
Non-Recursive Cut Generation

Aleksandr M. Kazachkov

Spring 2018

Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Egon Balas (Chair)
Daniel Bienstock
Gérard Cornuéjols
François Margot

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Algorithms, Combinatorics, and Optimization.

Copyright c© 2018 Aleksandr M. Kazachkov

This work was supported by the National Science Foundation under grants CMMI-1263239 and CMMI-
1560828, and by the Office of Naval Research under contracts N00014-12-1-0032 and N00014-15-1-2082.

Abstract
There has recently been reinvigorated interest in finding new general-purpose

cutting planes (cuts) for mixed-integer programs, particularly ones that can be
derived from valid general disjunctions. This dissertation focuses on the theoret-
ical and computational development of new disjunctive cuts. The motivation is
primarily practical: cuts are a critical component of modern integer programming
solvers, but the families of cuts that are currently implemented are relatively sim-
ple and suffer from numerical instability and the “tailing off” effect when used
recursively. We introduce three techniques for efficiently generating a large num-
ber of strong cuts without recursion, prove useful theoretical properties of the
cuts, and perform computational testing of their performance through imple-
mentations in the open source COIN-OR framework. Our evaluation criteria are
strength (compared to Gomory cuts) and time (via branch-and-bound tests).

In our first contribution, we investigate generalized intersection cuts, a rel-
atively recent approach with attractive theoretical properties. We first observe
that a key hyperplane activation procedure embedded in this previously compu-
tationally unexplored paradigm is not computationally viable. We overcome this
issue by a novel technique called partial hyperplane activation (PHA), introduce
a variant of PHA based on a notion of hyperplane tilting, and prove the validity
of both algorithms. We propose several implementation strategies and parameter
choices for our PHA algorithms and provide supporting theoretical results. The
accompanying computational findings shed light on the strengths of the PHA
approach and identify properties related to strong cuts that we subsequently use.

The next chapter examines a notion of tilting that can be used to produce
cutting planes from split disjunctions starting from any given valid inequality.
Geometrically, this tilting involves changing the angle of the given inequality
until it becomes supporting for both sides of the disjunction. We provide compu-
tational experience with the strength and practicality of this procedure and make
connections with existing literature for which tilting offers a unifying perspective.

We then introduce V-polyhedral cuts for generating valid inequalities from
general disjunctions. We show how to efficiently obtain points and rays from
which we build a linear program whose feasible solutions correspond to valid
disjunctive cuts. This linear program is much smaller than the one from the
alternative approach, lift-and-project, enabling us to test larger disjunctions that
arise from the leaf nodes of a partial branch-and-bound tree. We show that the
cuts from one strong disjunction significantly improve the gap closed compared
to cuts produced from a union of many shallow disjunctive sets. Our cuts also
decrease Gurobi solving time. However, this hinges on choosing the best partial
tree size per instance, which remains an open problem and motivates future work
on better understanding the interaction between branch-and-bound and cuts.

Finally, the last chapter builds a correspondence between lift-and-project and
V-polyhedral cuts. The motivation is finding the necessary ingredients to ap-
ply standard cut strengthening techniques such as modularization to the more-
efficiently generated V-polyhedral cuts.

iv

Contents

List of Figures ix

List of Tables xiii

List of Algorithms xv

List of Acronyms xvii

1 Introduction & Background 1
1.1 Preliminaries . 2
1.2 Cut evaluation . 4
1.3 SICs, GMICs, and the nonbasic space . 5

1.3.1 Standard intersection cuts (simple disjunctive cuts) 6
1.3.2 Gomory mixed-integer cuts (strengthened intersection cuts) 10

1.4 Disjunctive cuts, irregularity, and lift-and-project 14
1.4.1 Background on disjunctive cuts . 14
1.4.2 Irregular cuts . 14
1.4.3 Cut-generating linear program for lift-and-project cuts 19
1.4.4 Membership linear program . 21

1.5 Cut strengthening via modularization . 23
1.5.1 Standard modularization . 23
1.5.2 Monoidal cut strengthening . 25
1.5.3 Strengthening an arbitrary cut . 27
1.5.4 Strengthening cuts from two-term disjunctions 29

1.6 Contributions of this dissertation . 30
1.7 Notation . 31

2 Partial Hyperplane Activation for Generalized Intersection Cuts 33
2.1 Introduction . 33
2.2 Full hyperplane activation . 35
2.3 Partial hyperplane activation . 37

2.3.1 Proper point-ray collections . 37
2.3.2 Algorithm and validity . 38

2.4 PHA1 with tilted hyperplanes . 42
2.5 Implementation choices for PHA1 . 47

v

2.5.1 Choosing hyperplanes to activate . 47
2.5.2 Choosing objective functions . 48

2.6 Theoretical results . 50
2.6.1 Existence of strictly dominating generalized intersection cuts 50
2.6.2 Characterizing bounded objective functions for the PRLP 51

2.7 Computational results . 52
2.7.1 Experimental setup . 53
2.7.2 Point-ray collection statistics . 54
2.7.3 Effect of hyperplanes activated . 55
2.7.4 Evaluating objective function choices 57
2.7.5 Strength of GICs . 57
2.7.6 Summary . 60

3 Cutting Planes by Tilting on Split Disjunctions 61
3.1 Introduction . 61
3.2 Tilting an inequality using a split disjunction 63

3.2.1 Tilted objective cut . 63
3.2.2 Tilted inequalities, the general case 64
3.2.3 Example of tilting a valid inequality for the LP relaxation 66
3.2.4 Existence of tilted cuts . 67
3.2.5 Selecting base inequalities via strong branching 68
3.2.6 Farkas certificate for tilted cuts . 70
3.2.7 Generating stronger tilted cuts . 71

3.3 Tilting using multiple split disjunctions . 74
3.3.1 Tilting cuts from a subspace (sequential tilting) 75
3.3.2 Mixing inequalities (simultaneous tilting) 77

3.4 Computational results . 79
3.5 Existing literature related to tilting . 84
3.6 Conclusion & open problems . 86

4 V-Polyhedral Cuts 89
4.1 Introduction . 89
4.2 Point-ray linear program . 91

4.2.1 Globally proper point-ray collections 92
4.2.2 VPCs from simple cone relaxations 93
4.2.3 VPCs corresponding to facets of the disjunctive hull 94
4.2.4 Normalization for the PRLP . 96
4.2.5 Choosing strong and successful objectives 97

4.3 Computational setup . 99
4.4 Computational results . 104

4.4.1 Percent root gap closed . 104
4.4.2 Branch-and-bound effect . 106
4.4.3 Partial tree size and objective function analysis 113

4.5 Alternative cut-generating sets and point-ray collections 117
4.5.1 Gap closed using multiple split and cross disjunctions 117

vi

4.5.2 Tightening the V-polyhedral relaxation 118
4.6 Conclusion & open problems . 119

5 Towards a Correspondence Between VPCs and L&PCs 121
5.1 Introduction & preliminaries . 121
5.2 Relationship between H- and V-polyhedral descriptions 123
5.3 From VPCs to L&PCs . 128
5.4 Correspondence examples . 130
5.5 Enforcing equality in the β constraints . 136
5.6 Conclusion . 137

6 Conclusions & Future Research 139

A On Regular Bases and Simple Disjunctive Cuts 141

B Three Normalizations for Lift-and-Project Cuts 145
B.1 β-normalization constraint . 147
B.2 Standard normalization constraint . 148
B.3 Trivial normalization constraint . 148

B.3.1 Optimal solution to the MLP . 148
B.3.2 Optimal solution to the CGLP for simple disjunctions 150
B.3.3 Optimal solution to the CGLP for general disjunctions 153
B.3.4 Trivial normalization example with a general disjunction 153
B.3.5 Irregular cuts from the trivial normalization 155

B.4 Concluding remarks about CGLP normalizations 156

C PHA Appendices 157
C.1 Tilting for degenerate hyperplanes . 157
C.2 Tilting example . 158

D VPC Appendices 161
D.1 Example of invalid cuts from a point-ray collection 161
D.2 Sample partial branch-and-bound tree . 163
D.3 Parameters to consider for VPC implementations 163
D.4 Discarded instances . 164
D.5 Tables for partial branch-and-bound tree experiments 167
D.6 Tables for experiments with other cut-generating sets 185

Bibliography 189

vii

viii

List of Figures

1.1 This example shows that SICs may have negative cut coefficients in the non-
basic space. The disjunction here is (x1 ≤ 0) ∨ (x2 ≤ 0). The top right panel
shows the cut if only nonnegative coefficients are allowed. The bottom left
panel shows the SIC, obtained by extending one of the rays emanating from
x̄ until it hits the last (not first) disjunctive term. The bottom right panel
shows the unique facet-defining inequality for cl conv(C(N) \ intS). 8

1.2 Moving from the structural to the nonbasic space, the cone C(N) becomes
the nonnegative orthant. Lattice points are shown as filled black squares,
intersection points are shown as unfilled squares. Point p5, for example, is
both an intersection and a lattice point. 11

1.3 Feasible region of the linear relaxation as in the original formulation (top),
after adding a SIC (middle), and after adding a GMIC (bottom), shown in
the structural space (left) and the nonbasic space (right). Lattice points are
marked by black squares. 13

1.4 Example of an irregular cut from the disjunction (x1 ≤ 0)∨ (x2 ≤ 0). The cut
is stronger than the two possible SICs and removes portions of both corner
polyhedra; the corner polyhedra (with dashed lines) and associated SICs are
shown in the bottom panel. 15

1.5 Example of an irregular cut requiring Farkas multipliers on more than n in-
equalities of P . The disjunction is (x1 ≤ 0)∨ (x2 ≤ 0)∨ (x1 + x2 ≥ 2), shown
by the patterned areas. The bottom panel shows a SIC from one basis (the
other three are similar). 16

1.6 Example of an irregular cut from a non-simple disjunction. 17
1.7 Example of a SIC that cuts off an element of the corner polyhedron, when

the convex set defined by the disjunction is not lattice-free. The disjunction
is (x1 ≤ 0) ∨ (x2 ≤ 0). 18

1.8 The cut in the right panel, derived from the disjunction (x1 ≤ 0) ∨ (x2 ≤ 0),
cannot be generated as a SIC but does not satisfy the definition of irregularity
that the number of positive Farkas multipliers is either fewer or more than n.
It can, however, be generated as a simple disjunctive cut. 19

2.1 Illustration of case 3 of the proof of Theorem 2.12. When ek and ẽk do not
coincide, it must be the case that ek intersects rk in the interior of S and that
the point p will be cut by both H and H̃. 46

2.2 Number generated points versus number of rays that can be cut. 55

ix

3.1 Example of tilting an inequality valid for P using an elementary split disjunction. 67

3.2 Example of sequentially tilting an objective cut using a branch-and-bound
tree. The base inequality is x3 ≤ 5/8, shown in (d), and it is iteratively tilted,
starting at an arbitrary leaf node along the path to the root, until it is valid
for the root. 76

3.3 Example of tilting an inequality using multiple split disjunctions simultane-
ously (i.e., without reoptimization, by using only the optimal values on the
two sides of each split). 79

4.1 Example of the point-ray collection for a standard intersection cut (SIC). The
first panel shows the feasible region P and the optimal solution x̄. The second
panel shows the cone C(N) and the three points obtained by intersecting it
with the boundary of the split disjunction on variable x1. The third panel
shows the the SIC, which is also the convex hull of the intersection points. . 93

4.2 This example shows that using the relaxations C(N (pt)) may prevent certain
valid inequalities from being generated. The right panel shows that the dashed
inequality that is valid for PI would violate a ray of the cone C(N 2). 95

4.3 Example of a four-term disjunction that shows even if the point-ray collection
is composed only of points that belong to the disjunctive hull and rays that
contain such points in their relative interior, facets of conv(P) +cone(R) may
still not correspond to facet-defining inequalities for PD. The first panel shows
P ; the second panel shows P t and the cones C(N (pt)) for t ∈ [4] as well as the
disjunctive hull; and the third panel shows conv(P) + cone(R) and the points
and rays (in wavy lines) that are tight for each of the facets of this point-ray
hull. Observe that the dashed wavy line is a ray that is added to R from one
term of the disjunction, but affects the point-ray hull when it originates from
a point from a different term. 96

4.4 Example that shows an inequality tight at p that does not cut away x̄ may
be necessary for achieving the bound cᵀp. In this example, we assume we are
maximizing along the vertical axis. The first panel shows the original poly-
tope. The second panel is the polytope after adding the only split inequality
that cuts away x̄. The third panel shows the polytope after adding all the
valid split cuts. 100

4.5 Average percent gap closed broken down by the number of leaf nodes used
to construct the partial branch-and-bound tree. Shown is the gap closed
for V-polyhedral cuts (VPCs) with and without Gomory mixed-integer cuts
(GMICs), as well as the gap closed at the root by Gurobi after the first and
last round of cuts. “0 leaves” refers to the percent gap closed when no VPCs
are used. “Best” refers to the maximum gap closed, instance-by-instance,
across all partial tree sizes. 107

x

4.6 Plot in log-log scale showing on the horizontal axis the time to solve each of
the instances using Gurobi with random seed 628 and on the vertical axis the
minimum across the solution times when VPCs are added as user cuts from
partial trees with ` leaves, ` ∈ {0, 2, 4, 8, 16, 32, 64}. The solid line is the parity
line; VPCs have more benefit for an instance the farther the corresponding
data point is below this line. This plot indicates what can be expected given
an oracle that can determine a good partial tree to use per instance. 109

4.7 Plot in log-log scale showing on the horizontal axis the minimum time to solve
each of the instances using Gurobi across seven random seeds (i·628 for i ∈ [7])
and on the vertical axis the minimum across the solution times when VPCs are
added as user cuts from partial trees with ` leaves, ` ∈ {0, 2, 4, 8, 16, 32, 64}.
One aspect reflected in these results is the higher variability among more
difficult instances. 110

4.8 The same as Figure 4.7 but with only the instances for which cuts were gen-
erated successfully from all partial tree sizes. For easier instances, it appears
that when VPCs help, they help consistently. Th results on the medium-
difficulty instances are mixed: when VPCs help, they tend to improve solu-
tion times more than the improvement from using a better random seed, but
using a “good” random seed helps much more frequently. For the very hard
instances, our cuts do not seem to be competitive with a lucky random seed. 111

5.1 Left panel: feasible region of P and the disjunction for the example. Right
panel: the inequalities tight for each extreme point, numbered as in the CGLP.131

5.2 Example 2 illustrating disjunctive terms with primal degeneracy. The initial
polyhedron has no degeneracy, but it is introduced after taking the disjunction. 133

5.3 Example of an irregular cut from a three term non-simple disjunction. The
term defined by (x1 ≤ 0, x2 ≤ 0) ultimately causes irregularity of the type in
which |N | > n. 135

A.1 Example of a cut that cannot be derived as a SIC, but can be generated as a
simple disjunctive cut. The first panel shows the feasible region of the linear
programming relaxation. The second panel shows the result of taking a three-
term non-simple disjunction and the associated cut (with a wavy line). The
last panel shows the boundary of the convex set S resulting from the CGLP
variables on the disjunctive inequalities. 142

B.1 Depiction of β-normalization. 147

B.2 Depiction of trivial normalization using the split (x1 ≤ 0) ∨ (x1 ≥ 1). Each
P t is enlarged until it contains x̄. The wavy line is the SIC from the basis at x̄.149

xi

B.3 Example showing that trivial normalization for a general disjunction is sen-
sitive to scaling and may yield a weak SIC. The first panel shows the feasi-
ble region of P . The top right panel shows one SIC that can be obtained
from the two-term general disjunction (B.4) with u1

0 = u2
0 = (1/6, 1/3).

