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Abstract

This dissertation contains three essays on the study of open source software collabo-

ration. The first essay, titled “Overview of Open Source Software Development”, high-

lights the link between developer incentives under the non-monetary setting and the

sustainability issue in the open source community. Motivated by the well-known fatal

flaw Heartbleed in the widely used open source network security framework OpenSSL,

Chapter 1 discusses the lack of manpower in the open source community from the

perspective of developer incentives. I introduce the empirical setting of this project,

GitHub, one the most popular open source development platforms. Both the past liter-

ature as well as the social network features on GitHub suggest that the motivations to

contribute to open source projects could include (but not limited to) ego stratification,

reputation, and career concern.

The second Chapter, “An Empirical Case Study of Open Source Software Com-

munity”, provides descriptive statistics of the contribution history data for Python

projects from GitHub, and establishes several empirical patterns of open source contri-

bution to showcase the lack of manpower in the community. I find that the distribution

of contribution of a project follows power law, in the sense that most projects have

very few contributors and number of commits while very few projects have a large

number of contributors and commits. In addition, the number of new contributors of

a project is positively correlated with its current number of authors and watchers at

first, then negatively correlated. For the number of commits, the opposite holds true.

In the last Chapter, titled “A Structural Model of Decentralized Open Source Soft-

ware Development”, I build a dynamic discrete choice model characterizing individual

developer choice problem in order to understand the sustainability issue in the open

source community. Using finite-dependence (Arcidiacono and Miller, 2011, 2019b,a),
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I identify and estimate the parameters of an individual developer’s utility function.

The estimation results show that developers prefer to contribute to popular projects.

At the same time, they prefer their own contribution to not be “diluted” by their

peers. This is the first study, to the extent of my knowledge, to build and estimate a

structural model to build a direct link between developer preferences and the choice

of open source contribution. Lastly, given the estimated structural parameters, I con-

duct counterfactual analysis by increasing the expected popularity of projects except

for new projects. The results show that the number of contributors choosing not to

commit would decrease under the counterfactual regime.
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Chapter 1

Overview of Open Source Software

Development

1.1 Motivation

Open source softwares (OSS) refer to softwares that can be freely accessed, used,

changed, and shared by anyone and for any purpose. Since the 1990s, open source

softwares have been widely used by individuals and institutes. Many free and open

source projects remain competitive against proprietary softwares. Successful examples

include Linux, Apache, MySQL and so on. It is interesting that those softwares can

reach commercial quality even though open source projects are usually voluntary-based

and not monetized directly.

Despite being used by thousands to even millions of users, the development of a

lot of open source projects are not supported by enough manpower. In 2014, many

websites and applications were affected by a security vulnerability called Heartbleed.

This fatal flaw might leak sensitive information including usernames and passwords

to third parties. Forbes cybersecurity columnist Joseph Steinberg wrote: Some might

argue that Heartbleed is the worst vulnerability found (at least in terms of its potential

impact) since commercial traffic began to flow on the Internet. Heartbleed was due to

a bug in OpenSSL, a popular open source security framework that is used by over 66%

of internet servers. Being as vital as OpenSSL, it is shocking that there were only one
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full-time employee and $2000 per year of donations1.

Figure 1.1 shows the contribution history of OpenSSL, whose source code is hosted

on github.com, the largest open source development platform on the internet. On the

top left, GitHub plots the total number of commits(a single change to a file or set of

files) to OpenSSL in each month from Dec 1998 to Oct 2019. Before 2014 when the

vulnerability was discovered, there were less than 50 commits per month to OpenSSL.

In addition, among the top 20 contributors2 of the project, only 5 has made commits

to OpenSSL before 2014.

This project intends to answer the following questions. First, how common is

the issue of lack of labor force in the open source software community? Second, to

understand the labor force, we need to understand how the individual developers

choose open source projects to contribute to. Lastly, given the individual contribution

incentives, how can we improve the sustainability of the open source ecosystem?

One argument for the success of open source softwares is that any one can con-

tribute freely. So the development of open source softwares would be supported by

developers from all over the world. The increasingly large pool of over 40 million de-

velopers come from 41 different countries and regions as of 20193. Figure 1.2 shows

the trend for the geographic locations of developers on GitHub from 2014 to 2019.

There are more and more developers coming from multiple continents working on

open software projects.

However, due to the large number of open source projects (currently over 44

million on GitHub), there usually aren’t enough contributors for most projects. In

fact, more than 90% of Python projects on GitHub has less than 4 contributors and

less than 80 total commits (a commit is an individual change to a file or set of files).

To understand the issue of lack of labor support in the open source community,

we need to first understand the incentives of open source contributors and how they

choose open source projects. By definition, the source code of open source softwares

are released under copyrights that allow users to change and distribute the software

to anyone. As a result, most of the open source softwares are free of charge and
1http://veridicalsystems.com/blog/of-money-responsibility-and-pride/
2Developers are ranked by the number of total commits to OpenSSL.
3Source: Octoverse, https://octoverse.github.com
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Trend of total number of commits 
to OpenSSL by month

from 1998 to 2020

  
Contributor ID and number 
of total commits

A commit is an individual change to
a file or a set of files

Rank of the contributor by 
the total number of commits 
they made to the project

Contribution history by the 
individual developer

Figure 1.1: Contribution History By Individual Contributors of OpenSSL
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Figure 1.2: Number of GitHub Users (in million) by Geographic Locations

many developers are not compensated monetarily for their work in the open source

community.

Based on a survey by GitHub in 2017 (Geiger, 2017), only about 22%4 of develop-

ers on GitHub has some or all of their work duties include contributing to open source

projects. Since many open source developers need to work a full-time job that’s not

directly related to open source projects, they might find it struggling to give timely

support and fulfill user demands in the open source community.

Open source community, like all shared-resource system, might suffer from the

tragedy of the commons. Because all individuals and institutions can take advantage

of open source softwares freely, there is incentive to under-invest in those projects.

The under-investment issue is talked about in the landmark report Roads and Bridges:

The Unseen Labor Behind Our Digital Infrastructure (Eghbal, 2016) published by Ford

Foundation. The author wrote:

...many projects are trapped somewhere in the middle: large enough to

require significant maintenance, but not quite so large that corporations

are clamoring to offer support. These are the stories that go unnoticed and

untold. From both sides, these maintainers are told they are the problem:

Small project maintainers think mid-sized maintainers should just learn to

cope, and large project maintainers think if the project were "good enough,"
4There might be self-selection bias in the survey response. That is, people who respond to the

survey might be more active in open source community than other developers.

9



institutional support would have already come to them.

In addition to the under-investment issue of labor, it is also important to consider

if the current distribution of the limited time and effort across different open source

projects is efficient. For example, when developers choose a project to contribute

to, she would choose based on her personal utility including the signaling value (for

example, out of career concern) and cost for joining an existing project. The incentives

would not necessarily align with optimization of the open source software production.

For example, if a developer find contributing to a sizeable project cost too much effort

while has little signaling value, she might prefer to start a new project or join a small

project. As a result, certain important projects might lack enough contribution from

the open source community.

Therefore, it is important to discuss the incentives of open source developers. Past

literature has studied motivations of contributing to open source softwares, including

self-use, career concern, reputation, ego gratification, reciprocity, altruism and so on

(Lerner and Tirole, 2003; Lakhani and Wolf, 2003; Shah, 2004, 2006; Roberts et al.,

2006; von Krogh et al., 2012). In this study, I will draw references from the past

literature, and argue that developers care about the popularity of the open source

projects since more popular projects have more users and developers, thus can satisfy

the developers’ ego gratification, reputation and career portfolio building. In addition,

they would care about their relative shares of contribution. In each project’s page

on GitHub, contributors are ranked by their total number of commits. So authors

who made more commits are shown higher up and have higher visibility. This is also

consistent with reputation, career motivations and ego gratification.

This study will focus on how developers choose projects to contribute to might

affect the distribution of labor resources across open source projects. In the first

chapter, I will provide an overview of the current state of the open source community

and provide the empirical setting for the next two chapters. In Chapter 2, I will

present the technical institution background and empirical patterns of the open source

community using data from GitHub. In Chapter 3, I will build a dynamic discrete

choice model to characterize how individual developers choose open source projects.

In addition, I will discuss the identification and estimation of the model. Lastly, using
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estimation results, I will conduct counterfactual analysis on the model and discuss the

sustainability of the open source community.

1.2 Literature Review

The phenomenon of open source software community has attracted much attention

from economists and sociologists for almost 30 years. The discussion mainly focuses

on two major questions: why programmers contribute to open source projects when

they receive no monetary return but incur various costs including the opportunity cost

to compose codes; and how a large group of open source contributers can coordinate

with each other. In the seminal paper by Lerner and Tirole (2003), the authors suggest

that benefits of learning-by-doing, job market signaling and ego gratification could

motivate the programmers to contribute besides altruism. Also, they stated that

the fact that software development projects can be divided into smaller and well-

defined tasks (modularity) as well as individual leadership, that is, the owner can give

certification and recommendations could lead to successful coordination.

Motivations of Open Source Contribution

Since Lerner and Tirole (2003), there emerges many papers that provide both the

theoretical and empirical evidences on the issues of developer motivation. Hargrave and

Van De Ven (2006) propose a private-collective model of innovation which combines the

private investment model through intellectual rights (Demsetz, 1967) and collective-

action model where free-riding could happen. It implies that open innovation through

private investments can happen when private rewards for the participants are higher

than the free-riders. Gächter et al. (2010) showcases a knowledge-sharing game with

multiple equilibria, and provides laboratory evidence that sharing knowledge to the

public can be fragile compared to concealment.

Empirically, Lakhani and Wolf (2003) analyze data from online survey of 684 soft-

ware developers in 287 open source software projects. They find that how creative a

person feels when they do the project along with user need, intellectual stimulation

derived from writing code, and improving programming skills are the main motiva-

tions for open source developers. Reputation and career concerns enhances developer
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motivation as well.

In a longitudinal study of Apache contributors using survey (Roberts et al., 2006),

the authors find that developers’ intrinsic motivation to contribute does not diminish

in the presence of monetary payment for contributing to the project. In addition, the

developers’ salary is not affected by the amount of contribution but affected by the rank

within the organization. More empirical tests show that open source developers have

motivations from both intrinsic and extrinsic sources, such as ideology, fun, reputation,

learning, career5.

In addition, Shah (2006) conducted 88 interviews of open source contributors

and collected online documentation data to study the motivations of open source

contribution. She finds that developers contribute to open source projects due to

reciprocity, desire to integrate one’s own code into source code, career concerns, fun

and enjoyment.

More recently, Xu et al. (2019) studies the relationship between voluntary contri-

bution in online platforms. They use data from Stackoverflow, a large online question-

and-answer community. Since a large portion of questions in the platform is pro-

gramming related, there might be some overlapping of the users of Stackoverflow and

GitHub. Using a difference-in-difference strategy, they show that users contribute

23.7% less in answer and edit activities after they find a new job. Whereas, other ac-

tivities (including upvoting, downvoting) reduce by 7.4%. This shows that reputation

and career concern are important factors that influences voluntary contributions.

Collaboration and Sustainability of Open Source Community

Literature in the strand of the motivations of open source developers explains why a

large number of programmers participate in the open source software developement.

However, they do not explain what kind of projects or tasks the open source devel-

opers choose to contribute and how much effort they devote. Individual developers

might tend to choose projects that can signal their skills more, and not necessarily the

projects that need the effort most. Thus the effort distribution might not be socially

optimal. In addition, given a project, developers might not want to put effort on
5For a more extensive review, please see von Krogh et al. (2012)
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necessary but “boring” tasks such as compatibility maintenance and debugging. For

other tasks such as adding new feature and enhancement, there could be too much

effort. Thus, compared to a centralized innovation institution (e.g. R&D department

in a firm), open source project might face coordination problem in task and effort

distribution. In this aspect, this paper relates to the literature on firm control and the

necessity of contracts. This can be traced back to Coase (1937) where he proposed

that firms exist in the market instead of bilateral co-ordination due to transaction

costs. Assuming firms can exert control over workers on their tasks by employment

contract, firms can obtain more efficiency than decentralized projects. Therefore, it is

important to study the evolution and sustainability of open source community.

Johnson (2002) models open source contribution as a public goods problem. The

author models the return for developers as a function of software usage value and de-

velopment cost, and derives the welfares loss against social planner due to free-riding.

Athey and Ellison (2014) models the dynamic development of open source softwares

in a public goods framework under altruism. The authors found that quality of open

source softwares and the number of contributors follows non-monotone evolution dy-

namics.

Outside of economic research, there are many studies on the sustainability of open

source development from computer science and information system. von Krogh et al.

