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Regulation and Management of Innovative Technologies

Abstract

Advances in technology have implications for the way businesses are regulated and managed. This
dissertation examines three issues that have arisen in response to recent technological innovations.
The first chapter studies the regulation of electricity markets with rooftop solar, a technology that
has recently seen a sharp increase in adoption. Innovative internet-based technologies have given
firms and customers the ability to harness more information in their decision-making. The second
and third chapters of this dissertation study how this increased information availability affects
firm-level decisions, and how additional information can be used as a strategic lever to compensate
for capacity shortage.

The first chapter is motivated by the dramatic increase in the adoption of rooftop solar sys-
tems, driven in large part by cost reductions caused by technological advances in solar panel design.
This has implications for regulators, who seek to induce an optimal level of rooftop solar adoption,
trading off between its environmental benefits and the financial burden that it imposes, while si-
multaneously safeguarding the interests of utility companies, solar system installers, and customers.
We formulate and analyze a social welfare maximization problem for the regulator, focusing on how
the choice of tariff structure (that governs how customers pay the utility for their usage) interacts
with its competing objectives. We uncover the structural properties of a successful tariff, finding
that the tariff structures used in most states in the US are inadequate: to achieve welfare-optimal
outcomes, a tariff must be able to discriminate among customer usage tiers and between customers
with and without rooftop solar. We present a tariff structure with these two characteristics and
show how it can be implemented as a simple buy-all, sell-all tariff while retaining its favorable
properties. We illustrate our findings numerically using household-level data from Nevada and
New Mexico.

The second chapter is motivated by the recent practice of service providers broadcasting real-
time delay information to their customers. We consider the question: is announcing real-time
delay necessarily a good idea? In a market with two service providers who compete for market
share, we investigate whether one of the service providers (the technology leader L) should make
the first move to announce her real-time delay information, when her competitor (the follower F)
can opt to respond. We model and analyze this leader-follower setting as a sequential game, using
continuous Markov chains to analyze the associated queueing dynamics. We find that L’s optimal
action depends crucially on the relative service capacities of the service providers: initiating delay
announcements improves, in equilibrium, the market share of L if she is the lower-capacity service
provider and worsens her market share otherwise. Therefore, for a lower-capacity service provider,
delay announcements can be considered a strategic remedy for capacity shortage.

The third chapter is motivated by the availability of competitor fare information to firms such
as airlines, who dynamically set prices to sell a fixed amount of inventory over a finite horizon. We
study the impact of explicitly using competitor pricing information on equilibrium pricing strategies
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in a setting with two firms. Under a general model of demand that unifies the models used in
prior work, we establish the non-existence of pure strategy subgame-perfect Nash equilibria when
some strictly positive proportion of the customers is loyal, i.e., when the firms’ product offerings
are not perfectly substitutable. However, when all customers are flexible, i.e., the firms’ product
offerings are perfectly substitutable, we show the existence of a pure strategy subgame-perfect Nash
equilibrium. Using these results, we study the strategic question of whether firms should explicitly
use competitor price information in their pricing exercises, or continue to employ monopolistic
models as they currently do. We argue that in general, the unique equilibrium strategy is for both
firms to use competitor fare information. We find that typically, similar to Chapter 2, the lower
capacity firm is benefited by a migration to competitive models, while the higher capacity firm is
left worse-off. However, when total capacity relative to demand is very low and the firms have
roughly the same capacity, this migration could improve both firms’ profits.
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0
Introduction

Rapid technological innovation has spurred the growth of many businesses across the globe. These
innovative technologies often drive fundamental changes in firm-level decision making for compa-
nies that use these technologies, and more broadly, in policy-level decision making for regulatory
bodies. This dissertation examines three problems that have arisen in response to recent advances
in technology.

Rooftop solar adoption has increased sharply in recent years, with residential rooftop solar
installations consistently growing at over 20% year-on-year [Mike Munsell, 2017]. Under a widely
prevalent scheme (in the United States and other parts of the world) called net metering, owners of
rooftop solar panels, by regulation, can sell any excess electricity their panels generate to their utility
company (the grid) for full retail credit. Effectively, such a customer pays only for her “net” usage.
While this scheme has served as a strong incentive for rooftop solar adoption, increased rooftop
solar penetration levels are eroding utility profitability. In response, utility regulators are grappling
to devise alternative compensation schemes for customers who sell rooftop solar generation back
to the grid; they seek to support renewable energy adoption while safeguarding the interests of
utilities, solar system installers, and both solar and non-solar customers. This is a difficult balance:
Tariff changes in Nevada introduced to protect NV Energy (a Nevada utility) induced SolarCity, the
market leader in solar systems, to suspend operations in Nevada. Apparently, regulators failed to
predict how the new tariff would influence the market players and ultimately their social objectives.
Regulators in other states have also been responding to this issue by altering utility tariffs in various
ways, most commonly by changing the rate at which excess generation is compensated. But it is
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unclear whether simply changing the compensation rate is sufficient to protect the welfare of all
parties.

In Chapter 1, we take the perspective of a socially interested utility regulator seeking to reg-
ulate an electricity market with rooftop solar. We formulate and analyze a model to study the
effect of tariff structure on the rooftop solar market, with implications for consumers, regulators
and industry. Using a sequential game, we analyze the regulator’s social welfare maximization
problem in a market with a regulated utility, an unregulated, monopolistic, profit-maximizing so-
lar company, and customers who endogenously determine whether to adopt solar. We show that
two tariff features are essential: the ability to discriminate among customer usage tiers and the
ability to discriminate between customers with and without rooftop solar. Absent any one, we
show that the regulator might not be able maximize her social welfare objectives while avoiding
cross-subsidization, wherein rate changes leave some customers worse off than before. We then
present a tariff with these two characteristics—featuring full retail price repurchasing from so-
lar customers—that always guarantees feasibility of the regulator’s optimization problem and also
avoids cross-subsidization. We illustrate our findings numerically using publicly available data from
Nevada and New Mexico, two states currently grappling with this issue. We find, in both cases,
that our suggested tariff structure outperforms the tariff structures currently used in these states.

The second and third chapters of this dissertation take the perspective of profit-maximizing
firms competing in duopolistic settings. In these chapters, we study the role of increased information
availability on firm-level decisions. In two specific contexts, we uncover the relationship between
capacity and additional information, finding that information augmentation is generally to the
benefit of the firm with lower capacity.

Advances in internet-based technology have enabled service providers to disseminate real-time
delay estimates to customers who are strategic and delay-sensitive. In the absence of such rich
information, customers are generally guided by historical or moving average delay information,
typically obtained through published reports or previous service encounters. While prior work
documents the benefits of announcing real-time delay information for a service provider functioning
in isolation (such as a call-center), the literature does not adequately establish whether announcing
real-time delay is beneficial to a firm operating in a competitive setting (such as a restaurant or an
emergency room).

In Chapter 2 we model a market with two service providers who compete for market share.
We investigate whether one of the service providers (the technology leader L) should make the
first move to announce her real-time delay information, when her competitor (the follower F) can
opt to respond. We model and analyze this leader-follower setting as a sequential game. We
use continuous time Markov chains to analyze the associated queueing dynamics. To analyze our
sequential game, we define and study three information regimes: in Regime 0, neither of the two
service providers announces real-time delay information, and customers are guided by historical
average delay information. In Regime 1, one of the two service providers announces real-time delay
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information, while only historical average delay information is available for the other provider. This
historical average delay information is updated from time-to-time; therefore, we model and analyze
a dynamic model to study this Regime. In Regime 2, both service providers announce real-time
delay information, and the resulting system is akin to a stationary Join-the-shortest queue system,
for which analytical results in the literature are limited.

Using a mixture of analytical results and numerical experiments, we find that L’s optimal
action depends crucially on the relative service capacities of the service providers: initiating delay
announcements improves, in equilibrium, the market share of L if she is the lower-capacity service
provider and worsens her market share otherwise. Therefore, for a lower-capacity service provider,
delay announcements can be considered a strategic remedy for capacity shortage.

Motivated by the availability of competitor fare information for airlines, in Chapter 3, we
study the impact of explicitly using this fare information on equilibrium pricing strategies under a
flexible model of customer demand. We build on prior studies that suggest that failing to explicitly
account for competitors’ decisions in a dynamic pricing exercise could result in revenue losses. We
study equilibrium pricing strategies if these decisions are explicitly accounted for in a duopolistic
setting. We consider a flexible demand model—that unifies the models used in prior literature—and
captures three realistic behaviors: (i) Uncertain market size; (ii) Uncertain customer valuations;
and (iii) The presence of loyal customers who have a preference between the firms’ offerings and
the presence of flexible customers who always buy down to the lowest price in the market.

The first natural question to ask is whether we can guarantee the existence of a subgame-perfect
Nash equilibrium in pure strategies (SPNE-P). We establish the non-existence of an SPNE-P when
some strictly positive proportion of the customers is loyal, i.e., when the firms’ product offerings
are not perfectly substitutable. However, when all customers are flexible, i.e., the firms’ product
offerings are perfectly substitutable, we show the existence of an SPNE-P. An example of such a
situation is competition between two low-cost-airline carriers, such as Spirit and Frontier airlines.
We then propose a refinement of the subgame-perfect pure strategy Nash equilibrium to produce
a practically-relevant, (typically) unique equilibrium. Our equilibrium result is an extension of the
result in Martínez-de Albéniz and Talluri [2011] for a more general model of demand.

Using these results, we study the strategic question of whether firms should explicitly use com-
petitor price information in their pricing decisions, or continue to employ monopolistic models. We
demonstrate that in general the unique equilibrium strategy is for both firms to use competitor fare
information. We find that typically, the lower capacity firm is benefited by a migration to competi-
tive models, while the higher capacity firm is left worse-off. However, when total capacity (relative
to demand) is very low and the firms have roughly the same starting capacity, this migration could
improve both firms’ profits.

In Chapter 4, we summarize the contributions of this dissertation and suggest avenues for future
research.
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1
That’s not Fair: Tariff Structures for

Electricity Markets with Rooftop Solar

1 Introduction

Rooftop solar has seen a boom in recent years, with residential rooftop solar installations con-
sistently growing at over 20% year-on-year [Mike Munsell, 2017]. One of the main catalysts for
this growth has been the practice of utility companies offering so-called “retail net-metering” to
customers with rooftop solar panels. Under this scheme, owners of rooftop solar panels can sell
any excess electricity their panels generate to their utility company (the grid) for full retail credit.
Effectively, such a customer pays only for her “net” usage.

While such an incentive is useful because a move to rooftop solar is environmentally desirable,
retail net-metering threatens the profitability of utility companies, who are forced to buy excess
energy from customers at retail rates which are significantly higher than their prevailing wholesale
rates. Two common ways a utility might combat this erosion in profitability are by raising retail
electricity rates for all users, or by reducing the rate at which utilities repurchase excess generation
from solar households. However, both these solutions are problematic: If the utility company
raises rates, (typically) poorer non-solar households would bear some part of the burden imposed
by (typically) wealthier solar households [Krysti Shallenberger, 2017a]; this would result in cross-
subsidization, a phenomenon under which one set of customers benefits (or is subsidized) at the
cost of another set of customers. Alternately, if the repurchase rate is reduced, customers may
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no longer be incentivized to put panels on their roof, rooftop solar installers could be put out of
business and the rooftop solar revolution could grind to a halt. This latter dynamic played out
recently in Nevada [Buhayar, 2016].

In each of the thirty-three U.S. states with regulated electricity markets, a body called the Pub-
lic Utilities Commission (PUC) has the charge of solving this complex problem: In each of these
states, the PUC is tasked with balancing the welfare of the various stake-holders by regulating
the rates and services of public utilities. The PUCs can therefore be thought of as social welfare
maximizers; in the context of rooftop solar, this means protecting utility company profitability and
ensuring fair electricity bills for customers, while providing a nourishing environment for rooftop
solar in order to protect environmental interests (PUCs’ stated objectives often explicitly include
environmental stewardship; see California Public Utilities Commission [2017]). The PUC’s task is
further complicated by the fact that solar system installers (henceforth solar companies) are typi-
cally unregulated (because they are not providing a public good); therefore, regulatory interventions
must account for such solar companies making self-interested decisions.

As might be expected, the effect of increased rooftop solar adoption on utility companies’
profits has resulted in considerable regulatory flux: In the U.S., 42 of the 50 states took some
action related to net-metering, rate design or solar ownership during the third quarter of 2015
alone [NC Clean Energy Technology Center and Meister Consultants Group, 2015]. The PUC’s
regulatory tight-rope walk of balancing customer, societal and utility welfare is a tricky affair that
has, on occasion, gone awry: NV Energy, the utility company in Nevada, imposes a simple two-part
tariff on their customers, who pay a monthly fixed charge and a variable “energy” charge per kWh
of energy consumed. After being negatively impacted by increased rooftop solar adoption, NV
Energy initiated what would become a prolonged dialogue with their PUC, in which they raised
the spectre of cross-subsidization [Chediak and Buhayar, 2015]. The outcome of this dialogue
was a ruling that solar customers would eventually pay thrice as high a fixed charge as non-solar
customers and would be credited for excess generation at wholesale rates (significantly lower than
the existing retail rate credit). This announcement prompted SolarCity, the market leader in solar
systems, to suspend operations in the state of Nevada and cut over 500 jobs [Buhayar, 2016]. In
December 2016, a year after this ruling was made, the PUC reversed its stand by voting to restore
retail net-metering and the original rate schedule in the Sierra Pacific territory of Nevada [Pyper,
2016]. Meanwhile in February 2017 in Maine, the PUC passed a bill to phase down compensation
paid to customers for their excess generation. In July 2017, a new bill that aimed to roll back this
decision in order to boost solar growth was vetoed by the Governor, who cited cross-subsidization
as the reason for his decision: he said that net-metering subsidizes the cost of solar panels “at the
expense of the elderly and poor who can least afford it” [Krysti Shallenberger, 2017b].

There is no evident consensus on the structural properties a tariff should have in order to be
effective: utilities in different states operate a variety of different tariff structures. For instance,
utilities such as NV Energy in Nevada and Duke Energy in North Carolina have only a single tier
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in their tariff structures, whereas utilities such as PNM Energy in New Mexico and Idaho Power in
Idaho have 3 tiers. Utility tariffs also vary in whether they discriminate between solar and non-solar
customers. Nevada’s policy changes permit NV Energy to have solar and non-solar customers on
different rate schedules, but states such as New Mexico and Washington explicitly disallow this.
Meanwhile, Arizona Public Service (APS), a utility in Arizona has a tiered tariff structure that
pays solar customers less than the retail rate for excess energy sold back to the grid, effectively
putting them on different rate schedules from non-solar customers.

Motivated by such developments, we explore this delicate problem faced by the PUCs, focusing
on how effective different tariff structures that the PUC might impose on the utility are in enabling
the PUC to induce socially optimal welfare outcomes in an electricity market with rooftop solar.
We do so by explicitly modeling the regulator’s social welfare optimization problem and showing
that its feasibility is governed by the tariff structure in place, demonstrating in the process that
some common tariff forms are potentially inadequate to the task. The model we analyze consists of
a monopolistic, vertically integrated utility company (like NV Energy) whose tariffs are set by the
PUC; a monopolistic, price-setting solar company (similar to SolarCity); and residential customers
who are heterogeneous in their demands and generation capability (available roof space)1. After the
PUC fixes a tariff (upon negotiation with the utility company), the solar company and customers
play a sequential game: The solar company sets the price of solar systems to maximize its own
profit, anticipating customers’ decisions (made endogenously) to install solar or not. Customers
make their self-interested installation decision based on their demand, rooftop solar generation
potential, excess generation that they expect to sell back to the grid if they install solar (taken
together, these determine a customer’s “usage tier,” or equivalently, “usage profile”), the tariff set
by the PUC, and the solar company’s declared price. Naturally, the regulator takes the behavior
of the solar company and customers into account when deciding on a tariff.

A key element of our model is the endogenization of the (monopolistic) solar company’s pricing
decision, a departure from most existing literature. This is in keeping with the observation that over
a third of the market share in the U.S. was claimed by one private company (SolarCity) in 2014 and
2015 [Roselund, 2015] that wields significant pricing power because of lower costs (Shahan [2016]).
The endogenized solar pricing decision creates additional incentive compatibility constraints (that
we specify and discuss formally in Section 3) that the regulator must account for, failing which the
solar company may exit the market.

Using our model, we find two attributes that a tariff structure must have in order to guarantee
effectiveness: the ability to discriminate between customers based on their usage tier and the ability
to discriminate between customers with and without rooftop solar. While APS’s tariff structure has
both these features, at least one of them is absent in the tariff structures of many other utilities: for
example, NV Energy in Nevada and PNM Energy in New Mexico. In the absence of either one of
these attributes, we show that the regulator might not be able to induce a socially optimal outcome

1We ignore commercial customers for tractability.
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and often will have to resort to an outcome with cross-subsidization. We then show that a simple
two-part tariff with these attributes, featuring full retail price repurchasing from residential solar
customers, always guarantees feasibility of the regulator’s social welfare optimization problem. We
also show that if solar adoption generates an overall customer surplus (possibly at the expense of
the utility), this tariff structure can guarantee an outcome with no cross-subsidization.

Complementary to our analysis, using consumer survey data obtained at the household level
(U.S. Energy Information Administration [2009]), we estimate customer usage profile parameters
and numerically illustrate how our suggested tariff structure compares to the tariff structures cur-
rently in use in Nevada and New Mexico, two states wrestling with this issue. We find that both
states’ tariffs perform poorly compared to our suggested tariff: While our tariff is able to avoid
cross-subsidization in all test cases, the current tariffs in both states are not. Notably, in Nevada,
use of the existing tariff structure most adversely affects (possibly low income) customers living in
the smallest houses.

Our base model assumes that all customer usage parameters are deterministic, that customers
do not exhibit adverse behaviors such as exaggerating their demands or altering their generation
capacity in order to generate bill savings, and that all customers within a tier behave identically
with respect to their solar adoption decisions. We relax all of these assumptions in Section 6.

2 Literature Review

There is a substantial body of Operations Management literature exploring various aspects related
to the management of renewable energy resources. Aflaki and Netessine [2017] and Hu et al. [2015]
study capacity investment decisions for renewable resources such as wind and solar. The effect of
tariff structures on such investments have been studied in Alizamir et al. [2016], Ritzenhofen et al.
[2016], and Kök et al. [2016]. The operational aspects of managing renewable energy resources that
are inherently variable are studied in Zhou et al. [2014], Wu and Kapuscinski [2013], and Al-Gwaiz
et al. [2016].

The energy policy literature contains a stream of work investigating regulatory considerations
arising from the increase in distributed generation. Some of these papers provide frameworks for
regulation: Keyes and Rábago [2013] present a detailed framework with which a regulator may
capture the costs and benefits of distributed generation, Lehr [2013] indicates that increased de-
pendence on renewable energy necessitates regulatory overhauls that incentivize utility companies
appropriately to move towards a renewable future and Linvill et al. [2013] qualitatively discuss the
challenges a regulator might face when implementing net-metering or feed-in tariffs for compensat-
ing distributed generation.

Other papers in this literature explore policy issues related to net-metering. Blackburn et al.
[2014] present a survey of utility companies to gauge their perspectives on net-metering, with
the finding that most utility companies feel that they overcompensate customers for generation.
Borlick and Wood [2014] show using a representative California customer that net-energy metering
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(in addition to the federal tax credit) does indeed provide too high a subsidy to customers and
opines that these subsidies are flowing from less affluent customers to more affluent ones. Brown
and Bunyan [2014] provide qualitative support to this finding and conclude that distributed solar
energy is currently overvalued. Moore et al. [2016] find that the value of solar diminishes as more
rooftop solar is added to the grid, and that a uniform net metering tariff is unlikely to be appropriate
as solar photovoltaic (PV) penetrations increase. NC Clean Energy Technology Center and Meister
Consultants Group [2015] provide a comprehensive view of recent solar-related regulatory changes
that have been effected in the 50 states in the U.S.

Bird et al. [2013] describe the role of the regulator in a changing electricity landscape as: (1)
Keeping the utility company viable, resulting in relatively stable cash flows and revenues from
year to year; (2) Fairly apportioning the utility’s cost of service among customers, without undue
discrimination; and (3) Promotion of economic efficiency in the use of energy as well as competing
products and services, without compromising on reliability. Our work draws on this description of
the regulator’s role: We formulate and solve an analytical model to explore which tariff structures
enable the regulator to induce market outcomes in keeping with these three criteria.

Another stream within the energy policy literature studies the diffusion of solar among cus-
tomers. Simulation approaches are common: Denholm et al. [2009] present SolarDS, a software
tool that performs a simulation-based bottom-up analysis of solar adoption over time as a func-
tion of utility rates. This tool is used as a building block for many other pieces of research: For
instance, Gagnon and Sigrin [2015] and Drury et al. [2013]. Villa et al. [2012] present a similar
system-dynamics model that interfaces with data from the city of Albuquerque.

There is also a large body of empirical literature in this stream. Ong et al. [2010] investigate solar
adoption in California under 55 different rate structures, finding that the financial benefit of owning
a PV system decreases with increased demand charges. Lobel and Perakis [2011] estimate the
dynamic diffusion process for solar adoption using a discrete-choice model for customers: Empirical
analysis of data from Germany indicates that initial subsidies should be higher than they currently
are (in contrast with the findings of Borlick and Wood [2014] who study subsidies in California), and
that the phase-out of subsidies should be more rapid. Bauner and Crago [2015] empirically establish
that because of uncertainty in bill savings, customers need to be offered larger financial benefits
than their expected savings in order to induce them to adopt solar. In a similar vein, Darghouth
et al. [2011] perform a computational study of the impact of flat, time-of-use, and real-time pricing
on PV savings in California. They find that the interaction between increased adoption and retail
rate changes can lead to substantial uncertainty on future bill savings, making customers’ adoption
choices less clear. Cai et al. [2013] study the feedback between retail rates and solar penetration,
finding that the feedback effect is most strongly affected by the proportion of customers who adopt
PV in any year, independent of future savings uncertainties—including changes in rate structures.
Other diffusion models for customer adoption are presented in Bollinger and Gillingham [2012], Rai
and Sigrin [2013], and Agarwal et al. [2015].
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One possible response to solar adoption eroding their profits is for utility companies to raise
electricity rates, making solar energy an even more attractive possibility and further undermining
utility profitability. Satchwell et al. [2015] build a financial model for the utility company and solar
adoption and model the feedback between adoption and retail rates. Their analysis suggests that
such a “death-spiral” is unlikely but establishes the need for regulatory intervention. Costello and
Hemphill [2014] also suggest that concerns of a death-spiral are premature, as distributed generation
is yet to gain traction and establish itself. They do say that some leeway from the regulators will
eventually be necessary to protect the interests of the utilities. Building on the SolarDS simulation
model [Denholm et al., 2009], Darghouth et al. [2016] study two competing effects in this posited
feedback loop between utility rates and adoption: They find that reduced demand drives rates up
and shifting temporal consumption profiles drive rates down, in effect, cancelling each other out
and precluding the possibility of a death-spiral.

Sunar and Swaminathan [2018] studies the impact of net metering policies on utility profits
by quantifying the impact of net metered distributed generation on the utility’s wholesale rate. In
contrast to our approach, Sunar and Swaminathan treat the adoption level of distributed generation
as exogenous.

Closer to our work, Babich et al. [2017] take the perspective of a government entity deciding
between offering a feed-in-tariff and a tax-rebate policy for rooftop solar installation. They study
how the policy in place affects the solar panel investment decisions of a representative household
in the presence of exogenous shocks that affect generation efficiency, variability in electricity price
and solar panel investment cost (i.e. they have a dynamic model, but with exogenously given
solar prices). Similar to Babich et al. [2017], our work also deals with aspects of renewable energy
that involve decisions by a principal (the PUC) and customers; however, this chapter presents a
static (rather than dynamic) model of solar adoption among heterogeneous customers who make
potentially heterogeneous investment decisions with a solar company that makes an endogenous
pricing decision. Our model’s static setting allows us to study the question of what the regulator’s
welfare-optimal choice of tariff should be, and our heterogeneous customer model allows us to study
the customer equity implications of solar adoption. Goodarzi et al. [2018] take the perspective of a
regulator who seeks to minimize utility costs by choosing an appropriate feed-in-tariff rate paid to
customers who sell all rooftop generation back to the grid at that rate. In their model, customers
are homogeneous in their demand characteristics but heterogeneous in their discount rates, and
make a solar adoption decision based on the feed-in-tariff rate. Similar to our model, the solar
system price in their model is also chosen endogenously by a profit maximizing solar company.
However, in contrast to their paper, we model customers who are heterogeneous in their demands
and generation capabilities, and who sell only excess generation back to the grid. As mentioned
above, our heterogenous customer model allows us to study the customer equity implications of the
policies in place. Furthermore, our regulator chooses both the tariff structure and parameters in
order to maximize social welfare: This framework generalizes the feed-in-tariff rate that Goodarzi
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et al. [2018]’s analysis is restricted to.
Our work also relates to the extensive literature on uniform versus non-linear pricing: We

study what features a tariff structure must have in order for a regulator to be able to induce a
socially optimal outcome. Varian [1989] and the references therein provide an elaborate discussion
on various issues related to price discrimination: Tiered tariffs are a tool for second-degree price
discrimination. While other papers such as Sundararajan [2004] and Choudhary et al. [2005] discuss
non-linear pricing for certain specific situations, their findings are not directly applicable to our
setting because of our model’s unique characteristics: The tariff chosen by the regulator interacts
with customers’ strategic behavior through the price of solar (which customers use to decide whether
to adopt solar or not). This tariff must be chosen so as to induce the monopolistic solar company
to set a price of solar that will induce a socially optimal outcome.

3 Model

Our model considers three decision making entities – residential customers who are heterogeneous
in their usage profiles, a monopolistic solar company S, and a regulator R (the PUC). In addition,
we model a vertically integrated utility company U that is subject to regulation by R (which makes
decisions on behalf of U).

We define our base case scenario as one with no solar systems; i.e. where all customers depend
on U to satisfy all their demand for electricity. Customers are subject to flat-rate (rather than time-
of-use, for tractability reasons) pricing. After S makes its product available, customers have the
option of continuing to depend solely on U for their energy requirements, or installing solar systems
thereby reducing their dependence on U. We study how R’s regulatory actions influence social
welfare moving from the base case to the post-solar scenario. R’s social welfare measurement takes
into account financial and non-financial (i.e. environmental) considerations. However, customers
and the solar company are modeled as being self-interested; i.e. they maximize their own financial
objectives.

We first detail the parameters that characterize each entity and formally define their decision
variables.

- Customers: Customers are heterogeneous and have different demands and potentials to
generate solar electricity (e.g. because of heterogeneous availability of roof space). We
consider I classes (equivalently, tiers) of customers indexed by i ∈ {1 . . . I}. Customer class
i has annual demand di kWh and annual generation capability gi kWh. We do not capture
demand response in our model, and as such, treat di as fixed for a given tier i. A household
can estimate gi using tools such as Google’s Project Sunroof [Google, 2018]. If a class i
customer installs a solar system, her excess generation (the amount of her generation that
she does not consume) is ei ≤ gi; this excess generation is sold back to the grid. Modeling
ei as a separate parameter allows us to capture any potential temporal relationship between
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generation and demand; i.e., a customer’s demand does not necessarily follow the same
profile as her generation does, and their temporal relationship, whatever it is, determines
ei. Under our framework, a class i customer depends on the grid for an amount of energy
d ′

i = di − (gi − ei) (her grid usage) and sells back an amount of energy ei, pegging her net
usage at d ′

i − ei = di − gi. We arrange customer classes in order of increasing generation so
that gi < gi+1. We do not impose a relationship between di and gi. Therefore, a customer
may be able to generate more than she demands. We let hi denote the number of households
belonging to class i.

A type i household has an adopt/do not adopt decision that we encode by binary variable si;
si takes the value of 1 if the customer chooses to adopt solar and 0 otherwise. All customer
parameters are assumed to be fixed, and known with certainty by all decision making entities.
In Section 4 we discuss how our model may be extended to accommodate uncertainty in d, g,
and e. Our base model also assumes that all households in a certain class make the same
adoption decision. We also discuss in Section 4 how this assumption may be relaxed.

- Solar Company: We consider a self-interested, monopolistic solar company that sets prices
for its solar systems. This assumption is driven by prevailing market conditions: In the U.S.
SolarCity is the established market leader that has held a stable 34% market share in 2014
and 2015 [Roselund, 2015], about 3 times the market share of the nearest competitor) and
lower costs, thereby giving it the power to set market prices. We assume that solar panels
are infinitely divisible (i.e. we ignore the topography, or solar panel-roof compatibility).

S’s decision variable is ps, the price that a customer who adopts solar must pay to the solar
company per unit of electricity she generates using the installed solar system. SolarCity
offers such a contract (this is called a Power Purchase Agreement), under which customers
are only assessed a variable charge per kWh of generation, rather than having to pay a lump-
sum amount for system purchase and installation [SolarCity, 2016d]. For customer-owned
systems that involve upfront payments, this price ps can be interpreted as a levelized price—
the lifetime adjusted price per kWh that the system generates; this accounts for average
sunlight received by the panel, efficiency considerations, down-payments, and maintenance
costs. Since these are equivalent from a modeling standpoint, we consider a Power Purchase
Agreement setup. Corresponding to the levelized price ps that S chooses, we assume that
the levelized cost to S is cs per kWh of generation. Once set, ps is assumed to remain fixed.
Customers in the U.S. can avail themselves of an investment tax credit of 30% on solar
system purchases [Energy.gov, 2017]. At the end of Section 3, we show how our model may
be adjusted to accommodate this.

- Regulator: We consider a socially interested regulator R whose decision is a tariff function
T(d ′, e, s) that governs the annual rate that the utility company charges a customer who
draws an amount of energy d ′ kWh/year from the grid, sells back e kWh/year to the grid
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and either adopts solar (s = 1), or does not adopt solar (s = 0). Note that both d ′ and e are
measurable by U with an appropriate metering system. Also observe that if s = 0, d ′ (the
amount drawn from the grid) is d, and e = 0.

- Utility Company: We consider a monopolistic utility company U that faces a fixed annual
grid maintenance cost fu and an average per unit cost of electricity cx

u /kWh, where x is the
amount of electricity it supplies. This framework allows us to capture the non-linear cost
functions that utility companies typically face because changes in the amount of electricity
they supply alter the mix of generation sources they use. The utility company uses its existing
architecture to redistribute excess generation that it purchases from customers across the grid;
we ignore any benefits that the decreased reliance on U’s infrastructure will have on U. U
does not take any decisions.

The game played by R, S and the customers proceeds in the following fashion: Let Period 0 be
the base case scenario when no households have rooftop solar. Under the Period 0 tariff structure,
these customers pay a per unit energy cost of pr0, and an annual fixed cost that we normalize to 0,
without loss of generality. We use this particular base case tariff structure for simplicity, but our
approach readily extends to any general base case tariff structure. In Period 1, R imposes tariff
structure T(·). In response to tariff T(·), S sets a per unit solar rate ps in Period 2. In Period 3,
individual customers, with knowledge of their demand di, generation capability gi, and excess ei,
observe the tariff T(·) and the solar price ps and then endogenously decide to adopt solar (s∗

i = 1)
or not to adopt solar (s∗

i = 0). Since the agents take actions sequentially, each agent’s decision is
taken anticipating other agents’ responses in future periods.

We now present the objective functions that govern the decisions of each of the decision-making
entities in our model:

- Customers: Customers wish to minimize their spend on electricity. Therefore, a class i
customer solves the following problem:

max
si∈{0,1}

(1 − si)T(di, 0, 0) + si(T(d ′
i, ei, 1) + psgi) (1.1)

- Solar Company: The solar company wishes to maximize profit by choosing an appropriate
unit price of solar.

max
ps>cs

(ps − cs)
I∑

i=1
s∗
i higi, (1.2)

where s∗
i is the optimal adoption decision taken by a customer in tier i. We restrict ps to

being larger than cs because S is unregulated and has the freedom to exit the market rather
than make a non-positive profit.