The bottom left panel shows the cut obtained from the split disjunction
(−x1 ≥ 0) ∨ (x1 ≥ 1). This is the same as the cut obtained from applying
Theorem B.5. The last panel shows the cut that would be obtained from the
disjunction (x1−x2 ≥ 0)∨(−x1−x2 ≥ −1), which would be the SIC obtained
from applying Theorem B.5 under a different scaling (e.g., by multiplying the
first inequality in both terms by 1/3). 154

B.4 Example of the trivial normalization yielding an irregular cut. The disjunction
is (−x1 ≥ 0) ∨ (−x2 ≥ 0). The point x̃ is the optimal vertex after adding
the two SICs from P (shown as dashed lines). The wavy line is an irregular
cut and the optimal solution to the CGLP (without the two SICs) under the
trivial normalization when separating x̃. 155

C.1 Illustration of targeted tilting construction for a degenerate hyperplane. . . . 157
C.2 Feasible region of P and C̄. 159
C.3 Hyperplane activations leading to cutting a point in conv(P \ intS). 159

D.1 The LP polytope P for the counter-example showing an optimal point on
each disjunctive term and its neighbors as the point-ray collection may lead
to invalid cuts. 162

D.2 Partial branch-and-bound tree with 64 leaf nodes for instance bm23. 163

xii

List of Tables

1.1 Definitions of frequently used notation. 32

2.1 Summary of frequently used notation in this chapter. 37
2.2 Parameters that are varied and the values considered. 53
2.3 Best percent gap closed by hyperplane activation choice for instances with

any improvement over SICs. Some values differ in the thousandths digit. . . 56
2.4 Best percent gap closed by objective function used, for instances with any

improvement over SICs. Some values differ in the hundredths digit. 58
2.5 Best percent gap closed and number of cuts. 59

3.1 Results for experiments with tilted cuts as in Algorithm 3.5. 81
3.2 Instance size and percent gap closed for tilting experiments. 82

4.1 Summary statistics for percent gap closed by VPCs. 105
4.2 Summary statistics for time to solve instances with branch-and-bound. . . . 108
4.3 Number of leaf nodes yielding the best result for each experiment per instance.113
4.4 Statistics about the density of generated cuts broken down by partial tree size.114
4.5 Statistics about the objectives leading to failures, broken down by partial tree

size used for cut generation. 115
4.6 Statistics about when generated cuts are active, broken down by partial tree

size. 116
4.7 Summary on small instance set of average percent gap closed, average percent

of GMICs and VPCs active at the optimum after adding both sets of cuts to
P , average “cut ratio” between number of VPCs and number of GMICs, and
the shifted geometric mean (by 60) for generating VPCs for each partial tree
size as well as on runs with multiple split and cross disjunctions. 118

5.1 Reference for notation used in this chapter, listed alphabetically. 124

D.1 Instances that were not considered with reason for being discarded. 165
D.2 Percent gap closed by instance for GMICs (G), VPCs (V), both VPCs and

GMICs used together, and the bound implied by the partial branch-and-bound
tree with 64 leaf nodes (DB). Also shown are the sizes of the instances, the
number of cuts added, and the percent gap closed by Gurobi at the root
(after one round (GurF) and after the last round (GurL)). Entries in which
DB appears to be 0.00 are actually small strictly positive numbers. 168

xiii

D.3 Time (in seconds) and number nodes taken to solve each instance. The table
is sorted by column 4 (“V” under “Time (s)”). “Gur1” indicates Gurobi run
with one random seed. “Gur7” indicates the minimum from seven runs of
Gurobi with different random seeds. 172

D.4 Time (in seconds) and number nodes taken to solve each of the instances for
which all six branch-and-bound trees successfully yielded VPCs. The table
is sorted by column 4 (“V” under “Time (s)”). “Gur1” indicates Gurobi run
with one random seed. “Gur7” indicates the minimum from seven runs of
Gurobi with different random seeds. 176

D.5 Branch-and-bound statistics by number leaf nodes for “6 trees” set of in-
stances. Each set contains the instances for which VPCs were generated and
Gurobi solves the problem in under an hour either with or without VPCs. . 179

D.6 Information about objectives and time to generate cuts corresponding to the
results in Table D.2. 180

D.7 Comparison of percent gap closed by VPCs from partial branch-and-bound
trees to using multiple split or cross disjunctions. 186

D.8 Time to generate VPCs for each of the different partial branch-and-bound
tree sizes and for multiple split and cross disjunctions. 187

D.9 Number of rows, columns, GMICs, and VPCs for small instances used to test
multiple split and cross disjunctions. The last row gives the average ratio of
number of VPCs as a fraction of the number of GMICs. 188

xiv

List of Algorithms

1.1 Calculate Optimal Monoidal Strengthening for Corollary 1.8 27
2.2 Distance 1 Partial Hyperplane Activation . 39
2.3 Generalized Intersections Cuts by PHA1 . 43
2.4 Generalized Intersection Cuts by PHA1 and Targeted Tilting 44
3.5 Tilted Cuts . 80
4.6 Type 1 V-Polyhedral Cuts . 100

xv

xvi

List of Acronyms

Notation Description
CGLP cut-generating linear program

GIC generalized intersection cut
GMIC Gomory mixed-integer cut

L&PC lift-and-project cut

MLP membership linear program

PHA partial hyperplane activation
PRLP point-ray linear program

SIC standard intersection cut

VPC V-polyhedral cut

xvii

xviii

Chapter 1

Introduction & Background

Mixed-integer linear programs are optimization models for settings that involve discrete de-
cisions and are prevalent in a wide range of real-world applications (see, e.g., the references in
[120]). Cutting planes, or cuts, are one of the most important components enabling the fast
performance of modern integer programming solvers [6]. There has been significant research
effort in the past decade devoted to finding new classes of cuts, prompted by a combination of
their practical significance and reinvigorated theoretical interest spurred by Andersen et al.
[9]. The dissertation focuses on the theoretical development and computational investiga-
tion of new general-purpose cuts for mixed-integer linear programs, particularly approaches
through which a large number of “good” cuts can be generated quickly and non-recursively.
The motivation for avoiding recursive applications of cuts is empirical evidence that such
recursion leads to numerical issues (such as due to compounding inaccuracies) and a “tailing
off” of the strength of the cuts in later rounds [27, 60, 118, 139].

Despite an abundance of recent work on cuts providing illuminating theory, the computa-
tional experience on benefits over existing techniques has been mixed. In this dissertation, we
identify some of the computational challenges associated with designing new cuts, introduce
techniques aimed at resolving these challenges, present promising computational evidence
for the practical significance of the methods, and support the experimental evidence with
new theoretical results.

The cuts developed in the earlier chapters lead to the dissertation’s primary contribu-
tion in Chapter 4, which is a V-polyhedral framework for generating cuts from very strong
disjunctions cuts in an efficient way, without resorting to recursion; the accompanying com-
putational results indicate that the cuts already have strong promise for practical settings,
though their effectiveness in deployed solvers would drastically increase with a better under-
standing of the interaction between cuts and branch-and-bound.

We first introduce, in Section 1.1, the mixed-integer linear programming setting more
formally, give the notation used throughout the dissertation, and briefly survey the existing
literature on cutting planes. In the subsequent sections, we discuss how we evaluate cuts,
provide basic concepts for some common cuts, and review strengthening techniques. We
then summarize the contributions of this dissertation in Section 1.6. Finally, in Section 1.7,
we provide a table referencing notation that will be used frequently throughout.

1

1.1 Preliminaries
We assume some familiarity with polyhedra and linear and integer programming; good refer-
ences for more details are the books Integer Programming by Conforti et al. [58] and Lectures
on Polytopes by Ziegler [140]. The set of real numbers will be denoted by R and the set
of integers by Z. As shorthand, for any positive integer n, we use [n] to denote the set of
integers {1, . . . , n}.

Let P denote a polyhedron described by a set of inequalities:1

P := {x ∈ Rn : Ai·x ≥ bi, i ∈ [m]},

where Ai· refers to row i of the constraint matrix A, and let

PI := {x ∈ P : xj ∈ Z for all j ∈ I},

where I ⊆ [n] is the index set of the integer-restricted variables. We assume that P is
full dimensional and pointed,2 all data is rational, and all variable bounds are subsumed by
Ax ≥ b. For a given c ∈ Qn, our goal is to solve the mixed-integer program

min
x∈PI

c
ᵀ
x. (IP)

The decision version of integer programming is one of the classical NP-complete ques-
tions [105]. Consequently, it is believed that, in general, there is no efficient algorithm (with
running time that is polynomial in the size of the input) to optimize over PI directly. On the
other hand, one can optimize over P efficiently. As a result, integer programs are solved by
starting with the linear programming relaxation of (IP), obtained by removing the integrality
restrictions on the variables:

min
x∈P

c
ᵀ
x. (LP)

Let x̄ be an optimal solution to (LP). If x̄ is integer feasible, then it is also an optimal
solution to (IP). Otherwise, when x̄ /∈ PI , the next step in an integer programming solver is
to add inequalities to P to produce a tighter relaxation of PI . Inequalities are called valid (for
PI) if they are satisfied by all points in PI . Cutting planes, or cuts, are valid inequalities for
PI that remove some part of P . Cuts can either be problem specific or general purpose. The
former refers to cuts that only apply to specific classes of integer programming problems,
whereas the latter cuts apply generically and will be the focus of this dissertation. All
general-purpose cuts can be generated via the use of disjunctions that reintroduce some of
the integrality information discarded when creating P from PI ; we elaborate on this below.

Suppose we are given the disjunction, indexed by a finite set T ,∨
t∈T

{x ∈ Rn : Dtx ≥ Dt
0}. (1.1)

1We consider only convex polyhedra, so we drop the qualifier “convex”.
2That is, rank(A) = n and P does not contain a line, or, equivalently, its smallest nonempty face has

dimension 0, which is called a vertex or extreme point. A face of P of dimension k − 1 is a hyperplane that
contains exactly k affinely independent points from P on it.

2

Incorporating the constraints of P , we denote disjunctive term t ∈ T by

P t := {x ∈ P : Dtx ≥ Dt
0}.

Let PD := cl conv(∪t∈T P t) be the disjunctive hull, the closed convex hull of the points of P
satisfying the disjunction. We assume the disjunction satisfies PI ⊆ PD and x̄ /∈ PD. The
theory of optimizing over disjunctions was developed by Balas [17] as part of disjunctive
programming. The strongest cuts that are derived from a valid disjunction are facet-defining
inequalities for PD.3

The majority of the cuts currently implemented in mixed-integer programming solvers
are generated from split disjunctions, which take the form (πᵀx ≤ bπᵀx̄c) ∨ (πᵀx ≥ dπᵀx̄e),
where π ∈ Zn. Such cuts are referred to as split cuts [61] and include Gomory mixed-integer
cuts (GMICs) [88] (equivalent to mixed-integer rounding cuts [120]) and lift-and-project cuts
(L&PCs) [24]. The most commonly used split disjunction is of the type (xj ≤ bx̄jc) ∨ (xj ≥
dx̄je), called a disjunction from an elementary split (sometimes called a simple split).

There are two notable properties of split disjunctions when considering generalizations.
The first property is that split disjunctions arise from a single equation of the type πᵀx = πᵀx̄,
and in the case of an elementary split disjunction, this equation only utilizes the integrality
of one integer variable to produce the disjunction. The second property is that each term of
an elementary split disjunction is defined by exactly one inequality. Disjunctions of this type
are called simple, and they are in one-to-one correspondence with cuts from PI-free convex
sets, which are convex sets, obtained by reversing the inequalities defining the terms of the
simple disjunction, that contain no feasible integer points in their relative interior.

