capital deployment. We model

the dynamic decisions of an individual VC fund in both stages. Time is discrete. The state variable

is capital level K. For simplicity, we assume K only takes on integer values.

During the fund raising stage, in each period, κ units of capital arrive with probability λ. When

the fund target size, K0, is reached, the fund is closed to investors and shifts from fund raising

to deploying capital. Here the subscript 0 corresponds to time 0 in the investment stage. This

transition is irreversible. (We leave aside the ability of the fund manager to raise follow-on fund

e.g., “X Fund II”).

The deployment of K0 units of capital is as follows. At each date, t, with probability λ, a single

investment opportunity arrives. With probability 1 − λ no opportunity arrives. Note that λ is

the arrival rate for both the fundraising and investment stage. We interpret λ as the network and
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reputation of the VC fund partners. A well-connected VC partner has better access to both LPs

when it comes to raise money, and to greater deal flows when it comes to investing.

If an investment opportunity arrives, the VC receives a signal st on the NPV of the project yt.

The pair (st, yt) are i.i.d across periods with the following joint normal distribution: yt

st

 ∼ N

 µy

0

 ,
 σ2

y ρσy

ρσy 1




The marginal distribution of yt is yt ∼ N(µy, σ
2
y). This reflects the quality of the overall pool

of the potential investment opportunities. We can also compute the distribution of yt|st, VC’s

posterior distribution on NPV after observing the signal:

yt|st ∼ N
(
µy + ρσyst, (1− ρ2)σ2

y

)
(3.1)

Here ρ ∈ [0, 1] is the correlation coefficient between the signal st and the actual NPV yt. ρ is

the quality of the signal and represents the VC’s ability to evaluate a prospective start-up . When

ρ = 0, st provides no additional information on yt. This can also be seen by plugging ρ = 0 into

the conditional distribution of yt|st and verify that it is identical to the marginal distribution. On

the other hand, if ρ = 1, the value of yt can be precisely inferred by the VC. This can be seen by

verifying that var(yt|st) = 0 when ρ = 1.

Note that the assumptions that the marginal distribution for st is N(0, 1) and that the correla-

tion coefficient ρ ≥ 0 are without loss of generality. This is because linear transformation of normal

signals convey the same information.

Based on the signal, st, the VC chooses whether to invest. For simplicity, we assume the

investment size of each opportunity is fixed at one unit of capital. If the opportunity is pursued,

Kt+1 = Kt−1. Therefore, the capital level K will only take on integer values. Investment continues

until KT = 0, at which point the VC portfolio includes exactly K0 different investments. (The un-

invested capital does not earn the any return. In fact, typically the capital is only committed by

the LP and provided when there is an investment; a “cash call.”)

The VC is risk neutral. It’s goal is to maximize the total discounted value of expected NPVs.
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We can characterize the optimal solution working backwards through the two key decisions.

First we solve for the optimal investment policy of the VC with K units of capital staring at

an investment opportunity. Then, knowing the policy functions and values function from the

investment stage, we can solve for the fund size as an optimal stopping point problem. We first lay

out the solution for the investment stage.

3.2.1 Investment

The investment decision is characterized by how a VC with K units of capital reacts to an

investment signal of st. For simplicity, let xt denote the conditional mean of the NPV. From (3.1),

we have:

xt = µy + ρσyst (3.2)

Therefore the ex ante distribution on conditional mean NPV is given by

xt ∼ N(µx, σ
2
x) (3.3)

where

µx = µy + ρσyE(st) = µy (3.4)

σx = ρσyσs = ρσy (3.5)

Note that σx is increasing in ρ. Consider a VC with superior screening capability, i.e. ρ ≈ 1. As

a result, ex ante, the conditional mean of NPV largely depends on the realization of the signal st.

Therefore the variance is large (σ2
x ≈ σ2

y). On the contrary, if the signal reveals little information,

the conditional mean of NPV will be close to the unconditional mean µy, regardless of the realization

of st.

Because the VC is risk neutral and pairs (yt, st) are i.i.d, xt is the sufficient summary statistics

for VC to make the investment decision at time t. Note the VC’s problem is equivalent to the

following setup without signals: at each period, an opportunity may arrive with known NPV xt

drawn from N(µx, σ
2
x). The VC then chooses to either receive xt and deploy one unit of capital, or

wait for better draws in the subsequent periods.
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Let V (K,x) denote the fund’s value function with capital level K and inferred mean NPV x

if an opportunity arrives; let V (K, ∅) denote the value function where no opportunity arrives. Let

V̄ (K) denote the ex ante value function at capital K when the arrival of the investment opportunity

is unknown. We have:

V̄ (K) = λE(V (K,x)) + (1− λ)V (K, ∅) (3.6)

V (K,x) = max
w∈{0,1}


x+ βV̄ (K − 1) if w = 1

V (K, ∅) if w = 0

(3.7)

V (K, ∅) = βV̄ (K) (3.8)

V̄ (0) = V (0, ∅) = V (0, x) = 0 for all x (3.9)

Equation (3.6) follows from the iterated law of expectation. w in equation (3.7) denotes whether

the investment is made. If the investment is made, the value of fund becomes the sum of the

conditional expected NPV xt and the discounted continuation value with K − 1 units of capital.