• Regulator: The regulator R wishes to maximize social welfare improvement. Since R takes
a systemic view, it is useful to think of the customers, U, and S as belonging to a “system,”
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we will consider two components of this social welfare improvement: Financial and Environ-
mental.
(1) Financial: Note that all cash flows except the purchase of electricity at the purchase costs
cx

u and cs occur within the system and can therefore be ignored from the system’s perspec-
tive. Define E0 =

∑I
i=1 hidi as the total amount of energy that customers depend on the

utility for in the base case, and E1 = E0 −
∑I

i=1 s∗
i higi as the total amount of energy that

customers depend on the utility for in the post-solar case (here, we assume all excess rooftop
electricity is redistributed to other customers). It is useful to define ΔE =

∑I
i=1 s∗

i higi as the
amount of energy dependence migrated to rooftop solar. The net decrease in cash flows going
out of the system (and hence the financial welfare improvement of the system) is therefore
cE0u E0 − cE0−ΔEu (E0 − ΔE) − cs(ΔE) = (cE0u − cE0−ΔEu )E0 + (cE0−ΔEu − cs)ΔE.
(2) Environmental: In addition to this financial welfare consideration, the regulator considers
the environmental benefit accrued by sourcing ΔE kWh of energy from rooftop solar rather
than from the utility. Let mx

u be the (monetized) average environmental cost of the utility
generating one kWh of electricity when the total amount it generates is x, and ms be the
(monetized) environmental cost of a rooftop solar panel generating one kWh of electricity2.
Again, using x to parameterize mx

u allows us to capture the non-linear relationship between
environmental cost imposed and amount of electricity supplied by the utility because migra-
tion to solar potentially changes the mix of generation sources for U. This environmental
cost can, for instance, be estimated using the social cost of carbon. We can now synthesize
this to write out R’s objective function.

max
T(·)

cE0
u E0 − cE0−ΔE(T(·))

u (E0 − ΔE(T(·))) − csΔE(T(·))︸ ︷︷ ︸
Financial

+

mE0
u E0 − mE0−ΔE(T(·))

u (E0 − ΔE(T(·))) − msΔE(T(·))︸ ︷︷ ︸
Environmental

,
(1.3)

where ΔE(T(·)) is the extent of migration to rooftop solar induced by tariff choice T(·).

The financial benefit from solar adoption crucially depends on the values of cE0−ΔE(T(·))
u and cE0u

relative to cs. Based on publicly available information, we estimate that cs is approximately $0.064
(the details of this estimation procedure are presented in Section 5). The average wholesale rate of
electricity (which, in our case is a good estimate of cE0u ) in the U.S. is roughly $0.04 [U.S. Energy
Information Administration, 2017]. Solar production typically peaks around mid-day, creating the
so-called duck curve [Jeff, St. John, 2016], and thus does not generally shave off the peak load
(which typically occurs in the late evening) or displace the base load generators during low load
periods (early in the morning). Therefore, we do not expect cE0−ΔE(T(·))

u to be significantly different
from $0.04. If cE0−ΔE(T(·))

u and cE0u are equal, the financial benefit simplifies to (cu − cs)ΔE(T(·)).
Therefore, as long as cE0−ΔE(T(·))

u and cE0u are close enough, we expect the financial benefit from
2This does not depend on the total amount of electricity generated by solar.
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solar adoption to be negative (because $0.04 < $0.065); this can be interpreted as a cost that society
must bear in order to encourage solar adoption. As technological improvements cause cs to drop,
the sign of this benefit could flip. Our model is robust to either case.

It is worth pointing out that although we do not explicitly model the decisions of the utility
company in response to R’s actions, we implicitly capture any capacity changes that the utility
company would need to make in response to R’s actions through the parameters cE0−ΔE(T(·))

u and
mE0−ΔE(T(·))

u : Since these depend on T(·), the impact of these capacity decisions on utility and
system welfare are captured. The utility company has another role in our model: While choosing
an adoption level that maximizes social welfare improvement, regulator R must ensure a specified
rate-of-return to the utility company. We codify this by denoting the permissible increase in utility
profit going from the base case to the post-solar case as ΔU (note that this could be negative)3.
Further, she would like to ensure a profit of ΔS for the solar company (for example, to encourage
further technological innovation; we assume ΔS > 0). Since the regulator is also responsible for
making sure that customers do not overpay for electricity, she would like to choose, from among the
functions T(·) that maximize her objective and respect the other constraints she faces, the one(s)
that minimize the maximum cash outflow seen by any class of customers. We call this the fairness
constraint. This is a common fairness criterion used in game theory, ethics, and communication
networks, generally credited to Rawls [Rawls, 1974]. If this minimized maximum cash outflow is
negative, then it means that all classes of customers benefit, and there is no cross-subsidization
because no class of customer is hurt by the introduction of solar to the market. Formally, we
represent these as constraints in R’s optimization problem as follows:

I∑
i=1

hi
(
s∗
i T(d ′

i, ei, 1) + (1 − s∗
i )T(di, 0, 0) − cE0−ΔE(T(·))

u (s∗
i (di − gi) + (1 − s∗

i )di)
)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(1.4)

(ps − cs)
I∑

i=1
s∗
i higi = ΔS (1.5)

max
i

s∗
i
(
T(d ′

i, ei, 1) + psgi
)

+ (1 − s∗
i )T(di, 0, 0) − pr0di

= min
T(·)∈τ

max
i

s∗
i
(
T(d ′

i, ei, 1) + psgi
)

+ (1 − s∗
i )T(di, 0, 0) − pr0di,

(1.6)

where τ is the set of tariff structures that maximize the regulator’s objective and satisfy all other
constraints that the regulator must account for. A precise characterization of τ is provided in
Section 4.

While this set-up doesn’t explicitly take into account the 30% investment tax credit from the
federal government, this can easily be accommodated with minor adjustments to the model: We

3This value of ΔU may be padded to account for transmission losses. For clarity of exposition, we do
not model this.
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can now treat ps as the discounted rate that customers pay for solar power, and the solar company
now obtains revenue at a rate ps

70% per kWh of energy. All our results continue to hold under this
modification, so we ignore the investment tax credit for the remainder.

4 Analysis

We begin our analysis by examining the optimization problem of a class i customer, as specified
in (1.1). Such a customer favors adopting solar if and only if ps ≤ T(di, 0, 0) − T(d ′

i, ei, 1)
gi

, t(i)
(we break ties in favor of adoption). Note that these values of t(i) depend on T(·): specifying T(·)
induces an ordering among the t(i) values. Note also that for a given solar price ps, the set of
classes that adopt is {i : t(i) ≥ ps}.

Now consider S’s pricing decision. We can assert that S’s optimal choice of ps must be either
t(i) for some i ∈ {1, . . . I} or some price larger than max

i
t(i): If S chose some price ps between

t(i) and t(j) for some i and j such that t(j) = min
k

t(k) : t(k) > ps, she could do strictly better by
choosing price t(j), as doing so increases S’s margin and does not alter her volume (see equation
(1.2)). Therefore, S’s optimization problem reduces to choosing an i∗ such that the profit obtained
by setting ps = t(i∗) is larger than the profit obtained from all other choices j ̸= i∗ or choosing
ps > max

i
t(i). We clarify that all adopting customers pay the chosen solar price ps; t(i) is simply

a threshold value of ps upto which a class i customer is induced to adopt solar.
These observations allow us to rewrite R’s optimization problem, folding in the decisions of S

and households to reflect the sequence in which they are taken. To do so, we define some more
notation. Let set D = {x ∈ R : x = s⃗ · (h1g1, h2g2, . . . , higi, . . . , hIgI)T}, where s⃗ is any I dimensional
vector whose entries are binary. Here, s⃗ is the adoption decision vector (s1, s2, . . . si, . . . , sI) whose
entries indicate whether class i adopts or not. The set D therefore contains all possible values that
ΔE (which we refer to as the migration quantity) could take. We are interested in the case that R
wishes for at least one class to adopt; that is, the case where ∃i : si = 1, otherwise the problem is
trivial. This is the case we shall assume for the remainder. Apart from this, we do not restrict s⃗: R
may choose any arbitrary subset of classes to be adopters in order to maximize her social welfare
objective. Let z index into this set. Corresponding to each migration quantity E(z), there exists at
least one adoption vector s⃗(z) = (s(z)

1 , s(z)
2 , . . . , s(z)

i , . . . , s(z)
I ). Define adoption set A(z) = {i : s(z)

i = 1}.
Now, notice that R’s objective function (1.3) is affected by T(·) only through ΔE. Therefore,

R’s decision can be equivalently modeled as choosing z optimally from the set {1, 2, . . . , 2I}. In
order for this value of z to induce adoption outcome s⃗(z), it must be the case that ps is chosen so
that t(i) ≥ ps, ∀i ∈ A(z). Define a class i to be ‘marginal’ if ps = t(i). Since ps is chosen from
among the set of t(i) values, which as functions of T(·) are themselves variables, R may allow any
(indeed, more than one) of the adopting classes in A(z) to be marginal. Let M be the set of indices
of the marginal adopting classes. Since we assumed that at least one class adopts, this set must
be non-empty. We can now pose R’s optimization problem, folding in the household and solar

18



company decision as follows:

max
T(·),z∈{1,2,...,2I},M

cE0
u E0 − cE0−E(z)

u (E0 − E(z)) − csE(z)+

mE0
u E0 − mE0−E(z)

u (E0 − E(z)) − msE(z),

(1.7)

Subject to constraints:

t(i) = T(di, 0, 0) − T(d ′
i, ei, 1)

gi
, ∀i (1.8)

M ⊆ A(z) (1.9)
I∑

i=1
hi
(
s∗
i T(d ′

i, ei, 1) + (1 − s∗
i )T(di, 0, 0) − cz

u(s∗
i (di − gi) + (1 − s∗

i )di)
)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(1.10)

max
i

s(z)
i
(
T(d ′

i, ei, 1) + t(m)gi
)

+ (1 − s(z)
i )T(di, 0, 0) − pr0di

= min
T(·)∈τ

max
i

s(z)
i
(
T(d ′

i, ei, 1) + t(m)gi
)

+ (1 − s(z)
i )T(di, 0, 0) − pr0di

, ∀m ∈ M (1.11)

(t(m) − cs)
I∑

i=1
s(z)
i higi = ΔS, ∀m ∈ M (1.12)

(t(i) − cs)
I∑

j=1
It(j)≥t(i)hjgj < ΔS, ∀i ̸∈ M (1.13)

t(i) ≥ t(m), ∀i ∈ A(z), m ∈ M (1.14)

t(i) < t(m), ∀i ̸∈ A(z), m ∈ M (1.15)

Here, (1.8) defines t(i) in terms of the regulator’s decision variables, (1.9) ensures that the choice
of marginal adopting classes is consistent with the choice of z, (1.10) ensures that U receives the
specified rate of return implied by ΔU, (1.11) imposes the fairness constraint on customer payments,
(1.12) ensures that S achieves the specified profit ΔS by choosing solar price t(m), m ∈ M, (1.13) is
a set of incentive compatibility constraints, which ensure that S can do no better than make profit
ΔS by setting ps = t(i) for i /∈ M4, and (1.14)-(1.15) impose the condition that customers in A(z)

are induced to adopt solar.
This formulation is not expressed in a convenient form, and is therefore not amenable to analysis:

τ is ill-defined in (1.11), and (1.9) and (1.13) are not expressed in canonical form because they deal
with set containment and the indicator function, respectively. However, by imposing the following
restriction on tariff function T(·), we can convert this problem into a form that is easier to analyze.

4We model these incentive compatibility constraints as being strict rather than weak, because if S deviates
to a price ps ̸= t(m), the outcome induced is different from the desired z. We will show in Section 4.3 that
if the tariff structure is appropriately chosen, this strict inequality does not impair the feasibility of the
problem.
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Tariff restriction: Tariff function T(·) is chosen so that all t(i) values are distinct.

Proposition 1 The tariff restriction does not affect the regulator’s ability to maximize her objective
(1.7). Further, this restriction does not compromise her ability to meet all constraints, including
the fairness constraint (1.11).

Proof: Presented in Appendix A.1
Therefore, the regulator can, without loss of optimality, choose a tariff function that ensures

that all t(i) values are distinct. We can now decompose R’s problem neatly by making the obser-
vation that the objective function expressed in (1.7) depends only on z and can therefore be solved
independently of the constraints. Accordingly, we can carry out the following steps:

1. Find the value of z (call this z∗) that maximizes the objective function. We call this problem
P1.

2. Corresponding to the value of z∗ chosen, we can enumerate all underlying orderings over
the t(i) values that could have resulted in adoption outcome s⃗(z∗). These feasible underlying
orderings can be obtained by permuting the ordering of adopters (which we can do in exactly
|A(z∗)|! different ways), and for each of these orderings, permuting the non-adopters (which
we can do in (I − |A(z∗)|)! different ways). Let O(z∗) be the set of these orderings and let o be
an index into these orderings. Observe that |O(z∗)| = |A(z∗)|!(I − |A(z∗)|)!. Note that fixing
the ordering over the t(i) values automatically fixes the marginal adopting class: Pick the
index corresponding to the adopting class chosen to have the lowest t(i) value according to
o. Let m(o) be the marginal adopting class.

3. Use the value of z∗ so obtained to solve |O(z∗)| different optimization problems (which we
can index by o), one for each possible ordering, setting (1.11) as the objective. Choose an
ordering with the best objective value. We call this problem P2.

We can formally write these problems as follows:
Problem P1:

max
z∈{1,2,...,2I}

cE0
u E0 − cE0−E(z)

u (E0 − E(z)) − csE(z)+

mE0
u E0 − mE0−E(z)

u (E0 − E(z)) − msE(z).

(1.16)

Once the optimal z∗ is obtained, solve the following |O(z∗)| optimization problems (which are
now in canonical form) and choose the solution with the best objective value.
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Problem P2:

min
T(·)

max
i

s(z∗)
i

(
T(d ′

i, ei, 1) + psgi
)

+ (1 − s(z∗)
i )T(di, 0, 0) − pr0di (1.17)

Subject to constraints: (1.18)

t(i) = T(di, 0, 0) − T(d ′
i, ei, 1)

gi
, ∀i (1.19)

I∑
i=1

hi
(
s∗
i T(d ′

i, ei, 1) + (1 − s∗
i )T(di, 0, 0) − cz∗

u (s∗
i (di − gi) + (1 − s∗

i )di)
)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(1.20)

t(i) ordering consistent with o (1.21)

(t(m(o)) − cs)
I∑

i=1
s(z∗)
i higi = ΔS (1.22)

(t(i) − cs)
I∑

j=1
It(j)>t(i)in ordering o · hjgj < ΔS, ∀i ̸= m(o) (1.23)

Here, (1.21) is a set of I − 1 inequalities that impose an ordering over the t(i) values consistent with
o.

We summarize the notation used in our model in Table A.1 in Appendix A.8.
Observe that optimization problem P1 always has a solution because it is unconstrained. How-

ever, it is not clear that P2 is feasible. In particular, it is not immediately clear that the tariff
parameters can ensure that the incentive compatibility constraints (1.23) and the ordering con-
straints (1.21) can hold together. In relation to this observation, we answer the following question:
Let T be the set of allowable tariff functions from which T(·) must be chosen. How does the choice
of T affect the feasibility of P2? We are also interested in the following additional question: If P2

is feasible, can it induce an outcome free from cross-subsidization?

Definition 1 Cross-subsidization (CS): A market outcome is said to feature CS if the objective
value of P2 is positive; i.e., at least one class of customer is financially worse off in the post-solar
case. Similarly, an outcome is said to be free from CS if the objective value of P2 is non-positive.

For an outcome to be free from CS, we naturally require that the total improvement in financial
welfare for customers ΔC = cE0u E0 − cE0−E(z)

u (E0 − E(z)) − csE(z) − ΔS − ΔU ≥ 0. We examine
how the choice of T affects the regulator’s ability to induce outcomes free from CS when ΔC ≥ 0;
specifically, is ΔC ≥ 0 sufficient to induce such a CS-free outcome?
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4.1 Non-tiered tariff structure that discriminates between adopters and
non-adopters

Many states in the U.S. (including Nevada, which we examine more closely in Section 5) have
utility companies that administer non-tiered rate schedules for residential customers. Non-tiered
tariff structures have the benefit of being simple to administer and therefore simple to modify in the
rate case proceedings, the process by which utility companies petition for rate changes to the PUC.
These non-tiered structures can, however, discriminate between solar adopters and non-adopters;
i.e., these two types of customers may be subject to different rate schedules, as is the case with NV
Energy in Nevada. We study such rate structures in this section.

Let T be the set of linear, non-tiered tariff structures that discriminate between adopters and
non-adopters; i.e., they are on different rate schedules. Such a tariff function has the following
general specification:

T(d ′, e, 0) = rdd + r0,

T(d ′, e, 1) = sdd ′ + see + s0.
(1.24)

We now present an analysis of the tariff structure (1.24). Specifically, we examine whether
the feasibility of P2 is guaranteed under such a tariff structure. The following is the system of
constraints in problem P2 for a given ordering o and a given adoption outcome z∗.

t(i) = rddi + r0 − (sd(di − gi + ei) + seei + s0)
gi

, ∀i (1.25)

I∑
i=1

hi
(
s(z∗)
i (sd(di − gi + ei) + seei − cz∗

u (di − gi) + s0) + (1 − s(z∗)
i )((rd − cz∗

u )di + r0)
)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(1.26)

t(i) ordering consistent with o (1.27)

(t(m(o)) − cs)
I∑

i=1
s(z∗)
i higi = ΔS (1.28)

(t(i) − cs)
I∑

j=1
It(j)>t(i)in ordering o · hjgj < ΔS, ∀i ̸= m(o) (1.29)

For this tariff structure with non-tiered rates, we prove the following propositions:

Proposition 2 Tariff structure (1.24) cannot guarantee the feasibility of P2: There exist parame-
ters and outcomes z∗,ΔS,ΔU for which P2 is not feasible for any ordering o.

Proof: Please see Appendix A.2
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Proposition 2 implies that the system (1.25)-(1.29) does not always have a solution. While this
is discouraging, the following proposition shows that under a restriction on z∗, there does exist a
feasible ordering of P2 if we drop the IC constraints.

Proposition 3 In the absence of the incentive compatibility constraints (1.29), there exists an
ordering o for which tariff structure (1.24) guarantees the feasibility of optimization problem P2 if
z∗ = {i∗, i∗ + 1, . . . , I} for some i∗.

Proof: Please see Appendix A.3
This has an important implication: If the solar price ps were also controlled by the regulator R,

and z∗ prescribes that a contiguous block of high-generation customer tiers adopts, a linear tariff
structure with non-tiered rates would suffice to satisfy system (1.25)-(1.29), as the regulator would
not have to contend with IC constraints (1.29). Alternatively, if the utility company itself offered
rooftop solar rather than an outside firm, the IC constraints could be ignored (as the solar price
set by U would now be subject to regulation) and equation (1.26) suitably modified.

The intuition for this tariff’s failure to achieve feasible outcomes is its limited ability to trans-
fer welfare among customers in different tiers. In particular, its ability to selectively make solar
unattractive to some tiers and not to others is limited by not having tier-dependent parameters.
The conditions laid out in Proposition 3 remove some of these hurdles.

While dropping the IC constraints is a special case under which the linear tariff structure
suffices, the current environment in the US is one with an unregulated solar company. Therefore,
a richer class of tariff structures may be required to satisfy a system analogous to (1.25)-(1.29),
modified based on the choice of T .

4.2 Tiered tariff structure that does not discriminate between solar adopters
and non-adopters

In states such as New Mexico (which we study in detail in Section 5) and Washington, the PUCs
have mandated that solar customers may not be assessed any additional standby, capacity, inter-
connection, or other fee or charge by the utility [NC Clean Energy Technology Center, 2017a,b].
Such a rule serves as an incentive for solar adoption. These tariff structures may be tiered, but
operate under a single rate schedule and feature retail net-metering, whereby customers who adopt
solar sell back excess electricity at their retail rate: If the utility repurchased electricity at less
than their retail rate this would be considered a fee to solar adopters and is thus prohibited. Let
T be the set of such tariff functions. We will show that operating such a tariff structure, while
guaranteeing feasibility, limits the ability of the regulator to induce a CS-free market outcome.

Under such a tariff structure, the appropriate rate class (not to be confused with usage class
i ∈ {1, 2, . . . I}) in the rate schedule is applied based on a household’s net demand. Recall that this
net demand is the household’s demand less their generation if they adopt solar. For instance, if a
tier 1 household does not adopt solar, demands an amount of electricity d1, and is placed in rate
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class 1, a tier 2 household who adopts solar and has a net demand of d2 − g2 = d1 also falls into
rate class 1 and is billed as such.

Let C = {1, 2, . . . , |C|} be the set of indices corresponding to rate classes in U’s rate schedule.
Without loss of generality, let this set be arranged in order of increasing (net) demand; that is,
rate class 1 corresponds to the lowest net demand and rate class |C| corresponds to the highest
net demand. In order to support customers making endogenous solar adoption decisions, this rate
schedule must contain enough rate classes to support any possible adoption/non-adoption decision
by customers. Therefore, |C| ≥ I + 1.

Now, consider the tariff function T(d ′, e, s) = T(c) = rcn + f, where c is the index of the
rate class to which a customer with usage profile (d ′, e, s) belongs and n is the household’s net
demand; this is obtained by mapping the household’s net energy usage (n = d for a non-adopter
and n = d ′ − e = d − g for a non-adopter) to a class c ∈ C, and f is a fixed cost that all customers
pay. The tariff function is fully defined by choosing rc, ∀c ∈ C, and f. Note that having the fixed
cost f also depend on class; i.e., having a different fixed cost fc for every class c is equivalent to the
system currently under consideration, as rc can be suitably modified for each class c to compensate
for the difference fc − f.

Proposition 4 Corresponding to every ordering o and outcome z∗, there exists a feasible rate
schedule (rc, f) that satisfies the constraints of P2.

Proof: Presented in Appendix A.4
While this tariff structure can always feasibly induce an outcome characterized by z∗,ΔS,ΔU,

we find that it cannot guarantee a CS-free outcomes when ΔC ≥ 0.

Proposition 5 The tiered tariff structure that does not discriminate between adopters and non-
adopters cannot guarantee CS-free outcomes: There exist parameters and outcomes z∗,ΔS,ΔU for
which no CS-free outcome can be generated for any ordering o even when ΔC ≥ 0.

Proof: Presented in Appendix A.5
Therefore, while this tariff structure is simple and guarantees feasibility, it does not have de-

sirable properties with respect to customer equity. Intuitively, this tariff fares better than the
non-tiered tariff studied in Section 4.1 because its tiered nature allows welfare transfer among
tiers. However, its ability to shield customers from cross-subsidization is limited by the fact that
adopters and non-adopters may be grouped into the same tier. Therefore, a tariff structure that
can guarantee CS-free outcomes must (at least) be able to discriminate between solar adopters and
non-adopters by placing them in different rate schedules.

4.3 Tiered tariff structure that differentiates between solar adopters
and non-adopters

As an alternative to the class of tariff structures explored in Sections 4.1 and 4.2, consider a tiered
tariff structure that presents different rate schedules to solar and non-solar customers. Both these
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attributes are present in the tariff structure operated by Arizona’s APS. We propose and study a
specific tariff structure with these attributes: one that is non-tiered for non-adopters5 and tiered
for adopters. Under our structure, solar and non-solar customers are charged the same variable
energy charge based on their net energy consumption6, but a solar customer is also assessed a fixed
annual charge that depends on her class i. A general specification of such a rate structure follows;
for all classes i,

T(di, 0, 0) = prdi,

T(d ′
i, ei, 1) = pr(d ′

i) − pr(ei) + fi
= pr(di − gi) + fi.

(1.30)

Note that U can infer a solar customer’s class by observing the value of d ′
i, the energy drawn from

the grid and contract on a fixed cost that a customer would pay based on this amount. We now
present an analysis of tariff structure (1.30): We show that the feasibility of P2 is guaranteed under
such a tariff structure and that it can also guarantee no CS if ΔC ≥ 0.

Consider problem P2 for a given ordering o and a given adoption outcome z∗. It will be
useful to re-order the indices to be consistent with o; that is, the indices are chosen such that
t(i) < t(j), ∀i < j. As a result of this re-ordering, classes 1, . . . m − 1 do not adopt solar, while
classes m, . . . , I adopt, where m is the index of the marginal adopter. Note that as a result of this
re-ordering, we no longer have the property that gi < gj, ∀i < j.

t(i) = pr − fi
gi

, ∀i (1.31)

m−1∑
i=1

hi(pr − c(z∗)
u )di +

I∑
i=m

hi(pr(di − gi + ei) − c(z∗)
u (di − gi) − prei + fi)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(1.32)

t(i) < t(j), ∀i < j (1.33)

(t(m) − cs)
I∑

i=m
higi = ΔS (1.34)

(t(i) − cs)
I∑

j=i
hjgj < ΔS, ∀i ̸= m (1.35)

Because this tariff structure has more parameters than the non-tiered tariff structure in (1.24),
it might at first seem intuitive (and trivial) that this structure guarantees the feasibility of P2: One

5If the Period 0 tariff structure is tiered rather than having the same rate pr0 apply to all customers,
our proposed tariff structure would require that non-adopters also face tiered rates.

6Note that since solar adopters are charged based on net energy use, we implicitly prescribe retail net-
metering.
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could correctly make the observation that the fixed costs for adopting customer classes i can be
chosen arbitrarily to adjust ΔU up and down. However, these fixed costs must also result in the
solar price of ps = t(m) being an incentive compatible choice for S: Picking a solar price ps ̸= t(m)
must result in a smaller profit (the product of margin and volume, see equation (1.35)) than her
profit from picking ps = t(i). This deviation can be made sufficiently unattractive by ensuring that
values t(i) for i ̸= m are low enough; R can achieve this by manipulating the values of fi, i ̸= m (see
equation (1.31)). But this, again, imposes restrictions on our choice of fixed costs fi. Therefore,
it is not immediately obvious that there exists a feasible tariff adhering to this tariff structure.
However, it turns out that this tiered tariff structure does indeed guarantee feasibility of P2.

Proposition 6 Corresponding to every ordering o and outcome z∗,ΔU,ΔS, there exists a feasible
tariff function of the form (1.30) that satisfies the constraints of P2.

Proof: First, find fm as a function of pr by solving equation (1.34) to obtain t(m) =
(

cs + ΔS∑I
j=m hjgj

)
and fm = gm (pr − t(m)). For all i < m, set t(i) = ϵi for some arbitrarily small ϵ > 0 by setting

fi = gi(pr − ϵi). For all i > m, set t(i) =
(

cs − ϵ + ΔS∑I
j=i hjgj

)
and fi = gi(pr − t(i)). Note that

by definition, this set of t(i) values satisfies (1.31) and (1.34). Further, IC constraints (1.35) are
satisfied because the t(i) values for i > m are set ϵ smaller than what they would have to be to
obtain a profit of ΔS, and for i < m are set so low that they generate a negative profit. Finally,
the ordering constraints (1.33) are satisfied for i < m by definition, and for i ≥ m (if the ϵ term
is sufficiently small) because hjgj > 0, ∀j, leading to ∑I

j=i hjgj decreasing in i. Once these fi values
have been set, substitute them in (1.32) to obtain a value for pr. �

So, our proposed two-part tariff, like the tariff presented in Section 4.2, guarantees the feasibility
of optimization problem P2.

This tariff (1.30) features the same energy (variable) cost across tiers, and varying fixed costs fi
by tier for solar customers. Similar to our discussion in Section 4.2, R could alternatively impose a
tariff structure featuring the same fixed costs across tiers, with energy costs varying across adopting
tiers. This is a commonly used tariff structure, where the rate schedule that a customer is subject
to features varying energy rates per kWh of usage that depend on the usage level. Such a structure
has the following specification.

T(di, 0, 0) = pr2di,

T(d ′
i, ei, 1) = p(i)

r (d ′
i) − p(i)

r (ei) + f

= p(i)
r (di − gi) + f.

(1.36)

Such a tariff is, in every way, equivalent to the tariff (1.30). By setting f = fm, p(i)
r = pr+ fi−fm

di−gi
, ∀i,

and pr2 = pr, we can map from structure (1.30) to structure (1.36). We now study properties of
this tariff structure.
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Lemma 1 Consider an adopting tier i. Then, we have that gipr − gips − fi ≥ 0.

Proof: If m is the index of the marginal class, ps = pr − fm
gm

. For all tiers i that adopt,
it must be the case that t(m) ≤ t(i) ⇔ fm

gm
≥ fi

gi
(from equations (1.31)). Therefore, we have

gipr − gips − fi = gipr − gi(pr − fm
gm

) − fi = gi
fm
gm

− fi ≥ 0. �
We now address properties that this tariff structure exhibits with respect to customer equity

and CS. Lemma 1 will be useful in examining these properties. For tariff structure (1.30), we state
and prove the following propositions:

Proposition 7 When ΔC > 0, there exists an ordering o such that tariff structure (1.30) can
induce an outcome that is CS-free. When ΔC = 0, tariff structure (1.30) can induce an outcome
that is arbitrarily close to being CS-free.

Proof: Presented in Appendix A.6.
Further, we can provide a closed form characterization of the solution to P2 when certain

conditions hold:

Proposition 8 The solution to P2 can be characterized in closed form when ΔC > 0 and l : dl ≤
di∀i is such that s(z∗)

l = 0; that is, the lowest demand tier does not adopt solar.

Proof: Presented in Appendix A.7.
Therefore, our proposed tariff structure (1.30) is guaranteed to be feasible, has desirable prop-

erties with respect to customer equity, and its solution can even be characterized in closed form
when adopting solar creates a customer surplus.

4.3.1 Practical issues/extensions

Some practical hurdles stand in the way of implementing tariff structure (1.30). We now discuss
these issues and how they may be remedied.

1. Demand, generation and excess are not actually deterministic: Our model assumes
deterministic values for households hi, demand di, generation capacity gi, and excess ei.
However, this will not be true in practice: Households’ usage and generation parameters
are random variables. We can relax the deterministic assumption by allowing individual
households to draw d, g, and e from a discrete distribution with I points in its support. We
define a joint probability mass function ϕ(d, g, e) over the space of possible values of d, g,
and e. Let us index the support of ϕ(·) by i. Now, hi = H ∗ ϕ(di, gi, ei), where H is the
total number of households in the market. In expectation hi customers will have demand di,
generation gi and excess ei. Thus, with this definition of hi, we can reformulate programs P1

and P2 in terms of expectations, and hi customers will make a decision consistent with the
deterministic tier i decision.
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2. Not all customers belonging to a class that is induced to adopt solar will actually
adopt: For various reasons including access to liquidity and inertia to change, some cus-
tomers belonging to a tier designated to adopt solar might not actually make the adoption
decision. We can account for this behavior. Let πi be an exogenously given expected fraction
of households in tier i that would adopt solar if economically viable (endogenous determina-
tion of πi is beyond the scope of this model). The remaining 1 − πi fraction of households in
tiers i : s(z∗)

i = 1 continue to fulfill their demand from the utility directly because they are un-
willing to adopt solar. We can then reformulate our model by replacing hi by πihi in the solar
profit equations and adjusting the utility company’s rate-of-return equation appropriately.

3. The tariff structure may incentivize customers to exaggerate their demand to
generate bill savings: It is undesirable for a tariff structure to incentivize a type i customer
to “spoof” a type j customer by exaggerating her demand in order to generate bill savings;
that is, her total outflow (to U and S) is reduced by spoofing another class7. Therefore, we
must consider the following four possible ways a customer type may spoof another customer
type.

(i) Non-solar to non-solar: Non-solar customer i can appear to be non-solar customer
j by exaggerating her demand to d̃i = dj > di. However, doing so increases her bill from
prdi to prdj > prdi, so she will not do so.

(ii) Non-solar to solar: Non-solar customer i can appear to belong to a tier j that
adopts solar by installing solar that generates gi and appearing to have a grid usage of
d ′

j = dj −gj +ej. To do so, she must alter her demand to d̃i = (dj −gj +ej)+gi −ei. This
is undesirable if d̃i > di ⇒ (dj −gj +ej) > (di −gi +ei). To prevent this from happening,
we must ensure that prdi < pr(d̃i − gi) + fj + psgi = pr(dj − gj + ej − ei) + fj + psgi. But
we have that prdi < pr(di − gi) + fi + psgi. Therefore, it is sufficient for us to specify
parameters such that:

pr(di − gi) + fi < pr(dj − gj + ej − ei) + fj. (1.37)

(iii) Solar to non-solar: Solar customer i can appear to be a non-solar customer j by
altering her demand di to d̃i = dj. This is undesirable if dj > di. To prevent this from
happening, we must ensure that pr(di − gi) + fi + psgi < prdj. But since tier i adopts,
we have that pr(di − gi) + fi + psgi ≤ prdi. Since dj > di, prdi < prdj, and therefore,
such a customer i will not spoof a non-solar customer j.

(iv) Solar to solar: Solar customer i can appear to be another solar customer j by
appearing to have a grid usage of d ′

j = dj −gj +ej. To do so, she must alter her demand

7We do not discuss the case of a customer curtailing her demand in order to generate bill savings because
we do not model demand response and the costs associated with curtailing demand.
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to d̃i = (dj −gj +ej)+gi −ei. This is undesirable if d̃i > di ⇒ (dj −gj +ej) > (di −gi +ei).
To prevent this from happening, we must ensure that pr(di − gi) + fi + psgi < pr(d̃i −
gi) + fj + psgi, which is identical to the condition in inequality (1.37).

