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Abstract

In this thesis, we study theoretical aspects of integer linear programming. This thesis consists of two
main parts: the first part is on the theory of cutting planes for integer linear programming, while the
second part is on the theory of ideal clutters in combinatorial optimization.

Cutting planes for an integer linear program are linear inequalities that are valid for all integer feasible
solutions but possibly violated by some solutions to the linear programming relaxation. The Chvátal-
Gomory cuts, introduced by Gomory in 1958 and further studied by Chvátal in 1973 in relation to their
applications in combinatorial optimization, are one of the simplest types of cutting planes. The split
cuts are another class of cutting planes that are important in modern integer linear programming. The
first part of this thesis discusses our recent developments in the theory of Chvátal-Gomory cuts and
split cuts. We study rational polyhedra with Chvátal rank 1, rational polyhedra with split rank 1, some
sufficient conditions under which a rational polytope in the 0,1 hypercube has small Chvátal rank, and a
generalization of the Chvátal closure.

Let E be a finite set of elements, and let C be a family of subsets of E called members. We say that
C is a clutter over ground set E if no member contains another. We say that the clutter C is ideal if the
system

(∑
(xe : e ∈ C) ≥ 1 ∀C ∈ C, xe ≥ 0 ∀e ∈ E

)
defines an integral polyhedron. One can find

rich classes of ideal clutters that arise in combinatorial optimization: the clutter of st-paths, the clutter of
T -joins, the clutter of dijoins, the clutter of the odd circuits of a weakly bipartite graph, etc. As these wide
range of examples suggest, characterizing when a clutter is ideal is still a major open question in integer
programming and combinatorial optimization. One of the conjectures that were made to understand the
question is the τ = 2 Conjecture by Cornuéjols, Guenin, and Margot in 2000. In the second part of
this thesis, we study and develop tools to solve the τ = 2 Conjecture. We introduce intersecting clutters
and multipartite clutters and study two equivalent versions of the τ = 2 Conjecture stated in terms of
intersecting clutters and multipartite clutters.
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4.2.2 Chvátal rank 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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Chapter 1

Introduction

Integer Linear Programming is the problem of optimizing a linear function over the set of integer points
satisfying a system of linear inequalities. To be precise, integer linear programming is an optimization
problem of the following form:

minimize w>x

subject to Ax ≥ b
x ∈ Zn

where A is an m by n rational matrix for some positive integers m,n and w, b are rational vectors of
appropriate dimension. Due to its flexibility in modeling, integer linear programming is used to formulate a
wide range of practical problems in operations research. Many combinatorial optimization problems on the
theoretical side of operations research can also be formulated as integer linear programs. A seminal paper
by Dantzig, Fulkerson, and Johnson [49] shows how the traveling salesman problem can be formulated
as an integer linear program. The matching problem and the stable set problem are classic examples
admitting simple integer linear programming formulations (see § 1.2).

Another important example is the so-called Set Covering Problem. As the formulation of the set
covering problem is one of the two main topics in this thesis, let us introduce the problem and provide its
most standard formulation. Let E be a finite set of elements, and let C be a family of subsets of E called
members. A cover of C is a subset of E that intersects every member of C. The set covering problem for
C is to find a minimum weight cover of C with respect to weights on elements w ∈ QE+. We say that C is
a clutter over ground set E if no member contains another [60]. As it is sufficient to consider the minimal
members of C, we may assume that C is a clutter. The following integer linear program formulates the set
covering problem:

minimize w>x

subject to M(C)x ≥ 1

x ∈ ZE+

where M(C) denotes the member - element incidence matrix of C, whose columns are labeled by the
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elements and whose rows are the characteristic vectors of the members, and 1 denotes the vector of all
ones of appropriate dimension. This version of the set covering problem is also called the Hitting Set
Problem.

Despite its success in practical applications, inter linear programming is NP-hard in general [86, 69],
as the stable set problem and the set covering problem are NP-hard [86, 69]. It is in contrast to
Linear Programming that admits efficient polynomial time algorithms such as the ellipsoid algorithm
by Khachiyan [87] and the interior-point method by Karmarkar [85]. On the other hand, integer lin-
ear programming is still closely related to linear programming, and the complexity of an integer lin-
ear programming instance depends on its linear programming relaxation. Given an integer linear pro-
gram min

{
w>x : Ax ≥ b, x ∈ Zn

}
, its linear programming relaxation or LP relaxation is defined as

min
{
w>x : Ax ≥ b, x ∈ Rn

}
, obtained after relaxing the integrality constraints on variables. Let P =

{x ∈ Rn : Ax ≥ b} denote the set of solutions to the linear relaxation. Then P is a rational polyhedron,
which means that P is the intersection of the half-spaces defined by finitely many linear inequalities with
rational coefficients. Let PI denote the integer hull of P , namely PI := conv (P ∩ Zn), the convex hull of
the integer points in P . Then PI is also a rational polyhedron contained in P [100] and the integer linear
program is equivalent to min

{
w>x : x ∈ PI

}
as linear functions are convex. This implies that integer lin-

ear programming is equivalent to linear programming. However, a difficulty in directly applying efficient
algorithms for linear programming is that computing a system of linear inequalities describing PI is hard
in general.

Cutting plane methods in combination with enumeration are commonly used to solve integer linear
programming problems in practice. A basic idea of cutting plane methods is that although P is not
identical to its integer hull PI in general, we can approximate PI better by adding linear inequalities that
are valid for the points in PI but violated by some point in P to the description of P . Such linear inequalities
are called cutting planes or cuts. The Chvátal-Gomory cuts proposed by Gomory [72] and further studied
by Chvátal [29] provide a simple way of generating cutting planes for any given polyhedron. Other simple
cutting planes are the split cuts [12, 13, 33]. Intuitively, the difficulty of solving an integer linear program
by cutting plane methods depends on its initial linear programming relaxation. The tighter P is, or the
closer P is to PI , the easier the integer program is to solve. An extreme case is when P equals PI ; then we
can find an optimal integer solution in P in polynomial time. Thus one might wonder about the following
question:

Question 1. When is a rational polyhedron identical to its integer hull?

We say that a rational polyhedron is integral if it is identical to its integer hull. It is not always the case
that a rational polyhedron is integral, but we are still interested in the case when a rational polyhedron is
close to its integer hull.

Question 2. When is it that the integer hull of a rational polyhedron can be obtained after
applying some simple types of cutting planes?

These two theoretical questions are fundamental in integer linear programming, and they are the main
topics of this thesis. In the first half of this thesis (Chapters 2, 3, 4, 5), we study Question 2 in terms
of the Chvátal-Gomory cuts and the split cuts, with more emphasis on the former. In the second half
(Chapters 6, 7, 8, 9), we study Question 1 in the context of the set covering problem. The first part focuses
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on the geometry of integer feasible solutions, while the second part uses more combinatorial ideas to study
structures in a formulation. The rest of this chapter serves as an extended abstract of the thesis. Let us
refine the questions and explain them in greater detail and rigor in the remainder of this chapter.

1.1 Preliminaries: the Chvátal closure and the split clousre

In the first part of this thesis, the main focus in on the Chvátal-Gomory cuts and the split cuts in integer
linear programming. In this section, we give an introduction to the Chvátal-Gomory cuts & the split cuts,
the Chvátal closure & split closure of a polyhedron, and the Chvátal rank & split rank of a polyhedron.

Chvátal closure and rank

Let P ⊆ Rn be a rational polyhedron, and let PI denote its integer hull. If an inequality cx ≤ d with
c ∈ Zn is valid for P , then cx ≤ bdc is valid for all the integer solutions contained in P , and thus for PI .
We call cx ≤ bdc the Chvátal-Gomory cut or Chvátal-Gomory inequality of P obtained from cx ≤ d. This
approach for generating cutting planes was first introduced by Gomory [72]. Chvátal [29] later introduced
the following beautiful notion of closure, which is obtained by applying all possible Chvátal-Gomory
inequalities.

P ′ :=
⋂
c∈Zn

{x ∈ Rn : cx ≤ bmax{cx : x ∈ P}c}

It follows from the definition that PI ⊆ P ′ ⊆ P , and we call P ′ the Chvátal closure of P . Question 2 for
the Chvátal-Gomory cuts is asking when the Chvátal closure of a rational polyhedron is indentical to its
integer hull.

Theorem 1.1 (Chvátal [29], Schrijver [108]). The Chvátal closure of a rational polyhedron is, again, a
rational polyhedron.

As the Chvátal closure of a rational polyhedron is a rational polyhedron, we can recursively apply the

operation of taking the Chvátal closure. Let P (k) denote
(
P (k−1)

)′
for k ≥ 2, where P (1) = P ′. We say

that a Chvátal-Gomory inequality of the (k − 1)th Chvátal closure of P is a rank-k Chvátal inequality
of P . In fact, there exists a finite integer k such that P (k) = PI [29, 108], and the Chvátal rank of P is
defined as the smallest such k.

Split closure and rank

Let P ⊆ Rn be a rational polyhedron, and let PI denote its integer hull. Given (π, π0) ∈ Zn×Z, any point
z ∈ Zn satisfies either πz ≤ π0 or πz ≥ π0 + 1. We call an inequality cx ≤ d a split cut if it is valid for
both

Π1 = P ∩ {x ∈ Rn : πx ≤ π0} and Π2 = P ∩ {x ∈ Rn : πx ≥ π0 + 1}

for some (π, π0) ∈ Zn × Z. We call the set S(π, π0) := {(x, y) ∈ Rn × Rp : πx ≤ π0 or πx ≥ π0 + 1} the
split disjunction derived from (π, π0) ∈ Zn×Z. Clearly, PI ⊆ conv(P ∩S(π, π0)) ⊆ P and an inequality is
a split cut if and only if it is valid for conv(P ∩S(π, π0)) for some (π, π0) ∈ Zn×Z. Split cuts are a special
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case of Balas’ disjunctive cuts [12] that can be obtained from a split disjunction. It is straightforward that
{(x, y) ∈ Rn × Rp : π0 < πx < π0 + 1}, the split set associated with (π, π0), does not contain any integer
point, so split cuts are also a type of intersection cuts introduced by Balas [13]. Note also that split cuts
are a generalization of Chvátal-Gomory cuts, as a Chvátal-Gomory cut is a split cut obtained from a split
disjunction where one side of the disjunction is empty.

Cook, Kannan, and Schrijver [33] introduced a notion of closure as follows.

P ∗ :=
⋂

(π,π0)∈Zn×Z

conv (P ∩ S(π, π0))

is called the split closure of P . By its definition, PI ⊆ P ∗ ⊆ P . Moreover, the split closure of P is contained
in the Chvátal closure of P , as a Chvátal-Gomory cut is a split cut. The MIR closure of P , obtained after
applying all mixed integer rounding cuts [101] of P , and the MI closure of P , obtained after applying all
Gomory’s mixed integer cuts [73] of P , are both identical to the split closure of P [101, 39].

Theorem 1.2 (Cook, Kannan, Schrijver [33]). The split closure of a rational polyhedron is, again, a
rational polyhedron.

This result is the analogue of Theorem 1.1 for the split closure of a rational polyhedron. Later, Andersen,
Cornuéjols, and Li [9], Dash, Günük, and Lodi [52], and Vielma [116] found different proofs. We can take
the split closure recursively. Since the split closure of P is a subset of the Chvátal closure of P , there exists
a finite integer k such that the kth split closure of P , obtained after taking the split closure recursively k
times, is identical to PI , and the split rank of P is defined as the smallest such k.

1.2 Rational polytopes with rank 1

Let P ⊆ Rn be a rational polyhedron, and let PI denote its integer hull. If the Chvátal rank (resp. split
rank) of P is 1, then PI can be obtained after applying the Chvátal-Gomory cuts (resp. split cuts) for P .
For instance, the fractional matching polytope of a graph G = (V,E){

x ∈ RE :
∑

(xe : e ∈ δ(v)) ≤ 1 ∀v ∈ V, 0 ≤ xe ≤ 1 ∀e ∈ E
}

has Chvátal rank 1, because the matching polytope of a graph, the convex hull of the characteristic vectors
of matchings in G, is obtained after adding the odd set inequalities [58] and the odd set inequalities have
Chvátal rank 1 [29]. Then the split rank of the fractional matching polytope is also 1, because the split
rank is less than or equal to the Chvátal rank. Another example comes from the stable set problem. The
fractional stable set polytope of G = (V,E) is defined as{

x ∈ RV : xu + xv ≤ 1 ∀uv ∈ E, 0 ≤ xv ≤ 1 ∀v ∈ V
}
.

It is known that the Chvátal rank of the fractional stable set polytope is 1 if, and only if, its split rank
is 1 if, and only if, G is t-perfect [70, 25].

In general, when is it that a rational polyhedron has Chvátal / split rank 1? Chapters 2 and 3 consider
the problem of testing whether a rational polyhedron has Chvátal / split rank 1. The following theorem
is for the Chvátal rank:
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Theorem 1.3 ([37], proved in Chapter 2). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b} containing
no integer point, it is NP-complete to test whether the Chvátal closure of P is empty, even when P ⊆ [0, 1]n

or P is a rational simplex.

This result extends an earlier result by Cornuéjols and Li [38, 40]. Analogously, the same statement for
the split rank also holds:

Theorem 1.4 ([91], proved in Chapter 3). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b} containing
no integer point, it is NP-complete to test whether the split closure of P is empty, even when P ⊆ [0, 1]n.

As direct consequences, we obtain the following corollaries:

Corollary 1.5 ([37]). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b}, it is NP-hard to decide whether
the Chvátal rank of P is 1 and it is NP-hard to optimize over the Chvátal closure of P , even when P ⊆ [0, 1]n

or P is a rational simplex.

Corollary 1.6 ([91]). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b}, it is NP-hard to decide whether
the split rank of P is 1 and it is NP-hard to optimize over the split closure of P , even when P ⊆ [0, 1]n.

Corollary 1.5 improves an earlier result by Eisenbrand [63] on the membership problem for the Chvátal
closure of a polyhedron, while Corollary 1.6 extends a result of Caprara and Letchford [27] on the separation
problem of split cuts.

We have just observed that given a rational polyhedron, optimizing over its integer hull and Chvátal
closure are both NP-hard. Unlike this observation, if the integer hull and Chvátal closure of a rational
polyhedron coincide, the following, which may seem at first counterintuitive, turns out to be true. Boyd
and Pulleyblank [21] observed that:

Proposition 1.7 ([21]). Let P = {x ∈ Rn : Ax ≥ b} be a rational polyhedron whose Chvátal rank is 1.
Then

(1) the problem of deciding whether P ∩ Zn = ∅,

(2) given c ∈ Qn, the problem of deciding whether max {cx : x ∈ P ∩ Zn} is unbounded,

(3) given c ∈ Qn and x∗ ∈ Zn, the problem of deciding whether cx∗ = max {cx : x ∈ P ∩ Zn}

belong to complexity class NP ∩ co-NP.

The same complexity statement holds for the split rank.

Proposition 1.8 ([91], proved in Chapter 3). Let P = {x ∈ Rn : Ax ≥ b} be a rational polyhedron whose
split rank is 1. Then

(1) the problem of deciding whether P ∩ Zn = ∅,

(2) given c ∈ Qn, the problem of deciding whether max {cx : x ∈ P ∩ Zn} is unbounded,

(3) given c ∈ Qn and x∗ ∈ Zn, the problem of deciding whether cx∗ = max {cx : x ∈ P ∩ Zn}
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belong to complexity class NP ∩ co-NP.

As it is believed that the problems in NP ∩ co-NP are easier than the NP-hard problems, one might
wonder if there is an efficient algorithm for integer linear programming over rational polytopes with
Chvátal / split rank 1. For example, Edmonds’ blossom algorithm [58] finds a maximum weight matching
in a graph in polynomial time, and there is a polynomial time algorithm for finding a maximum weight
stable set in a t-perfect graph [70]. In Chapters 2 and 3, we study algorithms for integer linear programming
over rational polytopes with Chvátal / split rank 1. In particular, we consider Lenstra-type algorithms and
their time complexity.

Lenstra [94] found the first algorithm for integer linear programming that runs in polynomial time
when there are a constant number of integer variables. An important concept in Lenstra’s algorithm is
the notion of integer width. Let K ⊂ Rn be a convex set and d ∈ Zn. The integer width of K along d is

w(K, d) := bsup{dx : x ∈ K}c − dinf{dx : x ∈ K}e+ 1.

The integer width of K, denoted as w(K,Zn), is the minimum of the values w(K, d) over all d ∈ Zn \ {0}.

w(K,Zn) := min {w(K, d) : d ∈ Zn \ {0}} .

It is known that if a compact convex set contains no integer point, then its integer width is bounded
by a function that only depends on the ambient dimension. Banaszczyk, Litvak, Pajor, and Szarek [16]
and Rudelson [106] proved that w(K,Zn) = O(n4/3polylog(n)) for every lattice-free compact convex set
K ⊆ Rn. It is conjectured that the upper bound can be improved to O(n). We show that the conjecture
holds for the following two special cases.

Theorem 1.9 ([37], proved in Chapter 2). The integer width of any rational polyhedron in Rn whose
Chvátal closure is empty is at most n.

Theorem 1.10 (Proved in Chapter 3). The integer width of any rational polytope in Rn whose split closure
is empty is at most 2n.

Based on these results on the integer width, we provide and analyze Lenstra-type algorithms for integer
linear programming over rational polytopes with Chvátal / split rank 1.

1.3 Polytopes in the 0,1 hypercube that have small Chvátal rank

In Chapter 2, we have shown that it is NP-hard to test whether a rational polytope in the 0,1 hypercube
has Chvátal rank 1. Although it is probably difficult to exactly characterize when a rational polytope has
small Chvátal rank, understanding some sufficient conditions under which a rational polytope has small
Chvátal rank is still an interesting question. In Chapter 4, we consider polytopes contained in the 0,1
hypercube and their Chvátal rank. Eisenbrand and Schulz [64] showed that the Chvátal rank of a rational
polytope in the 0,1 hypercube is O(n2 log n), while Rothvoß and Sanità [105] showed the existence of a
polytope contained in the hypercube with Chvátal rank Ω(n2). In an orthogonal direction, we study the
following question:

When does a polytope in the 0,1 hypercube have small Chvátal rank?
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Equivalently, we study when the integer hull of a polytope in the 0,1 hypercube is described by Chvátal
inequalities of small rank.

Take a positive integer n, and let P ⊆ [0, 1]n be a polytope. Let S := P∩{0, 1}n, and let S̄ := {0, 1}n\S.
Then PI = conv(S). We denote by Gn the skeleton graph of the hypercube [0, 1]n whose vertices correspond
to the 2n vertices of the hypercube and whose edges correspond to its 1-dimensional faces, namely the
n2n−1 line segments joining 2 points that differ in exactly 1 coordinate. Let G(S̄) denote the subgraph of
Gn induced by the vertices in S̄.

Theorem 1.11 ([36], proved in Chapter 4). Let P ⊆ [0, 1]n be a rational polytope contained in the unit
cube. Let S̄ := {0, 1}n \ P . Then the following statements hold:

(1) if S̄ is a stable set in Gn, then the Chvátal rank of P is at most 1,

(2) if G(S̄) is a disjoint union of cycles of length greater than 4 and paths, then the Chvátal rank of P is
at most 2,

(3) if G(S̄) is a forest, then the Chvátal rank of P is at most 3.

(4) if G(S̄) has tree-width 2, then the Chvátal rank of P is at most 4.

To prove this theorem, we work with a canonical polytope QS that has exactly the same set S of
feasible 0,1 points. The description of QS is as follows:

QS :=

x ∈ [0, 1]n :

n∑
j=1

(x̄j(1− xj) + (1− x̄j)xj) ≥
1

2
for x̄ ∈ S̄


Remark 1.12 ([36]). Let P ⊆ [0, 1]n be a rational polytope, and let S := P ∩ {0, 1}n. Then the following
statements hold:

(1) P and QS have the same set S of feasible 0,1 solutions,

(2) the Chvátal rank of P is less than or equal to that of QS.

Proof. (1): The inequalities defining QS cut off the 0,1 vectors in S̄ and no other. Therefore S = QS ∩
{0, 1}n. (2): Note that if two polytopes P and R have the same set of integer solutions and P ⊆ R, then the
Chvátal rank of P is always less than or equal to the Chvátal rank of R. We will construct such a polytope
R from P . For each x̄ ∈ S̄, the linear program minP

∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) has a positive objective

value. Therefore there exists 0 < εx̄ ≤ 1
2 such that the inequality

∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ εx̄

is valid for P . Let R := {x ∈ [0, 1]n :
∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ εx̄ for x̄ ∈ S̄}. Now the

lemma follows by observing that R and QS have the same first Chvátal closure. Indeed QS ⊆ R implies

Q
(1)
S ⊆ R(1) and, applying the Chvátal procedure to the inequalities defining R, we get that R(1) ⊆ {x ∈

[0, 1]n :
∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ 1 for x̄ ∈ S̄} = Q

(1)
S .

As QS is structured, we have a good handle on analyzing Q
(k)
S for k ≥ 1. To prove Theorem 1.11, we

characterize Q
(k)
S for k = 1, 2, 3, 4 and we use these results on QS to provide sufficient conditions for a

polytope in the 0,1 hypercube to have Chvátal rank at most 4.

7



Motivated by Theorem 1.11, Benchetrit, Fiorini, Huynh, and Weltge [17] recently proved that

Theorem 1.13 ([17]). Let P ⊆ [0, 1]n be a rational polytope contained in the unit cube. Let S̄ := {0, 1}n\P .
If Gn[S̄] has tree-width t, then the Chvátal rank of P is at most t+ 2tt/2.

We consider another interesting algorithmic property of QS in Chapter 4. Recall Proposition 1.7
that the problem of optimizing a linear function over the set of integer solutions contained in a rational
polyhedron with Chvátal rank 1 is in NP∩ co-NP, and it is open whether there is a polynomial algorithm
for the problem. We prove that with the assumption that the Chvátal rank of QS is a constant, stronger
than the assumption that the Chvátal rank of P is a constant, one can optimize a linear function over S
in polynomial time.

Theorem 1.14 ([36], proved in Chapter 4). Let P ⊆ [0, 1]n be a rational polytope, and let S := P ∩{0, 1}n.
If the Chvátal rank of QS is at most k, then one can optimize a linear function over S in O(nk) time.

1.4 Generalized Chvátal closure

In Chapter 5, we study a generalization of Chvátal closures. Many combinatorial optimization problems
involve binary decision variables or other discrete decisions, and integer programming models in practice
often impose nonnegativity constraints on variables. In these cases, the set of integer feasible solutions
is contained in some proper subset S of Zn. Using this preliminary information about the set of integer
feasible solutions, one can generate stronger inequalities than the Chvátal-Gomory inequalities, valid for
the integer feasible solutions. We introduce a natural generalization of the Chvátal-Gomory inequalities
as follows.

Let S ⊆ Zn. Given c ∈ Zn and d ∈ R, let bdcS,c be defined as follows:

bdcS,c =

{
max {cz : z ∈ S, cz ≤ d} if {z ∈ S : cz ≤ d} 6= ∅
−∞ otherwise

Let P ⊆ Rn be a rational polyhedron. Given an inequality cx ≤ d with c ∈ Zn and d ∈ R valid for
P , we call cx ≤ bdcS,c the S-Chvátal-Gomory inequality for P obtained from cx ≤ d. As bdcS,c = bdc
when S = Zn, the S-Chvátal-Gomory inequalities indeed generalize the Chvátal-Gomory inequalities. The
S-Chvátal closure of P is defined as

PS :=
⋂
c∈Zn

{x ∈ Rn : cx ≤ bmax{cx : x ∈ P}cS,c}

In words, the S-Chvátal closure of P is what is obtained after applying all possible S-Chvátal-Gomory
inequalities. We assume for convention that {x ∈ Rn : cx ≤ −∞} = ∅ for any c ∈ Zn.

Recall that the Chvátal closure of a rational polyhedron is also a rational polyhedron (Theorem 1.1).
A natural question is whether the S-Chvátal closure of a rational polyhedron is also a rational polyhedron.
Dunkel and Schulz’s unpublished manuscript [56] was the first to consider this question. Dunkel and
Schulz [56] proved that

Theorem 1.15 ([56]). Let S = {0, 1}n, and let P ⊆ [0, 1]n be a rational polytope. Then the S-Chvátal
closure of P is a rational polytope.
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{0, 1}n is the set of integer points satisfying the bounds 0 ≤ x ≤ 1. In [53], we extend this result to the
case when S is the set of integer points satisfying arbitrary set of bound constraints on variables.

Theorem 1.16 ([53]). Let

S =
{(
z1, z2`, z2u, z3

)
∈ Zn1 × Zn2` × Zn2u × Zn3 : `1 ≤ z1 ≤ u1, z2` ≥ `2, z2u ≤ u2

}
where `1, u1 ∈ Rn1 such that `1 ≤ u1, `2 ∈ R2`, and u2 ∈ R2u. Let P ⊆ conv(S) be a rational polyhedron.
Then the S-Chvátal closure of P is a rational polyhedron.

As S ∼= Zn3 when n1 = n2` = n2u = 0, this result is an extension of Theorem 1.1.

The proof of Theorem 1.16 is constructive and similar in spirit to the proof of Theorem 1.15 in that
we write a linear system generating non-redundant S-Chvátal-Gomory inequalities. One might wonder if
it is possible to generalize the techniques developed for proving the polyhedrality of the Chvátal closure
of a rational polyhedron [29, 108] or a compact convex set [23, 43, 57] and the polyhedrality of the split
closure of a rational polyhedron [9, 52, 11]. However, it is difficult to directly apply those techniques, due
to a difference between the Chvátal-Gomory inequalities and the S-Chvátal-Gomory inequalities. Given
S ⊆ Zn, c ∈ Zn, and d ∈ R, it is not always the case that d − bdcS,c is bounded by a fixed constant,
whereas d − bdc is always less than 1. For example, consider the case when c = (k + 1, k, . . . , k) and
d = k−1 for an arbitrary large integer k and S = Zn+. In this case, bdcS,c = 0, so we get d−bdcS,c = k−1,
and therefore, we can make d − bdcS,c arbitrary large in this case. This difference between the Chvátal-
Gomory inequalities and the S-Chvátal-Gomory inequalities indeed makes the Chvátal closure and S-
Chvátal closure structurally different.

Proposition 1.17 ([53], proved in Chapter 5). Let S = {0, 1}4. There exists a polytope P ⊆ [0, 1]4 whose
S-Chvátal closure has a facet that cannot be induced by an S-Chvátal-Gomory inequality.

On the contrary, the facets of the Chvátal closure of a rational polyhedron are all defined by Chvátal-
Gomory inequalities (see [32]). We will discuss this in Chapter 5 with further details.

1.5 Preliminaries: ideal clutters

The second part of this thesis focuses on the question of when the set covering polyhedron of a clutter is
integral. In this section, we introduce some basics of clutter theory.

1. We define ideal clutters and the max-flow min-cut property.

2. We introduce the notion of minor and that of blocker in clutter theory.

3. The τ = 2 Conjecture and the Replication Conjecture will be discussed briefly.

Ideal clutters and the max-flow min-cut property

Let C be a clutter over ground set E. Recall that we can formulate the set covering problem for C as the
following integer linear program:

τ(C, w) = min
{
w>x : M(C)x ≥ 1, x ∈ ZE+

}
9



where w ∈ ZE+ are the weights of the elements. The following integer program

ν(C, w) = max
{
1>y : M(C)>y ≤ w, y ∈ ZC+

}
formulates the capacitated packing problem, that is the problem of finding the maximum size of a packing
of members of C satisfying the capacity restriction for each element. The linear programming relaxations
of these two integer programs are the following primal-dual pair:

τ∗(C, w) =
minimize w>x
subject to M(C)x ≥ 1

x ≥ 0
ν∗(C, w) =

maximize 1>y
subject to M(C)>y ≤ w

y ≥ 0

By linear programming duality, we have

τ(C, w) ≥ τ∗(C, w) = ν∗(C, w) ≥ ν(C, w).

However, it is not always the case that τ(C, w) = τ∗(C, w) nor ν(C, w) = ν∗(C, w), as the linear program-
ming relaxation of an integer program does not always have an integer optimal solution.

We say that C is ideal if τ(C, w) = τ∗(C, w) for every w ∈ ZE+ [41], and we say that C has the max-flow
min-cut property if ν(C, w) = ν∗(C, w) for every w ∈ ZE+ [114]. Observe that C is ideal if and only if
Q(C) :=

{
x ∈ RE+ : M(C)x ≥ 1

}
, the set covering polyhedron associated with C, is integral. Observe also

that C has the max-flow min-cut property if and only if the linear system M(C)x ≥ 1, x ≥ 0 is total dual
integral. This implies that if a clutter has the max-flow min-cut property, then it is ideal [81, 61].

When M(C) is totally unimodular [78] or balanced [18], C has the max-flow min-cut property and thus
is ideal. There are other rich classes of ideal clutters that can be found in the combinatorial optimization
literature, and let us mention a few examples here:

• (Menger [99]) The clutter of st-paths of a graph.

• (Edmonds and Johnson [62]) The clutter of minimal T -cuts of a graft.

• (Lucchesi and Younger [97]) The clutter of minimal dicuts of a directed graph.

• (Guenin [76]) The clutter of odd circuits of a signed graph that has no odd-K5 minor.

The first and third classes of clutters have the max-flow min-cut property [68, 97], while the second and
fourth do not [112, 114]. Given that there is a variety of examples, one might expect that testing idealness
is difficult.

Theorem 1.18 (Ding, Feng, Zang [54]). Let C be a clutter over ground set E whose members are explicitly
given. The problems of deciding whether

(1) C is ideal and

(2) C has the max-flow min-cut property

are both co-NP-complete.
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In fact, Ding, Feng, Zang [54] proved that even when every element is contained in exactly two members,
the problems remain co-NP-complete. In spite of this hardness result, it is still important to expand our
understanding of ideal clutters and clutters with the max-flow min-cut property.

Minors and blockers

The notion of minor is an important concept for understanding when a clutter is ideal and when a clutter
has the max-flow min-cut property. Given a clutter C over ground set E and disjoint subsets I, J ⊆ E, the
minor of C obtained after deleting I and contracting J is the clutter over E − (I ∪ J) whose members are

the minimal sets of {C − J : C ∈ C, C ∩ I = ∅} .

We say that the minor is proper if I ∪J is nonempty. Contracting an element e ∈ E corresponds to setting
we, the weight of e, to ∞, while deleting e corresponds to setting we = 0. In terms of Q(C), deleting an
element e ∈ E is equivalent to taking the projection of Q(C) by projecting out variable xe and contracting
e is equivalent to taking the restriction of Q(C) by setting xe = 0.

Remark 1.19 ([114]). The following statements hold:

(1) if a clutter is ideal, then so is every minor of it,

(2) if a clutter has the max-flow min-cut property, then so does every minor of it.

We call a clutter minimally non-ideal if it is not ideal but every proper minor of it is. Lehman [93] (see
also Seymour [111]) proved a theorem on the structure of minimally non-ideal clutters, and the structure
explains why such clutters are non-ideal. One of the most fundamental classes of minimally non-ideal
clutters is the deltas. For n ≥ 3, the delta of dimension n, denoted ∆n, is the clutter over ground set
[n] := {1, . . . , n} whose members are

{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}

Observe that the elements and members of ∆n correspond to the points and lines of a degenerate projective

plane. ∆n is non-ideal [92], as
(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
is a fractional extreme point of Q(∆n), and it can be

readily checked that every proper minor of ∆n is ideal. We say that a clutter has ∆n as a minor if it has
a minor that is isomorphic to ∆n. Similarly, we say that a clutter C has another clutter C′ as a minor if a
minor of C is isomorphic1 to C′.

Another important idea in clutter theory is the notion of blocker. Given a clutter C over ground set E,
the blocker of C, denoted b(C), is defined as the clutter over the same ground set E whose members are the
minimal covers of C. For instance, the blocker of the clutter of st-paths of a graph is the clutter of minimal
st-cuts, the blocker of the clutter of minimal T -cuts of a graft is the clutter of minimal T -joins, and the
blocker of the clutter of minimal dicuts of a directed graph is the clutter of minimal dijoins. Notice also
that b(∆n) = ∆n. The following theorem proved by Lehman is important, and it is often referred to as
Lehman’s width-length inequality:

1Given two clutters C, C′, we say that C is isomorphic to C′ and write C ∼= C′ if C′ can be obtained from C after relabeling
the elements of C.
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Theorem 1.20 (Lehman [92]). Let C be a clutter over ground set E. Then the following statements are
equivalent:

(i) C is ideal,

(ii) (The width-length inequality) min {w(C) : C ∈ C} ×min {`(B) : B ∈ b(C)} ≤ w>` for all w, ` ∈ RE+,

(iii) b(C) is ideal,

where w(C) :=
∑

(we : e ∈ C) and `(B) :=
∑

(`e : e ∈ B).

As mentioned before, the clutter of st-paths of a graph, the clutter of minimal T -cuts of a graft, and the
clutter of minimal dicuts of a directed graph are ideal. So, by Theorem 1.20, the clutter of minimal st-cuts
of a graph, the clutter of minimal T -joins of a graft, and the clutter of minimal dijoins of a directed graph
are all ideal as well. One can easily observe that b(b(C)) = C [82, 60] and that b(C \ I/J) = b(C)/I \ J for
disjoint I, J ⊆ E [113]. This, together with Theorem 1.20, implies that

Remark 1.21. A clutter is minimally non-ideal if, and only if, its blocker is minimally non-ideal.

The τ = 2 Conjecture and the Replication Conjecture

Let C be a clutter over ground set E. We call τ(C) := τ(C,1) the covering number of C, that is the minimum
cardinality of a cover of C. We call ν(C) := ν(C,1) the packing number of C, that is the maximum number
of disjoint members in C. We say that a clutter C packs if τ(C) = ν(C) and say that C has the packing
property if every minor of C packs. A direct consequence of Lehman’s theorem on minimally non-ideal
clutters [93] is that minimally non-ideal clutters do not pack, which implies the following:

Theorem 1.22 ([35]). If a clutter has the packing property, then it is ideal.

Notice that the packing property is a relaxed notion of the max-flow min-cut (MFMC) property. It is

Figure 1.1: Classes of clutters

conjectured by Conforti and Cornuéjols that

The Replication Conjecture ([31]). The packing property implies the max-flow min-cut property.
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Hence, the Replication Conjecture states that the packing property and the max-flow min-cut property
are equivalent. The Replication Conjecture, if true, would be a set-covering analogue of the replication
lemma by Lovász [96] for perfect graphs.

In an effort to prove the Replication Conjecture, Cornuéjols, Guenin, and Margot [35] came up with a
stronger conjecture. We call a clutter minimally non-packing if it does not have the packing property but
every proper minor of it does. It follows from Theorem 1.22 that a minimally non-packing clutter is either
ideal or minimally non-ideal. While minimally non-ideal clutters are relatively well-understood, thanks to
Lehman’s theorem [93], understanding ideal minimally non-packing clutters is still a major open question.
Q6 is the clutter over ground set {1, . . . , 6} whose members are

Q6 = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}} ,

and it is an ideal minimally non-packing clutter, studied by Seymour [114]. Schrijver [107] found an ideal
minimally non-packing clutter over 9 elements. Cornuéjols, Guenin, and Margot [35] added a dozen more
sporadic examples as well as an infinite class {Qr,t : r, t ≥ 1}. Cornuéjols, Guenin, and Margot [35] realized
that all their examples have covering number two, so they conjectured the following:

The τ = 2 Conjecture ([35]). If a clutter is ideal and minimally non-packing, then its covering number
is two.

Then they showed that

Proposition 1.23 ([35]). If the τ = 2 Conjecture is true, then so is the Replication Conjecture.

1.6 Intersecting restrictions in clutters

In Chapter 6, we consider a class of clutters, called intersecting clutters. A clutter C is intersecting if
τ(C) ≥ 2 and ν(C) = 1. In words, a clutter C is intersecting if C 6= {}, {∅} and every two members of C
intersect yet the members do not have a single common element. We call clutters {}, {∅} trivial and other
clutters nontrivial. What are examples of intersecting clutters? We introduced ∆n for n ≥ 3 in § 1.5.

Remark 1.24. The deltas, ∆n for n ≥ 3, are intersecting.

Proof. Take an integer n ≥ 3. Clearly, τ(∆n) ≥ 2. As every two members of ∆n intersect, ν(∆n) = 1, and
therefore, ∆n is intersecting.

Another important class of intersecting clutters that will be considered in Chapter 6 are the blockers of
extended odd holes. Take an odd integer n ≥ 5. An extended odd hole of dimension n is a clutter over
ground set [n] whose minimum cardinality members are {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}. An extended
odd hole may have a member of cardinality at least 3.

Remark 1.25. The blockers of extended odd holes are intersecting.

Proof. Take an odd integer n ≥ 5, and let C be an extended odd hole of dimension n. Since every member
of C has cardinality at least two and b(b(C)) = C, the minimal covers of C do not have a common element,
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which means that τ(b(C)) ≥ 2. Moreover, as n is odd and a cover of C intersects all of {1, 2}, {2, 3}, . . . , {n−
1, n}, {n, 1}, a cover of C has cardinality at least n+1

2 . In particular, every minimal cover of C has cardinality
at least n+1

2 , implying in turn that every two minimal covers of C intersect. So ν(b(C)) = 1, and therefore,
the blocker of an extended odd hole is intersecting.

We mention two other small intersecting clutters, namely, Q6 and L7.

• Q6 is the clutter over ground set {1, . . . , 6} whose members are {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5},
and Q6 is isomorphic to the clutter of triangles of K4.

• L7 is the clutter over ground set {1, . . . , 7} whose members are {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7},
{2, 5, 6}, {3, 4, 6}, {3, 5, 7}, and L7 is isomorphic to the clutter of lines of the Fano plane (Figure 1.2).

1

2

3

4

5

6

7

Figure 1.2: The Fano plane

Notice that Q6 is intersecting as τ (Q6) = 2 and ν (Q6) = 1 and that L7 is intersecting as τ (L7) = 3
and ν (L7) = 1. It should also be mentioned that L7 is minimally non-ideal [92].

Clearly, intersecting clutters do not have the max-flow min-cut property nor the packing property, as
they do not pack. So, by Remark 1.19, a clutter with the max-flow min-cut property does not contain an
intersecting minor.

Conjecture 1.26. If a clutter C has no intersecting minor, then the following statements are equivalent:

(i) C is ideal,

(ii) C has the packing property,

(iii) C has the max-flow min-cut property.

In fact, we will see that Conjecture 1.26 is a simple restatement of the τ = 2 Conjecture.

Proposition 1.27 ([4], proved in Chapter 6). The τ = 2 Conjecture and Conjecture 1.26 are equivalent.

Hence, the τ = 2 Conjecture, if true, would imply that an ideal clutter has the max-flow min-cut property
if and only if it has no intersecting minor, which would provide a characterization of when an ideal clutter
has the max-flow min-cut property. What does it mean for a clutter not to have an intersecting minor? As
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a first step towards answering this question, we consider the problem of recognizing an intersecting minor
in a clutter.

A restriction of a clutter is any minor obtained after deleting elements followed by contracting all the
elements that appear in every member. Let I be a subset of the ground set E, and let JI be defined as

JI := {e ∈ E − I : {e} is a cover of C \ I} .

We call C \ I/JI the restriction of C obtained after restricting I. Restrictions are a type of minors of a
clutter. We say that the restriction C \ I/JI is proper if I 6= ∅ or I = ∅ & JI 6= ∅. Note that a restriction
other than {}, {∅} has covering number at least 2.

Remark 1.28 ([4], proved in Chapter 6). A clutter C has an intersecting minor if, and only if, C has an
intersecting restriction.

This implies that to find an intersecting minor in a clutter, it is sufficient to consider its restrictions. What
properties do clutters with an intersecting restriction have? We prove the following characterization:

Theorem 1.29 ([4], proved in Chapter 6). Let C be a clutter over ground set E. Then the following
statements are equivalent:

(i) C contains an intersecting restriction,

(ii) there exist three distinct members C1, C2, C3 such that the restriction of C obtained after restricting
E − (C1 ∪ C2 ∪ C3) is intersecting.

In fact, this characterization of clutters containing an intersecting restriction leads to the following algo-
rithm for recognizing them:

Input: A clutter C

Output: Find an intersecting restriction in C, or certify the none exists

Algorithm

1. For all distinct C1, C2, C3 ∈ C,

(a) take the restriction C′ obtained after restricting E − (C1 ∪ C2 ∪ C3), and

(b) if C′ is intersecting, output C′ as an intersecting minor in C.

2. If (b) fails for every triple of distinct members, then conclude that there is no intersecting minor.

End of Algorithm

In fact, this algorithm runs in polynomial time, as proved in the following theorem:

Theorem 1.30 ([4], proved in Chapter 6). Given a clutter C with m members over n elements where
m,n ≥ 1, one can find an intersecting minor in C or certify that none exists in O(m5n) time.
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Proof. The correctness of the above algorithm follows from Remark 1.28 and Theorem 1.29. There are
O(m3) triples of three distinct members of C. For every three distinct C1, C2, C3 ∈ C, it takes O(mn)
time to compute the restriction obtained after restricting E − (C1 ∪ C2 ∪ C3) and O(m2n) time to check
if the restriction contains two disjoint members. Therefore, the algorithm terminates in O(m5n) time, as
required.

This answers Conjecture 2.14 in [1] in the affirmative.

Recall that the deltas and the blockers of extended odd holes are two classes of intersecting clutters.
In Chapter 6, we prove that testing whether a clutter contains one of them as a minor can also be done in
polynomial time.

Theorem 1.31 ([4], proved in Chapter 6). Given a clutter C with m members over n elements where
m,n ≥ 1, one can find a delta or the blocker of an extended odd hole minor in C or certify that none exists
in O

(
n4m3(n+m)3.5 log(n+m) log log(n+m)

)
time.

This shows that Conjecture 2.13 in [1] is true.

1.7 Multipartite clutters and the τ = 2 Conjecture

A counter-example to the τ = 2 Conjecture, if it exists, is an ideal minimally non-packing clutter whose
covering number is at least 3. In an effort to challenge the τ = 2 Conjecture, we provide a systematic way
of generating a certain class of clutters whose covering number can be arbitrarily large. Let C be a clutter
whose ground set E is partitioned into nonempty parts E1, . . . , En. We say that C is multipartite if, for
every member C,

|C ∩ Ei| = 1 ∀i ∈ [n].

Notice that each part Ei is a cover of C, so this construction of multipartite clutters provides a natural
way of generating clutters with covering number greater than 2, as we can make |E1|, . . . , |En| ≥ 3. A
multipartite clutter can be interpreted as an n-uniform n-partite hypergraph.

In Chapter 7, we study multipartite clutters in the hope of finding a counter-example to the τ = 2
Conjecture.

Multipartite clutters are a generalization of cuboids, multipartite clutters each of whose parts has size
two, introduced by Abdi, Cornuéjols and Pashkovich [7]. Flores, Gitler and Reyes [67] also introduced
cuboids and multipartite clutters whose parts have the same size, and they called them k-partitionable
clutters where k is the size of each part.

Notice that if a cuboid is minimally non-packing, then its covering number is always 2. In fact, there
exist cuboids that are ideal and minimally non-packing. Qr,t for r, t ≥ 1, the ideal minimally non-packing
clutters mentioned in § 1.5, are cuboids [7, 2], and Q6 = Q1,1. In [2], we reported that there are over 700
ideal minimally non-packing cuboids with at most 14 elements.

Theorem 1.32 ([6], proved in Chapter 7). The τ = 2 Conjecture, if true, implies that

every minimally non-packing multipartite clutter is a cuboid.
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So, finding a minimally non-packing multipartite clutter that is not a cuboid would disprove the τ = 2
Conjecture.

In fact, the τ = 2 Conjecture is equivalent to the following conjecture stated in terms of multipartite
clutters. In § 1.6, we defined intersecting restrictions in a clutter. We say that a clutter is strictly polar if
it has no intersecting restriction.

Conjecture 1.33. If a multipartite clutter is ideal and strictly polar, then it packs.

Theorem 1.34 ([6], proved in Chapter 7). The τ = 2 Conjecture and Conjecture 1.33 are equivalent.

So, one way to refute the τ = 2 Conjecture is to look for a multipartite clutter C such that

1. C strictly polar,

2. C is ideal, but

3. C does not pack.

In Chapter 7, we will provide a systematic way of searching for multipartite clutters satisfying the above
three conditions. In § 1.6, we gave an efficient algorithm for determining whether a clutter is strictly
polar (Theorem 1.30). Moreover, testing whether a clutter does not pack is easier than testing whether it
is minimally non-packing, because in the second case one may also have to check the minors. Although
it is in general difficult to test whether a clutter is ideal, we can take advantage of special structures in
multipartite clutters. An induced clutter is any minor obtained from C after contracting precisely one
element from each part of the ground set.

Theorem 1.35 ([6], proved in Chapter 7). A multipartite clutter is ideal if, and only if, all of its induced
clutters are ideal.

Therefore, to determine whether a multipartite clutter is ideal, we can just check its induced clutters. In
fact, there is a geometric representation of multipartite clutters and we will see in Chapter 7 that the
induced clutters can be interpreted in terms of the geometric representation (Proposition 7.15).

Given two graphs G and H, the Cartesian product of G and H, denoted G�H (we follow the notation
used in [74]), is the graph over vertices V (G)×V (H), where (u1, v1), (u2, v2) are adjacent if either u1 = u2

and v1, v2 are adjacent, or v1 = v2 and u1, u2 are adjacent (see Figure 1.3 for an example). Notice
that a hypercube of dimension n ≥ 1 is simply the Cartesian product (K2)�n. For integers n ≥ 1 and
ω1, . . . , ωn ≥ 1, an ω1× · · ·×ωn-rook is the graph Hω1,...,ωn := Kω1� · · ·�Kωn . When ω1 = · · · = ωn = ω,
Hω1,...,ωn

is called a Hamming graph H(n, ω). In particular, H(n, 2) is a hypercube of dimension n.

Remark 1.36 ([6]). Take integers n ≥ 1 and ω1, . . . , ωn ≥ 1. Then the following statements hold:

(1) Hω1,...,ωn
has ω1 × · · · × ωn vertices,

(2) Every vertex has
∑n
i=1(ωi − 1) neighbors.
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Figure 1.3: Cartesian product example

Write the vertex set of Hω1,...,ωn as [ω1]× · · · × [ωn]. For v = (v1, . . . , vn) ∈ [ω1]× · · · × [ωn], let Cv be
the set defined as follows:

Cv :=

vi +

i−1∑
j=1

ωj : i ∈ [n]

 ⊆
[

n∑
i=1

ωi

]
.

Take a set S ⊆ V (Hω1,...,ωn). We define mult(S) as

mult(S) := {Cv : v ∈ S}.

As the members of mult(S) have the same size n, mult(S) is a clutter over ground set [
∑n
i=1 ωi]. For

instance, consider R1,1 := {(1, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)} ⊆ V (H2,2,2). Then

mult(R1,1) = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}} ,

which means that Q6 = mult(R1,1) is a multipartite clutter and, in particular, a cuboid.

Figure 1.4: R1,1

Remark 1.37 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn
). Then mult(S) is a

multipartite clutter whose ground set is partitioned into n parts E1, . . . , En such that

• Ei =
{
vi +

∑i−1
j=1 ωj : vi ∈ [ωi]

}
for i = 1, . . . , n.

• |C ∩ E1| = · · · = |C ∩ En| = 1 for every member C ∈ mult(S).

Hence, the ground set of mult(S) consists of n parts that correspond to the n coordinates of the points in
S. We call mult(S) the multipartite clutter of S. Conversely,
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Remark 1.38 ([6]). Let C be a multipartite clutter whose ground set is partitioned into parts E1, . . . , En
with |Ei| = ωi ≥ 1 for i ∈ [n]. Then C is equal to mult(S) for some S ⊆ V (Hω1,...,ωn).

Here, we say that S is the Hamming representation of C and C is the multipartite clutter associated with
S. Therefore, by Remarks 1.37 and 1.38, we can work over V (Hω1,...,ωn).

1.8 Multipartite clutters of bounded degree

Take integers n ≥ 1 and ω1, . . . , ωn ≥ 1 and a set S ⊆ V (Hω1,...,ωn). We refer to the vertices in S as
feasible, and to the vertices in S := V (Hω1,...,ωn

) − S as infeasible. Take an integer k ≥ 0. We say that
S has degree at most k if every infeasible vertex has at most k infeasible neighbors and that S has degree
k if S has degree at most k and at least one infeasible vertex has k infeasible neighbors. The following
theorem shows that if mult(S) is non-ideal, then it has a minimally non-ideal minor whose size is bounded
by the degree of S.

Theorem 1.39 ([6], proved in Chapter 7). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1 and k ≥ 0. Let
S ⊆ V (Hω1,...,ωn

) be of degree at most k. Then every minimally non-ideal minor of mult(S), if any, has
at most k elements.

So, if the degree of S is small, we can determine whether mult(S) is ideal by checking minimally non-ideal
clutters of small size.

Can we also find a necessary condition for a multipartite clutter to not pack? First,

Proposition 1.40 ([6], proved in Chapter 7). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆
V (Hω1,...,ωn

). Then the following statements hold:

(1) if n ≤ 2, then mult(S) has the max-flow min-cut property, and

(2) if mult(S) does not pack, then n ≥ 3 and ωn ≥ 2.

When n ≥ 3 and ωn ≥ 2, we can find bounds on the degree of a set whose multipartite clutter does not
pack. By Remark 1.36, the degree of a vertex is always at most

∑n
i=1(ωi − 1). The following theorem

gives a lower bound:

Theorem 1.41 ([6], proved in Chapter 7). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and k ≥ 0. Let
S ⊆ V (Hω1,...,ωn

) be of degree at most k. Then the following statements hold:

(1) if mult(S) contains no ∆3 as a minor and does not pack but all of its proper restrictions pack, then

k ≥
∑n−1
i=1 (ωi − 2), and

(2) if mult(S) contains no ∆3 as a minor and does not pack, every proper restriction of mult(S) packs,

and k =
∑n−1
i=1 (ωi − 2), then mult(S) ∼= Q6.

The following theorem is analogous to Theorem 1.39.
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Theorem 1.42 ([6], proved in Chapter 7). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and k ≥ 0. Let
S ⊆ V (Hω1,...,ωn) be of degree at most k. If mult(S) has a restriction that does not pack, then it has one
with at most max

{
11
2 k + 1

2 , 6
}

elements.

We saw in § 1.7 that one way to refute the τ = 2 Conjecture is to find an ideal strictly polar multipartite
clutter that does not pack. Based on Theorem 1.41, we wrote a computer code to generate strictly polar
multipartite clutters that do not pack. We will describe our algorithm in Chapter 7 with further details.
Once we generate strictly polar multipartite clutters that do not pack, we check whether they are ideal.
As long as their degrees are small, Theorem 1.39 implies that there is a minimally non-ideal minor of small
size, and therefore, we can efficiently test idealness in that case. From our computational experiments, we
came to the following conclusion:

Theorem 1.43 ([6], explained in Chapter 7). Let C be a multipartite clutter over at most 9 elements. If
C is ideal and strictly polar, then C packs.

1.9 The reflective product

In Chapter 8, we study two basic binary operations on pairs of multipartite clutters. Take integers
n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some

ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1. We define the product

S1 × S2 := {(x, y) ∈ V (G1)× V (G2) : x ∈ S1 and y ∈ S2} .

In words, the product S1 × S2 is obtained from S1 after replacing each feasible point by a copy of S2 and
each infeasible point by an infeasible copy of V (G2). We will observe that if the multipartite clutters of
two sets are ideal (resp. have the max-flow min-cut property), then so is (resp. does) the multipartite
clutter of their product.

Define the reflective product
S1 ∗ S2 := (S1 × S2) ∪

(
S1 × S2

)
,

where Si := V (Gi) \ Si for i = 1, 2. In words, the reflective product S1 ∗ S2 is obtained from S1 after
replacing each feasible point by a copy of S2 and each infeasible point by a copy of S2. For example,
Figure 1.5 shows the reflective product of two sets S1 ⊆ V (H3,3) and S2 ⊆ V (H2,2) (the black round
vertices).

Observe that S1 ∗ S2 = S1 ∗ S2 and that S1 ∗ S2 = S1 ∗ S2 = S1 ∗ S2.

Theorem 1.44 ([6], proved in Chapter 8). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2),
where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1. If mult(S1), mult(S1),

mult(S2), mult(S2) are ideal, then so are mult(S1 ∗ S2), mult
(
S1 ∗ S2

)
.

Therefore, we can construct more complicated ideal multipartite clutters by the operations of taking
products and reflective products. In contrast, the analogue of this theorem for the max-flow min-cut
property does not hold. For example, let S1 := {(1, 1), (2, 2)} and S2 := {1}. Then mult(S1), mult(S1),
mult(S2), mult(S2) all have the max-flow min-cut property. However, S1 ∗ S2 = R1,1, and we have seen
that mult(R1,1) = Q6 does not have the max-flow min-cut property.

20



Figure 1.5: An example of taking the reflective product of two sets

In an attempt to find a counter-example to the τ = 2 Conjecture, is it possible to obtain an ideal
minimally non-packing multipartite clutters with large covering number by taking the reflective product
of two multipartite clutters? The following theorem answers this question in the negative:

Theorem 1.45 ([6], proved in Chapter 8). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and a set S ⊆
V (Hω1,...,ωn

). Assume that mult(S) contains no ∆3 as minor and does not pack but all of its proper
restrictions pack. If S is obtained by a reflective product, then ω1 = · · · = ωn = 2, and therefore, mult(S)
is a cuboid.

Theorem 1.45 implies that an ideal minimally non-packing multipartite clutter obtained by a reflective
product always has covering number two. In fact, there exist ideal minimally non-packing cuboids obtained
by taking a reflective product. Recall that a cuboid is the multipartite of a vertex subset of the hypercube
H(n, 2) for some n ≥ 1. For an integer k ≥ 1, let

Rk,1 :=
{
1k+1,2k+1

}
∗ {1} ⊆ {1, 2}k+2

where 1m,2m denote the m-dimensional vectors all of whose entries are 1, 2, respectively. We have already
seen R1,1 in § 1.7. See Figure 1.6 for an illustration of R2,1. We observed that mult(R1,1) = Q1,1. In

Figure 1.6: R2,1 and C4

fact, it can be readily checked that mult(Rk,1) = Qk,1 for k ≥ 1, so mult(Rk,1) is ideal and minimally
non-packing.
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In Chapter 8, we will prove Theorem 1.46 on the reflective product of cuboids. Take an integer n ≥ 1.
For v ∈ {1, 2}n, the antipodal of v is the vector in {1, 2}n that differs from v in every coordinate. We say
that a set S ⊆ {1, 2}n is antipodally symmetric if a vector in {1, 2}n is in S if and only if its antipodal is
in S. We say that a set S ⊆ {1, 2}n is connected if the subgraph of H(n, 2) induced by S is connected. We
say that a set S ⊆ {1, 2}n is strictly connected if R is connected for every set-restriction (will be defined
in Chapter 7) R of S.

Theorem 1.46 ([2], proved in Chapter 8). Take integers n1, n2 ≥ 1 and sets S1 ⊆ {1, 2}n1 and S2 ⊆
{1, 2}n2 , where mult(S1 ∗S2) does not pack but all of its proper restrictions pack. Then one of the following
statements holds:

(i) S1 ∗ S2
∼= Rk,1 for some k ≥ 1,

(ii) n1 = 1 and S2, S2 are antipodally symmetric and strictly connected, or

(iii) n2 = 1 and S1, S1 are antipodally symmetric and strictly connected.

Moreover, S1 ∗ S2
∼= S1 ∗ S2.

There is an antipodally symmetric and strictly connected set S ⊆ {1, 2}4 such that mult(S ∗ {1}) is
ideal and minimally non-packing. Consider C4 and R5 defined as follows:

C4 := {1111, 2111, 2211, 2221, 2222, 1222, 1122, 1112}
R5 := C4 ∗ {1}.

Notice that C4 is antipodally symmetric and strictly connected (see Figure 1.6 for an illustration). In fact,
mult(R5) is the ideal minimally non-packing clutter Q10 found in [7].

1.10 Ideal vector spaces

What are some examples of multipartite clutters that are ideal? In Chapter 9, we consider a class of
examples that arise as a natural generalization of the cuboids of binary spaces [2]. Let q be a prime power
pk where p is a prime number and k is a positive integer, and consider GF (q), the finite field of order q.
The smallest integer ` such that a+ · · ·+ a︸ ︷︷ ︸

`

= 0 for all a ∈ GF (q) is p, and we call p the characteristic of

GF (q). Throughout this section, we denote by 0 and 1 the additive and multiplicative identities of GF (q),
and for each v ∈ GF (q) − {0}, we denote by −v and v−1 the additive and multiplicative inverses of v.
Take an integer n ≥ 1, and let S ⊆ GF (q)n be a vector space over GF (q). Then there exists a matrix A
whose entries are in GF (q) such that

S = {x ∈ GF (q)n : Ax = 0}

where 0 denotes the vector of all zeros of appropriate dimension and all equalities in the system Ax = 0
are over GF (q). We denote by 〈v1, . . . , vr〉 the vector space generated by taking linear combinations of
v1, . . . , vr over the given field.
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As the element set of GF (q) can be relabeled as [q], GF (q)n ∼= V (H(n, q)), and therefore, we can define
the multipartite clutter of any subset of GF (q)n. For example, the element set of GF (4) can be represented
as {0, 1, a, b} where a and b are the numbers satisfying the following addition and multiplication tables:

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Example 1 ([5]). Consider S = 〈(1, 1, 0), (1, 0, 1)〉 ⊆ GF (4)3. Then

S =

{
(0, 0, 0), (1, 1, 0), (a, a, 0), (b, b, 0), (1, 0, 1), (0, 1, 1), (b, a, 1), (a, b, 1),
(a, 0, a), (b, 1, a), (0, a, a), (1, b, a), (b, 0, b), (a, 1, b), (1, a, b), (0, b, b)

}
.

Then f : GF (4)→ [4] defined by f(0) = 1, f(1) = 2, f(a) = 3, f(b) = 4 is a bijection. Then mult(S) can
be defined as mult(S′), where

S′ =

{
(1, 1, 1), (2, 2, 1), (3, 3, 1), (4, 4, 1), (2, 1, 2), (1, 2, 2), (4, 3, 2), (3, 4, 2),
(3, 1, 3), (4, 2, 3), (1, 3, 3), (2, 4, 3), (4, 1, 4), (3, 2, 4), (2, 3, 4), (1, 4, 4)

}
.

Can we characterize vector spaces over GF (q) whose multipartite clutters have the max-flow min-cut
property or are ideal? Proposition 1.40 (1) implies that if n ≤ 2, mult(S) for any vector space S ⊆ GF (q)n

has the max-flow min-cut property. Thus, we may assume that n ≥ 3.

Question 1.47. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q). When does mult(S) have
the max-flow min-cut property?

Question 1.48. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q). When is mult(S) ideal?

Let us first look at vector spaces over GF (2). In this case, we will refer to S as a binary space,
and the points in S correspond to the cycles of M , the binary matroid represented by A. Notice that the
multipartite clutter of a binary space is the cuboid of a binary space. We define the support of v ∈ GF (q)n,
denoted support(v), as {i ∈ [n] : vi 6= 0}. Recall that ∆3 and L7 are minimally non-ideal and that Q6 is
ideal and minimally non-packing. Let us also define two small clutters, namely, O5, b(O5).

• O5 is the clutter over ground set E(K5), the edge set of K5, whose members are the odd circuits of
K5.

• b(O5) is the blocker of O5, and it is the clutter over ground set E(K5) whose members are the cut
complements of K5.

Seymour [114] noted that O5, b(O5) are minimally non-ideal. The following theorem considers the q = 2
case.

Theorem 1.49 ([2]). Let n ≥ 3, and let S ⊆ GF (2)n be a binary space, and let M be the associated
binary matroid.
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(1) mult(S) has the max-flow min-cut property (⇔) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (q)n have
pairwise disjoint supports (⇔) mult(S) has no Q6 as a minor.

(2) mult(S) is ideal (⇔) M has the sums of circuits property (⇔) mult(S) has none of L7,O5, b(O5) as a
minor.

Theorem 1.49 answers Questions 1.47 and 1.48 when q = 2. In Chapter 9, we will prove Theorems 1.50–
1.52, thereby providing complete answers to Questions 1.47 and 1.48. C2

5 is the clutter over ground set
{1, . . . , 5} whose members are {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}. C2

5 is non-ideal, because
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
is

a fractional extreme point of the set covering polyhedron associated with C2
5 .

Theorem 1.50 ([5], proved in Chapter 9). Let q be a prime power other than 2, 4. Let n ≥ 3, and let
S ⊆ GF (q)n be a vector space over GF (q). Then the following statements are equivalent:

(i) mult(S) contains no ∆3, Q6, C
2
5 as a minor,

(ii) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (q)n have pairwise disjoint supports,

(iii) mult(S) has the max-flow min-cut property,

(iv) mult(S) is ideal.

By Theorems 1.49 and 1.50, the remaining case is when q = 4. The following theorem gives a charac-
terization of vector spaces over GF (4) whose multipartite clutters have the max-flow min-cut property.

Theorem 1.51 ([5], proved in Chapter 9). Let n ≥ 3, and let S ⊆ GF (4)n be a vector space over GF (4).
Then the following statements are equivalent:

(i) mult(S) contains no ∆3, Q6 as a minor,

(ii) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (4)n have pairwise disjoint supports,

(iii) mult(S) has the max-flow min-cut property.

Unlike the case when q /∈ {2, 4}, there is a vector space over GF (4) whose multipartite clutter is ideal
but does not have the max-flow min-cut property.

Example 2 ([5]). In fact, S = 〈(1, 1, 0), (1, 0, 1)〉 ⊆ GF (4)3 in Example 1 provides an example. One can
check by using PORTA [28] that

{
x ∈ R9

+ : M(mult(S))x ≥ 1
}

is an integral polyhedron, so mult(S) is
ideal. Notice further that mult(S) does not have the max-flow min-cut property, since S contains

{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} ∼= R1,1

as a set-restriction and so mult(S) has Q6 as a minor.

Thus, the max-flow min-cut property and idealness are no longer equivalent. The following theorem
provides a characterization of vector spaces over GF (4) whose multipartite clutters are ideal:
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Theorem 1.52 ([5], proved in Chapter 9). Let n ≥ 3, and let S ⊆ GF (4)n be a vector space over GF (4).
Then the following statements are equivalent:

(i) mult(S) contains no ∆3 as a minor,

(ii) S = S1 × · · · × Sk where for each i ∈ [k],

• Si = {0},
• Si = GF (4), or

• Si = 〈v1, . . . , vr〉 where r ≥ 1 and v1, . . . , vr are vectors of the following form, after permuting
the coordinates:

v1

v2

...
vr


u0 u1 0 · · · 0
u0 0 u2 · · · 0
...

...
...

...
...

u0 0 0 · · · ur


for some vectors u0, u1 . . . , ur of nonzero entries,

(iii) mult(S) is ideal.

As a direct consequence of the above theorems, we obtain the following:

Corollary 1.53 ([5]). Let S be a multipartite vector space over GF (q) for some prime power q. If mult(S)
is ideal and has no intersecting restriction, then it packs.

That is, Conjecture 1.33 holds in this case. So, the multipartite clutters obtained from vector spaces serve
as evidence in support of the τ = 2 Conjecture.
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Chapter 2

Polytopes with Chvatal rank 1

In this chapter, we introduce the problem of deciding whether a rational polyhedron P contains an integer
point under the promise that P has Chvátal rank 1, which is the main motivation of this paper. This
promise on the input P very likely modifies the computational complexity of the integer feasibility problem.
A result of Boyd and Pulleyblank ([21], Theorem 5.4) implies Proposition 1.7.

Proposition 1.7 ([21]). Let P = {x ∈ Rn : Ax ≥ b} be a rational polyhedron whose
Chvátal rank is 1. Then

(1) the problem of deciding whether P ∩ Zn = ∅,
(2) given c ∈ Qn, the problem of deciding whether max {cx : x ∈ P ∩ Zn} is unbounded,

(3) given c ∈ Qn and x∗ ∈ Zn, the problem of deciding whether cx∗ =
max {cx : x ∈ P ∩ Zn}

belong to complexity class NP ∩ co-NP.

The problems in NP ∩ co-NP are probably not NP-complete (since otherwise NP = co-NP), so we have
the following question:

Open question 1. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron with Chvátal rank 1. Can we
decide whether P contains an integer point in time polynomial in the encoding size of P?

However, it does not seem straightforward to use the Chvátal rank 1 condition. In fact, it is NP-hard
to certify that the Chvátal rank of a rational polytope given by its linear description is 1, even under
some assumptions on the input polytope. We show this in § 2.2. We also note that the Chvátal rank of a
polyhedron is not directly related to its geometry. In particular, the Chvátal rank is not invariant under
translation. The following example illustrates that the Chvátal rank of a polyhedron may vary significantly
under translation.

26



Example 1 ([37]). Let Q1 := {x ∈ [0, 1]n :
∑n
j=1 vj(1− xj) + (1− vj)xj ≥ 1

2 ∀v ∈ {0, 1}
n}. Notice that

Q1 contains no integer point. Chvátal, Cook, and Hartmann ([30], Lemma7.2) proved that the Chvátal
rank of Q1 is exactly n. Now, let us translate Q1 so that its center point is at the origin, and we denote
by Q2 the resulting polytope. Since Q2 ⊆ [− 1

2 ,
1
2 ]n, the only integer point contained in Q2 is the origin.

We can obtain both xi ≥ 0 and xi ≤ 0 as Chvátal-Gomory inequalities for Q2 for all i ∈ [n]. Hence, the
Chvátal rank of Q2 is exactly 1.

The difficulty in understanding the Chvátal rank 1 condition is an indication that Open question 1 might
not be easy to answer in general.