β = 1
1+r is the discount factor. Alternatively, if the VC chooses to wait, fund value is the same

as if the opportunity did not arrive, which is the ex ante value discounted by one period, as given

in equation (3.8). Equation (3.9) specifies the boundary condition. When capital level is depleted,

fund value becomes 0.

Given the monotonicity in this set up, the optimal policy will be characterized by a cut off,

x(K), such that it is optimal to make the investment if and only if x ≥ x(K). By smooth pasting,

at x(K), VC is indifferent between investing and waiting. From (3.7) and (3.8) we have

x(K) = β
(
V̄ (K)− V̄ (K − 1)

)
(3.10)

We can also re-express V (K,x) in terms of threshold x(K):

V (K,x) =


x+ βV̄ (K − 1) if x ≥ x(K)

βV̄ (K) if x < x(K)

(3.11)
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Taking expectations with respect to x on both sides, plugging in (3.10), and simplifying

E[V (K,x)] = Prob(x ≥ x(K)) ·
[
E[x|x ≥ x(k)] + βV̄ (K − 1)

]
+ Prob(x < x(K)) · βV̄ (K)

=

∫ ∞
x(K)

(x− x(K))dF (x) + βV̄ (K)

The second term denotes the baseline continuation for low realizations of x. The first term is the

expected incremental gains when x ≥ x(K).

We can then plug the above in (3.6) and obtain a recursive expression of V̄ in terms of itself:

V̄ (K) = λE(V (K,x)) + (1− λ)V (K, ∅)

= λ

∫ ∞
x(K)

(x− x(K))dF (x) + λβV̄ (K) + (1− λ)βV̄ (K)

= λ

∫ ∞
x(K)

(x− x(K))dF (x) + βV̄ (K)

which yields

V̄ (K) =
λ

1− β

∫ ∞
x(K)

(x− x(K))dF (x) (3.12)

Equation (3.10) and (3.12) is the law of motion for the pair (X(K), V̄ (K)). We can solve

X(K), V̄ (K) for any K using backward induction, starting from the boundary condition V̄ (K) = 0.

Formally, we have the following result.

PROPOSITION 3.1. Given a set of parameters {µy, σy, ρ, λ, β}, the law of motions in (3.10),(3.12),

and the boundary condition (3.9) V̄ (0) = 0, there exists a unique sequence of x(K), V̄ (K),

K = 1, 2, 3, . . .. Furthermore, x(K) > x(K + 1) > 0 for all K. That is, fund becomes more

selective as capital is depleted.

Proof. By induction. The initial case is given by the boundary condition V̄ (0) = 0. We can also

use (3.12) to show that x(0) = ∞ > 0. (x(0) never appears in the VC’s problem, but we state it

here for consistency)

We now show the inductive step. Suppose we have computed the unique values of V̄ (K) and

x(K) > 0 for some K. Our goal is to show that there exists unique V̄ (K + 1) and x(K + 1) ∈

(0, x(K)) satisfying the law of motions. We first plug V̄ (K) into (3.10) and yields

x(K + 1)− βλ

1− β

∫ ∞
x(K+1)

(x− x(K + 1))dF (x) + βV̄ (K) = 0 (3.13)
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The goal is to show that there exists unique solution z for the following equation:

h(z) = z − βλ

1− β

∫ ∞
z

(x− z)dF (x) + βV̄ (K) = 0 (3.14)

First, note that
∫∞
z (x− z)dF (x) is decreasing in z: let z1 < z2,∫ ∞
z1

(x− z1)dF (x) >

∫ ∞
z1

(x− z2)dF (x) >

∫ ∞
z2

(x− z2)dF (x)

Therefore, since x(K) > 0 by the inductive hypothesis

h(0) = 0− βλ

1− β

∫ ∞
0

(x− 0)dF (x) + βV̄ (K)

<
βλ

1− β

∫ ∞
x(K)

(x− x(K))dF (x) + βV̄ (K)

= 0

The last equality follows from (3.12).

Similarly, we can show h(x(K)) = x(K). Since h is continuous, by the Intermediate Value

Theorem, there exists x(K + 1) ∈ (0, x(K)) such that h(x(K + 1)) = 0. Moreover, h is strictly

increasing. Thus the solution must be unique.

3.2.2 Fundraising

Given the projected sequence of V̄ (K), the VC fund determine the optimal amount of capital,

K0, to begin with. In the context of VC, the fund raising stage is only gathering commitments;

capital does not flow into the fund until needed for deployment (i.e. cash call). However, the

distinction between capital inflow and capital commitment is insignificant here. As we will see, the

key trade-off in the fund raising stage is not the opportunity

Let W (K) be the value function during the fundraising stage at the start of period t, where K

is the units of capital raised so far. We have

W (K) = max
w∈{0,1}

 β (λW (K + κ) + (1− λ)W (K)) if w = 1

V̄ (K) if w = 0
(3.15)
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where w represents the binary decision of whether to devote another period to search for a

commitment. If w = 1, the fund remain in the fundraising stage. With probability λ a LP arrives

with κ units of capital. Otherwise, if w = 0, the fund closes to investors and shift immediately to

investing stage.