(2003) examined how developers choose to join the open source project and how they

specialize by analyzing data from Freenet development process. They find that there’s

substantial cost associated with contributing to open source projects. Developers,

especially newcomers, display specialization behavior (developers maintain the same

module instead of multiple modules). Langlois and Garzarelli (2008) argues that open

source projects coordinates the division of labor through the institutions of modularity

(one can decompose the entire design of a software into relatively independently smaller

modules). The trade-off between modularity and its opposite, integrality, decides

the threshold for decentralized coordination. As the authors argue, modularity is a

necessary condition for open source collaboration, but it doesn’t guarantee how well

the authors can coordinate with each other, thus how successful and well-maintained

the project can be.
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Coelho and Valente (2017) uses data of the top-5000 most popular projects on

GitHub and conducts survey with developers of 104 popular but deprecated open

source projects. Comparing data of non-deprecated projects with deprecated one,

deprecated projects are older, smaller in project size (number of commits) and number

of contributors. From the survey with deprecated project developers, they find that

open source projects could fail due to reasons related to project characteristics (41

projects, e.g. low maintainability, outdated technology), or team-related reasons (39

projects, e.g. lack of interest), or environment reasons (30 projects, e.g. usurped by a

competitor or legal issues).

In a related study, Khondhu et al. (2013) compares the characteristics of “active”,

“dormant” and “inactive” porjects on SourceForge. The authors find that over 93%

projects have no recorded activity in the last one year till the observation date (Nov

2012), among which about 14% have been moved to other places. In addition, ac-

tive projects generally start larger than dormant and inactive ones, and they grow

consistently larger.

In addition, Foucault et al. (2015) investigate how personnel turnover can influence

the quality of open source projects (in terms of bugfixes) using 5 popular open source

projects. They find that newcomers of a project have a negative effect on the quality

of a team’s work, while leavers do not have such effect.

More recently, Valiev et al. (2018) study the relation between a project’s position

in the dependency network (for example, whether the other packages depend on it

or the package depends on other packages) and the likelihood of a project going into

dormancy using Python packages and their GitHub contributor information. The

authors find that projects depending on more packages has higher chance to be dormant

in early stages of development, but lower chance in later stages. In addition, the

number of contributors and core-developers positively correlates with the survival rate

of a project.

In addition, Qiu et al. (2019) combines contributor survey and GitHub activity

data to study how signals of project attractiveness can influence the decision of joining

in a GitHub project. Important factors that positively affect the incoming of new

contributors include how actively maintained and popular the project currently is, as
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well how friendly and responsive the current maintainers are. Also, Miller et al. (2019)

investigate the disengagement of open source contributors using developer survey data

and their GitHub contribution data. They find that contributors who work on more

popular projects are less likely to disengage, controlling for their working hours and

total contribution activities.

Lastly, Fronchetti et al. (2019) use the contribution data of 450 open source

projects on GitHub, and find that the popularity of the project (in terms of stars),

time to review pull requests, project age, and programming languages are the factors

that best explain the newcomers’ growth patterns. Also, Borges et al. (2016) collects

historical data of 2500 popular projects on GitHub. Unconditional on the ownership of

a project, there is no correlation between numbers of stars and the project’s age since

organization-owned projects usually gain popularity faster than individually owned

projects. Also, there is a weak correlation between popularity and the number of

commits and contributors. In terms of popularity growth, repositories tend to receive

more stars right after their first public release. Afterwards, the growth rate stabilizes

for half of the repositories.
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1.3 Empirical Setting and Data

Since the movement of open source softwares in the 90s, many platforms emerged

to smooth the coordination by storing project files, facilitate communications among

team members. A famous example is SourceForge.net, an open source software hosting

platform launched in 1999. On SourceForge, owners have absolute control of developing

and uploading projects. If other developers would like to contribute, they need to

download the entire set of code files and make modifications. However, the emergence

of git technology makes decentralized collaborations among developers much easier and

straightforward with “forking”6, “pull requests”7 and “merging branches”8. Git sets the

foundation of the currently most popular way of open source development. It allows

scalable decentralized coordinating work among programmers by creating multiple

branches of the main projects and tracking changes in files. In this study, I use the

contribution activity data from GitHub, one of the largest open source development

platform that utilizes git technology. In the following section, I will set the technical

background and introduce the data for this study.

The dataset collection is provided by GHTorrent (Georgios Gousios, 2013) who

collects commit activities of all public projects from GitHub API (current observation

date is July 2017)9. In the data, there are 30.08 million original projects (excluding

forked projects, 27.38m owned by individuals and 2.70m owned by organizations) and

16.49 million users (15.84 million individual users and 0.65 million organizations).

1.3.1 Git-based Software Development

Figure 1.3 summarizes the workflow on GitHub10. The collaboration on GitHub is

completely decentralized, in the sense that one can make a change to a project without

affecting the original project (master branch). One can do so by forking a project,
6A fork is a copy of a project. Forking a projects allows one to freely experiment with code changes

without affecting the original project.
7A pull request occurs when a developer asks for changes committed to a forked project to be

considered for inclusion in the main project.
8Merge command lets one take the independent strands of development created by git branch and

integrate them into a single branch.
9For a more detailed description of the interrelation data, see http://ghtorrent.org/

relational.html
10https://arccwiki.uwyo.edu/index.php/Git\_Workflow\#GitFlow\_and\_GitHub\_Flow\

_differences
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that is, copying a project to one’s own profile and make changes on it (commits). If a

developer would like to propose a change to the original project, he/she can fork the

project, make changes and then make a pull request to the original project. When this

branch is ready to be merged back into master, she can open a pull request which will

be reviewed and tested by the project’s collaborators. If the pull request is approved, it

will be merged into master. This kind of workflow design minimizes the code conflicts

during collaborative development.

Figure 1.3: GitHub WorkFlow

The unit for code contribution on GitHub is called “commit”. It is an individual

change to a file or a set of files. We can observe the identity of the user who makes

the commit, which project he/she make commit to and when he/she makes it. For

each project, users can raise “issues” to request a bug fix, more features or propose

enhancements to a project. An user is not required to provide code when raising an

issue. However, if one wish to contribute code modifications to the project, he/she can

make a pull request. All users can comment on issues and pull requests.

1.3.2 Social Nature of GitHub

Another distinct feature of GitHub that are different from other open source software

platforms such as SourceForge.net is its social network nature. On GitHub, each indi-

vidual has a profile page (for instance, Figure 1.4 11) which summarizes one’s projects,

recent commit history as well as some individual information such as organization,

contact information. Note that many developers use their real names on GitHub.
11Screenshot in Nov 2018
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Many even put their GitHub profile on their resumes12.

In addition, if one clicks on the “Contributor” tab of a project’s homepage, we can

find the authors of the project listed by the number of commits they made. Figure 1.5

is an example for Numpy, one of the most widely used library in Python13.

Another “social network” feature of GitHub is ability to “star” a project (originally

“watch”). Similar to liking posts on twitter, starring a project shows appreciation of

the project. There are multiple studies investigating the implications of “stars” on

GitHub (e.g. Borges and Tulio Valente (2018), Fronchetti et al. (2019)). The results

show that the number of stars is a metric for popularity, and can influence the future

contribution of a project.

These “social network” features including individual developer’s personal profiles

as well as “stars/watchers” enhances the motivations of ego gratification, reputation

and career concern to participate in the open source community. Anecdotally, many

developers use their GitHub profile as their “second resume” when they look for jobs

because their public projects can showcase their skills14.

12Anecdotally, see for example https://medium.com/@sitapati/the-impact-github-is-
having-on-your-software-career-right-now-6ce536ec0b50 and https://workplace.
stackexchange.com/questions/24128/should-i-include-my-github-page-on-my-resume
where software engineers and recruiters argue why it might be a good idea to include one’s GitHub
profile in the resume

13Screenshot in Nov 2018
14For example, this blog (https://thehftguy.com/2016/10/24/heres-how-to-make-a-good-

github-project-for-your-resume/) gives a tutorial to present GitHub projects to recruiters.
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Figure 1.4: Sample GitHub Profile
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Figure 1.5: Top Authors of Project Numpy
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1.4 Conclusion

Free and open source softwares have changed how people develop and use new tech-

nology since the 1990s. The internationally recognized definition by Open Source

Initiative states in the first criteria of open source that

Open source doesn’t just mean access to the source code. The license

shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from

several different sources. The license shall not require a royalty or other

fee for such sale.

That is, open source software are free to distribute by nature. The non-monetary

setting is different from the traditional business model of propriety softwares, and

different from the usual object of discussion within the field of economics.

Despite the emergence of many successful open source projects including MySQL

and Linux who are even strong enough to challenge their mainstream propriety com-

petitors, the issue of sustainability of open source softwares has raised concerns from

its community. In 2014, the fatal flaw Heartbleed found in OpenSSL, a widely used

open source network security framework, has exposed the lack of manpower in open

source projects.

Due to the non-monetary nature of the open source community, we need to further

understand the motivation and mechanism of open source contribution in order to

discuss the issue of sustainability of open source softwares. Many past studies have

explored the motivations for developers to contribute to open source projects and the

patterns of collaboration in the community. However, there is not much discussion

on how personal incentives of developers influence the development of open source

softwares thus the distribution of open source projects. This study recognizes the direct

link between individual developer’s motivation in developing open source softwares and

the sustainability of open source community.

Past studies argued that individual developers contribute to open source softwares

out of the following reasons: altruism and reciprocity, ego gratification, reputation as

well as career concerns. Here I focus on GitHub, one of the most popular open source
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software development platforms. GitHub tracks the contribution history of each indi-

vidual and each project. In addition, it has several “social network” features including

“stars/watchers” which enhances the motivations of ego gratification, reputation and

career concern. This study will build on past literature and empirical patterns from

GitHub to examine the motivation of developers, and build a link between developer

incentive and sustainability of open source community.
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Chapter 2

An Empirical Case Study of Open

Source Software Community

2.1 Introduction

The second chapter gives the technical background of GitHub and provides descriptive

analysis of open source software contributions using data from GitHub, one of the most

popular open source project development platforms. Here I try to answer the following

questions: Is it true that most of the open source softwares lack manpower and thus not

well-maintained? In addition, how do the developers choose the projects to contribute

to?

Specifically I will show that the distribution of contribution is highly skewed

across different projects. On top of that, unsurprisingly, the time and effort of most

developers are very limited since many developers do not get paid directly from open

source contribution and open source softwares are a type of public goods.

2.2 Institution Background

In this study, I use the individual contribution data from GitHub whose workflow

makes it suitable for decentralized collaboration. When an agent starts a project, she

will open a repository. The repository can be public or private. Private repositories are

hidden from public and can be only seen by their owners and authorized contributors,
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thus are not part of the current data. This data contains only public repositories which

can be seen by anyone.

Additionally, anyone can fork public projects, make commits and make pull re-

quests. If the pull requests are accepted by the owner of the project, then the changes

will be merged into the main branch of the project. Below I summarize the main

terminologies that I use in this study:

• Project and Repository: A repository is a folder containing all project files,

and stores their revision history. Repositories can have multiple collaborators

and can be either public or private.

• Commit: An individual change to a file (or set of files). Each commit generates

a unique id with a timestamp.

• Watch/star1: A feature on GitHub for users to show appreciation of a project.

Here I use the number of watchers/stars as a measure of popularity for the

project.

In this study, I use the contribution records from Python community. Python is

one of the most popular programming language in recent years. Figure 2.1 shows the

relative ranking of languages used on GitHub from 2014 to 2019 in terms of unique

contributors to public and private repositories2. Python ranks from the fourth most

used language in 2014 to the second in 2019. In addition, compared to other pro-

gramming languages such as C and Java which do not have a centrazlied package

release repository, Python has an official package distribution repository Python Pack-

age Index (also known as Pypi), which makes it easy to track the release of Python

packages.

1Here I use watch and star interchangeably per GHTorrent.
2Source: Octoverse, https://octoverse.github.com
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Figure 2.1: Trend of Top Programming Languages on GitHub

2.3 Data Cleaning and Data Description

In this study, I focus on the Python community on GitHub3 between Oct 2010 and June

2018. Notice that GitHub is a site for development not software distribution. Python

packages’ distribution are easier to track because most Python packages use PyPI4 as

the distribution site, in contrast to other languages where the actual distributions are

based on the software’s own separate page.