A natural generalization of the first property is to look at PI-free convex sets arising from
information from two equations, such as from two rows of the optimal simplex tableau to
(LP) for which the basic variables are integer but take fractional values in x̄. Such convex sets
are triangles and quadrilaterals (in two dimensions), which are known to be all the maximal
lattice-free (containing no integer points) convex sets in the plane [15].4 The computational
results are mixed on practical instances [34, 37, 72, 79] despite theoretical promise [16, 38].
As a partial explanation of this, some probabilistic results show that, on average, triangle
cuts and quadrilateral cuts may not be much stronger than split cuts [39, 71, 97]. This is
in contrast to the theory, which shows that splits cuts can be, in the worst-case, arbitrarily
worse than triangle cuts [38]. Additionally, all split cuts are in fact equivalent to intersection
cuts [21, 32], but this is no longer true for other disjunctive sets, for which there may exist
irregular cuts that may dominate all the possible intersection cuts [8, 30]

There has been work relaxing the second property as well, in which cuts are generated
from nonconvex sets, i.e., general (not necessarily simple) disjunctions [9, 49, 54, 66, 68, 69,
70, 114]. Every cut from a general disjunction can, in fact, be obtained from a simple one,
corresponding to a PI-free convex set that is entirely contained in Rn \∪t∈T {x : Dtx ≥ Dt

0},
the complement of the disjunction (1.1). However, the facet-defining inequalities for PD
may each be a consequence of a different PI-free convex set, implying that using the general

3A facet is a proper face of maximal dimension (i.e., not equal to the entire polyhedron). A facet-defining
inequality for PD is one that is valid and produces a facet when set to equality and intersected with PD.
Keeping with convention, we often refer to facet-defining inequalities as facets themselves.

4The notion of maximality is that the lattice-free set is not properly contained in any other lattice-free
set. Maximal lattice-free sets are known to be polyhedra [115].

3

disjunction avoids the complicated step of choosing a convex set derived from the disjunction.
We discuss existing computational results with general disjunctions in Section 4.1.

When considering ways to generalize split disjunctions, the problem of too many choices
arises. There are many options of selecting the disjunctions used to generate cuts, a variety of
approaches to obtaining cuts from the disjunctions, and a much larger pool of potential cuts,
which can make it more difficult to efficiently find the “good” cuts (supposing they exist).
For example, when computing with two-row cuts, if there are n possible rows to choose from,
there are O(n2) possible pairs of rows that can be selected, which is already computationally
impractical. This is reflected in computational experiments; for example, Dash et al. [70]
find strong cross cuts (a special case of t-branch split cuts [110]) but conclude that their
separation procedure is too computationally demanding to be practical. The hurdles faced
when designing more complex cut generators can also, by contrast, partially explain the
practical effectiveness of split cuts: split cuts have the benefits of being simple, which allows
them to be separated quickly, yet simultaneously quite strong, which is documented both
theoretically [39] and empirically [35].

Cuts have repeatedly been shown to be critical in enabling the capabilities of modern
solvers [6, 45, 46, 64]. This is one motivation for pursuing new cuts. Another is the pursuit
of improved numerical stability. The success of cuts hinges on their application in rounds, by
applying a set of cuts, reoptimizing, then recursing [26]. However, Gomory cuts are known
to become increasingly parallel to each other as the number of rounds increases, leading to
increasing dual degeneracy (the existence of multiple optimal solutions) and constraint matri-
ces with large determinants (slowing down computation time and decreasing accuracy) [60,
139]. On the other hand, there is evidence that stronger inequalities do not suffer from
this “tailing-off” effect [24, 59]. This is why one of the goals of the cuts introduced in this
dissertation is to produce a multitude of strong cuts without resorting to recursion.

The challenge undertaken by the recent research on cuts, and this dissertation, is effi-
ciently finding still stronger cuts that interact favorably with the existing ones and produce
marginal benefit in solving time that offsets the extra effort to generate the cuts.

1.2 Cut evaluation
A new cut family can be evaluated, computationally, along different dimensions. The primary
goal is improved empirical solver performance. However, it can be difficult to set up a fair test
environment for this metric. As a result, as proxies, other criteria are often employed. Most
commonly, measures of the strength of the generated cuts are reported. Another relevant
quantity is the numerical stability of the cuts. Along with these metrics for the existence
of “good” cuts within the family being tested, the computational expense of generating the
new cuts needs to be considered. We assess all four of these aspects (to varying degrees) for
each family of new cuts we introduce in this thesis, i.e., whether the new cuts

(1) are different from (and stronger than) existing cuts,

(2) result in better solution times,

(3) have desirable numerical properties, and

4

(4) can be found efficiently (the cuts that are strong, helpful, and numerically stable).

We often report the percent integrality gap closed to assess strength. Let xI denote an
optimal solution to (IP), and let x̃ be an optimal solution to (LP) after a set of cuts have
been added. We measure the quantity

% integrality gap closed := 100× cᵀx̃− cᵀx̄
cᵀxI − cᵀx̄

.

Our baseline, as is common in the literature, is typically the percent of the integrality gap
that is closed by either standard intersection cuts (SICs) or GMICs.

1.3 Standard intersection cuts, Gomory mixed-integer
cuts, and the nonbasic space

We first prove the formula for the SIC from any valid simple disjunction. This is done in
the nonbasic space, consisting of the variables that are nonbasic5 at x̄, a concept we will
again utilize in Chapters 2 and 4 as it confers computational advantages over the structural
space, referring to the x variables (not including slack variables). We then derive GMICs,
usually simply referred to as Gomory cuts, from a geometric perspective, by showing how
they arise via a strengthening of SICs. In the process, we show how, in some sense, Gomory
cuts optimally take advantage of nonbasic integer variables when taking a split disjunction.

For this section, we work with a modified polyhedron P̃ in which nonnegative slack
variables sn+1, . . . , sn+m have been added, one per constraint of P , and append to the indices
I (of integer variables) the indices corresponding to slacks on rows that are bounds on integer-
restricted variables. Concretely, with R≥0 denoting the set of nonnegative real numbers,

P̃ :=
{

(x, s) ∈ Rn ×Rm
≥0 :

n∑
j=1

Aijxj − sn+i = bi for all i ∈ [m]
}
.

We assume, without loss of generality, that variables x1, . . . , xn are all basic and that s̄j = 0
for all j ∈ N , where s̄ = Ax̄− b. Let B be the index set of the basic variables for a vertex x̄
of P̃ and N denote the cobasis, the associated index set of the nonbasic variables. Let the
index set of the rows with nonbasic slacks be N := {i ∈ [m] : n+ i ∈ N}. Define AN as the
n× n nonsingular submatrix of A with rows indexed by N . These rows define the LP basis
cone C(N) := {x ∈ Rn : ANx ≥ bN}. This cone has n affinely independent rays, one for
each j ∈ N , whose intersections with the disjunctive terms define the intersection cut.

Although the cuts in this section are derived in the nonbasic space, converting to the
structural space is an easy operation, as we show in Lemma 1.1.

Lemma 1.1. Consider a cut in the full (structural and slack) space with coefficients γj,
j ∈ [n + m] and right-hand side γ0. The equivalent cut in the structural space is αᵀx ≥ β,
where αk = (γk +

∑m
i=1 γn+iAik) for all k ∈ [n], αk = 0 for all k ∈ {n + 1, . . . , n + m}, and

β = γ0 +
∑m

i=1 γn+ibi.
5The set of indices of the nonbasic variables, also called the cobasis, corresponds to a set of n linearly

independent inequalities of P , which define a vertex of P .

5

Proof. Observe that, for any (x, s) ∈ Rn+m,

γ
ᵀ[xs]− γ0 =

n∑
k=1

γkxk +
n+m∑
k=n+1

γksk − γ0 =
n∑
k=1

γkxjk +
m∑
i=1

γn+i

(
n∑
k=1

Aikxk − bi

)
− γ0

=
n∑
k=1

(
γk +

m∑
i=1

γn+iAik

)
xk −

(
γ0 +

m∑
i=1

γn+ibi

)
.

Therefore, we get the desired result by substitution.

1.3.1 Standard intersection cuts (simple disjunctive cuts)
To tighten the linear relaxation P̃ , we derive valid cuts from a simple (one inequality per
term) disjunction, expressed in the nonbasic space of variables:∨

t∈T

(∑
j∈N

dtjsj ≥ dt0

)
.

Suppose that x̄ violates each disjunctive term inequality. In this case, dt0 > 0 for all t ∈ T
because s̄ = 0, i.e., x̄ is the origin in the nonbasic space, and the disjunction can be rewritten∨

t∈T

(∑
j∈N

dtj
dt0
sj ≥ 1

)
.

From this, we can derive the standard intersection cut (SIC) (equivalent to Owen’s cut [121]),∑
j∈N

max
t∈T

{
dtj
dt0

}
sj ≥ 1.

To prove its validity, take any (x, s) ∈ P̃ t̂ := {(x, s) ∈ P̃ :
∑

j∈N d
t̂
jsj ≥ dt̂0} for any fixed

t̂ ∈ T . Then
∑

j∈N d
t̂
jsj ≥ dt̂0 by definition of P̃ t̂, and we conclude that∑

j∈N

max
t∈T

{
dtj
dt0

}
sj ≥

∑
j∈N

dt̂j

dt̂0
sj ≥ 1.

We can also generalize this derivation for non-simple disjunctions such as (1.1). This
disjunction can be expressed in the nonbasic space through the following transformation.
Define bN as the elements of b indexed by N , and define sN as the nonbasic slack variables.
We multiply the rows ANx− sN = bN by A−1

N , and, using the fact that AN x̄ = bN , we get a
version of the optimal tableau:

A−1
N ANx− A−1

N sN = A−1
N bN =⇒ x = x̄+ A−1

N sN = x̄+
∑
j∈N

rjsj. (1.2)

Note that the components of the rays of C(N) (in the structural space) are given by A−1
N .

We then substitute (1.2) into (1.1) to get the disjunction represented in the nonbasic space:∨
t∈T

(Dtx ≥ Dt
0) ⇐⇒

∨
t∈T

(Dt(x̄+ A−1
N sN) ≥ Dt

0) ⇐⇒
∨
t∈T

(DtA−1
N sN ≥ Dt

0 −Dtx̄). (1.3)

6

Lemma 1.2. For each t ∈ T , let ut0 ∈ Rmt
≥0, and define dtj := (ut0DtA−1

N)j−n for all j ∈ N
and dt0 := ut0(Dt

0 −Dtx̄). The following cut is valid for PD:∑
j∈N

max
t∈T

dtjsj ≥ min
t∈T

dt0.

Proof. For each t̂ ∈ T and all x ∈ P t̂, we have that ut̂0Dt̂x ≥ ut̂0D
t̂
0. Hence, setting s = Ax−b,∑

j∈N

max
t∈T

dtjsj ≥
∑
j∈N

dt̂jsj ≥ dt̂0 ≥ min
t∈T

dt0.

We will still call the cut from Lemma 1.2 a SIC (it is sometimes also called a simple
disjunctive cut), but the formula is more general than before; when dt0 as in the lemma is
positive for all t ∈ T , we can use ut0/dt0 (instead of ut0) as the multipliers for each disjunctive
term to recover the earlier formula.

A geometric perspective. The SIC has a nice geometric interpretation. It is the unique
inequality that passes through a set of n affinely independent intersection points (or rays)
obtained by following each ray rj of C(N) until the first disjunctive term it intersects, or,
if there is no such term, following −rj until the last disjunctive term it intersects. We can
also look at the convex PI-free set corresponding to each simple disjunction:

S := {(x, s) ∈ Rn ×Rm
≥0 :

∑
j∈N

dtjsj ≤ dt0 for all t ∈ T }.

The SIC is a valid inequality for cl conv(C(N) \ intS), where intS denotes the interior of
S. When S is lattice-free, the geometric interpretation is even more appealing: the SIC is
simply obtained by intersecting the rays of C(N) with the boundary of S, denoted bdS.

More concretely, let j ∈ N and consider the corresponding ray rj of C(N). The value of
sj corresponds to a distance along rj (emanating from x̄). Thus, for each t ∈ T such that
dtj 6= 0, setting sj = dt0/d

t
j, while keeping the rest of the nonbasic variables at zero, yields a

point that satisfies dts = dt0. We call this the intersection point of rj with disjunctive term
t. Note that the value dt0/dtj may be negative; this happens when we intersect the negative
extension of rj with term t. For the terms in which dtj = 0, neither the ray rj nor its negative
extension intersect the term, and an “intersection point” does not exist, but we can instead
use the ray rj itself. For every ray rj of C(N), we can choose a term tj and calculate an
intersection point (or ray) in this way. The end result is a collection of n points and rays
that are affinely independent as a result of the n rays of C(N) being affinely independent.
Consequently, there is a unique inequality going through these intersection points and rays
that cuts off (x̄, s̄):

∑
j∈N (dtjj /d

tj
0)sj ≥ 1. In general, this inequality will not be valid for PD.

For validity, for each j ∈ N , the inequality must not cut away any intersection point along
the positive direction of rj, because each of these points belongs to PD. At the same time,
no intersection point along the negative extension of rj should strictly satisfy the cut.6

6For informal geometric intuition, consider a cut defined as above and a line going through two intersection
points defining the cut, where one of the points comes from using the negative extension of a ray rj of C(N).
The cut is invalid if that line intersects the interior of conv(C(N) \ intS) at some point p. This is because
all points on the line satisfy the cut at equality, and all points on p + λrj for λ ∈ R>0 violate the cut and
belong to C(N); for a small enough λ, this means a point of C(N) \ intS would be cut. Such a scenario can
never occur when no point along any negative extension strictly satisfies the cut.

7

x1

x2

x̄

x1

x2

x̄

x1

x2

x̄

x1

x2

x̄

Figure 1.1: This example shows that SICs may have negative cut coefficients in the nonbasic
space. The disjunction here is (x1 ≤ 0) ∨ (x2 ≤ 0). The top right panel shows the cut if
only nonnegative coefficients are allowed. The bottom left panel shows the SIC, obtained by
extending one of the rays emanating from x̄ until it hits the last (not first) disjunctive term.
The bottom right panel shows the unique facet-defining inequality for cl conv(C(N) \ intS).