Such spoofing behaviors can be eliminated in various ways. For example, constraint (1.37)
could be added to P2 for classes falling into (ii) and (iv) above; that is, for all classes i, j
such that dj − gj + ej > di − gi + ei and either i is a non-adopter and j is an adopter, or
both i and j are adopters. Whether P2 remains feasible under these constraints depends on
the specific parameters under consideration. We show in Section 5 that P2’s feasibility and
CS outcome is unaffected by the inclusion of these constraints for realistic parameter values.
If the regulator chooses not to enforce this constraint in P2, she can use it to check if the
solution obtained is exposed to such spoofing behavior. Alternatively, U could assign a class
not just by measuring grid usage, but also by measuring net demand di − gi and assigning
a class on the basis of both these measurements. Such a measurement would deter spoofing
behavior, because except under pathological parameter values, simply exaggerating demand
will not allow a type i customer to mimic a type j customer on both these dimensions.

4. The tariff structure may incentivize customers to install solar capacity strictly
less than gi: It is undesirable for this tariff structure to induce solar customers to install
solar capacity smaller than gi. Observe that if a tier i customer’s generation is reduced to
g̃i < gi, her excess also reduces to some ẽi ≤ ei. This might or might not alter her tier (which,
recall, is measured by measuring her grid usage d − (g − e)). Suppose it does not result in a
tier alteration. In this case, we can impose the constraint ps < pr so that installing less than
capacity gi will increase a customer’s bill by an amount pr per unit of generation foregone
and this bill increase is not compensated for by having to purchase less from S. To ensure
that ps < pr, we constrain fm, the fixed cost of the marginal customer, to be larger than 0 so
that ps = t(m) = pr − fm/gm < pr.

But what if the customer was able to change her tier, and therefore, the applied fixed cost
by installing panels to less than capacity? Let us assume that for every possible g̃i < gi, R
can compute a corresponding ẽi (the resulting excess) based on the customer’s usage profile
over the day. Such a customer can spoof a tier j customer by choosing a capacity g̃i such
that di − g̃i + ẽi = dj − gj + ej. For all such pairs of g̃i, ẽi values, impose constraint (1.38), in
addition to the constraint that fm > 0.

pr(di − gi) + fi + psgi < pr(di − g̃i) + fj + psg̃i (1.38)

Note that we need not consider the possibility of a customer altering both di and gi to
exaggerate her grid usage d ′

i: Decreasing gi by one unit increases her cash outflow by pr − ps,
while increasing di by one unit increases her cash outflow by pr, which is larger than pr − ps.
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We shall see in Section 5 that for realistic parameter values, ps < pr because the prescribed
fixed cost fm for the marginal tier m is positive. We shall also see in Section 5 that for realistic
parameter values, moving to a higher tier causes customers to incur higher fixed costs, and
therefore, reducing gi—even to effect a change in tier—is not beneficial. Therefore, there is
no incentive for a customer to install less solar than her capacity gi.

5 Numerical Analysis

Now, using data from the states of Nevada and New Mexico where regulatory changes threaten
the rooftop solar industry, we study how the tariff structures in operation compare to the two-
part tiered tariff structure presented in (1.30). We first discuss our approach to estimating the
parameters d, g, e, and h in Section 5.1. Using these parameters, in Section 5.2 we numerically
investigate the performance of using the specific versions of the linear tariff structure proposed in
the states of Nevada and New Mexico. We contrast these to results obtained if the states were to
adopt our proposed tiered two-part tariff structure. As we will see, while both states’ tariffs are able
to feasibly generate the outcome z∗ specified by P1, they induce poor customer equity outcomes in
problem P2.

5.1 Estimating the parameters

Our starting point for estimating the parameters of the system is the household micro-data from
the US Energy Information Administration’s Residential Energy Consumption 2009 Survey [U.S.
Energy Information Administration, 2009]. This survey contains responses from 112 single-family
housing units in the states of Nevada and New Mexico (that appear as a single group in the data
set). For each housing unit, we estimate the value gi: We take the total area of each house in
square feet, as reported in the data set, and divide by the number of stories to obtain an estimate
of the total roof area. Then, we assume that each square foot of panel area can generate 9 Watts
of electricity when the sun is shining [Solar-Estimate, 2012] to obtain the rated power output of
solar panel installations. This estimate is an approximation of installed capacity because total
household area reported in the survey also includes basements and attics, where they are present.
Moreover, not all available roof space is typically usable for solar panels. Accordingly, we correct
this estimate (as a first approximation) by a single multiplicative factor such that installation
sizes so obtained are roughly in the 3 kWh - 10 kWh range [Fu et al., 2016]. We multiply this
installation capacity by 2190, the estimated number of hours of sun in Nevada and by 2471 hours
of sun for New Mexico to estimate the generation per year for households in each state [SolarDirect,
2016]. We group these households into 4 roughly equally sized buckets (i = 1 . . . 4) based on their
generation capacity. Within each bucket i, we compute the average energy demanded di and the
average generation capacity gi. Bucket size hi is computed as the proportion of these households
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Table 1.1: Estimated parameters for the state of Nevada

Generation
Class (kWh)

Avg. Generation
gi (kWh)

Avg. Demand
di (kWh)

Avg. Excess
ei (kWh)

% households
hi

0-6500 5272 8896 2636 24.11%
6500-8700 7653 10383 4577 25.00%
8700-11000 9907 13204 5995 24.11%

>11000 14483 14282 10252 26.78%

Table 1.2: Estimated parameters for the state of New Mexico

Generation
Class (kWh)

Avg. Generation
gi (kWh)

Avg. Demand
di (kWh)

Avg. Excess
ei (kWh)

% households
hi

0-7250 5778 8810 2765 21.42%
7250-9500 8326 9808 4971 24.12%
9500-12250 10947 13303 6397 26.78%

>12250 16212 14210 11352 27.68%

belonging to generation bucket i (we normalize the total number of households to 1). Since ∑I
i hi

is normalized to 1, ΔS, ΔC, and ΔU are measured on a per-household basis.
Using the US Department of Energy data on hourly residential load in a typical meteorological

year for cities in Nevada and New Mexico [US Department of Energy, 2013], we find that residences
in Nevada typically consume about µ = 29% of their demand between the hours of 11 a.m. and 6
p.m., typical hours for solar reliance. This figure is about µ = 34% for New Mexico. Since we do
not have this data broken up by household class, we assume that all houses consume this proportion
of their demand when the sun is shining, and use this to estimate ei, the excess generation they
would be able to sell back to the grid as max (0, gi − µdi).

The results of this exercise are shown in Tables 1.1-1.2. We use these parameters in our analysis.

5.2 Comparison of tariff structures

We now wish to compare the tariff structures in operation in Nevada and New Mexico to our
suggested two-part tiered tariff structure. We are particularly interested in understanding how
these tariff structures perform with respect to their ability to induce CS-free outcomes. To do so,
we set ΔC = 0 and compare tariff structures. (If ΔC < 0, then CS is unavoidable; as ΔC increases
above zero, CS-free outcomes become easier to induce.) We ignore the federal investment tax credit
in our experiments because it will ramp down starting in 2019 [Energy.gov, 2017].

As noted in Section 4, not all customers who are financially incentivized to install solar do
so; we attempt to capture this inertia in our experiments by letting πi be the proportion of class
i households that adopt solar if financially prudent. Equivalently, this may be interpreted as
the probability that a class i household that is financially incentivized to adopt solar does so.
We estimate a reference level of πi for each class and state in our data set using data from the
preliminary version of US Energy Information Administration’s Residential Energy Consumption
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Table 1.3: Estimated π values

Generation
Class (i)

Nevada New Mexico
Optimistic πi Pessimistic πi Optimistic πi Pessimistic πi

1 4.05% 1.35% 3.51% 1.17%
2 4.15% 1.38% 3.81% 1.27%
3 3.83% 1.28% 3.33% 1.11%
4 3.35% 1.12% 3.01% 1.00%

2015 Survey [U.S. Energy Information Administration, 2015]8, which also has a flag indicating
whether the surveyed households have installed rooftop solar. Specifically, we use data from the
Pacific Census Region, where households have had significant federal and state incentives to adopt
solar [Borlick and Wood, 2014].

We scale these πi values to come up with values of πi that reflect optimistic and pessimistic
adoption scenarios. Under the optimistic scenario, if all classes adopt at the specified πi levels, 3% of
all residential energy, the current level in California, [California Distributed Generation Statistics,
2017, Ivan Penn, 2017] will be supplied by rooftop solar. Under the pessimistic scenario, if all
classes adopt at the specified πi levels, 1% of all residential energy will be supplied by rooftop solar.
Table 1.3 shows the results of this exercise.

To study this situation with partial adoption within a class, we reformulate P1 so that E(z)

values (this is the migration quantity corresponding to outcome z) accurately reflect the change in
energy demanded from U given adoption levels πi. Since πi < 1, ∀i, we reformulate P2 as follows:

min
T(·)

max
i

{
T(d ′

i, ei, 1) + psgi − pr0di, T(di, 0, 0) − pr0di
}

Subject to constraints:

t(i) = T(di, 0, 0) − T(d ′
i, ei, 1)

gi
, ∀i

I∑
i=1

hi
(
s∗
i
(
πiT(d ′

i, ei, 1) + (1 − πi))T(di, 0, 0)
)

+ (1 − s∗
i )T(di, 0, 0)

−cz∗
u (s∗

i (πi(di − gi) + (1 − πi)di) + (1 − s∗
i )di)

)
−

I∑
i=1

hi(pr0 − cE0
u )di = ΔU

t(i) ordering consistent with o

(t(m(o)) − cs)
I∑

i=1
s(z∗)
i πihigi = ΔS

(t(i) − cs)
I∑

j=1
It(j)>t(i)in ordering o · πjhjgj < ΔS, ∀i ̸= m(o).

In our numerical study, we use a cs value of $0.059 for Nevada and $0.052 for New Mexico. We
8The complete version of this data set is still not available.
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compute this using a 30 year lifetime [SolarCity, 2016c] for solar systems that produce power at
200 Watts per panel [SolarCity, 2016b], with output degrading at a rate of 0.5% per year [Jordan
et al., 2010] and a per Watt cost of $2.89 [SolarCity, 2016a].

Next, we turn to estimation of cx
u. Using financial disclosures from NV Energy in Nevada [NV

Energy, 2016a,b] and PNM Energy in New Mexico [PNM Energy, 2017], we estimate cE0u to be
$0.035 in Nevada and $0.030 in New Mexico. Since natural gas and other fossil fuels are the
major source of fuel in Nevada (81%) and New Mexico (66%), we estimate parameters for the
post-solar case by assuming that rooftop solar generation displaces natural gas. We obtain the
mix of energy sources used in Nevada from U.S. Energy Information Administration [2016a] and
for New Mexico from U.S. Energy Information Administration [2016b]. In order to compute c(z

u ),
we use the levelized cost estimates of various sources of electricity from Lazard [2017], scaled by a
multiplicative factor to make them consistent with cE0u . In order to estimate the values of mx

u, we
use the lifecycle greenhouse gas emissions of different energy sources published in Intergovernmental
Panel on Climate Change [2014] and a social cost of Carbon of $59.03 per metric ton of CO2, which
we obtain by correcting the 2030 social-cost-of-Carbon estimate of fifty 2007 dollars per metric ton
of CO2 (Environmental Protection Agency [2017]) for inflation. We use the 2030 value rather than
the 2020 value in order to reflect the long-term nature of regulatory planning for rooftop solar; of
the years for which estimates are available, 2030 falls closest to the middle of the typical 30 year
useable lifetime of a solar panel.

We now individually consider the cases of Nevada and New Mexico. Since we are interested in
studying customer equity outcomes, we set ΔS = 0.0001, and set ΔU so that ΔC = 0 according to
equation ΔC = cE0u E0 − cE0−E(z)

u (E0 − E(z)) − csE(z) − ΔS − ΔU. We compare the performance of
our tariff structure and the tariff structure in operation on both the pessimistic and the optimistic
adoption scenarios. For each state, for each type of scenario, we carry out the following steps:

1. Enumerate the objective value of P1 for all 16 possible outcomes (each tier may either be
incentivized to adopt or not adopt). Choose the outcome z∗ with the best objective value.

2. Corresponding to this solution z∗, find the solution of P2 for all possible orderings o using
the tariff structure in operation in the state. Choose the solution with the best objective
value.

3. Corresponding to this solution z∗, find the solution of P2 for all possible orderings o using
our suggested two-part tiered tariff structure, including the constraints required to ensure
that customers are not encouraged to spoof their demands or generation amounts to generate
bill savings. Choose the solution with the best objective value.

5.3 Nevada

For both the optimistic and pessimistic scenarios in Nevada, we find that the solution to P1 cor-
responds to all four classes of customers adopting solar. In the optimistic scenario, the objective
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Table 1.4: Solutions - Nevada Optimistic Scenario

Two-part Tiered Tariff
pr f1 f2 f3 f4

$0.1018 $225.355 $327.132 $423.481 $619.084
Optimal ordering P2 Objective value

4, 1, 3, 2 $1.13291 · 10−7

Current Non-tiered Tariffrd sd se r0 s0
$0.0711 $0.0711 -$0.0545 $360.3880 $380.0950

Optimal ordering P2 Objective value
1, 3, 2, 4 $87.3733

Table 1.5: Bill Comparisons - Nevada Optimistic Scenario

Two-part Tiered
Tariff Outflows

Current Non-tiered
Tariff Outflows

Class Old Bill Adopter Non-adopter Adopter Non-adopter
1 $905.79 $905.79 $905.79 $992.88 $992.88
2 $1,057.20 $1,057.20 $1,057.20 $1,102.40 $1,098.80
3 $1,344.43 $1,344.43 $1,344.43 $1,299.74 $1,299.74
4 $1,454.19 $1,454.19 $1,454.19 $1,392.28 $1,376.52

value of P1 is $1.46, and for the pessimistic scenario the objective value is $0.49. Recall that these
are to be interpreted as normalized net welfare improvements on a per-household basis.

NV Energy in Nevada operates a non-tiered tariff structure. After the changes in 2015, NV
Energy published a memo to its customers, providing an overview of the changes they would see in
their bill [NV Energy, 2015]. According to these changes, solar customers would be compensated at
less than retail rates for excess energy sold back to the grid and would pay different fixed costs from
non-solar customers. However, there was to be no change to the energy charge (the per-unit) energy
rate for solar and non-solar customers. Accordingly, we use tariff structure (1.24), restricting rd to
be equal to sd. We use a value of pr0 = $0.10182, the average value of the rates in Northern and
Southern Nevada (NV Energy [2017]). The results of our experiments are summarized in Tables
1.4-1.7. We see that in both the optimistic and pessimistic scenarios, the objective value of P2

using the current non-tiered tariff is quite large—indicating the presence of CS—compared to that
of our suggested tariff (where it is near 0). Therefore, this outcome constitutes a situation of CS.
We see that tier 1 and 2 customers are adversely affected by a move to solar. Further, the most
strongly impacted households are tier 1 customers, who are also potentially the poorest customers
with smaller houses and lower demand.

5.4 New Mexico

As was the case with Nevada, for both the optimistic and pessimistic scenarios in New Mexico,
we find that the solution to P1 corresponds to all four classes of customers adopting solar. In the
optimistic scenario, the normalized objective value of P1 is $1.97, and for the pessimistic scenario
it is $0.66.
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Table 1.6: Solutions - Nevada Pessimistic Scenario

Two-part Tiered Tariff
pr f1 f2 f3 f4

$0.1018 $225.354 $327.132 $423.480 $619.0840
Optimal ordering P2 Objective value

3, 1, 4, 2 $1.16379 · 10−7

Current Non-tiered Tariffrd sd se r0 s0
$0.0606 $0.0606 -$0.0585 $484.2210 $486.7230

Optimal ordering P2 Objective value
1, 3, 2, 4 $117.470

Table 1.7: Bill Comparisons - Nevada Pessimistic Scenario

Two-part Tiered
Tariff Outflows

Current Non-tiered
Tariff Outflows

Class Old Bill Adopter Non-adopter Adopter Non-adopter
1 $905.79 $905.79 $905.79 $1,023.36 $1,023.36
2 $1,057.20 $1,057.20 $1,057.20 $1,113.93 $1,113.48
3 $1,344.43 $1,344.43 $1,344.43 $1,284.45 $1,284.45
4 $1,454.19 $1,454.19 $1,454.19 $1,351.76 $1,349.78

New Mexico’s net-metering regulations have also seen some recent opposition [Robert Walton,
2016]. As it stands, New Mexico operates a tiered retail net-metering tariff that does not allow dis-
crimination between solar and non-solar households [NC Clean Energy Technology Center, 2017a];
the tariff structure treated in Section 4.2. In order to set up this tariff structure, recall that our
estimates in Table 1.2 categorized customers in New Mexico into four tiers. We use values of
pr0 = $0.088, $0.090, $0.097, and $0.099 corresponding to rates that would apply to tiers 1, 2, 3,
and 4 respectively [PNM Energy, 2018]. For convenience, we choose rate class boundaries close to
the average of the tier demand values di. Specifically, we let rate class 1 apply to customers who
demand up to 9300 kWh, rate class 2 apply to customers who consume between 9300 and 11550
kWh, rate class 3 apply to customers who demand between 11550 and 13750 kWh, and rate class
4 apply to customers who demand more than 13750 kWh.

Now, we consider the modifications required to the tariff structure in the post-solar case. Recall
that a class c customer’s bill under this tariff structure is of the form rcn + f, where n is the net
demand of the customer being considered. From the estimates of d and g in Table 1.2, we compute
the net demand (d − g) values for all tiers, if they were to adopt. A tier 1 customer who adopts has
a net demand of 3031 kWh, a tier 2 customer who adopts has a net demand of 1482 kWh, a tier 3
customer who adopts has a net demand of 2356 kWh, and a tier 4 customer who adopts has a net
demand of −2001 kWh (tier 4 customers are net suppliers). These are very low usage levels. In
order to give additional flexibility to the New Mexico tariff, we add a fifth rate class that applies to
net demands of up to 5900 kWh. This fifth rate class will then apply to all households that adopt
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Table 1.8: Rate Classes - New Mexico

Class 1 Class 2 Class 3 Class 4 Class 5
Net demand (kWh) 0-5900 5900-9300 9300-11550 11550-13750 >13750

Rate r1 r2 r3 r4 r5
Table 1.9: Solutions - New Mexico Optimistic Scenario

Two-part Tiered tariff
pr Non-adopters f1 f2 f3 f4

-$99.9315 -$91.6358 -$31.1684 -$4.8735
$0.0993 Adopters f1 f2 f3 f4

$171.5560 $299.5730 $483.1920 $756.8710
Optimal ordering P2 Objective value

1, 2, 3, 4 $5.50725 · 10−7
Current Tiered Tariff

r1 r2 r3 r4 r5 f
$0.0001 $0.0340 $0.0440 $0.0430 $0.06 555.56

Optimal ordering P2 Objective value
2,4, 3, 1 $108.76

solar9. Table 1.8 summarizes the rate classes under consideration.
We compare New Mexico’s tiered tariff structure to a variant of our tariff structure discussed

in Section 4.3, where we have fixed costs that vary by tier in order to accommodate the fact that
pr0 varies by tier (please see footnote 5 in Section 4.3). We also impose constraints to make rates
ri, ∀i positive. The results of our experiments are summarized in Tables 1.9-1.12. These show a
similar situation to Nevada’s where tiers 1 and 2 are affected. However unlike in Nevada, the most
adversely affected customers are customers in tier 2.

In summary, although Proposition 2 showed that P2 might not be feasible under the non-tiered
tariff structure (1.24), we did not encounter infeasibility in our experiments for Nevada. However,
while feasible, the non-tiered linear tariff structures in Nevada and New Mexico performed poorly
compared to our tiered tariff structure with respect to their ability to avoid CS: In Nevada, under
both the pessimistic and optimistic scenarios, the customers most affected by the introduction of
solar belonged to tier 1. These are the households with the smallest rooftops, possibly housing
lower-income residents. In New Mexico, the most adversely affected customers were customers

9Adding a new rate class for each of the four net-demand usage levels will implicitly enable the New
Mexico tariff to distinguish between solar and non-solar customers, making it equivalent to our tariff.

Table 1.10: Bill Comparisons - New Mexico Optimistic Scenario

Two-part Tiered
Tariff Outflows

Current Tiered
Tariff Outflows

Class Old Bill Adopter Non-adopter Adopter Non-adopter
1 $775.28 $775.28 $775.28 $858.08 $858.08
2 $882.72 $882.72 $882.72 $991.49 $991.49
3 $1,290.39 $1,290.39 $1,290.39 $1,128.72 $1,128.72
4 $1,406.79 $1,406.79 $1,406.79 $1,404.38 $1,404.38
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Table 1.11: Solutions - New Mexico Pessimistic Scenario

Two-part Tiered tariff
pr Non-adopters f1 f2 f3 f4

-$99.9315 -$91.6358 -$31.1684 -$4.8735
$0.0993 Adopters f1 f2 f3 f4

$171.5560 $299.5730 $483.1920 $756.8710
Optimal ordering P2 Objective value

1, 2, 3, 4 $5.50725 · 10−7
Current Tiered Tariff

r1 r2 r3 r4 r5 f
$0.0001 $0.0340 $0.0440 $0.0430 $0.06 555.56

Optimal ordering P2 Objective value
2,4, 3, 1 $108.76

Table 1.12: Bill Comparisons - New Mexico Pessimistic Scenario

Two-part Tiered
Tariff Outflows

Current Tiered
Tariff Outflows

Class Old Bill Adopter Non-adopter Adopter Non-adopter
1 $775.28 $775.28 $775.28 $858.08 $858.08
2 $882.72 $882.72 $882.72 $991.49 $991.49
3 $1,290.39 $1,290.39 $1,290.39 $1,128.72 $1,128.72
4 $1,406.79 $1,406.79 $1,406.79 $1,404.38 $1,404.38

in tier 2, which shows that no class of rate-payers can be assured of not being forced into cross-
subsidization. In contrast, our tiered tariff structure was able to avoid CS even after we imposed
constraints to prevent customers from exaggerating their demand to realize bill savings. These
experiments serve to illustrate the crucial role that tariff structure plays in helping to ensure equity
across customers.

6 Conclusions and Future Work

There has been considerable regulatory flux associated with rooftop solar energy in the past few
years. The regulator’s task of trading off the interests of the utility company, the solar company,
different consumers and society at large is clearly a challenging one. In some cases regulators have
made decisions with dire consequences: Regulatory changes introduced in the state of Nevada all
but killed the solar industry in the state.

In this chapter, we study the regulator’s problem of choosing a tariff function to induce a socially
optimal outcome. The regulator takes into account financial and environmental considerations and
operates in a setting with a monopolistic, price-setting solar company and customers who individ-
ually decide whether or not to install solar. We pose the regulator’s decision as an optimization
problem which we show can conveniently be hierarchically separated into two subproblems. We
show analytically that the tariff structure chosen must have the ability to discriminate across cus-
tomer usage tiers and the ability to discriminate between solar and non-solar customers in order
to guarantee feasibility. We present a tariff structure with both these features and show that in
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addition to guaranteeing feasibility, it also can guarantee outcomes free from cross-subsidization
when solar adoption generates a surplus for the customer base. The implication of our work is that
utility regulators must migrate to tiered tariff structures and put solar and non-solar customers on
different rate schedules in order to induce socially optimal outcomes. While some states such as
Arizona already seem to be moving in this direction, most utility tariffs in the U.S. do not have
both these features.

This work lays the foundation for several research extensions. For instance, our model considers
a flat-rate pricing scheme, rather than a time-of-use (TOU) pricing scheme such as the one being
rolled out in California. While TOU is yet to gain significant traction in the U.S., modeling
this explicitly could eventually become critical to analyzing policy decisions related to solar, as
having a TOU pricing scheme incentivizes customers to shift their demand profiles temporally
(demand response). Capturing demand response would also modify our model’s current assumption
that the aggregate demand for electricity is unaffected by solar adoption. In addition, our work
models the solar company as being monopolistic. Another possible avenue for future research is
to explicitly model competition in the solar system marketplace, with the utility itself potentially
being a competitor in the solar domain. Similarly, while our model implicitly captures the impact
of utility capacity investments in response to solar adoption through parameters cx

u and mx
u, one

could consider a model in which these investment decisions are explicit outputs of the model.
And, on the customer side, we could modify the assumption that all customers (or an exogenously
defined proportion) who are incentivized to adopt solar do so. An interesting extension would be to
endogenously determine the proportion of customers in a tier that would adopt solar as a function
of bill savings generated.

While this work explores a static setting, related questions can be explored in a dynamic
setting, complementing existing literature such as Babich et al. [2017] and Lobel and Perakis [2011].
Such work would require a significantly different model that captures the diffusion of solar among
customers, the interaction between solar adoption penetration and solar cost, and potentially utility
capacity investment decisions. If such work also continued to capture heterogeneity in the customer
base, this would necessitate more nuanced modeling of the regulator’s optimization problem.
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2
Evaluating the First-mover’s Advantage in
Announcing Real-time Delay Information

1 Introduction

Some services provide delay information to manage congestion by influencing their customers’
patronage decisions; e.g., in call centers callers decide whether to continue to wait, call back later,
or request a call-back based on the announced delays. Recent advances in internet-based technology
have enabled customers to be informed about delay information at multiple competing service
providers simultaneously—even before physical interaction with any of them—to decide which
provider to patronize. For example, the Florida Hospital system publishes the real-time estimated
delays at its 22 emergency rooms (ERs) on a smart-phone application [Florida Hospital, 2016], and
the paid ERtexting service allows hospitals to text their expected delays to a central server that
broadcasts the information to the community [Sadick, 2012]. Restaurants have also taken advantage
of internet-based applications for delay information dissemination; for example, the application
NoWait, available as a paid service to restaurants, disseminates the restaurants’ expected time-to-
seat [Perez, 2014], enabling diners to choose one of several restaurants based on their anticipated
delays. NoWait has recently been acquired by and integrated into Yelp [Sawers, 2017].

When a service provider functions in isolation, the Operations Management literature has docu-
mented the advantages of delay announcements for the service provider and customers [e.g., Whitt,
1999]. Furthermore, settings with multiple service providers operating in a network setting, where
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all announce equally-rich delay information have received attention. For example, the implication
of announcing real-time delay information on network synchronization has been studied in the
context of ambulance diversion and emergency rooms [Deo and Gurvich, 2011, Dong et al., 2018].
However, service providers are often not identical in their propensity to adopt the required technol-
ogy to disseminate real-time delay information. In the absence of real-time information for a service
provider, customers often use historical information, typically reported in a moving average form
[TechCrunch, 2015]. Therefore, it is not atypical that customers are required to make patronage
decisions based on heterogeneously-rich delay information from competing providers.

In this chapter, we consider such a network setting where customers make patronage decisions
based on (potentially) heterogeneously-rich delay information from two service providers with com-
parable services (but not necessarily equal service rates). We take the perspective of the service
provider that is more tech-savvy; we call this provider the technology leader L. We study when
L should invest in the infrastructure to make the first move in disseminating truthful1 real-time
delay in an attempt to attract more market share. The other service provider, the follower F, can
opt to respond to L’s announcement. We study the impact on competition rather than network
coordination (or, synchronization). We cast our model as a combination of a sequential game and
continuous-time Markov chains (CTMCs). We choose a sequential game structure, rather than a
simultaneous one, because of two observations:

1. Not all service providers are equally willing to invest in new technology and infrastructure, as
evidenced by the remarkably low penetration rate of such technology among service providers.
Only 12% of restaurants consider themselves to be technology leaders. Our own exploration
on the Yelp app shows that only 5 out of the 383 restaurants within a six-block radius
of Yelp’s downtown office in San Francisco have Yelp’s NoWait infrastructure in place to
disseminate real-time delay information (see Fig. 2.1). Similar adoption heterogeneity is also
prevalent among Emergency Departments: In San Jose, only two of five urgent care centers
announce real-time delay information, while the other three only provide historical average
delay (updated monthly or yearly, for example) [HospitalStats, 2017].

2. This modeling choice allows us to also provide insights to firms that sell infrastructure for
delay-information dissemination (like NoWait); is it possible for such firms to efficiently
target one of the service providers and allow market competition to induce the other service
provider to also adopt their technology without the extra marketing effort and cost?

We summarize our findings, from a combination of analytical derivations and numerical exper-
iments, as follows:

1The backlash from systematic information misrepresentation could result in loss of customer goodwill
and even legal actions; O’Donnell [2014] reports about the repercussions of delay information falsification at
a Veterans’ Administration Hospital.
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Figure 2.1: Penetration of real-time delay announcement infrastructure is not significantly high

- L should initiate delay announcements only if she is not the higher-capacity service provider
as it improves her market share in equilibrium. If L is the higher-capacity service provider,
initiating delay announcements would result in market share loss.

- When L initiates delay announcements in equilibrium, F’s optimal response is mixed; for
some range of system load, F’s optimal response is to follow L in announcing real-time delay,
but for some intermediate system loads, it is optimal for F not to respond.

- From the perspective of a delay-announcement infrastructure firm such as NoWait, it is
prudent to target the lower-capacity service provider.

- Social welfare, measured by average customer delay, improves in equilibrium when L initiates
delay announcement, and remains unchanged otherwise.

2 Literature Review

Ibrahim [2018] provides a comprehensive review of the delay announcement literature, including
various delay estimators. The queue length (QL) estimator (expected delay ≈ queue length × average
service time) is commonly used in Markovian first-come-first-served (FCFS) systems, because of
its computational simplicity and accuracy [Ibrahim and Whitt, 2009a]. Extensions are available
for systems with customer abandonment, priority service, and time-varying arrivals [Ibrahim and
Whitt, 2009b, Jouini et al., 2009, Ibrahim and Whitt, 2011, Jouini et al., 2015]. Other estimators
include delay of the last customer to enter service, head-of-the-line customer, most recently served
customer, and data-driven estimators [Ibrahim and Whitt, 2009a,b, Ibrahim et al., 2015, Ang et al.,
2015]. We employ the QL estimator in our analysis.

The impact of delay information provision has been studied extensively in single-service provider
settings. Whitt [1999] and Armony and Maglaras [2004], among others, document the benefits
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of QL announcements to improve wait times and system utilization when customers use them
to make balk/join decisions. Armony et al. [2009] model the equilibrium balk/join behavior of
utility-maximizing customers in a multi-server queueing environment, and Akşin et al. [2016] show
empirically that callers to a call center react to longer delay announcements by abandoning earlier.
Hassin [1986] shows that it could be socially suboptimal for a service provider to suppress her
QL delay. Jouini et al. [2011] show that firms can control congestion by announcing different
percentiles of the waiting time distribution. Guo and Zipkin [2007] identify conditions under which
broadcasting more precise information could degrade system performance and customer experience;
therefore, a self-interested firm may intentionally provide vague information [Allon et al., 2011].

We consider a multi-service provider (or, a network) setting. A related example in the literature
is the impact of ambulance diversion, in which ERs can request diversion of ambulances to other
hospitals during overcrowding periods, on network coordination. Considering decentralized thresh-
old diversion policies, Enders [2010] establishes the optimality condition for the “never divert”
policy, and Deo and Gurvich [2011] establish the Pareto optimality of the defensive equilibrium in
which the ERs are always on diversion. Do and Shunko [2015] propose a centralized threshold pol-
icy that is Pareto improving over the decentralized policy. He and Down [2009], Ramirez-Nafarrate
et al. [2014], and Dong et al. [2018] show that delay announcements improve network synchroniza-
tion and customers’ wait times even when a small proportion of customers decide based on the
delay information.

The paper most relevant to our work is Hassin [1996], which models two gas stations with
equal service rates on a highway where drivers only observe the nearer station’s queue, and infer
the farther station’s expected delay conditioned on the expected delay at the nearer station. He
concludes that the station with the observable queue always attracts more demand, and thus, it
helps to be the server with the observable queue when your competitor’s queue is unobservable.
Altman et al. [2004] extend the model to heterogeneous service rates; they hypothesize that the
emerging equilibrium is not always of threshold type [unlike in Hassin, 1996]. They support this
hypothesis using a mixture of numerical and analytical arguments.