Here the Python projects in the sample are collected using all projects which has

“Python” in the project description (programming language not restricted to Python)

as well keywords including “library” and “module” so that I can exclude the personal

projects (such as personal websites) or class projects that are not intended to be

released as a package. Under this definition, there are 30549 projects and 45353

authors. Among those authors, over 91% of them (41529 authors) contribute to only

one project per month. Those authors are responsible for 24345 projects (over 79%)

and 734469 unique commits (over 58%). In this project, I will focus on those 91%

contributors who contribute to at most one project in a month. The dataset is linked

by four main identifiers: project id, author id, commit id and watcher id. Commits and

watch actions are also linked with timestamps at which the user makes the commit or
3Complete dataset collected by GHTorrent (Georgios Gousios, 2013).
4Python Package Index
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press the “watch” button. For authors, one can also observe when the author registers

to GitHub. Table 2.1 gives a summary of observed variables in the data.

Table 2.1: Observed Variables

commit id a change to the project
commit time time of contribution
project id project that the commit is added to
author id the developer who made the commit

register time when the author registers to GitHub
watcher id follower of the project
watch time time of watching/starring the project

download count number of downloads at certain time

Figure 2.2 depicts the trend of the total number of projects in the sample as well

as the number of new projects that was just created by month. The blue curve shows

the total number of available projects divided by 10 (so that it’s on the similar scale

as the number of new projects), while the orange curves shows the number of new

projects. The number of new projects has a slight increasing trend, thus the total

number of available projects has an exponential increasing trend.

Figure 2.2: Number of Projects By Month
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2.4 Empirical Patterns

In this section, I will provide several empirical patterns that will confirm the moti-

vations of this study and guide the model specifications in the next chapter. Figure

2.3 shows the trend of the status of available projects by month. Overall, it shows

that the median values of a project’s total number of past commits/authors/watchers

are below the average from 2010 to 2018. It means that the distributions of project

status are highly skewed with the majority of projects having few number of authors,

commits and watchers.

Figure 2.3: Average Project Characteristics By Month
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2.4.1 Project Characteristics

In this section, I will analyze the empirical patterns on project characteristics, including

the number of authors, the number of commits, and the number of watchers of the

Python projects in the data. Table 2.2 provides the descriptive statistics for Python

projects based on the commit histories up till June 2018. We can observe that over

90% of projects have less than 10 authors while the maximum number of authors in a

project is as high as 1108. The distribution of the number of commits and watchers

are also highly skewed.

Table 2.2: Project Descriptive Statistics

project age total authors total commits total watchers

count 24345 24345 24345 24345
mean 30.53 4.33 30.17 15.02
std 23.08 18 156.03 232.63
min 0 1 1 0
10% 4 1 2 0
50% 26 2 7 0
90% 64 8 54 5
max 101 1108 12842 23304

Note: The observations are based on the most recent record to the data observa-
tion date, June 2018.

Since the data consists of projects of different ages, it might not be fair to compare

projects that have been created on the platform many years ago versus projects that

are created recently. Below in Table 2.3 and 2.4, I decompose the distribution of

project contribution by projects’ ages in years. Even after decomposing by project

age, we can see that the number of authors and the number of commits in a project

have very skewed distribution. Most projects receive very little contribution while very

few projects receive massive amount of contribution.

The dataset can be re-constructed into panel structures for projects based on the

timestamps of commits. Table 2.5 provides summary statistics for projects’ panel data

by projects’ age (months since the creation of the project). Using the panel data of

projects, I run a fixed effect regression of a project’s new authors within a certain
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Table 2.3: Summary Statistics of Number of Authors by Project Age

count mean std min 25% 50% 75% max
project age (year)

0 112063 2.57 3.41 1 1 2 3 306
1 95022 4.52 7.89 1 1 2 5 450
2 76096 6.14 15.58 1 1 3 6 800
3 54833 7.60 18.47 1 1 3 7 783
4 36266 9.39 22.81 1 2 3 9 704
5 20624 11.92 35.64 1 2 4 11 1057
6 10215 15.64 53.78 1 2 5 13 1108
7 4415 24.70 88.64 1 2 7 19 1104
8 717 34.14 100.57 1 3 12 32 1072

Note: The summary statistics are conditional on project having at least 1 commit. Project
ages are rounded up to the closest numbers (in year) under.

Table 2.4: Summary Statistics of Number of Commits by Project Age

count mean std min 10% 50% 90% max
project_age_year

0 112063 23.53 49.83 1 2 9 55 1672
1 95022 37.91 94.76 1 2 13 87 3652
2 76096 48.23 150.27 1 2 14 103 6266
3 54833 57.22 187.32 1 2 15 121 6928
4 36266 68.54 248.68 1 1 16 138 7420
5 20624 80.81 354.73 1 1 17 154 9761
6 10215 102.08 488.22 1 1 19 185 11071
7 4415 159.45 737.57 1 1 27 291.60 12820
8 717 265.31 1197.39 1 2 53 523.40 12842

Note: The summary statistics are conditional on project having at least 1 commit. Project ages
are rounded up to the closest numbers under.

month conditional on the project’s current characteristics. Specifically, I have:

∆authorsjt =β0 + β1project agejt + β2project past commitsjt (2.1)

+ β3project past authorsjt + β4project past watchersjt + aj + ηjt (2.2)

where ∆authorsjt is the number of new authors that project j gets at month t.

project past commitsjt is the number of total commits project j gets up till t. Similarly,

project past authorsjt and project past watchersjt are the number of total authors and

watchers that project j gets up till month t. aj is the unobserved project fixed effect,

such as the intrinsic quality of project which could be observed by agents by not the
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econometrician. Lastly, ηjt is the exogenous shock which is i.i.d. across project and

time.

Table 2.5: Summary Statistics of Project Panel Data

count mean std min 10% 50% 90% max

project age 734678 24.15 19.51 0 3 20 52 101
current commits 734678 1 7.21 0 0 0 1 808
current authors 734678 0.14 0.69 0 0 0 1 152
current watchers 734678 0.34 11.77 0 0 0 0 5623
past commits 734678 25.05 145.38 0 0 1 50 12841
past authors 734678 3.23 15.02 0 0 1 7 1104
past watchers 734678 9.79 154.04 0 0 0 0 22770
released 734678 0.18 0.38 0 0 0 1 1

Note: Out of 24345 unique projects, the total number of projects that are released up till
June 2018 is 3638.

Table 2.6 gives the estimation results for the fixed effect regression in Equation 2.2

using the project panel data. Column (1) gives the results for the basic specification,

while Column (2) gives the specifications including the square terms. From the results

in Column (2), we can see that there exists non-linear relationship between the number

of new authors and the project’s current characteristics. The number of new authors

of a project at time t decreases with the number of past commits up to 50 commits.

For projects with more than 50 commits, the number of authors increases with the

number of past commits. On the contrary, the number of new authors first decreases

the number of past authors for the first 1250 authors, then decreases. Similarly, the

number of new authors first decreases with the number of past watchers for the first

50 watchers, then decreases.
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Table 2.6: Project Fixed Effect Regression

Dependent variable:

project current authors

(1) (2)

project age −0.006∗∗∗ −0.016∗∗∗

(0.00004) (0.0001)

project age sq 0.0001∗∗∗

( 0.000001)

project past commits −0.0002∗∗∗ −0.001∗∗∗

(0.00001) (0.00002)

project past commits sq 0.00001∗∗∗

(0.000001)

project past authors 0.012∗∗∗ 0.025∗∗∗

(0.0001) (0.0002)

project past authors sq −0.00002∗∗∗

(0.000001)

project past watchers −0.0001∗∗∗ 0.001∗∗∗

(0.00001) (0.00001)

project past watchers sq −0.00001∗∗∗

(0.000001)

Observations 734,678 734,678

R2 0.048 0.086

Adjusted R2 0.016 0.055

F Statistic 9,029.776∗∗∗

(df = 4;

710329)

8,387.571∗∗∗

(df = 8;

710325)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.4.2 Contributor Activities

In this section, I will take a closer look of the contribution activities to Python projects

on GitHub. Table 2.7 gives the summary statistics for contributors based on the

commit histories up till June 2018. We can see that about 90% of authors have only

contributed to one project in the past. Therefore in the next Chapter where I build a

structural model to characterize the choice decisions of individual developers, I limit

an author’s choice set to include up to 2 past projects based on the number of commits

in those projects.

Table 2.7: Contributor Descriptive Statistics

author age current commits past commits past projects

count 41514 41514 41514 41514
mean 31.23 8.40 13.53 0.47
std 28.60 16.91 69.01 0.60
min 0 1 0 0
10% 0 1 0 0
50% 25 3 0 0
90% 74 20 27 1
max 123 701 5051 8

Note: The observations are based on the most recent record to the data observation
date, June 2018.

Similar to projects, we can restructure the data based on timestamps of commits

to get a panel data structure for authors’ contribution history. Table 2.8 provides

summary statistics for authors’ panel data by authors’ age (months of registration on

GitHub).

Figure 2.4 plots the trend for entries of new authors and new projects in the data.

New authors are users who just registered to GitHub in each month. New projects

are the projects that had their first commit in a certain month. We can see that the

number of new projects is growing each month, whereas the number of new authors is

not. So there is less and less number of authors per project. On the other hand, Figure

2.5 plots the exit rate for authors and projects. Here I define the exit of author and

project to be having no commits for over a year. The exit rate is calculated by dividing

the number of exited authors/projects with total number of authors/projects in the

same cohort. Therefore, cohorts of authors who joined more recently and projects
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Table 2.8: Summary Statistics of Author Panel Data

author age current commits nonzero commits past projects

count 1308083 1308083 105387 1308083
mean 28.80 0.56 6.96 0.14
std 22.54 4.49 14.33 0.40
min 0 0 1 0
10% 4 0 1 0
50% 24 0 3 0
90% 61 0 16 1
max 123 701 701 8

Note: Total number of unique authors in the data is 41514. “Author age” refers to
the number of months since the author registered on GitHub. The column “nonzero
commits” refers to the number of commits that author made in a month conditional on
having made at least 1 commit.

which started recently will have truncation issue. To reduce the truncation issue, I

only plotted authors/projects cohorts up until 2016. The exit rate is fairly constant

across cohorts. Combining with Figure 2.4, we can see the changes in authors and

projects are mainly dominated by entries rather than exits.

Figure 2.4: Entry of Authors and
Projects

Figure 2.5: Exit of Authors and
Projects

Figure 2.6 summarizes the contribution intervals by individual developers. Specif-

ically, the left panel plots the month interval between an author’s first commit and her

last commits by cohort5. Since the younger cohorts are more prone to truncation if
5When the author first register to the platform.
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the cohorts are closer to the data observation time, we will focus on the older cohorts.

For example, cohorts from 2008 to 2011 spend 20 months on GitHub on average. The

right panel plots the month interval between 2 consecutive commits of an author.

For example, author cohorts from 2008 to 2011 contribute every other 4 to 6 months

on average. Figure 2.6 shows that individual contributors’ time and effort are very

limited.

Figure 2.6: Author Contribution Time Intervals

Figure 2.7 further decomposes the project distribution by project age. On average,

a project gets more commits and authors as the project age increases. We can still

observe the pattern of skewed distribution in the graph. The green line represents the

top 10% quantile of the number of commits that are contributed (or the number of

active authors who contributed in the right graph) when the project is at a certain age.

The blue line, orange line and purple line refer to the mean, the median and lowest

10% quantile of the number of commits (or number of authors in the right graph) at

each project age.

Next I further investigate the idea that authors prefer to be a core developer using

revealed preference in Table 2.9 and Table 2.10.
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Figure 2.7: New Commits and Active Authors By Project Age

Table 2.9: Comparing Choices for Authors with One Past Project

Actual Choice Counterfactual Choice
chosen project watchers % commits past project watchers % commits

create new project 0.00 95 263.48 57
join new project 517.34 43 563.00 33
past project 223.94 67 223.94 67

Table 2.10: Comparing Choices for Authors with Two Past Projects

Actual Choice Counterfactual Choice Counterfactual Choice
project watchers % commits past project 1 watchers % commits past project 2 watchers % commits

create new project 0.00 96 100.77 67 199.36 45
join new project 452.05 43 352.14 41 601.74 31
past project 1 189.06 72 189.06 72 378.72 40
past project 2 235.68 70 224.33 62 235.68 70

2.4.3 Project Popularity, Release and Download

In this section I test if the popularity of a project increases with the number of commits

and contributors conditional on project age and project fixed effect. The popularity

of a project is measured by the number of watchers of a project at a given point of

time. On GitHub, a user can “follow” the development of a project by “watching”

or “starring” the project. After that, the user will receive notifications of the project

when there are new commits, issues or pull requests. Developers “star” or “watch” a

project to show appreciation or bookmark a project (Borges et al., 2016). Thus the

number of watchers of popularity can reflect its quality and usefulness. To control for

project fixed effect, I use the panel structure of the data.

Table 9 shows the OLS regression results for project popularity. Both the number

of commits and the number of contributors (authors) are positively correlated with the
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popularity of a project, and the positive correlation is bigger in scale for individually-

owned projects than organization owned projects.

