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Abstract∗

Optimization is a key analytical technique used for quantitative decision-making in real-world
problems. In practice, many situations call for decision-making in the face of incomplete knowledge
and/or dynamic environments. Making high-quality decisions in these settings requires optimiza-
tion techniques that are designed to account for uncertainty. Furthermore, as new technologies are
developed, more complex higher-dimensional optimization models become prevalent. This disser-
tation examines various models for optimization under uncertainty, as well as efficient algorithms
for solving such models that are scalable as the model size grows.

We study three models for optimization under uncertainty: robust optimization (RO), joint
estimation-optimization (JEO), and joint prediction-optimization (JPO). Robust optimization ac-
counts for inexact information by finding solutions, which remain feasible to all perturbations of
inputs within a given uncertainty set. Joint estimation-optimization considers a dynamic setting
where inputs are updated over time as new data is collected and converge to some ideal input that is
not revealed to the modeller. Joint prediction-optimization considers the use of a prediction model
to obtain optimization inputs from side information, an approach that is widely used amongst prac-
titioners. The dissertation considers theoretical properties and algorithmic performance guarantees
for these three models.

We first present a generic framework to derive primal-dual algorithms for both RO and JEO.
Previously, algorithms for such models were derived in an ad-hoc manner, and analyzed on a
case-by-case basis. Our framework considers both of these optimization under uncertainty models
through a common lens of saddle point problems. By analyzing these, we highlight three quantities
which directly bound the performance guarantees for our respective models, and show how regret
minimization techniques from online convex optimization can be used to control these three quanti-
ties. Thus, our framework allows us to transfer regret bounds for these quantities into performance
guarantees for the associated algorithms. Since regret minimization algorithms from online convex
optimization are key to our framework, we also examine these, and in particular derive improved
regret bounds for RO and JEO in the presence of favourable structure such as strong convexity
and smoothness.

We show that a number of previous algorithms for both robust optimization and joint estimation-
optimization can be derived from our unified framework. More importantly, our framework can
be used to derive more efficient algorithms for both models in a principled manner. For robust
optimization, our framework is used to derive algorithms that can drastically reduce the cost of it-
erative methods by replacing nominal oracles with cheaper first-order updates. For joint estimation-
optimization, we derive algorithms for the non-smooth strongly convex setting, which has not been
considered previously.

We demonstrate the use of our framework through two examples: robust quadratic program-
ming with ellipsoidal uncertainty sets, and dynamic non-parametric choice model estimation. For
robust quadratic programming, we analyze the trust-region subproblem (TRS). The TRS is the
well-studied problem of minimizing a non-convex quadratic function over the unit ball, and it
arises naturally in the context of robust quadratic constraints. We give a second-order cone based
convexification of TRS which, in contrast to previous work, is still in the space of original variables.
We then show how to apply this convexification to robust quadratic programming, and derive two
efficient algorithms for it using our framework. We carry out a numerical study on robust portfolio
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optimization problems, and the numerical results show improvement of our approach over previous
approaches in the high-dimensional regime. We frame dynamic non-parametric choice model esti-
mation as an instance of JEO. A particular challenge in this setting is the high-dimensionality of
the resulting primal problem. Nevertheless, our generic primal-dual framework encompassing JEO
applications is quite flexible and allows us to derive algorithms that can bypass this high dimen-
sionality challenge. We test our approach for non-parametric choice estimation computationally,
and highlight interesting trade-offs between data updating and convergence rates.

Finally, we give a joint analysis of prediction and optimization. A natural performance measure
in this setting is the optimality gap. Unfortunately, it is difficult to directly tune prediction models
using this performance measure due to its non-convexity. We thus characterize sufficient condi-
tions under which the more common prediction performance measures arising in statistics/machine
learning, such as squared error, can be related to the true optimality gap performance measure. We
derive conditions on a performance measure that guarantee that the optimality gap will be mini-
mized, and give an explicit relationship between the squared error and the optimality gap. Such
conditions allow practitioners to choose prediction methods for obtaining optimization parameters
in a more judicious manner.
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how valuable her guidance, patience and support has been throughout my PhD journey. I am very
lucky to be advised by her, and I am truly grateful. I know that her advice and wisdom will stay
with me throughout my career.

I thank the other members of my dissertation committee, Daniel Kuhn, Andrew Li, Javier Peña,
and Stephen Wright, for their time and effort in reading my dissertation and providing valuable
feedback on my work.

I thank all of the professors at Carnegie Mellon who I have had the privilege to learn from,
and in particular the faculty within the Operations Research department at the Tepper School of
Business. Before arriving in Pittsburgh, I knew next to nothing about operations research, and I
have thoroughly enjoyed learning about OR under their guidance.

I thank Lawrence Rapp and Laila Lee for taking care of all the administrative needs of the PhD
program at Tepper. Life would be a lot harder if it was not for their professionalism and generosity.

I thank the friends I’ve made throughout my time at CMU: Alex Kazachkov, Yang Jiao, Thi-
ago Serra, Siddharth Singh, Anirudh Subramanyam, David Huck Gutman, Rijnard van Tonder,
Amin Hosseininasab, Arash Haddadan, Franco Berbeglia, Neda Mirzaeian and Thomas Lavastida.
Whether discussing research or just hanging out, it has always been a pleasure. Special thanks
to my classmates and close friends Michael Anastos, Gerdus Benade, Ryo Kimura, Dabeen Lee,
Stelios Despotakis and Christian Tjandraatmadja. I would not have been able to complete this
PhD without their friendship.

I thank my family in Australia: my parents Luan Ho-Trieu and Dao Nguyen, my brother Khai
The Ngo, and my sister-in-law Sarah Blackman. Their love and support throughout my journey
has been a great source of comfort and inspiration. I would not be here without them. (Also,
shout-out to my nephew Oscar Ngo, and my future niece/nephew! If you ever decide to do a PhD,
I’ll support you.)

Finally, I thank God, for all of the above.

4



Contents

1 Introduction 9

1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Joint Estimation-Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Joint Prediction and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Primal-Dual Framework for Convex Optimization under Uncertainty 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Overview of Saddle Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Primal-Dual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Application to Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Customizations of the Robust Feasibility Framework . . . . . . . . . . . . . . 29

2.4.2 Connections with Existing First-order Methods . . . . . . . . . . . . . . . . . 35

2.5 Application to Joint Estimation-Optimization . . . . . . . . . . . . . . . . . . . . . . 37

3 Online Convex Optimization Algorithms 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Weighted Regret and Online Saddle Point Problems . . . . . . . . . . . . . . . . . . 44

3.3 Algorithmic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Regret Minimization under Minimal Assumptions . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Weighted Regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Weighted Online SP Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Exploiting Strong Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Exploiting Smoothness via Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Application to the Primal-Dual Framework of Chapter 2 . . . . . . . . . . . . . . . . 59

4 Second-Order Cone Reformulation for the Trust Region Subproblem with Ap-
plications to Robust Quadratic Programming 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5



4.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Tight Low-Complexity Convex Reformulation of the TRS . . . . . . . . . . . . . . . 67

4.2.1 Convex Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Discussion of Condition 4.4 and Related Conditions from the Literature . . . 69

4.2.3 Complexity of Solving Our Convex Reformulations . . . . . . . . . . . . . . . 72

4.3 Convexification of the Epigraph of TRS . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Summary and Discussion of Results from Burer and Kılınç-Karzan [44] . . . 75
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Chapter 1

Introduction

Optimization is a key tool used for quantitative decision-making in real-world problems. The
generic form of an optimization model is the following:

min
x

{
f(x, u0) : f i(x, ui) ≤ 0, ∀i = 1, . . . ,m, x ∈ X

}
. (1.1)

Here, x are decision variables, and is required to belong to the domainX. The function f(·, u0) is the
objective, which quantitatively distinguishes between good and bad decisions. The functions f(·, ui)
are constraint functions which represent requirements on the decisions; in (1.1), the decisions are
required to satisfy f i(x, ui) ≤ 0. The u0, u1, . . . , um are parameters, which capture problem-specific
information.

As an example, in portfolio optimization, where the goal is to invest an amount of wealth in
certain assets to maximize return, a decision variable x denotes how much wealth to allocate each
asset, the domain X consists of all allocations which fully invests the wealth, the objective is the
return of the chosen portfolio x, and constraints may capture risk tolerances on the portfolios. In
practice, however, computing the return and risk of a portfolio x requires knowing the parameters
of the return distribution for the assets, but since we do not know the distribution exactly, the
parameters are estimated from data.

The ever-increasing availability of data has introduced many opportunities to make better de-
cisions using a ‘data-driven’ approach. At the same time, data remains inherently noisy, and this
translates to noise on parameter estimates. Thus, optimization models which can incorporate pa-
rameter uncertainty are key analytical tools to effectively utilize data in decision-making processes.
Furthermore, as new technologies are developed, more complex optimization models become preva-
lent. These two observations highlight the need for a better understanding of the challenges and
capabilities of optimization under uncertainty, then leveraging this understanding to improve upon
the state-of-the-art models and algorithms. This dissertation aims to address this need via two
directions.

� The first direction is to develop scalable algorithms for optimization under uncertainty. Re-
cently, first-order iterative algorithms have seen a resurgence due to the attractive property
that they scale linearly with the number of decision variables. However, it is not clear how
these can be applied to optimization problems which model parameter uncertainty, as these
are usually much more complicated than deterministic problems. In this dissertation, we
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develop a framework to solve optimization problems with uncertainty using first-order tech-
niques. The result of this is a new class of algorithms that come with rigorous performance
guarantees and scale well with the dimension of the problem.

� The second direction is to develop and analyse models that can mitigate parameter uncer-
tainty as more data becomes available, thereby leading to improved decision-making. There
are two main challenges here. First, how can decision-making frameworks capture dynamic
information gathering? Specifically, can existing algorithms be applied to such problems with
rigorous performance guarantees? (This is also related to the first direction.) Second, how
can decision-making frameworks capture side information? Specifically, how can parameter
prediction models from the statistics/machine learning literature be incorporated into opti-
mization models, and what kind of guarantees do they admit?

1.1 State of the Art

There are several modelling techniques that have been developed to capture parameter uncertainty
in optimization models. We give a brief summary of these.

Robust optimization (RO). This is one of the leading modeling paradigms for optimization
problems under uncertainty. RO seeks a solution that is immunized against all possible realizations
of uncertain model parameters from a given uncertainty set. Thus, to capture uncertainty in
objective parameters, RO looks to optimize for the worst-case parameter ui from a given uncertainty
set U i, i.e., we replace the constraint

f(x, ui) ≤ 0→ max
ui∈U i

f(x, ui) ≤ 0.

Choosing an x which satisfies the new robust constraint ensures that the constraint will be satisfied
for all possible ui ∈ U i, thus guarding against any potential deviations. A similar principle can be
applied to the objective function.

RO is widely adopted in practice mainly because of its computational tractability. Since the
literature is too vast to comprehensively cover, we refer the reader to the seminal paper by Ben-
Tal and Nemirovski [16], the book by Ben-Tal et al. [23] and surveys Ben-Tal and Nemirovski
[18, 19], Bertsimas et al. [29], Caramanis et al. [47] for a detailed account of RO theory and
numerous applications. The primary method for handling a robust constraint is to reformulate it
via duality theory into an equivalent without the maximum, called the robust counterpart. Under
mild assumptions, this yields a convex and tractable robust counterpart problem which can then
be solved using existing convex optimization software and tools. This has seen much success in
decision-making applications, nevertheless it has a major drawback that the reformulated robust
counterpart is often not as scalable as the deterministic nominal program. In particular, the
robust counterpart can easily belong to a different class of optimization problems as opposed to
the underlying original deterministic problem. For example, a linear program (LP) with ellipsoidal
uncertainty is equivalent to a convex quadratic program (QP), and similarly, a conic-quadratic
program with ellipsoidal uncertainty is equivalent to a semidefinite program (SDP). This then
presents a critical challenge in applying RO methodology in high-dimensional applications. To
address this drawback, iterative schemes have been developed by Mutapcic and Boyd [107], Ben-
Tal et al. [25] that alternate between the generation/update of candidate decisions x and parameter
realizations ui by solving instances of an optimization model with constraint structures similar to
(or the same as) the nominal model.
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Joint estimation-optimization (JEO). This is a relatively newer paradigm introduced by
Jiang and Shanbhag [91, 92] and Ahmadi and Shanbhag [5] under the name misspecified optimiza-
tion, which we call JEO. This considers the setting where the parameters u are unknown, but are
approximated through a converging sequence of parameters ut → u. In many practical situations,
JEO is solved by choosing a sufficiently close ut then solving the optimization problem with the
chosen parameters ut. With such a strategy, under mild continuity assumptions, the gap between
the ‘true’ optimal solution (with true parameters u) and the one obtained via ut will be proportional
to the distance between ut and u. Nevertheless, this creates the following ‘inconsistency’ problem:
even optimizing to full accuracy on parameters ut does not solve the true problem with parameters
u. A näıve scheme to achieve consistency is to simply re-optimize our decision for each ut. This
näıve scheme comes with two disadvantages: each step t involves solving a complete minimization
problem up to some accuracy, and furthermore the accuracy must improve at each new step. The
main problem is that at each step t, the information from the previous steps cannot be utilized,
hence they are essentially wasted. To address this, Jiang and Shanbhag [91, 92] and Ahmadi and
Shanbhag [5] propose some algorithms to efficiently generate a sequence of points xt which converge
to the true optimum of the problem. In particular, their scheme can exploit previous information
in a principled manner by ensuring that the effort in each step consists only of first-order updates.

Joint prediction and optimization (JPO). This is a line of research that, as the name sug-
gests, looks at techniques and/or analyses that combine the steps of prediction and optimization.
Specifically, the prediction step aims to incorporate side information in order to more accurately
estimate model parameters via training a prediction model. The process of training a prediction
model from data, and deriving performance guarantees, is well-studied in statistics and machine
learning domains. Optimization and statistics/machine learning have long had close relationships.
However, most research has focused on optimization techniques for statistics/machine learning prob-
lems. In contrast, JPO aims to explore how statistics/machine learning affects the decision-making
process through the optimization models.

To our knowledge, the earliest known work to jointly consider a prediction problem and an
optimization problem in a systematic way is Kao et al. [96], where the use of least squares regression
in parameter prediction for quadratic programming is analysed. Hannah et al. [72], Hanasusanto
and Kuhn [71], Bertsimas and Kallus [26], Ban and Rudin [9], Bertsimas and Van Parys [28], Ho
and Hanasusanto [79] all analysed the use of density estimation techniques to incorporate side
information into the optimization problem. In contrast, Donti et al. [55], Elmachtoub and Grigas
[58] explore training a prediction model using loss functions defined to better capture the subsequent
optimization performance. This is most closely related to the work presented in this dissertation.
We also mention that Bertsimas and Kallus [26], Ban and Rudin [9] also explored predicting the
decision directly from the side information, rather than the parameters, and give some convergence
guarantees for this scheme.

Stochastic programming [33, 136]. While stochastic programming is a fascinating technique
with many successful applications, our dissertation does not focus on it. However, since it is
the most widely-used method to capture parameter uncertainty, we mention it briefly. Stochastic
programming models the parameters as random variables, and hence the objective and constraints
in (1.1) are replaced by expectations:

f(x, u0)→ Eu0∼P0 [f(x, u0)], f i(x, ui)→ Eui∼Pi [f i(x, ui)].
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The the goal of stochastic programming is to optimize the decisions x given distributional knowledge
P0,P1, . . . ,Pm, or more commonly, given only access to samples from these distributions. Of course,
instead of expectation, we may instead utilize other risk measures [129] (such as conditional value-
at-risk) which capture risk aversion attitudes of decision-makers. When only samples are available
instead of full distributional knowledge, these samples are used to approximate the true distribution.
However, a common downside is that the empirical approximation can often be poor, in particular in
the low sample regime. A technique to mitigate against this is distributionally robust optimization
[149], where objective and/or constraint functions are replaced in the following manner:

f(x, u)→ max
P∈P(P̂)

Eu∼P[f(x, u)].

Here, P̂ is the empirical distribution of the samples, and P(P̂) is an ambiguity set of distributions
containing P̂. In other words, the function is the worst-case expected value amongst all possible
distributions which are reasonably close to the empirical distributions. Distributionally robust
optimization is similar in spirit to RO described above, with the key difference being that the
‘parameters’ are now distributions, not vectors. However, the methodology is very similar to RO
in the use of duality theory, with appropriate accommodations for the infinite-dimensional nature.

1.2 Notation

We denote the real numbers as R, the non-negative reals as R+, and the positive integers as N.

Given n ∈ N, we denote [n] := {1, . . . , n}, and ∆n :=
{
x ∈ Rn : x ≥ 0,

∑
i∈[n] xi = 1

}
to be the

(n − 1)-dimensional simplex. We denote by 1n ∈ Rn to be the vector of all ones, and ei ∈ Rn as
the ith standard basis vector, for i ∈ [n]. Given a set Z in a real vector space, we denote its convex
hull by Conv(Z).

Given a function f : Rn → R and a domain X ⊂ Rn, we denote the set of minimizers as
arg minx∈X f(x) = {x ∈ X : f(x) = infx′∈X f(x′)}. Given a convex function f : X → R, we denote
by ∂f(x) to be the set of subgradients of f at the point x ∈ X. We abuse notation slightly by
denoting∇f(x) to be a selection of one such subgradient from ∂f(x). Note that if f is differentiable,
this selection is unique.

1.3 Robust Optimization

Consider the deterministic optimization problem (1.1), where X ⊂ Rn is closed and convex, the
functions f0(x) and f i(x, ui) for i ∈ [m] are convex functions of x, and u = (u1, . . . , um) is a fixed
parameter vector. Without loss of generality we assume the objective function f0(x) does not have
uncertainty. This is a convex optimization problem, for which there are many known methods to
solve. When parameter uncertainty is present, we can formulate the robust convex optimization
problem associated with (1.1):

Opt := min
x

{
f0(x) : x ∈ X, max

ui∈U i
f i(x, ui) ≤ 0, ∀i ∈ [m]

}
, (1.2)

where U1, . . . , Um are the uncertainty sets given for the parameter ui of constraint i ∈ [m]. Because
we assume formulation (1.1) is convex, the overall optimization problem in (1.2) is also convex.
Without loss of generality, we assume that the uncertainty set has a Cartesian product form U1 ×
. . . × Um (see e.g., [18]; we let U = U1 × . . . × Um and write u = (u1, . . . , um) ∈ U . We do not
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further assume that the sets U i are convex. However, for some algorithms we consider, convexity
of U i for i ∈ [m] will be required.

A convex optimization problem can be solved by solving a polynomial number of associated
feasibility problems in a standard way, via a binary search over its optimal value. In particular,
let [υ0, υ0] be an initial interval containing the optimal value of (1.2). At each iteration k of the
binary search, we update the domain Xk := X ∩{x : f0(x) ≤ υk} for some υk ∈ [υk, υk] and arrive
at the following robust feasibility problem:

find x ∈ Xk s.t. max
ui∈U i

f i(x, ui) ≤ 0 ∀i ∈ [m]. (1.3)

Then based on the feasibility/infeasibility status of (1.3), we update our range [υk+1, υk+1] and go
to iteration k + 1. In this scheme, we are guaranteed to find a solution x∗ ∈ X whose objective

value is within δ > 0 of the optimum value of (1.2) in at most
⌊
log2

(
υ0−υ0
δ

)⌋
iterations. Therefore,

one can equivalently study the complexity of solving robust feasibility problem (1.3) as opposed to
(1.2). From now on, we focus on solving robust feasibility problem and assume that the constraint
on the objective function f0(x) is already included in the domain X for simplicity in our notation.

Given functional constraints f i(x) ≤ 0, i ∈ [m], most convex optimization methods will declare
infeasibility or return an approximate solution x ∈ X such that f i(x) ≤ ε for i ∈ [m] for some
tolerance level ε > 0. Therefore, we consider the following robust approximate feasibility problem:{

Either : find x ∈ X s.t. maxui∈U i f
i(x, ui) ≤ ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. maxui∈U i f
i(x, ui) > 0.

(1.4)

We refer to any feasible solution x to (1.4), i.e., x ∈ X such that supui∈U i f
i(x, ui) ≤ ε holds for

all i ∈ [m] as a robust ε-feasibility certificate. Similarly, any realization of the uncertain parameters
ū ∈ U such that there exists no x ∈ X satisfying f i(x, ūi) ≤ 0 for all i ∈ [m] is referred to as a
robust infeasibility certificate.

1.4 Joint Estimation-Optimization

Joint estimation-optimization (JEO) considers the setting where we have data u in the objective
f(x, u), and that the ‘correct’ data value u is unknown to us, but that we have access to improving
estimates ut → u. More precisely, JEO aims to solve

min
x
{f(x, u) : x ∈ X} (1.5)

given only {ut}t≥1, where ut → u. (1.6)

This means that we wish to generate a sequence {xt}t≥1 ⊂ X such that each xt depends only on
{xs, us : s ∈ [t− 1]} and

f(xt, u)→ min
x∈X

f(x, u).

In many practical situations, JEO is solved via a sequential one-step method: first estimate ut ≈ u,
then solve (1.5) with ut in place of u. With such a strategy, under mild continuity assumptions,
the accuracy of (1.5) is controlled by the norm of ‖ut− u‖. Nevertheless, this creates the following
‘inconsistency’ problem: when minimizing f(x, ut), we create a sequence of points xt ∈ X, t ≥
1, which converge to the minimum of f(x, ut); however, the sequence will not converge to the
desired minimum (1.5), and in fact (under mild continuity conditions) will only be within O(‖ut −
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u∗‖) accuracy. That is, a sequential one-step approach cannot guarantee asymptotically accurate
solutions xt.

It is possible to achieve consistency if we obtain xt by minimizing f(x, ut) up to accuracy
O(‖ut − u∗‖), which will guarantee that limt→∞ f(xt, ut) converges to the optimum value of (1.5).
This näıve scheme comes with two disadvantages: each step t involves solving a whole minimization
problem up to some accuracy, and furthermore the accuracy must improve at each new step. The
main problem is that at each step t, the information from the previous steps cannot be utilized,
hence they are essentially wasted. In JEO, we are interested in methods that update xt in an
efficient manner, e.g., through only gradient updates.

1.5 Joint Prediction and Optimization

We consider the convex program

min
x

{
f(x) + c>x : x ∈ X

}
(1.7)

where X ⊂ Rm is a convex and compact domain, and the vector c is not known exactly, but instead
is governed via covariates w. More precisely, suppose the covariates w belong to a set W , and the
cost vectors belong to a set C ⊆ Rm, both of which live in Euclidean spaces. In this setting, we have
access to the observations {(wi, ci) : i ∈ [n]} where [n] := {1, . . . , n}, and we need to solve (1.7) for
cn+1 yet we are only given information of wn+1. We assume that the (wi, ci) are realizations of i.i.d.
random variables according to some distribution P on W × C. Furthermore, we also assume that
the covariate w and a corresponding ‘true’ cost vector c is drawn according to P. In this setting,
first based on the observations {(wi, ci) : i ∈ [n]}, a prediction model resulting in the estimation of
a function g : W → C is built to capture the dependency of c on w and then when given a covariate
w, the problem (1.7) is solved with c being replaced with the prediction g(w).

To assess the quality of using g(w) in place of c in (1.7), we define the loss as the optimality
gap of the solution obtained with g(w) on the true objective vector c. More precisely, the quality
of the prediction d = g(w) with respect to (1.7) is given by the true loss function

L(d, c) := f(x∗(d)) + c>x∗(d)−min
x∈X

{
f(x) + c>x

}
. (1.8)

Note that given any c, L(d, c) ≥ 0 for all d and L(c, c) = 0. Since (w, c) is randomly drawn from P,
we assess the performance of a function g : W → C in terms of the expected true loss, i.e., the risk

R(g,P) := E[L(g(w), c)]. (1.9)

The best possible risk we can achieve is

R(P) := inf
g
{R(g,P) : g measurable} . (1.10)

In this setting, we wish to study various ways to construct prediction functions ĝn : W → C
from n data points to ensure that R(ĝn,P)→ infg R(g,P) as n→∞. The challenge here is that L
is non-convex in g(w), hence traditional learning techniques based on empirical risk minimization
becomes difficult. For joint prediction and optimization (JPO), we investigate constructing the ĝn
using traditional techniques from machine learning and/or statistical inference, which only focus
on predicting c as accurately as possible from w, and not necessarily taking into account the
optimization problem (1.7). However, it is not clear that focusing solely on prediction will give the
desired property of R(ĝn,P)→ infg R(g,P), thus we are interested in understanding which of these
traditional prediction techniques are able to admit such guarantees.
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1.6 Outline and Contributions

In Sections 1.3, 1.4 and 1.5, we described RO, JEO and JPO in a precise manner. In this disserta-
tion, we make contributions to these three paradigms along the two directions of analysing models
and developing algorithms described above. These contributions can be summarized as follows.

� Chapter 2 presents a primal-dual framework for deriving algorithms, together with perfor-
mance guarantees, for RO and JEO. The key step is to analyse a unified saddle point rep-
resentation of the RO and JEO models. The idea of analysing RO from a min-max saddle
point view was first published in our paper [82]. In Chapter 2.4, we present a slightly different
analysis of RO in our more general framework, but this does not fundamentally change our
complexity results from [82], which we also present. In Chapter 2.5, we present the applica-
tion of our framework for JEO. In JEO, the quality of our decision depends on the closeness
of the parameter estimates ut to the true parameter u. We show that as long as ut → u, then
convergence holds, and present convergence rates under various structural assumptions. The
material presented here is an amalgamation of ideas from the papers [80, 83]. The results
and implications are unchanged from these papers, but the derivation is presented under the
unified primal-dual framework.

� Chapter 3 presents results on online convex optimization (OCO), which is a key tool for
deriving algorithms in our primal-dual framework from Chapter 2. OCO is used in many other
contexts in machine learning, and is often studied under certain restrictions. When used in our
primal-dual framework, some of these restructions can be relaxed (namely, using non-uniform
weights and 1-lookahead). We derive new algorithms for OCO under the relaxed settings,
and show how they lead to accelerated regret bounds under certain structural assumptions
such as strong convexity and smoothness. The results presented here are from our papers
[80, 84].

� Chapter 4 analyses the trust region subproblem (TRS), the problem of minimizing a non-
convex quadratic over a unit ball domain, and its applications to robust quadratic program-
ming. The main body of results on the TRS in Chapter 4 is from our paper [81]. We study
the geometry of the TRS with additional conic constraints, and identify that the key fac-
tor to understand this is to study how the conic constraints interact with the non-convex
quadratic term. We use this to present convexification results for the TRS under certain
conditions on the conic constraints and the minimum eigenvalue of the quadratic. We also
present explicit descriptions for the convex hull of the epigraph under slightly stronger con-
ditions. Our convexification results generalize previous ones from the literature, and using
them we are able to provide the best-known complexity guarantees for solving the TRS. We
apply our convexification results to robust quadratic programming, done in the paper [82],
and derive efficient algorithms for this via the primal-dual framework of Chapter 2 and the
OCO algorithms of Chapter 3. We conduct a numerical study, comparing with previous RO
methods, and demonstrate the superior scalability of our framework. This is in line with the
complexity analysis for RO from Chapter 2.4.

� Chapter 5 presents our work from [83] on non-parametric choice model estimation, which is
the problem of inferring a choice model from observational choice data which can explain past
and predict future choice behaviour. Existing work on this has resulted in heuristic algorithms
without rigorous performance guarantees. Furthermore, none of the existing work takes into
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account the very natural dynamic data setting where parameters are updated as more data
(in this case, choice observations) is collected. This problem admits, in a natural way, a JEO
representation, thus our primal-dual framework from Chapter 2 can readily be applied to
derive algorithms to solve it. However, due to the nature of the problem, the primal domain in
general has exponentially many decision variables, thus some care must be taken in the design
of algorithms for this problem. We discuss such considerations, derive appropriate algorithms,
and give rigorous performance guarantees. Our computational study compares and contrasts
different algorithms derived from our framework, and highlight tradeoffs between convergence
rate, data updating rate, and estimated model sparsity.

� Finally, Chapter 6 presents new developments on establishing relationships between the per-
formance of prediction models used to obtain parameters, and the subsequent optimization
performance resulting from using these models. Considering convex optimization problems
over bounded domains, we first establish conditions on the prediction error function which
guarantee that solving the prediction problem will also result in minimizing the optimality gap
of the subsequent optimization problem. Unfortunately, the exact relationship depends on the
data distribution, which is not available for most learning problems. Thus, this first result does
not provide insight into rates of convergence between these quantities, and should be thought
of as an asymptotic guarantee. Therefore, we also establish stronger distribution-independent
conditions which allow us to give explicit non-asymptotic guarantees on the prediction perfor-
mance and the optimality gap. However, for most prediction error functions, computing this
explicit relationship is difficult, so we focus on a specific prediction error function where this
is possible, namely the squared error function. We give a distribution-independent guarantee
on the relationship between prediction error obtained using the squared error function and
the optimality gap.
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Chapter 2

Primal-Dual Framework for Convex
Optimization under Uncertainty

2.1 Introduction

In this chapter, we present a general primal-dual algorithmic framework for optimization under
uncertainty, with particular focus on robust optimization (RO) and joint estimation-optimization
(JEO). The algorithmic framework can be used to derive first-order algorithms under a variety of
structural assumptions.

At the heart of our analysis is the saddle point (SP) problem:

SV(u) := min
x∈X

max
y∈Y

Ψ(x, y;u). (2.1)

Any convex optimization problem has an equivalent representation as a SP problem. Here, x is
typically referred to as the primal variables, and y as the dual variables. Importantly, u here is
input data for our convex optimization problem. We give examples of two such problems, which
we will revisit in the context of RO and JEO later.

Example 2.1. Consider the convex feasibility problem:{
Either : find x ∈ X s.t. f i(x, ui) ≤ ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. f i(x, ui) > 0.
(2.2)

Here, f i(x, ui) are constraint functions which are convex in x, and ui, i ∈ [m] are problem data.
Defining

u := (u1, . . . , um), Ψ(x, y;u) :=
∑
i∈[m]

yif i(x, ui), Y := ∆m,

(2.2) is equivalent to

min
x∈X

max
y∈Y

Ψ(x, y;u) ≤ ε or min
x∈X

max
y∈Y

Ψ(x, y;u) > 0.

In other words, we can evaluate the saddle point to solve (2.2).

17



Example 2.2. Consider a convex optimization problem with only objective function parameters:

min
x∈X

f(x, u). (2.3)

A saddle point representation always exists through convex conjugacy. More precisely, assuming
that f(·, u) is a closed convex function for each u, then

f∗(y, u) := max
x
{〈y, x〉 − f(x, u)} , hence f(x, u) = max

y∈Y
{〈x, y〉 − f∗(y, u)} (2.4)

f(x, u) = max
y∈Y

Ψ(x, y;u), Ψ(x, y;u) = 〈x, y〉 − f∗(y, u), (2.5)

Y = {y : ‖y‖ ≤ G}, where G satisfies ‖∇xf(x, u)‖ ≤ G ∀x, u. (2.6)

Note that G is finite if, for example, f is uniformly Lipschitz continuous in x for all possible u.
Then (2.3) is equivalent to the saddle point:

min
x∈X

f(x, u) = min
x∈X

max
y∈Y

Ψ(x, y;u).

In deterministic optimization, we are given u, and solve (2.1) using appropriate deterministic
methods. In optimization under uncertainty, it is less straightforward what we mean by ‘solving
(2.1)’. In some situations, there may be a ‘true’ set of parameters u which we only have approximate
knowledge of. As we will see in Section 2.5, this is relevant for JEO. In other situations, there may
be no ‘true’ u, but instead we wish to say something about a given collection of parameters U ,
which in turn give rise to one such instance (2.1) for each u ∈ U . This is relevant for RO, as we
will see in Section 2.4. In Section 2.3, however, we will consider the setting with some true u, and
solving (2.1) for this u. While this is not accurate for our discussion on RO in Section 2.4, the
machinery that we build in Section 2.3 will transfer to the setting of Section 2.4 easily.

2.1.1 Related Literature

Saddle point problems of the form (2.1) are well-studied in the literature; see [97] for a comprehen-
sive account. However, we wish to highlight three particular references. Arrow et al. [8] introduced
the well-known Arrow-Hurwicz-Uzawa subgradient method to solve saddle point problems, which
has been extensively studied in the optimization and control literature. The method is a primal-dual
method, which simultaneously updates primal varianbes x and dual variables y using subgradient
descent/ascent. Nedić and Özdaǧlar [110] apply this idea to Lagrangian relaxations of convex
programs, and derive constraint violation and suboptimality bounds for the subgradient method.
Yu and Neely [154] examine the same Lagrangian relaxation under smoothness assumptions, and
suggest a similar primal-dual algorithm with improved error bounds. Our paper [84] unifies these
different algorithms by presenting a generic framework to derive primal-dual algorithms through
bounding certain regret quantities. On a related note, Abernethy and Wang [3], Wang and Aber-
nethy [148], Abernethy et al. [2] look at the saddle point problem formed via the Fenchel conjugate
(similar to Example 2.2) and show that several known algorithms such as Frank-Wolfe and accel-
erated gradient descent can be recovered by bounding certain regret quantities associated with the
saddle point gap.

Our framework in this chapter has applications to robust optimization (RO) and joint estimation-
optimization (JEO), defined in Chapters 1.3 and 1.4 respectively, providing techniques to build al-
gorithms that solve these. The primary method for solving a (convex) RO problem is to transform
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it into an equivalent deterministic problem via duality theory, which was introduced in the seminal
paper by Ben-Tal and Nemirovski [16]. Under mild assumptions, this yields a convex and tractable
robust counterpart problem [23, 29, 24] which can then be solved using existing convex optimization
software and tools. This traditional approach has seen much success in decision making domain,
nevertheless it has a major drawback that the reformulated robust counterpart is often not as scal-
able as the deterministic nominal program. In particular, the robust counterpart can easily belong
to a different class of optimization problems as opposed to the underlying original deterministic
problem. For example, a linear program (LP) with ellipsoidal uncertainty is equivalent to a convex
quadratic program (QP), and similarly, a conic-quadratic program with ellipsoidal uncertainty is
equivalent to a semidefinite program (SDP) (see e.g., [23, 29]).

The iterative schemes that alternate between the generation/update of candidate solutions
and the realizations of noises offer a convenient remedy to the scalability issues associated with
the robust counterpart approach. Thus far, such approaches of Mutapcic and Boyd [107], Ben-
Tal et al. [25] have relied on two oracles: (i) solution oracles to solve instances of extended (or
nominal) problems with constraint structures similar to (or the same as) the deterministic problem,
and (ii) noise oracles to generate/update particular realizations of the uncertain parameters. At
each iteration of these schemes, both solution and noise oracles are called, and their outputs are
used to update the inputs of each other oracle in the next iteration. Because solution oracles rely on
a solver of the same class capable of solving the deterministic problem, these iterative approaches
circumvent the issue of the robust counterpart approach potentially relying on a different solver.
Nevertheless, these iterative approaches still suffer from a serious drawback: the solution oracles in
Mutapcic and Boyd [107], Ben-Tal et al. [25] themselves can be expensive as they require solving
extended or nominal optimization problems completely. While solving the nominal problem is not
as computationally demanding as solving the robust counterpart, the overall procedure depending
on repeated calls to such oracles can be prohibitive. In fact, each such call to a solution oracle
may endure a significant computational cost, which is at least as much as the computational cost
of solving an instance of the deterministic nominal problem.

Jiang and Shanbhag [91, 92] introduced and studied the JEO problem in a stochastic setting,
and Ahmadi and Shanbhag [5] examined the deterministic case. We consider the deterministic
JEO problem, for which Ahmadi and Shanbhag [5] provided some remarkable convergence results.
Specifically, in the setting when f is strongly convex and smooth, [5, Proposition 3] states that a
gradient descent-type algorithm is given with error bound of O(βT ) after T iterations, for some
0 < β < 1. In [5, Proposition 4] it is shown that, when f is only convex, the same algorithm (with
different tuning parameters) achieves an error bound of O(1/T ). Furthermore, when f does not
enjoy strong convexity or smoothness, [5, Proposition 6] provides an error bound of O(1/

√
T ).

2.1.2 Contributions

While primal-dual algorithms for convex optimization have been studied extensively, in contrast to
Nedić and Özdaǧlar [110], Yu and Neely [154], Ho-Nguyen and Kılınç-Karzan [84] the novelty of
this chapter is to provide a principled framework for deriving such algorithms which also takes into
account uncertainty in parameters u. More specifically, instead of u, we will consider an evolving
sequence {ut}t≥1, which is generated or given to us in some fashion that is determined by the sense
of the uncertainty in the problem. We also iteratively generate corresponding sequences {xt, yt}t≥1

of primal-dual variables based on the sequence {ut}t≥1. These sequences will then be related to
the SP problem at hand. We make this more precise in the coming sections.

As mentioned above, this framework can be used to derive algorithms for RO and JEO, which
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also has a number of implications for these problems specifically. For RO, these are as follows.

� We obtain a general and flexible framework for iteratively solving robust feasibility problems,
and demonstrate its flexibility by describing it as a meta-template. By customizing our
framework appropriately, we modify the pessimization oracle-based approach of Mutapcic
and Boyd [107] by replacing the extended nominal solver called at each iteration with more
efficient subgradient-based. We demonstrate that this has both a much better bound on the
number of oracle calls, and in Chapter 4.4.1 that it has superior numerical performance. We
also provide a new interpretation of the nominal feasibility oracle-based approach of Ben-Tal
et al. [25] as a special case within our framework, and extend the analysis of the approach of
Ben-Tal et al. [25] under the same assumptions, e.g., access to a nominal optimization oracle,
and show that it can solve the robust optimization problem directly without relying on a
binary search.

� In contrast to the approaches of Mutapcic and Boyd [107] and Ben-Tal et al. [25], which rely
on full nominal oracles to generate points, we can use our framework to derive algorithms
which only rely on simple update rules in each iteration and thus has much lower per-iteration
cost. This approach is designed for better performance as dimension of the problem increases,
and in Chapter 4.4.1 we verify its scalability numerically.

� We demonstrate that the iteration complexity of our algorithms is at least as good as that of
the efficient approach of [25], and better than the exponential complexity of [107]. Overall,
our OFO-based approach leads to computational savings over the approach of [25] by a fac-
tor as large as O(1/(ε2 log(1/ε))) arithmetic operations. Moreover, our iteration complexity
is (almost) independent of both the number of robust constraints and the dimension of the
deterministic problem. For further comparisons and discussion, see Section 2.4.1.3. In addi-
tion, our framework is amenable to exploiting favorable structural properties of the constraint
functions such as strong concavity, smoothness, etc., through which better convergence rates
can be achieved.

For JEO, in addition to recovering the standard results from Ahmadi and Shanbhag [5] in a
unified manner, our framework allows us to derive, in a principled manner, an algorithm for the
setting when f is non-smooth and strongly convex, which was not explored previously. In this
setting, we provide an improved convergence rate of O(1/T ), which is the optimal rate even if we
had the ‘correct’ data upfront.

2.2 Overview of Saddle Point Problems

To begin, let us state the following basic assumption that our SP problem (2.1) is part of the class
of convex-concave minimax problems, which will be satisfied for all examples of interest.

Assumption 2.3. The domains X and Y are nonempty closed convex sets in Euclidean spaces Rnx
and Rny respectively, and at least one of X and Y is bounded. Furthermore, for any u, Ψ(x, y;u)
is convex in x and concave in y.

For the rest of the chapter, we assume that Assumption 2.3 is satisfied.

Saddle point (SP) problems play a vital role in our developments. Any convex-concave SP
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problem (2.1) gives rise to two convex optimization problems that are dual to each other:

Opt(P ;u) = min
x∈X

[Ψ(x;u) := max
y∈Y

Ψ(x, y;u)] (2.7)

Opt(D;u) = max
y∈Y

[Ψ(y;u) := min
x∈X

Ψ(x, y;u)] (2.8)

with Opt(P ;u) = Opt(D;u) = SV(u) (this is guaranteed by the minimax theorem [137]). It is
well-known that the solutions to (2.1) — the saddle points of Ψ(·, ·;u) on X ×Y — are exactly the
pairs [x; y] formed by optimal solutions to the problems Opt(P ;u) and Opt(D;u).

We quantify the accuracy of a candidate solution [x̄, ȳ] to SP problem (2.1) with the saddle
point (SP) gap defined as the sum of the optimality gaps for Opt(P ;u) and Opt(D;u):

εΨsad(x̄, ȳ;u) := max
y∈Y

Ψ(x̄, y;u)−min
x∈X

Ψ(x, ȳ;u) (2.9)

=

[
max
y∈Y

Ψ(x̄, y;u)−Opt(P ;u)

]
︸ ︷︷ ︸

≥0

+

[
Opt(D;u)−min

x∈X
Ψ(x, ȳ;u)

]
︸ ︷︷ ︸

≥0

.

Note that when Ψ comes from some convex optimization problem (such as Examples 2.1 or 2.2),
bounds on the SP gap give corresponding guarantees for the convex optimization problem of interest.
We will examine this more precisely when we revisit RO and JEO.

Because convex-concave SP problems are simply convex optimization problems, they can in prin-
ciple be solved by polynomial-time interior point methods (IPMs). However, the computational
complexity of such methods depends heavily on the dimension of the problem. Thus, scalability
of resulting algorithms becomes an issue in large-scale applications. As a result, for large-scale SP
problems, one has to resort to first-order subgradient-type methods. On a positive note, there are
many efficient first-order methods (FOMs) for convex-concave SP problems. These in particular
include Nesterov’s accelerated gradient descent algorithm [116] and Nemirovski’s Mirror-Prox al-
gorithm [112], both of which bound the saddle point gap at a rate of εΨsad(x̄T , ȳT ;u) ≤ O

(
1
T

)
where

x̄T , ȳT are solutions obtained after T iterations.

2.3 Primal-Dual Framework

Recall that our goal is to solve the SP problem (2.1) in the setting where the data vector u
is unknown. As mentioned before, the general strategy is as follows: generate or use a given
‘approximate’ data sequence {ut}t≥1 and a corresponding primal-dual sequence {xt, yt}t≥1. We will
then try to quantify the SP gap εΨsad(x̄T , ȳT ;u), where the points x̄T , ȳT are built by aggregating the
first T points of the primal-dual sequence in some manner, and u is the true, but unknown, data
vector. Any iterative method for solving (2.1) would generate a primal-dual sequence in some form
and build a final solution from some aggregation, so this part of the strategy is quite natural. On
the other hand, generating an approximate data sequence {ut}t≥1 is perhaps a more novel aspect,
but one can argue that it is the most natural strategy given no knowledge of u. However, there are
two important questions to answer in order to implement this strategy:

(1) Where do the approximate data vectors ut come from? If we are generating them, how should
we do so?

(2) How do we choose the primal-dual points xt, yt?
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Whether we generate {ut}t≥1 depends very much on how we model the uncertainty on u. We
will re-examine this in the next two sections, when we apply our framework to the problems of
interest, RO and JEO. On the other hand, one useful feature of our framework is that the method
to generate the primal-dual sequence {xt, yt}t≥1 is agnostic to how we model the uncertainty on u
(although, it does depend on the sequence {ut}t≥1 itself, but not how it is obtained). To understand
why this is possible, we present a fundamental theorem relating the sequences {ut}t≥1, {xt, yt}t≥1

to the SP problem SV(u).

Theorem 2.4. Let {θt}t≥1 be an arbitrary sequence of positive real numbers. Define

ΘT :=
∑
t∈[T ]

θt, x̄θT :=
1

ΘT

∑
t∈[T ]

θtxt, ȳθT :=
1

ΘT

∑
t∈[T ]

θtyt.

Then, for any T ≥ 1,

εΨsad

(
x̄θT , ȳ

θ
T ;u

)
≤ ε̂

(
{xt, yt, ut, θt}t∈[T ]

)
+ ε◦

(
{xt, ut, θt}t∈[T ]

)
+ ε•

(
{yt, ut, θt}t∈[T ]

)
,

where

ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
:= max

y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;ut)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨ(x, yt;ut)

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
:= max

y∈Y

1

ΘT

∑
t∈[T ]

θt [Ψ(xt, y;u)−Ψ(xt, y;ut)]

ε•
(
{yt, ut, θt}t∈[T ] ;u

)
:= max

x∈X

1

ΘT

∑
t∈[T ]

θt [Ψ(x, yt;ut)−Ψ(x, yt;u)] .

Before giving the proof of Theorem 2.4, we comment on the terms involved. The sequence
{θt}t≥1 defines aggregation weights for the primal-dual sequence {xt, yt}t≥1. Recall that our goal
is to choose x̄θT , ȳ

θ
T to make the SP gap term εΨsad

(
x̄θT , ȳ

θ
T ;u

)
small, which translates to guarantees

on the related convex optimization problem with (unknown) parameters u. Theorem 2.4 gives us
a strategy to do this through making the three terms ε̂, ε◦, ε• small. The ε̂ term can be interpreted
as an approximate SP gap term. Notice that since we have knowledge of X,Y and we generate
the sequences {xt, yt}t≥1, we should be able to control this term. On the other hand, in both the
ε◦, ε• terms, u is present, and since this is unknown to us, we cannot expect to have full control of
these terms. Indeed, we will see that {xt, yt}t≥1 will be chosen to make ε̂ small, reagrdless of the
setting. In contrast, making ε◦, ε• small, is not guaranteed through the choice of {ut}t≥1 alone, but
will also require us to take into account how the uncertainty in u is modelled.

Proof of Theorem 2.4. First, notice that {θt/ΘT }t∈[T ] form a set of convex combination weights.

Thus, using the convex-concave structure of Ψ(·, ·;u) and the definition of εΨsad

(
x̄θT , ȳ

θ
T ;u

)
in (2.9),

we get the standard bound

εΨsad

(
x̄θT , ȳ

θ
T ;u

)
≤ max

y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;u)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨ(x, yt;u).
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Let us examine the first term on the right hand side. Adding and subtracting Ψ(xt, y;ut) for each
term in the sum, we can bound this term by

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;u) = max
y∈Y

1

ΘT

∑
t∈[T ]

θt [Ψ(xt, y;ut) + Ψ(xt, y;u)−Ψ(xt, y;ut)]

= max
y∈Y

 1

ΘT

∑
t∈[T ]

θtΨ(xt, y;ut) +
1

ΘT

∑
t∈[T ]

θt [Ψ(xt, y;u)−Ψ(xt, y;ut)]


≤ max

y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;ut) + max
y∈Y

1

ΘT

∑
t∈[T ]

θt [Ψ(xt, y;u)−Ψ(xt, y;ut)]

= max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;ut) + ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
.

Using a similar strategy for the second term minx∈X
1

ΘT

∑
t∈[T ] θtΨ(x, yt;u), we can get

min
x∈X

1

ΘT

∑
t∈[T ]

θtΨ(x, yt;u) ≥ min
x∈X

1

ΘT

∑
t∈[T ]

θtΨ(x, yt;ut)− ε•
(
{yt, ut, θt}t∈[T ] ;u

)
.

Subtracting this lower bound from the upper bound on the first term then gives us the result.

To conclude this section, we briefly mention how to choose the primal-dual sequence {xt, yt}t≥1

and weights {θt}t≥1 to bound the first term ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
. Note that we will not give

explicit algorithms; we reserve this for Chapter 3, where we build the necessary tools to do so.
Instead, in this chapter we wish to highlight just the general primal-dual framework, which allows
us to plug the various techniques to be described in Chapter 3 in, resulting in various different
algorithms for our problems.

Notice that ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
can be written as the sum of two terms:

ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
= max

y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y;ut)−
1

ΘT

∑
t∈[T ]

θtΨ(xt, yt;ut)

+
1

ΘT

∑
t∈[T ]

θtΨ(xt, yt;ut)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨ(x, yt;ut).

It turns out that these two terms are so-called regret terms. The area of online convex optimization
(OCO), which we describe in detail in Chapter 3, provides for us various techniques that allow us
to choose the sequences {xt, yt}t≥1 to bound these terms, so-called regret-minimizing algorithms.
As mentioned above, we defer a full account of these to Chapter 3, but we mention that a typical
result is that the regret terms are bounded by ≤ O(1/

√
T ) after T iterations. Thus, after T steps,

we can make ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
≤ O(1/

√
T ), and making T large enough means that we can

make these arbitrarily small. When combined with similar bounds on ε◦, ε•, this gives us a bound
on the SP gap εΨsad, and hence gives guarantees on the convex optimization problem of interest. We
now describe how such bounds may arise for RO and JEO.
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2.4 Application to Robust Optimization

We first consider the RO problem (1.2) introduced in Chapter 1. As discussed in Chapter 1.3, it is
sufficient to solve the (approximate) robust feasibility problem (1.4), since we can then conduct a
binary search to find the best objective value. We restate this here for convenience:{

Either : find x ∈ X s.t. supui∈U i f
i(x, ui) ≤ ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. supui∈U i f
i(x, ui) > 0.

(2.10)

We assume that the following holds.

Assumption 2.5. The constraint functions f i(x, ui) for all i ∈ [m] are finite-valued on the domain
X × U i, convex in x and concave in ui. Furthermore, X, the domain for x, is closed and convex,
and U i, the domains for ui, are closed and bounded.

In fact, (2.10) is a version of (2.2) which takes into account the uncertainty in u: while we
do not know u = (u1, . . . , um) exactly, in many situations, it is possible to build a confidence set
U = U1× . . .×Um where u could belong. By solving (2.10), we ensure that whenever u falls within
the confidence set U , the constraints will still be satisfied.

We first formulate (2.10) as a SP problem. Define

Y := ∆m, Ψ(x, y;u) :=
∑
i∈[m]

yif i(x, ui), Φ(x, y) := sup
u∈U

Ψ(x, y;u) =
∑
i∈[m]

yi sup
ui∈U i

f i(x, ui).

(2.11)
That is, in RO, we do not have a target u, but we are finding the worst-case bound on Ψ(x, y;u)
over u ∈ U . By following Example 2.1, it is straightforward to see that (2.10) is equivalent toEither : min

x∈X
max
y∈Y

Φ(x, y) ≤ ε,

or : declare infeasibility, min
x∈X

max
y∈Y

Φ(x, y) > 0.
(2.12)

Let us define the SP value

SV = min
x∈X

max
y∈Y

Φ(x, y). (2.13)

If we are able to accurately estimate this, then we can solve (2.12).

Proposition 2.6. Let Ψ : X × Y → R be a given function associated with a SP (not necessarily
admitting a convex-concave structure). Suppose we have x̄ ∈ X, ȳ ∈ Y , and τ ∈ (0, 1) such
that εΨsad(x̄, ȳ) := maxy∈Y Ψ(x̄, y) − minx∈X Ψ(x, ȳ) ≤ τε. Then if Ψ(x̄, ȳ) ≤ (1 − τ)ε, we have
supy∈Y Ψ(x̄, y) ≤ ε. Moreover, if Ψ(x̄, ȳ) > (1− τ)ε and τ ≤ 1/2, we have minx∈X Ψ(x, ȳ) > 0.

Proof. Suppose Ψ(x̄, ȳ) ≤ (1−τ)ε. Because εΨsad(x̄, v̄) ≤ τε, we have maxy∈Y Ψ(x̄, y) ≤ minx∈X Ψ(x, ȳ)+
τε ≤ Ψ(x̄, ȳ) + τε ≤ ε. On the other hand, when Ψ(x̄, ȳ) > (1− τ)ε, we have (1− τ)ε < Ψ(x̄, ȳ) ≤
maxy∈Y Ψ(x̄, y) ≤ minx∈X Ψ(x, ȳ) + τε, which implies minx∈X maxy∈Y Φ(x, y) ≥ minx∈X Ψ(x, ȳ) >
(1− 2τ)ε ≥ 0 when τ ≤ 1/2.