As we already mentioned, the formula for the SIC allows negative coefficients; namely, if
dtj < 0 for all t ∈ T , then the SIC coefficient on sj will be negative. In contrast, as discussed
by Balas and Kis [29], in the literature, intersection cuts are sometimes assumed to have
nonnegative coefficients. This disparity is explained by an additional assumption sometimes
made on S, that it is lattice-free, not arbitrarily PI-free. If S is lattice-free (or it is bounded),
then every ray of C(N) either intersects the bdS, or it is “parallel” to one of the facets of S,
i.e., dtj = 0, from which it follows that all the coefficients of the SIC are indeed nonnegative.
In general, however, imposing nonnegativity on the cut coefficients substantially restricts the
attainable intersection cuts. This is demonstrated in Figure 1.1. The cut in the top right
panel is the intersection cut restricted to having nonnegative coefficients, while the cut in
the bottom left panel is what we get from applying the formula for the SIC.

Figure 1.1 also demonstrates an additional effect of using a PI-free convex set. When S
is lattice-free, the SIC is the unique facet-defining inequality of cl conv(C(N)\ intS). On the
other hand, as shown in the bottom right panel, when S is not lattice-free, the SIC may not
define a facet of cl conv(C(N) \ intS). The reason for this is the too-stringent requirement
that no intersection point along any negative extension of a ray of C(N) strictly satisfies the
cut. That is sufficient, but not necessary, for validity. The intuition in Footnote 6 can be
formalized to give a necessary condition for a cut to be valid for C(N) \ intS.

The topic of Chapter 2 is a generalization of SICs called generalized intersection cuts
(GICs) introduced by Balas and Margot [31]. This is a framework for generating inequalities

8

stronger than SICs by tightening C(N) with additional valid inequalities before intersecting
the resulting relaxation with the set S.

Next, we apply the SIC formula to an elementary split disjunction, which is equivalent
to the Gomory cut when all nonbasic variables are continuous.

Standard intersection cut from an elementary split. The easiest SIC comes from
using the elementary split disjunction (xk ≤ bx̄kc) ∨ (xk ≥ dx̄ke) for any k ∈ I with x̄k /∈ Z.
In the nonbasic space, by substituting the tableau row in place of xk, this disjunction is(

x̄k +
∑
j∈N

rjksj ≤ bx̄kc

)∨(
x̄k +

∑
j∈N

rjksj ≥ dx̄ke

)
.

Let f0 := x̄k −bx̄kc be the fractional component of x̄k. With this substitution, and ensuring
the first disjunctive term inequality is in the right direction, the disjunction becomes(

−
∑
j∈N

rjksj ≥ f0

)∨(∑
j∈N

rjksj ≥ 1− f0

)
.

The resulting SIC is ∑
j∈N

max
{
−r

j
k

f0
,

rjk
1− f0

}
sj ≥ 1.

This is a Gomory cut when all nonbasic variables are continuous, though expressed in terms
of the rays rj rather than their negations, where −rj corresponds to the entries of the optimal
tableau (as used in some derivations of the Gomory cut). An equivalent expression for it is∑

j∈N :
rj

k<0

rjk
f0
sj +

∑
j∈N :
rj

k>0

rjk
1− f0

sj ≥ 1.

We now return to the geometric interpretation. When rjk 6= 0, there exists a strictly
positive value λj ∈ R such that x̄+ λjr

j ∈ bdS, which is the same as saying that x̄k + λjr
j
k

equals bx̄kc or dx̄ke, or that λj is equal to max{−f0/r
j
k, (1−f0)/rjk}, since exactly one of those

terms is positive valued. This is the distance taken along rj until it intersects bdS, which
is why the resulting cut,

∑
j∈N (1/λj)sj ≥ 1, is called an intersection cut, where λj := 0 for

all j ∈ N such that rjk = 0.

Standard intersection cut example. Consider the optimization problem below, where
the coefficient a2 is a strictly positive rational number that will be used as a parameter.

max
x1,x2,x3

x3

x1 + x3 ≤ 1
a2x2 + x3 ≤ 1/2
x1, x2, x3 ≥ 0
x1, x2 ∈ Z

9

An optimal solution to the LP relaxation is x̄ = (1/2, 0, 1/2). The optimal tableau, with
respect to the cobasis comprising nonnegative slack variables s2 (the slack on x2 ≥ 0, so
s2 = x2), s4 (on the first constraint), and s5 (on the second constraint), is below.

x1 = 1/2 + a2s2 − s4 + s5

x3 = 1/2− a2s2 − s5

First, we generate the SIC from (x1 ≤ 0) ∨ (x1 ≥ 1). There are three rays, corresponding
to the nonbasic variables: r2, r4, and r6. Let pj denote the intersection point of ray rj with
bdS, where S = {x : 0 ≤ x1 ≤ 1}, and let λj be the distance along rj until pj. Thus, to
calculate p2, we find the positive value λ2 such that

x1 = 1/2 + a2λ2 = 0 or 1,

i.e., λ2 = 1/(2a2), yielding the intersection point p2 = (1, 1/(2a2), 0). Similarly, we can
calculate that λ4 = λ5 = 1/2 with intersection points p4 = (0, 0, 1/2) and p5 = (1, 0, 0). The
SIC,

∑
j∈N (1/λj)sj ≥ 1, is

2a2s2 + 2s4 + 2s5 ≥ 1.

Substituting the slacks out using s2 = x2, s4 = 1 − x1 − x3, and s5 = 1/2 − a2x2 − x3, and
simplifying a little, the SIC (in the structural space) is

x1 + 2x3 ≤ 1.

If we look at the formulation of the problem in the nonbasic space, the disjunction is(
−a2s2 + s4 − s5 ≥

1
2

)
∨
(
a2s2 − s4 + s5 ≥

1
2

)
and the intersection points actually lie on the axes. This is depicted in Figure 1.2. This
demonstrates that, in some sense, it may be simpler to derive a cut in the nonbasic space, as
that is somehow a “natural” space for the cut due to the sparsity of the intersection points
in that space, and only at the end substitute out the slacks to return to the space of the
structural variables (via Lemma 1.1).

1.3.2 Gomory mixed-integer cuts (strengthened intersection cuts)
We incorporate nonbasic integrality information to strengthen the disjunction and generate
the full, stronger, GMIC. As before, let k be the index of an integer variable with x̄k /∈ Z.
Now suppose some of the nonbasic variables are also integer-restricted. That implies that
one can choose values (to be optimized later) zjk ∈ Z, j ∈ N ∩ I, such that the tableau row
corresponding to xk can be written

xk −
∑

j∈N∩I

zjksj︸ ︷︷ ︸
integer-valued

= x̄k +
∑

j∈N∩I

(rjk − z
j
k)sj +

∑
j∈N\I

rjksj.

10

x1

x2

x3

x̄

0x1,x2,x3

p4

p5

p2

s2

s4

s5

x̄

0x1,x2,x3

p4p5

p2

Figure 1.2: Moving from the structural to the nonbasic space, the cone C(N) becomes the
nonnegative orthant. Lattice points are shown as filled black squares, intersection points are
shown as unfilled squares. Point p5, for example, is both an intersection and a lattice point.

Since s̄j = 0 for all j ∈ N , the disjunction (x̄k ≤ bx̄kc)∨ (x̄k ≥ dx̄ke) can be replaced by the
stronger valid disjunction(

xk −
∑

j∈N∩I

zjksj ≤ bx̄kc

)
∨

(
xk −

∑
j∈N∩I

zjksj ≥ dx̄ke

)
.

Letting f jk := rjk − z
j
k for j ∈ N ∩ I, we rewrite the disjunction in the nonbasic space as− ∑

j∈N∩I

f jksj −
∑
j∈N\I

rjksj ≥ f0

 ∨
 ∑
j∈N∩I

f jksj +
∑
j∈N\I

rjksj ≥ 1− f0

 .

The intersection cut from this disjunction, by applying the formula, is

∑
j∈N∩I

max
{
−f jk
f0

,
f jk

1− f0

}
sj +

∑
j∈N\I

max
{
−rjk
f0

,
rjk

1− f0

}
sj ≥ 1.

The nonnegativity of the variables implies that stronger cuts have smaller coefficients, so the
optimal choice of zjk is either

⌊
rjk
⌋
or
⌈
rjk
⌉
. The coefficient on sj, j ∈ N ∩ I, is then

min
{
rjk −

⌊
rjk
⌋

1− f0
,

⌈
rjk
⌉
− rjk
f0

}
.

Hence, zjk =
⌊
rjk
⌋
when⌈

rjk
⌉
− rjk
f0

≥
rjk −

⌊
rjk
⌋

1− f0
⇐⇒ (1− f0) ·

⌈
rjk
⌉
− (1− f0) · rjk ≥ f0 · rjk − f0 ·

(⌈
rjk
⌉
− 1
)

⇐⇒ rjk + f0 ≤
⌈
rjk
⌉
.

11

The closed-form expression for the resulting cut (in the nonbasic space) is

∑
j∈N∩I:

rj
k+f0≤drj

ke

rjk −
⌊
rjk
⌋

1− f0
sj +

∑
j∈N∩I:

rj
k+f0>drj

ke

⌈
rjk
⌉
− rjk
f0

sj +
∑

j∈N\I:
rj

k<0

rjk
f0
sj +

∑
j∈N\I:
rj

k>0

rjk
1− f0

sj ≥ 1,

which is exactly the Gomory mixed-integer cut (GMIC). As before, the one deviation from
many traditional derivations is that we calculate using rj and not −rj (which are the values
in the optimal tableau, from assuming no variables that are nonbasic at their upper bounds).

Gomory mixed-integer cut example. Continuing the previous example, we observe
that s2 is an integer-restricted nonbasic variable. Thus, the SIC can be strengthened along
ray r2. Previously, we calculated the coefficient on s2 by (the inverse of) the distance along r2

to the intersection point on bdS, which corresponded to λ2 = 1/(2a2). Now, for some values
of a2 and using the integrality of s2, we can actually go farther along r2 while maintaining
validity of the resulting cut. The value of f0 is 1/2. In the nonbasic space, the coefficient on
s2 was previously 2a2, when the integrality of s2 was ignored; for the strengthened cut, the
coefficient on s2 in the nonbasic space will be

2 ·min{rjk −
⌊
rjk
⌋
,
⌈
rjk
⌉
− rjk} = 2 ·min{da2e − a2, a2 − ba2c}.

We can convert the mixed-integer cut, in this parametric form, to the structural space,
resulting in the cut (after simplification)

x1 + max{ba2c , 2a2 − da2e}x2 + 2x3 ≤ 1.

If a2 ∈ (0, 1/2], the “strengthened” coefficient is the same as the “unstrengthened” one.
However, if a2 ∈ [1/2, 1], then the cut becomes

x1 + (2a2 − 1)x2 + 2x3 ≤ 1,

which is stronger than x1 + 2x3 ≤ 1. This example is illustrated in Figure 1.3 for a2 = 3/4.
As a2 increases, the linear relaxation feasible region gets smaller and the GMIC gets

monotonically stronger, though only weakly, as it remains x1 + kx2 + 2x3 ≤ 1 for all a2 ∈
[k, k + 1/2] for any nonnegative integer k. Moreover, the GMIC slowly approaches, but is
always strictly dominated by, the cut x2 ≤ 0 which is valid for PI when a2 > 1/2 and valid
for the four-term disjunction(

x1 ≤ 0
x2 ≤ 0

)
∨
(
x1 ≥ 1
x2 ≤ 0

)
∨
(
x1 ≥ 0
x2 ≥ 1

)
∨
(
x1 ≥ 1
x2 ≥ 1

)
.

This demonstrates that split cuts can be strictly worse than cross cuts, and that finding cuts
from the above four-term disjunction based on the integrality of x1 and x2 is not equivalent
to taking a split disjunction on x1 and afterwards incorporating the integrality of x2.

12

x1

x2

x3

x̄

0x1,x2,x3

p4

p5

p2

s2

s4

s5

x̄

0x1,x2,x3

p4p5

p2

x1

x2

x3

x̄

0x1,x2,x3

p4

p5

p2

s2

s4

s5

x̄

0x1,x2,x3

p4p5

p2

x1

x2

x3

x̄

0x1,x2,x3

p4

p5

p2

s2

s4

s5

x̄

0x1,x2,x3

p4p5

p2

Figure 1.3: Feasible region of the linear relaxation as in the original formulation (top), after
adding a SIC (middle), and after adding a GMIC (bottom), shown in the structural space
(left) and the nonbasic space (right). Lattice points are marked by black squares.

13

1.4 Disjunctive cuts, irregularity, and lift-and-project
We first briefly review the recent literature on generating disjunctive cuts. We highlight
recent findings that show that there exist disjunctive cuts that are strictly stronger than
all possible SICs obtainable from that disjunction. We then discuss the lift-and-project
approach for generating facet-defining disjunctive cuts and properties of the linear program
used by the lift-and-project method for computing disjunctive cuts. Later, in Chapter 4, we
identify some of the weaknesses of the lift-and-project machinery and build an alternative
method that offers some computational advantages.

1.4.1 Background on disjunctive cuts
We have already seen in Section 1.3 how SICs arise as disjunctive cuts. Of course, the SIC
is one cut, while there are, in general, many valid inequalities for the disjunctive hull. Lift-
and-project is a method that can produce all valid disjunctive cuts, based on the theory
developed by Balas [17]. It involves building an extended formulation of the disjunctive
hull, from which cuts are separated. This extended formulation comes from finding Farkas
multipliers that certify the validity of the cut. Concretely, for any inequality αᵀx ≥ β valid
for PD, the inequality must be valid for each P t, t ∈ T . Farkas’ lemma [81] implies that, for
each t ∈ T , there exist row vectors of nonnegative multipliers (ut, ut0) ∈ Rm

≥0 ×Rmt
≥0 (where

mt denotes the number of rows of Dt) such that

α
ᵀ = utA+ ut0D

t

β ≤ utb+ ut0b.