Table 2.11: Logit Regression of Project Release

const -3.6142*** org 1.6641***
(0.2169) (0.0160)

age -0.0557*** org age -0.0082*** age sq 0.0007***
(0.0011) (0.0008) (0.0000)

num commits 0.0051*** org num commits -0.0014*** num commits sq -0.0000***
(0.0000) (0.0000) (0.0000)

num authors 0.0463*** org num authors -0.0015 num authors sq -0.0006***
(0.0036) (0.0031) (0.0000)

num issues -0.0040*** org num issues -0.0022*** num issues sq 0.0000***
(0.0003) (0.0004) (0.0000)

num reporters 0.0114*** org num reporters 0.0027*** num reporters sq -0.0000***
(0.0006) (0.0006) (0.0000)

year month F.E. Y project F.E. N no. obs. 6723782

Note: This regression pools all the panel data of release history of all data in the sample, resulting in 6723782
observations covering 307909 projects. There are 11347 packages that had at least one release.

From the release repository of Python packages Pypi, there are 116687 packages

with at least one release as of January 20186. After deleting project foundries (repos-

itories which holds multiple different foundries), there are 71903 packages that can be

matched back to GitHub. Download data for those packages goes from Jan 2016 to

Aug 2018.

In this paper, I treat project release as an important milestone for projects. If

a project is formally released, it means that the project is relatively complete (not

necessarily mature) for users to utilize. Therefore, whether a project is released and

how long it takes for a project to be released are important factors to influence social

welfare. In the sample of Python projects on GitHub, only 15744 projects are released

out of 315745 projects in total (4.99%). The average age of a project when it is released

is 3.25 months.

Here I will first conduct a logistic regression of a formal release in Pypi on the

project age, the number of commits and authors, and whether the project is owned

by an individual or an organization. The data is a cross-section data of all projects at

the observation date (Jan 16 2018). Then I will conduct a duration analysis by fitting

a Cox Proportional Hazard model to see which factors contribute to faster releases.
6I found less projects in my sample, because not all packages host their code on GitHub and not

all of them have project descriptions including the words “library” and “module”.
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Notice here that the number of commits and the number of authors of a project can

be affected by the project’s innate quality (such as how good the idea is) which is

unobserved. So the estimate can be biased.

Table 2.12: Cox Proportional Hazard Regression with Time-varying Vari-
ables

coef exp(coef) se(coef) z p

num commits 0.0032 1.0032 0.0004 9.1188 0.0000 ***
num authors 0.0633 1.0654 0.0214 2.9632 0.0030 **
num issues 0.0025 1.0025 0.0024 1.0516 0.2930
num reporters 0.0110 1.0110 0.0039 2.8221 0.0048**
num commits sq -0.0000 1.0000 0.0000 -5.1157 0.0000***
num authors sq -0.0051 0.9949 0.0013 -3.9570 0.0001***
num issues sq -0.0000 1.0000 0.0000 -1.0373 0.2996
num reporters sq -0.0000 1.0000 0.0000 -2.6116 0.0090**

Likelihood ratio test = -17353.520 on 8 df

To analyze the duration of time before a project is released, I use Cox proportional

hazard model. That is, we assume that the hazard for project j to release at t is:

f(t|Xjt)

1− F (t|Xjt)
≡ λ(t|Xjt) = λ0(t) exp(X ′jtβ)

where F (t|Xjt) is the probability that project j has an release before time t. Xjt

include the number of commits, contributors and issues that project j has in total up

till time t. Notice that the basic Cox regression model does not control for unobserved

heterogeneity. One variation of Cox regression including unobserved heterogeneity is

to assume the unobserved heterogeneity uj is strictly exogenous, so one could integrate

out the heterogeneity conditional on state variable Xjt. However, this setting does not

account for endogenous unobserved heterogeneity, such as project innate quality under

this context.

2.5 Conclusion

In this Chapter, I provide the institution background of GitHub, one of the largest on-

line open source development platform, and the data source of this study. Specifically,

I focus on the commit histories of Python projects on the platform. I found that over

37



90% out of 41529 authors contribute to at most one project per month. These authors

are responsible for over 58% of total commits and 79% of total projects in the sample.

After computing the descriptive statistics of the data, it becomes apparent that

the lack of manpower is prevalent in the community. Over 90% out of 24345 projects

in the data have less than 10 contributors. Even after controlling for projects’ ages, the

distribution of contribution for projects is still highly skewed. Most projects receive

very little contribution while very few projects receive massive amount of contribution.

From the data, we learn that individual developers have limited time and energy

for open source development. Moreover, most of their contribution are scattered for

many small projects instead of concentrating efforts on bigger projects. This might

suggest that contributors would rather be “core developers” in a smaller projects than

be “periphery contributors” in bigger projects. From the OLS regression results in

Table 2.6 as well as the comparisons in Table 2.9, 2.10, it seems that developers face

a trade-off between project popularity and being “core developers”.
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Chapter 3

A Structural Model of Decentralized

Open Source Software Development

3.1 Introduction

In this Chapter, I develop a structural model characterizing individual contributors’

preference, and estimate the preference parameters using techniques from dynamic

discrete choice models (such as Rust (1987); Hotz and Miller (1993); Arcidiacono and

Miller (2011)). Estimating structural models allows us to build a bridge between

individual choices in the data and their underlying incentives in the model. The

philosophy of this strand of literature is close to the revealed preference theory, that

is, individual preferences can be revealed by the choices they make. Compared to

“reduced-form” analysis1, structural models provide a direct theoretical interpretation

of the results. In addition, due to the direct link to theoretical model, structural

estimations enable the econometricians to measure the effect of counterfactual policies

more precisely and in a more tractable way. Therefore, structural models, especially

dynamic discrete choice models, are applied to many different fields in economics such

as labor economics (Keane and Wolpin, 1997) and industrial organization (Ericson

and Pakes, 1995). However, due to the computation burden of estimating a structural

model, this approach has not gained as much popularity as reduced-form analysis.

Recently, works by Arcidiacono and Miller (2011), Arcidiacono and Miller (2019a) and
1Instead of solving for the original theoretically given model form, reduced-form analysis solves

dependent variables as equations of the exogenous variables.
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Arcidiacono and Miller (2019b) give an alternative approach to estimate and compute

counterfactuals in a faster way than the traditional simulation approach using finite

dependence property. In this study, I will use the results from Arcidiacono and Miller

(2011, 2019a,b) to estimate the model and compute counterfactual analysis.

As argued in previous Chapters, the lack of manpower is prevalent for many

open source projects. To understand and potentially mitigate the issue, we need

to understand the preferences of individual developers. Motivated by the empirical

patterns in Chapter 2, I allow the individual utility to be a flexible function of the

author’s commits, the chosen project’s status, as well as the characteristics of the

entire project pool at a given time.

This study departs from the current literature in open source software develop-

ment in several ways. First, to the extend of my knowledge, this is the first study to

build and estimate a dynamic structural model to reveal developer preferences in the

open source community. Instead of separating the discussion of developer motivation

and open source sustainability, I directly link the developers’ incentives with the con-

tribution pattern in the community. In addition, this is the first application for fast

estimation and counterfactual computation following Arcidiacono and Miller (2019a)

using large-sized data.

3.2 Model

In this section, I will develop a model to characterize the choice for open source de-

velopers. It consists of two parts: the choice for contribution by developers, and the

“production” outcome of their participation. Each period, an developer will choose

the projects to contribute to as well as the effort she puts (measured as the number

of commits). The outcome/“production” (if there is a formal release of the project)

uses contribution of developers as input, and depends on the project’s current status

including the historical contribution to the project and the popularity of the project

(measured as number of watchers).

Potential externality can arise in the equilibrium because developers might be

concerned about their visibility and reputation. For example, if being the owner or

core developer of a project brings more reputation to a developer and less costly than
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joining other people’s project, the developer could prefer to start a small project just

to signal her skill. It might not be maintained as soon as the developer finds a new

job or get a promotion.

Before the model framework is formally introduced, I will illustrate the basic

intuition for the model. Table 3.1 gives an example of the choice problem of an

individual developer. This author could choose project A and project B. Project A is

a bigger and more popular project with 990 total commits and 100 watchers. Project

B is smaller and less popular. Suppose the author wants to contribute 10 commits to

one of the project. Her percentage of contribution in project A will be much small than

project A. Combining the total watchers, the author would prefer to choose project

B even though project B is much less popular since it is much easier to be a core

developer in project B.

Table 3.1: An Example of Developer Trade-off

project A project B
total watchers 90 10
total commits 990 90
author commits 10 10

% commits 0.001 0.01
% commits × total watchers 0.09 0.1

3.2.1 Developer Project Selection

First we discuss the one-period utility of individual developers if they choose to make

commits. Developer i’s project choice set at time t is Ait which includes creating her

own project from scratch, searching for a new project that she has never contributed

to before, or contributing to one of her top 2 past projects ranked by the number of

commits she made in the past. Project j has characteristics including the total number

of commits, the total number of contributors and the number of watchers/stars at the

beginning of the period t. If developer i contribute to project j, she will get a return

R at the end of the period. Return R is not observed at the time when the developer

is making a choice. But the developer knows that it is a random variable following

distribution F (R;Xit).

The reason of R being random is that the return might depend on the increase in
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the number of commits, watchers and authors after t which cannot be observed prior

to the author’s decision. Here we assume that developer i has a rational belief over

the distribution of R, denoted as F (R;Xit). Empirical distribution F̂ (R;Xit) can be

estimated from estimating the distribution of the number of new commits, watchers

and authors conditional on the current state variable.

Given choice set Jit, developer i is maximizing her payoff over the level of commits

in each project. Assume the utility function with return R is u(R) and the cost of

commiting to project j is cj. The cost might include an entry cost if the developer

has never contributed to project j before. Thus the developer’s utility at a given time

period can be written as:

uijt(Xit) ≡ E[U(R)|Xit]− cj =

∫
U(R)dF (R;Xit)− cj

The cost of contributing to project j would involve a variable cost which depends

on the number of commits, as well as a fixed cost if the developer is creating a new

project, or participating in a new project.

The value function for developer i at time t is the maximum of time-discounted ac-

cumulation of utility flows. Therefore we can write the agent’s dynamic maximization

problem as:

Vt(Xit) = max
djτ

E

[∑
j∈Ait

∞∑
τ=t

β(τ−t)dijτ (uijτ (Xiτ ) + εijτ )|Xit, εijt

]

where Xit is the vector of state variables of individual i at time t, djτ = 1 if the agent

choose j at time t and 0 otherwise, εijτ are i.i.d. shocks to utility flow. Note that∑
j∈Ait dijt = 1 for all agent and all time t.

Denote the conditional value function as vjt(Xit), that is:

vjt(Xit) = uijt(Xit) + β
∑

xt+1∈X

Vt+1(Xt+1)fjt(Xt+1|Xt)

where X is the state space, fjt(Xt+1|Xt) is the transition probability from state Xt to

Xt+1 conditional on choosing j at time t. The conditional value function is the utility

flow without the i.i.d. shock εijt plus the continuation value. The agent will choose j
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if and only if vjt(Xit) + εijt ≥ vkt(Xit) + εikt for every alternative choice k. So we can

write the conditional choice probability (CCP) as:

Pjt(Xit) ≡ P (dijt = 1|Xit) =

∫ ∏
k 6=j

1{εikt − εijt ≤ vjt(Xit)− vkt(Xit)}dF (ε)

Here we assume that the i.i.d. shock εijt follows Type I Extreme Value distribution.

3.2.2 Production Outcome

A formal release is considered as an important milestone for a project. Therfore in this

study, I will consider the production outcome to be whether the project is released or

not. Assume the probability for j to have a release at time t to be a function of the

project’s past commits and authors (commitsjt, authorsjt), as well current commits

and authors (∆commitsjt,∆authorsjt):

Pr(releasejt|Xjt) = f(∆commitsjt, commitsjt,∆authorsjt, authorsjt)

3.3 Identification and Estimation

3.3.1 Identification of Utility

Agent utility could be identified from choice of contribution as follows. The inversion

theorem from Hotz and Miller (1993) shows that for any choice j, there exist a function

ψjt(·) such that

ψjt(Pjt(Xit)) = Vt(Xit)− vjt(Xit)

where Vt(x) is the value function at t with state x, and vjt(x) is the conditional value

function for choosing choice j, that is,

vjt(xt) = ujt(xt) + βE[Vt+1(xt+1)|xt, dt = j] (3.1)

From above we have vjt(xt)−v0t(xt) = ψ0t(xt)−ψjt(xt) where ψjt(xt) = ψ(Pjt(xt)).