Here the trade-off is between the chance of additional units of capital and the cost of delaying

the payoffs. This is rooted in the feature that fund must first close before making investments.

Contrast this with the investment decision in (3.7), where the trade-off also arise from the finite

amount of total resource.

Similar to the investment stage, we conjecture the optimal fundraising policy is characterized

by a threshold size K0. Specifically, the fund will keep raising capital if and only if the existing

level of capital K < K0. As such,

W (K) =

 β (λW (K + κ) + (1− λ)W (K)) if K < K0

V̄ (K) if K ≥ K0

(3.16)

The optimal fund size K0 can be solved with the following iterative procedure over K ∈

{0, κ, 2κ, . . .}. We begin with K = 0. In each iteration, we compare the policy that stops at

K and the policy that stops at K + κ. Under the first policy, W (K) = V̄ (K). Under the second

policy:

W (K) = β (λW (K + κ) + (1− λ)W (K))

= β
(
λV̄ (K + κ) + (1− λ)W (K)

)
=

βλ

1− β + βλ
V̄ (K + κ)

Therefore the policy corresponding to K dominates the policy corresponding to K + κ if and

only

V̄ (K) ≥ βλ

1− β + βλ
V̄ (K + κ) (3.17)

. We first show that there exists K such that the above is true. Rearranging terms in (3.17) we

arrive at the following equivalent condition

(1− β)V̄ (K) ≥ βλ
(
V̄ (K + κ)− V̄ (K)

)
(3.18)
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Plugging in (3.12) and (3.10) into the LHS and RHS, respectively, yields:∫ ∞
x(K)

(x− x(K))dF (x) ≥
κ−1∑
i=0

x(K + i) (3.19)

which is true since
∫∞
x(K)(x − x(K))dF (x) → E[x|x ≥ 0] and x(K) → 0 as K → ∞2 . Let K0 be

the smallest multiple of κ such that the above holds. By default, the stopping rule corresponding

to K0 dominates that for all K < K0. Furthermore, since LHS is increasing in K and the RHS is

decreasing in K, 3.17 also holds for K > K0. Therefore the stopping rule characterized by K0 is

the global optimal.

3.2.3 Numerical Examples: Deal flows and Screening

Our main goal is to separately identify the deal flow and the screening skill of each VC fund.

Therefore, we explore how the fund’s initial value and decisions are related to λ, the deal arrival

probability, which captures deal flow, and ρ, the signal precision, which captures screening ability.

We do so by examining various comparative statics via numerical examples.

First, we examine the initial fund value under different parameterizations of ρ and λ. Specif-

ically, we focus on V̄ (K0), the fund value at the inception of the investment stage, with optimal

capital K0. We summarize our observation.

OBSERVATION 1. The value of a VC fund at the beginning, V̄ (K0) is increasing in the signal

precision ρ and deal flow λ. In addition, ρ and λ have complimentary effect on value, i.e. ∂2V̄ (K0)
∂ρ∂λ >

0.

Figure 3.1 shows the value of V̄ (K0) for different combinations of ρ and λ. Not surprisingly,

both greater deal flow and higher precision cause funds to have greater values. Moreover, we see

that the same increase in ρ has a larger impact on value when λ is higher. This is because higher

deal flows magnify the benefit of better screening ability.

2To see that x(K) → 0 as K → ∞, note that x(K) is decreasing and bounded below by 0, hence must have a
limit. By (3.10), the limit of x(K) must equal to the limit of the RHS, which is 0
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While both λ and ρ are positively related to fund value, they have different qualitative effects

on investment policy, which then lead to different implications on time between successful deals.

We summarize the result in the following observation.

OBSERVATION 2. All else equal, the probability that an investment is made at any level K is

decreasing in ρ and increasing in λ. The optimal fund size K0 is increasing in λ and decreasing in

ρ. Though it seems
∣∣∣∂K0
∂λ

∣∣∣ >> ∣∣∣∂K0
∂ρ

∣∣∣
Figure 3.2 illustrates the optimal investment policy under different parameterizations over ρ and

λ. The top left panel plots the NPV threshold that determines investment. Each curve corresponds

to one parameterization. Consistent with Proposition 3.1, We see that as capital K decreases to 0,

the threshold increases. Funds become more selective as they have lower capital

Comparing the curves representing ρ = 0.3 to curves representing ρ = 0.7, wee see that NPV

threshold increases when ρ increases. For VC that can identify better start-ups, they require higher

perceived NPVs to give up 1 unit of capital that could be invested in better startups in the future.