Estimating SV in (2.13), however, is not a straightforward task. Notice that since Φ(x, y) is
defined with a supremum over u, convexity in x is preserved (through convexity f i in Assumption
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2.5), hence Φ(x, y) is a convex-concave function. However, applying the machinery of convex-
concave SP problems to estimate SV requires us to handle the suprema over U i somehow, which
can be difficult. On the other hand, if we fix some u ∈ U , the closely related problem SV(u) :=
minx∈X maxy∈Y Ψ(x, y;u) is also a convex-concave SP problem. The primal-dual framework in
Section 2.3 gives us a way to handle the suprema over U i in an iterative manner. The following
result gives a relationship between the family of convex-concave SP problems SV(u) and our problem
of interest (2.13).

Theorem 2.7. Fix some x̄ ∈ X, ȳ ∈ Y . Then

max
y∈Y

Ψ(x̄, y)−min
x∈X

Ψ(x, ȳ) ≤ sup
u∈U

{
max
y∈Y

Ψ(x̄, y;u)−min
x∈X

Ψ(x, ȳ;u)

}
.

Consequently,

∀u ∈ U, εΨsad(x̄, ȳ;u) ≤ ε =⇒ max
y∈Y

Ψ(x̄, y)−min
x∈X

Ψ(x, ȳ) ≤ ε.

Proof. First note that maxy∈Y Ψ(x̄, y) = maxy∈Y supu∈U Ψ(x̄, y;u) = supu∈U maxy∈Y Ψ(x̄, y;u).
Now fix an arbitrary u ∈ U . Since minx∈X Ψ(x, ȳ) ≥ minx∈X Ψ(x, ȳ;u) we have

max
y∈Y

Ψ(x̄, y;u)−min
x∈X

Ψ(x, ȳ) ≤ max
y∈Y

Ψ(x̄, y;u)−min
x∈X

Ψ(x, ȳ;u).

Taking the supremum over u ∈ U both sides and using the equality

max
y∈Y

Ψ(x̄, y) = sup
u∈U

max
y∈Y

Ψ(x̄, y;u)

gives the result.

While seemingly simple, Theorem 2.7 is quite powerful, as it allows us to quantify the Sp
gap of (2.13) in terms of SP gaps of convex-concave SP problems SV(u) from (2.1). In Section
2.3 we presented a technique to bound εΨsad(x̄, ȳ;u) for a fixed u ∈ U . Here, we wish to find a
uniform bound for εΨsad(x̄, ȳ;u) over all u ∈ U , but Theorem 2.4 may still prove useful in this
setting. Let us analyse the three upper bound terms in Theorem 2.4 for the specific definition of
Ψ(x, y;u) =

∑
i∈[m] y

if i(x, ui) and Y = ∆m, and for a fixed u ∈ U :

ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
= max

i∈[m]

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit) (2.14)

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
= max

i∈[m]

1

ΘT

∑
t∈[T ]

θt
[
f i(xt, u

i)− f i(xt, uit)
]

(2.15)

ε•
(
{yt, ut, θt}t∈[T ] ;u

)
= max

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yit
[
f i(x, uit)− f i(x, ui)

]
. (2.16)

Note that the first term is independent of the choice of u ∈ U , whereas the second and third terms
contain u. To bound these uniformly over u ∈ U , we must find uniform bounds for the second and
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third terms over u ∈ U . Thus, let us rewrite these terms with a supremum over u ∈ U :

sup
u∈U

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
= max

i∈[m]

 sup
ui∈U i

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i)− 1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t)

 (2.17)

sup
u∈U

ε•
(
{yt, ut, θt}t∈[T ] ;u

)
= sup

u∈U
max
x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yit
[
f i(x, uit)− f i(x, ui)

]
. (2.18)

(The first equality follows by exploiting the product form U = U1 × . . . × Um and the structure
of ε◦.) Notice that ε◦ is simply the maximum of m different regret terms, one for each constraint.
As mentioned in Section 2.3, there exists efficient regret-minimizing algorithms to bound these,
and in Chapter 3 we will present some examples of these. Such algorithms can be used to choose
sequences {uit}t≥1 in order to bound each regret term in ε◦. In fact, bounding these will give us
uniform bounds of ε◦ over u ∈ U . However, the third ε• term has no such interpretation. Thus,
currently, we only know how to bound two of the three upper bound terms, which is not sufficient
to bound the SP gap of (2.13).

Fortunately, it turns out that, for robust feasibility, bounding the first two terms is sufficient.
This phenomenon is captured in our main Theorem 2.8 below. Intuitively, this is due to the fact
that we do not need to evaluate SV exactly to solve (2.12), we only need to determine whether
SV ≤ ε or SV > 0, and certifying this only requires bounds on the first two terms.

Theorem 2.8. Suppose we have sequences {xt, yt, ut, θt}t∈[T ] with xt ∈ X, ut ∈ U , yt ∈ Y and θt >

0 for all t ∈ [T ]. Let τ ∈ (0, 1). If supu∈U ε
◦({xt, ut, θt}t∈[T ];u) ≤ τε and maxi∈[m]

1
ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) ≤

(1−τ)ε, then the solution x̄θT := 1
ΘT

∑
t∈[T ] θtxt is ε-feasible with respect to (2.10). If ε̂({xt, yt, ut, θt}t∈[T ]) ≤

(1− τ)ε and maxi∈[m]
1

ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) > (1− τ)ε, then (2.10) is infeasible.

Proof. First suppose there exists a τ ∈ (0, 1) and sequences {xt, ut, θt}t∈[T ] such that ε◦({xt, ut, θt}t∈[T ]) ≤
τε and maxi∈[m]

1
ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) ≤ (1− τ)ε holds as well. Note that

τε ≥ max
u∈U

ε◦({xt, ut, θt}t∈[T ];u) = max
i∈[m]

 sup
ui∈U i

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i)− 1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t)


≥ max

i∈[m]
sup
ui∈U i

∑
t∈[T ]

θtf
i(xt, u

i)−max
i∈[m]

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t), (2.19)

where the last inequality follows since maxi∈[m]{αi−βi} ≥ maxi∈[m] αi−maxi∈[m] βi for any sequence

of numbers αi, βi, i ∈ [m]. Then x̄θT is an ε-feasible solution for (2.10) because

max
i∈[m]

sup
ui∈U i

f i
(
x̄θT , u

i
)

= max
i∈[m]

sup
ui∈U i

f i

 1

ΘT

∑
t∈[T ]

θtxt, u
i


≤ max

i∈[m]
sup
ui∈U i

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i) ≤ τε+ max
i∈[m]

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t) ≤ ε,

where the first inequality follows from the convexity of the functions f i and the fact that θ ∈ ∆T , the
second inequality from (2.19), and the last inequality holds since maxi∈[m]

1
ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) ≤

(1− τ)ε.
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On the other hand, suppose ε̂({xt, ut, yt, θt}t∈[T ]) ≤ (1−τ)ε and maxi∈[m]
1

ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) >

(1− τ)ε. Note that

min
x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit) ≤ min

x∈X

1

ΘT

∑
t∈[T ]

θt max
i∈[m]

f i(x, uit)

≤ min
x∈X

1

ΘT

∑
t∈[T ]

θt max
i∈[m]

sup
ui∈U i

f i(x, ui) = min
x∈X

max
i∈[m]

sup
ui∈U i

f i(x, ui)

= min
x∈X

max
y∈Y

Φ(x, y), (2.20)

where the first inequality follows since yt ∈ ∆m for all t ∈ [T ], the second inequality holds because
f i(x, uit) ≤ supui∈U i f

i(x, ui) for all i ∈ [m] and yit ≥ 0 for i ∈ [m], t ∈ [T ], and the last equation
follows since {θt/ΘT }t∈[T ] are convex combination weights. Then using the bound

(1− τ)ε ≥ ε̂({xt, ut, yt, θt}t∈[T ]) = max
i∈[m]

∑
t∈[T ]

θtf
i(xt, u

i
t)−min

x∈X

∑
t∈[T ]

θt

m∑
i=1

yitf
i(x, uit), (2.21)

we arrive at

min
x∈X

max
y∈Y

Φ(x, y) ≥ min
x∈X

∑
t∈[T ]

θt

m∑
i=1

yitf
i(x, uit) ≥ max

i∈[m]

∑
t∈[T ]

θtf
i(xt, u

i
t)− (1− τ)ε > 0,

where the first inequality follows from inequality (2.20), the second inequality from (2.21) and the
last inequality holds because maxi∈[m]

∑
t∈[T ] θtf

i(xt, u
i
t) > (1−τ)ε. This implies (2.10) is infeasible,

due to the equivalence of (2.12) and (2.10).

Theorem 2.8 points to a general framework for solving the robust feasibility problem (2.10)
given access to appropriate regret-minimizing algorithms for bounding ε̂, ε◦. We now describe this
general framework precisely. First, we define some notation for the regret minimizing algorithms.
Recall that we will use regret-minimizing algorithms to choose {xt, yt}t≥1 in order to bound ε̂, while
(possibly different) regret-minimizing algorithms will be used for choosing {uit}t≥1 for each regret
term i ∈ [m] in ε◦. Thus, we denote these algorithms by Axy and Ai, i ∈ [m]. A key feature of
the regret-minimizing algorithms that we will describe in Chapter 3 is that choosing the t-th point
only depends on the data up to step t− 1 or step t, but not further. Thus, we denote the iterates
generated by the algorithms at step t by

xt, yt = Axy
(
{xs, ys, us, θs}s∈[t−1]

)
or Axy

(
{xs, ys, us, θs}s∈[t−1], ut, θt

)
and

uit = Ai
(
{xs, uis, θs}s∈[t−1]

)
or Ai

(
{xs, uis, θs}s∈[t−1], xt, θt

)
, ∀i ∈ [m].

Traditionally, regret-minimizing algorithms from OCO do not use information from step t, but in
our setting this may be allowed. The choice of whether we use information at step t or not presents
further flexibility to our framework, and opportunities for obtaining faster convergence rates, but
must be done with care. We elaborate on this in Remark 2.9. We denote the corresponding bounds
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on the regret terms obtainable through the algorithms after T iterations as Rxy(T ),Ri(T ). In other
words, we have

ε̂
(
{xt, yt, ut, θt}t∈T

)
≤ Rxy(T )

sup
ui∈U i

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i)− 1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t) ≤ Ri(T )

sup
u∈U

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
≤ max

i∈[m]
Ri(T ).

Note that in general we have Rxy,Ri ≥ 0. We are now ready to give the full description of our
framework in Algorithm 1.

Algorithm 1 Robust feasibility framework.

input: regret-minimizing algorithms Ai, i ∈ [m], Axy, tolerance level ε > 0, sufficiently large T = T (ε)
such that maxi∈[m]Ri(T ) +Rxy(T ) ≤ ε, and positive weights θ1, . . . , θT > 0.
output: either x̄ ∈ X such that supui∈Ui f i(x̄, ui) ≤ ε for all i ∈ [m], or an infeasibility certificate for
(2.10).
initialize

ui1 = Ai({}) ∀i ∈ [m], x1, y1 = Axy({}, u1, θ1)

OR x1, y1 = Axy({}), ui1 = Ai({}, x1, θ1) ∀i ∈ [m].

for t = 2, . . . , T do
compute updates

uit = Ai({xs, uis, θs}s∈[t−1]) ∀i ∈ [m], xt, yt = Axy({xs, ys, us, θs}s∈[t−1], ut, θt)

OR xt, yt = Axy({xs, ys, us, θs}s∈[t−1]), uit = Ai({xs, uis, θs}s∈[t−1], xt, θt) ∀i ∈ [m].

and obtain upper bounds

sup
u∈U

ε◦({xs, us, θs}ts=1;u) ≤ max
i∈[m]

Ri(t) =: r◦

ε̂({xs, ys, us, θs}ts=1) ≤ Rxy(t) =: r̂.

if r◦ + r̂ ≤ ε then
{we can check for feasibility}
set ϑt := maxi∈[m]

1
Θt

∑
s∈[t] θsf

i(xs, u
i
s) and τt := 1− r̂/ε.

if ϑt > (1− τt)ε = r̂ then return declare (2.10) infeasible
if ϑt ≤ (1− τt)ε = r̂ then return x̄θt = 1

Θt

∑
s∈[t] θsxs as a robust ε-feasible solution to (2.10).

else
{we only check for infeasibility}
set ϑt := maxi∈[m]

1
Θt

∑
s∈[t] θsf

i(xs, u
i
s)

if ϑt > r̂ then return declare (2.10) infeasible
end if

end for

We make one important remark on Algorithm 1.
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Remark 2.9. Notice that in Algorithm 1 we list two possible ways to update xt, yt and ut at each
step t: one way computes ut using information only up to step t − 1, then computes xt, yt with
knowledge of ut, and the other way does the opposite. A third way is to compute both ut and
xt, yt only with information up to step t − 1, but the other two ways can be more efficient if we
choose the right regret-minimizing algorithms, and result in faster convergence. It is important to
note, however, that it is impossible to choose both ut and xt, yt with information at step t, thus
appropriate care should be taken when choosing the regret-minimizing algorithms Axy and Ai to
avoid this situation.

2.4.1 Customizations of the Robust Feasibility Framework

We have given interpretations of the quantities ε̂, ε◦ as regret terms, discussed how we can use regret-
minimizing algorithms to control these, and thus solve the robust feasibility problem (2.10). We
will see in Chapter 3 that there exist a variety of regret-minimizing algorithms which only require
first-order updates to compute the vectors xt, yt, ut, thus a natural approach is to exclusively use
these. We call this approach the online first-order (OFO) approach.

It turns out that previous iterative RO approaches for solving (2.10) can be interpreted within
our framework. These approaches also generate sequences of solutions {xt}t≥1 ⊂ X and data
{ut}t≥1 ⊂ U . The main difference is the methods used to generate these sequences. Previously,
Mutapcic and Boyd [107], Ben-Tal et al. [25] have used deterministic optimization oracles for these
methods, which are more expensive than first-order updates. In Section 2.4.1.1, we examine the
pessimization oracle-based approach of Mutapcic and Boyd [107]. We modify the pessimization
oracle-based approach of Mutapcic and Boyd [107] to solving (2.10) within our framework, and
demonstrate how we can obtain an improved convergence rate in this way. In Section 2.4.1.2, we
examine the nominal feasibility oracle-based approach of Ben-Tal et al. [25] within the context of
our general framework. Finally, in Section 2.4.1.3, we summarize and compare the convergence
rates achievable via various customizations of our framework using these different approaches.

2.4.1.1 The Pessimization Oracle-Based Approach

Mutapcic and Boyd [107] generate solutions xt ∈ X at each iteration t by solving an extended
nominal problem

min
x∈X

{
f0(x) : f i(x, ui) ≤ 0, ∀ui ∈ Û it−1, i ∈ [m]

}
, (2.22)

where Û it−1 ⊂ U i are finite approximate uncertainty sets based on past noise realizations {uis}mi=1

for s ∈ [t− 1]. New noises ut are then generated by calling the pessimization oracles on the current
solution xt. More precisely, given xt ∈ X, the pessimization oracles solve supui∈U i f

i(xt, u
i) and

return

uit ∈ U i s.t. f i(xt, u
i
t) ≥ sup

ui∈U i
f i(xt, u

i)− τε. (2.23)

In terms of our framework of Algorithm 1, the update policy of generating new noises ut in this
approach of [107] corresponds to selecting the algorithms Axy to be a extended nominal solver for
(2.22) (but not generating the yt variables) and the algorithms Ai to be pessimization oracles that
solve (2.23). Note that computing uit requires knowledge of xt (see Remark 2.9), and consequently
the bound for the regret term in ε◦ is Ri(T ) ≤ τε for any T . We show this in the proof of Theorem
2.10. If for all i ∈ [m] we have f i(xt, u

i
t) ≤ (1 − τ)ε, then we terminate and declare xt is a robust

ε-feasible and optimal solution; otherwise, we append Û it = Û it−1∪{uit} and re-solve (2.22) with the

new approximate sets Û it . It is shown in Mutapcic and Boyd [107, Section 5.2] that the number of
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iterations T needed before termination with a robust ε-feasible solution xT is upper bounded by
(1 +O(1/ε))n where n is the dimension of x.

Suppose now that we are interested in robust feasibility (2.10). Mutapcic and Boyd [107,
Section 5.3] discusses a number of variations for generating xt by modifying (2.22). In contrast, we
propose the following modification: instead of solving (2.22), generate {xt, yt}t∈[T ] via an algorithm
Axy to bound ε̂({xt, yt, ut, θt}t∈[T ]) ≤ Rxy(T ) ≤ (1 − τ)ε. We call our modification FO-based
pessimization, since there exist efficient first-order algorithms Axy which can do this. This fits
within our framework as a special case, and is a straightforward consequence of Theorem 2.8.

Theorem 2.10. Let τ ∈ (0, 1). Suppose {xt, yt}t∈[T ] are generated iteratively to guarantee that
ε̂({xt, yt, ut, θt}t∈[T ]) ≤ (1− τ)ε . Suppose each uit are generated by pessimization oracles (2.23) for
i ∈ [m], t ∈ [T ]. If there exists t ∈ [T ] such that for all i ∈ [m] we have f i(xt, u

i
t) ≤ (1 − τ)ε,

then xt is a robust ε-feasible solution to (2.10). If maxi∈[m]
1

ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) ≤ (1− τ)ε, then

x̄θT = 1
ΘT

∑
t∈[T ] θtxt is a robust ε-feasible solution to (2.10). If maxi∈[m]

1
ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) >

(1− τ)ε, then we certify that (2.10) is robust infeasible.

Theorem 2.10 can be used to certify robust feasibility/infeasibility. Hence, to find a robust
ε-optimal solution to (1.2) with the FO-based pessimization approach, we must perform a binary
search and solve at most O(log(1/ε)) instances of robust feasibility problems. Despite this, we shall
see in Chapter 3 that to make Rxy(T ) ≤ ε, we need at most T = O(1/ε2) iterations, hence using
first-order updates results in much better complexity guarantees than using an extended nominal
feasibility solver (2.22) as proposed by Mutapcic and Boyd [107], even when taking into account
the additional O(log(1/ε)) factor.

Remark 2.11. In the pessimization oracle-based approach, the noises ut need to be generated with
knowledge of xt, because it is not possible to guarantee f i(xt, u

i
t) ≥ supui∈U i f

i(xt, u
i) − τε if the

vectors uit were chosen with only the knowledge of x1, . . . , xt−1.

2.4.1.2 The Nominal Feasibility Oracle-Based Approach

The nominal feasibility oracle-based approach of [25] suggest using OFO algorithms to choose
a sequence {ut}t∈[T ] that guarantees supu∈U ε

◦({xt, ut, θt}t∈[T ];u) is small, in a non-anticipatory
fashion, for any sequence {xt}t∈[T ]. For Axy, at step t, [25] utilizes a nominal feasibility oracle.
That is, given parameters ut, they call a powerful, and potentially expensive, nominal feasibility
oracle that solves the following feasibility problem to ε-accuracy{

Either : find x ∈ X s.t. f i(x, uit) ≤ (1− τ)ε ∀i ∈ [m];

or : declare infeasibility, ∀x ∈ X, ∃i ∈ [m] s.t. f i(x, uit) > 0.
(2.24)

We denote xt ∈ X to be the point returned by this oracle at step t, if it exists, and note that we
do not require the generation of a dual point yt ∈ Y . For this approach, the outputs of a nominal
feasibility oracle can be used to deduce a result similar to Theorem 2.8, except that we no longer
need to evaluate ε̂({xt, yt, ut, θt}t∈[T ]), we just need to bound ε◦({xt, ut, θt}t∈[T ]).

Theorem 2.12. Suppose that the sequence {ut}t∈[T ] is generated in a non-anticipatory manner to
guarantee supu∈U ε

◦({xt, ut, θt}t∈[T ]) ≤ τε for any sequence {xt}t∈[T ]. Also, suppose that at each step
t ∈ [T ], xt is generated by the nominal feasibility oracle which solves (2.24). If there exists t ∈ [T ]
such that (2.24) declares infeasibility, then (2.10) is infeasible. Otherwise, x̄θT = 1

ΘT

∑
t∈[T ] θtxt

solves (2.10).
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Proof of Theorem 2.12. If (2.24) declares infeasibility at time t, then it is obvious that (2.10) is
infeasible since it is infeasible for ut. We focus on the latter case. By the premise of the theorem,
we have supu∈U ε

◦({xt, ut, θt}t∈[T ];u) ≤ τε. Let us evaluate maxi∈[m]
1

ΘT

∑
t∈[T ] θtf

i(xt, u
i
t). From

the definition of the nominal feasibility oracle we have f i(xt, u
i
t) ≤ (1 − τ)ε for all t ∈ [T ] and

i ∈ [m], we conclude maxi∈[m]
1

ΘT

∑
t∈[T ] θtf

i(xt, u
i
t) ≤ (1 − τ)ε. The conclusion now follows from

Theorem 2.8.

Thus, the approach of [25], which works with nominal feasibility oracles, fits within our frame-
work of Algorithm 1 right away. We next make three important remarks.

Remark 2.13. Similar to Remark 2.11, a critical property required in the approach of [25] of the
vectors xt is that f i(xt, u

i
t) ≤ (1− τ)ε. This is possible only if each xt is chosen with the knowledge

of ut.

Remark 2.14. Theorem 2.12 states that the nominal feasibility oracle-based approach can solve
robust feasibility problems (2.10). This then recovers Ben-Tal et al. [25, Theorems 1,2]. In addition,
we next make a nice and practical observation that was overlooked in [25]. We show that slightly
adjusting this oracle will let us directly solve the robust optimization problem (1.2), i.e., optimize
a convex objective function f0(x) instead of relying on a binary search over the optimal objective
value. Recall that Opt is the optimal value of the RO problem (see (1.2)). Naively, to solve for
Opt, we would embed f0 into the constraint set, and then perform a binary search over the robust
feasible set by repeatedly applying the oracle-based approach and Theorem 2.12 to check for robust
feasibility. Suppose that now, instead of using a nominal feasibility oracle to solve (2.24), we work
with a nominal optimization oracle. That is, given data ut ∈ U , we have access to an oracle that
solves

Optt = inf
x

{
f0(x) : f i(x, uit) ≤ 0, i ∈ [m], x ∈ X

}
.

When solving for Optt, most convex optimization solvers will either declare that the constraints are
infeasible, or return a point xt ∈ X such that f i(xt, u

i
t) ≤ (1− τ)ε and f0(xt) ≤ Optt +ε. It is clear

that f0(xt) ≤ Optt +ε ≤ Opt +ε. Given such a sequence of points {xt}t∈[T ], from Theorem 2.12 we

deduced that x̄θT = 1
ΘT

∑
t∈[T ] θtxt is a robust ε-feasible solution. Moreover, convexity of f0 implies

f0(x̄T ) ≤ 1

ΘT

∑
t∈[T ]

θtf
0(xt) ≤

1

ΘT

∑
t∈[T ]

θt(Opt +ε) = Opt +ε.

Hence, not only do we claim that x̄θT is robust ε-feasible, but that it is also ε-optimal. Thus, when
our oracle can return ε-optimal solutions, which most solvers can, we eliminate the need to perform
a binary search.

Below we elaborate on the differences between Theorem 2.12 and Theorem 2.8.

Remark 2.15. In contrast to Theorem 2.8, Theorem 2.12 does not need to control the term
ε̂({xt, yt, ut, θt}t∈[T ]). The reason is that due to (2.24), each point xt satisfies f i(xt, u

i
t) ≤ (1− τ)ε,

hence maxi∈[m]

∑
t∈[T ] θtf

i(xt, u
i
t) ≤ (1− τ)ε always holds. Therefore, the infeasibility part of The-

orem 2.8 never becomes relevant. However, if we choose to solve (2.24) in a particular way, we can
get a bound on ε̂({xt, yt, ut, θt}t∈[T ]).

Note that (2.24) is equivalent to checking SV(ut) ≤ (1− τ)ε or SV(ut) > 0, where

SV(ut) := min
x∈X

max
y∈Y

Ψ(x, y;ut) = min
x∈X

{
max
i∈[m]

f i(xt, u
i
t)

}
, (2.25)
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and Ψ, Y are defined as before in (2.11). Since each f i(x, uit) is convex in x for fixed uit, maxi∈[m] f
i(x, uit)

is convex in x also, hence standard convex optimization methods may be employed to find xt ∈ X
such that

SV(ut) ≤ max
i∈[m]

f i(xt, u
i
t) ≤ SV(ut) + (1− τ)ε.

Then, by checking whether maxi∈[m] f
i(xt, u

i
t) ≤ (1− τ)ε or maxi∈[m] f

i(xt, u
i
t) > (1− τ)ε, we can

determine whether SV(ut) ≤ (1 − τ)ε or SV(ut) > 0 respectively. In particular, if we find that
SV(ut) ≤ (1− τ)ε, our point xt is feasible for (2.24).

Also, when all the vectors xt satisfy (2.25), and we choose yit = 1 if f i(xt, u
i
t) = maxi′∈[m] f

i′(xt, u
i′
t )

and yit = 0 otherwise, we have the bound

ε̂({xt, yt, ut, θt}t∈[T ]) = max
i∈[m]

1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit)

≤ 1

ΘT

∑
t∈[T ]

θt max
i∈[m]

f i(xt, u
i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt max
i∈[m]

f i(x, uit)

≤ 1

ΘT

∑
t∈[T ]

θt

[
max
i∈[m]

f i(xt, u
i
t)−min

x∈X
max
i∈[m]

f i(x, uit)

]
≤ (1− τ)ε.

Consequently, we deduce that the nominal feasibility oracle, implemented as a convex optimization
problem, also naturally bounds ε̂({xt, yt, ut, θt}t∈[T ]) although this bound is not utilized in Theo-
rem 2.12. In terms of our framework of Algorithm 1, the update policy of generating new solutions
xt, yt in this approach corresponds to selecting the algorithm Axy to be a convex optimization solver
that solves (2.25), which guarantees that ε̂({xs, ys, us, θs}s∈[t]) ≤ Rxy(t) = (1− τ)ε for any t. How-
ever, at each iteration t, instead of evaluating SV(ut) to (1 − τ)ε accuracy, there exist algorithms
which can perform only simple first-order updates for xt, yt but still maintain similar guarantees
on ε̂, albeit at the end of the time horizon T , not at each iteration t.

2.4.1.3 Convergence Rates and Discussion

We summarize the convergence rates achievable in our general RO framework for various cases. We
first examine the number of iterations required for each approach discussed, then proceed to analyze
the per-iteration cost of each approach. A summary of our discussion is given in Table 2.1. We use
the notation ru(ε) to denote the number of iterations T required for algorithms Ai to guarantee
supu∈U ε

◦({xt, ut, θt}t∈[T ];u) ≤ maxi∈[m]Ri(T ) ≤ ε/2. Similarly, we let rxy(ε) be the number of
iterations T required for an algorithm Axy to guarantee that ε̂({xt, yt, ut, θt}t∈[T ]) ≤ Rxy(T ) ≤ ε/2.
Then the resulting worst-case number of iterations needed in Algorithm 1 to obtain robust ε-
feasibility/infeasibility certificates is max{ru(ε), rxy(ε)}.

In Chapter 3, we shall see that under minimal assumptions, we have ru(ε) = O(1/ε2) and
rx(ε) = O(1/ε2). Thus, our OFO-based approach requires O(1/ε2) iterations to solve (2.10). Since
our OFO-based approach returns only robust ε-feasible solutions, we need to perform a binary
search and repeatedly invoke our method O(log(1/ε)) times to obtain ε-optimal solutions to (1.2),
so the total number of iterations is O(log(1/ε)/ε2).

Our FO-based pessimization approach, i.e., our modification of the pessimization oracle-based
approach of Mutapcic and Boyd [107] outlined in Section 2.4.1.1, requires rx(ε) iterations to solve
(2.10) because by Theorem 2.10 we only need to guarantee ε̂({xt, ytut, θt}t∈[T ]) ≤ Rxy(T ) ≤ ε/2.
Taking into account the binary search factor O(log(1/ε)) to find a robust ε-optimal solution, the
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total number of iterations required is O(log(1/ε)/ε2), which is much better than the exponential
(1 + O(1/ε))n bound of Mutapcic and Boyd [107, Section 5.2] that uses a full nominal solution
oracle (2.22). Similarly, the nominal feasibility/optimization oracle-based approach of [25] outlined
in Section 2.4.1.2 requires ru(ε) = O(1/ε2) iterations (or ru(ε) log(1/ε) = O(log(1/ε)/ε2) iterations
if only a feasibility oracle is used) to obtain robust ε-optimal solutions because by Theorem 2.12
we only need to bound ε◦({xt, ut, θt}t∈[T ]) ≤ maxi∈[m]Ri(T ) ≤ ε/2.

Remark 2.16. The algorithms Ai and Axy may be chosen to exploit certain structural properties.
For example, when f i are strongly convex, we will see in Chapter 3 that certain OCO algorithms
achieve faster convergence rates. Moreover, unless explicitly required by the algorithms Ai, we
do not need to assume convexity of the sets U i. As a result, the follow-the-leader or follow-the-
perturbed-leader type algorithms from [95] can be utilized as Ai in our framework even when U i are
nonconvex but certain assumptions ensuring applicability of these algorithms are satisfied. Such
assumptions are satisfied for example when f i(x, ui) are linear in ui and the nonconvex sets U i admit
a certain linear optimization oracle. This is for example the case in a certain lifted representation of
the robust convex quadratic constraint discussed in Ben-Tal et al. [25, Section 4.2]. Similarly, when
the functions f i(x, ui) are exp-concave in ui, applying the online Newton step algorithm of [77] for
Ai results in a regret bound of at most O (log(T )/T ) in T iterations. Such f i that are exp-concave
in ui satisfying Assumption 2.5 arise in optimization under uncertainty problems where variance
is used as a risk measure, e.g., mean-variance portfolio optimization problems, see for example
Ben-Tal et al. [24, Example 25]. Essentially, the same flexibility for acceleration and/or working
with nonconvex sets U i is present in [25] as well.

In the presence of favorable problem structure, based on Table 2.1, if an accelerated algorithm
to exploit problem structure is employed in the place of Ai, the overall number of iterations of
the nominal feasibility approach is immediately reduced accordingly. Analogous result holds for
Axy and the FO-based pessimization approach. However, in the case of our OFO-based approach,
we need to have favorable structure in both x and u and utilize the corresponding accelerated
algorithms Axy,Ai to attain the acceleration of the overall approach.

We now discuss the per-iteration cost for each approach. In order to discuss the total arithmetic
complexity of each approach, we let k be the maximum dimension of the uncertain parameters ui

for i ∈ [m] and recall that n denotes the dimension of the decision variables x. In the case where
our domains X, {U i}mi=1 have favorable geometry, such as Euclidean ball or simplex, the vectors
xt, {uit}mi=1 are updated via simple closed-form prox operations, which cost O(n) and O(km) per
iteration respectively. The cost of computing the subgradients ∇xf i(x, ui),∇uf i(x, ui) is O(km+
mn) each iteration. This cost is incurred in each iteration of all of the approaches we discuss. From
this, we deduce that the per-iteration cost of our OFO-based approach is at most O(km+mn).

The per-iteration cost of the pessimization oracle based approaches involve calling m pessimiza-
tion oracles (2.23) and the costs related to updating xt. We denote by Pess(ε, k) the complexity
of a pessimization oracle with tolerance ε and k variables. A summary of different possible im-
plementations is given in Table 2.2. If supui∈U i f

i(x, ui) has a simple closed form solution, then
the resulting arithmetic cost for Pess(ε, k) is O(k) for each pessimization oracle. If we can use
polynomial-time IPMs, this cost becomes O(k3 log(1/ε)) [17, Section 6.6], and using FOMs has
cost O(k log(1/ε)) in the best case when the functions f i are smooth and strongly convex in ui. In
the case of our FO-based pessimization approach, the update involving xt will be given by simple
closed form formulas for prox operations when X has favorable geometry, resulting in a cost of
O(mn). The full pessimization approach of [107] incurs the cost of solving an extended nominal
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Approach Binary search No. iterations Per-iteration cost

OFO-based log(1/ε) max {ru(ε), rx(ε)} O(km+mn)
FO-based pessimization log(1/ε) rx(ε) mPess(ε, k) +O (mn)
Nominal oracle see Table 2.3 ru(ε) O (km) + Nom(ε,m, n)

Full pessimization see Table 2.3 O(1/εn) mPess(ε, k) + Nom(ε,m+ t, n)∗

∗(number of constraints is m + t as it grows by at least 1 each iteration t)

Direct FOM via CoMirror 1 O(1/ε2) mPess(ε, k) +O (mn)

Table 2.1: Summary of different approaches to generate {xt, ut}Tt=1.

feasibility problem for the update of xt.

The per-iteration cost of the nominal feasibility/optimization oracle-based approach of [25], as
well as that of [107], depends on the type of solver used to solve the nominal optimization/feasibility
problem (2.24). We denote by Nom(ε,m, n) the complexity of a nominal oracle with tolerance ε,
m constraints and n variables. Note that nominal solvers can be either optimization or feasibil-
ity solvers. If it is the latter, an extra log(1/ε) factor is incurred to perform binary search. A
summary of different possible implementations for Nom(ε,m, n) is given in Table 2.3. When ap-
plicable for Nom(ε,m, n) implementation, polynomial-time IPMs are guaranteed to terminate in
O(
√
m log(1/ε)) iterations with a solution to (2.24) and thus offer the best rates in terms of their

dependence on ε. They also have the advantage that they can act as a nominal optimization or-
acle, and hence by Remark 2.14 there will be no need to perform an additional binary search to
find an ε-optimal solution. On the other hand, they demand significantly more memory, and their
per-iteration cost is quite high in terms of the dimension, usually around the order of O(n3 +mn)
[17, Chapter 6.6]. In order to keep both the memory requirements and the per-iteration cost asso-
ciated with implementing the nominal feasibility oracle Nom(ε,m, n) low, one may opt for a FOM
called the CoMirror algorithm that can work with functional constraints, see [14] and Juditsky and
Nemirovski [93, Section 5.3]. CoMirror algorithm is guaranteed to find a solution to the nominal
ε-feasibility problem within O(1/ε2) iterations, with a much cheaper per-iteration cost of O(mn).
Because CoMirror method can optimize as well, it does not need binary search. However, to the
best of our knowledge, its possibility to exploit further structural properties of the functions f i,
such as smoothness in x, to improve the dependence on ε are not known. In order to exploit such
properties in the implementation of Nom(ε,m, n), it is possible to cast (2.24) as a convex-concave
SP problem, and then apply efficient FOMs such as Nesterov’s algorithm [116] or Nemirovski’s
Mirror Prox algorithm [112] to achieve a convergence rate of O(log(m)/ε) and per-iteration cost of
O(mn). This convex-concave SP approach can only be used as a nominal feasibility oracle, so we
must repeat the process log(1/ε) times to obtain an ε-optimal solution.

Recall that Table 2.1 summarizes the rates for the various approaches, together with rates for
the full pessimization approach of [107] and using the CoMirror with pessimization (discussed in
Section 2.4.2). Note that the total overall arithmetic complexity of each approach is obtained by
multiplying the quantities in each row in Table 2.1. The quantities ru(ε), rx(ε) will generally be
O(1/ε2), with potential for application-specific acceleration when the functions f i exhibit favorable
structure. Table 2.1 indicates that our FO-based pessimization approach when it admits a closed
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Implementation Pess(ε, k)

Closed form O(k)
IPM O(k3 log(1/ε))
FOM∗ O (k log(1/ε))
∗(when f i are smooth, strongly convex in ui)

Table 2.2: Arithmetic complexity for different implementations of pessimization oracles.

Implementation Nom(ε,m, n) Type Binary search

IPM O
(
km+

√
m(n3 +mn) log(1/ε)

)
optimization 1

CoMirror O
(
mn/ε2

)
optimization 1

Convex-concave SP∗ O (log(m)mn/
√
ε) feasibility log(1/ε)

∗(when f i are smooth, strongly convex in x)

Table 2.3: Arithmetic complexity for different implementations of nominal oracles
.

form solution for the implementation of Pess(ε, k) and the nominal feasibility oracle-based approach
which uses a polynomial-time IPM solver to implement the nominal feasibility oracle Nom(ε,m, n)
give the best dependence on ε among all of the methods. These are better than our OFO-based
approach by factors of max{1, ru(ε)/rx(ε)} and max{1, rx(ε)/ru(ε)} respectively. However, in many
applications, we can expect that ru(ε) ≈ rx(ε), so these factors will be constant. In this case, our
OFO-based approach becomes competitive with having a closed form pessimization oracle in our
FO-based pessimization approach or using a nominal IPM solver in [25]. That said, compared to
IPMs, our OFO-based approach demands much less memory, and it is able to maintain a much
lower dependence on the dimensions m,n and thus is much more scalable, whereas the cost per
iteration of such IPMs has a rather high dependence on the dimension. In addition, the memory
requirements of IPMs are far more than OFO algorithms, posing a critical disadvantage to their use
in large-scale applications. Similar comparisons of our OFO-based approach against pessimization
or nominal feasibility oracle-based approaches utilizing other methods point out its advantage,
which is at least an order of magnitude better in terms of its dependence on ε. In fact, when
rx(ε) ≈ ru(ε), our method can lead to savings over the approach of [25] with CoMirror algorithm
used in its oracle by a factor as large as O(1/(ε2 log(1/ε))).

2.4.2 Connections with Existing First-order Methods

Finally, we would like to discuss and contrast directly solving robust convex optimization problems
(1.2) via general first-order methods. Many FOMs require domains that are simple so that the prox
operations can be easily done. In that respect, domains defined by multiple functional constraints
gi(x) ≤ 0 creates a challenge for directly applying many of these algorithms. We now discuss two
existing classes of FOMs that are designed to handle such domains: primal-dual methods and the
CoMirror approach. Applying these FOMs to the RO problem (1.2) can be viewed as another
alternative solution methodology to solve RO problems without using the robust counterpart.

A general technique to address the functional constraints in the domain is to embed these
constraints into the objective through Lagrange multipliers, and then solve the associated dual
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problem via FOMs (see e.g., Nedić and Özdaǧlar [109]). Such methods are known as primal-dual
methods. For the RO problem (1.2), this corresponds to solving

max
λ

{
L∗(λ) := min

x∈X

[
f0(x) +

m∑
i=1

λ(i)gi(x)

]
: λ ≥ 0

}
,

where we define gi(x) := supui∈U i f
i(x, ui). Primal-dual methods (e.g., Nedić and Özdaǧlar [109])

commonly require us to solve the inner minimization problem over x ∈ X at each iteration. For
RO, this means we must solve an expensive SP problem at each iteration. Our OFO-based ap-
proach aims to improve on this by reducing the per-iteration cost of each step to simple first-order
updates. Two exceptions within the primal-dual methods are the work of Nedić and Özdaǧlar [110]
and Yu and Neely [154], which have cheap per-iteration cost based on only gradient computations
and projection operations in the Euclidean setup. Nedić and Özdaǧlar [110] provide a convergence
rate of O(1/

√
T ) in the non-smooth case. While using such a primal-dual method has the ad-

vantage that no binary search is needed, we note that this requires two assumptions to guarantee
convergence: we have access to exact first-order information for the robust constraint functions
gi(x) := supui∈U i f

i(x, ui), and the standard Slater constraint qualification condition (i.e., strict
feasibility) is satisfied. The first assumption is often not satisfied, since we may only be able to
compute gi(x) up to accuracy ε. While there exists some FOMs that work with inexact objective
gradients over simple domains, see e.g., Devolder et al. [53], such methods have only been applied
to specific max-type objectives, e.g., objectives obtained from smoothing. It is unclear how such
methods can be extended for more general max-type functions which can arise in RO. Secondly,
enforcing the Slater condition implicitly enforces feasibility of (1.2). In contrast, our framework
directly uses the functions f i(x, ui), so it does not need to take into account the inexact gradient
information, and can certify infeasibility of (1.2). Yu and Neely [154] present a method that can
guarantee O(1/T ) convergence when all functions are smooth. However, for RO problems, the
constraint functions gi(x) are non-smooth due to the supremum operation, thus their results do
not apply to RO.

The only FOM that we are aware of that can solve convex problems with functional constraints
without assuming feasibility is the CoMirror algorithm [14] and its earlier variations in the Euclidean
setup [113, 115, 121]. The CoMirror∗ algorithm finds an ε-optimal ε-feasible solution in O(1/ε2)
iterations to a convex program minx∈X

{
f0(x) : gi(x) ≤ 0, i ∈ [m]

}
or certifies its infeasibility by

using (sub)gradient information of the objective f0 as well as the constraint functions gi. In the RO
problem (1.2) we defined gi(x) := supui∈U i f

i(x, ui). As mentioned above, in many cases, we may
only be able to compute gi(x) approximately, thus only have access to approximate/inexact gradient
information. It is unknown to us whether or not techniques such as the ones from Devolder et al.
[53] can be applied to the CoMirror algorithm in the presence of this type of gradient information.
While the CoMirror algorithm’s complexity is O(1/ε2) (see also Nesterov [115, Chapter 3.2.4] for
a similar result in the Euclidean case), our iterative framework can exploit favorable structure on
the functions f i that can improve on the iteration complexity ru(ε), rx(ε). For the Euclidean case,
Nesterov [115, Chapters 2.3.4-2.3.5] shows also that convergence can be obtained in O(log(1/ε))
iterations when the objective and all constraint functions are both smooth and strongly convex in
x. However, such an improvement does not apply to the RO problem, since we cannot in general

∗Recall that the CoMirror algorithm is also discussed in Section 2.4.1.3 as a method to implement the nominal
feasibility solver; in that case we are given the noises ūi resulting in gi(x) := f i(x, ūi), and thus the subgradient of
gi(x) is simply the subgradient of f i(x, ūi).
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guarantee that gi(x) = supui∈U i f
i(x, ui) is smooth in x. It is unknown whether the iteration

complexity of CoMirror algorithm can be improved when only the underlying function f i(x, ui) is
strongly convex or smooth, or when gi(x) is strongly convex but non-smooth.

2.5 Application to Joint Estimation-Optimization

We now consider the JEO problem (1.5)-(1.6), which we restate below for convenience:

min
x
{f(x, u) : x ∈ X} (2.26)

given only {ut}t≥1, where ut → u. (2.27)

To apply our primal-dual framework, we write (2.26) as a SP problem, under the following assump-
tion on f(x, u):

Condition 2.17. For some domain Y and matrix B, we can represent

f(x, u) = max
y∈Y
{〈Bx, y〉 − φ(y, u)} .

Note that such a representation always exists through convex conjugacy; see Example 2.2.
Using the definition of Ψ(x, y;u) = 〈Bx, y〉 −φ(y, u), (2.26) can be represented as the following SP
problem:

min
x∈X

f(x, u) = min
x∈X

max
y∈Y
{〈Bx, y〉 − φ(y, u)} = min

x∈X
max
y∈Y

Ψ(x, y;u). (2.28)

Now, the optimality gap of a point 1
ΘT

∑
t∈[T ] θtxt is bounded by the saddle point gap (given any

ȳθT = 1
ΘT

∑
t∈[T ] θtyt):

f(x̄θT , u)−min
x∈X

f(x, u) ≤ max
y∈Y

Ψ(x̄θT , y;u)−min
x∈X

Ψ(x, ȳθT ;u), (2.29)

which is bounded by the three terms in Theorem 2.4,

ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
= max

x∈X,y∈Y

1

ΘT

∑
t∈[T ]

[〈Bxt, y〉 − φ(y, ut)− 〈Bx, yt〉+ φ(yt, ut)] (2.30)

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
= max

y∈Y

1

ΘT

∑
t∈[T ]

θt [φ(y, u)− φ(y, ut)] (2.31)

ε•
(
{yt, ut, θt}t∈[T ] ;u

)
=

1

ΘT

∑
t∈[T ]

θt [φ(yt, ut)− φ(yt, u)] . (2.32)

As mentioned above, we will present algorithms to bound ε̂ in Chapter 3, so we instead examine
the latter two terms ε◦, ε•. We can think of these two terms as capturing the price of estimation,
i.e., they are the error incurred from using inexact estimates ut 6= u. Indeed, if u were known and
we had ut = u for all t, then these terms will disappear.

We now give a sufficient condition that ensures limT→∞ {ε◦ + ε•} ≤ 0 whenever ut → u.

Condition 2.18. Fix a norm ‖ · ‖ on u vectors. For each y ∈ Y , φ(y, u) is Lipschitz continuous
in u for norm ‖ · ‖ with constant Ly, i.e., |φ(y, u′) − φ(y, u)| ≤ Ly‖u′ − u‖. In addition, L :=
maxy∈Y Ly <∞.
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Theorem 2.19. Suppose that Conditions 2.17 and 2.18 hold, and that {θt}t≥1 is chosen so that
ΘT =

∑
t∈[T ] θt →∞. Then, whenever ut → u for any fixed u,

lim
T→∞

[
ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
+ ε•

(
{yt, ut, θt}t∈[T ] ;u

)]
≤ 0.

Proof. First observe that for any t ≥ 1, y ∈ Y and u, by Condition 2.18,

φ(y, u)− φ(y, ut) ≤ Ly‖u− ut‖ ≤ L‖u− ut‖, φ(yt, ut)− φ(yt, u) ≤ Lyt‖ut − u‖ ≤ L‖ut − u‖.

This implies that

ε◦
(
{xt, ut, θt}t∈[T ] ;u

)
+ ε•

(
{yt, ut, θt}t∈[T ] ;u

)
≤ 2L

ΘT

∑
t∈[T ]

θt‖ut − u‖.

We now show the following:

at → 0 =⇒ 1

ΘT

∑
t∈[T ]

θtat → 0.

To get our result, we apply this to the sequence at = 2L‖ut − u‖, which converges to 0 since
ut → u. Fix some ε > 0, and choose S(ε) ∈ N sufficiently large such that for t ≥ S(ε), |at| ≤ ε/3.

Furthermore, choose T sufficiently large such that
∣∣∣ 1

ΘT

∑
t∈[S(ε)] θtat

∣∣∣ ≤ ε/2 and
∣∣∣ 1

ΘT

∑
t∈[S(ε)] θt

∣∣∣ ≤
1/2. We have ∣∣∣∣∣∣ 1

ΘT

∑
t∈[T ]

θtat

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

ΘT

∑
t∈[S(ε)]

θtat

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

ΘT

T∑
t=S(ε)+1

θtat

∣∣∣∣∣∣ .
The first term is ≤ ε/2 by our choice of T , and the second term is also, since∣∣∣∣∣∣ 1

ΘT

T∑
t=S(ε)+1

θtat

∣∣∣∣∣∣ ≤ 1

ΘT

T∑
t=S(ε)+1

θt|at| ≤
ε

3ΘT

T∑
t=S(ε)+1

θt =
ε

3

1− 1

ΘT

S(ε)∑
t=1

θt

 ≤ ε

2
.

Theorem 2.19 ensures that the error terms will be arbitrarily small if we make T large enough.
Thus, the SP gap (2.29), and hence also the optimality gap of (2.26), can be made arbitrarily small.
However, the rate at which the SP gap converges depends on the rate that ‖ut − u‖ → 0, and in
fact is slower. This is quite a natural consequence, since in essence it supports the intuition that
the performance is limited by the quality of given information {ut}t≥1; indeed, it is unreasonable to
expect that faster rates are possible without assumptions on the dynamics of the sequence {ut}t≥1

beyond convergence.
Finally, we state the convergence rate of 2L

ΘT

∑
t∈[T ] θt‖ut − u‖ → 0 for different possible rates

of ‖ut − u‖ → 0, as well as two common choices for θt, namely θt = 1 and θt = t. In Chapter 3, we
will see how the choice of θ affects the regret bounds for ε̂.

Proposition 2.20. The convergence rates in Table 2.4 hold.
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rate that 2L
ΘT

∑
t∈[T ] θt‖ut − u‖ → 0 θt = 1, ΘT = T θt = t, ΘT = T (T+1)

2

‖ut − u‖ = O(1/tr), r ∈ (0, 1), ∼ 1/T r ∼ 1/T r

‖ut − u‖ = O(1/t) ∼ log(T )/T ∼ 1/T
‖ut − u‖ = O(1/tr), r ∈ (1, 2), ∼ 1/T ∼ 1/T r

‖ut − u‖ = O(1/t2) ∼ 1/T ∼ log(T )/T 2

‖ut − u‖ = O(1/tr), r > 2 ∼ 1/T ∼ 1/T 2

‖ut − u‖ = O(βt), β ∈ (0, 1) ∼ 1/T ∼ 1/T 2

Table 2.4: Convergence rate of bound for ε◦ + ε•.

Proof. First, we analyse S(r, T ) :=
∑

t∈[T ]
1
tr for r 6= 1, 2. Observe that

1

1− r

(
1

T r−1
− 1

)
=

∫ T

t=1

1

tr
dt ≤ S(r, T ) ≤

(
1 +

∫ T

t=1

1

tr
dt

)
=

1

1− r

(
1

T r−1
− r
)
.

� We consider the case θt = 1, ΘT = T , ‖ut − u‖ = O(1/tr), r > 0. In this case we have

1

1− r

(
1

T r
− 1

T

)
≤ 2L

ΘT

∑
t∈[T ]

θt‖ut − u‖ ∼
1

T
S(r, T ) ≤ 1

1− r

(
1

T r
− r

T

)
.

When r < 1, 1− r > 0 and 1/T = O(1/T r), hence the lower and upper bounds are ∼ 1/T r.
When r > 1, 1− r < 0 and 1/T r = O(1/T ), hence the lower and upper bounds are ∼ 1/T .

� Now consider the case θt = t, ΘT = 2/(T (T + 1)), ‖ut − u‖ = O(1/tr), r > 0. In this case we
have

2

2− r

(
1

T r−1(T + 1)
− 1

T (T + 1)

)
≤ 1

ΘT

∑
t∈[T ]

θt‖ut − u‖

∼ 2

T (T + 1)
S(r − 1, T ) ≤ 2

2− r

(
1

T r−1(T + 1)
− r − 1

T (T + 1)

)
.

When r < 2, 2−r > 0 and 1/(T (T+1)) = O(1/(T r−1(T+1))) = O(1/T r), hence the lower and
upper bounds are ∼ 1/T r. When r > 1, 1− r < 0 and 1/(T r−1(T + 1)) = O(1/(T (T + 1))) =
O(1/T 2), hence the lower and upper bounds are ∼ 1/T 2.

� Now consider the case θt = 1, ΘT = T , ‖ut − u‖ = O(1/t). Then

2L

ΘT

∑
t∈[T ]

θt‖ut − u‖ ∼
1

T

∑
t∈[T ]

1

t
∼ log(T )

T
.

� Now consider the case θt = t, ΘT = 2/(T (T + 1)), ‖ut − u‖ = O(1/t2). Then

2L

ΘT

∑
t∈[T ]

θt‖ut − u‖ ∼
1

T (T + 1)

∑
t∈[T ]

1

t
∼ log(T )

T 2
.
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Finally, consider the case ‖ut − u‖ = O(βt) for β ∈ (0, 1). When θt = 1, ΘT = T , we have

2L

ΘT

∑
t∈[T ]

θt‖ut − u‖ =
2L

ΘT

∑
t∈[T ]

βt
2Lβ(1− βT )

T (1− β)
∼ 1/T.

When θt = t, ΘT = 2/(T (T + 1)), we have

4L

T (T + 1)

∑
t∈[T ]

θt‖ut − u‖ =
4L

T (T + 1)

∑
t∈[T ]

tβt
4Lβ(1− (T + 1)βT + TβT+1)

T (T + 1)(1− β)2
∼ 1/T 2.
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Chapter 3

Online Convex Optimization
Algorithms

3.1 Introduction

In Chapter 2, we presented a unified primal-dual framework for solving robust optimization (RO)
and joint estimation-optimization (JEO) problems. These generate a solution x̄ in very similar
ways: iteratively generate a primal-dual sequence {xt, yt}t∈[T ] based on a data sequence {ut}t∈[T ],
then perform averaging after a finite number of iterations T to build an approximate solution x̄.
We assume very little about the data sequence {ut}t∈[T ]; in the case of JEO, we only know that it
converges to the ‘ideal’ data u, and in RO we actually generate it ourselves, thus the data sequence
is quite intricately dependent on the primal-dual sequence {xt, yt}t∈[T ]. To handle this complexity
in both problems, we use tools from online convex optimization (OCO).