In Hassin [1996] and Altman et al. [2004], the service providers do not have the choice of
revealing/hiding their delay information; the congestion level is observable for one service provider
and not for the other one. In contrast, we allow the service providers to choose their best delay
announcement strategy as a lever for competitive advantage in a sequential game setting. We also
allow for unequal service capacities. Notably, we find that it is the difference in service capacities
that drives the players’ choices. Further, customers in Hassin [1996] and Altman et al. [2004]
are assumed to be sophisticated enough to compute the conditional expected delay at the service
provider with the unobservable queue, given the state of the observable queue, in real time; this
requires customers to know the exact operating parameters of the service providers and perform
complex equilibrium calculations. We model customers as naturally less sophisticated; when only
one service provider announces real-time delay information, customers are not able to exactly infer

42



the expected congestion level of the unobservable (non-announcing) service provider. Instead, they
construct and periodically update a belief about her historical delay (for example, through previous
service encounters), or they can access her moving average delay (for example, through published
reports).

Dong et al. [2018] is a recent work that explores the operational implications of delay announce-
ment in a network. They focus on the impact on network coordination, and their numerical and
simulation results indicate that the level of achievable coordination depends on several factors,
including heterogeneity in service capacities. They also study the impact of different delay esti-
mating methods (moving averages with different time windows), however, they do not consider
heterogeneous granularity of delay information among the service providers; all service providers
employ delay estimators with similar settings. In a similar vein, Pender et al. [2018] investigate the
impact of announcing moving average delay to customers on the resulting queueing dynamics; as
with Dong et al. [2018], all service providers employ the same delay announcement strategy. Using
a fluid-model approximation, Pender et al. [2018] show analytically that providing moving average
announcements can result in oscillations in the delay. This is similar to the oscillations empirically
recorded in Dong et al. [2018].

Unlike Dong et al. and Pender et al. [2018], we investigate a network where the competition
effect is dominant, and therefore, we investigate the impact of delay announcements on market
shares. Furthermore, as mentioned before we allow for the service providers to have different delay
announcement policies.

3 Model Setup

We consider a system with two single-server service providers, L and F, with service capacities µ(L)

and µ(F). we do not impose any relationship between µ(F) and µ(L). Therefore, the leader L may
be the faster or the slower of the two providers. L and F offer comparable services and compete
for market share. Delay-sensitive customers arrive according to a Poisson distribution with rate Λ.
For system stability, we assume:

Assumption 1 Λ < µ(L) + µ(F).

Customers patronize the service provider with whom they expect a shorter queue delay2, which in
the absence of delay announcements, results in respective effective status-quo arrival rates λ

(L)
0 and

λ
(F)
0 (Λ = λ

(L)
0 + λ

(F)
0 ). We denote the status-quo average queue delays and market shares by D(i)

0
and M(i)

0 = λ
(i)
0 /Λ. Given customers’ delay-minimizing behavior, we endogenously determine λ

(L)
0

and λ
(F)
0 such that D(L)

0 = D(F)
0 ; i.e., routing based on customers’ beliefs about the service providers’

delays leads to equal delays; this corresponds to the Wardrop equilibrium [Hassin, 2016, p. 207],
and matches the routing mechanism in Hassin [1996, p. 623] when both queues are unobservable.

2Alternatively, we could model customers as making patronage decisions based on sojourn time. These
results would be similar.
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Without loss of generality, we scale time such that µ(L) = 1. Considering exponential service
times and no delay announcements from the two service providers, L and F are independent stable
M/M/1 queues with expected delays,

D(L)
0 = λ

(L)
0

1 − λ
(L)
0

and D(F)
0 = λ

(F)
0

µ(F)
(
µ(F) − λ

(F)
0

) . (2.1)

By setting D(L)
0 = D(F)

0 , we derive M(L)
0 as in (2.2), and the status-quo market share for F follows

M(F)
0 = 1 − M(L)

0 . Replacing the two status-quo market shares in (2.1), we derive the status-quo
delay as in (2.3).

M(L)
0 =


1 + µ(F)2 + Λ

(
1 − µ(F)

)
−
√(

1 + µ(F)2 + Λ
(
1 − µ(F)))2 − 4Λ

(
1 − µ(F))

2Λ
(
1 − µ(F)) µ(F) ̸= 1,

1
2 µ(F) = 1,

(2.2)

D(L)
0 = D(F)

0 =


1 + µ(F)2 − Λ

(
1 + µ(F)

)
−
√(

1 + µ(F)2 − Λ
(
µ(F) − 1

))2
+ 4Λ

(
µ(F) − 1

)
2µ(F) (Λ − µ(F) − 1

) µ(F) ̸= 1,
Λ

2 − Λ µ(F) = 1.

(2.3)

We refer to the status-quo setting, in which neither of the service providers broadcasts real-time
delay, as Regime 0 or Period 0.

3.1 First Mover’s Game

Service provider L, the Leader, is considering announcing real-time delay information. Being the
leader, L might expect to accrue immediate short-term benefits. However, the potential short-term
benefits (if any) might not sustain in the long term as F, the Follower, could respond after realizing
(or anticipating) a potential market share loss. Therefore, L must account for F’s possible response
to evaluate the long-term effects of real-time delay announcements.

We model L’s decision as a sequential game. We demarcate two information regimes that
arise. In Regime 1, F opts not to respond to L, and therefore, only L announces real-time delay
information. In Regime 2, F responds to L with a time lag after which both L and F announce
real-time delay information. Fig. 2.2, in which M(i)

R1
and M(i)

R2
, i ∈ {L, F} represent the long-term

market shares in Regimes 1 and 2, depicts the game structure: L anticipates F’s best response if
she opts to initiate real-time delay announcements and compares the resulting market share to her
status-quo market share M(L)

0 . We consider market share as the main decision factor in the game
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as it influences profitability directly. We investigate the decision effects on customer delay as well,
but we exclude it from the game to avoid the need to impose a specific cost function to account for
its indirect effect on profitability. A similar approach is taken in Hassin [1996], for example.

L

F
responds

after a lag

ோభ

(௅), ோభ

(ி)

ோమ

(௅), ோమ

(ி)

଴
(௅)

଴
(ி)

Regime 1

Regime 2

Figure 2.2: First mover’s sequential game

3.2 Customer Patronage Decisions and CTMCs under Regimes 1 and 2

We detail the customer patronage decision models and the resulting CTMCs for service providers
L and F to analyze their market shares under Regimes 1 and 2 in Sections 3.2.1-3.2.2.

3.2.1 Regime 1 Model

Under this information regime, L announces real-time QL delay: The announced expected delay to
a customer is dn = n(L)/µ(L) = n(L) (as µ(L) = 1) where n(L) is L’s current number of customers.
Since F does not announce real-time delay, customers make patronage decisions based on their
beliefs of F’s delay (or F’s historical average delay, if available).

We consider the notion of updating periods: Customers’ beliefs (or knowledge) about F’s average
delay are updated at the end of each period, assuming the periods are long enough for system
stationarity (for example, ERs’ published delays are based on annual averages [Groeger et al.,
2014]). We index the updating periods by t, and we refer to the initial state of the system (the
status quo) as Period 0. We denote the effective arrival rate, market share, and average delay of
service provider i in Period t by λ

(i)
t , M(i)

t , and D(i)
t , respectively.

In any Period t ≥ 1, customers make joining decisions based on the available information; they
join L if dn ≤ D(F)

t−1 and join F otherwise. We break ties in favor of L taking into account her more
reliable and up-to-date information. This induces a threshold structure for the arrivals: When
n(L) < Ct =

⌊
D(F)

t−1 + 1
⌋
, where ⌊ ⌋ is the floor function, the arrival rate to L is Λ and to F is 0;

otherwise, the arrival rate to L is 0 and to F is Λ. Figs. 2.3(a)-2.3(b) present the resulting CTMCs.
In each period, we analyze Model L to compute L’s effective arrival rate, which relies on D(F)

t−1
(found in the previous period), and to compute Period t market shares. Then, we analyze Model

45



F to compute F’s average delay in Period t, which is used by the customers to make Period t + 1
decisions.

0

Λ
1 �

1
Ct-1 Ct

1

Λ

(a) Model L

n( )

n(L)

1,0 1,1 1,2

0,1 0,20,0
…

…

… … …

Ct ,0 Ct ,1 Ct ,2

Ct -1,1 Ct -1,2Ct -1,0
…

…

(b) Model F

Figure 2.3: CTMCs in Period t ≥ 1

Model L is a birth-death process with the states representing n(L). Model F’s state space is
two-dimensional ({(n(L), n(F)) : n(L) = 0, . . . , Ct; n(F) = 0, 1, . . . }) as we need to keep track of both
n(L) and n(F) to determine F’s effective arrival rate. The transitions from a general state (n(L), n(F))
follow:

- Service completion at L when n(L) > 0, with rate µ(L) = 1, resulting in a transition to
(n(L) − 1, n(F)),

- Service completion at F when n(F) > 0, with rate µ(F), resulting in a transition to (n(L), n(F)−
1),

- Arrival to L when n(L) < Ct, with rate Λ, resulting in a transition to (n(L) + 1, n(F)),

- Arrival to F when n(L) = Ct, with rate Λ, resulting in a transition to (Ct, n(F) + 1).

3.2.2 Regime 2 Model

Under this information regime, both L and F announce real-time delay. The CTMC in this Regime
is akin to a Join-the-shortest-queue (JSQ) system, wherein a customer compares the queue length-
based delay estimates at L and F (i.e., n(L) vs. n(F)/µ(F)), and chooses the service provider with
the shorter expected delay. Fig. 2.4 presents the CTMC when µ(F) = 2. The transitions from a
general state (n(L), n(F)) follow:

- Service completion at L when n(L) > 0, with rate µ(L) = 1, resulting in a transition to
(n(L) − 1, n(F)),

- Service completion at F when n(F) > 0, with rate µ(F), resulting in a transition to (n(L), n(F)−
1),
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- Arrival to L when n(L) < n(F)/µ(F), with rate Λ, resulting in a transition to (n(L) + 1, n(F)),

- Arrival to F when n(L) > n(F)/µ(F), with rate Λ, resulting in a transition to (n(L), n(F) + 1),

- When n(L)µ(F) = n(F), an arriving customer chooses a service provider randomly, resulting
in a transitions to (n(L), n(F) + 1) and (n(L) + 1, n(F)), each rate Λ/2. We choose this tie-
breaking rule because customers in our model are sensitive to delay; accordingly, equal delay
announcements should result in equal arrival rates at both providers.
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1,0 1,1 1,2

0,1 0,20,0

3,0 3,1 3,2
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Figure 2.4: CTMC for Model LF in Period t ≥ 1 when µ(F) = 2

4 Analysis

Before providing the full analysis of the models under Regimes 1 and 2 in Sections 4.1 and 4.2, we
first provide a high-level summary of the two sections below:

For Regime 1, we first evaluate L’s short-term market share, i.e., her market share immediately
after she initiates real-time delay announcements. We then analytically characterize parameter
settings under which the short-term behavior persists in the long term. We also present analytical
results towards characterizing long-term market shares for more general parameter settings. Based
on a conjecture supported by exhaustive numerical trials, we obtain closed-form bounds for long-
term market shares under Regime 1.

For Regime 2, we carry out our analysis by constructing two CTMCs that, we conjecture and
validate numerically, give us bounds on the market shares of the two service providers.

4.1 Analysis of Regime 1

We first analyze Period 1 (the period immediately following L’s announcement initiation) under
Regime 1; we refer to this as short-term analysis. We then build on the short-term results to
analyze the long-term market shares.
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Let πi denote the limiting probability of state i in Model L (Fig. 2.3(a)). By solving the balance
equations, we can derive the probabilities πi, and then L’s market share in Period 1 as follows:

M(L)
1 = Λ

∑C1−1
i=0 πi
Λ = ΛC1 − 1

ΛC1+1 − 1
, (2.4)

where C1 =
⌊
D(F)

0 + 1
⌋
, and D(F)

0 follows (2.3). We have the following proposition for the short
term:

Proposition 9

- If L is the lower-capacity service provider (µ(L) < µ(F)), M(L)
1 > M(L)

0 .

- If service capacities are equal (µ(F) = µ(L)), M(L)
1 ≥ M(L)

0 .

- If L is the higher-capacity service provider (µ(L) > µ(F)), M(L)
1 may be larger or smaller than

M(L)
0 , depending on the value of Λ.

All proofs are presented in Appendix B.1.
The following characterization of market shares for extremely low and high values of load

(proved in Appendix B.1.4) is also useful to develop intuition for the underlying mechanics that
govern market shares in Regime 1.

M(L)
1 →


1 when Λ → 0,

M(L)
0 = 1

1 + µ(F) when Λ → 1 + µ(F).
(2.5)

When Λ → 0, C1 = 1 and since traffic is low, L is very rarely in state C1 = 1, attracting almost
all customers. At the other extreme, when Λ → µ(L) + µ(F), M(L)

1 → M(L)
0 ; in this case, L and F

serve at capacity and their expected delays approach ∞ in both periods (λ(L)
0 = λ

(L)
1 → µ(L))

The crux of our long-term analysis involves understanding how Ct evolves over time. First,
we investigate whether we can obtain insight about L’s long-term market share analytically via
an analysis of Period 2. This Period 2 analysis requires analytical characterization of Model F
in Period 1, which we are able to accomplish for selected parameter settings. This enables us to
analytically characterize two of the patterns in the evolution of Ct, and hence Model F that could
emerge in Period 2: instability and convergence. The onset of each of these two patterns in Period
2 allows us to predict the evolution of Ct in the following periods, and hence the long-term effects
of L’s announcements in Regime 1.

Onset of instability in Period 2. This occurs when L’s announcements in Period 0 causes
F to experience instability in Period 1. Note that instability can arise even when the whole system
is stable.

Service provider F becomes unstable in Period 1 if and only if λ
(F)
1 ≥ µ(F), where λ

(F)
1 = Λ−λ

(L)
1

(see Appendix B.1.2). This directly implies the following proposition.
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Proposition 10 F becomes unstable in Period 1 if and only if λ
(F)
1 = Λ− ΛC1+1 − Λ

ΛC1+1 − 1
≥ µ(F), where

C1 =
⌊
D(F)

0 + 1
⌋
, and D(F)

0 follows (2.3).

We noted in Proposition 9 that L could lose market share in the short term when µ(F) < µ(L).
Since F is stable in Period 0, F becomes unstable in Period 1 only if L loses too much market share.
On the other hand, Proposition 9 also notes that L always gains market share when µ(F) ≥ µ(L).
Therefore, the following sufficient condition guarantees F’s stability.

Proposition 11 When µ(F) ≥ µ(L), F is stable in Period 1.

For the remainder of the chapter, we focus on cases where L and F remain stable in all periods.
Onset of convergence in Period 2. When C2 = C1, the systems in Periods 1 and 2 are

identical, and therefore, Ct = C2 = C1, ∀t > 2, implying that the system converges. Analytical
characterization of the parameters under which convergence occurs in Period 2 would inform us
of the conditions under which the market share expression in (2.4) (and therefore the findings
of Proposition 9) continues to hold in the long term. Unfortunately, Model F (Fig. 2.3(b)) is
analytically intractable for an arbitrarily high number of phases (a general C1). But we are able to
derive closed-form analytical expressions for C2 when C1 = 1 or 2 by solving a simultaneous non-
linear system of equations. We use these expressions to provide sufficient conditions for convergence
in Period 2. We present the details in Appendix B.2. (This procedure remains valid for C1 > 2,
but it results in higher-order simultaneous non-linear systems of equations, which cannot be solved
in closed form.) We obtain the following explicit condition for convergence in Period 2.

Proposition 12 Convergence occurs at C1 = C2 = 1 in Period 2 if

Λ <
1
2 min

µ(F) µ(F)2 − 1 +
√(

µ(F) + 1
) (

µ(F) + 5
)

µ(F) + 1
,
2µ(F)2 + µ(F) + 1

µ(F) + 1

 .

A similar convergence condition relating Λ and µ(F) exists for convergence at C1 = C2 = 2. This
condition is extremely large and unwieldy to present.

Figs. 2.5(a)-2.5(b) plot the convergence conditions in Period 2 for C1 = C2 = 1 and C1 = C2 = 2,
respectively. The regions with thick black boundaries specify the parameters for which C1 = 1
(Fig. 2.5(a)) and C1 = 2 (Fig. 2.5(b)). The shaded regions specify the parameters for which the
convergence conditions in Period 2 hold, and therefore, any findings we obtain for the short term
will continue to be valid in the long term, i.e., for some parameter settings, we can characterize the
long-term market shares in Regime 1 analytically.

This leaves open the question of what happens under more general parameters. To address this
gap, we need to have an understanding of the long-term behavior of Ct. Towards that goal, we
prove the following relationship between threshold Ct and the delay D(F)

t at F:
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(a) Convergence to Ct = 1 (b) Convergence to Ct = 2

Figure 2.5: Parameter settings that result in convergence in Period 2

Lemma 2 D(F)
t is non-increasing in Ct.

Lemma 2 allows us to make a powerful assertion about the long-term behavior of the system
for general parameters.

Proposition 13 As long as L and F remain stable, only two possible long-term patterns are
possible in the evolution of Ct:

1. Convergence, which arises when ∃t > 1 : Ct = Ct−1, and therefore, Ct′ = Ct, ∀t′ > t.

2. Stable oscillation, which arises when ∃t > 2 : Ct = Ct−2 and Ct ̸= Ct−1, resulting in
Ct′ = Ct′−2, ∀t′ ≥ t.

To illustrate Proposition 13, Fig. 2.6 shows representative examples of these long-term patterns.
Fig. 2.6(a) shows the evolution of Ct for Λ = 0.89 and µ(F) = 0.5. In this example, Ct converges to
4 in Period 5. Fig. 2.6(b) shows the evolution of Ct for Λ = 0.87 and µ(F) = 0.5. In this example,
Ct’s stable oscillation between 3 and 4 is established in Period 4.
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Figure 2.6: Representative examples of long-term patterns of Ct

In addition to Proposition 13, we need to answer the following questions to fully characterize
the evolution of Ct: (i) Which of these two outcomes occurs for which values of Λ and µ(F)? (ii)
What value(s) of Ct does the system stabilize at? The following conjecture, based on exhaustive
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numerical experiments with 10000 randomly chosen values of Λ and µ(F), provides answers to both
questions:

Conjecture 1 Defining C∞ = ⌊inf
Ct

D(F)
t + 1⌋, one of the following occurs:

1. Ct converges to C∞, or

2. Ct converges to C∞ + 1, or

3. Ct oscillates between C∞ and C∞ + 1.

From Lemma 2, we know that D(F)
t is non-increasing in Ct. Therefore, inf

Ct
D(F)

t is the tightest

possible lower bound to the value of D(F)
t at the highest possible value of Ct; D(F)

t approaches this
value asymptotically as Ct is increased. Accordingly, we can obtain C∞ by computing the limiting
value of D(F)

t as Ct approaches ∞.
Based on Conjecture 1 we can analytically obtain upper and lower bounds on the long-term

market share of F in closed-form, which yield lower and upper bounds, respectively, for L’s market
share.

Proposition 14 Under Conjecture 1, we have:

M(F)
R1

≤ M(F)
R1 =


Λ2 − Λ
Λ2 − 1

, if Λ <
2µ(F)2 + 3µ(F) + 2

2µ(F) + 2
,

Λ⌊ω+2⌋ − Λ⌊ω+1⌋

Λ⌊ω+2⌋ − 1
, otherwise.

(2.6)

M(F)
R1

≥ M(F)
R1

=


Λ⌊Ω1+3⌋ − Λ⌊Ω1+2⌋

Λ⌊Ω1+3⌋ − 1
, if Λ < 1,

Λ⌊Ω2+3⌋ − Λ⌊Ω2+2⌋

Λ⌊Ω2+3⌋ − 1
, if Λ > 1,

, (2.7)

where the details of the derivation and the expressions for ω,Ω1 and Ω2 are presented in Appendix
B.1.7.

Propositions 12 and 14, along with the similar results that we derive for Regime 2 in Section 4.2,
allow us to make analytical comparisons of the market shares across the different information
regimes and determine the outcome for some instances of the game in Fig. 2.2. However, our
ability to assert the game outcome based on these results is limited: Proposition 12 applies to a
restricted region of the parameter space and Proposition 14 only provides bounds on the market
shares. Therefore, we supplement our analysis using a set of comprehensive numerical experiments,
described in Section 5.1.

4.2 Analysis of Regime 2

To analyze Regime 2, we need to analyze Model LF (Fig. 2.4). As noted in Section 3.2.2, Model
LF is a JSQ-like system with asymmetric service rates. This system is analytically intractable and
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the exact characterization of its stationary probabilities, even for the symmetric case, is unknown.
For the symmetric case, some work has been done on finding provable bounds for the stationary
probabilities (e.g., Halfin [1985]), but these techniques do not extend to the asymmetric case.
In fact, the asymmetric JSQ has received only limited attention: Existing literature focuses on
numerical techniques that accurately approximate the chain’s stationary probabilities and relevant
metrics (e.g., Adan et al. [1990] and Selen et al. [2016]).

As our focus is finding the market shares in Regime 2, we do not require all stationary proba-
bilities in Model LF; if we simply know the probability that one of the servers is idle, we can find
the market shares. For ease of exposition, we set the service rate of the slower service provider
(this could be L or F) to 1. Let Q denote the faster server with service rate, effective arrival rate,
and idle probability of µ(Q) > 1, λ(Q), and I(Q), respectively. For Q as a work-conserving server, we
have λ(Q) = (1 − I(Q))µ(Q) from flow balance. Knowing λ(Q), we can find M(Q) = λ(Q)/Λ, and the
market share of the slower service provider as 1 − M(Q). However, even analytically characterizing
I(Q) is not possible. Instead, we propose two models and conjecture that they provide lower and
upper bounds on I(Q). We analytically solve these models to obtain conjectured analytical lower
and upper bounds on M(Q) (that we verify numerically): obtaining a lower (upper) bound M(Q) is
equivalent to obtaining an upper (lower) bound for I(Q).

Lower bound for M(Q): To get a lower bound for M(Q), we modify Model LF to allow
centralized queueing: an arrival joins a centralized queue when both servers are busy, joins the
empty server when only one server is idle, and joins randomly with equal probability to each server
when both are idle. Fig. 2.7 shows the Markov chain for this modified model (Model LF1), which is
similar to an M/M/2 queue except that the service rates of the two servers are different. Therefore,
we need to distinguish whether the busy server is the faster server (state (1, 0)) or the slower server
(state (0, 1)) when system size is one.

Figure 2.7: Model LF1 results in a lower bound for M(Q)

We conjecture that owing to the pooling effect and more efficient use of servers in Model LF1,
the faster server in Model LF1 is less busy compared to Model LF. We analytically derive I(Q) in
Model LF1 to obtain a conjectured lower bound on M(Q).

Upper bound for M(Q): To get an upper bound for M(Q), we modify Model LF to allow for
jockeying: when the faster server finishes a service and there is no other customer in the central
queue, we move the customer being served by the slower server to the faster server. Fig. 2.8 shows
the Markov chain for this modified model (Model LF2), with the state variables being defined
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identically to those in Model LF1. We intuitively conjecture that this jockeying procedure makes
the faster server less idle. We analytically derive I(Q) in Model LF2 to obtain a conjectured upper
bound on M(Q).

Figure 2.8: Model LF2 results in an upper bound for M(Q)

Based on the derived I(Q) for Models LF1 and LF2, we make the following conjecture, which
we validate based on an exhaustive set of 10000 experiments, with randomly generated values of
µ(Q) and Λ:

Conjecture 2 The Market share for Q is bounded as:

M(Q)
R2

≥ M(Q)
R2

= µ(Q)(Λµ(Q) + µ(Q) + 1)
Λ + µ(Q)((Λ + 2)µ(Q) + 2)

. (2.8)

M(Q)
R2

≤ M(Q)
R2 = µ(Q)(Λ(3µ(Q) + 2) + µ(Q) + 1)

2Λ2 + Λ(µ(Q)(3µ(Q) + 2) + 1) + 2µ(Q)(µ(Q) + 1)
. (2.9)

As was the case for Regime 1, our ability to predict the outcome of the game using Conjecture 2
is limited. We supplement our analysis with numerical experiments, described in detail in Section
5.1.

5 Game Outcome

In Section 4, we described how to analyze the long-term market shares under Regimes 1 and 2. For
Regime 1, we provided an analytical characterization of the long-term market shares under some
parameter settings (Proposition 12), and provided analytical support that—taken together with
Conjecture 1—yields lower and upper bounds for the long-term market shares (Proposition 14).
For Regime 2, we conjectured lower and upper bounds for the market shares (Conjecture 2).

As noted in Section 4, these analytical characterizations give us a limited ability to assert the
outcome of the game. We therefore obtain a comprehensive understanding of the game through
numerical analysis.

5.1 Numerical Experiment Setup

For Regime 1, we generate 2200 experiments by varying µ(F) over the set {1/6, 1/5, . . . , 1/2, 1, 2, . . . ,

6} and 200 equally-spaced values of Λ in the range
(
0, 1 + µ(F)

)
. Model F has a repeating structure,
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and therefore, Matrix-analytic methods can be employed to compute stationary probabilities to an
arbitrary degree of accuracy. We showed in Proposition 11 that F is stable in Period 1 when
µ(F) ≥ µ(L); our experiments confirm that F will remain stable in the following periods as well.
However, F could become unstable for some values of µ(F) < µ(L) and Λ. This occurs in only 4 of
the 1000 experiments, leaving us with 996 valid experiments.

For Regime 2, the experimental setting is similar to Regime 1 with a small modification to
minimize the impact of the tie-breaking rule. To modify our experiments, we define a negligibly
small irrational δ > 0, and perform experiments with µ(F) varying over sets S1 = {1/6 + δ, 1/5 +
δ, . . . , 1/2 + δ, 2 + δ, . . . , 6 + δ} and S2 = {1/6 − δ, 1/5 − δ, . . . , 1/2 − δ, 2 − δ, . . . , 6 − δ}. Adding
or subtracting an irrational δ prevents n(F) from being an integer multiple of µ(F). Therefore, the
experiments in set S1 favor F, while the experiments in S2 favor L. When both service providers
are empty, ties continue to be broken using a 50-50 rule.

In order to draw conclusions that are agnostic of the tie-breaking rule, we make our comparisons
against experiments from S1 and S2. For instance, for the Regime 1 experiment with Λ = 1 and
µ(F) = 2, we make a comparison with (i) the corresponding experiment in S1, with Λ = 1 and
µ(F) = 2 + δ; and (ii) the corresponding experiment in S2, with Λ = 1 and µ(F) = 2 − δ.

Our modifications lead to a total of 2200 × 2 − 400 = 4000 experiments. (We exclude experi-
ments for µ(F) = 1 as in this case the market will be equally divided between L and F.)

To compute stationary probabilities for Model LF, we truncate its state space along both
dimensions. We denote the truncation bound for n(L) by κ, and we set the truncation bound for
n(F) (the number of customers at F) to ⌈µ(F)⌉ × κ (recall that F is µ(F) times as fast as L). To find
the appropriate truncation bound, we initially set κ = 10, and compute the stationary probabilities
of the corresponding truncated chain. For a given desired accuracy level ϵ > 0, we increase κ and
iterate the procedure if the sum of the probabilities of the boundary states (φ) is more than ϵ. We
stop this procedure as soon as φ < ϵ.

Table 2.1: Summary of numerical experiment settings for Regimes 1 and 2

Regime 1 Experiments Regime 2 Experiments
S1 S2

µ(F) > 1 1000 1000 1000
µ(F) = 1 200 Not Applicable
µ(F) < 1 996 1000 1000

Table 2.1 summarizes our experimental settings; the values in the cells represent the number
of valid experiments for the corresponding setting. We use these experiments to make pairwise
comparisons between the information regimes: Regime 1 vs. 0 (Section 5.2), Regime 2 vs. 0
(Section 5.3), and Regime 1 vs. 2 (Section 5.4). We summarize the findings of Sections 5.2-5.4 in
Table 2.2. In Section 5.5, we synthesize these results to find the outcome of the sequential game.
In Section 5.6, we demonstrate that the analytical characterizations provided in Section 4 imply
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the correct outcome of the sequential game for a large region of the parameter space.

Table 2.2: Summary of pairwise comparison results from Sections 5.2-5.4

Regime 1 vs.
Regime 0

Regime 2 vs.
Regime 0

Regime 2 vs.
Regime 1

L prefers F prefers
µ(F) > 1 Regime 1 Regime 2 Mixed
µ(F) = 1 Regime 1 Indifferent Regime 2
µ(F) < 1 Mixed Regime 0 Regime 2

5.2 Regime 1 vs. Regime 0

Proposition 9 states that L’s market share (weakly) increases in the short-term when she is not the
higher-capacity service provider, but if L is the higher-capacity service provider, she may gain or
lose market share in the short term. Proposition 12 characterizes a subset of the parameter space
for which the short-term behavior, and hence the findings of Proposition 9, sustain in the long
term. Our numerical experiments indicate that the findings of Proposition 9 hold more generally.
For 100% (all 1200) experiments in which L is not the higher-capacity service provider, L’s market
share in the long-term is (weakly) higher than her status-quo market share (M(L)

R1
≥ M(L)

0 ). Among
the experiments in which L is the higher-capacity service provider, we have that M(L)

R1
≥ M(L)

0 in
85% (846/996 experiments).

The intuition behind these results is as follows. In Regime 0, the higher-capacity service provider
enjoys a disproportionate (relative to her service capacity) market share advantage in the absence
of any delay announcements: L’s relative service capacity is 1/(1 + µ(F)), and we can verify from
Eq. (2.2) that M(L)

0 ≥ 1/(1 + µ(F)). This can be seen as a ‘benefit-of-doubt’ advantage, i.e., the
faster service provider enjoys the advantage of attracting a significantly high market share when
customers are only informed about average delay. To see this, note that if L serves twice as fast as
F, and receives arrivals at twice the rate F receives them, her customers experience a lower average
delay than F’s do. This is immediate from the formula of delay in an M/M/1 queue with arrival rate
λ and service rate µ, i.e., Delay = λ/µ

µ−λ ; therefore, the way that customers split in Regime 0 tends
to favor the higher-capacity service provider in the absence of richer delay information. Similarly,
when L is the lower-capacity service provider, she has a significant disadvantage in Regime 0.

In Regime 1, there are two counteracting forces that govern L’s market share position relative to
Regime 0: the positive effect of signalling states in which she is relatively empty, and the negative
effect of signalling states in which she is relatively full. The net effect of real-time announcements
depends on load Λ in a non-monotone fashion. Figs. 2.9(a)-2.9(b) plot the percentage increase in L’s
long-term market share in Regime 1 (compared to Regime 0) for two values of µ(F). As Fig. 2.9(a)
shows, the net effect of real-time announcements is positive when L is the lower-capacity provider.
However, as Fig. 2.9(b) shows, the net effect is mixed if L is the higher-capacity provider, depending
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on Λ. The discontinuities (which are the underlying reason for the non-monotonicity) in the plots
corresponding to changes in the long-term equilibrium value(s) of Ct. These changes form “regions,”
each corresponding to a particular long-term pattern of Ct. In each region, Ct either converges to
a specific value or oscillates between two values (Proposition 13). For example, in Fig. 2.9(b), Ct

converges to 1 in region I, oscillates between 1 and 2 in region II, and converges to 2 in region
III. The regions corresponding to oscillatory behavior are smaller: they represent the transition
between two convergence regions. Within a region, we note that ΔM(L) decreases with increasing
Λ. This is intuitive: at the lowest value of Λ corresponding to the region, there is a unit jump in
the long-run value of Ct, allowing L to attract a chunk of customers. As Λ increases within the
same region, the value of Ct does not increase, tilting the balance in favor of F.

(a) µ(F) = 3 : L serves one-third as fast as F (b) µ(F) = 1/3 : L serves thrice as fast as F

Figure 2.9: L’s market share gain in Regime 1 vs. Regime 0

We observe in all our experiments that for very low values of load Λ, Regime 1 is significantly
preferable to Regime 0 for all relative service rates. The system is almost always empty for very
low values of Λ; therefore, an arriving customer who initiates a busy period is likely to observe an
announcement of zero delay from L, which is necessarily smaller than F’s (finite, non-zero) steady-
state average delay. Since the threshold Ct up to which L receives arrivals is at least 1, this arriving
customer chooses to route to L. Since the arrival rate Λ is very low, the customer is likely to finish
service at L, and finish a busy period, before the next customer arrives. Therefore, L commands
the majority of the market in this situation.

5.3 Regime 2 vs. Regime 0

In Regimes 2 and 0, providers L and F employ symmetric announcement strategies. Intuitively,
given the Regime 0 advantage enjoyed by the higher-capacity service provider (as discussed in
Section 5.2), we expect this advantage to be eroded in Regime 2, where the lower-capacity server
is able to explicitly signal the states where she is relatively empty.