On the flip side, if the fund has limited screening ability, all the start-ups have similar perceived

NPV, hence the threshold NPV is lower.

On the other hand, comparing curves representing λ = 0.3 and λ = 0.7, we see that the increase

in λ increases threshold, though with smaller magnitude. This is due to the indirect effect that

future projects may arrive sooner, so it makes waiting more appealing, then raises the minimum

NPV required.

The upper right panel translates the NPV threshold into the probability of investment. That

is, the lines represents P (x > x(K)). Since both increases in λ and ρ results in a higher threshold,

they lead to a lower probability of investment. Everything for λ carries through. For ρ, however,

in addition to the effect on x(K), it also directly impacts the distribution of x. Higher ρ increases

the spread of the distribution of x, thus increasing P (x > x(K)) for any x(K). Panel B indicates

the net effects of ρ on P is still negative.

While the previous panel plots the probability of invest conditional on the arrival of opportunity.

The ex-ante probability of whether a deal is made would also need to account for the arrival rate.
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The bottom panel plots λ · P (x > x(K)), which is the ex-ante probability of investing in the

period before arrival is realized. This is ultimately what determines the time between deals. Here,

the effect of ρ is the same as the conditional probability. However, for λ, the effect on ex-ante

probability through higher arrival rate leads to a net positive effect. Therefore we see that fund

with higher λ have higher chance to invest at any given point, whereas fund with higher ρ has

lower.

The distinctive qualitative effects of λ and ρ on fund investment probability provide one unique

ingredient for our identification. However, investment alone is not sufficient. Given frequent suc-

cessful deals, it is hard to distinguish between a fund with large (low) deal flow and a fund with

noisy (precise) signals. To do so we also consider the impact on fund size.

In figure 3.3, each curve plots the optimal fund size for various value of ρ, fixing λ. The negative

slope indicates funds with higher ρ choose lower fundraising targets. This is because the increased

precision leads to higher expected payoffs for future projects. Therefore the cost of waiting and

raising an additional unit of capital becomes greater.

On the contrary, as indicated by the distance between lines, λ is positively correlated with fund

size. Though higher λ, like higher ρ, raises the benefit of future fund value thus the cost of waiting,

it also expedites the fundraising process since LP commitments arrive more frequently. The latter

effect dominates and the net effect of better access overall is a larger fund.

More importantly than the different signs of ∂K0
∂iλ and ∂K0

∂iλ is the disparity in their magnitudes.

The slope of each line, especially for high ρ and low λ, is relatively flat, indicating the limited effect

ρ has on optimal fund size. This is because ρ only affects optimal size indirectly through future

value. λ, on the other hand, directly affects the rate at which capital is raised, thus have a much

larger effect.

Conceptually, investment frequency and fund size provide a system of two equations based on

ρ and λ, which we can then solve for. In the estimation section, we will do exactly this.
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3.3 Data

The data we use in this paper is VentureXpert (also known as ThomsonOne), which is one of

the main academic sources of data on investments by venture capital funds. The unit of observation

is startup-round-investor. For example, if a particular round for a startup has five investors, then

there will be five observations. Each observation records the identity of the fund and startup

involved in the deal, the date of the deal, the round number, and the total amount of investments.

In addition, we observe the state and city for the startup and fund. For each fund, we also have

access to the VC firm, its initial size, the founding year of the fund, and the VC firm. The sample

period ranges from 1980 to 2015.

3.3.1 Sample Selection

While VentureXpert is one of the most comprehensive datasets on VC deals, it has its drawback

as Kaplan et. al. (2002) suggest. Here we outline the necessary steps to clean and preprocess the

data. First, we drop all observations with unidentifiable funds. In the dataset, they are either

labeled “unspecified fund” or “undisclosed fund”. Secondly, we drop observations with missing

values. Most missing values appear in the amount invested column.

For our purpose, we want to estimate each fund’s skill parameter using its waiting time between

deals. Doing so requires us to have complete or near-complete records of all the deals the fund has

been involved in. To see this, consider a fund with a portion of its deals missing from the dataset.

Running the estimation directly on the incomplete data could lead to the misinterpretation that

the fund tends to wait longer between deals.

To determine which funds might have unreported deals, we construct a proxy for the percentage

deals reported. For each fund, we collect all deals in which the fund has been a part of. For each

deal, we compute the expected investment amount by dividing the total amount invested in the

deals by the number of investors. This amount is not exact because co-investors for a deal normally

do not invest the same amount. We then aggregate the expected investment amounts for all deals.

The proxy for percentage reported is then defined as the ratio between the sum invested and the
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reported initial fund size. We only retain funds with > 75% deals matched according to the proxy.

Here we use 75% instead of higher because the proxy might be different from the actual ratio.

We also exclude funds whose last observed deal is within 2 years of the end of our sample. This

is to exclude funds that likely have not used up their capital, even if the previous proxy rule has

not already eliminated them. The 2 years here is a conservative threshold and will likely guarantee

all funds in our analysis are terminated funds.