Though successful in improving contemporary codes in its first implementations [24, 25],
the lift-and-project method later proved prohibitively expensive to work with due to the
extended formulation. However, it turns out that for the special case of split disjunctions,
every valid cut is equivalent to a SIC from some (possibly infeasible) basis of P [7, 32]. This
relationship can be used to forego the extended formulation and merely pivot in the original
space, leading to markedly more efficient algorithms [22, 32].

Unfortunately, the correspondence between generating cuts in the extended space and
SICs in the original space breaks down for more general disjunctions. Andersen et al. [7] give
an example with a two-term simple disjunction for which there is a cut that is strictly stronger
than all of the SICs combined (including those from infeasible bases). A three-dimensional
example of such a cut is given in the dissertation of Jörg [102, Chapter 3]. Disjunctive cuts
for which there is no corresponding SIC were named irregular cuts and explored in more
depth by Balas and Kis [30].7 For non-simple disjunctions, a cut is irregular if there is no
corresponding SIC using any convex set S such that intS ⊆ Rn \ ∪t∈T (Dtx ≥ Dt

0).

1.4.2 Irregular cuts
The primary feature of a SIC is that there exists a cobasis of Ax ≥ b from which it is
generated. In terms of the Farkas multipliers {ut}t∈T , this means that the set of rows of A

7We later refine this definition to a cut being irregular if it cannot be derived as a simple disjunctive cut,
where the disjunction does not include the constraints of P .

14

x1

x2

x1

x2

x1

x2

x1

x2

Figure 1.4: Example of an irregular cut from the disjunction (x1 ≤ 0) ∨ (x2 ≤ 0). The cut
is stronger than the two possible SICs and removes portions of both corner polyhedra; the
corner polyhedra (with dashed lines) and associated SICs are shown in the bottom panel.

getting positive weight (for any disjunctive term) is linearly independent and the associated
submatrix has rank n. Let K := {i ∈ [m] : there exists t ∈ T for which uti > 0}, and AK
denote the set of rows of A indexed by K. Thus, an irregular cut occurs if, for every feasible
set of Farkas multipliers and the associated set K, either |K| < n and rank(AK) < |K|, or
|K| > n. An irregular cut of the former type is shown in the top right panel of Figure 1.4,
while an irregular cut of the latter type is illustrated in the top right panel of Figure 1.5.

We emphasize that it is insufficient to demonstrate one set of “irregular” Farkas mul-
tipliers; one has to show that there is no way to certify the cut with exactly n linearly
independent rows of A.8 This is generally much more difficult for a non-simple disjunction,
for which the cut must be irregular for every possible S that can be derived from the disjunc-
tion. Figure 1.6 illustrates such an irregular cut. The first panel depicts the feasible region
of the polyhedron; the second panel shows the result of taking the non-simple disjunction
(x1 ≤ 0, x2 ≤ 0) ∨ (x1 ≥ 1, x2 ≤ 0) ∨ (x1 ≤ 0, x2 ≥ 1).

Now suppose the disjunction is simple, i.e., that the corresponding PI-free set S is ac-
tually lattice-free. One remarkable feature of irregular cuts shown in [30] relates to corner
polyhedra [89]. Given a (possibly infeasible) basic solution x̃ ∈ intS, let N (x̃) denote the set

8With the additional restriction that the point A−1
K bK does not belong to PD.

15

x1

x2

x3

x̄

x1

x2

x3

x̄

x1

x2

x3

x̄

Figure 1.5: Example of an irregular cut requiring Farkas multipliers on more than n inequal-
ities of P . The disjunction is (x1 ≤ 0) ∨ (x2 ≤ 0) ∨ (x1 + x2 ≥ 2), shown by the patterned
areas. The bottom panel shows a SIC from one basis (the other three are similar).

16

x1

x2

Figure 1.6: Example of an irregular cut from a non-simple disjunction.

of nonbasic variables at x̃ and C(N (x̃)) be the associated basis cone. The corner polyhedron
is defined as

{x ∈ C(N (x̃)) : xj ∈ Z for all j ∈ I}.

The facet-defining inequalities of any corner polyhedron are intersection cuts [57], and every
intersection cut from N (x̃) (for any lattice-free convex set with x̃ in its interior) is valid
for the corner polyhedron [21]. Irregular cuts, on the other hand, not only can be stronger
than all possible SICs combined, but also may cut away portions of the corner polyhedron.
As stated in [30, Theorem 19], a sufficient condition for a cut αᵀx ≥ β to be invalid for
a corner polyhedron associated with a cobasis of x̃ is that some ray r of C(N (x̃)) satisfies
αᵀr < 0. This is, for example, satisfied by two of the vertices violating the cut in Figure 1.6.9
(Conversely, if a cut αᵀx ≥ β is irregular, it is not difficult to show that there exists a cobasis
and ray r of the associated basis cone satisfying αᵀr ≤ 0.)

Moreover, an irregular cut might be invalid for the corner polyhedron from every possible
basis for P . The earlier example in Figure 1.4 already shows such an irregular cut, 2x1 +
x2 ≤ 1/2, produced from the disjunction (x1 ≤ 0) ∨ (x2 ≤ 0) (this is a disjunction for
which the set S is not lattice-free; it would only weaken the attainable SICs if we added an
additional disjunctive term such as (x1 + x2 ≥ 2) to make the resulting set S lattice-free).
The example also demonstrates that irregularity is, of course, a property depending on the
disjunction; the cut x1 ≤ 0 dominates the irregular cut, and it is valid for the split disjunction
(x1 ≤ 0) ∨ (x1 ≥ 1), but not for the disjunction used in the example. In fact, for any given
cut that is known to be valid for PI , there (trivially) exists a disjunction for which the cut
is a SIC, as we show in Proposition 1.3 (see also

9Irregularity of course does not imply that such a violated corner polyhedron exists. For example, modify
Figure 1.6 by removing the point near (1, 1) from the V-polyhedral description of the linear relaxation.

17

x1

x2

x1

x2

x̃

Figure 1.7: Example of a SIC that cuts off an element of the corner polyhedron, when the
convex set defined by the disjunction is not lattice-free. The disjunction is (x1 ≤ 0)∨(x2 ≤ 0).

Proposition 1.3. Suppose αᵀx ≥ β is a valid cut for PI that is not valid for P . Then there
exists a PI-free set from which this cut can be derived as a SIC.

Proof. The validity of the cut implies that S := {x ∈ Rn : αᵀx ≤ β} is a PI-free convex set.
Let v ∈ arg min{αᵀx : x ∈ P}. Since αᵀx ≥ β is not valid for P , αᵀv < β. Moreover, for any
optimal cobasis N (v) of v, by optimality, every ray r of the cone C(N (v)) satisfies αᵀr ≥ 0.
It follows that each of these rays emanating from v either intersects αᵀx = β, or αᵀr = 0.
These n intersection points and rays uniquely define the cut αᵀx ≥ β.

A slightly subtle detail of the above discussion is the pair of assumptions that x̃ ∈ intS
and S is lattice-free. The former assumption is necessary; it does not make sense to apply
the formula for a SIC when x̃ satisfies one of the disjunctive term inequalities. However,
if P t = ∅ for that term, then we can remove or ignore that term completely, yielding a
modified disjunction corresponding now to a PI-free convex set. This would violate the
second assumption, which turns out to be crucial for guaranteeing that intersection cuts are
valid for the corner polyhedron associated with x̃. Figure 1.1 is an example of this: the
point (1, 1) belonging to the corner polyhedron at x̄ in that figure violates the intersection
cut (even if, as in the top right panel, nonnegativity on the cut coefficients in the nonbasic
space is imposed).

Another example, showing the effect of the assumption that x̃ ∈ intS, is given in Fig-
ure 1.7. The polyhedron PI is {x ∈ Z2 : x1 + x2 ≤ 7/4, x1 ≤ 5/4, x2 ≤ 5/4}. If we use the
set S defined as the triangle {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2}, the one facet-defining
inequality for the disjunctive hull is x1 +x2 ≤ 5/4 (shown as the wavy line in the right panel
of the figure). The SICs from the two bases corresponding to (1/2, 5/4) and (5/4, 1/2) are
strictly weaker. Now consider the point x̃ = (5/4, 5/4) (the only remaining basis for P). This
lies outside of S, so we cannot use it to generate a SIC. Yet, the cut is not quite irregular.
The disjunctive term defined by x1+x2 ≥ 2 contains no points feasible to P , and hence it can
be ignored; i.e., we can instead use the PI-free convex set {x ∈ R2 : x1 ≥ 0, x2 ≥ 0}. The
facet-defining inequality can now be generated as a SIC from the basis defining x̃. Observe
that this inequality cuts away (1, 1), which belongs to the corner polyhedron at x̃.

The preceding discussion leads us to an illuminating example underlining the effect of
the restriction that x̃ belongs to intS. Namely, if we define irregularity with respect to SICs,

18

x1

x2

x1

x2

Figure 1.8: The cut in the right panel, derived from the disjunction (x1 ≤ 0) ∨ (x2 ≤ 0),
cannot be generated as a SIC but does not satisfy the definition of irregularity that the
number of positive Farkas multipliers is either fewer or more than n. It can, however, be
generated as a simple disjunctive cut.

then the characterization based on K (the positive Farkas multipliers) is incomplete; there
exists a third type of “irregular” cut, i.e., one that cannot be generated as a SIC but is
also not covered by the definition of irregularity given earlier and in [30] with respect to K.
The only remaining case is that AK has rank n, but K corresponds to a cobasis from which
we cannot derive an intersection cut. Figure 1.8 illustrates a concrete example of such an
uncharacterized irregular cut. It is not difficult to verify that cut shown in the right panel of
the figure is certified by Farkas multipliers leading to a matrix AK with rank exactly n = 2.
However, the corresponding vertex of P is a point feasible to the disjunction, implying it
cannot be used to generate a SIC. Nevertheless, it can be shown that the cut is obtainable
as a simple disjunctive cut, via Lemma 1.2. Using a modification of Theorem 9 in [30], one
can show a general correspondence between regular bases and simple disjunctive cuts, as we
discuss in Appendix A.

The existence of irregular cuts from a given particular disjunction, and their apparent
strength, has been a strong motivation for this dissertation topic of pursuing efficient ways
to produce inequalities from general valid disjunctions.

1.4.3 Cut-generating linear program for lift-and-project cuts

For convenience, we simplify notation (it will be unpacked when necessary). Let At :=
[
A
Dt

]
,

bt :=
[

b
Dt

0

]
, and vt := (ut, ut0). With this notation, P t = {x : Atx ≥ bt}.

The lift-and-project method involves generating valid disjunctive cuts, and the associated
Farkas multipliers vt, as solutions of the following cut-generating linear program (CGLP),
in which we have added a normalization constraint, determined by parameters nα ∈ Rn,

19

nβ ∈ R, nt ∈ Rm+mt , and n0 ∈ R.

min
α,β,{vt}t∈T

α
ᵀ
x̄− β

−αᵀ + vtAt = 0 for all t ∈ T
β − vtbt ≤ 0 for all t ∈ T
α
ᵀ
nα + βnβ +

∑
t∈T

vtnt = n0

vt ≥ 0 for all t ∈ T

(CGLP)

This linear program is polynomially-sized: it has |T | · (n+ 1) + 1 nontrivial constraints and
n+1+ |T |·(m+mt) variables. The choice of normalization can be very significant when gen-
erating L&PCs. For example, Fischetti et al. [84] showed that the normalization may prevent
certain facet-defining inequalities of PD from being generated, and that optimal solutions
to (CGLP) may not even be supporting for the disjunctive hull (an undesirable property
particularly given the expensive nature of solving a higher-dimensional linear program). We
look at three common normalizations in Appendix B.

In Proposition 1.3, we showed that every valid disjunctive cut can be generated as a SIC
from a PI-free convex set, defined trivially by reversing the direction of the cut. We can also
recover this result using the multipliers vt. For a given solution to (CGLP), decomposing vt
back into (ut, ut0), t ∈ T , define (with dependence on {ut0}t∈T implicit)

S := {x ∈ Rn : ut0Dtx ≤ ut0D
t
0 for all t ∈ T },

which is a PI-free convex set such that αᵀx ≥ β is valid for conv(P \ intS). When the
disjunction (1.1) partitions Zn (i.e., every integer point, feasible or infeasible, satisfies some
term of the disjunction, not including the constraints of P), the resulting set S is not only
PI-free but also lattice-free. However, the cut might not be a SIC from S; to get that result,
we first observe that the following disjunction is also valid:∨

t∈T

(Atx ≥ bt),

which is clear as it simply adds inequalities to the already valid disjunction (1.1).

Proposition 1.4. Let (α, β, {vt}t∈T) be a basic feasible solution to (CGLP). Then αᵀx ≥ β
is a SIC from the disjunction ∨t∈T (vtAtx ≥ vtbt).

Proof. Note that vtAt = αᵀ for all t ∈ T . Thus, constructing the PI-free convex set S from
the disjunction above using the multipliers vt,∨

t∈T

(vtAtx ≥ vtbt) ⇐⇒
∨
t∈T

(αᵀx ≥ vtbt).

Since the left-hand side is the same for each disjunctive term, we do not need the variables
to be nonnegative to apply the formula from Lemma 1.2, which yields that the SIC from
this disjunction αᵀx ≥ mint∈T vtbt. We assumed the given solution is basic, so it must
be the case that β = mint∈T vtbt (otherwise, for sufficiently small ε > 0, (α, β, {vt}t∈T) =
(α, β + ε, {vt}t∈T) + (α, β − ε, {vt}t∈T)). This completes the proof.