This intuition turns out to be true. For 100% (all 2000) experiments in which L is the higher-
capacity provider (µ(F) < 1), we find that M(L)

R2
≤ M(L)

0 . Similarly, for 100% (all 2000) experiments
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in which F is the lower-capacity provider (µ(F) > 1), we have that M(L)
R2

≥ M(L)
0 . When service rates

are equal, the providers split the market evenly in both regimes.
In Figs. 2.10(a)-2.10(b), we plot the percentage increase in L’s market share in Regime 2

(compared to Regime 0) for two values of µ(F). The market share benefit (loss) is monotone
in Λ, with the strongest effect at the lowest load, and the weakest effect at the highest load. At
very low loads, the higher capacity provider claims most of the market in Regime 0, while the two
providers claim roughly equal market shares in Regime 2 because both systems are almost always
empty and ties are broken arbitrarily. Therefore, at very low loads, the lower-capacity provider
enjoys a strong advantage from moving to Regime 2. At very high loads, both providers serve
almost at capacity in both regimes, and therefore, claim the same market shares in both regimes.
As expected, the benefit (loss) plots in Fig. 2.10 are smoothly varying in load (in contrast to the
discontinuous behavior in the Regime 1 vs. Regime 0 comparison discussed in Section 5.2), because
there are no sources of discontinuity (such as the periodic updates in Regime 1) in the Regime
2 model. The scale difference in the vertical axes between the figures is attributed to a different
denominator for computing percentage change.

(a) µ(F) = 3 + δ : L serves ∼one-third as fast as F (b) µ(F) = 1/3 − δ : L serves ∼thrice as fast as F

Figure 2.10: L’s market share gain in Regime 2 vs. Regime 0

As an aside, we note in all experiments that regardless of relative service capacities, L’s (and by
symmetry, F’s) average delay in Regime 2 is shorter than her Period 0 delay: She experiences the
benefits of being able to signal to customers when she is relatively more congested than F. When
the service rates are equal, this result has already been documented in the literature [see Hordijk
and Koole, 1990].

5.4 Regime 1 vs. Regime 2

When L initiates announcements, does F prefer to respond or not? Again, our answer depends on
the relative service capacities. In 100% (all 1992, including experiments in S1 and S2) of experiments
in which F is the lower-capacity service provider, we have M(F)

R2
≥ M(F)

R1
. For 100% (all 200) of
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experiments in which F and L have equal capacities, M(F)
R2

≥ M(F)
R1

. However, when F is the higher-
capacity service provider, we obtain mixed results that are (at a high level) consistent between
experiments in S1 (in which F is favored in Regime 2) and S2 (in which L is favored in Regime 2).
Among the experiments in set S1, we find that M(F)

R2
≥ M(F)

R1
in 96% (964/1000 experiments). Among

the experiments in set S2, we find that M(F)
R2

≥ M(F)
R1

in 93% (940/1000 experiments). As can be
expected based on the findings reported in 5.2, F prefers not to respond for some intermediate values
of Λ, because of the unit jumps in the underlying threshold Ct that governs Regime 1 behavior.

It is intuitive that in most cases, F prefers to respond to L’s announcements by initiating real-
time announcements as well: in Regime 1, she only receives overflow customers, i.e., customers who
arrive to the system when provider L’s congestion is at threshold Ct. In contrast, in Regime 2, F
is explicitly signals states in which she is empty. However, this comparison is made non-trivial by
the fact that her market share in Regime 1 is determined by complex forces: the amount of time
spent per visit to L’s threshold Ct, which is easy to characterize, and the amount of time between
visits to state Ct, which is difficult to characterize because it depends on the long-run behavior of
the value(s) of Ct.

In Figs. 2.11(a)-2.11(b), we plot the percentage increase in F’s market share in Regime 1
(compared to Regime 2) for two values of µ(F). We truncate the vertical axis appropriately for ease
of exposition. As is evident, there is a small region in Fig. 2.11(a) where F is actually worse off in
Regime 2 than in Regime 1.

(a) µ(F) = 3 + δ : L serves ∼one-third as fast as F (b) µ(F) = 1/3 − δ : L serves ∼thrice as fast as F

Figure 2.11: F’s market share gain in Regime 2 vs. Regime 1. The arrow in Fig. 2.11(a) indicates values
of Λ for which M(F)

R2
< M(F)

R1
.

5.5 Synthesis

We now synthesize the findings in Sections 5.2-5.4 to find the outcome of the sequential game in
Fig. 2.2.

Outcome for µ(F) < µ(L): In Section 5.4, we find that F prefers Regime 2 to Regime 1
when she is the lower-capacity service provider, and will therefore respond to L initiating delay
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announcements. Therefore, the relevant comparison for L to make is between her market shares
in Regime 2 and Regime 0. From the results in Section 5.3, a higher capacity service provider
always prefers Regime 0 to Regime 2. Therefore, it is in L’s best interests not to initiate delay
announcements at all, as doing so would ultimately cause an erosion in her market-share if F
responded, and she would forego her prevailing market share advantage. It is worthy of note,
however, that by not announcing delay information, higher-capacity service providers are foregoing
the benefits of improved delays that would be obtained if both L and F announced delay information.

Outcome for µ(F) ≥ µ(L): In Section 5.4, we find that F prefers Regime 2 to Regime 1 (she
responds to L’s delay announcements) for most (but not all) values of load when she is not the
lower-capacity service provider. In spite of this mixed result for F’s response, we find that L’s
action is consistent: L always has the incentive to initiate real-time delay announcements when
she is not the higher-capacity service provider. This is because M(L)

R2
≥ M(L)

0 if F responds, and
M(L)

R1
> M(L)

0 if F does not respond. As a bonus, this action also improves L’s delay performance,
as discussed in Section 5.3.

5.6 Analytical Support

Our numerical experiments suggest that L’s optimal action follows:

- If she is the higher-capacity service provider, she should not initiate delay announcements

- If she is not the higher-capacity service provider, she should initiate delay announcements

Under what parameter settings is this optimal action of L implied by our analytical results from
Section 4? To answer this question, we use:

- The closed-form expressions for Regime 0 market shares; M(i)
0 , i ∈ {L, F}, given in Eq. (2.2).

- The conjectured lower and upper bounds for Regime 2 market shares; M(i)
R2

and M(i)
R2 , i ∈

{L, F}, given in Conjecture 2.

- The short-term market shares given in Eq. (2.4) for cases where convergence is established
in Period 2 (indicated by IC = 1), based on Proposition 12: M(i)

R1
, i ∈ {L, F}. For other cases,

the lower and upper bounds for Regime 1 market shares: M(i)
R1

and M(i)
R1 , i ∈ {L, F} given in

Proposition 14.

Outcome for µ(F) < µ(L): When L is the higher-capacity service provider, our analytical
results imply that L will not initiate delay announcements when either of the following conditions
holds:

(i) L’s market share in Regime 0 is higher than the highest market share she can obtain under
either Regime 1 or Regime 2:

M(L)
0 > max

{
M(L)

R2 , ICM(L)
R1

+ (1 − IC)M(L)
R1

}
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(ii) L’s market share in Regime 0 is higher than (a) the upper bound on her Regime 2 market
share if F prefers Regime 2 to Regime 1; or (b) the upper bound on her Regime 1 market
share if F prefers Regime 1 to Regime 2:

M(L)
0 >

M(L)
R2 if M(F)

R2
> ICM(F)

R1
+ (1 − IC)M(F)

R1

ICM(L)
R1

+ (1 − IC)M(L)
R1 if ICM(F)

R1
+ (1 − IC)M(F)

R1
> M(F)

R2

Outcome for µ(F) ≥ µ(L): When L is not the higher-capacity service provider, our analytical
results imply that L will initiate delay announcements when either of the following conditions holds.
These conditions can be interpreted analogously to the conditions presented above.

(i)
M(L)

0 < min
{

M(L)
R2

, ICM(L)
R1

+ (1 − IC)M(L)
R1

}
(ii)

M(L)
0 <

M(L)
R2

if M(F)
R2

> ICM(F)
R1

+ (1 − IC)M(F)
R1

ICM(L)
R1

+ (1 − IC)M(L)
R1

if ICM(F)
R1

+ (1 − IC)M(F)
R1

> M(F)
R2

The shaded area of Fig. 2.12 represents the regions of the parameter space in which the analytical
results can predict the game outcome. The feasible region of the parameter space (in which Λ <

(1 + µ(F))) is outlined by the dark trapezium. The discontiguous shaded regions are an artifact
of the above compound rules that generate these plots. Evidently, there is a large region of the
relevant parameter space for which the required results are implied by our analytical findings. This
further supports the findings suggested by our exhaustive numerical experiments.

(a) µ(F) < 1 (b) 1 < µ(F) < 10

Figure 2.12: Regions of the parameter space for which the game’s outcome has analytical support
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6 Conclusions and Future Work

Advances in technology have enabled service providers to disseminate their delay information to
delay-sensitive customers. In this work, we study the implications of technology leader L initiat-
ing real-time delay announcements when her competitor, follower F, may initiate real-time delay
announcements in response. Within this leader-follower framework, we consider three information
regimes: In Regime 0, the status-quo, customers only have access to historical delay information
for both providers. In Regime 1, F opts not to respond to L’s delay announcements, making L
the sole announcer in this regime. In Regime 2, F opts to respond, and therefore, both L and F
announce delay information.

For each of the regimes, we specify how customers make decisions and for each regime, we present
CTMCs whose analysis determines market shares in the regime. We analyze Regime 0 analytically.
For Regime 1, we present some analytical results, conjectured bounds, and an exhaustive set of
numerical experiments. For Regime 2, we present conjectured bounds and an exhaustive set of
numerical experiments. Our analysis suggests the following outcome of the sequential game: If L is
the higher-capacity service provider, she is better off not initiating delay announcements because
F will respond, which will erode L’s initial market share advantage. However, she will give up
benefits that will accrue to her in terms of customer delay reduction by opting not to announce
delay information. On the other hand, L should initiate real-time delay announcements if she is not
the higher-capacity service provider, as this gives her a market share advantage even if F responds.
This decision also results in a reduction in average delay experienced by her customers.

Our work uncovers an effect of announcing real-time delay information not previously noted:
Announcing real-time delay information is a good idea only for service providers who do not have
higher service capacity than their competitor. Thus, higher-capacity service providers must exercise
caution before providing real-time delay announcements to prevent market share loss: They should
only initiate announcements if the resulting delay reduction compensates for the decreased market
share. For a lower capacity service provider, announcing delay information can be considered a
strategic remedy for capacity shortage.

We also investigate how the delay announcement strategies employed by L and/or F affect social
welfare. We define social welfare as the average system-level delay, and we compute it as the market
share weighted average of delays at L and F. Social welfare could degrade for some parameters if
the higher-capacity L initiates delay announcements, and F does not respond. However, we find
that social welfare degradation never occurs in equilibrium: There is no change to social welfare
when L is the higher-capacity service provider as L does not have an incentive to initiate delay
announcements. However, when L is not the higher-capacity service provider, she does have an
incentive to announce delay information. While F may or may not have an incentive to respond in
this case, we find that social welfare necessarily improves regardless of F’s response. This means
that the delay improvement at L is significant enough to offset a possible delay degradation at F.
(F can have worse delay and worse market share in Regime 1 than in Regime 0.) In summary,
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real-time delay announcements result in improved social welfare whenever initiated by L.
We acknowledge that the asymmetry in willingness to adopt new technology, as modeled by

our sequential game, is not representative of all duopolistic settings. There are circumstances
under which both providers will have identical propensities to being first movers. In this situation,
the appropriate modeling choice is a simultaneous game, rather than a sequential one. From our
analysis in Section 5, it is clear that it is a dominant strategy for the lower-capacity service provider
to announce real-time delay information. Therefore, our findings automatically suggest the outcome
of a simultaneous game as well: in equilibrium, the lower-capacity service provider makes real-time
delay announcements, while the higher-capacity service provider may or may not do so, depending
on the load level.

This work studies a setting with two single-server service providers. We find that even in this
setting, obtaining analytical results is non-trivial. A useful extension to our model would be to
consider multi-server service providers. Another potentially interesting extension is to model a cus-
tomer population consisting of dedicated and flexible individuals: Dedicated customers are loyal
to one of the service providers regardless of the delay situation, while flexible customers are delay
sensitive and use real-time delay information. Such heterogeneity in the customer population is
explored in papers such as Dong et al. [2018], but with two providers providing delay information
of identical granularity. (It is also explored in a different framework in Chapter 3.) While we
investigate a setting with one leader and one follower, investigating settings with one leader and
multiple followers could be an interesting avenue for future research. The three conjectures pre-
sented in this work also represent interesting avenues for further research: in particular, proving
the bounds we conjecture for market shares in Regime 2 (Conjecture 2) would contribute to a
deeper understanding of the notoriously difficult Join-the-shortest-queue system.
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3
Towards Explicitly Incorporating Competition
under Flexible Models of Demand in Dynamic

Pricing

1 Introduction

Most revenue management systems assume monopolistic market models to carry out forecasting and
optimization for dynamic pricing, even if the firms using such systems are faced with competition
[Cooper et al., 2015]. A popular argument put forth by proponents of monopolistic models is that
the parameters of these monopolistic models are estimated using actual data that comes from the
competitive market, and that this should offset the effects of model mis-specification. This is called
the market response hypothesis. Cooper et al. [2015] characterized the conditions under which the
market response hypothesis holds in a one-period game without capacity constraints, with forecast
and price optimization cycles. They show that under most general conditions, the hypothesis does
not hold.

Advances in technology have made it possible for a firm to receive competitor price updates
in real-time. Therefore, it is conceivable that firms could use competitive models for pricing. For
example, airlines can track their competitors’ fare information by automatically making queries to
travel metasearch engines such as Kayak.com. In the retail setting, firms can access their com-
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petitors’ pricing information by querying aggregators such as Amazon.com. Given the widespread
access to competitor price information and Cooper et al. [2015]’s finding that the market response
hypothesis does not generally hold, it is important for firms to understand whether, and how, to
incorporate their competitors’ price information in their own pricing decisions. In this chapter, we
consider this question in a duopolistic market, where each seller has a fixed number of units of
a product to sell over a finite horizon. Throughout this chapter, we use the motivating example
of airlines competing to sell seats on an aircraft. Our findings, however, apply more generally to
problems of dynamic price competition with fixed capacities.

The study of how to use competitor fare information relies on understanding what pricing deci-
sions firms take in equilibrium. Related literature that studies these equilibrium decisions assumes
that a competitor’s current level of remaining inventory can be inferred (in equilibrium) by observ-
ing the competitor’s price and backing out the inventory level by tracking the equilibrium price
path. This chapter also adheres to the same framework. However, we depart from the existing
literature in the model of demand that we use. In particular we propose a model of demand that
captures three features that the extent literature captures separately, but not together: (i) un-
known market size (ii) demand elasticity with respect to price to capture customers’ heterogeneous
valuations (iii) the presence of loyal customers, who have a preference between the airlines, and
the presence of flexible customers (also called market priceable) customers who buy down to the
lowest fare, leading to a discontinuity in the demand function at the point when an airline’s fare
is exactly equal to its competition’s. We elaborate on the contribution represented by this general
model of demand in Section 2.

In line with the existing literature, we focus on exploring the existence and structure of a
potential subgame-perfect Nash equilibrium in pure strategies (SPNE-P) in the dynamic pricing
game played by the competing airlines. For clarity of exposition, we model a setting with two
competing firms, although our approach and main results may readily be extended to any finite
number of competing firms. Under our model of demand, we show that in the presence of any
customers who exhibit brand loyalty (that is, if an airline stands to capture some customers even
if she isn’t offering the lowest price in the market), an SPNE-P fails to exist. This contribution
is significant because this non-existence result encompasses a large set of realistic demand models:
reasons for brand loyalty could include frequent-flyer memberships, corporate alliances or proximity
to an airline’s hub airport.

Next, we study the case when all customers in the market are flexible and buy down to the lowest
fare, i.e., the product offerings are perfect substitutes. This setting can be thought of as competition
between two low-cost carriers such as Spirit Airlines and Frontier Airlines [International Civil
Aviation Organization, 2019]. We prove the existence of a continuum of SPNE-P and demonstrate
how it may be computed. The structure of the equilibrium closely follows that of the equilibrium
found in Martínez-de Albéniz and Talluri [2011]. We propose a refinement to the equilibrium
concept that yields a practically relevant (and in general, unique) equilibrium. This refinement
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produces an equilibrium that is analogous to the one found in Martínez-de Albéniz and Talluri
[2011]. This is unsurprising: our demand model corresponds to an extension (uncertain valuations)
in Martínez-de Albéniz and Talluri [2011]; under their extension, the proof of existence of an
equilibrium is left open because the best response function is, in general, not continuous. We
overcome this problem by directly analyzing components of the best response function.

Equipped with an equilibrium characterization for the case of competition with fully flexible
customers, we explore the strategic question of whether low-cost carriers such as the two above
should use competitor fare information. We demonstrate that in general, the unique equilibrium
strategy is for both firms to migrate from monopolistic models to competitive models. This leads
to questions such as: How does this migration affect industry profits? What about the profits of
the individual firms?

Using two standard models of demand: exponential demand and iso-elastic demand, we study
how the initial capacities of the firms affect the impact of migration on their profits. Two effects
drive our results. The competition effect captures the drop in profits attributable to firms under-
cutting each other’s prices, and the information effect captures the increase in profits attributable
to firms pricing as monopolists when their competitor runs out of inventory.

When total capacity (relative to demand) is very low, the information effect is stronger, and
therefore, migrating to competitive models can improve industry profits. When the firms begin with
roughly the same capacity, they both share this benefit, otherwise, the benefit is consumed by the
firm with the higher capacity. When the total capacity is moderate or high, the competition effect
is stronger, and total industry profits are lower. Therefore, when the two firms start off with the
same initial capacity, they are both adversely affected. However, when the firms are asymmetric,
the industry profits are driven down by the profit erosion of the higher capacity firm. Indeed,
the lower capacity firm benefits from this migration because it tends to post lower prices than the
higher capacity firm (similar to the effect observed in Dudey [1992] and Martínez-de Albéniz and
Talluri [2011]) and sell most of its inventory.

2 Literature Review

Recent developments in dynamic pricing literature are thoroughly reviewed in Chen and Chen
[2015]. In their paper, Chen and Chen divide recent contributions into work that incorporates
(i) multiple products, (ii) limited demand information, or (iii) competition. We contribute to the
ongoing work in the third stream, i.e., studying the role of competition in dynamic pricing. These
studies are of particular interest given Cooper et al. [2015]’s finding that the conjectured market
response hypothesis (see Talluri and Van Ryzin [2004]) does not hold in general.

One stream of work that models competition (with notable papers including Liu and Zhang
[2013], Jerath et al. [2010], Levin et al. [2009] and Anton et al. [2014]) focuses on understanding the
impact of customers being strategic in their purchase timing. The general finding of this stream of
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literature is that the presence of strategic customers, as in the case of monopolistic models, erodes
firms’ profits.

However, most research on modeling competition—including our work—models customers as
being myopic in their purchase timing decision. Customers arrive, view the prices available in the
market, and make a purchase decision. They leave if they fail to make a purchase and do not return.
This stream, again, has two different sub-streams that model firm decisions differently. The first
type considers the case of pre-announced pricing, wherein the competing firms declare their prices
for the entire horizon at the start of the horizon. Some examples of this work are Zhao and Atkins
[2002] and Mookherjee and Friesz [2008]. See Chen and Chen [2015] for a detailed review of this
literature.

Our work specifically contributes to the stream of literature that models customers as being
myopic in their purchase timing, and firms as employing contingent pricing strategies, where prices
are declared dynamically, rather than statically at the start of the horizon.

Some of this work on myopic, contingent pricing models assumes that the products on offer are
perfectly substitutable and therefore, customers will only ever purchase from the firm offering the
lowest price at any point in time. Dudey [1992] lays the foundation for this stream of work: he is
the first to show the existence of an SPNE-P in a dynamic Edgeworth-Bertrand competition, in a
simple model with deterministic customer valuations and a deterministic market size. Subsequent
work differs in many aspects, including how customer valuations and market size (and therefore
demand) are modeled. Dasci and Karakul [2009] model a two-period setting, where there is a
fixed and known market size in each period and customers have a fixed willingness-to-pay. They
compare dynamic pricing with fixed-ratio pricing (where the second period price is a pre-declared
fraction of the first period price). Surprisingly, they find that in most cases, dynamic pricing does
not outperform fixed-ratio pricing. Xu and Hopp [2006] model customers as having iso-elastic
demand functions. They study firms’ pricing and capacity decisions in a continuous time setting,
and compare contingent pricing to static pricing. Similar to Dasci and Karakul, they find that
contingent pricing is not necessarily helpful. Dudey [2007] extends the work of Dudey [1992] to a
situation with random customer valuations (but still a deterministic market size). Similar to Dasci
and Karakul [2009], Dudey [2007] uses a specific two-period pricing model wherein the competing
firms announce a price in the first period and offer discounts in the second period. In this model,
however, the firms also choose their capacity (production quantity) at the start of the horizon.
The author finds that in equilibrium each seller produces enough to serve the market. Similar to
Dudey [2007], Christou et al. [2007] study a pricing problem over three periods where firms first fix
capacities and then compete over prices. Exactly one customer arrives per period (the market size
is fixed and known), and this customer’s valuation is seen by the firms at the start of each period.
Anderson and Schneider [2007] focus on studying the problem of dynamic pricing in the presence
of search costs. For an environment with a fixed market size and random customer valuation,
they find that in the presence of search costs, prices are higher and firm profits are lower in the
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competitive setting than the monopolistic setting. Mantin et al. [2011] similarly model search costs
implicitly using a Markovian framework and study how the market prices evolve over time as a
function of the Markov dynamics. The paper closest to our work in this stream of literature is
Martínez-de Albéniz and Talluri [2011], who treat customer valuation as fixed, but the number of
arriving customers (the market size) as being unknown. They characterize a unique SPNE-P. In
this stream of literature (the case with perfectly substitutable products), we extend Martínez-de
Albéniz and Talluri’s result to a case with uncertain customer valuations.

Some other papers model the products on offer in the market as imperfectly substitutable.
The standard demand model assumed in this stream is characterized by continuous functions,
i.e., a firms’ demand is a continuous function of her price, and does not change discontinuously
when she charges more than her competition. Isler and Imhof [2008] and Lin and Sibdari [2009]
use a multinomial logit choice model to characterize customer decisions, both in environments
with uncertain market size. Isler and Imhof compare the competitive solution to the monopolistic
and cooperative solutions and find, unsurprisingly, that the firms have the lowest revenue in the
competitive case. Lin and Sibdari compare the complete information case (where each firm knows
their competitor’s inventory level) with the incomplete information case for which they propose
a heuristic solution that works well under various scenarios. Gallego and Hu [2014] also make
the assumption of continuity of the demand function. In a continuous time model, they find the
structure of the optimal pricing policy in a setting without time-varying demand. They propose
a heuristic that handles the time-varying case well, and show that this heuristic results in an
asymptotically optimal solution.

We consider a general model of demand that goes beyond deterministic customer valuation and
fixed market size, and that unifies both the perfectly substitutable products and the differentiated
products cases. We implicitly model some customers as being flexible (always buy the lowest priced
product), and some customers as potentially being more loyal to one of the firms, i.e., the products
are differentiated. Using our model of demand, we show that the presence of flexible and loyal
customers precludes the existence of a SPNE-P. (When only loyal customers populate the market,
the problem collapses to a degenerate one, i.e., one without competition.) When only flexible
customers populate the market, our setting is equivalent to the setting with perfectly substitutable
products. In this case, our demand model collapses to a still relevant generalization of the demand
model used by Martínez-de Albéniz and Talluri [2011]; in particular, our model allows uncertain
customer valuations (as opposed to the fixed customer valuation setting studied in Martínez-de
Albéniz and Talluri [2011]). Martínez-de Albéniz and Talluri suggest that proving the existence of
a SPNE-P in the uncertain valuations case is not non-trivial. We address this gap in this chapter.
Indeed, the equilibrium structure we find is very similar to the one found by Martínez-de Albéniz and
Talluri, as conjectured by them. We emphasize the practical relevance of this extension to general
willingness-to-pay demand models for real-life applications, for example, in the airline industry.
The deterministic willingness-to-pay model employed by papers such as Martínez-de Albéniz and
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Talluri [2011] and Dudey [1992], while capable of providing useful managerial insights, falls short
of capturing the fact that customers, in reality, have heterogeneous values of willingness-to-pay.

We now discuss some shared features that these models have, that we share. The setting in
this stream is either duopolistic or oligopolistic. The typical question of interest is how competing
firms should dynamically price in equilibrium. A standard assumption is that in a setting with a
unique equilibrium, each firm can track the price path of their competitors and accordingly infer
their competitor(s)’ current inventory levels. Customer demand is given as some known function
of the prices offered by each firm. This demand could be varying over time.

We also contribute to the literature by addressing the strategic question of whether firms should
use monopolistic models or competitive models. With the exception of Cooper et al. [2015], the
extant literature focuses on simply comparing industry performance in a monopolistic setting (with
one firm) to a competitive setting (with more than one firm). In contrast, this chapter and Cooper
et al. [2015] study a situation with two firms who may employ monopolistic or competitive models
in their pricing decisions. Cooper et al. [2015] addresses this by explicitly modeling forecasting
and optimization cycles in a sequence of single-period dynamic pricing games without capacity
constraints. In contrast, we treat the forecast as being exogenously given, and answer the question
in a single multi-period dynamic pricing game with capacity constraints. By doing so, we are
able to study the impact of a firm’s capacity on their profits if the market migrates from using
monopolistic models to using competitive models.

3 The Demand Model

We consider a discrete time model with time indexed by t. The horizon of interest is T periods long,
with periods numbered from 0 to T − 1. There are two firms, me and c, with Xme and Xc units of
product respectively. These units expire at the end of the horizon and have zero salvage value. A
customer arrives in period t with some positive probability (the market size), denoted by λt. (We
do not impose any restrictions on λt; it could, in general, depend on various factors, including the
number of units of product me and c have left, as in Martínez-de Albéniz and Talluri [2011].) We
assume that there is some strictly positive probability of an arriving customer being flexible as far
as choice of an airline, i.e., she will buy the lowest priced product. Some proportion of customers
may also be loyal to one of the two airlines, and this proportion may depend on the set of prices on
offer. An arriving customer makes a purchase from one of the two airlines (me and c), depending
on the prices offered, or decides to leave without purchasing. Arriving customers are myopic, i.e.,
they are not strategic about their purchase timing. In order to model customer arrival and choice,
we specify a probability function ϕ(pme, pc), (where pme represents the price charged by me and pc

the price charged by c) that maps the price system (pme, pc) to the probability that conditional on a
customer arriving, she purchases from me. While the firms may not be symmetric in the amount of
capacity they have (number of seats), we assume they are otherwise perfectly symmetric. Therefore,
ϕ(pc, pme) represents the probability that conditional on a customer arriving, she purchases from
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c1. As is standard in the literature, we assume the firms face a variable cost of 0 for each customer.
As with Martínez-de Albéniz and Talluri [2011], we allow firms to charge negative prices to get rid
of capacity. (The interpretation of a negative price is pricing below variable cost.) Therefore, we
do not impose any constraints on pme and pc.

It is convenient to work with the unconditioned demand function Dt(pme, pc) = λtϕ(pme, pc).
Function Dt represents the probability that a customer arrives in period t, faces prices pme and pc,
and chooses to purchase one unit of product from me.

For the remainder of the chapter, we drop the time subscript t from the demand function D, as
it has no impact on our analysis. The demand function D is given by:

D(pme, pc) =


d(pme, pc) if pme < pc

d(pme, pc) if pme > pc
d(pme, pc) + d(pme, pc)

2 if pme = pc

(3.1)

We impose the following conditions on the demand function:
Assumptions:

1. 0 ≤ D(pme, pc), ∀pme, pc

2. 0 ≤ D(pme, pc) + D(pc, pme) ≤ 1

3. d(pme, pc) and d(pme, pc) are defined ∀pme, pc and are continuous in both arguments.

4. d(pme, pc) and d(pme, pc) are decreasing in own price pme

5. d(pme, pc) and d(pme, pc) are increasing in competitor price pc

6. d(pme, pc) < d(pme, pc), ∀pme, pc

The first assumption ensures that the demand probabilities are all non-negative. The sec-
ond assumption ensures that the demand probability function is a valid probability. Note that
1 − D(pme, pc) − D(pc, pme) represents the probability that no customer arrives, or that a customer
arrives and chooses not to make a purchase. The third assumption is a simple regularity condition.
The fourth assumption ensures that for a fixed value of competitor price, the probability that an
arriving customer makes a purchase from me decreases as me’s price pme increases. The fifth as-
sumption ensures that for a fixed value of pme, the probability that an arriving customer makes a
purchase from me increases as my competitor’s price pc increases. The fourth and fifth assump-
tions, taken together, capture customers’ price elasticity (which can equivalently be interpreted as

1The implication of this assumption is two-fold: (i) There is no asymmetry in the proportion of loyal
customers and in the price sensitivities of these loyal customers for a given price system and (ii) flexible
customers view both firms’ products as perfectly substitutable. We make this assumption for expositional
convenience, so that we can focus our study on the role of competition. Our main findings continue to go
through without this assumption.
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customers having willingness-to-pay values that are uncertain over a continuous support). This
feature is present in the demand models such as the ones in Lin and Sibdari [2009] and Isler and
Imhof [2008]. Recall that demand probability d(pme, pc) applies when pme < pc and demand prob-
ability d(pme, pc) applies when pme > pc. The sixth assumption, taken together with the continuity
imposition in the third assumption, accommodates the behavior of the flexible customers – when
price pme exceeds pc, flexible customers will no longer purchase from me, leading to a discontin-
uous dip in purchase probability. This feature is present in demand models such as the ones in
Martínez-de Albéniz and Talluri [2011]. By modeling both price elasticity and demand function
discontinuity, we unify existing models of demand in the literature.

This set of assumptions is not restrictive; in fact, it spans a large class of practically relevant
demand constructs. For instance, consider a situation with posted prices pH, pL, such that pH >

pL. For some 0 < δ < 1/2, a fraction 1 − δ − δ of the market is flexible on choice of firm, a
fraction δe−(pH−pL) is loyal to the firm charging price pH and a fraction 2δ − δe−(pH−pL) is loyal
to the firm charging price pL. Note that the extent of loyalty here depends on the difference in
prices. Further, assume that all customers have an exponential willingness-to-pay distribution.
The following specification is valid for this situation, and is accommodated by our demand model:
d(pme, pc) = (1 − δe−(pc−pme))e−pme , ∀pme, pc > 0 and d(pme, pc) = δe−(pme−pc)e−pme , ∀pme, pc > 0.
(For expositional convenience, we do not specify the demand function for negative prices here.)
Under this model of demand, Figure 3.1 graphically demonstrates how the demand probabilities
associated with me and c depend on pme, for δ = 0.2 and pc = 1.

Figure 3.1: Example of a demand model accommodated by our framework
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4 Equilibrium Analysis

We analyze the dynamic pricing problem by formulating a firm’s (without loss of generality, me’s)
optimal action in period t using Bellman’s equations. The state of the system in period t is described
by the ordered pair (xme, xc), where xi represents the number of units of inventory remaining with
firm i. Let V∗

t (xme, xc) denote the optimal value-to-go in period t from firm me’s perspective. In
order to analyze the equilibria resulting from this dynamic pricing game, we write the following
best response function for me, when the competitor’s price is pc and the current state of the system
is given by (xme, xc).

Vt(xme, xc, pc) =

max
pme

D(pme, pc)
(
pme + V∗

t+1(xme − 1, xc)
)

+ D(pc, pme)V∗
t+1(xme, xc − 1)+

(1 − D(pme, pc) − D(pc, pme))V∗
t+1(xme, xc)

(3.2)

We will now look for an SPNE-P using the best response function (3.2). We will be interested
in examining two different cases:

1. Not all customers are flexible: the partially flexible case.

2. All customers are flexible: the fully flexible case, i.e., D(pme, pc) = 0 for pme > pc.

We now examine these situations in turn.

4.1 The partially flexible case

When not all customers are flexible, an airline can possibly make a sale even if she offers the higher
price. One way to interpret this is as some customers being loyal to one or the other airline.
However, the extent of loyalty may depend on the competitor’s price. To model this situation, we
assume that D(pme, pc) > 0 for pme > pc, that is, the higher priced airline has a strictly positive
probability of making a sale.

Proposition 15 In the partially flexible case, there is no SPNE-P.