OCO is part of the broader online learning (or sequential prediction) framework, which was
introduced as a method to optimize decisions in a dynamic environment where the objective is
changing at every time period, and at each time period we are allowed to adapt to our changing
environment based on accumulated information. The origin of the online learning model can be
traced back to the work of Robbins [127] on compound statistical decision problems. This framework
has found a diverse set of applications in many fields; for further details see [49, 73, 135].

In standard OCO, we are given a convex domain X and a finite time horizon T . In each time
period t = 1, . . . , T , an online player chooses a decision xt ∈ X based on past information from time
steps 1, . . . , t− 1 only. Then, a convex loss function ft : X → R is revealed, and the player suffers
loss ft(xt) and gets some feedback typically in the form of first-order information ∇ft(xt). We call
this restriction on the player non-anticipatory, since the player cannot anticipate the next loss ft
ahead of deciding xt.

∗ In addition, it is usually assumed that the functions ft are set in advance—
possibly by an all-powerful adversary that has full knowledge of our learning algorithm—and we
know of only the general class of these functions. As such, it is unreasonable to compare the loss
of the player across the time horizon to the best possible loss, which would require full knowledge
of ft in advance of choosing xt. Instead, the player’s sequence of decisions xt is evaluated against

∗This is also referred to as a 0-lookahead framework.
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the best fixed decision in hindsight, and the (average) difference is defined to be the regret :

1

T

T∑
t=1

ft(xt)− inf
x∈X

1

T

T∑
t=1

ft(x). (3.1)

The goal in OCO is to design efficient regret minimizing algorithms that generate the points xt so
that the regret tends to zero as T increases. Therefore, in OCO we seek non-anticipatory algorithms
to choose xt that guarantee

1

T

T∑
t=1

ft(xt)− inf
x∈X

1

T

T∑
t=1

ft(x) ≤ r(T ), lim
T→∞

r(T ) = 0,

and the performance of our algorithms is measured by how quickly r(T ) tends to 0. While regret
may seem like a weak evaluation metric, the fact that regret minimizing algorithms exist for any
sequence of functions ft is quite powerful. In particular, it allows us to handle the intricacies of
simultaneously generating xt and ut.

3.1.1 Related Literature

In this chapter, we give an overview of OCO algorithms which are instrumental in our primal-dual
framework RO and JEO introduced in Chapter 2. In particular, we explore the introduction of
three simple flexibilities to the standard OCO framework: weighted regret, online saddle point
(SP) problems and lookahead decisions (defined formally in Sections 3.4.1 and 3.6). These are
permissible in the primal-dual framework, and allow us to exploit structural properties of certain
problems.

To our knowledge, the concept of weighted regret in OCO has not been studied prior to our
paper [80]. However, modification of aggregation weights as a means to speed up convergence
has been explored in the stochastic optimization setting under strong convexity assumptions; see
[75, 100, 108, 125]. Our work can be seen as an extension of these results to the adversarial setting,
and in fact, one of our results, Theorem 3.12, is a simple generalization of a result from [100].
Nevertheless, by stating the result in the general adversarial setting of OCO, we are able to apply
it to RO and JEO, which do not fit within the stochastic optimization framework. Subsequent
to our paper [80], Abernethy et al. [2], Wang and Abernethy [148] use weighted regret to analyse
offline convex optimization algorithms through the regret framework.

Mahdavi et al. [104] introduce a special case of online SP problems to handle difficult constraints
in OCO problems. The difficult constraints si(x) ≤ 0 are embedded into each loss function ft(x)
by aggregation with Lagrange dual multipliers y, to form a new loss function φt(x, y) = ft(x) +∑m

i=1 y
(i)si(x), which is convex in x and concave in y. Both primal and dual variables x, y are

then updated each time step to obtain bounds on the regret and the violation
∑T

t=1 s
i(x). The

papers [98, 89] also use similar duality ideas for handling difficult constraints and objectives in
online settings. Nevertheless, the convergence rates given in these papers are the usual O(1/

√
T )

or slower. In this paper, we analyze online SP problems more generally, and explore faster rates in
the 1-lookahead setting.

Online settings with 1-lookahead naturally arise in metrical task systems [37, 40, 7] and online
display advertising [89]. In these settings, the variation of the decisions x1, . . . , xT across the time
horizon is also penalized, and the performance of the sequence is measured as the competitive ratio
of the realized loss with the best possible loss [37, 40, 7] or as a dynamic regret term [89]. Both
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competitive ratio and dynamic regret objectives do not fit to our framework. Moreover, [7, Section
4] show that standard regret and competitive ratio cannot be simultaneously optimized.

From an algorithmic point of view, Mahdavi et al. [104], Chiang et al. [50] and Yang et al. [152]
examine online variants of the Mirror Prox algorithm when it is limited to work with only past
information. In particular, [50, 152] provide regret bounds with ‘gradual variation’ terms, which
capture how quickly the sequence of functions ft vary. Rakhlin and Sridharan [123, 124] analyze
1-lookahead decisions in OCO through the lens of predictable sequences. They explore how one can
exploit information from a single sequence M1, . . . ,MT in an online framework, where each term
Mt is revealed to the player prior to choosing the decision xt. They provide the Optimistic Mirror
Descent algorithm, which is essentially a generalization of Mirror Prox [112], to exploit the sequence
M1, . . . ,MT . Rakhlin and Sridharan [123, 124] focus on uncoupled dynamics and zero-sum games,
whereas our work focuses on more general and flexible OCO problems, and designing and applying
proper generalizations of FOMs such as Mirror Prox to more flexible OCO problems arising in
the context of coupled optimization problems. That said, our work in Section 3.6 is related to
exploiting a specific predictable sequence; we elaborate on this in Remark 3.31.

3.1.2 Contributions

In this chapter, we explore the introduction of simple flexibilities to the standard OCO framework,
which allow us to exploit structural properties of RO and JEO and results in improved convergence
rates. We explore three simple modifications to the standard OCO assumptions:

� We introduce the concept of weighted regret, where instead of taking uniform averages with
weights θt = 1/T in (3.1), we are allowed to use nonuniform weighted averages. From a
modeling perspective, this allows us to capture situations where decisions xt at different time
steps t have varying importance.

� We introduce the online saddle point (SP) problem, where at each step we receive a convex-
concave function φt(x, y) and must choose x and y. This is an extension of the well-studied
offline convex-concave SP problem, and can be thought of as a dynamic zero-sum two-player
game where at each step the players are restricted to make only one move.

� We explore the implications of 1-lookahead or anticipatory decisions, where the learner can
receive limited information (e.g., gradient) on the function ft before making the decision
xt. This is in contrast to most OCO settings where the learner must choose xt before any
information on ft is revealed.

Under this new OCO framework with flexibilities, we present and discuss algorithms accom-
panied with new regret bounds that can be better than the standard OCO ones when favorable
problem structure is present. Our algorithms are based on online adaptations of two commonly
used offline first-order methods (FOMs) from convex optimization, namely Mirror Descent and Mir-
ror Prox. We present our developments in the flexible proximal setup of Juditsky and Nemirovski
[93, 94] which can be further customized to the geometry of the domains.

Our analyses demonstrate that these flexibilities introduced into the OCO framework have
significant consequences whenever they are applicable. For example, in the strongly convex case,
minimizing unweighted regret has a proven optimal bound of O(log(T )/T ), whereas we show that
a bound of O(1/T ) is possible when we consider weighted regret. Similarly, for the smooth case,
considering 1-lookahead decisions results in a O(1/T ) bound, compared to O(1/

√
T ) in the standard

OCO setting (see Remarks 3.14 and 3.32). Consequently, these new regret bounds are pivotal in
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exploiting structural properties of functions to achieve improved convergence rates for both RO
and JEO.

3.2 Weighted Regret and Online Saddle Point Problems

Suppose we have weights θt > 0, t ≥ 1. As in Chapter 2, we denote ΘT =
∑

t∈[T ] θt. The weighted
regret is defined by simply scaling each time step t of the usual regret (3.1) by weight θt, then
re-normalizing by ΘT :

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x). (3.2)

We seek algorithms for choosing selecting {xt}t≥1 that guarantee

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ r(T ), lim
T→∞

r(T ) = 0.

From a modeling perspective, weighted regret enables us to model situations where later de-
cisions xt carry higher importance by placing higher weights θt on subsequent periods t (or vice
versa). For example, in a repeated game where performance of a player is aggregated from the loss
at each stage, we may want to weigh the later stages more heavily than the earlier stages, since
earlier stages might be used to explore the opponents’ strategy, whereas in later stages we expect
the player to have converged to a (near)-optimal strategy.

On the practical side, weighted regret lets us choose weights θt to speed up convergence. In
particular, when the functions ft are strongly convex, our bounds of O(1/T ) for weighted regret
improve on the optimal regret bounds O(log(T )/T ) for the uniform weight case. Furthermore,
weighted regret bounds become important in the primal-dual framework of Chapter 2, where we
combine two regret terms which must have the same weights θ to obtain bounds. Note that while
it is possible to view weighted regret as a rescaling of the functions ft with weights θt, such a view
will inevitably change the parameters associated with functions ft such as strong convexity. In
contrast, working with the weighted regret concept circumvents this issue; see Section 3.5 for our
study on exploiting strong convexity.

In Chapter 2.2, we introduced the (offline) saddle point (SP) problem (2.1). A natural extension
of SP problems to an online setup is as follows: We are given domains X,Y and a time horizon
T . At each time period t ∈ [T ], we simultaneously select (xt, yt) ∈ X × Y and receive Ψt(xt, yt)
based on a convex-concave function Ψt(x, y) revealed at the time period. We can think of this
as a dynamic two-player zero-sum game, where at each stage t, each player makes only one move
(decision) xt ∈ X and yt ∈ Y as opposed to reaching to an approximate equilibrium. Then the
goal of each player is to minimize their weighted regrets given the sequence of moves of the other
player, i.e.,

1

ΘT

∑
t∈[T ]

θtΨt(xt, yt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨt(x, yt) and max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨt(xt, y)− 1

ΘT

∑
t∈[T ]

θtΨt(xt, yt).
†

In this setup, we assume that at each period t, the decisions and actions (queries made to the
function Ψt) of each player, i.e., xt and yt, are revealed to the other and vice versa immediately

†Note that the y-player receives a concave reward Ψt(xt, yt) at each time step, so their regret is written with the
supremum.
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after they make their decision or action. This revealed information from period t can then be used
by both players in their subsequent decisions and actions in the same period t or in future rounds
t+ 1 and so on. We define the weighted online SP gap to be the sum of these weighted regrets (i.e.,
the average social loss):

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨt(xt, y)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨt(x, yt). (3.3)

We call the problem of minimizing the weighted online SP gap the online SP problem. More
precisely, the online SP problem seeks algorithms to generate {xt, yt}t≥1 that bound the online SP
gap by a term r(T ), where limT→∞ r(T ) = 0. When the functions Ψt remain the same throughout
the time horizon, i.e., Ψt(x, y) = Ψ(x, y;u) for all t ∈ [T ], and x̄θT , ȳθT are taken to be the weighted
sums of {xt}t∈[T ], {yt}t∈[T ] respectively, the weighted online SP gap naturally bounds the standard

SP gap for the underlying offline SP problem, i.e., εΨsad(x̄θT , ȳ
θ
T ) in (2.9).

An offline (online) SP problem can be solved by solving two related OCO problems, which can
also be interpreted as two regret-minimizing players playing a static (dynamic) zero-sum game.
Note that the reverse is not true in general: solving an offline (online) SP problem does not in
general give us bounds on the individual regrets of each player.

The online SP gap interpretation of (3.3) is advantageous when we relax the non-anticipatory
restriction. In an online setup where 1-lookahead decisions are allowed, by examining specialized
algorithms for minimizing the weighted online SP gap (3.3) rather than employing two separate
regret-minimization algorithms for the players, we can exploit both the fact that our choices [xt; yt]
may utilize the current function Ψt and any favorable structural properties of the functions Ψt such
as smoothness. In Section 3.6, we introduce algorithms that minimize the weighted online SP gap
(3.3) directly. Our analysis demonstrates that exploiting favorable structural properties of functions
Ψt plays a crucial role for obtaining better convergence rates for (3.3). See also Remark 3.32.

3.3 Algorithmic Setup

Many OCO algorithms are closely related to offline iterative FOMs. In this section, we first intro-
duce some notation and key concepts related to the proximal setup for FOMs along with general
properties of two classical FOMs, namely the Mirror Descent and Mirror Prox algorithms, that are
crucial in our analysis for OCO. We then analyze the general versions of these FOMs to develop
upper bounds on the weighted regret and weighted online SP gap. We follow the presentation and
notation of the excellent survey [93, 94].

Most FOMs capable of solving OCO and online SP problems are quite flexible in terms of
adjusting to the geometry of the problem characterized by its domain Z. In the case of SP problems,
the domain is given by Z = X × Y . The following components are standard in forming the setup
for such FOMs and their convergence analysis:

� Norm: ‖ · ‖ on the Euclidean space E where the domain Z lives, along with its dual norm
‖ζ‖∗ := max

‖z‖≤1
〈ζ, z〉.

� Distance-Generating Function (d.g.f.): A function ω(z) : Z → R, which is convex and
continuous on Z, admits a selection of subgradients ∇ω(z) that is continuous on the set
Z◦ := {z ∈ Z : ∂ω(z) 6= ∅} (here ∂ω(z) is a subdifferential of ω taken at z), and is strongly
convex with modulus 1 with respect to ‖ · ‖:

∀z′, z′′ ∈ Z◦ : 〈∇ω(z′)−∇ω(z′′), z′ − z′′〉 ≥ ‖z′ − z′′‖2.
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� Bregman distance: Vz(z
′) := ω(z′)− ω(z)− 〈∇ω(z), z′ − z〉 for all z ∈ Z◦ and u ∈ Z.

Note that Vz(z
′) ≥ 1

2‖z− z
′‖2 ≥ 0 for all z ∈ Z◦ and z′ ∈ Z follows from the strong convexity

of ω.

� Prox-mapping : Given a prox center z ∈ Z◦,

Proxz(ξ) := arg min
z′∈Z

{
〈ξ, z′〉+ Vz(z

′)
}

: E→ Z◦.

When the d.g.f. is taken as the squared `2-norm, the prox mapping becomes the usual
projection operation of the vector z − ξ onto Z.

� ω-center : zω := arg min
z∈Z

ω(z).

� Set width: Ω = Ωz := max
z∈Z

Vzω(z) ≤ max
z∈Z

ω(z)−min
z∈Z

ω(z).

For common domains Z such as simplex, Euclidean ball, and spectahedron, standard proximal
setups, i.e., selection of norm ‖ · ‖, d.g.f. ω(·), the resulting Prox computations and set widths Ω
are discussed in [93, Section 5.7].

When we have a decomposable domain Z = X × Y , we can build a proximal setup for Z from
the individual proximal setups on X and Y . Given a norm ‖ · ‖x and a d.g.f. ωx(·) for the domain
X, similarly ‖ · ‖y, ωy(·) for the domain Y , and two scalars βx, βy > 0, we build the d.g.f. ω(z) and
ω-center zω for Z = X × Y as

ω(z) = βxωx(x) + βyωy(y) and zω = [xωx ; yωy ],

where ωx(·) and ωy(·) as well as xωx and yωy are customized based on the geometry of the domains
X and Y . In this construction, the flexibility in determining the scalars βx, βy > 0 is useful in
optimizing the overall convergence rate. Moreover, by letting ξ = [ξx; ξy] and z = [x; y], the prox
mapping becomes decomposable as

Proxz(ξ) =

[
Proxωxx

(
ξx
βx

)
; Prox

ωy
y

(
ξy
βy

)]
,

where Proxωxx (·) and Prox
ωy
y (·) are respectively prox mappings with respect to ωx(·) in domain X

and ωy(·) in domain Y . We refer the reader to the references [93, Section 5.7.2] and [94, Section
6.3.3] for further details on how to optimally choose the parameters βx, βy for SP problems.

3.4 Regret Minimization under Minimal Assumptions

In the most basic setup, our functions ft (resp. Ψt) are convex (resp. convex-concave) and non-
smooth. In this case, we analyze a generalization of Mirror Descent, outlined in Algorithm 2 for
bounding the weighted regret and weighted online SP gap.

Remark 3.1. In Algorithm 2, computation of zt depends on only zt−1 and ξt−1. In the following
we will examine Algorithm 2 by allowing ξt−1 to depend on only the past information on functions
f1, . . . , ft−1 (or Ψ1, . . . ,Ψt−1). Then the iterations in Algorithm 2 will be based on solely the past
information allowing us to carry out a non-anticipatory analysis for Algorithm 2.
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Algorithm 2 Generalized Mirror Descent

input: ω-center zω, time horizon T , positive step sizes {γt}t∈[T ], and a sequence {ξt}t∈[T ].
output: sequence {zt}t∈[T ].
z1 := zω.
for t = 1, . . . , T do
zt+1 = Proxzt(γtξt)

end for

Proposition 3.2 describes a fundamental property exhibited by the Mirror Descent updates. Its
proof can be found in [93, Proposition 5.1, Equation 5.13], and we include it here for completeness.

Proposition 3.2. Suppose that the sequence of vectors {zt}t∈[T ] is generated by Algorithm 2 for
a given sequence of vectors {ξt}t∈[T ] and step sizes γt > 0 for t ∈ [T ]. Then for any z ∈ Z and
t ∈ [T ], we have

γt〈ξt, zt − z〉 ≤ Vzt(z)− Vzt+1(z) +
1

2
γ2
t ‖ξt‖2∗. (3.4)

Proof. Recall that

zt+1 = Proxzt(γtξt) = arg min
z∈Z

{γt〈ξt, z〉+ Vzt(z)} = arg min
z∈Z

{〈γtξt −∇ω(zt), z〉+ ω(z)} .

We first prove that, for all z ∈ Z, 〈γtξt −∇ω(zt) +∇ω(zt+1), z − zt+1〉 ≥ 0. Fix some z ∈ Z and
consider the function hzt+1,z(s) = 〈γtξt−∇ω(zt), zt+1 + s(z− zt+1)〉+ω(zt+1 + s(z− zt+1)) defined
for s ∈ [0, 1]. In general, hzt+1,z may not be differentiable since ω may not be, but we know that it
is convex, hence subgradients exist, and by definition of zt+1 as the minimizer, it is non-decreasing,
hence all subgradients of h are non-negative. In particular, all subgradients of hzt+1,z at s = 0 are
non-negative, and it is a simple exercise to check that 〈γtξt −∇ω(zt) +∇ω(zt+1), z − zt+1〉 is one
such subgradient. We now know that for all z ∈ Z,

〈γtξt −∇ω(zt) +∇ω(zt+1), z − zt+1〉 ≥ 0.

We thus have

γt〈ξt, zt − z〉 ≤ 〈∇ω(zt+1)−∇ω(zt), z − zt+1〉+ γt〈ξt, zt − zt+1〉
= Vzt(z)− Vzt+1(z)− Vzt(zt+1) + γt〈ξt, zt − zt+1〉 (3.5)

≤ Vzt(z)− Vzt+1(z)− 1

2
‖zt − zt+1‖2 + γt〈ξt, zt − zt+1〉

≤ Vzt(z)− Vzt+1(z)− 1

2
‖zt − zt+1‖2 + γt‖ξt‖∗‖zt − zt+1‖,

where the second inequality follows by strong convexity of ω and the third inequality follows by the
definition of the dual norm. The result now follows by recognizing that maxs

{
γt‖ξt‖∗s− s2/2

}
=

γ2
t ‖ξt‖2∗/2.

3.4.1 Weighted Regret

From Proposition 3.2, we may derive a bound on the weighted regret (3.2) in the most general case
where our functions ft(x) need only satisfy convexity and Lipschitz continuity. More precisely, we
will assume the following.
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Assumption 3.3. A proximal setup of Section 3.3 exists for the domain Z = X. Each function
ft is convex, and there exists G ∈ (0,∞) such that the subgradients of ft are bounded, i.e.,
‖∇ft(x)‖∗ ≤ G for all x ∈ X and t ∈ [T ].

Theorem 3.4. Suppose Assumption 3.3 holds, and we are given weights {θt}t≥1. Then running

Algorithm 2 with zt = xt, ξt = θt∇ft(xt), and step sizes γt = γ :=
√

2Ω
G2

∑
t∈[T ] θ

2
t

for all t ∈ [T ]

results in ∑
t∈[T ]

θtft(xt)−min
x∈X

∑
t∈[T ]

θtft(x) ≤
√

2ΩG2
∑
t∈[T ]

θ2
t .

Consequently, the weighted regret is bounded by

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤

√√√√2ΩG2
∑
t∈[T ]

(
θt

ΘT

)2

.

Note that Theorem 3.4 is a simple generalization of the fundamental result of [157]. We include
its proof for completeness.

Proof. By summing up (3.4) for t ∈ [T ] and writing γt = γ as a constant we obtain∑
t∈[T ]

γt〈ξt, xt − x〉 = γ
∑
t∈[T ]

θt〈∇ft(xt), xt − x〉 ≤ Vx1(x)− VxT+1(x) +
γ2

2

∑
t∈[T ]

θ2
t ‖∇ft(xt)‖2∗.

Because ‖θt∇ft(xt)‖∗ ≤ θtG, Vx1(x) ≤ Ω by our choice of x1 in Algorithm 2, −VxT+1(x) ≤ 0, and
dividing through by γ, we reach to∑

t∈[T ]

θt〈∇ft(xt), xt − x〉 ≤
Ω

γ
+
γ

2
G2
∑
t∈[T ]

θ2
t .

Optimizing the right hand side over γ ≥ 0 gives us the desired upper bound. The left hand side
of inequality in the theorem follows from θt ≥ 0 for all t ∈ [T ] and the convexity of functions ft
implying for all x ∈ X, 〈ξt, xt − x〉 = θt〈∇ft(xt), xt − x〉 ≥ θtft(xt)− θtft(x).

The bound on weighted regret in Theorem 3.4 is optimized when the weights θt are set to be
uniform, i.e., θt = 1; in this case, the regret bound becomes O(1/

√
T ).

Remark 3.5. We would like to highlight the importance of customizing our proximal setup based
on the geometry of the domain. In many cases, weighted regret or weighted online SP gap bounds
have a dependence on the set width parameter Ω associated with the proximal setup; see e.g.,
Theorem 3.4. For example, when our domain X = ∆n, equipping X with a proximal setup based
on negative entropy d.g.f. ω(x) =

∑n
j=1 x

j log(xj) results in Ω = log(n), which is almost dimension

independent. Using the Euclidean d.g.f. ω(x) = 1
2〈x, x〉 on X = ∆n leads to a suboptimal (and

dimension-dependent) set width of Ω =
√
n. Moreover, certain domains admit d.g.f.s that lead to

quite efficient Prox computations given either in closed form or by simple computations, taking only
O(n) arithmetic operations. Negative entropy d.g.f. over simplex and Euclidean d.g.f. over the
Euclidean unit ball are such examples. A possible issue for equipping the simplex with a Euclidean
proximal setup is that the prox-mapping (usual projection) no longer has a closed form, but it still
can be done efficiently in O(n log(n)) arithmetic operations. See [93] for a complete discussion.
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3.4.2 Weighted Online SP Gap

Algorithm 2 can also be utilized in bounding the weighted online SP gap (3.3). In this case, in
addition to a convex-concave structure assumption on functions Ψt(x, y), we assume boundedness
of specific monotone gradient operators associated with Ψt(x, y).

Assumption 3.6. A proximal setup of Section 3.3 exists for the domain Z = X × Y . Each
function Ψt(x, y) is convex in x and concave in y, and there exists G ∈ (0,∞) such that
‖[∇xΨt(x, y);−∇yΨt(x, y)]‖∗ ≤ G for all x ∈ X, y ∈ Y and t ∈ [T ].

Theorem 3.7. Suppose Assumption 3.6 holds, and we are given convex combination weights θ ∈
∆T . Then running Algorithm 2 with zt = [xt; yt], ξt = θt[∇xΨt(xt, yt);−∇yΨt(xt, yt)], and step

sizes γt = γ :=
√

2Ω
G2

∑
t∈[T ] θ

2
t

for all t ∈ [T ] gives us

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨt(xt, y)−min
x∈X

1

ΘT

∑
t∈[T ]

θtΨt(x, yt) ≤

√√√√2ΩG2
∑
t∈[T ]

(
θt

ΘT

)2

.

Proof. The proof proceeds exactly as the proof of Theorem 3.4 to arrive at

∑
t∈[T ]

〈ξt, zt − z〉 ≤

√√√√2ΩG2
∑
t∈[T ]

(
θt

ΘT

)2

for all z = [x; y] ∈ X ×Y . Then, from the convex-concave structure of the function Ψt, we have for
all z = [x; y] ∈ X × Y and all t ∈ [T ],

〈ξt, zt − z〉 = θt〈∇xΨt(xt, yt), xt − x〉+ θt〈∇yΨt(xt, yt), y − yt〉
≥ θt(Ψt(xt, yt)−Ψt(x, yt)) + θt(Ψt(xt, y)−Ψt(xt, yt))

= θtΨt(xt, y)− θtΨt(x, yt).

The result then follows by combining the inequality above with the inequality that provides the
upper bound on the term

∑
t∈[T ]〈ξt, zt − z〉.

Remark 3.8. Uniform weights θt = 1 minimize the upper bounds in Theorems 3.4 and 3.7, resulting
in O(1/

√
T ) bounds. Moreover, Theorems 3.4 and 3.7 can accommodate a variety of weights {θt}t≥1

via adapting their step sizes γt and still achieve bounds of form O(1/
√
T ). For example, this is the

case when the nonuniform weights θt = t from Theorem 3.12 are used in these results. Employing
nonuniform weights becomes more consequential when we have to run several OCO or online SP
algorithms in conjunction with each other using the same weights θt in all of them. This arises, for
example, in our primal-dual framework from Chapter 2.

3.5 Exploiting Strong Convexity

When our functions ft admit further favorable structure in the form of strong convexity, it is
possible to customize Algorithm 2 using specific nonuniform weights θt and achieve a bound of
O(1/T ), which is significantly better than the standard O(1/

√
T ) bound of Theorem 3.4 given by

uniform weights. Our developments here are based on the following structural assumption.

Assumption 3.9.
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� A proximal setup of Section 3.3 exists for the domain Z = X.

� The loss functions ft(x) for t ∈ [T ] have the property that the functions ft(x) − αω(x) is
convex for some α > 0 independent of t, or equivalently

ft(x) ≤ ft(x′) + 〈∇ft(x), x− x′〉 − αVx(x′), ∀x, x′ ∈ X, t ∈ [T ].

� The subgradients of the loss functions are bounded, i.e., there exists G ∈ (0,∞) such that
‖∇ft(x)‖∗ ≤ G for all x ∈ X, t ∈ [T ].

Remark 3.10. When our proximal setup for X is based on a Euclidean d.g.f. ω(x) = 1
2〈x, x〉

and Euclidean norm ‖x‖2, then Assumption 3.9 simply states that the functions ft are α-strongly
convex. In this paper, we will abuse terminology slightly and say that ft is α-strongly convex when
ft(x)− αω(x) is convex, where the dependence on the d.g.f. ω will be clear from the context.

By selecting the step sizes γt and weights θt in a clever fashion, we are able to exploit the extra
−αVxt(x) terms to improve the regret bound. This result is a generalization of the offline stochastic
gradient descent algorithm equipped with a Euclidean d.g.f. based proximal setup presented in
Lacoste-Julien et al. [100] to the online setting with domain X admitting a general proximal setup.
We first prove a preliminary result, which we will use for a more detailed analysis in Chapter 5.

Proposition 3.11. Suppose Assumption 3.9 holds. Suppose the weights θt and the step sizes γt

satisfy the relations θt+1

(
1

γt+1
− α

)
≤ θt

γt
for all t ≥ 1, and θ1

(
1
γ1
− α

)
≤ 0. Algorithm 2 with

zt = xt, ξt = ∇ft(xt) and step sizes γt results in

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ 1

ΘT

∑
t∈[T ]

θt
γt

(γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1)) .

Proof. In Algorithm 2, we have

xt+1 = Proxxt (γt∇ft(xt)) = arg min
x∈X

{〈γt∇ft(xt), x〉+ Vxt(x)} .

Since ∇xVxt(x) = ∇ω(x)−∇ω(xt), following the proof of Proposition 3.2 up to the second line of
(3.5), we get

γt〈∇ft(xt), xt − x〉 ≤ Vxt(x)− Vxt+1(x) + γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1).

Subtracting αγtVxt(x) from both sides and multiplying by θt/γt gives us

θt (〈∇ft(xt), xt − x〉 − αVxt(x)) ≤ θt
(

1

γt

(
Vxt(x)− Vxt+1(x)

)
− αVxt(x)

)
+
θt
γt

(
γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1)

)
.

Summing this from t = 1, . . . , T , we get∑
t∈[T ]

θt (〈∇ft(xt), xt − x〉 − αVxt(x)) ≤
T−1∑
t=1

(
θt+1

(
1

γt+1
− α

)
− θt
γt

)
Vxt+1(x)

+ θ1

(
1

γ1
− α

)
Vx1(x)− θT

γT
VxT+1(x)

+
∑
t∈[T ]

θt
γt

(
γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1)

)
.
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Now recall that Vx(x′) ≥ 0 holds for any x, x′, and also from the theorem hypothesis we have(
θt+1

(
1

γt+1
− α

)
− θt

γt

)
≤ 0 and θ1

(
1
γ1
− α

)
≤ 0. Therefore, on the right hand side of the above

inequality, the first sum and second and third terms are all nonpositive. The final result follows by
recognizing that, since ft − αω is convex, we have ft(xt)− ft(x) ≤ 〈∇ft(xt), xt − x〉 − αVxt(x).

Theorem 3.12 (Strongly convex MD). Suppose Assumption 3.9 holds. Let θt = t for t ∈ [T ],
ΘT = T (T + 1)/2. Then running Algorithm 2 with zt = xt, ξt = ∇ft(xt), and step sizes γt = 2

α(t+1)

for all t ∈ [T ] results in

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ 2G2

α (T + 1)
.

Proof. By Proposition 3.11, we have

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ 1

ΘT

∑
t∈[T ]

θt
γt

(γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1)) .

By strong convexity of ω with respect to ‖ · ‖, we have Vxt(xt+1) ≥ 1
2‖xt − xt+1‖2. Now, by

Cauchy-Schwarz, we have

γt〈∇ft(xt), xt−xt+1〉−Vxt(xt+1) ≤ γt‖∇ft(xt)‖∗‖xt−xt+1‖−
1

2
‖xt−xt+1‖2 ≤

1

2
γ2
t ‖∇ft(xt)‖2∗ ≤

1

2
γ2
tG

2.

Substituting this into the inequality, we have

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ 1

ΘT

∑
t∈[T ]

θt
γt

(γt〈∇ft(xt), xt − xt+1〉 − Vxt(xt+1))

≤ 1

ΘT

∑
t∈[T ]

1

2
θtγtG

2 =
1

ΘT

∑
t∈[T ]

t

α(t+ 1)
G2 ≤ 2G2

α(T + 1)
.

Let us revisit Remark 3.5 on customizing the proximal setup based on the geometry of the
domain.

Remark 3.13. In contrast to Theorem 3.4, the bound of Theorem 3.12 has no dependence on set
width Ω. Nevertheless, customization of the proximal setup, in particular selection of d.g.f. ω
plays an important role in Theorem 3.12 through Assumption 3.9. In many cases, it is much more
likely to encounter functions ft that are α-strongly convex in the usual sense, i.e., ft(x)− α‖x‖22/2
is convex, but it may not be possible to ensure the convexity of ft(x) − αω(x) with respect to a
different d.g.f. ω. In such cases, it is possible (and more desirable) to select a d.g.f. ω that will
ensure that the strong convexity requirement of Assumption 3.9 is satisfied. Because the bound of
Theorem 3.12 has no dependence on Ω, such a selection of ω will not adversely affect overall the
weighted regret bound of Theorem 3.12.

Remark 3.14. For strongly convex losses, Theorem 3.12 establishes an upper bound of O(1/T ) on
weighted regret. In contrast to this, Hazan and Kale [75] established a lower bound of O(log(T )/T )
for minimizing standard regret in OCO with strongly convex loss functions. The main distinguishing
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feature of [75] and our result in Theorem 3.12 is that while [75] considers the case of using uniform
weights θt = 1/T only, we are allowed to use nonuniform (in fact increasing) weights θt = t. The
faster rate of O(1/T ) in Theorem 3.12 is a result of this flexibility in our setup due to the weighted
regret concept that lets us choose nonuniform weights.

We present two other regret minimizing algorithms which exploit strong convexity and the
weights to give the faster O(1/T ) regret bound. The first is an adaptation of Nesterov’s dual
averaging method [117], an alternative FOM for convex optimization. Xiao [150] analyzed dual
averaging for the online and strongly convex setting, achieving an unweighted regret bound of
O(log(T )/T ). We show how to extend this with weights θt = t to achieve the O(1/T ) bound. Our
result requires a slight modification of Assumption 3.9.

Assumption 3.15.

� A proximal setup of Section 3.3 exists for the domain Z = X, and additionally maxx∈X〈∇ω(xω), x−
xω〉 ≤ Ω′ <∞.

� The loss functions ft(x) for t ∈ [T ] have the property that the functions ft(x) − αω(x) is
convex for some α > 0 independent of t, or equivalently

ft(x) ≤ ft(x′) + 〈∇ft(x), x− x′〉 − αVx(x′), ∀x, x′ ∈ X, t ∈ [T ].

� Denote ht(x) := ft(x)−αω(x), and note that these are convex functions. The subgradients of
ht(x) are bounded, i.e., there exists Gh <∞ such that ‖∇ht(x)‖∗ ≤ G for all x ∈ X, t ∈ [T ].

Theorem 3.16 (Strongly convex dual averaging). Suppose Assumption 3.15 holds. Denote ht(x) =
ft(x)− αω(x). Let θt = t for all t ∈ [T ] and {xt}t∈[T ] be computed according to Algorithm 2, with

γt = 1
αΘt+1 = 2

αt(t+1)+2 and

ξt =
∑
s∈[t]

θs∇hs(xs) + (αΘt + 1)(∇ω(xt)−∇ω(x1)).

Then

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤
2G2

h

T (T + 1)

∑
t∈[T ]

t

α(t− 1) + 2/t
+

2(α+ 1/T )Ω

T + 1
+

2αΩ′

T + 1
.

The proof of Theorem 3.16 is based on ideas from [117, 150]. We begin with a series of technical
lemmas.

Lemma 3.17. Suppose Assumption 3.15 holds. Define

Uη(s) := max
x∈X
{〈s, x− x1〉 − ηω(x)}

Wη(s) := max
x∈X
{〈s, x− x1〉 − ηω(x)− Vx1(x)} .

Then Uη(s) ≤Wη(s) + Ω.

Proof. Since Vx1(x) ≤ Ω for all x ∈ X, adding Ω− Vx1(x) to the objective of Uη does not decrease.
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Lemma 3.18. Suppose Assumption 3.15 holds. For any x ∈ X we have∑
t∈[T ]

θtft(xt)−
∑
t∈[T ]

θtft(x) ≤
∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt))

+
∑
t∈[T ]

θt〈∇ht(xt), x1 − x〉 − αΘTω(x)

≤
∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt)) + UαΘT (−dT ).

Proof. The first inequality follows by observing that for any t ≥ 1, due to convexity of ht(x),
we have ft(xt) − ft(x) ≤ 〈∇ht(xt), xt − x〉 + αω(xt) − αω(x). The second inequality follows by
maximizing over x ∈ X and applying the definition of U .

Lemma 3.19. Suppose Assumption 3.15 holds. Let

πη(s) := arg max
x∈X

{〈s, x− x1〉 − ηω(x)− Vx1(x)} .

Then ∇Wη(s) = πη(s)− x1 and is Lipschitz continuous:

∥∥∇Wη(s)−∇Wη(s
′)
∥∥ ≤ 1

η + 1
‖s− s′‖∗.

Therefore, for all s, g,

Wη(s+ g) ≤Wη(s) + 〈g,∇Wη(s)〉+
1

2(η + 1)
‖g‖2∗.

Proof. The result follows from standard conjugacy arguments. In particular, Lipschitz continuity
follows since Wη is the convex conjugate of ηω + Vx1 which is (η + 1)-strongly convex with respect
to ‖ · ‖.

Lemma 3.20. Denote dt :=
∑

s∈[t] θs∇hs(xs). For each t ≥ 1,

WαΘt (−dt) + αθtω(xt+1) ≤WαΘt−1 (−dt) .

Proof. We have for t ≥ 1

WαΘt−1 (−dt) = max
x∈X
{〈dt, x1 − x〉 − αΘt−1ω(x)− Vx1(x)}

≥ 〈dt, x1 − xt+1〉 − αΘt−1ω(xt+1)− Vx1(xt+1)

= max
x∈X
{〈dt, x1 − x〉 − αΘtω(x)− Vx1(x)}+ αθtω(xt+1)

= WαΘt (−dt) + αθtω(xt+1)
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where the second equality follows from the update rule for xt+1:

xt+1 = Proxxt(γtξt)

= arg min
x∈X

{
1

αΘt + 1
〈ξt, x〉+ Vxt(x)

}
= arg min

x∈X

{
1

αΘt + 1
〈dt + (αΘt + 1)(∇ω(xt)−∇ω(x1)), x〉+ ω(x)− ω(xt)− 〈∇ω(xt), x− xt〉

}
= arg min

x∈X

{
1

αΘt + 1
〈dt, x〉+ ω(x)− 〈∇ω(x1), x〉

}
= arg min

x∈X
{〈dt, x− x1〉+ αΘtω(x) + ω(x)− ω(x1)− 〈∇ω(x1), x− x1〉}

= arg max
x∈X

{〈dt, x1 − x〉 − αΘtω(x)− Vx1(x)} .

We are now ready to prove Theorem 3.16.

Proof of Theorem 3.16. In light of Lemmas 3.17 and 3.18, we have∑
t∈[T ]

θtft(xt)−
∑
t∈[T ]

θtft(x) ≤
∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt)) + UαΘT (−dT )

≤
∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt)) +WαΘT (−dT ) + Ω. (3.6)

Using Lemma 3.20 we get that for t ≥ 1,

WαΘt (−dt) + αθtω(xt+1)

≤WαΘt−1 (−dt)
= WαΘt−1 (−dt−1 − θt∇ht(xt))

≤WαΘt−1 (−dt−1)− θt
〈
∇ht(xt),∇WαΘt−1 (−dt−1)

〉
+

θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗

= WαΘt−1 (−dt−1)− θt 〈∇ht(xt), xt − x1〉+
θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗.

Here, the first equality follows by definition, the second inequality follows from Lemma 3.19, i.e.,
smoothness of W , and the second equality follows since we can write xt = παΘt−1 (−dt−1).

Rearranging the above inequality, we see that

θt 〈∇ht(xt), xt − x1〉+ θtαω(xt+1) ≤WαΘt−1 (−dt−1)−WαΘt (−dt) +
θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗

Summing this for t ∈ [T ] and recognising the telescoping terms with WαΘ0(0) = −Vx1(x1) = 0, we
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get ∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt))

=
∑
t∈[T ]

θt (〈∇ht(xt), xt − x1〉+ αω(xt+1)) + α
∑
t∈[T ]

θt(ω(xt)− ω(xt+1))

≤ −WαΘT (−dT ) +
∑
t∈[T ]

θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗ + α

∑
t∈[T ]

θt(ω(xt)− ω(xt+1))

Combining this with (3.6), we get∑
t∈[T ]

θtft(xt)−
∑
t∈[T ]

θtft(x)

≤
∑
t∈[T ]

θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗ + α

∑
t∈[T ]

θt(ω(xt)− ω(xt+1)) + Ω

=
∑
t∈[T ]

θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗ + Ω + α

T∑
t=2

(θt − θt−1)ω(xt) + αθ1ω(x1)− αθTω(xT+1)

Now we will pick sequences θt = t for t ≥ 1, thus Θt−1 = (t− 1)t/2. Then

∑
t∈[T ]

θ2
t

2(αΘt−1 + 1)
‖∇ht(xt)‖2∗ + α

T∑
t=2

(θt − θt−1)ω(xt) + αθ1ω(x1)− αθTω(xT+1) + Ω

=
∑
t∈[T ]

t2

2(α(t− 1)t/2 + 1)
‖∇ht(xt)‖2∗ + α

T∑
t=2

ω(xt) + αω(x1)− αTω(xT+1) + Ω

=
∑
t∈[T ]

t

α(t− 1) + 2/t
‖∇ht(xt)‖2∗ + α

T∑
t=2

(ω(xt)− ω(x1))− αT [ω(xT+1)− ω(x1)] + Ω

≤
∑
t∈[T ]

t

α(t− 1) + 2/t
‖∇ht(xt)‖2∗ + (αT + 1)Ω + αTΩ′.

The last inequality follows since 0 ≤ ω(x)−ω(x1) ≤ Ω+Ω′ for all x. Using the bound ‖∇ht(xt)‖∗ ≤
Gh and dividing by ΘT gives us the result.

The second algorithm we present is known in the OCO literature as follow-the-leader. The idea
is to minimize the weighted sum of the functions {fs}s∈[t] to get xt at each time step t. The regret
bound obtained in Theorem 3.21 was proved in Abernethy et al. [2, Section 2.4], so we do not give
the proof here.

Theorem 3.21 (Strongly convex follow-the-leader [2, Section 2.4]). Suppose that Assumption 3.9
is satisfied, except that the domain need not have a prox-setup. Choose x1 ∈ X arbitrarily, and

xt+1 = arg min
x∈X

∑
s∈[t]

θsfs(x)

 .
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Then
1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ 2G2

α(T + 1)
.

Remark 3.22. We now have three weighted regret minimizing algorithms that achieve O(1/T )
regret bound for strongly convex functions. We comment briefly on their differences. Note that
the per-iteration cost of the MD and dual averaging algorithms from Theorems 3.12 and 3.16
are identical: both require implementing the prox-operator to compute xt. On the other hand,
computing xt in follow-the-leader is potentially much harder if ft(x) − αω(x) is non-linear; if it
is linear, then follow-the-leader has the same per-iteration cost as the others. The constants in
the bounds for MD and dual averaging are also slightly different. For MD, we have the gradient
bound ‖∇ft(xt)‖∗ ≤ G, whereas for dual averaging, we have the bound ‖∇ht(xt)‖∗ ≤ Gh and the
bound 〈∇ω(xω), xt − xω〉 ≤ Ω′. In general, the gradient ∇ω(x) may be unbounded over x ∈ X,
even if X is compact (e.g., if ω(x) is negative entropy over simplex domain X = ∆), so bounding
‖∇ft(xt)‖∗ = ‖∇ht(xt) +∇ω(xt)‖∗ can be more challenging than just ‖∇ht(xt)‖∗. Furthermore, if
X is compact, then we know that Ω′ = maxx∈X〈∇ω(xω), x− xω〉 is finite.

3.6 Exploiting Smoothness via Lookahead

In this section we explore the online setting when our functions exhibit a smooth structure. We
exploit this by allowing for 1-lookahead—that is, we are allowed to a limited query access to our
current function ft (or Ψt) at time period t before we make our decision zt. In fact, we will query
the gradient only once in each period t.

As discussed in the Introduction, the 1-lookahead setting may prevent it being applicable in
general online settings. In addition, if at iteration t we are given multiple query access to ft (or
Ψt), we can guarantee that the weighted regret (online SP gap) will be non-positive by directly
minimizing ft (solving for the SP of Ψt). However, solving a complete optimization problem at
each iteration may be expensive, and hence even in the situations where we have multiple query
access to ft at iteration t, it may be preferable to use our more efficient methods to bound the
weighted regret (online SP gap).

Our analysis is based on the generalized version of the Mirror Prox algorithm of Nemirovski
[111] outlined in Algorithm 3.

Algorithm 3 Generalized Mirror Prox

input: ω-center zω, time horizon T , positive step sizes {γt}t∈[T ], and sequences {ηt, ξt}t∈[T ].
output: sequence {zt}t∈[T ].
v1 := zω
for t = 1, . . . , T do
zt = Proxvt(γtηt).
vt+1 = Proxvt(γtξt).

end for

Proposition 3.23 states a fundamental property of Mirror Prox updates which is instrumental
in the derivation of our bounds. Its proof can be found in [94, Lemma 6.2 and Proposition 6.1],
which we reproduce here for completeness.
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Proposition 3.23. Suppose that the sequences of vectors {vt, zt}t∈[T ] are generated by Algorithm 3
for the given sequences {ηt, ξt}t∈[T ] and step sizes γt > 0 for t ∈ [T ]. Then for any z ∈ Z and
t ∈ [T ], we have

γt〈ξt, zt − z〉 ≤ Vvt(z)− Vvt+1(z) +
1

2

(
γ2
t ‖ξt − ηt‖2∗ − ‖zt − vt‖2

)
.

Proof. Recall that

zt = Proxvt(γtηt) = arg min
z∈Z

{〈γtηt −∇ω(vt), z〉+ ω(z)}

vt+1 = Proxvt(γtξt) = arg min
z∈Z

{〈γtξt −∇ω(vt), z〉+ ω(z)} .

Using the same optimality condition proved in Proposition 3.2, we have for all z ∈ Z

〈γtηt −∇ω(vt) +∇ω(zt), z − zt〉 ≥ 0

〈γtξt −∇ω(vt) +∇ω(vt+1), z − vt+1〉 ≥ 0.

Rearranging the second inequality, we see that

γt〈ξt, zt − z〉 ≤ γt〈ξt, zt − vt+1〉+ 〈∇ω(vt+1)−∇ω(vt), z − vt+1〉
= γt〈ξt, zt − vt+1〉+ Vvt(z)− Vvt+1(z)− Vvt(vt+1).

Substituting z = vt+1 into the first inequality gives

γt〈ξt, zt − vt+1〉 ≤ γt〈ξt − ηt, zt − vt+1〉+ 〈∇ω(zt)−∇ω(vt), vt+1 − zt〉
= γt〈ξt − ηt, zt − vt+1〉+ Vvt(vt+1)− Vzt(vt+1)− Vvt(zt).

Combining the previous two inequalities, we have for all z ∈ Z

γt〈ξt, zt − z〉 ≤ γt〈ξt − ηt, zt − vt+1〉+ Vvt(z)− Vvt+1(z)− Vzt(vt+1)− Vvt(zt)

≤ Vvt(z)− Vvt+1(z) + γt‖ξt − ηt‖∗‖zt − vt+1‖ −
1

2
‖zt − vt+1‖2 −

1

2
‖zt − vt‖2,

where the second inequality follows by Cauchy-Schwarz and strong convexity of ω. The result now
follows by recognizing that for any s ≥ 0, γt‖ξt − ηt‖∗s− s2/2 ≤ γ2

t ‖ξ − ηt‖2∗/2.

We analyze Algorithm 3 under the following smoothness assumption and derive an improved
rate of convergence for minimizing weighted regret.

Assumption 3.24. A proximal setup of Section 3.3 exists for the domain Z = X. Each function
ft(x) is convex in x, and there exists L ∈ (0,∞) such that ‖∇ft(x)−∇ft(v)‖∗ ≤ L‖x − v‖ holds
for all x, v ∈ X and all t ∈ [T ].

Theorem 3.25. Suppose Assumption 3.24 holds. Then running Algorithm 3 with zt = xt, ηt =
θt∇ft(vt), ξt = θt∇ft(zt), and step sizes γt = 1

(Lmaxt∈T θt)
for all t ∈ [T ] leads to

1

ΘT

∑
t∈[T ]

θtft(xt)−min
x∈X

1

ΘT

∑
t∈[T ]

θtft(x) ≤ ΩL
maxt∈[T ] θt

ΘT
.
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Proof. From Assumption 3.24, we have for all t ∈ [T ]

‖ξt − ηt‖∗ = θt‖∇ft(xt)−∇ft(vt)‖∗ ≤ Lθt‖xt − vt‖ ≤ Lmax
t∈[T ]

θt‖xt − vt‖.

Thus, by setting γt = 1

(Lmaxt∈[T ] θt)
, we deduce γ2

t ‖ξt − ηt‖2∗ − ‖xt − vt‖2 ≤ 0 for all t ∈ [T ]. Then

from Proposition 3.23 we obtain for all x ∈ X and t ∈ [T ]

〈ξt, xt − x〉 = θt〈∇ft(xt), xt − x〉 ≤
(
Vvt(x)− Vvt+1(x)

)
Lmax
t∈[T ]

θt.

Summing this inequality over t ∈ [T ] and using Vv1(x) ≤ Ω, VvT+1(x) ≥ 0, we get∑
t∈[T ]

〈ξt, xt − x〉 =
∑
t∈[T ]

θt〈∇ft(xt), xt − x〉 ≤ ΩLmax
t∈[T ]

θt.

The result then follows from convexity of ft and using the subgradient inequality 〈∇ft(xt), xt−x〉 ≥
ft(xt)− ft(x).

A similar result holds for the online SP gap under the following analogous smoothness assump-
tion.

Assumption 3.26. A proximal setup of Section 3.3 exists for the domain Z = X × Y , and we
denote z = [x; y]. Each function Ψt(x, y) is convex in x and concave in y. Denoting Ft(z) =
[∇xΨt(x, y);−∇yΨt(x, y)], there exists L ∈ (0,∞) such that for all v, z ∈ Z and all t ∈ [T ], we have

‖Ft(z)− Ft(v)‖∗ ≤ L‖z − v‖.

Remark 3.27. A sufficient condition for the Lipschitz continuity of monotone gradient operators Ft
of Assumption 3.26 is Lipschitz continuity of their partial subgradients. For brevity, we omit the
proof of this; see [94, 112] for further details.

Theorem 3.28. Suppose Assumption 3.26 holds. Then running Algorithm 3 with zt = [xt; yt],
ηt = θtFt(vt), ξt = θtFt(zt), and step sizes γt = 1

(Lmaxt∈T θt)
for all t ∈ [T ] leads to

max
y∈Y

∑
t∈[T ]

θtΨt(xt, y)−min
x∈X

∑
t∈[T ]

θtΨt(x, yt) ≤ ΩLmax
t∈[T ]

θt.

Proof. Following the outline of the proof of Theorem 3.25, we obtain∑
t∈[T ]

〈ξt, zt − z〉 =
∑
t∈[T ]

θt〈Ft(zt), zt − z〉 ≤ ΩLmax
t∈[T ]

θt

for all z = [x; y] ∈ X × Y . As in the proof of Theorem 3.7, using the convex-concave structure of
the functions Ψt, we arrive at

θt〈Ft(zt), zt − z〉 ≥ θtΨt(xt, y)− θtΨt(x, yt),

which establishes the result.
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Remark 3.29. When the weights θt are set to be either uniform θt = 1 or nonuniform θt = t from
Theorem 3.12, we have 1

ΘT
maxt∈[T ] θt = O(1/T ), and thus we achieve better weighted regret/online

SP gap bounds of O(1/T ) in Theorems 3.25 and Theorem 3.28 than the O(1/
√
T ) bounds of

Theorems 3.4 and Theorem 3.7.

There is a fundamental distinction between Algorithms 2 and 3 in terms of their
anticipatory/non-anticipatory behavior. This distinction between anticipatory/non-anticipatory
behavior is important in the context of using these algorithms for coupled optimization problems.
We discuss this next.