In § 2.1, we consider some easy cases of Open Question 1. In § 2.2, we prove Theorem 1.3 on the NP-
hardness of testing whether the Chvátal closure of a polytope is empty and we explain its implications. In
§ 2.3, we prove Theorem 1.9 on the flatness theorem for rational polyhedra with empty Chvátal closure.
The material in this chapter will be published in Mathematical Programming A [37].

2.1 Easy cases

In this section, we motivate Open Question 1 by presenting three special cases, which seem easier to tackle
and still remain interesting.

Satisfiability problem with Chvátal rank 1

The satisfiability problem is NP-complete (see [69]), and it can be formulated as a binary integer program.
Given a formula in conjunctive normal form with m clauses that consist of literals x1, · · · , xn and their
negations, the problem of finding a satisfying assignment x ∈ {0, 1}n can be equivalently formulated as
the 0,1 feasibility problem over a polytope. Given a clause

∨
i∈I xi ∨

∨
j∈J ¬xj for some disjoint subsets

I, J of [n], we make a linear inequality
∑
i∈I xi+

∑
j∈J(1−xj) ≥ 1. Notice that an assignment x ∈ {0, 1}n

satisfies all the clauses if and only if it satisfies all the corresponding inequalities. Inequalities of the form∑
i∈I

xi +
∑
j∈J

(1− xj) ≥ 1 I, J ⊆ [n], I ∩ J = ∅

are called generalized set covering inequalities. Then, the satisfiability problem of a given formula is
equivalent to the integer feasibility problem of a polytope defined by generalized set covering inequalities
and the bounds 0 ≤ x ≤ 1. We call such a polytope a SAT polytope.

Open question 2. Given a SAT polytope P whose Chvátal rank is 1, can we decide in polynomial time
whether P contains an integer point?

The k-satisfiability problem is a variant of the satisfiability problem where each clause in a given
formula has at most k literals. It remains NP-complete for k ≥ 3 (see [69]). On the other hand, there
is a simple polynomial algorithm for the case of k = 2. We consider a formula whose SAT polytope has
Chvátal rank 1 and each of whose clauses contains at least 3 literals. We remark that such a formula
always has a satisfying assignment.
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Remark 2.1 ([37]). Let P be a SAT polytope such that each generalized set covering inequality in its
description has at least 3 variables. If P has Chvátal rank 1, then P always contains an integer point.

Proof. Observe that setting any variable to 0 or 1, and all other n − 1 variables to 1/2 satisfies all the
constraints of P (because every generalized set covering inequality involves at least three variables). In
other words, the middle point of each facet of the hypercube [0, 1]n is contained in P . A result of Chvátal,
Cook and Hartmann ([30], Lemma 7.2) implies that the Chvátal closure of P contains the middle point
( 1

2 , · · · ,
1
2 ) of the hypercube, so the Chvátal closure of P is always nonempty. Because the Chvátal rank

of P is 1, P contains an integer point.

A natural question is whether one can actually find an integer point in polynomial time, under the
assumptions of Remark 2.1. This is open. The following example provides a positive answer when each
generalized set covering inequality contains n variables.

Example 2 ([37]). Take an integer n ≥ 3. Given S ⊆ {0, 1}n, we construct a SAT polytope as follows:

P =

{
x ∈ [0, 1]n :

n∑
i=1

((1− vi)xi + vi(1− xi)) ≥ 1, ∀v ∈ S

}

Notice that P ∩ {0, 1}n = {0, 1}n \ S. Theorem 1.11 in [36] implies that P has Chvátal rank 1 if and only
if G(S), the induced subgraph of G by S where G denotes the skeleton graph of the hypercube [0, 1]n,
has max degree 2 and has no cycle of length 4. It is easy to find a 0,1 point contained in P . First, check
whether 0 ∈ P . If not, then 0 ∈ S and at least n − 2 points among e1, . . . , en (the unit vectors) are
contained in P since the degree of 0 in G[S] is at most 2.

The gap between Open question 2 and Remark 2.1 is on the SAT formulas involving both clauses with
2 literals and clauses with at least 3 literals. SAT polytopes whose generalized set covering inequalities
have at most 2 variables are well understood by Gerards and Schrijver [70]. They gave a characterization
of the Chvátal closure in such a case, and they provided a polynomial algorithm to separate over it.
Furthermore, we remark that the Chvátal rank of a SAT polytope in that case is always 1 whenever it
contains no integer point. However, the Chvátal closure of a SAT polytope that includes both generalized
set covering inequalities with 2 variables and 3 variables has not been studied.

When a few Chvátal-Gomory cuts are sufficient

In this section, we consider another special case of Open question 1, where we assume that the integer
hull of a given polyhedron can be obtained by adding a constant number of (rank-1) Chvátal-Gomory
inequalities.

Open question 3. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron, and assume that the integer hull
of P can be obtained by adding at most k (rank-1) Chvátal-Gomory inequalities of P to the description of
P , for some constant k. Can we solve the integer feasibility problem of P in polynomial time?

In fact, Open question 3 is open even when k = 1. We will show in § 2.2.4 that verifying the promise that
the integer hull of a given rational polytope is obtained after adding one Chvátal-Gomory inequality is
NP-hard. Thus, Open question 3 might be difficult to answer as well.
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Figure 2.1: When one Chvátal-Gomory inequality is sufficient in R2

Remark 2.2 ([37]). Let P = {x ∈ Rn : Ax ≤ b} be a rational polytope such that adding one Chvátal-
Gomory inequality to the description of P gives its integer hull. Then there exists an algorithm for the
integer feasibility problem over P which runs in time bounded by mnn3poly(L) where m and L denote the
number of constraints in P and the encoding size of P , respectively.

Proof. This is easy to show because a fractional vertex of P should be removed by the Chvátal-Gomory
inequality. Therefore P contains an integer point if and only if an extreme point of P is integral. In this
case, a trivial algorithm solves the integer feasibility problem: check all the vertices of P and conclude
that PI 6= ∅ if there exists an integral vertex or PI = ∅ otherwise. Since there are O(mn) extreme points
of P and the time complexity of the Gaussian elimination method is bounded by n3poly(L), the algorithm
runs in time bounded by mnn3poly(L).

In fact, Proposition 2.23 will show the existence of a 2O(n)poly(L) time algorithm for the case of k = 1.

In the following, we consider a special case of Open question 3, where the input is a rational simplex.
A polytope P ⊆ Rn is called a simplex of dimension ` for some ` ≤ n if it is the convex hull of ` + 1
affinely independent points. One can show that the integer feasibility problem over a rational simplex
is NP-complete by the following polynomial reduction of the knapsack problem to it [110]: consider
positive integers a1, · · · , an, b. Let vi := b

ai
ei where ei denotes the ith unit vector for i ∈ [n]. Let

vn+1 :=
b− 1

2

n ( 1
a1
, · · · , 1

an
). Let conv{v1, · · · , vn+1} denote the convex hull of v1, · · · , vn+1. Note that

avn+1 = b − 1
2 and avi = b for i ∈ [n]. Then, conv{v1, · · · , vn+1} ∩ Zn = {x ∈ Zn : ax = b, x ≥ 0}.

However, if we further assume that the integer hull of a rational simplex can be obtained by adding a
constant number of (rank-1) Chvátal-Gomory inequalities, then we can solve the integer feasibility problem
over the simplex in polynomial time.

Proposition 2.3 ([37]). Let k be a positive integer. Given a rational simplex P ⊆ Rn such that its integer
hull can be obtained from P by adding at most k (rank-1) Chvátal-Gomory inequalities, and a vector
w ∈ Qn, there is an algorithm to optimize wx over PI in time nO(k)poly(k, L), where L is the encoding
size of P and w.

Proof. Suppose that the dimension of P is ` for some ` ≤ n. Let P = {x ∈ Rn : Ax = b, Cx ≤ d} be
a minimal linear system defining P such that Cx ≤ d define the facets of P . We denote by Ex ≤ f the

29



set of k Chvátal-Gomory inequalities of P such that PI = {x ∈ Rn : Ax = b, Cx ≤ d, Ex ≤ f}. So the
inequalities in Ex ≤ f + ε1 are valid for P , where ε ∈ (0, 1) and 1 denotes the vector of all ones, and
P ⊆ S, where S := {x ∈ Rn : Ax = b, Ex ≤ f + ε1}.

We first argue that we may assume that P is full-dimensional. If not, we can find in polynomial time
an unimodular matrix U such that AU = (D, 0) is a Hermite normal form of A. If D−1b is not integral, we
can just conclude that P does not contain an integer point. Thus, we may assume that D−1b is integral.
Let U1 and U2 denote the two submatrices of U which consist of the first n− ` columns of U and the last
` columns of U , respectively. Let u : Rn → Rn be an unimodular transformation defined by u(x) = U−1x.
Consider the images of P , PI , and S under u:

u(P ) =
{

(y1, y2) ∈ R(n−`)+` : y1 = D−1b, CU2y2 ≤ d− CU1D
−1b
}
,

u(PI) =
{

(y1, y2) ∈ R(n−`)+` : y1 = D−1b, CU2y2 ≤ d− CU1D
−1b, EU2y2 ≤ f − EU1D

−1b
}
,

u(S) =
{

(y1, y2) ∈ R(n−`)+` : y1 = D−1b, EU2y2 ≤ f + ε1− EU1D
−1b
}
.

Note that u(P ) is an `-dimensional simplex in Rn, so Q :=
{
y2 ∈ R` : CU2y2 ≤ d− CU1D

−1b
}

is an `-
dimensional simplex in R`. Furthermore, u(PI) is integral. Since D−1b is integral, {y2 ∈ R` : CU2y2 ≤
d − CU1D

−1b, EU2y2 ≤ f − EU1D
−1b} is integral and thus Q ∩ {y2 ∈ R` : EU2y2 ≤ f − EU1D

−1b}
is integral. We claim that the inequalities in the system EU2y2 ≤ f − EU1D

−1b are Chvátal-Gomory
inequalities of Q. In fact, we know that u(P ) ⊆ u(S), so Q ⊆

{
y2 ∈ R` : EU2y2 ≤ f + ε1− EU1D

−1b
}

.
That means the inequalities in EU2y2 ≤ f + ε1 − EU1D

−1b are all valid for Q, so those in the system
EU2y2 ≤ f − EU1D

−1b are Chvátal-Gomory inequalities of Q. Now, we have obtained a full-dimensional
rational simplex Q in R` such that its integer hull QI can be described by adding at most k Chvátal-Gomory
inequalities.

Q has `+ 1 inequalities in its description, so QI can be described by `+k+ 1 linear inequalities. When
` ≤ k, the dimension of Q is fixed and we can optimize a linear function over QI in polynomial time by
Lenstra’s algorithm [94]. Thus, we may assume that ` > k. Suppose that QI is not empty. Then let z ∈ Z`
be an extreme point of QI . So there are ` linearly independent inequalities in the description of QI that
are active at z. This means that at least ` − k inequalities among the ` + 1 inequalities in the original
description of Q are active at z. Thus, z belongs to a k-dimensional face of Q. Hence, if no k-dimensional
face of Q contains an integer point, QI is empty. Since k is fixed, we can optimize a linear function over
the integer hull of each k-dimensional face of Q. Notice that there are exactly

(
`+1
k+1

)
k-dimensional faces

of Q. Therefore, we can optimize a linear function over QI in `O(k)poly(L) time. Since we can compute
the Hermite normal form of A in time polynomial in the encoding size of P and ` ≤ n, the result follows,
as required.

The only property of a simplex in Rn used in the proof of Proposition 2.3 is that the number of its facets
is at most n + 1. The result should generalize to the case where a rational polytope P ⊆ Rn has n + t
facets, where t is a constant, and the integer hull of P is obtained by adding k (rank-1) Chvátal-Gomory
inequalities.

Rounded polytopes

A full-dimensional polytope P ⊆ Rn is rounded with factor ` > 1 if Bn2 (a, r) ⊆ P ⊆ Bn2 (a, `r), where
Bn2 (p, q) denotes an Euclidean ball {x ∈ Rn : ‖x− p‖2 ≤ q} centered at p with radius q. We first remark
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the following:

Remark 2.4 ([37]). Let ` > 1 be a constant, and let P = {x ∈ Rn : Ax ≤ b} be a rounded polytope with
factor `. We can decide whether P contains an integer point and find one if there exists any in `O(n)poly(L)
time, where L is the encoding size of P .

Proof. One can find an Euclidean ball Bn2 (c,R) ⊆ P of the largest radius by solving a linear program

whose encoding size is bounded above by poly(L) (see Section 4.3 in [22]). If R is at least
√
n

2 , an integer
point that is nearest to c is contained in the ball, so we can obtain an integer point in P by rounding
c. If that is not the case, we consider two Euclidean balls Bn2 (a, r) and Bn2 (a, `r) for some a ∈ P and

0 < r <
√
n

2 such that Bn2 (a, r) ⊆ P ⊆ Bn2 (a, `r). As c ∈ P , the distance between a and c is at most `r, and
therefore, Bn2 (c, 2`r) contains Bn2 (a, `r) by the triangle inequality. So, P is also contained in Bn2 (c, 2`r).
As 2`r < `

√
n, we can enumerate all the `O(n) integer points in Bn2 (c, 2`r) and check whether at least one

of them belongs to P .

Now, we further assume that the integer hull of P can be obtained by adding one Chvátal-Gomory
inequality, which is another special case of Open question 3.

Proposition 2.5 ([37]). Let ` > 1 be a constant, and let P = {x ∈ Rn : Ax ≤ b} be a rounded polytope
with factor `. If the integer hull of P can be obtained by adding one Chvátal-Gomory inequality to the
description of P , then we can decide whether P contains an integer point in nO(`)poly(L) time, where L
is the encoding size of P .

To prove this, we use the notion of integer width defined in § 1.2. Take an integer n ≥ 1 and a convex set
K ⊆ Rn. Recall that the integer width of K, denoted w(K,Zn) is defined as

w(K,Zn) := inf
d∈Zn\{0}

w(K, d).

Lemma 2.6 ([37]). Let P ⊆ Rn be a rounded polytope with factor ` > 1. If there exists a direction d ∈ Zn
such that w(P, d) ≤ k for some nonnegative integer k, then either ‖d‖2 ≤ (k + 1)` or w(P, ei) ≤ 1 for all
i ∈ [n].

Proof. Since P is rounded with factor `, P satisfies Bn2 (a, r) ⊆ P ⊆ Bn2 (a, `r) for some r > 0 and a ∈ Rn.
Assume that ‖d‖2 > (k + 1)`. Since w(P, d) ≤ k, there exists d0 ∈ Z such that d0 < dx < d0 + k + 1 for
all x ∈ P . Notice that Bn2 (a, r) ⊆ P ⊆ {x ∈ Rn : d0 < dx < d0 + k + 1} and the distance between two
hyperplanes {x ∈ Rn : dx = d0} and {x ∈ Rn : dx = d0 + k+ 1} is exactly (k+ 1)/‖d‖2. This implies that
2r is at most (k+ 1)/‖d‖2. Hence, we get r ≤ k+1

2‖d‖2 <
1
2` , i.e., 2`r < 1. Suppose that there is some i such

that w(P, ei) ≥ 2. Then there are two points u, v ∈ P such that ui ≤ b and vi ≥ b+ 1 for some b ∈ Z. So
‖u− v‖2 ≥ |ui − vi| ≥ 1. Since Bn2 (a, `r) contains P , the distance between any two points in P is at most
2`r and thus we get 2`r ≥ 1. However, this contradicts the previous observation that 2`r < 1. Therefore,
w(P, ei) ≤ 1 for all i ∈ [n].

Proof of Proposition 2.5. Consider the following algorithm:

(1) For each d ∈ Zn with ‖d‖2 ≤ `, compute w(P, d). If w(P, d) = 0 for some d with ‖d‖2 ≤ `, then
PI = ∅. Otherwise, go to step (2).
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(2) Compute w(P, ei) for i ∈ [n]. If there exists i ∈ [n] such that w(P, ei) ≥ 2, then PI 6= ∅. If there
exists i ∈ [n] such that w(P, ei) = 0, then PI = ∅. Otherwise, go to step (3).

(3) Let zj := bmax{xj : x ∈ P}c for j ∈ [n]. If (z1, · · · , zn) ∈ P , then PI 6= ∅. Otherwise, PI = ∅.

Step (1) can be done in polynomial time, because there are at most
(
n
`

)
2`
(

2`−1
`

)
integral vectors d with

‖d‖2 ≤ `. By assumption, there exists a Chvátal-Gomory inequality d̄x ≤ d̄0 such that {x ∈ P : d̄x ≤
d̄0} = PI . Note that PI is empty if and only if w(P, d̄) = 0. Going into Step (2), we have w(P, d) ≥ 1
for all d ∈ Zn with ‖d‖2 ≤ ` and ‖d̄‖2 > `. If w(P, ei) ≥ 2 for some i ∈ [n], then w(P, d̄) ≥ 1 by Lemma
2.6 (when k = 0) and thus PI 6= ∅. If w(P, ei) = 0 for some i ∈ [n], then PI is empty. Therefore, going
into Step (3), we have w(P, ei) = 1 for all i ∈ [n], and P can have at most one integer point. z is the only
possibility and we can compute z by solving n linear programs, therefore, in polynomial time.

2.2 Recognizing rational polytopes with an empty Chvátal clo-
sure is NP-hard

Recently, Cornuéjols and Li [38, 37] proved that it is NP-complete to decide whether the Chvátal closure
of a rational polytope is empty. In this section, we prove Theorem 1.3 that states that the problem
remains NP-complete, even when the input polytope is contained in the unit hypercube or is a simplex.
We prove this in § 2.2.1 and 2.2.2. This hardness result has some nice consequences. In particular, the
result implies that both optimizing and separating over the Chvátal closure of a rational polytope given
by its linear description are NP-hard, even when the polytope is contained in the unit cube or is a simplex
(Corollary 1.5). This extends an earlier result of Eisenbrand [63], and we explain this in § 2.2.3. Another
consequence is that for any positive integer k, it is NP-hard to decide whether adding at most k (rank-1)
Chvátal-Gomory cuts is sufficient to describe the integer hull of a rational polytope given by its linear
description, and we derive this in § 2.2.4.

2.2.1 The case of polytopes contained in the unit hypercube

The next theorem is the main result of this section, and it is a half of Theorem 1.3.

Theorem 2.7 ([37]). Let P = {x ∈ [0, 1]n : Ax ≤ b} be a nonempty rational polytope contained in the unit
hypercube. It is NP-complete to decide whether the Chvátal closure of P is empty, even when P contains
no integer point.

We reduce the equality knapsack problem, which is formally stated below, to the problem of deciding
emptiness of the Chvátal closure of a rational polytope given by its linear description.

Equality Knapsack Problem (see [69]). Given positive integers a1, . . . , an, b, is there a set of nonneg-
ative integers {xi}ni=1 satisfying

∑n
i=1 aixi = b?

Without loss of generality, we assume that a1, . . . , an are relatively prime. We follow the idea behind
Cornuéjols and Li’s construction ([38, 37], Lemma 1), where they first construct some points using the
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input data for an instance of the equality knapsack problem and then take their convex hull to construct a
rational polytope. Although the polytopes generated from their construction are not necessarily contained
in the unit hypercube, we are able to refine their idea and choose our points in the unit hypercube as
described in the next lemma. Theorem 2.7 immediately follows from it.

Lemma 2.8 ([37]). Given an equality knapsack instance of n positive weights a1, . . . , an and a positive
capacity b, one can in polynomial time generate the linear description of a rational polytope P ⊆ [0, 1]n+4

contained in the unit hypercube satisfying the following:

(a) P can be chosen to be the convex hull of n+ 10 points in [0, 1]n+4.

(b)
(

1
2 , . . . ,

1
2

)
∈ P but P contains no integer point.

(c) P is full-dimensional.

(d) There exists a solution to the equality knapsack instance if and only if there exists a Chvátal-Gomory
inequality of P that separates

(
1
2 , . . . ,

1
2

)
.

(e) There exists a solution to the equality knapsack instance if and only if the Chvátal closure of P is
empty and the number of Chvátal-Gomory inequalities to certify this is exactly 2.

Proof. Let a rational polytope P ⊆ [0, 1]n+4 be defined as the convex hull of the following n + 10 points
v1, · · · , vn+10 ∈ [0, 1]n+4:

v1 := ( 1
2b , 0, · · · , 0, 0, 0, 1

2b , 0, 0 )
v2 := ( 0, 1

2b , · · · , 0, 0, 0, 1
2b , 0, 0 )

...
vn := ( 0, 0, · · · , 0, 1

2b , 0, 1
2b , 0, 0 )

vn+1 := ( 0, 0, · · · , 0, 0, 0, 1/2, 1/2, 1/2 )
vn+2 := ( 1, 1, · · · , 1, 1, 1, 1/2, 1/2, 1/2 )
vn+3 := ( 1/2, 1/2, · · · , 1/2, 1/2, 1/2, 1, 1, 1 )
vn+4 := ( 1/4, 1/4, · · · , 1/4, 1/4, 1/4, 1/4, 1/4, 1/4 )
vn+5 := ( 1/2, 1/2, · · · , 1/2, 1/2, 1/2, 1, 1, 1/2 )
vn+6 := ( 1/2, 1/2, · · · , 1/2, 1/2, 1/2, 0, 0, 1/2 )
vn+7 := ( 1/2, 1/2, · · · , 1/2, 1/2, 1/2, 1/2, 1, 1 )
vn+8 := ( 1/2, 1/2, · · · , 1/2, 1/2, 1/2, 1/2, 0, 0 )
vn+9 := ( a1

2b ,
a2

2b , · · · , an−1

2b , an
2b , 0, 0, 1

2 −
1
4b , 0 )

vn+10 := ( 1− a1

2b , 1− a2

2b , · · · , 1− an−1

2b , 1− an
2b , 1, 1

2 + 1
4b , 0, 0 )

Let u :=
(

1
2 , . . . ,

1
2

)
. Notice that u = 1

2v
n+1 + 1

2v
n+2, so u is contained in P . In addition, none of

v1, . . . , vn+10 is contained in {0, 1}n+4, so P contains no integer point. This shows that P satisfies (b).

Claim 1. P is full-dimensional.

Proof of Claim. It is easy to show that the n+ 4 vectors in {vi− vn+1 : i = 1, . . . , n, n+ 2, n+ 3, n+ 5, n+
7} are linearly independent. Then the n + 5 points v1, . . . , vn, vn+1, vn+2, vn+3, vn+5, vn+7 are affinely
independent, thereby proving that the dimension of P is n+ 4, as required. 3
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By Claim 1, we know that P satisfies (c). Claim 1 also implies that we can compute the linear description
of P in polynomial time, as stated in the following claim.

Claim 2. The linear description of P can be obtained in polynomial time.

Proof of Claim. Since P is full-dimensional, the number of facets of P is at most
(
n+10
n+4

)
≤ n6. Given

n + 4 affinely independent points among v1, · · · , vn+10, we can compute the hyperplane containing these
n + 4 points using the Gaussian elimination method. Since the encoding size of each vi is polynomial in
log a1, · · · , log an, log b, and n, the complexity of the hyperplane is also polynomially bounded by the input
encoding size. Therefore, we can find each facet of P in polynomial time. 3

To prove that P satisfies (d) and (e), we need the following two claims:

Claim 3. If there exists a solution to the equality knapsack instance, then the Chvátal closure of P is
empty and the number of Chvátal-Gomory inequalities to certify this is exactly 2.

Proof of Claim. Let (w1, · · · , wn) be a solution to the knapsack instance. Then
∑n
i=1 aiwi = b and wi ≥ 0

for i ∈ [n]. Let d := (w1, · · · , wn,−
∑n
i=1 wi, 1,−1, 1) ∈ Zn+4. Notice that wk ≤ akwk ≤

∑n
i=1 aiwi = b,

so we get wk

2b ≤
1
2 . Since b > 1, we know that 0 < 1

2b ≤
1
4 . Thus, 0 < dvk = wk

2b + 1
2b < 1 for k ∈ [n].

It is easy to show that dvn+1 = dvn+2 = dvn+5 = dvn+6 = dvn+7 = dvn+8 = 1
2 , dvn+4 = 1

4 , and
dvn+3 = 1. In addition, dvn+9 = dvn+10 = 1

4b . That means 0 < dvi < 1 for i 6= n + 3 and dvn+3 = 1.
Then, dx > 0 is valid for P , and we obtain its corresponding Chvátal-Gomory inequality dx ≥ 1. In fact,
P ∩ {x ∈ Rn+4 : dx ≥ 1} = {vn+3}, because vn+3 is the only vertex of P that is not cut off by dx ≥ 1.
Notice that xn+1 +xn+2 +xn+3 +xn+4 ≤ 7

2 is also valid for P . Then xn+1 +xn+2 +xn+3 +xn+4 ≤ 3 is valid
for P ′, and vn+3 violates this inequality. Therefore, P ∩{x ∈ Rn : dx ≥ 1, xn+3 +xn+2 +xn+3 +xn+4 ≤ 3}
is empty. Hence, the Chvátal closure of P is empty and the number of Chvátal-Gomory inequalities to
certify this is 2. 3

Claim 4. If there exists a Chvátal-Gomory inequality separating u =
(

1
2 , . . . ,

1
2

)
, then there exists a

solution to the equality knapsack instance.

Proof of Claim. There is a valid inequality dx ≤ d0 + ε for P such that (d, d0) ∈ Zn+5, 0 < ε < 1, and
du > d0. We claim that d and d0 satisfy the following five properties:

1) dn+1 = −
∑n
i=1 di.

2) d0 = −1.

3) dn+2 = dn+4 = −1 and dn+3 = 1.

4)
∑n
i=1 aidi = −b.

5) di ≤ 0 for i ∈ [n].

Then, (−d1, · · · ,−dn) is a solution to the equality knapsack instance.
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Since d0 < du ≤ d0 + ε < d0 + 1, we get d0 < 1
2

∑n+4
i=1 di < d0 + 1. In addition, we know that

dvk ≤ d0 + ε < d0 + 1 for k ∈ [n+ 10]. The integrality of
∑n+4
i=1 di implies that 1

2

∑n+4
i=1 di should be equal

to d0 + 1
2 , and thus we get

∑n+4
i=1 di = 2d0 + 1 and du = d0 + 1

2 . Consider dvn+1 and dvn+2:

d0 + 1 > dvn+1 = du− 1

2

n+1∑
i=1

di = d0 +
1

2
− 1

2

n+1∑
i=1

di, (2.1)

d0 + 1 > dvn+2 = du+
1

2

n+1∑
i=1

di = d0 +
1

2
+

1

2

n+1∑
i=1

di. (2.2)

By (2.1) and (2.2), we get −1 <
∑n+1
i=1 di < 1. Since

∑n+1
i=1 di is an integer,

∑n+1
i=1 di = 0 and the first

property is satisfied. Then we know that dn+2 + dn+3 + dn+4 = 2d0 + 1. Now, consider dvn+3 and dvn+4:

d0 + 1 > dvn+3 = du+
1

2
(dn+2 + dn+3 + dn+4) = 2d0 + 1, (2.3)

d0 + 1 > dvn+4 =
1

2
du =

1

2
d0 +

1

4
. (2.4)

By (2.3) and (2.4), we obtain − 3
2 < d0 < 0 and thus d0 = −1. So the second property holds and

dn+2 + dn+3 + dn+4 = −1. Consider dvn+5 and dvn+6:

d0 + 1 > dvn+5 = du+
1

2
(dn+2 + dn+3) = d0 +

1

2
+

1

2
(dn+2 + dn+3), (2.5)

d0 + 1 > dvn+6 = du− 1

2
(dn+2 + dn+3) = d0 +

1

2
− 1

2
(dn+2 + dn+3). (2.6)

By (2.5) and (2.6), we know that −1 < dn+2 + dn+3 < 1. So, dn+2 + dn+3 = 0. Similarly, we get
dn+3 +dn+4 = 0 by considering dvn+7 and dvn+8. Together with the observation dn+2 +dn+3 +dn+4 = −1,
we get dn+3 = 1 and dn+2 = dn+4 = −1. Hence, the third property is satisfied. To prove the fourth
property, we consider dvn+9 and dvn+10:

dvn+9 =
1

2b

n∑
i=1

aidi + (
1

2
− 1

4b
) < d0 + 1 = 0, (2.7)

which implies that
∑n
i=1 aidi < −b+ 1

2 , so
∑n
i=1 aidi ≤ −b since the sum is an integer;

dvn+10 =

n+1∑
i=1

di −
1

2b

n∑
i=1

aidi − (
1

2
+

1

4b
) = − 1

2b

n∑
i=1

aidi − (
1

2
+

1

4b
) < d0 + 1 = 0, (2.8)

which implies that
∑n
i=1 aidi > −b −

1
2 , so

∑n
i=1 aidi ≥ −b since the sum is an integer. Therefore,∑n

i=1 aidi = −b. Lastly, consider dvk for k ∈ [n]:

dvk =
1

2b
dk −

1

2b
< d0 + 1 = 0. (2.9)
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By (2.9), dk < 1 and thus dk ≤ 0. 3

Claim 3 proves one direction of (d) and that of (e), and Claim 4 proves the other directions of (d) and (e).
Therefore, (d) and (e) are also satisfied, as required. This finishes the proof.

2.2.2 The case of simplices

We proved Theorem 2.7 in § 2.2.1 for the polytopes in the unit hypercube. The next theorem is for the
case of Theorem 1.3 when P is a simplex.

Theorem 2.9 ([37]). Let P = {x ∈ Rn : Ax ≤ b} be a rational simplex. It is NP-complete to decide
whether the Chvátal closure of P is empty, even when P contains no integer point.

To prove Theorem 2.7, we constructed a polytope that is the convex hull of n+ 10 points in [0, 1]n+4, but
a simplex in Rn+4 has less vertices. By allowing to choose some points sitting outside the hypercube, we
are able to reduce the number of points so that we can construct rational simplices as described in the
following lemma. Lemma 2.10 is very similar to Lemma 2.8, but its proof is more technical and involves
a longer argument.

Lemma 2.10 ([37]). Given an equality knapsack instance of n positive weights a1, . . . , an and a positive
capacity b, one can in polynomial time generate the linear description of a rational polytope P ⊆ Rn+1 and
a point u ∈ P satisfying the following:

(a) P is a full-dimensional simplex.

(b) P contains no integer point.

(c) There exists a solution to the equality knapsack instance if and only if there exists a Chvátal-Gomory
inequality of P that separates u.

(d) There exists a solution to the equality knapsack instance if and only if the Chvátal closure of P is
empty and the number of Chvátal-Gomory inequalities to certify this is exactly 2.

Proof. Let P ∈ Rn+1 be a rational polytope defined as the convex hull of the following n + 2 points
v1, . . . , vn+2 ∈ Rn+1:

v1 := ( 1
2rB , 0, · · · , 0, 1

2r −
b

2rBA )
v2 := ( 0, 1

2rB , · · · , 0, 1
2r −

b
2rBA )

...
vn := ( 0, 0, · · · , 1

2rB ,
1
2r −

b
2rBA )

vn+1 := ( ra1, ra2, · · · , ran −rb+ 1
2 )

vn+2 := ( −ra1, −ra2, · · · , −ran rb+ 1 )

where A and B denote
∑n
i=1 ai and the smallest integer greater than b

A , respectively and r := 2019b+ 1
2b .

Claim 1. P is a full-dimensional simplex.
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Proof of Claim. It is easy to show that v1, . . . , vn+2 are affinely independent, thereby proving that P is
full-dimensional a rational simplex. 3

By Claim 1, P satisfies (a).

Claim 2. The linear description of P can be obtained in polynomial time.

Proof of Claim. Since P is a full-dimensional rational simplex in Rn+1, it contains exactly n+2 facets. One
can obtain each facet-defining inequality of P by the Gaussian elimination method, and the complexity of
each facet-defining inequality is polynomially bounded by log a1, · · · , log ab, and log b, as required. 3

Let u := ( a1

6rBA , · · · ,
an

6rBA ,
1
6r + 1

2 −
b

6rBA ). We will show that P satisfies (c) and (d) for this choice fo
u. We need the following two claims:

Claim 3. If there exists a solution to the equality knapsack instance, then the Chvátal closure of P is
empty and the number of Chvátal-Gomory inequalities to certify this is exactly 2.

Proof of Claim. Let (w1, · · · , wn) be a solution to the knapsack instance. Then
∑n
i=1 aiwi = b and wi ≥ 0

for i ∈ [n]. Let d := (w1, · · · , wn, 1) ∈ Zn. So dvk = wk

2rB + 1
2r −

b
2rBA for k = 1, · · · , n. Since B is the

smallest integer greater than b
A , we have 0 < B− b

A ≤ 1, so we get that 0 < 1
2r −

b
2rBA ≤

1
2rB . This implies

0 < dvk ≤ wk+1
2rB . As wk ≤ akwk ≤ b, we have wk + 1 ≤ 2b. Hence, 0 < dvk < 1 for k ∈ [n]. Moreover,

we have dvn+1 = 1
2 and dvn+2 = 1. Since dv1, · · · , dvn+2 are all positive, it follows that dx ≥ 1 is valid

for P ′. In addition, xn+1 ≤ rb+ 1 = 2019b2 + 3
2 is valid for P , so xn+1 ≤ rb+ 1

2 = 2019b2 + 1 is valid for
P ′. Since P ∩

{
x ∈ Rn+1 : dx ≥ 1} = {vn+2

}
and the last component of vn+2 is greater than rb + 1

2 , it
follows that P ∩ {x ∈ Rn+1 : dx ≥ 1, xn+1 ≤ rb+ 1

2} = ∅. Therefore P ′ = ∅, as required. 3

Claim 4. If there exists a Chvátal-Gomory cut separating u, then there exists a solution to the equality
knapsack instance.

Proof of Claim. Let u1 := 1
A

∑n
i=1 aiv

i. Then u1 = ( a1

2rBA , · · · ,
an

2rBA ,
1
2r −

b
2rBA ) ∈ P . Let u2 := 1

2v
n+1 +

1
2v
n+2 = (0, · · · , 0, 3

4 ). Then 1
3u

1 + 2
3u

2 = ( a1

6rBA , · · · ,
an

6rBA ,
1
6r + 1

2 −
b

6rBA ) = u. So, both u2 and u are
in P . If P ′ = ∅, at least one Chvátal-Gomory inequality is violated by u. In other words, there exists an
inequality dx ≤ d0 +α valid for P such that (d, d0) ∈ Zn+2, 0 < α < 1, and d0 < du. We claim that d and
d0 satisfy the following four properties:

1)
∑n
i=1 aidi = bdn+1.

2) dn+1 = −1.

3) d0 = −1.

4) di ≤ 0 for i = 1, · · · , n.

Then, (−d1, · · · ,−dn+1) is a solution to the equality knapsack instance.

Let ∆ :=
∑n
i=1 aidi − bdn+1. Then ∆ is an integer. Note that r∆ + 1

2dn+1 − 1 < bdvn+1c ≤ d0, so
r∆ + 1

2dn+1 − 1 < d0 < du = 1
6rBA∆ + ( 1

2 + 1
6r )dn+1, implying in turn that

6r
(
r − 1

6rBA

)
∆− 6r < dn+1. (2.10)
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Observe that −r∆ +dn+1−1 < bdvn+1c ≤ d0. Since −r∆ +dn+1−1 < d0 < du = 1
6rBA∆ + ( 1

2 + 1
6r )dn+1,

we get (
1
2 −

1
6r

)
dn+1 < 1 +

(
r + 1

6rBA

)
∆. (2.11)

Suppose for a contradiction that ∆ 6= 0. There are four cases to consider; ∆ > 0 and dn+1 ≥ 0; ∆ > 0
and dn+1 < 0; ∆ < 0 and dn+1 ≥ 0; and ∆ < 0 and dn+1 < 0.

(Case 1: ∆ > 0 and dn+1 ≥ 0): We know (1
2 −

1
6r ) > 1

3 . By (2.11), we get dn+1 < (3r + 1
2rBA )∆ + 3.

Together with (2.10), we have

6∆r2 − (3∆ + 6)r − 1
BA∆− 1

2rBA∆ < 3.

As ∆ ≥ 1, it follows that −6∆r ≤ −6r and −2∆ ≤ − 1
BA∆− 1

2rBA∆. Hence, we obtain the following:

∆(6r2 − 9r − 2) < 3,

which cannot be true, because r ≥ 2019 and ∆ ≥ 1. Therefore, Case 1 is not possible.

(Case 2: ∆ > 0 and dn+1 < 0): By (2.10), 6∆r2 − 1
BA∆ − 6r < dn+1. Notice tht ∆r2 ≥ 1

BA∆, so
5∆r2 − 6r < dn+1. As ∆ ≥ 1 and r ≥ 2019, it follows that dn+1 > 0, contradicting the assumption that
dn+1 < 0.

(Case 3: ∆ < 0 and dn+1 ≥ 0): Since ∆ ≤ −1 and 1
6rBA > 0, the right hand side (2.11) is less than 1−r,

a negative number. As 1
2 >

1
6r , (2.11) implies that dn+1 < 0, contradicting the assumption dn+1 ≥ 0.

(Case 4: ∆ < 0 and dn+1 < 0): Notice that 1
2rBA∆+ 1

2rdn+1−1 < bdu1c ≤ d0, so 1
2rBA∆+ 1

2rdn+1−1 <
d0 < du = 1

6rBA∆ + (1
2 + 1

6r )dn+1. It follows that 1
3rBA∆ − 1 < ( 1

2 −
1
3r )dn+1 < 1

3dn+1, and thus
1

rBA∆− 3 < dn+1. Observe that (2.11) and the assumption dn+1 < 0 imply that dn+1 < 1 + (r+ 1
6rBA )∆.

So, we obtain
−4 <

(
r − 5

6rBA

)
∆.

Since ∆ ≤ −1, we have
(
r − 5

6rBA

)
∆ ≤ −r + 5

6rBA < 1− r. Then we get −4 < 1− r, a contradiction as
r ≥ 2019.

Therefore, each of the four cases is not possible, implying in turn that ∆ = 0. So, (d, d0) satisfies the
first property. Moreover ∆ = 0 implies that du1 = 1

2rdn+1, du = ( 1
2 + 1

6r )dn+1, dvn+1 = 1
2dn+1, and

dvn+2 = dn+1. Suppose for a contradiction that dn+1 ≥ 0. If dn+1 = 0, then d0 satisfies d0 < du = 0 <
d0 + 1, which is not possible as d0 is an integer. This implies that dn+1 ≥ 1. Then the following holds.

bduc = b( 1
2 + 1

6r )dn+1c < dn+1 = bdn+1c = bdvn+2c ≤ bd0 + αc = d0.

However, we assumed that d0 < du, and this implies d0 ≤ bduc, a contradiction. Thus, dn+1 ≤ −1. Note
that 1

2rdn+1 − 1 < bdu1c ≤ d0. Since d0 < du = ( 1
2 + 1

6r )dn+1, it follows that −1 < ( 1
2 −

1
3r )dn+1 and thus

−2 ≤ dn+1. If dn+1 = −2, bdvn+1c = −1 and bduc = −2. Then bduc < bdvn+1c ≤ d0, but this contradicts
the observation d0 ≤ bduc. Therefore, dn+1 = −1, so (d, d0) satisfies the second property.

Since dn+1 = −1, it follows that du = − 1
2 −

1
6r , implying that −1 < du < 0 and thus d0 = −1 which is

the third property. To prove the fourth property, let us consider dvk for k ∈ [n]. dvk = dk
2rB−( 1

2r−
b

2rBA ) <

d0 + 1 = 0. Then, dk < B − b
A . Since B is the smallest integer greater than b

A , B ≤ b
A + 1. Therefore,

dk < 1 and thus dk ≤ 0 for k ∈ [n]. 3
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By Claims 3 and 4, P satisfies (c) and (d).

To complete the proof, we need to show that P has no integer point. Notice that if P contains an
integer point, then there exists an integer d ∈ [−rb + 1

2 , rb + 1] such that P (d) := {x ∈ P : xn+1 = d}
contains an integer point.

Claim 5. P (d) = {x ∈ P : xn+1 = d} has no integer point if d > 0.

Proof of Claim. Suppose for a contradiction that P (d) has an integer point z0. For i ∈ [n + 1], let pi0
denote the intersection point of {x ∈ Rn+1 : xn+1 = d} and the line segment between vn+2 and vi for
i ∈ [n+1]. Notice that P (d) = conv

(
p1

0, . . . , p
n+1
0

)
. Let a and pi for i ∈ [n+1] denote the vectors obtained

from (a1, · · · , an, 0) and pi0 after projecting out the last coordinate, respectively. Then it can be checked
that a = (a1, · · · , an) ∈ Zn and

pi =
−rd+ 1

2−
b

2BA

rb+1− 1
2r + b

2rBA

a +
(

1
2rB −

d− 1
2r + b

2rBA

2rB(rb+1− 1
2r + b

2rBA )

)
ei for i ∈ [n],

pn+1 =
−rd+ 3

4 r

rb+ 1
4

a.

As the (n + 1)st coordinate of pi0 is d for each i, conv
(
p1, . . . , pn+1

)
is precisely the projection of P (d)

onto the space defined by the first n coordinates. As z0 is an integer point in P (d), it follows that
z ∈ Zn, the vector obtained from z0 ∈ Zn+1 after projecting out its last coordinate, is an integer point in
conv

(
p1, · · · , pn+1

)
.

Notice that pn+1 = C1a and p := 1
A

∑n
i=1 aip

i = C2a. where

C1 :=
−rd+ 3

4 r

rb+ 1
4

and C2 :=
(
−rd+ 1

2−
b

2BA

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )

)
.

Thus, pn+1 and p are on the line through 0 and a. Moreover, it can be readily shown that the intersection
of conv

(
p1, · · · , pn+1

)
and the line through 0 and a is the line segment between pn+1 and p. We will first

show that the line segment between pn+1 and p.

We will show that conv
(
pn+1, p

)
contains no integer point, thereby showing that z /∈ conv

(
pn+1, p

)
.

Since a1, · · · , an are relatively prime, there is no integer point strictly between `a and (` + 1)a for any
` ∈ Z. As pn+1 = C1a and p = C2a, it is sufficient to argue that C1, C2 ∈ (`, `+ 1) for some ` ∈ Z. Notice
that d can be expressed as kb+ h for some 0 ≤ k ≤ 2019b and 0 ≤ h < b. Then we can rewrite both pn+1

and p as follows:

pn+1 =
(
−k +

−rh+ 1
4k+ 3

4 r

rb+ 1
4

)
a =

(
−k − 1 +

r(b−h)+ 1
4 + 1

4k+ 3
4 r

rb+ 1
4

)
a,

p =
(
−k +

−rh+(r−k)( 1
2r−

b
2rBA )+k

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )

)
a

=
(
−k − 1 +

r(b−h)+(r−k−1)( 1
2r−

b
2rBA )+(k+1)

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )

)
a.

In the following, we consider three possible cases: (1) h = 0, (2) h = 1 & k = 2019b = r − 1
2b , and (3)

h ≥ 1 & k ≤ 2019b− 1 = r − 1− 1
2b .

(Case 1: h = 0): In this case, the integer part of C1 is −k, while its fractional part is
1
4k+ 3

4 r

rb+ 1
4

since it

is certainly positive and less than 1. Notice that 1
2r −

b
2rBA =

B− b
A

2rB ≤ 1
2rB , because B is the smallest
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integer greater than b
A . Then (r − k)( 1

2r −
b

2rBA ) + k ≤ 1
2B + r. In addition, 0 < 1− d− 1

2r + b
2rBA

rb+1− 1
2r + b

2rBA

< 1,

because 0 < d < rb + 1. Therefore,
−rh+(r−k)( 1

2r−
b

2rBA )+k

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )
is positive and

at most 1
2rB + 1

2rBA which is less than 1. That means the integer part of C2 is −k and its fractional part
is positive. In this case, C1, C2 ∈ (−k,−k + 1).

(Case 2: h = 1 and k = 2019b = r − 1
2b): Since k < r, 0 < r(b − 1) + 1

4 + 1
4k + 3

4r < rb + 1
4 . Thus, we

get 0 <
r(b−1)+ 1

4 + 1
4k+ 3

4 r

rb+ 1
4

< 1. Then C1 ∈ (−k − 1,−k). Note that

r(b− h) + (r − k − 1)( 1
2r −

b
2rBA ) + (k + 1) = r(b− 1) + ( 1

2b − 1)( 1
2r −

b
2rBA ) + 2019b+ 1

= rb+ 1− 1
2r + b

2rBA + 1
2b (−1 + 1

2r −
b

2rBA ).

In addition,
1

2rBA −
d− 1

2r + b
2rBA

2rBA(rb+1− 1
2r + b

2rBA )
= 1

4rBA(rb+1− 1
2r + b

2rBA )
.

In this case,

r(b−h)+(r−k−1)( 1
2r−

b
2rBA )+(k+1)

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )
= 1 +

1
2b (−1+ 1

2r−
b

2rBA )+ 1
4rBA

rb+1− 1
2r + b

2rBA

.

is less than 1, because 1
2r −

b
2rBA + 1

4rBA ≤
1

2rB + 1
4rBA < 1

2b . Therefore, we get that C2 ∈ (−k − 1,−k).

(Case 3: h ≥ 1 and k ≤ 2019b − 1 = r − 1 − 1
2b): As in the previous case, we can show that C1 ∈

(−k − 1,−k). Notice that

r(b− h) + (r − k − 1)( 1
2r −

b
2rBA ) + (k + 1) ≤ rb− 1

2b + 1
2b (

1
2r −

b
2rBA )

= rb+ 1− 1
2r + b

2rBA − (1 + 1
2b )(1−

1
2r + b

2rBA ).

We also have the following:

1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )
≤ 1

2rBA ≤ 1
2rb ≤ 1

rb+1− 1
2r−

b
2rBA

.

Since 1− (1 + 1
2b )(1−

1
2r + b

2rBA ) < 0, we get

r(b−h)+(r−k−1)( 1
2r−

b
2rBA )+(k+1)

rb+1− 1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(rb+1− 1
2r + b

2rBA )
< 1.

It is obvious that r(b− h) + (r − k − 1)( 1
2r −

b
2rBA ) + (k + 1) > 0, so C2 ∈ (−k − 1,−k).

Therefore, the line segment between pn+1 = C1a and p = C2a cannot contain an integer point, implying
in turn that z 6∈ conv

(
pn+1, p

)
.

Using our observation that z 6∈ conv
(
pn+1, p

)
, we will show that z 6∈ conv

(
p1, · · · , pn+1

)
, thereby

leading to a contradiction. Although z is not on the line through 0 and a, we can argue that z is close to
the line. By our supposition, z ∈ conv

(
p1, · · · , pn+1

)
, so we can check that δ ∈ R such that

‖z − δa‖∞ ≤
1

rB
.
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Moreover, as z is not on the line through 0 and a in Rn, there exists an index j ∈ {1, · · · , n − 1} such
that (zj , zn) is not on the line through 0 and (aj , an) in R2. The following can be proved with a simple
geometric analysis in R2:

(?) Let p := (p1, p2) 6= (0, 0) and q := (q1, q2) be two points in Z2. Then, for any δ ∈ Rn,

‖q − δp‖∞ ≥ |p1q2−p2q1|
|p1|+|p2| .

By (?), it follows that ‖(zj , zn) − δ(aj , an)‖∞ ≥ |ajzn−anzj |
|aj |+|an| for any δ ∈ R. Since (zj , zn) is not on the

line through 0 and (aj , an), we have |ajzn − anzj | ≥ 1. Since 0 < aj , an ≤ b, it follows that ‖(zj , zn) −
δ(aj , an)‖∞ ≥ 1

2b . As ‖z − δa‖∞ ≥ ‖(zj , zn)− δ(aj , an)‖∞, we obtain

‖z − δa‖∞ ≥
1

2b

for all δ ∈ R. However, this contradicts our earlier observation that ‖z − δa‖∞ ≤ 1
rB for some δ ∈ R.

Therefore, conv
(
p1, . . . , pn+1

)
contains no integer point, implying in turn that P (d) contains no integer

point, as required. 3

We now consider the case d ≤ 0.

Claim 6. P (d) = {x ∈ P : xn+1 = d} for d ≤ 0 contains no integer point.

Proof of Claim. For i = 1, . . . , n, n + 2, let wi0 denote the intersection point of the line segment between
vn+1 and vi and the hyperplane

{
x ∈ Rn+1 : xn+1 = d

}
. Then P (d) is the convex hull of w1

0, . . . , w
n
0 , w

n+2
0 .

Let wi for i = 1, · · · , n, n+ 2 denote the vector obtained from wi0 after projecting out the last coordinate.
Then

wi :=
rd− 1

2 + b
2BA

−rb+ 1
2−

1
2r + b

2rBA

a +
(

1
2rB −

d− 1
2r + b

2rBA

2rB(−rb+ 1
2−

1
2r + b

2rBA )

)
ei for i ∈ [n],

wn+2 :=
−rd+ 3

4 r

rb+ 1
4

a.

Then conv
(
w1, . . . , wn, wn+2

)
is precisely the projection of P (d) onto the space of the first n coordi-

nates. Therefore, it is sufficient to show that conv
(
w1, . . . , wn, wn+2

)
has no integer point. Let w denote

1
A

∑n
i=1 aiw

i. Then w can be written as

w =
(

rd− 1
2 + b

2BA

−rb+ 1
2−

1
2r + b

2rBA

+ 1
2rBA −

d− 1
2r + b

2rBA

2rBA(−rb+ 1
2−

1
2r + b

2rBA )

)
a.

In fact, the line though 0 and a in Rn intersects with conv
(
w1, · · · , wn, wn+2

)
in the line segment between

wn+2 and w. As the case when d > 0, we can argue that conv
(
wn+2, w

)
contains no integer point. Using

this, we can also prove that conv
(
w1, · · · , wn, wn+2

)
contains no integer point. 3

Claims 5 and 6 imply that P contains no integer point. This finishes the proof.

Theorem 2.9 follows Lemma 2.10. Putting Theorem 2.7 and 2.9 together, we obtain Theorem 1.3.
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Theorem 1.3 ([37]). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b} containing no
integer point, it is NP-complete to test whether the Chvátal closure of P is empty, even
when P ⊆ [0, 1]n or P is a rational simplex.

2.2.3 Optimization and separation over Chvátal closure

Eisenbrand [63] showed that the separation problem over the Chvátal closure of a rational polyhedron
given by its linear description is NP-hard, answering an early question of Schrijver [109]. He derived this
result as an extension of a result by Caprara and Fischetti [26].

Separation problem over the Chvátal closure. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron,
and let x̄ ∈ Qn be a rational point. Then either show that x̄ ∈ P ′ or find a valid Chvátal-Gomory inequality
dx ≤ d0 for P ′ such that dx̄ > d0.

According to a general result given by Grötschel, Lovász and Schrijver [75], this problem is equivalent to
its optimization version up to a polynomial time overhead.

Optimization problem over the Chvátal closure. Let P = {x ∈ Rn : Ax ≤ b} be a rational
polyhedron, and let c ∈ Qn be a rational objective coefficient vector. Then find a point x∗ ∈ P ′ satisfying
cx∗ = max{cx : x ∈ P ′}, or show P ′ = ∅, or find a ray z of the recession cone of P ′ for which cz is positive.

As an immediate corollary of Theorem 2.7 and Theorem 2.9, we obtain the following, which answers an
open question raised by Letchford, Pokutta, and Schulz [95].

Theorem 2.11 ([37]). The optimization and separation problems over the Chvátal closure of a rational
polytope given by its linear description are NP-hard, even when the input polytope is contained in the unit
hypercube or is a rational simplex.

2.2.4 Deciding whether adding a certain number of Chvátal-Gomory cuts can
yield the integer hull

Theorem 2.11 indicates that the number of Chvátal-Gomory cuts of a rational polytope to obtain its
Chvátal closure can be, in general, super-polynomial in the encoding size of the polytope. It seems rare
that the Chvátal closure of a rational polytope is obtained by adding a constant number of (rank-1)
Chvátal-Gomory cuts. Besides, we know that the Chvátal rank of a rational polytope can be larger than
1, so it seems rarer that we can obtain the integer hull of a rational polytope by adding a constant number
of Chvátal-Gomory cuts. Given a rational polytope, can we easily decide whether its integer hull ‘cannot’
be obtained by adding a fixed number of (rank-1) Chvátal-Gomory cuts? The answer to this question is
probably ‘no’. We remark the following, which can be derived from Lemma 2.8 and a result of Mahajan
and Ralphs ([98], Proposition 3.4).
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Remark 2.12 ([37]). Let P = {x ∈ [0, 1]n : Ax ≤ b} be a rational polytope contained in the unit hypercube,
and let k be a positive integer. Deciding whether we can obtain the integer hull of P by adding at most k
(rank-1) Chvátal-Gomory inequalities to the linear description of P is NP-hard.

Proof. If k ≥ 2, we know from Lemma 2.8 that the decision problem is NP-hard. To prove that the
problem is still NP-hard even when k = 1, we borrow the construction of Mahajan and Ralphs [98]. They
constructed a polytope using the data for an instance of the partition problem, which is NP-hard and
stated below.

Partition Problem (see [69]). Given positive integers a1, · · · , an, is there a subset K of the set of
indices [n] such that

∑
i∈K ai =

∑
j∈[n]\K aj?

Let a1, · · · , an be the input for an instance of the partition problem. Let ãk := 1∑n
j=1 aj

ak for k ∈ [n]. Let

P be the convex hull of the following n+ 4 points in [0, 1]n+2:

v1 := ( 1
2 + 1

2(n+1) ,
1

2(n+1) , · · · , 1
2(n+1) , 0, 0 )

v2 := ( 1
2(n+1) ,

1
2 + 1

2(n+1) , · · · ,
1

2(n+1) , 0, 0 )
...

vn := ( 1
2(n+1) ,

1
2(n+1) , · · · , 1

2 + 1
2(n+1) , 0, 0 )

vn+1 := ( ã1, ã2, · · · , ãn, 1, 1 )
vn+2 := ( ã1, ã2, · · · , ãn,

1
2 −

1
2
∑n

j=1 aj
, 0 )

vn+3 := ( ã1, ã2, · · · , ãn, 0, 1
2 −

1
2
∑n

j=1 aj
)

vn+4 := ( 0, 0, · · · , 0, 1
2 , 0 )

We show that the Chvátal closure of P is empty, meaning that the integer hull of P is empty. Let
d := (1, · · · , 1, 1,−1). Then dvi = 1− 1

2(n+1) for i ∈ [n]. Besides, we get dvn+1 = 1, dvn+2 = 3
2 −

1
2
∑n

j=1 aj
,

dvn+3 = 1
2 + 1

2
∑n

j=1 aj
, and dvn+4 = 1

2 . Then 0 < dx < 2 is valid for all x ∈ P , and thus dx = 1 is valid

for P ′. Since 0 < a1 <
∑n
j=1 aj , 0 < ã1 < 1. This implies that the first component of each vi be less than

1, so x1 ≤ 0 is valid for P ′. Notice that P ∩ {x ∈ [0, 1]n+2 : x1 ≤ 0} = {vn+4}. Besides, dvn+4 = 1
2 6= 1.

Since P ′ ⊆ P ∩ {x ∈ [0, 1]n+2 : dx = 1, x1 ≤ 0} = ∅, we have that P ′ = ∅, as required.

The integer hull of P , which is empty, is obtained by adding a Chvátal-Gomory inequality πx ≤ π0 if
and only if πx < π0 + 1 is valid for P and every point in P violates πx ≤ π0 (or equivalently, P ⊆ {x ∈
Rn+2 : π0 < πx < π0 +1}). Mahajan and Ralphs ([98], Proposition 3.4) proved that there is (π, π0) ∈ Zn+3

such that P ⊆ {x ∈ Rn+2 : π0 < πx < π0 + 1} if and only if there exists a subset K of [n] such that∑
i∈K ai =

∑
j∈[n]\K aj . Therefore, the problem of deciding if we can obtain the integer hull of a rational

polytope by adding at most k Chvátal-Gomory inequalities to the linear description of P is NP-hard, even
when k = 1.

Note from the proof of Remark 2.12 that k is not necessarily a constant. Observe that the construction of
Mahajan and Ralphs used to prove Remark 2.12 is in the spirit of our constructions in Lemmas 2.8 and
2.10, but one difference is that the Chvátal closure of a polytope from their construction is always empty.
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The decision problem remains NP-hard, even when the input polytope is a rational simplex, as stated
in the following remark. It follows from Lemma 2.10 and Proposition 3.2 in [98].

Remark 2.13 ([37]). Let P = {x ∈ Rn : Ax ≤ b} be a rational simplex, and let k be a positive integer.
Deciding if we can obtain the integer hull of P by adding at most k Chvátal-Gomory inequalities to the
linear description of P is NP-hard.

2.3 Flatness theorem for closed convex sets with empty Chvátal
closure

Recall the definition of integer width of a convex set K given in § 2.1. When K is unbounded or has
a large volume, there exists a direction d ∈ Zn \ {0} where w(K, d) is large. On the other hand, it is
possible that there is a direction d ∈ Zn \ {0} such that w(K, d) is relatively small if K does not contain
any integer point. In fact, the famous flatness theorem by Khinchine [88] states that w(K,Zn) for any
compact convex set K containing no integer point is bounded by f(n), a function that depends only on the
ambient dimension n. Khinchine’s flatness theorem [88] shows that f(n) ≤ (n+ 1)!. A crucial component
of Lenstra’s algorithm [94] is to find a flat direction d ∈ Zn \ {0} of a polyhedron P ⊆ Rn containing
no integer point. Lenstra [94] gave a polynomial algorithm to find a direction d ∈ Zn \ {0} such that

w(K, d) ≤ 2O(n2) for a given lattice-free compact convex set K. Then, it generates 2O(n2) subproblems

in Rn−1 by intersecting K with 2O(n2) parallel hyperplanes orthogonal to d. Hence, the algorithm works
recursively, and the number of total steps required is 2O(n3).

Over the last few decades there have been huge improvements on the upper bound f(n) (see [15,
16, 83, 84, 88, 106]). The current best known asymptotic upper bound is f(n) = O(n4/3polylog(n))
given by Banaszczyk, Litvak, Pajor, and Szarek [16] and Rudelson [106]. It has been even conjectured
that f(n) = O(n). However, the existence of a polynomial algorithm to find a direction d ∈ Zn such that
w(K, d) = O(n4/3polylog(n)) for a convex set K containing no integer point is not known. Dadush, Peikert
and Vempala [46] and Dadush and Vempala [47] developed an algorithm to find all vectors d ∈ Zn \ {0}
such that w(K, d) = w(K,Zn) in 2O(n)poly(L) time and space.

In this section, we first prove that f(n) ≤ n if K is a compact convex set whose Chvátal closure is
empty. The Chvátal closure of a closed convex set is defined similarly to that of a polyhedron [44, 43, 48].
For a closed convex set K, σK(d) := sup{dx : x ∈ K} for d ∈ Rn is its support function. It is known
that any closed convex set K can be expressed as K =

⋂
d∈Rn {x ∈ Rn : dx ≤ σK(d)}, which is the set of

solutions satisfying the system of linear inequalities given by its support function (see Theorem C.2.2.2
in [80]). Dadush, Dey, and Vielma later showed that the inequalities with integer coefficients are sufficient
to describe K (Proposition 2.1 in [44]). In other words, K =

⋂
d∈Zn {x ∈ Rn : dx ≤ σK(d)}. The Chvátal

closure of K is defined as what is obtained after rounding down their right hand side values. More precisely,
given a closed convex set K, the Chvátal closure of K is defined as

K ′ :=
⋂
d∈Zn

{x ∈ Rn : dx ≤ bσK(d)c} .

By its definition, K ′ is contained in K and it is also clear that K ∩ Zn ⊆ K ′.
Let K ⊆ Rn be a convex set and a ∈ Rn be a point. We denote by K − a := {x − a : x ∈ K} the

translation of K by −a. Let `K for some real number ` be defined as `K := {`x : x ∈ K}.
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Proposition 2.14 ([37]). Let K ⊆ Rn be a compact convex set whose Chvátal closure is empty. If
K − a ⊆ −`(K − a) for some a ∈ K and ` > 0, then the integer width of K is at most d`e.

Proof. Since the Chvátal closure of K is empty, a ∈ K should be cut off by a Chvátal-Gomory inequality
of K. In other words, there exists (d, d0) ∈ Zn+1 such that max{dx : x ∈ K} < d0 and da > d0− 1. Then,
we get max{dx : x ∈ K − a} = max{dx : x ∈ K} − da < 1, and this implies min{dx : x ∈ −`(K − a)} =
−max{dx : x ∈ `(K−a)} > −`. We assumed that K−a ⊆ −`(K−a), so min{dx : x ∈ K−a} ≥ min{dx :
x ∈ −`(K − a)} > −`. Hence, we have max{dx : x ∈ K} < d0 and min{dx : x ∈ K} > da− ` > d0− `− 1.
Therefore, the integer width of K (along d) is at most d`e.

If K ⊆ Rn is a centrally symmetric compact convex set, then K−a = −(K−a) for some a ∈ K. Although
an asymmetric convex set K does not contain such a point a ∈ K, Süss [115] and Hammer [77] proved the
following:

Theorem 2.15 ([77], Theorem 2, see also [115]). Let K ⊆ Rn be a full-dimensional compact convex set,
then there exists a ∈ K such that K − a ⊆ −n(K − a).

Combining Proposition 2.14 and Theorem 2.15, we can prove the following theorem:

Theorem 2.16 ([37]). Let K ⊆ Rn be a compact convex set whose Chvátal closure is empty. Then the
integer width of K is at most n.

Proof. If K is full-dimensional, then Proposition 2.14 and Theorem 2.15 imply that the integer width of
K is at most n. Thus we may assume that K is not full-dimensional. Then K ⊆ {x ∈ Rn : cx = c0} for
some c ∈ Rn \ {0} and d ∈ R. If c is rational, then the integer width of K is either 0 or 1, depending on
c0. Thus we may assume that c is irrational. Since c = (c1, . . . , cn) is nonzero, we may further assume
that cn 6= 0 without loss of generality. Then we can approximate c with a rational vector, based on the
Simultaneous Diophantine Approximation Theorem due to Dirichlet [55]:

Given any real numbers r1, . . . , rn−1 and 0 < ε < 1, there exist integers d1, . . . , dn such that∣∣∣ri − di
dn

∣∣∣ < ε
dn

for i = 1, . . . , n− 1 and 1 ≤ dn ≤
(

1
ε

)n−1
.

As K is compact, there exists a sufficiently large integer M > 0 such that K ⊆ [−M,M ]
n
. Let ε = 1

3Mn .
Then by the Simultaneous Diophantine Approximation Theorem, there exist integers d1, . . . , dn such that∣∣∣ cicn − di

dn

∣∣∣ < ε
dn

for i = 1, . . . , n− 1. Let z ∈ K. Then
∑n
i=1 cizi = c0, and this implies that

n∑
i=1

dizi ∈
[
−εMn+

dnc0
cn

, εMn+
dnc0
cn

]
.

As 2εMn < 1, the integer width of K is at most 1.

The upper bound given by Theorem 2.16 turns out to be very tight as shown in the following proposition.

Proposition 2.17 ([37]). There exists a polytope in Rn such that its Chvátal closure is empty and its
integer width is n− 1.
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Proof. Let Pn := {x ∈ Rn : x ≥ 1
n+11,

∑n
i=1 xi ≤ n− 1 + n

n+1}. Figure 2.2 depicts Pn when n = 2. Then

Pn is the convex hull of (n − 1)ei + 1
n+11 for i ∈ [n] and 1

n+11. Since xi ≥ 1 is valid for P ′n for each i,∑n
i=1 xi ≥ n is valid for P ′n. Together with

∑n
i=1 xi ≤ n− 1 + n

n+1 , this shows the emptiness of P ′n.

Figure 2.2: P2 in R2

Now we show that the integer width of Pn is n − 1. Let d ∈ Zn \ {0}. Since the integer width of Pn
along d is the same as that along −d, we may assume

∑n
i=1 di ≥ 0. Notice that max{dx : x ∈ Pn} =

(n− 1) max{d1, · · · , dn}+ 1
n+1

∑n
i=1 di and min{dx : x ∈ Pn} = (n− 1) min{0, d1, · · · , dn}+ 1

n+1

∑n
i=1 di.

Then the integer width of Pn along d is either (n − 1)(max{d1, · · · , dn} − min{0, d1, · · · , dn}) or (n −
1)(max{d1, · · · , dn}−min{0, d1, · · · , dn}) + 1. Clearly, max{d1, · · · , dn}−min{0, d1, · · · , dn} is at least 1.
Hence, the integer width of Pn along d is at least n − 1. It is easy to show that the integer width of Pn
along 1 is exactly n− 1.

2.3.1 Flatness result

Can we bound the integer width of a closed convex set whose Chvátal closure is empty, even when it is
unbounded? The answer is no; let us elaborate with the following example.

Example 3 ([37]). Let P := {(x1, x2) ∈ R2 :
√

2x1 − x2 = 0, x1 ≥ 1}. P can be rewritten as P =
{α(1,

√
2) : α ≥ 1}. It is clear that P does not contain an integer point. For every d = (d1, d2) ∈ Z2 \ {0},

d1 + d2

√
2 6= 0 and thus either max{dx : x ∈ P} or min{dx : x ∈ P} is unbounded. Therefore, the integer

width of P is unbounded.

In fact, we can prove that the Chvátal closure of P is empty. It is sufficient to show that for any z ≥ 1,
there is a Chvátal-Gomory inequality that cuts off the line segment between (1,

√
2) and z(1,

√
2). By the

Dirichlet approximation theorem, we can find (d1, d2) ∈ Z2 such that∣∣∣∣√2− d1

d2

∣∣∣∣ < 1

2zd2
.