20

This result is in contrast to the existence of irregular cuts from arbitrary disjunctions:
including the constraints of P in the definition of S reduces the PI-free convex set to a single
halfspace, from which there clearly is only one facet-defining cut (the halfspace reversed).

Next, we look at the dual to (CGLP), which lends useful insights into L&PCs, and in
particular for interpreting the effect of normalization. We do this generically in the next
section; the application to specific normalization choices is given in Appendix B.

1.4.4 Membership linear program
Below is the dual to (CGLP) after some minor transformations, which we refer to as the
membership linear program (MLP), as in [47]. Here, γ is the “primal” (dual to the CGLP)
variable associated with the normalization constraint.

min
{yt,yt

0}t∈T ,γ
n0γ

Atyt − btyt0 + ntγ ≥ 0 for all t ∈ T
yt0 ≥ 0 for all t ∈ T∑
t∈T

yt + nαγ = x̄∑
t∈T

yt0 + nβγ = 1

(MLP)

For γ = 0 (i.e., when the CGLP is unnormalized), the first two sets of constraints of (MLP)
represent the set of feasible solutions to cone(PD) := conv(∪t∈T cone(P t)), where

cone(P t) := {(yt, yt0) : Atyt − btyt0 ≥ 0, yt0 ≥ 0}.

This is the feasible region of P t made into a homogeneous cone by adding an extra dimension
for the right-hand side. The point we are trying to represent in cone(PD) is (x̄, 1), which is the
role of the last two sets of constraints of (MLP). Of course, as x̄ /∈ PD, the MLP is not feasible
when γ = 0. This is the reason the normalization is added to system (CGLP). We will need
an interpretation of the MLP in the presence of the normalization. Such an interpretation
has previously partially been given in the dissertation of Soares [136, Chapter 3].

It is evident from the MLP that the normalization, in the primal space, acts to enlarge
the feasible region (when nt 6= 0) and/or to change the point that we wish to represent in
cone(PD), moving it from (x̄, 1) to (x̄, 1)− (nα, nβ)γ.

To make this more concrete, consider a fixed solution ({ȳt, ȳt0}t∈T , γ̄) to the MLP. Define

T ∗ := {t ∈ T : ȳt0 > 0}.

Next we create some helper variables.

x̂t :=
{
ȳt/ȳt0 for all t ∈ T ∗,
ȳt for all t ∈ T \ T ∗.

γ̂t :=
{
γ̄/ȳt0 for all t ∈ T ∗,
γ̄ for all t ∈ T \ T ∗.

21

Substituting these in, we can reformulate the MLP to see that ({ȳt, ȳt0}t∈T , γ̄) satisfies

Atx̂t ≥ bt − ntγ̂t for all t ∈ T ∗

Atx̂t ≥ −ntγ̄ for all t ∈ T \ T ∗

ȳt0 ≥ 0 for all t ∈ T∑
t∈T ∗

ȳt0x̂
t = x̄− nαγ̄∑

t∈T ∗
ȳt0 = 1− nβγ̄.

The first two sets of constraint represent the polyhedron P t, or its recession cone, translated
by −ntiγ̂t. Let P̂D = conv(∪t∈T P̂ t), where

P̂ t :=
{
{x : Atx ≥ bt − ntγ̂t} for all t ∈ T ∗,
{x : Atx ≥ −ntγ̂t} for all t ∈ T \ T ∗.

Thus, the solution to the MLP satisfies

(x̄− nαγ̄, 1− nβγ̄) ∈ cone(P̂D) ⇐⇒
(
x̄− nαγ̄
1− nβγ̄

, 1
)
∈ cone(P̂D) ⇐⇒ x̄− nαγ̄

1− nβγ̄
∈ P̂D.

The geometric interpretation is that the solution to the MLP corresponds to finding
points x̂t ∈ P̂ t for t ∈ T ∗ so that we can take a convex combination of them to obtain the
point x̄ translated by nαγ̄ then scaled by (1− nβγ̄). By defining

ŷt0 := ȳt0/(1− nβγ̄),

we can see this via reformulating the MLP feasible region once more:

Atx̂t ≥ bt − ntγ̂t for all t ∈ T ∗

Atx̂t ≥ −ntγ̄ for all t ∈ T \ T ∗

ŷt0 ≥ 0 for all t ∈ T∑
t∈T ∗

ŷt0x̂
t = (x̄− nαγ̄)/(1− nβγ̄)∑

t∈T ∗
ŷt0 = 1

Of course, we also have the following equivalence:

x̄− nαγ̄
1− nβγ̄

∈ P̂ t ⇐⇒ x̄ ∈ (1− nβγ̄)P̂ t + nαγ̄.

That is, after translating the constraints of P t to get P̂ t, we then scale and translate this
new set so that x̄ belongs to it. However, we prefer the interpretation that the feasible region
of P t will only be changed by the nt coefficients, via translating the constraints.

22

1.5 Cut strengthening via modularization
There are two sources of the strength of a cut. The first is the disjunction from which the cut
is generated; using a stronger disjunction will produce stronger cuts, and, in fact, it is known
that one can produce all of the facet-defining inequalities for PI through sufficiently strong
disjunctive cuts [18, 99]. However, once a cut has been produced from a given disjunction,
there is a second, a posteriori, source of strength that can be utilized, called modularization,
that comes from the use of integrality information without actually changing the underlying
disjunction producing the cut (though validity comes from an argument that the cut is valid
for a stronger disjunction).10 In fact, we have seen an example of this strength when pro-
ducing a GMIC based on a SIC from a split disjunction. The direct generalization of that
approach is called standard modularization by Balas and Qualizza [34], which applies to cuts
obtained from simultaneously considering several elementary split disjunctions. For perform-
ing strengthening for cuts derived from arbitrary disjunctions, there are two paradigms in the
literature: one based on the group-theoretic approach [75, 100], and one called monoidal cut
strengthening [28]. In this section, we briefly discuss standard modularization and monoidal
strengthening, in the style of the presentation in [34] and [17, Section 7].

1.5.1 Standard modularization

Standard modularization involves strengthening a disjunction by modularizing the rays of the
optimal tableau, decomposing them into an integer and fractional part, as used in Section 1.3
to strengthen a SIC to a GMIC. Standard modularization was applied to cuts generated from
multiple-branch elementary split disjunctions by Balas and Qualizza [34].11 Essentially, as
in Section 1.3, for any rjk, j ∈ N ∩ I and k ∈ I, we can decompose the ray into a fractional
and an integer component, by choosing values f jk and zjk ∈ Z (to be optimized) such that
rjk = f jk + zjk. The condition xk ∈ Z can now be replaced by xk −

∑
j∈N∩I z

j
ksj ∈ Z, or, in

the nonbasic space, as x̄k +
∑

j∈N∩I f
j
ksj +

∑
j∈N\I r

j
ksj.

Formally, consider a set of K integer variables that take a fractional value at x̄. Assume
this set is {1, . . . , K} ⊆ I without loss of generality. A valid disjunction is∨

Q⊆[K]

(xk ≤ bx̄kc if k ∈ Q, xk ≥ dx̄ke if k /∈ Q) .

Expressed in the nonbasic space, with f 0
k := x̄k − bx̄kc, the disjunction is

∨
Q⊆[K]

(
−
∑

j∈N r
j
ksj ≥ f 0

k if k ∈ Q∑
j∈N r

j
ksj ≥ 1− f 0

k if k /∈ Q

)
.

10As we discussed earlier in this chapter, the disjunction (1.1) also uses integrality information, but (typ-
ically) from (some) basic variables, whereas modularization is applied using the integrality of the nonbasic
variables.

11This is a special case of a t-branch split disjunction as studied by Li and Richard [110], who consider a
2t-term disjunction formed from combining t split disjunctions.

23

Applying the aforementioned modularization on the rays corresponding to nonbasic integer
variables, the following disjunction is also valid:

∨
Q⊆[K]

(
−
∑

j∈N∩I f
j
ksj −

∑
j∈N\I r

j
ksj ≥ f 0

k if k ∈ Q∑
j∈N∩I f

j
ksj +

∑
j∈N\I r

j
ksj ≥ 1− f 0

k if k /∈ Q

)
.

For each Q ⊆ [K], let uQ0 ∈ RK
≥0. Any set of such multipliers produces a simple disjunction

(sometimes referred to as the parametric octahedron). For j ∈ N ∩ I, let

dQj :=
∑
k/∈Q

uQ0kf
j
k −

∑
k∈Q

uQ0kf
j
k .

For j ∈ N \ I, let
dQj :=

∑
k/∈Q

uQ0kr
j
k −

∑
k∈Q

uQ0kr
j
k.

Finally, let
dQ0 :=

∑
k/∈Q

uQ0k(1− f 0
k) +

∑
k∈Q

uQ0kf
0
k .

The valid simple disjunction from these multipliers is

∨
Q⊆[K]

(∑
j∈N

dQj sj ≥ dQ0

)
.

The resulting simple disjunctive cut is

∑
j∈N

max
Q⊆[K]

{
dQj

dQ0

}
sj ≥ 1.

The cut is strongest when each coefficient is smallest, due to the nonnegativity of the slack
variables. For K = 2, Balas and Qualizza [34, Theorem 6.3] show that it suffices to check
two values for each zjk, either

⌊
rjk
⌋
or
⌈
rjk
⌉
, which leads to 22 pairs of values to consider; for

each pair of values, to find the coefficient on sj, we simply find the maximum across the
four terms of the disjunction, so the total complexity of computing the optimal strengthened
coefficient is constant (4 × 4 = 16 comparisons). Though not shown in that paper, it is
relatively straightforward to extend their result to general K, in which case the complexity
for computing the optimal strengthened coefficient becomes 22K (2K possible ways to set
{zjk}k∈[K] and 2K disjunctive terms to evaluate for each pair).

We next discuss monoidal strengthening, which is more generic but requires the existence
of a lower bound for each disjunctive term that is valid for P . Such lower bounds always
exist for certain important classes of integer programs, such as when all integer variables are
binary, but in general the requirement imposes a genuine limitation on the technique.

24

1.5.2 Monoidal cut strengthening
As we discussed in Section 1.4.3, any set of row vectors ut0 ∈ Rmt

≥0, t ∈ T , yields a PI-free
convex set S satisfying the inequalities ut0Dtx ≤ ut0D

t
0 for all t ∈ T . From a given convex

set formed in this way, the simple disjunctive cut is defined by Lemma 1.2. We strengthen
this cut by the following key tool, which is a subset of Z|T |:

M :=
{
m ∈ Z|T | :

∑
t∈T

mt ≥ 0
}
.12

There are two requirements for employing monoidal strengthening, which (as for standard
modularization) applies to the integer-restricted variables. The first we have already men-
tioned: a lower bound Dtx ≥ `t that is valid for all x ∈ P . The second is nonnegativity on
the coefficients being strengthened. While the former is restrictive, the latter is without loss
of generality for nonbasic integer variables: variables are nonbasic in our formulation when
they attain a bound in a solution x̄, and (possibly by translating or complementing) we can
assume that the bound is xk ≥ 0 for all k ∈ N ∩ I. For simplicity, we actually assume that
all variables have nonnegativity constraints in the system Ax ≥ b (though this assumption
is unnecessary for any coefficient not being strengthened). Thus, we can divide Ax ≥ b into
subsystems Ãx ≥ b̃ of m̃ constraints, and the remaining nonnegativity constraints x ≥ 0.
This formulation leads to a different CGLP. Suppose, for each t ∈ T , ũt only refers to the
multipliers on the Ãx ≥ b̃ constraints (not x ≥ 0; set utk as the multiplier on xk ≥ 0). Define
αtk := ũtÃ·,k + ut0D

t
·,k for any (ũt, ut0) ∈ Rm̃

≥0 ×Rmt
≥0.

We first prove a useful property of vectors in M.

Lemma 1.5. For each k ∈ I, let mk ∈M. For every x ≥ 0 such that xk ∈ Z for all k ∈ I,
the following disjunction is valid:(∑

k∈I

mk
t xk = 0 for all t ∈ T

)
∨

(∨
t∈T

(∑
k∈I

mk
t xk ≥ 1

))
.

Proof. Observe that
∑

t∈T
∑

k∈Im
k
t xk =

∑
k∈I xk

∑
t∈T m

k
t ≥ 0, as x ≥ 0. The result then

follows:
∑

k∈Im
k
t xk < 0 for any term implies that, for some other term t′ 6= t,

∑
k∈Im

k
t′xk >

0, which is at least 1 (because mk
t xk ∈ Z for all t ∈ T and k ∈ I).

The strengthening procedure requires a lower bound for each t ∈ T and i ∈ [mt],

`ti := min
x∈P

Dt
i·x,

which we assume is finite. The value `ti provides a lower bound for the corresponding dis-
junctive term inequality that is valid for P (whereas the disjunction is assumed to impose a
tighter condition, i.e., `ti < Dt

0i). We can actually replace the condition x ∈ P by any valid
relaxation of PI , e.g., by tightening P with cuts. Using the lower bounds `t, Lemma 1.6
shows how we can modify the given disjunction, which we then use for strengthening cuts.

12This set is a monoid, which is a set of elements equipped with an associative binary operation and
containing an identity element. Equivalently, it is a semigroup with an identity element.

25

Lemma 1.6. For each k ∈ I, let mk ∈M. The following disjunction is valid for PI :

∨
t∈T

∑
k∈I

(
Dt
·,k + (Dt

0 − `t)mk
t

)
xk +

∑
k∈[n]\I

Dt
·,kxk ≥ Dt

0

 . (1.4)

Proof. Let x̂ ∈ PI . We show that x̂ belongs to some term of (1.4), which we reformulate as

∨
t∈T

∑
k∈[n]

Dt
·,kxk ≥ Dt

0 − (Dt
0 − `t)

∑
k∈I

mk
t xk

 .