Remark 3.30. When Algorithm 3 is utilized in Theorems 3.25 and 3.28, at step t, in order to
compute the decision zt = Proxvt(γtηt), where vt ∈ Z is a point computed in the previous step,
we utilize the knowledge of the current function ft or Ψt because ηt = θt∇ft(vt) or ηt = θtFt(vt).
Therefore, Algorithm 3 is categorized as 1-lookahead or anticipatory. This is in contrast to the non-
anticipatory nature of Algorithm 2 analyzed in Theorems 3.4, 3.12, and 3.7, where computing zt =
Proxzt−1(γt−1ξt−1) only required knowledge of the previous step t− 1 because ξt−1 was determined
based on only ∇ft−1(zt−1) or Ft−1(zt−1).

Remark 3.31. Rakhlin and Sridharan [123, 124] also explore OCO with anticipatory decisions
through the lens of predictable sequences {Mt}t∈[T ]. More precisely, they also examine how regret
bounds are affected when the player is allowed to utilize side information Mt before choosing xt at
time t. They propose the Optimistic Mirror Descent (OpMD) algorithm, which is a special case
of Algorithm 3 for ηt = Mt, ξt = ∇ft(zt) and θt = 1/T , and are able to recover the offline Mirror
Prox algorithm from [112] for smooth offline convex optimization and smooth offline SP problems.
In fact, our results in Theorem 3.25 and Theorem 3.28 can be derived from [124, Lemma 1] by
specifying the predictable sequences Mt = θt∇ft(vt) and Mt = θtFt(vt) respectively. Here, we
allow the player to have access only to gradient information of ft or Ψt at time t. Because the focus
of [123, 124] was different, the observation that the OpMD algorithm can obtain faster O(1/T )
convergence rates in the 1-lookahead setting was not made before.

Remark 3.32. It is known that the OCO regret bounds with general smooth loss functions have a
lower bound complexity of at least O(1/

√
T ) (this holds even for the case of linear loss functions

[1, Theorem 5]). This is in contrast to the faster rate of O(1/T ) established in Theorem 3.25. The
lookahead nature of our analysis of Algorithm 3 discussed in Remark 3.30 plays a crucial role for
achieving the speedup established in Theorem 3.25.

3.7 Application to the Primal-Dual Framework of Chapter 2

Although we believe that the developments in this chapter may be of independent interest in
OCO, our primary motivation was to build the tools necessary to bound the relevant terms in
the primal-dual framework of Chapter 2. Specifically, for RO, recall that the first aim is to bound
ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
from (2.14) by choosing xt, yt appropriately. Notice that this term is simply an

online SP gap term. We can choose two regret minimizing algorithms (amongst the ones described
in Theorems 3.4, 3.12, 3.16, 3.21, 3.25) to compute the primal sequence {xt}t≥1 and the dual
sequence {xt}t≥1. Note that we cannot choose Theorem 3.25 to compute both xt and yt, since
computing xt requires knowing Ψ(x, yt;ut) and computing yt requires knowing Ψ(xt, y;ut), so one
must be computed without knowledge of the other. Alternatively, we can utilize Theorem 3.7 or
3.28 to compute both xt, yt simultaneously. Furthermore, recall that the second aim is to bound

supu∈U ε
◦
(
{xt, ut, θt}t∈[T ] ;u

)
from (2.17) by choosing the ut ∈ U appropriately. These are weighted
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regret terms, so we can utilize any of the algorithms in Theorems 3.4, 3.12, 3.16, 3.21, 3.25. Note
again, however, we must be careful when we choose the 1-lookahead algorithm in Theorem 3.25;
see Remark 2.9.

For JEO, the aim is to bound ε̂
(
{xt, yt, ut, θt}t∈[T ]

)
from (2.30). Again, we can choose two

regret minimizing algorithms (amongst the ones described in Theorems 3.4, 3.12, 3.16, 3.21, 3.25)
to compute the primal sequence {xt}t≥1 and the dual sequence {xt}t≥1. Again, we cannot choose
Theorem 3.25 for both. Alternatively, we can utilize Theorem 3.7 or 3.28 to compute both xt, yt
simultaneously.
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Chapter 4

Second-Order Cone Reformulation for
the Trust Region Subproblem with
Applications to Robust Quadratic
Programming

4.1 Introduction

In this chapter, we study the classical trust-region subproblem (TRS) and its polynomial-time
solvable variants given by

Opth := min
y∈Rn

{
h(y) := y>Qy + 2 g>y :

‖y‖ ≤ 1
Ay − b ∈ K

}
, (4.1)

where ‖y‖ denotes the Euclidean norm of y, A ∈ Rm×n, b ∈ Rm, and K ⊆ Rm is a closed convex
cone. Throughout the chapter, we assume that the minimum eigenvalue of Q is negative, that is,
λQ := λmin(Q) < 0 and the domain of the problem is nonempty. Problem (4.1) is equivalent to
the classical TRS when there are no additional conic constraints, i.e., A = In, b = 0, and K = Rn.
That is, the classical TRS is given by

min
y∈Rn

{
h(y) := y>Qy + 2g>y : ‖y‖ ≤ 1

}
. (4.2)

The classical TRS is an essential ingredient of trust-region methods that are commonly used to
solve continuous nonconvex optimization problems (see [51, 119, 122] and references therein). In
each iteration of a trust-region method, a quadratic approximation of the objective function is built
and then optimized over a ball, called trust region, (or intersection of a ball with linear or conic
constraints originating from the original problem) to find the new search point. The TRS and its
variants are also encountered in the context of robust optimization under matrix norm or polyhedral
uncertainty (see [22, 29] and references therein), nonlinear optimization problems with discrete
variables [41, 43], least-squares problems [155], constrained eigenvalue problems [66], and more. One
particular application we wish to highlight is robust convex quadratic programming (QP). Robust
convex QPs with ellipsoidal uncertainty are known to have close connections with the TRS (see [15]).
The function f(x, u) underlying a robust convex quadratic constraint maxu∈U f(x, u) ≤ 0 is convex
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and quadratic in both the decision variable x and the uncertainty u, making the maximization over
U exactly a TRS instance.

4.1.1 Related Literature

As stated above, the optimization problem in (4.1) is nonlinear and nonconvex when λQ < 0.
Nevertheless, it is well-known that the semidefinite programming (SDP) relaxation for the classical
TRS is exact. Furthermore, the classical TRS and a number of its variants can be solved in
polynomial time via SDP-based techniques [126, 64] or using specialized nonlinear algorithms, e.g.,
[69, 106].

Several variants of the classical TRS that enforce additional constraints on the trust region
have been proposed. Among these the most commonly studied is the case when K is taken to be
a nonnegative orthant, i.e., the unit ball is intersected with additional linear constraints modeled
via the polyhedral set {y ∈ Rn : Ay − b ∈ K}. The TRS with additional linear inequalities arises
in nonlinear programming and robust optimization (see Burer [42], Jeyakumar and Li [90] and
references therein) and is studied in [32, 42, 43, 45, 90, 145, 153] under a variety of assumptions.
Specifically, Burer and Anstreicher [43], Sturm and Zhang [145] give a tight semidefinite formulation
when there is a single linear constraint a>y ≤ b based on an additional constraint derived from
second-order cone (SOC) based reformulation linearization technique (SOC-RLT). This approach
was extended to two linear constraints in [43, 153] and the tightness of the SDP relaxation is
shown when the linear constraints are parallel. More recently, Burer and Yang [45] give a tight
SDP relaxation with additional SOC-RLT constraints for an arbitrary number of linear constraints,
under the condition that these additional linear inequalities do not intersect on the interior of the
unit ball. We refer the readers to Burer [42] for a recent survey and related references for the results
on tight SDP relaxations associated with these variants. Following a different approach, Bienstock
and Michalka [32] show that TRS with linear inequality constraints is polynomial-time solvable
under the milder condition that the number of faces of the linear constraints intersecting with the
unit ball is polynomially bounded.

TRS with additional conic constraints originate when the trust-region algorithm is applied to
conic constrained optimization problems with nonconvex objective. The most notable example in
this context is the well-known Celis–Dennis–Tapia (CDT) problem [48] where a nonconvex quadratic
is minimized over the intersection of two-ellipsoids. See also Ben-Tal and den Hertog [15] for several
applications of the TRS with additional conic quadratic constraints arising in the context of robust
quadratic programming. Recently, Jeyakumar and Li [90] proved convexity of the joint numerical
range, exactness of the SDP relaxation, and strong Lagrangian duality for the TRS with additional
linear and SOC constraints. A key tool in their analysis is to recast the TRS as a convex quadratic
minimization problem under a dimensionality condition.

Hollow constraints defined by a single ellipsoid [21, 31, 122, 144, 153], several ellipsoids [32,
151], or arbitrary quadratics constraints [30] have also attracted some attention in the literature.
These approaches are once again either lifted SOC-based or SDP-based convexification schemes or
customized algorithms. We discuss these further in Section 4.3.3.

While the SDP reformulations of the classical TRS and its variants can be solved using interior-
point methods in polynomial time [6, 118], this approach is not practical because the worst-case
complexity of these methods for solving SDPs is a relatively large polynomial and there exist faster
methods. That said, the classical TRS is closely connected to eigenvalue problems. In the specific
case of classical TRS where the objective is convex, i.e., whenQ is positive semidefinite, this problem
becomes simply the minimization of a smooth convex function over the Euclidean ball, and thus
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it can be solved efficiently via iterative first-order methods (FOMs) such as Nesterov’s accelerated
gradient descent algorithm [114]. Moreover, in the nonconvex case with λQ < 0, when the problem
is purely quadratic, i.e., when g = 0 as well, the classical TRS reduces to finding the minimum
eigenvalue of Q. This can be approximated efficiently via the Lanczos method [68, Chapter 10.1]
in practice. When g 6= 0, even though the classical TRS is no longer equivalent to an eigenvalue
problem and these methods cannot be applied directly, this observation has led to the development
of efficient, matrix-free algorithms that are based solely on matrix-vector products. The dual-based
algorithms of [106, 126, 138], the generalized Lanczos trust-region method of [69], and the recent
developments of [4, 59, 60, 70, 76, 130] are examples of such iterative algorithms. More recently, for
TRS with a single additional linear constraint, the papers [132, 133, 134] explore strong Lagrangian
duality, and derive numerically efficient algorithms from this. In most cases, these algorithms for
classical TRS and its variants are presented together with their convergence proofs. Nevertheless,
to the best of our knowledge, the theoretical runtime evaluation of these algorithms lacks formal
guarantees with the exception of recent work [76] (done in a probabilistic fashion). In addition,
in most of these iterative methods, numerical difficulties are reported in the so-called “hard case”
[106], when the linear component vector g is nearly orthogonal to the eigenspace of the smallest
eigenvalue of Q. In many cases, the lack of provable worst-case convergence bounds for the classical
TRS is attributed to the hard case. As a result, most research on specific algorithms for the classical
TRS thus far focuses on addressing this issue.

Recently, Hazan and Koren [76] suggested a linear-time algorithm for approximately solving
the classical TRS within a given tolerance ε on the objective value. Their approach relies on an
efficient, linear-time solver for a specific SDP relaxation of a feasibility version of the classical TRS
and reduces the classical TRS into a series of eigenvalue computations. Specifically, they exploit
the special structure of the dual problem, a one-dimensional problem for which bisection techniques
can be applied, to avoid using interior-point solvers. Each dual step of their algorithm requires a

single approximate maximal eigenvalue computation which takes O
(
N
√

Γ√
ε

log
(
n
δ log (Γ/ε)

))
time

to achieve an ε-accurate estimate with probability at least 1− δ/ log (Γ/ε), where N is the number
of nonzero entries in Q, Γ := max {2(‖Q‖+ ‖g‖), 1}, and ‖Q‖ stands for the spectral norm of the
matrix Q, i.e., the maximum absolute eigenvalue. Their overall algorithm converges in O

(
log
(

Γ
ε

))
iterations. Then a primal solution is recovered by solving a small linear program formed by the
dual iterates. Finally, they provide an efficient and accurate rounding procedure for converting the
SDP solution into a feasible solution to the classical TRS. Consequently, their approach does not
require the use of interior-point SDP solvers and bypasses the difficulties noted for the hard case of
the classical TRS. The overall complexity (elementary arithmetic operations) of their approach is

O

(
N

√
Γ log (Γ/ε)√

ε
log

(
n

δ
log

(
Γ

ε

)))
.

Thus, the runtime of their approach is linear in the number of nonzero entries of the input and it
can exploit data sparsity.

These algorithmic developments have been complemented with research on convex hull charac-
terization of sets associated with the TRS. In this respect, [42] presents a nice summary of such
results given for the lifted SDP representations. The epigraph of TRS is closely related to con-
vex hulls of sets defined as the intersection of convex and nonconvex quadratics. Such sets cover
two-term disjunctions applied to an SOC or its cross-sections arising in the context of mixed in-
teger conic programming or reverse convex constraints based on ellipsoids, and thus have been
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studied under a variety of assumptions (see Burer and Kılınç-Karzan [44] and references therein).
In particular, nonconvex sets obtained from the intersection of a second-order-cone representable
(SOCr) cone and a nonconvex cone defined by a single homogeneous quadratic, and possibly an
affine hyperplane were studied in [44]. For such sets, under several easy-to-verify conditions, [44]
suggests a simple, computable convex relaxation where the nonconvex cone is replaced by an ad-
ditional SOCr cone, and identifies several stronger conditions guaranteeing the tightness of these
relaxations, in terms of giving the associated closed conic hulls and closed convex hulls of these sets.
These conditions have been further verified in many specific cases, and it was shown in [44] that
the classical TRS can then be solved via the optimization of two SOC-based programs. Similar
convex hull descriptions of a single SOC or its cross-section intersected with a general nonconvex
quadratic are also studied recently in [105] under different assumptions.

4.1.2 Contributions

In this chapter, as opposed to the previous specialized algorithms or approaches that work in a
lifted space, e.g., SDP-based relaxations, we follow an SOC-based approach in the original space of
variables to solve the classical TRS and its variants with conic constraints (4.1) or hollows. That
is, under easy-to-verify conditions, we derive tight SOC-based convex reformulations and convex
hull characterizations of sets associated with the TRS with additional conic constraints (4.1). Our
contributions can be summarized as follows.

� In Section 4.2, we study an SOC-based convex relaxation of (4.1) in the original space of
variables obtained by simply replacing the nonconvex objective function h(y) in (4.1) with
the convex objective f(y) := y> (Q− λQIn) y + 2 g>y + λQ. We prove tightness of this
relaxation under an easily checkable structural condition on the additional conic constraints
Ay − b ∈ K (see Theorem 4.5). For classical TRS our convex relaxation is immediately
tight without any condition. In the case of nontrivial conic constraints Ay − b ∈ K in (4.1),
the conditions ensuring tightness of our convex relaxation can be somewhat stringent. We
discuss these issues and relation of our condition to the existing ones from the literature in
Section 4.2.2.

� Due to the fact that our convex relaxation/reformulation works in the original space of vari-
ables and thus preserves the domain, it is immediately amenable to work with existing iterative
FOMs; we discuss the associated complexity results in Section 4.2.3. In particular, our convex
relaxation/reformulation can be built via a single minimum eigenvalue computation. In the
case of classical TRS, it can then be solved by minimizing a smooth convex quadratic over the
unit ball via Nesterov’s accelerated gradient descent algorithm [114]. Thus, with probability
1− δ, our approach solves the classical TRS to accuracy ε in running time

O

(
N

(√
‖Q‖√
ε

log
(n
δ

)
+

√
‖Q‖√
ε

))
.

� In Section 4.3, we study exact and explicit SOC-based convex hull results for the epigraph of
the TRS given by

X :=


[
y
t

]
∈ Rn+1 :

‖y‖ ≤ 1
Ay − b ∈ K
h(y) ≤ t

 .

In Theorem 4.33, under a slightly stronger condition, we provide an explicit characterization
of the convex hull of X in the space of original variables.
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We also examine the inclusion of additional hollow constraints y ∈ R = Rn \P to the TRS in
Section 4.3.3. In particular, these developments immediately lead to convex reformulations
for several variants of TRS, including interval-bounded TRS (see [21, 31, 122, 144, 153]), and
thus have algorithmic implications.

� In Section 4.4, we show how the convex reformulation of the TRS can be used in the context
of robust convex quadratic programs (QPs) with ellipsoidal uncertainty. In particular, the
convex reformulation allows us to recast robust quadratic constraint as a convex-concave
function. This then allows us to apply the primal-dual framework of Chapter 2 and the
associated OCO algorithms from Chapter 3 to improve upon theoretical guarantees of an
existing approach by Ben-Tal et al. [25]. We also conducted a numerical study, outlined
in Section 4.4.1, that shows the scalability of our primal-dual approach compared to other
iterative RO approaches.

From a convex reformulation perspective, the papers [64, 90, 44, 15, 102] are closely related to
our approach. To handle the hard case in classical TRS, Fortin and Wolkowicz [64] discuss a shift
of the matrix Q, which results in the same SOC-based convex reformulation as ours. Nevertheless,
Fortin and Wolkowicz [64] solves the resulting problem using a modification of the SDP-based
Rendl–Wolkowicz algorithm [126]. Their approach requires a case-by-case analysis to handle the
hard case and lacks formal convergence guarantees. In contrast to such an approach, we propose
using Nesterov’s algorithm [114], which is not only oblivious to the hard case and thus does not
require a case-by-case analysis, but also provides formal convergence guarantees. Jeyakumar and
Li [90] study TRS with additional linear and conic-quadratic constraints. They obtain a convex
reformulation via a similar shift in the Q matrix under a certain dimensionality condition on the
additional constraints. We show that the conditions of Jeyakumar and Li [90] imply our structural
condition and we provide an example where our condition is satisfied but the ones of [90] are not.
Burer and Kılınç-Karzan [44] also give a scheme to solve the classical TRS via SOC programming.
The scheme suggested in [44] is in a lifted space with one additional variable and requires solving
two related SOC optimization problems. In contrast, our convex reformulation is in the space
of original variables and requires solving only a single minimization problem. Ben-Tal and den
Hertog [15] study a different SOC-based convex reformulation in a lifted space of the TRS and its
variants under a simultaneously diagonalizable assumption. However, this relaxation requires a full
eigenvalue decomposition of the matrix Q as opposed to our relaxation which only needs a maximum
eigenvalue computation. Based on the same convex reformulation as Ben-Tal and den Hertog [15],
Locatelli [102] studies the TRS with additional linear constraints under a structural condition on the
constraints derived from a KKT system. We show that in the case of additional linear constraints,
our geometric condition is equivalent to the structural condition of Locatelli [102] (see Lemma
4.13). To the best of our knowledge, the KKT-based derivations of conditions of Locatelli [102] are
not extended to the conic case, yet our condition handles additional conic constraints generalizing
the one of Locatelli [102] and highlights the features of underlying geometry.

On the algorithmic side, our transformation of the TRS (4.1) is mainly based on the min-
imum eigenvalue of Q, which can be computed to accuracy ε > 0 with probability 1 − δ in

O
(
N
√
‖Q‖ log(n/δ)/

√
ε
)

arithmetic operations using the Lanczos method (see [99, Section 4]

and [76, Section 5]), where N is the number of nonzero entries in Q. Due to the fact that f(y)
is a convex quadratic function, our convex relaxation/reformulation for (4.1) can simply be cast
as a conic optimization problem. Specifically, when there are no additional constraints, this exact
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convex reformulation becomes minimizing a smooth convex function over the Euclidean ball, and
thus it is readily amenable to efficient FOMs. For this class of convex problems, given a desired ac-
curacy of ε, a classical FOM, Nesterov’s accelerated gradient descent algorithm [114], involves only
elementary operations such as addition, multiplication, and matrix-vector product computations

and achieves the optimal iteration complexity of O
(√
‖Q‖/

√
ε
)

. Note when the problem is convex

(when Q is positive semidefinite), the same complexity guarantees can be obtained by applying
Nesterov’s accelerated gradient descent [114] to the problem. Thus, our approach can be seen as
an analog of the latter algorithm to the general nonconvex case. This is the first-time that such an
observation is made that the classical TRS problem can be solved by a single minimum eigenvalue
computation and Nesterov’s accelerated gradient descent [114]. Moreover, our analysis highlights
the connection between the TRS and eigenvalue problems, and in fact demonstrates that, up to
constant factors, the complexity of solving the classical TRS is no worse than solving a minimum
eigenvalue problem. This was empirically observed in [126, Section 5] and our analysis provides a
theoretical justification for it. In a similar spirit, recently Adachi et al. [4] suggested an approach
for the standard TRS by first solving a single generalized eigenvalue problem and then doing some
conjugate gradient steps. Note, however, that generalized eigenvalue problems are computationally
more demanding than the minimum eigenvalue computations, and that Adachi et al. [4] does not
provide an explicit convergence rate analysis.

Convexification-based approaches such as ours and [15, 21, 76, 90, 102] work directly with
convex formulations and provide a uniform treatment of the problem and thus bypass the so-called
“hard case.” Moreover, the resulting convex formulations are then amenable to iterative FOMs
from convex optimization literature which only require matrix-vector product type operations. To
the best of our knowledge, iterative algorithms for SDP-based relaxations of the TRS have not
been studied in the literature with the exception of Hazan and Koren [76]. As compared to the
approach of Hazan and Koren [76], we believe our approach is straightforward, easy to implement,
and achieves a slightly better convergence guarantee in the worst case. In particular, our approach
directly solves the TRS, as opposed to only solving a feasibility version of the TRS; thus we save
an extra logarithmic factor. While Hazan and Koren [76] relies on repeatedly calling a minimum
eigenvalue, our approach, as well as that of Jeyakumar and Li [90], works with an SOC-based
reformulation of the problem in the original space and requires only a single minimum eigenvalue
computation. The convex reformulations given by Ben-Tal and Teboulle [21] or the one studied
in Ben-Tal and den Hertog [15] and Locatelli [102] requires a full eigenvalue decomposition which
is more expensive, i.e., O(n3) time. Moreover, these reformulations from [15, 21, 102] involve
additional variables and constraints, and thus FOMs applied to these entail more complicated and
expensive projection operations.

Our convex hull results on the epigraph of the TRS are inspired by the recent work of Burer
and Kılınç-Karzan [44] on convex hulls of general quadratic cones. While the SOC-based convex
hull results in [44] are applicable to many problems, including the epigraph set associated with the
classical TRS, we present a much more direct analysis specialized for TRS. There are two main
benefits of our approach. First, the approach outlined in [44] for solving classical TRS requires the
assumption that the optimal value is nonpositive. While this is not an issue for the classical TRS
since its optimal value is always negative under the assumption of λQ < 0, with the existence of
additional constraints, this may no longer be true for (4.1). In contrast, our direct analysis does
not rely on any nonpositivity assumptions of the objective value, and hence we are able to extend
our results to include additional conic constraints. Second, our direct analysis of the TRS allows

66



us to bypass verifying several conditions from [44] and to work directly with a single structural
condition on additional conic constraints which is always satisfied in the case of the classical TRS.

Several papers [11, 12, 90] exploit convexity results on the joint numerical range of quadratic
mappings to explore strong duality properties of the TRS and its variants. These convexity results
are based on Yakubovich’s S-lemma [65] and Dines [54], see also the survey by Pólik and Terlaky
[120] for a more detailed discussion. While these results as well as ours both analyze sets associated
with the TRS, the actual sets in question are quite different. In the context of the TRS, the joint
numerical range is a set of the form{

[h(y); ‖y‖2; Ay − b] : y ∈ Rn
}
⊆ Rm+2.

Under certain conditions, this set is shown to be convex. In contrast, we study the epigraphical set
X, which is nonconvex if h(y) is nonconvex, and we give its convex hull description in the original
space of variables.

Notation . We use MATLAB notation to denote vectors and matrices. Given a matrix, A ∈
Rm×n, we let Null(A) and Range(A) denote its nullspace and range. Furthermore, we denote
the minimum eigenvalue of a symmetric matrix Q as λQ := λmin(Q) and we let In be the n × n
identity matrix. For a given symmetric matrix Q, the notation Q � 0 (Q � 0) corresponds to
the requirement that Q is positive semidefinite (positive definite). Given a vector ξ ∈ Rn, Diag(ξ)
corresponds to an n× n diagonal matrix with its diagonal equal to ξ. For a set S ⊆ Rn, we define
int(S), relint(S),bd(S),Ext(S),Rec(S), conv(S), conv(S), cone(S), and cone(S) to be the interior,
relative interior, boundary, set of extreme points, recession cone, convex hull, closed convex hull,
conic hull, and closed conic hull of S, respectively. For a cone K ⊆ Rn, we denote its dual cone by
K∗.

4.2 Tight Low-Complexity Convex Reformulation of the TRS

In this section, we first present an exact SOC-based convex reformulation for the classical TRS and
extend this reformulation to the TRS with additional conic constraints (4.1) under an appropriate
condition. We then compare and relate our condition to handle conic constraints to other condi-
tions studied in the literature. Finally, we explore algorithmic aspects of solving our SOC-based
reformulation.

4.2.1 Convex Reformulation

We start with the following simple observation, which we present without proof.

Observation 4.1. Let C ⊂ Rn be some bounded domain, and let h : C → R be a (possibly non-
convex) function such that h has no local minimum on int(C). Then any optimal solution y∗ of the
program

min
y
{h(y) : y ∈ C}

must be on bd(C).

We next observe that when our domain C is defined by (possibly nonconvex) constraints cj(y) ≤
0, we can obtain relaxations of the nonconvex program in Observation 4.1 by simply aggregating
these constraints with appropriate weights.

Lemma 4.2. Let C ⊆ Rn be a given set, and let cj(y) : C → R for j = 1, . . . ,m be given functions.
Suppose h(y) is a given function and fj(y) are functions on the domain C := {y : cj(y) ≤ 0, ∀j =
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1, . . . ,m} ∩ C such that fj(y) = h(y) − αjcj(y) for some αj ≤ 0. Let F (y) := maxj=1,...,m fj(y).
Then

Opth := min
y
{h(y) : y ∈ C} ≥ min

y
{F (y) : y ∈ C} =: Optf .

Moreover, Opth = Optf if and only if there exists an optimal solution y∗ to the problem on the
right-hand side satisfying αjcj(y

∗) = 0 for some j ∈ {1, . . . ,m}.

Proof. First, we note that for any y ∈ C, we have αjcj(y) ≥ 0 since αj ≤ 0, and thus for all
j ∈ {1, . . . ,m}, fj(y) = h(y)− αj cj(y) ≤ h(y). This establishes Opth ≥ Optf .

Let y∗ be an optimal solution to miny {F (y) : y ∈ C} for which αjcj(y
∗) = 0 for some j. Then

we have F (y∗) = fj(y
∗) = h(y∗), which implies that y∗ is also optimal to Opth. Now consider

the case where every optimal solution y∗ ∈ arg miny {F (y) : y ∈ C} satisfies αjcj(y
∗) > 0 for all

j. Note that for any y ∈ C satisfying αjcj(y) > 0 for all j, we have F (y) < h(y). Thus, for such
optimal solutions y∗, we have F (y∗) < h(y∗), and for any other nonoptimal solution y ∈ C, we have
F (y∗) < F (y) ≤ h(y), which implies Optf < Opth.

Let us now turn our attention back to the TRS (4.1). Henceforth, we define h(y) := y>Qy+2g>y
to be our nonconvex quadratic objective function, where Q is some symmetric matrix with λQ < 0.
It is easy to see that on any bounded domain C, h(y) has no local minimum on int(C). Hence, Obser-
vation 4.1 points out the important role of the boundary of the domain {y : ‖y‖ ≤ 1, Ay − b ∈ K}
to the TRS (4.1).

A possible convex relaxation for (4.1) suggested by Lemma 4.2 is that we embed the conic
constraints Ay − b ∈ K into the ground set C and aggregate the constraint ‖y‖ ≤ 1 with weight
α = λQ to obtain the objective function

f(y) := h(y) + λQ(1− ‖y‖2) = y>(Q− λQIn)y + 2g>y + λQ. (4.3)

Note Q− λQIn � 0, and thus the function f(y) is convex, and clearly is also an underestimator of
h(y), hence minimizing f(y) over our domain is still a convex relaxation. Lemma 4.2 then gives us
a precise characterization for when the convex relaxation using f(y) is tight.

Corollary 4.3. Suppose λQ < 0. Consider the convex relaxation for problem (4.1) given by

Optf = min
y

{
f(y) :

‖y‖ ≤ 1
Ay − b ∈ K

}
, (4.4)

where f(y) is defined in (4.3). This convex relaxation is tight if and only if there exists an optimal
solution y∗ to (4.4) such that ‖y∗‖ = 1.

Because Q − λQIn is not full rank, when g is not orthogonal to Null(Q − λQIn), it is easy
to see that the function f(y) has no local minima on the interior of our domain. Then by Ob-
servation 4.1, the optimal solutions to (4.4) lie on bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). When g is
orthogonal to Null(Q − λQIn), then we can add d ∈ Null(Q − λQIn) to any point y without
changing the objective f(y + d), hence there will always exist an optimal solution of (4.4) on
bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). However, f(y) = h(y) if and only if ‖y‖ = 1, but f(y) may not be
equal to h(y) on all of bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}). More precisely, we will have f(y) < h(y)
for y ∈ bd({y : ‖y‖ ≤ 1, Ay − b ∈ K}) ∩ {y : ‖y‖ < 1}, so if all minima of f(y) lie on this set, the
convex relaxation (4.4) will not be tight. Therefore, we next state a sufficient condition that ensures
that there is always an optimal solution of (4.4) on the boundary of the unit ball.
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Condition 4.4. There exists a vector d 6= 0 such that Qd = λQd, Ad ∈ K and g>d ≤ 0.

Theorem 4.5. Suppose that λQ < 0 and that Condition 4.4 holds for the TRS given in (4.1).
Then the convex relaxation given by (4.4) is tight.

Proof. Let y∗ be an optimum solution for (4.4). If ‖y∗‖ = 1, then from Corollary 4.3, the result
follows immediately. Hence, we assume ‖y∗‖ < 1.

Let d 6= 0 be the vector from Condition 4.4, thus Qd = λQd, Ad ∈ K, and g>d ≤ 0. Then for
any ε > 0, A(y∗ + εd) − b = (Ay∗ − b) + εAd ∈ K because K is a convex cone and Ad ∈ K by
assumption. Because ‖y∗‖ < 1, we may increase ε until ‖y∗+ εd‖ = 1 and the vector y∗+ εd is still
feasible. Note (Q− λQIn)d = 0, so for any ε > 0,

f(y∗ + εd) = f(y∗) + 2(g>d)ε ≤ f(y∗).

If g>d < 0, this violates optimality of y∗ since ε > 0, thus g>d = 0. Then the vector y∗ + εd
is an alternative optimum solution to (4.4) satisfying ‖y∗ + εd‖ = 1. Hence, the tightness of the
relaxation (4.4) follows from Corollary 4.3.

Remark 4.6. From the definition of λQ, Condition 4.4 is immediately satisfied for the classical
TRS (4.2) without additional conic constraints, i.e., when A = In, b = 0, and K = Rn.

Consequently, in the case of classical TRS, Remark 4.6 implies the following specialization of
Theorem 4.5.

Theorem 4.7. When λQ < 0, a tight convex relaxation of classical TRS (4.2) is given by

Optf = min
y

{
f(y) := y>(Q− λQIn)y + 2g>y + λQ : ‖y‖ ≤ 1

}
. (4.5)

Remark 4.8. In order to handle a particular “hard case” of classical TRS, Fortin and Wolkowicz
[64] introduce and analyze the convex reformulation (4.5) (see [64, Lemma 2.3] and [64, Section 7]).
We believe (4.5) can be of more use than stated in [64]. In particular, by reanalyzing (4.2), we are
able to both

(i) improve on the previously best-known theoretical convergence rate guarantees for solving the
classical TRS (see Remark 4.22 in Section 4.2.3), and

(ii) establish the tightness of the convex reformulation (4.4) for TRS with conic constraints under
appropriate conditions (see Theorem 4.5) and also for TRS with hollow constraints covering
interval-bounded TRS (see [21, 31, 122, 144, 153]), under a condition well-studied in the
literature (see Corollary 4.40 and Theorem 4.39).

4.2.2 Discussion of Condition 4.4 and Related Conditions from the Literature

For TRS with conic constraints (4.1), Condition 4.4 is related to and generalizes many other
conditions examined in the literature.

A result similar to Theorem 4.5 was implicitly proven by Jeyakumar and Li [90] under a di-
mensionality condition for the case of linear and conic quadratic constraints. We state the linear
version of their condition below; the conic quadratic one is very similar.
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Condition 4.9. Consider the case of nonnegative orthant, i.e., K = Rm+ . Suppose that the system
of linear inequalities, i.e., the constraint Ay − b ∈ K satisfies the requirement that dim (Null(Q −
λQIn)) ≥ n− dim (Null(A)) + 1.

Lemma 4.10. Condition 4.4 generalizes the dimensionality condition of Jeyakumar and Li [90],
i.e., Condition 4.9, stated for linear and conic quadratic constraints.

Proof. Suppose Condition 4.9 holds. Then

dim (Null(A)) + dim (Null(Q− λQIn)) ≥ n+ 1;

thus, there must exist d 6= 0 which is in the intersection Null(A) ∩ Null(Q − λQIn). That is,
Qd = λQd and Ad = 0 ∈ Rm+ = K. If g>d ≤ 0, then Condition 4.4 holds with the vector d. If
g>d > 0, then Condition 4.4 holds with the vector d′ = −d.

Jeyakumar and Li [90] demonstrates that Condition 4.9 is satisfied in a number of cases related to
the robust least squares and robust SOC programming problems. As a consequence of Lemma 4.10,
our Condition 4.4 is satisfied in these cases as well. That said, Condition 4.4 is more general than
Condition 4.9 as demonstrated by the following example.

Example 4.11. For the problem data given by

Q =

[
1 0
0 −1

]
, g =

[
1
0

]
, A =

[
1 −1
−1 −1

]
, b =

1

2

[
1
1

]
, K = R2

+,

Condition 4.4 is satisfied with d = [0;−1], but Condition 4.9 is not.

Ben-Tal and den Hertog [15] and Locatelli [102] study a different SOC-based convex relaxation
of (4.1) given in a lifted space when Q is a diagonal matrix and the additional constraints are
linear, i.e., K = Rm+ . Let Q = Diag({q1, . . . , qn}); then this reformulation is given by

min
y,z


n∑
i=1

qizi + 2g>y :
y2
i ≤ zi, i = 1, . . . , n∑n
i=1 zi ≤ 1

Ay ≥ b

 . (4.6)

It was established in [15] that for the classical TRS this convex reformulation is tight. Tightness of
this relaxation for the TRS with additional linear constraints is studied in [102] under the following
condition.

Condition 4.12. Denote Q = Diag({q1, . . . , qn}) and J = {j : qj = λQ}. Also, define AJ to be the
matrix composed of columns of A which correspond to the indices in J , and define gJ analogously.
For all ε > 0, there exists hε with ‖hε‖ ≤ ε such that {µ ≥ 0 : A>J µ+ gJ + hε = 0} = ∅.

Lemma 4.13. When Q is diagonal and K = Rm+ , Conditions 4.4 and 4.12 are equivalent.

Proof. It is shown in [102, Proposition 3.3] that Condition 4.12 is equivalent to the program
maxŷ∈R|J|{−g>J ŷ : AJ ŷ ≤ 0} being unbounded above or having multiple optima. In the former

case, there must exist an extreme ray d̂ 6= 0 for which g>J d̂ < 0 and AJ d̂ ≤ 0. Setting d to be the

vector consisting of d̂ in the J entries and 0 otherwise gives us Qd = λQd, Ad ≤ 0, and g>d < 0,
which satisfies Condition 4.4. In the latter case, we know that the zero vector is always an optimal
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solution with objective value 0, so having multiple optima means there exists d̂ 6= 0 such that
AJ d̂ ≤ 0 and g>J d̂ = 0. Then a similar argument follows to show that Condition 4.4 holds.

Conversely, if Condition 4.4 holds, because Q is diagonal, the vector d given must have zeros
everywhere except for entries in J . If g>d < 0, then the program above is unbounded, but if
g>d = 0, then the program above has multiple optima since we can add d to any optimal solution.
Thus, Condition 4.12 holds.

Remark 4.14. Condition 4.4 is equivalent to the conic program

min
d

{
g>d : (Q− λQIn)d = 0, Ad ∈ K

}
being unbounded below or having multiple optimal solutions. This follows from an extension of
the proof of Lemma 4.13 to the conic case.

Remark 4.15. Despite Conditions 4.4 and 4.12 being equivalent when K = Rm+ , there are two major
distinctions between our convex reformulation (4.4) and the one from [15, 102]. First, in order to
diagonalize the matrix Q in TRS and hence form the convex reformulation of [15, 102], one needs
to perform a full eigenvalue decomposition, which takes approximately O(n3) time and is more
expensive than computing only the minimum eigenvalue (approximately O(n2) time) that is needed
by our convex reformulation. Second, our convex reformulation (4.4) works in the original space
of variables and thus preserves the nice structure of the domain, yet (4.6) introduces new variables
z1, . . . , zn. Preserving the nice structure of the original convex domain becomes important when
FOMs are applied to a convex reformulation of TRS. We discuss this issue in the case of classical
TRS in Section 4.2.3.

Remark 4.16. In contrast to the results given in [90] and [102], Theorem 4.5 holds for general
conic constraints when Condition 4.4 holds. Note that such general conic constraints can repre-
sent a variety of convex restrictions, and in particular, they may include positive semidefiniteness
requirements.

We next present an example to illustrate that when Condition 4.4 is violated, we may not
be able to give the exact convex reformulation. Moreover, a slight modification of this example
demonstrates further that Condition 4.4 is not necessary for giving the exact convex reformulation.

Example 4.17. Suppose we are given the problem data:

Q =

[
1 0
0 −2

]
, g =

[
−3
0

]
, A =

[
0 1
0 −1

]
, b =

1

2

[
1
1

]
, K = R2

+.

Then Condition 4.4 is violated. To see this, note that any d satisfying Qd = λQd is of the form
d = [0; d2]. However, Ad = [d2;−d2], so if d2 6= 0, Ad 6∈ K = R2

+. For this problem data,
h(y) = y2

1 − 2y2
2 − 3y1 and f(y) = 3y2

1 − 3y1 − 2. It is easy to compute the minimizers of f(y) over
the unit ball to be the line y1 = 1/2, with value −11/4. The constraints Ay− b ∈ K are equivalent
to −1/2 ≤ y2 ≤ 1/2.

Figure 4.1 shows that the minimizers of h(y) over just the unit ball ‖y‖ ≤ 1 lie on the boundary
at y = [1/2;±

√
3/2]. Due to the linear constraints −1/2 ≤ y2 ≤ 1/2, these points are cut off from

the feasible region. As a result, any minimizer of f(y) (i.e., the line y1 = 1/2) inside the feasible
region has norm strictly less than 1. Then by Corollary 4.3, the relaxation (4.4) is not tight.
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Figure 4.1: Contour plots of h(y) over the feasible set.
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Finally, note that if we were to change our linear constraints to −0.9 ≤ y2 ≤ 0.9, then our
relaxation would be tight, while Condition 4.4 would still not be satisfied. However, for both
cases in this example, the SDP relaxation of [145, 153, 43] strengthened with additional SOC-RLT
inequalities is tight.

A variant of Condition 4.4 is instrumental in giving exact convex hull characterization of the
sets associated with the TRS (4.1). We discuss these further in Section 4.3.

4.2.3 Complexity of Solving Our Convex Reformulations

In this section, we explore the complexity of solving our convex relaxation/reformulation of TRS via
FOMs. Our convex relaxation/reformulation of TRS (4.4) and its variants have the same domain
as their original nonconvex counterparts (4.1) and thus are solvable via interior point methods
and standard software as long as the cone K has an explicit barrier function. However, because
the standard polynomial-time interior point methods have expensive iterations in terms of their
dependence on the problem dimension, here we mainly focus on FOMs with cheap iterations. We
next discuss the complexity of solving our convex reformulation of the classical TRS given by
(4.2) via Nesterov’s accelerated gradient descent algorithm [114], an optimal FOM for this class of
problems. Once again, the main distinction between solving (4.4) as opposed to (4.5) via FOMs lies
in how the projection onto the respective domain is handled. That is, whenever efficient projection
onto the original domain is present, our discussion below will remain applicable to the conic case
(4.4) as well.

The reformulation (4.5) of classical TRS (4.2) (or the convex relaxation (4.4) of TRS (4.1)) is an
SOC program (convex program) and can easily be built whenever λQ is available to us. Moreover,
computing λQ, the minimum eigenvalue of Q, itself is a TRS with no linear term because

λQ = min
y

{
y>Qy : ‖y‖ ≤ 1

}
.

There exist many efficient algorithms for computing the minimum eigenvalue of a symmetric matrix
Q. One such algorithm that is effective for large sparse matrices is the Lanczos method [68, Chapter
10]. Implemented with a random start, this method enjoys the following probabilistic convergence
guarantee (see [99, Section 4] and [76, Section 5]): with probability at least 1−δ, the Lanczos method

correctly estimates λQ to within ε-accuracy in O
(√
‖Q‖ log(n/δ)/

√
ε
)

iterations. Furthermore,

each iteration requires only matrix-vector products, and hence takes O(N) time, where N is the
number of nonzero entries in Q. Consequently, with probability at least 1 − δ, the randomized

Lanczos method estimates λQ to within ε-accuracy in time O
(
N
√
‖Q‖ log(n/δ)/

√
ε
)

.
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Given λQ, problem (4.5) is simply minimizing a smooth convex quadratic function f(y) with
smoothness parameter 2(λmax(Q) − λQ) ≤ 4‖Q‖ over the unit ball. Note that due to the nature
of this transformation, f(y) is not strongly convex, and hence may have multiple optima. This
problem (4.5) can be efficiently solved by using Nesterov’s accelerated gradient descent algorithm

[114], which obtains an ε-accurate solution in O
(√
‖Q‖/

√
ε
)

iterations. This is the optimal rate for

FOMs for solving this class of problems. The major computational burden in each iteration in these
FOMs is the evaluation of the gradient of f(y), which involves simply a matrix-vector product, and
hence each iteration costs O(N) time. The only other main operation in each iteration of Nesterov’s
algorithm applied to this problem is the projection onto the Euclidean ball, and this can be done
in O(n) time. Consequently, Nesterov’s algorithm [114] applied to the optimization problem in our

convex reformulation (4.5) of the classical TRS runs in time O
(
N
√
‖Q‖/

√
ε
)

.

Thus, taking into account the complexity of computing λQ to build our convex reformulation
(4.5) and using Nesterov’s algorithm [114], we establish the following upper bound on the worst
case number of elementary operations needed.

Theorem 4.18. With probability 1 − δ, a solution ȳ to the classical TRS (4.2) satisfying h(ȳ) −
h(y) ≤ ε for all y in the unit ball can be found in time

O

(
N

(√
‖Q‖√
ε

log
(n
δ

)
+

√
‖Q‖√
ε

))
= O

(
N

√
‖Q‖√
ε

log
(n
δ

))
(4.7)

using randomized Lanczos method to compute λQ and Nesterov’s algorithm [114].

Remark 4.19. This discussion shows that the classical TRS decomposes into two special TRS prob-
lems: one without a linear term, i.e., g = 0, making it a pure minimum eigenvalue problem, and
the other with a convex quadratic objective function. This once again highlights the connection
between the TRS and eigenvalue problems, and in fact demonstrates that, up to constant fac-
tors, the complexity of solving the classical TRS is no worse than solving a minimum eigenvalue
problem because the complexity in Theorem 4.18 is essentially determined by the complexity of
computing minimum eigenvalue of a matrix. Rendl and Wolkowicz [126, Section 5] have empirically
observed this connection between complexity of solving classical TRS and computing the minimum
eigenvalue; our analysis complements their study with a theoretical justification.

Remark 4.20. Using a deterministic algorithm to compute λQ eliminates the probabilistic compo-
nent in Theorem 4.18 at the expense of a slightly worse dependence on ε and n in the iteration
complexity.

Unlike other methods [64, 106, 126], our proposed method need not differentiate between the
easy case and the hard case.

Remark 4.21. In practice, we will not be able to form the objective f(y) exactly, since λQ will
be computed only approximately. Let us consider an underestimate γ ≈ λQ and working with
the convex objective fγ(y) = y>(Q − γIn)y + 2g>y. We show in Appendix A.1 how such an
underestimate γ of λQ can be obtained using the Lanzcos method. In Appendix A.1, we show that
by using fγ(y) instead of f(y), the error we incur is linearly dependent on the error of estimating
λQ with γ, which for our purposes is O(ε).
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Remark 4.22. Let us compare our bound (4.7) to the running time from [76]. The approach of [76,
Theorem 1] requires

O

(
N

√
Γ log (Γ/ε)√

ε
log

(
n

δ
log

(
Γ

ε

)))
elementary operations to obtain an ε-accurate solution for (4.2) with probability 1 − δ, where
Γ = max {2(‖Q‖+ ‖g‖), 1}. By using the convex reformulation (4.5) as opposed to the method of
[76], we remove (at least) a factor of log (Γ/ε) and the dependence on ‖g‖.

Our method is simpler to implement than the method of [76] as well because it decomposes
the TRS into two well-studied problems as discussed in Remark 4.19. In contrast, since [76] relies
on solving the dual SDP, at the end of its iterations, it requires additional operations to obtain
the primal solution from the dual one, and then a rounding procedure to find the solution in the
original space.

4.3 Convexification of the Epigraph of TRS

In this section, we study the convex hull of the epigraph of TRS. In general, a tight convex relaxation
for a nonconvex optimization problem does not necessarily imply that the epigraph of the convex
relaxation is giving the exact convex hull of the epigraph of the nonconvex optimization problem.
However, in the particular case of TRS with additional conic constraints, i.e., problem (4.1), under a
slightly more stringent variant of Condition 4.4, we will establish that not only our convex relaxation
given by (4.4) is tight but also its epigraph exactly characterizes the convex hull of the epigraph of
underlying TRS (4.1) (see Corollary 4.34).

By defining a new variable xn+2 (where the variable xn+1 is reserved for later homogenization),
and moving the nonconvex function from the objective to the constraints, we can equivalently recast
(4.1) as minimizing xn+2 over its epigraph

Opth = min
y,xn+2

xn+2 :
‖y‖ ≤ 1

Ay − b ∈ K
h(y) = y>Qy + 2g>y ≤ xn+2

 . (4.8)

Since the objective xn+2 is linear, optimizing over the epigraph is equivalent to optimizing over its
convex hull. We define the associated epigraph as

X :=

x = [y; 1;xn+2] ∈ Rn+2 :
‖y‖ ≤ 1

Ay − b ∈ K
y>Qy + 2g>y ≤ xn+2

 . (4.9)

Our convex hull characterizations are also SOC based. That is, as in Section 4.2.1, we focus
mainly on the quadratic parts of the TRS (4.1), namely the nonconvex quadratic y>Qy+2g>y and
the unit ball constraint ‖y‖ ≤ 1 and provide the convexification of this set X via a single new SOC
constraint.

Our approach is a refinement of the one from Burer and Kılınç-Karzan [44]. We first summarize
the approach of [44] in Section 4.3.1 and then give our direct characterization in Section 4.3.2. As
opposed to general SOCs and their cross-sections examined in Section 4.3.1, we present a direct
study of conv(X) in Section 4.3.2 that utilizes the fact that our domain in the context of TRS
is a subset of an ellipsoid. Consequently, our analysis in Section 4.3.2 eliminates the need to
verify several conditions from [44] completely and allows possibilities to handle additional conic
constraints under appropriate assumptions. Finally, in Section 4.3.3, we extend our analysis to
cover additional hollow constraints in the domain.
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4.3.1 Summary and Discussion of Results from Burer and Kılınç-Karzan [44]

We start with a number of relevant definitions and conditions and then present the main result of
[44].

A cone F+ ⊆ Rk is said to be second-order-cone representable (or SOCr) if there exists a matrix
0 6= R ∈ Rk×(k−1) and a vector r ∈ Rk such that the nonzero columns of R are linearly independent,
r 6∈ Range(R), and

F+ =
{
x : ‖R>x‖ ≤ r>x

}
. (4.10)

Given an SOCr cone F+, the cone F− := −F+ is also SOCr. Based on F+ from (4.10), we
define W := RR> − rr> and consider the union F+ ∪ (F−) = F+ ∪ (−F+) =: F . Note that F
corresponds to a nonconvex cone defined by the homogeneous quadratic inequality x>Wx ≤ 0:

F := F+ ∪ (F−) =
{
x : ‖R>x‖2 ≤ (r>x)2

}
=
{
x : x>Wx ≤ 0

}
.

We define apex(F+) = apex(F−) = apex(F) = {x : R>x = 0, r>x = 0}. Any matrix W of the
form W = RR>− rr> as described above has exactly one negative eigenvalue, and given F , we can
recover F+ by performing an eigenvalue decomposition of W , see [44, Propositions 1 and 3].

Given matrices W0,W1 ∈ Rk×k and a vector h ∈ Rk, we let Wt = (1− t)W0 + tW1 for t ∈ [0, 1],
and define the sets

F0 := {x : x>W0x ≤ 0}, F1 := {x : x>W1x ≤ 0}, Ft = {x : x>Wtx ≤ 0},
H0 := {x : h>x = 0}, H1 := {x : h>x = 1}.

Burer and Kılınç-Karzan [44] provide a general scheme to build an SOC-based convex relaxation
of F+

0 ∩F1 and establish that under appropriate conditions their relaxations are exactly describing
cone(F+

0 ∩ F1) and conv(F+
0 ∩ F1 ∩H1). Their analysis relies on the following conditions.

Condition 4.23. W0 has at least one positive eigenvalue and exactly one negative eigenvalue.

Condition 4.24. There exists x̄ such that x̄>W0x̄ < 0 and x̄>W1x̄ < 0.

Condition 4.25. Either (i) W0 is nonsingular, (ii) W0 is singular and W1 is positive definite on
Null(W0), or (iii) W0 is singular and W1 is negative definite on Null(W0).

Conditions 4.23–4.25 ensure the existence of a maximal s ∈ [0, 1] such that Wt has a single
negative eigenvalue for all t ∈ [0, s], Wt is invertible for all t ∈ (0, s), and Ws is singular—that is,
Null(Ws) is nontrivial whenever s < 1. Then, for all Wt with t ∈ [0, s], the set F+

t is well defined
by computing an eigenvalue decomposition of Wt. We also need the following conditions on the
value of s.

Condition 4.26. When s < 1, apex(F+
s ) ∩ int(F1) 6= ∅.

Condition 4.27. When s < 1, apex(F+
s ) ∩ int(F1) ∩H0 6= ∅ or F+

0 ∩ F+
s ∩H0 ⊆ F1.

Conditions 4.23–4.27 are all that is needed to state the main result of [44]. Here, we state [44,
Theorem 1] for completeness.