Proof: Presented in Appendix C.1.
Note that the implication of Proposition 15 applies to a variety of underlying customer choice

models. Indeed, we did not impose any utility structure on the customers or place any implicit
assumption on how many customers are loyal and how many are flexible. In fact, it is possible
that the number of loyal customers, or equivalently, the extent of loyalty to a firm, depends on the
prices charged by both firms (or even the difference in prices).
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4.2 The fully flexible case

When all customers are flexible, we have that D(pme, pc) = 0 for pme > pc. Therefore, we no longer
need the notation d(pme, pc) and d(pme, pc). We can simply rewrite D(pme, pc) as follows:

D(pme, pc) =


0 if pme > pc

d(pme) if pme < pc

d(pme)/2 if pme = pc

(3.3)

Note that since all customers are flexible, the only relevant price is the cheaper alternative. We
continue to impose the same regularity conditions on this demand function. Under this scenario,
the best response function for me can be written as:

Vt(xme, xc, pc) =

max
pme

(
Ipme<pc + Ipme=pc

2

)
d(pme)

(
pme + V∗

t+1(xme − 1, xc)
)

+
(
Ipme>pc + Ipme=pc

2

)
d(pc)V∗

t+1(xme, xc − 1)

+ (Ipme<pc(1 − d(pme)) + Ipme>pc(1 − d(pc)) + Ipme=pc(1 − d(pme)) V∗
t+1(xme, xc)

(3.4)

Lemma 3 In the fully flexible case, at each state (xme, xc), there exist unique thresholds rme and
rc such that:

- If pc ≥ rme, me’s optimal action is to undercut price pc. Otherwise, she obtains a higher
revenue-to-go by not undercutting, that is, by choosing any price pme > pc.

- Similarly, if pme ≥ rc. c’s optimal action is to undercut price pme. Otherwise, she obtains a
higher revenue-to-go by not undercutting, that is, by choosing any price pc > pme.

Proof: Presented in Appendix C.2
The existence of these thresholds is very similar to the equilibrium structure obtained in

Martínez-de Albéniz and Talluri [2011]. In their paper, Martínez-de Albéniz and Talluri claim
that these thresholds (‘reservation values’) imply a unique equilibrium. However, we note that the
equilibrium is not unique. To see this, consider the case where rme < rc. This implies that me is
wiling to undercut to a lower price than c is. Therefore, me undercuts and makes the sale (if the
arriving customer has a higher willingness-to-pay than me’s price). Observe here that there is a
continuum of equilibria: c can choose any price in [rme, rc] and me will undercut optimally. Neither
firm has an incentive to deviate. The rc < rme case can be treated analogously.

Therefore, we propose a refinement of the subgame-perfect pure strategy Nash equilibrium
wherein no firm that settles (i.e., does not undercut) chooses a price below their threshold. Note that
such a refinement of the SPNE-P is required to produce a unique equilibrium in the deterministic
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and known valuation case (as studied in Martínez-de Albéniz and Talluri [2011]). Our proposed
refinement, in essence, picks the highest possible sale price among the equilibria; the threshold is
thought of as a ‘reservation value’ below which the ‘settling’ firm will not price. (In general, the
‘undercutting’ firm will also not price below their reservation value, but their response cannot be
characterized in closed-form for general demand functions.) Under this refinement, we have:

Proposition 16 In the fully flexible case, a unique refined SPNE-P always exists when the two
firms have unique reservation values. When the reservation values are identical, there are two
refined SPNE-P.

Proof: This result is implied by the existence of the reservation values. In particular:

- If rme < rc, the equilibrium involves c pricing at rc and me undercutting optimally.

- If rc < rme, the equilibrium involves me pricing at rme and c undercutting optimally.

- If rc = rme = r, there are two SPNE-P. Under each, one of the firms prices at r while the
other undercuts optimally.

�
In stating Proposition 16, we note that the firm that prices lower does so by ‘undercutting

optimally’. Without loss of generality, let us consider the case when rme < rc, and therefore, me
undercuts c. Formally, undercutting optimally means that me chooses a price in Period t that
satisfies:

pme = arg max
pme<rc

d(pme)

pme + V∗
t+1(xme − 1, xc) − V∗

t+1(xme, xc)︸ ︷︷ ︸
Δ1

+ V∗
t+1(xme, xc)

= arg max
pme<rc

d(pme) (pme + Δ1) + V∗
t+1(xme, xc).

(3.5)

We note that this equilibrium cannot be stated as concisely as the equilibrium presented in
Martínez-de Albéniz and Talluri [2011] (Lemma 1). This is because of the generality of our
willingness-to-pay distribution as opposed to their fixed willingness-to-pay model: In their case,
the firm that (potentially) makes the sale simply prices at the reservation price of the competitor.
For specific demand functions, we may be able to characterize the equilibrium price at which me
prices more sharply. For instance, if the function in (3.5) is concave and is maximized at p∗, we
have that pme = rc − ϵ for some small ϵ > 0 if rc < p∗, and pme = p∗ otherwise.

We also note that in the fully flexible case, our demand model is analogous to an extension
(uncertain valuations) in Martínez-de Albéniz and Talluri [2011]. Martínez-de Albéniz and Talluri
state that in general, it is difficult to prove the existence of an equilibrium for the case of uncertain
valuations because the best response function is, in general, not continuous. We overcome this
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problem by directly analyzing components of the best response function, allowing us to establish
the existence of an SPNE-P.

5 Comparing Monopolistic and Competitive Models

We now study the impact of firms using competitive versus monopolistic models on their revenues.
First, consider the decision at a high level. Each of the firms can choose to use a monopolistic

model or a competitive model. Denote the chosen strategy of firm as si ∈ {C, M}, where M
represents using a monopolistic model and C represents using a competitive model. Let us denote
a specific strategy profile (a specification of both firms’ strategies) by the ordered pair (sme, sc).
Therefore, there are four possible strategy profiles in the strategy space, (M, M), (M, C), (C, M),
(C, C). For this model choice problem, we restrict our attention to a one-shot interaction between
the competing firms, and investigate which of these strategy profiles (if any) is a Nash equilibrium.
(Note that following the choice of model, the two competing firms play a dynamic pricing game
over a horizon of length T.)

- (M, M) is not a Nash equilibrium strategy profile. me could deviate resulting in the strategy
profile (C, M). Naturally, doing so will make her at least as well off as under the strategy
(M, M) because she can choose the same prices as she would have chosen under (M, M)
and obtain the same profits. Further, it can be shown that strategy profile (C, M) strictly
dominates strategy profile (M, M) from me’s perspective: Consider all sample paths under
which me and c are left with some remaining inventory one period from the end of the
horizon. Under strategy profile (M, M), both firms select the same price p∗ (that maximizes
d(p)
2 p) and obtain an expected profit of d(p∗)

2 p∗ each, while under the strategy profile (C, M),
me can undercut c’s price by a small ϵ > 0 and obtain a profit arbitrarily close to d(p∗)p∗.

- We now argue intuitively that (C, M) (equivalently (M, C)) is not a Nash equilibrium strategy
profile either. This is because under strategy profile (C, M), me anticipates the price charged
by c in every period t, and can undercut c if favorable and not otherwise, without threat
of retaliation. This is only a coarse intuition for why c finds (C, M) preferable to (M, M);
we confirm this to be the case in all our numerical experiments (described subsequently).
This preference does not appear to be analytically provable, however, because the dynamic
behavior of the firms under both (M, C) and (C, C) cannot be characterized in closed form.

- Since it is favorable for me to deviate from (M, C) to (C, C) and for c to deviate from (C, M)
to (C, C), (C, C) is the unique Nash equilibrium strategy profile.

Since (C, C) is the unique Nash equilibrium strategy profile, the natural question to ask is
how the payoffs to both firms under strategy profile (C, C) compare to the payoffs under strategy
profile (M, M) (the status-quo)? Under what conditions—if any—does the situation resemble the
Prisoners’ Dilemma?
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In order to carry out a consistent comparison of these two strategy profiles, we make the
following assumption: if a firm using a competitive model estimates a demand function of d(p)
(where p is the price charged by firm with the lower price), the same firm using a monopolistic
model will estimate a demand function of 1

2d(p). Therefore, if both firms price at p, the total
market demand would be d(p) under the cases (C, C) and (M, M). This is analogous to the demand
consistency property imposed in Cooper et al. [2015]. We review this property in Appendix C.5.

We note that unlike Cooper et al. [2015], we assume that the demand functions are already
estimated prior to the dynamic pricing exercise, and that these functions’ parameters are not
updated from time-to-time based on the outcome of the dynamic pricing exercise. While Cooper
et al. [2015] considers cycles of optimization and forecast updates, our focus is restricted to the
optimization step; however, the dynamic pricing exercise in our model is T periods long (as opposed
to Cooper et al.’s single-period setting) and we model the firms as being capacity constrained. We
will demonstrate that capacity plays an important role in determining market outcomes.

We now consider two specific demand models for which the equilibrium prices can be computed
simply. The first is a model under which demand decays exponentially with price. The second is a
model with iso-elastic (i.e., linear) demand.
Exponential Demand:
Under this model, the demand at a price p is given by:

d(p) =

e−αp, if p > 0

1, otherwise.

Since we are interested in a relative comparison of the revenues obtained by using monopolistic
versus competitive models, we can normalize price p (the currency) and set α = 1, for convenience.
By doing so, we obtain a parameter-free demand function.
Iso-elastic Demand:
Under this model, the demand at a price p is given by:

d(p) =


0, if p > 1

1 − αp, if 0 ≤ p ≤ 1

1, otherwise.

Since we are interested in a relative comparison of the revenues obtained by using monopolistic
versus competitive models, we can again normalize price p (the currency) and set α = 1, for
convenience. Again, this normalization gives us a parameter-free demand function.

Note that under both these demand models, a sale will be made with probability 1 if the price
offered is low enough. Therefore, these demand models implicitly assume that a customer arrives
with probability 1 in each period, i.e., the market size is such that λt = 1, ∀t. With some abuse of
notation, this means that d(p) = λtϕ(p) = ϕ(p). Therefore, the only source of uncertainty is the
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willingness-to-pay of the arriving customer. We reiterate that our general model can accommodate
uncertain market size, but we leave this source of uncertainty out of our experiments so as not
to detract from the main focus of this section, i.e., the effect of using competitive rather than
monopolistic models and the interaction of this effect with capacity. (It is possible to run similar
experiments with uncertain and time-varying market sizes because the firms’ pricing strategies in
each period depend only on the demand Dt in that period, and the dependence on future periods
is captured through the value function V∗(·). However, doing so would pose an impediment to
isolating the effect of capacity on outcomes.)

For each of these demand models, we are interested in computing two quantities: V(M,M)
0 (Xme, Xc)

and V(C,C)
0 (Xme, Xc). These quantify the net-present value to firm me (for length of horizon T and

initial capacities Xme and Xc for me and c respectively), under strategy profiles (M, M) and (C, C).
We also verify in all cases that (C, C) is indeed the equilibrium strategy, i.e., that me can (weakly)
improve profits by deviating from (M, C) to (C, C) and c can (weakly) improve profits by deviating
from (C, M) to (C, C).
Computing V(C,C)

0 (Xme, Xc): To compute V(C,C)
0 (Xme, Xc), we rely on the equilibrium character-

ization in Section 4.2. Note that both the exponential and the iso-elastic demand functions are
inelastic in the region p < 0. We make this simplification for analytical tractability; it can be
interpreted as follows: the variable cost is small enough that customer demand is inelastic when
the price is set below the variable cost. Inelasticity in this region violates Assumption 4 (that stated
that demand was elastic at all prices), and therefore, our existence proof in Proposition 16 does
not directly carry over. In Appendices C.3 and C.4, we show that SPNE-P continue to exist, and
discuss how they may be computed inexpensively. Solving for the equilibria directly gives us the
value of V(C,C)

0 (Xme, Xc) under both demand models.
Computing V(M,M)

0 (xme, xc): Under strategy profile (M, M), me and c do not track each others’
inventory position and prices. Pricing decisions are made based only on their own remaining
inventory. To compute V(M,M)

0 (Xme, Xc), we first find the optimal prices of each of the firms under
monopolistic models. To do this, we solve a dynamic programming recursion that relates the period
t problem to the value function for period t+1 (for a review of these monopolistic models, please see
Talluri and Van Ryzin [2004]). We briefly describe the approach here. The dynamic programming
formulation is given by:

Vt(xme) = max
pme

1
2d(pme)(pme + Vt+1(xme − 1)) + (1 − 1

2d(pme))Vt+1(xme),

with the standard boundary conditions VT(·) = 0 and Vt(xme ≤ 0) = 0. Solving this dynamic
program gives us the optimal price p∗

t (xme) that a firm would charge in period t with xme units
of inventory left. Note that these pricing decisions do not depend on the competitor c’s inventory
level. We then use these prices to compute V(M,M)

0 (Xme, Xc) by solving the following recursion for

76



me.

Vt(xme, xc) =

Ip∗
t (xme,xc)<p∗

t (xc,xme) (d(p∗
t (xme, xc))(p∗

t (xme, xc) + Vt+1(xme − 1, xc))

+(1 − d(p∗
t (xme, xc)))Vt+1(xme, xc))

+ Ip∗
t (xc,xme)<p∗

t (xme,xc) (d(p∗
t (xc, xme))(Vt+1(xme, xc − 1)) + (1 − d(p∗

t (xc, xme)))Vt+1(xme, xc))

+ Ip∗
t (xme,xc)=p∗

t (xc,xme)

( 1
2d(p∗

t (xme, xc))(p∗
t (xme, xc) + Vt+1(xme − 1, xc))

+ 1
2d(p∗

t (xme, xc))Vt+1(xme, xc − 1) + (1 − d(p∗
t (xme, xc)))Vt+1(xme, xc))

)
,

with the boundary conditions VT(xme, xc) = 0 and Vt(xme ≤ 0, xc) = 0. Since the firms face
symmetric demand functions, the value-to-go for firm c in period t is simply Vt(xc, xme).

Now that we can compute V(M,M)
0 (Xme, Xc) and V(C,C)

0 (Xme, Xc) under both demand models,
we can answer the following questions:

1. Total capacity net effect: With symmetric firm capacities, i.e., Xme = Xc = X, how
does the total market capacity (2X) in the market affect industry profits, when both firms
migrate from monopolistic to competitive models? Under both our demand models, the
expected number of arrivals over the horizon is T (as a potential customer arrives in every
period). Therefore, the relative capacity level is 2X

T . We use ‘low (high) capacity’ to mean
‘low (high) capacity’ relative to total expected number of arrivals T.

2. Capacity mismatch net effect: When the firms are asymmetric in their capacity, i.e.,
Xme ̸= Xc, how is the total industry profit affected by migration to competitive models as a
function of the extent of capacity mismatch?

3. Capacity mismatch individual effect: When firms are asymmetric, i.e., Xme ̸= Xc, how
is the lower capacity firm affected by a migration from monopolistic to competitive models?
How is the higher capacity firm affected?

There are two conflicting effects at play that determine the answers to the above questions.

1. Competition Effect: Under the strategy profile (C, C), the presence of competitive forces
drives down prices in equilibrium (when both firms have capacity remaining), as observed in
prior literature including Martínez-de Albéniz and Talluri [2011]. In fact, these prices can
even be negative. This results in a revenue advantage under strategy profile (M, M)—where
prices are agnostic to the presence of competition—when both firms have remaining capacity.

2. Information Effect: When one firm (without loss of generality, c) runs out of capacity, the
other firm me knows this fact under strategy profile (C, C). Therefore, when me has remaining
capacity x and c has remaining capacity 0, me can choose a price to maximize the actual
revenue function d(pme)(pme + Vt+1(x − 1, 0) + (1 − d(pme))Vt+1(x, 0). This price yields a
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higher revenue-to-go for me than she would obtain under the strategy profile (M, M), where
she chooses a price to maximize the revenue function 1

2d(pme)(pme + Vt+1(x − 1) + (1 −
1
2d(pme))Vt+1(x), unaware of the fact that her competitor is actually out of capacity and
that she is therefore pricing for a demand function d(pme), which yields a different value-
to-go. Therefore, the information effect gives strategy profile (C, C) an advantage when
the competitor has run out of capacity. Note that since the pricing game is dynamic, the
possibility of one firm (without loss of generality, c) running out of capacity can be anticipated
by me, who may initially set high prices to drive c out of the market.

We now examine how these forces interact with each other to answer our three questions.

5.1 Total capacity net effect

To study the total capacity net effect, we consider three different lengths of time horizon: T = 15,

T = 75, and T = 375. These correspond to three different values of relative capacity. For each
of these three scenarios, we plot the value of r = V(M,M)

0 (X,X)
V(C,C)

0 (X,X)
on a logarithmic scale against values

of X from 1 to T − 1. When r > 1, monopolistic models yield higher revenues and when r < 1,
competitive models yield higher revenues. When X = T, V(C,C)

0 (X, X) = 0, because prices are
driven down to zero. V(C,C)

0 (X, X) is strictly positive for all other values of X.
The results of our experiments are shown in Figures 3.2 - 3.4. In each of the plots, we see two

distinct regions. In Region I, the capacity X is significantly lower than the length of the horizon
T. In this region, we observe that r < 1 (however, in these cases r is very close to 1 and therefore
log (r) is very close to 0), meaning that the information effect dominates, because there is a high
probability that one firm runs out of capacity, leaving the other firm to operate as a monopoly. In
Region II, capacity is moderate or high. Here, r > 1 and the competition effect dominates, because
there is a relatively low probability of one of the firms running out of inventory during the horizon.
Therefore, the information effect plays a vanishingly small role, and r increases. We note that the
boundary between Region I and Region II differs for the two different demand cases.

In summary, in Region I, the equilibrium strategy profile (C, C) is also Pareto dominant. There-
fore, when capacity X is significantly low in comparison to the length of the horizon, a migration to
competitive models is both an equilibrium strategy and leaves both firms better off. In Region II,
however, the equilibrium strategy profile (C, C) is Pareto dominated by strategy (M, M). In other
words, the structure of the strategic game resembles that of a Prisoner’s dilemma, where both firms
are better off playing an off-equilibrium strategy.

5.2 Capacity mismatch net effect

We study the capacity mismatch net effect by tracking how the extent of capacity mismatch affects
industry profits in moving from strategy profile (M, M) to strategy profile (C, C). When capacities
are matched, we know from Section 5.1 that for relatively low capacity, strategy profile (M, M)
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Figure 3.3: log(r) against X for T = 75

results in lower industry profits than strategy profile (C, C). What happens when capacities are
mismatched, for the same future demand (in our case, for the same length of horizon T)? Similarly,
we know that when capacity is moderate or high, strategy profile (M, M) results in higher industry
profits than strategy profile (C, C). Again, what happens when capacities are mismatched? We
illustrate this effect for a horizon length of T = 375. We start by considering two extremes of
total capacities: a very low total capacity of 20 and a very high total capacity of 362. (These
specific capacity levels are chosen for expositional convenience, i.e., so that similar behavior can be
illustrated under both demand models in a single figure.)

When the total capacity is 20, we have from Section 5.1 that r < 1 under both demand models
when Xme = Xc = 10. In Figure 3.5, we plot the logarithm of r = V(M,M)

0 (X,20−X)+V(M,M)
0 (20−X,X)

V(C,C)
0 (X,20−X)+V(C,C)

0 (20−X,X)
for

values of X from 1 to 10.
When the total capacity is 362, we have from Section 5.1 that r > 1 under both demand models

when Xme = Xc = 181. In Figure 3.6, we plot the logarithm of r = V(M,M)
0 (X,362−X)+V(M,M)

0 (362−X,X)
V(C,C)

0 (X,362−X)+V(C,C)
0 (362−X,X)

for values of X from 1 to 181.
In Figures 3.5 - 3.6, we see that under both demand models, as the extent of capacity mismatch

decreases (when X increases), the value of r increases, implying that the relative strength of the
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Figure 3.4: log(r) against X for T = 375
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Figure 3.5: log(r) against X for T = 375, very low value of total capacity

information effect increases in the capacity mismatch level. The increase in log(r) is concave when
capacity is low (Figure 3.5), and convex when capacity is very high (Figure 3.6) reflecting the
diminishing role of the information effect with increased capacity. This can be attributed to a
commensurate decrease in the probability that the lower capacity firm stocks out before the end of
the horizon. When capacity is very high (Figure 3.6), we further note that the competition effect
is particularly pronounced when capacities are exactly matched, i.e., when X = 181.

What happens for intermediate values of capacity? Figure 3.7 presents the plot for exponential
demand and a total capacity of X = 76. Analogously, Figure 3.8 presents the plot for iso-elastic
demand and a total capacity of X = 98. In both plots, there are two regions: when capacity
mismatch is high (corresponding to lower values of X), the information effect is still strong, and
competitive models yield a higher industry profit. As X increases, the value of r increases in
a concave fashion until log(r) becomes 0, and the relative strength of the effects flips. As X is
increased further, monopolistic models yield a higher industry profit. Further increasing X causes
a convex increase in log(r).
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Figure 3.7: log(r) against X for T = 375, Exponential demand, intermediate value of total capacity

5.3 Capacity mismatch individual effect

In Section 5.2, we saw that increased capacity mismatch attenuates the competition effect with
respect to total industry profits. But how are these total industry profits split between the two
firms? Answering this question will enable us to understand how the equilibrium strategy profile
(C, C) compares to the strategy profile (M, M) in terms of payoffs to each firm.

We use the same set of experiments as the ones in Section 5.2 for illustration. However, for
brevity, plots are presented only for the exponential demand model. The analogous plots for the
iso-elastic demand model are presented in Appendix C.6.

First, we study the case when capacity is very low and total industry profits are higher under
strategy profile (C, C). Figure 3.9 plots results for the case of exponential demand. We plot the
values of the logarithm of r = V(M,M)

0 (X,20−X)
V(C,C)

0 (X,20−X)
and r = V(M,M)

0 (20−X,X)
V(C,C)

0 (20−X,X)
(the ratio of revenues under

monopolistic and competitive models for the lower capacity and higher capacity firm respectively)
in adjacent bar graphs, for values of X from 1 to 10. We know that when capacity is low and
capacity mismatch is high, competitive models yield larger industry profits (see Figure 3.5). From
Figure 3.9, we see that this is attributed to a significant benefit to the higher capacity firm (note
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Figure 3.8: log(r) against X for T = 375, Iso-elastic demand, intermediate value of total capacity

that a negative value of log(r) indicates a preference for competitive models). This outcome is
explained by the fact that the information effect favors the higher capacity firm, who benefits from
the higher probability that the lower capacity firm runs out of capacity. Again, as the mismatch
level decreases (as X increases), the competition effect takes over: the lower capacity firm has less
to lose from strategy profile (C, C) and the higher capacity firm has commensurately less to gain
from strategy profile (C, C).
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Figure 3.9: log(r) against X for T = 375, total capacity = 20, Exponential demand

Next, we study the case when capacity is very high and total industry profits are better under
strategy profile (C, C). In Figure 3.10, we plot the values of the logarithm of r = V(M,M)

0 (X,181−X)
V(C,C)

0 (X,181−X)

and r = V(M,M)
0 (181−X,X)

V(C,C)
0 (181−X,X)

(the ratio of revenues under monopolistic and competitive models for the
lower capacity and higher capacity firm respectively) in adjacent bar graphs against values of X
going from 1 to 181. For visual clarity, we vary X with an interval size of 15 until X = 166 and an
interval of 1 for 166 < X ≤ 181. The plot indicates that under very high capacity and any amount of
capacity mismatch, the high capacity firm prefers monopolistic models while the low capacity firm
prefers competitive models. Here, the competition effect is stronger than the information effect,
and impacts the higher capacity firm more severely. Furthermore, the stronger competition effect
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favors the lower capacity firm, because she tends to get rid of capacity first (this same effect has
been noted in Martínez-de Albéniz and Talluri [2011] and Dudey [1992] as well); therefore, the
lower capacity firm prefers the competitive model. Interestingly, this continues to be true until the
capacities are exactly matched, at which point both firms prefer the monopolistic model.
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Figure 3.10: log(r) against X for T = 375, total capacity = 362, Exponential demand

What happens for intermediate values of capacity? In Figure 3.11, we consider a total capacity
value of X = 72; we vary X with an interval of 10 units until X = 61 and 1 unit thereafter. (We
truncate the vertical axis for visual clarity.) The general observations from the high capacity regime
(Figure 3.10) continue to hold: the higher capacity firm prefers monopolistic models while the lower
capacity firm prefers competitive models, except when there is no capacity mismatch.
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Figure 3.11: log(r) against X for T = 375, total capacity = 76, Exponential demand

In summary, when total capacity is not very low, the lower capacity firm prefers to use compet-
itive models when capacities are mismatched. The higher capacity firm prefers to use monopolistic
models, i.e., she would prefer an off-equilibrium strategy. When the total capacity is significantly
low, and the level of capacity mismatch is not low, this effect flips. When capacities are symmetric,
the equilibrium strategy (C, C) is favorable to both firms only when the total capacity is very low.
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6 Extensions

In our base model, we made various simplifications in the interest of expositional convenience.
However, some of these assumptions may easily be relaxed without altering the nature of our
results.

1. Asymmetric demand function: In our base model, we assumed that if D(pme, pc) rep-
resents the probability that me makes a sale under given prices (pme, pc), D(pc, pme) would
represent the probability that c makes a sale under prices (pme, pc). However, we can make a
simple modification to have Dme(pme, pc) represent the probability that me makes a sale and
Dc(pme, pc) represent the probability that c makes a sale. This change continues to allow the
existence of reservation prices and hence an equilibrium, as in Section 4.2. To show that an
SPNE-P continues to exist as asserted by Proposition 16, the proof of Lemma 3 in Appendix
C.2 can be employed directly: this proofs shows, from the perspective of one of the firms,
that there exists a threshold price below which that firm will not continue to undercut.

2. More than two firms: In our base model, we consider two competing firms. However, this
can easily be extended to an oligopolistic situation with more than two firms. The required
modifications to our proof closely follow those in Martínez-de Albéniz and Talluri [2011]. The
equilibrium characterized in Section 4.2 can be easily extended: each firm continues to have
a reservation price below which it will not undercut. In equilibrium, the firm with the lowest
reservation price (potentially) makes the sale by undercutting the second lowest reservation
price optimally. All other firms choose their reservation prices.

7 Conclusions and Future Work

Prior revenue management and pricing literature has established the need for firms engaging in a
dynamic pricing game to explicitly account for the existence of competition in their optimization.
This chapter contributes to the growing literature that studies aspects of competition modeling.
We posit a general and flexible model of demand that unifies many realistic aspects that determine
customer demand in a practical setting: (i) the inherent uncertainty in market size, (ii) uncertainty
in customer valuations, and (iii) the existence of both loyal customers (who do not treat the products
on offer as perfect substitutes) and flexible customers (who treat the products on offer as perfect
substitutes and whose purchases are guided purely by prices). To the best of our knowledge, there
is no existing work that unifies all these practically relevant aspects of customer demand. Under our
general model of demand, we find that the presence of any loyal customers precludes the existence
of a subgame perfect Nash equilibrium in pure strategies (SPNE-P). However, when all customers
are flexible, we prove the existence of a continuum of SPNE-P, and propose a refinement that results
in a unique equilibrium.
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Using this equilibrium, we study the strategic question of whether competing firms should use
monopolistic models or competitive models. We argue that in general, it is an equilibrium strategy
for both competing firms to use competitive models. We then compare the resulting payoffs—at the
industry level and the firm level— to the status-quo payoffs wherein both firms use monopolistic
models. The payoffs are driven by two competing effects: the competition effect that drives prices
and profits down, and the information effect that drives profits up. We find that when firms
are roughly symmetric in their capacity and capacity is not very low, industry profits are hurt
by a migration to competitive models because prices are driven down. However, when firms are
highly mismatched in their capacities, this migration can improve industry profits as long as total
capacity is not very high. When total capacity is not very low, the lower capacity firm is aided
by this migration because she ends up capturing all the customers during the early part of the
horizon, at a higher price, as the higher capacity firm seeks to drive her out of the market. The
higher capacity firm, though, is ultimately harmed by the migration. On the other hand, when
total capacity is very low, the higher capacity firm favors competitive models.

In the general symmetric case (when total capacity is not very low) the firms are both hurt
by migration to competitive models. Therefore, this situation resembles a prisoners’ dilemma:
these firms can sustain the strategy of both using monopolistic models in a repeated-game setting
under the credible threat that they will deviate if any one firm deviates. Therefore, through tacit
collusion, both firms can protect their profitability in this situation.

In the general asymmetric case, i.e., when total capacity is not very low, the lower capacity
firm would do well to invest in technology and migrate to using competitive models. The higher-
capacity firm will be forced to follow in equilibrium. Therefore, the lower-capacity firm can view
these sophisticated revenue management models as a strategic substitute for capacity shortage.

This chapter builds on prior literature, and, for a practically relevant model of demand, provides
guidance for firms selling perfectly substitutable products on the effect of migrating to competitive
models of dynamic pricing. Under our model of demand, existing equilibrium concepts fail to
provide similar guidance to firms selling imperfectly substitutable products (i.e., products for which
customer loyalty is a salient feature). Finding and analyzing a plausible equilibrium definition for
this situation is an interesting avenue for future research. This chapter also assumes that forecasts
are given exogenously to the pricing exercise. Another interesting avenue for future research would
be to incorporate forecast updates into the dynamic pricing exercise, extending the work of Cooper
et al. [2015] to a multi-period setting with capacity constraints.
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4
Conclusion

In this dissertation, we study three problems related to the regulation and management of innovative
technologies. Using tools from game theory, queueing theory and optimization, and a mixture of
analytical modeling and numerical analysis, this dissertation provides guidance and managerial
insights for regulators (in Chapter 1) and for firms (in Chapters 2 and 3).

In Chapter 1, we analyze the contentious regulatory issue of how a socially interested utility
regulator should design utility tariffs for markets with rooftop solar. We detail the various com-
plexities that the regulator must take into account when designing the tariff: the implications on
utility profits, on solar company profits, and on customer welfare and equity, with a view to elim-
inate unfavorable cross-subsidization among customers. We contribute to the policy discourse by
creating and analyzing a comprehensive model—cast as an optimization problem—that folds in all
these regulatory considerations.

Our analysis reveals that two features are critical to effective tariff design: the ability to dis-
criminate among customer usage tiers and the ability to discriminate between customers with and
without rooftop solar. Interestingly, the tariffs used in most states lack at least one of these fea-
tures. We then present a tariff with both these features and demonstrate, both analytically and
numerically, that it outperforms existing tariff structures that lack at least one of the identified
critical features. Using our model, utility regulators can compare the implications of using various
tariff options, and use our proposed tariff as a basis for designing tariffs for their own states.

In Chapter 2, we take the perspective of a tech-savvy service provider L, and study whether she
should initiate announcing real-time delay information when her competitor F could follow. No prior
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work studies competing firms providing (potentially) heterogeneously-rich delay announcement
strategies, chosen endogenously. We fill this gap in the delay-announcement and queueing literature.

To investigate the impact of L initiating delay announcements on her market share, we model
queueing systems in three different information regimes. We add to the queueing literature by ana-
lyzing the queueing dynamics under these three information regimes, and analytically characterize
performance in these regimes employing sophisticated techniques such as coupling and the analysis
of dynamical systems. We also conjecture market share bounds that apply to more generally to
the Join-the-shortest queue-like system for queues with asymmetric service rates.

Our main finding is that L’s announcement decision depends on her service capacity relative to
F’s: she should initiate delay announcements only if she is not the higher-capacity service provider.
This has an important implication for firms seeking to invest in delay-announcement infrastruc-
ture: if they have higher capacity than their competition, initiating real-time delay announcements
could cause an erosion in market share. However, if they do not have higher capacity than their
competition, real-time delay announcements can be treated as a strategic lever to mitigate capacity
shortage.

In Chapter 3, we study the question of whether competing firms (such as airlines) selling a
finite number of units of product over a finite horizon should continue with the status-quo of using
monopolistic models for their pricing decisions, or whether they should migrate to using competitive
models. We contribute to the growing literature that studies revenue management and pricing
under competition by unifying the various demand models used in prior literature to capture three
realistic considerations: (i) Uncertain market size; (ii) Uncertain customer valuations; and (iii)
The presence of loyal and flexible customers. We show that (the popularly used) subgame-perfect
Nash equilibrium in pure strategies fails to exist in the presence of any loyal customers. When all
customers are flexible (the fully-flexible case), we show the existence of such an equilibrium and
provide its structure.

For the fully-flexible case, we then study the strategic question of whether firms who, in the
status-quo, use monopolistic models, should migrate to using competitive models. We establish that
the unique equilibrium strategy is for both competing firms to migrate to using competitive models.
However, in general, this migration only benefits the firm with lower capacity. The implication is
that a firm with lower capacity should invest in sophisticated revenue management technology in a
bid to improve her profits, even though she can expect that market forces will drive her competitor
to also migrate.