While the remaining funds likely have all deals reported in the dataset, we take additional steps

to drop extreme outliers so that the eventual sample is reasonably homogeneous. The main reason,

as we will see in the next section, is that the model cannot identify certain parameters such as κ,

the average capital committed per LP, or β, the discount factor. As such, we can only interpret

the estimation results in relative terms. Doing so requires all funds estimated are similar in most

aspects.

First, we drop all funds outside of the US. Secondly, by examining the empirical distribution of

the number of deals, we note that more than 75% of funds participate in between 3 and 30 deals.

There are masses of funds with 1 or 2 deals. We exclude these because the intervals between deals

are either empty or a singleton and thus not enough to analyze. We also include those on the right

tail of the distribution in terms of deal invested. There are funds with more than 100 deals. They

likely operate under a different investment strategy and style from the rest of the sample. So we

avoid pooling them with our core sample. We conduct similar sample selection with the average

investment size – we only include funds whose average investment size is between $0.5M and $3M

(similar to the criterion used for the number of deals, $0.5M and $3M correspond to the 25th and

75th percentile among our remaining sample.)

3.3.2 Summary Statistics

Table 3.1 provides the summary statistics at both the fund level and the deal level. From Panel

A, The average fund in our sample has $19.64M capital committed, is founded in 1994 within a VC

firm that started 5 years prior in 1989, participates in almost 14 deals in its lifecycle with an average
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investment of $1.52M in each company. On average the deal is for the third-round funding. We

compare the statistics among our sample to the original sample before any selection. Our sample

is not significantly different from the main sample in terms of vintage. However, our sample tends

to consist of smaller funds both in terms of the overall asset and asset per investment.

Panel B reports the deal level statistics. Within our sample, the average round injects almost

$8M capital to the underlying company, which is in its 3rd round of funding. Typical deals have a

little more than 5 co-investors. The average year of the deal is 1999. Most of these statistics are

comparable to those of the entire sample. This suggests our sample is representative at least in

regard to the types of deals.

3.4 Estimation Procedure

We conduct the estimation on each fund separately. Below we describe how we bring the model

to data, by deriving the likelihood function and formatting data so that it can be used as the input

for the likelihood. We also discuss the assumptions we make to achieve identification.

3.4.1 Likelihood function

We first derive the likelihood function. From the model, we see how λ and ρ affects the proba-

bility of invest at each time. The probabilities then give rise to a distribution of the waiting time

between deals. Let pk = λProb(x ≥ x(k)) be the unconditional probability of investment in a given

period when the current level of capital is k. Whether a deal is made in any period is a Bernoulli

random variable with probability pk. As such, the expected waiting time dk for a deal to arrive

and occur has a binomial distribution:

Prob(dk) = (1− pk)dk−1 · pk (3.20)

That is, for the deal at k to take exactly dk periods, we need dk−1 periods of non-investment, each

with probability (1− pk), and the last period to have a successful investment, with probability pk.

We multiply them because of the independence of the draw across periods.
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Let d1, d2, . . . ...dK be the periods between deals at different capital levels. By independence,

the joint probability of observing the entire sequence {di} is then the product of (3.20) applied to

different values of k. Taking the log yields the following log likelihood function:

linvest(ρ, λ|d1, d2, . . . , dK) =
K∑
k=1

(dk − 1) ln(1− pk(ρ, λ)) + pk(ρ, λ) (3.21)

Here we highlight the fact that ρ, λ affect the likelihood through pk.

However, (3.21) does not provide the complete picture. If d1, d2, . . . ...dK represents all the wait

times, then K is the initial size of the fund, which we also need to account for in the likelihood

function. From the model, the optimal size of K0 is the deterministic solution to the stopping

time problem in the fundraising stage. That is, Prob(K0 = K) is either 0 or 1 depending on the

parameters. The discontinuity is an undesirable feature for estimation and departs from reality.

We address the discontinuity issue by modifying the model in the following way: suppose that

as soon as the fund reached the optimal level of capital K0 and closes to investors, there is a one

time shock that changes the capital level to K0 to K ′0. Here the discrepancy could arise from certain

LP deciding to commit more capital than agreed upon (or pulling back from an agreement). The

difference could also capture unexpected windfall or cash withdrawal more generally.

In a reduced form way, we assume K ′0 takes on a geometric distribution with K0 as the expec-

tation. In robustness tests, we can experiment with alternative functional forms. The requirement

here is that the support of the distribution is the set of integers so to preserve the discreteness of

capital level.

Taken together, the log-likelihood is given by

l(ρ, λ|d1, d2, . . . , dK) = (K− 1) ln

(
1− 1

K0

)
+ ln

(
1

K0

)
+

K∑
k=1

(dk− 1) ln(1− pk(ρ, λ)) + ln(pk(ρ, λ))

(3.22)

which can be numerically computed by first solving the model as outlined in the earlier section.
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3.4.2 Data Formatting

Recall the unit of observation in VenturExpert is round-investor-company. Our goal is to

compute the sequence of wait times {di}, which we can then use to define the likelihood function

and then maximize.