Theorem 4.28 ([44, Theorem 1]). Suppose Conditions 4.23–4.25 are satisfied. Let s be the maximal
s ∈ [0, 1] such that Wt := (1− t)W0 + tW1 has a single negative eigenvalue for all t ∈ [0, s]. Then,
cone(F+

0 ∩ F1) ⊆ F+
0 ∩ F+

s , and equality holds under Condition 4.26. Moreover, Conditions 4.23–
4.27 imply F+

0 ∩ F+
s ∩H1 = conv(F+

0 ∩ F1 ∩H1).
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These convexification results were also applied to the classical TRS (4.2) in [44]. In particular,
it is shown in [44, Section 7.2] that the classical TRS (4.2) can be reformulated in the form of

Opth = min
ỹ,xn+2

{
−x2

n+2 :
‖ỹ‖ ≤ 1

ỹ>Q̃ỹ + 2g̃>ỹ ≤ −x2
n+2

}
, (4.11)

where g̃ = [g; 0] and Q̃ :=

[
Q 0
0 λQ

]
is defined to ensure λmin(Q̃) = λQ and the multiplicity of λQ

in Q̃ is at least two. Note that here ỹ = [y; ỹn+1] ∈ Rn+1. Then [44] suggests to solve (4.11) in two
stages after the nonconvex domain in (4.11) is replaced by its convex hull. Specifically, [44] defines
a new variable x̃ = [ỹ;xn+1;xn+2] and the matrices

W̃0 =

In+1 0 0
0> −1 0
0 0 0

 , W̃1 =

 Q̃ g̃ 0
g̃> 0 0
0 0 1

 , (4.12)

which then leads to

Y :=

{
[ỹ; 1;xn+2] ∈ Rn+3 :

‖ỹ‖ ≤ 1

ỹ>Q̃ỹ + 2g̃>ỹ ≤ −x2
n+2

}

=

x̃ = [ỹ;xn+1;xn+2] ∈ Rn+3 :
x̃>W̃0x̃ ≤ 0

x̃>W̃1x̃ ≤ 0
xn+1 = 1


= F+

0 ∩ F1 ∩
{
x̃ ∈ Rn+3 : xn+1 = 1

}
, (4.13)

where F0 = {x̃ : x̃>W̃0x̃ ≤ 0} and F1 = {x̃ : x̃>W̃1x̃ ≤ 0}. Then the conditions of Theorem 4.28
are satisfied, and we deduce that there exists some s ∈ (0, 1) ensuring

conv(F+
0 ∩ F1 ∩ {x̃ : xn+1 = 1}) = F+

0 ∩ F
+
s ∩ {x̃ : xn+1 = 1} . (4.14)

While the precise value of s is not given in [44], one can show that in fact s = 1
1−λQ . We present

the verification of conditions of Theorem 4.28 for matrices in (4.12) and the derivation for this s
value in Appendix A.2.

Remark 4.29. The reformulation (4.11) of classical TRS (4.2) implicitly requires that Opth ≤ 0
because of the constraint ỹ>Q̃ỹ+2g̃>ỹ ≤ −x2

n+2 ≤ 0. For the classical TRS (4.2) with no additional
constraints, this is not an additional limitation because ỹ = 0 will always be a feasible solution with
objective value 0 and thus the optimum solution will have a nonpositive objective value. However,
this becomes a limitation when we want to extend such arguments for the TRS (4.1) with additional
conic constraints Ay − b ∈ K because Opth may no longer be nonpositive.

4.3.2 Direct Convexification of the Epigraph of TRS

Due to Remark 4.29, we instead choose to study the epigraph of TRS (4.1) as in (4.9), which allows
for positive objective values in (4.8) and avoids the additional lifting of the problem Q → Q̃. To
this end, we define the matrices

W0 =

In 0 0
0> −1 0
0 0 0

 , W1 =

Q g 0
g> 0 −1

2
0 −1

2 0

 , (4.15)
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and the corresponding sets

F+
0 =

{
x = [y;xn+1;xn+2] ∈ Rn+2 : ‖y‖2 ≤ x2

n+1, xn+1 ≥ 0
}

=
{
x ∈ Rn+2 : x>W0x ≤ 0, xn+1 ≥ 0

}
,

F1 =
{
x ∈ Rn+2 : y>Qy + 2g>y xn+1 ≤ xn+1xn+2

}
=
{
x : x>W1x ≤ 0

}
, (4.16)

K̂ =
{
x ∈ Rn+2 : Ay − bxn+1 ∈ K

}
,

H1 =
{
x ∈ Rn+2 : xn+1 = 1

}
.

Note that λQ < 0, and thus F1 is not convex. With these definitions, the epigraph X from (4.9)
can be written as

X = F+
0 ∩ F1 ∩ K̂ ∩H1.

It is mentioned in [44] that the matrices (4.15) do not satisfy the necessary conditions to apply
Theorem 4.28 directly. In particular, Condition 4.25 is violated for the choice of matrices (4.15). As
a result, [44, Section 7.2] reformulates the classical TRS with matrices (4.12) instead. In contrast,
we next show that in the special case of the classical TRS, via a direct analysis, finding the convex
hull through linear aggregation of constraints will still carry through for the matrices in (4.15).
This then indicates that while Condition 4.25 is sufficient, it is not necessary to obtain the convex
hull result. In fact, we show that the value of s = 1

1−λQ that works for the matrices (4.12) will also

work for our matrices (4.15). More precisely, for s = 1
1−λQ , we define

Fs =
{
x : x>Wsx ≤ 0

}
=
{
x : y>(Q− λQIn)y + 2g>yxn+1 + λQx

2
n+1 ≤ xn+1xn+2

}
, (4.17)

and prove that conv(X) = conv(X) = conv(F+
0 ∩F1 ∩ K̂ ∩H1) = F+

0 ∩Fs ∩ K̂ ∩H1 directly under
the following condition that handles additional conic constraints.

Condition 4.30. There exists a vector d 6= 0 such that Qd = λQd, Ad ∈ K, and −Ad ∈ K.

Note that when K is pointed and A is full rank, Condition 4.30 assumes Ad = 0.

Remark 4.31. Condition 4.30 implies Condition 4.4. To see this, suppose d 6= 0 satisfies Condi-
tion 4.30. Then if g>d ≤ 0, d satisfies Condition 4.4 also. Otherwise, −d will satisfy Condition 4.4.
We demonstrate that Condition 4.4 does not imply Condition 4.30 in Example 4.36.

Furthermore, Condition 4.30 holds whenever Condition 4.9 of [90] is satisfied because Condi-
tion 4.9 implies that there exists d such that Qd = λQd and Ad = 0 and since K is a closed convex
cone, ±Ad = 0 ∈ K as well.

One of the ingredients of our convex hull result is given in the next lemma.

Lemma 4.32. Let Fs be defined as in (4.17). Then the cone Fs ∩ {x : xn+1 > 0} is convex, and
the set Fs ∩H1 where H1 is as defined in (4.16) is SOC representable.

77



Proof. Let x = [y;xn+1;xn+2] ∈ Rn+2. Note that by definition we have

Fs ∩ {x : xn+1 > 0}

=
{
x : y>(Q− λQIn)y + 2g>yxn+1 + λQx

2
n+1 ≤ xn+1xn+2, xn+1 > 0

}
=
{
x : y>(Q− λQIn)y ≤ xn+1(xn+2 − 2g>y − λQxn+1), xn+1 > 0

}
=

{
x :

y>(Q− λQIn)y ≤ xn+1(xn+2 − 2g>y − λQxn+1),
xn+1 > 0, xn+2 − 2g>y − λQxn+1 ≥ 0

}
,

where the last equation follows because Q − λQIn � 0, we have y>(Q − λQIn)y ≥ 0 for all y and
then xn+1 > 0 implies xn+2 − 2g>y − λQxn+1 ≥ 0. As a result, xn+1 + xn+2 − 2g>y − λQxn+1 ≥ 0
holds for all x ∈ Fs ∩ {x : xn+1 > 0}. In addition, from these derivations, we immediately deduce
that the set Fs ∩ {x : xn+1 = 1} is an SOC representable set.

Theorem 4.33. Let F+
0 ,F1, H

1, K̂,Fs be defined as in (4.16) and (4.17). Assume that λQ < 0
and Condition 4.30 holds. Then

conv(F+
0 ∩ F1 ∩ K̂ ∩H1) = F+

0 ∩ Fs ∩ K̂ ∩H
1.

Proof. We will first establish that conv(F+
0 ∩ F1 ∩ K̂ ∩ H1) = F+

0 ∩ Fs ∩ K̂ ∩ H1. Since the sets

F+,Fs, K̂, H1 are closed, this will immediately imply our closed convex hull result.

It is clear from the definition of Fs and Lemma 4.32 that conv(F+
0 ∩F1 ∩ K̂ ∩H1) ⊆ F+

0 ∩Fs ∩
K̂ ∩H1. We will prove the reverse direction.

Let x = [y;xn+1;xn+2] be a vector in F+
0 ∩ K̂ ∩H1 ∩ Fs. Then x satisfies

x>W0x ≤ 0,

Ay − bxn+1 ∈ K,
xn+1 = 1,

x>Wsx ≤ 0.

We will show that x ∈ conv(F+
0 ∩ F1 ∩ K̂ ∩ H1). If x ∈ F1, then we are done. Suppose x 6∈ F1,

that is, x>W1x > 0. Then, from the definition of s, 0 < x>W1x, and x>Wsx ≤ 0, we have

0 < s(x>W1x)− x>Wsx = −(1− s)x>W0x =
λQ

1− λQ
(‖y‖2 − x2

n+1).

Because λQ < 0, this implies ‖y‖2 < x2
n+1. Let d be the vector given by Condition 4.30 such

that Qd = λQd, Ad ∈ K, −Ad ∈ K, and ‖d‖2 = 1. We now consider the points xη := [y +
ηd; xn+1; xn+2 + 2g>dη] for η ∈ R. We first argue that xη ∈ Fs holds for all η ∈ R. To see this,
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note that

(y + ηd)>(Q− λQIn)(y + ηd) + 2g>(y + ηd)xn+1 + λQx
2
n+1

= (y + ηd)>Q(y + ηd) + 2g>(y + ηd)xn+1 + λQ(x2
n+1 − ‖y + ηd‖2)

= y>Qy + 2 y>Qd︸ ︷︷ ︸
=λQy>d

η + d>Qd︸ ︷︷ ︸
=λQ

η2 + 2g>y xn+1 + 2g>d xn+1η

+ λQ(x2
n+1 − ‖y‖2 − 2y>dη − η2)

= y>Qy + 2g>y xn+1 + λQ(x2
n+1 − ‖y‖2) + 2g>d xn+1η

= y>(Q− λQIn)y + 2g>y xn+1 + λQx
2
n+1 + 2g>d xn+1η

= xn+1xn+2 + (1− λQ)(x>Wsx) + 2g>d xn+1η

≤ xn+1xn+2 + 2g>d xn+1η (4.18)

= xn+1(xn+2 + 2g>dη),

where the third equation follows from Qd = λQd and ‖d‖2 = 1, and the inequality holds because
x>Wsx ≤ 0 and λQ < 0. Then from the inequality (4.18) and the definition of Fs in (4.17), we
conclude xη ∈ Fs for all η ∈ R. Moreover, because ‖y‖2 < x2

n+1 and d 6= 0, there must exist δ, ε > 0
such that ‖y − δd‖2 = ‖y + εd‖2 = x2

n+1. We define

xδ := [y − δd; xn+1; xn+2 − 2g>dδ]

xε := [y + εd; xn+1; xn+2 + 2g>dε].

Then by our choice of δ, ε, we have xδ, xε ∈ bd(F+
0 ). From s ∈ (0, 1), xη ∈ Fs for all η ∈ R, and

the relation
(xη)>Wsx

η = (1− s)[(xη)>W0x
η] + s[(xη)>W1x

η],

we conclude that xη ∈ F1 for all η such that xη ∈ bd(F+
0 ). In particular, xδ, xε ∈ F1. Furthermore,

by Condition 4.30, ±Ad ∈ K, and since K is a cone, −Adδ,Adε ∈ K; thus xδ, xε ∈ K̂. Finally,
xn+1 = 1 in both xδ, xε, and so we have xδ, xε ∈ F+

0 ∩ F1 ∩ K̂ ∩H1. Now it is easy to see that

x =
ε

δ + ε
xδ +

δ

δ + ε
xε ∈ conv(F+

0 ∩ F1 ∩ K̂ ∩H1).

As a consequence, we have the relation

F+
0 ∩ F1 ∩ K̂ ∩H1 ⊆ F+

0 ∩ Fs ∩ K̂ ∩H
1 ⊆ conv(F+

0 ∩ F1 ∩ K̂ ∩H1).

By Lemma 4.32, the set Fs ∩H1 is SOC representable and hence convex; this implies that F+
0 ∩

Fs ∩ K̂ ∩H1 is convex also. Then taking the convex hull of all terms in the above inequality gives
us the result.

Note that the set F+
0 ∩ Fs ∩ K̂ ∩H1 is closed. We give our explicit convex hull result for TRS

below.

Corollary 4.34. Let X be the set defined in (4.9). When λQ < 0, under Condition 4.30 we have

conv(X) =

x = [y; 1;xn+2] :
‖y‖ ≤ 1

y>(Q− λQIn)y + 2g>y + λQ ≤ xn+2

Ay − b ∈ K

 .
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As a result,

Opth = min
y

{
h(y) = y>Qy + 2g>y :

‖y‖ ≤ 1
Ay − b ∈ K

}
= min

y

{
f(y) = y>(Q− λQIn)y + 2g>y + λQ :

‖y‖ ≤ 1
Ay − b ∈ K

}
.

Remark 4.35. In the particular case of TRS with additional conic constraints, i.e., problem (4.1),
under Condition 4.30, Corollary 4.34 shows that not only our convex relaxation given by (4.4) is
tight but also we can characterize the convex hull of its epigraph exactly. Because Condition 4.30
holds for the classical TRS, this then recovers the results from [44, Section 6.2].

As a consequence of Remark 4.31 and Corollary 4.34, in all of the cases where Jeyakumar and
Li [90] show the tightness of their convex reformulation, i.e., for robust least squares and robust
SOC programming, we can further give the exact convex hull characterizations of the associated
epigraphs.

We next present an example to illustrate that when Condition 4.30 is violated, we may not be
able to obtain the convex hull description. We also give a variant of this example to demonstrate
that there are cases where our convex relaxation is tight while Condition 4.30 is still violated.

Example 4.36. Consider the following problem with the data given by

Q =

[
1 0
0 −1

]
, g =

[
0
1

]
, A =

[
0 −1

]
, b =

1

2
, K = R+.

In this example, Condition 4.30 is violated. To see this, any vector d such that Qd = λQd is of the
form d = [0; d2]. But then Ad = −d2. Hence, if d2 > 0 then Ad 6∈ K, and similarly, if d2 < 0 then
−Ad 6∈ K.

(a) X = F+
0 ∩ F1 ∩ K̂ ∩H1. (b) F+

0 ∩ Fs ∩ K̂ ∩H1. (c) X vs F+
0 ∩ Fs ∩ K̂ ∩H1.

Figure 4.2: Plots of the epigraph of Example 4.36.

Figure 4.2c shows that the convex relaxation for the epigraph X = F+
0 ∩F1 ∩ K̂ ∩H1 given by

F+
0 ∩ Fs ∩ K̂ ∩ H1 does not give the convex hull of X. Note also that Condition 4.4 is satisfied

for this example by taking d = [0; 1], and so by Theorem 4.5, the SOC optimization problem (4.4)
is a tight relaxation for (4.1). Despite this, we cannot give the exact convex hull characterization
because Condition 4.30 is violated.
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If we were to set b = 1 instead of b = 1
2 in this example, then the linear inequality would

become redundant. In this case, our convex relaxation would give the convex hull, as illustrated
in Figure 4.3 below. Nevertheless, even in this case Condition 4.30 would still be violated. This
demonstrates that Condition 4.30 is not necessary to obtain the convex hull.

(a) X = F+
0 ∩ F1 ∩ K̂ ∩H1. (b) F+

0 ∩ Fs ∩ K̂ ∩H1. (c) X vs F+
0 ∩ Fs ∩ K̂ ∩H1.

Figure 4.3: Plots of the epigraph of Example 4.36 without the linear inequality.

We close this section with a simple result which highlights a particularly important structure
of the extreme points of X.

Lemma 4.37. Let X be defined as in (4.9). Assume that λQ < 0 and Condition 4.30 also holds.
Then any point [y; 1;xn+2] ∈ X is an extreme point of conv(X) only if ‖y‖ = 1.

Proof. Consider [y; 1;xn+2] ∈ conv(X) with ‖y‖ < 1. Let d 6= 0 be the vector given by Condi-
tion 4.30. Because d satisfies Qd = λQd and ±Ad ∈ K, for any ε ∈ R,

f(y + εd) = (y + εd)>(Q− λQIn)(y + εd) + 2g>(y + εd) + λQ

= [y>(Q− λQIn)y + 2g>y + λQ] + 2g>dε

≤ xn+2 + 2g>dε.

Now choose ε+ > 0 such that ‖y + ε+d‖ = 1, and define x+ = [y + ε+d; 1;xn+2 + 2g>dε+]. Then
we have x+ ∈ X, since ‖y + ε+d‖ = 1 guarantees f(y + ε+d) = h(y + ε+d) ≤ xn+2 + 2g>dε+. Note
that we will have ε+ > 0 and finite since ‖y‖ < 1 and d 6= 0. Similarly, choosing ε− > 0 such that
‖y − ε−d‖ = 1, x− = [y − ε−d; 1;xn+2 − 2g>dε−] ∈ X also. Then the point x will be a convex
combination of x+, x− ∈ X with weights ε−/(ε− + ε+) and ε+/(ε− + ε+), respectively.

4.3.3 Additional Hollow Constraints

In this section we explore additional constraints y ∈ R included in the domain of TRS (4.1), where
R = Rn \ P and P is a given possibly nonconvex set. More precisely, we characterize the convex
hull of the set X ∩ R̂ = F+

0 ∩ F1 ∩ K̂ ∩H1 ∩ R̂ where F+
0 , F1, K̂, and H1 are as defined in (4.16),

and R̂ := {[y;xn+1;xn+2] : y ∈ R}.
We impose the following condition on R = Rn \ P.

Condition 4.38. The set P ⊆ Rn satisfies P ⊆ {y : ‖y‖ < 1, Ay − b ∈ K}.
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Consider the case where Ay − b ∈ K is non-existent. If P =
⋃m
i=1Ei is a union of ellipsoids

Ei =
{
y : y>Wiy + 2b>i y + ci ≤ 0

}
where each Wi � 0, then Condition 4.38 can be checked by

solving

vi = min
y

{
1− ‖y‖2 : y>Wiy + 2b>i y + ci ≤ 0

}
.

That is, Ei satisfies Condition 4.38 if and only if vi > 0. The computation of vi as stated above
requires solving a nonconvex quadratic program, which is nothing but a classical TRS after an ap-
propriate affine transformation of the variables is applied. Hence, our developments from Section 4.2
give a tight SOC reformulation for it. In addition, the inhomogeneous S-lemma [20, Proposition
3.5.2] ensures that the associated semidefinite relaxation is tight. Thus, Condition 4.38 can be
verified efficiently when P is a union of ellipsoids.

Hollow constraints have been studied in TRS literature under conditions similar to Condi-
tion 4.38. Most notably, the interval-bounded TRS [21, 31, 122, 144, 153] corresponds to the case
when R is a single lower-bounded quadratic constraint y>Dy ≥ l, where D � 0 and l is a positive
number. The interval-bounded TRS is used to generate new steps in the context of the trust-region
algorithm where minimum step lengths are enforced. In the case of interval-bounded TRS, Con-
dition 4.38 is automatically satisfied. It is shown in a number of these papers [122, 153] that the
natural SDP relaxation of interval-bounded TRS is tight. More recently, Yang et al. [151] showed
the tightness of the SDP relaxation when the hollow set P is the disjoint union of ellipsoids which
do not intersect the boundary of the unit ball {y : ‖y‖ ≤ 1}. As opposed to these results on
tight SDP relaxations, Bienstock [30] has established that the general quadratically constrained
quadratic programming problem

min
y

{
y>Q0y + 2g>0 y : y>Qiy + 2g>i y + ci ≤ 0, i = 1, . . . ,m

}
is polynomially solvable for a fixed number of constraints m using a weak feasibility oracle, under
the assumption that at least one quadratic constraint y>Qiy + 2g>i y + ci ≤ 0 is strictly convex.
In a similar vein, Bienstock and Michalka [32] also study TRS with additional ellipsoidal hollow
constraints. Instead of giving the convex hull, [32] explores conditions that allow for polynomial
solvability using a combinatorial enumeration technique and thus is able to cover cases where the
set P may not be contained in the unit ball. On a related subject, [31] studies the characterization
and separation of valid linear inequalities that convexify the epigraph of a convex, differentiable
function whose domain is restricted to the complement of a convex set defined by linear or convex
quadratic inequalities.

We note that these papers [21, 30, 31, 32, 122, 144, 151, 153] consider the more general case of
minimizing an arbitrary quadratic objective, which can be convex, over a domain given by possibly
nonconvex quadratic constraints. On the other hand, our result applies to the special case of
minimizing a nonconvex quadratic, i.e., λQ < 0, over the unit ball, a convex quadratic constraint.
As a result, we are able to relax the assumptions that the set P is generated by quadratics and the
ellipsoidal hollows are disjoint. Specifically, we show that under Condition 4.38, our main convex
hull result, i.e.,Theorem 4.33, obtained without the constraint y ∈ R is tight.

Theorem 4.39. Let X be defined in (4.9), and let R = Rn \ P be a set satisfying Condition 4.38.
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Assume that λQ < 0 and Condition 4.30 also holds. Then

conv


[y; 1;xn+2] :

‖y‖ ≤ 1
y ∈ R

Ay − b ∈ K
y>Qy + 2g>y ≤ xn+2


 = conv(X).

Proof. Denoting R̂ := {[y;xn+1;xn+2] : y ∈ R}, our aim is to prove conv(X ∩ R̂) = conv(X).
We trivially have conv(X ∩ R̂) ⊆ conv(X). To prove conv(X ∩ R̂) ⊇ conv(X), note that from
Lemma 4.37 any point x = [y; 1;xn+2] ∈ Ext(conv(X)) satisfies ‖y‖ = 1. Also, by Condition 4.38,
the constraint x ∈ R̂ does not remove any of the points with ‖y‖ = 1, in particular, all of the
extreme points of X are also in R̂. Thus, Ext(X ∩ R̂) = Ext(X). Moreover, because ‖y‖ ≤ 1, the
only recessive direction of conv(X) is [0; 0; 1], i.e., Rec(conv(X)) = cone([0; 0; 1]). Note [0; 0; 1] is
also a recessive direction in R̂. Then the result follows from

conv(X ∩ R̂) = conv(Ext(X ∩ R̂)) + Rec(X ∩ R̂)

= conv(Ext(X)) + Rec(X) = conv(X).

Theorem 4.39 has the following immediate implication.

Corollary 4.40. When λQ < 0 and l ≤ 1, an exact convex reformulation of the interval-bounded
TRS

min
y

{
y>Qy + 2g>y : l ≤ ‖y‖ ≤ 1

}
is given by (4.5).

Corollary 4.40 gives a convex reformulation for the interval-bounded TRS with λQ < 0, as do
results from [21, 122, 144, 153]. These results were often derived as a consequence of a simultane-
ously diagonalizable assumption of the underlying matrices associated with TRS, or through SDP
relaxations. In contrast, Condition 4.38 and Theorem 4.39 highlight the important geometric as-
pect, and provide a convex reformulation without additional variables. In addition, Corollary 4.40
together with Theorem 4.18 establish the convergence rate of FOMs to solve interval-bounded TRS
as opposed to specialized algorithms suggested in [122].

4.4 Application to Robust Quadratic Programming

In this section we walk through the setup and resulting convergence rates of our primal-dual frame-
work for robust optimization from Chapter 2.4 together with the convexification of the TRS for
a robust quadratic program (QP) with ellipsoidal uncertainty. To be precise, our deterministic
feasibility problem is

find x ∈ X s.t. ‖Aix‖22 ≤ b>i x+ ci, ∀i ∈ [m],

where X ⊆ Rn is the unit Euclidean ball, Ai ∈ Rn×n, bi ∈ Rn, and ci ∈ R for all i ∈ [m]. We
consider the robust quadratic feasibility problem given by

find x ∈ X s.t. max
u∈Û

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
k

)
x

∥∥∥∥∥
2

2

− b>i x− ci ≤ 0, ∀i ∈ [m], (4.19)
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where P i1, . . . , P
i
K are uncertainty matrices for each constraint i ∈ [m], for simplicity we assume

uncertainty sets U i = Û = {u ∈ RK : ‖u‖2 ≤ 1} for all i ∈ [m], and uk denotes the k-th entry of u.
It is well known that the robust counterpart of this feasibility problem is a semidefinite program

[23, 29]. Because current state-of-the-art QP solvers can handle two to three orders of magnitude
larger QPs than semidefinite programs (SDPs), Ben-Tal et al. [25, Section 4.2] suggest an approach
that avoids solving SDPs associated with robust QPs. Their approach relies on running a prob-
abilistic OCO algorithm in which a trust region subproblem (TRS) is solved in each iteration.
Our primal-dual framework in Chapter 2.4 together with the convexification results in this chap-
ter further enhance this approach. In particular, we show that we can achieve the same rate of
convergence in our framework while working with a deterministic OCO algorithm through using
our convexification result for the TRS. In fact, the most expensive operation involved with each
iteration of our approach is a maximum eigenvalue computation. Because maximum eigenvalue
computation is cheaper than solving a TRS, we not only present a deterministic approach but also
reduce the cost of each iteration.

To simplify our exposition, let us introduce some notation. For each i ∈ [m] and fixed x ∈ X,
we define the matrix P ix ∈ Rn×K whose columns are given by the vectors P ik x for k ∈ [K] together
with

Qix := (P ix)>P ix ∈ SK+ , rix := (P ix)>Aix ∈ RK , and six := ‖Aix‖22 − b>i x− ci ∈ R;

then it is easy to check that for all i ∈ [m] and u ∈ RK we have∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
k

)
x

∥∥∥∥∥
2

2

− b>i x− ci = u>Qixu+ 2(rix)>u+ six.

This shows that for each i ∈ [m], the maximum over u ∈ Û in (4.19) is an instance of a TRS: we
must maximize a non-concave (in fact convex) quadratic over the unit ball. For each i ∈ [m], we
define f i : X × Û → R as

f i(x, u) :=

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
k

)
x

∥∥∥∥∥
2

2

− b>i x− ci + λmax(Qix)
(
1− ‖u‖22

)
= u>Qixu+ 2(rix)>u+ six + λmax(Qix)

(
1− ‖u‖22

)
. (4.20)

The convexification now follows from Theorem 4.7. We also check that f i(x, u) is a convex-concave
function in x and u, which allows us to apply the algorithms from Chapter 3 to choose xt, ut within
our primal-dual framework of Chapter 2.4.

Lemma 4.41. For each i ∈ [m], the function f i(x, u) defined in (4.20) is convex in x for any fixed
u ∈ Û and concave in u for any given x. Moreover, for all i ∈ [m] and for any x ∈ X,

max
u∈Û

∥∥∥∥∥
(
Ai +

K∑
k=1

P ik u
k

)
x

∥∥∥∥∥
2

2

− b>i x− ci = max
u∈Û

f i(x, u).

Proof of Lemma 4.41. Fix i ∈ [m]. By rearranging terms in (4.20), we obtain f i(x, u) = u>(Qix −
λmax(Qix)IK)u+ 2(rix)>u+ six + λmax(Qix). Since Qix − λmax(Qix)IK ∈ SK+ for any given x, f i(x, u)
is concave in u for any given x.
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Now consider a fixed u ∈ Û . Note that

λmax(Qix) = max
‖v‖2≤1

v>(Qix)v = max
‖v‖2≤1

∑
1≤j,k≤K

v(j)vkx>(P ij )
>P ik x = max

‖v‖2≤1
x>

(
K∑
k=1

P ik v
k

)>( K∑
k=1

P ik v
k

)
x.

Because
(∑K

k=1 P
i
k v

k
)>(∑K

k=1 P
i
k v

k
)
∈ Sn+, then λmax(Qix) is a maximum of convex quadratic

functions of x and hence is convex in x. Thus, for fixed u ∈ Û , f i(x, u) is convex in x.
Reformulation of the nonconvex QP over an ellipsoid into a convex QP over the ellipsoid via

the relation between u>Qixu+ 2(rix)>u+ six and f i(x, u) in (4.20) follows from Theorem 4.7.

Lemma 4.41 implies that max
u∈Û f

i(x, u) ≤ 0 is an alternate representation of our robust
quadratic constraint. We next state the convergence rate in our framework for the associated
feasibility problem. For this, we define the quantities

σ2 := max
i∈[m]

K∑
k=1

‖P ik‖2Fro, χ := max
i∈[m]

max
k∈[K]

‖P ik‖Spec, and

ρ := max
i∈[m]

‖Ai‖Spec, β := max
i∈[m]

‖bi‖2, (4.21)

where ‖ · ‖Fro is the Frobenius norm of a matrix, and ‖ · ‖2 is the spectral norm. Note that χ ≤ σ.
Furthermore, Ben-Tal et al. [25, Lemma 7] proves that ‖Qix‖Fro ≤ σ2 and ‖rix‖2 ≤ σρ holds for all
x such that ‖x‖2 ≤ 1.

Corollary 4.42. Let our domain be given by X = {x ∈ Rn : ‖x‖2 ≤ 1}. The customization

of our OFO-based approach to the problem (4.19) ensures that within O
(

((ρ+
√
Kσ)2 + β)2

)
ε−2

iterations, we obtain a robust feasibility/infeasibility certificate. Moreover, each iteration in our
framework relies on a first-order update where the most expensive operation in the case of (4.19)
is computing λmax(Qix), which can be done efficiently.

Proof of Corollary 4.42. Let U = Û × . . . × Û (m times). Recall that the primal-dual framework
from Chapter 2.4 states that we must bound the two terms

ε̂
(
{xt, yt, ũt, θt}t∈[T ]

)
= max

i∈[m]

∑
t∈[T ]

θtf
i(xt, u

i
t)−min

x∈X

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit)

= max
y∈Y

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yif i(xt, u
i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt

m∑
i=1

yitf
i(x, uit)

= max
y∈Y

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yif i(xt, u
i
t)−

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(xt, u

i
t)

+
1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(xt, u

i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit)

max
ũ∈U

ε◦
(
{xt, ũt, θt}t∈[T ] ; ũ

)
= max

i∈[m]

max
u∈Û

1

ΘT

∑
t∈[T ]

θtf
i(xt, u)− 1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t)
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and then we can apply Theorem 2.8 to get out feasibility guarantee. Here, yt ∈ Y := ∆m and
ũt ∈ U for t ∈ [T ].

To get convergence rates, we apply the mirror descent algorithm (Theorem 3.4) to choose se-
quences {xt}t∈[T ], {uit}t∈[T ] for i ∈ [m], and then we choose yit = 1 if f i(xt, u

i
t) = maxi′∈[m] f

i′(xt, u
i′
t )

and yit = 0 otherwise for i ∈ [m] (if there is more than one such i, we choose one arbitrarily). This
guarantees that

max
y∈Y

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yif i(xt, u
i
t)−

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(xt, u

i
t) ≤ 0

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(xt, u

i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit) ≤

O(1)√
T

max
u∈Û

1

ΘT

∑
t∈[T ]

θtf
i(xt, u)− 1

ΘT

∑
t∈[T ]

θtf
i(xt, u

i
t) ≤

O(1)√
T
, ∀i ∈ [m].

This gives us bounds on ε̂
(
{xt, yt, ũt, θt}t∈[T ]

)
,maxũ∈U ε

◦
(
{xt, ũt, θt}t∈[T ] ; ũ

)
above.

To get explicit rates, we now compute the constants in Theorem 3.4 in the context of our
robust QP setting. We first need to customize our proximal setup. Given that the sets X and Û
are Euclidean balls, we choose the proximal setup for generating the iterates {xt, uit}Tt=1 to be the
standard Euclidean d.g.f. ω(·) = ‖ · ‖/2 with ‖ · ‖2-norm, and thus ΩX = Ω

Û
= 1

2 .

We must bound the magnitude of the gradients measured by the ‖ · ‖2-norm. Note that for any
i ∈ [m], the gradients of f i are given by

∇uf i(x, u) = 2
(
Qix − λmax(Qix)IK

)
u+ 2rix

∇xf i(x, u) = 2

(
Ai +

K∑
k=1

P ik u
k

)>(
Ai +

K∑
k=1

P ik u
k

)
x+ 2

(
1− ‖u‖22

)( K∑
k=1

P ik v
k

)>( K∑
k=1

P ik v
k

)
x− bi,

where v ∈ Û is an eigenvector of Qix corresponding to λmax(Qix).

Let us fix an i ∈ [m]. We first bound ‖∇uf i(x, u)‖2 for any u ∈ Û as follows:

‖∇uf i(x, u)‖2 = 2
∥∥(Qix − λmax(Qix)IK

)
u+ rix

∥∥
2

≤ 2
(∥∥(Qix − λmax(Qix)IK

)
u
∥∥

2
+
∥∥rix∥∥2

)
≤ 2λmax(Qix)‖u‖2 + 2σρ ≤ 2(σ2 + σρ),

where the second inequality follows from
∥∥Qix − λmax(Qix)IK

∥∥
Spec

≤ λmax(Qix) and ‖rix‖2 ≤ σρ

which is implied by Ben-Tal et al. [25, Lemma 7], and the last inequality follows from the facts that
u ∈ Û , the definitions given in (4.21), and λmax(Qix) = ‖P ix‖2Spec ≤ ‖P ix‖2Fro ≤

∑K
k=1 ‖P ik‖2Fro ≤ σ2

for any x ∈ X. Therefore, we deduce from Theorem 3.4 that the rate of convergence for bounding
the weighted regret associated with constraint i ∈ [m] using the online mirror descent algorithm is

max
u∈Û

1

T

T∑
t=1

f i(xt, u)− 1

T

T∑
t=1

f i(xt, u
i
t) ≤

2(σ2 + σρ)√
T

.
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We next bound the ‖ · ‖2-norm of ∇x
(∑

i∈[m] y
i
tf
i(x, uit)

)
=
∑

i∈[m] y
i
t∇xf i(x, uit). Notice that∥∥∥∥∥∥∇x

∑
i∈[m]

yitf
i(x, uit)

∥∥∥∥∥∥
2

≤
∑
i∈[m]

yit‖∇xf i(x, uit)‖2

≤ max
i∈[m]

‖∇xf i(x, uit)‖2.

Thus, we must bound ‖∇xf i(x, u)‖2 for all x ∈ X, u ∈ Û . To this end, note that for any u ∈ Û∥∥∥∥∥
K∑
k=1

P ik u
k

∥∥∥∥∥
Spec

≤
K∑
k=1

‖P ik‖Spec |uk| ≤
√
K max

k∈[K]
‖P ik‖Spec ≤

√
Kχ,

where the second inequality holds because ‖u‖1 ≤
√
K‖u‖2 ≤

√
K holds for all u ∈ Û . Then for

any x ∈ X, u ∈ Û , and eigenvector v ∈ Û , we have

‖∇xf i(x, u)‖2 ≤ 2

∥∥∥∥∥Ai +

K∑
k=1

P ik u
k

∥∥∥∥∥
2

Spec

‖x‖2 + 2
(
1− ‖u‖22

) ∥∥∥∥∥
K∑
k=1

P ik v
k

∥∥∥∥∥
2

Spec

‖x‖2 + ‖bi‖2

≤ 2(ρ+
√
Kχ)2 + 2Kχ2 + β

≤ 4(ρ+
√
Kσ)2 + β.

Hence,
∥∥∥∇x (∑i∈[m] y

i
tf
i(x, uit)

)∥∥∥
2
≤ 4(ρ+

√
Kσ)2 + β. Then Theorem 3.4 implies

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(xt, u

i
t)−min

x∈X

1

ΘT

∑
t∈[T ]

θt
∑
i∈[m]

yitf
i(x, uit) ≤

(
4(ρ+

√
Kσ)2 + β

)
√
T

.

Note that each iteration of our approach requires a first-order update that is composed of
computing the gradients ∇xf i(x, u) and ∇uf i(x, u) and prox computations. Because our domains
involve only direct products of Euclidean balls, they admit efficient prox computations which take
O(Km+mn) time. In order to evaluate the gradients ∇xf i(x, u) and ∇uf i(x, u), in addition to the
elementary matrix vector operations, we need to compute λmax(Qix) which is the most expensive
operation in our first-order update. Fortunately, computing the maximum eigenvalue of a matrix
is a well-studied problem and can be computed very efficiently.

In the case of robust QP feasibility problem (4.19), Ben-Tal et al. [25, Corollary 3] states
that with probability 1 − δ, their framework returns robust feasibility/infeasibility certificates in
at most O

(
K2σ2(ρ2 + σ2) log(m/δ)ε−2

)
calls (iterations) to their oracle. In each call to their

oracle, a nominal feasibility problem is solved to the accuracy ε/2. In comparison we deduce from
Corollary 4.42 that our framework requires comparable number of iterations as the approach of
Ben-Tal et al. [25]. Even so, there are a number of reasons that considerably favor our approach.
First, our approach is deterministic as opposed to the high 1− δ probability guarantee of Ben-Tal
et al. [25] which requires using an adaptation of the follow-the-perturbed-leader type OCO. Second,
each iteration of their approach requires solving a nominal feasibility problem for solution oracle
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as well as solving TRSs for the computation of noises ut. In contrast to this, in each iteration
we carry out mainly elementary operations such as matrix vector multiplications and our most
computationally expensive operation is the maximum eigenvalue computations λmax(Qix). While
there are established algorithms to solve the TRS, it is inherently more complicated than finding
the maximum eigenvalue of a positive semidefinite matrix. Moreover, the approach of Ben-Tal
et al. [25] suffers from the additional computational cost of their solution oracle which solves
the nominal feasibility problem. Hence, our approach, while requiring a comparable number of
iterations, reduces the cost per iteration remarkably.

4.4.1 Numerical Study

In this section, we conduct a numerical study comparing the approaches discussed so far. We
consider the following quadratic program inspired by mean-variance portfolio optimization problems
with a factor model for the return vector (see, e.g., Goldfarb and Iyengar [67]):

min
x

{
‖V x‖22 + x>Dx− λµ>x : x ∈ ∆n

}
, (4.22)

where µ ∈ Rn is the expected return vector, the term x>(V >V +D)x captures the risk associated
with the portfolio via a factor model, and λ ≥ 0 represents the trade-off between the expected
return of the portfolio and the risk associated with the portfolio.

In the robust formulation of (4.22), we consider the case where the true parameters µ ∈ Rn and
V ∈ Rm×n belong to uncertainty sets M and V of form

M := {µ : µ0 − γ ≤ µ ≤ µ0 + γ} , V :=

{
V = V0 +

K∑
k=1

Pkuk : ‖u‖2 ≤ 1

}
,

where the nominal data µ0 ∈ Rn, γ ∈ Rn, and V0 ∈ Rm×n, {Pk ∈ Rm×n}Kk=1 are given to us. Then
the robust problem is given by

min
x

{
max
V ∈V
‖V x‖22 + x>Dx− λ min

µ∈M
µ>x : x ∈ ∆n

}
. (4.23)

Our test instances are synthetically generated, largely following the random instance generation
model from Goldfarb and Iyengar [67]. We begin by specifying three parameters: n, the number
of variables; m, the number of factors (which controls the rank of V ); and α ∈ (0, 1), a parameter
controlling the size of the uncertainty sets. For each instance, we randomly generate matrices V ∈
Rm×n and F ∈ Rm×m, where we ensure F is positive semidefinite, and define D = 0.1 Diag(V >FV ).
We then generate p > m factor samples f(l) ∈ Rm, l ∈ [p], where each f(l) ∼ N(0, F ), and we also

generate µ ∈ Rn where each entry µi ∼ U(1, 5). We then set µ(l) = µ + V >f(l) + εl, where
ε(l) ∼ N(0, D) are independent of the factor sample f(l). The matrices µ and V are estimated
via linear regression on µ(l) and f(l), to obtain µ̄, V̄ . The nominal data for (4.22) are set to be

µ0 = µ̄, V0 = F 1/2V̄ . To define the uncertainty sets, we first compute the scaled sum of squared
errors for each i ∈ [n], s2

i = 1
p−m−1

∑p
l=1(µ(l),i − µ0,i − V >0,if(l))

2. Let cJ(α) be the α-critical value

of an F -distribution with J degrees of freedom, and let ν be the top-left entry of A−1, where

A ∈ R(p+1)×(p+1) is the Gram matrix of the vectors 1m, {f(l)}
p
l=1. Then we set γi =

√
νc1(α)s2

i for

i ∈ [n], which defines the uncertainty set for µ. The uncertainty set for V is chosen by randomly
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generating matrices Pk, and then scaling them appropriately so that the norm of each column i of

V − V0 is at most
√
mcm(α)s2

i for every V ∈ V.

We set p = 90 and α = 0.95, while varying m ∈ {3, 5, 7, 10, 15, 20, 25} and n ∈
{100, 200, . . . , 1000}. We fix the underlying dimension of the uncertainty set V to be K =
min{2m, 15}. We generate five instances for each combination of m and n.

The four approaches we test are our fully online first-order (OFO) based approach outlined in
Section 4.4, our FO-based pessimization approach from Section 2.4.1.1 (see Theorem 2.10), the
nominal oracle-based approach of Ben-Tal et al. [25] from Section 2.4.1.2 (see Theorem 2.12), and
the full pessimization approach of [107], which requires both a pessimization and an extended
nominal feasiblity oracle. Since (4.23) is an instance of a robust quadratic program, the form for
nominal and pessimization oracles can be derived from Section 4.4. One-dimensional line search
using Brent’s algorithm [39] was used to choose step sizes for each iteration of FO-based methods.
An error tolerance of ε = 0.002 is used in all instances.

Experiments are performed on a Linux machine with 2.8GHz processor and 64GB memory
using Python v3.5.2. Whenever the nominal (extended nominal) oracles and pessimization oracles
do not have closed form solutions, they are implemented in Gurobi v7.0.2. We use standard Gurobi
tolerances and parameter choices. We employ the implementation of Brent’s algorithm in Python’s
scipy.optimize package.

Figure 4.4 plots the average solve times in seconds against different n for each of the approaches,
averaging across all m. As we expect, for low dimensions n ≤ 300, the oracle-based approaches solve
the instances very quickly compared to our first-order based approaches. However, when n ≥ 400,
we see that the solution times of our first-order based approaches beat the nominal oracle approach.
When n ≥ 700, our FO-based pessimization approach beats the full pessimization approach, while
our OFO-based approach beats the full pessimization approach when n ≥ 900.
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Figure 4.4: Average solve times (seconds) for different n.

The parameter m influences the rank of the nominal matrix V >0 V0 and controls the difficulty
of the problems. Examining the results for different m further highlights the benefits of utilizing
the first-order based approaches. Figure 4.5 plots average solve times for different m while fixing
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n = 700, 800, 900, 1000. For the oracle-based methods, the solution times increase with m, while the
solution times for first-order based methods remains relatively constant with m. For m ≥ 15, we
observe that our first-order based approaches significantly outperforms the oracle-based methods
which require a nominal solver. Notice that, while we expect our OFO-based approach
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Figure 4.5: Average solve times (seconds) for different n and m.

to outperform the FO-based pessimization approach due to the burden of solving an eigenvalue
problem in each iteration for computing the pessimization oracle, our results indicate the opposite.
This is because for small values of K, calling a pessimization oracle is faster than the line search
performed in the FO-based noise update. However, we believe that as K increases, one-dimensional
line search will become more efficient.

Finally, we examine the number of iterations and cost per iteration of different approaches
averaged across all instances in Table 4.1. We observe that, contrary to their theoretical iteration
guarantees, the oracle-based approaches of [107, 25] need very few iterations to find a solution.
However, as expected, the average time per iteration is significantly higher for these methods due
to their reliance on full nominal optimization solvers. This further highlights the benefit of utilizing
first-order methods for robust optimization when the deterministic version of the problem is already
very expensive, and hence nominal oracles become expensive.
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# iterations seconds per iteration

OFO-based 977.064 0.022
FO-based pessimization 1009.541 0.018
nominal 3.480 9.412
full pessimization 1.974 9.464

Table 4.1: Average number of iterations and average time per iteration for each approach.
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Chapter 5

Dynamic Data-Driven Estimation of
Non-Parametric Choice Models via
the Primal-Dual Framework

5.1 Introduction

A choice model is an effective tool to summarize and understand the preferences of a consumer
population over a set of items. Such models give choice probabilities, that is, the probability that a
consumer will choose a particular item from a given subset. Choice models are prevalent in several
application areas such as revenue management, web page ranking, betting theory, social choice,
marketing, and economics (see Dwork et al. [57], Talluri and van Ryzin [146], Jagabathula and
Shah [87], Farias et al. [61], Desir et al. [52] and references therein). A good choice model aims to
capture complex substitution behaviors of consumers in order to accurately describe demand from
limited observations.

Choice model estimation has received quite a bit of interest. Traditional choice models often
specify a parametric structure for the probability distribution (examples include the multinomial
logit (MNL), nested logit, and mixed MNL models), see Talluri and van Ryzin [146] and references
therein. In most cases, imposing a parametric structure makes estimation of the necessary parame-
ters a simpler task. However, this is often at the expense of overly facile assumptions on consumer
behavior (such as independence of irrelevant alternatives in MNL models) preventing us from ac-
curately capturing the substitution behavior. Therefore, the non-parametric approach of directly
estimating the probability distribution for rankings has drawn growing interest in academia and in
practice [131, 62, 63], and through case studies, it is shown to lead to substantial improvement in
prediction accuracy (see Farias et al. [62], Jagabathula and Rusmevichientong [86]). In this paper,
we focus on the non-parametric approach to choice modeling in a dynamic observation setting, and
develop convex optimization based approaches that are equipped with convergence guarantees and
has direct implications on the sparsity of the final model.

5.1.1 Related Literature

Earliest studies on non-parametric choice models appear in the economics and psychology litera-
tures, e.g., Block and Marschak [34]. Mahajan and van Ryzin [103] showed that non-parametric
models capture a number of parametric models as special cases. The recent literature focuses on
the static estimation of non-parametric choice models where the aim is to find a model that either

93



matches the observed empirical probabilities with the model-based choice probabilities exactly, or
minimizes a distance measure between the two. Farias et al. [62] aim to estimate a choice model
that recovers the empirical choice probabilities precisely, and suggest a solution procedure via a
dual-based constraint sampling method. In contrast to this, more recent literature focuses on dis-
tance minimization approaches, which differ essentially in terms of their choice of the distance
measure used. In this respect, van Ryzin and Vulcano [147] and Bertsimas and Mǐsic [27] seek to
minimize the Kullback-Leibler (KL) divergence and `1-norm respectively, and both suggest column
generation to solve their associated minimization problems. While Farias et al. [62] and van Ryzin
and Vulcano [147] provide useful recovery results under some assumptions on the observational
data, none of the aforementioned methods discuss conditions for convergence, guarantees on the
convergence rates, or implications on the sparsity of the resulting estimated choice models.

As opposed to the specific distance measures used in the prior literature, the recent work of
Jagabathula and Rusmevichientong [86] focuses on general distance measures. While they suggest
using the Frank-Wolfe (F-W) algorithm to estimate a non-parametric choice model, the bulk of their
work focuses on a particular combinatorial subproblem that arises in all of the previous methods
for non-parametric choice estimation. Their main contribution is the characterization of sufficient
conditions (in terms of the subset structure of the items) under which this subproblem becomes
polynomial-time solvable. Nevertheless, much like the rest of the literature, they establish neither
conditions ensuring convergence of the overall F-W algorithm for the usual distance measures used
in choice modeling nor the rate of convergence or potential implications on the model sparsity. In
the static setting, these four approaches, Farias et al. [62], van Ryzin and Vulcano [147], Bertsimas
and Mǐsic [27], and Jagabathula and Rusmevichientong [86], are closely related to our work, thus
we further discuss and compare them in Appendix B.1.

We now discuss a few important aspects in the estimation of non-parametric choice models that
have not been scrutinized explicitly in the prior literature, namely, sparsity, finite sample errors
and dynamic data.

In a full non-parametric model, there are a factorially many (in the number of items) probabili-
ties to estimate, and thus estimating (or even specifying) a full non-parametric model is intractable
even for moderate-sized problems. Thus, to tractably estimate such a model, we must aim to
estimate sparse models where most of these probabilities are zero. This necessarily places an im-
portance on characterizing the model sparsity versus model accuracy trade off in the estimation
of non-parametric choice models. Moreover, sparse choice models are more efficient (and thus
preferable) when computing the associated choice probabilities. Even though some of the existing
approaches stem from the desire to achieve model simplicity, none of them is equipped with explicit
convergence guarantees and consequently none can provide sparsity guarantees on the estimated
model. Thus, efficient solution methods for non-parametric model estimation (specifically the ones
that promote sparsity as a way to achieve model simplicity) are of great interest.

Another consideration is finite sample error of the empirical choice probabilities. Specifically,
since empirical choice probabilities are collected from a finite number of observations, it may be
impossible to fit a choice model that is able to recover these probabilities exactly. This issue has
already been encountered in Farias et al. [62], in which it was mitigated with an uncertainty set
approach. Because of their focus on distance measure minimization, the approaches of [147, 27, 86],
do not explicitly face such an “exact fit” issue. Nevertheless, when a distance measure minimization
approach is taken, such as these latter cases, the finite sample error issue results in the phenomena
that it may not be possible to have the objective converge to zero without utilizing additional data.
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Finally, the techniques for non-parametric choice model estimation thus far are not designed
to work with the dynamic data, i.e., exploit the possibility of continuously updating the empirical
choice probabilities as more observations are collected. This setup is not only very realistic with
today’s data collection capabilities, but also critical in terms of properly addressing the finite sample
error issue. As the empirical choice probabilities are updated with more observations, (under mild
regularity assumptions) the finite sample error goes to zero, making it possible to fit a choice model
for which the model-based choice probabilities are closer (in distance) to the empirical ones. A
näıve way to work with dynamic data is to simply re-solve the estimation problem each time we
update the choice probabilities. However, in the case of non-parametric choice model estimation,
the estimation problem is expensive to solve, thus such a näıve approach significantly compounds
the existing computational challenges.

5.1.2 Contributions

We present two iterative convex optimization-based approaches for the non-parametric estimation
of choice probabilities modeled as a general distance minimization problem. These are a Frank-
Wolfe type approach, and an application of the primal-dual framework developed in Chapter 2.
Our developments simultaneously address the aspects of sparsity and dynamic data that have not
been studied so far in the existing literature. Specifically, we provide error bounds and convergence
guarantees (on the number of iterations needed to achieve a certain estimation accuracy) for our
methods, in both static and dynamic data settings, which in turn provide guarantees on the sparsity
of our estimated choice model. Consequently, our results highlight a natural trade-off between
desired estimation accuracy and model sparsity.

� We first examine a primal approach based on the Frank-Wolfe (F-W) algorithm, as suggested
in Jagabathula and Rusmevichientong [86] for the static estimation problem. So far, the F-W
algorithm (without formal convergence guarantees) has been the classical choice when seeking
sparsity in choice model estimation. We show that for two classes of distance measures (based
on norms and KL divergence) suggested previously in Bertsimas and Mǐsic [27], van Ryzin
and Vulcano [147], and studied in Jagabathula and Rusmevichientong [86], the standard
convergence analysis of the F-W algorithm (see Jaggi [88]) cannot be applied due to the
unboundedness of an important quantity (the curvature constant). Nonetheless, using the
smoothing technique of Beck and Teboulle [13], we derive explicit convergence guarantees for
the F-W algorithm applied to a class of smoothed versions of the distance measures based on
norms, complementing the existing literature. The F-W method has a natural extension to
the dynamic data setting. We establish an error bound on this natural dynamic variant of
the F-W algorithm, and show that the error bound goes to zero when the empirical choice
probabilities converge at a certain rate.

� We also utilize our primal-dual framework from Chapter 2 in both the static and dynamic
settings. From this, we derive another variant of the F-W algorithm in the dynamic setting,
which enjoys the same convergence guarantees but does not rely on the data convergence rate
assumption needed in the analysis of the natural dynamic F-W extension. Our primal-dual
framework also allows us to derive dual-based alternative algorithms to F-W via different
choices of regret minimization algorithms (Chapter 3), and we compare how these affect the
convergence rates.

� We carry out a computational study to examine the performance of our methods, as well as
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the choice of the distance measure D, for the estimation of non-parametric choice models, in
both the static and the dynamic settings. We implemented three different algorithms: the
natural F-W method (with smoothing), a dual mirror descent method, and a modified dual
method (using the dual representation of the smoothed distance measure).