There is much scope for further exploration on these and related topics. Related to Chapter
1, there are open policy and tariff design questions associated with other sources of distributed
energy, such as community solar arrays. These are seen as viable alternatives to rooftop solar and
enjoy economies-of-scale benefits that rooftop solar does not. Chapter 2 studies real-time delay
announcements provided by a firm to customers. Various other situations exist in which real-
time delay information is disseminated; for instance, ride-sharing platforms such as Uber routinely
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provide real-time delay information to their riders, and also give drivers real-time heat maps,
as an indication of their time-to-match. From the perspective of a firm like Uber, the optimal
information disclosure policy is an open problem. Chapter 3 also provides interesting avenues for
future research – notably, a plausible equilibrium concept and the associated analysis for a situation
with loyal customers is a worthy line of inquiry.
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A
Additional Material for Chapter 1

A.1 Proof of Proposition 1

First, notice that R’s objective function does not depend directly on T(·), but only on z. Therefore,
if she can choose a value of z that maximizes her objective function, and find M and T(·) that satisfy
her constraints (and therefore induce adoption outcome z), her ability to maximize her objective
is not compromised by this restriction. We now investigate whether, under a fixed value of z, R’s
ability to satisfy her constraints is compromised by this restriction. Consider a solution that does
not follow this restriction. We now show that this solution can be converted to a solution that
respects this restriction and continues to respect all R’s constraints.

Let O be the set of indices i such that ∃j : t(i) = t(j). Partition O into On, the set of indices
in O corresponding to non-adopting classes, Oan, the set of indices in O corresponding to adopting
classes that are not marginal classes, and Oam, the set of indices in O corresponding to adopting
classes that are marginal. Now, carry out the following steps.

1. Sequentially, for each i ∈ On, decrease t(i) by a small value ϵi > 0 by appropriately increasing
T(d ′

i, ei, 1). Note that doing this does not affect (1.11) because this equation is only affected
by T(di, 0, 0) for non-adopting classes. Further, since ϵi > 0, we can ensure that the tariff
restriction is respected, the inequalities in (1.13) continue to be respected, and the inequalities
in (1.15) continue to be respected.

2. Sequentially, for each i ∈ Oan, decrease t(i) by a small value ϵi > 0 by appropriately decreasing
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T(di, 0, 0). Note that doing this does not affect (1.11) because this equation is only affected
by T(d ′

i, ei, 1) for adopting classes. Further, if ϵi is small enough and appropriately chosen,
we can ensure that the tariff restriction is respected, the inequalities in (1.13) continue to be
respected, and the inequalities in (1.14) continue to be respected because t(i) is still larger
than t(m).

Now, consider the set Oam. Of these, choose exactly one class m to be the marginal class. For
all i ∈ Oam \m, sequentially increase t(i) by a small value ϵi by appropriately increasing T(di, 0, 0).
Note that doing this does not affect (1.11) because this equation is only affected by T(d ′

i, ei, 1) for
adopting classes. Further, if ϵi is small enough and appropriately chosen, we can ensure that the
tariff restriction is respected. Since these t(i) values are larger than t(m), the incentive compatibility
constraints (1.13) corresponding to these classes will now be respected for a small enough ϵi, because
if S sets a price t(i), since t(i) is now larger than t(m) class m does not adopt, therefore decreasing
the quantity in the summation term of (1.13) by at least hmgm. Naturally, (1.14) continues to hold
as t(i) is now larger than t(m). �

A.2 Proof of Proposition 2

We prove Proposition 2 by showing the following counter-example with three classes of customers.
Under this tariff structure, we have

t(i) = dird + r0 − ((di + ei − gi) sd + eise + s0)
gi

.

Let z∗ specify that classes 2 and 3 adopt and class 1 does not adopt. Let h1 = 4000, h2 = 250, h3 =
1000, d1 = 1000, d2 = 2000, d3 = 3000, g1 = 500, g2 = 1000, g3 = 1500, e1 = 200, e2 = 400, e3 =
600. R now has the choice between two possible orderings: Under ordering o1, t(1) < t(2) < t(3),
and m(o1) is 2, while under ordering o2, t(1) < t(3) < t(2), and m(o2) is 3. We show that P2

is infeasible under both these orderings by showing that either the ordering constraints or the
incentive compatibility constraints fail to hold.
System of constraints under o1:

1000rd − 700sd − 200se + r0 − s0
500 <

2000rd − 1400sd − 400se + r0 − s0
1000 <

3000rd − 2100sd − 600se + r0 − s0
1500

(A.1)

1750000
(2000rd − 1400sd − 400se + r0 − s0

1000 − cs

)
= ΔS (A.2)

3750000
(1000rd − 700sd − 200se + r0 − s0

500 − cs

)
< ΔS (A.3)

1500000
(3000rd − 2100sd − 600se + r0 − s0

1500 − cs

)
< ΔS (A.4)
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Solving for r0 − s0 using equation (A.2), and substituting in (A.3) and (A.4), we obtain:

5250000 (5cs − 10rd + 7sd + 2se) + 23ΔS < 0

700000 (5cs − 10rd + 7sd + 2se) + 3ΔS > 0

Let (5cs−10rd+7sd)
2 = v The above inequalities simplify to se + v < −23

2(5250000)ΔS = −2.19048 · 10−6ΔS

and se + v > −3
2(700000) = −2.14286 · 10−6ΔS, which is not possible, because ΔS > 0. Therefore, P2

is infeasible under ordering o1.
System of constraints under o2:

1000rd − 700sd − 200se + r0 − s0
500 <

3000rd − 2100sd − 600se + r0 − s0
1500 <

2000rd − 1400sd − 400se + r0 − s0
1000

(A.5)

1750000
(3000rd − 2100sd − 600se + r0 − s0

1500 − cs

)
= ΔS (A.6)

3750000
(1000rd − 700sd − 200se + r0 − s0

500 − cs

)
< ΔS (A.7)

250000
(2000rd − 1400sd − 400se + r0 − s0

1000 − cs

)
< ΔS (A.8)

Solving for r0 − s0 using equation (A.6), and substituting in (A.5), we obtain:

3cs − 4rd + 14sd
5 + 4se

5 + 3ΔS
1750000 < cs + ΔS

1750000 <
3cs
2 − rd + 7sd

10 + se
5 + 3ΔS

3500000

However, cs+ ΔS
1750000 < 3cs

2 −rd+ 7sd
10 + se

5 + 3ΔS
3500000 can be rewritten as 350000 (5cs − 10rd + 7sd + 2se)+

ΔS > 0 and 3cs − 4rd + 14sd
5 + 4se

5 + 3ΔS
1750000 < 3cs

2 − rd + 7sd
10 + se

5 + 3ΔS
3500000 can be rewritten as

350000 (5cs − 10rd + 7sd + 2se) + ΔS < 0, which contradict each other. Therefore, P2 is also
infeasible under ordering o2. �

A.3 Proof of Proposition 3

To prove this property, we choose a number ϵ > 0 and consider a net-metering tariff system (where
customers pay a variable charge proportional to their net energy usage). We choose the ordering
t(i) < t(j), ∀i < j, which is consistent with classes m, m + 1, . . . , I being adopters. Setting rd = sd,
se = −sd, and r0 = s0 − ϵ, the ordering constraints t(i) < t(j) simplify to sd − ϵ

gi
< sd − ϵ

gj
, which is
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true, because gi < gj. This leaves us with the following system of equations.

I∑
i=1

hi
(
s(z∗)
i ((sd(di − gi + ei) + seei + s0 − cz∗

u (di − gi)) + (1 − s(z∗)
i )((rd − cz∗

u )di + r0)
)

−
I∑

i=1
hi(pr0 − cE0

u )di = ΔU

(t(m(o)) − cs)
I∑

i=1
s(z∗)
i higi = ΔS

rd = sd

se = −sd

r0 = s0 − ϵ

This is a linear system of the form Ax = b with five unknowns: rd, sd, se, r0, and s0. Since the rows
of A are linearly independent, there exists a solution x to this equation. Therefore P2 is feasible
under this ordering. �

A.4 Proof of Proposition 4

First, we rewrite the set of constraints that must be satisfied to obtain a feasible solution to P2.

t(i) = T(di, 0, 0) − T(d ′
i, ei, 1)

gi
, ∀i (A.9)

I∑
i=1

hi
(
s(z∗)
i (T(d ′

i, ei, 1) − c(z∗)
u (di − gi)) + (1 − s(z∗)

i )(T(di, 0, 0) − c(z∗)
u di)

)
−

I∑
i=1

hi(pr0 − cE0
u )di = ΔU

(A.10)

t(i) ordering consistent with o (A.11)

(t(a(o)) − cs)
I∑

i=1
s(z∗)
i higi = ΔS (A.12)

(t(i) − cs)
I∑

j=1
It(j)>t(i)in ordering ohjgj < ΔS, ∀i ̸= a(o) (A.13)

This proof proceeds in two parts. In the first part, we will show that by ignoring the set of equations
(A.9) and (A.10), we can always find a set of t(i) values that satisfy (A.11)-(A.13). In the second
part, we will show that corresponding to the set of t(i) values found, we can find values for rc, ∀c ∈ C
and f that satisfy (A.9) and (A.10) .
Part 1: First, re-index the usage tiers so the index matches the ordering o. Note that after re-
ordering, we no longer have the property that gi < gi+1∀i ∈ {1, 2, . . . , I − 1}. Now, observe that
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(A.11) can be rewritten as t(i) < t(i + 1), ∀i ∈ {1, 2, . . . , I − 1}. Equation (A.12) can be rewritten
as (t(a(o)) − cs)

∑I
i=a(o) higi = ΔS and constraints (A.13) can be rewritten as (t(i) − cs)

∑I
j=i hjgj <

ΔS∀i ̸= a(o). With some manipulation, we obtain:

t(i) < t(i + 1)∀i ∈ {1, 2, . . . , I − 1} (A.14)

t(a(o)) = cs + ΔS∑I
i=a(o) higi

(A.15)

t(i) < cs + ΔS∑I
j=i hjgj

, ∀i ̸= a(o) (A.16)

The set of inequalities in (A.16) provide upper bounds on all the t(i) values, and (A.15) pins down
the value of t(a(o)). Notice that these upper bounds are increasing in i, because ΔS > 0, and∑I

j=i hjgj is decreasing in i. Therefore, there exist values t(i)∀i ∈ {1, 2, . . . , I−1} that respect (A.14)
and the specified upper bounds.
Part 2: Once a set of values t(i) is found, we need to map them to rate class tariffs rc. To do this,
we examine the set of equations (A.9). Each of these I equations takes the form:

t(i) = rmdi + f − (rn(di − gi) + f)
gi

= rm(di
gi

) + rn(di − gi
gi

), (A.17)

where m is the index of the rate class corresponding to net usage level di, and n is the rate class
corresponding to net usage level di − gi. Taken together, these I equations constitute an under-
determined linear system of the form A⃗r = t⃗, where r is a |C| dimensional vector of rc values, t⃗
is an I dimensional vector of t(i) values, and A is a matrix with I rows and |C| > I columns. If
the rows of A are linearly independent, then the system has an infinite number of solutions. For
the sake of contradiction, assume that the rows are linearly dependent. Then, there must exist
an I dimensional vector λ⃗ ̸= 0⃗I×1 such that λ⃗TA = 0⃗1×|C|. Let m1 = arg max

i
di. Let c1 be the

column in A corresponding to the rate class into which a tier m1 customer would fall if they did
not adopt solar. This column has exactly one non-zero entry because no other household can fall
into this rate class, whether they adopt solar or not. Let w1 be the index of the row in A that
contains this non-zero entry. Then, it must be that the wth

1 entry of λ⃗ is 0 in order for the cth
1 entry

of λ⃗TA to be 0. Therefore, the vector λ⃗TA is unaltered if we replace all entries in the wth
1 row of

A by zero. Now, this same argument can be applied repeatedly to assert that all other entries of
λ⃗ must also be zero: Choose m2 = arg max

i̸=m1

di, find the index c2 of the column corresponding to

the rate class to which a tier m2 customer would belong if it did not adopt solar, and observe that
exactly one row corresponding to this column now has a non-zero entry (recall that we changed
all entries in row w1 to 0). Let w2 be the index of this row. We can assert that the wth

2 entry of
λ⃗ = 0. By repeating this procedure, we can assert that all entries of λ⃗ are 0. This contradicts our
assumption, and therefore, the rows of A are linearly independent. Therefore, we can obtain values
of rc consistent with the equations (A.17). These values can then be substituted in (A.10), using

93



which we can find a feasible value of f. �

A.5 Proof of Proposition 5

We prove Proposition 5 by showing the following counter-example with three classes of customers.
Let h1 = 445, h2 = 218, h3 = 1000, d1 = 500, d2 = 681, d3 = 1024, g1 = 100, g2 = 181, g3 = 343, pr0 =
0.1,ΔS = 1, cs = 3/40. With these parameters, there are four possible values of net demand that a
household can have:

1. A class 1 household adopts: Net demand = d1 − g1 = 400kWh.

2. A class 1 household does not adopt, or a class 2 household adopts: Net Demand = d1 =
d2 − g2 = 500kWh.

3. A class 2 household does not adopt, or a class 3 household adopts: Net Demand = d2 =
d3 − g3 = 681 kWh.

4. A class 3 household does not adopt: Net Demand = d3 = 1024 kWh.

Therefore, U’s rate schedule must specify 4 different rate classes that apply at each of these net
demand levels. Let the rates corresponding to these rate class levels be r1, r2, r3, and r4 respectively.
Accordingly, the set of t(i) values is given by the following expression:

t(1) = r1 + (r2 − r1)
d1
g1

t(2) = r2 + (r3 − r2)
d2
g2

t(3) = r3 + (r4 − r3)d3
g3

Let ΔU be chosen so that ΔC = 0. Therefore, customers as a whole gain exactly 0. We are
interested in seeing how close this tariff structure can come to being CS-free. In particular, can
customer classes 1, 2, and 3 be financially worse off by an amount arbitrarily close to 0 after solar
adoption?

Let every individual household in class 1 be worse off by an amount a1, and every individual
household in class 2 be worse off by an amount a2. Because ΔC = 0, we have that every household
in class 3 is worse off by exactly −a1h1+a2h2

h3
. Let z∗ specify that class 1 adopts, while classes 2 and

3 do not adopt. Since class 1 is the marginal customer, r2d1 + f = r1(d1 − g1) + f + t(1)g1: The class
1 customer is equally worse off whether they adopt solar or not. Accordingly, we can write the
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following system of equations:

r2d1 + f = pr0d1 + a1 (A.18)

r3d2 + f = pr0d2 + a2 (A.19)

r4d3 + f = pr0d3 − a1h1 + a2h2
h3

(A.20)

We solve these equations for r2, r3, and r4. Next, we use the following profit equation to obtain
r1:

ΔS = h1g1
(

r1 + (r2 − r1)
d1
g1

− cs

)
(A.21)

Substituting r2 from equation (A.18) into equation (A.21), we obtain an equation for r1. Using
these expressions for r1, r2, r3, and r4, we obtain the following expressions for the t(i) values.

t(1) = 6677
89000

t(2) = −10a1 + 10a2 + 181
1810

t(3) = − 89a1
68600 − 87a2

24500 + 1
10

Now, consider the two possible orderings that R could induce.

1. t(3) < t(2) < t(1): t(2) < t(1) simplifies to the inequality a1 > a2 + 402363
89000 . Therefore, a and

b cannot both be made arbitrarily close to 0.

2. t(2) < t(3) < t(1): Since this ordering also contains the inequality t(2) < t(1), this ordering
also does not allow R to induce a CS-free outcome.

Therefore, this tariff structure does not allow R to induce a CS-free outcome. �

A.6 Proof of Proposition 7

Corresponding to an adoption outcome z∗, we will choose the ordering yielding the required z∗

whereby the non-adopters are arbitrarily arranged to have the lowest indices, the marginal adopter
is the adopting class with the lowest value of gi and all other adopters are arranged in increasing
order of gi1. Under this re-indexed system, if m is the index of the marginal adopter, set t(m) =
cs + ΔS∑I

i=m higi
. This leads to fm = gm(pr − t(m)). For all indices i < m, set t(i) = ϵi for some small

ϵ, and appropriately choose the fixed costs fi that would lead to this. For all indices i > m, set
fi = fm

gm
gi − (i−m)ϵgi, leading to values t(i) = pr − fm

gm
+(i−m)ϵ. Clearly, this schedule of fixed costs

respects the ordering that the t(i) values are required to have. Further, the incentive compatibility
constraints are respected: For a small enough ϵ, setting a solar price of t(i), i < m brings S negative

1Recall that there are i!j! such orderings where i + j = I, i classes do not adopt, and j classes do adopt.
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profit, and setting a price t(i), i > m increases her margin by an arbitrarily small amount (i − m)ϵ,
but brings lower volumes, because ∑I

j=m hjgj >
∑I

j=i hjgj, ∀i > m.
Now, let us examine what happens to the cash outflow of every tier under this schedule of

rates. For a non-adopting tier i < m, the decrease in cash outflow (and therefore benefit to
a customer in the tier) is (pr0 − pr)di. For an adopting tier, the decrease in cash outflow is
pr0di − (pr(di − gi) + fi + psgi) = (pr0 − pr)di + prgi − fi − psgi > (pr0 − pr)di from Lemma 1.

Accordingly, it is sufficient for us to now show that pr < pr0 under this schedule when ΔC > 0,
and pr = pr0 + δ, for some arbitrarily small δ > 0 when ΔC = 0.

ΔC =
I∑
1

hi(pr0 − pr)di +
I∑
m

hi(−fi + fm
gm

gi) (From the proof of Lemma 1,prgi − fi − psgi = −fi + fm
gm

gi)

⇔ ΔC =
I∑
1

hi(pr0 − pr)di +
I∑
m

hi(i − m)ϵgi

⇔ pr = pr0 − ΔC∑I
1 hidi

+ ϵ
∑I

m(i − m)higi∑I
1 hidi

Therefore, since the term ϵ
∑I

m(i−m)higi∑I
1 hidi

is vanishingly small when ΔC > 0, pr < pr0. When
ΔC = 0, pr can be set arbitrarily close to pr0 by reducing ϵ. This completes the proof. �

A.7 Proof of Proposition 8

When ΔC > 0, Proposition 7 showed that all tiers can be made to benefit from solar adoption.
For tiers i that do not adopt solar, the gain is (pr0 − pr)di. For tiers that do adopt solar, the gain
is (pr0 − pr)di + prgi − fi − psgi. From Lemma 1, prgi − fi − psgi > 0. Therefore, the smallest
gain accrues to the tier with the lowest di value (from the (pr0 − pr)di term; since all tiers benefit,
pr < pr0). If this di value corresponds to a tier l that is a non-adopter, a household of this tier
gains the most if pr is as low as possible. Note that the total gain accruing to households (ΔC) is
fixed, and how it is distributed among the tiers is controlled by the choice of pr and fi values for
adoptive tiers i. By setting fi values in order to make the prgi − fi − psgi values arbitrarily close to
0 for adoptive tiers, we can ensure that all of ΔC is constituted of the (pr0 − pr)di terms. We know
exactly how to do this from the proof of Proposition 7. Using the schedule specified in the proof
of Proposition 7, adoptive tiers face fixed costs fi = fm

gm
gi − (i − m)ϵgi. Therefore, for these tiers,

prgi − fi − psgi = prgi − fm
gm

gi + (i − m)ϵgi −
(
pr − ( fm

gm
)
)

gi = (i − m)ϵgi. Since this can be made
arbitrarily close to 0 by reducing the value of ϵ, this accomplishes our purpose of ensuring that ΔC

is (almost) entirely constituted of the (pr0 − pr)di terms. �

A.8 Summary of Notation
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Table A.1: Summary of Notation

Symbol Definition
S Solar Provider
U Utility Company
R Regulator
i Customer tier index
I Number of tiers
di Annual demand of tier i customer
d ′

i Grid usage of tier i customer, defined as di − gi + ei
gi Annual generation of tier i customer
ei Annual excess of tier i customer
hi Number of households in tier i
ps Solar price - price of solar electricity per kWh of generation paid to S
cs

Solar financial cost - levelized cost of solar electricity
paid by S (per kWh of generation)

ms
Solar environmental cost - monetized cost of environmental externalities
imposed by solar electricity (per kWh of generation)

cx
u

Utility financial cost - levelized cost of electricity to utility paid by U
(per kWh of generation) when annual supply is x kWh

mx
u

Utility environmental cost - monetized cost of environmental externalities
imposed by utility’s electricity mix (per kWh of generation),
when annual supply is x kWh

E0 Total consumer demand (in kWh) in the base case
ΔE Amount of energy dependence migrated to rooftop solar
ΔU Increase in utility profits from the base case to the post-solar case
ΔS Profit made by S in the post-solar case
ΔC

Increase in total financial welfare to the customer base, going from the
base case to the post-solar case

pr0 Per kWh energy rate paid by customers in the base case
si

Solar adoption decision taken by tier i customer. 1 indicates adopt and
0 indicates do not adopt. Superscript * represents optimal decision

T(·) Tariff function
τ Class of tariff functions

t(i) Threshold solar price that makes class i exactly indifferent between
adopting and not adopting solar

z Index into set of possible adoption outcomes
A(z) Adopters under adoption outcome z
M Set of marginal adopters, that is, set of tiers i that are indifferent between

adopting and not adopting
P1 Regulator’s master optimization problem
P2 Regulator’s optimization subproblem
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B
Additional Material for Chapter 2

B.1 Proofs

B.1.1 Proof of Proposition 9:

To prove Proposition 9, we show that when µ(L) = 1 < µ(F), M(L)
1 > M(L)

0 . The proof that M(L)
1 ≥

M(L)
0 when µ(L) = µ(F) closely follows this proof. We aim to show that λ

(L)
1 > λ

(L)
0 , ∀µ(F) > µ(L).

Let π0
i and π1

i denote the probabilities of L being in state i in Periods 0 and 1, respectively. L is an
M/M/1 queue in Period 0 and an M/M/1/C1 queue in Period 1. From the balance equations and
µ(L) = 1, we have λ

(L)
1 = 1 − π1

0 and λ
(L)
0 = 1 − π0

0. Therefore, to prove λ
(L)
1 > λ

(L)
0 , we equivalently

prove π0
0 > π1

0 by contradiction. We divide the feasible λ
(L)
0 values into two regions: 0 < λ

(L)
0 ≤ 0.5

(Case 1) and 0.5 < λ
(L)
0 < 1 (Case 2). Cases 1-2 cover the entire set of feasible values for λ

(L)
0

(Assumption (1) and eq. (2.5)). In our proof, we use the following inequality, which holds because
µ(F) > µ(L):

λ
(L)
0 <

Λ
2 . (B.1)

Case 1 (0 < λ
(L)
0 ≤ 0.5): Let’s assume, for the sake of contradiction, that π1

0 ≥ π0
0, for some

µ(F) > µ(L). We prove that this assumption leads to the sum of probabilities of states 0 and 1 in
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Period 1 being greater than one, π1
0 + π1

1 > 1, resulting in a contradiction.

π1
0 + π1

1 = π1
0 + π1

0Λ , from the balance equations,

= π1
0 (1 + Λ) ≥ π0

0 (1 + Λ) , from the contradiction assumption,

> π0
0
(
1 + 2λ

(L)
0

)
, from (B.1),

=
(
1 − λ

(L)
0

) (
1 + 2λ

(L)
0

)
︸ ︷︷ ︸

LB1

.

We now show that LB1 ≥ 1, which completes the proof for Case 1. At the two λ
(L)
0 extremes in

Case 1, λ
(L)
0 = 0 and λ

(L)
0 = 0.5, LB1 = 1. For 0 < λ

(L)
0 < 0.5, the first derivative of LB1 with

respect to λ
(L)
0 confirms that LB1 ≥ 1 because,

dLB1

dλ
(L)
0

= 1 − 4λ
(L)
0 ⇒

 LB1 is increasing in λ
(L)
0 when 0 < λ

(L)
0 < 0.25,

LB1 is decreasing in λ
(L)
0 when 0.25 ≤ λ

(L)
0 ≤ 0.5.

Case 2 (0.5 < λ
(L)
0 < 1): Again, let’s assume, for the sake of contradiction, that π1

0 ≥ π0
0, for some

µ(F) > µ(L). In this case we prove the contradiction assumption results in π1
0 + π1

1 + · · · + π1
C1

> 1:

π1
0 + π1

1 + · · · + π1
C1

= π1
0
(
1 + Λ + · · · + ΛC1

)
= π1

0
ΛC1+1 − 1
Λ − 1 , from the balance equations and the geometric summation,

≥ π0
0
ΛC1+1 − 1
Λ − 1 , from the contradiction assumption,

> π0
0

(
2λ

(L)
0

)C1+1
− 1

2λ
(L)
0 − 1

, from (B.1) and the fact that the geometric sum is increasing in Λ,

=
(
1 − λ

(L)
0

) (2λ
(L)
0

)C1+1
− 1

2λ
(L)
0 − 1︸ ︷︷ ︸

LB2

.

We now show that LB2 ≥ 1 or

(
2λ

(L)
0

)C1+1
≥ λ

(L)
0

1 − λ
(L)
0

. (B.2)

In this case 2λ
(L)
0 > 1. Therefore, we can obtain a lower bound on the left hand side of (B.2) by

finding a lower bound for its exponent C1 + 1:

C1 + 1 =
⌊

λ
(L)
0

1 − λ
(L)
0

+ 1
⌋

+ 1 ≥ λ
(L)
0

1 − λ
(L)
0

+ 1 = 1
1 − λ

(L)
0

.
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Therefore to prove (B.2), it suffices that we prove

(
2λ

(L)
0

) 1
1 − λ

(L)
0 ≥ λ

(L)
0

1 − λ
(L)
0

⇔ 1
1 − λ

(L)
0

ln
(
2λ

(L)
0

)
︸ ︷︷ ︸

LHS

≥ ln
(

λ
(L)
0

1 − λ
(L)
0

)
︸ ︷︷ ︸

RHS

. (B.3)

When λ
(L)
0 → 0.5 (the minimum value for λ

(L)
0 in Case 2), LHS → 0 and RHS → 0. Now to prove

(B.3) we show that LHS grows at least as fast as RHS as λ
(L)
0 increases; that is, we need to show

dLHS
dλ

(L)
0

=
1 − λ

(L)
0 + λ

(L)
0 ln

(
2λ

(L)
0

)
(
1 − λ

(L)
0

)2
λ

(L)
0

≥ dRHS
dλ

(L)
0

= 1(
1 − λ

(L)
0

)
λ

(L)
0

⇔

1 − λ
(L)
0 + λ

(L)
0 ln

(
2λ

(L)
0

)
≥ 1 − λ

(L)
0 ⇔ λ

(L)
0 ln

(
2λ

(L)
0

)
≥ 0,

which holds because 2λ
(L)
0 > 1. This completes the proof for Case 2. �

B.1.2 Matrix Blocks for Model F and Proof of Proposition 11:

Model F (Fig. 2.3(b)) has the following block-tridiagonal transition matrix where all blocks are
square matrices of order Ct + 1:

Q =


B A0

A2 A1 A0

A2 A1 A0
. . . . . . . . .

 ,

where

B =



∗ Λ
1 ∗ Λ

. . . . . . . . .
1 ∗ Λ

1 ∗


, A0 =


0

. . .
0

Λ

 , A1 =



∗ Λ
1 ∗ Λ

. . . . . . . . .
1 ∗ Λ

1 ∗


, A2 =


µ(F)

. . .
µ(F)

 ,

where “∗” represents diagonal elements whose values are set such that Q has zero row sums.
We now prove Proposition 11. Model F, which is a QBD process, is stable if and only if the

following ergodicity condition is satisfied [Latouche and Ramaswami, 1999, Theorem 7.2.4]:

νA01 < νA21, (B.4)

where the row vector ν = (ν0, ν1, . . . , νCt) contains the steady-state probabilities of the Markov
chain that corresponds to the generator matrix A = A0 + A1 + A2. Matrix A corresponds to
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the generator matrix of Model L (Fig. 2.3(a)). Inequality (B.4) simplifies to νCtΛ < µ(F), where
νCtΛ = λ

(F)
t , the expected arrival rate to F. �

B.1.3 Proof of Proposition 12:

When C1 = 1, we use the procedure described in Appendix B.2 to derive

C2 =

 µ(F) + 2Λ + 1 −
√(

µ(F) + 1
)2 + 4Λ

µ(F)
(

µ(F) − 2Λ − 1 +
√(

µ(F) + 1
)2 + 4Λ

) + 1

 . (B.5)

Using (2.3) (which specifies the Period 0 delay) and (B.5) and simplifying inequalities D(F)
0 < 1 and

D(F)
1 < 1, which represent C1 = C2 = 1, we obtain the required condition. �

B.1.4 Proof of Short-Term Market Share Limits (eq. (2.5)):

From eq. (2.4), we have:

M(L)
1 = ΛC1 − 1

ΛC1+1 − 1
. (B.6)

When Λ → 0, we have from eq. (2.3) and C1 =
⌊
D(F)

0 + 1
⌋

that C1 = 1. Accordingly, M(L)
1 =

Λ − 1/(Λ2 − 1) = 1/(Λ + 1) → 1 as Λ → 0. When Λ → 1 + µ(F), proving that M(L)
1 → 1/(1 + µ(F))

follows from proving that λ
(L)
1 → 1. From eq. (B.6), we have:

λ
(L)
1 = ΛC1+1 − Λ

ΛC1+1 − 1
=

1 − 1
ΛC1

1 − 1
ΛC1+1

As Λ → 1 + µ(F), C1 → ∞, and therefore, λ
(L)
1 → 1. �

B.1.5 Proof of Lemma 2

Consider systems A and B characterized by thresholds Ct and Ct + 1, respectively. In both systems,
F alternates between “on” and “off” periods. In an on period, which begins when n(L) is at its
threshold, F receives arrivals. In an off period, which begins when n(L) drops below the threshold,
arrivals do not join F. We denote the lengths of the ith (i ≥ 1) off periods by T(A)

i and T(B)
i and

the lengths of the ith (i ≥ 1) on periods by T′(A)
i and T′(B)

i .
We denote the customer-average delay1 at F in system j by D(F,j)

t . To show that D(F,A)
t ≥ D(F,B)

t ,
it is sufficient to compare the virtual workload processes W(F,A)

t and W(F,B)
t during the on periods

as only the customers that arrive during F’s on period contribute to her average delay. We make
1Not a time-average delay.
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this comparison by coupling the arrival times and service times in the two systems in a specific
way.

Starting with empty systems, the first few arrivals join L in both systems. The two systems are
perfectly coupled till the first moment that the number of L’s customers in A reaches the threshold
Ct; n(L,A) = Ct. At this point, the first on period in A starts while it has not yet started in B as L’s
threshold in system B is higher. Therefore, it is trivial that T(B)

1 > T(A)
1 . We pause system A at

this point and let system B run till it also finishes its first off period by drawing the service times
and arrivals for the additional customers arriving to L in B from a separate stack of service times
and inter-arrival times.

Now, we ensure that three properties hold using a carefully crafted coupling procedure:

1. T(B)
i ≥ T(A)

i , i ≥ 2: For the next off periods, i ≥ 2, we redraw the random exponential service
times of all current customers in L (if any) for systems A and B at the onset of the ith off
period; at this moment n(L,B) = Ct and n(L,A) = Ct − 1. We couple the service times of the
first Ct − 1 customers in the two systems and we redraw an additional random service time
for the extra customer in B. Our procedure is permissible due to the fact that service times
are i.id. and exponential. During the off period, we couple the arrival times and service
times of the new arrivals to L in systems A and B.

2. T′(B)
i = T′(A)

i , i ≥ 1: The length of an on period is equal to the service times of the threshold
customers in L in A and B. By redrawing and coupling the service times of the threshold
customers in L at the onset of an on period, the lengths of the on periods in the two systems
will be equal.

3. F receives the same amount of workload during T′(B)
i and T′(A)

i : This is achieved by using
point 2 and coupling the arrival times and service times of new arriving customers to F in A
and B in the ith on period.

Based on points 1 and 3 we can conclude that the amount of work in F at the onset of the ith

on period, ∀i, is at least as high in A as it is in B. Furthermore, since we couple the arrivals and
service times of customers in systems A and B in the on periods (as explained in points 2 and 3),
it follows that the amount of work in F at any time during an on period is at least as high in A as
it is in B. Therefore, a customer arriving in an on period encounters at least as much delay in A
as in B. From the stochastic ordering that this coupling implies, it follows that D(F,A)

t ≥ D(F,B)
t .