Then, we get |d1 − d2

√
2| < 1

2z . Since d1 − d2

√
2 6= 0, we may assume without loss of generality that

− 1
2z < d1 − d2

√
2 < 0. In this case, d1x1 − d2x2 ≤ d1 − d2

√
2 is a valid inequality for P . We then

obtain a Chvátal-Gomory inequality d1x1 − d2x2 ≤ −1 from it, because −1 < d1 − d2

√
2 < 0. Notice that

d1z − d2z
√

2 = z(d1 − d2

√
2) and z(d1 − d2

√
2) > − 1

2 , so both (1,
√

2) and z(1,
√

2) are cut off by the

46



Figure 2.3: P in R2

Chvátal-Gomory inequality. In this case, we need infinitely many Chvátal-Gomory inequalities to certify
that the Chvátal closure of P is empty.

As explained in this example, there is no global bound on the integer width of an unbounded closed
convex set whose Chvátal closure is empty. What made the integer width unbounded in the previous
example was an irrational ray (1,

√
2) that is not contained in a proper rational linear subspace. We say

that an irrational vector r is fully irrational if there is no proper rational linear subspace containing r. In
general, we can show that

Remark 2.18 ([37]). Let K ⊆ Rn be a closed convex set. If K contains a fully irrational ray r ∈ Rn,
then the integer width of K is unbounded.

Proof. Let d ∈ Zn \ {0}. Notice that dr is nonzero. Otherwise, r is contained in a proper rational linear
subspace {x ∈ Rn : dx = 0}, a contradiction to the assumption. Then either sup{dx : x ∈ K} or
inf{dx : x ∈ K} is unbounded, so we have that w(K, d) is unbounded. Therefore, w(K, d) is unbounded
for each d ∈ Zn \ {0}, and the integer width of K is unbounded.

Hence, a closed convex set with bounded integer width does not contain a fully irrational ray. Let K be a
closed convex set that does not contain a fully irrational ray, and consider its recession cone C, that is, the
collection of all the rays contained in K. Let lin(C) denote the linear hull of C, that is, the smallest linear
subspace containing C. Then lin(C) is a rational linear subspace. In fact, we can generalize Theorem 2.16
as the following:

Theorem 2.19 ([37]). Let K ⊆ Rn be a closed convex set that can be expressed as K = Q+C where Q is
a compact convex set and C is a cone such that lin(C) is rational. If the Chvátal closure of K is empty,
then the integer width of K is at most n.

It turns out that Theorem 2.19 cannot be generalized to a closed convex set K that can be expressed
as K = Q+ C where Q is not necessarily bounded, as shown by the following example.

Example 4 ([37]). Let K :=
{

(x1, x2, x3) ∈ R3 :
√

2x1 − x2 = 0, x1 ≥ 1, x3 ≥ x2
1

}
. The recession cone

C of K is simply {α(0, 0, 1) : α ≥ 0}, so lin(C) is rational and K = K +C. Notice that K is contained in{
(x1, x2, x3) ∈ R3 :

√
2x1 − x2 = 0, x1 ≥ 1

}
, and we saw in in Example 3 that its Chvatal closure is empty.

That means the Chvátal closure of K is empty as well. However, the integer width of K is unbounded.

47



Let d = (d1, d2, d3) ∈ Z3 \{0}. Notice that (z,
√

2z, z2) ∈ K for any positive integer z. As d1z+d2

√
2z 6= 0

for any integer z, d1z+ d2

√
2z+ d3z

2 = d3z
2 + (d1 + d2

√
2)z becomes unbounded as z goes to infinity. So,

either sup{dx : x ∈ K} or inf{dx : x ∈ K} is unbounded. Therefore, the integer width of K is unbounded.

As a direct consequence of Theorem 2.19, we obtain Theorem 1.9.

Theorem 1.9 ([37]). The integer width of any rational polyhedron in Rn whose Chvátal
closure is empty is at most n.

Theorem 1.9 will be useful in developing an algorithm for solving the integer feasibility problem over the
rational polyhedra with Chvátal rank 1 in the later part of this section.

2.3.2 Proof of Theorem 2.19

To prove Theorem 2.19, we show Lemma 2.21 and Lemma 2.22 in this section. For Lemma 2.21, we need
the following result due to Dadush, Dey, and Vielma [43].

Theorem 2.20 ([43], Theorem 1). If K ⊆ Rn is a compact convex set, then the Chvátal closure of K is
a rational polytope.

Lemma 2.21 ([37]). Let K ⊆ Rn be a closed convex set that can be expressed as K = Q+C where Q is a
compact convex set and C is a cone such that lin(C) is rational. If the Chvátal closure of K is empty, then
there exists a finite list of Chvátal-Gomory inequalities such that the intersection of their corresponding
half-spaces is empty.

Proof. By Theorem 2.20, we may assume that K is unbounded, so C has a nontrivial ray. If lin(C) is a
rational linear subspace, there exists a rational matrix A with full row rank such that lin(C) = {x ∈ Rn :
Ax = 0}. We remark that we may assume A = (I, 0) where I is the identity matrix with the same number
of rows as A, which means lin(C) = {x = (x1, x2) ∈ Rn1+n2 : Ix1 + 0x2 = x1 = 0} where n1 + n2 = n.
When A 6= (I, 0), we can find an unimodular matrix U such that AU = (H, 0) is a Hermite normal form
of A. Let u : Rn → Rn be an unimodular transformation defined as u(x) = U−1x for x ∈ Rn. Notice that

u(K ′) =
⋂

dU∈Zn

{y ∈ Rn : dUy ≤ bsup{dUy : y ∈ u(K)}c} .

Hence, u(K ′) = (u(K))
′
. Then it is sufficient to show that there is a finite list of Chvátal-Gomory

inequalities of u(K) whose corresponding half-spaces have empty intersection. Moreover, the recession
cone of u(K) is u(C), and notice that lin(u(C)) =

{
y = (y1, y2) ∈ Rn1+n2 : Hy1 = 0

}
and it is equal to{

y = (y1, y2) ∈ Rn1+n2 : y1 = 0
}

. Thus, we may indeed assume that A = (I, 0).

We will first show that if the Chvátal closure of K is empty, then it suffices to look at the Chvátal-
Gomory inequalities obtained from the directions orthogonal to lin(C). Since lin(C) is a rational linear
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subspace, the relative interior of C contains a ray r̄ whose components are integers. Let us consider
K + r̄, the translation of K by r̄. Notice that K + r̄ ⊆ K. Since the Chvátal closure of K is empty,
there are some Chvátal-Gomory inequalities of K that remove all points in K + r̄. Let’s pick a direction
d ∈ Zn \ {0} that is not orthogonal to lin(C). We may assume that sup{dx : x ∈ K} has some finite
value f . Otherwise, we can ignore the Chvátal-Gomory inequality obtained from d. Then, dr ≤ 0 for
all r ∈ C. If dr̄ = 0, then dr = 0 for all r ∈ C, a contradiction to the assumption that d is not
orthogonal to lin(C). Hence, dr̄ < 0. In fact, we know that dr̄ ≤ −1, because both d and r have integer
components. Notice that sup{dx : x ∈ K + r̄} = f + dr̄. Since dr̄ ≤ −1, the Chvátal-Gomory inequality
dx ≤ bsup{dx : x ∈ K}c = bfc obtained from d does not cut off any point in K + r̄. This implies that the
points in K + r̄ are cut off by only the Chvátal-Gomory inequalities obtained from directions orthogonal
to lin(C). So, we have

(K + r̄) ∩
⋂

d∈lin(C)⊥∩Zn

{x ∈ Rn : dx ≤ bsup{dx : x ∈ K}c} = ∅,

where lin(C)⊥ denotes the orthogonal complement of lin(C). Let x̄ ∈ K + lin(C). Then x̄+ r ∈ K + r̄ for
some r ∈ lin(C), so there exists a direction d ∈ lin(C)⊥ ∩ Zn such that d(x̄+ r) > bsup{dx : x ∈ K}c. As
r ∈ lin(C), we know that dr = 0. Then we get dx̄ > bsup{dx : x ∈ K}c, so x̄ is also cut off by the same
Chvátal-Gomory inequality. Therefore, we have that

(K + lin(C)) ∩
⋂

d∈lin(C)⊥∩Zn

{x ∈ Rn : dx ≤ bsup{dx : x ∈ K}c} = ∅. (?)

To complete the proof, we look at K̃, that is the projection of K onto lin(C)⊥. Since K = Q +

C, K̃ is the same as the projection of Q onto lin(C)⊥. Then K̃ is a compact convex set and K +

lin(C) is the same as K̃ + lin(C). Recall that lin(C) =
{
x = (x1, x2) ∈ Rn1+n2 : x1 = 0

}
, so lin(C)⊥ ={

x = (x1, x2) ∈ Rn1+n2 : x2 = 0
}

. Then lin(C)⊥∩Zn =
{
d = (d1, d2) ∈ Zn1+n2 : d2 = 0

}
, so dx ≤ bsup{dx :

x ∈ K}c for d ∈ lin(C)⊥ ∩ Zn is equivalent to d1x1 ≤ bsup{d1x1 : x1 ∈ K̃c. Then, (?) is equivalent to

K̃ ∩
⋂

d1∈Zn1

{
x1 ∈ Rn1 : d1x1 ≤ bsup{d1x1 : x1 ∈ K̃}c

}
= ∅.

Since K̃ is a compact convex set, its Chvátal closure is a rational polytope due to Theorem 2.20. Therefore,
the Chvátal closure of K̃ is described by a finite number of Chvátal-Gomory inequalities. In turn, there is

a finite subset D ⊆ Zn1 such that
⋂
d1∈D

{
x1 ∈ Rn1 : d1x1 ≤ bsup{d1x1 : x1 ∈ K̃}c

}
= ∅. This implies⋂

d∈D×{0}

{x ∈ Rn : dx ≤ bsup{dx : x ∈ K}c} = ∅,

so the Chvátal-Gomory inequalities obtained from directions in a finite list D× {0} are sufficient to show
that the Chvátal closure of K is empty, as required.

To prove Theorem 2.19, we introduce the concept of a simplicial cylinder. Let P ⊆ Rn be a full-
dimensional rational polyhedron. We denote by L and L⊥ the lineality space of P and its orthogonal
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complement, respectively. We say that P is a simplicial cylinder if P ∩ L⊥ is a simplex. Observe that a
simplicial cylinder P ⊆ Rn whose lineality space L has dimension n − ` can be described by ` + 1 linear
inequalities.

Let P be a rational polyhedron given by its linear description P = {x ∈ Rn : Ax ≤ b}, where each row
of A has relatively prime integers and b has integer components. We call P a thin simplicial cylinder if it is
a simplicial cylinder and Ax ≤ b− 1, where 1 denotes the vector of all ones, is an infeasible system. Note
that a thin simplicial cylinder is a lattice-free set, which does not contain an integer point in its interior
but might include one on its boundary (see Figure 2.4).

Figure 2.4: Thin simplicial cylinders in R2

Lemma 2.22 ([37]). Let K be a closed convex set. If there exists a finite list of Chvátal-Gomory inequalities
of K such that the intersection of their corresponding half-spaces is empty, K is contained in the interior
of a thin simplicial cylinder.

Proof. Helly’s theorem implies that there are ` + 1 Chvátal-Gomory inequalities of K for some ` ≤ n
such that the intersection of the corresponding linear half-spaces is empty. Then, there exists a system
Ax ≤ b − ε1 of ` + 1 linear inequalities valid for K, where (A, b) has integer entries and 0 < ε < 1, such
that Ax ≤ b− 1 is an infeasible system. We may assume that each row of A has relatively prime integer
entries. We may also assume that the system is minimal in a sense that {x ∈ Rn : aix ≤ bi−1 for i ∈ I} is
not empty for any proper subset I of [`+ 1]. Now, consider the polyhedron P := {x ∈ Rn : Ax ≤ b}. We
claim that its recession cone C := {x : Ax ≤ 0} has empty interior. Otherwise, the polyhedron P contains
points in the form of x+kr for some x ∈ P and some ray vector r ∈ Rn in the interior of C, where k ∈ R+.
For k large enough, the points of the form are also in the polyhedron S := {x ∈ Rn : Ax ≤ b− 1}, which
is empty, a contradiction. Therefore, the linear space C − C has dimension strictly less than n. By the
Minkowski-Weyl theorem, we can write the polyhedron P as P = Q+C where Q is a polytope. Consider
the cylinder R := Q + C − C. Consider all the inequalities aix ≤ bi, i = 1, · · · , t, in the description of
P that are valid for R. Then for i = t + 1, . . . , ` + 1, there exists ri ∈ C such that airi < 0. Consider
r =

∑`+1
i=t+1 r

i. Then air ≤ airi < 0 for i = t+ 1, . . . , `+ 1. We claim that the linear system aix ≤ bi − 1,

i = 1, · · · , t, is infeasible. If aix ≤ bi − 1, i = 1, · · · , t, were feasible, then, by the same argument as
given above, S would be nonempty, a contradiction. Thus aix ≤ bi − 1, i = 1, · · · , t, is infeasible. By the
minimality of the system, this implies t = `+ 1, and therefore Q is a simplex of dimension `. That means
R = P and P is a simplicial cylinder containing K in its interior.
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Proof of Theorem 2.19. Lemma 2.21 implies that there exists a finite list of Chvátal-Gomory inequalities
of K such that the intersection of their corresponding half-spaces is empty. Then, we know by Lemma 2.22
that there exists a thin simplicial cylinder P := {x ∈ Rn : Ax ≤ b} containing K in its interior. Let `+1 be
the number of rows in A for some ` ≤ n. We denote by a1, · · · , a`+1 the rows of A. Notice that P ∩L⊥ is
an `-dimensional simplex, where L and L⊥ denote the lineality space of P and its orthogonal complement,
respectively.

We will show that the integer width of P along some ai is at most ` + 1. Then the integer width
of K is at most `, because the hyperplane defined by aix = bi does not go through K. Suppose that
the integer width of P along each ai is at least ` + 2 for the sake of contradiction. Then, the width
of P along each ai is at least ` + 1. Using an affine transformation, we can transform P to {x ∈ Rn :

x1, · · · , x` ≥ 0,
∑`
i=1 xi ≤ 1}. Under the same affine transformation, we know that {x ∈ Rn : Ax ≤ b−1}

is transformed to {x ∈ Rn : xi ≥ εi ∀ i ∈ [`],
∑`
i=1 xi ≤ 1 − ε} for some 0 < εi ≤ 1

`+1 for i ∈ [`] and

0 < ε ≤ 1
`+1 . Notice that

(
1
`+1 , . . . ,

1
`+1

)
∈ Rn is contained in {x ∈ Rn : xi ≥ εi ∀ i ∈ [`],

∑`
i=1 xi ≤ 1−ε}.

However, {x ∈ Rn : Ax ≤ b − 1} is empty by the assumption that P is a thin simplicial cylinder, and it
cannot be transformed to a nonempty set under any affine transformation. With this contradiction, we
have proved that the integer width of K is at most ` ≤ n.

2.3.3 A Lenstra-type algorithm

Recently Hildebrand and Köppe [79], Dadush, Peikert, and Vempala (see [42, 46, 47]) improved Lenstra-
type algorithms for integer programming. Their algorithms are similar to Lenstra’s algorithm in spirit
in that a main step consists in finding a flat direction of a lattice-free convex body. In particular,
Dadush, Peikert, and Vempala (see [42, 46, 47]) used a 2O(n)poly(L) time algorithm to find a flattest
direction for a convex body containing no integer point, and they proved that the time complexity of
their Lenstra-type algorithm is bounded by 2O(n) (f(n))

n
poly(L), where f(n) is the upper bound on

the integer width of a compact convex set with no integer point. Together with the current tightest
upper bound f(n) = O(n4/3polylog(n)) [16, 106], the time complexity of the algorithm is bounded by
2O(n)

(
n4/3polylog(n)

)n
poly(L). Theorem 1.9 implies that there exists a 2O(n)nnpoly(L) time Lenstra-

type algorithm for the integer feasibility problem over Chvátal rank 1 rational polyhedra. On the other
hand, Proposition 2.17 indicates that we cannot improve this time complexity if we use a Lenstra-type pro-
cedure. Note that this does not improve the current best algorithm for integer programming. Dadush [42]
provided a 2O(n)nnpoly(L) time Kannan-type algorithm for integer programming over general convex
compact sets in his doctoral dissertation, and we remark that it is the fastest algorithm for integer pro-
gramming. Instead of finding one flat direction at a time, his algorithm finds many flat directions at each
step, thereby reducing the number of recursive steps from

(
n4/3polylog(n)

)n
to (3n)n.

Based on Theorem 2.19 and Proposition 2.22, we can state the following proposition.

Proposition 2.23. Let P = {x ∈ Rn : Ax ≤ b} be rational polyhedron with Chvátal rank 1. Assume that
if P contains no integer point, then P is contained in the interior of a thin simplicial cylinder defined by
` + 1 inequalities for some ` ≤ n. Then, there exists a 2O(n)`npoly(L) time Lenstra-type algorithm that
decides whether P contains an integer point, where L is the encoding size of P .

Since any rational polyhedron with empty Chvátal closure in Rn is always contained in the interior of a
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thin simplicial cylinder which is defined by at most n+ 1 inequalities, Proposition 2.23 directly implies the
following:

Remark 2.24. There is a Lenstra-type algorithm that can decide in 2O(n)nnpoly(L) time, where L is the
encoding size of P , whether a given rational polyhedron P ⊆ Rn with Chvátal rank 1 contains an integer
point.

Although our algorithm correctly decides whether a given rational polyhedron with Chvátal rank 1 contains
an integer point, it does not find an integer point when one exists. In order to provide an algorithm that
actually finds an integer point when exists, we believe that it is necessary to analyze some properties of
integer feasible rational polyhedra with Chvátal rank 1, which is widely open.
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Chapter 3

Polytopes with split rank 1

Split cuts are the most commonly used general-purpose cutting planes, and it is known that Gomory’s
mixed integer (GMI) cuts, the mixed integer rounding (MIR) cuts, and the Chvátal-Gomory cuts are all
split cuts. Recall that S(π, π0) = {(x, y) ∈ Rn × Rp : πx ≤ π0 or πx ≥ π0 + 1} the split or the split
disjunction derived from (π, π0) ∈ Zn×Z. We call an inequality a split cut if it is valid for conv(P∩S(π, π0))
for some (π, π0) ∈ Zn × Z. Recall that

P ∗ :=
⋂

(π,π0)∈Zn×Z

conv (P ∩ S(π, π0))

is the split closure of a rational polyhedron P .

There are many computational results [65, 14] showing that split cuts are effective in practice, Caprara
and Letchford [27] showed that optimizing over the split closure of a rational polyhedron is NP-hard.
In addition, Mahajan and Ralphs [98] showed that it is NP-complete to decide whether there exists a
split S(π, π0) for some (π, π0) ∈ Zn × Z such that P ∩ S(π, π0) is empty, which implies that selecting an
optimal split in terms of the gap closed is NP-hard. In § 3.1, we prove Theorem 1.4, and we will argue
that our reduction for proving this NP-hardness result extends the result of Caprara and Letchford [27].
The reduction also generalizes the result of Mahajan and Ralphs [98] to an arbitrary number of split
disjunctions. § 3.1.2 contains more precise statements. In § 3.2, we prove Theorem 1.10, stating that if a
rational polyherdon has split rank 1 and contains no integer point, then its integer width is at most 2n.
In fact, we prove Theorem 3.8 that is more general than Theorem 1.10. The material in Section 3.1 will
be published in Discrete Optimization [91].

3.1 Deciding whether the split closure of a rational polytope is
empty is NP-hard

In this section, we give a proof of Theorem 1.4.
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3.1.1 Reduction from Equality Knapsack

As we mentioned earlier, Mahajan and Ralphs [98] considered the problem of deciding whether there exists
a single split disjunction that can certify that the split closure of a rational polytope is empty, and they
proved that the problem is NP-complete. We prove Theorem 1.4 by providing a polynomial reduction
from the Equality Knapsack Problem (see [69]):

Partition Problem. Given n positive integer weights a1, · · · , an, either find a set of binary integers
{xi}ni=1 satisfying

∑n
i=1 aixi = 1

2

∑n
i=1 ai or show that none exists.

Equality Knapsack Problem. Given n positive integer weights a1, . . . , an and a capacity b, either find
a set of nonnegative integers {xi}ni=1 satisfying

∑n
i=1 aixi = b or show that none exists.

Our reduction is similar to Lemma 2.8.

Lemma 3.1 ([91]). The problem of deciding whether the split closure of a rational polyhedron P = {x ∈
Rn : Ax ≤ b} given by its linear description is empty is in complexity class NP.

Proof. Theorem 13 in [52] by Dash, Günlük, and Lodi implies that the split closure of P can be described
by finitely many split inequalities whose encoding sizes are polynomially bounded by the encoding size
of P . When the split closure is empty, then the intersection of the half-spaces defined by finitely many
split inequalities is empty. Then by Helly’s theorem, for some k ≤ n + 1, there are k split inequalities of
polynomially bounded encoding size that certify that the split closure of P is empty. Therefore, we have
a polynomial size NP certificate for the problem.

Now that we know the problem is in NP, what remains is to show that the problem is NP-hard, even
when the input polytope is contained in the unit hypercube.

Lemma 3.2 ([91]). Given an equality knapsack instance of n positive weights a1, . . . , an and a positive
capacity b, one can in polynomial time generate the linear description of a rational polytope P ⊆ [0, 1]n+4

contained in the unit hypercube that satisfies the following:

(a)
(

1
2 , . . . ,

1
2

)
is contained in P , but P contains no integer point.

(b) There exists a solution to the equality knapsack instance if and only if there exists a split cut for P
that separates

(
1
2 , . . . ,

1
2

)
.

(c) There exists a solution to the equality knapsack instance if and only if the split closure of P is empty
and there is a single split disjunction to certify this.

Proof. We may assume that b is sufficiently large so that b > n + 2, while the knapsack problem still
remains NP-hard. We may also assume that 0 < a1, . . . , an < b. Consider the following n + 6 points
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v1, . . . , vn+6 in [0, 1]n+4.

v1 :=
(

a1

4b , 0, · · · , 0, 0, 0, 1
8b , 0, 1

8b

)
v2 :=

(
0, a2

4b , · · · , 0, 0, 0, 1
8b , 0, 1

8b

)
...

vn−1 :=
(

0, 0, · · · , an−1

4b , 0, 0, 1
8b , 0, 1

8b

)
vn :=

(
0, 0, · · · , 0, an

4b , 0, 1
8b , 0, 1

8b

)
vn+1 :=

(
a1

4b ,
a2

4b , · · · , an−1

4b , an
4b , 0, 0, 1

4 −
1
8b , 0

)
vn+2 :=

(
1− a1

2b , 1− a2

2b , · · · , 1− an−1

2b , 1− an
2b , 1, 1

4 + 1
8b , 0, 1

4 + 1
8b

)
vn+3 :=

(
0, 0, · · · , 0, 0, 0, 1

2 + 1
8b , 0, 0

)
vn+4 :=

(
0, 0, · · · , 0, 0, 0, 0, 1

2 , 0
)

vn+5 :=
(

0, 0, · · · , 0, 0, 0, 0, 0, 1
2 + 1

8b

)
vn+6 :=

(
0, 0, · · · , 0, 0, 0, 1

4 −
n+2
8b ,

1
4 + 1

8b ,
1
4 −

n+2
8b

)
Let P be a rational polytope defined as follows:

P :=

x =

n+6∑
i=1

viyi :

4b
4b+1 ≤

∑n+6
i=1 yi ≤ n+ 6− 4b

4b+1

yn+3 + yn+5 − 1 ≤ yn+4 ≤ yn+3 + yn+5

0 ≤ yi ≤ 1, ∀i ∈ [n]


Claim 1. The linear description of P that involves only x variables can be obtained in polynomial time.

Proof of Claim. We can rewrite P as P = {x ∈ Rn+4 : x = V y, Ay ≤ b} where V is the matrix whose
columns are v1, . . . , vn+6 and Ay ≤ b is the system of the other constraints in P . Notice that v1, . . . , vn,
vn+2, vn+3, vn+4, and vn+5 are linearly independent, and let B denote the column submatrix of V that
consists of these vectors. Let N denote the column submatrix of the remaining columns. Then x = V y is
equivalent to yB = B−1x − B−1NyN , where yB and yN consist of the components of y that correspond
to B and N , respectively. Let A be decomposed into its two column submatrices C and D so that
Ay = CyB + DyN . Then, P can be written as P = {x ∈ Rn+4 : CB−1x + (D − CB−1N)yN ≤ b}. yN
consists of only two variables yn+1 and yn+6, so projecting away yN from P can be done in polynomial
time by the Fourier-Motzkin elimination method. Therefore, we can find a linear system describing P that
involves x variables only in polynomial time. 3

To complete the proof, we show that P satisfies properties (a), (b), and (c). Let u denote
(

1
2 , . . . ,

1
2

)
.

To show that (a) is satisfied, we need the following two claims.

Claim 2. u ∈ P and P is centrally symmetric with respect to u.

Proof of Claim. Notice that
∑n+6
i=1 v

i = (1, . . . , 1). Then u =
∑n+6
i=1

1
2v
i ∈ P , because yi = 1

2 for i ∈ [n+ 6]

satisfy the constraints. In addition, given x =
∑n+6
i=1 v

iyi, observe that 2u − x =
∑n+6
i=1 v

i(1 − yi) as

2u =
∑n+6
i=1 v

i. Therefore, x ∈ P if and only if 2u− x ∈ P , so P is centrally symmetric with respect to u,
as required. 3

Claim 3. P ⊆ [0, 1]n+4 and P ∩ {0, 1}n+4 = ∅.

Proof of Claim. For x =
∑n+6
i=1 v

iyi ∈ P , we know that 0 ≤
∑n+6
i=1 v

iyi ≤
∑n+6
i=1 v

i = (1, . . . , 1), because

v1, . . . , vn+6 ≥ 0. That means P is contained in [0, 1]n+4. Let z =
∑n+6
i=1 v

iyi ∈ P . We would like to
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show that z 6∈ {0, 1}n. Suppose otherwise. If zj = 1 for some 1 ≤ j ≤ n, then it must be the case

that yj = yn+1 = yn+2 = 1 because zj =
aj
4b yj +

aj
4b yn+1 +

2b−aj
2b yn+2 ≤ 1 and the equality holds only

if yj = yn+1 = yn+2 = 1. In fact, yn+1 = yn+2 = 1 implies that zj > 0 for each j ∈ [n + 4] and thus

z = (1, . . . , 1) and yi = 1 for each i ∈ [n + 6]. However, this violates constraint
∑n+6
i=1 yi < n + 6, a

contradiction. Thus, zj = 0 for all 1 ≤ j ≤ n. This implies yi = 0 for 1 ≤ i ≤ n+ 2, so z = (0, . . . , 0) is the
only possibility. However, we observed that (1, . . . , 1) 6∈ P , so (0, . . . , 0) 6∈ P by Claim 2. This contradicts
the assumption that z ∈ P . Therefore, we get that P ∩ {0, 1}n+4 = ∅, as required. 3

By Claim 2 and Claim 3, we know that P satisfies (a). To prove that P also satisfies (b) and (c), we
show the following two claims:

Claim 4. If there exists a solution to the equality knapsack instance, then the split closure of P is empty
and there is a single split disjunction to certify this.

Proof of Claim. Let (d1, . . . , dn) be a solution to the equality knapsack instance, so
∑n
i=1 aidi = b and

di ≥ 0 for i ∈ [n]. Let π := (d1, . . . , dn,−
∑n
i=1 di, 1,−1, 1) ∈ Zn+4. Observe that

πvi =
aidi
4b

+
1

4b
i = 1, . . . , n, πvn+1 =

1

8b
, πvn+2 =

1

4b
,

πvn+3 =
1

2
+

1

8b
, πvn+4 = −1

2
, πvn+5 =

1

2
+

1

8b
, πvn+6 =

1

4
− n

4b
− 5

8b
.

Let x ∈ P . Then x =
∑n+6
i=1 v

iyi for some y satisfying the constraints for P . Notice that
∑n+5
i=n+3 yiπv

i =
1
8b (yn+3 + yn+5) + 1

2 (yn+3 − yn+4 + yn+5). Then we have

0 ≤
n+5∑
i=n+3

yiπv
i ≤ 1

4b
+

1

2
(3.1)

where the first equality holds only if yn+3 = yn+4 = yn+5 = 0 and the second equality holds only if
yn+3 = yn+4 = yn+5 = 1. Now, consider yn+6πv

n+6 +
∑n+2
i=1 yiπv

i. Clearly, πvi ≥ 0 for 1 ≤ i ≤ n+ 2 and
πvn+6 ≥ 0 as we assumed that b ≥ n+ 3. This implies

0 ≤ yn+6πv
n+6 +

n+2∑
i=1

yiπv
i ≤ πvn+6 +

n+2∑
i=1

πvi =
1

2
− 1

4b
(3.2)

where the first equality holds only when y1 = · · · = yn+2 = yn+6 = 0 and the second equality holds only
when y1 = · · · = yn+2 = yn+6 = 1. From (3.1) and (3.2), we get that 0 ≤ πx ≤ 1 where πx = 0 only if

yi = 0 for all i ∈ [n + 6] and πx = 1 only if yi = 1 for all i ∈ [n + 6]. As 0 <
∑n+6
i=1 yi < n + 6, we know

that πx can be neither 0 nor 1. That means P ⊆ {x : 0 < πx < 1}. Therefore, P ∩ S(π, 0) = ∅ and thus
the split closure of P is empty, as required. 3

Claim 4 proves one direction of each of (b) and (c). The other direction of each can be shown by the
following claim.

Claim 5. If there exists a split cut separating u =
(

1
2 , . . . ,

1
2

)
, then there exists a solution to the equality

knapsack instance.
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Proof of Claim. Since there is a split cut that separates u, there exist π ∈ Zn+4 and π0 ∈ Z such that
u 6∈ conv (P ∩ S(π, π0)), Then π0 < πu < π0+1. As S(−π,−π0−1) is identical to S(π, π0), we may assume
that π0 ≥ 0 without loss of generality. We will show that π and π0 satisfy the following five properties.

(1) πn+1 = −
∑n
i=1 πi.

(2) πn+2 = πn+4 = 1 and πn+3 = −1.

(3) π0 = 0.

(4)
∑n
i=1 aiπi = b.

(5) πi ≥ 0 for i = 1, . . . , n.

(1) – (5) imply that (π1, . . . , πn) is a solution to the equality knapsack instance. Since
∑n+4
i=1 πi is an integer

and πu = 1
2

∑n+4
i=1 πi is strictly between two consecutive integers π0 and π0 + 1, we get πu = π0 + 1

2 . Let
x ∈ P . Then 2u−x ∈ P by Claim 2. If x, 2u−x ∈ S(π, π0), then u = 1

2x+ 1
2 (2u−x) ∈ conv (P ∩ S(π, π0)),

a contradiction. Hence, for every x ∈ P , either π0 < πx < π0 + 1 or π0 < π(2u− x) < π0 + 1 holds.

(1): Consider w1 :=
(
0, . . . , 0, 0, 1

2 ,
1
2 ,

1
2

)
= 4b

4b+1v
n+3 + vn+4 + 4b

4b+1v
n+5 ∈ P . Then πw1 = πu −

1
2

∑n+1
i=1 πi and π

(
2u− w1

)
= πu+ 1

2

∑n+1
i=1 πi. We know that πu = π0+ 1

2 and that either π0 < πw1 < π0+1

or π0 < π
(
2u− w1

)
< π0 + 1 holds, and we get −1 <

∑n+1
i=1 πi < 1 in each case. Since

∑n+1
i=1 πi is an

integer strictly between −1 and 1, it is equal to 0. Hence, (1) is satisfied.

(2) & (3): By (1), we obtain 1
2

∑n+4
i=n+2 πi = πu. Consider w2 :=

(
0, . . . , 0, 0, 1

2 , 0, 0
)

= 4b
4b+1v

n+3 ∈
P . By symmetry, 2u − w2 =

(
1, . . . , 1, 1, 1

2 , 1, 1
)
∈ P . Notice that πw2 = πu − 1

2 (πn+3 + πn+4) and

π
(
2u− w2

)
= πu+ 1

2 (πn+3 + πn+4). As we argued before, we get πn+3 + πn+4 = 0. By considering w3 :=(
0, . . . , 0, 0, 0, 0, 1

2

)
= 4b

4b+1v
n+5 ∈ P , we can similarly argue that πn+2 + πn+3 = 0. Next, consider w4 :=(

0, . . . , 0, 0, 1
4 ,

1
4 ,

1
4

)
= 1

2w
1 ∈ P . Then, πw4 = πu − 1

4

∑n+4
i=n+2 πi and π

(
2u− w4

)
= πu + 1

4

∑n+4
i=n+2 πi.

Since we know that πu = π0 + 1
2 and that either π0 < πw4 < π0 + 1 or π0 < π

(
2u− w4

)
< π0 + 1 holds,

we obtain −1 ≤
∑n+4
i=n+2 πi ≤ 1. We observed that πu = 1

2

∑n+4
i=n+2 πi = π0 + 1

2 and assumed earlier that

π0 ≥ 0, so we get
∑n+4
i=n+2 πi ≥ 1. Then

∑n+4
i=n+2 πi = 1 and this means πn+2 = πn+4 = 1 and πn+3 = −1,

because we already have πn+2 + πn+3 = πn+3 + πn+4 = 0. As a result, π0 = πu − 1
2 = 0. Therefore, (2)

and (3) are satisfied.

(4): By (3) and πu = π0 + 1
2 , we have πu = 1

2 . We first consider vn+1 ∈ P . We have that πvn+1 =
−( 1

4 −
1
8b ) + 1

4b

∑n
i=1 aiπi. As π0 = 0, either 0 < πvn+1 < 1 or 0 < π

(
2u− vn+1

)
< 1 should hold.

Since π
(
2u− vn+1

)
= 1 − πvn+1, we in fact have 0 < πvn+1 < 1. In particular, πvn+1 > 0 implies

that
∑n
i=1 aiπi > b − 1

2 and thus we obtain
∑n
i=1 aiπi ≥ b. Next, consider vn+2 ∈ P . Notice that

πvn+2 = ( 1
2 + 1

4b ) −
1
2b

∑n
i=1 aiπi and π

(
2u− vn+2

)
= 1 − πvn+2. Similarly, we get πvn+2 > 0, and

this implies
∑n
i=1 aiπi < b + 1

2 . Since
∑n
i=1 aiπi is an integer, it is indeed at most b. Consequently,∑n

i=1 aiπi = b, as required.

(5): Let i ∈ [n]. To show that πi ≥ 0, we consider vi ∈ P . Notice that πvi = 1
4baiπi + 1

4b and
π
(
2u− vi

)
= 1 − πvi. As we know that either 0 < πvi < 1 or 0 < π

(
2u− vi

)
< 1, we get 0 < πvi < 1.

Then, πvi > 0 implies that aiπi > −1. Since aiπi is an integer, aiπi ≥ 0 and thus πi ≥ 0, as required. 3
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Claim 4 and Claim 5 finally prove that P satisfies (b) and (c), as required.

As a direct consequence of Lemmas 3.1 and 3.2, we obtain Theorem 1.4.

Theorem 1.4 ([91]). Given a rational polyhedron P = {x ∈ Rn : Ax ≥ b} containing no
integer point, it is NP-complete to test whether the split closure of P is empty, even when
P ⊆ [0, 1]n.

3.1.2 Implications

In this section, we note some consequences of Theorem 1.4 and Lemma 3.2. The separation problem over
the split closure of a rational polyhedron is defined as follows.

Separation Problem. Given a rational polyhedron P = {x ∈ Rn : Ax ≤ b} and a rational vector x̄ ∈ Qn,
either show that x̄ is contained in the split closure of P or a split cut that is violated by x̄.

Theorem 3.3 (Separation [91]). The separation problem over the split closure of a rational polyhedron
is NP-hard, even when P is contained in the unit hypercube.

Proof. Lemma 3.2 implies that, given an equality knapsack instance of n−4 positive weights a1, . . . , an and
a positive capacity b, one can in polynomial time construct a rational polytope P ⊆ [0, 1]n such that there
exists a split cut separating

(
1
2 , . . . ,

1
2

)
from P if and only if the equality knapsack instance has a solution.

Therefore, the separation problem over the split closure of a rational polytope in the unit hypercube is
NP-hard.

We remark that Theorem 1.4 also trivially implies Theorem 3.3, as the separation problem over the split
closure considers a rational polytope whose split closure is empty as a special case. Furthermore, due to
Grötschel, Lovász, and Schrijver [75]’s theorem on the equivalence between optimization and separation,
we also get the hardness result for the optimization problem over the split closure.

Corollary 3.4 (Optimization [91]). Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron and c ∈ Qn
be a rational vector. Optimizing linear function cx over the split closure of P is NP-hard, even when P is
contained in the unit hypercube [0, 1]n.

Mahajan and Ralphs [98] proved that selecting a split disjunction certifying that a rational polytope
has empty split closure is NP-hard. Lemma 3.2, in particular, part (c) generalizes this result.

Theorem 3.5 ([91]). Let P = {x ∈ Rn : Ax ≤ b} be a rational polytope and k be an any arbitrary
integer. It is NP-hard to decide whether there exist k split disjunctions S(πi, πi0) where (πi, πi0) ∈ Zn × Z
for i = 1, . . . , k such that

⋂k
i=1 conv

(
P ∩ S(πi, πi0)

)
= ∅.
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When P contains no integer point, deciding emptiness of the split closure of P is the same as checking
whether the split closure of P coincides with its integer hull and is the same as checking whether the split
rank of P is 1. As a result, we obtain another direct corollary of Theorem 1.4.

Theorem 3.6 ([91]). Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron. It is NP-hard to decide whether
the split rank of P is exactly 1, even when P is contained in the unit hypercube [0, 1]n and P contains no
integer point.

3.2 Flatness theorem for rational polytopes of split rank 1

Corollary 3.4 indicates that it is difficult to optimize over the split closure of a rational polyhedron. On
the other hand, when we assume that the split closure of a rational polyhedron is identical to its integer
hull, optimizing over the split closure seems to become easier. In fact, we can show that

Proposition 1.8 ([91]). Let P = {x ∈ Rn : Ax ≥ b} be a rational polyhedron whose split
rank is 1. Then

(1) the problem of deciding whether P ∩ Zn = ∅,
(2) given c ∈ Qn, the problem of deciding whether max {cx : x ∈ P ∩ Zn} is unbounded,

(3) given c ∈ Qn and x∗ ∈ Zn, the problem of deciding whether cx∗ =
max {cx : x ∈ P ∩ Zn}

belong to complexity class NP ∩ co-NP.

Proof. (1): Lemma 3.1 implies that the problem is in NP. The problem is also in co-NP, because we
can exhibit a point in P ∩ Zn whose encoding size is polynomially bounded if P ∩ Zn 6= ∅. (2): Notice
that max {cx : x ∈ P ∩ Zn} is unbounded if, and only if, P ∩Zn 6= ∅ and max {cx : x ∈ P} is unbounded.
Therefore, it follows from part (1) that the problem is in NP∩co-NP. (3): If cx∗ 6= max {cx : x ∈ P ∩ Zn},
then either P ∩Zn = ∅, max {cx : x ∈ P ∩ Zn} is unbounded, or there exists z ∈ P ∩Zn such that cz > cx∗.
If cz > cx∗ for some z ∈ P ∩ Zn, we can pick one whose encoding size is polynomially bounded. So, it
follows from parts (1)&(2) that the problem is in co-NP. If cx∗ = max {cx : x ∈ P ∩ Zn}, then x∗ ∈ P
and cx ≤ cx∗ is valid for conv (P ∩ Zn), and as the split rank of P is 1, cx ≤ cx∗ can be written as a
consequence of at most n+ 1 (rank-1) split inequalities. Therefore, the problem is in NP, as required.

One might wonder whether there is a polynomial time algorithm to solve integer programming over a
rational polytope that has split rank 1. We studied the same question for the Chvátal rank in Chapter 2.
We saw in § 1.2 that the matching problem [58] is an example where there exists a polynomial time
algorithm. However, as Theorem 3.6 suggests, it seems hard to use the split rank 1 condition when trying
to find an efficient algorithm.
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We have seen that the notion of integer width is important in Lenstra’s algorithm for integer linear
programming. Recall that it is conjectured that the integer width of a lattice-free compact convex set is
O(n). In this section, we prove Theorem 3.8, and we obtain Theorem 1.10 as a corollary.

As the split closure of a rational polyhedron, one can define the split closure of a closed convex set
(see [45]). Given a closed convex set K ⊆ Rn, the split closure of K is defined as follows:

K∗ :=
⋂

(π,π0)∈Zn×Z

conv (K ∩ S(π, π0)) .

Take an integer n ≥ 1. Given a positive definite matrix C and a vector a ∈ Rn, let E(C, a) denote the
ellipsoid {x ∈ Rn : ‖C(x− a)‖2 ≤ 1}.

Proposition 3.7. Let K ⊂ Rn be a full-dimensional compact convex set whose split closure is empty. If
E(C, a) ⊆ K ⊆ E( 1

`C, a), then the integer width of K is at most d2`e.

Proof. Since the split closure of K is empty, a ∈ K should be cut off by a split cut of K. In other words,
there exists (π, π0) ∈ Zn ×Z such that a 6∈ conv (K ∩ S(π, π0)), which implies that π0 < πa < π0 + 1. Let
xmin := argmin{πx : x ∈ E(C, a)} and xmax := argmax{πx : x ∈ E(C, a)}. By the geometry of E(C, a),
we have that a = 1

2xmin + 1
2xmax. Notice that either πxmin > π0 or πxmax < π0 + 1 is satisfied, since if

not, πxmin ≤ π0 and πxmax ≥ π0 + 1 implying that a ∈ S(π, π0), a contradiction. Thus we may assume
that πxmin > π0 without loss of generality. Moreover, the geometry of E(C, a) and E( 1

`C, a) implies that
the minimum and maximum of πx over E( 1

`C, a) are obtained at a + `(xmin − a) and a − `(xmin − a),
respectively. As K ⊂ E( 1

`C, a), it follows that

π (a+ `(xmin − a)) ≤ min {πx : x ∈ K} ≤ max {πx : x ∈ K} ≤ π (a− `(xmin − a)) ,

implying in turn that the integer width of K is at most d2`π(a− xmin)e. As we observed that πxmin > π0

and πa < π0 + 1, we have that 2`π(a− xmin) < 2`. Therefore, the integer width of K is at most d2`e.

Using Proposition 3.7, we can prove the following theorem:

Theorem 3.8. Let K ⊆ Rn be a compact convex set whose split closure is empty. Then the integer width
of K is at most 2n.

Proof. First, consider the case when K is full-dimensional. It was proved by Löner (reported by Danzer,
Grünbaum, and Klee [50]) and John [90] that

For every full-dimensional compact convex set K, there exists an ellipsoid E(C, a) such that
E(C, a) ⊆ K ⊆ E

(
1
nC, a

)
.

So, this theorem and Proposition 3.7 imply that the integer width of K is at most 2n. Thus we may
assume that K is not full-dimensional. Then K ⊆ {x ∈ Rn : cx = c0} for some c ∈ Rn \ {0} and d ∈ R. If
c is rational, then the integer width of K is either 0 or 1, depending on c0. Thus we may assume that c is
irrational. Since c = (c1, . . . , cn) is nonzero, we may further assume that cn 6= 0 without loss of generality.
Then we can approximate c with a rational vector, based on the Simultaneous Diophantine Approximation
Theorem due to Dirichlet [55]:
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Given any real numbers r1, . . . , rn−1 and 0 < ε < 1, there exist integers d1, . . . , dn such that∣∣∣ri − di
dn

∣∣∣ < ε
dn

for i = 1, . . . , n− 1 and 1 ≤ dn ≤
(

1
ε

)n−1
.

As K is compact, there exists a sufficiently large integer M > 0 such that K ⊆ [−M,M ]
n
. Let ε = 1

3Mn .
Then by the Simultaneous Diophantine Approximation Theorem, there exist integers d1, . . . , dn such that∣∣∣ cicn − di

dn

∣∣∣ < ε
dn

for i = 1, . . . , n− 1. Let z ∈ K. Then
∑n
i=1 cizi = c0, and this implies that

n∑
i=1

dizi ∈
[
−εMn+

dnc0
cn

, εMn+
dnc0
cn

]
.

As 2εMn < 1, the integer width of K is at most 1.

Theorem 1.10 is a direct corollary of Theorem 3.8

Theorem 1.10. The integer width of any rational polytope in Rn whose split closure is
empty is at most 2n.

3.3 Further notes

An interesting question is whether we can prove a theorem similar to Theorem 1.4 for t-branch split cuts
introduced by Dash and Günlük [51]. It is also an open question whether the separation of the t-branch
split cuts of a rational polyhedron is NP-hard. Unfortunately, the same argument as the reduction shown
in Lemma 3.2 might not work, because it is possible that there exist two split disjunctions such that the
union of the corresponding split sets contain P , even when there is no solution to the equality knapsack
instance.
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Chapter 4

Polytopes in the 0,1 hypercube that
have small Chvátal rank

Let S ⊆ {0, 1}n, and let S̄ := {0, 1}n \ S. Recall that QS is defined as

QS :=

x ∈ [0, 1]n :

n∑
j=1

(x̄j(1− xj) + (1− x̄j)xj) ≥
1

2
for x̄ ∈ S̄

 .

By Remark 1.12, we know that the Chvátal rank of any polytope P ⊆ [0, 1]n such that P ∩ {0, 1}n = S

is bounded above by that of QS . Indeed, the proof of Remark 1.12 shows that P (k) ⊆ Q
(k)
S for k ≥ 1. In

fact, we have a good handle on Q
(k)
S , thanks to the following lemma. The middle point of a k-dimensional

0,1 hypercube [0, 1]k is defined as the vector in Rk all of whose entries are equal to 1
2 .

Lemma 4.1 (Chvátal, Cook, Hartmann [30]). Let S ⊆ {0, 1}n. The middle points of all (k+1)-dimensional

faces of [0, 1]n belong to Q
(k)
S for 0 ≤ k ≤ n− 1.

Chvátal, Cook and Hartmann [30] proved this result when S = ∅. The result clearly follows for general

S ⊆ {0, 1}n since Q∅ ⊆ QS implies Q
(k)
∅ ⊆ Q

(k)
S .

Recall that Gn denotes the skeleton graph of [0, 1]n and that G(S̄) denotes the subgraph of Gn induced
by S̄. The goal of this chapter is to provide conditions on G(S̄) under which the Chvátal rank of any
polytope P ⊆ [0, 1]n with P ∩ {0, 1}n = S is small.

In §4.1, we provide some tools that are frequently used to the results of this chapter. We characterize

the descriptions of Q
(1)
S , Q

(2)
S , Q

(3)
S , Q

(4)
S in §4.2. In §4.3, we give polyhedral decomposition theorems for

conv(S) when G(S̄) contains a vertex cutset of cardinality 1 or 2. We will see that these decomposition
theorems are useful to prove Theorem 1.11. In §4.4, we give a proof of Theorem 1.11. Finally, in §4.5,
we give a proof of Theorem 1.14. The material in this chapter is published in Mathematical Programming
B [36].
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4.1 Basic tools

In this section, we present some basic tools and some notation that will be used later in this chapter.

Lemma 4.2 ([36]). Consider a half-space D := {x ∈ Rn : dx ≥ d0}. Let T := D ∩ {0, 1}n and
T̄ := {0, 1}n \ T . For every face F of [0, 1]n, the graph G(F ∩ T̄ ) is connected. In particular G(T̄ ) is a
connected graph.

Proof. Suppose that G(F ∩ T̄ ) is disconnected. Let x̄ and ȳ be vertices in distinct connected components
of G(F ∩ T̄ ) with the property that the number of distinct coordinate values in the vectors x̄ and ȳ is as
small as possible. Let j be a coordinate in which x̄ and ȳ differ and assume that x̄j = 0 and ȳj = 1. If
dj < 0, then x̄+ ej ∈ T̄ and is contained in the same component as x̄. Besides, it has one more component
in common with ȳ than x̄. Similarly, if dj ≥ 0, then ȳ − ej ∈ T̄ and has one more component in common
with x̄ than ȳ. In either case, we get a contradiction.

We defined the skeleton graph of the 0,1 hypercube, but the skeleton graph of any general polytope
can be defined similarly. Formally, the skeleton graph of a polytope is a graph whose vertices correspond
to the extreme points of the polytope and whose edges correspond to the 1-dimensional faces containing
two extreme points of the polytope.

Theorem 4.3 (Angulo, Ahmad, Dey, Kaibel [10]). Let P be a polytope and let G = (V,E) be its skeleton
graph. Let S ⊂ V , S̄ = V \ S, and S̄1, . . . , S̄t be a partition of S̄ such that there are no edges of G
connecting S̄i, S̄j for all 1 ≤ i < j ≤ t. Then conv(S) =

⋂t
i=1 conv(V \ S̄i).

Theorem 4.3 shows that we can consider each connected component of G(S̄) separately when studying
conv(S). In Sections 4.3.1 and 4.3.2, we give similar theorems in the case where P ⊂ [0, 1]n and G(S̄)
contains a vertex cutset of cardinality 1 or 2.

A matrix A is totally unimodular if every square submatrix has determinant −1, 0, or 1. It is known
that both duplicating a row and multiplying a row by −1 preserve totally unimodularity. If A is totally
unimodular, it is easy to observe that P := {x ∈ Rn : Ax ≥ b} for any vector b with integer entries is
always integral. In fact, replacing an inequality aix ≥ bi of the system Ax ≥ b by either aix ≤ bi or
aix = bi preserves the integrality of P . We can easily observe the following, using a characterization of
totally unimodular matrices due to Ghouila-Houri [71].

Remark 4.4. Let A be a 0,1 matrix.

- If A has at most 2 rows, then A is totally unimodular.

- If A =

1 0/1 0/1 0 · · · 0 1 · · · 1
0 1 0 0 · · · 0 1 · · · 1
0 0 1 0 · · · 0 1 · · · 1

, then A is totally unimodular.

- If A =

1 1 0 0 · · · 0 1 · · · 1
0 1 0 1 · · · 1 1 · · · 1
0 0 1 1 · · · 1 1 · · · 1

, then A is totally unimodular.
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- If A is totally unimodular, then so is

 A
I
−I

.

In particular, if a system of linear inequalities consists of 0 ≤ x ≤ 1 plus two additional constraints which
have only 0,1 coefficients, then its constraint matrix is totally unimodular by Remark 4.4 and thus the
linear system defines an integral polyhedron.

Throughout the paper, we will use the following notation. Let N := {1, . . . , n}. For a 0,1 vector x̄, we
denote by x̄i the 0,1 vector that differs from x̄ only in coordinate i ∈ N , and more generally, for J ⊆ N ,
we denote by x̄J the 0,1 vector that differs from x̄ exactly in the coordinates J . Besides, let ei denote the
ith unit vector for i ∈ N .

4.2 The Chvátal rank of QS

4.2.1 Chvátal rank 1

For each x̄ ∈ S̄, we call
n∑
j=1

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (4.1)

the vertex inequality corresponding to x̄. For example, when x̄ = 0, the corresponding vertex inequality is
x1 + x2 + · · ·+ xn ≥ 1. Note that each vertex inequality cuts off exactly the vertex x̄ and it goes through
all the neighbors of x̄ on [0, 1]n.

Theorem 4.5 ([36]). Q
(1)
S is the intersection of [0, 1]n with the half-spaces defined by the vertex inequalities

(4.1) for x̄ ∈ S̄.

Proof. Let e be an 1-dimensional face of Gn. Because the middle point of e belongs to QS by Lemma 4.1,
any valid inequality dx ≥ d0 for QS cuts off at most one of the two vertices of e. Let T̄ denote the set
of 0, 1 vectors that satisfy dx < d0. Since G(T̄ ) is a connected graph by Lemma 4.2, it follows that every
valid inequality dx ≥ d0 for QS cuts off at most one vertex x̄ of [0, 1]n. The Chvátal-Gomory inequality
obtained from dx ≥ d0 cannot cut off a vertex of [0, 1]n other than x̄. In particular, it cannot cut off the
neighbors of x̄ on [0, 1]n. The inequalities that cut off x̄ but none of its neighbors on [0, 1]n are implied
by
∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ 1 and 0 ≤ x ≤ 1. Furthermore, this inequality is a rank 1 Chvátal-

Gomory cut for QS since it is obtained from rounding
∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ 1

2 . This shows

that Q
(1)
S = {x ∈ [0, 1]n :

∑n
j=1 (x̄j(1− xj) + (1− x̄j)xj) ≥ 1 for x̄ ∈ S̄}.

Theorem 4.6 ([36]). The polytope QS has Chvátal rank 1 if, and only if, S̄ is a nonempty stable set in
Gn.

Proof. (⇐): Assume all connected components of G(S̄) have cardinality 1. By Theorem 4.3, conv(S) =⋂
x̄∈S̄

{
x ∈ [0, 1]n :

∑n
j=1 x̄j(1− xj) + (1− x̄j)xj ≥ 1

}
, which is equal to Q

(1)
S by Theorem 4.5. (⇒):

Assume some connected component of G(S̄) has at least 2 vertices, i.e. G(S̄) contains at least 1 edge.
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Without loss of generality, we may assume that {0, e1} ⊆ S̄ where e1 denotes the first unit vector. Then

the point
(

1
2 ,

1
2 , 0, . . . , 0

)
belongs to Q

(1)
S by Lemma 4.1 but not to conv(S) since

∑n
j=2 xj ≥ 1 is valid for

conv(S). This shows Q
(1)
S 6= conv(S).

In particular, Theorem 4.6 implies that if S contains all the 0,1 vertices of [0, 1]n with an even (odd
resp.) number of 1s, then P ⊆ [0, 1]n with P ∩ {0, 1}n = S has Chvátal rank at most 1.

4.2.2 Chvátal rank 2

First we provide an explicit characterization of Q
(2)
S . Let x̄, ȳ ∈ S̄ be two adjacent vertices of G(S̄). Using

the notation introduced in Section 4.1, we write ȳ = x̄i, where i indexes the coordinate where x̄ and ȳ
differ. The inequality ∑

j∈N\{i}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (4.2)

is called the edge inequality corresponding to edge x̄ȳ in G(S̄). For example, when x̄ = 0 and ȳ = e1, the
corresponding edge inequality is x2 +x3 + · · ·+xn ≥ 1. The inequality (4.2) is the strongest inequality that
cuts off x̄ and ȳ but no other vertex of [0, 1]n. Indeed, its boundary contains all 2(n− 1) neighbors of x̄ or
ȳ on [0, 1]n (other than x̄ and ȳ themselves). The next theorem states that vertex and edge inequalities
are sufficient to describe the second Chvátal closure of QS .

Theorem 4.7 ([36]). Q
(2)
S is the intersection of Q

(1)
S with the half-spaces defined by the edge inequalities

(4.2) for x̄, ȳ ∈ S̄ such that x̄ȳ is an edge of Gn.

Proof. The 2-dimensional faces of [0, 1]n correspond to the 4-cycles of Gn, namely, squares. Because the

center of each 2-dimensional face belongs to Q
(1)
S by Lemma 4.1, any valid inequality for Q

(1)
S cuts off at

most two vertices of it from [0, 1]n, and these two vertices are adjacent. Indeed, by Lemma 4.2, the graph
induced by the vertices that are cut off is connected and this graph cannot contain a subpath of length 2
since any such path belongs to a square of Gn. This proves the claim. The tightest such valid inequalities
are the edge inequalities.

Next we show that they are valid for Q
(2)
S . The edge inequalities can be obtained from vertex in-

equalities valid for Q
(1)
S as follows. Let x̄ȳ be an edge in G(S̄). Say x̄i = 0 and ȳi = 1. Then

xi+
∑
j∈N\{i} (x̄j(1− xj) + (1− x̄j)xj) ≥ 1 and −xi+

∑
j∈N\{i} (x̄j(1− xj) + (1− x̄j)xj) ≥ 0 are valid for

Q
(1)
S . Adding them and multiplying by 1

2 , it follows that the inequality
∑
j∈N\{i} (x̄j(1− xj) + (1− x̄j)xj) ≥

1
2 is valid for Q

(1)
S . After rounding it, we obtain

∑
j∈N\{i} (x̄j(1− xj) + (1− x̄j)xj) ≥ 1, valid for Q

(2)
S .

Note that the edge inequality (4.2) dominates the vertex inequalities for x̄ ∈ S̄ and for ȳ ∈ S̄. Thus
vertex inequalities are only needed for the isolated vertices of G(S̄). A characterization for QS to have
Chvátal rank 2 will be proved in Theorem 4.10.
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4.2.3 Chvátal rank 3

Squares of G(S̄) correspond to 2-dimensional faces of [0, 1]n. If x̄, x̄i, x̄`, x̄i` ∈ S̄, then we say that
(x̄, x̄i, x̄`, x̄i`) is a square (see Figure 4.1). Note that∑

j∈N\{i,`}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (4.3)

is the strongest inequality cutting off exactly the four points of the square (x̄, x̄i, x̄`, x̄i`). Indeed, the
4(n−2) neighbors of x̄, x̄i, x̄`, x̄i` in [0, 1]n (other than x̄, x̄i, x̄`, x̄i` themselves) all satisfy (4.3) at equality.
We call (4.3) a square inequality. As an example, if (0, e1, e2, e1 + e2) is a square contained in G(S̄), the
corresponding square inequality is x3 + x4 + · · ·+ xn ≥ 1.

If x̄ and t ≥ 3 of its neighbors x̄i1 , . . . , x̄it all belong to S̄, then we say that (x̄, x̄i1 , . . . , x̄it) is a star
(see Figure 4.1). The following star inequality is valid for conv(S).

t∑
r=1

(x̄ir (1− xir ) + (1− x̄ir )xir ) + 2
∑

j 6=i1,...,it

(x̄j(1− xj) + (1− x̄j)xj) ≥ 2. (4.4)

Indeed, it cuts off exactly the vertices of the star, and goes through the other n− t neighbors of x̄ in [0, 1]n

and the t(t − 1)/2 neighbors of two vertices among x̄i1 , . . . , x̄it . For example, if (0, e1, . . . , et) is a star,
then (4.4) is x1 + · · ·+ xt + 2(xt+1 + · · ·+ xn) ≥ 2.

Figure 4.1: Square and star with x̄ = 0

The description of Q
(3)
S is given in Theorem 4.9. To prove Theorem 4.9, we need the following lemma

that consider the case when S̄ is the vertex set of a star.

Lemma 4.8 ([36]). Assume x̄, x̄i1 , . . . , x̄it ∈ S̄ for t ≥ 1. If t ≥ 3, i.e., (x̄, x̄i1 , . . . , x̄it) is a star, then
conv(S) is completely defined by the corresponding star inequality together with the edge inequalities and
the bounds 0 ≤ x ≤ 1. If t = 1 or 2, then conv(S) is defined by edge inequalities and the bounds 0 ≤ x ≤ 1.

Proof. We may assume that x̄ = 0, S̄ = {0, e1, . . . , et} and I := {1, . . . , t}. If t = n, then S is the set of 0,1
vectors satisfying the system

∑n
j=1 xj ≥ 2 with 0 ≤ x ≤ 1. This constraint matrix is totally unimodular by

Remark 4.4. Therefore it defines an integral polytope, which must be conv(S). Notice that the constraint
matrix of {x ∈ [0, 1]n :

∑
j∈N\{r} xj ≥ 1 for r = 1} and that of {x ∈ [0, 1]n :

∑
j∈N\{r} xj ≥ 1 for r = 1, 2}
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are also totally unimodular by Remark 4.4, implying in turn that these two polytopes are integral. Hence,
if t = 1 or 2, then conv(S) is defined by edge inequalities and the bounds 0 ≤ x ≤ 1, as required.

If 3 ≤ t < n, it is sufficient to show that R := {x ∈ [0, 1]n :
∑
i∈I xi + 2

∑
j∈N\I xj ≥ 2,

∑
j∈N\{r} xj ≥

1 for 1 ≤ r ≤ t} is an integral polytope. Let v be an extreme point of R. We will show that v is an integral
vector. Since we assumed n ≥ 3, R has dimension n and there exist n linearly independent inequalities
active at v.

Claim 1. If the star inequality is active at v, then v is integral.

Proof of Claim. If no edge inequality is active at v, then n − 1 inequalities among 0 ≤ x ≤ 1 are active
at v. Since

∑
i∈I vi + 2

∑
j∈N\I vj = 2, it follows that all coordinates of v are integral. Thus we may

assume that an edge inequality
∑
j∈N\{1} xj ≥ 1 is active at v. Consider the face F of R defined by

setting this edge inequality and the star inequality as equalities. Clearly v is a vertex of F . Observe that
the two equations defining F can be written equivalently as

∑
j∈N\{1} xj = 1 and x1 +

∑
j∈N\I xj = 1.

Furthermore, any other edge inequality
∑
j∈N\{r} xj ≥ 1 is implied by x ≥ 0 since it can be rewritten as∑

j∈I\{1,r} xj ≥ 0 using x1 +
∑
j∈N\I xj = 1. This means that F is entirely defined by 0 ≤ x ≤ 1 and the

two equations x1 +
∑
j∈N\I xj = 1 and

∑
j∈N\{1} xj = 1. This constraint matrix is totally unimodular by

Remark 4.4, showing that v is an integral vertex, as required. 3

By Claim 1, we may assume that the star inequality is not active at v.

Claim 2. If the star inequality is not active at v, then at most one edge inequality is tight at v.

Proof of Claim. As the star inequality is not active, we have
∑
i∈I vi + 2

∑
j∈N\I vj > 2. Suppose for

contradiction that k ≥ 2 edge inequalities are tight at v, say
∑
j∈N\{r} xj ≥ 1 for 1 ≤ r ≤ k. Then

v1 = · · · = vk. If v1 is fractional, v has at least k fractional coordinates. We assumed that only k inequalities
other than 0 ≤ x ≤ 1 are active at v, so the other coordinates are integral. If vj = 1 for some j ≥ k + 1,
then

∑
j∈N\{r} vj > 1 for each 1 ≤ r ≤ k, which contradicts the assumption that

∑
j∈N\{r} vj = 1. Hence,

vj = 0 for j 6∈ {1, . . . , k} and v1 = · · · = vk = 1
k−1 . Then

∑t
r=1 vr + 2

∑
j∈N\I vj = k

k−1 ≤ 2. However,

this contradicts our observation that
∑
i∈I vi + 2

∑
j∈N\I vj > 2. Hence at most one edge inequality is

tight at v. 3

By Claim 2, we may assume that at most one edge inequality is tight at v. Then this case reduces to
the t = 1 case, implying in turn that v is integral, as required.

We are now ready to prove the following theorem:

Theorem 4.9 ([36]). Q
(3)
S is the intersection of Q

(2)
S with the half-spaces defined by the square inequalities

(4.3) and the star inequalities (4.4).

Proof. Applying the Chvátal procedure to inequalities defining Q
(2)
S , it is straightforward to show the

validity of the inequalities (4.3) and (4.4) for Q
(3)
S . To complete the proof of the theorem, we need to show

that all other valid inequalities for Q
(3)
S are implied by those defining Q

(2)
S , (4.3) and (4.4). Consider a

valid inequality for Q
(3)
S and let T̄ denote the set of 0,1 vectors cut off by this inequality. If T̄ = ∅, then

the inequality is implied by 0 ≤ x ≤ 1. Thus, we assume that T̄ 6= ∅. Let T := {0, 1}n \ T̄ . By the
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definition of a Chvátal inequality, there exists a valid inequality ax ≥ b for Q
(2)
S that cuts off exactly the

vertices in T̄ . By Lemma 4.1, the center points of the 3-dimensional faces of [0, 1]n all belong to Q
(2)
S . This

means ax ≥ b does not cut off any of them. By Lemma 4.2, G(T̄ ) is a connected graph. We claim that
the distance between any 2 vertices in G(T̄ ) is at most 2. Indeed, otherwise G(T̄ ) contains two opposite
vertices of a cube, and therefore its center satisfies ax < b, a contradiction.

We consider 3 cases: |T̄ | ≤ 3, G(T̄ ) contains a square, and G(T̄ ) contains no square. First, if |T̄ | ≤ 3,
then G(T̄ ) is either an isolated vertex, an edge, or a path of length two. Then vertex and edge inequalities
with the bounds 0 ≤ x ≤ 1 are sufficient to describe conv(T ) by Lemma 4.8. Then we may assume that
|T̄ | ≥ 4. If G(T̄ ) contains a square (x̄, x̄i, x̄`, x̄i`), it cannot cut off any other vertex of [0, 1]n (otherwise, by
Lemma 4.2 there would be another vertex of T̄ adjacent to the square, and thus in a cube, a contradiction).
Thus, T̄ = {x̄, x̄i, x̄`, x̄i`}. Since conv(T ) = {x ∈ [0, 1]n :

∑
j∈N\{i,`} (x̄j(1− xj) + (1− x̄j)xj) ≥ 1}, a

Chvátal inequality derived from ax ≥ b will therefore be implied by the square inequality that corresponds
to (x̄, x̄i, x̄`, x̄i`) and the bounds 0 ≤ x ≤ 1.

Thus, we may assume that G(T̄ ) contains no square and |T̄ | ≥ 4. Note that a cycle of Gn that is not a
square has length at least six. Since the distance between any two vertices in G(T̄ ) is at most two, G(T̄ )
contains no cycle of Gn. Thus, G(T̄ ) is a tree. In fact, G(T̄ ) is a star since the distance between any
two of its vertices is at most two. Thus T̄ = {x̄, x̄i1 , . . . , x̄it} for some t ≥ 3. By Lemma 4.8, conv(T ) is
described by edge and star inequalities with the bounds 0 ≤ x ≤ 1.

Note that, if an edge x̄ȳ of G(S̄) belongs to a square of G(S̄), the corresponding inequality is not

needed in the description of Q
(3)
S since it is dominated by the square inequality. On the other hand, if an

edge belongs to a star (x̄, x̄i1 , . . . , x̄it) of G(S̄) with t < n, there is no domination relationship between the
corresponding edge inequality and the star inequality. Lastly, combining Theorems 4.7 and 4.9, we obtain
the following result:

Theorem 4.10 ([36]). For n ≥ 3, the Chvátal rank of QS is 2 if, and only if, G(S̄) contains a connected
component of cardinality at least 2, and each connected component of G(S̄) is either a cycle of length
greater than 4 or a path.