Our numerical results show that all of our three methods, and all distance measures D based
on norms, are able to learn a non-parametric model with low out-of-sample error equally
well. However, in terms of algorithm efficiency (number of iterations until termination), our
dual approach without smoothing clearly outperforms the others. We also observe that the
sparsity of the estimated model is closely correlated with algorithm efficiency, which supports
the theoretical results for our methods. In the dynamic setting, the rate at which we collect
new observations has a demonstrable impact on the algorithm efficiency, but not on out-of-
sample error.

Our numerical results also indicate that in all of the performance metrics, the choice of
distance measure D leads to only very small variations, except that in the dynamic setting, the
dual method with smoothing exhibits improvement in sparsity and algorithm efficiency when
the `∞-norm based distance measure is used. In our additional testing with the variations
of the ground truth choice model in the static setting, we observe that these conclusions still
remain valid.

Outline. In Section 5.2, we describe the non-parametric choice model, and the choice observa-
tions used to estimate it. In Section 5.3 we formally describe the choice model estimation problem.
The F-W approach is described in Section 5.3.1, and the application of our primal-dual framework
is in Section 5.3.2. In Section 5.4 we present the numerical results for our computational study. Ap-
pendix B.1 summarizes existing approaches, and Appendix B.2 contains supplementary numerical
results.

Notation. For a positive integer n ∈ N, we let [n] = {1, . . . , n}, define ∆n := {x ∈
Rn+ :

∑
i∈[n] xi = 1} to be the standard simplex, and Sn to be the collection of rankings of the set

[n]. We denote the vector in Rn whose entries are all equal to 1 by 1n, and the identity matrix in
Rn×n by In. We refer to a collection of objects bj , j ∈ J by the notation {bj}j∈J . Throughout the
paper, the subscript, e.g., yt, zt, ft, is used to attribute items to the t-th time period or iteration.
The subscript is used to denote coordinates of a vector or matrix, e.g., βij . Given vectors x and
y, 〈x, y〉 corresponds to the usual inner product of x and y. Given a norm ‖ · ‖ on a Euclidean
space E and a real number a > 0, we denote its dual norm by ‖x‖∗ = miny{〈x, y〉 : ‖x‖ ≤ 1}.
For q ∈ [1,∞], ‖x‖q denotes the `q norm of x. We let ∂f(x) be the subdifferential of f taken at
x. We abuse notation slightly by denoting ∇f(x) for both the gradient of function f at x if f is
differentiable and a subgradient of f at x, even if f is not differentiable. If φ is of the form φ(x, y),
then ∇xφ(x, y) denotes the subgradient of φ at x while keeping the other variables fixed at y. We
denote the indicator function as I, i.e., I(S) = 1 if statement S holds, and I(S) = 0 otherwise.

5.2 Model and Data

Our goal is to understand the preferences of a certain population over a set of n items, [n] =
{1, . . . , n}, by estimating a non-parametric choice model from choice observations. We first describe
the model, and how to compute choice probabilities. A non-parametric choice model is described
by a probability distribution λ ∈ ∆n! over all rankings Sn of the items [n]. Given a ranking σ ∈ Sn,
we think of λ(σ) as the probability that a member of the population will rank the items according

96



to σ. Also, when a particular member with ranking σ is presented a subset of items A ⊆ [n], they
will choose the highest σ-ranked item i(σ,A) = arg mini∈A σ(i). Thus, the choice probability of a
random member of the population choosing an item i ∈ A when presented with a subset A is

Pλ[i | A] =
∑

σ∈Sn(i,A)

λ(σ), Sn(i,A) = {σ ∈ Sn : i is the highest σ-ranked item in A}.

Our choice observation set can be described as a collection of K pairs
{
ik,Ak

}K
k=1

, where ik ∈ Ak
is the item chosen when the subset of items Ak ⊆ [n] was presented. There are a finite number of
possible subsets amongst the observations, we denote these by Aj , j ∈ [m] = {1, . . . ,m}. We also
denote N :=

∑m
j=1 |Aj |. In practice, the collection of possible subsets {Aj}j∈[m] can be controlled.

Indeed, structural properties of these can have an impact on a combinatorial subproblem which
appears in all non-parametric choice model estimation methods (see Section 5.3.3). However, in
this paper, we will take this collection as given; see Jagabathula and Rusmevichientong [86] for
a study on how the structure of {Aj}j∈[m] impacts the combinatorial subproblem. Based on this
observation set, we define

qij :=
1

K

K∑
k=1

I(ik = i,Ak = Aj), qj :=
1

K

K∑
k=1

I(Ak = Aj) and pij :=
qij
qj
. (5.1)

In words, qij is the proportion of observations where assortment Aj was displayed and item i was
chosen, qj is the proportion of observations where assortment Aj was displayed, and pij is the
proportion of consumers who chose item i given that assortment Aj was displayed. Indeed, pij
are the empirical choice probabilities which we will use to tune the probability distribution λ. We
denote the collection of these empirical choice probabilities as p = {pij}i∈Aj ,j∈[m] ∈ RN .

Our goal is to tune λ so that the choice probabilities Pλ[i | Aj ] are close to the empirical
probabilities pij . We now define some notation to succinctly describe Pλ[i | Aj ]. For a given pair
i ∈ Aj and ranking σ ∈ Sn, we define aij(σ) = 1 if i is the highest σ-ranked item in Aj , and
aij(σ) = 0 otherwise. We define aij to be the n!-dimensional binary vector {aij(σ)}σ∈Sn . Then

Pλ[i | Aj ] =
∑
σ∈Sn

aij(σ)λ(σ) = 〈aij , λ〉.

We define A to be the binary matrix of dimension N × n! with rows a>ij . Each column corresponds

to a ranking, and we denote these by a(σ) ∈ {0, 1}N . Now the collection of choice probabilities
{Pλ[i | Aj ]}i∈Aj ,j∈[m] can be written succinctly as Aλ. We denote the polytope of all possible choice
probabilities on observed pairs i ∈ Aj consistent with some distribution λ as

X := {Aλ : λ ∈ ∆n!} = conv ({a(σ) : σ ∈ Sn}) ⊆ RN .

Our goal can now be stated informally as finding a point x ∈ X which is close to p, and our choice
model will be the weights λ such that x =

∑
σ∈Sn λ(σ)a(σ).

Finally, we describe the dynamic data setting, where we obtain additional observations over
time. We denote a point in time by t ∈ N, and the number of observations collected by time t

as K(t) ∈ N, which is non-decreasing in t. The set of observations at time t is {ik,Ak}K(t)
k=1 . For

simplicity, we assume that the collection of observed subsets {Aj}j∈[m] remains the same over time.

We can compute empirical probabilities pij,t at time t by using the observation set {ik,Ak}K(t)
k=1
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and formulas (5.1), and denote pt = {pij,t}i∈Aj ,j∈[m] ∈ RN . We will assume that the appropriate

statistical regularity conditions hold so that pt → p for some p ∈ RN . (If the observations are
generated via some ‘true model’ λ∗, then p ∈ X, however our methods will not require this.) In
the dynamic data setting, our goal will still be to tune λ so that Aλ is close to p, but only with
access to the sequence {pt}t≥1.

5.3 Dynamic Estimation of a Non-Parametric Choice Model

We estimate a non-parametric choice model λ by solving

min
λ
{D(Aλ, p) : λ ∈ ∆n!} = min

x
{D(x, p) : x ∈ X} (5.2)

given {pt}t≥1, pt → p.

where D(x, p) is some distance measure which is convex in x for any fixed p. This is exactly an
instance of a joint estimation and optimization (JEO) problem described in Chapter 1.4, (1.5)–
(1.6). We assume that D(x, x) = 0. This is the case for all approaches from the existing literature
(we give an overview of these in Appendix B.1). The main challenge is that, in general, the set X
only admits a high-dimensional representation as X = {x = Aλ : λ ∈ ∆n!}. Thus, some care must
be taken in applying our primal-dual framework of Chapter 2.

The high-dimensional representation of X makes projection-based optimization methods or
interior point methods challenging. On the other hand, linear optimization over X (which will be
discussed in more detail in Section 5.3.3), while non-trivial, is a manageable problem. This naturally
points to the Frank-Wolfe (F-W) algorithm, as suggested by Jagabathula and Rusmevichientong
[86]. However, some care must be taken when using F-W to solve (5.2) and obtaining convergence
rates, because not only the underlying assumptions must be checked, but also that we now have
dynamic data pt → p. We show that a näıve adaptation of F-W in Section 5.3.1 exhibits a
dependence on the rate of data convergence. In contrast, applying the primal-dual framework of
Chapter 2 to solve (5.2), outlines in Section 5.3.2, circumvents some of the deficiencies arising from
the näıve F-W analysis. This approach also constructs a solution x̄ ∈ X by solving a sequence of
linear optimizations over X. We compare how both approaches perform computationally in Section
5.4.

Before continuing, we discuss how both approaches give us a sparse choice model λ, and
how convergence guarantees on the methods in turn give sparsity guarantees on λ. Since
X = conv({a(σ) : σ ∈ Sn}) is a polytope, a linear optimization oracle returns a single vertex
a(σ). Thus, any update to the solution x̄ with a single linear optimization can only increase the
support of λ by at most one. Given that our problem is of the form of a general distance measure
minimization as opposed to a feasibility variant, the initial point in our algorithms can be taken
to be a vertex of X. Therefore, if we have a guarantee on the number of linear optimizations T (ε)
required to build a solution such that D(x̄, p) − minx∈X D(x, p) ≤ ε, then the support of λ also
contains at most T (ε) rankings. This is particularly useful when T (ε) is much lower than n!, which
is often the case.

5.3.1 A Näıve Application of the Frank-Wolfe Algorithm

We first discuss solving (5.2) via the Frank-Wolfe (F-W) algorithm under a finite curvature constant
assumption. In the static data setting, Jaggi [88] derives the standard F-W error bound of O(1/T )
after T iterations. However, this bound is explicitly based on the finiteness of an important quantity
referred to as the curvature constant (5.3). We show that when D is an `q-norm or the weighted
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KL-divergence, the curvature constant is infinite; so the error bounds from the usual F-W analysis
Jaggi [88] cannot apply. To circumvent this, we employ smoothing techniques to guarantee a rate of
O(1/

√
T ) convergence for important distance measures D commonly used in non-parametric choice

estimation. Moreover, in the dynamic data setting, we establish that a natural variant of the F-W
algorithm also enjoys convergence guarantees under an additional minimum data convergence rate
assumption.

In addition to our general convexity assumption on D(·, p), our primal approach is based on the
following regularity condition, which can be viewed as a generalized triangle inequality.

Assumption 5.1. There exists some non-negative continuous function gD such that gD(p, p) = 0
and D(x, p)−D(x, p′) ≤ gD(p′, p) for all x, p, p′.

Following Jaggi [88], we define the curvature constant critical in analyzing F-W methods and
assume it is finite.

Assumption 5.2. The curvature constant of D defined below is finite and uniformly bounded in
pt:

CD,t := sup
x,s∈X
α∈[0,1]

1

α2
(D((1− α)x+ αs, pt)−D(x, pt)− α〈s− x,∇xD(x, pt)〉) (5.3)

and CD,t ≤ CD <∞ for all t ≥ 1.

The variant of F-W algorithm for the dynamic setup is stated in Algorithm 4. The key difference
of Algorithm 4 as opposed to the standard F-W algorithm is that each step t, Algorithm 4 works
with a gradient of a dynamically changing D(·, pt) instead of a fixed D(·, p). This setup is similar
to the online F-W algorithms; see e.g., Hazan and Kale [74]. Note that Hazan and Kale [74] and
other online algorithms are usually concerned with obtaining regret bounds. As opposed to this,
our analysis of Algorithm 4 in the dynamic setting is not based on such regret bounds.

Algorithm 4 Frank-Wolfe (F-W) algorithm for solving (5.2).

Input: time horizon T , initial point x1 ∈ X, step sizes {γt}t∈[T ], γt ∈ [0, 1].
for t = 1, . . . , T − 1 do
zt ∈ arg minz∈X〈∇xD(xt, pt), z〉.
xt+1 = (1− γt)xt + γtzt.

end for
Output: solution xT ∈ X.

Note in particular that in Algorithm 4, zt is the result of a linear optimization over X, and the
final xT is a convex combination of previous x1, z1, . . . , zT , so when we select x1 ∈ X to be a vertex
of X, the corresponding λT ∈ ∆n! has support at most T + 1.

We next derive the convergence guarantee of Algorithm 4 in the dynamic setting under our
assumptions.
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Theorem 5.3. Suppose that Assumptions 5.1 and 5.2 hold, and that Algorithm 4 runs for T ≥ 4
iterations to find a point xT ∈ X with step sizes γt = 2/(t+ 1). Then for any x ∈ X,

D(xT , p)−D(x, p)

≤ 4CD
T

+
1

(T − 1)T

∑
t∈[T−3]

t(t+ 1)gD(pt, p) +
1

(T − 1)T

∑
t∈[T−3]

(
(t− 1)t+

4t

t+ 1

)
gD(p, pt)

+
T − 2

T

(
T − 3

T − 1
+

4

(T − 1)2

)
gD(p, pT−2) +

(
T − 2

T
+

4

T 2

)
gD(p, pT−1).

Proof of Theorem 5.3. From Assumption 5.2 applied to D(·, pt) and xt+1 = (1 − γt)xt + γtzt, we
get

D(xt+1, pt) ≤ D(xt, pt) + γt〈∇xD(xt, pt), zt − xt〉+ (γt)
2CD.

From the definition of zt and convexity of D(·, pt), we have 〈∇xD(xt, pt), zt−xt〉 ≤ 〈∇xD(xt, pt), x−
xt〉 ≤ D(x, pt)−D(xt, pt) for any x ∈ X, so

D(xt+1, pt) ≤ (1− γt)D(xt, pt) + γtD(x, pt) + (γt)
2CD.

Adding and subtracting the appropriate terms, we arrive at

D(xt+1, p)−D(x, p) ≤ (1− γt)(D(xt, p)−D(x, p)) + (γt)
2CD

+D(xt+1, p)−D(xt+1, pt) + (1− γt)(D(xt, pt)−D(xt, p))

+ γt(D(x, pt)−D(x, p)).

Defining δt := D(xt, p)−D(x, p) and αt := (γt)
2CD +D(xt+1, p)−D(xt+1, pt)+(1−γt)(D(xt, pt)−

D(xt, p)) + γt(D(x, pt)−D(x, p)), we now have the recursion δt+1 ≤ (1− γt)δt + αt.
By induction, for t ≥ 3,

δt ≤ δ1

∏
k∈[t−1]

(1− γk) +
∑

k∈[t−2]

αk

t−1∏
l=k+1

(1− γl) + αt−1.

Moreover, the first term disappears because γk = 2/(k + 1), 1− γ1 = 0. Furthermore,
∏t−1
l=k+1(1−

γl) = k(k+1)
(t−1)t for k = 1, . . . , t− 3 and (t− 2)/t for k = t− 2, so

δt ≤
1

(t− 1)t

∑
k∈[t−3]

k(k + 1)αk +
t− 2

t
αt−2 + αt−1.

Substituting the definitions of δt, αt and simplifying, we get

D(xT , p)−D(x, p)

≤ 4CD
T

+
1

(T − 1)T

∑
t∈[T−3]

t(t+ 1) (D(xt+1, p)−D(xt+1, pt))

+
1

(T − 1)T

 ∑
t∈[T−3]

(t− 1)t (D(xt, pt)−D(xt, p)) +
∑

t∈[T−3]

4t

t+ 1
(D(x, pt)−D(x, p))


+
T − 2

T

(
T − 3

T − 1
(D(xT−2, pT−2)−D(xT−2, p)) +

4

(T − 1)2
(D(x, pT−2)−D(x, p))

)
+
T − 2

T
(D(xT−1, pT−1)−D(xT−1, p)) +

4

T 2
(D(x, pT−1)−D(x, p)).
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Applying Assumption 5.1 completes the proof.

Notice in Theorem 5.3 that the error bound has the 4CD/T rate along with four error terms
which are accumulated from using approximate data pt ≈ p. Indeed, if pt = p for all t, i.e.,
the static case, these additional error terms disappear, and we are left with only the 4CD/T
term. In the dynamic case, in order to get convergence from Theorem 5.3, these four error terms
must go to 0 as T → ∞. To ensure this, we must require that gD(pt, p) → 0 sufficiently fast
to guarantee that

∑
t∈[T−3] t(t + 1)gD(pt, p) = o(T 2). However, this is not always true: consider

gD(pt, p) ∼ 1/t. Approaches based on our primal-dual framework, outlined in Section 5.3.2, avoid
such a requirement, and instead need only D(pt, p), D(p, pt)→ 0.

In order to apply Theorem 5.3, we need to verify the underlying assumptions for the chosen
distance measure D. Two distance measures D used in the existing literature are the weighted KL-
divergence (which stems from the maximum likelihood, and is studied in van Ryzin and Vulcano
[147]) and `1-norm examined in Bertsimas and Mǐsic [27]. See B.1 for precise details on how the
approaches in van Ryzin and Vulcano [147], Bertsimas and Mǐsic [27] correspond to particular
choices of D in our framework. Unfortunately, for both of these choices of D, in Proposition 5.4
we demonstrate that the curvature constant (5.3), which is critical in the standard convergence
analysis of F-W algorithm, is infinite. Thus, we cannot rely on the existing standard convergence
analysis of the classical F-W algorithm in the static case or the application of Theorem 5.3 in the
dynamic case when D is selected to be either an `q-norm (as in Bertsimas and Mǐsic [27]) or the
weighted KL-divergence (as in van Ryzin and Vulcano [147]).

Proposition 5.4. Suppose n > 2. For any q ∈ [1,∞], the function D(x, p) = ‖x− p‖q has infinite
curvature constant (5.3) for any p ∈ X. Furthermore, when D(x, p) =

∑
j∈[m]wj KL(pj , xj) for

any positive weights wj, and p ∈ X such that pij > 0 for all i ∈ Aj, the curvature constant is
infinite.

Proof of Proposition 5.4. We will first show that the curvature constant CD defined in (5.3) of
D(x, p) = ‖x− p‖ is infinite for any p ∈ X. Let us choose x = p, reserving the choice of α ∈ [0, 1]
and s ∈ X for later. Then D(x, p) = 0, D((1 − α)x + αs, p) = α‖s − p‖, and the subgradients of
D(x, p) are {y : ‖y‖∗ ≤ 1}. Thus, for any selection of subgradient mapping y(x̂) ∈ ∇xD(x̂, p) we
have

1

α2

[
D((1− α)x+ αs, p)−D(x, p)− α〈s− x, y(x)〉

]
=

1

α2

[
α‖s− p‖ − α〈s− p, y(x)〉

]
=

1

α

[
‖s− p‖ − 〈s− p, y(x)〉

]
.

Note that whenever there is a choice s ∈ X with ‖s − p‖ − 〈s − p, y(p)〉 > 0, we can send α → 0
and conclude that the curvature constant CD is infinite.

To choose the appropriate s, we denote the set of subgradients of ‖ · ‖q at s− p as G‖·‖(s− p).
Observe that for a norm ‖ · ‖, if y ∈ G‖·‖(s− p) then ‖y‖∗ ≤ 1 and 〈s− p, y〉 = ‖s− p‖. Thus, we
need to choose s ∈ X such that y(x) 6∈ G‖·‖(s− p). To do this, we exploit the following property of
`q norms. It is simple to check that for q ∈ [1,∞] and y ∈ G‖·‖q(s− p), we have the property that
yij > 0 =⇒ sij − pij > 0. For our selection y(x), first suppose that there exists i ∈ Aj such that
y(x)ij > 0. Then a ranking σ that ranks i last will have a(σ)ij = 0, so a(σ)ij − pij ≤ 0 because
pij ≥ 0. We cannot have p = a(σ) for all (n − 1)! rankings σ that ranks i last (note that n > 2);
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hence, there exists one σ such that a(σ) 6= p, and we choose s = a(σ). This implies that y(x)ij > 0
while sij−pij ≤ 0, hence y(x) 6∈ G‖·‖q(s−p). Now suppose that y(x)ij ≤ 0 for all item-subset pairs
(i, j). If y(x) = 0, then the result follows trivially by choosing any s 6= p. Suppose now there exists
some y(x) < 0. It is again simple to check that for q ∈ [1,∞] and y ∈ G‖·‖q(s − p), we have the
property that yij < 0 =⇒ sij − pij < 0. Then a ranking σ that ranks i first will have a(σ)ij = 1,
so a(σ)ij − pij ≥ 0 because pij ≤ 1. We cannot have p = a(σ) for all (n − 1)! rankings σ that
ranks i first, so there exists one such that a(σ) 6= p, and we choose s = a(σ). This implies that
y(x)ij < 0 while sij − pij ≥ 0, hence y(x) 6∈ G‖·‖q(s− p). Thus, in all cases for y(x), we can choose
the appropriate s ∈ X.

Now consider the weighted KL-divergence D(x, p) = −
∑

j∈[m]wj
∑

i∈Aj pij log(xij/pij). We
can assume that pij > 0 by simply ignoring terms in the sum for which pij = 0. Choose x = p,
which ensures that D(·, p) is differentiable at x with ∇xD(x, p)ij = −wj/xij . Then we have

1

α2

[
D((1− α)x+ αs, p)−D(x, p)− α〈s− x,∇xD(x, p)〉

]
= − 1

α2

∑
j∈[m]

wj
∑
i∈Aj

pij log

(
1− α+ α

sij
pij

)
+

1

α

∑
j∈[m]

wj
∑
i∈Aj

(
sij
pij
− 1

)
.

Note that the second term is bounded by 1
α

(∑
j∈[m]wj

)
(maxi,j 1/pij − 1). Choose sij = a(σ)

for any σ ∈ Sn. Then there exists some i, j such that sij = 0. Sending α → 1 results in

log
(

1− α+ α
sij
pij

)
→ ∞, and the second term is bounded, so the curvature constant CD is in-

finite.

Proposition 5.4 implies that Theorem 5.3 cannot be directly applied to the classical distance
measures D used in non-parametric choice modeling. In order to develop a F-W based framework,
we instead employ a smooth approximation to these distance measures D.

Definition 5.5. A differentiable (on the relative interior of its domain) convex function h : X →
R ∪ {∞} is L-smooth with respect to a norm ‖ · ‖ if, for all s, x ∈ relint(X), we have

h(s) ≤ h(x) + 〈∇h(x), s− x〉+
L

2
‖s− x‖2.

A function hα : X → R is a (L/α)-smooth approximation to h if it is (L/α)-smooth and there exists
constants β1, β2 ≥ 0 such that for all x ∈ X,

h(x)− β1α ≤ hα(x) ≤ h(x) + β2α.

Proposition 5.6. For α > 0, let Dα(x, p) be a (L/α)-smooth approximation with respect to the
norm ‖ · ‖ of D(x, p) such that D(x, p) − β1α ≤ Dα(x, p) ≤ D(x, p) + β2α for all x ∈ X. Denote
RX,‖·‖ := maxx,x′∈X ‖x−x′‖. Then, under Assumption 5.1, Algorithm 4 applied to Dα after T ≥ 4
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iterations with step sizes γt = 2/(t+ 1) results in

D(xT , p)−D(x, p)

≤
4LR2

X,‖·‖

α T
+ (β1 + β2)α

+
1

(T − 1)T

∑
t∈[T−3]

t(t+ 1)gDα(pt, p) +
1

(T − 1)T

∑
t∈[T−3]

(
(t− 1)t+

4t

t+ 1

)
gDα(p, pt)

+
T − 2

T

(
T − 3

T − 1
+

4

(T − 1)2

)
gDα(p, pT−2) +

(
T − 2

T
+

4

T 2

)
gDα(p, pT−1).

Proof. Since D(x, p) ≤ Dα(x, p) + β1α and −D(x′, p) ≤ −Dα(x′, p) + β2α, we have D(x, p) −
D(x′, p) ≤ Dα(x, p) −Dα(x′, p) + (β1 + β2)α. Since Dα is L/α-smooth with respect to ‖ · ‖, from
Jaggi [88, Appendix D] we deduce that the curvature constant of Dα is CDα ≤ LR2

X,‖·‖/α, thus
Algorithm 4 applied to Dα has convergence guarantee given by Theorem 5.3. Combining this with
the approximation guarantee, we get our result.

Remark 5.7. The norm ‖·‖, the constants L, β1, β2, RX,‖·‖, and the function gDα will vary depending
on the smoothing technique chosen. However, in most situations, we can control the smoothness
parameter α, and for several important examples outlined below, gDα is independent of α. We thus

choose α to minimize
4LR2

X,‖·‖
α T + (β1 + β2)α, which results in α∗ =

√
4LR2

X,‖·‖
(β1+β2)T , and

4LR2
X,‖·‖

α∗ T
+ (β1 + β2)α∗ = 4RX,‖·‖

√
L(β1 + β2)

T
.

In Table 5.1 we present some choices for smoothing D(x, p) = ‖x − p‖q for q = 1, 2,∞ from
Beck and Teboulle [13, Examples 4.2, 4.1, 4.5], where Hα denotes the Huber function

Hα(r) :=

{
1

2α |r|
2, |r| ≤ α

|r| − α
2 , |r| > α.

Dq Dq,α smooth w.r.t. L RX,‖·‖ β1 + β2 α gap

`1
∑
j∈[m]

∑
i∈Aj

Hα(xij − pij) ‖ · ‖2 1
√

2m N
2 4

√
m
NT 4

√
Nm
T

`2 Hα(‖x− p‖2) ‖ · ‖2 1
√

2m 1
2 4

√
m
T 4

√
m
T

`∞ α log

( ∑
j∈[m]

∑
i∈Aj

2 cosh
(
xij−pij

α

))
‖ · ‖∞ 1 2 log(2N) 4√

log(2N)T
8

√
log(2N)

T

Table 5.1: Summary of the F-W approach to solve (5.2).
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We can derive these smooth approximations via the so-called ‘Nesterov smoothing’ technique, i.e.,

D1,α(x, p) = max
y:‖y‖∞≤1

{〈x− p, y〉 − αω1(y)} , ω1(y) =
1

2
‖y‖22

D2,α(x, p) = max
y:‖y‖2≤1

{〈x− p, y〉 − αω2(y)} , ω2(y) =
1

2
‖y‖22 (5.4)

D∞,α(x, p) = max
y∈∆2N

{〈B(x− p), y〉 − αω∞(y)} , ω∞(y) =
2N∑
k=1

yk log(yk), B =

[
IN
−IN

]
.

Here, when α = 0, the original `q-norms are recovered. We make use of this representation in our
primal-dual approach described in Section 5.3.2.

The smoothness norm and constants L and β1 + β2 can be found in the respective examples
from Beck and Teboulle [13]. The constant RX,‖·‖ is derived by using the fact that, for any x ∈ X,
we have the property that x ≥ 0 and

∑
i∈Aj xij = 1. The parameter α and optimality gap are

computed using Remark 5.7. Finally, we demonstrate next that Assumption 5.1 holds for all such
choices smoothing functions Dq,α presented in Table 5.1.

Remark 5.8. For q ∈ {1, 2,∞}, we have Dq,α(x, p)−Dq,α(x,′ p) ≤ ‖p−p′‖q for all x, p, p′ and α ≥ 0.
We first examine q = 1. Note that Hα is convex α ≥ 0, so Hα(r)−Hα(r′) ≤ ∇rHα(r) ·(r−r′) ≤

|∇rHα(r)| |r−r′| ≤ |r−r′| since |∇rHα(r)| ≤ 1. Therefore, for any fixed x, D1,α(x, p)−D1,α(x, pt) ≤∑
j∈[m]

∑
i∈Aj |pij − pij,t| = ‖p− pt‖1, hence gD1,α(p, p′) = ‖p− p′‖1.

For q = 2, we again use Hα(r) − Hα(r′) ≤ |r − r′|, so that D2,α(x, p) − D2,α(x, pt) ≤
|‖x− p‖2 − ‖x− pt‖2| ≤ ‖p− pt‖2, hence gD2,α(p, p′) = ‖p− p′‖2.

For q = ∞, let hα(z) := α log (
∑

k 2 cosh(zk/α)), which is convex in z. Hence,
hα(z) − hα(z′) ≤ 〈∇zhα(z), z − z′〉 ≤ ‖∇zhα(z)‖1‖z − z′‖∞ ≤ ‖z − z′‖∞ since ∇zhα(z)k =
sinh(zk/α)/ (

∑
k′ cosh(zk′/α)) thus ‖∇zhα(z)‖1 ≤ 1. Finally, since D∞,α(x, p) = hα(x − p), we

have D∞,α(x, p)−D∞,α(x, p′) ≤ ‖p− p′‖∞ for any x ∈ X, so gD∞,α(p, p′) = ‖p− p′‖∞.

Remark 5.9. The three rates 4
√
Nm/T , 4

√
m/T , 8

√
log(2N)/T in Table 5.1 all have the same

dependence on T , which implies that when D is an `q-norm we can get an ε-optimal solution to
(5.2) after O(1/ε2) iterations using the F-W algorithm. However, the dependence on the problem
parameters m,N vary significantly. We see that the best dependence of

√
log(2N) is given by the

`∞-norm, followed by
√
m given by the `2-norm, and finally

√
Nm for the `1-norm. This intuitively

makes sense since ‖z‖∞ ≤ ‖z‖2 ≤ ‖z‖1 for any fixed z.

5.3.2 Applying the Primal-Dual Framework

A major handicap of the F-W algorithm in Theorem 5.3 is that, in the dynamic case, the overall
optimality gap converges to 0 only if pt → p sufficiently fast. In this section, we remove such a
condition completely by utilizing our primal-dual framework of Chapter 2.5.

Suppose that D admits a representation of the form

D(x, p) = max
y∈Y
{〈Bx, y〉 − φ(y, p)} (5.5)

for some convex set Y and matrix B of appropriate dimension, where φ(y, p) is convex in y for any
p. Note that when D(·, p) is convex and continuous on its domain, such a representation always
exists via the convex conjugate:

D(x, p) = sup
y

{
〈x, y〉 −D∗(y, p) : y ∈ RN

}
, where D∗(y, p) = sup

z

{
〈y, z〉 −D(z, p) : z ∈ RN

}
.
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Denote
Ψ(x, y; p) := 〈Bx, y〉 − φ(y, p).

As in (2.29), given p, we know that to bound the optimality gap of a point x̄ ∈ X, we need only
find a dual certificate ȳ ∈ Y and evaluate the saddle point (SP) gap:

D(x̄, p)−min
x∈X

D(x, p) ≤ max
y∈Y

Ψ(x̄, y; p)−min
x∈X

Ψ(x, ȳ; p). (5.6)

Now, since we do not have access to p directly, but instead only gain knowledge of p through a
sequence pt → p, each time we receive a new pt, we will generate a new primal-dual pair xt, yt,
for t ≥ 1. Aggregating these with non-negative weights θt for each time t ∈ [T ], and setting
ΘT =

∑
t∈[T ] θt according to Theorem 2.4 and (5.6), the optimality gap of x̄θT = 1

ΘT

∑
t∈[T ] θtxt can

be certified with the corresponding dual point ȳθT = 1
ΘT

∑
t∈[T ] θtyt:

D(x̄θT , p)−min
x∈X

D(x, p) ≤ ε̂
(
{xt, yt, pt, θt}t∈[T ]

)
+ ε◦

(
{pt, θt}t∈[T ] ; p

)
+ ε̂
(
{yt, pt, θt}t∈[T ] ; p

)
,

where

ε̂
(
{xt, yt, pt, θt}t∈[T ]

)
= max

x∈X,y∈Y

1

ΘT

∑
t∈[T ]

[〈Bxt, y〉 − φ(y, pt)− 〈Bx, yt〉+ φ(yt, pt)]

ε◦
(
{pt, θt}t∈[T ] ; p

)
= max

y∈Y

1

ΘT

∑
t∈[T ]

θt [φ(y, p)− φ(y, pt)]

ε•
(
{yt, pt, θt}t∈[T ] ; p

)
=

1

ΘT

∑
t∈[T ]

θt [φ(yt, pt)− φ(yt, p)] .

As discussed in Chapter 2.3, we will use tools from online convex optimization to choose the primal-
dual sequence {xt, yt}t∈[T ] to guarantee that ε̂→ 0. We will discuss this below, but first, we discuss
the error term ε◦ + ε•. In order to guarantee that ε◦ + ε• → 0, we assume the following regularity
conditions on D. Note that these are simply restating Condition 2.18 from Chapter 2.5, except
that the norm ‖p− p′‖ is replaced by a continuous function g(p− p′).

Assumption 5.10. The convex set Y is compact, and there exists some continuous function
g : RN → R, φ(y, p)− φ(y, p′) ≤ g(p− p′) for all y ∈ Y and for all p, p′.

Theorem 2.19 then certifies that when Assumption 5.10 holds, ε◦ + ε• → 0, while Proposition
2.20 gives rates which depend on the rate at which g(pt − p)→ 0.

In the following, we will consider an important class of distance functions D: when D(x, p) =
‖x − p‖ for some norm ‖ · ‖, or an appropriate smoothed version of the norm. Generalizing (5.4),
these are of the form

D(x, p) = max
y∈Y
{〈B(x− p), y〉 − αω(y)} ,

for appropriately chosen B, α ≥ 0 and ω. Note that the norm is recovered when Y = {y : ‖y‖∗ ≤ 1}
is the dual norm ball, B = IN and α = 0. Clearly, these are all of the same form as (5.5) with
φ(y, p) = 〈Bp, y〉+ αω(y). Henceforth, we assume that φ has this form.

Assumption 5.11. For some α ≥ 0 and 1-strongly convex function ω : Y → R,

D(x, p) = max
y∈Y
{〈Bx, y〉 − φ(y, p)} , φ(y, p) = 〈p, y〉+ αω(y).
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We now show that Assumption 5.10 is satisfied, and hence ε◦ + ε• → 0.

Lemma 5.12. Let Y be a compact set. Given α ≥ 0, consider

D(x, p) = max
y∈Y
{〈Bx, y〉 − φ(y, p)} , φ(y, p) = 〈Bp, y〉+ αω(y).

Then for any y ∈ Y and p, p′,

≤ g(p− p′) ≤ φ(y, p)− φ(y, p′) ≤ g(p− p′), g(p) := max
y′∈Y
〈Bp, y′〉, g(p) := min

y′∈Y
〈Bp, y′〉.

Furthermore, g, g are continuous functions. Therefore Assumption 5.10 is satisfied.

Proof. Observe that φ(y, p)− φ(y, p′) = 〈B(p− p′), y〉 ≤ maxy′∈Y 〈B(p− p′), y′〉 = g(p− p′) for any
y ∈ Y and p, p′. The continuity of g follows since g(p) is convex in p and is finite valued for all p
since Y is compact. Similarly, g is concave and finite-valued.

Corollary 5.13. When Y is compact and φ(y, p) = 〈Bp, y〉+αω(y) for some matrix B and α ≥ 0,

lim
T→∞

[
ε◦
(
{pt, θt}t∈[T ] ; p

)
+ ε•

(
{yt, pt, θt}t∈[T ] ; p

)]
= 0

whenever pt → p.

Proof. This is a straightforward adaptation of Theorem 2.19, noting that g(pt − p) → 0 whenever
pt → p due to continuity, except that the equality of the limit instead of inequality in Theorem
2.19 stems from having both upper and lower bounds on φ(y, p)− φ(y, p′).

We now turn our attention to bounding ε̂
(
{xt, yt, pt, θt}t∈[T ]

)
. As mentioned in Chapter 3.7,

this is an online SP gap term (3.3) where Ψt(·, ·) = Ψ(·, ·; pt). Recall, also, that there are a variety
of ways outlined in Chapter 3 to compute the primal-dual sequence {xt, yt}t≥1 which bound ε̂. One
option is to employ algorithms that directly bound it (i.e., Theorems 3.7 and 3.28); another is to
recognize that ε̂ decomposes into two regret terms

ε̂
(
{xt, yt, pt, θt}t∈[T ]

)
= max

y∈Y

1

ΘT

∑
t∈[T ]

θt [〈Bxt, y〉 − φ(y, pt)]−
1

ΘT

∑
t∈[T ]

θt [〈Bxt, yt〉 − φ(yt, pt)]

+
1

ΘT

∑
t∈[T ]

θt [〈Bxt, yt〉 − φ(yt, pt)]−min
x∈X

1

ΘT

∑
t∈[T ]

θt [〈Bx, yt〉 − φ(yt, pt)] ,

then employ two regret minimizing algorithms (Theorems 3.4, 3.12, 3.16, 3.21, 3.25), one for com-
puting {xt}t∈[T ], and the other for computing {xt}t∈[T ].

However, in our particular application of choice model estimation, the domain X in general
only admits a high dimensional representation as X = {Aλ : λ ∈ ∆n!}. Therefore, projection-type
algorithms are intractable to implement in practice, which excludes using the above-mentioned
direct methods of Theorems 3.7 and 3.28. On the other hand, linear optimization over X is
tractable in practice (as we will discuss in Section 5.3.3), thus the only avenue left to us is to choose

xt ∈ arg min
x∈X

〈Bx, yt〉 = arg min
x∈X

{〈Bx− pt, yt〉 − αω(yt)} = arg min
x∈X

{〈Bx, yt〉 − φ(yt, pt)} . (5.7)
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D1,α D2,α D∞,α

Y `∞-ball `2-ball ∆2N

B IN IN

[
IN
−IN

]
ω(y) 1

2‖y‖
2
2

1
2‖y‖

2
2

∑
k∈[2N ]

yk log(yk)

form
∑

j∈[m],i∈Aj
Hα(xij − pij) Hα(‖x− p‖2) α log

( ∑
j∈[m],i∈Aj

2 cosh
(
xij−pij

α

))
‖ · ‖ ‖ · ‖2 ‖ · ‖2 ‖ · ‖1
Ω N/2 1/2 log(2N)

Ω′ 0 0 0

G
√

2m+ αN
√

2m+ α (See Theorem 5.18)

Table 5.2: Summary of distance functions defined via D(x, p) = maxy∈Y {〈B(x − p), y〉 − αω(y)},
their prox-setups for the dual domain Y , and relevant constants.

This immediately (and trivially) guarantees that for any dual sequence {yt}t∈[T ], the primal regret
term is bounded:

1

ΘT

∑
t∈[T ]

θt [〈Bxt, yt〉 − φ(yt, pt)]−min
x∈X

1

ΘT

∑
t∈[T ]

θt [〈Bx, yt〉 − φ(yt, pt)] ≤ 0.

Then, to bound ε̂, it remains to choose the dual sequence {yt}t∈[T ] to bound the regret term

max
y∈Y

1

ΘT

∑
t∈[T ]

θt [〈Bxt, y〉 − φ(y, pt)]−
1

ΘT

∑
t∈[T ]

θt [〈Bxt, yt〉 − φ(yt, pt)]

= max
y∈Y

1

ΘT

∑
t∈[T ]

θt [〈B(xt − pt), y〉 − αω(y)]− 1

ΘT

∑
t∈[T ]

θt [〈B(xt − pt), yt〉 − αω(yt)] .

We can choose a regret minimizing algorithm, e.g. one of Theorems 3.4, 3.12, 3.16, 3.21, and use it
to compute yt. However, we cannot use Theorem 3.25, since implementing this requires knowledge
of xt to compute yt, but by (5.7), we are computing xt after yt.

Our choice of regret minimizing algorithm determines the bound on ε̂, which often in-
volves a bound on the gradient ‖∇yΨ(xt, yt; pt)‖∗ and a bound on the set width term Ω :=
maxy∈Y {ω(y)− ω(y1)− 〈∇ω(y1), y − y1〉}, where ω is the chosen distance generating function
(in accordance with Chapter 3.3) which is strongly convex with respect to norm ‖ · ‖, and
y1 = arg miny∈Y ω(y).

Explanation of Table 5.2. In Table 5.2 we give a summary of constants Ω,Ω′ and gradient
bounds which appear in Theorems 3.4, 3.12, 3.16, 3.21, for the `1-, `2- and `∞-norms using the
representations in (5.4) (note that these satisfy Assumption 5.11). We give brief explanations for
how these constants are derived.

First, note that the columns of Table 5.2 represent smoothed versions of D(x, p) = ‖x − p‖q,
with q = 1, 2,∞ respectively; these are identical to Table 5.1. Note that the function Ψ(x, y; p) =
〈B(x− p), y〉 − αω(y) is α-strongly concave with respect to the smoothing function ω given in the
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third row, which in turn is 1-strongly convex with respect to the norm in the fifth row. We will also
take ω to be the d.g.f. for the prox-setup of Y (Chapter 3.3), with the corresponding norm in the
fifth row. The constant Ω in the sixth row is derived from ΩY = maxy∈Y ω(y)−miny∈Y ω(y), and
the seventh row Ω′ = maxy∈Y 〈∇ω(y1), y−y1〉 where y1 = arg miny∈Y ω(y) (used for dual averaging
Theorem 3.16). For the first two columns, the gradient bound G in the eight row is derived from
analysing

‖∇yΨ(x, y; p)‖∗ = ‖B(x− p)− α∇ω(y)‖∗ = ‖x− p− αy‖2 ≤ ‖x− p‖2 + α‖y‖2.

Note that for any x ∈ X,
∑

i∈Aj x
2
ij ≤ 1, and the same holds for p, since we know these are

normalized, and for the first column, ‖y‖2 ≤ N , while for the second column we have ‖y‖2 ≤ 1.
We will analyse the third column later, which requires more care.

Optimality bounds via regret minimization. We now give the optimality bounds from sev-
eral choices of regret minimizing algorithms for bounding

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y; pt)−
1

ΘT

∑
t∈[T ]

θtΨ(xt, yt; pt).

Before doing so, however, we give a F-W interpretation of the case when follow-the-leader (Theorem
3.21) is used to compute the sequence {yt}t∈[T ]. Note that since Ψ(xt, y; pt) is concave in y, we will
take ft(y) = −Ψ(xt, y; pt) and apply Theorem 3.21 to this, which yields the update rule (denoting
p̄θt = 1

Θt

∑
s∈[t] θsps)

yt+1 = arg max
y∈Y

∑
s∈[t]

θsΨ(xs, y; ps)

 = arg max
y∈Y

{
〈B(x̄θt − p̄θt ), y〉 − αω(y)

}
= ∇xD(x̄θt , p̄

θ
t ). (5.8)

The last equality follows from the convex envelope theorem. Recalling that

xt+1 = arg min
x∈X

〈yt+1, x〉 = arg min
x∈X

〈∇xD(x̄θt , p̄
θ
t ), x〉,

this is in fact a F-W type update.

Remark 5.14. In fact, if pt = p, θt = 2/(t+ 1) for all t ≥ 1, we have pt = p̄θt , and hence the update
of Theorem 5.3 and the update in (5.8) are identical. In other words, in the static case, this choice
exactly recovers the classical F-W algorithm. This was realized for the static case in Abernethy
et al. [2]. However, for the dynamic case, there is a subtle but significant difference between a näıve
choice of F-W update in Theorem 5.3, and an update rule derived from our principled primal-dual
framework. We see that the naive rule of using pt at each iteration incurs penalty terms in Theorem
5.3 that disappear when we use p̄θt instead, which is derived from our primal-dual framework (see
Lemma 5.12).

For the first two columns, i.e., for D derived from `1-norm and `2-norm, deriving optimality
bounds is involves a relatively straightforward application of the regret bounds from Chapter 3 and
Table 5.2. One note is that when α > 0, we should use one of Theorems 3.12, 3.16, 3.21, since we
have strong concavity of Ψ(xt, y; pt), and need to exploit it to get the faster O(1/T ) convergence
rate; however, when α = 0, we should use Theorem 3.4. We focus on using Theorem 3.12, although
using the others will give us similar guarantees.
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Theorem 5.15. Assume that pt → p. When α > 0, computing {yt}t∈[T ] according to Theorem
3.12 and {xt}t∈[T ] according to (5.7) achieves an optimality bound of

D1,α(x̄θt , p)−min
x∈X

D1,α(x, p) ≤ 2(2m+ αN)

α(T + 1)
+ o(1)

D2,α(x̄θt , p)−min
x∈X

D2,α(x, p) ≤ 2(2m+ α)

α(T + 1)
+ o(1).

When α = 0, computing {yt}t∈[T ] according to Theorem 3.4 and {xt}t∈[T ] according to (5.7) achieves
an optimality bound of

‖x̄θt − p‖1 −min
x∈X
‖x− p‖1 ≤

√
2mN

T
+ o(1)

‖x̄θt − p‖2 −min
x∈X
‖x− p‖2 ≤

√
2m

T
+ o(1).

For the third row with negative entropy ω, we can apply the bound of Theorem 3.16 immediately,
since the gradient bound in that only involves ‖xt − pt‖∞, which is ≤ 1. However, we need a more
careful analysis of the gradient term G to apply Theorems 3.12 and 3.21. This is due to the fact
that in the case when ω(y) =

∑
k∈[2N ] yk log(yk), we have

∇yΨ(xt, y; pt) = B(xt − pt)− α(log(y) + 12N ),

where log(y) denotes the vector of entry-wise logarithms of y, but log(y) is not bounded over
y ∈ ∆2N . We now give some results to do this. We start with a fundamental lemma on the
updates.

Lemma 5.16. Let ω(y) =
∑

k∈[2N ] yk log(yk). Then for any ξ ∈ R2N ,

y = arg min
y∈∆2N

{〈ξ, y〉+ ω(y)} =⇒ ∇ω(y) = −ξ + c(ξ)12N ,

where c(ξ) is a finite constant depending only on ξ.

Proof. It is easy to check that each yk = exp(−ξk)
(∑

k′∈[2N ] exp(−ξk′)
)−1

and ∇kω(y) = log(yk)+

1. The result then follows with c(ξ) = 1− log
(∑

k′∈[2N ] exp(−ξk′)
)

.

Denote ft(y) = −Ψ(xt, y; pt), ht(y) = ft(y) − αω(y) = 〈B(pt − xt), y〉, and ct = c(γt∇ft(yt) −
∇ω(yt)). We consider the mirror descent algorithm from Theorem 3.12:

yt+1 = Proxyt (γt∇ft(yt)) = arg min
y∈Y

{〈γt∇ft(yt)−∇ω(yt), y〉+ ω(y)} , γt =
2

α(t+ 1)
. (5.9)

Lemma 5.17. Let ω(y) =
∑

k∈[2N ] yk log(yk), Y = ∆2N , and suppose that {yt}t∈[T ] is updated
according to (5.9). For all t ≥ 1, we have

α∇ω(yt+1) = ŷt + Ct12N , ŷt ∈ Conv ({−∇hs(ys) : s ∈ [t]})

and Ct is some finite constant.
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Proof. By Lemma 5.16, (5.9) implies that

∇ω(yt+1) = ∇ω(yt)− γt∇ft(yt) + ct12N = (1− αγt)∇ω(yt) + γt (−∇ht(yt)) + ct12N ,

or equivalently,

α∇ω(yt+1) = (1− αγt) (α∇ω(yt)) + αγt (−∇ht(yt)) + αct12N ,

Note that the choice γt = 2/(α(t + 1)) ensures that αγt ∈ (0, 1], and αγ1 = 1. This implies that
α∇ω(y2) = −∇h1(y1) + c112N . Thus, the result follows from induction with base case t = 1.

Theorem 5.18. Let ω(y) =
∑

k∈[2N ] yk log(yk), Y = ∆2N , and suppose that {yt}t∈[T ] is updated
according to (5.9). Then

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y; pt)−
1

ΘT

∑
t∈[T ]

θtΨ(xt, y; pt) =
1

ΘT

∑
t∈[T ]

θtft(yt)−min
y∈Y

1

ΘT

∑
t∈[T ]

θtft(y)

≤ 8

α (T + 1)
.

Consequently, for α > 0, we have

D∞,α(x̄θT , p)−min
x∈X

D∞,α(x, p) ≤ 8

α(T + 1)
.

Proof. Proposition 3.11 gives us that

1

ΘT

∑
t∈[T ]

θtft(yt)−min
y∈Y

1

ΘT

∑
t∈[T ]

θtft(y) ≤ 1

ΘT

∑
t∈[T ]

θt
γt

(γt〈∇ft(yt), yt − yt+1〉 − Vyt(yt+1)) .

We now bound the term 〈∇ft(yt), yt − yt+1〉. By Lemma 5.17, we have that

〈∇ft(yt), yt − yt+1〉 = 〈∇ht(yt) + α∇ω(yt), yt − yt+1〉
= 〈∇ht(yt) + ŷt + Ct12N , yt − yt+1〉 , ŷt ∈ Conv ({−∇hs(ys) : s ∈ [t]}) .

Now, consider the matrix U = I2N − 1
2N 12N1>2N , which is the projection matrix onto the subspace

S = {y ∈ R2N : 〈12N , y〉 = 0}. Note that U12N = 0. Since yt, yt+1 ∈ Y = ∆2N , yt − yt+1 ∈ S,
therefore we have

〈∇ft(yt), yt − yt+1〉 = 〈∇ft(yt), U(yt − yt+1)〉
= 〈U∇ft(yt), yt − yt+1〉
= 〈U∇ht(yt) + αU∇ω(yt), yt − yt+1〉
= 〈U∇ht(yt) + Uŷt, yt − yt+1〉
= 〈∇ht(yt) + ŷt, yt − yt+1〉
≤ ‖∇ht(yt) + ŷt‖∞‖yt − yt+1‖1
≤ 2‖yt − yt+1‖1
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The last equality follows because xs − ps ∈ S for all s ∈ [t], hence ∇ht(yt) + ŷt ∈ S, and the
inequalities follows by Cauchy-Schwarz and the fact that each entry of xt, pt is contained in [0, 1].
The bound

γt〈∇ft(yt), yt − yt+1〉 − Vyt(yt+1) ≤ 2γt‖yt − yt+1‖1 −
1

2
‖yt − yt+1‖21 ≤ 2γ2

t

then gives us the result.

If we wish to use α = 0, then we can utilize Theorem 3.4 to compute the {yt}t∈[T ], which results
in the following bound.

Theorem 5.19. Let ω(y) =
∑

k∈[2N ] yk log(yk), Y = ∆2N , and suppose that {yt}t∈[T ] is updated
according to Theorem 3.4. Then

max
y∈Y

1

ΘT

∑
t∈[T ]

θtΨ(xt, y; pt)−
1

ΘT

∑
t∈[T ]

θtΨ(xt, y; pt) =

√
8 log(2N)

T
.

Consequently,, we have

‖x̄θT − p‖∞ −min
x∈X
‖x− p‖∞ ≤

√
8 log(2N)

T
.

Finally, we remark that in all cases, bounds on Dq,α(x̄θT , p) (e.g., Theorems 5.18, 5.19) can be
translated to bounds on ‖x̄θT − p‖q; see Table 5.1. Furthermore, the smoothing parameter α can be
chosen to optimize the associated regret bound similar to Remark 5.7.

5.3.3 Combinatorial Subproblem

In both approaches of Sections 5.3.1 and 5.3.2, we must solve a linear optimization problem over
X. Since X is a polytope with vertices a(σ), we have, for a cost vector c,

z∗ = a(σ∗), where σ∗ = arg min
σ∈Sn

〈a(σ), c〉,

Thus, in each iteration of the primal and the dual approaches, we must solve the following combi-
natorial optimization problem over rankings:

min
σ

∑
j∈[m]

∑
i∈Aj

yij,taij(σ) : σ ∈ Sn

 . (5.10)

On the one hand, this problem is NP-hard, since it is a generalization of the linear ordering problem
and the maximum weighted independent set problem, see e.g., [147, Proposition 3]. Indeed, this
presents a major drawback of the iterative approaches from Sections 5.3.1 and 5.3.2. However, we
note that the exact same combinatorial problem must be solved in all other approaches of learning a
non-parametric choice model (see Appendix B.1 and in particular the equations (B.3), (B.6), (B.9)).
On the other hand, while we cannot avoid the NP-hardness in learning a non-parametric choice
model from data, we note that (5.10) can be formulated as a (relatively) compact integer program
with O(n2) variables and O(n3) constraints, and also it can be handled efficiently by off-the-shelf
integer programming solvers (see Figure 5.2). Furthermore, Jagabathula and Rusmevichientong

111



[86] prove polynomial-time solvability of (5.10) under a number of assumptions on the subsets
A1, . . . ,Am. Thus, by employing our suggested first order approaches in Sections 5.3.1 and 5.3.2,
we avoid the problem of having to deal with the high-dimensional representation of X (which can
involve n! variables and the resulting full optimization model may not fit in the computer memory),
and instead solve a relatively compact integer program at each iteration.