Pjt(xt) = P (dijt = 1|xt) is the probability of choosing choice j conditional on having

state variable xt. Thus, there is a one-to-one mapping between the conditional value
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function which is a function of individual utility and conditional choice probability.

Normalizing the utility for outside option (not contributing to anything) to zero, the

utility of choices j 6= 0 are identified.

In addition, we assume that the distribution of exogeneous random utility shocks

each period εijt follows Type I extreme value distribution. Under this assumption, we

have ψjt(Xit) = γ − lnPjt(xt) where γ is Euler’s constant.

3.3.2 Finite Dependence

Following the idea in Arcidiacono and Miller (2011), we can apply finite dependence

in this model. Consider the following two choice trajectories:

(1) dt = j ⇒ dt+1 = 0⇒ dt+2 = 0⇒ dt+3 = 0⇒ dt+4 = 0

(2) dt = 0⇒ dt+1 = j ⇒ dt+2 = 0⇒ dt+3 = 0⇒ dt+4 = 0

Here I argue that two trajectories gives the same distribution of state variable Xt+5

given initial state Xt.

Table 3.2 gives the results of an OLS regression of the number of current commits

(commits made in time t) of project j on its lagged number of commits (number

of commits made in time t − 1, t − 2, .etc). The results show that the correlation

between current commits and lagged commits diminishes after 3 periods. Similar for

the number of current authors and current watchers, the correlation diminishes after 3

periods as well. Thus, here I argue that the model exhibits 4-period finite dependence.

Following the notations from Arcidiacono and Miller (2011), let κτ (xτ+1|xt, j) be

the distribution of xτ+1 given that the agent takes action j in time t then repeatedly

taking the normalizing action l(x, τ) from t+ 1 to τ . It is recursively defined as:

κτ (xτ+1|xt, j) =

fjt(xt+1| xt) for τ = t∑X
x fl(x,τ),τ (xτ+1|x)κτ−1(x|xt, j) for τ = t+ 1, t+ 2, · · ·

In this case of 4-period finite dependence with normalizing action d0 (not com-
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mitting anything), we have:

κτ (xt+2|xt, j) =
∑

xt+1∈X

f0,t+1(xt+2|xt+1)κt(xt+1|xt, j)

κτ (xt+2|xt, 0) =
∑

xt+1∈X

fj,t+1(xt+2|xt+1)κt(xt+1|xt, 0)

The conditional value function vjt(xt) can then be written as:

vjt(xt) = ujt(xt) +
∞∑

τ=t+1

∑
x∈X

βτ−1[ul(x,τ),τ (xτ ) + ψl(x,τ),τ (xτ )]κτ (xτ+1|xt, j)

Using the normalizing action 0 and applying the property of 4-period finite de-

pendence, we have:

vjt(xt)− v0t(xt) = ujt(xt) +
t+4∑

τ=t+1

∑
xτ∈X

βτ−1
[
ul(x,τ),τ (xτ ) + ψl(x,τ),τ (xτ )

]
× (3.2)

[κτ (xτ+1|xt, j)− κτ (xτ+1|xt, 0)] (3.3)

Using the inversion theorem (Hotz and Miller, 1993) that Vt(x) = vjt(x) +ψjt(x),

we can re-arrange Equation 3.3 and get the estimation moment equation below:

ujt(xt) =u0t(xt) + ψ0t(xt)− ψjt(xt)+
t+4∑

τ=t+1

∑
xτ∈X

βτ−t [u0,τ (xτ ) + ψ0,τ (xτ )] [κτ (xτ+1|xt, j)− κτ (xτ+1|xt, 0)]

3.3.3 State Space

Before going into the estimation of utility function, I will discuss the state space of

agents. In this model, the agent will decide on which project to commit to each period

from their choice set. The choice set includes up to 5 choices: not committing to any

project (choice 0 ), creating a new project (choice 1 ), searching for a project that the

agent has never worked on before (choice 2 ). In addition, if the agent has worked on

projects before, she can choose to continue work on one of those old projects. In the

data, only 251 authors out of 41529 (0.6%) has contributed to more than 2 projects.
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Table 3.2: OLS Regression on Lagged Commits

dep. var current commits current authors current watchers
const 1.368 0.963 0.562

(0.388) (0.069) (0.413)
project commits 1 0.482 0.027 0.127

(0.039) (0.008) (0.036)
project commits 2 0.077 0.007 0.051

(0.035) (0.006) (0.039)
project commits 3 0.088 0.011 0.065

(0.032) (0.005) (0.040)
project commits 4 0.049 0.007 0.022

(0.032) (0.005) (0.034)
project commits 5 0.038 0.001 0.031

(0.030) (0.005) (0.033)
project commits 6 0.060 0.004 0.038

(0.028) (0.004) (0.034)
project commits 7 -0.015 0.000 0.048

(0.030) (0.004) (0.036)
project commits 8 0.041 0.002 0.069

(0.026) (0.003) (0.038)
project commits 9 -0.013 0.001 0.036

(0.019) (0.003) (0.033)
project commits 10 0.046 0.004 0.064

(0.019) (0.003) (0.030)

So here I limited the old projects to be the top 2 projects in terms of the number of

commits the agents has made to those projects in the past(choice 4, 5 ).

Given the choice set, the agents will need to make predictions on the future states

of the project if they choose to commit to it. The relevant state space would then

include: the agent’s age (number of months on GitHub platform since registration),

the number of projects and commits that the agents has made before. If the agent has

contributed to any projects before, the state space will also include the current status

of the top 2 projects she worked on in the past, including the project’s age, number of

commits, authors and watchers up till period t.

Since choice 2 (searching for an existing project on the platform that the agent

has never worked on before) depends on the currently available projects on the plat-

form, the state space also contains summary statistics of available projects’ status.

Specifically, I include the total number of available projects, the inverse of the means

of available projects’ age, number of total commits, authors and watchers. Figure
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2.2 from Chapter 2 shows the trend of the total number of available projects on the

platform (divided by 10) as well as the number of new projects by month. The total

number of available projects is increasing exponentially through time. I include the

inverse of the means of available project status is due to the fact that the empirical

distributions of the available projects’ status can fit to geometric distribution well2,

and the maximum likelihood estimator for geometric distribution is the inverse of the

mean. Figure 3.1 shows the empirical distribution of project age (blue bars) v.s. the

fitted geometric distribution (orange curve) from April 2014 to July 2017.

Lastly, I discretize the state space into limited number of bins as there are up

to 16 dimensions of the state space. To avoid small sample problem when estimating

transition probability and conditional choice probability, I divided each dimension by

equal quantiles. There are some dimensions with values concentrated in one value,

e.g., over 80% of observations in the author panel data has total past commits to be

0. Therefore I grouped zeros together and separated the rest into 2 bins with equal

number of observations (smaller than 5 or greater than 5). In this way, I ended up

having 6953 unique bins with 1308083 observations.

3.3.4 Estimation of CCP and Transition

The estimation of conditional choice probability (Pjt(x)) and transition probabilities

(F (xt+1|xt)) follows their statistical analog. That is:

P̂jt(x) =

∑N
i dijt1{xit = x}∑N
i 1{xit = x}

f̂j(xt+1|xt) =

∑N
i dijt1{xit = xt, xi,t+1 = xt+1}∑N

i dijt1{xit = xt}

Due to the curse of dimensionality, even though the data itself is sizeable, the

number of observations of each unique state variable combination might not be high

enough to satisfy the law of large number. Therefore it could introduce small sample

bias to empirical utilities, thus influence the utility estimation results. In addition, the

random noise from estimating CCPs and transition empirically might require correc-

tions to the standard deviations of the estimated utility parameters.
2The probability mass function of geometric distribution is P (X = k) = (1− p)k−1p
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Figure 3.1: Distribution of Project Age Fitted to Geometric Distribution
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3.3.5 Estimation of Utility Function

In this section, I will specify the estimation procedure of the utility function. Based on

Theorem 3 of Arcidiacono and Miller (2019a) and normalizing action u0t(x) = 0, define

empirical utility ûjt(x) as a function of conditional choice probability and transition

probability for each choice j, time t and state variable x:

ûjt(xt) =ψ0t(xt)− ψjt(xt) +
t+4∑

τ=t+1

∑
xτ∈X

βτ−tψ0τ (xτ ) [κτ (xτ+1|xt, j)− κτ (xτ+1|xt, 0)]

(3.4)

Based on the inversion theorem of Hotz and Miller (1993), ψjt(x) is a function of

conditional choice probability. Thus, the right-hand-side of the above equation is a

combination of conditional choice probabilities (ψjt(x) = γ− logPjt(x)) and transition

probabilities κτ (xτ+1|xt, j)).

Here I use a minimum-distance estimator to estimate the paramters (denoted as

vector β) of the utility function. That is:

β̂ = argmin
β

N∑
i=1

T∑
t=1

||ujt(xit; β)− ûjt(xit)||2

where ûjt(x) comes from Equation 3.4 and ujt(x) is the model utility which contains

the parameters to be estimated.

Specifically I assume that the utility of choosing option j 6= 0 at time t given

agent i’s state variable to be the following:

ujt(xt) =E[β0 + β1(∆authorcommitst + δ0authorcommitst) + β2(∆commitst + δ1commitst)

β3(∆authorst + δ2authorst) + β4(∆watcherst + δ3watcherst) | x]− cj

=(β0 − cj) + β1∆authorcommitst + β1δ0authorcommitst

+ β2E[∆commitst|x] + β2δ1commitst + β3E[∆authorst|x] + β3δ2authorst

+ β4E[∆watcherst|x] + β4δ3watcherst

where state variable contains author’s total number of commits made before t, total

number of projects participated, their top 2 projects’ status, and the current market
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conditions.

∆authorcommitst = author’s current number of commits

authorcommitst = author’s past total commits in the currently chosen projects

∆commitst = number of new commits of project j at t

commitst = total number of past commits of project j before t

∆authorst = number of new authors of project j at t

authorst = total number of past authors of project j before t

∆watcherst = number of new watchers of project j at t

watcherst = total number of past watchers of project j before t

β0 − cj = base utility for commiting to a project− cost for commiting to project j

In this model, agents don’t know the exact values of new commits, new authors and

new watchers at the time when they commit. However, they do know the conditional

distribution of new commits, new authors and new watchers. Therefore, they know

the expected value of the new commits, new authors and new watchers given their

current state.

Since the original state space has high dimensions (up to 16 columns), I discretized

the state space by spliting each dimension by quantiles except for the number of

projects the agent has participated in the past. For example, the total number of total

commits the agent has made in the past has been separated into 0 (the largest bin),

between 1 and 5 (the 33% quantile for observations larger than 0), between 5 and 46

(the 67% quantile), and larger than 46. With the discretization, there are 6953 unique

bins of the state space.

3.3.6 Estimation Results

To estimate the utility function, we make the following assumptions:

Assumption 1. The agent is risk neutral.

Assumption 2. The dynamic transition is Markov and follows 4-period finite depen-

dence.
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Table 3.3: Summary Statistics of Empirical Utility

count mean std min 25% 50% 75% max
choice
0 1202696 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 52599 3.49 4.27 -83.94 2.75 3.51 4.35 70.61
2 82857 3.28 5.08 -78.43 2.50 3.09 4.58 54.77
3 177540 -1.01 7.43 -73.57 -0.14 0.51 1.64 67.15
4 3165 -11.70 14.40 -85.96 -23.03 -16.12 0.00 48.24
Note: Choice 0=not committing; Choice 1=creating a new project; Choice 2=searching
for a new project that the author has never contributed before; Choice 3/4=commiting
to one of the top 2 projects that the author has contributed in the past in terms of the
author’s number of commits in those projects

Assumption 3. Contemporary random shocks are i.i.d. across time and choices, and

follow Type-I Extreme Value distribution.

Assumption 4. Projects are homogeneous conditional on observable variables.