Proof. (⇐): Since G(S̄) contains neither a 4-cycle nor a star, Theorem 4.9 implies that Q
(3)
S = Q

(2)
S .

It follows that Q
(2)
S = conv(S). Since G(S̄) contains a connected component of size greater than 1,

Q
(1)
S 6= conv(S) by Theorem 4.6. Thus QS has Chvátal rank exactly 2. (⇒): Suppose a connected

component of G(S̄) contains a cycle of length 4 or a vertex of degree greater than 2. Consider first the

4-cycle case, say {0, e1, e2, e1 + e2} ⊆ S̄. Then the point
(

1
2 ,

1
2 ,

1
2 , 0, . . . , 0

)
belongs to Q

(2)
S by Lemma 4.1

but not to conv(S) since
∑n
j=3 xj ≥ 1 is valid for conv(S). Now consider a vertex of degree greater than

2, say {0, e1, e2, e3} ⊆ S̄ where e1, e2, e3 denote the first 3 unit vectors. Then the point
(

1
2 ,

1
2 ,

1
2 , 0, . . . , 0

)
belongs to Q

(2)
S by Lemma 4.1 but not to conv(S) since

∑3
j=1 xj + 2

∑n
j=4 xj ≥ 2 is valid for conv(S).

4.2.4 Chvátal rank 4

In this section, we give the characterization of Q
(4)
S . It is somewhat more involved than the results for

Q
(1)
S , Q

(2)
S and Q

(3)
S , but it is in the same spirit.
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Consider any cube with vertices in G(S̄). Specifically, for x̄ ∈ {0, 1}n, recall that we use the notation x̄i

to denote the 0,1 vertex that differs from x̄ only in coordinate i, and more generally, for J ⊆ N , let x̄J denote
the 0,1 vector that differs from x̄ exactly in the coordinates J . If the 8 points x̄, x̄i, x̄k, x̄`, x̄ik, x̄i`, x̄k`, x̄ik`

all belong to S̄, then we say that these points form a cube (see Figure 4.2). Note that∑
j∈N\{i,k,`}

(x̄j(1− xj) + (1− x̄j)xj) ≥ 1 (4.5)

is a valid inequality for conv(S) and that it cuts off exactly 8 vertices of [0, 1]n, namely the 8 corners of
the cube. In fact, it is the strongest such inequality since it is satisfied at equality by all 8(n− 3) of their
neighbors in [0, 1]n. We call (4.5) a cube inequality.

Figure 4.2: Cube, tulip, and propeller with x̄ = 0

If x̄, x̄i1 , x̄i2 , x̄i3 , x̄i1i2 , x̄i2i3 , x̄i3i1 , x̄i4 , . . . , x̄it all belong to S̄ for some t ≥ 4, then we say that these
points form a tulip (see Figure 4.2). Let IT := {i1, . . . , it}. Note that

3∑
k=1

(x̄ik (1 − xik ) + (1 − x̄ik )xik ) + 2

t∑
r=4

(x̄ir (1 − xir ) + (1 − x̄ir )xir ) + 3
∑
j 6∈IT

(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 3 (4.6)

is a valid inequality for conv(S) that cuts off exactly these points. We call it a tulip inequality. For
example, if x̄ = 0, and x̄ik = ek for k = 1, 2, 3, (4.6) is x1 + x2 + x3 + 2

∑t
r=4 xir + 3

∑
j 6∈IT xj ≥ 3.

If x̄, x̄i1 , x̄i2 , . . . , x̄it , x̄it+1 , x̄i1it+1 , x̄i2it+1 , . . . , x̄itit+1 all belong to S̄ for some t ≥ 3, then we say that
these points form a propeller (see Figure 4.2). Besides, we say that the edge x̄x̄it+1 is the axis of the
propeller. Let IP := {i1, . . . , it+1}. Note that

t∑
r=1

(x̄ir (1− xir ) + (1− x̄ir )xir ) + 2
∑
j 6∈IP

(x̄j(1− xj) + (1− x̄j)xj) ≥ 2 (4.7)

is a valid inequality that cuts off exactly the above points. We call it a propeller inequality. It goes through
2(n− t− 1) neighbors of x̄ and x̄it+1 , t(t− 1)/2 neighbors of two vertices among x̄i1 , . . . , x̄it , and another
t(t − 1)/2 neighbors of two vertices among x̄i1it+1 , . . . , x̄itit+1 . For example, if x̄ = 0, x̄it+1 = e1 and
x̄ik = ek+1 for k = 1, . . . , t, the propeller inequality is x2 + · · ·+ xt+1 + 2(xt+2 + · · ·+ xn) ≥ 2.

A characterization of Q
(4)
S is given in Theorem 4.15. To prove the theorem, we need the following 4

69



technical lemmas that consider 4 basic cases, and their proofs are similar to that of Lemma 4.8. Although
we omit the proofs of these lemmas, we will show how the general case can be reduced to one of these
basic cases.

Lemma 4.11 ([36]). Let S̄ = {0, e1, . . . , ek, e1 +e2} for some k ≥ 3. Then conv(S) is described by a square
inequality for the square (0, e1, e2, e1 + e2), a star inequality for the star (0, e1, . . . , ek), edge inequalities
for the edges connecting 0 to e3, . . . , ek and the bounds 0 ≤ x ≤ 1.

Lemma 4.12 ([36]). Let S̄ = {0, e1, . . . , ek, e1 + e2, e1 + e3} for some k ≥ 4. Then conv(S) is de-
scribed by two square inequalities for (0, e1, e2, e1 + e2) and (0, e1, e3, e1 + e3), a star inequality for the star
(0, e1, . . . , ek), edge inequalities for the edges connecting 0 to e4, . . . , ek and the bounds 0 ≤ x ≤ 1.

Lemma 4.13 ([36]). Consider the tulip S̄ = {0, e1, e2, e3, . . . , ek, e1 + e2, e2 + e3, e3 + e1} for some k ≥ 4.
Then conv(S) is described by the tulip inequality, the three square inequalities, a star inequality for the star
(0, e1, e2, . . . , ek), edge inequalities for the edges connecting 0 to e4, . . . , ek , and the bounds 0 ≤ x ≤ 1.

Lemma 4.14 ([36]). Let S̄ = {0, e1, . . . , e`, e1 +e2, . . . , e1 +ek} for some k ≥ 4 and ` ≥ k+1. Note that S̄
is a propeller which consists of k squares and (0, e1, e2, . . . , e`) is a star. Then conv(S) is described by the
star inequality for the star (0, e1, e2, . . . , e`), edge inequalities for the edges connecting 0 to ek+1, . . . , e`,
the square and propeller inequalities that correspond to the propeller (0, e1, . . . , ek, e1 +e2, . . . , e1 +ek), and
the bounds 0 ≤ x ≤ 1.

With Lemmas 4.11, 4.12, 4.13, 4.14, we are ready to prove Theorem 4.15.

Theorem 4.15 ([36]). Q
(4)
S is the intersection of Q

(3)
S and the half spaces defined by all cube, tulip, and

propeller inequalities.

Proof. We first show that the inequalities stated in the theorem are valid for Q
(4)
S .

Claim 1. The cube, tulip, and propeller inequalities are valid for Q
(4)
S .

Proof of Claim. A cube can be decomposed into two vertex-disjoint squares, and x`+
∑
j∈N\{i,k,`}(x̄j(1−

xj) + (1− x̄j)xj) ≥ 1 and −x` +
∑
j∈N\{i,k,`}(x̄j(1− xj) + (1− x̄j)xj) ≥ 0 are the corresponding square

inequalities which are valid for Q
(3)
S . Adding them, dividing by 2, and applying the Chvátal procedure

generates the cube inequality, so it is valid for Q
(4)
S .

A tulip contains a star with x̄ as its root, and the corresponding star inequality is
∑t
r=1(x̄ir (1−xir ) +

(1− x̄ir )xir ) + 2
∑
j 6∈IT (x̄j(1− xj) + (1− x̄j)xj) ≥ 2. In addition, it has three squares containing x̄, and

the corresponding square inequalities are
∑
j∈N\{i1,i2}(x̄j(1− xj) + (1− x̄j)xj) ≥ 1,

∑
j∈N\{i2,i3}(x̄j(1−

xj) + (1− x̄j)xj) ≥ 1, and
∑
j∈N\{i1,i3}(x̄j(1− xj) + (1− x̄j)xj) ≥ 1. These four inequalities are all valid

for Q
(3)
S . Adding them, dividing by 2, and applying the Chvátal procedure shows the validity of the tulip

inequality for Q
(4)
S .

A propeller contains two stars with x̄, x̄it+1 as their roots, respectively, and the corresponding star
inequalities are xit+1

+
∑t
r=1(x̄ir (1 − xir ) + (1 − x̄ir )xir ) + 2

∑
j 6∈IP (x̄j(1 − xj) + (1 − x̄j)xj) ≥ 2 and

−xit+1
+
∑t
r=1(x̄ir (1 − xir ) + (1 − x̄ir )xir ) + 2

∑
j 6∈IP (x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1. These are valid for

Q
(3)
S . Adding them, dividing by 2, and applying the Chvátal procedure shows the validity of the propeller

inequality for Q
(4)
S . 3
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To complete the proof of the theorem, we need to show that every valid inequality for Q
(4)
S is a

consequence of the inequalities defining Q
(3)
S and cube, tulip and propeller inequalities. Consider any valid

inequality for Q
(4)
S and let T̄ denote the set of 0,1 vectors cut off by this inequality. Let T := {0, 1}n \ T̄ .

We will show that vertex, edge, square, star, cube, tulip and propeller inequalities are sufficient to describe
conv(T ). It follows from the definition of a Chvátal inequality that there exists a valid inequality ax ≥ b

for Q
(3)
S that cuts off the same set T̄ . We know that G(T̄ ) is a connected graph by Lemma 4.2. We claim

the following three for T̄ .

Claim 2. If a path of length three appears in G(T̄ ), then either the square of Gn containing the first three
vertices of the path or the square containing the last three vertices belongs to G(T̄ )

Proof of Claim. Consider a path of length three in G(T̄ ). We may assume without loss of generality that
the path is (e1, 0, e2, e2 + e3). Suppose both e1 + e2 and e3 satisfy ax ≥ b. Then their middle point m in
[0, 1]n also satisfies ax ≥ b, contradicting the fact that e1 and e2 + e3 (and therefore their middle point,
which is m) satisfy ax < b. Therefore e1 + e2 or e3 is in T̄ , forming a square with either e1, 0, e2 or
0, e2, e2 + e3. 3

Claim 3. The maximum distance in Gn between two vertices in G(T̄ ) is at most three.

Proof of Claim. Let u, v ∈ T̄ . Since u and v are connected in G(T̄ ), there is a path between u and v in
G(T̄ ). If the distance between u and v in Gn is at least 4, then there exists a vertex w on the path such
that the distance in Gn between u and w is 4. Their middle point in [0, 1]n is also cut off by ax ≥ b. Since
they are opposite vertices of a 4-dimensional face of [0, 1]n, the middle point of the face is cut off by the

inequality. However, this contradicts Lemma 4.1 for Q
(3)
S . Hence, the maximum distance in Gn between

two points in T̄ is at most three, as required. 3

Claim 4. If G(T̄ ) contains two squares, then either they share a common edge or G(T̄ ) is a 3-dimensional
cube and the two squares are opposite 2-dimensional faces of it.

Proof of Claim. Assume that G(T̄ ) contains two squares. Without loss of generality, we may assume that
one of them is (0, e1, e2, e1 + e2). Suppose that the second square does not share an edge with it. If they
share a vertex, we may assume that the second square is (0, e3, e4, e3 + e4). Note that the distance in Gn
between e1 + e2 and e3 + e4 is 4, contradicting Claim 3. Thus, the two squares do not share any vertex.
Because G(T̄ ) is connected and no path of length greater than three exists, it easy to verify that G(T̄ )
must be a 3-dimensional cube. 3

We now consider different cases according to the number of squares contained in G(T̄ ). We first consider
the case when G(T̄ ) has no square. Then the distance in Gn between any two vertices in G(T̄ ) is at most
two by Claim 2. Then G(T̄ ) can be a single vertex, an edge, two consecutive edges, or a star. Hence,
by Lemma 4.8, vertex, edge, and star inequalities with the bounds 0 ≤ x ≤ 1 are sufficient to describe
conv(T ). Thus, we may assume that G(T̄ ) contains at least one square.

Claim 5. If G(T̄ ) contains exactly one square, edge, star, and square inequalities are sufficient.

Proof of Claim. Without loss of generality, we may assume that it is (0, e1, e2, e1 + e2). If T̄ consists of
just this square, then the square inequality

∑n
j=3 xj ≥ 1 suffices. If not, the square is adjacent to at least

one 0,1 point in T̄ and thus we may assume that e3 is in T̄ . Note that the other points in T̄ (if any) are
not adjacent to any of e1, e2, e1 + e2, by the first claim and the assumption that only one square exists in
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G(T̄ ). Therefore, we may assume that T̄ is {0, e1, e2, . . . , ek, e1 + e2} for some k ≥ 3. In this case, edge,
star, and square inequalities are sufficient by Lemma 4.11. 3

Claim 6. If G(T̄ ) contains exactly two squares, edge, star, and square inequalities are sufficient.

Proof of Claim. We may assume that T̄ contains 0, e1, e2, e3, e1 + e2, e1 + e3. If no other vertex belongs
to T̄ , then x3 +

∑n
j=4 xj ≥ 1 and x2 +

∑n
j=4 xj ≥ 1 together with 0 ≤ x ≤ 1 suffice since the constraint

matrix for this system is totally unimodular by Remark 4.4. So we may assume that there exists v ∈
T̄ \ {0, e1, e2, e3, e1 + e2, e1 + e3}. By connectivity of G(T̄ ) we may assume that v is adjacent to at least
one of 0, e1, e2, e3, e1 + e2, e1 + e3. Since G(T̄ ) contains only two squares, v is adjacent to exactly one of
these vertices. If v is adjacent to e2, then v can be written as e2 + ek for some k ≥ 4. However, this is
impossible by the second claim since the distance in Gn between e2 + ek and e1 + e3 is 4. Thus, v cannot
be adjacent to e2. Likewise, v cannot be adjacent to e3, e1 + e2, and e1 + e3. Without loss of generality,
v is adjacent to 0. If there exists u ∈ T̄ adjacent to e1, then G(T̄ ) should contain an additional square
containing either u or v by the first claim. Therefore, all the vertices in T̄ \ {0, e1, e2, e3, e1 + e2, e1 + e3}
are adjacent to 0. Namely T̄ = {0, e1, e2, e3, . . . , ek, e1 + e2, e1 + e3} for some k ≥ 4. In this case, edge,
star, and square inequalities are sufficient by Lemma 4.12. 3

By Claims 5 and 6, we may assume that G(T̄ ) contains at least three squares. If G(T̄ ) contains a cube,
then G(T̄ ) contains no other vertex by Claim 4, and therefore, we may assume that T̄ = {0, e1, e2, e3, e1 +
e2, e2 + e3, e3 + e1, e1 + e2 + e3}. In this case

∑n
j=4 xj ≥ 1 together with 0 ≤ x ≤ 1 suffices. So,

we can further assume that G(T̄ ) contains no cube. Any two of the squares should share a common
edge by Claim 4. There are two possibilities: all squares share a common edge or three squares are the
three 2-dimensional faces incident to a vertex of [0, 1]n. Thus we may assume that T̄ contains either
{0, e1, e2, e3, e1 + e2, e2 + e3, e3 + e1} or {0, e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4}.

Claim 7. If {0, e1, e2, e3, e1 + e2, e2 + e3, e3 + e1} ⊆ T̄ , edge, star, square, and tulip inequalities are
sufficient.

Proof of Claim. If T̄ = {0, e1, e2, e3, e1 + e2, e2 + e3, e3 + e1}, then x1 +
∑n
j=4 xj ≥ 1, x2 +

∑n
j=4 xj ≥ 1,

and x3 +
∑n
j=4 xj ≥ 1 together with 0 ≤ x ≤ 1 gives conv(T ). This is because the constraint matrix

of the system is totally unimodular by Remark 4.4. Thus, we may assume that there exists v ∈ T̄ \
{0, e1, e2, e3, e1 + e2, e2 + e3, e3 + e1}, and by the connectivity of G(T̄ ) we may assume that v is adjacent
to at least one of vertices 0, e1, e2, e3, e1 + e2, e2 + e3, and e3 + e1. If v is adjacent to e1, then v can be
written as e1 + ek for some k ≥ 4. Then the distance in Gn between v and e2 + e3 is 4. If v is adjacent to
e1 + e2, then v is e1 + e2 + ek for some k ≥ 4. Then the distance in Gn between v and e3 is 4. Therefore,
v is adjacent to 0. Hence, T̄ is a tulip {0, e1, e2, e3, . . . , ek, e1 + e2, e2 + e3, e3 + e1} for some k ≥ 4. In this
case, edge, star, square, and tulip inequalities are sufficient by Lemma 4.13. 3

Claim 8. If {0, e1, e2, e3, e4, e1 + e2, e1 + e3, e1 + e4} ⊆ T̄ , edge, star, square, and propeller inequalities are
sufficient.

Proof of Claim. By Claim 4, all the squares contain {0, e1}. As shown in the case when G(T̄ ) contains
exactly two squares, all vertices which are not in any square but in T̄ should be adjacent to a single common
vertex which can be either 0 or e1. Hence, we may assume that T̄ = {0, e1, e2, e3, . . . , ek, ek+1, . . . , e`, e1 +
e2, . . . , e1 + ek} for some k ≥ 3 and ` ≥ k + 1. In this case, edge, star, square, and propeller inequalities
are sufficient by Lemma 4.14. 3

72



By Claims 5, 6, 7, 8, conv(T ) can be described by vertex, edge, square, star, cube, tulip and propeller
inequalities, as required.

As a consequence, we can characterize when the Chvátal rank of QS is 3.

Theorem 4.16 ([36]). The Chvátal rank of QS is 3 if, and only if, G(S̄) contains no cube, tulip or
propeller but it contains a star or a square.

Proof. This follows from Theorems 4.9, 4.10, 4.15.

We can now prove the first three statements of Theorem 1.11.

Theorem 1.11 ([36]). Let P ⊆ [0, 1]n be a rational polytope contained in the unit cube.
Let S̄ := {0, 1}n \ P . Then the following statements hold:

(1) If S̄ is a stable set in Gn, then the Chvátal rank of P is at most 1.

(2) If G(S̄) is a disjoint union of cycles of length greater than 4 and paths, then the
Chvátal rank of P is at most 2.

(3) If G(S̄) is a forest, then the Chvátal rank of P is at most 3.

Proof. Let S := {0, 1}n\S̄. (1): If S̄ is a stable set in Gn, then the Chvátal rank of QS is 1 by Theorem 4.6,
implying in turn that the Chvátal rank of P is at most 1 by Remark 1.12. (2): If G(S̄) is a disjoint union
of cycles of length greater than 4 and paths, then the Chvátal rank of QS is at most 2 by Theorem 4.10,
and by Remark 1.12, that of P is at most 2. (3): If G(S̄) is a forest, then it has no cycle, and in particular,
it contains no square. If the maximum degree of G(S̄) is smaller than 3, then it is a disjoint union of paths,
meaning that the Chvátal rank of QS is at most 2 by part (2). If the max degree is at least 3, then G(S̄)
contains a star. Moreover, as G(S̄) contains no sqaure, G(S̄) contains none of cube, tulip, and propeller.
Therefore, by Theorem 4.16, the Chvátal rank of QS is at most 3. Then the Chvátal rank of P is at most
3 by Remark 1.12, as required.

4.3 Vertex cutsets

In this section, we give polyhedral decomposition theorems for conv(S) when the graph G(S̄) contains a
vertex cutset of cardinality 1 or 2.

4.3.1 Cut vertex

Theorem 4.17 below shows that conv(S) can be decomposed when G(S̄) contains a vertex cut. This result
is in the spirit of the theorem of Angulo, Ahmed, Dey and Kaibel (Theorem 4.3) but it is specific to
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polytopes contained in the unit hypercube. At the end of this section, we give an example showing that
the result does not extend to general polytopes. Before we state Theorem 4.17, let us illustrate an example
first.

Let G = (V,E) be a graph and let X ⊆ V . For v ∈ X, let NX [v] denote the closed neighborhood of v
in the graph G(X). That is NX [v] := {v} ∪ {u ∈ X : uv ∈ E}.

Example ([36]). Let S = {e2, e1 + e2, e1 + e3} ⊂ {0, 1}3, and we consider conv(S) ⊂ [0, 1]3. In Figure 4.3,
conv(S) is a triangle which can be viewed as the intersection of the two tetrahedrons in the figure. Notice
that e3 is a cut vertex in G(S̄), whose deletion leaves S̄1 := {0, e1} and S̄2 := {e2 + e3, e1 + e2 + e3}
as two separate components. The set of 0,1 points that do not belong to the left tetrahedron is exactly
NS̄ [e3] ∪ S̄2, whereas that of the right one is NS̄ [e3] ∪ S̄1.

Figure 4.3: An example of decomposition around a cut vertex in R3

Theorem 4.17 ([36]). Let S ⊆ {0, 1}n and S̄ := {0, 1}n \ S. Let v be a cut vertex in G(S̄) and let
S̄1, . . . , S̄t denote the connected components of G(S̄ \ {v}). Then

conv(S) =

t⋂
i=1

conv({0, 1}n \ (NS̄ [v] ∪ S̄i)).

Furthermore, if v does not belong to any 4-cycle in G(S̄), then conv(S) = conv({0, 1}n \ NS̄ [v]) ∩⋂t
i=1 conv({0, 1}n \ ({v} ∪ S̄i)).

Proof. To ignore trivial cases, we assume n ≥ 3 and t ≥ 2. By Lemma 4.8, we know that conv({0, 1}n \
NS̄ [v]) can be described by star and edge inequalities together with 0 ≤ x ≤ 1. Let u ∈ S̄i \ NS̄ [v] and
w ∈ S̄j \NS̄ [v] where i 6= j.

Claim 1. No edge inequality of conv({0, 1}n \NS̄ [v]) is active at both u and w.

Proof of Claim. Consider an edge vr in the star G(NS̄ [v]). Suppose for contradiction that the correspond-
ing edge inequality is active at both u and w. Then each of u and w is adjacent in Gn to an endpoint of
the edge. Since u and w cannot be adjacent to v by the definition of NS̄ [v], both are adjacent to r. Then
(u, r, w) is a path contained in G(S̄ \ {v}), contradicting the assumption that u and w are disconnected in
G(S̄ \ {v}). Hence, no edge inequality is active at both u and w, as required. 3

Claim 2. The skeleton graph of conv ({0, 1}n \NS̄ [v]) contains no edge connecting u and w.
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Proof of Claim. Suppose for contradiction that u and w are adjacent in the skeleton graph of conv({0, 1}n\
NS̄ [v]). Then we can find n−1 linearly independent inequalities in the description of conv({0, 1}n \NS̄ [v])
that are active at both u and w.

It follows from Claim 1 that the only candidates are the star inequality and the bounds 0 ≤ x ≤ 1. If
the star inequality is active at both u and w, then each of u and w is adjacent to two vertices of NS̄ [v]\{v}
in Gn. As u and w belong to different components, no vertex is adjacent to u and w in Gn. Then there
exist four distinct vertices in NS̄ [v] \ {v} two of which are adjacent to u and the other two which are
adjacent to w. That means n − 4 inequalities among 0 ≤ x ≤ 1 are active at both u and w, so only
n − 3 linearly independent inequalities are active at both u and w. Thus, we may assume that the star
inequality is not active at both u and w. Since u and w are at distance at least 2 in Gn, at most n − 2
among 0 ≤ x ≤ 1 are active at both, contradicting the supposition that u and w are adjacent on the
skeleton graph of conv({0, 1}n \NS̄ [v]), as required. 3

Claim 2 implies that Si \NS̄ [v] and S̄j \NS̄ [v] are disconnected. Then, by Theorem 4.3, we obtain

conv(S) =

t⋂
i=1

conv
(
{0, 1}n \

(
NS̄ [v] ∪ S̄i

))
.

For the second statement of Theorem 4.17, it is sufficient to prove the following claim:

Claim 3. If v does not belong to any 4-cycle of G(S̄), conv({0, 1}n\(NS̄ [v]∪ S̄i)) = conv({0, 1}n\NS̄ [v])∩
conv({0, 1}n \ ({v} ∪ S̄i)).

Proof of Claim. Let W := NS̄ [v] \ (S̄i ∪ {v}). It is sufficient to show that the skeleton of conv({0, 1}n \
(NS̄ [v] \ W )) contains no edge connecting a vertex of S̄i \ NS̄ [v] to a vertex of W . Let w ∈ W and
s ∈ S̄i \ NS̄ [v]. By the assumption that v does not belong to any square in G(S̄), s is adjacent to at
most one pendent vertex of NS̄ [v] in Gn. That means the star inequality is not active at s. We consider
two cases. Consider first the case when s is adjacent to a vertex, denoted r, in NS̄ [v] \W . Then the
edge inequality for vr is active at s, but no other edge inequality is active at s. Since w is adjacent to
v, the edge inequality is also active at w. However, the distance in Gn between s and w is exactly 3 in
this case. Thus at most n− 3 bound inequalities are active at both s and w, for a total of at most n− 2
linearly independent inequalities active at both. But we need n− 1. So s and w are not connected by an
edge of the skeleton in this case. Now consider the case where s is adjacent to no vertex of NS̄ [v] \W .
Then no edge inequality is active at s. Since s and w are not adjacent in Gn, at most n − 2 inequalities
among 0 ≤ x ≤ 1 are active at both u and w. Therefore, s and w are not adjacent in the skeleton of
conv({0, 1}n \ (NS̄ [v] \W )) in this case, either. Thus the assertion holds by Lemma 4.3, as required. 3

This finishes the proof of Theorem 4.17.

If G(S̄) induces a forest, then G(S̄) contains no square, and by Theorem 4.16, the Chvátal rank of QS
is at most 3. We can directly prove this statement using Theorem 4.17.

Theorem 4.18 ([36]). Let S ⊆ {0, 1}n and S̄ := {0, 1}n \ S. If G(S̄) is a forest, then the Chvátal rank of
QS is at most 3.
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Proof. By Theorem 4.3, we may assume that G(S̄) is connected, so G(S̄) is a tree. We prove by induction
on the size of the tree. The result holds if |S̄| ≤ 3. Let G(S̄) induce a tree T and assume that the
result holds for all trees with fewer vertices. The theorem holds if T is a star by Lemma 4.8, so we may
assume that T is not a star. Let v be a non-pendant vertex of T and let S̄1, . . . , S̄t denote the connected
components of G(S̄ \ {v}). Since v does not belong to any 4-cycle in G(S̄), Theorem 4.17 implies that
conv(S) = conv({0, 1}n \NS̄ [v])∩

⋂t
i=1 conv({0, 1}n \ ({v} ∪ S̄i)). Notice that the sets NS̄ [v] and {v} ∪ S̄i

for i = 1, . . . , t have smaller cardinality than S̄. Then the result follows from the induction hypothesis.

Unlike Theorem 4.3, Theorem 4.17 cannot be extended to general polytopes, as shown by the following
example.

Example. Let P be the polytope in R2 shown in Figure 4.4. Let V := {v1, . . . , v8} denote its vertex
set and let G = (V,E) be its skeleton graph. Let S := {v5, v6, v7} and S̄ := V \ S. In the figure the
set of white vertices is S, while the set of black vertices is S̄. Note that v2 is a cut vertex of G(S̄),
and NS̄ [v2] = {v1, v2, v3}. Therefore, S̄1 := {v1, v8} and S̄2 := {v3, v4} induce two distinct connected
components of G(S̄ \ {v2}). Note that conv(S) 6= conv(V \ (NS̄ [v2] ∪ S̄1)) ∩ conv(V \ (NS̄ [v2] ∪ S̄2)) since
conv(S) is a triangle but the intersection of conv(V \ {v1, v2, v3, v4}) and conv(V \ {v1, v2, v3, v8}) is a
parallelogram.

Figure 4.4: An example in R2

4.3.2 2-vertex cut

In this section, we prove Theorem 4.21 that is an extension of Theorem 4.17 to vertex cuts of cardinality 2.
It will play a key role in proving the main result of Section 4.4. The proof of Theorem 4.21 entails analyzing
the adjacency on the skeleton of conv({0, 1}n\(NS̄ [v1]∪NS̄ [v2])) between two points in different connected
components of the graph G(S̄ \ {v1, v2}). To do this, we need the following theorem that characterizes a
linear description of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Lemma 4.19 ([36]). Let S̄ ⊆ {0, 1}n and v1, v2 ∈ S̄. Then conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])) is described
by edge, star, square, cube, propeller inequalities and the bounds 0 ≤ x ≤ 1.
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The following small lemma is also useful here and later in the next section:

Lemma 4.20 ([36]). Let S ⊆ {0, 1}n and S̄ := {0, 1}n \S. Let x̄, ȳ ∈ S be two points at distance 2 in Gn,
i.e., ȳ = x̄ij for some i, j ∈ N . Then x̄ and ȳ are adjacent in the skeleton of conv(S) if, and only if, x̄i or
x̄j is in S̄.

Proof. (⇐): Without loss of generality, we may assume that x̄ = 0 and ȳ = e1 + e2. If e1 ∈ S̄, then the
corresponding vertex inequality −x1 +

∑n
i=2 xi ≥ 0 is valid for conv(S) and active at both x̄ and ȳ. We

also know that xi ≥ 0 for i ≥ 3 are all active at both x̄ and ȳ. Since these n − 1 inequalities are linearly
independent, x̄ and ȳ are adjacent in the skeleton of conv(S). Likewise if e2 ∈ S̄. (⇒): If e1, e2 are in
S, then (0, e1, e2, e1 + e2) is a 2-dimensional face of conv(S). The center of the square can be obtained
as a nontrivial convex combination of 4 distinct vertices of conv(S), and therefore it does not lie on any
1-dimensional face of conv(S). Thus the diagonal connecting 0 to e1 + e2 is not a face of conv(S).

To prove Theorem 4.21, we first delete two star cutsets NS̄ [v1] ∪NS̄ [v2] from {0, 1}n. If we can prove
that no edge connects a vertex of S̄i \ (NS̄ [v1]∪NS̄ [v2]) to a vertex of S̄j \ (NS̄ [v1]∪NS̄ [v2]) in the skeleton
of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])) for i 6= j, the theorem follows by Theorem 4.3. Lemma 4.19 provides
us with the linear description of conv({0, 1}n \ (NS̄ [v1] ∪ NS̄ [v2])). Therefore, we only need to consider
edge, star, square, propeller, cube inequalities and the bounds 0 ≤ x ≤ 1 in order to analyze the adjacency
of vertices on the polytope conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Theorem 4.21 ([36]). Let S ⊆ {0, 1}n and S̄ := {0, 1}n \S. Let {v1, v2} be a vertex cut of size 2 in G(S̄).
Let S̄1, . . . , S̄t denote the connected components of G(S̄ \ {v1, v2}). Then

conv(S) =

t⋂
i=1

conv
(
{0, 1}n \

(
NS̄ [v1] ∪NS̄ [v2] ∪ S̄i

))
.

Proof. The assertion is trivially true if n ≤ 3, so we may assume that n ≥ 4. If S̄i \ (NS̄ [v1] ∪NS̄ [v2]) is
nonempty for at most one i, then S̄i \ (NS̄ [v1] ∪NS̄ [v2]) = S̄, and therefore, the theorem holds. Thus, we
may assume that for some distinct i, j, S̄i \ (NS̄ [v1] ∪ NS̄ [v2]) and S̄j \ (NS̄ [v1] ∪ NS̄ [v2]) are nonempty.
Let u ∈ S̄i \ (NS̄ [v1] ∪NS̄ [v2]) and w ∈ S̄j \ (NS̄ [v1] ∪NS̄ [v2]). We will show that no edge in the skeleton
graph of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2]) connects u and w.

Claim 1. No edge inequality of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2]) is active at both u and w.

Proof of Claim. Suppose for contradiction that the edge inequality for an edge pq in G(NS̄ [v1] ∪NS̄ [v2])
is active at both u and w. Then each of u and w is adjacent to either p or q. If p ∈ {v1, v2}, then u and
w cannot be adjacent to p since u,w 6∈ NS̄ [v1]∪NS̄ [v2], implying in turn that q /∈ {v1, v2} and that u and
w are adjacent to q. But (u, q, w) is a path contained in G(S̄ \ {v1, v2}), a contradiction as u and w are
disconnected in G(S̄ \ {v1, v2}). Hence, we may assume that p, q 6∈ S \ {v1, v2}. This implies that there is
a path in G(S̄ \ {v1, v2}) between u and w through the edge pq, which is again a contradiction. Therefore
no edge inequality is active at both u and w, as required. 3

Since u and w are disconnected in G(S̄ \ {v1, v2}), the distance in Gn between u and w is at least 2.

Claim 2. We may assume that the distance between u and w in Gn is at least 3.
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Proof of Claim. w = uk` for some k, ` ∈ N . Since u is adjacent to neither v1 nor v2, we get uk, u` 6∈ {v1, v2}.
Besides, uk, u` 6∈ S̄. Otherwise, u and w are connected in G(S̄\{v1, v2}), which contradicts the assumption.
Then u and w are not adjacent in the skeleton graph by Lemma 4.20. Therefore, we may assume that the
distance in Gn between u and w is at least 3, as required. 3

To prove Theorem 4.21, we consider different cases according to the distance between v1 and v2 in Gn.
Without loss of generality, we may assume v1 = 0. Recall that by Lemma 4.19, conv({0, 1}n \ (NS̄ [v1] ∪
NS̄ [v2])) is described by edge, star, square, and propeller (if it exists) inequalities.

Claim 3. If the distance between v1 and v2 in Gn is 1, then u and w are not adjacent in the skeleton
graph of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Proof of Claim. Without loss of generality, we may assume that v2 = e1 since v1 = 0. Notice that each
square in G(NS̄ [v1]∪NS̄ [v2]) contains v1v2 as an edge and that G(NS̄ [v1]∪NS̄ [v2]) contains neither a tulip
nor a propeller. If there is no square in G(NS̄ [v1]∪NS̄ [v2]), then no square inequality is active at u and w.
If one exists, pick a square and consider the corresponding square inequality. Let p, q denote the other two
vertices in the square. If the inequality is active at both u and w, then u and w are adjacent to a vertex
in the square. Since u and w cannot be adjacent to any of v1 and v2, they are adjacent to either p or q. In
this case, u and w are connected by the edge pq in G(S̄ \ {v1, v2}) which contradicts the assumption that
u and w are disconnected. Hence no square inequality is active at both u and w.

Consider the star inequality for NS̄ [v1]. If it is active at both, then each of u and w is adjacent to two
vertices in NS̄ [v1] \ {v1}. Since u and w cannot have a common neighbor vertex in NS̄ [v1] \ {v1}, there
exist four distinct vertices ep, eq, er, es ∈ NS̄ [v1] \ {v1} such that u = ep + eq and w = er + es. In addition,
we know that p, q, r, s > 1, because u and w cannot be adjacent to v2. That means that the star inequality
for NS̄ [v2] cannot be active at u and w. This implies that at most one star inequality is active at both u
and w.

If a star inequality is active at both u and w, we observed that n − 4 among 0 ≤ x ≤ 1 are active at
both and that the other star inequality is not active at both. Even if the propeller inequality is active at
both u and w, we have only n − 2 inequalities active at both u and w. In no star inequality is active at
both, then we know that at most n − 3 among 0 ≤ x ≤ 1 are active at both by Claim 2. Regardless of
whether a propeller inequality is active at u and w, we have at most n−2 inequalities active at both u and
w. Therefore, u and w are not adjacent in the skeleton of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])), as required.
3

Claim 4. If the distance between v1 and v2 in Gn is 2, then u and w are not adjacent in the skeleton
graph of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Proof of Claim. Without loss of generality, we may assume that v2 = e1+e2. Observe first that G(NS̄ [v1]∪
NS̄ [v2]) contains at most one square, implying in turn that it contains none of cube, tulip, and propeller.

Consider the star inequality for NS̄ [v1]. If it is active at both u and w, we know that u and w can be
written as ep + eq and er + es, respectively, for some distinct p, q, r, s. and that n− 4 inequalities among
0 ≤ x ≤ 1 are active at both u and w. We need two more active inequalities. Then the other star inequality
and the square inequality should be active at both u and w. Then we may assume that p = 1 and r = 2,
so u and w can be written as e1 + eq and e2 + es, respectively. Without loss of generality, assume that
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q = 3 and s = 4. Note that {e1, e2, e3, e4} ⊆ NS̄ [v1] and {e1, e2, e1 + e2 + e3, e1 + e2 + e4} ⊆ NS̄ [v2]. In
this case, the followings are n− 1 inequalities that are active at both u and w.

xi ≥ 0 for i ≥ 5,

n∑
i=3

xi ≥ 1,

k1∑
i=1

xi + 2

n∑
j=k1+1

xj ≥ 2, −x1 − x2 +

k2∑
i=3

xi + 2

n∑
j=k2+1

xj ≥ 0

for some k1, k2 ≥ 4. Note that xi = 0 for i ≥ 5 and
∑k1

i=1 xi+2
∑n
j=k1+1 xj = 2 imply that x1+x2+x3+x4 =

2. Besides, xi = 0 for i ≥ 5 and −x1−x2 +
∑k2

i=3 xi+2
∑n
j=k2+1 xj = 0 imply that −x1−x2 +x3 +x4 = 0.

Then we get that x3 + x4 = 1 by adding the two equations. Since x3 + x4 = 1 and xi = 0 for i ≥ 5 imply∑n
i=3 xi = 1, it follows that at most n− 2 linearly independent inequalities are active at both u and w in

this case.

Therefore we may assume that no star inequality is active at both u and w. The only remaining
candidates are at most n− 3 inequalities among 0 ≤ x ≤ 1 and the square inequality, so we have at most
n− 2 linearly independent inequalities active at both. Therefore, u and w are not adjacent in the skeleton
of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])). 3

Claim 5. If the distance between v1 and v2 in Gn is 3, then u and w are not adjacent in the skeleton
graph of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Proof of Claim. Without loss of generality, we may assume that v2 = e1 + e2 + e3. Each square contains
either v1 or v2 but not both. Suppose that a square inequality is active at both u and w. Without loss
of generality, assume that the square is (0, e1, e2, e1 + e2). Since u and w cannot be adjacent to v1(= 0),
they are adjacent to either e1, e2, or e1 + e2. However, this contradicts the assumption that u and w are
disconnected. Hence, no square inequality is active at both u and w.

First, consider the case when a vertex in the cube (0, e1, e2, e3, e1 + e2, e2 + e3, e3 + e1, e1 + e2 + e3) is
not in S̄. Then it can be easily observed that G(NS̄ [v1]∪NS̄ [v2]) contains none of tulip and propeller. By
Lemma 4.19, conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])) is described by edge, star, and square inequalities together
with 0 ≤ x ≤ 1. Consider a star contained in G(NS̄ [v1]∪NS̄ [v2]). If the star is neither NS̄ [v1] nor NS̄ [v2],
then it must be the case that the star is a subset of the cube. If the corresponding star inequality is active
at u, then either u is in the cube or u is a vertex outside of the cube adjacent to the root r of the star.
Note that a vertex in the cube is adjacent to either v1 or v2. This means that u cannot be in the cube, and
u is adjacent to r. If the inequality is also active at w, then w is adjacent to r as well. Hence, we get that
(u, r, w) is a path contained in G(S̄ \ {v1, v2}). Therefore, the star inequality is not active at both u and
w. Thus, only the two star inequalities for NS̄ [v1] and NS̄ [v2] can be active at both u and w. Consider
the star inequality for NS̄ [v1]. If it is active at both u and w, then n − 4 inequalities among 0 ≤ x ≤ 1
are active at both u and w. But then at most n− 2 inequalities are active at both u and w since no edge
and square inequality is active at both u and w. If no star inequality is active at both u and w, then no
inequality other than 0 ≤ x ≤ 1 is active at both in fact. Since at most n−3 inequalities among 0 ≤ x ≤ 1
are active at both u and w by Claim 2, we cannot find n − 1 linearly independent inequalities active at
both in this case, either.

Now consider the case when all the vertices in the cube are in S̄. By Lemma 4.19, the cube inequality
and the two star inequalities that correspond to NS̄ [v1] and NS̄ [v2] together with 0 ≤ x ≤ 1 describe
conv({0, 1}n \ (NS̄ [v1] ∪ NS̄ [v2])). Suppose that the cube inequality is active at both u and w. Then u
and w are adjacent to at least one vertex in the cube in Gn distinct from v1 and v2. That means u and
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w are connected by six vertices (e1, e2, e3, e1 + e2, e2 + e3, e3 + e1) in G(S̄ \ {v1, v2}), contradicting the
assumption that u and w are disconnected. Therefore, the cube inequality is not active at both u and w.
If a star inequality is active at both u and w, then, as in the previous case, at most n− 2 inequalities are
active at both u and w, a contradiction. If no star inequality is active at both u and w, then no inequality
other than 0 ≤ x ≤ 1 is active at both u and w. Therefore, u and w are not adjacent in the skeleton of
conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])), as required. 3

Claim 6. If the distance between v1 and v2 in Gn is at least 4, then u and w are not adjacent in the
skeleton graph of conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])).

Proof of Claim. Notice that NS̄ [v1] and NS̄ [v2] are two separated stars. By Lemma 4.19, we know that
edge and star inequalities together with 0 ≤ x ≤ 1 describe conv({0, 1}n \ (NS̄ [v1] ∪ NS̄ [v2])). Consider
the star inequality corresponding to NS̄ [v1]. If it is active at both u and w, then n− 4 inequalities among
0 ≤ x ≤ 1 are active at both u and w. Since no edge inequality is active at both u and w, we have at most
n− 2 inequalities that are active at both u and w since the only candidates are two star inequalities and
the bounds. This contradicts to observation that there exist n − 1 linearly independent inequalities that
are active both u and w. 3

Claims 3, 4, 5, 6 finish all the cases and show that u and w cannot be adjacent in the skeleton of
conv({0, 1}n \ (NS̄ [v1] ∪NS̄ [v2])). This completes the proof of Theorem 4.21.

It is natural to ask whether this theorem can be extended to vertex cuts of larger sizes. The 3-vertex
cut case is open, but it turns out that Theorem 4.21 cannot be generalized to 4-vertex cutsets as shown
by the following example.

Example ([36]). Consider S̄ = (({0, 1}4×{0})\{e1+e2+e3+e4})∪{e5}. Then x1+x2+x3+x4+3x5 ≥ 4 is
a facet-defining inequality for conv(S). Note that it cuts off all points in S̄. In addition, C̄ := {e1, e2, e3, e4}
is a vertex cut of cardinality four in S̄. Then S̄1 := {0, e5} and S̄2 := {e1 + e2 + e3, e1 + e2 + e4, e1 +
e3 + e4, e2 + e3 + e4, e1 + e2, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e3 + e4} induce two connected components of
G(S̄ \ C̄). However,

conv(S) 6=
2⋂
i=1

conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪NS̄ [e4] ∪ S̄i))

since x1 + x2 + x3 + x4 + 3x5 ≥ 4 is not valid for conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪NS̄ [e4] ∪ S̄i)) for i = 1, 2.

4.4 Graphs of tree width 2

Trees can be generalized using the notion of tree width. A connected graph has tree width one if, and
only if, it is a tree. Next, we focus our attention on the case when G(S̄) has tree width two. Instead of
working directly with the definition of tree width, we will use the following characterization: A graph has
tree width at most two if, and only if, it contains no K4-minor; furthermore a graph with no K4-minor
and at least four vertices always has a vertex cut of size two. The main result of this section is that P has
Chvátal rank at most 4 if G(S̄), where S̄ := {0, 1}n \ P , has tree width 2.

The following considers a special case:
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Lemma 4.22 ([36]). Consider a star N̄ = (x̄, x̄i1 , . . . , x̄it) for some x̄ and t ≥ 3. Take a subset T̄ of
{x̄ijik : 1 ≤ j < k ≤ t} such that x̄ijik , x̄iki` ∈ T̄ implies x̄iji` 6∈ T̄ . Let S̄ be the union of N̄ and T̄ . Then
conv(S) is described by the star inequality for N̄ , edge inequalities for the edges connecting x̄ and pendant
vertices of G(S̄), square inequalities for all squares, propeller inequalities for all propellers and the bounds
0 ≤ x ≤ 1.

Let v ∈ S̄. Let MS̄ [v] denote the set NS̄ [v] ∪ {vij ∈ S̄ : vi, vj ∈ NS̄ [v]}. Then MS̄ [v] contains the
closed neighborhood NS̄ [v] and the vertices in S̄ at distance 2 from v that create a square when added to
NS̄ [v]. If G(MS̄ [v]) is K4-minor-free, MS̄ [v] is of the form N̄ ∪ T̄ in Lemma 4.22. Therefore Lemma 4.22
gives a description of conv({0, 1}n \MS̄ [v]). Let v1, v2 be two vertices in S̄ that are adjacent in Gn. The
following lemma is similar to Lemma 4.19.

Lemma 4.23 ([36]). Let v1, v2 ∈ S̄ be adjacent vertices in Gn. If G(S̄) has tree width 2, then conv({0, 1}n\
(MS̄ [v1] ∪MS̄ [v2])) = conv({0, 1}n \MS̄ [v1]) ∩ conv({0, 1}n \MS̄ [v2]).

The following lemma is similar to Lemma 4.20:

Lemma 4.24 ([36]). Let S ⊆ {0, 1}n and S̄ = {0, 1}n \ S. Let x̄, ȳ ∈ S be 2 points at distance 3 in Gn,
i.e., ȳ = x̄ijk for some i, j, k. Note that (x̄i, x̄ij , x̄j , x̄jk, x̄k, x̄ki) is a cycle of length 6 in Gn. Then x̄ and
ȳ are adjacent in the skeleton of conv(S) if and only if there exist 3 consecutive vertices in the cycle that
are contained in S̄.

We can now prove the last statement of Theorem 1.11.

Theorem 1.11 ([36]). Let P ⊆ [0, 1]n be a rational polytope contained in the unit cube.
Let S̄ := {0, 1}n \ P . Then the following statement holds:

(4) If G(S̄) has tree-width 2, then the Chvátal rank of P is at most 4.

Proof. Let S := {0, 1}n∩P . By Remark 1.12, it suffices to prove that the Chvátal rank of QS is at most 4.
We argue by induction on |S̄|. If |S̄| = 1, then the Chvátal rank of QS is 1. Assume that the Chvátal rank
of QS is at most 4 if |S̄| = t for some t ≥ 1. Consider the case when |S̄| = t + 1. We may assume that
G(S̄) is a connected graph.

Claim 1. G(S̄) contains neither tulip nor cube.

Proof of Claim. Note that a tulip has three squares (x̄, x̄i1 , x̄i2 , x̄i1i2), (x̄, x̄i2 , x̄i3 , x̄i2i3), and (x̄, x̄i3 , x̄i1 , x̄i3i1)
which are incident to a vertex x̄. Hence, a tulip contains a K4-minor. Likewise, a cube also contains a
K4-minor. Thus, G(S̄) contains no tulip and cube, as required. 3

If there is no propeller in G(S̄), then the Chvátal rank of QS is at most 3 by Theorem 4.16. Thus,
we may assume that G(S̄) contains a propeller. Let v1 and v2 denote the two vertices in the axis of the
propeller. The propeller contains at least three squares. Let (p, q, v1, v2) and (r, s, v1, v2) be two distinct
squares contained in the propeller.
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Claim 2. {p, q} is disconnected from {r, s} in G(S̄ \ {v1, v2}), and {v1, v2} is a vertex cut of G(S̄).

Proof of Claim. If there is a path connecting a vertex in {p, q} and a vertex in {r, s} in G(S̄ \ {v1, v2}),
then those two squares and the path create a K4-minor contained in G(S̄), a contradiction. Hence, p, q
are disconnected from r, s in G(S̄ \ {v1, v2}), implying in turn that {v1, v2} is a vertex cut of G(S̄). 3

Let S̄1, . . . , S̄k be the connected components of G(S̄ \ {v1, v2}). We have shown that k ≥ 2 by Claim 2.
By Theorem 4.21, we get that

conv(S) =

k⋂
i=1

conv
(
{0, 1}n \

(
S̄i ∪NS̄ [v1] ∪NS̄ [v2]

))
.

If |S̄i∪NS̄ [v1]∪NS̄ [v2]| < |S̄| for every i, then the assertion follows directly from the induction hypothesis.
Thus, we may assume that there exists j such that S̄j ∪NS̄ [v1]∪NS̄ [v2] = S̄. In this case, it can be readily
checked that S̄i ⊂ NS̄ [v1] ∪NS̄ [v2] for each i 6= j. Without loss of generality, we may assume that S̄1 and
S̄2 denote two connected components that contain {p, q} and {r, s}, respectively.

Claim 3. One of S̄1 \ {p, q} and S̄2 \ {r, s} is empty.

Proof of Claim. Suppose for contradiction that there exist u,w such that u ∈ S̄1\{p, q} and w ∈ S̄2\{r, s}.
Then we can find u0 ∈ S̄1 \ {p, q} and w0 ∈ S̄2 \ {r, s} such that u0 is adjacent to one of p and q
and w0 is adjacent to one of r and s. Notice that u0, w0 6∈ NS̄ [v1] ∪ NS̄ [v2], implying in turn that
u0 6∈ S̄2∪NS̄ [v1]∪NS̄ [v2] and that w0 6∈ S̄1∪NS̄ [v1]∪NS̄ [v2]. Then we obtain |S̄1∪NS̄ [v1]∪NS̄ [v2]| < |S̄|
and |S̄2 ∪NS̄ [v1] ∪NS̄ [v2]| < |S̄|, a contradiction to the assumption. 3

Therefore, we may assume that S̄1 \ {p, q} is empty. In other words, S̄1 = {p, q}, so the other vertices of
G(S̄ \ {v1, v2}) are disconnected from p and q. Besides, p is adjacent to only v1 and q, and q is adjacent
to only v2 and p in G(S̄).

Let w ∈ S̄ \ (MS̄ [v1] ∪MS̄ [v2]). Then w is not adjacent to p and q in Gn. We will show that w is
adjacent to none of p and q in the skeleton graph of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})).

Claim 4. conv ({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})) is described by edge, star, square, propeller inequali-
ties and the bounds 0 ≤ x ≤ 1.

Proof of Claim. Notice that MS̄ [v1]∪MS̄ [v2]\{p, q} can be written as (MS̄ [v1]\{p, q})∪ (MS̄ [v2]\{p, q}).
We know that {p, q} is contained both MS̄ [v1] and MS̄ [v2]. Since p and q are not adjacent to any vertices
of S̄ \ {v1, v2} other than themselves, we have MS̄ [v`] \ {p, q} = MS̄\{p,q}[v`] for ` = 1, 2. By Lemma 4.23,
we get that

conv({0, 1}n \ (MS̄\{p,q}[v1] ∪MS̄\{p,q}[v2])) = conv({0, 1}n \MS̄\{p,q}[v1]) ∩ conv({0, 1}n \MS̄\{p,q}[v2]).

Therefore,

conv({0, 1}n\(MS̄ [v1]∪MS̄ [v2]\{p, q})) = conv({0, 1}n\(MS̄ [v1]\{p, q}))∩conv({0, 1}n\(MS̄ [v2]\{p, q})).

By Lemma 4.22, this implies that the polytope conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})) is completely
described by edge, star, square, propeller inequalities and the bounds 0 ≤ x ≤ 1. 3
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Claim 5. If w is not adjacent to a vertex in MS̄ [v1] ∪MS̄ [v2] \ {p, q}, then w is not adjacent to any of p
and q in the skeleton graph of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})).

Proof of Claim. As w and p are not adjacent in Gn, the distance between them in Gn is at least 2. If
w is not adjacent to any vertex in MS̄ [v1] ∪ MS̄ [v2] \ {p, q}, then inequalities other than 0 ≤ x ≤ 1
cannot be active at w. That means there exist at most n − 2 linearly independent inequalities active at
both w and p, so w and p are disconnected in the skeleton of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})).
Likewise, w is also separated from q in the skeleton. Thus, we may assume that w is adjacent to a vertex
of MS̄ [v1] ∪MS̄ [v2] \ {p, q}. 3

By Claim 5, we may assume that w is adjacent to a vertex in MS̄ [v1]\{p, q}. We may further assume that
v1 = 0, v2 = e1, p = e2, and q = e1 + e2. By the above assumption, w is adjacent to a vertex of either
NS̄ [v1] \ {v1} or MS̄ [v1] \NS̄ [v1].

Claim 6. If w is adjacent to a vertex in NS̄ [v1] \ {v1}, then w is not adjacent to any of p and q in the
skeleton graph of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})).

Proof of Claim. w can be written as ei+ej for some i, j. If both ei and ej are in S̄, then ei+ej is contained
in MS̄ [v1]. Thus, we may assume that ei ∈ S̄ and ej 6∈ S̄. Since w is not adjacent to v2 and p, we get that
i, j > 2. Consider the cube (p, p2, pi, pj , p2i, pij , pj2, p2ij). We know that pi = e2 +ei, pj = e2 +ej , p2j = ej

are not in S̄. That is because pi and pj are both adjacent to p and p2j = ej 6∈ S̄ by the assumption. Then
those are not in MS̄ [v1]∪MS̄ [v2] \ {p, q}, because MS̄ [v1]∪MS̄ [v2] \ {p, q} ⊆ S̄. By Lemma 4.24, p and w
are not adjacent in the skeleton.

It remains to show that q and w are not adjacent in the skeleton of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \
{p, q})). Note that any vertex of NS̄ [v2] \ {v2, q} is either 0 or e1 + e` for some ` > 2, indicating that
w = ei + ej is not adjacent to any vertex in NS̄ [v2] in Gn. If w is adjacent to a vertex in MS̄ [v2] \NS̄ [v2],
then the possible candidates are ei and e1 + ei + ej since ej 6∈ S̄. We know that ei + ej is adjacent to ei.
If e1 + ei + ej ∈MS̄ [v2], then both e1 + ei and e1 + ej are in NS̄ [v2]. Then three squares (0, e1, ei, e1 + ei),
(e1, e1 + ei, e1 + ej , e1 + ei + ej), and (ei, e1 + ei, ei + ej , e1 + ei + ej) are contained in G(S̄) in this case.
However, these three squares form a K4-minor, so e1 + ei + ej 6∈ MS̄ [v2]. Therefore, ei is the only vertex
of MS̄ [v1] ∪MS̄ [v2] \ {p, q} adjacent to w in Gn.

The square inequalities for squares that have 0ei as an edge are active at w, and the propeller inequality
for the propeller that has 0ei as its axis is active at w. We know that pi = e2 +ei is not in S̄, so the square
(0, e2, ei, e2 + ei) of Gn is not contained in the propeller. Then q(= e1 + e2) is adjacent to at most one
square of the propeller, which is possibly (0, e1, ei, e1 + ei). This means that at most one square inequality
is active at both q and w, and the propeller inequality is not active at both. Since the distance in Gn
between q and w is 4, at most n−3 linearly independent inequalities are active at both q and w. Therefore
q and w are not adjacent in the skeleton, as required. 3

By Claim 6, we may assume that w is not adjacent to NS̄ [v1]\{v1} and that w is adjacent to MS̄ [v1]\NS̄ [v1].

Claim 7. w is not adjacent to any of p and q in the skeleton graph of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \
{p, q})).

Proof of Claim. As w is adjacent to MS̄ [v1]\NS̄ [v1], w can be written as ei+ ej + ek for some i, j, k where
ei + ej ∈ MS̄ [v1] \NS̄ [v1]. Then we know that both ei and ej are in S̄. If i or j is 1, then w is adjacent
to a vertex in NS̄ [v2] \ {v2}. This reduces to the previous case. Thus, we may assume that i, j > 1. If i
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or j is 2, then p is adjacent to ei + ej ∈ S̄. This is impossible. Therefore, i and j are greater than 2. If
k = 1, then w is e1 + ei + ej . Since 0, e1, ei, ej , ei + ej , e1 + ei + ej are all in S̄, both e1 + ei and e1 + ej

are not in S̄. Otherwise, G(S̄) contains a K4-minor. Therefore w(= e1 + ei + ej) is adjacent to nothing
but ei + ej among the vertices of MS̄ [v1]∪MS̄ [v2] \ {p, q}. Then only the square inequality for the square
(0, ei, ej , ei + ej) is active at w. Note that the distance in Gn between p and w is 4 and the distance in
Gn between q and w is 3. Then there exist at most n− 2 linearly independent inequalities active at both
w and each of p and q. Hence, neither p nor q is adjacent to w on the skeleton if k = 1. If k = 2, then
w = e2 + ei + ej . Since p(= e2) is not adjacent to any vertex other than 0 and e1 + e2, both pi(= e2 + ei)
and pj(= e2 + ej) are not in MS̄ [v1] ∪MS̄ [v2] \ {p, q}. As the case when k = 1, q and w are not adjacent
in the skeleton of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})). Besides, p and w are not adjacent in the
skeleton by Lemma 4.20. Thus, we may assume that k > 2. If ei + ek ∈ MS̄ [v1] \ {p, q}, then we know
that ek also belongs to S̄ by the definition of MS̄ [v1]. In this case, (0, ei, ej , ei + ej), (0, ei, ek, ei + ek), and
(ei, ei + ej , ei + ek, ei + ej + ek) create a K4-minor in G(S̄). Hence, we get that both ei + ek and ej + ek

do not belong to S̄. In fact, ei + ej is the only vertex in MS̄ [v1] ∪MS̄ [v2] \ {p, q} which is adjacent to w
in this case. Then only the square inequality for the square (0, ei, ej , ei + ej) is active at w. Similarly, w
is adjacent to neither p nor q in the skeleton in this case. 3

To summarize, we have just shown that there is no edge connecting a vertex in {p, q} and a vertex in
S̄ \ (MS̄ [v1] ∪MS̄ [v2]) in the skeleton of conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2] \ {p, q})). Then by Theorem 4.3,
we get that

conv(S) = conv({0, 1}n \ (MS̄ [v1] ∪MS̄ [v2])) ∩ conv({0, 1}n \ (S̄ \ {p, q})).

Since G(S̄ \ {p, q}) is a subgraph of G(S̄), it also has tree width 2. Besides, |S̄ \ {p, q}| < |S̄|. Hence,
the Chvátal rank of Q{0,1}n\(S̄\{p,q}) is at most 4 by induction. By Lemma 4.23, we also know that the
Chvátal rank of Q{0,1}n\(MS̄ [v1]∪MS̄ [v2]) is at most 4, implying in turn that the Chvátal rank of QS is also
at most 4, as required.

4.5 Proof of Theorem 1.14

Theorem 1.14 ([36]). Let P ⊆ [0, 1]n be a rational polytope, and let S := P ∩ {0, 1}n.
If the Chvátal rank of QS is at most k, then one can optimize a linear function over S in
O(nk) time.

Proof. The optimization problem is of the form min{cx : x ∈ S} where c ∈ Rn. By complementing

variables, we may assume c ≥ 0. By hypothesis, conv(S) = Q
(k)
S for some constant k. We claim that an

optimal solution can be found among the 0,1 vectors with at most k + 1 nonzero components. This will
prove the theorem since there are only polynomially many such vectors. Indeed, if an optimal solution x̄
has more than k + 1 nonzero components, any 0,1 vector z̄ with supp(z̄) ⊂ supp(x̄) and |supp(z̄)| = k + 1

satisfies cz̄ ≤ cx̄. Because conv(S) = Q
(k)
S , Lemma 4.1 implies that the face of Hn of dimension k + 1
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that contains 0 and z̄ contains a feasible point ȳ ∈ S. Since cȳ ≤ cz̄ ≤ cx̄, the solution ȳ is an optimal
solution.

For example, if G(S̄) contains no 4-cycle, then the Chvátal rank of QS is at most 3 by Theorem 1.11, and
therefore, Theorem 1.14 implies that optimizing a linear function over S can be done in O(n3) time.
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Chapter 5

Generalized Chvátal closure

Let S ⊆ Zn, and let
P = {x ∈ Rn : Ax ≤ b} (5.1)

be a rational polyhedron where A ∈ Zm×n and b ∈ Zm. We denote by PI = P ∩ Zn the integer hull of P .
Let ΠP be defined as the set of all vectors that define valid inequalities for P with integral left-hand-side
coefficients:

ΠP = {(α, β) ∈ Zn × R : ∃λ ∈ Rm+ s.t. α = λA, β ≥ λb}. (5.2)

and denote by Π∗P the subset of ΠP that consists of the vectors defining supporting valid inequalities:

Π∗P = {(α, β) ∈ ΠP : β = max{αx : x ∈ P}}. (5.3)

Given α ∈ Zn and β ∈ R, recall that bβcS,α is defined as follows:

bβcS,α =

{
max {αz : z ∈ S, αz ≤ β} if {z ∈ S : αz ≤ β} 6= ∅
−∞ otherwise

Given an inequality αx ≤ β with α ∈ Zn and β ∈ R valid for P , we call αx ≤ bβcS,α the S-Chvátal-Gomory
inequality for P obtained from αx ≤ β. Recall that the S-Chvátal closure of P , denoted PS , is defined as
the following:

PS :=
⋂

(α,β)∈ΠP

{x ∈ Rn : αx ≤ bβcS,α} =
⋂

(α,β)∈Π∗P

{x ∈ Rn : αx ≤ bβcS,α} . (5.4)

Hereinafter, we refer to a Chvátal-Gomory inequality (resp. cut) as a CG inequality (resp. cut) and refer
to a S-Chvátal-Gomory inequality (resp. cut) as an S-CG inequality (resp. cut).

In this chapter, we study the following question:

Question. Let S = R∩Zn for some rational polyhedron R, and let P ⊆ conv(S) be a rational polyhedron.
Is the S-Chvátal closure of P a rational polyhedron?
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In § 5.1, we prove some basic tools that are useful throughout this chapter and prove Proposition 1.17.
In § 5.2, we study the question for the case when S is finite. In § 5.3, we consider the case when S = T×Zn2

for some finite T ⊆ Zn1 . In § 5.4, we study the case when

S =
{(
z1, z2`, z2u, z3

)
∈ Zn1 × Zn2` × Zn2u × Zn3 : z1 ∈ T, z2` ≥ `2, z2u ≤ u2

}
where T ∈ Rn1 is finite, `2 ∈ R2`, u2 ∈ R2u. We prove Theorem 1.16 in § 5.5. This chapter is based
on [53].

5.1 Preliminaries

In this section, we prove some basic properties of the S-CG inequalities and the S-Chvátal clousre of a
polyhedron.

Remark 5.1 (Pokutta [103]). Let S ⊆ Zn, and let P ⊆ Rn be a rational polyhedron. Then the following
statements hold:

(1) PI ⊆ PS ⊆ P ,

(2) if S ⊆ S′ for some S′ ⊆ Zn, then PS ⊆ PS′ ,

(3) if Q is a rational polyhedron such that P ⊆ Q, then PS ⊆ QS.

For Γ ⊆ ΠP , we define PS,Γ as follows:

PS,Γ :=
⋂

(α,β)∈Γ

{x ∈ P : αx ≤ bβcS,α} .

Clearly, PS = PS,ΠP
. We remark the following:

Remark 5.2 ([53]). Let S ⊆ Zn, and let P ⊆ Rn be a rational polyhedron. Then the following statements
hold:

(1) if Γ ⊆ ΠP , then PS ⊆ PS,Γ,

(2) if Γ ⊆ ΠP and Γ =
⋃k
i=1 Γi, then PS,Γ =

⋂k
i=1 PS,Γi

.

In particular, to prove that PS,Γ is a rational polyhedron where Γ =
⋃k
i=1 Γi, it suffices by Remark 5.2 to

show that PS,Γi
is a rational polyhedron for i ∈ [k]. Remark 5.2 will be useful in § 5.3 and § 5.4.

Examples

We next present two simple examples to highlight the difference between regular CG cuts and S-CG cuts.
The first example below highlights the strength of S-CG cuts.
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Example 1 ([53]). Consider a rational polyhedron P ⊆ R2 such that the inequality 3x+5y ≥ 3.4 is valid.
Clearly, the associated CG cut 3x + 5y ≥ 4 is valid for P ∩ Zn. Notice that the CG cut is tight at point
(3,−1). Now, consider S =

{
x ∈ Z2 : 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3

}
, and note that (3,−1) 6∈ S. In fact, the

S-CG cut 3x + 5y ≥ 5 obtained from 3x + 5y ≥ 3.4 is valid for P ∩ S. The S-CG cut is tight at point
(0, 1) ∈ S. See Figure 5.1 for an illustration.

Figure 5.1: Illustration of an S-CG inequality

The next example highlights the fact that the S-Chvátal closure of a polyhedron can have facets that
are not necessarily defined by S-CG cuts. In the following example, a sequence of S-CG cuts converge to
an inequality that is not an S-CG cut itself.

Proposition 1.17 ([53]). Let S = {0, 1}4. There exists a polytope P ⊆ [0, 1]4 whose
S-Chvátal closure has a facet that cannot be induced by an S-CG inequality.

Proof. Let S = {0, 1}4, and let P be the convex hull of the following six points in [0, 1]4:

P = conv {(1/2, 0, 0, 0) , (1, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 1)} .