By Lemma 1.5, either all of these disjunctive terms are identical to the original disjunction
(when

∑
k∈Im

k
t x̂k = 0 for all t ∈ T), or

∑
k∈Im

k
t̂
x̂k ≥ 1 for some t̂ ∈ T , in which case∑

k∈[n]

Dt̂
·,kx̂k ≥ `t̂ = Dt̂

0 − (Dt̂
0 − `t̂) ≥ Dt̂

0 − (Dt̂
0 − `t̂)

∑
k∈I

mk
t̂ x̂k.

Thus, each integer-feasible point satisfies at least one of the terms of the disjunction.

In Theorem 1.7, we first handle the special case of a SIC that can be derived from the
given disjunction. For this theorem, and the subsequent corollary, we do use the assumption
that x ≥ 0, because we state the result with respect to the disjunction (1.1). If we work in
the nonbasic space and apply the theorem to (1.3) instead (to strengthening cut coefficients
on integer nonbasic variables), the assumption of nonnegativity is automatically satisfied.

Theorem 1.7. Assume x ≥ 0 for all x ∈ [n]. Let ut0 ∈ Rmt
≥0 for each t ∈ T . Then αᵀx ≥ β

is valid for the disjunctive hull, where

αk =

 inf
m∈M

max
t∈T

ut0
(
Dt
·,k + (Dt

0 − `t)mt

)
for all k ∈ I,

max
t∈T

ut0D
t
·,k for all k ∈ [n] \ I,

β = min
t∈T

ut0D
t
0.

Proof. For a fixed m ∈ M, the strengthened cut is valid by Lemma 1.2, because of the
validity of the disjunction (1.4) due to Lemma 1.6. Taking the infimum over all m ∈M for
each k ∈ I is valid because the coefficients are set independently of one another.

When the multipliers ut0 satisfy ut0Dt
0 > 0 and ut0(Dt

0 − `t) = 1 for all t ∈ T , we can state a
more convenient form of the above result, related to the first SIC formula in Section 1.3.

Corollary 1.8. For each t ∈ T , let ut0 ∈ Rmt
≥0 such that ut0Dt

0 > 0 and ut0(Dt
0 − `t) = 1.

Then the cut αᵀx ≥ 1 is valid for the disjunctive hull, where

αk =


inf
m∈M

max
t∈T

{
ut0D

t
·,k +mt

ut0D
t
0

}
for all k ∈ I,

max
t∈T

{
ut0D

t
·,k

ut0D
t
0

}
for all k ∈ [n] \ I.

26

Algorithm 1.1 Calculate Optimal Monoidal Strengthening for Corollary 1.8
Input: Polyhedron P ; disjunction ∨t∈T (Dtx ≥ Dt

0); multipliers ut0 ∈ Rmt
≥0, t ∈ T .

1: function StrengthenCut(P, {Dt, Dt
0}t∈T , {ut0}t∈T)

2: γtk ← ut0D
t
·,k for each k ∈ I and t ∈ T .

3: γt0 ← ut0D
t
0 for each t ∈ T .

4: γk ←
∑

t∈T γ
t
k/
∑

t∈T γ
t
0 for each k ∈ I.

5: γk ← maxt{γtk/γt0 : t ∈ T } for each k ∈ [n] \ I.
6: for k ∈ I do
7: m∗t ← γt0γk − γtk for each t ∈ T . . Implies (γtk +m∗t)/γt0 = γk for all t ∈ T .
8: mt ← bm∗t c for each t ∈ T . .

∑
t∈T m

∗
t = 0, so 0 ≥

∑
t∈T mt ≥ −(|T | − 1).

9: for (−
∑

t∈T mt) iterations do . At most |T | − 1 iterations.
10: mt ← mt + 1, where t ∈ arg mint{(γtk +mt + 1)/γt0 : t ∈ T }.
11: end for . At this point,

∑
t∈T mt = 0, so {mt}t∈T ∈M.

12: γk ← maxt{(γtk +mt)/γt0 : t ∈ T }.
13: end for . Total cost (inner and outer loop) is at most O(|T |n).
14: return Cut γᵀx ≥ 1.
15: end function

Applying monoidal strengthening involves choosing a set of values fromM for each k ∈ I.
Efficient techniques exist that apply for a given set of disjunctive term multipliers ut0, t ∈ T
(see, e.g., Algorithm 1.1 based on [28, Algorithm 2]). However, as stated by Balas [17]:

Overall optimization would of course require the simultaneous choice of the [ut0]
and the [mk], but a good method for doing that is not yet available.

This remains an interesting open problem for which progress would have meaningful
consequences on the cuts introduced in this dissertation. One possible approach for the
multi-branch elementary split disjunction case, which has not been tested to the best of our
knowledge, is solving the standard modularization problem via a bilinear program involving
simultaneous optimization of ut0 and f jk (the modularization of ray rjk).

1.5.3 Strengthening an arbitrary cut
In the discussion so far, we have essentially strengthened the simple disjunctive cut, given
as in Lemma 1.2. Next, we apply monooidal strengthening to an arbitrary cut.

Theorem 1.9. Let (α, β, {ũt, ut0}t∈T) such that αk = maxt {αtk : t ∈ T } for all k ∈ I and
β ≤ mint{utb̃ + ut0D

t
0 : t ∈ T }. Suppose, for each t ∈ T , there exists `t ∈ Rmt such that

Dtx ≥ `t for all x ∈ P . Then α̃ᵀx ≥ β is valid for PD, where

α̃k = inf
m∈M

max
t∈T

{
αtk + ut0(Dt

0 − `t)mt

}
= αk + inf

m∈M
max
t∈T

{
−utk + ut0(Dt

0 − `t)mt

}
for all k ∈ I, where utk is the Farkas multiplier for xk ≥ 0, and α̃k = αk otherwise.

27

Proof. It is easy to adapt Lemmas 1.5 and 1.6 to this setting to show that

∨
t∈T

 Ãx ≥ b̃∑
k∈I

(Dt
·,k + (Dt

0 − `t)mk
t)xk +

∑
k∈[n]\I

Dt
·,kxk ≥ Dt

0

 .

is a valid disjunction for any set of mk ∈M, k ∈ I. Thus, it is valid to set the coefficient on
variable xk, k ∈ I, as

α̃k = inf
m∈M

max
t∈T

{
ũtÃ·,k + ut0(Dt

·,k + (Dt
0 − `t)mt)

}
= inf

m∈M
max
t∈T

{
αtk + ut0(Dt

0 − `t)mt

}
.

Taking the infimum over all m ∈ M for each k ∈ I is valid because the coefficients are set
independently of one another. The other equivalence comes from αk = αtk + utk.

It is important in the preceding discussion to separate out the Farkas multipliers on the
x ≥ 0 rows of Ax ≥ b. Without this step, there would be no term utk when calculating the
best monoidal strengthening, in which case the optimal m ∈ M for each coefficient k ∈ I
would be m = 0, as ut0(Dt

0 − `t) ≥ 0.

Example with elementary split disjunction. Consider the example from Section 1.3
put into minimization form and appended with an additional bound on x1:

min
x1,x2,x3

−x3

x1 ≥ 0
x2 ≥ 0
x3 ≥ 0
−x1 − x3 ≥ −1
−(3/4)x2 − x3 ≥ −1/2
−x1 ≥ −1
x1, x2 ∈ Z

The SIC from (−x1 ≥ 0)∨ (x1 ≥ 1) and the unique cobasis for x̄ = (1/2, 0, 1) can be derived
as a feasible solution to (CGLP), with αᵀ = (−1/2, 0,−1), β = −1/2, u1 = (0, 3/4, 0, 0, 1, 0),
u1

0 = 1/2, u2 = (0, 0, 0, 1, 0, 0), and u2
0 = 1/2. Applying Theorem 1.9, the cut α̃ᵀx ≥ β is

valid for PD, where α̃1 = α1, α̃3 = α3 and

α̃2 = α2 + inf
m∈M

max
{
−u1

2 + u1
0(D1

0 − `1)m1,−u2
2 + u2

0(D2
0 − `2)m2

}
= inf

m∈M
max

{
−u1

2 + u1
0(D1

0 − `1)m1,−u2
2 + u2

0(D2
0 − `2)m2

}
= inf

m∈M
max {−3/4 + (1/2)m1, (1/2)m2} = −1/4,

achieved by m = (1,−1). We used the fact that 0 ≤ x1 ≤ 1. The result is exactly the GMIC
that we derived in Section 1.3.2.

28

1.5.4 Strengthening cuts from two-term disjunctions
In this section, we give special treatment to the frequently occurring case of a two-term
disjunction. When |T | = 2, Algorithm 1.1 returns the optimal monoidal strengthening in at
most one iteration per coefficient.

Corollary 1.10. Suppose |T | = 2 and the conditions of Corollary 1.8 are satisfied. The
optimal value of the strengthened coefficient on variable xk, k ∈ I, is

αk = min
{
γ1
j + dz∗e
γ1

0
,
γ2
j − bz∗c
γ2

0

}
.

Proof. For a two-term disjunction, for m ∈ M, m1 + m2 = 0 implies that m1 = −m2, so it
suffices to consider a single value z ∈ Z. As in the algorithm, for k ∈ I, we first choose z∗
such that (γ1

k + z∗)/γ1
0 = (γ2

k − z∗)/γ2
0 , which we can recalculate, or, using the formula,

z∗ = γ1
0γk − γ1

k = γ1
0

(
γ1
k + γ2

k

γ1
0 + γ2

0

)
− γ1

k = γ1
0γ

2
k − γ2

0γ
1
k

γ1
0 + γ2

0
= γ2

k/γ
2
0 − γ1

k/γ
1
0

1/γ1
0 + 1/γ2

0
.

One iteration in Algorithm 1.1 yields the optimal strengthening. In this case, the initial
values are m1 = bz∗c and m2 = b−z∗c = −dz∗e. If z∗ ∈ Z, then the solution is already
optimal. Otherwise, we perform one update, in which either m1 or m2 increments based on

min
{
γ1
k + bz∗c+ 1

γ1
0

,
γ2
k − dz∗e+ 1

γ2
0

}
= min

{
γ1
k + dz∗e
γ1

0
,
γ2
k − bz∗c
γ2

0

}
.

The latter expression is precisely the desired cut coefficient.

The result also can be derived for an arbitrary valid disjunctive cut.

Corollary 1.11. Consider the setting of Theorem 1.9 with the additional assumptions that
|T | = 2 and Dt

0− `t = 1 for t ∈ {1, 2}. The optimal strengthened coefficient on xk, k ∈ I, is

α̃k = min
{
α1
k + u1

0 dz∗e , α2
0 − u2

0 bz∗c
}

where
z∗ = α2

k − α1
k

u1
0 + u2

0
.

Proof. From Theorem 1.9, for any m ∈M, the strengthened coefficient satisfies

α̃k = max{α1
k + u1

0m1, α
2
k + u2

0m2}.

For |T | = 2, we can set m1 = −m2. In the best-case scenario, both terms in the maximum
are equal. This is precisely achieved by m1 = z∗. If z∗ ∈ Z, this is clearly the optimal
solution. Otherwise, we perform one update step adapted from Algorithm 1.1. Namely, if
m1 = bz∗c and m2 = b−z∗c = −dz∗e, then m1 + m2 = −1. Updating m1 to equal dz∗e,
or m2 = −bz∗c, results in m ∈ M. The best choice is the one that minimizes the resulting
maximum. The strengthened coefficient is then exactly as in the theorem statement.

29

Application to split disjunctions. It is instructive to apply Corollary 1.10 to a SIC
derived from a split disjunction (−πᵀx ≥ −bπᵀx̄c)∨ (πᵀx ≥ dπᵀx̄e), where π ∈ Zn. We work
with the disjunction expressed in the nonbasic space (as in (1.3)):(

−πᵀA−1
N sN ≥ f0

)
∨
(
π
ᵀ
A−1
N sN ≥ 1− f0

)
.

Let rj denote the entry of πᵀA−1
N corresponding to index j ∈ N . We have the following

values in the notation of Algorithm 1.1.

γ1
0 = f0

γ2
0 = 1− f0

γ1
j = −rj for all j ∈ N
γ2
j = rj for all j ∈ N.

The SIC coefficient on variable sj, j ∈ N , is

max
{
−rj
f0

,
rj

1− f0

}
= max

{
γ1
j

γ1
0
,
γ2
j

γ2
0

}
.

Hence, to compute the optimal strengthening of the coefficient on a variable sj, j ∈ N ∩ I,

z∗ =
γ1

0γ
2
j − γ2

0γ
1
j

γ1
0 + γ2

0
= f0rj + (1− f0)rj = rj.

Then the optimal strengthened coefficient (in the nonbasic space) is

γj = min
{
−rj + drje

f0
,
rj − brjc

1− f0

}
.

When π = ek (i.e., the disjunction is simple), we recover precisely the formula for strength-
ening a SIC to a GMIC as in Section 1.3. As a generalization, Fischer and Pfetsch [83]
recently show that, in the case of any two-term disjunction, monoidal cut strengthening is
equivalent to a derivation of a generalized mixed-integer rounding cut. The preceding dis-
cussion also shows the equivalence of monoidal strengthening with standard modularization
for split disjunctions.

1.6 Contributions of this dissertation
In Chapter 2, we discuss a generalization of SICs called generalized intersection cuts (GICs).
The GIC paradigm for generating cuts is relatively recent and has attractive theoretical prop-
erties. We investigate this previously computationally unexplored paradigm and observe that
a key hyperplane activation procedure embedded in it is not computationally viable. To over-
come this issue, we develop a novel replacement to this procedure called partial hyperplane
activation (PHA), introduce a variant of PHA based on a notion of hyperplane tilting, and
prove the validity of both algorithms. We propose several implementation strategies and
parameter choices for our PHA algorithms and provide supporting theoretical results. Our

30

findings shed light on the the strengths of the PHA approach, as well as identify properties
related to strong cuts that we subsequently utilize in later chapters.