5.4 Computational Study

In our computational study, we compare the performance of our primal and dual approaches for
learning non-parametric choice models in both the static and the dynamic settings with a variety
of ground truth choice models with mixed MNL structure. We assess performance by examining
model fit, sparsity of our learned model, and algorithm efficiency. We test the impact of the choice
of different distance measures D(·, ·), which allows us to compare and contrast some of the distance
measures studied in the literature. In the dynamic setting, we also examine the effect of the rate
at which observations are added during the solution process on our performance metrics.

All experiments are conducted on a server with 2.8 GHz processor and 64GB memory, using
Python 3.6. Gurobi 8.0 (with default Gurobi settings except we limit the number of threads to 2)
is used to solve the integer programming subproblems.

Test Instances. We employ a setup similar to Bertsimas and Mǐsic [27, Section 5.3]. Our ground
truth choice model over n = 10 items (plus one no-choice option) is a mixed MNL model with K = 5
segments. Given mixing probabilities w ∈ ∆K and K sets of utilities {ui,k}i∈{0}∪[n], k ∈ [K], the
mixed MNL model chooses an item i ∈ A ⊆ [n] with probability

P[i | A] =
∑
k∈[K]

wk
ui,k

u0,k +
∑

i′∈A ui′,k
.

For each k ∈ [K], we generate n+1 parameters qi,k ∼ U(0, 1), i ∈ {0}∪ [n] (recall that 0 denotes
the no-choice option present in each subset). The utilities ui,k are then set as follows: four randomly
chosen i ∈ {0} ∪ [n] are set to ui,k = Lqi,k, where L = 5, while the rest are set to ui,k = qi,k/10.
The mixing probabilities {wk}k∈[K] are chosen randomly from the (K − 1)-dimensional simplex.
We test on 100 randomly generated instances of this ground truth model. In Appendix B.2, we
also provide results for varying the parameters to K ∈ {1, 10}, L ∈ {10, 100} and m ∈ {10, 50},
and thus test the effect of different ground truth models on the conclusions drawn. We observe
that in these different ground truth models, the conclusions are in general in line with the ones
from K = L = 5, m = 20 setting; therefore, in the main text we focus on this latter case and defer
to Appendix B.2 for further details and discussion on the results using other parameter values.

Algorithm implementation. We consider three different choices of distance measures D(·, ·)
arising from `1-, `2-, and `∞-norms. For each one of these distance measures D(·, ·), we implemented
the following solution methods from Section 5.3

� the näıve primal approach via the Frank-Wolfe algorithm, where we (necessarily) smoothed
D according to Table 5.1 (see Algorithm 4).

� the primal-dual approach without smoothing using online mirror descent (MD), i.e., Theorem
5.19.

� the primal-dual approach with smoothing using online MD, i.e., Theorem 5.18.

112



For online MD, we used constant step size policies based on constants ΩY , G and the maximum
iteration count T . For each of these methods and norms, we set a maximum iteration limit of
T = 10, 000.

In the static setup, our non-parametric estimation procedure is as follows. We first generate
m = 20 subsets of [n] of maximum size bn/2c uniformly at random. We append the no-choice
option 0 to all of these. Using the ground truth model, we compute the ptrain vector, where
ptrain,ij = P[i | Aj ], and Aj is a subset from our training set. Then we set pt = ptrain at each
iteration of these three solution methods.

In the dynamic setup, we also use the three methods outlined above, but only examine the non-
parametric estimation model where the distance measure D(·, ·) is based on `2-norm. We generated
a sequence of pt → ptrain, and at each iteration we supply pt to the algorithm. We initially generate
2000 random choice observations (i, j), where Aj is one of the training subsets chosen randomly,
and i ∈ Aj is chosen with the probability ptrain,ij . We then compute p1 using these observations
according to (5.1). For t > 1, we generate κ more observations, then update pt−1 with these new
observations. We tested various choices of κ between 0 (no new observations) and 1000.

For both data regimes, we terminate training according to the mean absolute error (MAE),
defined as MAE(p, p′) = 1

length(p)

∑
i,j |pij − p′ij |, where length(p) is the length of the vector p. In

the static setup, we terminate training when MAE(ptrain, p̂t) ≤ 0.001, where p̂t is the vector of
estimated choice probabilities for the m = 20 subsets after t iterations. In the dynamic setup, we
terminate training when MAE(pt, p̂t) ≤ 0.001.

Performance metrics. We compare the effectiveness of our methods using three criteria: model
fit, sparsity, and algorithm efficiency.

To evaluate model fit, we examine the mean absolute error of choice probabilities on subsets
generated independently from the training set. Specifically, we generate 100 subsets of [n] of
maximum size bn/2c uniformly at random (independently to the training subsets), and append the
no-choice option 0 to each of them. We compute the vector of choice probabilities ptest using our
ground truth model. Letting p̂ be the choice probabilities on the test subsets computed from the
choice model estimated at the training phase, we then calculate MAE(ptest, p̂).

To evaluate sparsity of our estimated model, we examine the number of different rankings σ
with positive probability λ(σ) > 0 in our estimated model. Sparsity is very much desired for non-
parametric models, since choice probabilities for sparser models can be computed more efficiently.

To evaluate algorithm efficiency, we examine the number of iterations until the termination
criterion is reached. While we could have used solution time as another metric for this purpose, we
observed in the static setup that solution time is highly correlated with the number of iterations;
see Figure 5.2. Because runtimes are affected by how fast the combinatorial subproblem (5.10) is
solved, but the focus of our work is not on this aspect, in our discussions we focused on the number
of iterations as a more accurate representation of algorithm efficiency for our purposes.

5.4.1 Static estimation results

Figure 5.1 plots the test MAE, the average number of rankings and the average number of iterations
for each of the three solution methods when using different norms for constructing D. We observe
that the three methods have roughly the same test MAE for each of the norms, with perhaps
the smoothed dual method performing slightly better when D is based on certain norms. On the
other hand, the non-smooth dual method clearly learns a sparser model, and clearly terminates
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Figure 5.1: Performance metrics using different norms in the static setup.
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Figure 5.2: Overall solution times and subproblem times per iteration (both in seconds) in the
static setup.

in less number of iterations than the other two methods, which are similar in these two metrics.
Therefore, we conclude that, regardless of the type of norm used in the estimation procedure, the
non-smooth dual method is superior in the static setup, since it manages to learn a sparser model
more efficiently, while maintaining the same model fit. In addition, Figure 5.1 also indicates that
in terms of the number of rankings and the number of iterations metrics, the performance of our
primal with smoothing and our dual with smoothing approaches do not vary much based on the
norm used. Moreover, in these performance metrics, while our dual approach without smoothing
has a clear advantage, its performance also has a slight dependence on the norm used, with slight
deterioration when `∞ norm is used.

Figure 5.2 shows the average solution times, the average number of iterations and the average
subproblem times for each method and norm. From Figure 5.2 we conclude that the non-smooth
primal approach is still outperforming the other two with respect to overall solution time. Note
that there are slight differences in performance between the number of iterations and the overall

114



solution times. We attribute this to the slight variation in the average subproblem times between
the methods and norms used. We do not believe that the variation in average subproblem time is the
result of any inherent property of the methods used or norms. Moreover, the average subproblem
solution times are quite small, and thus the variations in subproblem solution times are relatively
small.

In Appendix B.2, we further examine whether the ground truth choice model has an effect
on algorithm performance. In general, the trends observed here persist when we vary the model
parameters.

5.4.2 Dynamic estimation results

For the dynamic data regime, we examine the performance of the three solution methods for
κ = 50, 100, . . . , 950, 1000 in Figure 5.3, where the distance measure D is based on the `2 norm. In
this figure, κ = ∞ corresponds to using the true static ptrain choice probabilities computed from
the ground truth model. From Figure 5.3 we observe that the test MAE is similar for all three
methods, where the profiles are almost identical. In terms of the average number of iterations and
rankings (numbers above 2000 are not shown), we observe that, regardless of the value of κ, the non-
smooth dual approach clearly outperforms the other two, followed by the smoothed primal method,
and then the smoothed dual method. Figure 5.3 provides another insight that the performance
of dual method with smoothing is far more sensitive to κ and hence the number of observations
seen. That is, when the number of observations is limited, the estimated model from the smoothed
dual method tends to be far more dense in terms of the number of rankings used. Interestingly,
for κ = ∞, we notice that in terms of the average number of iterations and the average number
of rankings, the performance of the dual approach with smoothing shows a drastic improvement
and it almost matches with the performance of primal approach with smoothing. Appendix B.2.3
presents the analogous figures for the dynamic data regime, where the distance measure D is based
on the `1 and `∞ norms.

Finally, we would like to also highlight the importance of using additional observations at each
iteration in the dynamic setup. To examine this, we set κ = 0, i.e., we do not add any observations
at each iteration, and simply set pt = p1 for all t. In this case we found that all methods failed to
find an estimated model such that MAE(pt, p̂t) ≤ 0.001 within the maximum iteration limit. This
is due to the finite sample error. The estimated choice probabilities p̂t and the true probabilities
ptrain both belong to the set X. However, in general, p1 6∈ X because p1 is generated using samples
from ptrain. For a low number of samples (in our case, 2000 samples), the distance between p1 and
X turns out to be too large for our termination criterion. In fact, using exact methods, we found
that the average minimum MAE between p1 and X is ≥ 0.007, which is above our termination
criterion. Therefore, in the dynamic case, additional observations at each iteration are crucial for
convergence.

5.4.3 Additional remarks

For each of the three methods, in both the static and the dynamic setups, the average number
of rankings and iterations are highly correlated. In fact, the Spearman correlation between these
two metrics in our result is ≈ 0.922, thus we conclude that the average number of iterations is a
good proxy for model sparsity. This can be seen in the theory: all of our algorithms start with one
ranking, and at each iteration adds at most one ranking to the estimated model, which provides
an explicit bound on the model sparsity.
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Figure 5.3: Performance metrics using `2-norm for dynamic data.

For dynamic data regime, the MAE does not vary significantly as κ increases, even compared to
using the true choice probabilities (κ =∞). This can be explained by examining the average number
of iterations. For low κ, the average number of iterations until termination is much higher than for
higher κ, thus the total number of observations seen is still enough to learn a well-fitted model. On
the other hand, there is a significant difference in terms of model sparsity when we compare low κ
and high κ. This is perhaps due to the fact that on average, the number of iterations needed for
convergence when κ = 50 is roughly twice that of κ = 1000, but this means that throughout the
whole solution procedure, the number of observations seen for κ = 1000 is roughly 10 times the
amount seen for κ = 50. However, the gains to sparsity rapidly diminish as κ increases.
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Finally, we remark that comparing the first-order methods FW and online MD, one can argue
that FW is much simpler to implement, since there is essentially no parameter tuning in Algorithm
4. The only tuning involved for the primal approach was computing the smoothing parameters for
D via Table 5.1, but this is separate from Algorithm 4. On the other hand, online MD requires
tuning the selection of step size, time horizon T , and computing the constants ΩY , G (which in turn
affects the smoothing parameters). However, for the particular choice model estimation problem,
these quantities are quite straightforward to compute, and our analysis and numerical results are
based on such ‘textbook’ constant step size policies derived from these, which worked quite well.
In terms of performance, we see that the extra sophistication in non-smooth MD can significantly
outperform FW.
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Chapter 6

Joint Risk Analysis of Prediction and
Optimization

6.1 Introduction

The fields of optimization, statistics and machine learning have long had a close relationship.
However, most research done has been on how to employ optimization techniques to solve statistical
or machine learning problems. In this chapter, we explore some steps in the other direction: how
can statistics and machine learning help us handle optimization problems under uncertainty? In
practice many optimization problems face uncertainty in their data in either the objective or the
problem constraints, especially when the model parameters are estimated from data. Statistical
inference and machine learning is often used to estimate model parameters. Such processes often
come with performance guarantees in terms of the accuracy of the parameter estimation. However,
considering that the eventual goal in this process is not to have the best parameter estimation, but
to make the best decision in the subsequent optimization problem under uncertainty. Hence, the
optimality gap presents a more appropriate performance measure in this end-to-end process. In
this chapter, we explore how the parameter estimation guarantees can be related to optimality gap
guarantees for the subsequent optimization problem.

Note that in Chapter 1.4 we introduced joint estimation and optimization, which considered
optimizing a function f(x, u) given access to a sequence of converging parameter estimates {ut}t≥1,
ut → u. In Chapter 2.5 we presented an algorithmic framework for this problem. However, there
we did not have control of the estimating sequence {ut}t≥1. In contrast, this chapter considers
the construction of the parameter estimates themselves, and explores what the ‘right’ method,
statistically speaking, to construct these estimates is.

We consider the following optimization problem:

min
x

{
f(x) + c>x : x ∈ X

}
(6.1)

where X ⊂ Rm is a convex compact domain, and f : X → R is a convex function (and hence
continuous on the relative interior of X). We consider the setting when the linear perturbation
vector c is not known exactly, but instead is governed via covariates w. More precisely, suppose
the covariates w belong to a set W , and the perturbation vectors belong to a set C ⊆ Rm, both of
which live in Euclidean spaces. We have access to historical data Hn := {(wi, ci) : i ∈ [n]}, and we
need to solve (6.1) for c yet we are only given information of w. We assume that the (wi, ci) are
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realizations of i.i.d. random variables according to some distribution P on W × C. Furthermore,
we also assume that (w, c) ∼ P also, otherwise the data would be useless to us.

Traditionally, first based on the data Hn, a prediction model resulting in the estimation of a
function g : W → C is built to capture the dependency of c on w. Then, when given a covariate w,
the problem (6.1) is solved with c replaced by the prediction g(w). Many real-world problems can be
captured in this setting, and in fact, this two-step process is commonly used amongst practitioners
in decision-making domains. Here, we give two examples, although many more exist.

Example 6.1. A classical application of the network shortest path problem is maintenance schedul-
ing. Suppose we have a collection of service items (e.g., machines, vehicles) which we maintain over
a certain time horizon. These items need refurbishment or replacement after a certain number of
time periods. Then the optimal maintenance schedule can be solved as a shortest path problem over
an appropriately defined network, with arc ‘distances’ given by the maintenance costs. Typically,
these costs are assumed to be deterministic. However, it is not hard to imagine that since these
are future costs, they are obtained via forecasts. In this setting, X are the constraints from the
shortest paths problem, each x ∈ X represents a path through the network, f(x) = 0 for all x ∈ X,
and c is the vector of arc distances from the maintenance costs. Side information (covariates) w
can consist of (amongst others) seasonality, demand, supply and other economic factors.

Example 6.2. Consider a portfolio optimization problem, where the task is to allocate wealth to
different m different assets to maximize investment return. In the typical mean-variance formula-
tion, the goal is to simultaneously minimize the variance of the portfolio return, while maximizing
the expected return. Thus, X is the set of all possible asset allocations, each x ∈ X represents
an asset allocation (i.e., xi represents how much wealth to invest into asset i), f(x) = γx>Σx is
the variance of the portfolio return with Σ being the covariance matrix of the returns between the
assets, and c = −µ is the vector of returns for each assets. In many settings, Σ is assumed stable,
and µ is predicted through market factors (e.g., liquidity, value, momentum, volume) which we can
take to be the side information w.

6.1.1 Related Literature

Both prediction and optimization have been studied extensively on their own, yet their joint analysis
is notably lacking. That is, the prediction function g : W → C is selected to minimize some measure
of error on the given data Hn, but there are relatively few studies on the effect of utilizing the
prediction g(w) in the optimization problem (6.1).

A compelling method to incorporate the covariates w is to use density estimation, and solve a
variant of sample average approximation, without appealing to an explicit prediction model. This
was studied by Hannah et al. [72], Hanasusanto and Kuhn [71], Bertsimas and Kallus [26], Ban and
Rudin [9], Bertsimas and Van Parys [28], Ho and Hanasusanto [79] who all gave various guarantees
on this approach. While we believe that this is a compelling method, in practice this is not the
approach that is taken. Practitioners prefer to use the ‘traditional’ pipeline of first building a
prediction model g : W → C, then using the predictions g(w), which may be due to its simplicity.
Technically, there are two advantages of a two-step approach. First, solving the optimization
problem is simpler, due to not relying on a sample average approximation, which can be expensive
when n is large. Second, the two-step approach allows the potential to simultaneously develop
an explanatory model between the covariates w and the vectors c, which is useful in a variety of
settings.

The relationship between prediction models used to obtain model parameters and the subse-
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quent optimization performance has, to our knowledge, only been examined by Kao et al. [96], El-
machtoub and Grigas [58] and Donti et al. [55]. Kao et al. [96] examined this in the specialized
setting when X = Rm, f is a strongly convex quadratic, and the prediction model g is linear. They
presented theoretical guarantees under a particular data distribution. Donti et al. [55] propose a
scheme to differentiate the optimality gap, which gives rise to a stochastic gradient descent scheme
for direct risk minimization. However, they provide no theoretical guarantees for the convergence
of the risk quantities in their algorithmic scheme. Closest to the work in this chapter is the paper of
Elmachtoub and Grigas [58], who examine the true optimality gap loss, and propose a convex surro-
gate loss from an upper bound on this. They show Fisher consistency of their surrogate loss under
certain distributional assumptions, but do not give explicit relationships between the performance
of the prediction part and the optimization part, which is the topic of this chapter.

A key challenge in considering prediction and optimization jointly is that the optimality gap, the
natural measure of performance to use in this context, is no longer convex in the model parameters
(see Observation 6.4). Therefore, this necessitates the use of convex surrogate loss functions.
Surrogate loss functions have been used extensively in other machine learning contexts such as
classification and robust regression. The relationship between surrogate losses and the true 0-1
loss is well-understood in the classification context. For example, [140, 141, 101, 156, 142, 10] have
developed a general theory for the minimization of the true 0-1 risk via a surrogate risk which
satisfies certain criteria. In the context of robust regression and density estimation problems,
Steinwart [143] builds a theory for the relationship between true and surrogate risk.

6.1.2 Contributions

In this chapter, we examine how the performance of the prediction part relates to the performance of
the optimization part. In particular, we describe conditions for the existence of explicit relationships
between the learning performance, i.e., the surrogate risk, and the optimization performance, i.e.,
the true risk. In Section 6.2, we precisely define the problem we address, and outline the challenges.

� In Section 6.3, we rigorously derive the technical conditions on the surrogate loss that allows
us to asymptotically minimize the true risk by minimizing the surrogate risk. These conditions
are based solely on the choice of prediction performance measure, rather than the class of
prediction models g or the optimization domain X or function f . These conditions allow us
to compare and contrast the use of different prediction model training methods in the context
of optimization, and provide us with guidelines into selecting these for such applications. We
examine several methods, and show how to check the conditions for these.

� Often in statistical learning, we assume minimal knowledge of the distribution P. Therefore,
the distribution dependent nature of our results from Section 6.3 is not so desirable. In Section
6.4, building on the results from Steinwart [143], we establish conditions for distribution
independent relationships between true risk and the surrogate risk. In general checking these
conditions is difficult for many existing methods. Thus, we focus on a tractable special case,
using the squared loss function `(d, c) = ‖d− c‖22 to measure prediction performance (i.e., the
least squares method to train a prediction model). Using the conditions established, we prove
an explicit relationship between the surrogate squared risk and the true optimality gap risk.

Notation. We make use of the following notation throughout. Given a set Z in a topological
space, we denote its closure by cl(Z). We denote the power set, the collection of all subsets of X,
as 2X . We let X∗(d) = arg minx∈X

{
f(x) + d>x

}
∈ 2X be the argmin mapping, and x∗(d) be a
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selection from X∗(d) obtained from some deterministic algorithm. More precisely, x∗ : Rm → X is
a function such that for any d ∈ Rm, x∗(d) ∈ X∗(d). Our results are agnostic to the specific choice
of algorithm.

6.2 Risk Minimization for Prediction and Optimization

Suppose we have a function g : W → C and a point (w, c). To assess the quality of using g(w) in
place of c in (6.1), we define the loss as the optimality gap of the solution obtained with g(w) on
the true objective vector c, that is, the quality of the prediction d = g(w) with respect to (6.1) is
given by the true loss function

L(d, c) := f(x∗(d)) + c>x∗(d)−min
x∈X

{
f(x) + c>x

}
. (6.2)

Note that (a slight variant of) this loss function is examined by Elmachtoub and Grigas [58]. Given
any c, L(d, c) ≥ 0 for all d and L(c, c) = 0. Also note that L depends on the function x∗, i.e., the
algorithm that we use to solve minx∈X

{
f(x) + d>x

}
for different d ∈ Rm. We will take x∗ to be

fixed throughout the chapter. Note, however, that the specific choice of x∗ only affects our results
up to measurability concerns; we show in Lemma 6.12 that any x∗ is Lebesgue measurable, so we
can safely fix x∗ without changing the results as long as our distribution P is Lebesgue measurable.
In practice, any distribution we encounter will be Lebesgue measurable; we explicitly impose this
in Assumption 6.13. Henceforth, when measurability of functions is discussed, we will understand
this to be in the sense of Lebesgue.

Since (w, c) is randomly drawn from P, we assess the performance of a function g : W → C in
terms of the expected true loss, i.e., the true risk

R(g,P) := E[L(g(w), c)]. (6.3)

The best possible risk we can achieve is

R(P) := inf
g
{R(g,P) : g measurable} . (6.4)

We first state a basic fact about (6.4).

Lemma 6.3. The function g(w) = E[c | w] minimizes (6.4). Furthermore,

R(P) = E
[

min
d′∈Rm

E[L(d′, c) | w]

]
.

Proof. Note that measurability of w 7→ E[c | w] is obvious by definition of the conditional expecta-
tion. Fix some measurable g : W → Rm. Observe that for w ∈W ,

E[L(g(w), c) | w] = E
[
f(x∗(g(w))) + c>x∗(g(w))−min

x∈X

{
f(x) + c>x

}
| w
]

= E [c | w]> x∗(g(w))− E
[
min
x∈X

{
f(x) + c>x

}
| w
]

≥ f(x∗(E[c | w])) + E [c | w]> x∗ (E[c | w])− E
[
min
x∈X

{
f(x) + c>x

}
| w
]

= E[L(E[c | w], c) | w],
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where the inequality follows from the definition of x∗(·). The first result then follows from inte-
grating both sides of this relation over w ∈W .

The second result follows because

min
d′∈Rm

E[L(d′, c) | w] = min
d′∈Rm

f(x∗(d′)) + E[c | w]>x∗(d′)− E
[
min
x∈X

{
f(x) + c>x

}]
= f(x∗(E[c | w])) + E[c | w]>x∗(E[c | w])− E

[
min
x∈X

{
f(x) + c>x

}]
,

and integrating both sides over w ∈W .

Lemma 6.3 shows that the conditional expectation is a minimizer of (6.4). There are many
regression techniques which aim to recover the conditional expectation g(w) = E[c | w], thus any
one of these are applicable in practice. However, it is not yet well-understood how these techniques
perform for the true risk (6.3). Thus, this chapter aims to understand how these existing techniques
relate to the risk as defined by (6.3). In other words, if we employ a traditional regression technique,
what can we say about the risk minimization problem (6.4)? More precisely, given n data points,
suppose gn is constructed from these using a traditional regression technique. We would like to
understand which techniques can guarantee that R(gn,P) → R(P) as the number of data points
n→∞.

A näıve attempt to solve (6.4) is to directly use empirical risk minimization (ERM) with the
loss L to attain risk bounds with the usual methodology. However, L(d, c) is not convex in d.

Observation 6.4. For any fixed c, the loss function L(d, c) is not convex in d. For simplicity
take f(x) = 0, so that we have a linear objective c>x and that minimizers are always at points
on the boundary of X. Consider two extreme points of X, x0, x1 with c>x0 > c>x1. Choose
d0, d1 such that minimizing d>k x over x ∈ X results in the unique minimum xk for k = 0, 1. Now
note that L(d0, c) − L(d1, c) = c>x0 − c>x1 > 0. Let us now consider dγ = (1 − γ)d0 + γd1

for very small γ ∈ (0, 1). When γ is sufficiently small, then dγ will also have x0 as a unique
minimizer, so L(dγ , c) = L(d0, c). Then because L(d0, c) > L(d1, c), we have L(dγ , c) = L(d0, c) >
(1− γ)L(d0, c) + γL(d1, c). Hence, L(d, c) is not convex in d for any c.

Given Observation 6.4, it is not possible in general to obtain a tractable approach with certified
performance guarantees from minimizing the empirical risk based on the true loss function L. In
this case, the natural remedy is to use a surrogate loss function ` in place of L. The use of surrogate
loss functions to ensure algorithmic tractability is very common in machine learning. For example,
convex surrogates such as hinge loss are used instead of the non-convex true 0-1 loss in classification
problems.

A good surrogate loss function ` should mimic the natural properties of the true loss function
L, i.e., `(c, c) = 0, `(d, c) ≥ 0 for any d, c. However, the most important feature of a surrogate loss
function is how its risk bound relate to the true risk (6.3). Consequently, in this chapter we will
explore this relationship and identify important properties of surrogate loss functions that enable us
to derive guarantees on the true risk. We would like to identify essential properties of surrogate loss
functions `(g(w), c) such that they can accurately, in some sense, assess the quality of using g(w)
in place of c in (6.1), while remaining computationally tractable to optimize (e.g., being convex in
g(w)). To this end, we define the surrogate risk as:

R`(g,P) := E [`(g(w), c)] . (6.5)
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For any given surrogate loss function `, analogous to (6.4), we also define:

R`(P) := inf
g
{R`(g,P) : g measurable} .

In practice, the distribution P is not given explicitly, but instead we only have access to historical
data Hn = {(wi, ci) : i ∈ [n]}. To build a predictor g : W → C, we optimize the empirical surrogate
risk

R̂`(g,Hn) :=
1

n

n∑
i=1

`(g(wi), ci).

Statistical learning theory has rich literature on relating R̂` to R`; see, e.g., Bousquet et al. [38].
In particular, for well-chosen classes of predictors G, the following consistency result holds:

ĝn = arg min
g∈G

R̂`(g,Hn), R`(ĝn,P)→ R`(P) in probability,

where convergence in probability is used due to the randomness in Hn, which translates to random-
ness of ĝn. This states that, for large n, we can get high-probability bounds on the excess surrogate
risk R`(ĝn,P)−R`(P) of a predictor ĝn.

However, since we use ĝn for optimization, we are actually interested in the excess true risk
R(ĝn,P) − R(P) which depends on (6.1) explicitly. Thus, in this chapter, we give relationships
between the excess surrogate risk and the true risk. This will then allow us to translate guarantees
on the excess surrogate risk, of which many can be derived from statistical learning theory, to the
excess true risk.

Our study on the relationship between the surrogate and true risks depends on understanding
the relationship between the losses ` and L. Note that ` need not contain any information about the
optimization problem (6.1). Further note that our results do not depend on the class of predictors
G. While studying G is important to relate the empirical surrogate risk R̂` to the population
surrogate risk R`, as well as for computational considerations of optimizing the surrogate risk, it
turns out that it is secondary to understanding the relationship between R` and R, and our results
are independent of the choice of G. This is important for the application of our theory: by keeping
the class G unspecified, our results are applicable to all settings, regardless of G.

6.3 Risk Minimization via Admissible Surrogate Loss Functions

Given n data points, existing statistical learning results give us methods to obtain a predictor
gn : W → C with certifiable upper bounds on the excess surrogate risk R`(gn,P) − R`(P), and
in particular, as we obtain more data (i.e., as n grows), the upper bounds shrink to 0. Ideally,
however, as n → ∞, we also want the excess true risk to shrink, i.e., R(gn,P) − R(P) → 0. In
order to understand the kind of results that we are after, let us explore the negation of this. In
this case, we have R`(gn,P) − R`(P) → 0 but, for some ε > 0, R(gn,P) − R(P) > ε for infinitely
many n. In other words, there exists ε > 0 such that for all δ > 0, there exists gn such that
R`(gn,P)−R`(P) ≤ δ but R(gn,P)−R(P) > ε. To prevent this bad outcome, we want to guarantee
the following relationship between the risks:

for all ε > 0, there exists δ > 0 such that: (6.6)

if g : W → C satisfies R`(g,P)−R`(P) ≤ δ, then R(g,P)−R(P) ≤ ε.
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We will show that (6.6) can be guaranteed by checking a simpler condition on the losses ` and L
called calibration. This was introduced by Bartlett et al. [10] for binary classification and extended
by Steinwart [143] for other machine learning applications. We extend this concept to the context
of prediction and optimization.

Definition 6.5. A surrogate loss function ` for L is calibrated with respect to a distribution P, or
P-calibrated, if, for all w ∈W and ε > 0, there exists δ > 0 (which may depend on w) such that

if d ∈ Rm satisfies E[`(d, c) | w]− min
d′∈Rm

E[`(d, c) | w] ≤ δ, then E[L(d, c) | w]− min
d′∈Rm

E[L(d, c) | w] ≤ ε.

Observe that Definition 6.5 is very similar to (6.6), except that predictors g (i.e., functions
mapping onto vectors) are replaced with vectors d ∈ Rm. The task now is to translate this property
on the behaviour of ` on vectors to functions g : W → C, for which Steinwart [143, Theorem 2.8]
gives a proof technique to translate P-calibration to risk bounds. We apply this technique to give
our main result, Theorem 6.7 below. We use the following technical assumption:

Assumption 6.6. Let the probability distribution P and the surrogate loss function ` be given.
For any fixed c ∈ C, the surrogate loss function `(d, c) is convex in d ∈ Rm. For any w ∈ W and
d ∈ Rm, the set arg mind′∈Rm E[`(d′, c) | w] is non-empty and bounded, and E[`(d, c) | w] < ∞.
Furthermore, c is an integrable random vector (that is, each component is integrable) so that
E[‖c‖1] <∞.

Theorem 6.7. Suppose that ` is P-calibrated, and that Assumption 6.6 holds. Then for all ε > 0,
there exists a δ > 0 such that

R`(g,P) ≤ R`(P) + δ =⇒ R(g,P) ≤ R(P) + ε.

We give the proof, together with the verification of the necessary technicalities, in Section 6.3.2.

6.3.1 A Note on the Regularity of X∗ and x∗

An important property that we exploit is that the argmin mapping X∗(d) is, in a sense, well-behaved
as we change d. More precisely, the sense of regularity that we use is upper semicontinuity, which
stems from a result in perturbation analysis [36].

Definition 6.8. A multivalued function F : Rm → 2X is upper semi-continuous at a point d ∈ Rm
if, for any open set U containing F (d), there exists an open set Ud containing d such that for all
d′ ∈ Ud, F (d′) ⊆ U . Equivalently, F is upper semi-continuous if, for any closed set V , the following
set is closed:

{d ∈ Rm : F (d) ∩ V 6= ∅} .

Lemma 6.9. Suppose X is compact. Then the multivalued mapping X∗ : Rm → 2X is upper
semi-continuous.

Proof. This follows immediately from verifying the conditions of Bonnans and Shapiro [36, Propo-
sition 4.4], which are straightforward to check due to the fact that the domain X does not change
with the vector d.

We can use Lemma 6.9 to show the existence of a measurable selection x∗(d) ∈ X∗(d) via an
application of the Kuratowski–Ryll-Nardzewski theorem on the existence of measurable selectors
for multivalued mappings. We use the version stated in Bogachev [35, Theorem 6.9.3].
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Lemma 6.10. Suppose X is compact. Then there exists a measurable mapping x∗ : Rm → X such
that x∗(d) ∈ X∗(d) for all d ∈ Rm.

Proof. Consider the multivalued function X∗ : Rm → 2X defined by X∗(d) = arg minx∈X d
>x.

Note that since d>x is continuous, X∗(d) = {x ∈ X : d>x = minx′∈X d
>x′} is closed (it is the

inverse of a singleton). Now consider an open set U , and the sets

X̂∗(U) := {d ∈ Rm : X∗(d) ∩ U 6= ∅} .

It is known that U can be represented as the countable union of closed sets: U =
⋃
k∈N Vk where

Vk are closed. Thus, we can write

X̂∗(U) = {d ∈ Rm : ∃k ∈ N s.t. X∗(d) ∩ Vk 6= ∅} =
⋃
k∈N
{d ∈ Rm : X∗(d) ∩ Vk 6= ∅} .

Now, since X∗(d) is upper semicontinuous, {d ∈ Rm : X∗(d) ∩ Uk 6= ∅} is closed, hence X̂∗(U) is a
countable union of closed sets, hence measurable. This shows that X∗(·) satisfies the conditions of
Bogachev [35, Theorem 6.9.3], therefore there exists a measurable selection x∗(d) ∈ X∗(d) for all
d ∈ Rm.

Furthermore, we can show that any selection x∗ is at least Lebesgue measurable, using the
following result of Drusvyatskiy and Lewis [56].

Lemma 6.11 (Drusvyatskiy and Lewis [56, Corollary 3.5]). The set

D := {d ∈ Rm : X∗(d) is not a singleton}

has Lebesgue measure zero.

Lemma 6.12. Any selection x∗ : Rm → X such that x∗(d) ∈ X∗(d) for all d ∈ Rm is Lebesgue
measurable.

Proof. Lemma 6.10 tells us that there exists one such measurable selection x̄∗. Consider another
selection x∗. Then by Lemma 6.11, x̄∗ and x∗ differ on at most a set D with Lebesgue measure 0,
which is Lebesgue measurable. Furthermore, all subsets of D are also Lebesgue measurable, so x∗

must be Lebesgue measurable.

For the rest of the chapter, in order for our expectations to be well-defined, we make the
following assumption.

Assumption 6.13. Any probability distribution P is defined on the σ-algebra of Lebesgue mea-
surable sets.

This is not restrictive, since any probability distribution we encounter in practice can be written
as a mixture of a distribution which is absolutely continuous with respect to Lebesgue measure
(i.e., it has a density function), and a discrete distribution supported on a countable set. Such a
probability distribution is Lebesgue measurable.
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6.3.2 Proof of Theorem 6.7

Define

δ`(ε, w;P) := inf
d∈Rm

{
E[`(d, c) | w]− min

d′∈Rm
E[`(d′, c) | w] : E[L(d, c) | w]− min

d′∈Rm
E[L(d′, c) | w] > ε

}
.

(6.7)
Note that if ` is P-calibrated, then δ`(ε, w;P) > 0 for all ε > 0, w ∈W . In order to prove Theorem
6.7, we first verify measurability for δ`, since later we will be integrating it.

Lemma 6.14. Suppose ` is measurable and satisfies Assumption 6.6, and that X is compact. For
any ε > 0, the function δ`(ε, ·;P) : W → R is measurable.

Proof. Consider the set
Wr := {w ∈W : δ`(ε, w;P) ≤ r} .

Showing measurability of δ`(ε, ·;P) boils down to showing that Wr is measurable. Rewrite

Wr =

w ∈W : ∀k ∈ N, ∃d ∈ Rm s.t.

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ r + 1/k

E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] > ε


=
⋂
k∈N

w ∈W : ∃d ∈ Rm s.t.

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ r + 1/k

E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] > ε


To this end, first consider the subset

WL(ε) =

{
(w, d) ∈W × Rm : E[L(d, c) | w]− min

d′∈Rm
E[L(d′, c) | w] > ε

}
=

{
(w, d) ∈W × Rm : f(x∗(d)) + E[c | w]>x∗(d)−min

x∈X

{
f(x) + E[c | w]>x

}
> ε

}
.

This is measurable since E[c | w] is measurable in w by definition of conditional expectation, f is
continuous hence measurable, and we have assumed x∗(d) is measurable in d, which is possible by
Lemma 6.10.

Now consider the subset

W`(α) =

{
(w, d) ∈W × Rm : E[`(d, c) | w]− min

d′∈Rm
E[`(d′, c) | w] ≤ α

}
.

First observe that the function h defined by h(w, d) = E[`(d, c) | w] is continuous in d and measur-
able in w. Continuity in d follows because `(d, c) is convex in d, and h(w, d) is finite for any w by
Assumption 6.6, and all convex functions are continuous in the relative interiors of their domains
(see e.g., Rockafellar [128, Theorem 10.1]). Measurability follows from measurability of ` and the
definition of conditional expectation.

We now show that h is jointly measurable in (w, d) by showing that it is a pointwise limit
of measurable functions. For k ∈ N, consider the box Bk := [−k, k]m ⊂ Rm and a finite set
of grid points Gk ⊂ Bk such that any point d ∈ Bk is at most distance 1/k away from a grid
point in Euclidean norm. If d ∈ Bk, define hk(w, d) = h(w, g) where g ∈ Bk is the closest grid
point to d (with ties broken arbitrarily), and if d 6∈ Bk define hk(w, d) = 0. Note that fixing g,
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w 7→ hg(w) := h(w, g) is measurable in w. Now, hk is the sum of finitely many functions of the form
1D(d)hg(w) for some measurable set D and grid point g. It is easy to check that this is measurable,
therefore hk is measurable. Furthermore, by continuity of h in d, hk(w, d) → h(w, d) pointwise.
Therefore, h is measurable. Finally, the function (w, d) 7→ mind′∈Rm h(w, d′) is measurable because
by continuity of h in d, we can write{

(w, d) : min
d′∈Rm

h(w, d′) ≤ α
}

=
⋃

d′∈D∗,k∈N

{
(w, d) : h(w, d′) ≤ α+ 1/k

}
whereD∗ is a countable dense subset of Rm (e.g., Qm). This shows thatW`(α) is measurable because
the function h(w, d)−mind′∈Rm h(w, d′) = E[`(d, c) | w]−mind′∈Rm E[`(d′, c) | w] is measurable.

Now notice that the set(w, d) ∈W × Rm :

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ r + 1/k

E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] > ε

 = W`(r + 1/k) ∩WL(ε)

is measurable. Therefore, its projection onto W is measurable, which isw ∈W : ∃d ∈ Rm s.t.

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ r + 1/k

E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] > ε

 .

This shows that Wr is measurable, concluding our proof.

Proof of Theorem 6.7. Fix a predictor g : W → C. For w such that E[L(g(w), c) | w] −
mind′∈Rm E[L(d′, c) | w] > ε, by P-calibration we have E[`(g(w), c) | w]−mind′∈Rm E[`(d′, c) | w] >
δ`(ε, w;P). Therefore, defining Eg(ε) := {w ∈W : E[L(g(w), c) | w]−mind′∈Rm E[L(d′, c) | w] > ε},
we have

R`(g,P)−R`(P) = E
[
E[`(g(w), c) | w]− min

d′∈Rm
E[`(d′, c) | w]

]
≥
∫
w∈Eg(ε)

δ`(ε, w;P)dP(w).

Let Ω be the `∞-diameter of the set X, which is finite since X is compact. Observe that for any
d ∈ Rm,

E[L(d, c) | w]− min
d′∈Rm

E[L(d, c) | w] = f(x∗(d)) + E[c | w]>x∗(d)−min
x∈X

{
f(x) + E[c | w]>x

}
≤ max

x,x′∈X

{
f(x)− f(x′) + E[c | w]>(x′ − x)

}
≤ max

x,x′∈X

{
f(x)− f(x′) + ‖E[c | w]‖1‖x′ − x‖∞

}
≤ Ω‖E[c | w]‖1 + max

x,x′∈X

{
f(x)− f(x′)

}
.

Let us now define two (non-negative) measures on W as

µ(E) =

∫
w∈E

(
Ω‖E[c | w]‖1 + max

x,x′∈X

{
f(x)− f(x′)

})
dP(w), µ`(E) =

∫
w∈E

δ`(ε, w;P)dP(w).
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We now show that µ is absolutely continuous with respect to µ`. Fix some E ⊆ W such that
µ`(E) = 0. Consider Et := {w ∈ E : δ`(ε, w;P) ≥

(
Ω‖E[c | w]‖1 + maxx,x′∈X {f(x)− f(x′)}

)
/t}

for t ∈ N. Since δ`(ε, w;P), we have Et ↑ E as t → ∞, i.e., every point w ∈ E is eventually in Et
for sufficiently large t. So by the monotone convergence theorem, µ(Et) ↑ µ(E) as t → ∞. But
now observe that

0 = µ`(E) ≥ µ`(Et) =

∫
w∈Et

δ`(ε, w;P)dP(w)

≥ 1

t

∫
w∈Et

(
Ω‖E[c | w]‖1 + max

x,x′∈X

{
f(x)− f(x′)

})
dP(w) =

1

t
µ(Et),

where the first inequality follows from Et ⊆ E for all t ∈ N, and the second inequality follows
from the definition of Et. Therefore, each µ(Et) = 0 for any t ∈ N, hence µ(E) = 0. Note that,
as a function of w, Ω‖E[c | w]‖1 + maxx,x′∈X {f(x)− f(x′)} is integrable since the conditional
expectation E[c | w] is integrable (which follows since c is integrable), therefore µ(W ) <∞, hence
µ is a finite measure. Stein and Shakarchi [139, Chapter 6, Proposition 4.2] implies that for all
ε > 0, there exists δ > 0 such that

µ`(E) ≤ δ =⇒ µ(E) ≤ ε.

Now, for a function g : W → C, and w ∈ W such that E[L(g(w), c) | w]−mind′∈Rm E[L(d′, c) |
w] > ε, by P-calibration we have E[`(g(w), c) | w]−mind′∈Rm E[`(d′, c) | w] > δ`(ε, w;P). Define

Eg(ε) :=

{
w ∈W : E[L(g(w), c) | w]− min

d′∈Rm
E[L(d′, c) | w] > ε

}
.

We have

R`(g,P)−R`(P) = E
[
E[`(g(w), c) | w]− min

d′∈Rm
E[`(d′, c) | w]

]
≥
∫
w∈Eg(ε)

δ`(ε, w;P)dP(w) = µ`(Eg(ε)).

Thus, when R`(g,P)−R`(P) ≤ δ, we have µ`(Eg(ε)) ≤ δ, hence µ(Eg(ε)) ≤ ε, so

R(g,P)−R(P) = E
[
E[L(g(w), c) | w]− min

d′∈Rm
E[L(d, c) | w]

]
=

∫
w∈Eg(ε)

(
E[L(g(w), c) | w]− min

d′∈Rm
E[L(d, c) | w]

)
dP(w)

+

∫
w∈W\Eg(ε)

(
E[L(g(w), c) | w]− min

d′∈Rm
E[L(d, c) | w]

)
dP(w)

≤
∫
w∈Eg(ε)

(
Ω‖E[c | w]‖1 + max

x,x′∈X

{
f(x)− f(x′)

})
dP(w) +

∫
w∈W\Eg(ε)

εdP(w)

≤ µ(Eg(ε)) + ε

≤ 2ε.
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6.3.3 Admissible Loss Functions

In general, checking that a given surrogate loss ` is P-calibrated may not be straightforward. A much
simpler condition to check is admissibility, also known as Fisher consistency, defined in Definition
6.15 below, which relates to the minimizers of the loss functions, instead of approximate minimizers
as in Definition 6.5. In this section, we show that admissibility is equivalent to calibration, thus
allowing us to check the simpler condition to verify Theorem 6.7. We also discuss some different
loss functions and their admissibility properties.

Definition 6.15. A surrogate loss function ` is admissible with respect to a distribution P, or
P-admissible, if for all w,

arg min
d

E [`(d, c) | w] ⊆ arg min
d

E [L(d, c) | w] .

The following theorem shows that admissibility is equivalent to calibration. Of course, the fact
that calibration implies admissibility is straightforward; the challenge is to show the other direction.

Theorem 6.16. Given a distribution P, let `(d, c) be loss function that satisfies Assumption 6.6.
Then ` is P-calibrated if and only if ` is P-admissible.

The key tool that we exploit is upper semi-continuity of the argmin mapping X∗(·). Informally,
this states that if we are given X∗(d) for some vector d, and we are interested in vectors d′ for which
X∗(d′) does not move ‘too far away’ from X∗(d), then we can guarantee that when d′ is sufficiently
close to d, this will indeed be the case. In particular, in the context of proving Theorem 6.16, we
use this to show that when E[L(d, c) | w] is large, then vectors close by to d will also have large
true expected loss.

Proof. Denote

D`(α;w) :=

{
d ∈ Rm : E[`(d, c) | w]− min

d′∈Rm
E[`(d, c) | w] ≤ α

}
D(α;w) :=

{
d ∈ Rm : E[L(d, c) | w]− min

d′∈Rm
E[L(d, c) | w] ≤ α

}
.

Note that

arg min
d′∈Rm

E[`(d′, c) | w] =
⋂
α>0

D`(α;w), arg min
d′∈Rm

E[L(d′, c) | w] =
⋂
α>0

D(α;w).

Suppose first that ` is P-calibrated. Then for any ε > 0, there exists δ > 0 (which can depend on
w) such that D`(δ;w) ⊆ D(ε;w). In particular, since D`(α;w) ⊆ D`(α

′;w) for α ≤ α′, we have

arg min
d′∈Rm

E[`(d′, c) | w] =
⋂

0<α≤δ
D`(α;w) ⊆ D(ε;w).

Taking the intersection of the right hand side over ε > 0, we have

arg min
d′∈Rm

E[`(d′, c) | w] ⊆ arg min
d′∈Rm

E[L(d′, c) | w],

hence ` is P-admissible.
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Suppose now that ` is not P-calibrated. We show that it is also not P-admissible. Fix an
arbitrary w ∈W . Note that the function h : Rm → R defined by h(d) = E[`(d, c) | w] is convex by
convexity of `(d, c), and hence under Assumption 6.6, it is continuous (see e.g., Rockafellar [128,
Theorem 10.1]).

Since ` is not P-calibrated, there exists w ∈ W and ε > 0 such that for all δ > 0, there exists
d(δ) ∈ Rm such that h(d(δ))−mind′∈Rm h(d′) ≤ δ but E[L(d(δ), c) | w]−mind′∈Rm E[L(d, c) | w] > ε.

Now, let dk = d(1/k) for k ∈ N. Note that {dk}k∈N ⊂ D`(1;w) which is compact since by
Assumption 6.6 arg mind′∈Rm h(d′) is compact, so all level sets are compact (see, e.g., Rockafellar
[128, Corollary 8.7.1]). Therefore, there exists a convergent subsequence d′k → d. Since h is
continuous, we must have d ∈ arg mind′∈Rm h(d′).

We now want to show that d 6∈ arg mind′∈Rm E[L(d′, c) | w]. We know from Lemma 6.9 that
the argmin mapping X∗(·) is upper semi-continuous at d. Suppose for contradiction that d ∈
arg mind′∈Rm E[L(d′, c) | w]. Then we must have X∗(d) ⊆ X∗(E[c | w]). Thus, for ε > 0 the set

X◦(ε′) =

{
x′ : f(x′) + E[c | w]>x′ < min

x∈X

{
f(x) + E[c | w]>x

}
+ ε′

}
is an open∗ set (as x 7→ f(x) +E[c | w]>x is continuous) containing X∗(d). Then, by Definition 6.8
of upper semi-continuity, there exists a neighbourhood D◦(ε′) of d such that for any d◦ ∈ D◦(ε′),
X∗(d◦) ⊂ X◦(ε′), which means that E[L(d◦, c) | w] < mind′∈Rm E[L(d′, c) | w] + ε′ since x∗(d◦) ∈
X∗(d◦) ⊆ X◦(ε′).

But now consider ε′ < ε. Since d′k → d, D◦(ε′) is open, and d ∈ D◦(ε′), we eventually have
d′k ∈ D◦(ε′) for sufficiently large k. But this contradicts the fact that by construction of the sequence
{dk}k∈N we have ε′ < ε < E[L(d′k, c) | w]−mind′∈Rm E[L(d′, c) | w] = E[c | w]>x∗(d′k)−minx∈X E[c |
w]>x.

Armed with Theorem 6.16, we have the following corollaries, which are straightforward conse-
quences of previous results.

Corollary 6.17. Suppose that ` is P-admissible, and that Assumption 6.6 holds. Then for all
ε > 0, there exists a δ > 0 such that

R`(g,P) ≤ R`(P) + δ =⇒ R(g,P) ≤ R(P) + ε.

Corollary 6.18. Suppose that ` is P-admissible, and that Assumption 6.6 holds. If we have a
sequence of functions gn such that R`(gn,P)→ R`(P). Then R(gn,P)→ R(P).

Proof. Fix some ε > 0. Take δ > 0 corresponding to ε in Corollary 6.17. Since R`(gn,P)→ R`(P),
we have R`(gn,P) ≤ R`(P) + δ eventually. By Theorem 6.17, we will also have R(gn,P)→ R(P) + ε
eventually.

We now examine several different loss functions and their admissibility properties. Before doing
so, let us summarize the properties on ` and P in order to get risk guarantees of the form (6.6).
These are:

1. the surrogate loss `(·, c) is convex for any fixed c ∈ C.

∗Note that this is not open in Rm by the usual topology, since f(x) may be infinite for x 6∈ X. However, it is open
when we work with X ⊂ Rm as the entire topological space with the induced topology from Rm.
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2. for any w ∈W,d ∈ Rm, the expected loss E[`(d, c) | w] is finite.

3. for any w ∈W , the set of minimizers arg mind′∈Rm E[`(d′, c) | w] is non-empty and bounded.

4. the surrogate loss ` is P-admissible according to Definition 6.15.

We first examine the loss function that is admissible for any class of distributions.

Example 6.19. Consider the squared loss `(d, c) = ‖d− c‖22. Then ` is P-admissible for any distri-
bution P over W × C. Note that

E[`(d, c) | w] = E
[
‖d− c‖22

]
= ‖d− E[c | w]‖22 + E[‖c‖22 | w]− ‖E[c | w]‖22.

Thus, the unique minimizer of E[`(d, c) | w] is d∗ = E[c | w]. Since we know this is also a minimizer
of E[L(d, c) | w], this gives us P-admissibility of the squared loss.

Also note that property 1 and 3 are clearly satisfied. Property 2 will be satisfied if the conditional
distribution P[· | w] is square integrable for every w ∈W .

A common loss function used in regression to safeguard against outliers is the absolute deviation
loss.

Example 6.20. Consider the absolute deviation loss `(d, c) = ‖d − c‖1. Then we claim that ` is
P-admissible as long as, for every w, P[· | w] is centrally symmetric about some vector dw. A
distribution P is centrally symmetric about d if, for a random variable c ∼ P, c − d has the same
distribution as d− c. Note that arg mind′∈Rm E[‖d′− c‖1 | w] recovers the vector of coordinate-wise
medians, which for a centrally symmetric distribution will be the point of symmetry dw, i.e., dw
minimizes E[‖d − c‖1 | w]. Furthermore, we have E[c | w] = dw also. Therefore dw minimizes
E[L(d, c) | w].

We now discuss the loss function proposed in Elmachtoub and Grigas [58], which aims to
incorporate knowledge of the domain X into the loss, in the hopes of achieving low true risk R,
which is based on the optimization problem.

Example 6.21. In the setting when f(x) = 0 for all x ∈ X, Elmachtoub and Grigas [58, Definition
3] defined the following loss function:

`(d, c) = (2d− c)>x∗(c)−min
x∈X

(2d− c)>x. (6.8)

Elmachtoub and Grigas [58, Theorem 1] shows that ` is admissible as long as P[c | w] is centrally
symmetric and continuous. We remark also that Elmachtoub and Grigas [58] achieve good nu-
merical results, particularly when the hypothesis class is misspecified versus the true distribution.