For each fund in our dataset, let t1, t2, . . . , tK be the dates of all investments sorted from the

latest to earliest. We can compute the difference in weeks between deals in days and normalize it

into weeks. We use weeks to represents periods so that the most wait times lie in the desired range

of model outcomes. Partners in VC funds also hold weekly meetings to discuss potential portfolio

companies. Hence adopting weeks is also consistent with the decision cycles of funds.

Specifically, we define

dk = min

(
1, b tk+1 − tk

7
c
)

Here the unit of tk+1 − tk is in days and are guaranteed to be integers since the deal dates are

given. Since the waiting time in our model must also be integers, we use the floor function when

transitioning from days to weeks. If consecutive deals occur in the same week, we treat the time

difference as 1. Future expansion of the model could also consider the possibility of multiple projects

in one period.

Lastly, while we observe K deals for every single fund, we can only compute the K−1 wait times.

This is because we do not observe the date in which fund closes to the investor and transition to the

deployment stage. Therefore we do not observe dK . Hence in calculating the likelihood function

(3.22), we omit the term associated with dK .

3.4.3 Identification and Parameter Restrictions

So far, we have defined the likelihood function in terms of only ρ and λ. However, the entire

set of parameters is {µy, σy, κ, β, ρ, λ}. Indeed, we artificially impose restrictions on the degree of

freedom. Due to the limitations of our data, this is necessary to ensure identification. Below we

describe which parameters we need to fix and provide justifications.
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When solving the model, scaling µy and σy simultaneously result in no change in policy func-

tions. Conceptually, we are only changing the unit of payoff. Since we only match deal frequencies

and the total number of deals, we are not able to pin down the absolute scales of µy and σy. In the

actual estimation, we fix µy to be one – that is, the unit of the payoff is the expected NPV of all

available projects. (Here the implicit assumption is that the mean NPV is nonzero and positive,

which is not inconsistent with reality.)

Similarly, we can not separately identify ρ and σy. Recall ρ and σy affect VC decisions only

through σx = ρσy, the ex-ante variance of the conditional NPV. Conceptually, we cannot distinguish

between imprecise signals from a noisy prior. Here we restrict σy to be 10 and let ρ varies. The

restriction that σy = 10 imposes an upper bound on all fund’s variance. However, from the results

in later sections, we see that estimates of ρ do not lie near 1, suggesting the restriction is not

binding.

While we cannot use existing data to separately identify µy and σy, future extensions could

incorporate data on the NPVs of the deals, the distribution of which could pin down the µ and σ.

For k and β, though their effects on the model cannot be perfectly replicated by ρ and λ, the

effects are close enough that estimating all four parameters simultaneously would cause identifica-

tion issue. Throughout our estimation, we fix k = 1 and β = 0.99. For future extensions, data on

the number of LPs for funds and opportunity cost of the LP can help pin down the estimates of k

and β.

3.5 Estimation Results and Analysis

Following the procedures outlined in the previous section, we estimate ρ̂ and λ̂ for each fund.

Figure 3.4 is a scatter plot of
(
ρ̂, λ̂
)

for all fund in our sample.

3.5.1 Dispersion in Deal Flows vs. Dispersion in Screening

We compare the dispersion in λ̂ and the dispersion in ρ̂. This addresses the question that we

raised at the beginning: do VC funds differ more in their ability to screen prospective startup or in
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their ability to generate larger deal flows? Below we present several pieces of evidence suggesting

the dispersion in deal flow is greater and have a much larger impact on fund value.

Figure 3.5 plots both the 2D and 1D densities for λ̂ and ρ̂ over all funds. By inspecting the

shape of the marginal densities on each estimated parameters, we see that ρ̂ has a unique mode

near 0.25. In contrast, for λ̂, all values in [0.1, 0.3] share the maximum density.

Furthermore, the mean of λ̂ and ρ̂ are 0.231 and 0.263, respectively. The standard deviations

are 0.123 and 0.017. Judging by the standard deviation and the mode, funds appear to be more

different in terms of deal flows. However, one could argue the magnitude here since λ and ρ are

different objects – one is the probability, the other correlation. In particular, recall we could have

assumed a smaller prior uncertainty σy, which would mechanically scale all the ρ̂ and effectively

increase the standard deviation.

To address the above concern, we use V̄ (K0), fund value at the beginning of the investment

stage, as the common metric. First, we compute V̄ (K0) at 4 sets of (λ, ρ):
(
Eλ̂,Eρ̂± σρ̂

)
and(

Eλ̂± σλ̂, Eρ̂
)

and label the result on Figure 3.5. We see that 2 sample standard deviation in λ is

able to generate a difference of 61.4-19.1 = 42.3 in fund value; whereas 2 sample standard deviation

in ρ can only generate a difference of 41.7-37.4 = 4.3 in fund value. Therefore, the dispersion in λ

is greater that in ρ in terms of the spread in corresponding fund values.