Observe that 2x1 + x2 + x3 + x4 ≥ 1 is a valid inequality for P and is tight at the vertex (1/2, 0, 0, 0).
As the point (0, 1, 0, 0) ∈ S satisfies 2x1 + x2 + x3 + x4 = 1, one cannot obtain 2x1 + x2 + x3 + x4 ≥ 2
as an S-CG cut. However, we claim that 2x1 + x2 + x3 + x4 ≥ 2 is valid for the S-Chvátal closure of P .
Note that for any δ > 0, the inequality 2x1 + (1− δ)x2 + (1− δ)x3 + (1− δ)x4 ≥ 1 is valid for P as it is
satisfied by all its vertices. Moreover, any point x∗ ∈ S that satisfies this inequality either has x∗1 = 1 or
x∗2 + x∗3 + x∗4 ≥ 2. Therefore, the smallest value of 2x1 + (1− δ)x2 + (1− δ)x3 + (1− δ)x4 at such points
in S is exactly 2− 2δ. Therefore,

2x1 + (1− δ)x2 + (1− δ)x3 + (1− δ)x4 ≥ 2− 2δ
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is an S-CG cut. Taking the limit of this inequality as δ → 0, we can infer that 2x1 + x2 + x3 + x4 ≥ 2 is
valid for PS . As this inequality is facet-defining for PI , it is also facet-defining for PS ⊇ PI .

We next illustrate this fact in Figure 5.2, where S ⊆ Z2 is the set of black points, and P ⊆ R2 is the
blue triangle. Observe that the closure has a facet that is not defined by an S-CG cut. The supporting
hyperplane for P (which is parallel to this inequality – depicted with a thick line) also touches a point
in S.

Figure 5.2: Some facets are not defined by S-CG inequalities

The polar lemma

We next show an important property of closures of polyhedra with respect to an infinite family of valid
inequalities. The following lemma will be useful:

Lemma 5.3 (Polar lemma; see [56]). Let P ⊆ Rn and H ⊆ Rn+1 be rational polyhedra. Assume that
H ∩ Zn+1 is nonempty and is contained in the recession cone of H, denoted rec(H). Then⋂

(α,β)∈H∩Zn+1

{x ∈ P : αx ≤ β} =
⋂

(α,β)∈rec(H)

{x ∈ P : αx ≤ β} . (5.5)

Moreover, both sets are rational polyhedra.

Proof. By Meyer’s Theorem [100], as H ∩ Zn+1 is nonempty, conv(H ∩ Zn+1) is a rational polyhedron
and has the same recession cone as H, namely rec(H). Let P1 denote the set on the left-hand-side of
equation (5.5), and let P2 denote the right-hand-side set. As H ∩ Zn+1 ⊆ rec(H), P2 is a subset of P1.
We will show, by contradiction, that for any (α, β) ∈ rec(H), αx ≤ β is valid for P1, thereby proving that
P1 ⊆ P2. Assume this is false. Then there exist (α, β) ∈ rec(H) and x̄ ∈ P1 such that αx̄ > β. Consider
an arbitrary (α0, β0) ∈ H ∩ Zn+1; then α0x̄ ≤ β0 as x̄ ∈ P1. Therefore, we can choose a positive µ such
that µ(αx̄− β) > β0 − α0x̄. So, we have

(α0 + µα)x̄ > β0 + µβ. (5.6)
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On the other hand, since (α0, β0) ∈ H∩Zn+1 ⊆ conv(H∩Zn+1) and (α, β) ∈ rec(H) = rec(conv(H∩Zn+1)),
it follows that (α0, β0)+µ(α, β) ∈ conv(H ∩Zn+1). Every vector of H ∩Zn+1 defines a valid inequality for
P1, and – by convexity – so does every vector of conv(H∩Zn+1), implying in turn that (α0+µα)x̄ ≤ β0+µβ,
a contradiction to (5.6). Therefore, P1 = P2.

To complete the proof, we show that P2 is a rational polyhedron. As H is a rational polyhedron,
rec(H) is a rational polyhedral cone, and therefore, there exist (α1, β1), . . . , (αr, βr) ∈ rec(H)∩Qn+1 such
that any (α, β) ∈ rec(H) can be written as a conic combination of these vectors. Therefore, P2 is equal to
{x ∈ P : αix ≤ βi, i = 1, . . . , r}, so P2 is a rational polyhedron, as required.

By Lemma 5.3, it suffices to argue the existence of a rational polyhedron H ⊆ Rn+1 such that one can
obtain the S-Chvátal closure of a rational polyhedron P ⊆ Rn after applying αx ≤ β for (α, β) ∈ H∩Zn+1.

5.2 S-Chvátal closure for finite number of integer points

Recall that Theorem 1.15 by Dunkel and Schulz [56] states that the S-Chvátal closure of a rational polytope
contained in the unit hypercube is polyhedral for S = {0, 1}n. We extend this result to the case when S
is any arbitrary finite subset of Zn.

Theorem 5.4 ([53]). Let S be a finite subset of Zn, and let P ⊆ Rn be a rational polyhedron. Then the
S-Chvátal closure PS is a rational polyhedron.

Proof. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron, where A ∈ Zm×n and b ∈ Zm. Without
loss of generality, we may assume that PS 6= ∅ and that PS is properly contained in P . Recall that PS
is described by the S-CG cuts obtained from vectors in Π∗P (5.4). Take an (α, β) ∈ Π∗P . The S-CG
cut αx ≤ bβcS,α derived from αx ≤ β partitions S into the following two sets:

L = {z ∈ S : αz ≤ bβcS,α} and G = {z ∈ S : αz > β}.

Moreover, as S is finite, there is a finite number of such partitions. Therefore,

PS =
⋂

(L,G)∈Π(S)

P(L,G)

where Π(S) is the family of all possible partitions of S and P(L,G) is the set obtained after applying all
S-CG cuts that partition S into L and G. It is possible that, for some partition (L,G), there might not
be any valid inequalities that partition S into L and G. In such a case, we let P(L,G) = P .

Claim. Let (L,G) be a partition of S. Then P(L,G) = {x ∈ P : αx ≤ γ, ∀(α, γ) ∈ H(L,G)}, where

H(L,G) =

(α, γ) ∈ Zn+1 : ∃(β, λ) ∈ R× Rm+ s.t.

(α, β) = (λA, λb),
αz ≤ γ, ∀z ∈ L
αz ≥ β + 1

∆ , ∀z ∈ G
γ ≤ β


and ∆ is the product of all distinct sub-determinants of A.
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Proof of Claim. Take an (α, β) ∈ Π∗P such that αz ≤ bβcS,α for all z ∈ L and αz > β for all z ∈ G.
We will argue that (α, bβcS,α) is contained in the set H(L,G). As (α, β) ∈ Π∗P , we have α ∈ Zn and
β = max{αx : x ∈ P}. Then there is an λ ∈ Rm+ such that (α, β) = (λA, λb). If G is empty, then
(α, bβcS,α) ∈ H(L,G). Alternatively, if G 6= ∅, then as β = max{αx : x ∈ P} where α is integral, β has

to be an integral multiple of 1
∆ . This implies that for any integral point z, if β < αz then β ≤ αz − 1

∆ .
Hence, for all z ∈ G, we have β ≤ αz − 1

∆ , and therefore, α, β, bβcS,α, λ satisfy the constraints describing
H(L,G). Consequently, (α, bβcS,α) ∈ H(L,G), as desired.

In fact, for any (α, γ) ∈ H(L,G), it can be proved that αx ≤ γ is a valid S-CG cut. That is because
α, β, γ, λ for some β, λ satisfy the constraints describing H(L,G), so it follows that αx ≤ β is valid for P ,
and as there is no point z ∈ S such that β ≥ αz > γ, αx ≤ γ is a valid S-CG cut. This implies that
P(L,G) = {x ∈ P : αx ≤ γ, ∀(α, γ) ∈ H(L,G)}, as required. 3

The recession cone of the linear programming relaxation of H(L,G) is

C(L,G) =

(α, γ) ∈ Rn+1 : ∃(β, λ) ∈ R× Rm+ s.t.

(α, β) = (λA, λb),
αz ≤ γ, ∀z ∈ L
αz ≥ β, ∀z ∈ G
γ ≤ β

 ,

and as 1
∆ ≥ 0, we have H(L,G) ⊆ C(L,G). Then Lemma 5.3 implies that {x ∈ P : αx ≤ γ, ∀(α, γ) ∈

H(L,G)} = {x ∈ P : αx ≤ γ, ∀(α, γ) ∈ C(L,G)} and that P(L,G) is a rational polyhedron. Recall that PS
is the intersection of P(L,G) for all partitions (L,G) of S such that H(L,G) 6= ∅. Since the number of such
partitions (L,G) of S is finite, PS is a rational polyhedron.

As a direct corollary of Theorem 5.4, we obtain the following:

Corollary 5.5 ([53]). Let S = [`, u] ∩ Zn for some `, u ∈ Zn such that ` ≤ u, and let P ⊆ [`, u] be a
rational polyhedron. Then, PS is a rational polyhedron.

Notice that the set C(L,G) in the proof of Theorem 5.4 might strictly contain the set H(L,G). Therefore,
for some α, β, γ, λ that satisfy the constraints describing C(L,G), we might have a point z ∈ G that satisfies
αz = β. In this case, bβcS,α = β > γ and therefore the inequality αx ≤ γ cannot be obtained as an
S-CG cut from αx ≤ β. In the example in the proof of Proposition 1.17, the limiting inequality that is
facet-defining for the S-Chvátal closure but is not an S-CG cut precisely falls into this category.

5.3 Integer points in a cylinder

In § 5.2, we showed that PS is a rational polyhedron if S is a finite subset of Zn and P is a rational
polyhedron. In this section, we consider the case where

S = T × Zl for some finite T ⊆ Zn, (5.7)

P = {(x, y) ∈ Rn × Rl : Ax+ Cy ≤ b}, (5.8)
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and the matrices A,C, b have integral entries and m rows and n, l, 1 columns, respectively. For this case
we will prove that PS is a rational polyhedron.

As before, let ΠP be the set of all vectors that define (supporting) valid inequalities for P with integral
left-hand-side coefficients:

ΠP = {(α, γ, β) ∈ Zn × Zl × R : ∃λ ∈ Rm+ s.t. (α, γ, β) = (λA, λC, λb),

β = max{αx+ γy : (x, y) ∈ P}}. (5.9)

Clearly, ΠP can be partitioned into the sets Π0 and ΠP \Π0 where

Π0 = {(α, γ, β) ∈ ΠP : γ = 0}. (5.10)

In (5.10), 0 is the vector of all zeros of appropriate dimension. By Remark 5.2, PS = PS,Π0
∩ PS,ΠP \Π0

.
To prove that PS is a rational polyhedron, we will first argue that PS,Π0

is a rational polyhedron. This
result follows from the lemma below, which will also be used in § 5.4.

Lemma 5.6 (Projection lemma [53]). Let T, S and P be defined as

S = T × Zl for some T ⊆ Zn and P = {(x, y) ∈ Rn × Rl : Ax+ Cy ≤ b},

and the matrices A,C, b have integral components and m rows and n, l, 1 columns, respectively. Let Γ ⊆ Π0,
and let Ω = {(α, β) ∈ Rn × R : (α,0, β) ∈ Γ}. If Q = projx(P ), then,

PS,Γ = P ∩
(
QT,Ω × Rl

)
.

Proof. We first argue that QT,Ω = projx(PS,Γ). For any (α, β) ∈ Ω (i.e., (α,0, β) ∈ Γ), we have

bβcT,α = max{αx : x ∈ T, αx ≤ β} = max{αx : (x, y) ∈ S, αx ≤ β} = bβcS,(α,0).

Let (x, y) ∈ PS,Γ. Then for any (α, β) ∈ Ω, we have αx ≤ bβcS,(α,0) and thus αx ≤ bβcT,α, implying

in turn that x ∈ QT,Ω. Conversely, let x ∈ QT,Ω. As x ∈ Q, there exists y ∈ Rl such that (x, y) ∈ P .
Then for any (α,0, β) ∈ Γ, we have αx ≤ bβcT,α and thus αx ≤ bβcS,(α,0), which in turn implies that
(x, y) ∈ PS,Γ. Therefore, QT,Ω = projx(PS,Γ), and it follows that

PS,Γ ⊆ P ∩ (QT,Ω × Rl).

Suppose for a contradiction that PS,Γ 6= P ∩ (QT,Ω × Rl). Then there exists a point (x̄, ȳ) ∈ P such
that x̄ ∈ QT,Ω and (x̄, ȳ) 6∈ PS,Γ. Since (x̄, ȳ) ∈ P \ PS,Γ, there must exist some (α,0, β) ∈ Γ such that
αx̄ > bβcS,(α,0) and therefore αx̄ > bβcT,α, a contradiction as x̄ ∈ QT,Ω. Therefore, PS,Γ = P∩(QT,Ω×Rl),
as required.

Notice that T ⊆ Zn in the statement in Lemma 5.6 does not need to be finite.

Lemma 5.7 ([53]). Let S and P be defined as in (5.7)–(5.8), and let Π0 be defined as in (5.10). Then
PS,Π0

is a rational polyhedron.
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Proof. Let Ω = {(α, β) ∈ Rn × R : (α,0, β) ∈ Π0}, and let Q = projx(P ). Then it follows that Ω = ΠQ,
and therefore, QT,Ω = QT . So, Theorem 5.4 implies that QT,Ω is a rational polyhedron. Moreover, by
Lemma 5.6, PS,Π0

= P ∩
(
QT,Ω × Rl

)
, implying in turn that PS,Π0

is a rational polyhedron.

The Chvátal closure of P is described by λAx + λCy ≤ bλbc for λ ∈ Rm+ such that (λA, λC) ∈ Zn
and 0 ≤ λ ≤ 1 [108]. So, a CG cut for a polyhedron is dominated by CG cuts obtained via bounded
multipliers. For convention, we assume that an inequality dominates, or is dominated by, itself. The next
result for S-CG cuts is analogous to this result. We define the following constant U that depends on P
and T as follows:

U = max
{
1>|b−Ax| : x ∈ T

}
. (5.11)

where |b− Ax| denotes the vector whose entries are the absolute values of the entries of b− Ax. Given a
vector γ, let g.c.d.(γ) denote the greatest common divisor of the entries of γ.

Lemma 5.8 ([53]). Let S, T , P and ΠP be defined as in (5.7)–(5.9). Then for any (α, γ, β) ∈ ΠP , there
exists (α′, γ′, β′) ∈ ΠP that satisfies the following:

(1) the S-CG cut derived from (α′, γ′, β′) dominates the S-CG cut derived from (α, γ, β),

(2) either γ′ = 0 or, letting g′ = g.c.d.(γ′), there exists µ ∈ Rm with 0 ≤ µ < g′1 such that (a)
(α′, γ′, β′) = (µA, µC, µb) and (b) |β′ − α′x| ≤ g′U for all x ∈ T .

Proof. Let (α, γ, β) ∈ ΠP . By the definition of ΠP , we have (α, γ, β) = (λA, λC, λb) for some λ ∈ Rm+ , and
α, γ are integral vectors. If γ = 0, then the S-CG cut derived from (α, γ, β) = (α,0, β) dominates itself.
Thus we assume that γ 6= 0. Let g denote g.c.d.(γ). If λi < g for i = 1, . . . ,m, then (α′, β′, γ′) = (α, β, γ)
is the desired vector as |β−αx| ≤ g1>|b−Ax|, and therefore, we may assume that this is not the case. Let
δ, µ ∈ Rm be defined by δi = gbλi/gc and µ = λ−δ. Clearly, δi ≥ 0 and 0 ≤ µi < g for each i ∈ {1, . . . ,m}
(here µi ≡ λi (mod g)). Let (α′, γ′, β′) = µ(A,C, b). Then α′x+ γ′y ≤ β′ is also a valid inequality.

Claim. bβ′cS,(α′,γ′) + δb ≤ bβcS,(α,γ).

Proof of Claim. Let u = (α, γ) and v = (α′, γ′). Suppose for a contradiction that bβ′cS,v + δb > bβcS,u.
Then

bβcS,u < δb+ bβ′cS,v = β − (β′ − bβ′cS,v) ≤ β. (5.12)

As bβ′cS,v is finite, there exists (x̄, ȳ) ∈ S such that α′x̄+ γ′ȳ = bβ′cS,v, implying in turn that

δb+ bβ′cS,v = δb+ (α− δA)x̄+ (γ − δC)ȳ.

Substituting this expression in (5.12) and rearranging terms, we get

bβcS,u − αx̄ < δb− δAx̄+ (γ − δC)ȳ ≤ β − αx̄. (5.13)

As all components of the vectors δ and γ are multiples of g, and A,C, b, x̄, ȳ are all integral, the expression

1

g
(δb− δAx̄+ (γ − δC)ȳ) (5.14)
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is an integer. Since 1
gγ is an integral vector with g.c.d.

(
1
gγ
)

= 1, there exists ŷ ∈ Zl such that 1
gγŷ is

equal to the integer in (5.14), or equivalently

γŷ = δb− δAx̄+ (γ − δC)ȳ.

Substituting the right-hand-side of the above equation by γŷ in (5.13), we obtain

bβcS,u − αx̄ < γŷ ≤ β − αx̄

which implies that
bβcS,u < αx̄+ γŷ ≤ β.

As (x̄, ŷ) ∈ S, we get a contradiction. Therefore, it follows that bβ′cS,v + δb ≤ bβcS,u, as required. 3

Adding δ(Ax+ Cy) ≤ δb to α′x+ γ′y ≤ bβ′cS,(α′,γ′), we obtain αx+ γy ≤ bβ′cS,(α′,γ′) + δb, implying
in turn that αx + γy ≤ bβcS,(α,γ) is dominated by the inequality α′x + γ′y ≤ bβ′cS,(α′,γ′). If γ′ = 0, the
proof is complete. If γ′ 6= 0, then we note that all components of γ′ are multiples of g as γ′ = γ − δ and
all components of γ and δ are multiples of g. Therefore, g.c.d.(γ′) = g′ = kg for some positive integer k
and as 0 ≤ µi < g, we have 0 ≤ µi < g′, for all i = 1, . . . ,m and (a) holds. To see that (b) also holds, note
that β′−α′x = µb−µAx = µ(b−Ax) for all x ∈ T . As A and b are fixed, and T is a finite set of integers,
and 0 ≤ µ < g′1, the result follows with U defined in (5.11).

Using Lemma 5.8, we can prove the following theorem:

Theorem 5.9 ([53]). Let S = T × Zl for some finite T ⊆ Zn, and let P ⊆ Rn+l be a rational polyhedron.
Then PS is a rational polyhedron.

Proof. If PS = ∅, then PS is trivially polyhedral. Thus, we may assume that PS 6= ∅ and that P∩conv(S) 6=
∅. Let P,ΠP and Π0 be defined as in (5.7)–(5.10). Remark 5.2 implies that PS = PS,Π0

∩ PS,ΠP \Π0
, and

Lemma 5.7 implies that PS,Π0
is a rational polyhedron.

Let Θ = Zl ∩ {δC : 0 ≤ δ ≤ 1}, and let T = {x1, . . . , x|T |} and I = {1, . . . , |T |}. Let U be defined as
in (5.11). Given µ ∈ Θ and ` ∈ [−U,U ]|T |, we define H(µ,`) as follows:

H(µ,`) :=


(α, γ, δ)
∈ Zn+l+1 : ∃

 β ∈ R
λ ∈ Rm+
g ∈ Z

 s.t.

(α, γ, β) = (λA, λC, λb),

αxi + g(`i + 1)− 1
∆ ≥ β, ∀i ∈ I,

αxi + g`i ≤ δ, ∀i ∈ I,
λ ≤ g1,
δ ≤ β,
γ = gµ,
g ≥ 1


Claim 1. Let (α, γ, β) ∈ Π∗P \Π0. Then (α, γ, bβcS,(α,γ)) ∈ H(µ,`) for some µ ∈ Θ and ` ∈ [−U,U ]|T |.

Proof of Claim. Take a vector (α, γ, β) ∈ Π∗P \ Π0 whose corresponding S-CG cut αx + γy ≤ bβcS,(α,γ)

is dominated by no other S-CG cut. Then γ 6= 0 and β = max{αx + γy : (x, y) ∈ P}. Moreover,
by Lemma 5.8, we may assume that g.c.d.(γ) = g for some g ∈ Z, and (α, γ, β) = λ(A,C, b) for some
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λ such that 0 ≤ λ < g1. As γ/g = (λ/g)C is an integral vector and 0 ≤ λ/g < 1, we see that
γ/g ∈ Θ = Zl ∩ {δC : 0 ≤ δ ≤ 1}. Therefore, γ = gµ for some µ ∈ Θ.

By our choice of U in (5.11), for each i ∈ I, there exists an integer `i ∈ [−U,U ] such that

g`i ≤ β − αxi < g(`i + 1). (5.15)

As β = max{αx+γy : (x, y) ∈ P} is finite, the maximum is achieved at a point in a minimal face of P . We
may assume that this point is rational with all denominators of its components equal to a subdeterminant
of (A,C). Therefore, β is an integer multiple of 1

∆ for some ∆ > 0 that only depends on the data in
(A,C). Hence, β ≤ αxi + g(`i + 1) − 1

∆ for all i ∈ I. Let ` denote the vector whose entries are `i, i ∈ I.
As the components of µ = 1

gγ are relatively prime, we can find a vector yi ∈ Zl such that µyi = `i for

all i ∈ I. So, γyi = g`i, and it follows from (5.15) that αxi + γyi ≤ β. Since (xi, yi) ∈ S, we have that
αxi + g`i ≤ bβcS,(α,γ). Therefore, (α, γ, bβcS,(α,γ)) ∈ H(µ,`), as required. 3

Claim 2. Let µ ∈ Θ and ` ∈ [−U,U ]|T |. Then αx+ γy ≤ δ for every (α, γ, δ) ∈ H(µ,`) is valid for PS.

Proof of Claim. As (α, γ, δ) ∈ H(µ,`), there exists some β ≥ δ such that the inequality αx + γy ≤ β is
valid for P . Moreover, δ ≥ max{αxi + g`i : i ∈ I}. Suppose for a contradiction that max{αxi + g`i : i ∈
I} < bβcS,(α,γ). Then αxi + g`i < bβcS,(α,γ) for all i ∈ I. As δ is finite, so is bβcS,(α,γ), and therefore

bβcS,(α,γ) = αxk + γy∗ for some k ∈ I and y∗ ∈ Zl. This implies that

αxk + g`k < bβcS,(α,γ) = αxk + γy∗ ≤ β < αxk + g(`k + 1).

Subtracting αxk throughout, we obtain

g`k < γy∗ < g(`k + 1),

a contradiction as γ = gµ and γy∗ is a multiple of g. Hence, it follows that max{αxi + g`i : i ∈ I} ≥
bβcS,(α,γ), implying in turn that δ ≥ bβcS,(α,γ) and that αx+ γy ≤ δ is valid for PS , as required. 3

If H(µ,`) is not empty, then the convex hull of H(µ,`) is contained in its recession cone. For such µ ∈ Θ

and ` ∈ [−U,U ]|T |, let P(µ,`) := {(x, y) ∈ P : αx + γy ≤ δ, ∀(α, γ, δ) ∈ H(µ,`)}. Then, by Lemma 5.3,
P(µ,`) is a rational polyhedron. By Claims 1 and 2, after letting P(µ,`) := P when H(µ,`) = ∅, we have that

PS = PS,Π0
∩

⋂
(µ∈Θ,`∈[−U,U ]|T |)

P(µ,`),

implying in turn that PS is a rational polyhedron.

As a directly corollary of Theorem 5.9, we obtain the following result:

Corollary 5.10 ([53]). Let T = {x ∈ Rn : u ≤ x ≤ v} for some u ≤ v ∈ Zn, and let S = (T ∩ Zn)× Zl.
Let P ⊆ Rn+l be a rational polyhedron. Then PS is a rational polyhedron.
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5.4 Integer points with bounds on components

In this section, we consider the set

SG =
{

(z1, z2l, z2u, z3) ∈ Zn1 × Zn2l × Zn2u × Zn3 : z1 ∈ TG, z2l ≥ `2, z2u ≤ u2
}

(5.16)

where TG ⊆ Zn1 is finite, `2 ∈ Zn2l , u2 ∈ Zn2u . We will show that the SG-Chvátal closure of a rational
polyhedron is again a rational polyhedron. To simplify the proof, we start with showing that if the result
holds for the SC-Chvátal closure of a rational polyhedron, where n2 = n2l + n2u,

SC = TC × Zn2
+ × Zn3 , (5.17)

and TC ⊆ Zn1
+ is finite, then it also holds for the SG-Chvátal closure. Throughout, we use N1 to denote

{1, . . . , n1}, and similarly, we use N2 and N3 to denote {1, . . . , n2} and {1, . . . , n3}.

Remember that a unimodular transformation is a mapping τ : Rn → Rn which maps x ∈ Rn to
Ux+ v ∈ Rn for some unimodular matrix U ∈ Rn×n and some integral vector v ∈ Zn. Also note that the
inverse mapping τ−1 is a unimodular transformation and that τ−1(x) = U−1x− U−1v.

Lemma 5.11 (Unimodular mapping lemma [53]). Let S ⊆ Zn and P ⊆ Rn be a rational polyhedron
contained in conv(S). Let τ be a unimodular transformation that maps x ∈ Rn to Ux + v for some
unimodular matrix U ∈ Rn×n and v ∈ Zn. Then τ(P ) ⊆ conv(τ(S)), and for any Π ⊆ ΠP ,

τ(PS,Π) = τ(P )τ(S),τ(Π)

where τ(Π) := {(πU−1, π0 + πU−1v) : (π, π0) ∈ Π} ⊆ Πτ(P ). Moreover, τ(PS) = τ(P )τ(S).

Proof. It is clear that τ(conv(S)) = conv(τ(S)). As τ is a linear transformation and P ⊆ conv(S),
it follows that τ(P ) ⊆ conv(τ(S)). For any (π, π0) ∈ Zn × R, we have τ ({x ∈ Rn : πx ≤ π0}) ={
y ∈ Rn : πτ−1(y) ≤ π0

}
, which implies that πx ≤ π0 is valid for P if and only if πU−1y ≤ π0 + πU−1v

is valid for τ(P ). Moreover,

τ ({x ∈ Rn : bπ0cS,π < πx ≤ π0}) =
{
y ∈ Rn : bπ0cS,π + πU−1v < πU−1y ≤ π0 + πU−1v

}
.

This implies that bπ0 + πU−1vcτ(S),πU−1 = bπ0cS,π + πU−1v. As a result,

τ ({x ∈ Rn : πx ≤ bπ0cS,π}) =
{
y ∈ Rn : πU−1y ≤ bπ0 + πU−1vcτ(S),πU−1

}
.

Therefore, we get τ(PS,Π) = τ(P )τ(S),τ(Π). In particular, when Π = ΠP , we have τ(PS) = τ(P )τ(S).

Using Lemma 5.11, we next show that we can simply work with SC of the form (5.17) instead of SG.

Lemma 5.12 ([53]). If the SC-Chvátal closure of a rational polyhedron is always a rational polyhedron
for every SC of the form (5.17), then so is the SG-Chvátal closure of a rational polyhedron for every SG
of the form (5.16).

Proof. As TG is finite, TG ⊆
[
`1, u1

]
for some `1, u1 ∈ Zn1 . Let τ : Rn → Rn be the unimodular
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transformation defined as follows:

τ(x) = τ
(
(x1, x2, x3, x4)

)
:=
(
x1 − `1, x2 − `2, −x3 + u3, x4

)
for x = (x1, x2, x3, x4) ∈ Rn1 × Rn2l × Rn2u × Rn3 . Then τ(SG) = TC × Zn2

+ × Zn3 where TC :={
z − `1 : z ∈ TG

}
and n2 = n2l + n2u. Notice that TC is contained in [0, u] where u := u1 − `1 ≥ 0.

By Lemma 5.11, for any rational polyhedron P , we have τ(PSG
) = τ(P )SC

. Therefore, PSG
is a rational

polyhedron if and only if τ(P )SC
is a rational polyhedron.

By Lemma 5.12, we may simply work with SC of the form (5.17), i.e. SC = TC × Zn2
+ × Zn3 for some

finite TC ⊆ Zn1
+ .

Lemma 5.13 ([53]). Let SC = TC × Zn2
+ × Zn3 for some finite TC ⊆ Zn1

+ , and let P ⊆ conv(SC) be a
rational polyhedron. Then

PSC
= PS0

∩ PSC ,Π
+
P
∩ PSC ,Π

−
P

where S0 := TC × Zn2 × Zn3 , and

Π+
P :=

{
(π, π0) ∈ ΠP : π = (π1, π2,0), π2 ≥ 0

}
,

Π−P :=
{

(π, π0) ∈ ΠP : π = (π1, π2,0), π2 ≤ 0
}
.

Proof. Notice that S0 is obtained from SC after relaxing the nonnegativity restriction on the second part
of variables and that SC ⊆ S0, so PSC

⊆ PS0 by Remark 5.1. To prove the claim, we will argue that if
πx ≤ bπ0cSC ,π, the S-CG cut derived from (π, π0) ∈ ΠP , is violated by a point in PS0

, then it must be the
case that (π, π0) ∈ Π+

P ∪Π−P .

Let (π, π0) ∈ ΠP where π = (π1, π2, π3) ∈ Zn1 ×Zn2 ×Zn3 . If bπ0cSC ,π = bπ0cS0,π, then the associated
SC-CG cut πx ≤ bπ0cSC ,π is the same as the associated S0-CG cut, implying that any SC-CG cut that
is violated by a point PS0

must have bπ0cSC ,π < bπ0cS0,π. This means that while S0 contains a point
z = (z1, z2, z3) such that πz = bπ0cS0,π, there is no such point in SC .

Suppose for a contradiction that π3 6= 0. Then π3
j 6= 0 for some j ∈ N3. Let r = (r1, r2, r3) ∈

Zn1 × Zn2 × Zn3 where

r1 = 0, r2 =
∣∣π3
j

∣∣ ∑
i∈N2

ei2, r3 = −
∣∣π3
j

∣∣
π3
j

(∑
i∈N2

π2
i

)
ej3,

and ei2 denotes the ith unit vector in Rn2 and ej3 denotes the jth unit vector in Rn3 . As r2 > 0, there
exists a sufficiently large integer N such that π2z2 +Nr2 ≥ 0, and therefore, z +Nr ∈ SC . Moreover, it
can be readily checked that πr = 0 and that π(z +Nr) = πz, implying in turn that bπ0cSC ,π = bπ0cS0,π,
a contradiction to our assumption that bπ0cSC ,π < bπ0cS0,π. Therefore, it follows that π3 = 0.

Next we argue that either π2 ≥ 0 or π2 ≤ 0 must hold. Suppose for a contradiction that there are
distinct i, j ∈ N2 such that π2

i > 0 and π2
j < 0. Let J+ = {i ∈ N2 : π2

i ≥ 0} and J− := {j ∈ N2 : π2
j < 0}.
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As before, we construct a vector r = (r1, r2, r3) ∈ Zn1 × Zn2 × Zn3 where

r1 = 0, r2 =

(∑
i∈J+

π2
i

) ∑
j∈J−

ej2 +

− ∑
j∈J−

π2
j

 ∑
i∈J+

ei2, r3 = 0.

As r2 > 0, there exists an integer N such that π2z2 + Nr2 ≥ 0 and therefore z + Nr ∈ SC . Moreover,
note that πr = 0, and therefore, π(z+Nr) = πz, which implies that bπ0cSC ,π = bπ0cS0,π, a contradiction.
Therefore, it follows that π2 ≥ 0 or π2 ≤ 0 holds, as desired.

By Lemma 5.13, to show that PSC
is a rational polyhedron, it is sufficient to show that both PSC ,Π

+
P

and PSC ,Π
−
P

are rational polyhedra. Next, we partition Π+
P and Π−P according to the sign pattern of the

components of π1. For J ⊆ N1, we let

ΠJ+
P =

{
(π, π0) ∈ Π+

P : π1
j ≥ 0 ∀j ∈ J, π1

j ≤ 0 ∀j ∈ N1 \ J
}
,

ΠJ−
P =

{
(π, π0) ∈ Π−P : π1

j ≤ 0 ∀j ∈ J, π1
j ≥ 0 ∀j ∈ N1 \ J

}
.

Then it follows from Lemma 5.13 that

PSC
= PS0 ∩

(
∩J⊆N1 PSC ,Π

J+
P

)
∩
(
∩J⊆N1 PSC ,Π

J−
P

)
. (5.18)

Hence, we need to prove that PSC ,Π
J+
P

and PSC ,Π
J−
P

are rational polyhedra for all J ⊆ N1. The following

lemma will be useful:

Lemma 5.14 ([53]). Let SC = TC × Zn2
+ × Zn3 for some finite TC ⊆ Zn1

+ , and let P ⊆ conv(SC) be a
rational polyhedron. Then PSC

is a rational polyhedron, provided that Q
L,Π

N1+

Q
and Q

L,Π
N1−
Q

are rational

polyhedra for every L = T ′×Zn2
+ ×Zn3 where T ′ ⊆ Zn1

+ is finite and every rational polyhedron Q ⊆ conv(L).

Proof. Let J ⊆ N1, and let u ∈ Zn1
+ be such that TC ⊆ [0, u]. Consider the unimodular transformation

τ : Rn → Rn that maps x ∈ Rn to y = τ(x) ∈ Rn where

yi :=

{
−xi + ui, if i ∈ N1 \ J
xi, otherwise.

Let Q := τ(P ) and L := τ(SC). Then L = T ′ × Zn2
+ × Zn3 for some T ′ ⊆ [0, u] ∩ Zn1 . It follows from

Lemma 5.11 that Q ⊆ conv(L). Moreover, Lemma 5.11 implies that PSC ,Π
J+
P

= τ−1(Q
L,Π

N1+

Q
) and that

PSC ,Π
J−
P

= τ−1(Q
L,Π

N1−
Q

) where

ΠN1+
Q =

{
(π, π0) ∈ ΠQ : π = (π1, π2,0) ≥ 0

}
, (5.19)

ΠN1−
Q =

{
(π, π0) ∈ ΠQ : π = (π1, π2,0) ≤ 0

}
. (5.20)

Hence, if Q
L,Π

N1+

Q
and Q

L,Π
N1−
Q

are rational polyhedra for every rational polyhedron Q ⊆ Rn and L =

T ′ × Zn2
+ × Zn3 for T ′ ⊆ Zn1

+ finite, then PSC ,Π
J+
P

and PSC ,Π
J−
P

are rational polyhedra for all J ⊆ N1. So,

by (5.18), PSC
is a rational polyhedron.
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Finally, we observe that one only needs to study the following narrow case to prove the main result:

Proposition 5.15 ([53]). Let SC = TC × Zn2
+ × Zn3 for some finite TC ⊆ Zn1

+ , and let P ⊆ conv(SC) be
a rational polyhedron. Then PSC

is a rational polyhedron, provided that WS,ΠU
W

and WS,ΠD
W

, where

ΠU
W :=

{
(π, π0) ∈ ΠW : π = (π1, π2) ≥ 0

}
,

ΠD
W :=

{
(π, π0) ∈ ΠW : π = (π1, π2) ≤ 0

}
,

are rational polyhedra for every S = T ×Zn2
+ , T ⊆ Zn1

+ finite, and every rational polyhedron W ⊆ conv(S).

Proof. Let L = T × Zn2
+ × Zn3 where T ⊆ Zn1

+ is finite, and let Q ⊆ conv(L) be a rational polyhedron.

Let ΠN1+
Q and ΠN1−

Q be defined as in (5.19)–(5.20). By Lemma 5.6, Q
L,Π

N1+

Q
and Q

L,Π
N1−
Q

are rational

polyhedra, provided that WS,ΠU
W

and WS,ΠD
W

are rational polyhedra where W = projRn1×Rn2 (Q) and

S = projRn1×Rn2 (L) = T × Zn2
+ . So, it follows from Lemma 5.14 that PS is a rational polyhedron.

5.4.1 Covering polyhedra

In this section, we consider covering polyhedra of the form

P ↑ =
{
x ∈ Rn : Ax ≥ b

}
, (5.21)

where A ∈ Zm×n+ and b ∈ Zm+ . In this section, we will prove that if P ↑ ⊆ conv(S) where

S = T × Zn2
+ , T ⊆ Zn1

+ finite, n = n1 + n2,

then P ↑S is a rational polyhedron. Notice that every valid inequality for P ↑ is of the form

αx ≥ β, α ≥ 0, β ≥ 0.

Given (α, β) ∈ Zn × R such that αx ≥ β is valid for P ↑, the S-CG cut obtained from αx ≥ β has the
following form:

αx ≥ dβeS,α
where

dβeS,α := −b−βcS,−α =

{
min {αz : z ∈ S, αz ≥ β} if {z ∈ S : αz ≥ β} 6= ∅
+∞ otherwise

We assume for convention that {x ∈ Rn : αx ≥ +∞} = ∅. Hereinafter, we use notations N = {1, . . . , n1 +
n2}, I1 = {1, . . . , n1} and I2 = {n1 + 1, . . . , n1 + n2} for convenience.

We define the support of a vector v ∈ Rn to be the set S ⊆ {1, . . . , n} such that vi 6= 0 if and only if
i ∈ S, and we denote this by support(v). For any set I ⊆ {1, . . . , n}, we let support(v, I) = support(v)∩ I
and we refer to this set as the support of v on I. Let (α, β) ∈ Rn × R. For j ∈ support(α), the intercept
of the hyperplane {x ∈ Rn : αx = β} on the nonnegative axis {x ∈ Rn+ : xi = 0 for all i 6= j} equals
β/αj (and for convenience is referred to simply as an “intercept”). In the next result, we show that if
all nondominated S-CG cuts for P ↑ have bounded intercepts (in the components corresponding to the
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support of the cut on I2), then P ↑S is a rational polyhedron. The following lemma will be useful in proving

that P ↑S is a rational polyhedron. Notice that, as P ↑ = {x ∈ Rn : −Ax ≤ −b},

ΠP↑ = {(−α,−β) ∈ Zn × R : ∃λ ∈ Rm+ s.t. α = λA, β ≤ λb} (5.22)

and that

Π∗P↑ = {(−α,−β) ∈ ΠP↑ : β = min{αx : x ∈ P ↑}}. (5.23)

Lemma 5.16 ([53]). Let M∗ be a positive integer, and let

Π = {(α, β) : (−α,−β) ∈ Π∗P↑ , β/αj ≤M
∗ for all j ∈ support(α, I2)} . (5.24)

Then P ↑S,Π is a rational polyhedron.

Proof. Let S∗ = T × {1, . . . ,M∗}n2 . Then S∗ is a finite subset of S, and by Remark 5.1, P ↑S∗,Π ⊆ P ↑S,Π.
We claim the following:

Claim 1. P ↑S∗,Π = P ↑S,Π.

Proof of Claim. Let (α, β) ∈ Π. Then αx ≥ β is valid for P ↑, α ≥ 0, β ≥ 0, and 0 ≤ β/αj ≤M∗ for every
j ∈ I2 such that αj > 0. It is sufficient to show that dβeS∗,α = dβeS,α. Let z∗ = (z1, z2) ∈ S = T × Zn2

+

be such that
αz∗ = dβeS,α = min{αz : z ∈ S, αz ≥ β} (5.25)

If z∗ ∈ S∗, then αz∗ = dβeS∗,α, so dβeS∗,α = dβeS,α is satisfied. Thus, we may assume that z∗ 6∈ S∗.
Then for some j ∈ [n2], the jth component of z2 is larger than M∗. Let z̄2 be what is obtained from z2 by
reducing the component to M∗. Clearly (z1, z̄2) ∈ S. If αj > 0, then (z1, z̄2) satisfies that α(z1, z̄2) ≥ β
– as αjM

∗ ≥ β – and that α(z1, z̄2) < αz∗, a contradiction to (5.25). This implies that αj = 0, so
αz∗ = α(z1, z̄2). Repeating this argument for each component of z2 larger than M∗, we may assume that

there exists z̄ ∈ S∗ such that αz∗ = αz̄, implying in turn that dβeS∗,α = dβeS,α. Therefore, P ↑S∗,Π = P ↑S,Π,
as required. 3

By Claim 1, it suffices to show that P ↑S∗,Π is a rational polyhedron. The rest of the proof is similar to
that of Theorem 5.4. We write Π = ∪I⊆I2Π(I) where

Π(I) =
{

(α, β) ∈ Π : αj > 0 if and only if j ∈ I
}

and Π(I) = ∪G⊆S∗Π(I,G) where

Π(I,G) =
{

(α, β) ∈ Π(I) : αz ≥ dβeS∗,α if and only if z ∈ G
}
.

Consequently,
P ↑S∗,Π = ∪I⊆I2 ∪G⊆S∗ P

↑
S∗,Π(I,G).
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We will show that P ↑S∗,Π(I,G) is a rational polyhedron for every I ⊆ I2 and G ⊆ S∗. Given I ⊆ I2 and

G ⊆ S∗, let H(I,G) be defined as

H(I,G) =


(α, δ) ∈ Zn+1 : ∃

(
β ∈ R,
λ ∈ Rm+

)
s.t.

α = λA,
β ≤ λb,
αz ≥ δ, ∀z ∈ G
αz ≤ β − 1

∆ , ∀z ∈ S
∗ \G

δ ≥ β
αj ≥ 1, ∀j ∈ I
αj = 0, ∀j ∈ N2 \ I

M∗αj ≥ β, ∀j ∈ I


where ∆ is the product of all distinct nonzero sub-determinants of A.

Claim 2. Let (α, β) ∈ Π(I,G). Then (α, dβeS∗,α) ∈ H(I,G).

Proof of Claim. As (α, β) ∈ Π, it follows from (5.23) and (5.24) that β = min{αx : x ∈ P ↑}. Therefore,
β is an integer multiple of 1/∆. Since αz < β for z ∈ S∗ \ G and αz is an integer, it follows that
αz ≤ β − 1

∆ . It can also be checked that δ = dβeS∗,α together with α, β satisfies the constraints defining
H(I,G). Therefore, (α, dβeS∗,α) ∈ H(I,G), as required. 3

Claim 3. Let (α, δ) ∈ H(I,G). Then αx ≥ δ is valid for P ↑S∗,Π(I,G).

Proof of Claim. There exists β such that α, δ together with β satisfy the constraints in H(I,G). Notice

that αx ≥ β is valid for P ↑ and that β ≤ δ ≤ dβeS∗,α. Therefore, αx ≥ δ is implied by αx ≥ dβeS∗,α, so

αx ≥ δ is valid for P ↑S∗,Π(I,G), as required. 3

By Claims 2 and 3,

P ↑S∗,Π(I,G) =
⋂

(α,δ)∈H(I,G)

{
x ∈ P ↑ : αx ≥ δ

}
,

and by Lemma 5.3,

P ↑S∗,Π(I,G) =
⋂

(α,δ)∈C(I,G)

{
x ∈ P ↑ : αx ≥ δ

}
where C(I,G) denotes the recession cone of the continuous relaxation of H(I,G). Moreover, P ↑S∗,Π(I,G) is a

rational polyhedron.

We will next give a series of results which will show that all nondominated S-CG cuts for P ↑ have
“bounded” intercepts, in the sense that these inequalities belong to Π defined in (5.24). So, in the end,

we will argue that P ↑S = P ↑S,Π.

Let λ ∈ Rm+ . For j ∈ [n], let (λA)j denote the jth component of λA, and consider the hyperplane
{x : λAx = λb}. Notice that if each row ai of A has the same support as λA, then the intercept on the
positive xj axis must lie between mini{bi/aij} and maxi{bi/aij} for any j in support(λA). In other words,
all intercepts are trivially bounded by a function of A and b. Therefore, the difficult case for us is when
not all rows of A have the same support. In that case, aij = 0 for some i, and therefore, maxi{bi/aij} is
unbounded and the intercept on the positive xj axis can be arbitrarily large.
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Definition 5.17 ([53]). Let λ ∈ Rm+ , and let σ : [m] → [m] be a non-increasing order of the components
in λ, i.e. λσ(1) ≥ · · · ≥ λσ(m).

• t(λ,A) is defined as

t(λ,A) = min

{
j ∈ {1, . . . ,m} :

j⋃
i=1

support(aσ(i), I2) = support (λA, I2)

}
. (5.26)

In words, t(λ,A) denotes the smallest index j ∈ {1, . . . ,m} such that the support of
∑j
i=1 λσ(i)aσ(i)

on I2 is the same as the support of λA =
∑,
i=1 λσ(i)aσ(i) on I2.

• The tilting ratio of λ with respect to A, denoted r(λ,A), is defined as λσ(1)/λσ(t(λ,A)).

In particular, λσ(1), . . . , λσ(t(λ,A)) > 0 and r(λ,A) > 0.

We will later show (in Theorem 5.22) that for any λ ∈ Rm+ , if r(λ,A) is bounded above by a constant that
depends only on A and b, then the intercepts of {x : λAx = λb} corresponding to I2 are also bounded
above by a constant that depends only on A and b. We next focus on bounding r(λ,A) for λ ∈ Rm+ defining
a nondominated S-CG cut for P ↑, with the bounding constants (that depend only on A and b, not on the
cut) defined below.

Definition 5.18 ([53]). Let B = max{bi : i ∈ [m]}, C = min{aij : aij 6= 0, i ∈ [m], j ∈ [n]}, and D =∑m
i=1

∑n
j=1 aij .

M1 = 2 (mB + 2D) . (5.27)

Mi =

2mB

i−1∏
j=1

Mj

i−1

M1 for i = 2, . . . ,m− 1. (5.28)

M =

m−1∏
i=1

Mi. (5.29)

It can be readily observed that

Remark 5.19 ([53]). Let M1, . . . ,Mm−1 and M be defined as in Definition 5.18. Then we have M1 ≥ 4
as m,B,D ≥ 1. and B ≥ 1. Also (Mi/M1)1/(i−1) ≥ 4 for all i ≥ 2.

We will show in the the following technical lemma that if λ ∈ Rm+ has tilting ratio r(λ,A) > M , then
there exists a µ ∈ Rm+ that defines an S-CG cut dominating the one defined by λ, but with ‖µ‖1 ≤ ‖λ‖1−1.
We will need the following well-known result of Dirichlet:

Theorem 5.20 (Simultaneous Diophantine Approximation theorem [55]). Let k be a positive
integer. Given any real numbers r1, . . . , rk and 0 < ε < 1, there exist integers p1, . . . , pk and q such that∣∣∣ri − pi

q

∣∣∣ < ε
q for i = 1, . . . , k and 1 ≤ q ≤

(
1
ε

)k
.

We are ready to prove the following technical lemma:
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Lemma 5.21 ([53]). Let λ ∈ Rm+ be such that λb = min
{
λAx : x ∈ P ↑

}
. If r(λ,A) > M , then there exists

µ ∈ Rm+ that satisfies the following:

(1) ‖µ‖1 ≤ ‖λ‖1 − 1,

(2) µb = min
{
µAx : x ∈ P ↑

}
,

(3) µAx ≥ dµbeS,µA dominates λAx ≥ dλbeS,λA.

Proof. After relabeling the rows of Ax ≥ b, we may assume that λ1 ≥ · · · ≥ λm. If t(λ,A) = 1, we have
r(λ,A) = 1 ≤ M , a contradiction to our assumption. So, t(λ,A) ≥ 2. Let t stand for t(λ,A). Let ∆ be
defined as

∆ = min
{

(λA)j : j ∈ support(λA, I2)
}
, (5.30)

and let

k = argmin

{
(λA)j : j ∈ support (λA, I2) \

t−1⋃
i=1

support(ai, I2)

}
. (5.31)

By the definition of t, it follows that support (λA, I2) \
⋃t−1
i=1 support(ai, I2) is not empty, and therefore, k

is a well-defined index. Moreover, by the definition of ∆ in (5.30) and that of k in (5.31),

∆ ≤ (λA)k =

m∑
i=t

λiaik ≤ λt
m∑
i=t

aik ≤ Dλt. (5.32)

Notice that

r(λ,A) =
λ1

λt
=
λ1

λ2
× · · · × λt−1

λt
> M = M1 × · · · ×Mm−1,

so there exists some ` ∈ {1, . . . , t− 1} such that

λ`/λ`+1 > M` and λi/λi+1 ≤Mi for all i = 1, . . . , `− 1. (5.33)

Claim 1. If ` ≥ 2, there exist positive integers p1 ≥ · · · ≥ p` that satisfy the following:∣∣∣∣λiλ` − pi
p`

∣∣∣∣ < ε

p`
, i ∈ [`] and p` ≤

(
1

ε

)`−1

. (5.34)

where ε = (M1/M`)
1/(`−1).

Proof of Claim. We define ε = (M1/M`)
1/(`−1). It follows from the Simultaneous Diophantine Approxi-

mation theorem (with k = `− 1 and ri = λi/λ` for i ∈ [`− 1]) that there exist positive integers p1, . . . , p`
satisfying (5.34). In fact, we may assume that pi ≥ pi+1 ≥ p`, because λi ≥ λi+1 for i = 1, . . . , ` − 1. If
pi < pi+1 for some i ∈ {1, . . . , `− 1}, then increasing pi till it becomes equal to pi+1 can only reduce the
value of |λi/λ` − pi/p`|. 3

By Claim 1, if ` ≥ 2, there exist positive integers p1, . . . , p` that satisfy (5.34). Then we define
µ1, . . . , µm as follows:

µi =

{
λi − pi∆ for i = 1, . . . , `,
λi otherwise

(5.35)
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In fact, even when ` = 1, let µ be defined as in (5.34) with p1 = 1.

Claim 2. µ1, . . . , µ` ≥ µ`+1 > 0, and in particular, µ ∈ Rm+ .

Proof of Claim. Let us consider the ` = 1 case first. Notice that µ1 = λ1 −∆ and µi = λi for i ≥ 2. As
λ1 > M1λ2, it follows that µ1 = λ1−∆ > M1λ2−∆, so by (5.32), µ1 > λ2(M1−D). This in turn implies
that µ1 > λ2 as M1 −D ≥ 1 by Remark 5.19.

Now consider the case ` ≥ 2. Notice that

p` ≤
M`

M1
and λi >

pi
2p`

λ`, i ∈ [`] (5.36)

where the first inequality follows from (5.34) and ε = (M1/M`)
1/(`−1) and the second one follows from the

fact that ε ≤ 1
2 & |λi/λ`− pi/p`| < ε/p` ≤ 1/(2p`) and the fact that pi ≥ p` ≥ 1 for all i ≥ `. We will first

show that µ ∈ Rm+ . Clearly, we have µi ≥ 0 for i ≥ ` + 1, as µi = λi for these values of i. We next show
that µ1, . . . , µ` ≥ µ`+1. Let i ∈ {1, . . . , `}. By definition, we have

λ` > M`λ`+1 ≥M1p`λ`+1 ⇒ λ`/p` > M1λ`+1.

As λi >
pi
2p`
λ`, we can conclude that

λi > piM1λ`+1/2 and µi = λi − pi∆ > pi(
1

2
M1λ`+1 −∆)

But as ∆ ≤ Dλt ≤ Dλ`+1, we can conclude that

µi > pi(
1

2
M1 −D)λ`+1.

Since M1/2−D ≥ 1 by Remark 5.19 and pi ≥ 1, the inequality above implies that µi ≥ λ`+1 = µ`+1 > 0
for all i ≤ `, as required. 3

Using Claim 2, we can prove the following:

Claim 3. ‖µ‖1 ≤ ‖λ‖1 − 1, support(µA, I2) = support(λA, I2), and t(µ,A) = t(λ,A).

Proof of Claim. Since we have p` ≥ 1 and ∆ ≥ 1, it follows that ‖µ‖1 ≤ ‖λ‖1 − 1. We next prove that

support(µA, I2) = support(λA, I2) and t(µ,A) = t(λ,A).

In fact, Claim 2 implies that µi > 0 if and only if λi > 0, for i = 1, . . . ,m. Therefore, support(µA) =
support(λA) and t(µ,A) = t(λ,A), as required. 3

Putting Claims 2 and 3 together, it follows that µ ∈ Rm+ and µ satisfies (1). Furthermore,

Claim 4. µb = min
{
µAx : x ∈ P ↑

}
.

Proof of Claim. We assumed that λb = min
{
λAx : x ∈ P ↑

}
. Recall that P ↑ = {x ∈ Rn : Ax ≥ b}. By the

complementary slackness, λi > 0 if and only if aix
∗ = bi for all x∗ ∈ argmin

{
λAx : x ∈ P ↑

}
. Notice that

for all x ∈ P ↑, µAx ≥ µb. By Claim 2, we know that support(µ) = support(λ), implying in turn that for
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all x∗ ∈ argmin
{
λAx : x ∈ P ↑

}
, µAx∗ =

∑
i∈support(µ) µibi = µb. Therefore, µb = min

{
µAx : x ∈ P ↑

}
,

as required. 3

By Claim 4, µ satisfies (2). To complete the proof, we will show that µAx ≥ dµbeS,µA dominates
λAx ≥ dλbeS,λA. Let Q = {x ∈ Rn+ : µb ≤ µAx ≤ µb + ∆}. We next prove the following claim, which
requires a technical proof:

Claim 5. There is no point x ∈ Q that satisfies

∑̀
i=1

piaix ≥ 1 +
∑̀
i=1

pibi. (5.37)

Proof of Claim. Suppose for a contradiction that there exists x̃ ∈ Q satisfying (5.37). Recall that k ∈
support(λA, I2), so by Claim 3, k ∈ support(µA, I2) and thus (µA)k > 0. Let v = µb

(µA)k
ek. Then

µAv = µb and
∑̀
i=1

piaiv = 0 (5.38)

since k 6∈
⋃t−1
i=1 support(ai, I2) and aie

k = 0 for i ≤ t− 1. Since x̃, v ∈ Q, x̃ satisfies (5.37) and v satisfies
(5.38), we can take a convex combination of these points to get a point x̄ ∈ Q such that

∑̀
i=1

piaix̄ = 1 +
∑̀
i=1

pibi. (5.39)

As x̄ ∈ Q, we have µAx̄ ≤ µb+ ∆, and we can rewrite this inequality as

∑̀
i=1

µi(aix̄− bi) ≤ −
m∑

j=`+1

µj(aj x̄− bj) + ∆. (5.40)

First, as
∣∣∣λi

λ`
− pi

p`

∣∣∣ < ε
p`

by (5.34), we have

λi
λ`
− pi
p`

=
εi
p`

⇒ λi =
λ`
p`

(pi + εi)

where −ε < εi < ε for i = 1, . . . , ` (ε` can be assumed to be zero). Recall that µi = λi − pi∆ for i ≤ `

from (5.35) and that
∑`
i=1 piaix̄ = 1+

∑`
i=1 pibi from (5.39), so we can rewrite the left hand side of (5.40)

as the following:

∑̀
i=1

(λi − pi∆)(aix̄− bi) =
∑̀
i=1

[
λ`
p`

(pi + εi)− pi∆](aix̄− bi) = (
λ`
p`
−∆) +

λ`
p`

∑̀
i=1

εi(aix̄− bi). (5.41)
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Therefore, we obtain the following:

λ`
p`

(
1 +

∑̀
i=1

εi(aix̄− bi)

)
≤ −

m∑
j=`+1

µj(aj x̄− bj) + 2∆

≤
m∑

j=`+1

µjbj + 2∆ ≤ λ`+1(mB + 2D) =
1

2
λ`+1M1 (5.42)

where the first inequality in (5.42) follows from (5.40) and (5.41), the second inequality follows from the
assumption that aj ≥ 0 and x̄ ≥ 0, the third inequality follows from the fact that µi = λi ≤ λ`+1 for
i = `+ 1, . . . ,m by (5.35) and that bj ≤ B by Definition 5.18, and the last equality follows from (5.27).

We will obtain a lower bound on the first term in (5.42). Note that

∑̀
i=1

εi (aix̄− bi) =
∑̀
i=1

εiaix̄−
∑̀
i=1

εibi ≥ −ε
∑̀
i=1

(aix̄+ bi) (5.43)

where the inequality in (5.43) holds because aix̄ ≥ 0, bi ≥ 0, and −ε < εi < ε. So, we need to lower bound∑`
i=1(aix̄+ bi). Notice that

∑`
i=1 bi ≤ mB and that

∑̀
i=1

aix̄ ≤
∑̀
i=1

pi
p`
aix̄ =

1

p`

(
1 +

∑̀
i=1

pibi

)
≤ 1

p`
+B

∑̀
i=1

pi
p`

(5.44)

where the first inequality follows from pi ≥ p` for i ≤ ` by Claim 1 and the second inequality follows from,
again, pi ≥ p` for i ≤ ` and bi ≤ B. Moreover,

∑̀
i=1

pi
p`
≤ 1 +

`−1∑
i=1

(
λi
λ`

+
ε

p`
) = 1 + (`− 1)

ε

p`
+

`−1∑
i=1

λi
λ`
≤ 1 + (`− 1)

ε

p`
+

`−1∑
i=1

`−1∏
j=i

Mj (5.45)

where the first inequality follows from pi
p`
≤ λi

λ`
+ ε

p`
for i ≤ ` − 1 by (5.34) and the second inequality

follows from the fact that λi

λ`
=
∏`−1
j=i

λj

λj+1
and that

λj

λj+1
≤ Mj for j ≤ ` − 1. Putting (5.44), (5.45) and∑`

i=1 bi ≤ mB together, we obtain the following inequality:

∑̀
i=1

(aix̄+ bi) ≤ B

m+
1

Bp`
+ 1 + (`− 1)

ε

p`
+

`−1∑
i=1

`−1∏
j=i

Mj


The term

∑`−1
i=1

∏`−1
j=i Mj can be bounded above by (` − 1)

∏`−1
j=1Mj . Moreover, it is not difficult to see

that

m+
1

Bp`
+ 1 + (`− 1)

ε

p`
≤

`−1∏
j=1

Mj .
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Therefore, ∑̀
i=1

(aix̄+ bi) ≤ Bm
`−1∏
j=1

Mj

It follows from (5.28) and (5.34) that Bm
∏`−1
j=1Mj = 1

2ε , implying in turn that

−ε
∑̀
i=1

(aix̄+ bi) ≥ −
1

2
.

By (5.43), it follows that
∑`
i=1 εi(aix̄ − bi) ≥ −

1
2 . Then the left hand side of (5.42) is lower bounded

by λ`

2p`
, so we obtain λ` < p`λ`+1M1 from (5.42), implying in turn that M` < p`M1 as we assumed that

λ` > M`λ`+1 (5.33). However, this contradicts the first inequality in (5.36). 3

We now claim the following:

Claim 6. µb ≤ dµbeS,µA ≤ µb+ ∆.

Proof of Claim. Let α, β denote µA, µb, respectively. By Claim 4, we have that β = min{αx : x ∈ P ↑}.
As P ↑ ⊆ conv(S), it follows that β ≥ min{αz : z ∈ S}. If β = min{αz : z ∈ S}, then β = dβeS,α. Thus
we may assume that β > min{αz : z ∈ S}, so there exists z ∈ S such that β > αz. Let j ∈ support(α, I2).

Since β−αz
αj

> 0, it follows that z + dβ−αzαj
eej ∈ S. Observe that α

(
z + dβ−αzαj

eej
)

= αz + αjdβ−αzαj
e and

β ≤ αz + αjdβ−αzαj
e ≤ β + αj . Therefore, we get dβeS,π ≤ β + αj for all j ∈ support(α, I2), implying in

turn by (5.30) that dβeS,π ≤ β + ∆, as required. 3

Putting Claims 5 and 6 together, we are ready show the last piece of this lemma:

Claim 7. µAx ≥ dµbeS,µA is implied by λAx ≥ dλbeS,λA and the inequalities in Ax ≥ b.

Proof of Claim. There exists z ∈ S such that µAz = dµbeS,µA. Claim 6 implies that µb ≤ µAz ≤ µb+ ∆.
Then, by Claim 5, it follows that

∑̀
i=1

piaiz < 1 +

l∑
i=1

pibi ⇒
∑̀
i=1

piaiz =
∑̀
i=1

pibi − f

for some integer f ∈
[
0,
∑`
i=1 pibi

]
, as z is integral. Let j = argmin {(λA)j : j ∈ support(λA, I2)}. Then,

by (5.30), (λA)j = ∆. Consider z + fej ∈ S. Observe that

λA
(
z + fej

)
= λAz + f (λA)j =

(
µA+ ∆

∑̀
i=1

piai

)
z + ∆

∑̀
i=1

pi(bi − aiz) = dµbeS,µA + ∆
∑̀
i=1

pibi,

which implies that λA
(
z + fej

)
= dµbeS,µA + ∆

∑`
i=1 pibi. Since dµbeS,µA ≥ µb, we must have

dµbeS,µA + ∆
∑̀
i=1

pibi ≥ µb+ ∆
∑̀
i=1

pibi = λb.
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Then dµbeS,µA + ∆
∑`
i=1 pibi ≥ dλbeS,λA. Hence, the inequality λAx ≥ dλbeS,λA is dominated by µAx ≥

dµbeS,µA, as the former is implied by the latter and a nonnegative combination of the inequalities in
Ax ≥ b, as required. 3

By Claim 7, µ satisfies (3), and this finishes the proof.

Using Lemma 5.21, we can prove the following theorem. Recall that

Π = {(α, β) : (−α,−β) ∈ Π∗P↑ , β/αj ≤M
∗ for all j ∈ support(α, I2)} .

Theorem 5.22 ([53]). P ↑S = P ↑S,Π, and in particular, P ↑S is a rational polyhedron.

Proof. By (5.4), P ↑S = P ↑S,Π∗
P↑

. As Π ⊆ Π∗P↑ , by Remark 5.2, P ↑S,Π∗
P↑
⊆ P ↑S,Π. We will show that αx ≥ β

for every (−α,−β) ∈ Π∗P↑ is valid for P ↑S,Π, thereby proving that P ↑S,Π∗
P↑

= P ↑S,Π. To this end, take a vector

(α, β) such that (−α,−β) ∈ Π∗P↑ . It follows from (5.22) and (5.23) that (α, β) = (λA, λb) for some λ ∈ Rm+
and λb = min

{
λAx : x ∈ P ↑

}
. After relabeling the rows of Ax ≥ b, we may assume that λ1 ≥ · · · ≥ λm.

We will first show that for each j ∈ support(λA, I2),

0 ≤ λb

(λA)j
≤ mB

C
r(λ,A) (5.46)

Let t stand for t(λ,A). As A, b, λ are nonnegative and (λA)j > 0, we have 0 ≤ λb/(λA)j . Furthermore,

λb

(λA)j
=

∑m
i=1 λibi∑m
i=1 λiaij

≤
λ1

∑m
i=1 bi

λt
∑t
i=1 aij

= r(λ,A)

∑m
i=1 bi∑t
i=1 aij

.

As
⋃t
i=1 support (ai, I2) = support (λA, I2), we can infer that 0 6= akj ≥ C for some 1 ≤ k ≤ t. Thus∑t

i=1 aij ≥ C. Besides, each bi ≤ B, and therefore
∑m
i=1 bi ≤ mB. We can conclude that r(λ,A)

∑m
i=1 bi∑t
i=1 aij

≤
mB
C r(λ,A) and (5.46) follows.

Therefore, if r(λ,A) ≤ M , then β/αj = (λb)/(λA)j ≤ M∗ = mBM/C for each j ∈ support(α, I2),

implying in turn that (α, β) ∈ Π and that αx ≥ β is valid for P ↑S,Π. Thus, we may assume that r(λ,A) > M .

Then, by Lemma 5.21, there exists a µ1 ∈ Rm+ such that

• ‖µ1‖1 ≤ ‖λ‖1 − 1,

• µ1b = min
{
µ1Ax : x ∈ P ↑

}
,

• µ1Ax ≥ dµ1beS,µ1A dominates λAx ≥ dλbeS,λA.

We can repeat this argument and construct a sequence of vectors µ1, µ2, . . . such that each vector in the
sequence defines an S-CG cut for P ↑ that dominates the previous ones, and ‖µi‖1 ≤ ‖µi−1‖1−1. Therefore,
after at most ‖λ‖1 iterations, we must obtain a vector µj such that r(µj , A) ≤ M . Then (µjA,µjb) ∈ Π

and µjAx ≥ µjb is valid for P ↑S,Π. As λAx ≥ λb is implied by µjAx ≥ µjb and Ax ≥ b, it follows that

αx ≥ β is valid for P ↑S,Π.
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Therefore, P ↑S = P ↑S,Π. Since P ↑S,Π is a rational polyhedron by Lemma 5.16, it follows that P ↑S is a
rational polyhedron, as required.

5.4.2 Packing polyhedra

In this section, we consider packing polyhedra of the form

P ↓ =
{
x ∈ Rn : Ax ≤ b

}
, (5.47)

where A ∈ Zm×n+ and b ∈ Zm+ . In this section, we will prove that P ↓S is a rational polyhedron where

S = T × Zn2
+ , T ⊆ Zn1

+ finite, n = n1 + n2.

Notice that every valid inequality for P ↓ is of the form

αx ≤ β, α ≥ 0, β ≥ 0.

Hereinafter, we use notations N = {1, . . . , n1 + n2}, I1 = {1, . . . , n1} and I2 = {n1 + 1, . . . , n1 + n2} for

convenience. The following lemma will be useful in proving that P ↓S is a rational polyhedron. Recall that

ΠP↓ = {(α, β) ∈ Zn × R : ∃λ ∈ Rm+ s.t. α = λA, β ≥ λb} (5.48)

and that

Π∗P↓ = {(α, β) ∈ ΠP↓ : β = max{αx : x ∈ P ↓}}. (5.49)

Lemma 5.23 ([53]). Let M∗ be a positive integer, and let

Π = {(α, β) ∈ Π∗P↓ : β/αj ≤M∗ for all j ∈ support(α, I2)} . (5.50)

Then P ↓S,Π is a rational polyhedron.

Proof. The proof is very similar to that of Lemma 5.16. Let S∗ = T × {1, . . . ,M∗}n2 . Then S∗ is a finite

subset of S, and by Remark 5.1, P ↓S∗,Π ⊆ P
↓
S,Π. We claim the following:

Claim 1. P ↓S∗,Π = P ↓S,Π.