We now highlight some positive and negative aspects of the loss function of Elmachtoub and
Grigas [58]. An important observation made in Elmachtoub and Grigas [58, Proposition 1] is that,
by carefully choosing the set C and domain X, the true loss L from (6.2) becomes the 0-1 loss from
binary classification. The loss in (6.8) also has a familiar interpretation in this setting.

Example 6.22. Let m = 1, C = {−1, 1}, X = [−1/2, 1/2] and f(x) = 0 for all x ∈ X. Then the
0-1 loss for classification is exactly equivalent to the true loss function L. More precisely, note that
x∗(d) = − sign(d)/2, and minx∈X c

>x = −1/2 for any c ∈ C, so

L(d, c) =
c sign(d)− 1

2
=

{
0, c = sign(d)

1, c 6= sign(d).
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Elmachtoub and Grigas [58, Proposition 3] shows that the loss from (6.8) reduces to the hinge loss
in this case: since x∗(c) = −c/2 for c ∈ C and minx∈X d

>x = −|d|/2,

`(d, c) =
|2d− c| − (2d− c)c

2
=
|1− 2dc|+ 1− 2dc

2
= max{0, 1− 2dc}

Lin [101, Theorem 3.1] states that the hinge loss, and thus `, is admissible for any distribution over
C = {−1, 1} except the uniform one.

On the other hand, the loss function of Elmachtoub and Grigas [58] is not admissible for some
very natural settings. We demonstrate this with two examples.

Example 6.23. Consider the setting where m = 1, X = [−1/2, 1/2] and f(x) = 0 for all x ∈ X,
but C is an arbitrary subset of R. Then x∗(c) = − sign(c)/2, minx∈X d

>x = −|d|/2, hence the loss
function from (6.8) becomes

`(d, c) =
|2d− c| − (2d− c) sign(c)

2
=
|2d− c| − 2d sign(c) + |c|

2
.

Let P be a distribution over W × C. For any w ∈ W , note that the minimizers of E[L(d, c) | w]
are D∗w = {d ∈ R : sign(d) = sign(E[c | w])}. Thus, checking P-admissibility requires showing that
arg mind′∈R E[`(d′, c) | w] ⊆ D∗w for every w ∈ W , i.e., we need to show that the minimizers have
the same sign as the mean E[c | w].

Let us now explore what arg mind′∈R E[`(d, c) | w] is for our setting. For convenience, we fix
w ∈W , and omit the w in the notation, so that D∗ = D∗w, E[·] = E[· | w] and P[·] = P[· | w]. Then

2E[`(d, c)] = E[|2d− c|]− 2dE[sign(c)] + E[|c|] = E[|2d− c|] + 2d (P[c < 0]− P[c > 0]) + E[|c|].

This is a convex function in d, so we look at the subdifferential to determine its minimizers. Note
that

∂dE[|2d− c|] = {2 (P[c < 2d]− P[c > 2d] + sP[c = 2d]) : s ∈ [−1, 1]} ,

so

∂dE[`(d, c)] = {P[c < 2d]− P[c > 2d] + P[c < 0]− P[c > 0] + sP[c = 2d] : s ∈ [−1, 1]} .

For simplicity, let us assume that P[c = 2d] = 0 for any d (many such distributions exist). Then
E[`(d, c)] is differentiable with

∇dE[`(d, c)] = P[c < 2d]− P[c > 2d] + P[c < 0]− P[c > 0].

Denote d∗ to be a minimizer of E[`(d, c)]. If P[c < 0] = P[c > 0], then setting d = 0 gives
∇dE[`(d, c)] = 0, so d∗ = c = 0. If P[c < 0]− P[c > 0] < 0, then ∇dE[`(d, c)]|d=0 < 0, so increasing
d from 0 will decrease E[`(d, c)]. Thus, d∗ > 0. However, note that P[c < 0]− P[c > 0] < 0 implies
that the median of c is also > 0. If P[c < 0]−P[c > 0] > 0, then ∇dE[`(d, c)]|d=0 > 0, so decreasing
d from 0 will decrease E[`(d, c)]. Thus, d∗ < 0. However, note that P[c < 0]− P[c > 0] > 0 implies
that the median of c is also < 0. In all cases, the minimizer d∗ is of the same sign as the median
of c. Now, if P is a symmetric distribution, then the mean E[c] is equal to the median, and thus
d∗ has the same sign as E[c], so also minimizes E[L(d, c)]. However, if the median has a different
sign to the mean, then ` is not P-admissible. Such distributions can be constructed by shifting a
log-normal distribution, for example.
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Example 6.24. In Example 6.22, we showed that for appropriately chosen X, f and C, L specializes
to the 0-1 loss for binary classification, and ` specializes to the hinge loss. Thus, ` defined in (6.8)
can be seen as a generalization of the hinge loss for optimization problems. We show that this
setting can also capture the multiclass classification loss, i.e., choosing X and C appropriately we
can make L represent the 0-1 loss for multiclass classification. However, the generalization of hinge
loss given by (6.8) to this setting is not admissible.

Suppose we have pairs (w, c), where w are features, and c ∈ C ′ is a label from one of m ∈ N
different classes, i.e., C ′ = [m]. We want a predictor g′ : W → C ′ which classifies w according to
g′(w). If we classify w incorrectly (i.e., g′(w) is in a different class to c) we suffer loss 1; otherwise,
our loss is 0. We can capture this in our optimization framework as follows.

Consider C = {cj := 1m − ej : j ∈ [m]} ⊂ Rm, X = Conv {ej : j ∈ [m]} ⊂ Rm and f(x) = 0
for all x ∈ X. Then minx∈X d

>x = minj′∈[m] dj′ , minx∈X c
>
j x = 0 and x∗(d) = ej for j ∈

arg minj′∈[m] dj′ , so for any j ∈ [m] and vector d with unique minimum entry

L(d, cj) =

{
0, arg minj′∈[m] dj′ = j

1, arg minj′∈[m] dj′ 6= j.

In other words, if we have a function g : W → Rm, we can use it to build a classifier g′ : W → C ′

by classifying w according to the minimum entry of g(w) ∈ Rm. Then L is exactly the 0-1 loss
for this classifier. Suppose that we have a distribution P[c = cj ] = pj > 0,

∑
j∈[m] pj = 1. Then,

letting j∗(d) = arg minj′∈[m] dj′ ,

E[L(d, c)] = 1− pj∗(d),

so the vectors d which minimize E[L(d, c)] must satisfy j∗(d) ∈ arg maxj′∈[m] pj′ .

The loss (6.8) becomes

`(d, cj) = (2d− cj)>ej − min
j′∈[m]

{
2dj′ − cj′

}
= 2dj − min

j′∈[m]

{
2dj′ − 1(j′ 6= j)

}
.

Then with the same distribution P as above, mind′∈Rm E[`(d′, c)] can be expressed as the following
linear program (making the change of variables 2d′ = d):

min
d,γ

∑
j∈[m]

pj(dj − γj)

s.t. γj ≤ dj , j ∈ [m]

γj ≤ dk − 1, j, k ∈ [m], k 6= j

d, γ ∈ Rm.

We analyse this linear program. Fix a vector d ∈ Rm. Let j∗ ∈ arg minj′∈[m] dj′ . Then since pk > 0
for all k 6= j∗, the optimal choice of γk makes it as large as possible, so we set γk = dj∗ − 1 for
k 6= j. In other words, for all but one index j∗ ∈ arg minj′∈[m] dj′ , we set γj = minj′∈[m] dj′ − 1. For

j∗, we set γj∗ = min
{
dj∗ ,minj′ 6=j∗ dj′ − 1

}
.

If there exists j 6= j∗ such that dj∗ ≤ dj − 1, then decreasing dj ↓ dj∗ + 1 does not violate
any constraints since γj = dj∗ − 1 < dj and γj∗ = dj∗ ≤ dj − 1, and decreases the objective.
Therefore, without loss of generality, we assume that dj − 1 ≤ dj∗ for all j 6= j∗. This implies that
γj∗ = minj′ 6=j∗ dj′ − 1.
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Furthermore, if we have j, k ∈ [m] \ {j∗}, j 6= k such that dj < dk, note that we can decrease
dk ↓ dj without violating any constraints, since γj′ = dj∗ − 1 ≤ dj − 1 < dk − 1 < dk for all j′ 6= j∗

and γj∗ ≤ dj − 1 < dk − 1. This implies that, without loss of generality, we can assume that for
j 6= j∗, we have dj = δ for some δ ∈ [dj∗ , dj∗ + 1]. In particular, this implies that γj∗ = δ − 1, thus
the objective becomes∑

j∈[m]

pj(dj − γj) = (δ − dj∗ + 1)
∑
j 6=j∗

pj + pj∗(dj∗ − δ + 1) = (1− 2pj∗)(δ − dj∗) + 1.

This shows that if pj∗ > 1/2, then we should make δ as large as possible, i.e., δ = dj∗ + 1. On the
other hand, when pj∗ < 1/2, we set δ = dj∗ , i.e., the optimal vector d∗ is constant.

This implies that, if there exists j∗ ∈ [m] such that pj∗ > 1/2, and necessarily j∗ =
arg maxj′∈[m] pj′ , then the minimizers of E[`(d, c)] take the form dα = (α1m − ej∗)/2 for α ∈ R.
Clearly, arg minj′∈[m] dα,j′ = j∗, so for such distributions P, ` is P-admissible.

On the other hand, for distributions P with maxj′∈[m] pj′ < 1/2, ` is not P-admissible, since the
set of minimizers of E[`(d, c)] are the vectors dα = α1m, α ∈ R, which cannot in general pick out
the maximum probability class j ∈ [m], i.e., the highest pj .

6.4 Non-Asymptotic Risk Guarantees via Uniform Calibration

Notice that Corollary 6.18 is an asymptotic result, that is, we only assert that minimizing the
surrogate risk will minimize the true risk in the limit. This does not present much insight about
the rate of convergence of these quantities, which is governed by the relationship between ε and δ
in Corollary 6.17. Moreover, the δ in Corollary 6.17 depends on the distribution P. In general, this
is undesirable, since often in statistical learning, we assume minimal knowledge of P. Furthermore,
when given n data points {(wi, ci) : i ∈ [n]} we can build a predictor gn with quantified guarantees
on the excess surrogate risk R`(gn,P) − R`(P) via standard learning theoretic results. We would
ideally like to translate these into quantified guarantees on the excess true risk R(gn,P)−R(P).

Steinwart [143] builds a theory for non-asymptotic relationships between true and surrogate risk
for various types of learning problems, such as classification, regression, and density estimation,
giving necessary and sufficient conditions for the existence of distribution-independent guarantees.
In this section, building on the results from Steinwart [143], we provide conditions for the existence
of similar guarantees in the prediction and optimization context. Then, using these conditions,
we identify a non-asymptotic distribution-independent guarantee between the risk of the surrogate
squared loss function and the true optimzality gap risk.

6.4.1 Outline of the Key Idea

In this section, our aim is to identify an increasing function η : [0,∞)→ [0,∞) with η(0) = 0 such
that for any distribution P, we have

η (R(g,P)−R(P)) ≤ R`(g,P)−R`(P).

Thus, any bound on the excess surrogate risk R`(g,P)−R`(P) translates to a bound on the excess
true risk R(g,P) − R(P). Let us explore how we would derive such bounds. First, suppose that η
is a convex function. Then, using Jensen’s inequality,

η (R(g,P)−R(P)) = η

(
E
[
E [L(g(w), c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

]])
≤ E

[
η

(
E [L(g(w), c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

])]
.
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Now, suppose that η and ` are chosen to ensure that, for any w ∈W and d ∈ Rm,

η

(
E [L(d, c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

])
≤ E [`(d, c) | w]− min

d′∈Rm
E
[
`(d′, c) | w

]
, (6.9)

this implies that

η (R(g,P)−R(P)) ≤ E
[
η

(
E [L(g(w), c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

])]
≤ E

[
E [`(g(w), c) | w]− min

d′∈Rm
E
[
`(d′, c) | w

]]
= R`(g,P)−R`(P).

So, the task is to choose η and ` such that (6.9) holds. However, we have already seen an example
where something similar holds, namely δ` defined in (6.7) when ` is P-calibrated. Indeed, fixing
w ∈W , consider d ∈ Rm such that E [L(d, c) | w]−mind′∈Rm E [L(d′, c) | w] = ε. Then

E [`(d, c) | w]− min
d′∈Rm

E
[
`(d′, c) | w

]
≥ δ`(ε, w;P)

= δ`

(
E [L(d, c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

]
, w;P

)
.

To ensure that δ` is convex, we can instead use η = δ∗∗` , where, given a function h : R→ R ∪ {∞},

h∗∗(ε) = sup
h′

{
h′(ε) : h′ convex function on R, h′ ≤ h pointwise

}
.

Clearly, h∗∗ is convex since it is a supremum of convex functions, and it can be obtained via convex
conjugacy. However, we will not need to appeal to this representation for our results.

Note that δ` is only defined for ε > 0, so we define δ`(0, w;P) = 0 and = +∞ when ε < 0. Using
η = δ∗∗` guarantees convexity, and also that η(ε, w;P) ≤ δ`(ε, w;P), hence the desired inequality (6.9)
holds. Now, by the definition (6.7), we have δ` is non-decreasing in ε and positive for P-calibrated
`. However, ` could be such that δ`(ε, w;P) does not increase once ε is sufficiently large, or only
increases at a sublinear rate; in this case η = δ∗∗` is going to be 0 for ε ≥ 0, so the inequality (6.9) will
be useless. To prevent this, we make the assumption that E [L(d, c) | w]−mind′∈Rm E [L(d′, c) | w] ≤
B for all w ∈ W , d ∈ Rm. We can then re-define δ`(ε, w;P) = ∞ for ε > B, and take η = δ∗∗` .
This ensures that η(ε) > 0 for ε ∈ (0, B]. To ensure that such a B exists, we define the following
quantities:

BX := max
x,x′∈X

‖x− x′‖2, Bf := max
x,x′∈X

{
f(x)− f(x′)

}
, BC := max

c∈C
‖c‖2.

Note that since X is compact and f is continuous on X, BX , Bf <∞.

Assumption 6.25. The quantity BC < ∞. (This means that E[c | w] ∈ Conv(C) is uniformly
bounded over w ∈W .)

Remark 6.26. Under Assumption 6.25 and the fact that X is compact, we have

E [L(d, c) | w]− min
d′∈Rm

E
[
L(d′, c) | w

]
= f(x∗(d))− f(x∗(E[c | w])) + E[c | w]> (x∗(d)− x∗(E[c | w]))

≤ f(x∗(d))− f(x∗(E[c | w])) + ‖E[c | w]‖2 ‖x
∗(d)− x∗(E[c | w])‖2

≤ Bf +BCBX <∞.
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Another subtlety that we need to consider is that there needs to be one fixed η for which (6.9)
holds for all w ∈ W . Because of this, the definition η = δ∗∗` is not well-defined as δ` in (6.7)
depends on w ∈ W . To get around this, we need to strengthen the definition of calibration to
be uniform across w ∈ W . In summary, the additions we need to make to the assumptions from
Section 6.3 are Assumption 6.25, which ensures a uniform bound on the expected true loss, and
a stronger definition of calibration, which we give next. Notice, however, that since the proof
technique is different to that of Theorem 6.7, we only need measurability of `, and not convexity
in d. In practice, however, convexity of ` in d gives us implementable algorithms with performance
guarantees.

6.4.2 Risk Bounds via Uniform Calibration

We consider the following strengthening of Definition 6.5.

Definition 6.27. We say that a loss function ` is uniformly calibrated with respect to a class of
distributions P on W × C, or P-uniformly calibrated, if, for all ε > 0, there exists δ > 0 such that
for all P ∈ P, w ∈W and d ∈ Rm, we have

E[`(d, c) | w]− inf
d′

E[`(d′, c) | w] ≤ δ =⇒ E[L(d, c)]− inf
d′

E[L(d′, c)] ≤ ε. (6.10)

Note that Definition 6.27 considers a class of distributions P so that we can get distribution-
independent guarantees. In practice, we do not know P, but we may know that P belongs to some
class P, so we may aim to get guarantees on the class P.

If ` is P-uniformly calibrated, then we define

δ`(ε;P) := inf
d∈Rm
w∈W
P∈P

{
E[`(d, c) | w]− min

d′∈Rm
E[`(d′, c) | w] : E[L(d, c) | w]− min

d′∈Rm
E[L(d′, c)] > ε

}
.

(6.11)

Remark 6.28. If ` is P-calibrated, then δ(ε;P) > 0 for all ε > 0, and is non-decreasing in ε.
Furthermore, we have for any d ∈ Rm, w ∈W and P ∈ P,

δ`

(
E[L(d, c) | w]− min

d′∈Rm
E[L(d′, c)];P

)
≤ E[`(d, c) | w]− min

d′∈Rm
E[`(d′, c)].

In addition, if Assumption 6.25 holds, then δ`(ε;P) =∞ for ε > Bf +BCBX since the infimum is
infeasible. Also, δ`(ε;P) = 0 for ε < 0. Furthermore, measurability of δ`(·;P) follows by a similar
proof to Lemma 6.14.

Remark 6.28 shows that positivity of δ` is necessary for P-uniform calibration. It turns out
that it is also sufficient.

Lemma 6.29. Suppose that δ`(ε;P) > 0 for all ε > 0. Then ` is P-uniformly calibrated.

Proof. When δ`(ε;P) > 0, take 0 < δ ≤ δ`(ε;P), and noting that δ`(·;P) is non-decreasing, we get
for any d ∈ Rm, w ∈W and P ∈ P,

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ δ < δ`(ε;P).
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If d ∈ Rm, w ∈ W and P ∈ P were such that E[L(d, c) | w] − mind′∈Rm E[L(d′, c) | w] > ε,
we reach a contradiction since we would then by definition of δ`(·;P) in (6.11) have E[`(d, c) |
w]−mind′∈Rm E[`(d′, c) | w] ≥ δ`(ε;P). Thus, for any w ∈W and P ∈ P,

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] ≤ δ =⇒ E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] ≤ ε.

We now state the risk guarantee obtainable from uniform calibration. This is a generalization
of Steinwart [143, Theorem 2.13], and the proof follows the outline described in Section 6.4.1.

Theorem 6.30. Suppose that ` is P-uniformly calibrated, and that Assumption 6.25 holds. Define

δ∗∗` (ε) := sup
h′

{
h′(ε) : h′ convex function on R, h′ ≤ δ` pointwise

}
.

Then δ∗∗` (ε;P) is positive for ε ∈ (0, Bf +BCBX ], and for any P ∈ P, g : W → C,

δ∗∗` (R(g,P)−R(P);P) ≤ R`(g,P)−R`(P).

Proof. We know that δ∗∗` (·;P) is convex by definition. Then, for any P ∈ P, using Jensen’s
inequality,

δ∗∗` (R(g,P)−R(P);P) = δ∗∗`

(
E
[
E [L(g(w), c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

]]
;P
)

≤ E
[
δ∗∗`

(
E [L(g(w), c) | w]− min

d′∈Rm
E
[
L(d′, c) | w

]
;P
)]

≤ E
[
E [`(d, c) | w]− min

d′∈Rm
E
[
`(d′, c) | w

]]
= R`(g,P)−R`(P).

We now prove that δ∗∗` is positive on (0, Bf +BXBC ]. For convenience, define B := Bf +BCBX
and the epigraph

E := {(ε, β) ∈ (0, Bf +BXBC ]× R : δ`(ε) ≤ β} .

Since δ` is minorized by the zero function, Hiriart-Urruty and Lemaréchal [78, Proposition B.2.5.1]
states that we can write

δ∗∗` (ε) = inf
(ε,β)
{β : (ε, β) ∈ Conv(E)} .

Suppose that there exists ε ∈ (0, Bf +BXBC ] such that δ∗∗` (ε) = 0. Then there exists a sequence
βk → 0 such that (ε, βk) ∈ Conv(E) for all k ∈ N. Now choose some ε∗ < ε, and consider k ∈ N
sufficiently large that βk < δ`(ε

∗). Such a k must exist since we know that δ`(ε
∗) > 0. Since ε > ε∗

and δ` is non-decreasing, we cannot have (ε, βk) ∈ E.
Since (ε, βk) ∈ Conv(E), there must exist two distinct points (ε1, β1), (ε2, β2) ∈ E such that for

some α ∈ (0, 1),

ε = αε1 + (1− α)ε2

βk = αβ1 + (1− α)β2.
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Note that while Carthéodory’s theorem states that we need at most three points, the epigraphical
structure of E implies that two points are sufficient. Assume without loss of generality that ε1 < ε2.
If β1 = β2 = βk, then we must have ε1 < εk < ε2. This contradicts the fact that δ` is non-decreasing,
since we have δ`(ε

∗) > βk = β2 ≥ δ`(ε2). Therefore, instead we must have β1 6= β2. Since ε2 > ε∗,
we have β2 ≥ δ`(ε2) ≥ δ`(ε

∗) > βk, so we need β1 < βk. This further implies that ε1 < ε∗ since
δ`(ε1) ≤ β1 < βk < δ`(ε

∗). We can thus infer that

α =
ε2 − ε
ε2 − ε1

≤ ε2 − ε
ε2 − ε∗

≤ B − ε
B − ε∗

< 1,

where the second inequality follows since γ 7→ γ−ε
γ−ε∗ is increasing in γ, and the last inequality follows

sunce B ≥ ε > ε∗. Furthermore, we have

α =
β2 − βk
β2 − β1

≥ β2 − βk
β2

= 1− βk
β2
≥ 1− βk

δ`(ε∗)
> 0.

where the last inequality follows since βk < δ`(ε
∗). These bounds on α are independent of the

points (ε1, β1), (ε2, β2). If we choose βk sufficiently close to 0, the lower bound becomes larger than
the upper bound, which is a contradiction.

6.4.3 Uniform Calibration of the Squared Loss

In general, ensuring uniform calibration of a loss function is much harder than showing admissibil-
ity. Thus, we now focus on a particular loss function, the squared loss, and show uniform calibration
of this with respect to a rather large class of distributions P, namely the class of all square in-
tegrable distributions. For this we will exploit the fact that the squared loss has a bias-variance
decomposition. Henceforth, we will specify the following:

`(d, c) := ‖d− c‖22
P := {P : ∀w ∈W, P[· | w] is square integrable, and E[c | w] ∈ Conv(C)}

δ(·) := δ`(·;P).

We now give a positive lower bound for δ. First, we show that due to the structure of the squared
loss `, we can write δ depending only on the mean E[c | w].

Lemma 6.31. We have

δ(ε) = inf
d∈Rm

c∈Conv(C)

{
‖d− c‖22 : f(x∗(d))− f(x∗(c)) + c>(x∗(d)− x∗(c)) > ε

}
.

Proof. First, note that for any w ∈W and P ∈ P,

E[L(d, c) | w]− min
d′∈Rm

E[L(d′, c) | w] = f(x∗(d)) + E[c | w]>x∗(d)−min
x∈X

{
f(x) + E[c | w]>x

}
= f(x∗(d))− f(x∗(E[c | w])) + E[c | w]> (x∗(d)− x∗ (E[c | w])) .

Also observe that we have the usual bias-variance decomposition for squared error:

E[`(d, c) | w] = E[‖d− c‖22 | w]

= ‖d− E[c | w]‖22 + 2E
[
(d− E[c | w])>(E[c | w]− c)

]
+ E

[
‖E[c | w]− c‖22

]
= ‖d− E[c | w]‖22 + E

[
‖E[c | w]− c‖22

]
.
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Hence, we can minimize this by choosing d = E[c | w], and

min
d′∈Rm

E[`(d′, c) | w] = E
[
‖E[c | w]− c‖22

]
.

Therefore,

E[`(d, c) | w]− min
d′∈Rm

E[`(d′, c) | w] = ‖d− E[c | w]‖22.

Thus, both the objective and the constraints in the expression for δ from (6.11) only depend on the
mean E[c | w]. However, if we consider P as the collection of all square integrable distributions, then
any point c′ ∈ Conv(C) is realizable as E[c | w] = c′ by choosing w ∈ W and P ∈ P appropriately.
Therefore, we can replace these in the definition of δ from (6.11) to get our result.

Using Lemma 6.31, we can get an interpretable lower bound on δ, which also shows P-uniform
calibration.

Theorem 6.32. The squared loss ` is P-uniformly calibrated, with

δ(ε) ≥ ε2

B2
X

for all ε > 0.

Proof. Define the set of vectors

D(d) :=
{
d′ ∈ Rm : x∗(d′) = x∗(d)

}
.

Note that from Lemma 6.31 we can rewrite δ as follows:

δ(ε) = inf
d∈Rm

c∈Conv(C)

{
‖d− c‖22 : f(x∗(d))− f(x∗(c)) + c>(x∗(d)− x∗(c)) > ε

}
= inf

d∈Rm
c∈Conv(C)

{
inf

d′∈D(d)
‖d′ − c‖22 : f(x∗(d))− f(x∗(c)) + c>(x∗(d)− x∗(c)) > ε

}
.

In other words, to compute δ(ε), we first fix d ∈ Rm and c ∈ Conv(C) such that f(x∗(d))−f(x∗(c))+
c>(x∗(d) − x∗(c)) > ε. Then we look at all vectors d′ that give the same solution x∗(d′) = x∗(d),
and get the minimum distance from these d′ to c. Finally, we optimize this minimum distance over
different choices of d and c.

Considering fixed d ∈ Rm and c ∈ Conv(C) satisfying f(x∗(d))−f(x∗(c))+c>(x∗(d)−x∗(c)) > ε,
note that the set D(d) is contained in the halfspace

H(d, c) =
{
d′ ∈ Rm : f(x∗(d))− f(x∗(c)) + (d′)>(x∗(d)− x∗(c)) ≤ 0

}
,

which, by definition, is the set of all vectors d′ ∈ Rm for which x∗(d) has lower objective than
x∗(c). Furthermore, we know that c 6∈ H(d, c). Therefore, we know that the minimum `2-distance
between c and a vector d′ ∈ D(d) is bounded by

inf
d′∈D(d)

‖d′−c‖2 ≥ inf
d′∈H(d,c)

‖d′−c‖2 =

∣∣f(x∗(d))− f(x∗(c)) + c> (x∗(d)− x∗(c))
∣∣

‖x∗(d)− x∗(c)‖2
>

ε

‖x∗(d)− x∗(c)‖2
.
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The first inequality follows since D(d) ⊆ H(d, c), the equality follows from the formula for the
`2-distance between a point an a halfspace, and the second inequality follows by assumption on c
and d.

Substituting this into the expression for δ gives

δ(ε) ≥ inf
d∈Rm

c∈Conv(C)

{
ε2

‖x∗(d)− x∗(c)‖22
: f(x∗(d))− f(x∗(c)) + c>(x∗(d)− x∗(c)) > ε

}
≥ ε2

B2
X

.

Then P-uniform calibration follows from Lemma 6.29.

Corollary 6.33. When ` is the squared loss, we have

1

B2
X

(R(g,P)−R(P))2 ≤ R`(g,P)−R`(P).

Proof. The result follows by observing that ε2/B2
X ≤ δ∗∗(ε) since ε 7→ ε2/B2

X is already convex,
and then applying Theorem 6.30.
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Chapter 7

Conclusion

This dissertation presented two research directions on optimization under uncertainty: studying
properties of models which can incorporate uncertain information on the optimization parameters,
and finding efficient algorithms for such models which scale well as the dimension increases.

In Chapter 2, we presented a generic primal-dual algorithmic framework for two models in op-
timization under uncertainty: robust optimization (RO) and joint estimation-optimization (JEO).
We analyse a generic parametric saddle point problem, which can capture both RO and JEO. By
analysing this problem, we uncover three terms which upper bound the performance gap of a can-
didate primal-dual pair. Deriving algorithms from this then reduces to bounding the three terms.
For RO, we analyse these terms and outline a strategy for solving the RO problem in Algorithm 1.
We then show that previous iterative RO algorithms can be captured by our framework. We also
derive more efficient iterative RO algorithms in a principled manner through our framework, and
perform a complexity analysis of these. For JEO, we present a mild sufficient condition for conver-
gence based on the given data sequence. Moreover, our analysis exposes a natural dependence of
the optimalty gap on the data sequence convergence rate.

In Chapter 3 we presented results regret minimization results for online convex optimization
(OCO), which are used to bound the three critical terms in the primal-dual framework of Chapter
2. In this setting, we were able to relax some of the requirements in OCO and study regret under
more flexible conditions. These include weighted regret, online saddle point problems and lookahead
decisions. It turns out that these are critical for exploiting favourable structure, such as strong
convexity and smoothness, in RO and JEO. We presented algorithms which exhibit improved regret
guarantees under such assumptions.

In Chapter 4, we studied the trust-region subproblem (TRS), and its implications for robust
quadratic programming. We gave a tight second-order cone based convexification of the TRS that
is still in the space of original variables. We also gave conditions for this convexification to remain
tight when additional conic constraints are added to the domain. Our convexification allows us to
improve the best known complexity bound for solving the TRS. We also gave results for obtaining
the convex hull of the epigraph for the TRS with additional conic constraints. We illustrated how
our convexification for the TRS applies to robust quadratic programming, and applied our primal-
dual framework from Chapter 2 to derive efficient algorithms. Numerical results indicate that the
algorithms we derived are much more scalable than previous ones from the literature.

In Chapter 5, we studied non-parametric choice model estimation in the dynamic data setting
when we receive additional choice observations over time. This has a natural JEO interpretation,
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thus we applied the framework of Chapter 2 to derive efficient algorithms. However, this problem
has the particular challenge of having exponentially many primal variables, thus care had to be
taken in designing the algorithms. We analysed a natural dynamic Frank-Wolfe algorithm for this
problem which converged under a data convergence rate assumption, which is undesirable. To
remove this, we used our primal-dual framework to derive algorithms in a principled manner. In
particular, we derived a variant of the Frank-Wolfe algorithm which does not require the data
convergence rate assumption.

Finally, in Chapter 6, we a risk analysis for joint prediction and optimization of objective
functions with uncertain linear term. In particular, for the canonical but non-convex loss function
L defined by the optimality gap, we gave sufficient conditions on the surrogate prediction loss ` for
asymptotic risk minimization, with the main one being admissibility. Furthermore, we examined
several surrogate losses used in practice, and looked at their admissibility properties. We further
gave non-asymptotic bounds on the excess risk of the true loss in terms of the surrogate loss under
a stronger uniform calibration condition. Specifically for the squared loss (which, in prediction
terms, corresponds to minimizing the mean squared error), we showed that uniform calibration is
satisfied, and derived the precise relationship between this and the true risk.

Future Directions

Chapter 2 showed that our framework covers RO and JEO. We believe, however, that this framework
can also cover stochastic optimization. It would be interesting to see how current algorithms for
stochastic optimization are related to this framework, if at all. For JEO, we have considered
uncertainty in the objective only. It would be interesting to see how uncertainty in the constraints
can be captured within the framework. We believe there is hope for this, since our paper [84] gives
saddle point representations for deterministic convex optimization with functional constraints.

In Chapter 5.3.3, we saw that computing the primal updates for the non-parametric choice
model estimation problem is NP-hard in general. A very interesting question is whether or not the
algorithms will hold if these primal updates are instead computed approximately. This is related
to a broader question: what theoretical guarantees, if any, are available for first-order algorithms
(under uncertainty) when subgradient information is computed inexactly? For example, if we use
an approximation algorithm with some guaranteed ratio to compute the primal updates, what
guarantees can we have on the overall scheme?

In Chapter 6, the uncertain objective parameters c appeared only in the linear term of the
objective f(x) + c>x. While this covers a large variety of applications, we believe a very interesting
open direction is to extend these results to non-linear dependences on the parameters f(x, c). An-
other interesting question is which other surrogate loss functions admit non-asymptotic guarantees
besides squared loss. Furthermore, it would be interesting to study the use of different risk measures
other than expectation in the definition of the risk R(g,P), for example, conditional value-at-risk.
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Appendix A

Appendix to Chapter 4

A.1 Working with Approximate Eigenvalues

Consider the classical TRS (4.2) and its convex reformulation (4.5). In practice, we will actually
form the objective y>(Q − γIn)y + 2g>y + γ where γ ≈ λQ is an approximation. Due to this
imprecision, we must ensure that the objective remains convex. To do this, suppose that we solve the
minimum eigenvalue problem of Q to within E-accuracy, and obtain an overestimating approximate
solution λQ < λ < λQ + E . Subtracting E from this inequality, we obtain λQ−E < λ−E < λQ. As
stated in Section 4.2.3, an E-accurate overestimating approximation to λQ can be found using the
Lanczos method (see [99, Section 4] and [76, Section 5]). To ensure the convexity of the objective,
we set γ := λ−E < λQ which is an underestimate of λQ, ensuring that Q−γIn � 0. Let η := λQ−γ,
which satisfies 0 < η < E , and

fη(y) := y>(Q− γIn)y + 2g>y = y>(Q− (λQ − η)In)y + 2g>y = f(y) + η‖y‖2.

Based on this scheme, we next explore the effects of solving

min
y
{fη(y) : ‖y‖ ≤ 1} (A.1)

instead of (4.5). Let y∗ be an optimal solution to the true convex reformulation (4.5). Let yη be
an optimal solution to (A.1), and let ȳη be an approximate optimal solution. Then, we can bound
the objective value f(ȳη) as

f(ȳη)− f(y∗) = fη(ȳ
η)− fη(y∗) + η(‖y∗‖2 − ‖ȳη‖2) ≤ fη(ȳη)− fη(yη) + η,

where the last inequality follows from ‖y∗‖ ≤ 1 and ‖ȳη‖ ≤ 1. Thus, the convergence rate of ȳη to
the optimum of (4.5) is controlled by the size of η and the convergence rate for solving (A.1).

We can also control the distance between yη and y∗. Because fη(y) is a 2η-strongly convex
function, we have

η ‖y∗ − yη‖2 ≤ fη(y∗)− fη(yη) +∇fη(yη)>(yη − y∗)
= f(y∗)− f(yη) +∇fη(yη)>(yη − y∗) + η(‖y∗‖2 − ‖yη‖2)

≤ η(‖y∗‖2 − ‖yη‖2),

where the last inequality follows from the optimality of yη for the problem (A.1), i.e., ∇fη(yη)>(yη−
y∗) ≤ 0, and the optimality of y∗ for the problem (4.5). Then ‖yη‖ ≤ ‖y∗‖. Also, from ‖y∗‖ ≤ 1,
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we deduce that if ‖yη‖ = 1, then y∗ = yη. When ‖yη‖ < 1, the only constraint in our domain is
inactive, and thus we conclude that yη is also optimum for the unconstrained minimization problem.
Then the optimality conditions lead to ∇fη(yη) = 0. This implies that yη = −(Q+(η−λQ)In)−1g.
Moreover, y∗ satisfies the optimality condition ∇f(y∗)>(y∗ − y) ≤ 0 for all y such that ‖y‖ ≤ 1.
Since our domain is the unit ball, this is true if and only if ∇f(y∗) = −αy∗, for some α ≥ 0.
Therefore, y∗ = −(Q + (α − λQ)In)†g, where A† denotes the pseudo-inverse of a matrix A. If we
denote the ordered eigenvalues of Q by qi and their corresponding orthonormal eigenvectors by ui,
we obtain

‖yη‖2 =

n∑
i=1

(u>i g)2

(qi − qn + η)2
and ‖y∗‖2 =

n∑
i=1

(u>i g)2

(qi − qn + α)2
.

Note that it is possible to have α = 0 and qi − qn = 0. However, this happens only when u>i g = 0,
so we follow the convention 0

0 = 0. After some simple algebra, we have the equality

‖y∗‖2 − ‖yη‖2 =
n∑
i=1

(u>i g)2

(qi − qn + α)2
−

n∑
i=1

(u>i g)2

(qi − qn + η)2

= (η − α)
n∑
i=1

(u>i g)2 2qi − 2qn + η + α

(qi − qn + α)2(qi − qn + η)2
.

Since ‖y∗‖ ≥ ‖yη‖, α ≥ 0, and η > 0, we must have η ≥ α. Also, η ≤ α is possible only if yη = y∗.
Hence, we have

‖y∗‖2 − ‖yη‖2 = (η − α)+

n∑
i=1

(u>i g)2 2qi − 2qn + (η − α)+ + 2α

(qi − qn + α)2(qi − qn + (η − α)+ + α)2

≤ (η − α)+

n∑
i=1

(u>i g)2 2qi − 2qn + (η − α)+ + 2α

(qi − qn + α)4

= 2(η − α)+

n∑
i=1

(u>i g)2

(qi − qn + α)3
+ (η − α)2

+

n∑
i=1

(u>i g)2

(qi − qn + α)4
.

This shows that ‖y∗‖2 − ‖yη‖2 ≤ φη + o(η), where φ = 2(y∗)>(Q+ (α− λQ)In)†y∗. Therefore,

‖yη − y∗‖2 ≤ ‖y∗‖2 − ‖yη‖2 ≤ φη + o(η).

Thus yη has error O(
√
η), which is expected since the error in the objective function is O(η), and

the objective function is quadratic.

A.2 Computation of s value

Recall the notation ỹ = [y; ỹn+1] and x̃ = [ỹ;xn+1;xn+2]. For the set Y in (4.13), Condition 4.23 is
satisfied by construction, and Condition 4.24 is satisfied by taking x̃′ = [y′; ỹ′n+1;x′n+1;x′n+2] with
y′ = 0, ỹ′n+1 = 1

2 , x′n+1 = 1 and x′n+2 = 0. This ensures that for any t ∈ [0, 1], we have

W̃t = (1− t)W̃0 + tW̃1 =

(1− t)In+1 + tQ̃ tg̃ 0
tg̃> t− 1 0
0> 0 t

 , (A.2)
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and (x̃′)>W̃tx̃
′ = (x̃′)>((1 − t)W̃0 + tW̃1)x̃′ < 0. Thus, by the variational characterization of

eigenvalues, W̃t has at least one negative eigenvalue. Also, Condition 4.25(ii) is now satisfied.
We next show that the precise value of s is simply determined by λQ.

Lemma A.1. Suppose λQ < 0. Consider W̃0, W̃1 as defined in (4.12). Then, the maximal t ∈ [0, 1]
that ensures that the matrix W̃t in (A.2) has a single negative eigenvalue for all t ∈ [0, s], is
invertible for all t ∈ (0, s), and W̃s is singular is given by

s =
1

1− λQ
∈ (0, 1).

Proof. Define ŝ := 1
1−λQ ∈ (0, 1). From (A.2), note that W̃t has a block structure and s is such

that it equals to the smallest positive t ensuring

Vt := (1− t)
[
In+1 0

0 −1

]
+ t

[
Q̃ g̃
g̃> 0

]
is singular.

Let λn+2,t, λn+1,t be the two smallest eigenvalues of Vt, and let ρn+1,t, ρn,t be the two smallest
eigenvalues of (1− t)In+1 + tQ̃. Notice that (1− t)In+1 + tQ̃ has the same eigenvectors as Q̃, and
the eigenvalues are simply scaled and shifted from those of Q, thus the minimum eigenvalue of
(1− t)In+1 + tQ̃ is 1− t + tλQ for t ∈ (0, 1). Also, by construction, the multiplicity of λQ in Q̃ is
at least two, so the multiplicity of the minimum eigenvalue of (1− t)In+1 + tQ̃ is also at least two;
therefore, ρn+1,t = ρn,t = 1− t+ tλQ.

For any t ∈ (0, 1), the last diagonal entry of Vt is negative implying Vt is not positive semidefinite,
hence λn+2,t < 0. However, for t ∈ (0, ŝ), ρn+1,t > 0, and from Cauchy’s interlacing theorem for
eigenvalues [85, Theorem 4.3.17], we obtain

λn+2,t < 0 < ρn+1,t = λn+1,t = ρn,t, t ∈ (0, ŝ).

Thus, for any t ∈ (0, ŝ), the matrix Vt, and hence W̃t, is invertible, and W̃t has exactly one negative

eigenvalue. When t = ŝ, ρn+1,ŝ = ρn,ŝ = 1 − ŝ + ŝλQ = 0. By recalling that Q̃ :=

[
Q 0
0 λQ

]
and g̃ = [g; 0], we immediately observe that Vŝ, and thus W̃ŝ, is singular since Vŝ has eigenvector
[y; ỹn+1;xn+1] = [0; 1; 0] with eigenvalue 0. Also,

λn+2,ŝ < 0 = ρn+1,ŝ = λn+1,ŝ = ρn,ŝ

so W̃ŝ has exactly one negative eigenvalue. Moreover, for any t > ŝ, the minimum eigenvalue of
(1− t)In + tQ is 1− t+ tλQ < 0. Hence, for any t > ŝ, λn+2,t ≤ ρn+1,t = λn+1,t = ρn,t < 0 follows
from [85, Theorem 4.3.17]. As a result Vt, and thus W̃t, has at least two negative eigenvalues.
Therefore, s = ŝ = 1

1−λQ is the correct value.

Choosing x̃′′ = [y′′; ỹ′′n+1;x′′n+1;x′′n+2] with y′′ = 0, ỹ′′n+1 = 1, x′′n+1 = 0, and x′′n+2 = 0 ensures

that x̃′′ ∈ Null(W̃s), (x̃′′)>W̃1x̃
′′ < 0, and x′′n+1 = 0. This simultaneously verifies Conditions 4.26

and 4.27.
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Appendix B

Appendix to Chapter 5

B.1 Existing Approaches to Non-Parametric Choice Estimation

In this section, we examine the existing approaches to learn the non-parametric choice model,
i.e., infer an appropriate probability vector λ using the data collected via the process outlined in
Section 5.2, and demonstrate how they are particular instantiations of our general model. For a
fixed subset Aj , j ∈ [m], we denote the collection of associated choice probabilities as Ajλ = {Pλ[i |
Aj ]}i∈Aj ∈ ∆|Aj |.

B.1.1 Revenue Prediction Approach

Let ri be the revenue of item i ∈ [n]. Then the expected revenue of an assortment A ⊂ [n]
under distribution λ is

∑
i∈A riPλ[i | A]. Farias et al. [62] seek to find the worst-case expected

revenue from a distribution λ consistent with the given data in the sense that the theoretical
probabilities Pλ[i | Aj ] = 〈aij , λ〉 are precisely consistent with their empirical estimates pij . Since
the probabilities Pλ[i | A] are linear in λ, this can be formulated as a linear program (LP)

min
λ

{∑
i∈A

riPλ[i | A] : Aλ = p, λ ∈ ∆n!

}
.

We first make a few observations related to this model of Farias et al. [62]. In fact, when A = Aj
for some j ∈ [m], we have Pλ[i | A] = 〈aij , λ〉 = pij due to the constraints Aλ = p, hence the
objective is constant. Thus the LP becomes a feasibility problem

find λ ∈ ∆n! s.t. Aλ = p. (B.1)

That said, (B.1) is still computationally intractable even for moderate values of n because it involves
n! variables. Nonetheless, the dual of (B.1) admits the following robust LP interpretation:

max
β,ν

{
〈β, p〉 − ν : max

σ∈Sn
〈β, a(σ)〉 ≤ ν

}
. (B.2)

Note that verifying the feasibility of a solution with respect to the robust constraint in (B.2), i.e.,

max
σ∈Sn
〈β, a(σ)〉 = max

σ

∑
j∈[m]

∑
i∈Aj

βijaij(σ) : σ ∈ Sn

 ≤ ν (B.3)
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is a combinatorial problem of the exact same form as (5.10). Farias et al. [62] suggests solving (B.2)
either using the constraint sampling technique [46] or by building an approximation to its robust
counterpart obtained from approximating the uncertainty sets with an efficiently representable
polyhedron.

In fact, (B.1) can be seen as choosing λ ∈ ∆n! to minimize a (very harsh) distance measure:

min
λ∈∆n!

D(Aλ, p), D(Aλ, p) =

{
0, Aλ = p

∞, otherwise.
(B.4)

In general, and specifically when the observations are noisy, there is no guarantee that there exists
λ ∈ ∆n! to fit the data p exactly, i.e., Aλ = p. To remedy this, van Ryzin and Vulcano [147] and
Bertsimas and Mǐsic [27] examine approaches that use less harsh distance measures D(·, ·).

B.1.2 Maximum Likelihood Estimation Approach

van Ryzin and Vulcano [147] propose the following method to learn λ via maximum likelihood
estimation (MLE). We next describe their method and provide an alternative interpretation of
their approach as the minimization of a particular distance measure, namely Kullback-Leibler
(KL) divergence, between the true distributions Ajλ and their empirical estimates pj .

By (5.1), each item-assortment pair i ∈ Aj is seen Kqij times amongst the observa-

tions
{
ik,Ak

}K
k=1

. Based on this, the log-likelihood of the observation set
{
ik,Ak

}K
k=1

is∑
j∈[m]

∑
i∈Aj Kqij log (〈aij , λ〉). Thus, ignoring the constant K factor, the MLE problem is

max
λ

∑
j∈[m]

∑
i∈Aj

qij log (〈aij , λ〉) : λ ∈ ∆n!

 . (B.5)

Throughout, we use the convention that when qij = 〈aij , λ〉 = 0, we set qij log(〈aij , λ〉) = 0. This
implies that if the optimal solution λ to (B.5) has Pλ[i | Aj ] = 〈aij , λ〉 = 0, then we must have
qij = 0 also, i.e., we did not observe any choices of i from Aj in our data either.

Like (B.1), the problem (B.5) is very large, with n! variables. A column generation technique
is suggested in van Ryzin and Vulcano [147] to get around this, i.e., solve (B.5) on a subset of
the variables, and use the optimality conditions to add variables as needed. The MLE column
generating subproblem is constructed as

max
σ

∑
j∈[m]

∑
i∈Aj

qijaij(σ)

〈aij , λ(S)〉
: σ ∈ Sn

 . (B.6)

The solution λ(S) is optimal if (B.6) ≤ K, otherwise the column σ∗ maximizing (B.6) is added to
the set S, and the process is repeated. Note that (B.6) has the same form as (5.10) and (B.3).

We next demonstrate that the MLE problem (B.5) admits a nice interpretation between the
empirical estimates {pj}j∈[m] and the distributions {Ajλ}j∈[m]. To observe this, let us rewrite the
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objective in (B.5) as∑
j∈[m]

∑
i∈Aj

qij log (〈aij , λ〉) =
∑
j∈[m]

qj
∑
i∈Aj

pij log (〈aij , λ〉)

= −
∑
j∈[m]

qj
∑
i∈Aj

pij log

(
pij
〈aij , λ〉

)
︸ ︷︷ ︸

=KL(pj ,Ajλ)

+
∑
j∈[m]

qj
∑
i∈Aj

pij log(pij)︸ ︷︷ ︸
=constant

where KL(a, b) is the KL divergence between two probability distributions a and b. Hence, (B.5)
is equivalent to solving

min
λ

∑
j∈[m]

qj KL(pj , Ajλ) : λ ∈ ∆n!

 . (B.7)

Thus, by defining D(Aλ, p) =
∑

j∈[m] qj KL(pj , Ajλ), we see that the MLE approach is equivalent
to (B.4) but with a different distance measure D(·, ·).

B.1.3 Norm-Minimization Approach

As opposed to the approaches outlined in Sections B.1.1 and B.1.2, in order to estimate a non-
parametric choice model λ, Bertsimas and Mǐsic [27] suggest minimizing the `1-norm of p−Aλ by
solving

min
λ
{‖p−Aλ‖1 : λ ∈ ∆n!} . (B.8)

In fact, (B.8) can be cast as an LP, but it is still computationally intractable since the dimen-
sion of λ is n!. Similar to van Ryzin and Vulcano [147], Bertsimas and Mǐsic [27] addresses this
computational difficulty via a column generation approach. Again, (B.8) is of the same form as
(B.4) where the distance measure D(·, ·) is selected to be D(Aλ, p) = ‖p−Aλ‖1. Furthermore, the
resulting column generating subproblem is of the form

max
σ

∑
j∈[m]

∑
i∈Aj

βij(S)aij(σ)− ν(S) : σ ∈ Sn

 , (B.9)

where β(S) and ν(S) are from the dual solution to solving (B.8) on a subset of columns σ ∈ S ⊂ Sn.
Again, this subproblem has the same form as (5.10), (B.3) and (B.6).

B.2 Supplementary Computational Results

We present plots for our performance metrics under different ground truth choice model generation
parameters K = 1, 5, 10 and L = 5, 10, 100, as well as using a different number of training subsets
m = 10, 20, 50. For each parameter combination, we generated 100 ground truth choice models.

B.2.1 Comparison of different K and L

Figures B.1, B.2 and B.3 show plots for the ground truth models generated for L = 5, 10, 100
respectively, with different K = 1, 5, 10, while keeping m = 20 fixed. In almost all of the cases, we
observe the same behavior as before: there are only minor differences in test MAE, but for model
sparsity and algorithm efficiency the non-smooth dual approach outperforms the others. The one
exception is the pure MNL setup with large L value, i.e., Figure B.3a for K = 1, L = 100, and the
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distance measure D(·, ·) is based on `∞-norm; in such a case both smoothed primal and smoothed
dual approaches slightly outperform the non-smooth dual approach in terms of the model sparsity
and the average number of iterations. We note that this setting with K = 1, L = 100 may be
considered as an unrealistic ground truth choice model in practice: having only K = 1 multinomial
logit segment is rare in practice (hence the wide literature on alternative choice models), and a
very large L value, e.g., L = 100, means that the utilities for top items are quite exaggerated.
Furthermore, when comparing Figures B.1a, B.2a and B.3a (i.e., K = 1, L = 5, 10, 100) we notice
that the number of iterations for the non-smooth dual approach stays relatively consistent as we
increase L, but the smooth approaches decrease for higher L. In general, the algorithm efficiency
of the non-smooth dual approach is relatively consistent across the different parameter regimes,
whereas higher variations are observed for the others.

B.2.2 Comparison of different m

In Figure B.4, we test the effect of m by varying m ∈ {10, 20, 50} while using a similar ground
truth model from the main paper with K = L = 5. We observe that as m increases, the test MAE
goes down, but the model sparsity and the number of iterations to convergence increases across
all different approaches and norms used. This is as expected, since having more training subsets
should allow us to fit better models, but increases the dimension of the choice probability set X.
Our conclusions regarding the comparison of different approaches remain essentially the same: the
non-smooth dual approach still outperforms the others.

B.2.3 Dynamic experiments with different norms

Figures B.5, B.6 and B.7 show the performance metrics in the dynamic data setting from varying
the norm used between `1, `2, and `∞ respectively. The conclusions are the same as before, except
when `∞ is used, the smoothed dual approach has comparable efficiency to the primal approach.
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Figure B.1: Performance metrics in the static setup for different K, fixing L = 5,m = 20.

`1 `2 `∞
0

0.01

0.01

0.02

0.02

0.03

0.03
Test MAE

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #rankings

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #iterations

(a) K = 1

`1 `2 `∞
0

0.01

0.01

0.02

0.02

0.03

0.03
Test MAE

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #rankings

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #iterations

(b) K = 5

`1 `2 `∞
0

0.01

0.01

0.02

0.02

0.03

0.03
Test MAE

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #rankings

`1 `2 `∞
0

200

400

600

800

1,000

Avg. #iterations

(c) K = 10

Primal (with smoothing) Dual (with smoothing) Dual (no smoothing)

165



Figure B.2: Performance metrics in the static setup for different K, fixing L = 10,m = 20.
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Figure B.3: Performance metrics in the static setup for different K, fixing L = 100,m = 20.
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Figure B.4: Performance metrics in the static setup for different m, fixing K = L = 5.
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Figure B.5: Performance metrics using `1-norm for dynamic data.
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Figure B.6: Performance metrics using `2-norm for dynamic data.
50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00 ∞

0

0.01

0.01

0.02

0.02

0.03

Test MAE

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00 ∞

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

Avg. #rankings

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00 ∞

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000

κ

Avg. #iterations

Primal (with smoothing) Dual (with smoothing) Dual (no smoothing)

170



Figure B.7: Performance metrics using `∞-norm for dynamic data.
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