Alternatively, we can directly plot the density of the estimated fund values. Figure 3.6 and 3.7

compare the actual estimated density with the counterfactual densities where the variation in λ or

ρ is muted. Specifically, by setting λ (ρ) to Eλ̂ (Eρ̂), we examine the variation in fund value that

screening (deal flow) alone can generate. Consistent with the previous results, variation in deal

flow accounts for almost all the variation in fund value: var(V̄ ) actually increases from 472.7 to

275.9; on the other hand, var(V̄ ) when λ is fixed is only 4.7.

This result is consistent with the notion that connection is the most valuable resource in the VC

industry. This is a clear distinction between VC and other types of investments. For comparison,

consider mutual funds specializing in public equity, fixed-income, or commodity. Each firm more
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or less has access to the same pool of assets (though the connection with traders would often result

in better deals). In the above scenarios, screening plays a much more important role.

3.5.2 Optimal Sorting of Deal Flow and Screening

Here we consider the following thought experiment: if each fund’s screening capacity and deal

flow are separable and transportable, what is the optimal reallocation of skills across funds so that

the aggregate fund value is optimized?

Recall from Observation 1 that deal flows and screening ability are complements in that ∂2V
∂λ∂ρ >

0. As such, the optimal reallocation would match the best deal flow with the best screening

technology. That is, we would to sort both λ̂ and ρ̂ and assign the highest of both technologies to

the same VC firm.

Optimal reallocation results in an increase in the average fund value of 1.03 from 40.03 to 41.06,

a 2.57% increase. While this magnitude might be small, recall there is little variation in ρ. This

suggests the potential loss in synergy in other samples could be much larger.

That being said, we should keep in mind the above result is predicated on the assumption that

deal flows and screening are separable. While this is the case in our model since both λ and ρ

are exogenous parameters, they can be related in intricate ways. For example, it is reasonable

to assume both generating deal flows and screening projects are time- and labor-intensive. To

establish connections and improve access, VC partners need to dedicate a significant amount of

time attending/organizing networking events or acting as judges on demos or competitions. On

the other hand, the necessary due diligence required to accurately assess a start-up’s potential is

also time-consuming. In this regard, we cannot simply exchange one VC’s deal flow with others

without impacting their screening abilities.

3.6 Conclusion

We model the dynamic decisions of a VC fund. By mapping the model outcome with actual data

on deals, we separately identify the screening ability and deal flows of each fund. Most variation
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in fund values stems from the difference in deal flows. Counterfactual analysis suggests a potential

room for value creation by matching better screening technology with greater deal flows.

We recognize the various potential drawbacks of the current setup. For one, by estimating all

funds jointly as a panel, we could potentially identify more model parameters. Another direction

for future research is to enrich the model by incorporating heterogeneous effects based on various

fund characteristics. For example, the NPV distribution could be related to the state and the

vintage of the VC fund.

Despite all the limitations, the paper contributes to the literature on VC evaluation by exam-

ining VC decisions through a unique lens. The unique feature of our work is that we do not rely

on any return data. As such, we provide a fresh perspective on VC skills in relationship to existing

measurements.

3.A Figures and Tables



96

P
an

el
A

:
F

u
n

d
L

ev
el

S
ta

ti
st

ic
s

S
el

ec
te

d
S

am
p

le
F

u
ll

S
am

p
le

m
ea

n
st

d
25

%
50

%
75

%
m

ea
n

st
d

25
%

50
%

75
%

fu
n

d
si

ze
($

M
)

1
9
.3

4
21

.6
4

4.
60

11
.0

0
25

.6
0

26
2.

68
93

5.
65

10
.7

0
50

.5
0

20
0.

00

fu
n

d
ye

a
r

19
9
4.

60
10

.1
2

19
86

19
97

20
01

19
97

.0
7

10
.4

1
19

89
19

99
20

05

fi
rm

fo
u

n
d

ed
y
ea

r
19

8
9.

01
14

.2
0

19
83

19
92

19
99

19
88

.2
9

16
.4

4
19

82
19

90
19

99

n
u

m
b

er
o
f

d
ea

ls
1
3
.9

1
7.

90
7

13
20

20
.9

3
34

.5
2

2
8

25

av
er

ag
e

in
ve

st
m

en
t

si
ze

1
.5

2
0.

70
0.

91
1.

43
2.

08
10

.3
2

65
.5

2
0.

88
2.

10
4.

26

av
er

ag
e

d
ea

l
ro

u
n

d
3
.2

5
1.

28
2.

33
3.

08
4.

00
3.

10
1.

71
2.

00
3.

00
4.

00

av
er

ag
e

#
of

co
-i

n
ve

st
or

s
5
.2

7
2.

57
3.

53
4.

78
6.

37
4.

68
2.

78
2.

83
4.

28
6.

00

N
12

96
82

10

P
an

el
B

:
D

ea
l

L
ev

el
S

ta
ti

st
ic

s

S
el

ec
te

d
S

am
p

le
F

u
ll

S
am

p
le

m
ea

n
st

d
25

%
50

%
75

%
m

ea
n

st
d

25
%

50
%

75
%

R
ou

n
d

A
m

o
u

n
tD

is
cl

o
se

d
T

h
o
u

7
94

4
.0

7
11

37
5.