Given the assumptions above, the minimum distance estimator becomes equiva-

lent to an OLS estimator where the left-hand-side variable is the empirical utility and

the right-hand-side is the model utility containing the parameters to be estimated in

Equation 3.6.

uijt(x) =(β0 − cj) + β1(∆commitsijt + δ0commitsijt)

+ β2(E[∆commitsj,t+1|x] + δ1commitsjt) (3.5)

+ β3(E[∆authorsj,t+1|x] + δ2authorsjt)

+ β4(E[∆watchersj,t+1|x] + δ3watchersjt) (3.6)

Table 3.4 gives the estimation of the utility function with four different specifi-

cations. Column (1) gives the baseline estimation where the model utility depends

on the the number of commits that the author committed in the current period (“au-

thor current commits”), the number of commits that she made to the currently cho-

sen project in the past (“author current project past commits”), the currently chosen

project’s total number of commits/authors/watchers up till period t (“project past

commits/authors/watchers”), the expected number of new commits/authors/watchers

that the project gets after period t (“avg project new commits/authors/watchers”), as

well as the dummy variables for the category of choices (“choice 1/2/3/4”).
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Column (2) adds the standard deviations of the currently chosen project’s new

commits/authors/watchers (“std project new commits/authors/watchers”). The mo-

tivation is that the authors might not only care about the mean of the future state

of the chosen project, but also the relative range of the future state. Column (3) and

(4) adds the square terms and interaction terms in the regression. Column (2) spec-

ification gives results not too different from other columns on the common variables,

but the adjusted R2 increases from 0.118 in Column (1) to 0.144. It is also not much

different from Column (3) and (4) which have more variables of square terms and in-

teraction terms. Given the estimated parameters of the square and interaction terms

are small in scale, I use Column (2) specification as the utility function to be used in

the counterfactual analysis.

In Column (2) as well as the other columns, we can see that choice 1 (creating

a new project) has the highest parameter (β0 − cj, base-level utility minus the fixed

cost for choice j) for the dummy variable, following by choice 2 (searching for a new

project that she has not done before), and choice 3 and 4 (continue contributing one

of the top 2 past projects). It seems that there is certain intrinsic values in owning a

project. Choice 2’s high base value might relate to altruism and reciprocity as previous

literature indicated. Choice 3 and 4’s low base values are related to the fact that there

are not many observations with the options of choice 3 and 4 in the choice set. Even

with the availability, not many agents actually chose choice 3 or 4. This could indicate

that most authors in the data are “casual” contributors who would like to work on

new projects rather than continue working on old projects. Thus, there needs to be a

positive enough random shock to choice 3 and 4, or negative enough shock to choice 1

and 2 in order for the agent to choose the top 2 past projects instead of creating one’s

own project or searching for a new project.

Additionally, the agent’s utility decreases with the number of current commits

the author makes. This might be due to the fact that making commits requires time

and effort. Given that the square terms and interaction terms related to the author’s

current commits are close to zero economically, the negative effect dominates. This

factor would be interpreted as the variable cost for making commits.

As for the number of total commits that the project has until period t, the esti-
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mated parameter is positive even though it’s small in scale. Meanwhile the estimated

parameter for the project’s past authors is negative, and the parameter for the project’s

past watchers is positive. So the agent’s utility increases when she participates in a

popular project, and decreases when there are more competition from her peers.

In addition, the estimated parameters for the project’s new states show that

agent’s utility decreases with the expected number of new commits, while increases

with the standard deviation of the number of new commits. It is consistent with

the idea that agents prefer to have less dilution of their contribution to the project.

Also, the agent’s utility increases with the expected number of new authors of the

chosen project conditional on the number of new commits and other variables. The

number of new authors could be deemed as another measure of popularity, therefore

consistent with the fact that agents prefers their chosen project to be more popular.

Similarly, agent’s utility increases with the expected number of new watchers, which is

also consistent with the hypothesis that authors prefer to join a more popular project

for the sake of public visibility. Motivated by reputation and career concern, authors

would prefer to be a “core” developer in a popular project.
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Table 3.4: Utility Estimation Results

Dependent variable:

empirical utility

(1) (2) (3) (4)

dummy: create new project 4.356∗∗∗ 4.040∗∗∗ 4.023∗∗∗ 4.010∗∗∗

(0.051) (0.053) (0.053) (0.054)

dummy: search new project 3.577∗∗∗ 1.893∗∗∗ 1.867∗∗∗ 1.848∗∗∗

(0.049) (0.058) (0.058) (0.058)

dummy: top 1 past project −0.977∗∗∗ −1.398∗∗∗ −1.338∗∗∗ −1.305∗∗∗

(0.030) (0.031) (0.032) (0.033)

dummy: top 2 past project −12.215∗∗∗ −11.160∗∗∗ −11.135∗∗∗ −11.121∗∗∗

(0.161) (0.159) (0.159) (0.160)

author current commits −0.013∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.007∗∗∗

(0.001) (0.001) (0.001) (0.002)

author past commits in current project 0.0001 −0.001∗∗∗ −0.003∗∗∗ −0.004∗∗∗

(0.0001) (0.0001) (0.0002) (0.0002)

project past commits 0.0003∗∗∗ 0.0002∗∗∗ 0.0001∗∗∗ 0.001∗∗∗

(0.00003) (0.00003) (0.00004) (0.0001)

project past authors −0.002∗∗∗ −0.003∗∗∗ −0.002∗∗∗ −0.005∗∗∗

(0.0004) (0.0004) (0.0004) (0.001)

project past watchers 0.0001∗∗ 0.00002 0.00002 −0.0001∗∗

(0.00002) (0.00002) (0.00003) (0.00005)

avg project new commits −0.031∗∗∗ −0.131∗∗∗ −0.129∗∗∗ −0.129∗∗∗

(0.002) (0.002) (0.002) (0.002)

std project new commits 0.086∗∗∗ 0.087∗∗∗ 0.088∗∗∗

(0.002) (0.002) (0.002)

avg project new authors 0.125∗∗∗ 0.185∗∗∗ 0.169∗∗∗ 0.173∗∗∗

(0.011) (0.014) (0.014) (0.014)

std project new authors 0.083∗∗∗ 0.087∗∗∗ 0.089∗∗∗
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(0.014) (0.014) (0.014)

avg project new watchers 0.004∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)

std project new watchers −0.007∗∗∗ −0.007∗∗∗ −0.007∗∗∗

(0.001) (0.001) (0.001)

author current commits× 0.00000 0.00000∗

project past commits (0.00001) (0.00001)

author current commits× 0.00001 0.00000

project past authors (0.00002) (0.00002)

author current commits× −0.00001∗∗∗ −0.00001∗∗∗

project past watchers (0.00001) (0.00001)

author current project past commits× 0.00000∗∗∗ −0.00000

project past commits (0.00001) (0.00001)

author current project past commits× −0.00001∗∗∗ 0.00000∗∗

project past authors (0.00001) (0.00001)

author current commits2 −0.00000

(0.00001)

author current project past commits2 0.00000∗∗∗

(0.00001)

project past commits2 −0.00000∗∗∗

(0.00001)

project past authors2 0.00000∗∗∗

(0.00001)

project past watchers2 0.000∗∗∗

(0.00001)

Observations 182,625 182,625 182,625 182,625
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R2 0.118 0.144 0.144 0.145

Adjusted R2 0.118 0.144 0.144 0.145

Residual Std. Error 7.414 7.303 7.300 7.299

Degree of Freedom (182613) (182610) (182605) (182600)

F Statistic 2,027.912∗∗∗ 2,046.286∗∗∗ 1,541.739∗∗∗ 1,237.395∗∗∗

Degree of Freedom (12;

182613)

(15;

182610)

(20;

182605)

(25;

182600)

Note: Choice 0 ommited. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.3.7 Estimation of Project Production

In this study, I’m interested in counterfactuals that could alter the probability of a

project being released, which is a function of the number of new authors ∆authorsjt,

the number of new commits ∆commitsjt and the number of past authors and commits.

The number of new authors ∆authorsjt, the number of new commits ∆commitsjt can

be estimated from the counterfactual CCPs by integrating over the state space, e.g.,

∆authorsjt =
∫
P̃jt(Xt)dF (Xit)×Nt.

Here I estimate the hazard rate of releasing a project by using Cox proportional

hazard model:

P (release|Xjt) = f(∆commitsjt,∆authorsjt, commitsjt, authorsjt)

Potential limits to this method:

• The regression could have endogeneity bias. For example, the agents might

be able to identify heterogeneous project qualities that the we cannot observe

in data. Then the unobserved qualities would affect both the number of new

authors and the probability of release.

• General equilibrium effect is unknown. By changing the CCPs, the market con-

ditions might change.
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Table 3.5: Cox Proportional Hazard Regression

Dependent variable:

project age

(1) (2) (3)

project current commits 0.012∗∗∗ 0.034∗∗∗ 0.034∗∗∗

(0.001) (0.002) (0.002)

project current authors 0.967∗∗∗ 4.395∗∗∗ 4.164∗∗∗

(0.012) (0.070) (0.065)

project past commits 0.001∗∗∗ −0.00004 −0.00002

(0.0003) (0.001) (0.001)

project past authors −0.172∗∗∗ −0.144∗∗∗ −0.234∗∗∗

(0.003) (0.010) (0.010)

project current commits2 −0.0002∗∗∗ −0.0002∗∗∗

(0.00002) (0.00002)

project current authors2 −0.933∗∗∗ −0.859∗∗∗

(0.024) (0.022)

project past commits2 −0.00000 −0.00000

(0.00000) (0.00000)

project past authors2 0.0002∗∗∗ −0.0001

(0.0001) (0.0002)

project current commits× 0.0004∗∗∗

project past authors (0.0001)

project current authors× 0.046∗∗∗

project past authors (0.004)

Observations 23,729 23,729 23,729

R2 0.191 0.378 0.376
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Max. Possible R2 0.919 0.919 0.919

Log Likelihood −27,294.340 −24,174.490 −24,223.850

Wald Test 12,166.580∗∗∗

(df = 4)

10,019.980∗∗∗

(df = 8)

10,230.470∗∗∗

(df = 10)

LR Test 5,042.185∗∗∗

(df = 4)

11,281.880∗∗∗

(df = 8)

11,183.170∗∗∗

(df = 10)

Score (Logrank) Test 11,927.140∗∗∗

(df = 4)

19,749.160∗∗∗

(df = 8)

21,187.550∗∗∗

(df = 10)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.4 Counterfactual Analysis

Even though one cannot answer normative questions such as which projects should

survive longer to maximize “social utility” as it is hard to distinguish the reason why

certain projects are inactive (e.g. feature complete, maintainer lost interest), one can

still explore potential changes in the distribution of project characteristics in equilib-

rium.

Based on Theorem 5 of (Arcidiacono and Miller, 2019a), given any temporary

payoff innovation where ∆jt(x) ≡ ũjt(x)− ujt(x) = 0 for all t > S, the counterfactual

CCPs for t < S can be identified as follows:

ψ̃jt(x)− ψ̃0t(x) =ψjt(x)− ψ0t(x) + ∆jt(x)−∆0t(x)

T∑
τ=t+1

∑
xτ∈X

βτ−t[∆0τ (xτ ) + ψ̃0τ (xτ )− ψ0τ (xτ )][κτ−1(xτ |x, j)− κτ−1(xτ |x, 0)]

(ρ− period finite dependence)

=ψjt(x)− ψ0t(x) + ∆jt(x)−∆0t(x)+

t+ρ∑
τ=t+1

∑
xτ∈X

βτ−t[∆0τ (xτ ) + ψ̃0τ (xτ )− ψ0τ (xτ )][κτ−1(xτ |x, j)− κτ−1(xτ |x, 0)]

(3.7)

Suppose the regime is temporary, meaning Ṽs(x) = Vs(x) for s > S. Then we can
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solve for the CCPs backwards. At the last period of the payoff innovation regime S,

the new CCPs at period t = S can be solved using the following for all choice j 6= 0

and all state x:

ψ̃jS(x)− ψ̃0S(x) = ψjS(x)− ψ0S(x) + ∆jS(x)−∆0S(x)

Along with the condition that
∑J

j=0 PjS(x) = 1 for each state x, we can solve J ×X

CCPs with J×X equations where X is the number of states. Moving back one period,

we can plug in the new CCPs from t = S into the “continuation term” in Equation 3.7

and solve for CCPs in t = S−1. In the following part, I will solve for the counterfactual

conditional choice probabilities using the process above.

Increasing Expected Number of Watchers

Here I experiment with the temporary counterfactual where the expected number of

watchers rise by 20% for each state and choice from Jan 2015 to Dec 2015, except for

choice 1 (creating a new project from scratch). I conduct this temporary counterfactual

analysis because we can expect a relative stationary environment in the short-term.

After Dec 2015 when the counterfactual period ends, we expect the CCPs to be back

to before. This counterfactual scenario might be implemented by promoting projects

that are not just created (project age bigger than 1 month) on the platform frontpage,

or outside the platform through advertising.