Proof of Claim. Let (α, β) ∈ Π. Then αx ≤ β is valid for P ↓, α ≥ 0, β ≥ 0, and 0 ≤ β/αj ≤M∗ for every
j ∈ I2 such that αj > 0. Let z∗ = (z1, z2) ∈ S = T × Zn2

+ be such that

αz∗ = bβcS,α = max{αz : z ∈ S, αz ≤ β} (5.51)

Let j ∈ I2. If αj > 0, then β ≤ M∗αj , implying in turn that z∗j ≤ M∗. If αj = 0, then we may assume
that z∗j = 0. Therefore, we may assume that z∗ ∈ S∗, so it follows that bβcS∗,α = bβcS,α. This implies

that P ↓S∗,Π = P ↓S,Π, as required. 3
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By Claim 1, it suffices to show that P ↓S∗,Π is a rational polyhedron. We write Π = ∪I⊆I2Π(I) where

Π(I) =
{

(α, β) ∈ Π : αj > 0 if and only if j ∈ I
}

and Π(I) = ∪L⊆S∗Π(I, L) where

Π(I, L) =
{

(α, β) ∈ Π(I) : αz ≤ bβcS∗,α if and only if z ∈ L
}
.

Consequently,
P ↓S∗,Π = ∪I⊆I2 ∪L⊆S∗ P

↓
S∗,Π(I,L).

We will show that P ↓S∗,Π(I,L) is a rational polyhedron for every I ⊆ I2 and L ⊆ S∗. Given I ⊆ I2 and

L ⊆ S∗, let H(I,L) be defined as

H(I,L) =


(α, δ) ∈ Zn+1 : ∃

(
β ∈ R,
λ ∈ Rm+

)
s.t.

α = λA,
β ≥ λb,
αz ≤ δ, ∀z ∈ L
αz ≥ β + 1

∆ , ∀z ∈ S
∗ \ L

δ ≤ β
αj ≥ 1, ∀j ∈ I
αj = 0, ∀j ∈ N2 \ I

M∗αj ≥ β, ∀j ∈ I


where ∆ is the product of all distinct nonzero sub-determinants of A.

Claim 2. Let (α, β) ∈ Π(I, L). Then (α, bβcS∗,α) ∈ H(I,L).

Proof of Claim. As (α, β) ∈ Π, it follows from (5.49) and (5.50) that β = min{αx : x ∈ P ↓}. Therefore, β
is an integer multiple of 1/∆. Since αz > β for z ∈ S∗ \L and αz is an integer, it follows that αz ≥ β+ 1

∆ .
It can also be checked that δ = bβcS∗,α with α, β satisfies the constraints defining H(I,L). Therefore,
(α, bβcS∗,α) ∈ H(I,L), as required. 3

Claim 3. Let (α, δ) ∈ H(I,L). Then αx ≤ δ is valid for P ↓S∗,Π(I,L).

Proof of Claim. There exists β such that α, δ together with β satisfy the constraints in H(I,L). Notice

that αx ≤ β is valid for P ↓ and that β ≥ δ ≥ bβcS∗,α. Therefore, αx ≤ δ is implied by αx ≤ bβcS∗,α, so

αx ≤ δ is valid for P ↓S∗,Π(I,L), as required. 3

By Claims 2 & 3 and Lemma 5.3,

P ↓S∗,Π(I,L) =
⋂

(α,δ)∈H(I,L)

{
x ∈ P ↓ : αx ≤ δ

}
=

⋂
(α,δ)∈C(I,L)

{
x ∈ P ↓ : αx ≤ δ

}
where C(I,L) denotes the recession cone of the continuous relaxation of H(I,L). Moreover, by Lemma 5.3,

P ↓S∗,Π(I,L) is a rational polyhedron.
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As Lemma 5.21, we will prove Lemma 5.24. The proof of Lemma 5.24 is basically the same as that of
Lemma 5.21. Given λ ∈ Rm+ , as in Definition 5.17, we can define the tilting ratio of λ with respect to A,
and we denote it by r(λ,A). Let B,C,D, Mi for i ∈ [m− 1], and M be defined as in Definition 5.18.

Lemma 5.24 ([53]). Let λ ∈ Rm+ be such that λb = max
{
λAx : x ∈ P ↓

}
. If r(λ,A) > M , then there

exists µ ∈ Rm+ that satisfies the following:

(1) ‖µ‖1 ≤ ‖λ‖1 − 1,

(2) µb = max
{
µAx : x ∈ P ↓

}
,

(3) µAx ≤ bµbcS,µA dominates λAx ≤ bλbcS,λA.

Proof. After relabeling the rows of Ax ≤ b, we may assume that λ1 ≥ · · · ≥ λm. Let t(λ,A) be defined
as in Definition 5.17. If t(λ,A) = 1, we have r(λ,A) = 1 ≤ M , a contradiction to our assumption. So,
t(λ,A) ≥ 2. Let t stand for t(λ,A). Let ∆ and k be defined as in (5.30) and (5.31). As support (λA, I2) \⋃t−1
i=1 support(ai, I2) is not empty, it follows that k is a well-defined index. Moreover, as r(λ,A) > M1 ×
· · · ×Mm−1, there exists some ` ∈ {1, . . . , t− 1} such that

λ`/λ`+1 > M` and λi/λi+1 ≤Mi for all i = 1, . . . , `− 1. (5.52)

Using the Simultaneous Diophantine Approximation theorem (with k = `−1 and ri = λi/λ` for i ∈ [`−1]),
as Claim 1 in the proof of Lemma 5.21, we can prove the following claim:

Claim 1. If ` ≥ 2, there exist positive integers p1 ≥ · · · ≥ p` that satisfy the following:∣∣∣∣λiλ` − pi
p`

∣∣∣∣ < ε

p`
, i ∈ [`] and p` ≤

(
1

ε

)`−1

. (5.53)

where ε = (M1/M`)
1/(`−1).

By Claim 1, if ` ≥ 2, there exist positive integers p1, . . . , p` that satisfy (5.53). As in the proof of
Lemma 5.21, we define µ1, . . . , µm as follows:

µi =

{
λi − pi∆ for i = 1, . . . , `,
λi otherwise

(5.54)

For the case ` = 1, let µ be defined as in (5.53) with p1 = 1. Notice that

p` ≤
M`

M1
and λi >

pi
2p`

λ`, i ∈ [`]. (5.55)

As Claim 2 in Lemma 5.21, one can prove the following:

Claim 2. µ1, . . . , µ` ≥ µ`+1 > 0, and in particular, µ ∈ Rm+ .

As a consequence of Claim 2, we obtain the following:

Claim 3. ‖µ‖1 ≤ ‖λ‖1 − 1, support(µA, I2) = support(λA, I2), and t(µ,A) = t(λ,A).
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Putting Claims 2 and 3 together, it follows that µ ∈ Rm+ and µ satisfies (1). Furthermore,

Claim 4. µb = max
{
µAx : x ∈ P ↓

}
.

Proof of Claim. We assumed that λb = max
{
λAx : x ∈ P ↓

}
. Let X := argmax

{
λAx : x ∈ P ↓

}
. By the

complementary slackness, λi > 0 if and only if aix
∗ = bi for all x∗ ∈ X. Notice that for all x ∈ P ↓,

µAx ≤ µb. By Claim 2, we know that support(µ) = support(λ), implying in turn that for all x∗ ∈ X,
µAx∗ =

∑
i∈support(µ) µibi = µb. Therefore, µb = max

{
µAx : x ∈ P ↓

}
, as required. 3

To complete the proof, we will show that µAx ≤ bµbcS,µA dominates λAx ≤ bλbcS,λA. Let Q = {x ∈
Rn+ : µb−∆ ≤ µAx ≤ µb}. We next prove the following claim, which needs a technical proof:

Claim 5. There is no point x ∈ Q that satisfies

∑̀
i=1

piaix ≥ 1 +
∑̀
i=1

pibi. (5.56)

Proof of Claim. Suppose for a contradiction that there exists x̃ ∈ Q satisfying (5.56). Recall that k ∈
support(λA, I2), so by Claim 3, k ∈ support(µA, I2) and thus (µA)k > 0. Let v = µb

(µA)k
ek. Then

µAv = µb and
∑̀
i=1

piaiv = 0 (5.57)

since k 6∈
⋃t−1
i=1 support(ai, I2) and aie

k = 0 for i ≤ t− 1. Since x̃, v ∈ Q, x̃ satisfies (5.56) and v satisfies
(5.57), we can take a convex combination of these points to get a point x̄ ∈ Q such that

∑̀
i=1

piaix̄ = 1 +
∑̀
i=1

pibi. (5.58)

Since x̄ ∈ Q, we have µAx ≤ µb, and this inequality can be rewritten as

∑̀
i=1

µi(aix̄− bi) ≤ −
m∑

j=`+1

µj(aj x̄− bj).

Since ∆ > 0, it follows that

∑̀
i=1

µi(aix̄− bi) < −
m∑

j=`+1

µj(aj x̄− bj) + ∆. (5.59)

Note the (5.59) is the same as (5.40). The same argument used for proving Claim 5 in the proof of
Lemma 5.21 can be repeated, and we obtain the desired contradiction. 3

We now claim the following:

Claim 6. µb−∆ ≤ bµbcS,µA ≤ µb.

112



Proof of Claim. Let α, β denote µA, µb, respectively. There exists z ∈ S such that αz = bβcS,α. Let
j ∈ support(α, I2). Note that z + ej ∈ S and that α(z + ej) = αz + αj . As αz = bβcS,α, it follows that
α(z + ej) = bβcS,α + αj > bβcS,α. That means α(z + ej) > β. So, we obtain bβcS,α + αj > β, which
implies that bβcS,α ≥ β − αj for all j ∈ support(α, I2). Thereofre, bβcS,α ≥ β −∆ by (5.30), as required.
3

Putting Claims 5 and 6 together, we can prove our last claim:

Claim 7. µAx ≤ bµbcS,µA is implied by λAx ≤ bλbcS,λA and the inequalities in Ax ≤ b.

Proof of Claim. There exists z ∈ S such that µAz = bµbcS,µA. Claim 6 implies that µb−∆ ≤ µAz ≤ µb.
Then, by Claim 5, it follows that

∑̀
i=1

piaiz < 1 +

l∑
i=1

pibi ⇒
∑̀
i=1

piaiz =
∑̀
i=1

pibi − f

for some integer f ∈
[
0,
∑`
i=1 pibi

]
, as z is integral. Let j = argmin {(λA)j : j ∈ support(λA, I2)}. Then,

by (5.30), (λA)j = ∆. Consider z + fej ∈ S. Observe that

λA
(
z + fej

)
=

(
µA+ ∆

∑̀
i=1

piai

)
z + ∆

∑̀
i=1

pi(bi − aiz) = bµbcS,µA + ∆
∑̀
i=1

pibi,

which implies that λA
(
z + fej

)
= bµbcS,µA + ∆

∑`
i=1 pibi. Since bµbcS,µA ≤ µb, we must have

bµbcS,µA + ∆
∑̀
i=1

pibi ≤ µb+ ∆
∑̀
i=1

pibi = λb.

Then bµbcS,µA + ∆
∑`
i=1 pibi ≤ bλbcS,λA. So, the inequality λAx ≤ bλbcS,λA is dominated by µAx ≤

bµbcS,µA, as the former is implied by the latter and a nonnegative combination of the inequalities in
Ax ≤ b, as required. 3

By Claim 7, µ satisfies (3), and this finishes the proof.

Using Lemma 5.24, we can prove the following theorem. Recall that

Π = {(α, β) ∈ Π∗P↓ : β/αj ≤M∗ for all j ∈ support(α, I2)} .

Theorem 5.25 ([53]). P ↓S = P ↓S,Π, and in particular, P ↓S is a rational polyhedron.

Proof. By Remark 5.4, P ↓S = P ↓S,Π∗
P↓

. As Π ⊆ Π∗P↓ , by Remark 5.2, P ↓S,Π∗
P↓
⊆ P ↓S,Π. We will show that,

for every (α, β) ∈ Π∗P↓ , αx ≤ β is valid for P ↓S,Π, thereby proving that P ↓S,Π∗
P↓

= P ↓S,Π. To this end, take

a vector (α, β) ∈ Π∗P↓ . It follows from (5.48) and (5.49) that (α, β) = (λA, λb) for some λ ∈ Rm+ and
λb = max

{
λAx : x ∈ P ↓

}
. After relabeling the rows of Ax ≥ b, we may assume that λ1 ≥ · · · ≥ λm.
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As in the proof of Lemma 5.22, we can show that, for each j ∈ support(λA, I2),

0 ≤ λb

(λA)j
≤ mB

C
r(λ,A) (5.60)

Therefore, if r(λ,A) ≤ M , then β/αj ≤ M∗ = mBM/C for each j ∈ support(α, I2), implying in turn

that (α, β) ∈ Π and that αx ≤ β is valid for P ↓S,Π. Thus, we may assume that r(λ,A) > M . Then, by

Lemma 5.24, there exists a µ1 ∈ Rm+ such that

• ‖µ1‖1 ≤ ‖λ‖1 − 1,

• µ1b = max
{
µ1Ax : x ∈ P ↓

}
,

• µ1Ax ≤ bµ1bcS,µ1A dominates λAx ≤ bλbcS,λA.

After repeating this argument, we construct a sequence of vectors µ1, µ2, . . . such that each vector in
the sequence defines an S-CG cut for P ↓ that dominates the previous ones, and ‖µi‖1 ≤ ‖µi−1‖1 − 1.
Therefore, after at most ‖λ‖1 iterations, we get a vector µj with r(µj , A) ≤ M . Then (µjA,µjb) ∈ Π

and µjAx ≤ µjb is valid for P ↓S,Π. As λAx ≤ λb is implied by µjAx ≤ µjb and Ax ≤ b, it follows that

αx ≤ β is valid for P ↓S,Π. Consequently, this implies that P ↓S = P ↓S,Π. Since P ↓S,Π is a rational polyhedron

by Lemma 5.23, it follows that P ↓S is a rational polyhedron, as required.

5.5 Proof of Theorem 1.16

Now that we have proved Lemma 5.12, Proposition 5.15, Theorems 5.21 and 5.24, we are ready to prove
the following theorem:

Theorem 5.26 ([53]). Let

SG =
{(
z1, z2`, z2u, z3

)
∈ Zn1 × Zn2` × Zn2u × Zn3 : z1 ∈ TG, z2` ≥ `2, z2u ≤ u2

}
where TG ∈ Rn1 is finite, `2 ∈ R2`, u2 ∈ R2u. Let P ⊆ conv(SG) be a rational polyhedron. Then the
SG-Chvátal closure of P is a rational polyhedron.

Proof. By Lemma 5.12, we may assume that SG = SC where n2 = n2l + n2u,

SC = TC × Zn2
+ × Zn3 ,

and TC ⊆ Zn1
+ is finite. Then, by Proposition 5.15, it is sufficient to show that WS,ΠU

W
and WS,ΠD

W
, where

ΠU
W :=

{
(π, π0) ∈ ΠW : π = (π1, π2) ≥ 0

}
,

ΠD
W :=

{
(π, π0) ∈ ΠW : π = (π1, π2) ≤ 0

}
,

are rational polyhedra for every S = T ×Zn2
+ , T ⊆ Zn1

+ finite, and every rational polyhedron W ⊆ conv(S).
To this end, take a set S = T ×Zn2

+ for some finite T ⊆ Zn1
+ and a rational polyhedron W ⊆ conv(S). Let
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P ↑ and P ↓ be defined as follows:

P ↑ := W + Rn1
+ × Rn2

+ and P ↓ := W − Rn1
+ × Rn2

+ .

Let n = n1 + n2. Since W ⊆ conv(S) and conv(S) ⊆ Rn+, it can be easily proved that

P ↑ = {x ∈ Rn : Ax ≥ b} and P ↓ = {x ∈ Rn : Cx ≤ d}

for some matrices A, b, C, d of appropriate dimension whose entries are nonnegative integers.

Claim 1. P ↑S ∩W = WS,ΠD
W

.

Proof of Claim. We will show that ΠP↑ = ΠD
W . Let (−α,−β) ∈ ΠP↑ . Then αx ≥ β is a valid inequality

for P ↑. So, αx ≥ β is valid for W , and there exists λ ≥ 0 such that α = λA and β ≤ λb. Since the
entries of A are nonnegative, it follows that α ≥ 0, implying in turn that (−α,−β) ∈ ΠD

W . Conversely,
take (−α,−β) ∈ ΠD

W . Then αx ≥ β is valid for W and α ≥ 0, which implies that αx ≥ β is valid for P ↑

and that (−α,−β) ∈ ΠP↑ . Therefore, it follows that

WS,ΠD
W

= {x ∈W : αx ≥ dβeS,α ∀(−α,−β) ∈ ΠP↑} = W ∩ P ↑S ,

as required. 3

Claim 2. P ↓S ∩W = WS,ΠU
W

Proof of Claim. We will show that ΠP↓ = ΠU
W . Let (α, β) ∈ ΠP↓ . Then αx ≤ β is a valid inequality for

P ↓. So, αx ≤ β is valid for W , and there exists λ ≥ 0 such that α = λC and β ≥ λd. Since the entries of C
are nonnegative, it follows that α ≥ 0, implying in turn that (α, β) ∈ ΠU

W . Conversely, take (α, β) ∈ ΠU
W .

Then αx ≤ β is valid for W and α ≥ 0, which implies that αx ≤ β is valid for P ↓ and that (α, β) ∈ ΠP↓ .
Therefore, it follows that

WS,ΠU
W

= {x ∈W : αx ≤ bβcS,α ∀(α, β) ∈ ΠP↓} = W ∩ P ↓S ,

as required. 3

By Theorems 5.22 and 5.25, both P ↑S and P ↓S are rational polyhedra. In turn, by Claims 1 and 2, both
WS,ΠD

W
and WS,ΠU

W
are rational polyhedra. Therefore, by Proposition 5.15, PSC

is a rational polyhedron,
implying in turn that the SG-Chvátal closure of P is a rational polyhedron.

Theorem 1.16 is a direct corollary of Theorem 5.26.

Theorem 1.16 ([53]). Let

S =
{(
z1, z2`, z2u, z3

)
∈ Zn1 × Zn2` × Zn2u × Zn3 : `1 ≤ z1 ≤ u1, z2` ≥ `2, z2u ≤ u2

}
where `1, u1 ∈ Rn1 such that `1 ≤ u1, `2 ∈ R2`, and u2 ∈ R2u. Let P ⊆ conv(S) be a
rational polyhedron. Then the S-Chvátal closure of P is a rational polyhedron.
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5.6 Further notes

We end this chapter with the following conjecture:

Conjecture 5.27. Let S = R ∩ Zn for some rational polyhedron R, and let P ⊆ conv(S) be a rational
polyhedron. Then the S-Chvátal closure of P is a rational polyhedron.
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Chapter 6

Intersecting restrictions in clutters

Take an integer n ≥ 3. Recall that ∆n, the delta of dimension n, is the clutter over ground set [n]
whose members are {1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n} and that ∆n is intersecting. Take an odd integer
n ≥ 5. Recall that an extended odd hole of dimension n is a clutter over ground set [n] whose minimum
cardinality members are {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1} and that the blocker of an extended odd hole
is intersecting. We also saw that Q6 and L7 are intersecting clutters.

In §6.1, we prove Theorem 1.29 providing a characterization of clutters that have an intersecting
restriction. In §6.2, we consider two classes of intersecting clutters, namely, the deltas and the blockers of
extended odd holes, and we prove Theorem 1.31, stating that finding a delta or the blocker of an extended
odd hole minor, or certifying that none exists can be done in polynomial time. This chapter is based on [4].

6.1 Finding an intersecting restriction

In this section, we prove Theorem 1.29. We begin by proving Remark 1.28.

Remark 1.28 ([4]). A clutter C has an intersecting minor if, and only if, C has an
intersecting restriction.

Proof. (⇐): This direction is immediate, as a restriction is a minor. (⇒): Let C \ I/J be an intersecting
minor for some disjoint subsets I, J of the ground set of C. Let JI be the set of elements that appear
in a cover of C \ I of size one. Then C \ I/JI is a restriction. As τ(C \ I/J) ≥ 2, the elements in JI
must have been contracted. So, JI ⊆ J and C \ I/J is a contraction minor of C \ I/JI , implying that
C \ I/JI 6= {}, {∅} and thus τ(C \ I/JI) ≥ 2. Thus, it is sufficient to argue that every two members of
C \ I/JI intersect. Suppose that C \ I/JI has two disjoint members C1, C2. Since C \ I/J 6= {}, none of
C1 − (J \ JI), C2 − (J \ JI) is empty. Moreover, C1 − (J \ JI) and C2 − (J \ JI) are disjoint, implying in
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turn that C \ I/J has two disjoint members, a contradiction. Therefore, ν(C \ I/JI) = 1, and C \ I/JI is
an intersecting restriction in C, as required.

We will need the following tool for recognizing a delta minor:

Theorem 6.1 (Abdi, Cornuéjols, Pashkovich [7]). Let C be a clutter over ground set E. If C has three
members {u, v}, {u,w}, C for some distinct u, v, w ∈ E such that C∩{u, v, w} = {v, w}, then C has a delta
as a minor.

We say that a clutter is strictly intersecting if it is intersecting but no proper restriction is. Notice that
if a clutter has an intersecting restriction, then it has one that is strictly intersecting. Then Remark 1.28
implies that if a clutter contains an intersecting minor, then it has a strictly intersecting restriction.
Moreover, we remark the following:

Remark 6.2 ([4]). Let C be a strictly intersecting clutter over ground set E. Then every intersecting
minor of C is a contraction minor.

Proof. Let C \ I/J be an intersecting minor of C for some disjoint I, J ⊆ E. Suppose for a contradiction
that I is nonempty. Let JI := {e ∈ E − I : {e} is a cover of C \ I}. Then JI ⊆ J , since C \ I/J has no
cover of size one. This implies that C \ I/JI is a proper intersecting restriction in C, contradicting the
assumption that C is strictly intersecting. Therefore, I = ∅, as required.

The following proposition is the key to proving Theorem 1.29:

Proposition 6.3 ([4]). A strictly intersecting clutter has three members whose union is the ground set.

Proof. Let C be a strictly intersecting clutter over ground set E.

Claim 1. If C has a delta as a minor, then C has three members whose union is E.

Proof of Claim. Suppose that C \ I/J = ∆n for some n ≥ 3 and some disjoint I, J ⊆ E. Since ∆n

is intersecting, it follows from Remark 6.2 that I = ∅ and thus ∆3 is a contraction minor of C. So,
C has three members C1, C2, C3 such that {1, 2} ⊆ C1 ⊆ {1, 2} ∪ J , {1, 3} ⊆ C2 ⊆ {1, 3} ∪ J , and
{2, 3, . . . , n} ⊆ C3 ⊆ {2, 3, . . . , n} ∪ J . Suppose for a contradiction that C1 ∪ C2 ∪ C3 6= E. Then there
exists e ∈ E − (E1 ∪ E2 ∪ E3). Consider C′ := C \ {e}/ (J − {e}). Notice that {1, 2}, {1, 3}, {2, 3, . . . , n}
are still members of C′, implying in turn that C′ is intersecting. Since C′ is not a contradiction minor, this
contradicts Remark 6.2, and therefore, C1 ∪ C2 ∪ C3 = E. 3

By Claim 1, we may assume that C has no delta as a minor. We have τ(C) ≥ 2, as C is intersecting. In
fact, since C is strictly intersecting, we can prove the following claim:

Claim 2. τ(C) = 2 and every element appears in a minimum cover.

Proof of Claim. It is suffices to show that every element appears in a cover of size two. Suppose for a
contradiction that there is an element e ∈ E not contained in a cover of C of size two. Then every minimal
cover of C containing e has cardinality at least three. Consider C\{e}. It follows from b(C\{e}) = b(C)/{e}
that every minimal cover of C \{e} has cardinality at least two. Since the members of C \{e} are members
of C, every two members of C \ {e} intersect. This implies that C \ {e} is a proper intersecting restriction
of C, a contradiction. Therefore, every element appears in a cover of size two, as required. 3
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Pick an element u ∈ E, and let U be defined as

U := {v ∈ E : {u, v} is a cover of C} .

By Claim 2, we know that U 6= ∅.

Claim 3. U is not a cover of C.

Proof of Claim. Suppose for a contradiction that U is a cover of C. Let B be a minimal cover contained
in U . Then |B| ≥ 2, and since B ⊆ U , there exist distinct v, w ∈ B such that {u, v}, {u,w} are covers of
C. So, {u, v}, {u,w}, B are minimal covers of C. Since B ∩ {u, v, w} = {v, w}, by Theorem 6.1, b(C) has
a delta as a minor. This implies that C has a delta as a minor, as b(∆n) = ∆n for n ≥ 3, a contradiction
to Claim 1. Therefore, U is not a cover, as required. 3

By Claim 3, there is a member C1 of C that is fully contained in E − U . Since {u} is not a cover of C,
there is a member of C that does not contain u.

Claim 4. Every member of C that excludes u properly contains U .

Proof of Claim. Let C be a member of C not containing u. Since {u, v} is a cover of C, v ∈ C for every
v ∈ U , so it follows that U ⊆ C. Since C1 ∩U = ∅ and C is intersecting, U is not a member of C, implying
in turn that U 6= C. Hence, U is a proper subset of C. 3

In fact,

Claim 5. C has two members C2, C3 such that C2 ∩ C3 = U and C2 ∪ C3 ⊆ E − {u}.

Proof of Claim. Notice that C \ {u}/U is a proper restriction of C. By Claim 4, C has a member C such
that U ⊂ C ⊆ E −{u}, which implies that C \ {u}/U 6= {}, {∅}. Since C is strictly intersecting, C \ {u}/U
has two disjoint members C ′2 and C ′3. This implies that C2 := C ′2 ∪U and C3 := C ′3 ∪U are members of C,
and therefore, C2 ∩C3 = U and C2 ∪C3 ⊆ E −{u}. As a result, C2 and C3, are the desired members. 3

Claim 6. C1 ∪ C2 ∪ C3 = E.

Proof of Claim. Suppose for a contradiction that C1 ∪ C2 ∪ C3 6= E. Let e ∈ E − (C1 ∪ C2 ∪ C3). Then
e 6∈ U . By Claim 2, {e, f} for some f ∈ E is a cover of C. For i ∈ [3], as e 6∈ Ci, it follows that f ∈ Ci.
In particular, since C1 ⊆ E − U , f 6∈ U . This implies that f ∈ C2 \ U . By Claim 5, (C2 \ U) ∩ C3 = ∅,
implying in turn that f 6∈ C3, a contradiction. Therefore, C1 ∪ C2 ∪ C3 = E, as required. 3

By Claim 6, C1, C2, C3 are three members of C whose union is E, and this finishes the proof.

Now we are ready to prove Theorem 1.29:

Theorem 1.29 ([4]). Let C be a clutter over ground set E. Then the following statements
are equivalent:

(i) C contains an intersecting restriction,
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(ii) There exist three distinct members C1, C2, C3 such that the restriction of C obtained
after restricting E − (C1 ∪ C2 ∪ C3) is intersecting.

Proof. The direction (i)⇐(ii) is clear. (i)⇒(ii): As C has an intersecting restriction, C contains a strictly
intersecting clutter as a restriction. We may assume that for some I ⊆ E, the restriction of C obtained
after restricting I is a strictly intersecting clutter. Let J := {e ∈ E − I : {e} is a cover of C \ I}. Then
C \ I/J is a strictly intersecting restriction of C. By Proposition 6.3, C \ I/J has three members C ′1, C

′
2, C

′
3

whose union is E − (I ∪ J). Let Ci := C ′i ∪ J for i ∈ [3]. Then C1, C2, C3 are members of C \ I, because
each element in J appears in every member of C \ I. That means that C1, C2, C3 are three members of
C whose union is E − I. Restricting E − (C1 ∪ C2 ∪ C3) = I from C, we obtain C \ I/J , implying in turn
that C1, C2, C3 are the desired members of C.

We have shown in § 1.6 that Theorem 1.29 leads to a polynomial time algorithm finding an intersecting
minor in a clutter or certifying that none exists (Theorem 1.30).

6.2 Finding a delta and the blocker of an extended odd hole
minor

In this section, we prove Theorem 1.31, providing an algorithm that finds a delta or the blocker of an
extended odd hole minor in a clutter or certifies that none exists. A main part of the algorithm is
recognizing a dense restriction in a clutter. Let C be a clutter over ground set E such that τ(C) ≥ 2. We
say that C is dense if there exists w ∈ RE+ such that

w(C) =
∑

(we : e ∈ C) >
1>w

2
∀C ∈ C.

Remark 6.4. Every dense clutter is non-ideal.

Proof. Let C be a dense clutter over ground set E. Then τ(C) ≥ 2 and there exists w ∈ RE+ such that

w(C) > 1>w
2 for all C ∈ C. Let ` := 1 ∈ RE+. Notice that min {`(B) : B ∈ b(C)} = τ(C) ≥ 2 and that

min {w(C) : C ∈ C} > w>`
2 , and therefore, we obtain

min {w(C) : C ∈ C} ·min {`(B) : B ∈ b(C)} > w>`.

By Theorem 1.20, C is non-ideal.

The deltas and the blockers of extended odd holes are examples of dense clutters:

Remark 6.5. The deltas and the blockers of extended odd holes are dense.
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Proof. Take an integer n ≥ 3, and let w :=
(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)>
∈ Rn+. Then

w({1, 2}) = w({1, 3}) = · · · = w({1, n}) = w({2, 3, . . . , n}) = 1.

Since 1>w
2 = 2n−3

2n−2 < 1, ∆n is dense.

Take an odd integer n ≥ 5, and let w := (1, . . . , 1)> ∈ Rn+. Let C be the blocker of an extended odd hole

of dimension n. Since every cover of an extended odd hole has cardinality at least n+1
2 , w(C) > n

2 = 1>w
2

for C ∈ C, and therefore, C is dense, as required.

It follows from Remarks 6.4 and 6.5 that the deltas and the blockers of extended odd holes are dense
and thus non-ideal. In fact, it turns out that every dense clutter has a delta or the blocker of an extended
odd hole as a minor [8].

Theorem 6.6 (Abdi and Lee [8]). Let C be a clutter with m members over n elements. If C is dense, then
C has a delta or the blocker of an extended odd hole as a minor, which can be found in O(mn+ n4) time.

Using this theorem, we obtain the following as a corollary:

Corollary 6.7 ([4]). Let C be a clutter over ground set E. Then the following statements are equivalent:

(i) C has a delta or the blocker of an extended odd hole as a minor,

(ii) C has a dense restriction.

Proof. (i)⇐(ii): It follows from Theorem 6.6 that C has a delta or the blocker of an extended odd hole
as a minor. (i)⇒(ii): For some disjoint I, J ⊆ E, C \ I/J is a delta or the blocker of an extended odd

hole. As C \ I/J is dense by Remark 6.5, for some w ∈ RE−(I∪J)
+ , w(C ′) > 1>w

2 for all C ′ ∈ C \ I/J . Now
consider JI := {e ∈ E − I : {e} is a cover of C \ I}. Then JI ⊆ J , since τ(C \ I/J) ≥ 2. That means that
C \ I/JI is a restriction of C and that C \ I/J is a contraction minor of C \ I/JI . Let C ∈ C \ I/JI . Then
C ′ ⊆ C ⊆ C ′ ∪ (J \ JI) for some C ′ ∈ C \ I/J . Notice that we can extend w to a vector in RE−(I∪JI) by

setting we := 0 for all e ∈ J \ JI . As we = 0 for e ∈ J \ JI , we obtain w(C) = w(C ′) > 1>w
2 . Therefore,

C \ I/JI is dense, so C has a dense restriction.

Therefore, to find a delta or the blocker of an extended odd hole minor in a clutter, it suffices to find a
dense restriction.

In fact, given a clutter, one can test whether it is dense in polynomial time. Take integers n,m ≥ 1
and a clutter C with m members over at most n elements. Denote by T (n,m) the minimum time it takes
to solve a linear program of the form

maximize z

subject to
∑

(wu : u ∈ C) ≥ z ∀C ∈ C

1>w = 1

w ≥ 0

In particular, T (n,m) is polynomial in n and m.
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Remark 6.8 ([4]). Let C be a clutter with m members over n elements. In time T (n,m), one can determine
whether C is dense.

Proof. Notice that C is dense if, and only if, the optimum value of the above linear program is strictly
greater than 1

2 . So, we can test whether C by solving the linear program for C.

Although testing whether a clutter is dense can be done in polynomial time, a clutter over ground
set E has up to 2|E| restrictions, because any subset of E can be restricted. Instead of enumerating all
possible restrictions, we will use the following theorem, an analogue of Theorem 1.29 for clutters that have
a dense restriction:

Theorem 6.9 ([4]). Let C be a clutter over ground set E. Then the following statements are equivalent:

(i) C contains a dense restriction,

(ii) There exist three distinct members C1, C2, C3 such that the restriction of C obtained after restricting
E − (C1 ∪ C2 ∪ C3) is dense.

We will need the following tool:

Theorem 6.10 (Abdi and Lee [8]). Let V be a set of cardinality at least 4. Let C be a clutter over ground
set V where min {|C| : C ∈ C} = 2 and the minimum cardinality members correspond to the edges of a
connected bipartite graph G over vertex set V with bipartition R ∪ B = V . If R contains a member, then
C has a delta or an extended odd hole as a minor.

Using Theorem 6.10, we can prove the following:

Proposition 6.11 ([4]). Take an odd integer n ≥ 5, and let C be an extended odd hole over ground set [n]
whose minimum cardinality members are {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}. If C has no delta or extended
odd hole as a proper minor, then for each i ∈ [n],{

i+ 2k − 1 (mod n) : k = 1, 2, . . . ,
n+ 1

2

}
is a minimal cover.

Proof. We will show that each set is a cover. As {1, 2}, {2, 3}, . . . , {n−1, n}, {n, 1} need to be covered, the
minimality of each set follows. By symmetry, we may assume that i = 1. Suppose for a contradiction that
{1, 2, 4, . . . , n− 1} is not a cover. Then, for some C ∈ C, C ⊆ {3, 5, . . . , n}. Consider C′ := {C} \ {1}. The
minimum cardinality members of C′ are {2, 3}, {3, 4}, {4, 5}, . . . , {n−1, n}, and these members correspond
to the edges of a connected bipartite graph with bipartition {2, 4, . . . , n − 1} ∪ {3, 5, . . . , n}. Since C is
still a member of C′ and contained in {3, 5, . . . , n}, it follows from Theorem 6.10 that C′ has a delta or
an extended odd hole as a minor, implying in turn that a delta or an extended odd hole as a minor is a
proper minor of C, a contradiction to our assumption.

We say that a clutter is strictly dense if it is dense but no proper restriction is. Notice that if a clutter
has a dense restriction, it has a strictly dense restriction. The following proposition is the key to proving
Theorem 6.9:
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Proposition 6.12 ([4]). A strictly dense clutter has three members whose union is the ground set.

Proof. Let C be a strictly dense clutter over ground set E.

Claim 1. No proper deletion minor of C contains a delta or the blocker of an extended odd hole as a
minor.

Proof of Claim. If so, a proper deletion minor of C has a dense restriction by Corollary 6.7. Then it is a
proper dense restriction of C, contradicting our assumption that C is strictly dense. 3

As C is dense, Theorem 6.6 implies that C has a delta or the blocker of an extended odd hole as a
minor, and by Claim 1, it is a contraction minor. Pick a maximal J ⊆ E such that C/J is a delta or the
blocker of an extended odd hole. Then our maximal choice of J and Claim 1 imply that every proper
minor of C/J is neither delta nor the blocker of an extended odd hole.

Claim 2. C/J has three members C ′1, C
′
2, C

′
3 such that C ′1 ∩ C ′2 ∩ C ′3 = ∅ and C ′1 ∪ C ′2 ∪ C ′3 = E − J

Proof of Claim. If C/J is a delta, we may assume that C/J = ∆n for some n ≥ 3. Then C ′1 := {1, 2},
C ′2 := {1, 3}, C ′3 := {2, 3, . . . , n} are the desired members. Otherwise, we may assume that C/J is
the blocker of an extended odd hole of dimension n, for some odd n ≥ 5, whose minimum cardinality
members are {1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}. As no proper minor of C/J is a delta or the blocker of an
extended odd hole, it follows from Proposition 6.11 that C ′1 := {1, 2, 4, . . . , n− 1}, C ′2 := {2, 3, 5, . . . , n},
C ′3 := {1, 3, 4, . . . , n− 1} are members of C/J . Notice that C ′1 ∩ C ′2 ∩ C ′3 = ∅ and C ′1 ∪ C ′2 ∪ C ′3 = [n]− J ,
implying in turn that C ′1, C

′
2, C

′
3 are the desired members. 3

By Claim 2, C has three members C1, C2, C3 such that C ′i ⊆ Ci ⊆ C ′i ∪ J for i ∈ [3].

Claim 3. C1 ∪ C2 ∪ C3 = E.

Proof of Claim. Suppose for a contradiction that E − (C1 ∪ C2 ∪ C3) 6= ∅. Let e ∈ E − (C1 ∪ C2 ∪ C3).
Consider C′ := C\{e}/(J−{e}). Notice that C ′1, C

′
2, C

′
3 are still members of C′. By Claim 2, C ′1∩C ′2∩C ′3 = ∅,

so τ (C′) ≥ 2. Since every member of C′ contains a member of C/J , C′ must be dense too. Then Theorem 6.6
implies that C′ has a delta or the blocker of an extended odd hole as a minor, and in particular, so does
C \ {e}. This is a contradiction to Claim 1. 3

This finishes the proof.

We are now ready to prove Theorem 6.9:

Proof of Theorem 6.9. The direction (i)⇐(ii) is immediate. (i)⇒(ii): As C has a dense restriction, C
contains a strictly dense clutter as a restriction. We may assume that for some I ⊆ E, the restriction of C
obtained after restricting I is strictly dense. Let J := {e ∈ E − I : {e} is a cover of C \ I}. Then C \ I/J
is a strictly dense restriction of C. By Proposition 6.12, C \ I/J has three members C ′1, C

′
2, C

′
3 whose union

is E − (I ∪ J). Let Ci := C ′i ∪ J for i ∈ [3]. Then C1, C2, C3 are members of C \ I, so C1, C2, C3 are
members of C whose union is E − I, implying in turn that C1, C2, C3 are the desired members of C.
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With the characterization given by Theorem 6.9 of when a clutter has a dense restriction, we can prove
Theorem 1.31.

Theorem 1.31 ([4]). Given a clutter C with m members over n elements where m,n ≥ 1,
one can find a delta or the blocker of an extended odd hole minor in C or certify that none
exists in O

(
n4m3(n+m)3.5 log(n+m) log log(n+m)

)
time.

Proof. Consider the following algorithm:

1. For all distinct C1, C2, C3 ∈ C,

(a) take the restriction C′ obtained after restricting E − (C1 ∪ C2 ∪ C3),

(b) test whether C′ is dense, and

(c) if C′ is dense, find a delta or the blocker of an extended odd hole minor in C′.

2. If the restriction obtained from every triple of distinct members is not dense, then conclude that C
contains neither delta nor the blocker of an extended odd hole as a minor.

The correctness of this algorithm follows from Theorem 6.6 and Theorem 6.9. Notice that there are O(m3)
triple of three distinct members of C and that, for every three distinct C1, C2, C3 ∈ C, it takes O(mn) time
to compute the restriction obtained after restricting E − (C1 ∪ C2 ∪ C3). For each restriction obtained,
determining whether it is dense can be done in T (n,m) time by Remark 6.8. If the restriction is dense,
then it takes O(mn+n4) time to find a delta or the blocker of an extended odd hole minor by Theorem 6.6.
As the algorithm checks at most one dense restriction of C, the total running time is

O
(
m3 (T (n,m) +mn)

)
+O

(
mn+ n4

)
.

We know from classic linear programming results that T (n,m) is bounded above by a polynomial function
in n,m. For instance, Renegar [104] gave a simple polynomial time algorithm for linear programming.
After transforming the linear program into the standard form max{c>x : Ax ≥ b}, where A is an m′ × n′
matrix and L is the total number of bits needed to represent all entries of A, b, c, the linear program can
be solved with O((n′ + m′)1.5n′2L) arithmetic operations and O((n′ + m′)1.5n′2L2(logL)(log logL)) bit
operations, the latter dominating the total running time. In our case, it can be readily checked that

m′ ≤ n+m+ 2 and n′ ≤ n+ 1 and L ≤ (n+m+ 2)(n+ 1) + (n+m+ 2) + (n+ 1),

so
T (n,m) = O

(
n4(n+m)3.5 log(n+m) log log(n+m)

)
.

Therefore, our algorithm terminates in

O
(
m3n4(n+m)3.5 log(n+m) log log(n+m)

)
time, as required.
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6.3 Further notes

We call a clutter identically self-blocking if it is equal to its blocker. Berge [19] gave the following charac-
terization of identically self-blocking clutters.

Theorem 6.13 (Berge [19]). A clutter C is identically self-blocking if, and only if, ν(C) = ν(b(C)) = 1.

Notice that an identically self-blocking clutter has a cover of cardinality one if and only if it has a member
of cardinality one. In fact, {{a}} is the only identically self-blocking clutter with a member of cardinality
one. So, by Theorem 6.13, an identically self-blocking clutter other than {{a}} is intersecting. ∆n, n ≥ 3
and L7 are examples of identically self-blocking clutters, and it was recently proved that

Theorem 6.14 (Abdi, Cornuéjols, Lee [3]). An identically self-blocking clutter different from {{a}} is
non-ideal.

Therefore, identically self-blocking clutters are intersecting and non-ideal. As Theorems 1.30 and 1.31,
can we recognize an identically self-blocking minor in a clutter? We end this chapter with the following
question.

Question 6.15. Given a clutter C over ground set E, can we find an identically self-blocking minor in C
or certify that none exists in time polynomial in |E|, |C|?
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Chapter 7

Multipartite clutters

Take an integer n ≥ 1. Recall that a multipartite clutter is a clutter whose ground set is partitioned into
nonempty parts E1, . . . , En where every member C satisfies

|C ∩ Ei| = 1 ∀i ∈ [n].

The following is a consequence of Lehman’s theorem [93]. We give an elementary proof of it.

Lemma 7.1 ([6]). Let C be a minimally non-ideal clutter, and let E denote the ground set of C. Then
there is no subset F of E such that |C ∩ F | = 1 for every member C of C.

Proof. Let M(C) denote the incidence matrix of C. Then P := {1 ≥ x ≥ 0 : M(C)x ≥ 1} has a fractional
extreme point x∗, because C is non-ideal. Let e ∈ E. As C/{e} and C \{e} are ideal, both P ∩{x : xe = 0}
and P ∩ {x : xe = 1} are integral polytopes. This implies that 0 < x∗e < 1 for each e ∈ E. Now, consider
a nonsingular row submatrix A of M(C) such that Ax∗ = 1. Suppose that E has a subset F such that
|C ∩ F | = 1 for every member C of C. Let χF denote the characteristic vector of F in {0, 1}E . Since
|C ∩F | = 1 for every member C of C, we have that M(C)χF = 1 and thus AχF = 1. As A is nonsingular,
we obtain x∗ = χF , a contradiction. Therefore, there is no such subset F of E, as required.

Recall that a minimally non-packing clutter is either ideal or minimally non-ideal. In fact, we obtain
the following as an immediate consequence of Lemma 7.1:

Proposition 7.2 ([6]). A minimally non-packing multipartite clutter is ideal.

So, to refute the τ = 2 Conjecture, it is sufficient to find a minimally non-packing multipartite clutter
whose covering number is at least three. Recall that we call a clutter strictly polar if it has no intersecting
restriction.

Remark 7.3 ([6]). A minimally non-packing clutter with covering number at least three is strictly polar.

Proof. Let C be a minimally non-packing clutter over ground set E with τ(C) ≥ 3. We have ν(C \{e}) ≥ 2
for any e ∈ E, because τ(C \ {e}) ≥ 2 and C \ {e} packs, implying in turn that C itself is not intersecting.
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Hence, if C has an intersecting restriction, it must be a proper minor. Since every proper minor of C packs,
C is strictly polar.

Hence, by Proposition 7.2 and Remark 7.3,

Remark 7.4 ([6]). A minimally non-packing multipartite clutter with covering number at least three is
ideal and strictly polar.

In this chapter, we study ideal strictly polar multipartite clutters as well as minimally non-packing
multipartite clutters. In § 7.1, we show that the τ = 2 Conjecture has many equivalent versions that
are stated in terms of ideal strictly polar multipartite clutters, and we prove Theorems 1.32 and 1.34. In
§ 7.2, we study the induced clutters of multipartite clutters and provide their geometric interpretations,
and we prove Theorem 1.35. In § 7.3, we study minimally non-packing multipartite clutters of bounded
degree, and we prove Theorems 1.39, 1.41, 1.42 and Proposition 1.40. In § 7.4, we describe a pseudocode
to generate strictly polar multipartite clutters that do not pack. This chapter is based on [6].

7.1 Multipartite clutters and the τ = 2 Conjecture

The following tool will be useful throughout this chapter:

Proposition 7.5 ([6]). Let C be a multipartite clutter containing no ∆3 as a minor. If τ(C) = 2 and every
element is in a minimum cover of C, then C is a cuboid.

Proof. Let the ground set of C be partitioned into E1, . . . , En. We may assume that Ei is a minimal cover
for each i ∈ [n]. Since τ(C) = 2, |Ei| ≥ 2 for i ∈ [n]. We claim that |Ei| = 2 for i ∈ [n]. Suppose for
a contradiction that |E1| ≥ 3. Every element is contained in a member of C, because it is in a minimum
cover of C. Let us pick 3 elements f1, f2, f3 from E1. By assumption, for i ∈ {1, 2, 3}, there is an element
gi such that {fi, gi} is a minimum cover. Notice that gi 6∈ {f1, f2, f3}, because E1 is a minimal cover. We
claim that {g1, g2}, {g2, g3}, and {g3, g1} are minimal covers of C. By symmetry, it suffices to show that
{g1, g2} is a minimal cover of C. Recall that g1 is contained in the members of C not containing f1 and
g2 is contained in the members of C not containing f2. Since every member of C contains at most one of
f1 and f2, it contains either g1 or g2. Therefore, {g1, g2} is a cover of C. This implies that {g1, g2} is a
minimal cover, because τ(C) = 2.

Now, consider the minor of C, denoted by C′, obtained after contracting all elements but g1, g2, g3.
Notice that {g1, g2}, {g2, g3}, and {g3, g1} are still minimal covers of C′. As {g1, g2} is a cover of C′, ∅
and {g3} are not members of C′. Similarly, {g2} and {g3} are not members of C′, either. Then {g2, g3}
is a member of C′, because {g1} is not a cover. Likewise, {g1, g2} and {g3, g1} are also members of C′.
That means that C′ = ∆3, but this contradicts the assumption that C does not contain ∆3 as a minor.
Therefore, we get that |E1| = · · · = |En| = 2 and thus C is a cuboid, as required.

Notice that

Remark 7.6 ([6]). Let C be a clutter that does not pack but all of whose proper restrictions pack. Then
every element appears in a minimum cover of C.
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Proof. Let e ∈ E. Suppose for a contradiction that e ∈ E does not appear in a minimum cover, then
τ(C \ {e}) = τ(C), implying in turn that ν(C \ {e}) = τ(C) as C \ {e} packs. However, the members of
C \ {e} are still members of C, we have ν(C \ {e}) ≤ ν(C) < ν(C) < τ(C), a contradiction.

We are ready to prove Theorem 1.32.

Theorem 1.32 ([6]). The τ = 2 Conjecture, if true, implies that

every minimally non-packing multipartite clutter is a cuboid.

Proof. Let C be a minimally non-packing multipartite clutter. By Proposition 7.2, C is ideal. Then the
τ = 2 Conjecture, if true, implies that τ(C) = 2. Moreover, Remark 7.6 implies that every element appears
in a minimum cover of C. Then, by Proposition 7.5, C a cuboid, as required.

Given a clutter C over ground set E and w ∈ ZE+, the replication of C with respect to w is defined as
the clutter obtained from C after replicating we − 1 times every element e ∈ E with we > 0 and deleting
from C every element e ∈ E with we = 0. The following remark is a well-known fact about replication
(See Remarks 2 and 3 [35]).

Remark 7.7 ([35]). Let C be a clutter over ground set E. Given w ∈ ZE+, let D denote the replication of
C with respect to w. Then the following statements hold:

(1) τ(D) = τ(C, w) and ν(D) = ν(C, w).

(2) If C is ideal, so is D.

In fact, replication also preserves strict polarity.

Remark 7.8 ([6]). Let C be a strictly polar clutter over ground set E. For every w ∈ ZE+, the replication
of C with respect to w is also strictly polar.

Proof. Let e be an element of C. C \ {e} is a minor of C, so every restriction of C \ {e} is a restriction of C.
Therefore, C \ {e} is strictly polar. To complete the proof, it suffices to argue that D, the clutter obtained
from C after replicating e, is strictly polar. Denote by e′ the element obtained by replicating e. Then

D = C ∪ {C − e+ e′ : e ∈ C ∈ C} .

Notice that D \ {e′} = C and D \ {e} ∼= C. Moreover, any restriction of D \ {e′} or D \ {e} two disjoint
members. Let D \ I/J be a nontrivial restriction of D. We may assume that I ∩ {e, e′} = ∅. Then
J ∩ {e, e′} = ∅ as well, implying in turn that C \ I/J is also a nontrivial restriction of C. So, C \ I/J has
two disjoint members. Since I ∩ {e, e′} = ∅ and J ∩ {e, e′} = ∅, the members of C \ I/J are still members
of D \ I/J . That means D \ I/J contains the two disjoint members in C \ I/J . Therefore, D is strictly
polar, as required.
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Moreover, a replication of a multipartite clutter is also multipartite with the same number of parts.

Remark 7.9 ([6]). Let C be a multipartite clutter over ground set E that is partitioned into n parts so that
every member of C intersects each part exactly once. Let w ∈ ZE+. Then the replication of C with respect
to w is also multipartite and its ground set is also partitioned into n parts.

Proof. Let E1, . . . , En partition E so that for every member C ∈ C, |C ∩ Ei| = 1 for i = 1, . . . , n. Let
e ∈ E. It suffices to prove that C′, both the clutter obtained from C after replicating e once, denoted C′,
and C \ {e} are multipartite clutters with n parts. We may assume that e ∈ E1. Notice that

C \ {e} = {C ∈ C : C ⊆ (E1 − {e}) ∪ E2 ∪ · · · ∪ En} .

As |C ∩ (E1−{e})| = |C ∩E2| = · · · = |C ∩En| = 1 for every C ∈ C \ {e}, C \ {e} is a multipartite clutter
with n parts. Denote by e′ the element obtained by replicating e. Then

C′ = C ∪ {C − e+ e′ : e ∈ C ∈ C} .

Notice that the ground set of C′ is partitioned into E1 ∪ {e′}, E2, . . . , En and that for every C ∈ C′,
|C ∩ (E1 ∪ {e′})| = |C ∩ E2| = · · · = |C ∩ En| = 1. Therefore, C′ is also a multipartite clutter, as
required.

Using Remarks 7.7, 7.8, and 7.9, we are ready to prove the following theorem:

Theorem 7.10 ([6]). The following statements are equivalent:

(i) (The polarity Conjecture [2]) Every ideal strictly polar cuboid has the packing property.

(ii) Every ideal strictly polar cuboid has the max-flow min-cut property.

(iii) (Conjecture 1.33) Every ideal strictly polar multipartite clutter packs.

(iv) Every ideal strictly polar multipartite clutter has the packing property.

(v) Every ideal strictly polar multipartite clutter has the max-flow min-cut property.

(vi) (The τ = 2 Conjecture) Every ideal minimally non-packing clutter has covering number two.

Proof. (iii) ⇒ (ii): Suppose that there exists S ⊆ {0, 1}n for some n ≥ 1 such that mult(S) is ideal and
strictly polar but does not have the max-flow min-cut property. Choose w ∈ Z2n

+ so that τ(mult(S), w) >
ν(mult(S), w). Let C denote the replication of mult(S) with respect to w. Then, by Remarks 7.7, 7.8,
and 7.9, C is an ideal strictly polar multipartite clutter with τ(C) = τ(mult(S), w) and ν(C) = ν(mult(S), w),
implying that C does not pack, a contradiction as we assumed (iii) holds. Therefore, we get that (iii) implies
(ii), as required.

(ii) ⇒ (i) is straightforward, because the max-flow min-cut property implies the packing property.

(i) ⇔ (vi) follows from Theorem 1.14 in [2].

(vi) ⇒ (v): Suppose for a contradiction that there exists an ideal strictly polar multipartite clutter C
that does not have the max-flow min-cut property. Let E be the ground set of C. Then choose w ∈ ZE+
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such that τ(C, w) > ν(C, w). Let D denote the replication of C with respect to w. By Remarks 7.7, 7.8,
and 7.9, D is an ideal strictly polar multipartite clutter with τ(D) = τ(C, w) and ν(D) = ν(C, w). Then
D does not pack, so D contains an ideal minimally non-packing minor D′. (vi) implies that τ(D′) = 2,
and therefore, D′ is an intersecting minor of D. However, it follows from Remark 1.28 that D has an
intersecting restriction, a contradiction as D is strictly polar. Therefore, we can conclude that every ideal
strictly polar multipartite clutter has the max-flow min-cut property if (vi) is true, as required.

(v) ⇒ (iv) ⇒ (iii) follows immediately from the definition of the max-flow min-cut property and that
of the packing property.

In particular, the equivalence of (iii) and (vi) in Theorem 7.10 implies

Theorem 1.34 ([6]). The τ = 2 Conjecture and Conjecture 1.33 are equivalent.

7.2 Induced clutters

Using Lemma 7.1, we can prove Theorem 1.35:

Theorem 1.35 ([6]). A multipartite clutter is ideal if, and only if, all of its induced
clutters are ideal.

Proof. Let C be a multipartite clutter whose ground set is partitioned into nonempty parts E1, . . . , En.
(⇒): If C is ideal, then all of its induced clutters are ideal, as every minor of C is ideal. (⇐): Assume
that C is non-ideal. Then it has a minimally non-ideal minor C′ := C \ I/J obtained after deleting I and
contracting J for some disjoint subsets I, J ⊆ E1 ∪ · · · ∪ En. Observe that C \ I is another multipartite
clutter whose ground set is partitioned into nonempty parts F1, . . . , Fn where Fi := Ei \ I for i ∈ [n]. By
Lemma 7.1, the ground set of C′ does not have any of F1, . . . , Fn as a subset. This implies that for each
i ∈ [n], J ∩ Fi 6= ∅, so we have that J ∩ Ei 6= ∅. Then, C′ is a minor of an induced clutter. Therefore, one
of C’s induced clutters is non-ideal, as required.

Recall that there is a way to represent multipartite clutters geometrically. More precisely, Remarks 1.37
and 1.38 show that there is a one-to-one correspondence between a multipartite clutter whose ground set
is partitioned into E1, . . . , En with |Ei| = ωi ≥ 1 for i ∈ [n] and a subset of V (Hω1,...,ωn). Given a subset
S ⊆ V (Hω1,...,ωn

), recall that mult(S) is the clutter over ground set [
∑n
i=1 ωi] whose members are

Cv :=

vi +

i−1∑
j=1

ωj : i ∈ [n]

 , v ∈ S.
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Let S ⊆ V (Hω1,...,ωn), where n ≥ 1 and ωi ≥ 1 for i ∈ [n]. The set obtained from S′ := S ∩
{x : xi /∈ Ji for i ∈ [n]}, for some Ji ⊆ [ωi] for i ∈ [n], after dropping the coordinates where the points in
S′ agree on is called a set-restriction of S. We say that S has R ⊆ V (Hδ1,...,δ`), where ` ≥ 1 and δi ≥ 1 for
i ∈ [`], as a set-restriction if a set-restriction of S is isomorphic to R. For example, R1,1 is a set-restriction
of

S =

 (1, 3, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1),
(1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), (3, 3, 2),
(1, 1, 3), (1, 2, 3), (2, 1, 3), (2, 2, 3), (3, 3, 3)


since S ∩ {x : x1 6= 1, x2 6= 1, x3 6= 3} = {(2, 3, 1), (3, 2, 1), (2, 2, 2), (3, 3, 2)} is isomorphic to R1,1 (see Fig-
ure 7.1).

Figure 7.1: A set in V (H3,3,3) that has R1,1 as a set-restriction

It can be easily shown that

Remark 7.11 ([6]). Let S ⊆ V (Hω1,...,ωn
) where n ≥ 1 and ωi ≥ 1 for i ∈ [n], and let R ⊆ V (Hδ1,...,δ`)

where ` ≥ 1 and δi ≥ 1 for i ∈ [`]. If S has R as a set-restriction, then mult(R) is a restriction of mult(S).

Conversely,

Remark 7.12 ([6]). Let S ⊆ V (Hω1,...,ωn) where n ≥ 1 and ωi ≥ 1 for i ∈ [n], and let C be a restriction
of mult(S). Then there exists a set-restriction R of S such that C ∼= mult(R).

For a, b ∈ [ω1]× · · · × [ωn], denote by d(a, b) the number of coordinates a and b differ on, i.e. d(a, b) is
the Hamming distance between a and b. Moreover, for a, b ∈ [ω1]× · · · × [ωn], define the distance between
a, b, denoted dist(a, b), as the length of a shortest ab-path in Hω1,...,ωn

.

Remark 7.13 ([6]). Take integers n ≥ 1 and ω1, . . . , ωn ≥ 1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn)
be vertices in V (Hω1,...,ωn

). Then the following statements hold:

(1) The distance between x and y in Hω1,...,ωn
is exactly d(x, y).

(2) The distance between x and y is at most n.

(3) Let k ∈ {0, 1, . . . , n} be the distance between x and y, and let H[x, y] be the vertex-induced sub-
graph consisting of all the vertices that lie on a shortest xy-path. Then the smallest set-restriction of
V (Hω1,...,ωn

) containing V (H[x, y]) is a hypercube of dimension k.

131



Proof. (1): We argue by induction on the distance between x and y in Hω1,...,ωn . The distance between
two vertices is 1 if, and only, if they differ in exactly 1 coordinate and the hamming distance between
them is also 1 in this case. Assume that for any pair of two vertices at distance k for some k ≥ 1, the
hamming distance between them is also k. Consider the case when the distance between x and y is k+ 1.
Take a shortest path from x to y, and let y′ denote the vertex sitting right before y on the path. Then the
distance between x and y′ is k and d(x, y′) = k by the induction hypothesis. As y′ and y differ in just one
coordinate, it is clear that d(x, y) ≤ d(x, y′) + 1. So, d(x, y) ≤ k+ 1. On the other hand, we can construct
a path from x to y of distance d(x, y) in Hω1,...,ωn by changing one of the coordinates where x and y are
different at a time. That means the distance between x and y is at most d(x, y), so we get k+ 1 ≤ d(x, y).
Therefore, the distance between x and y is exactly d(x, y), as required.

(2): x and y have n coordinates, and in particular, d(x, y) ≤ n. So, the distance between x and y is at
most n by (1).

(3): We would like to show that the vertex set of H[x, y] is exactly {z ∈ V (Hω1,...,ωn) : zi = xi or zi =
yi for i ∈ [n]}. Let z ∈ V (H[x, y]). We claim that for each i ∈ [n], either zi = xi or zi = yi. Suppose not.
Then zi 6= xi, yi for some i ∈ [n]. In this case, we consider z′ obtained after replacing the ith component
of z by xi. Notice that dist(x, z′) = dist(x, z) − 1, while dist(z′, y) ≤ dist(z, y). As the Hamming
distance satisfies the triangle inequality, dist(x, y) ≤ dist(x, z′) + dist(z′, y). So, dist(x, y) is strictly less
than dist(x, z) + dist(z, y), implying that z does not lie on a minimum xy-path, a contradiction. Thus,
z ∈ H[x, y] satisfies zi = xi or zi = yi for each i ∈ [n]. Conversely, we claim that z = (z1, . . . , zn) with
zi = xi or zi = yi for i ∈ [n] is contained in H[x, y]. Let I and J are defined as follows:

I := {i ∈ [n] : zi 6= xi} and J := {i ∈ [n] : zi 6= yi}.

Then, dist(x, z) = |I| and dist(z, y) = |J |. As zi = xi or zi = yi for each i ∈ [n], I ∪J = {i ∈ [n] : xi 6= yi}
and dist(x, y) = |I ∪ J |. Moreover, I and J are disjoint, because zi = xi or zi = yi for i ∈ [n]. As a result,
we obtain dist(x, y) = |I|+ |J | = dist(x, z) + dist(z, y). This implies that z is on a minimum xy-path, so
z is a vertex in H[x, y]. Therefore, we obtain

V (H[x, y]) = {z ∈ V (Hω1,...,ωn
) : zi = xi or zi = yi for i ∈ [n]}.

As x and y have n−k common coordinates, the vertices in H[x, y] agree on exactly those n−k coordinates.
Hence, the smallest set-restriction of Hω1,...,ωn

containing H[x, y] is obtained from H[x, y] after dropping
the common coordinates, implying that the set-restriction is a hypercube of dimension k, as required.

For S ⊆ V (Hω1,...,ωn
) and x ∈ V (Hω1,...,ωn

), let ind(S, x) be defined as the minor of mult(S) obtained
after contracting the elements in Cx. In other words,

ind(S, x) := mult(S)/Cx = the minimal sets of {Cv − Cx : v ∈ S} .

Notice that ind(S, x) is an induced clutter of mult(S). We call ind(S, x) the induced clutter of mult(S)
with respect to x. Observe that ind(S, x) = {∅} if x is a feasible vertex.

Remark 7.14 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn
). Each induced clutter

of mult(S) is ind(S, x) for some x ∈ V (Hω1,...,ωn
).

For two vertices x, y ∈ V (Hω1,...,ωn
), we say that x sees y if y is the only feasible vertex in H[x, y] (see
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Remark 7.13(3) for the definition of H[x, y]). The following proposition provides a geometric interpretation
of the members of an induced clutter.

Proposition 7.15 ([6]). Let C be a multipartite clutter, and let S ⊆ V (Hω1,...,ωn
) with ωi ≥ 1 for i ∈ [n]

be its Hamming representation. For x ∈ V (Hω1,...,ωn), there is a bijection between the following two sets:

• the members of induced clutter ind(S, x) of C,

• the vertices that x sees.

More precisely, v ∈ S is a vertex that x sees if, and only if, Cv − Cx is a member of ind(S, x).

Proof. If x ∈ S, then ind(S, x) = {∅} and x itself is the only vertex that x sees. The assertion trivially
holds in this case. Thus, we may assume that x 6∈ S.

Let C be a member of ind(S, x). Then C = Cv −Cx for some v ∈ S. We claim that x sees v. Suppose
that there exists another feasible vertex u in H[x, v]. Then ind(S, x) has a member contained in Cu −Cx.
However, Cu − Cx is strictly contained in Cv − Cx, because {ui : ui 6= xi, i ∈ [n]} is a proper subset of
{vi : vi 6= xi, i ∈ [n]}. This implies that ind(S, x) is not a clutter, a contradiction. Therefore, v is the only
feasible vertex in H[x, v], so x sees v, as required.

Let v be a vertex that x sees. We claim that Cv −Cx is a member of ind(S, x). Suppose not. Then we
can find u ∈ S such that Cu−Cx is strictly contained in Cv −Cx. This implies that {ui : ui 6= xi, i ∈ [n]}
is strictly contained in {vi : vi 6= xi, i ∈ [n]}, thereby indicating that u is contained in H[x, v], a
contradiction. Hence, Cv − Cx is a member of ind(S, x), as required.

7.3 Multipartite clutters of bounded degree

Recall that the degree of S ⊆ V (Hω1,...,ωn
) is defined as the maximum number of vertices in S :=

V (Hω1,...,ωn
)− S that a vertex in S is adjacent to.

Theorem 1.39 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1 and k ≥ 0. Let S ⊆
V (Hω1,...,ωn

) be of degree at most k. Then every minimally non-ideal minor of mult(S), if
any, has at most k elements.

Proof. Let C∗ be a minimally non-ideal minor of mult(S), if any. Theorem 1.35 implies that C∗ is a minor
of ind(S, x) for some x ∈ V (Hω1,...,ωn

). Observe that x /∈ S, as ind(S, x) = {∅} otherwise. Since S is of
degree at most k, x has at least

∑n
i=1(ωi − 1)− k feasible neighbors by Remark 1.36. Recall that for each

neighbor y of x, Cx and Cy have n−1 common elements. Then Cy−Cx has exactly 1 element, so ind(S, x)
has at least

∑n
i=1(ωi−1)−k members of cardinality 1. Since a minimally non-ideal clutter does not contain

a member of cardinality 1,
∑n
i=1(ωi− 1)− k elements of ind(S, x) that belong to members of cardinality 1

in ind(S, x) are contracted to obtain C∗. Therefore, C∗ has at most k elements, as required.
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One can easily verify the following remark:

Remark 7.16. A clutter whose members are pairwise disjoint has the max-flow min-cut property.

We obtain the following remark as an application of Kőnig’s theorem on bipartite matching and Re-
mark 7.16:

Proposition 1.40 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn).
Then the following statements hold:

(1) if n ≤ 2, then mult(S) has the max-flow min-cut property, and

(2) if mult(S) does not pack, then n ≥ 3 and ωn ≥ 2.

Proof. (1): If n = 1, Cx has size 1 for each x ∈ S, and therefore, the members of mult(S) are pairwise
disjoint. Then mult(S) has the max-flow min-cut property by Remark 7.16. Consider the n = 2 case.
mult(S) has the max-flow min-cut property if, and only if, the replication of mult(S) with respect to w
for every w ∈ Zω1+ω2

+ packs. By Remark 7.9, replications of mult(S) are also multipartite clutters with 2

parts. By Remark 1.38, the replication of mult(S) with respect to w for each w ∈ Zω1+ω2
+ is isomorphic

to mult(S′) where S′ ⊆ V (Hω′1,ω
′
2
) for some ω′1, ω

′
2 ≥ 1. Therefore, it is sufficient to show that every

multipartite clutter whose ground set is partitioned into 2 parts packs.