66
15

00
41

00
10

00
0

12
30

1.
30

54
91

7.
96

15
00

48
00

11
87

5

R
o
u

n
d

N
u

m
b

er
3.

34
2.

48
1

3
4

3.
62

2.
68

2
3

5

R
ou

n
d

N
u

m
b

er
o
fI

n
ve

st
or

s
5.

15
3.

97
2

4
7

5.
02

4.
00

2
4

7

ye
a
r

1
99

9
.3

6
8.

94
19

94
20

00
20

06
19

98
.2

0
9.

60
19

90
20

00
20

06

N
18

02
2

17
18

03

T
a
b

le
3
.1

.
D

e
sc

ri
p

ti
v
e

S
ta

ti
st

ic
s

P
an

el
A

su
m

m
ar

iz
es

th
e

st
at

is
ti

cs
on

fu
n

d
le

ve
ls

.
F

u
n

d
si

ze
,

fu
n

d
y
ea

r,
fi

rm
fo

u
n

d
ed

ye
ar

a
re

ta
k
en

d
ir

ec
tl

y
fr

om
th

e
V

en
tu

rE
x
p

er
t

d
at

as
et

.
N

u
m

b
er

of
d

ea
ls

ar
e

co
m

p
u

te
d

b
as

ed
on

id
en

ti
fi

ab
le

d
ea

ls
w

it
h

in
th

e
d

at
as

et
.

A
ve

ra
g
e

d
ea

l
ro

u
n

d
,

av
er

a
g
e

d
ea

l
ro

u
n

d
,

an
d

av
er

ag
e

n
u

m
b

er
of

in
ve

st
or

s
ar

e
ca

lc
u

la
te

d
b

as
ed

on
ch

ar
ac

te
ri

st
ic

s
of

ob
se

rv
ed

d
ea

ls
fo

r
ea

ch
fu

n
d

.
P

an
el

B
p

ro
v
id

es
th

e
su

m
m

ar
y

st
at

is
ti

c
at

th
e

fu
n

d
le

ve
l.

A
ll

fe
at

u
re

s
ar

e
ta

ke
n

fr
om

th
e

d
at

as
et

d
ir

ec
tl

y.
H

er
e

R
o
u

n
d

A
m

ou
n
tD

is
cl

os
ed

is
in

th
o
u

sa
n

d
s

an
d

re
p

re
se

n
ts

th
e

to
ta

l
in

v
es

tm
en

t
am

on
g

ac
ro

ss
al

l
co

-i
n
ve

st
or

s.
F

or
b

ot
h

P
an

el
A

an
d

P
an

el
B

w
e

co
m

p
a
re

th
e

fu
ll

sa
m

p
le

an
d

ou
r

se
le

ct
ed

sa
m

p
le

.



97

Figure 3.1. Initial Fund Value Here we plot V̄ (K0) under various combinations of ρ, arrival
rate, and λ, signal precision. Not surprisingly, both greater deal flow and higher precision causes
fund to have higher value. Moreover, we see that the same increase in ρ has a larger impact on
value when λ is higher. This is because higher deal flows magnifies the benefit of better screening
ability.
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Figure 3.2. Investment Policy Here we illustrate the optimal investment policy under 4 different
combinations of parameters. As shown in Proposition 3.1, policy varies with the current capital level
K, which is on the axis. The values plotted are x(K), the threshold used to determine whether
the project is pursued; P (x > x(K)), the probability of investing conditional on the arrival of
investment opportunity; and λP (x > x(K)), the ex ante probability of invest.



99

Figure 3.3. Optimal Size We plot K0, the optimal initial size of the fund under different
parameter valus for λ and ρ. Looking along each line, we see fund size is larger for smaller ρ.
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Figure 3.4. Estimation Results in Scatter Plots Here we plot (ρ̂, λ̂) for all funds in our
sample.
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Figure 3.5. Density Plot We include both 2D density plot along with the marginal density
associated with each ρ̂ and λ̂. On the marginal density plots we also compute and label V̄ (K0) at 4

sets of (λ, ρ):
(
Eλ̂,Eρ̂± σρ̂

)
and

(
Eλ̂± σλ̂, Eρ̂

)
. The positions of the labels correspond to mean

± 1 standard deviation for each ρ and λ
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Figure 3.6. Density Comparison, fixing λ The blue density is the estimated fund values for
all funds with variance of 472.7. The orange density correspond to fund values where λ is set to be
mean(λ̂). The resulting fund values become much more concentrated, with a variance of 4.7



103

Figure 3.7. Density Comparison, fixing ρ The blue density is the estimated fund values for
all funds with variance of 472.7. The orange density correspond to fund values where ρ is set to be
mean(ρ̂). We observe virtually no loss in the spread in the resulting fund values, with variance of
475.9
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