Table 3.6 gives the changes in the unweighted average of conditional choice prob-

abilities (average across available states in each month). Since the average changes

in CCPs are not weighted by the number of observations in each state, I calculated

the expected number of authors that would increase/decrease for each choice in each

month t by multiplying the number of authors in state x and time t, and summing

up across states in month t. Table 3.6 shows that the number of authors choosing

not to commit drops significantly. In addition, the increase in the number of authors

choosing to create a new project from scratch is lower than the increase in the number

of authors choosing to search for an existing project.
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Table 3.6: Change in CCP Under Temporary Counterfactual

E[∆P0(x)] E[∆P1(x)] E[∆P2(x)] E[∆P3(x)] E[∆P4(x)]
month

2015-01 -0.34 0.14 0.14 -0.06 0.12
2015-02 -0.36 0.14 0.14 -0.04 0.12
2015-03 -0.33 0.14 0.14 -0.07 0.12
2015-04 -0.36 0.14 0.14 -0.06 0.14
2015-05 -0.35 0.14 0.14 -0.07 0.13
2015-06 -0.36 0.14 0.14 -0.06 0.14
2015-07 -0.33 0.14 0.14 -0.08 0.13
2015-08 -0.35 0.14 0.15 -0.07 0.14
2015-09 -0.36 0.14 0.13 -0.06 0.14
2015-10 -0.34 0.14 0.13 -0.06 0.13
2015-11 -0.38 0.14 0.13 -0.02 0.13
2015-12 -0.36 0.14 0.14 -0.05 0.13

Note: This counterfactual corresponds to the changes in CCP by increasing the expected number of
watchers by 20% for each state and choice, except for choice 1 (starting a new project from scratch),
starting from Jan 2015 and ending on Dec 2015.

Table 3.7: Change in Number of Authors Under Temporary Counterfactual

do nothing create new
project

search new
project

top 1 past
project

top 2 past
project

month

2015-01 -11530 3203 3539 2012 2553
2015-02 -11534 3130 3517 2053 2592
2015-03 -11615 2941 3478 2163 2759
2015-04 -11382 2965 3343 2122 2707
2015-05 -11445 2812 3338 2226 2799
2015-06 -11374 2793 3230 2246 2827
2015-07 -11199 2730 3110 2208 2839
2015-08 -11083 2649 3104 2190 2848
2015-09 -10969 2597 3019 2201 2849
2015-10 -10815 2558 2913 2202 2842
2015-11 -10532 2611 2795 2108 2729
2015-12 -10416 2299 2675 2231 2926

Note: This counterfactual corresponds to changes in the number of authors with each choices
by increasing the expected number of watchers by 20% for each state and choice, except for
choice 1 (starting a new project from scratch), starting from Jan 2015 and ending on Dec
2015. The numbers come from summing up the expected number of authors choosing a specific
option (number of authors with the same state variable times the new CCP). Negative number
indicates that the number of authors choosing that option decreases after the counterfactual
policy.
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3.5 Limitations and Future Works

In this section, I will discuss the limitations of this study and lay out some future

directions of the research. Firstly, this study focuses on Python projects on GitHub.

Specifically, I select projects that have “Python” and “library”/“module” in the de-

scription in order to exclude projects that are not intended to be released as Python

packages such as course materials and personal websites. In this way, I filtered out

many projects that could be Python packages as well. Indeed, the total number of

Python projects in this study is less than the number of Python packages that can be

matched in the Python Package Index, or PyPI based on the study by Valiev et al.

(2018). I didn’t start from released Python packages in PyPI because the analysis

might suffer from selection bias, for example, released packages have better (unob-

served) quality than the average project. However, in the future research, one could

combine the current dataset with PyPI dataset, and adjust for the imbalance between

released projects and other projects.

In addition, it might be worthwhile to collect data on projects of other languages

besides Python, such as C, Java, .etc. The reason is that we can see a fuller picture

on the time and effort allocation of open source contributors.

Apart from the project selection described as above, I also restricted the authors

in the sample to be those who contribute to one project at most. In this way, I

can restrict author’s choice set thus making computation analysis easier. However, we

might have selected the “casual” authors instead of the more productive “core” authors.

Alternatively, one could model the choice set as a combination of all available projects.

In terms of the demand of open source development, here I used the number of

watchers/stars as a proxy to indicate the popularity of open source projects. Since the

number of watchers and stars come from the users on GitHub, who may have more

expertise of open source development than others, this measure might not fully reflect

the usage of general public. If we focus on the released packages on PyPI, we can get

the download counts of the projects. One might argue that download counts might be

more suitable to represent the utility of general public, thus enabling us to characterize

and model the demand side of the open source market.

Given the demand of open source softwares, we can discuss the social welfare of
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open source development. In particular, how should a social planner allocate the time

and effort of contributors in order to maximize social utility? Should the most contrib-

utors focus on projects with potentially high download count, or should contributors

scatter the effort in a more uniform manner across different projects?

Another part of relevant information that we could obtain for released projects is

the dependency network among packages. The dependency network gives information

on which packages (upstream) are used in the source code of a package (downstream).

Thus, one can establish an input-output matrix as in the international trade literature

to characterize the production of open source packages.

Lastly, on the growth of open source development, an important question here

is: can the market evolve to an ergodic state? If so, what would be the properties

of the state? With developers sorting and selecting projects through commits, watch

and stars, what would be the properties of surviving packages in the long-term? How

would potential externalities of open source participation affect the long-term state

of the market? In addition, the open source community seems to be in a nonstation-

ary state as the number of new authors and new projects are constantly expanding

currently. Suppose there is an aggregate shock to the community, for example, if pro-

prietary companies enforce much stricter contracts with programmers to discourage

their participation in open source softwares, then what would happen to the mar-

ket equilibrium? Future researches might address those questions and investigate the

long-term state of the open source community.

3.6 Conclusion

In this Chapter, I build a dynamic discrete choice model to formally characterize the

preferences of individual developers, motivated by the empirical patterns presented

in Chapter 2. Specifically, I let the individual developer’s utility to be a function of

their current commits, the chosen project’s current status, as well the chosen project’s

expected future status.

Based on the results of (Arcidiacono and Miller, 2011, 2019b,a), I can identify and

estimate the dynamic model using finite-dependence property. The estimation shows

that individual developer’s utility decreases with the number of current commits, the
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chosen project’s number of authors in the past, and the expected number of commits

in the next period. Moreover, the utility increases with the chosen project’s number

of commits and number of watchers in the past, as well as the expected number of

authors and watchers in the next period. To the extend of my knowledge, this is

the first attempt of using dynamic discrete choice model to characterize individual

developer preferences.

Lastly, I conduct counterfactual experiment by increasing the expected number of

watchers by 20% for all projects except for new projects that are just created from Jan

2015 to Dec 2015. In the counterfactual analysis, I find that the number of authors

choosing not to commit drops significantly. Also, the increase in the number of authors

choosing to create a new project from scratch is smaller than the increase in the number

of authors choosing to search for an existing project during the year of the temporary

counterfactual regime.
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Figure 2: Average Number of Commits by Python Project Age

Table 8: Summary Statistics From Original Data

mean s.d. median (max, min) no. obs

monthly commits per author 15.49 314.54 4 (656243, 1) 37990105
monthly projects per author 2.04 17.67 1 (52435, 0) 37990105
total commits per project 22.50 827.24 4 (2332481, 1) 20272825

total contributors per project 1.48 12.03 1 (40512, 1) 23095862
project age 22.94 16.09 18 (116, 5) 30077852

date of last commit 20.29 13.57 16 (234, 1) 25959769
issues per project 10.51 174.35 1 (145558, 1) 4079030

pull requests per project 7.19 96.04 1 (54805, 1) 2817013
watchers per project 13.31 215.73 1 (144323, 1) 4786959

Note: Monthly commits and projects include projects that are forked from other projects. Number
of authors per project excludes forked projects. “Date of last commit” refers to the month when the
last commit to a certain project was pushed. For example, date of last commit of 6 means that the
last commit of the project was pushed 6 months before the current observation date (July 2017).
In addition, it eliminated the commits that are before Jan 1998 (git was invented) and after July
2017. Those commit dates are due to random user system errors such as dead CMOS batteries.
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Figure 3: Median of Download Count by Month

Figure 4: Distribution of Project Size
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Figure 5: Productivity Per Author By Project Size

Table 9: Panel OLS Regression of Project Popularity

baseline org panel ind panel org panel ind panel

num commits 0.1385 0.0220 0.0690 0.0185 0.0695
s.e. 0.0075 0.0138 0.0096 0.0139 0.0096
num commits sq 0.0000 0.0000 -0.0000 0.0000 -0.0000
s.e. 0.0000 0.0000 0.0000 0.0000 0.0000
num authors 5.7712 5.6512 27.5644 5.4604 27.5764
s.e. 0.4267 0.4626 1.2079 0.4618 1.2191
num authors sq -0.0016 -0.0072 -0.0774 -0.0070 -0.0775
s.e. 0.0013 0.0014 0.0035 0.0013 0.0035
project f.e. N Y Y Y Y
age f.e. N N N Y Y
no. obs 6622959 487587 6135372 487587 6135372

Note: “org panel” and “ind panel” refers to panel OLS estimation for organization owned
projects and individual owned projects respectively.

Table 10: Python Community Contributor Specialization

mean s.d. median (max, min) no. obs

monthly commits in Python 8.62 23.79 3 (11532, 1) 1063238
monthly total commits 37.35 677.20 10 (496724, 1) 1063238

Python commit proportion 0.58 0.39 0.59 (1, 0) 1063238
monthly Python projects 1.17 1.07 1 (201, 1) 1063238
monthly total projects 4.71 52.90 2 (16809, 1) 1063238

Python project proportion 0.58 0.35 0.50 (1, 0) 1063238

Note: Number of observation is the number of developers times the number of months. Here
the python projects are selected such that the project description contains “Python” and the
creation date is after Jan 2012.
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Table 11: Python Projects and Releases

year new projects organization owned releases avg release year

2012 7798 978 (12.54%) 1203 (15.43%) 2012.51
2013 11340 1449 (12.78%) 1738 (15.33%) 2013.37
2014 14498 2086 (14.39%) 2219 (15.31%) 2014.29
2015 19594 2655 (13.55%) 2840 (14.49%) 2015.13
2016 20331 2876 (14.15%) 2507 (12.33%) 2016.08
2017 23040 2595 (11.26%) 2260 (9.81%) 2016.97

year released by org release by individual released watchers unreleased watchers

2012 270 (27.61%) 933 (13.68%) 135.28 23.93
2013 353 (24.36%) 1385 (14.0%) 85.54 25.69
2014 525 (25.17%) 1694 (13.65%) 77.38 22.73
2015 680 (25.61%) 2160 (12.75%) 50.24 16.25
2016 622 (21.63%) 1885 (10.8%) 29.27 11.19
2017 485 (18.69%) 1775 (8.68%) 38.25 9.45

Note: The Python projects are selected from GitHub that are created between Jan 2012 and Dec 2017
(96601 projects in total), and whose project description contains “Python” and does not contain “tutorial”,
“learn”, “study”, “example”, “school”, “exercise”, “course”, “blog”, “template”.
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Table 12: Python Projects and Releases

year new projects org. owned releases avg release year released by org release by ind

1998 6 3 1 2007 0 (0%) 1 (33%)
1999 13 3 1 2013 1 (33.0%) 0 (0%)
2000 16 5 4 2011.25 2 (40%) 2 (18%)
2001 13 4 1 2015 1 (25%) 0 (0%)
2002 31 8 2 2010.5 1 (12%) 1 (4%)
2003 23 4 11 2012.55 3 (75%) 8 (42%)
2004 18 0 3 2010.67 0 3 (17%)
2005 50 16 11 2009 7 (44%) 4 (12%)
2006 88 32 13 2010.08 7 (22%) 6 (11%)
2007 186 67 26 2011.08 13 (19%) 13 (11%)
2008 353 88 66 2010.76 22 (25%) 44 (17%)
2009 931 134 161 2011.05 33 (25%) 128 (16%)
2010 1674 259 357 2011.14 65 (25%) 292 (21%)
2011 3530 635 678 2011.92 188 (30%) 490 (17%)
2012 9017 1055 1216 2012.69 261 (25%) 955 (12%)
2013 20652 1897 1949 2013.49 387 (20%) 1562 (8%)
2014 32542 3180 2588 2014.37 578 (18%) 2010 (7%)
2015 57182 4655 3605 2015.21 822 (18%) 2783 (5%)
2016 81677 5772 3462 2016.12 797 (14%) 2665 (4%)
2017 116272 6240 3502 2016.99 699 (11%) 2802 (3%)

Note: The Python projects are selected from GitHub that are created before 2018 (324274 projects in total), and
whose project description contains “Python” and does not contain “tutorial”, “learn”, “study”, “example”, “school”,
“exercise”, “course”, “blog”, “template”, “interview” and “practice”.
NOTE: some Python projects in the sample are not intended to be released as a Pypi-package, such as https:
//github.com/robbyrussell/oh-my-zsh and https://github.com/vinta/awesome-python.
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Table 13: Python Projects At Releases By Creation Cohort (2010-2017)