Given S ⊆ V (Hω1,ω2
) = [ω1]× [ω2], we construct a bipartite graph G as follows:

V (G) = [ω1] ∪ [ω2] and E(G) = {uv : (u, v) ∈ S ⊆ [ω1]× [ω2]} .

Notice that τ(mult(S)) is exactly the minimum cardinality of a vertex cover in G, whereas ν(mult(S)) is
exactly the maximum cardinality of a matching in G. Then Kőnig’s theorem implies that τ(mult(S)) =
ν(mult(S)), so mult(S) packs.

(2): If ωn = 1, then τ(mult(S)) = 1 and thus mult(S) packs. If n ≤ 2, mult(S) packs by part (1).
Therefore, if mult(S) does not pack, n ≥ 3 and ωn ≥ 2, as required.

We will need the following remark to prove Theorem 1.41:

Remark 7.17 ([6]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2. Let S ⊆ V (Hω1,...,ωn
). If mult(S) does not

pack but all of its proper restrictions pack, then ν(mult(S) \ Cv) = τ(mult(S) \ Cv) ≤ ωn − 2 for every
v ∈ S.

Proof. Let v ∈ S, and consider Cv of mult(S). Notice that there are at most τ(mult(S))−2 pairwise disjoint
members of mult(S) that are disjoint from Cv. Otherwise, mult(S) contains at least τ(mult(S)) pairwise
disjoint members, a contradiction to the assumption that mult(S) does not pack. So, ν(mult(S) \ Cv) ≤
τ(mult(S)) − 2. Observe that ν(mult(S) \ Cv) ≤ ωn − 2, because τ(mult(S)) ≤ ωn. As every proper
restriction of mult(S) packs, mult(S)\Cv packs and thus τ(mult(S)\Cv) = ν(mult(S)\Cv) ≤ ωn−2.
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Now we are ready to prove Theorem 1.41.

Theorem 1.41 ([6]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and k ≥ 0. Let S ⊆
V (Hω1,...,ωn) be of degree at most k. Then the following statements hold:

(1) if mult(S) contains no ∆3 as a minor and does not pack but all of its proper restric-

tions pack, then k ≥
∑n−1
i=1 (ωi − 2),

(2) if mult(S) contains no ∆3 as a minor and does not pack, every proper restriction of

mult(S) packs, and k =
∑n−1
i=1 (ωi − 2), then mult(S) ∼= Q6.

Proof. For simplicity G denote Hω1,...,ωn . Let the ground set of mult(S) be partitioned into E1 ∪ · · · ∪En
with |Ei| = ωi for i ∈ [n]. We claim that

Claim 1. If mult(S) does not pack but all of its proper restrictions pack, then there exist Li ⊆ Ei for
i ∈ [n] that satisfy the following:

(a) 1 ≤ |Li| ≤ ωi − 1 for i ∈ [n] and
∑n
i=1(|Li| − 1) ≥

∑n−1
i=1 (ωi − 2).

(b) R1 ∪ · · · ∪Rn where Ri := Ei − Li for i ∈ [n] is a cover of mult(S).

Proof of Claim. Let v ∈ S. Let B be a minimum cover of mult(S) \ Cv. Then mult(S) \ (Cv ∪B) has no
members. Let Li for i ∈ [n] be defined as Ei − (Cv ∪B). We know that |Ei ∩Cv| = 1 for i ∈ [n] and that
|B| ≤ ωn − 2 by Remark 7.17. So, 1 ≤ |Li| ≤ ωi − 1 for i ∈ [n]. In addition,

n∑
i=1

|Li| =
n∑
i=1

|Ei − Cv| − |B| =
n∑
i=1

(|Ei| − 1)− |B|.

As |B| ≤ ωn − 2 and |Ei| = ωi for i ∈ [n], it is clear that
∑n
i=1(|Li| − 1) ≥

∑n−1
i=1 (ωi − 2). Notice that

Ri = Ei ∩ (Cv ∪B) for i ∈ [n] and R1 ∪ · · · ∪Rn = Cv ∪B is a cover of mult(S). 3

(1): By Claim 1(b), no member of mult(S) is fully contained in L1 ∪ · · · ∪ Ln. In other words,
v ∈ V (G) such that Cv ⊆ L1 ∪ · · · ∪ Ln is infeasible. In turn, G has a subgraph H ∼= H|L1|,...,|Ln| such
that S ∩ V (H) = ∅. Let u be a vertex in H. Then the number of u’s neighbors in H is

∑n
i=1(|Li| − 1) by

Remark 1.36(2). By Claim 1(a), u has at least
∑n−1
i=1 (ωi − 2) infeasible neighbors. Therefore, we get that

k ≥
∑n−1
i=1 (ωi − 2), as H is a subgraph of G.

(2): We further assume that k =
∑n−1
i=1 (ωi − 2), and we want to show that mult(S) is isomorphic

to Q6. Any vertex in H has
∑n
i=1(|Li| − 1) infeasible neighbors that are in H. As

∑n−1
i=1 (ωi − 2) is the

maximum number of infeasible neighbors of a vertex,
∑n−1
i=1 (ωi − 2) ≥

∑n
i=1(|Li| − 1) and thus we have∑n−1

i=1 (ωi−2) =
∑n
i=1(|Li|−1). Moreover, we know that any vertex outside H that is adjacent to a vertex

135



in H is feasible. Since a vertex u such that Cu is fully contained in L1 ∪ · · · ∪Ln is infeasible, every vertex
v ∈ V (H) such that Cv is fully contained in one of the following sets is feasible:

N1 := R1 ∪ L2 ∪ · · · ∪ Ln,
N2 := L1 ∪R2 ∪ · · · ∪ Ln,

...
Nn := L1 ∪ L2 ∪ · · · ∪Rn.

We first show that ωn = 2. Suppose for contradiction that ωn ≥ 3. We claim the following:

Claim 2. |{i ∈ [n] : |Li| = 1}| ≤ 1 and |{i ∈ [n] : |Li| = ωi − 1}| ≤ n− 1.

Proof of Claim. If there exist distinct p, q ∈ [n] such that |Lp| = |Lq| = 1, then

n∑
i=1

(|Li| − 1) =
∑
i6=p,q

(|Li| − 1) ≤
n−2∑
i=1

(ωi − 2) <

n−1∑
i=1

(ωi − 2)

where the last inequality is from ωn−1 ≥ ωn ≥ 3. So, we have |{i ∈ [n] : |Li| = 1}| ≤ 1. If |Li| = ωi − 1
for all i ∈ [n], then

n∑
i=1

(|Li| − 1) =

n∑
i=1

(ωi − 2) >

n−1∑
i=1

(ωi − 2)

where the last inequality is implied by ωn ≥ 3. Therefore, |{i ∈ [n] : |Li| = ωi − 1}| ≤ n− 1. 3

Let i∗ be the index in [n] defined as follows:

1. If there is i ∈ [n] such that |Li| = 1, then choose this i for i∗.

2. If not, there is i ∈ [n] such that |Li| ≤ ωi − 2 by Claim 2. Choose such i for i∗.

Pick a vertex w such that Cw ⊆ Ni∗ , and remember that w ∈ S. We will argue that τ(mult(S) \ Cw) ≥
ωn − 1, a contradiction to Remark 7.17, thereby showing that ωn = 2. Any member of mult(S) that is
fully contained in

N ′1 := R′1 ∪ L′2 ∪ · · · ∪ L′n,
N ′2 := L′1 ∪R′2 ∪ · · · ∪ L′n,

...
N ′n := L′1 ∪ L′2 ∪ · · · ∪R′n

where L′i := Li − Cw and R′i := Ri − Cw is still a member of mult(S) \ Cw. In fact, we will show that we
need at least ωn − 1 elements to cover all the members contained in N ′1 ∪ · · · ∪ N ′n. Let B be a cover of
mult(S) \ Cw.

Claim 3. B satisfies one of the following statements:

(i) L′i ∪R′i ⊆ B for some i ∈ [n].
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(ii) L′i ∪ L′j ⊆ B for some distinct i, j ∈ [n].

(iii) R′1 ∪ · · · ∪R′n ⊆ B.

Proof of Claim. If there is j ∈ [n] such that L′j ⊆ B, then the members of mult(S) \ Cw contained in N ′i
for i 6= j are covered by B. To cover N ′j , B contains either R′j or L′i for some i 6= j. In this case, B satisfies
either (i) or (ii). If not, there exists ei ∈ Li such that ei 6∈ B for each i ∈ [n]. To cover the members
contained in

R′1 ∪ {e2} ∪ · · · ∪ {en},
{e1} ∪R′2 ∪ · · · ∪ {en},

...
{e1} ∪ {e2} ∪ · · · ∪R′n,

B must contain R′1 ∪ · · · ∪R′n. So, B satisfies (iii) in this case. 3

By Claim 3, it is sufficient to claim the following to show that |B| ≥ ωn − 1.

Claim 4. The following statements hold:

(i) |L′i ∪R′i| ≥ ωn − 1 for every i ∈ [n].

(ii) |L′i ∪ L′j | ≥ ωn − 1 for every distinct i, j ∈ [n].

(iii) |R′1 ∪ · · · ∪R′n| ≥ ωn − 1.

Proof of Claim. As Cw ⊆ Ni∗ , we have

|R′i| =

{
|Ri|, for i 6= i∗

|Ri| − 1, for i = i∗
and |L′i| =

{
|Li| − 1, for i 6= i∗

|Li|, for i = i∗
.

Then |L′i ∪R′i| = |L′i|+ |R′i| = |Li|+ |Ri| − 1 = ωi − 1 for each i ∈ [n], so (i) holds.

Recall how we chose i∗. In fact, due to the choice of i∗, we can easily check that

1 ≤ |L′i|, |R′i| ≤ ωi − 2, i ∈ [n].

Moreover,
n∑
i=1

|L′i| = −(n− 1) +

n∑
i=1

|Li| = 1 +

n−1∑
i=1

(ωi − 2).

Now, we are ready to show (ii) and (iii). Suppose that |L′p ∪ L′q| ≤ ωn − 2 for some distinct p, q ∈ [n].
Then we get

n∑
i=1

|L′i| = (|L′p|+ |L′q|) +
∑
i 6=p,q

|L′i| ≤ (ωn − 2) +
∑
i 6=p,q

(ωi − 2) ≤
n−1∑
i=1

(ωi − 2).
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This implies
∑n
i=1 |L′i| ≤

∑n−1
i=1 (ωi − 2), a contradiction. Thus, (ii) holds. In addition, observe that

|R′1 ∪ · · · ∪R′n| =
n∑
i=1

|R′i| =
n∑
i=1

(ωi − 1− |L′i|) =

n∑
i=1

(ωi − 1)− 1−
n−1∑
i=1

(ωi − 2) = (ωn − 1) + (n− 1).

Since n ≥ 3, |R′1 ∪ · · · ∪R′n| ≥ ωn − 1 and thus (iii) holds. 3

By Claim 3 and Claim 4, we know that τ(mult(S) \ Cw) ≥ ωn − 1, but this contradicts Remark 7.17.
Therefore, ωn = 2.

Since ωn = 2 and mult(S) does not pack, we have τ(mult(S)) = ωn = 2. Since every proper restriction
of mult(S) packs, every element is in a minimum cover of mult(S) by Remark 7.6. Then, by Proposition 7.5,
mult(S) is a cuboid. Since mult(S) is a cuboid, we may assume that S is a subset of {0, 1}n. ω1 = · · · =
ωn = 2 implies k = 0 so that all the neighbors of an infeasible vertex in S are feasible. Let v ∈ S. Since
mult(S) does not pack, 1 − v ∈ S. Then the neighbors of 1 − v are all feasible. Thus, every neighbor of
v are all infeasible because it is the antipodal vertex of a neighbor of 1− v. Therefore, S always contains
R1,1 as a set-restriction since n ≥ 3. Then by Remark 7.11, mult(S) has mult(R1,1) = Q6 as a restriction.
Since every proper minor of mult(S) packs, it must be isomorphic to Q6.

Consider P3 := {(2, 2, 1), (2, 1, 2), (1, 2, 2)} and S3 := {(2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2)}.

Figure 7.2: P3, S3

Lemma 7.18 ([2], Lemma 6.2). Take integers n ≥ 3, k ≥ 0. Let S ⊆ V (H(n, 2)) be of degree at most k.
If mult(S) does not pack and S has none of P3, S3, R1,1 as a set-restriction, then n ≤ 2k + 1.

We will need the following lemma, an extension of Lemma 7.18:

Lemma 7.19 ([6]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and k ≥ 0. Let S ⊆ V (Hω1,...,ωn
) be of degree

at most k. If ν(mult(S)) < ωn and S has none of P3, S3, R1,1 as a set-restriction, then n ≤ 2k + 1.

Proof. We argue by induction on ωn. First, consider the case ωn = 2. Then Hω1,...,ωn
contains H ∼= H(n, 2)

as a subgraph. As H is a subgraph, S′ := S∩V (H) is of degree at most k in H. Moreover, τ(mult(S′)) ≤ 2.
If τ(mult(S′)) = 1, then the vertices in S′ agree on a coordinate, and therefore, there is an infeasible vertex
of degree is at least n− 1. That means that n− 1 ≤ k, so n ≤ 2k + 1 clearly holds in this case. Thus we
may assume that τ(mult(S′)) = 2. As we assumed that ν(mult(S)) < 2, ν(mult(S′)) < 2 and mult(S′)
does not pack. Then, by Lemma 7.18, we get that n ≤ 2k + 1, as required.
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For the induction step, consider the case when ωn ≥ 3. If S = ∅, the degree of S is
∑n
i=1(ωi − 1) by

Remark 1.36, and therefore, the degree of S is at least 2n. This implies that k ≥ 2n, so n ≤ 2k + 1 holds
if S = ∅. Thus we may assume that S is not empty. Let v ∈ S. Consider the subgraph H of Hω1,...,ωn

induced by {x ∈ Hω1,...,ωn
: xi 6= vi, i ∈ [n]}. Then H ∼= Hω1−1,...,ωn−1, and S′ := S∩V (H) is of degree at

most k as H is a subgraph. Notice that mult(S′) = mult(S) \Cv and that ν(mult(S′)) ≤ ωn− 2. It is also
true that S′ has none of P3, S3, R1,1 as a set-restriction, because S′ itself is a set-restriction of S. Then,
by the induction hypothesis applied to S′ ⊆ V (Hω1−1,...,ωn−1), we obtain n ≤ 2k + 1, as required.

Now we are ready to prove Theorem 1.42.

Theorem 1.42 ([6]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and k ≥ 0. Let S ⊆
V (Hω1,...,ωn

) be of degree at most k. If mult(S) has a restriction that does not pack, then
it has one with at most max

{
11
2 k + 1

2 , 6
}

elements.

Proof. It can be readily checked that mult(R1,1), mult(P3), mult(S3) are clutters over 6 elements that
do not pack. Thus we may assume that mult(S) contains none of mult(R1,1), mult(P3), mult(S3) as
a restriction. In particular, mult(S) has no Q6(= mult(R1,1)) as a restriction, and by Remark 7.11, S
contains none of P3, S3, R1,1 as a set-restriction. Let C be a restriction of mult(S) that does not pack but
all of its restrictions pack. By Remark 7.12, there exists a set-restriction R ⊆ V (Hδ1,...,δ`), for some ` ≥ 1
and δi ≥ 1 for i ∈ [`], of S such that C ∼= mult(R). As we assumed that mult(S) has no Q6 as a restriction,
mult(R) 6∼= Q6. Moreover, as mult(R) does not pack, ` ≥ 3 by Proposition 1.40 (2). Then, by Lemma 7.19,

we have ` ≤ 2k + 1. By Theorem 1.41, 1 +
∑`−1
i=1(δi − 2) ≤ k. Notice that

∑̀
i=1

δi ≤
`

`− 1

`−1∑
i=1

δi ≤
`

`− 1
(2`− 3 + k) = 2`+

`

`− 1
(k − 1) ≤ (4k + 2) +

3

2
(k − 1) =

11

2
k +

1

2
.

As mult(R) has
∑`
i=1 δi elements, it has at most 11

2 k + 1
2 elements.

7.4 A pseudocode to generate strictly polar multipartite clutters
that do not pack

In this section, we will describe a pseudocode for generating strictly polar multipartite clutters that do
not pack. Take integers n ≥ 1, ω1, . . . , ωn ≥ 1. Let ω := min{ωi : i ∈ [n]}. We say that

{
v1, . . . , vω

}
⊆

V (Hω1,...,ωn
) is a general diagonal of Hω1,...,ωn

if v1, . . . , vω are ω vertices at pairwise distance n. Given
S ⊆ V (Hω1,...,ωn

), a general diagonal consists of some feasible vertices and some infeasible ones as in the
figure below (black and red vertices represent feasible and infeasible vertices, respectively). Figure 7.3
shows a general diagonal of H8,7. Note that the picture in Figure 7.3 is not a grid, and in fact, each row
represents K7 and each column represents K8.
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Figure 7.3: A general diagonal of H8,7

Remark 7.20 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn). Then

ν(mult(S)) = max {|L ∩ S| : L is a general diagonal of Hω1,...,ωn
} .

In particular, if there is a general diagonal all of whose vertices are feasible, then mult(S) packs.

Proof. By Remark 7.13, ν(mult(S)) is equal to the maximum number of vertices in S that are at pair-
wise distance n, so ν(mult(S)) is the maximum number of feasible vertices that a general diagonal has.
Moreover, if a general diagonal has all of its vertices feasible, then it has ωn feasible vertices at pairwise
distance n and thus ν(mult(S)) = ωn, implying in turn that mult(S) packs.

By Remark 7.20, one can test whether a multipartite clutter packs by checking the general diagonals
in its Hamming representation. How do we check if a multipartite clutter is strictly polar? We know that
Theorem 1.29 provides a characterization of when a clutter is strictly polar, but this characterization is
stated in terms of its members. In fact, for a multipartite clutter, the characterization can be rewritten
with respect to the vertices in its Hamming representation.

Remark 7.21 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn
). Then the following

statements are equivalent:

(i) mult(S) is strictly polar,

(ii) For every three distinct vertices u, v, w ∈ S, the smallest set-restriction of S containing u, v, w has a
general diagonal with at least two feasible vertices.

Proof. (i)⇒(ii): Assume that mult(S) is strictly polar. Let u, v, w be three distinct vertices in S, and
let R denote the smallest set-restriction of S containing u, v, w. Then R is obtained from S ∩ {x : xi ∈
{ui, vi, wi} for i ∈ [n]} after dropping every coordinate i ∈ [n] with ui = vi = wi. Notice that mult(R) is
isomorphic to the restriction of mult(S) obtained after restricting E − (Cu ∪ Cv ∪ Cw) where E denotes
the ground set of mult(S). In particular, τ(mult(R)) ≥ 2. As mult(S) has no intersecting restriction,
mult(R) is not intersecting, and therefore, ν(mult(R)) ≥ 2. So, by Remark 7.20, it follows that R has
a general diagonal with at least two feasible vertices. (ii)⇒(i): We will show the contrapositive of this
direction. Assume that mult(S) is not strictly polar. Then mult(S) has an intersecting restriction. By
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Theorem 1.29, there exist three vertices u, v, w ∈ S such that the restriction of mult(S) obtained after
restricting E− (Cu∪Cv∪Cw) is intersecting. Then the restriction is isomorphic to mult(R) where R is the
smallest set-restriction of S containing u, v, w. As mult(R) is intersecting, ν(mult(R)) = 1, and therefore,
every general diagonal of R has at most one feasible vertex, as required.

The following remark provides the last ingredient for our pseudocode:

Remark 7.22 ([6]). Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Let S ⊆ V (Hω1,...,ωn
). If mult(S) is strictly

polar and does not pack, then n ≥ 3 and ωn ≥ 3.

Proof. Assume that mult(S) is strictly polar and does not pack. By Proposition 1.40 (2), if n ≤ 2 or
ωn = 1, then mult(S) packs. As mult(S) does not pack, n ≥ 3 and ωn ≥ 2. Suppose for a contradiction
that ωn = 2. Then we have τ(mult(S)) ≤ 2. If τ(mult(S)) = 1, then mult(S) packs. If τ(mult(S)) = 2,
as mult(S) is not intersecting, it follows that ν(mult(S)) = 2 and thus mult(S) packs. This implies that
mult(S) packs, a contradiction. Therefore, it follows that ωn ≥ 3, as required.

Now we are ready to describe our algorithm for generating strictly polar multipartite clutters that do
not pack. The correctness of our algorithm follows from Theorem 1.39, Remarks 7.20, 7.21, 7.22. A partial
set is a triple P = (F, I, U) where F , I, U partitions V (Hω1,...,ωn

) = [ω1] × · · · × [ωn]. We refer to F , I
and U as the feasible points, infeasible points and undecided points of P , respectively. If U = ∅, F is the
corresponding set of P . Now we are ready to describe our algorithm.

Input:

• dimension n & rook dimensions ω1, . . . , ωn,

• degree k ∈
{

1 +
∑n−1
i=1 (ωi − 2), . . . ,

∑n
i=1(ωi − 1)

}
.

Output:

• all non-isomorphic sets of degree k in V (Hω1,...,ωn
) whose multipartite clutters are strictly polar and

do not pack.

Algorithm

0. Check if n ≥ 3 and ωi ≥ 3 for all i ∈ [n]. If not, there is no subset of V (Hω1,...,ωn
) whose multipartite

clutter is strictly polar and does not pack.

1. Enumerate all non-isomorphic sets of degree k in V (Hω1−1,...,ωn−1) whose multipartite clutters are
ideal and strictly polar. Call these sets configurations.

2. Let P be the family of all partial sets originating from a configuration, i.e. initialize

P := {(S, V0 − S, V − V0) : S is a configuration}

where V0 := V (Hω1−1,...,ωn−1) and V := V (Hω1,...,ωn
).
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3. While P has a partial set P = (F, I, U) with U 6= ∅

(a) If there is a general diagonal all but one of whose vertices are feasible and whose remaining
vertex is undecided, update P by making the undecided point infeasible.

(b) If P has an infeasible point with at least k+1 infeasible neighbors, remove P from P and restart
Step 3.

(c) If P has an infeasible point with k infeasible neighbors, update P by making the undecided
neighbors feasible.

(d) If P has an undecided point with at least k + 1 infeasible neighbors, update P by making the
undecided point feasible.

(e) If there is a general diagonal all whose vertices are feasible, remove P from P and restart Step 3.

(f) If there exist three distinct feasible points u, v, w such that the smallest set-restriction R of
V (Hω1,...,ωn) containing u, v, w has no undecided point and has no general diagonal with at
least two feasible points, remove P from P and restart Step 3.

(g) Otherwise, take an undecided point q. Let P1 and P2 be the partial sets obtained from P after
making q feasible and infeasible, respectively. Set P := P4{P, P1, P2}.

Step (a) makes sure that the corresponding multipartite clutter does not pack. While adding an infeasible
point in Step (a), an infeasible point with degree greater than k may have been created, and if so, Step (b)
prunes the partial set. Steps (c) and (d) make sure that there is no infeasible point of degree greater than
k. Adding feasible points in Steps (c) and (d) may have made the multipartite clutter pack, and if so,
Step (e) prunes the partial set. Step (f) checks whether the multipartite clutter contains an intersecting
restriction. Step (g) makes sure that the multipartite clutter is strictly polar.

At this point, the partial sets in P have no undecided point. Let S be the family of sets corresponding to
the partial sets in P.

4. From every isomorphic class in S, keep only one set and filter out the other ones.

5. Output the sets in S whose multipartite clutters do not pack.

End of Algorithm

Our computational experiment showed the following result:

Theorem 7.23 ([6]). Up to isomorphism, there are precisely 60 subsets of V (H3,3,3) whose multipartite
clutters are strictly polar and do not pack.

By Theorem 1.34, if the τ = 2 Conjecture is true, then every strictly polar multipartite clutter that
does not pack is non-ideal. By Theorem 1.39, if the degree of a set is k, then every minimally non-ideal
minor of its multipartite clutter, if any, has at most k element. In particular, a set S ⊆ V (H3,3,3) has
degree at most 6, so if mult(S) is non-ideal, every minimally non-ideal minor of it is one of ∆3, ∆4, ∆5, ∆6,
C2

5 , b(C2
5 ). In fact, as every member of mult(S) has size 3 and its ground set is partitioned into three parts,

none of ∆4, ∆5, ∆6 is a minimally non-ideal minor of mult(S). Moreover, ∆3 and b(C2
5 ) are intersecting

clutters, so any strictly polar clutter has none of ∆3, b(C2
5 ) as a minor. Therefore, it is sufficient to check

C2
5 . Using this fact, we came to the following conclusion.
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Theorem 7.24 ([6]). The multipartite clutters of the 60 subsets of V (H3,3,3) have C2
5 as a minor, and

thus, are non-ideal.

Theorems 7.23 and 7.24 have the following consequence:

Theorem 1.43 ([6]). Let C be a multipartite clutter over at most 9 elements. If C is ideal
and strictly polar, then C packs.

Proof. Assume that C is ideal and strictly polar. By Remark 1.38, there exists a set S ⊆ V (Hω1,...,ωn
) for

some n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1 such that C = mult(S). By Remark 7.22, if n ≤ 2 or ωn ≤ 2, then C packs.
Thus we may assume that n ≥ 3 and ωn ≥ 3. So, it follows that n = 3 and that ω1 = ω2 = ω3 = 3. Then
Theorems 7.23 and 7.24 imply that C packs.

7.5 Further notes

So far, we checked that there is no counter-example to Conjecture 1.33 among multipartite clutters over at
most 9 elements. Our next step is to generate and check multipartite clutters over 10 to 12 elements that
are ideal and strictly polar. To do so, we need to go through subsets of V (H4,3,3), V (H4,4,3), v(H4,4,4),
and V (H3,3,3,3). We end this chapter with the following question.

Question 7.25. Does any of V (H4,3,3), V (H4,4,3), V (H4,4,4), V (H3,3,3,3) have a subset whose multipartite
clutter is ideal and strictly polar but does not pack?
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Chapter 8

The reflective product

Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 = Hω1,...,ωn1
and G2 = Hδ1,...,δn2

for some ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1. Recall that

S1 × S2 = {(x, y) ∈ V (G1)× V (G2) : x ∈ S1 and y ∈ S2}
S1 ∗ S2 = (S1 × S2) ∪

(
S1 × S2

)
Let C1, C2 be clutters over disjoint ground sets E1, E2, respectively. Define the product of C1 and C2 as the
clutter over ground set E1 ∪ E2 whose members are

C1 × C2 := {C1 ∪ C2 : C1 ∈ C1, C2 ∈ C2}

and the coproduct of C1 and C2 as the clutter over ground set E1 ∪ E2 whose members are

C1 ⊕ C2 := the minimal sets of C1 ∪ C2.

Remark 8.1 ([2, 6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 =
Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1.Then the following statements hold:

(1) mult(S1 × S2) = mult(S1)×mult(S2),

(2) mult(S1 ∗ S2) = mult(S1 × S2)⊕mult(S1 × S2) = mult(S1 × S2) ∪mult(S1 × S2).

Proof. (1): mult(S1 × S2) =
{
C(x,y) : (x, y) ∈ S1 × S2

}
= {Cx ∪ Cy : x ∈ S1, y ∈ S2} = mult(S1) ×

mult(S2). (2): As S1 ∗ S2 = (S1 × S2) ∪
(
S1 × S2

)
, it follows that mult(S1 ∗ S2) is the clutter of the

minimal sets in mult(S1 × S2)∪mult(S1 × S2). As the members of mult(S1 × S2) and mult(S1 × S2) have
the same cardinality n1 +n2, they are the minimal sets of mult(S1×S2)∪mult(S1×S2), implying in turn
that mult(S1 ∗ S2) = mult(S1 × S2) ∪mult(S1 × S2).

In § 8.1, we show some basic facts on the products and coproducts of clutters. In § 8.2, we study the
products and reflective products of sets and their multipartite clutters, and we prove Theorem 1.44. In
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§ 8.3, we prove Theorem 1.45 implying that an ideal minimally non-packing multipartite clutter obtained
by a reflective product must be a cuboid, and we prove Theorem 1.46 giving a characterization of an ideal
minimally non-packing cuboid obtained by a reflective product. The material in this chapter is based on
a submitted paper [2] and a working paper [6].

8.1 Products and coproducts of clutters

In this section, we prove Proposition 8.3 on the products and coproducts and clutters.

Remark 8.2 ([2]). For clutters C1, C2 over disjoint ground sets, the following statements hold:

(1) b(C1 × C2) = b(C1)⊕ b(C2) and b(C1 ⊕ C2) = b(C1)× b(C2),

(2) for an element e of C1, (C1 × C2) \ {e} = (C1 \ {e})× C2 and (C1 × C2)/{e} = (C1/{e})× C2,

(3) for an element e of C1, (C1 ⊕ C2) \ {e} = (C1 \ {e})⊕ C2 and (C1 ⊕ C2)/{e} = (C1/{e})⊕ C2.

Proof. (1): It suffices to show that b(C1 × C2) = b(C1) ⊕ b(C2). Let B be a member of b(C1) ⊕ b(C2).
Then B is a minimal cover of C1 or C2, so B is a cover of C1 × C2. Hence, B contains a member of
b(C1×C2). Conversely, take a member B of b(C1×C2). Then B is a minimal cover of C1×C2. Suppose for
a contradiction that B is neither a cover of C1 nor a cover of C2. Then there exist C1 ∈ C1 and C2 ∈ C2
such that B ∩C1 = B ∩C2 = ∅, a contradiction as C1 ∪C2 is a member of C1×C2. Therefore, B is a cover
of C1 or C2, implying in turn that B contains a member of b(C1)⊕ b(C2). Hence, b(C1×C2) = b(C1)⊕ b(C2).
(2) and (3) are immediate.

Using this remark, we can easily prove the following:

Proposition 8.3 ([2]). Let C1, C2 be clutters over disjoint ground sets. Then the following statements
hold:

(1) if C1, C2 are ideal, then so are C1 × C2 and C1 ⊕ C2,

(2) if C1, C2 pack, then so do C1 × C2 and C1 ⊕ C2,

(3) if C1, C2 are strictly polar, then so are C1 × C2 and C1 ⊕ C2,

(4) if C1, C2 have the packing property, then so do C1 × C2 and C1 ⊕ C2,

(5) if C1, C2 have the max-flow min-cut property, then so do C1 × C2 and C1 ⊕ C2.

Proof. If C1 = {∅}, then C1×C2 = C2 and C1⊕C2 = {∅}. If C1 = {}, then C1×C2 = {} and C1⊕C2 = C2. In
both cases, the assertions trivially hold. Therefore, we we may assume that both C1 and C2 are nontrivial.

(1): We first show that C1⊕C2 is ideal. Notice that Q(C1⊕C2) = Q(C1)×Q(C2). As Q(C1) and Q(C2)
are integral polyhedra, so is Q(C1 ⊕ C2) and thus C1 ⊕ C2 is ideal. By Theorem 1.20, b(C1) and b(C2) are
ideal, implying in turn that b(C1)⊕ b(C2) is ideal. So, by Remark 8.2 (1), b(C1×C2) is ideal, and it follows
from Theorem 1.20 that C1 × C2 is ideal, as required.
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(2): By Remark 8.2 (2), τ(C1 × C2) = min{τ(C1), τ(C2)}. Since both C1, C2 pack, each of them has
τ(C1 × C2) disjoint members, thereby leading to τ(C1 × C2) disjoint members in C1 × C2. Thus, C1 × C2
packs. Moreover, by Remark 8.2 (3), τ(C1 ⊕ C2) = τ(C1) + τ(C2). Since C1 has τ(C1) disjoint members
and C2 has τ(C2) disjoint members, it follows that C1 ⊕C2 has τ(C1 ⊕C2) disjoint members. Thus, C1 ⊕C2
packs.

(3): To prove that C1 × C2 is strictly polar, we will show that every restriction of C1 × C2 is not
intersecting. Let C be a restriction of C1 × C2. Then, by Remark 8.2 (2), C = C′1 × C′2 for some restriction
C′1 of C1 and some restriction C′2 of C2. It can be readily checked that C is not intersecting if C′1 or C′2 is
trivial. Thus, we may assume that C′1 and C′2 are nontrivial. Since C1 and C2 are strictly polar, each of
C′1 and C′2 has two disjoint members, thereby leading to two disjoint members of C. This implies that C is
not intersecting. Therefore, C1 × C2 is strictly polar. To prove that C1 ⊕ C2 is strictly polar, we will show
that every restriction of C1 ⊕ C2 is not intersecting. Let C be a restriction of C1 ⊕ C2. By Remark 8.2 (3),
C = C′1 ⊕ C′2 for some minor C′1 of C1 and some minor C′2 of C2. If C′1 = {∅}, then C = {∅}, so C is not
intersecting. If C′1 = {}, then C = C′2 and thus C′2 is a restriction of C2, implying in turn that C is not
intersecting as C2 is strictly polar. Thus, we may assume that C′1 and C′2 are nontrivial. This implies that
C has two disjoint members, so it is not intersecting. Therefore, C1 ⊕ C2 is strictly polar.

(4): By Remark 8.2 (2), every minor of C1 × C2 is the product of a minor of C1 and a minor of C2,
so it follows from part (2) that every minor of C1 × C2 packs. Hence, C1 × C2 has the packing property.
Similarly, it follows from Remark 8.2 (3) and part (3) that C1 ⊕ C2 has the packing property.

(5): Let E1 and E2 be the ground sets of C1 and C2, respectively. Let w1 ∈ ZE1
+ , w2 ∈ ZE2

+ . For
i ∈ {1, 2}, let Di denote the replication of Ci with respect to wi. As C1 and C2 have the max-flow min-cut
property, it follows from Remark 7.7 that D1 and D2 pack. In fact, the replication of C1 ×C2 with respect
to (w1, w2) is D1 ×D2 and that of C1 ⊕ C2 is D1 ⊕D2. So, by part (3), both D1 ×D2 and D1 ⊕D2 pack,
implying in turn that C1 × C2 and C1 ⊕ C2 have the max-flow min-cut property.

8.2 Products and reflective products of sets

Using Remark 8.1 (1), we can show that the set product preserves the properties we considered so far:

Proposition 8.4 ([2, 6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where
G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Then the following statements

hold:

(1) if mult(S1),mult(S2) are ideal, then so is mult(S1 × S2),

(2) if mult(S1),mult(S2) pack, then so does mult(S1 × S2),

(3) if mult(S1),mult(S2) are strictly polar, then so is mult(S1 × S2),

(4) if mult(S1),mult(S2) have the packing property, then so does mult(S1 × S2),

(5) if mult(S1),mult(S2) have the max-flow min-cut property, then so does mult(S1 × S2).

Proof. By Remark 8.1 (1), we have mult(S1×S2) = mult(S1)×mult(S2). Therefore, the assertions follow
from Proposition 8.3.
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Recall that for i ∈ [2], ind(Si, xi) = mult(Si)/Cxi is the induced clutter of mult(Si) with respect to
xi ∈ V (Gi) (Section 7.2).

Remark 8.5 ([2, 6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 =
Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Then, viewing mult(S1) and mult(S2)

as clutters over disjoint ground sets, we have that

ind (S1 × S2, (x1, x2)) = ind(S1, x1)× ind(S2, x2)

for every (x1, x2) ∈ V (G1)× V (G2).

Moreover,

Proposition 8.6 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 =
Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Then, viewing mult(S1) and mult(S2)

as clutters over disjoint ground sets, we have

ind(S1 ∗ S2, (x1, x2)) =


{∅} if x1 ∈ S1 and x2 ∈ S2

{∅} if x1 ∈ S1 and x2 ∈ S2

ind(S1, x1)⊕ ind(S2, x2) if x1 ∈ S1 and x2 ∈ S2

ind(S1, x1)⊕ ind(S2, x2) if x1 ∈ S1 and x2 ∈ S2.

for every (x1, x2) ∈ V (G1)× V (G2).

Proof. By Remark 8.1 (2), ind(S1 ∗ S2, (x1, x2)) = ind(S1 × S2, (x1, x2)) ⊕ ind(S1 × S2, (x1, x2)). If x1 ∈
S1, x2 ∈ S2 or x1 ∈ S1, x2 ∈ S2, then ind(S1 × S2, (x1, x2)) = ∅ or ind(S1 × S2, (x1, x2)), and therefore,
ind(S1 ∗ S2, (x1, x2)) = {∅}. If x1 ∈ S1 and x2 ∈ S2, then ind(S1, x1) = {∅} and ind(S2, x2) = {∅}. So,
by Remark 8.5, ind(S1 × S2, (x1, x2)) = ind(S1, x1) and ind(S1 × S2, (x1, x2)) = ind(S2, x2), so ind(S1 ∗
S2, (x1, x2)) = ind(S1, x1) ⊕ ind(S2, x2). Similarly, if x1 ∈ S1 and x2 ∈ S2, ind(S1 ∗ S2, (x1, x2)) =
ind(S1, x1)⊕ ind(S2, x2).

We are ready to prove Theorem 1.44.

Theorem 1.44 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2),
where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1. If

mult(S1), mult(S1), mult(S2), mult(S2) are ideal, then so are mult(S1∗S2), mult
(
S1 ∗ S2

)
.

Proof. Since S1 ∗ S2 = S1 ∗ S2, it is sufficient to consider mult(S1 ∗ S2). To prove that mult(S1 ∗ S2)
is ideal, it suffices by Theorem 1.35 to prove that the induced clutters of mult(S1 ∗ S2) are ideal. To
this end, take (x1, x2) ∈ V (G1) × V (G2). Since mult(S1), mult(S1), mult(S2), mult(S2) are ideal, all of
ind(S1, x1), ind(S2, x2), ind(S1, x1), ind(S2, x2) are ideal, implying in turn that ind(S1 ∗ S2, (x1, x2)) is
ideal by Proposition 8.6.
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8.3 Minimally non-packing multipartite clutters obtained by the
reflective product

We will need the following remark:

Remark 8.7 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Then

τ(mult(S1 ∗ S2)) ≤ min
{
τ(mult(S1)) + τ(mult(S2)), τ(mult(S1)) + τ(mult(S2))

}
.

Proof. By Remark 8.1 (1), a cover of mult(S1) is a cover of mult(S1 × S2) and a cover of mult(S2) is a
cover of mult(S1 × S2). That means the union of a cover of mult(S1) and a cover of mult(S2) is a cover of
mult(S1 ∗ S2) by Remark 8.1 (2). Therefore, τ(mult(S1 ∗ S2)) ≤ τ(mult(S1)) + τ(mult(S2)). Similarly, we
obtain τ(mult(S1 ∗ S2)) ≤ τ(mult(S1)) + τ(mult(S2)), as required.

Take integers n ≥ 1, ω1 ≥ · · · ≥ ωn ≥ 1. Recall that
{
v1, . . . , vωn

}
⊆ V (Hω1,...,ωn

) is a general diagonal
of Hω1,...,ωn

if v1, . . . , vωn are ωn vertices at pairwise distance n. The following remark can be readily
proved:

Remark 8.8 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Let G = G1�G2. If L is a general diagonal

of G, then there exist general diagonals of G1 and G2, L1 and L2, respectively, such that L ⊆ L1 × L2.
Conversely, if L1 and L2 are general diagonals of G1 and G2, respectively, then there is a general diagonal
L of G such that L ⊆ L1 × L2.

We will need the following claim:

Remark 8.9 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 = Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1

, δ1, . . . , δn2
≥ 1. Let L1 and L2 be general diagonals of G1 and

G2, respectively. Then

ν(mult(S1 ∗ S2)) ≥ min {|L1 ∩ S1|, |L2 ∩ S2|}+ min
{
|L1 ∩ S1|, |L2 ∩ S2|

}
.

Proof. If two vertices (u1, v1), (u2, v2) ∈ (L1 ∩ S1) × (L2 ∩ S2) are at distance n1 + n2, then the distance
between u1, u2 is n1 and the distance between v1, v2 is n2. For i = 1, 2, (Li ∩ Si) has |Li ∩ Si| vertices at
distance ni, so (L1∩S1)×(L2∩S2) contains exactly min {|L1 ∩ S1|, |L2 ∩ S2|} vertices at pairwise distance
n1 + n2. Similarly, (L1 ∩ S1) × (L2 ∩ S2) contains exactly min

{
|L1 ∩ S1|, |L2 ∩ S2|

}
vertices at pairwise

distance n1 + n2.

Moreover, (u, v) ∈ (L1 ∩ S1) × (L2 ∩ S2) and (u′, v′) ∈ (L1 ∩ S1) × (L2 ∩ S2) are at distance n1 + n2,
because the distance between u and u′ is n1 and the distance between v and v′ is n2. As a result,
(L1∩S1)× (L2∩S2)∪ (L1∩S1)× (L2∩S2) contains min {|L1 ∩ S1|, |L2 ∩ S2|}+min

{
|L1 ∩ S1|, |L2 ∩ S2|

}
vertices at pairwise distance n1 +n2. As (L1∩S1)× (L2∩S2)∪ (L1∩S1)× (L2∩S2) is a subset of S1 ∗S2,
we get that ν(mult(S1 ∗ S2)) ≥ min {|L1 ∩ S1|, |L2 ∩ S2|}+ min

{
|L1 ∩ S1|, |L2 ∩ S2|

}
, as required.

It is easy to observe the following:
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Remark 8.10 ([6]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ V (G1) and S2 ⊆ V (G2), where G1 =
Hω1,...,ωn1

and G2 = Hδ1,...,δn2
for some ω1, . . . , ωn1 , δ1, . . . , δn2 ≥ 1. If S1 ∗ S2 does not pack but all of its

proper restrictions pack, then S1, S1, S2, S2 are nonempty.

Proof. Suppose for a contradiction that S2 = ∅. Then S2 = V (G2) and S = S1×V (G2), which implies that
mult(S1) and mult(V (G2)) are proper restrictions of mult(S). By Remark 8.1 (1), mult(S) = mult(S1)×
mult(V (G2)). So, Proposition 8.4 (2) implies that mult(S) packs, a contradiction. Therefore, S2 is
nonempty. Similarly, we can argue that S1, S1, S2 are all nonempty.

Recall that H(n, ω) denotes Hω,...,ω, so H(n, 2) is the skeleton graph of the n-dimensional hypercube.
The following remark will be useful to prove Theorem 1.45.

Remark 8.11 ([6]). Take an integer n ≥ 1 and an antipodally symmetric set S ⊆ V (H(n, 2)). If both S
and S are nonempty, then mult(S ∗ {1}) does not pack.

Proof. Take u ∈ S and v ∈ S. Let u and v denote the antipodal of u and that of v in H(n, 2), respectively.
Notice that (u, 1), (u, 1), (v, 2), (v, 2) ∈ S ∗ {1} and that they do not agree on a coordinate, implying
in turn that τ(mult(S ∗ {1})) = 2. To show that mult(S ∗ {1}) does not pack, it suffices to argue that
S ∗ {1} does not have antipodal vertices in H(n + 1, 2), thereby showing that ν(mult(S ∗ {1})) = 1. Let
(w, 1) ∈ S ∗ {1}. Then w ∈ S. As S is antipodally symmetric, the antipodal of w in H(n, 2), denoted
w, is also contained in S. That means (w, 2), the antipodal of (w, 1) in H(n + 1, 2), is not in S ∗ {1}.
Similarly, for every (w, 2) ∈ S ∗ {1}, the antipodal of (w, 2) in H(n + 1, 2) is not in S ∗ {1}. Therefore,
τ(mult(S ∗ {1})) = 2 and ν(mult(S ∗ {1})) = 1, so mult(S ∗ {1}) does not pack.

We are ready to prove Theorem 1.45.

Theorem 1.45 ([6]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2 and a set S ⊆ V (Hω1,...,ωn).
Assume that mult(S) contains no ∆3 as a minor and does not pack but all of its proper
restrictions pack. If S is obtained by a reflective product, then ω1 = · · · = ωn = 2, and
therefore, mult(S) is a cuboid.

Proof. By Proposition 7.5 and Remark 7.6, it is sufficient to show that ωn = 2. Suppose that ωn ≥ 3
for the sake of contradiction. As S is obtained by a reflective product, there exist S1 ⊆ V (G1) and
S2 ⊆ V (G2) such that S = S1 ∗ S2, where G = G1�G2. Then G1

∼= Hδ1,...,δn1
and G2

∼= Hγ1,...,γn2

for some n1, n2 ≥ 1 such that n1 + n2 = n, δ1 ≥ · · · ≥ δn1
≥ 3, and γ1 ≥ · · · , γn2

≥ 3 such that
{δ1, . . . , δn1

, γ1, . . . , γn2
} = {ω1, . . . , ωn} as multisets. It follows from Remark 8.10 that S1, S1, S2, S2 are

all nonempty.

Let τ denote τ(mult(S)). Then τ ≤ ωn and ν(mult(S)) ≤ τ − 1 as mult(S) does not pack. In fact,
ν(mult(S)) = τ − 1. Suppose otherwise. Then ν(mult(S)) ≤ τ − 2 and what is obtained after deleting one
element from mult(S) does not pack, since deleting one element from a clutter reduces its covering number

149



by at most one and does not increase its packing number. As every proper restriction of mult(S) packs,
we get ν(mult(S)) = τ − 1. As ν(mult(S)) = τ − 1, there is a general diagonal L of G with |L∩S| = τ − 1.

By Remark 8.8, there exist general diagonals of G1 and G2, L1 and L2, respectively, such that L ⊆ L1×
L2. Let pi := |Li∩Si|, qi := |Li∩Si| for i = 1, 2. Then p1 +q1 = δn1 ≥ ωn ≥ 3 and p2 +q2 = γn2 ≥ ωn ≥ 3.

Figure 8.1: L1 in G1 and L2 in G2

Claim 1. Either

• p1 < p2, q2 < q1, and p1 + q2 = τ − 1, or

• p2 < p1, q1 < q2, and p2 + q1 = τ − 1.

Proof of Claim. Without loss of generality, we may assume that δn1
≥ γn2

, so p1 + q1 ≥ p2 + q2. Let us
consider the case when p1 ≥ p2 and q1 ≥ q2. By Remark 8.9, ν(mult(S)) ≥ p2 + q2. However, we have
p2 + q2 = γn2

≥ ωn > τ − 1, a contradiction as we already argued that ν(mult(S)) = τ − 1. Therefore,
either p1 < p2 or q1 < q2.

If p1 < p2, then we get that q1 > q2 because δn1
≥ γn2

. In this case, (L1 ∩ S1) × (L2 ∩ S2) and(
L1 ∩ S1

)
×
(
L2 ∩ S2

)
contain p1 and q2 vertices at pairwise distance n1 +n2, respectively. Note also that

(L1 ∩ S1)× (L2 ∩ S2)∪
(
L1 ∩ S1

)
×
(
L2 ∩ S2

)
contains L∩S, so p1 + q2 ≥ |L∩S| = τ − 1. We know from

Remark 8.9 that p1 + q2 ≤ ν(mult(S)) = τ − 1. So, p1 + q2 = τ − 1. Similarly, if q1 < q2, then we can
show that p1 > p2 and p2 + q1 = τ − 1. 3

By Claim 1, we may assume that p1 < p2, q2 < q1, and p1 + q2 = τ − 1. We will argue that a general
diagonal of G1 has at most p1 feasible vertices and a general diagonal of G2 has at least p2 feasible vertices.
We need the following two claims to argue that.

Claim 2. Let D be a general diagonal of G1, and let p := |D ∩ S1|, q := |D ∩ S1|. Let F be the vertex-
induced subgraph of G1 that consists of the vertices at distance n1 from each vertex in D∩S1, and let H be
the vertex-induced subgraph of G1 that consists of the vertices at distance n1 from each vertex in D ∩ S1.
Then the following statements hold:

(1) if G1 does not contain a general diagonal with exactly p+ 1 feasible vertices, then V (F ) ∩ S1 = ∅,
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Figure 8.2: F and H in G1

(2) if G1 does not contain a general diagonal with exactly p− 1 feasible vertices, then V (H) ⊆ S1.

Proof of Claim. By the symmetry between S1 and S1, it is enough to show (1).

Assume that G1 does not contain a general diagonal with exactly p + 1 feasible vertices. Notice that
F ∼= H(δ1−p),...,(δn1−p). If q = 0, then F has no vertex and we automatically get V (F ) ∩ S1 = ∅. Consider
the case q = 1. Then D has p = δn1

− q = δn1
− 1 feasible vertices. Suppose for a contradiction that

there is a vertex v ∈ V (F ) ∩ S1. Then v is a feasible vertex that is at distance n1 from any vertex in
D ∩ S1. That means {v} ∪ (D ∩ S1) is a general diagonal of G1 with exactly δn1 = p+ 1 feasible vertices,
a contradiction to our assumption. Therefore, V (F ) ∩ S1 = ∅. Thus, we may assume that q ≥ 2.

Notice that D ∩ S1 is contained in F . That means D ∩ S1 is a general diagonal of F that contains no
vertex in S1. To prove V (F )∩S1 = ∅, we will argue that a general diagonal DF of F such that DF ∩S1 = ∅
satisfies the following:

(?) Any vertex that is a neighbor of a vertex in DF is not feasible, and any vertex that is a
neighbor of a vertex in DF is on a general diagonal of F without a feasible vertex.

Note that DF has q vertices u1, . . . , uq. Let u ∈ V (F ) be a vertex that is adjacent to DF , and we may
assume that u is adjacent to u1. If u is at distance n1 from all of u2, . . . , uq, then {u, u2, . . . , uq} is a
general diagonal of F . Consider (D ∩ S1)∪ {u, u2, . . . , uq}. This is a general diagonal of G1. So if u ∈ S1,
then (D ∩ S1)∪ {u, u2, . . . , uq} contains exactly p+ 1 feasible vertices, a contradiction to our assumption.
Thus, u is not contained in S1, and also, {u, u2, . . . , uq} is a general diagonal of F with no vertex in S1.

Otherwise, at least one of u2, . . . , uq is at distance less than n1 from u. In fact, since u and u1 are
adjacent, u is at distance n1 − 1 from one point and at distance n1 from all the other points in u2, . . . , uq.
Thus, we may assume that u has exactly one common coordinate with u2 but is at distance n1 from the
other vertices. Let Q denote the smallest hypercube containing u1 and u2. Then u belongs to Q. We will
show that V (Q) ∩ S1 is antipodally symmetric. Let w ∈ V (Q), and let w be the antipodal of w in Q.
Consider a general diagonal (D ∩ S1) ∪ {w,w, u3, . . . , uq}. If |{w,w} ∩ S1| = 1, then the general diagonal
has exactly p + 1 vertices, contrary to our assumption. Therefore, w ∈ S1 if and only if w ∈ S1, thereby
implying that V (Q)∩S1 is antipodally symmetric. Since both S2 and S2 are nonempty, we can find v ∈ S2

and v′ ∈ S2 such that v, v′ are adjacent in G2. Notice that S has (V (Q) ∩ S1) ∗ {v} as a restriction. After
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dropping the coordinates where the vertices in (V (Q) ∩ S1) ∗ {v} agree, we obtain a set isomorphic to
(V (Q) ∩ S1) ∗ {1}.

Suppose for a contradiction that u ∈ S1. Then V (Q) contains both a feasible vertex (u) and an
infeasible vertex (u1), which means both V (Q) ∩ S1 and V (Q) ∩ S1 are nonempty.

Figure 8.3: S1, S1, and S2

By Remark 8.11, mult ((V (Q) ∩ S1) ∗ {0}) does not pack. However, this contradicts the assumption that
mult(S) has no proper restriction that does not pack. That means that u 6∈ S1 and that u is contained in
a general diagonal {u, ū, u3, . . . , uq} of F containing no vertex in S1. Therefore a general diagonal DF of
F with no feasible vertex satisfies (?).

Now we are ready to prove that V (F )∩S1 = ∅. Let u ∈ V (F ). We argue that u is contained in a general
diagonal of F with no vertex in S1, by induction on the distance between u and D∩S1(= D∩S1 ∩V (F )).
If the distance is 0, then u is contained in D ∩ S1 and thus the assertion holds as D ∩ S1 is a general
diagonal of F . Assume that the assertion holds for any vertex with distance from D ∩ S1 at most k for
some k ≥ 0. Let the distance from u to D∩S1 be k+ 1. Then it is adjacent to a vertex that is at distance
k from D ∩ S1, so it is contained in a general diagonal with no vertex in S1 by the induction hypothesis.
By (?), u is infeasible and belongs to a general diagonal of F with no vertex in S1. This complete the
induction step. So, V (F ) ∩ S1 = ∅, as required. 3

Claim 3. Let D be a general diagonal of G2, and let p := |D ∩ S2|, q := |D ∩ S2|. Let F be the vertex-
induced subgraph of G2 that consists of the vertices at distance n2 from each vertex in D∩S2, and let H be
the vertex-induced subgraph of G2 that consists of the vertices at distance n2 from each vertex in D ∩ S2.
Then the following statements hold:

(1) if G2 does not contain a general diagonal with exactly p+ 1 feasible vertices, then V (F ) ∩ S2 = ∅,

(2) if G2 does not contain a general diagonal with exactly p− 1 feasible vertices, then V (H) ⊆ S2.

Proof of Claim. Claim 3 follows from Claim 2 by the symmetry between G1 and G2. 3

Let F1 be the subgraph of G1 that consists of the vertices in G1 that are at distance n1 from each
vertex in L1 ∩S1, and let H2 be the subgraph of G2 that consists of the vertices in G2 that are at distance
n2 from each vertex in L2 ∩ S2 (see Figure 8.4). Then we obtain V (F1) ∩ S1 = ∅ by Claim 2(1) and
Claim 3(1) and V (H2) ⊆ S2 by Claim 2(2) and Claim 4(2).

Now we are ready to prove the following:
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Figure 8.4: F1 in G1 and H2 in G2

Claim 4. The following statements hold.

(1) G1 does not have a general diagonal with at least p1 + 1 vertices in S1,

(2) G2 does not have a general diagonal with at most p2 − 1 vertices in S2.

Proof of Claim. (1): We show that G1 does not have a general diagonal with exactly k vertices in S1 for
any k ≥ p1 + 1. We argue by induction on k. Let us consider the base case k = p1 + 1. Suppose that G1

has a general diagonal L′1 with |L′1 ∩ S1| = p1 + 1. In this case, |L′1 ∩ S1| = q1 − 1. Since p1 < p2 and
q2 < q1 by Claim 1, we have that p1 + 1 ≤ p2 and q2 ≤ q1 − 1. That means that (L′1 ∩ S1) × (L2 ∩ S2)
contains p1 + 1 vertices at pairwise distance n1 +n2, while

(
L′1 ∩ S1

)
×
(
L2 ∩ S2

)
contains q2 vertices that

are at pairwise distance n1 + n2. This implies that G has a general diagonal with at least p1 + q2 + 1
vertices in S. By Claim 1, p1 + q2 + 1 = τ , a contradiction as ν(mult(S)) = τ − 1. Therefore, G1 contains
no general diagonal with exactly p1 + 1 vertices in S1.

Now assume that G1 does not have a general diagonal with k vertices in S1 for some k ≥ p1 + 1. We
would like to show that G1 does not have a general diagonal with k+1 vertices in S1 either. Suppose for a
contradiction that there is a general diagonal L′1 of G1 with |L′1∩S1| = k+1. Then |L′1∩S1| = δn1

−k−1.
Let H ′1 be the vertex-induced subgraph of G1 that consists of the vertices at distance n1 from each
vertex in L′1 ∩ S1. The induction hypothesis and Claim 3(2) imply that V (H ′1) ⊆ S1. Notice that
H ′1
∼= H(δ1−δn1

+k+1),...,(δn1
−δn1

+k+1) and F1
∼= H(δ1−p1),...,(δn1

−p1). Observe that for each j,

(δj − δn1
+ k + 1) + (δj − p1) = 2δj − δn + k + 1− p1 ≥ δj + 2.

This means that V (F1) and V (H ′1) overlap. However, we observed that V (F1) ∩ S1 = ∅, a contradiction
as V (H ′1) ⊆ S1. Therefore, G1 does not have a general diagonal with more than p1 + 1 vertices in S1, as
required.

(2): By Claim 2(2), we know that G2 does not have a general diagonal with exactly q2 + 1 vertices in
S2. By the symmetry, we can similarly show that G2 does not have a general diagonal with k vertices in
S2 for any k > q1 + 1. Therefore, G2 does not have a general diagonal with less than p2− 1 vertices in S2,
as required. 3

By Claim 4, the maximum number of feasible vertices that a general diagonal of G1 has is p1 and
the maximum number of infeasible vertices that a general diagonal of G2 has is q2. That means that
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Figure 8.5: L1 in G1: a contradiction

ν(mult(S1)) = p1 and ν(mult(S2)) = q2. Since mult(S1) and mult(S2) are proper restrictions of mult(S),
they pack, so we get τ(mult(S1)) = p1 and τ(mult(S2)) = q2. By Remark 8.7, τ(mult(S1 ∗ S2)) ≤ p1 + q2,
but this is a contradiction as p1 + q2 = τ − 1. Therefore, we have that ωn = 2, and by Proposition 7.5 and
Remark 7.6, C is a cuboid.

By Theorem 1.45, an ideal minimally non-packing multipartite clutter obtained by a reflective product
must be a cuboid. Lastly, we prove Theorem 1.46.

Theorem 1.46 ([2]). Take integers n1, n2 ≥ 1 and sets S1 ⊆ {1, 2}n1 and S2 ⊆ {1, 2}n2 ,
where mult(S1 ∗ S2) does not pack but all of its proper restrictions pack. Then one of the
following statements holds:

(i) S1 ∗ S2
∼= Rk,1 for some k ≥ 1,

(ii) n1 = 1 and S2, S2 are antipodally symmetric and strictly connected, or

(iii) n2 = 1 and S1, S1 are antipodally symmetric and strictly connected.

Moreover, S1 ∗ S2
∼= S1 ∗ S2.

Proof. Let us start with the following claim:

Claim 1. Either n1 = 1 and S2 is antipodally symmetric, or n2 = 1 and S1 is antipodally symmetric.

Proof of Claim. We first argue that one of S1 and S2 is antipodally symmetric. Suppose not. Then for
i ∈ [2], there exists ui ∈ Si such that the antipodal of ui, denoted ui, is in Si. So, (u1, u2), (u1, u2) ∈ S1∗S2.
Notice that (u1, u2) is the antipodal of (u1, u2), implying in turn that C(u1,u2) and C(u1,u2) are disjoint
members of mult(S1 ∗S2) and that mult(S1 ∗S2) packs, a contradiction. We may therefore assume that S2

is antipodally symmetric. Suppose for a contradiction that n1 6= 1. Since both S1 and S1 are nonempty
by Remark 8.10, S1 has {1} ⊆ {1, 2} as a proper set-restriction as we assumed that n1 ≥ 2. So, S1 ∗ S2

contains {1} ∗ S2 as a proper set-restriction, so mult({1} ∗ S2) is a proper restriction of mult(S1 ∗ S2)
by Remark 7.11. It follows from Remark 8.11 that mult({1} ∗ S2) does not pack, a contradiction to our
assumption that every proper restriction of mult(S1 ∗ S2) packs. Therefore, n1 = 1, as required. 3

154



By Claim 1, we may assume that n2 = 1 and S1 is antipodally symmetric. Since n2 = 1 and S2, S2 are
nonempty, we may assume that S2 = {1}. In turn, S1 ∗ S2 = S1 ∗ {1}.

Claim 2. S1 ∗ S2
∼= S1 ∗ S2.

Proof of Claim. Recall that S1 ∗ S2 = S1 ∗ S2 = S1 ∗ {2}. Since {1} ∼= {2}, S1 ∗ S2
∼= S1 ∗ S2, as required.

3

As S1 is antipodally symmetric, S1 is also antipodally symmetric. So, if S1, S1 are strictly connected,
then (iii) holds. Thus, we may assume that either S1 or S1 is not strictly connected. We will show that
(i) holds in this case. By Claim 2, it is sufficient to show that S1 ∗ S2 = Rk,1 or S1 ∗ S2 = Rk,1 for some
k ≥ 1. So, without loss of generality, we may assume that S1 is not strictly connected.

Claim 3. S1 ∗ S2 = Rk,1 for some k ≥ 1.

Proof of Claim. Since S1 is not strictly connected, one of its set-restrictions is not connected. Let R ⊆
{1, 2}n be a set-restriction of S1 that is not connected. Then there exist vertices a, b ∈ R such that
there is no path between a and b in the subgraph of H(n, 2) induced by R; among all possible such pairs
of vertices, we take a, b so that d(a, b), the number of coordinates a and b differ on, is minimized. By
Remark 7.13 (1), the distance between a and b in H(n, 2) is exactly d(a, b). As a and b are disconnected,
d(a, b) ≥ 2, so d(a, b) = k + 1 for some k ≥ 1. Let H[a, b] be the vertex-induced subgraph of H(n, 2)
consisting of all the vertices that lie on a shortest ab-path. By Remark 7.13 (3), the smallest set-restriction
of V (H(n, 2)) containing V (H[a, b]) is a hypercube of dimension k + 1. Moreover, by our choice of a, b,
R∩V (H[a, b]) = {a, b}, implying in turn that the smallest set-restriction of R containing a, b is isomorphic
to
{
1k+1,2k+1

}
. Therefore, S1 contains a set-restriction isomorphic to

{
1k+1,2k+1

}
. Since S2 = {1}.

S1 ∗ S2 has a set-restriction isomorphic to
{
1k+1,2k+1

}
∗ {1} = Rk,1. Our assumption that mult(S1 ∗ S2)

does not pack indeed indicates that S1 ∗ S2 = Rk,1, as required. 3

This finishes the proof.

8.4 Further notes

We have seen thatRk,1, k ≥ 1 andR5 (see § 1.9 for their definitions) are sets obtained by a reflective product
and that their multipartite clutters are ideal and minimally non-packing. By Theorems 1.45 and 1.46, we
know that an ideal minimally non-packing multipartite clutter obtained by a reflective product must be
the cuboid of Rk,1 for some k ≥ 1 or S ∗ {1} where S is antipodally symmetric and strictly connected. Is
there an antipodally symmetric and strictly connected set S different from R5 such that mult(S ∗ {1}) is
ideal and minimally non-packing?

Recall that R5 = C4 ∗ {1} where

C4 = {1111, 2111, 2211, 2221, 2222, 1222, 1122, 1112}
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and that C4 is antipodally symmetric and strictly connected. There is a generalization of C4 & R5, namely,

Ck−1 :=

{
1k−1 +

d∑
i=1

ei, 2k−1 −
d∑
i=1

ei : d ∈ [k − 1]

}
⊆ {1, 2}k−1

Rk := Ck−1 ∗ {1}.

It is easy to show that Ck−1 is antipodally symmetric and strictly connected. It turns out that mult(Rk)
is non-ideal for k ≥ 6. So, we end this chapter by introducing the following conjecture:

Conjecture 8.12. {Rk,1 : k ≥ 1}∪ {R5} are the only sets whose cuboids are ideal minimally non-packing
and obtained by a reflective product.
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Chapter 9

Ideal vector spaces

Take an integer n ≥ 1 and a prime power q. Let GF (q) denote the finite field of order q, and let
S ⊆ GF (q)n be a vector space over GF (q). As the element set of GF (q) is isomorphic to [q], there is a
bijection f : GF (q)→ [q]. Then we can define mult(S) as the clutter over ground set [qn] whose members
are Cv for v = (v1, . . . , vn) ∈ GF (q)n, where

Cv := {f(vi) + (i− 1)q : i ∈ [n]} ⊆ [qn] .

So, mult(S) is a multipartite clutter whose ground set is partitioned into n sets of size q. Recall that we
asked the following two questions: When is mult(S) ideal?

• (Question 1.47) When does mult(S) have the max-flow min-cut property?

• (Question 1.48) When is mult(S) ideal?

Recall that Theorem 1.49 provides answers to these questions for when q = 2. In this chapter, we study
these questions for prime powers other than 2.

Question 1.47 is answered in § 9.1 by Theorem 1.51 for the q = 4 case and in § 9.1 – 9.2 by Theorem 1.50
for the prime powers other than 4. We split the proof of Theorem 1.50 into two parts: one for the case when
q is not a power of 2 in § 9.1 and the other for the case when q is a power of 2 in § 9.2. Theorem 1.50 also
answers Question 1.48 when q is not 4. Question 1.48 when q = 4 is answered in § 9.3 by Theorem 1.52.
This chapter is based on [5].

9.1 Theorem 1.50 for when the characteristic of GF (q) is not 2

In this section, we prove Theorems 1.50 and 1.51.

Lemma 9.1 ([5]). Take integers n ≥ 3, ω1 ≥ · · · ≥ ωn ≥ 2. Let S ⊆ V (Hω1,...,ωn
). If mult(S) contains

no ∆3 as a minor, then for any distinct a, b, c ∈ S and distinct i, j, k ∈ [n] such that

ai = bi 6= ci, bj = cj 6= aj , ck = ak 6= bk,
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there exists d ∈ S − {a, b, c} that satisfies the following:

(1) d` ∈ {a`, b`, c`} for all ` ∈ [n], and

(2) at least two of di = ci, dj = aj, dk = bk hold.

Proof. Let V denote the ground set of mult(S), and let I := V − (Ca ∪ Cb ∪ Cc). Let J denote the set
of elements in Ca ∪ Cb ∪ Cc that correspond to {a`, b`, c` : ` ∈ [n] − {i, j, k}}. Then the members of
mult(S) \ I/J correspond to

R := {(vi, vj , vk) : v ∈ S, v` ∈ {a`, b`, c`} for ` ∈ [n]} .

The incidence matrix of mult(S) \ I/J looks like the following:


ai

︷︸︸︷
ci

︷︸︸︷
aj bj ck

︷︸︸︷
bk

a 1 0 1 0 1 0
b 1 0 0 1 0 1
c 0 1 0 1 1 0

...