B.1.6 Proof of Proposition 13

In what follows, we assume that F remains stable in all periods (i.e., its expected delay in any
period is finite). Since λ

(F)
t is decreasing in Ct and the stability condition for F is λ

(F)
t < µ(F), this

means Ct never takes a value low enough that λ
(F)
t ≥ µ(F). Therefore, Ct =

⌊
D(F)

t−1 + 1
⌋

, ∀t is a finite
natural number.
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For a specific parameter setting, let C ≥ 1 denote the minimum value that we observe for Ct

over all periods and suppose C is observed for the first time in Period t; i.e., Ct = C. Due to
the stability of F, C results in a finite delay D(F) that leads to a finite Ct+1. Based on Lemma 1,
Ct+1 is the maximum value that Ct can take; we denote this maximum value by C. Let S denote
the set {C, C + 1, . . . , C} with cardinality |S|. From the pigeon-hole principle, if we let the system
run for longer than |S| periods, at least one of the values in S must be repeated. Since the only
determinant of Ct is Ct−1, the set of observed Ct values begins to cycle with some finite period T,
that is, Ct = Ct+T for t large enough.

Let yi denote the ith observation of Ct after the cycle is initiated; the sequence of Ct values that
cycle is y1, y2, . . . , yi, . . . , yT, y1, y2, . . . . By definition, all yi values are distinct. Using contradiction,
we argue that either T = 1 or T = 2. If T = 1 we have the convergence pattern, and if T = 2 we
have the stable oscillation pattern.

Assume for the sake of contradiction that T ≥ 2. First, observe that

- Case 1: If yi+1 > yi, D(F)
t resulting from Ct = yi must be at least as long as D(F)

t resulting
from Ct = yi+1 (by Lemma 1); therefore, we have yi+1 > yi+2.

- Case 2: If yi+1 < yi, we have yi+2 > yi+1 based on a similar discussion as in Case 1.

We can conclude based on Cases 1 and 2 that the direction of the evolution of Ct alternates; an
increase is followed by a decrease and a decrease is followed by an increase.

Observation 1. An increase follows a decrease and a decrease follows an increase.
For the remainder, we discuss Case 1. Case 2 follows the same logic.
In Case 1, we have yi+1 > yi and yi+1 > yi+2. We can consider two different orderings (subcases):

either (a) yi+1 > yi+2 > yi or (b) yi+1 > yi > yi+2. Note that neither (a) nor (b) can themselves
form the entire sequence due to the violation of Observation 12, which means T cannot be 2.

Next, we consider the possibility of T > 3. In Case (1), yi+1 > yi+2; therefore, we have
yi+3 > yi+2 (from Observation 1).

Under (a), we can claim from Lemma 1 that yi+2 < yi+3 < yi+1. Therefore, the ordering should
be yi+1 > yi+3 > yi+2 > yi. We call this the “convergent” pattern (Fig. B.1(a)). By continuing
this argument for yi+4, we can assert that yi+3 and yi+4 will be sandwiched between yi+1 and yi+2;
then, the ordering is yi+1 > yi+3 > yi+4 > yi+2 > yi. Therefore, there cannot exist a value T such
that yi+T = yi. Hence, subcase (a) does not lead to a feasible sequence.

Under (b), since yi+1 > yi > yi+2, it follows from Lemma 1 that yi+2 < yi+1 < yi+3. Therefore,
the ordering should be yi+3 > yi+1 > yi > yi+2. We call this the “divergent” pattern (Fig. B.1(b)).
Notice that yi and yi+1 are sandwiched between yi+2 and y3. By continuing this argument for yi+1,
we can assert that yi+1 and yi+2 will be sandwiched between yi+3 and yi+4; then, the ordering is

2If the sequence was yi, yi+1, yi+2, yi, yi+1, yi+2, · · · then: Under (a), the subsequence yi+1, yi+2, yi vio-
lates Observation 1 due to two consecutive decreases, and under (b) the subsequence yi+2, yi, yi+1 violates
Observation 1 due to two consecutive increases.

103



yi+3 > yi+1 > yi > yi+2 > yi+4. Therefore, there cannot exist a value T such that yi+T = yi. Hence,
subcase (b) does not lead to a feasible sequence either.

1.5

1.8

2.0

2.3

2.5

2.8

3.0

i i + 1 i + 2 i + 3 i + 4

y

(a) Convergent pattern

1.5

1.8

2.0

2.3

2.5

2.8

3.0

i i + 1 i + 2 i + 3 i + 4

y

(b) Divergent pattern

Figure B.1: Illustration of Convergent and Divergent patterns

Therefore, either T = 1 or T = 2. That is, Ct either stagnates at a single value or alternates
between two values.

B.1.7 Proof of Proposition 14

First, observe that M(L)
R1

is increasing in Ct (from (2.4)), and therefore, M(F)
R1

= 1−M(L)
R1

is decreasing
in Ct. Taken together with Conjecture 1, the computation of an appropriate upper (lower) bound
to C∞ will yield a lower (upper) bound to M(F)

R1
. In particular, we plug in a lower bound for C∞ to

get an upper bound on M(F)
R1

and plug in an upper bound for C∞ + 1 to get a lower bound on M(F)
R1

.
In order to compute bounds on the delay at F when Ct → ∞, we first characterize the distri-

bution of inter-arrival times at F.

Lemma 4 The first and second moments of F’s inter-arrival distribution follow:

E(T) = ΛCt+1 − 1
(Λ − 1)ΛCt+1 , (B.7)

E(T2) =
2Λ−2(Ct+1)

(
Λ2Ct+3 − 1 − (2Ct + 3)(Λ − 1)ΛCt+1

)
(Λ − 1)3 . (B.8)

Proof. The arrival process to F is a generalized interrupted Poisson process: the on-phase duration
is exponentially distributed with rate 1 (the on-phase corresponds to the time that L’s chain resides
in state Ct before transitioning to state Ct − 1), and the off -phase duration corresponds to the
amount of time that elapses until L’s chain first visits state Ct, starting at state Ct − 1. Let T
denote the random variable representing F’s inter-arrival times. The Laplace-Stieltjes transform of
T for a given Ct follows [Tran-Gia, 1988]:

ϕ(s) = Λ
s + Λ + 1 − ϕCt

off (s)
,
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where ϕCt
off (s), which is the Laplace-Stieltjes transform of the off-phase duration when the threshold

is Ct, follows [Keilson, 1965]:
ϕCt

off (s) = Λ
s + Λ + 1 − ϕCt−1

off (s)
,

with the initial condition ϕ1
off (s) = Λ/(Λ + s). We apply this expression recursively to obtain a

general form for ϕ(s). Subsequently, taking the first and second derivative (respectively) of ϕ(s)
with respect to s and setting s = 0 result in (B.7) and (B.8). �

Upper bound: Let S represent F’s service time random variable. From Daley et al. [1992,
inequality VII], we can first find a lower bound for D(F) as follows:

D(F) ≥
(
E(S2) − E(S)E(T)

)+
2(1 − ρ)E(T)

, (B.9)

where ρ is the probability that F is busy, which follows:

ρ = ΛπCt

µ(F) = (Λ − 1)ΛCt+1

µ(F)
(
ΛCt+1 − 1

) .

The service time at F follows an exponential distribution with the first and second moments E(S) =
1/µ(F) and E(S2) = 2/µ(F)2. These along with (B.7)-(B.8) result in:

D(F)
R1

≥


ΛCt+1(2Λ − µ(F) − 2) + µ(F)

2µ(F)
(
ΛCt+1(−Λ + µ(F) + 1) − µ(F)

)
︸ ︷︷ ︸

RHS


+

.

To find a bound based on Conjecture 1, we find the limit of RHS as Ct → ∞ as follows:

lim
Ct→∞

RHS =


−1/(2µ(F)), Λ ≤ 1,

ω = 1
−2Λ + 2µ(F) + 2

− 1
µ(F) , Λ > 1.

Clearly limC→∞ RHS < 0 when Λ ≤ 1. When Λ > 1, limC→∞ RHS < 1 if

Λ <
2µ(F)2 + 3µ(F) + 2

2µ(F) + 2
.

Note that (2µ(F)2 + 3µ(F) + 2)/(2µ(F) + 2) ≥ 1, ∀µ(F) > 0. Also, note again that C∞ = ⌊inf
Ct

D(F)
t ⌋+

1; therefore, when Λ < (2µ(F)2 + 3µ(F) + 2)/(2µ(F) + 2), a lower bound for C∞ is 1.
Based on M(F)

R1
being decreasing in C∞, Conjecture 1, and the derived lower bound of D(F)

R1
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corresponding to C∞, we obtain the following upper bound for M(F)
R1

:

M(F)
R1

≤ M(F)
R1 =


Λ2 − Λ
Λ2 − 1

, Λ <
2µ(F)2 + 3µ(F) + 2

2µ(F) + 2
,

Λ⌊ω+2⌋ − Λ⌊ω+1⌋

Λ⌊ω+2⌋ − 1
, otherwise.

(B.10)

Lower bound: From Daley et al. [1992, inequality II], we can first find an upper bound for
D(F) as follows:

D(F) ≤ RHS ′ = Var(S) + (1 − (1 − ρ)2)Var(T)
2(1 − ρ)E[T]

,

where Var(S) = 1/µ(F)2, Var(T) = E(T2) − E(T)2 (given in (B.7)-(B.8)). To find a bound based
on Conjecture 1, we find the limit of RHS’ as C → ∞ as the following:

lim
C→∞

RHS ′ =


Ω1 = 1 + Λ

µ(F)(1 − Λ)
, Λ < 1,

Ω2 = 1 + Λ(µ(F) − 1) + µ(F)

µ(F)(Λ − 1)(1 + µ(F) − Λ)
, Λ > 1.

The bound is not defined for Λ = 1.
Based on M(F)

R1
being decreasing in C∞, Conjecture 1, and the derived upper bound of D(F)

R1

corresponding to C∞, we obtain the following lower bound for M(F)
R1

:

M(F)
R1

≥ M(F)
R1

=


Λ⌊Ω1+3⌋ − Λ⌊Ω1+2⌋

Λ⌊Ω1+3⌋ − 1
, Λ < 1,

Λ⌊Ω2+3⌋ − Λ⌊Ω2+2⌋

Λ⌊Ω2+3⌋ − 1
, Λ > 1.

(B.11)

B.2 Closed-form solutions for D(F)
1 when C1 = 1 and 2

Let πi,j, i = 0, . . . , C1 and j ≥ 0, represent the stationary probabilities of Model F in Period 1. Let
π⃗j =

(
π0,j, . . . , πC1,j

)
. Model F (Fig. 2.3(b)) is a QBD process that is characterized by its square

rate matrix R of order C1 + 1, which satisfies π⃗j+1 = π⃗j × R, ∀j ≥ 0. In an excursion from Level
j to Level j + 1 initiated by a transition from state (m, j), m = 0, . . . , C1, element Rm+1,n in R,
n = 1, . . . , C1 + 1, represents the amount of time the excursion spends in state (n + 1, j + 1) for every
unit of time spent in state (m, j) [Latouche and Ramaswami, 1999]. Since transitions from Level
j to Level j + 1 only occur through Phase C1, R contains non-zero entries only in its bottom row
C1 + 1. Based on this special structure, π⃗j+1 = π⃗j × R yields,

πi,j+1
πC1,j

= πi,j+2
πC1,j+1

, 0 ≤ i ≤ C1, ∀j ≥ 0. (B.12)

106



Let rj = πC1,j/(
∑C1

i=1 πi,j). From (B.12), rj = rj+1 = r, ∀j > 0. From the flow balance equations, we
derive,

λ
(F)
1 = µ(F) Pr(F is busy) =⇒ λ

(F)
1 = µ(F)

1 −
C1∑
i=0

πi,0

 ⇒
C1∑
i=0

πi,0 = 1 − λ
(F)
1

µ(F) , (B.13)

where λ
(F)
1 follows λ

(F)
1 = M(F)

1 Λ = 1 − M(L)
1 and eq. (2.5). Taking flow balance equations across

levels,

πC1,jΛ = µ(F)
C1∑
i=0

πi,j+1 =⇒
C1∑
i=0

πi,j+1 =
πC1,jΛ
µ(F) .

The expected number of customers in F, which we denote by L(F)
1 , can be expressed as,

L(F)
1 =

∞∑
j=1

j
C1∑
i=0

πi,j =
∞∑
j=1

jπC1,j−1
Λ

µ(F) =
∞∑
j=1

j

rj

C1∑
i=0

πi,j−1

 Λ
µ(F) =

∞∑
j=1

j
(

rjπC1,j−2
Λ

µ(F)

) Λ
µ(F)

= · · · =
∞∑
j=1

jπC1,0

( Λ
µ(F)

)j
rj−1

j . (B.14)

If we can derive the expressions for πC1,0 and rj, we can apply Little’s Law and (B.14) to derive
D(F)

1 .
Let y denote the probability of L being in state C1, which we can easily derive from Model L’s

balance equations. On the other hand, y can be expressed as a weighted average of rj values as
follows:

y =
∞∑

j=0
πC1,j = r0

C1∑
i=0

πi,0 +
∞∑
j=1

C1∑
i=0

rjπi,j = r0
(
1 − λ

(F)
1

µ(F)

)
+ rλ

(F)
1

µ(F) . (B.15)

Therefore, (B.15) can be used to find r values based on r0. We can find r0 when C1 = 1 and 2
by solving a system of simultaneous non-linear equations governing the stationary probabilities in
Levels j = 0, 1, 2 of Model F. To find probabilities of states in Levels 1-3 of Model F, we need a
system of 3(C1 + 1) equations. We obtain 2(C1 + 1) equations from flow balance equations for states
in Levels 1 and 2, one equation from the sum of Level j = 0 state probabilities from (B.13), and C1

independent equations from (B.12).
For example, Fig. B.2(a) shows Model F when C1 = 1. The linear equation set (B.16) lists the

flow balance equations for states in Levels 1 and 2 (four equations and six unknowns). We then add
the linear equation (B.17), using (B.13), and the non-linear equation (B.18), using (B.12), which
result in an equation set with six equations and six unknowns.

Solving equations (B.16) and (B.17) simultaneously in terms of π1,0, we obtain the following
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1,0 1,1 1,2

0,1 0,20,0 …

…

(a) Model F when C1 = 1

Λπ0,0 = µ(F)π0,1 + π1,0,

(1 + Λ) π1,0 = Λπ0,0 + µ(F)π1,1,(
Λ + µ(F)

)
π0,1 = π1,1 + µ(F)π0,2,(

1 + Λ + µ(F)
)

π1,1 = Λπ1,0 + Λπ0,1 + µ(F)π1,2.

(B.16)

π0,0 + π1,0 = 1 − λ
(F)
1

µ(F) . (B.17)
π0,1

π1,0
= π0,2

π1,1
. (B.18)

quadratic equation:

π1,0
2
(
Λ2 − (Λ + 1)µ(F)

) (
Λ(Λ + 1)µ(F)2 + (Λ + 1)µ(F)2

)
+ π1,0

(
Λ2 − (Λ + 1)µ(F)

)
×(

2(Λ + 1)Λ2µ(F) − (Λ + 1)Λµ(F)2 + (Λ + 1)Λµ(F)
)

+
(
Λ2 − (Λ + 1)µ(F)

) (
Λ4 − Λ2(Λ + 1)µ(F)

)
= 0,

with roots Λ
(

µ(F) − 2Λ − 1 ±
√
4Λ + µ(F) (µ(F) + 2

)
+ 1
)

/
(
2(Λ + 1)µ(F)

)
. The second root is not

admissible because the expression µ(F) −2Λ− 1−
√
4Λ + µ(F) (µ(F) + 2

)
+ 1 < 0 as its value is -2 at

Λ = 0, and it is decreasing in Λ. Therefore, π1,0 = Λ
(

µ(F) − 2Λ − 1 +
√
4Λ + µ(F) (µ(F) + 2

)
+ 1
)

/
(
2(Λ + 1)µ(F)

)
.

We obtain r0 by dividing π1,0 by ∑1
i=0 πi,0 (given in (B.13)). We obtain the expression for r by

plugging r0 into (B.15). We then obtain L(F)
1 using (B.14). Finally, we employ Little’s Law to

derive (B.5). The expression for the case of C1 = 2 follows a similar procedure.
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C
Additional Material for Chapter 3

C.1 Proof of Proposition 15

We will prove this by showing that no equilibrium price pair can be found for state (1,1) one period
from the end of the horizon.

First, observe that V∗
T(xme, xc) = 0, ∀xme, xc. Now, consider the problem in period T − 1, when

xme = 1 and xc = 1. The best response function of me simplifies to:

VT−1(xme, xc, pc) = max
pme

Ipme<pcd(pme)pme + Ipc<pmed(pme)pme + Ipme=pc
d(pme) + d(pme)

2 pme

(C.1)
Since the firms are symmetric, c has the same best response function.

First, note that neither firm will set a price p < 0 because this is one period from the end of
the horizon: they can achieve a total value-to-go of 0 by simply pricing at 0 which is higher than
their revenue-to-go if they set a negative price. Next, note from (C.1) that both firms will not set
the same price p because either firm can do strictly better by undercutting by an arbitrarily small
ϵ > 0. Moreover, it is not an equilibrium for both firms to set a price p = 0. Choosing a price of
0 yields an objective value of 0, and either firm can do strictly better by setting a price p > 0 and
obtaining an objective value of D(p, 0)p > 0.

So, suppose the firms set prices pme > 0 and pc > 0 respectively. Without loss of generality, let
pme > pc. There are two possibilities:
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1. c undercuts me by an arbitrarily small amount ϵ > 0. Since both firms are symmetric and
have one unit of inventory left, this must result in the two firms obtaining objective values
that can be made arbitrarily close to each other, i.e, |d(pme, pc)pme − d(pc, pme)pc| < δ for
any arbitrarily small value of δ > 0. Observe here that pme can be written as pme = pcr for
a value of r arbitrarily close to 1, approaching 1 from above. In this case, we have:

d(pme, pc)pme − d(pc, pme)pc

= d(pme, pc)pcr − d(pc, pme)pc

= pc
(
d(pme, pc)r − d(pc, pme)

)
Now, observe from the continuity of d and d and the fact that r is arbitrarily close to 1, the
expression d(pme, pc)r − d(pc, pme) is arbitrarily close to the expression d(pc, pc) − d(pc, pc)
which is strictly negative, as implied by Assumption 6. Therefore, pme and pc cannot form
an equilibrium price pair if they are arbitrarily close to each other.

2. c undercuts me by a non-trivial amount. Since both firms are symmetric and have one unit
left, this must result in both firms obtaining identical objective values, i.e., d(pme, pc)pme =
d(pc, pme)pc. Now, observe that d(pc, pme)pc = d(pme, pc)pme < d(pme, pc)pme. From conti-
nuity, d(pme, pc)pme is arbitrarily close to d(pme−ϵ, pc)(pme − ϵ) for a sufficiently small ϵ > 0.
Therefore, c can obtain a strictly higher objective value of d(pme−ϵ, pc)(pme − ϵ) by setting
a price arbitrarily close to pme than her current objective value of d(pc, pme)pc. Therefore,
(pme, pc) cannot be an equilibrium price pair.

Since there is no equilibrium price-pair for state (1,1), there can be no SPNE-P. This completes
the proof. �

C.2 Proof of Lemma 3

For any state, consider the best response function of me. Clearly, it is never optimal for me to set
a price pme = pc, because me can obtain a strictly higher revenue by setting pme = pc − ϵ for some
small ϵ > 0.

If me chooses to undercut c, me obtains an expected revenue-to-go of:

Rundercut(pc) = max
pme<pc

d(pme)

pme + V∗
t+1(xme − 1, xc) − V∗

t+1(xme, xc)︸ ︷︷ ︸
Δ1

+ V∗
t+1(xme, xc)

= max
pme<pc

d(pme) (pme + Δ1) + V∗
t+1(xme, xc).

(C.2)

Recall that V∗(·), as introduced earlier, represents the value-to-go for me and d(p) is as used in
the simplified notation for the fully flexible case, as in (3.3).
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If me chooses not to undercut price pc, she will obtain the same expected revenue-to-go, irre-
spective of her choice of price pme, as long as pme > pc. This revenue is given by:

Rsettle(pc) = d(pc)

V∗
t+1(xme, xc − 1) − V∗

t+1(xme, xc)︸ ︷︷ ︸
Δ2

+ V∗
t+1(xme, xc)

= d(pc) (Δ2) + V∗
t+1(xme, xc)

(C.3)

Our proof is structured as follows. We will show that there exists a point rthresh such that me
finds it optimal to undercut when pc ≥ rthresh and finds it optimal to settle otherwise. An analogous
argument can be made taking c’s perspective.

Both Rundercut and Rsettle can be viewed as functions of pc. For a given value of pc, if
Rsettle(pc) < Rundercut(pc), then me’s optimal response is to undercut c. Otherwise, me can settle
at any value of pme > pc. Which of these alternatives to choose rests on a comparison of the terms
d(pme) (pme + Δ1)︸ ︷︷ ︸

U

, where pme is constrained to be strictly smaller than pc, and d(pc) (Δ2)︸ ︷︷ ︸
S

.

Lemma 5 U is non-decreasing in pc. Further, U is continuous in pc

Proof: Increasing pc strictly increases the domain over which the optimal value U may be found.
Therefore, U must be non-decreasing in pc. U’s continuity follows from the fact that it is the upper
envelope of the function d(p)(p + Δ1) which is continuous.

Note, therefore, that both U and S are continuous functions of pc. Consider the following three
cases:

1. Δ2 > 0: In this case, the term S is decreasing in pc because d(pc) is decreasing in pc.
Therefore, there is a unique point rthresh such that for pc < rthresh, it is optimal to settle,
while for pc > rthresh, it is optimal to undercut. At pc = rthresh, me is indifferent between
undercutting and settling (note that these options are both preferable to matching price pc).
Observe that if the functions U and S never intersect rthresh → ∞.

2. Δ2 = 0: Here, the function U is necessarily larger than 0 when pc +Δ1 > 0. So undercutting
is preferable when pc > −Δ1. When pc < Δ1, U is necessarily negative, and it is preferable
to settle. Therefore, rthresh is exactly equal to −Δ1.

3. Δ2 < 0: In this case, U is non-decreasing in pc while S is increasing in pc. Note that S is
always negative. We show that in this case, a unique threshold rthresh exists below which U
is strictly smaller than S and above which U is strictly larger than S. First, consider the case
where pc ≥ −Δ1. Here U ≥ d(pc + Δ1)(pc + Δ1) − ϵ ≥ 0 − ϵ for any arbitrarily small ϵ > 0.
For ϵ small enough, this value is strictly larger than S. Therefore, it is optimal to undercut in
this region. Now, we treat the case of pc < −Δ1 > Δ2 −Δ1. Consider U = d(pme)(pme +Δ1),
where 0 ≤ pme < pc. This function is strictly increasing in pme, because pme < pc and
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pme + Δ1 becomes more negative as pme decreases (recall that pme + Δ1 < pc + Δ1 < 0, and
d(pme) increases as pme decreases. Therefore, under the above conditions, U is maximized
at pc − ϵ for an arbitrarily small ϵ. Therefore, to decide whether to undercut or settle when
pc < −Δ1, we simply need to compare U = d(pc − ϵ)(pc + Δ1) with S = d(pc)Δ2. Upon
algebraic manipulation, we see that U > S when pc > Δ2 − Δ1 and less than S otherwise.

To summarize, when Δ2 ≤ 0, rthresh = Δ2 − Δ1. Below this threshold, settling is optimal, and
above this threshold, undercutting is optimal. When Δ2 > 0, such a threshold exists and can be
found (although not in closed form). �

C.3 Characterizing the equilibrium for the exponential demand case

Characterizing the equilibrium for the case of exponential demand rests on finding the appropriate
threshold price (reservation price) below which the firm (without loss of generality, me) prefers
settling to undercutting. We show such a threshold continues to exist even when the condition that
d(p) be decreasing in p is relaxed to d(p) being non-increasing in p when p < 0. The key idea to
show this is that for prices pc < 0, the function U is strictly increasing. We also show how this
threshold may be computed inexpensively. We use the notation defined in Appendix C.2.

Consider the function f = e−pme (pme + Δ1), absent any constraints on pme. This function is
clearly quasiconcave, because its derivative with respect to pme is negative for pme > 1 − Δ1 and
positive for pme < 1 − Δ1. Observe that U = (pme + Δ1) for pme < 0 and U = f for pme ≥ 0. We
now argue that U is quasiconcave: (i) If 1 − Δ1 > 0, then U = pme + Δ1 is increasing in pme for
pme < 0, is increasing in pme for 0 ≤ pme < 1 − Δ1 and is decreasing in pme for pme ≥ 1 − Δ1. (ii)
If 1 − Δ1 < 0, then U = pme + Δ1 is increasing in pme, for pme ≤ 0 and U = e−pme (pme + Δ1) is
decreasing in pme for pme ≥ 0. Therefore, U has a unique maximum. Note also that e−p (p + Δ1)
intersects with e−pΔ2 at exactly one point, i.e., p = Δ2 − Δ1.

First, consider the case of Δ2 = 0. Here, the argument in Appendix C.2 is unaffected by the
form of d(p) because S is 0. Therefore value of the threshold price is Δ2 − Δ1.

Next, consider the case of Δ2 < 0. The argument that U is maximized at pc−ϵ for an arbitrarily
small ϵ when pc < Δ1 continues to be valid. Therefore, the threshold price in this case, is again
Δ2 − Δ1.

Now, consider the case of Δ2 > 0. First, note that U when not constrained is maximized at
pme = p∗ = 1 − Δ1. If p∗ > 0, three possibilities arise:

1. Δ2 − Δ1 > p∗. This means that at all price points pc < p∗, including points pc < 0, it is
preferable for me to settle. Therefore, the threshold must be above p∗ and below Δ2 − Δ1.
Solving e−p∗(p∗ + Δ1) = erthresh(Δ2), we obtain rthresh = 1 − Δ1 − log 1

Δ2
.

2. 0 ≤ Δ2 − Δ1 ≤ p∗. This is a straightforward case to handle. Above Δ2 − Δ1, it is clearly
optimal to undercut, and below it, it is optimal to settle. Therefore, rthresh = Δ2 − Δ1.
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3. Δ2 − Δ1 < 0. Since p∗ > 0, it is clearly optimal to undercut for all pc > 0 if the intersection
point Δ2 − Δ1 < 0. Therefore, the threshold must be below 0. The value of S in this region
is e0Δ2 and the value of U in this region is e0(pme + Δ1). Therefore, the threshold rthresh

where these two are equal is rthresh = Δ2 − Δ1.

These three subcases are illustrated in Figure C.1.

Figure C.1: Possible cases when p∗ > 0. The relevant thresholds are marked in black.

Now, consider the case where p∗ ≤ 0. Therefore, for pc > 0, the optimal point to undercut to
is 0. And for pc < 0, me will optimally undercut by some small ϵ > 0. Two sub-cases arise:

1. Δ2 − Δ1 > 0. At price point 0, the revenue from settling is e0Δ2 = Δ2, it is optimal to
undercut to price 0, and the revenue from undercutting is e0Δ1 = Δ1. Since Δ2 > Δ1, the
threshold has to lie above 0. We solve for the threshold by solving the equation e0(Δ1) =
e−rthreshΔ2, yielding a solution of rthresh = log Δ2

Δ1
.

2. Δ2−Δ1 ≤ 0. This means that at all price points pc > 0, it is optimal to undercut. Therefore,
the threshold must be below 0. The value of S in this region is e0Δ2 and the value of U
in this region is e0(pme + Δ1). Therefore, the threshold rthresh where these two are equal is
rthresh = Δ2 − Δ1.

These two sub-cases are illustrated in Figure C.2.
Therefore, we can compute the appropriate thresholds analytically in closed form after simply

comparing a few quantities.
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Figure C.2: Possible cases when p∗ < 0. The relevant thresholds are marked in black.

C.4 Characterizing the equilibrium for the iso-elastic demand case

This characterization closely resembles the characterization in Appendix C.3. As with the expo-
nential case, note that the function U = (1 − pme) (pme + Δ1), absent any constraints on pme is
quasiconcave, because its derivative with respect to pme is negative for pme > 1−Δ1

2 and positive for
pme < 1

1−Δ1
. If 1−Δ1

2 < 0, then U remains quasiconcave, because it is decreasing for pme > 0 and
takes a value of (pme + Δ1), which is increasing in pme, for pme ≤ 0. Therefore, it has a unique
maximum. Note also that (1 − p) (p + Δ1) intersects with (1 − p)Δ2 at exactly one point, i.e.,
p = Δ2 − Δ1.

First, consider the case of Δ2 = 0. Here, the argument in Appendix C.2 is unaffected by the
form of d(p) because S is 0. Therefore value of the threshold price is Δ2 − Δ1.

Next, consider the case of Δ2 < 0. The argument that U is maximized at pc−ϵ for an arbitrarily
small ϵ when pc < Δ1 continues to be valid. Therefore, the threshold price in this case, is again
Δ2 − Δ1.

Now, consider the case of Δ2 > 0. First, note that U when unconstrained is maximized at
pme = p∗ = 1−Δ1

2 . If p∗ > 0, three possibilities arise:

1. Δ2 − Δ1 > p∗. This means that at all price points pc < p∗, including points pc < 0, it is
preferable for me to settle. Therefore, the threshold must be above p∗ and below Δ2 − Δ1.
Solving (1 − p∗)(p∗ + Δ1) = (1 − rthresh)(Δ2), we obtain rthresh = 1 − (Δ1+1)2

4Δ2
.

2. 0 ≤ Δ2 − Δ1 ≤ p∗. This is a straightforward case to handle. Above Δ2 − Δ1, it is clearly
optimal to undercut, and below it, it is optimal to settle. Therefore, rthresh = Δ2 − Δ1.
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3. Δ2 − Δ1 < 0. Since p∗ > 0, it is clearly optimal to undercut for all pc > 0 if the intersection
point Δ2 − Δ1 < 0. Therefore, the threshold must be below 0. The value of S in this region
is Δ2 and the value of U in this region is (pme + Δ1). Therefore, the threshold rthresh where
these two are equal is rthresh = Δ2 − Δ1.

Now, consider the case where p∗ ≤ 0. Therefore, for pc > 0, the optimal point to undercut to is 0.
And for pc < 0, me will optimally undercut by some small ϵ > 0. Two sub-cases arise:

1. Δ2 − Δ1 > 0. At price point 0, the revenue from settling is Δ2, it is optimal to undercut to
price 0, and the revenue from undercutting is Δ1. Since Δ2 > Δ1, the threshold has to lie
above 0. We solve for the threshold by solving the equation Δ1 = (1 − rthresh)Δ2, yielding a
solution of rthresh = 1 − Δ1

Δ2
.

2. Δ2−Δ1 ≤ 0. This means that at all price points pc > 0, it is optimal to undercut. Therefore,
the threshold must be below 0. The value of S in this region is 1Δ2 and the value of U in
this region is (pme + Δ1). Therefore, the threshold rthresh where these two are equal is
rthresh = Δ2 − Δ1.

Again, for the iso-elastic case, we can compute the appropriate thresholds analytically in closed
form after simply comparing a few quantities.

C.5 Demand Consistency Property imposed in Cooper et al. [2015]

We briefly describe the demand consistency property imposed in Cooper et al. [2015] for the fol-
lowing specific with two players, denoted as i and −i.

- Player i’s demand when she prices at pi and her competition prices at p−i is given by
di(pi, p−i) = βi,0 + βi,ipi + βi,−ip−i. A similar function holds for player −i.

- Player i and −i use monopolistic models and assume that demand is only a function of their
own price. However, they know the correct intercept. Therefore, player i’s demand function
is specified as: δi(pi) = βi,0 + αipi. A similar function holds for player −i.

Under the demand consistency property, “if the chosen prices converge, the estimated expected
demand at the chosen prices converges to the actual demand at the limit prices.” In this case,
demand consistency requires that i’s estimate of αi follows:

αi = βi,0(β−i,iβi,−i − β−i,−iβi,i)
β−i,0βi,−i − βi,0β−i,−i

.

Further, the demand consistency property in Cooper et al. [2015] imposes a restriction on the
convergent equilibrium price. This imposition cannot be applied to our dynamic (multi-period)
setting.
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C.6 Section 5.3 plots for Iso-elastic demand
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Figure C.3: log(r) against X for T = 375, total capacity = 20, Iso-elastic demand
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Figure C.4: log(r) against X for T = 375, total capacity = 362, Iso-elastic demand
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Figure C.5: log(r) against X for T = 375, total capacity = 98, Iso-elastic demand
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