Commits Authors
year Age at Release (release) (unreleased) (release) (unreleased)

2010 405.59 89.38 88.13 9.74 3.44
2010 69 4 12 2 2
2011 328.1 115.57 87.84 14.46 2.91
2011 64 26 11 8 1
2012 244.74 172.75 46.61 21.54 2.15
2012 43 124 8 22 1
2013 176.91 260.23 39.23 24.83 1.85
2013 12 220 7 22 1
2014 137.67 355.18 30.54 28.89 1.6
2014 11 321 7 26 1
2015 79.76 471.7 23.11 37.8 1.44
2015 7 454 6 38 1
2016 48.5 597.0 15.88 47.38 1.3
2016 4 639 5 49 1
2017 11.44 676.83 13.07 55.52 1.23
2017 1 681 5 57 1

Note: Here “year” refers to the year of a project’s creation. The first row for a given year
shows the average of the value and the second row shows the median. “Release age” refers
to the average project’s age in days when it is first released. “Commits (release)” and
“authors (release)” refer to the average number of commits and number of authors at the
release time of a released project. “Commits (unreleased)” and “authors (unreleased)”
refer to the average number of commits and number of authors when an unreleased
project is 125 days old, which is the average release age for all released projects.
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Table 14: Python Projects At Releases By Creation Cohort (1998-2009)

Commits Authors
year Age at Release (release) (unreleased) (release) (unreleased)

1998 3270.0 0.0 15512.6 0.0 75.6
1998 3270 0 6719 0 65
1999 4926.0 218.0 746.5 22.0 8.0
1999 4926 218 120 22 4
2000 4201.0 158.5 2870.0 11.5 19.25
2000 4258 158 180 11 3
2001 5146.0 450.0 2589.92 37.0 64.08
2001 5146 450 114 37 4
2002 3129.0 242.5 365.83 21.0 7.93
2002 3129 242 105 21 4
2003 3514.55 290.27 230.83 23.64 8.92
2003 3934 317 151 23 4
2004 2538.67 107.0 308.6 8.67 5.53
2004 2063 0 51 0 2
2005 1456.0 34.64 563.85 4.18 7.54
2005 1585 0 92 0 3
2006 1485.46 131.31 411.11 13.0 11.24
2006 1007 0 51 0 3
2007 1508.77 180.5 255.16 16.15 7.09
2007 1917 123 33 21 3
2008 985.03 125.38 286.54 11.82 5.42
2008 645 0 29 0 2
2009 731.21 111.35 170.58 11.06 6.51
2009 429 3 18 1 2

Note: Here “year” refers to the year of a project’s creation. The first row for a given year
shows the average of the value and the second row shows the median. “Release age” refers
to the average project’s age in days when it is first released. “Commits (release)” and
“authors (release)” refer to the average number of commits and number of authors at the
release time of a released project. “Commits (unreleased)” and “authors (unreleased)”
refer to the average number of commits and number of authors when an unreleased
project is 125 days old, which is the average release age for all released projects.
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Table 15: Python Projects Release By Popularity

watcher count percentile age commits authors releases total

0% - 72% 846.48 12.1 1.25 0.02 227611
(0 - 1) 730.0 4.0 1.0

72% - 83% 1085.64 27.17 1.46 0.07 51547
(1 - 2) 985.0 9.0 1.0

83% - 90% 1198.53 41.47 1.63 0.13 26259
(2 - 4) 1096.0 13.0 1.0

90% - 97% 1352.25 71.88 2.17 0.22 24401
(4 - 25) 1263.0 20.0 1.0

97% - 99% 1554.38 160.52 3.79 0.36 6481
(25 - 110) 1496.0 47.0 2.0
99% - 100% 1696.59 568.83 14.41 0.45 3227
(110 - 70266) 1661.0 148.0 5.0

Note: Total number of watchers quantile: (72%, 1); (83%, 2); (90%, 4); (97%, 25); (99%,
110), (100%, 70266). First row is the mean, second row is median. Age unit is by day.

Table 16: Commits Before and After Topic Creation

authors per day after authors per day before diff
mean 0.0278 0.0137 0.0141
s.d. 0.0303 0.0171 0.0338

Note: GitHub introduced “project topics” feature on Jan 30, 2017. With
this feature, project owners can add topics like “machine-learning”, “python”
to their repository to facilitate repository searches. Also, GitHub pushes
“trending repositories” based on project topics each day. Samples are projects
that have topics, and project was created at least 30 days before introducing
topic, the last commit was made at least 30 days after introducing topic.
Sample size is 99 projects.
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Table 17: Normalized Utility Estimation

Dependent variable:

empirical utility

(1) (2) (3) (4)

choice1 5.517∗∗∗ 5.060∗∗∗ 5.046∗∗∗ 5.037∗∗∗

(0.056) (0.055) (0.055) (0.055)

choice2 6.026∗∗∗ 4.981∗∗∗ 4.961∗∗∗ 4.947∗∗∗

(0.063) (0.065) (0.065) (0.065)

choice3 5.223∗∗∗ 4.537∗∗∗ 4.555∗∗∗ 4.564∗∗∗

(0.075) (0.074) (0.074) (0.074)

author current commits −0.212∗∗∗ −0.137∗∗∗ −0.144∗∗∗ −0.137∗∗∗

(0.018) (0.018) (0.020) (0.024)

author current project past commits 0.022 −0.241∗∗∗ −0.486∗∗∗ −0.619∗∗∗

(0.020) (0.020) (0.030) (0.035)

project past commits 0.306∗∗∗ 0.248∗∗∗ 0.205∗∗∗ 0.547∗∗∗

(0.036) (0.036) (0.037) (0.084)

project past authors −0.209∗∗∗ −0.272∗∗∗ −0.231∗∗∗ −0.481∗∗∗

(0.044) (0.043) (0.044) (0.079)

project past watchers 0.059∗∗ 0.024 −0.037 −0.207∗∗∗

(0.027) (0.027) (0.028) (0.049)

avg project new commits −0.646∗∗∗ −2.724∗∗∗ −2.687∗∗∗ −2.691∗∗∗

(0.031) (0.044) (0.044) (0.044)

std project new commits 2.502∗∗∗ 2.534∗∗∗ 2.545∗∗∗

(0.044) (0.044) (0.044)

avg project new authors 0.431∗∗∗ 0.639∗∗∗ 0.578∗∗∗ 0.597∗∗∗

(0.037) (0.048) (0.049) (0.049)

std project new authors 0.344∗∗∗ 0.361∗∗∗ 0.373∗∗∗

(0.057) (0.057) (0.057)

avg project new watchers 0.164∗∗∗ 0.195∗∗∗ 0.212∗∗∗ 0.213∗∗∗
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(0.026) (0.038) (0.038) (0.038)

std project new watchers −0.460∗∗∗ −0.483∗∗∗ −0.487∗∗∗

(0.043) (0.043) (0.043)

author current commits× 0.028 0.045∗

project past commits (0.023) (0.025)

author current commits× 0.016 0.005

project past authors (0.038) (0.039)

author current commits× −0.124∗∗∗ −0.127∗∗∗

project past watchers (0.035) (0.036)

author current project past commits× 0.149∗∗∗ −0.036

project past commits (0.015) (0.028)

author current project past commits× −0.146∗∗∗ 0.082∗∗

project past authors (0.020) (0.035)

author current commits2 −0.001

(0.002)

author current project past commits2 0.037∗∗∗

(0.005)

project past commits2 −0.034∗∗∗

(0.008)

project past authors2 0.037∗∗∗

(0.009)

project past watchers2 0.015∗∗∗

(0.003)

Observations 182,625 182,625 182,625 182,625

R2 0.117 0.144 0.144 0.145

Adjusted R2 0.117 0.144 0.144 0.145
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Residual Std. Error 7.415 (df =

182614)

7.303 (df =

182611)

7.301 (df =

182606)

7.299 (df =

182601)

F Statistic 2,208.787∗∗∗

(df = 11;

182614)

2,189.546∗∗∗

(df = 14;

182611)

1,621.782∗∗∗

(df = 19;

182606)

1,288.580∗∗∗

(df = 24;

182601)

Note: Dummy for choice 4 causes ma-

trix singularity after normalization.

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: Choice-specific Utility Estimation

Dependent variable:

empirical utility

(1) (2) (3) (4)

Constant 1.776∗∗∗ 1.925∗∗∗ −1.162∗∗∗ −12.666∗∗∗

(0.448) (0.092) (0.035) (0.476)

author current commits 0.001 −0.011∗∗∗ −0.008∗∗∗ −0.105∗∗

(0.002) (0.003) (0.001) (0.041)

author current project past commits −0.002∗∗∗ 0.067∗∗∗

(0.0001) (0.022)

project past commits 0.0001∗∗ 0.0002∗∗∗ −0.003∗∗∗

(0.0001) (0.00004) (0.001)

project past authors −0.002∗∗∗ −0.002∗∗∗ 0.024∗∗∗

(0.001) (0.001) (0.009)

project past watchers 0.0001∗∗ −0.00001 −0.001∗

(0.00003) (0.00003) (0.001)

avg project new commits −0.247∗∗∗ −0.198∗∗∗ −0.114∗∗∗ −0.014

(0.008) (0.006) (0.002) (0.022)

std project new commits 0.164∗∗∗ 0.119∗∗∗ 0.065∗∗∗ 0.080

(0.008) (0.004) (0.002) (0.053)

avg project new authors −2.544∗∗∗ 0.547∗∗∗ −0.038∗∗ −0.078

(0.412) (0.033) (0.018) (0.141)

std project new authors 11.627∗∗∗ 0.081∗∗∗ 0.300∗∗∗ −0.462

(0.358) (0.024) (0.018) (0.284)

avg project new watchers −0.006 −0.002 −0.003∗∗ 0.029∗∗

(0.009) (0.002) (0.001) (0.013)

std project new watchers 0.069∗∗∗ −0.021∗∗∗ 0.003∗∗∗ 0.022

(0.003) (0.001) (0.001) (0.017)
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Observations 23,184 32,193 124,971 2,157

R2 0.171 0.068 0.037 0.024

Adjusted R2 0.171 0.068 0.037 0.019

Residual Std. Error 4.539 (df =

23176)

5.860 (df =

32182)

7.714 (df =

124959)

15.261 (df

= 2145)

F Statistic 684.475∗∗∗

(df = 7;

23176)

235.592∗∗∗

(df = 10;

32182)

438.577∗∗∗

(df = 11;

124959)

4.732∗∗∗

(df = 11;

2145)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 19: Cox Proportional Hazard Regression

Dependent variable:

project age

(1) (2) (3)

project current commits 0.011∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(0.001) (0.002) (0.002)

project current authors 0.985∗∗∗ 5.292∗∗∗ 5.373∗∗∗

(0.012) (0.085) (0.086)

project current watchers −0.0003 0.0004 0.0004

(0.0003) (0.001) (0.001)

project current commits2 −0.0002∗∗∗ −0.0002∗∗∗

(0.00002) (0.00002)

project current authors2 −1.349∗∗∗ −1.413∗∗∗

(0.033) (0.034)

project current watchers2 0.00000 0.00000

(0.00000) (0.00000)

project past commits 0.0004 −0.0004 0.0001

(0.001) (0.001) (0.001)

project past authors −0.115∗∗∗ −0.166∗∗∗ −0.261∗∗∗

(0.007) (0.010) (0.015)

project past watchers −0.006∗∗∗ 0.003∗∗∗ −0.002∗

(0.001) (0.001) (0.001)

project past commits2 0.00000∗∗∗ −0.00000∗∗∗

(0.00000) (0.00000)

project past authors2 0.0004∗∗∗ 0.0002∗∗∗

(0.00003) (0.0001)

project past watchers2 −0.00001∗∗∗ −0.00000

(0.00000) (0.00000)

project current commits× 0.0001
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project past authors (0.0003)

project current authors× 0.057∗∗∗

project past authors (0.005)

project current commits× −0.0001∗∗∗

project past watchers (0.00002)

project current authors× 0.003∗∗∗

project past watchers (0.001)

Observations 23,729 23,729 23,729

R2 0.195 0.385 0.388

Max. Possible R2 0.919 0.919 0.919

Log Likelihood −27,246.380 −24,044.210 −23,994.480

Wald Test 12,544.510∗∗∗

(df = 6)

8,883.050∗∗∗

(df = 12)

8,747.480∗∗∗

(df = 16)

LR Test 5,138.109∗∗∗

(df = 6)

11,542.440∗∗∗

(df = 12)

11,641.910∗∗∗

(df = 16)

Score (Logrank) Test 12,032.200∗∗∗

(df = 6)

19,902.110∗∗∗

(df = 12)

21,921.360∗∗∗

(df = 16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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