Note that R contains (ai, aj , ak), (bi, bj , bk), and (ci, cj , ck). Suppose that there is no d ∈ S−{a, b, c} that
satisfies (1) and (2). Let d ∈ S with d` ∈ {a`, b`, c`} for ` ∈ [n]. Since d satisfies (1), d does not satisfy (2).
Then (di, dj , dk) can be (ci, bj , ck), (ai, aj , ck), (ai, bj , bk), or (ai, bj , ck). That means

R ⊆ {(ai, aj , ak), (bi, bj , bk), (ci, cj , ck), (ci, bj , ck), (ai, aj , ck), (ai, bj , bk), (ai, bj , ck)} .

Observe that a row of M(mult(S) \ I/J) other than the ones for a, b, c, if any, has at least two nonzero
entries in the columns for ai, bj , ck. After contracting the columns for ci, aj , bk, the resulting incidence
matrix is one of the following two.


ai bj ck

1 0 1
1 1 0
0 1 1

,

ai bj ck

1 0 1
1 1 0
0 1 1
1 1 1

.
This implies that we obtain ∆3 after contracting ci, aj , bk from mult(S) \ I/J , a contradiction to the
assumption that mult(S) has no ∆3 minor.

Recall that the characteristic of GF (q) is the smallest integer ` such that a+ · · ·+ a︸ ︷︷ ︸
`

= 0 for all

a ∈ GF (q).

Lemma 9.2 ([5]). Let q be a prime power. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q).
If S does not admit a basis with vectors of pairwise disjoint supports, then the following statements holds:

(1) mult(S) contains ∆3 or Q6 as a minor.
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(2) If q is not a power of 2, then mult(S) contains ∆3 as a minor.

(3) If q = 2k, k ≥ 3, then mult(S) has C2
5 as a minor.

Proof of (1)&(2). Assume that S does not admit a basis with vectors of pairwise disjoint supports. We
will show that if mult(S) does not contain ∆3 as a minor, then q is a power of 2 and mult(S) contains Q6

as a minor.

Assume that S contains no ∆3 as a minor. Let v1, . . . , vr ∈ GF (q)n be a basis of S. After elementary
arithmetic operations over GF (q), we may assume that for each i = 1, . . . , r,

vii = 1 and vij = 0 ∀j ∈ [r]− {i}

Since there is no basis of S with vectors of pairwise disjoint supports, we may assume that v1
r+1, v

2
r+1 6= 0.

Let x and y be the multiplicative inverse of v1
r+1 and that of v2

r+1 in GF (q), respectively. Let a := 0 ∈
GF (q)n, b := xv1, and c := yv2. Notice that a, b, c ∈ S and that a, b, c satisfy

(a1, a2, ar+1) = (0, 0, 0), (b1, b2, br+1) = (x, 0, 1), (c1, c2, cr+1) = (0, y, 1).

Let R be the restriction {d ∈ S : dj ∈ {aj , bj , cj} for j ∈ [n]} of S.

Claim 1. R ⊆
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}

}
.

Proof of Claim. Let u ∈ R. Then u =
∑r
j=1 λjv

j for some λ1, . . . , λr ∈ GF (q). Since {aj , bj , cj} = {0} for

j = 3, . . . , r, it follows that u3 = · · · = ur = 0, which implies that λ3 = · · · = λr = 0 and so u = λ1v
1+λ2v

2.
Notice that λ1 ∈ {0, x} and λ2 ∈ {0, y}, because {a1, b1, c1} = {0, x} and {a2, b2, c2} = {0, y}. 3

Claim 2. q is a power of 2 and R =
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}

}
.

Proof of Claim. By Lemma 9.1, R contains d 6∈ {a, b, c} such that

(d1, d2, dr+1) = (0, y, 0), (x, 0, 0), (x, y, 1), or (x, y, 0). (9.1)

By Claim 1, d ∈
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}

}
. As d 6= a, b, c, it must be the case that xv1 +

yv2 = d, so xv1 + yv2 ∈ R. In particular, R =
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}

}
. Since d =

xv1 + yv2, we obtain (xv1 + yv2)r+1 = 1 + 1 = dr+1 ∈ {0, 1}. Since 1 6= 0, we have 1 + 1 = 0, so q is a
power of 2, as required. 3

By Claim 2, R =
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}

}
, so the projection of R onto 1, 2, r + 1 is

R1,1, so mult(S) has a Q6 minor. So, we have shown that if mult(S) has no ∆3 as a minor, then q is a
power of 2 and mult(S) contains Q6 as a minor, as required.

We will prove Lemma 9.2 (3) in Section 9.2. Lemma 9.2 (1) implies the following theorem:

Theorem 9.3 ([5]). Let q be a prime power. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q).
Then the following statements are equivalent:

(i) mult(S) contains no ∆3, Q6 as a minor.
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(ii) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (q)n have pairwise disjoint supports.

(iii) mult(S) has the max-flow min-cut property.

Proof. Direction (iii)⇒(i) is straightforward, and direction (i)⇒(ii) follows from Lemma 9.2 (1). Thus,
what remains is to show direction (ii)⇒(iii).

Assume that S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (q)n have pairwise disjoint supports. For i ∈ [r], let
ui denote the subvector of vi that consists of vi’s nonzero coordinates. Then, after a possible rearrangement
of the coordinates, we may assume that S is expressed as the Cartesian product of r + 1 sets as follows:

S = 〈u1〉 × 〈u2〉 × · · · × 〈ur〉 × {0}

where the length of 0 is the number of coordinates not covered by the supports of v1, . . . , vr. By Re-
mark 8.1 (1), we have that

mult(S) = mult
(
〈u1〉

)
×mult

(
〈u2〉

)
× · · · ×mult (〈ur〉)×mult ({0}) .

Notice that for any distinct x, y ∈ GF (q), xui and yui do not have common coordinates. Thus Cxui

and Cyui , the members of mult
(
〈ui〉

)
corresponding to xui and yui, are disjoint. That means that

the members of mult
(
〈ui〉

)
are pairwise disjoint. By Remark 7.16, mult

(
〈ui〉

)
has the max-flow min-cut

property. mult({0}) has only one member, so it also has the max-flow min-cut property. So Remark 8.4 (5)
implies that S has the max-flow min-cut property.

Theorem 1.51 is an immediate corollary of Theorem 9.3.

Theorem 1.51 ([5]). Let n ≥ 3, and let S ⊆ GF (4)n be a vector space over GF (4). Then
the following statements are equivalent:

(i) mult(S) contains no ∆3, Q6 as a minor,

(ii) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (4)n have pairwise disjoint supports,

(iii) mult(S) has the max-flow min-cut property.

Using Lemma 9.2 (2) and Theorem 9.3, we can prove Theorem 1.50 for the case when q is not a power
of 2.

Theorem 1.50 ([5]). Let q be a prime power other than 2, 4. Let n ≥ 3, and let S ⊆
GF (q)n be a vector space over GF (q). Then the following statements are equivalent:

(i) mult(S) contains no ∆3, Q6, C
2
5 as a minor,
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(ii) S = 〈v1, . . . , vr〉 where v1, . . . , vr ∈ GF (q)n have pairwise disjoint supports,

(iii) mult(S) has the max-flow min-cut property,

(iv) mult(S) is ideal.

Proof of Theorem 1.50 when q is not a power of 2. Take a prime power q other than 2, 4 and an integer
n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q). By Theorem 9.3, (i) – (iii) are equivalent.
Clearly, if mult(S) has the max-flow min-cut property, then mult(S) is ideal. It remains to be shown that
(iv)⇒(ii). If mult(S) is ideal, then it has no ∆3 as a minor. By Lemma 9.2 (2), S has a basis with vectors
of pairwise disjoint supports, so (ii) holds.

9.2 Theorem 1.50 when q is a power of 2

To finish the proof of Theorem 1.50, we will show that (ii) and (iv) are equivalent if q = 2k for k ≥ 3,
but more techniques are involved in this case. Recall that for a vector space over GF (2), there is a binary
matroid associated with it. In fact, for any prime power q and any vector space over GF (q), there is an
associated matroid:

For S = {x ∈ GF (q)n : Ax = 0}, denote by M(S) the linear matroid over GF (q) represented
by A.

Remark 9.4 ([5]). Let q be a prime power. Let n ≥ 1, and let S ⊆ GF (q)n be a vector space over GF (q).
Let S be defined as the clutter of the minimal supports of the points in S − {0}. Then S is the clutter of
circuits of M(S).

Proof. First, we show that S is the clutter of circuits of a matroid. It suffices to check that S satisfies
the Circuit Elimination Axiom. Let C1, C2 be distinct sets in S such that i ∈ C1 ∩ C2 for some i ∈ [n].
We need to show that (C1 ∪ C2) − {i} contains a set in S. Then there exist two points u, v such that
support(u) = C1 and support(v) = C2. Let x = u−1

i and y = −v−1
i . Consider xu + yv ∈ S − {0}. Since

x, y 6= 0, support(xu) = C1 and support(yv) = C2, so support(xu+yv) ⊆ C1∪C2. Moreover, (xu+yv)i =
xui+ yvi = 1−1 = 0. This means that i 6∈ support(xu+ yv) and that support(xu+ yv) ⊆ (C1∪C2)−{i}.
Therefore, (C1 ∪ C2)− {i} contains a set in S, as required.

To complete the proof, it is sufficient to show that the clutter of circuits of M(S) is precisely S. As
S is a vector space over GF (q), S = {x ∈ GF (q)n : Ax = 0} for some matrix A whose entries are in
GF (q). Let A(·,1), . . . , A(·,n) denote the columns of A. Let C ⊆ [n]. Then the columns in

{
A(·,j) : j ∈ C

}
are linearly dependent if, and only if, there exists x ∈ GF (q)n such that Ax = 0 and support(x) ⊆ C.
Therefore, C is a circuit of M(S) if, and only if, C is a minimal support of the points in S − {0}. That
means that the clutter of circuits ofM(S) is precisely the clutter of the minimal supports of the points in
S − {0}, as required.
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Next, we remark that matroid deletions and contractions in M(S) correspond to 0-restrictions and
projections in S. For a matroid M and disjoint subsets I, J of the ground set of M , we denote by M \ I/J
the matroid minor of M obtained after deleting I and contracting J . Let C(M) denote the clutter of the
circuits of M . We leave the following as an easy exercise for the reader.

Remark 9.5. Let C1, C2 be clutters over the same ground set. If every member of C1 contains a member
of C2 and every member of C2 contains a member of C1, then C1 = C2.

With Remark 9.5, we can prove the following lemma:

Lemma 9.6 ([5]). Let q be a prime power. Let n ≥ 1, and let S ⊆ GF (q)n be a vector space over GF (q).
Then M(S)\ I/J , for some disjoint I, J ⊆ [n], is precisely M(S′) where S′ ⊆ GF (q)n−|I|−|J| is the vector
space over GF (q) obtained from

S ∩ {x ∈ GF (q)n : xi = 0 ∀i ∈ I}

after dropping coordinates in I ∪ J .

Proof. It is clear that S′ is a vector space over GF (q), soM(S′) is well-defined. To prove thatM(S)\I/J =
M(S′), we will show that C (M(S) \ I/J) = C (M(S′)). Let C1 ∈ C (M(S) \ I/J). Then there exists
C ∈ C (M(S)) such that C ∩ I = ∅ and C1 = C − J . By Remark 9.4, C1 = support(x) for some x ∈ S.
As C ∩ I = ∅, it follows that xi = 0 for i ∈ I, which implies that there exists x′ ∈ S′ − {0} such that
support(x′) = support(x) − J . So, by Remark 9.4, there exists C2 ∈ C (M(S′)) such that C2 ⊆ C1.
Therefore, every member of C (M(S) \ I/J) contains a member of C (M(S′)). Let C2 ∈ C (M(S′)). By
Remark 9.4, C2 = support(x′) for some x′ ∈ S′. This implies that there is some x ∈ S such that xi = 0
for i ∈ I and support(x) − J = support(x′). Since support(x) contains a circuit of M(S) by Remark 9.4
and support(x) ∩ I = ∅, C2 = support(x′) contains a circuit of M(S) \ I/J . Therefore, by Remark 9.5,
C (M(S) \ I/J) = C (M(S′)), as required.

Note that mult(S′), where S′ is defined as in Lemma 9.6, is a minor of mult(S). So, if mult(S) is ideal,
then mult(S′) is also ideal. For t ≥ 3, let At denote the graph that consists of two vertices and t parallel
edges connecting them (see Figure 9.1). Hereinafter, for a graph G, we denote by M(G) the cycle matorid

Figure 9.1: Graph on two verties and parallel edges

of G. We will show in Proposition 9.12 that if q = 2k for some k ≥ 3, and M(At) is the matroid associated
with S′, a vector space over GF (q), then mult(S′) must be non-ideal. This in turn implies that if the
multipartite clutter of a vector space S over GF (q) is ideal, then M(S) does not contain M(At), t ≥ 3 as

162



a minor, and this fact will be the key for finishing the proof of Theorem 1.50. The following remark will
be useful.

Remark 9.7 ([5]). Let q be a prime power. Let n ≥ 1, and let S ⊆ GF (q)n be a vector space over GF (q).
Let fi : GF (q)→ GF (q) be a bijection for i ∈ [n], and g : GF (q)n → GF (q)n be the bijection defined as

g(x) := (f1(x1), . . . , fn(xn)) , x ∈ GF (q)n.

Then mult(S) ∼= mult (g(S)).

Proof. Let the ground set of mult(S) be partitioned into E1, . . . , En where Ei corresponds to the ith

coordinate of the points in S for i ∈ [n]. After relabeling the elements in Ei with respect to fi for i ∈ [n],
we obtain mult(g(S)), thereby showing that mult(S) ∼= mult(g(S)), as required.

With Remark 9.7, we can prove the following:

Remark 9.8 ([5]). Let q be a prime power. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q).
Then M(S) = M(An) if, and only if, mult(S) ∼= mult ({x ∈ GF (q)n : x1 + · · ·+ xn = 0}).

Proof. Let {1, 2, 3 . . . , n} denote the edge set of An. Then the cycle space of An is generated by {1, 2},
{1, 3}, . . . , {1, n}. (⇐): Let S be the clutter of the minimal supports of the points in S − {0}. Then
S = {{i, j} : i 6= j}, so M(S) = M(An) by Remark 9.4. (⇒): Since M(S) = M(An), S contains n − 1
points u1, . . . , un−1 whose supports are {1, 2}, {1, 3}, . . . , {1, n}, respectively. Notice that u1, . . . , un−1 are
linearly independent over GF (q), so the rank of S is at least n−1. On the other hand, the rank is less than
n, because S 6= GF (q)n. Thus, S = 〈u1, . . . , un−1〉. After scaling the uis, if necessary, we may assume
that the first coordinate of each ui is 1. Hence, u1, . . . , un−1 are of the following form:

u1

u2

...
un−1


1 λ1 0 · · · 0
1 0 λ2 · · · 0
...

...
...

...
...

1 0 0 · · · λn−1


where λ1, . . . , λn−1 ∈ GF (q)− {0}. Notice that {x ∈ GF (q)n : x1 + · · ·+ xn = 0} = 〈v1, . . . , vn−1〉 where

v1

v2

...
vn−1


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1

 ,
implying in turn that

{x ∈ GF (q)n : x1 + · · ·+ xn = 0} =
{

(x1, λ
−1
1 x2, λ

−1
2 x3, . . . , λ

−1
n−1xn) : x ∈ S

}
.

So, by Remark 9.7, mult(S) ∼= mult ({x ∈ GF (q)n : x1 + · · ·+ xn = 0}).
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Let S = {x ∈ GF (q)n : x1 + · · ·+ xn = 0}. We will show that mult(S) is non-ideal if q = 2k for some
k ≥ 3. One way to argue that a multipartite clutter is non-ideal is to find an induced clutter that is non-
ideal by Lemma 1.35. To see how an induced clutter of mult(S) looks, we define an n-partite n-uniform
hypergraph Hn as follows:

• The vertex set of Hn has n parts, where each part is a distinct copy GF (q).

• En =
{
{x1, . . . , xn} : (x1, . . . , xn) ∈ S, xi belongs to the ith part, i ∈ [n]

}
is the set of edges in Hn.

Then there is a one-to-one correspondence between En and S. Let α = (α1, . . . , αn) 6∈ S. Let Hn,α be what
is obtained from Hn after “contracting” vertices α1, . . . , αn. More precisely, Hn,α be defined as follows:

• The vertex set of Hn,α has n parts V1 ∪ · · · ∪ Vn where Vi = GF (q)− {αi} for i ∈ [n].

• En,α = {e− {α1, . . . , αn} : e ∈ En} is the set of edges in Hn,α.

Notice that V1, . . . , Vn are still symmetric.

Remark 9.9 ([5]). Let α 6∈ S. Then there is a one-to-one correspondence between the vertices & the
minimal edges of Hn,α and the elements & the members of ind(S, α), the induced clutter of mult(S) with
respect to α.

The following lemma provides a characterization of the edges of Hn,α.

Lemma 9.10 ([5]). Let q be a power of 2. Let n ≥ 3, and let α ∈ GF (q)n with σ := α1 + · · · + αn 6= 0.
Let e ⊆ V1 ∪ · · · ∪ Vn. Then the following statements are equivalent:

(i) e is an edge in Hn,α.

(ii) e contains at most one vertex in Vi for each i ∈ [n] and
∑

(v : v ∈ e) = σ +
∑

(αi : e ∩ Vi 6= ∅).

Proof. (i)⇒(ii) There exists x = (x1, . . . , xn) ∈ S such that e = {x1, . . . , xn} − {α1, . . . , αn}. Then
e ∩ Vi = {xi} − {αi}, implying that e ∩ Vi has at most one vertex. Without loss of generality, we may
assume that x = (x1, . . . , xk, αk+1, . . . , αn) for some 1 ≤ k ≤ n. Then e = {x1, . . . , xk}. Since x ∈ S, we
have

n∑
i=1

xi =

k∑
i=1

xi +

n∑
j=k+1

αj = 0.

As the characteristic of GF (q) is 2,
∑k
i=1 xi = −

∑k
i=1 xi, implying in turn that

∑k
i=1 xi =

∑n
j=k+1 αj .

As
∑n
i=1 αi = σ, we also get

∑n
j=k+1 αj = σ +

∑k
i=1 αi, and therefore, we obtain

∑k
i=1 xi = σ +

∑k
i=1 αi,

as required.

(i)⇐(ii) Without loss of generality, we may assume that e = {x1, . . . , xk} where xi ∈ Vi for i ∈ [k].

Since
∑k
i=1 xi = σ +

∑k
i=1 αi, we have

∑k
i=1 xi +

∑n
j=k+1 αj = σ +

∑n
i=1 αi, implying in turn that

(x1, . . . , xk, αk+1, . . . , αn) ∈ S. As e = {x1, . . . , xk, αk+1, . . . , αn} − {α1, . . . , αn}, e is an edge of Hn,α, as
required.
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Using Lemma 9.10, we can show the following proposition providing a characterization of the edges of
size 1 and 2.

Proposition 9.11 ([5]). Let q be a power of 2. Let n ≥ 3, and let α ∈ GF (q)n with σ := α1 + · · ·+αn 6= 0.
Then the following statements hold:

(1) The edges of size one in En,α are {α1 + σ}, . . . , {αn + σ}.

(2) The edges of cardinality 2 in En,α form a graph that consists of q2−1 connected components G1, . . . , G q
2−1

satisfying the following: for each j = 1, . . . , q2 − 1,

• Gj’s vertex set is
{
βj1, β

j
1 + σ

}
∪ · · · ∪

{
βjn, β

j
n + σ

}
where βji , β

j
i + σ ∈ Vi − {αi + σ} for i ∈ [n],

• Gj is a bipartite graph with bipartition
{
βj1, . . . , β

j
n

}
∪
{
βj1 + σ, . . . , βjn + σ

}
,

• βji = βj1 + α1 + αi for i ∈ [n], and

• Gj’s edge set is
{{

βji , β
j
k + σ

}
: i 6= k

}
, i.e. Gj is obtained from a complete bipartite graph after

removing the edges of perfect matching
{{

βji , β
j
i + σ

}
: i ∈ [n]

}
.

(3) The edges of cardinality 1 or 2 in En,α are minimal.

Figure 9.2: The edges of size 1&2 of Hn,α

Proof. (1) By Lemma 9.10, e is an edge of size 1 if, and only if, e = {σ + αi} for some i ∈ [n]. Therefore,
{α1 + σ}, . . . , {αn + σ} are the edges of size 1 in Hn,α, as required.

(2) First, we will argue that an edge of cardinality 2 contains none of α1 +σ, . . . , αn +σ. Let {u, v} be
an edge of size 2 where u ∈ Vi and v ∈ Vj for some i 6= j. Then we get u+v = σ+αi+αj by Lemma 9.10.
If u = αi + σ, then v = αj , contradicting the assumption that v ∈ Vj . Therefore, the edges of cardinality
2 are contained in V ′ := (V1 − {α1 + σ}) ∪ · · · ∪ (Vn − {αn + σ}). Notice that we have preserved the
symmetry between V1−{α1 +σ}, . . . , Vn−{αn+σ} and that V1−{α1 +σ} is not different from the other
Vi − {αi + σ}’s.
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Observe that V1−{α1+σ} has q−2 vertices and that V1−{α1+σ} can be partitioned as V1−{α1+σ} ={
β1

1 , β
1
1 + σ

}
∪ · · · ∪

{
β

q
2−1
1 , β

q
2−1
1 + σ

}
, with q

2 − 1 sets of cardinality 2, where β1
1 , . . . , β

q
2−1
1 are distinct

vertices. For i = 2, . . . , n and j = 1, . . . , q2−1, we denote by βji ∈ Vi the vertex satisfying βji = βj1 +α1 +αi.

Claim 1. Vi − {αi + σ} =
{
β1
i , β

1
i + σ

}
∪ · · · ∪

{
β

q
2−1
i , β

q
2−1
i + σ

}
for i = 1, . . . , n.

Proof of Claim. We may assume that i ≥ 2. Let j, ` be distinct indices in
[
q
2 − 1

]
. As βj1 6= β`1, we get

βji 6= β`i . Similarly, βj1 6= β`1 +σ implies βji 6= β`i +σ. Therefore, β1
i , β

1
i +σ, . . . , β

q
2−1
i , β

q
2−1
i +σ are distinct

vertices, so
{
β1
i , β

1
i + σ

}
, · · · ,

{
β

q
2−1
i , β

q
2−1
i + σ

}
partition Vi − {αi + σ}, as required. 3

By Claim 1, each vertex in V ′ is βji or βji + σ for some i ∈ [n] and j ∈
[
q
2 − 1

]
. Now we are ready to

characterize what the edges of size 2 are.

Claim 2. Let u, v be distinct verties in V ′. Then {u, v} is an edge in En,α if, and only if, u = βji and

v = βjk + σ or u = βji + σ and v = βjk for some j ∈
[
q
2 − 1

]
and distinct i, k ∈ [n].

Proof of Claim. (⇐) Without loss of generality, we may assume that j = 1, i = 1, and k = 2. As
β1

2 = β1
1 + α1 + α2, we have β1

1 + β1
2 + σ = α1 + α2 + σ. So, by Lemma 9.10, {u, v} is an edge.

(⇒) Without loss of generality, we may assume that u ∈ V1, v ∈ V2. Then u = βj1 or u = βj1 + σ for

some j ∈
[
q
2 − 1

]
. If u = βj1, then by Lemma 9.10, v = βj1 +α1 +α2 +σ = βj2 +σ. Similarly, if u = βj1 +σ,

we can argue that v = βj2, as required. 3

For j ∈
[
q
2 − 1

]
, let Gj denote the graph induced by

{
βj1, . . . , β

j
n

}
∪
{
βj1 + σ, . . . , βjn + σ

}
. By Claim 2,

the edge set of Gj is precisely
{{

βji , β
j
k + σ

}
: i 6= k

}
. Moreover, Claim 2 also implies that there is no

edge between Gj and G` if j 6= `, as required.

(3) Since α 6∈ S, ∅ 6∈ E, implying in turn that all the edges of size 1 are minimal. From part (2), we
know that no edge of size 2 contains an edge of size 1, and therefore, every edge of size 2 is also minimal,
as required.

Proposition 9.12 ([5]). Let q = 2k for some k ≥ 3, and let S ⊆ GF (q)3 be a vector space over GF (q)
such that M(S) is isomorphic to M(A3). Then mult(S) has C2

5 as a minor.

Proof. By Remark 9.8, we may assume that S = {x ∈ GF (q)n : x1+x2+x3 = 0}. Let α = (α1, α2, α3) 6∈ S.
We will show that the induced clutter of mult(S) with respect to α, denoted ind(S, α), has C2

5 as a minor.
By Remark 9.9, the members of ind(S, α) are the minimal edges of H3,α. Let σ = α1 + α2 + α3, and we
choose a, b ∈ GF (q) such that a ∈ GF (q)− {α1, α1 + σ} and b ∈ GF (q)− {α1, α1 + σ, a, a+ σ}.

Claim 1. a+ b+ α1 ∈ GF (q)− {α1, α1 + σ, a, a+ σ, b, b+ σ}.

Proof of Claim. If a + b + α1 = α1 or α1 + σ, then b = a or b = a + σ, contradicting the choice of b. If
a+b+α1 = a or a+σ, then b = α1 or b = α1+σ, contradicting the choice of b. If a+b+α1 = b or b+σ, then
a = α1 or a = α1+σ, a contradiction as a 6∈ {α1, α1+σ}. Therefore, a+b+α1 /∈ {α1, α1+σ, a, a+σ, b, b+σ},
as required. 3
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Consider H3,α. By Proposition 9.11 (2), the edges of cardinality 2 in H3,α form a graph with q
2 − 1

connected components G1, . . . , G q
2−1 where the vertex set of Gj is{
βj1, β

j
1 + σ

}
∪
{
βj2, β

j
2 + σ

}
∪
{
βj3, β

j
3 + σ

}
where βji , β

j
i +σ ∈ Vi−{αi+σ} for i ∈ [3]. Furthermore, G1, . . . , G q

2−1 are 6-cycles by Proposition 9.11 (2).

As q
2 − 1 ≥ 3, without loss of generality, we may assume that β1

1 = a, β2
1 = b, and β3

1 = a + b + α1, i.e.
G1, G2, G3 contain a, b, a+ b+ α1 ∈ V1 − {α1 + σ}, respectively.

Claim 2. The following statements hold:

(1) β1
1 + σ = a+ σ, β1

2 + σ = a+ α1 + α2 + σ, and β1
3 = a+ α1 + α3.

(2) β2
2 = b+ α1 + α2 and β2

2 + σ = b+ α1 + α2 + σ.

(3) β3
3 + σ = a+ b+ α3 + σ.

Proof of Claim. The claim follows from Proposition 9.11 (2). 3

Now keep vertices β1
1 , β

1
1 + σ, β1

2 + σ, β1
3 in G1, β2

2 , β
2
2 + σ in G2, and β3

3 + σ in G3 and delete the
other vertices from Hn,α (see Figure 9.3 for an illustration). Let H denote the resulting subgraph of Hn,α.

Figure 9.3: The subgraph of Hn,α after deleting the vertices

Then the minimal edges of H represent the members of the minor of ind(S, α) obtained after deleting the
elements corresponding to the vertices deleted from Hn,α, and let C denote the minor.

As αi + σ for i ∈ [n] are deleted, we know from Proposition 9.11 (1) that H contains no edge of size 1.
By Proposition 9.11 (2), H has 3 edges of size 2:

{
β1

1 , β
1
2 + σ

}
,
{
β1

3 , β
1
1 + σ

}
,
{
β1

3 , β
1
2 + σ

}
, and these are

the only ones.

Claim 3.
{
β1

1 , β
2
2 , β

3
3 + σ

}
and

{
β1

1 + σ, β2
2 + σ, β3

3 + σ
}

are the only edges of size greater than 2 in H.

Proof of Claim. H contains no vertex in Vi for i > 3, soH has no edge of size greater than 3 by Lemma 9.10.
We also know from Lemma 9.10 that an edge of size 3 contains one vertex from each V1, V2, V3. We claim
that no edge of size 3 in H contains an edge of size 2. Suppose that an edge {u, v, w} in H contains
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an edge {u, v} in H for a contradiction. Then u ∈ Vi and v ∈ Vj for some distinct i, j ∈ {1, 2, 3} and
u+v = σ+αi+αj by Lemma 9.10. However, w ∈ Vk for k ∈ {1, 2, 3}−{i, j}, and w = αk by Lemma 9.10,
a contradiction as αk 6∈ Vk. The subsets of V (H) not containing an edge of size 2 but one vertex from
each of V1, V2, V3 are the following:{

β1
1 , β

2
2 , β

1
3

}
,
{
β1

1 , β
2
2 + σ, β1

3

}
,
{
β1

1 , β
2
2 , β

3
3 + σ

}
,
{
β1

1 , β
2
2 + σ, β3

3 + σ
}
,{

β1
1 + σ, β1

2 + σ, β3
3 + σ

}
,
{
β1

1 + σ, β2
2 , β

3
3 + σ

}
,
{
β1

1 + σ, β2
2 + σ, β3

3 + σ
}
.

By Lemma 9.10, a subset {x1, x2, x3} where xi ∈ Vi for i = 1, 2, 3 is an edge if, and only if, x1 + x2 + x3 =
σ + α1 + α2 + α3. Notice that β1

1 + β2
2 + β1

3 = b + α2 + α3 cannot be σ + α1 + α2 + α3, because b is
not α1 + σ by our choice of b. This implies that

{
β1

1 , β
2
2 , β

1
3

}
is not an edge. Similarly,

{
β1

1 , β
2
2 + σ, β1

3

}
is not an edge, because b 6= α1. Notice also that {β1

1 + σ, β1
2 + σ, β3

3 + σ} is not an edge, because
β1

1 + σ + β1
2 + σ + β3

3 + σ = a + b + α1 + α2 + α3 + σ cannot be σ + α1 + α2 + α3 by our assumption
that a 6= b. Observe that β1

1 + β2
2 + β3

3 + σ = σ + α1 + α2 + α3, implying in turn that
{
β1

1 , β
2
2 , β

3
3 + σ

}
and

{
β1

1 + σ, β2
2 + σ, β3

3 + σ
}

are edges, whereas
{
β1

1 , β
2
2 + σ, β3

3 + σ
}

and
{
β1

1 + σ, β2
2 , β

3
3 + σ

}
are not.

Therefore,
{
β1

1 , β
2
2 , β

3
3 + σ

}
and

{
β1

1 + σ, β2
2 + σ, β3

3 + σ
}

are the only edges of size at least 3 in H, as
required. 3

Now that we have characterized all the edges of H, we know that the incidence matrix of C is isomorphic
to the following 0,1 matrix:



β1
1 β1

2 + σ β1
3 β1

1 + σ β3
3 β2

2 β2
2 + σ

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0


Contracting the elements corresponding to β2

2 , β
2
2 + σ from C, we obtain C2

5 , and thus, C contains C2
5 as a

minor. Since C is a minor of ind(S, α), ind(S, α) also has C2
5 as a minor, as required.

In particular, if mult(S) is ideal, then M(S) does not contain M(A3) as a minor. Brylawski [24]
proved the following theorem, which will be used to complete the proof of Theorem 1.50 and will be also
useful later to prove Theorem 1.52. Let G = (V,E) be a connected graph. A block or 2-vertex-connected
component of G is a maximal vertex-induced subgraph of G that is 2-vertex-connected. We call a graph a
series-parallel network if each of its blocks is a series-parallel graph, a loop, or a bridge.

Theorem 9.13 ([24]). Let M be a matroid. Then the following statements are equivalent:

(i) M contains none of U2,4 and M(K4) as a minor.

(ii) M is the cycle matroid of a series-parallel network.

A graph H is a minor of a graph G if H can be obtained from G after a series of edge deletions, edge
contractions, and deletions of isolated vertices. If G is connected, then H is a minor of G if and only if
G = H \ E1/E2 for some disjoint subsets E1, E2 of E(G).
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Remark 9.14 (see Chapter 3.2 in [102]). Let G,H be graphs. If H is a minor of G, then M(H) is a
minor of M(G).

Now we are ready to prove Lemma 9.2 (3).

Proof of Lemma 9.2 (3). Take integers n, k ≥ 3. Let q = 2k, and let S ⊆ GF (q)n be a vector space over
GF (q). We will prove that if mult(S) has no C2

5 as a minor, then S has a basis with vectors of pairwise
disjoint supports.

Assume that S admits a basis with vectors of pairwise disjoint supports. Then, by Proposition 9.12,
M(S) does not contain M(A3) as a minor.

Claim 1. U2,4 contains M(A3) as a minor.

Proof of Claim. Let {1, 2, 3, 4} be the ground set of U2,4. Then {{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4}} is
the set of circuits of U2,4. Contracting 4 from U2,4, we obtain the minor of U2,4 whose ground set is {1, 2, 3}
and whose circuits are {1, 2} , {1, 3} , {2, 3}, that is M(A3), as required. 3

Claim 2. M(S) is the cycle matroid of a graph whose circuits are pairwise edge-disjoint.

Proof of Claim. Observe that K4 has A3 as a minor, and therefore, M(K4) contains M(A3) as a minor.
ThenM(S) does not contain M(K4) as a minor, while we know from Claim 1 thatM(S) contains no U2,4

as a minor. Then Theorem 9.13 implies that M(S) is a graphic matroid, so let G denote its underlying
graph. We also know that G does not contain A3 as a minor, implying in turn that two distinct circuits
of G are edge-disjoint. 3

Suppose for a contradiction that S does not admit a basis with vectors of pairwise disjoint supports.
Let S = 〈v1, . . . , vr〉 for some vectors v1, . . . , vr ∈ GF (q). After elementary arithmetic operations over
GF (q), we may assume that for each i = 1, . . . , r,

vii = 1 and vij = 0 ∀j ∈ [r]− {i}.

Claim 3. For each i ∈ [r], the support of vi is minimal among the points in S − {0}.

Proof of Claim. Suppose for a contradiction that there is a vector u ∈ S − {0} whose support is properly
contained in the support of vi. As u ∈ S, u can be expressed as

∑r
i=1 λiv

i for some λ ∈ GF (q)r. By our
supposition, we have λj = 0 for every j 6= i. As u is nonzero, λi is nonzero, implying in turn that the
support of u is the same as that of vi, a contradiction. 3

As the generators of S are not pairwise disjoint, vi and vj for some distinct i, j have their supports
intersect. By Claim 3, the supports of vi and vj are both minimal, which means M(S) has two circuits
that are not edge-disjoint. However, this contradicts Claim 2. Therefore, there is a basis of S with vectors
of pairwise disjoint support, as required.

Now we are ready to finish the proof of Theorem 1.50.
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Proof of Theorem 1.50 when q = 2k, k ≥ 3. Take an integer n ≥ 3, and let S ⊆ GF (q)n be a vector space
over GF (q). By Theorem 9.3, three statements (i), (ii), (iii) are equivalent. As the max-flow min-cut
property implies idealness and (ii), (iii) are equivalent, we have (iii)⇒(iv). It remains to be shown that
(iv)⇒(ii). We need to prove that if mult(S) is ideal, then S has a basis with vectors of pairwise disjoint
supports. If mult(S) is ideal, then it has no C2

5 as a minor. Then it follows from Lemma 9.2 (3) that S
has a basis with vectors of pairwise disjoint supports, as required.

9.3 Theorem 1.52

Take an integer n ≥ 3, and let S ⊆ GF (4)n be a vector space over GF (4). If mult(S) is ideal, then it has
no ∆3 minor. In fact, Theorem 1.52 states that the converse is also true, namely, if mult(S) has no ∆3

minor, then it is ideal. We will prove this in this section. We start this section by proving the following
two propositions.

Proposition 9.15 ([5]). Let q be a power of 2, and let S ⊆ GF (q)4 be a vector space over GF (q). If
M(S) is isomorphic to U2,4, then mult(S) has ∆3 as a minor.

Proof. Suppose for a contradiction that mult(S) has no ∆3 as a minor. Since the rank of U2,4 is 2, the
rank of S is 4 − 2 = 2. Let v1, v2 ∈ GF (q)4 be two generators of S. By elementary row operations, we
may assume that (v1

1 , v
1
2) = (1, 0) and (v2

1 , v
2
2) = (0, 1). Then

v1

v2

[
1 0 x y
0 1 z w

]
where x, y, z, w ∈ GF (q). Each circuit of U2,4 has size 3, so x, y, z, w 6= 0. Then a := (−x−1z)v1, b := v2,
c := a+ b are vectors in S. Observe that

a
b
c

 −x−1z 0 −z −x−1yz
0 1 z w

−x−1z 1 0 −x−1yz + w


and that a1 = c1 6= b1, b2 = c2 6= a2. We also have that a3 = b3 6= c3, because q being a power of 2
implies z + z = 0 and z = −z. By Lemma 9.1, there is a vector d ∈ GF (q)4 that satisfies at least two of
d1 = b1 = 0, d2 = a2 = 0, d3 = c3 = 0 and satisfies d4 ∈ {−x−1yz, w,−x−1yz + w}. But then the support
of d has size at most 2. Since every circuit of U2,4 has size 3, d = 0, and therefore, d4 = −x−1yz +w = 0.
This implies the support of c has size 2, a contradiction.

K4 is the complete graph on 4 vertices, and we denote by K4/e what is obtained from K4 after
contracting an edge from it (see Figure 9.4).

Proposition 9.16 ([5]). Let q = 2k for some k ≥ 2, and let S ⊆ GF (q)5 be a vector space over GF (q).
If M(S) is isomorphic to M(K4/e), then mult(S) has ∆3 as a minor.

Proof. In Figure 9.4, we can see that the fundamental circuits {1, 4, 5}, {2, 4}, {3, 5} with respect to
spanning tree {4, 5} generate the cycle space of K4/e. Pick vectors v1, v2, v3 ∈ S whose supports are the
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Figure 9.4: K4/e

three circuits. Notice that these vectors are linearly independent. Since the rank of S is 5−2 = 3, v1, v2, v3

generate S. After elementary row operations, S is generated by the 3 vectors v1, v2, v3 of the following
forms:

v1

v2

v3

 1 0 0 x y
0 1 0 z 0
0 0 t 0 w


where t, x, y, z, w 6= 0. Since q > 2, we may assume that z and w are distinct nonzero elements in GF (q).
Now consider the restriction S′ of S:

S′ := S ∩
{
x ∈ GF (q)5 : x1 ∈ {0, z, w}, x2 ∈ {0, x}, x3 ∈ {0, ty}

}
.

We will show that mult(S′) has ∆3 as a minor, implying in turn that mult(S) also has ∆3 as a minor.
Notice that

S′ =

{
3∑
i=1

λiv
i : λ1 ∈ {0, z, w}, λ2 ∈ {0, x}, λ3 ∈ {0, y}

}
.

Consider the three distinct points a := zv1, b := wv1, c := xv2 + yv3 in S′:

a
b
c

 z 0 0 zx zy
w 0 0 wx wy
0 x ty zx wy


As z 6= w, we have that c4 = a4 6= b4 and b5 = c5 6= a5. We also have a3 = b3 6= c3, because ty 6= 0.
Suppose for a contradiction that mult(S′) has no ∆3 as a minor. By Lemma 9.1, there is d ∈ S′−{a, b, c}
that satisfies

(1) d1 ∈ {0, z, w}, d2 ∈ {0, x}, d3 ∈ {0, ty}, d4 ∈ {zx,wx}, d5 ∈ {zy, wy}, and

(2) at least two of d3 = ty, d4 = wx, d5 = zy hold.

The points of S′ − {a, b, c} are the following:

S′ − {a, b, c} =

 (0, 0, 0, 0, 0) (0, x, 0, zx, 0) (0, 0, ty, 0, wy)
(z, x, 0, 0, zy) (z, 0, ty, zx, (z + w)y) (w, x, 0, (z + w)x,wy)

(w, 0, ty, wx, 0) (z, x, ty, 0, (z + w)y) (w, x, ty, (z + w)x, 0)

 .
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Since z, w 6= 0 and z 6= w, (z+w)x 6∈ {zx,wx} and (z+w)y 6∈ {zy, wy}. Since z, w, x, y 6= 0, 0 6∈ {zx,wx}
and 0 6∈ {zy, wy}. This indicates that no point in S′ − {a, b, c} satisfies condition (1), a contradiction.
Therefore, mult(S′) has ∆3 as a minor, and so does mult(S), as required.

By Propositions 9.15 and 9.16, if mult(S) for has no ∆3 minor, thenM(S) has none of U2,4, M(K4/e)
as a minor. In that case, as M(K4/e) is a minor of M(K4), it follows by Theorem 9.13 that M(S) is the
cycle matroid of a graph not containing K4/e as a minor. How does a graph with no K4/e minor look
like? We will prove Proposition 9.18 that characterizes graphs with no K4/e minor.

Recall that a block of G is a maximal vertex-induced subgraph of G that is 2-vertex-connected. The
following is well-known in graph theory:

Proposition 9.17 (see Proposition 5.3 [20]). Let G = (V,E) be a connected graph. Then the following
statements hold:

(1) any two blocks of G have at most one vertex in common, and if they have one, it is a cut-vertex of G,

(2) each cycle of G is contained in a block of G, and

(3) the blocks of G decomposes G.

So, we may associate a connected graph G = (V,E) with a bipartite graph B(G) where

• the cut-vertices of G form one color class of B(G),

• the blocks of G form the other color class of B(G), and

• cut-vertex u and block B are adjacent in B(G) if u ∈ V (B).

It is well-known that B(G) is a tree all of whose leaves are blocks of G (see [20]).

Proposition 9.18 ([5]). Let G = (V,E) be a connected graph. If G contains no K4/e as a minor, then
each block of G is a subdivision of At for some t ≥ 2, a bridge, or a loop.

Proof. Assume that G contains no K4/e minor. We will prove by induction on the number of edges that
each block of G is a subdivision of At for some t ≥ 2, a bridge, or a loop. The base case is trivial. For
the induction step, we may assume that G has at least 3 edges. If G has more than one block, a block of
G has less edges than G has, so by the induction hypothesis, each block of G is a subdivision of At for
some t ≥ 2, a bridge, or a loop. Thus we may assume that G is 2-vertex-connected. In particular, G has
no loop.

Let e be an edge of G. By the induction hypothesis, each block of G − {e} is a subdivision of At fo
some t ≥ 2 or a bridge. We first prove the following claim:

Claim 1. B(G− {e}) is a path, and e is incident to internal vertices of the end blocks.
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Proof of Claim. If B(G− {e}) is a single vertex, the assertion follows. Thus we may assume that G− {e}
has at least two blocks. Since G is 2-vertex-connected, e connects two distinct blocks B1, B2 of G − {e}.
Then, after putting e back, the blocks of G−{e} on the fundamental cycle C of B(G−{e}) obtained after
adding edge B1B2 become one block in G. In fact, since G is 2-vertex-connected, G has no other block.
This implies that G − {e} has no block other than the ones on C. So, B(G − {e}) contains no vertex
outside C, and therefore, B(G − {e}) is a path where B1, B2 are its two ends. If e is not incident to an
internal vertex of B1, then e is incident to the cut-vertex of B1, implying that B1 is separated from B2 in
G, a contradiction. Thus e is incident to an internal vertex of B1. Similarly, e is incident to an internal
vertex of B2, as required. 3

Next, we claim the following:

Claim 2. All but at most one block of G− {e} are bridges.

Proof of Claim. We may assume that G − {e} has at least two blocks. Then, by Claim 1, B(G − {e}) is
a path B1, u1, B2, . . . , uk−1, Bk for some k ≥ 2, where B1, . . . , Bk are the blocks of G− {e} and u` is the
cut-vertex separating B` and B`+1 for ` ∈ [k−1]. Moreover, by Claim 1, e = u0uk, where u0 is an internal
vertex of B1 and uk is an internal vertex of Bk.

Suppose for a contradiction that G − {e} has two blocks that are not bridges. Then Bi, Bj for some
distinct i, j ∈ [k] are not bridges. In particular, Bi has a cycle Ci and Bj has a cycle Cj . After contracting
the edges of B` for ` ∈ [k]− {i, j} from G− {e}, the vertices in B1, . . . , Bi−1 are identified with ui−1, the
vertices in Bi+1, . . . , Bj−1 are identified with uj−1, and the vertices in Bj+1, . . . , Bk are identified with
uj . Therefore, the resulting graph is ui−1, Bi, uj−1, Bj , uj , where ui−1 and uj are internal vertices of Bi
and Bj , respectively, and uj−1 is the cut-vertex separating Bi, Bj . Notice that e connects ui−1 and uj
after the contraction, because u0, uk were identified with ui−1, uj , respectively. We then delete the edges
outside of the cycles Ci, Cj . After adding e back, we obtain a subdivision of K4/e, a contradiction as G
has no K4/e minor. Therefore, at most one block of G− {e} is a bridge. 3

Figure 9.5: e = ui−1uj

If every block of G−{e} is a bridge, then it follows from Claim 1 that G is a cycle, so G is a subdivision
of A2. Thus we may assume that a block B of G − {e} is a subdivision of At for some t ≥ 2. Then, by
Claim 2, the other blocks of G− {e} are bridges.

Claim 3. G is the union of B and a path P whose ends are two vertices in B and whose interior vertices
are disjoint from V (B).
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Proof of Claim. It follows from Claim 1 that e and the bridges of G− {e} form a path P connecting two
vertices of B. An interior vertex of P , if exists, is in a block of G−{e} other than B, so it is not contained
in V (B), as required. 3

As B is a subdivision of At for some t ≥ 2, B is a disjoint union of internally vertex-disjoint uv-paths
for some distinct u, v ∈ V (B). Let P1, . . . , Pt be the uv-paths.

Claim 4. If t = 2, G is a subdivision of A3.

Proof of Claim. If t = 2, B is a cycle and P connects two vertices on the cycle, and by Claim 3, G is the
union of three internally vertex-disjoint paths connecting the two vertices. So, G is a subdivision of A3.
3

By Claim 4, we may assume that t ≥ 3. We will show that P is an uv-path, thereby proving that G is
a subdivision of At+1.

Claim 5. P is an uv-path.

Proof of Claim. Suppose for a contradiction that P is not a uv-path. Then one of P ’s two ends is not in
{u, v}.

First, consider the case when one end of P is in {u, v}. Without loss of generality, we may assume that
one end of P is u and the other end is w ∈ V − {u, v}. Without loss of generality, assume that w is on
P1. Then the subgraph of G obtained after deleting the edges E − E(P ) ∪ E(P1) ∪ E(P2) ∪ E(P3) (see
Figure 9.6 for an illustration) is a subdivision of K4/e, contradicting the assumption that G has no K4/e
minor.

Figure 9.6: w 6∈ {u, v}

Now consider the case when both ends of P are not in {u, v}. Let the ends of P be w1, w2 ∈ V −{u, v}.
There are two cases to consider: w1, w2 are on the same uv-path of B, or w1, w2 are on different uv-paths.
If w1, w2 are on the same uv-path, we may assume that they are on P1 without loss of generality. In this
case, deleting the edges E −E(P )∪E(P1)∪E(P2)∪E(P3) and contracting the edges of the uw1-path on
P1 (see Figure 9.7 for an illustration), we obtain a subdivision of K4/e, a contradiction.

If w1, w2 are on different uv-paths, we may assume that w1 is on P1 and w2 is on P2 without loss of
generality. Deleting the edges E − E(P ) ∪ E(P1) ∪ E(P2) ∪ E(P3) and contracting the edges of P (see
Figure 9.7 for an illustration), we obtain a subdivision of K4/e, a contradiction as G has no K4/e minor.
3
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Figure 9.7: w1, w2 /∈ {u, v}

By Claims 3 and 5, P is an uv-path that is internally vertex-disjoint from P1, . . . , Pt, implying in turn
that G is a subdivision of At+1. This finishes the proof.

The direct sum of ` matroids M1, . . . ,M` with pairwise disjoint ground sets is defined as

M1 ⊕ · · · ⊕M` = (E1 ∪ · · · ∪ E`, {I1 ∪ · · · ∪ I` : Ii ∈ Ii, i ∈ [`]})

where Ei and Ii are the ground set and family of independent sets of Mi for i = 1, . . . , `.

Remark 9.19 (see Chapter 4.1 in [102]). Let M be the cycle matroid of a graph G, and let G1, . . . , Gk be
the blocks of G. Then M = M(G1)⊕ · · · ⊕M(Gk).

Putting Proposition 9.18 and Remark 9.19 together, we can prove the following lemma:

Lemma 9.20 ([5]). Let q = 2k for some k ≥ 2, and let S be a vector space over GF (q). If mult(S) has
no ∆3 as a minor, then for some k ≥ 1,

M(S) = M1 ⊕ · · · ⊕Mk

where Mi is the cycle matroid of a subdivision of At for some t ≥ 2, a bridge, or a loop for each i ∈ [k].

Proof. If mult(S) has no ∆3 as a minor, then M(S) contains none of U2,4 and M(K4/e) as a minor by
Lemma 9.6, Propositions 9.15 and 9.16. As M(K4/e) is a minor of M(K4), by Theorem 9.13, M(S) is
the cycle matroid of a series-parallel network not containing K4/e as a minor, denoted as G. Then by
Proposition 9.18, each block of G is a subdivision of At for some t ≥ 2, a bridge, or a loop. So, the assertion
follows from Remark 9.19, as required.

The following remark shows how to represent the direct sum of two matroids with their representations:

Remark 9.21 (see Chapter 4.2 in [102]). Let A1 and A2 be GF (q)-representations of matroids M1,M2

with disjoint ground sets, respectively. Then M1 ⊕M2 can be represented by[
A1 0
0 A2

]
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Using Remark 9.21, we can prove the following lemma:

Lemma 9.22 ([5]). Let q be a power of 2. Let n ≥ 3, and let S ⊆ GF (q)n be a vector space over GF (q).
If M(S) = M1 ⊕M2 for some GF (q)-representable matroids M1,M2, then there exist vector spaces S1

and S2 over GF (q) satisfying the following:

(1) S = S1 × S2.

(2) M(Si) = Mi for i = 1, 2.

Proof. For i ∈ [2], let Ai be a GF (q)-representation of Mi. By Remark 9.21,M(S) can be represented by

A =

[
A1 0
0 A2

]
By Remark 9.4, S = {x ∈ GF (q)n : Ax = 0}, and therefore,

S = {(x1, x2) ∈ GF (q)n1 ×GF (q)n2 : A1x1 = 0, A2x2 = 0}

where ni denotes the number of columns in Ai for i = 1, 2, and thus S can be written as S1 × S2 where

Si = {xi ∈ GF (q)ni : Aixi = 0} for i = 1, 2.

Then, by Remark 9.4, M(Si) = Mi for i = 1, 2, as required.

We know by Proposition 8.4 (1) that the product operations preserves idealness, so it suffices by Lem-
mas 9.20 and 9.22 to show that mult(S) is ideal for any vector space S over GF (4) whose associate matroid
M(S) is the cycle matroid of a subdivision of At for some t ≥ 2, a bridge, or a loop.

Let C be a clutter over ground set E. For an element e ∈ E, the clutter obtained from C after duplicating
e is

{C : e 6∈ C ∈ C} ∪ {C ∪ {e′} : e ∈ C ∈ C}

where e′ 6∈ E. A duplication of C is what is obtained from C after a series of duplicating elements. It is a
well-known fact that duplication preserves the idealness of a clutter.

Remark 9.23 ([5]). Let C be a clutter over ground set is E, and let C′ be a duplication of C. Then C is
ideal if, and only if, C′ is ideal.

Remark 9.24 is the last ingredient to prove Theorem 1.52.

Remark 9.24 ([5]). Let q be a prime power. Let n ≥ 1, and let S ⊆ GF (q)n be a vector space over GF (q).
If M(S) has elements i, j ∈ [n] in series, then there exists a vector space S′ ⊆ GF (q)n−1 over GF (q) such
that

• M(S′) =M(S)/{j},

• mult(S) is isomorphic to a duplication of mult(S′).
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Proof. Without loss of generality, we may assume that i = n− 1 and j = n. Let S′ ⊆ GF (q)n−1 be what
is obtained from S after dropping the nth coordinate of the points in S. Then S′ is a vector space, and by
Lemma 9.6, M(S′) =M(S)/{n}.

Let x ∈ S. Then support(x) is the union of some circuits of M(S) by Remark 9.4. As n − 1, n
are series elements, a circuit of M(S) contains n − 1 if and only if it contains n, implying in turn that
n − 1 ∈ support(x) if and only if n ∈ support(x). Let v1, . . . , vr be a basis of S. If n ∈ support(x) for
some x ∈ S, then n ∈ support(v`) for some ` ∈ [r], and thus, we may assume that n ∈ support(v1) and
that v1

n 6= 0. After scaling the v`’s, if necessary, we may assume that v`n = 0 for ` ∈ [r] − {1}. Since
n − 1 ∈ support(x) if and only if n ∈ support(x) for x ∈ S, we have that v1

n−1 6= 0 and v`n−1 = 0 for
` ∈ [r]− {1}. Then for some y, z ∈ GF (q)− {0},

v1

v2

...
vr


· · · y z
· · · 0 0
... 0 0
· · · 0 0

 .
By Remark 9.7, we may assume that y = z. Moreover, S′ is generated by u1, . . . , ur, where

u1

u2

...
ur


· · · y
· · · 0
... 0
· · · 0

 .
Therefore, mult(S) is isomorphic to the clutter obtained from mult(S′) after duplicating the q elements in
the part of mult(S′)’s ground set corresponding to n.

Now we are ready to prove Theorem 1.52.

Theorem 1.52 ([5]). Let n ≥ 3, and let S ⊆ GF (4)n be a vector space over GF (4). Then
the following statements are equivalent:

(i) mult(S) contains no ∆3 as a minor,

(ii) S = S1 × · · · × Sk where for each i ∈ [k],

• Si = {0},
• Si = GF (4), or

• Si = 〈v1, . . . , vr〉 where r ≥ 1 and v1, . . . , vr are vectors of the following form,
after permuting the coordinates:

v1

v2

...
vr


u0 u1 0 · · · 0
u0 0 u2 · · · 0
...

...
...

...
...

u0 0 0 · · · ur

 (?)
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for some vectors u0, u1 . . . , ur of nonzero entries,

(iii) mult(S) is ideal.

Proof. (iii)⇒(i): Since ∆3 is non-ideal, mult(S) contains no ∆3 as a minor, as required. (i)⇒(ii): By
Lemma 9.20, M(S) = M1 ⊕ · · · ⊕Mk for some k ≥ 1 where for each i ∈ [k], Mi is the cycle matroid of
a subdivision At for some t ≥ 2, a bridge, or a loop. Lemma 9.22 implies that there exist vector spaces
S1, . . . , Sk such that S = S1 × · · · × Sk and M(Si) = Mi for i ∈ [k]. One can easily prove the following
claim:

Claim 1. Let T be a vector space over GF (4). Then the following statements hold:

(1) if M(T ) is the cycle matroid of a bridge, then T = {0},

(2) if M(T ) is the cycle matroid of a loop, then T = GF (4).

We also need the following claim:

Claim 2. Let T be a vector space over GF (4). If M(T ) is the cycle matroid of a subdivision of At
for some t ≥ 2, then T = 〈v1, . . . , vt−1〉 where v1, . . . , vt−1 are vectors of the form (?) for some vectors
u0, u1 . . . , ut−1 of nonzero entries.

Proof of Claim. Assume that M(T ) = M(G) where G is a subdivision of At for some t ≥ 2. Notice that
G consists of two vertices and t internally vertex-disjoint paths connecting them. Let P0, . . . , Pt−1 denote
the paths, and let E(P0), . . . , E(Pt−1) denote their edge sets. Then it follows from Remark 9.4 that that
P0∪Pi is a circuit of G for each i ∈ [t−1], so T contains a point whose support is E(P0)∪E(Pi). Therefore,
T contains t− 1 points v1, . . . , vt−1 of the following form:

v1

v2

...
vt−1


u0

1 u1 0 · · · 0
u0

2 0 u2 · · · 0
...

...
...

...
...

u0
t−1 0 0 · · · ut−1


where u0

1, . . . , u
0
t−1 ∈ GF (4)|E(P0)| and ui ∈ GF (4)|E(Pi)| for i ∈ [n] are vectors of nonzero entries. As

the cycle space of G is generated by P0 ∪ P1, . . . , P0 ∪ Pt, the rank of T is t − 1, implying in turn that
T = 〈v1, . . . , vt−1〉. We will show that for each i ∈ [t − 1], u0

i = λiu
0
1 for some λi ∈ GF (4) − {0}. As

P1 ∪ P2 is a circuit of G, by Remark 9.4, there is a point v ∈ T whose support is E(P1) ∪ E(P2). Then v
can be written as v = µ1v

1 + µ2v
2 for some µ1, µ2 ∈ GF (4)− {0}. As the support of v is E(P1) ∪E(P2),

we have that µ1u
0
1 + µ2u

0
2 = 0, which implies that u0

2 = λ2u
0
1 for some nonzero λ2. Similarly, we obtain

u0
i = λiu

0
1 for some nonzero λi for i ∈ [t− 1], as required. Therefore, after scaling vi’s if necessary, we may

assume that u0
1 = · · · = u0

t−1, as required. 3

By Claims 1 and 2, for each i ∈ [k], either Si = {0}, Si = GF (4), or Si = 〈v1, . . . , vt−1〉 where t ≥ 2 and
v1, . . . , vt−1 ∈ GF (4)n are of the form (?) for some vectors u0, u1 . . . , ut−1 of nonzero entries, as required.
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(ii)⇒(iii): It suffices by Proposition 8.4 (1) to show that mult(Si) is ideal for every i ∈ [k]. Let i ∈ [k].
If Si = {0} or GF (4), then the members of mult(Si) are pairwise disjoint, and therefore, mult(Si) is ideal
by Remark 7.16. Thus we may assume that Si = 〈v1, . . . , vr〉 where r ≥ 1 and v1, . . . , vr are vectors of the
form (?) for some vectors u0, u1 . . . , ur of nonzero entries. We will need the following claim:

Claim 3. Let n ≥ 1, and let T = {x ∈ GF (4)n : x1 + · · ·+ xn = 0}. Then mult(T ) is ideal.

Proof of Claim. By Proposition 1.40 (1), mult(T ) is ideal if n ≤ 2. Thus we may assume that n ≥ 3. By
Theorem 1.35, it suffices to argue that all induced clutters of mult(T ) are ideal. Let α = (α1, . . . , αn) 6∈ T .
We will show that the induced clutter of mult(T ) with respect to α, denoted ind(T, α), is ideal. By
Remark 9.9, the members of ind(T, α) are the minimal edges of Hn,α. Let σ = α1 + · · ·+ αn. Hn,α has n
edges of cardinality 1, {α1 + σ}, . . . , {αn + σ} by Proposition 9.11 (1). By Proposition 9.11 (2), the edges
of cardinality 2 form a connected bipartite graph G where

• G is bipartite on {β1, . . . , βn} ∪ {β1 + σ, . . . , βn + σ} where {βi, βi + σ} = GF (4)− {αi, αi + σ} for
i ∈ [n],

• βi = β1 + α1 + αi for i ∈ [n], and

• the edge set of G is {{βi, βk + σ} : i 6= k}.

We will show that there is no minimal edge of cardinality at least 3 in Hn,α. Suppose for a contradiction
that Hn,α contains a minimal edge e whose cardinality is at least 3. As e is minimal, e does not contain
any of the edges in Hn,α of cardinality 1 or 2, and therefore, e ⊆ {β1, . . . , βn} or e ⊆ {β1 + σ, . . . , βn + σ}.
Without loss of generality, we may assume that e = {β1, . . . , βk} for some k ≥ 3. Then, by Lemma 9.10, we

have
∑k
i=1 βi = σ+

∑k
i=1 αi. Substituting βi = β1+α1+αi for i = 2, . . . , k, we obtain

∑k
i=1 (β1 + α1) = σ.

Since σ is nonzero and
∑k
i=1 (β1 + α1) is either β1 +α1 or 0, we get β1 +α1 = σ. However, β1 +α1 = σ in

turn implies that βi = β1 +α1 +αi = αi+σ, contradicting the assumption that βi ∈ GF (4)−{αi, αi+σ}.
Therefore, Hn,α does not have a minimal edge of cardinality at least 3, as required.

Thus the members of ind(T, α) have size either 1 or 2. Let C be what is obtained from ind(T, α) after
deleting every element that appears in a member of cardinality 1. As no minimally non-ideal clutter has
a member of cardinality 1, ind(T, α) is ideal if, and only if, C is ideal. Notice that M(C), the incidence
matrix of C, is the edge - vertex incidence matrix of a bipartite graph. It follows from Kőnig’s theorem for
bipartite matching that C is ideal. Therefore, ind(T, α) is ideal, and mult(T ) is ideal, as required. 3

Let T = 〈w1, . . . , wr〉 where
w1

w2

...
wr


1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1

 .
Then T =

{
x ∈ GF (4)r+1 : x1 + · · ·+ xr+1 = 0

}
, so by Claim 3, mult(T ) is ideal. Let d` denote the

number of entries in u` for ` = 0, 1, . . . , r, and let T ′ be defined as

T ′ :=

(x1, . . . , x1︸ ︷︷ ︸
d0

, x2, . . . , x2︸ ︷︷ ︸
d1

, . . . , xr+1, . . . , xr+1︸ ︷︷ ︸
dr

) : (x1, x2, . . . , xr+1) ∈ T

 .
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Then T ′ is generated by y1, . . . , yr where

y1

y2

...
yr


d0︷︸︸︷
1

d1︷︸︸︷
1

d2︷︸︸︷
0 · · ·

dr︷︸︸︷
0

1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1

 .

Notice that mult(T ′) is a duplication of mult(T ). As mult(T ) is ideal by Claim 3, it follows from Re-
mark 9.23 that mult(T ′) is ideal. Since u0, u1 . . . , ur have nonzero entries and Si = 〈v1, . . . , vr〉 where
v1, . . . , vr are of the form (?), Si can be obtained from T ′ by taking coordinate-wise bijections. So,
Remark 9.7 implies that mult(Si) ∼= mult(T ′), thereby showing that mult(Si) is ideal.

Since S = S1 × · · · × Sk and mult(Si) is ideal for i ∈ [k], mult(S) is ideal by Proposition 8.4 (1), as
required.
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Chapter 10

Conclusion

In this thesis, we have discussed polyhedral and combinatorial aspects of integer linear programming. In
the first part, we studied the following questions about the Chvátal-Gomory cuts and the split cuts for
integer linear programming:

(1) when is the Chvátal rank (or split rank) of a rational polyhedron equal to one?

(2) when the Chvátal rank (or split rank) of a rational polyhedron is one, can we optimize a linear
function over the integer points in the polyhedron in polynomial time?

(3) when is the Chvátal rank of a polytope in the 0,1 hypercube small?

(4) when S is a proper subset of the integer lattice, is the S-Chvátal closure of a rational polyhedron
also a rational polyhedron?

Theorems 1.3 and 1.4 imply that answering (1) is hard in general, but it is still interesting to study the
question for some special cases. For example, finding a polynomial time algorithm for recognizing t-perfect
graphs and finding a structural characterization of t-perfect graphs are important open questions not only
in integer linear programming but also in combinatorial optimization. It follows from Propositions 1.7
and 1.8 that the problem in (2) is in complexity class NP ∩ co-NP, but we saw that finding a polynomial
time algorithm might be difficult because it seems hard to exploit the condition on the Chvátal rank (or
split rank). For (3), we proved Theorem 1.11 providing some sufficient conditions under which a polytope
in the 0,1 hypercube has Chvátal rank at most 4, and the conditions are stated in terms of the infeasible
0,1 points. By Theorem 1.16, the answer to (4) when S is the set of integer points in Q where Q is a
polyhedron defined by bound constraints on some variables is in the affirmative. Let us revisit the following
conjecture for (4):

Conjecture 5.27. Let S = R ∩ Zn for some rational polyhedron R, and let P ⊆ conv(S)
be a rational polyhedron. Then the S-Chvátal closure of P is a rational polyhedron.
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In the second part, we studied ideal clutters and clutters with the max-flow min-cut property. The
τ = 2 Conjecture, due to Cornuéjols, Guenin, and Margot, is the main topic of the second part.

The τ = 2 Conjecture ([35]). If a clutter is ideal and minimally non-packing, then its
covering number is two.

In an attempt to prove the τ = 2 Conjecture, we introduced multipartite clutters, and Theorem 1.34 shows
that Conjecture 1.33 is equivalent to the τ = 2 Conjecture.

Conjecture 1.33. If a multipartite clutter is ideal and strictly polar, then it packs.

Theorem 1.29 provides a characterization of when a clutter is strictly polar, which in turn leads to a
polynomial time algorithm for recognizing strictly polar clutters (Theorem 1.30). Theorem 1.39 provides
a way of testing whether a multipartite clutter is ideal. Based on Theorems 1.29 and 1.39, we wrote a
computer program to check multipartite clutters over at most 9 elements, and Theorem 1.43 confirms
Conjecture 1.33 for the multipartite clutters over at most 9 elements. The next imminent task is to go
over multipartite clutters over 10 to 12 elements.

Question 7.25. Does any of V (H4,3,3), V (H4,4,3), V (H4,4,4), V (H3,3,3,3) have a subset
whose multipartite clutter is ideal and strictly polar but does not pack?

We also considered two special classes of multipartite clutters. Theorem 1.45 implies that if the multi-
partite clutter of a set obtained by a reflective product is minimally non-packing, then its covering number
must be two. Theorems 1.49 – 1.52 characterize when the multipartite clutter of a vector space is ideal
and when the multipartite clutter of a vector space has the max-flow min-cut property, and Theorems 1.49
– 1.52 imply that Q6 is the only ideal minimally non-packing clutter that is the multipartite clutter of a
vector space. Therefore, the τ = 2 Conjecture holds for these two classes of multipartite clutters. The
question as to validate the τ = 2 Conjecture or come up with a counter-example is certainly an exciting
open question in the field of integer programming and combinatorial optimization.
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[26] Caprara, A. and Fischetti, M.: {0, 1/2}-Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)

[27] Caprara, A. and Letchford, A.N.: On the separation of split cuts and related inequalities. Math.
Program. 94, 279–294 (2003)
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