Chapter 3 examines a different type of tilting that can be used to produce cutting planes
from split disjunctions starting from any given valid inequality. Geometrically, this tilting
involves changing the angle of the given inequality until it becomes supporting for both sides
of the disjunction. We provide some computational evidence of the strength and practicality
of this procedure and make connections with existing literature, such as lifting and coefficient
strengthening, for which tilting offers a unifying perspective.

In Chapter 4, we introduce the V-polyhedral cut (VPC) approach for generating valid
inequalities from general disjunctions. We show how to efficiently obtain points and rays
from which we build a linear program whose feasible solutions correspond to valid disjunctive
cuts. This linear program is much smaller than the one for L&PCs. This enables us to test
larger disjunctions than those previously used, coming from the leaf nodes of a partial branch-
and-bound tree. We show the cuts from one large disjunction significantly improve the gap
closed compared to the cuts produced from a union of many shallow disjunctive sets, where
we compare against GMICs and the cuts from the default settings for the commercial solver
Gurobi. Our cuts also decrease Gurobi solving time. However, this hinges on choosing
the best partial tree size per instance; this is a difficult quantity to predict and doing so
remains an open problem that would benefit from future work on a better understanding of
the interaction between branch-and-bound and cuts.

Chapter 5 outlines ongoing work toward applying cut strengthening techniques (as dis-
cussed in Section 1.5) to VPCs. The main difficulty is that the we generate VPCs in the
original space of P , rather than through the CGLP, and thus we lack the requisite Farkas
multipliers needed to strengthen the cuts. Our contribution is a mapping from bases of the
linear program generating VPCs to bases of (CGLP) from the same disjunction, providing
an efficient mechanism for calculating the strengthening coefficients.

The appendices contain additional theoretical and supplemental results. Appendix A
constitutes a brief discussion on the correspondence between simple disjunctive cuts and
regular bases of the CGLP. In Appendix B, we give a geometric interpretation of three
normalizations for (CGLP) and derive the optimal solution to (MLP) and (CGLP) under
the so-called trivial normalization. It is known that the trivial normalization for (CGLP)
yields a SIC, but this depends on the assumption that the point being separated is vertex
of P . We show an example in which the result is an irregular cut when this assumption is
not satisfied. The subsequent appendices provide examples and supplemental tables for the
main chapters of the thesis.

Lastly, all code produced for this dissertation is available in an open-source implementa-
tion that interfaces with the COIN-OR Cut Generation Library [55, 112].13

1.7 Notation
Table 1.1 summarizes notation frequently appearing in the dissertation.

13https://bitbucket.org/akazachk/pointcuts4/

31

https://bitbucket.org/akazachk/pointcuts4/

Table 1.1: Definitions of frequently used notation.

Notation Description
R; Z Set of real numbers; set of integer numbers
R≥0; Z≥0 Set of nonnegative reals; set of nonnegative integers
intS; relintS Interior and relative interior of a region S
bdS; relbdS Boundary and relative boundary of a region S
convS Convex hull of the points in a set S
[n] {1, . . . , n}
Ai·; A·j Row i and column j of matrix A
P Rational convex polyhedron defined by {x ∈ Rn : Ai·x ≥ bi, i ∈ [m]}
I Subset of [n] indexing the integer variables
PI {x ∈ P : xj ∈ Z for all j ∈ I}
x̄ Optimal extreme point solution to minx{cᵀx : x ∈ P}
Dtx ≥ Dt

0 Disjunctive inequalities defining term t ∈ T of disjunction (1.1)
P t Disjunctive term t ∈ T , {x ∈ P : Dtx ≥ Dt

0}
PD Disjunctive hull, conv(∪t∈T P t)
S Convex set satisfying PI ∩ int(S) = ∅
pt Optimal extreme point solution to minx{cᵀx : x ∈ P t}
N (x) Cobasis, or index set of nonbasic variables, for a vertex x ∈ P
N ; N t N (x̄); N (pt)
N Indices of constraints of P corresponding to a given cobasis
ANx ≥ bN Subsystem of Ax ≥ b containing constraints indexed by N
C(N (x)) LP basis cone, the intersection of the constraints corresponding to N (x)

32

Chapter 2

Partial Hyperplane Activation for
Generalized Intersection Cuts

This chapter is based on joint work with Egon Balas, François Margot, and Selvaprabu
Nadarajah.

2.1 Introduction
As part of the recent active research on new general-purpose cutting planes, Balas and Mar-
got [31] introduced the GIC paradigm with the motivation of finding stronger cutting planes
that also possess favorable numerical properties, such as avoiding numerical inaccuracies
that arise in traditional cutting plane approaches [139]. Despite offering some theoretical
advantages to other modern cutting planes, GICs have remained unexplored computation-
ally. In this chapter, we observe that generating GICs as outlined in [31] is computationally
intractable due to the exponential size of the linear program used to generate cuts. We offer
a solution by extending the notion of a GIC and devising new algorithms to generate such
GICs that scale well with the size of the input data. We prove the validity of our algorithms,
provide theoretical results that guide our implementation choices, and perform the first com-
putational investigation with GICs. Our investigation identifies properties related to strong
cuts that can be targeted in future approaches.

Let C be a relaxation of P defined by a subset of the inequalities defining P . Balas
and Margot [31] produce GICs from a collection of intersection points and rays obtained by
intersecting the edges of C with the boundary of a convex set S containing no points from
PI in its interior. The simplest GICs are the SICs [21], which use as C a simple polyhedral
cone C̄ with apex at a vertex x̄ of P . GICs generalize SICs by using a tighter relaxation
of P , by activating additional hyperplanes of P that are not included in the description
of C̄. However, hyperplane activation poses two computational issues: first, maintaining a
description of C becomes challenging, and second, the number of points and rays can quickly
grow too large for any practical use.

This chapter introduces a new method, called PHA, that addresses the issues with the
aforementioned full hyperplane activation proposed in [31]. The key insight underlying
PHA is that we can forgo a complete description of the polyhedron C by always activating

33

hyperplanes on the initial cone C̄, instead of on an iteratively refined relaxation. We show
the PHA approach is not only valid, but also generates a collection of intersection points and
rays that grows quadratically in size with the number of hyperplane activations, in contrast
to the exponential growth exhibited by the full activation procedure.

Activating a hyperplane on C̄ creates new vertices lying at most one edge of P away
from x̄. Consequently, intersection points are obtained from edges originating at x̄ or these
distance 1 vertices. Higher-distance PHA methods, with accompanying higher computational
cost, can be easily defined by incorporating hyperplane intersections with edges a larger
distance from x̄, eventually recovering the full activation procedure. In other words, while
we focus here on the details of a distance 1 PHA procedure, its underlying ideas extend to a
hierarchy of PHA procedures delivering progressively "stronger" sets of intersection points.

An important observation related to the effectiveness of PHA is that weak intersection
points are created whenever a hyperplane being activated intersects rays of C̄ that do not
intersect the boundary of S. To mitigate this issue, we introduce a class of tilted hyperplanes
that can be used to avoid such rays. We also show that tilted hyperplanes offer more control
over the number of intersection points generated with essentially no additional overhead,
but they require a subtle condition to ensure that these points lead to cuts valid for PI , i.e.,
to inequalities that do not cut off any points of PI . We use this idea to design a modified
PHA algorithm that creates a point-ray collection that grows linearly with the number of
hyperplane activations but quadratically in the number of rays of C̄ being cut. The notion
of tilting may also have independent merit outside of the GIC paradigm whenever a V-
polyhedral partial description could be useful, i.e., describing a polyhedron by some of its
vertices and edges (see, e.g., [140]).

Implementing PHA or its variant with tilting requires several algorithmic design choices,
such as the decision of which particular hyperplanes to activate and which objective functions
to use when optimizing over the derived collection of intersection points and rays. Our
theoretical contributions provide geometric and structural insights into making some of these
choices. Our experiments test the strength of GICs with respect to root node gap closed,
a commonly used measure of cut strength, based on three hyperplane activation rules and
four types of objective directions.

The first hyperplane activation rule we consider is based on the full activation method,
which sequentially activates hyperplanes by pivoting to neighbors of x̄. The second rule
targets points that lie deep relative to the SIC. The third rule is motivated by a pursuit of
a certain class of intersection points called final, relating to facet-defining inequalities for
the Sk-closure, which is a relaxation of the split closure obtained by refining P through the
addition of one elementary split disjunction on a variable xk.

We then discuss the objective directions evaluated in our implementation, which con-
tribute to a better understanding of the process by which a collection of strong cuts can be
generated. The first two sets of objective functions, as with the hyperplane rules, are moti-
vated by finding cuts that improve over the SIC, as well as generalizing the usual objective
of maximizing violation with respect to x̄. We then give a result motivating the next set of
directions, by showing that the optimal objective value over the Sk-closure can be obtained
using only final intersection points and describing how to attain this same value using cuts.
The fourth objective function type capitalizes on information that can be used from the
typical empirical setup in which multiple split disjunctions are applied in parallel.

34

Finally, we present the first computational results for any algorithm within the GIC
paradigm, implemented in the open source COIN-OR framework [112] and using a set of
benchmark instances from MIPLIB [43]. We find that our PHA approach creates a man-
ageable number of intersection points from which we can generate GICs that effectively
generalize SICs: GICs generated from our methodology improve the integrality gap closed
by one round of SICs on 72.5% of the instances tested, closing on average an additional 5.5%
of the gap over SICs for the instances with an improvement. Underlying these results is a
detailed analysis of the various hyperplane activation and objective function choices for the
linear program used to generate GICs. These experiments build an understanding of struc-
tural properties of strong GICs. In particular, we find that the objective functions inspired
by final intersection points frequently find the strongest cuts from a given point-ray collec-
tion compared to the other objectives tested. However, such final intersection points appear
infrequently in the point-ray collections generated by PHA, yielding a concrete direction for
future work: to target final intersection points more directly.

Our research on GICs adds to the growing literature that generalizes and extends cutting
plane methods based on intersection cuts and Gomory cuts. SICs are equivalent to Gomory
cuts [89, 90, 91], a relationship surveyed in Conforti et al. [57], and are among the simplest,
yet most effective, cuts used in practice. As SICs are generated using information from only
one row of the simplex tableau, GICs are a natural generalization by using information from
multiple rows. Using such information has been studied extensively in the past decade [9,
66, 68, 69, 70, 79, 114]. The focus of these approaches is to obtain stronger cuts by using
a better cut-generating set obtained from the optimal solution to the continuous relaxation.
GICs instead attempt to strengthen SICs using other rows but the same cut-generating set.
The collection of intersection points and rays used to derive GICs can also be seen as defining
a linear system for verifying the validity of cutting planes [73].

Broadly, GICs fall into the class of algorithms using the classical theoretical approach of
polarity to generate cuts [17]. This includes similarities to local or target cuts [51], which
use the polar of a set of points and rays to generate cuts, and to the procedures in [114,
127], which use row generation to individually certify the validity of each generated cut.
Though utilizing some of the same theoretical tools, GICs derive points and rays from a
fundamentally different perspective and in a way that immediately guarantees cut validity.

The rest of this chapter is organized as follows. In Section 2.2, we revisit full hyperplane
activation from [31] and demonstrate the impediment to a practical GIC algorithm inherent
in that approach. Section 2.3 then gives our main contribution, the PHA scheme. Section 2.4
shows the idea of tilting and gives an additional algorithm that can be used within the
PHA procedure. Implementation choices and supporting theory are discussed in Section 2.5.
Lastly, we give the results of our computational experiments in Section 2.7. Additional
supporting theoretical results are contained in the appendix.

2.2 Full hyperplane activation
In this section, we show the impracticality of generating GICs by full hyperplane activation as
proposed by Balas and Margot [31], which provides the motivation for developing our new
methodology. For simplicity, we assume throughout that P is a full-dimensional pointed

35

polyhedron, but our results extend to the general case with minor modifications.
Let S be a PI-free convex set, a closed convex set such that its interior, denoted intS,

contains no points of PI , and suppose that x̄ ∈ intS. A commonly used such set is formed
from an elementary split disjunction (xk ≤ bx̄kc) ∨ (xk ≥ dx̄ke) on a variable xk, k ∈ I:

Sk := {x : bx̄kc ≤ xk ≤ dx̄ke}.

Let N̄ := N (x̄) denote the set of nonbasic variables at x̄. Let C̄ := C(N̄) be the polyhedral
cone with apex at x̄ and defined by the n hyperplanes corresponding to the nonbasic variables
N̄ ; denote these hyperplanes by H̄. Let R̄ be the rays of C̄.

GICs generalize SICs, as the cone C̄ is but one possible relaxation of P . C̄ has n extreme
rays that can be intersected with bdS to obtain a set of intersection points P0 and a set of
rays R0 of C̄ that do not intersect bdS, so that

R0 := {r ∈ R̄ : r ∩ bdS = ∅},
P0 := {pr : pr := r ∩ bdS, r ∈ R̄ \ R0}.

The intersection points in P0 and rays in R0 uniquely define the SIC, αᵀ0x ≥ β0, obtained
from C̄ and S [17].

Letting H denote the set of hyperplanes of P , C̄ can be replaced by a tighter relaxation
of P , denoted C, obtained by activating a subset of hyperplanes from H \ H̄, i.e., of those
that define P but not C̄. Subsequently, edges of C can be intersected with bdS to obtain a
set of intersection points P , and edges that do not intersect bdS yield a set of rays R. In
contrast to the situation when using C̄, the number of intersection points and rays obtained
from C intersected with bdS can be strictly greater than n, meaning the point-ray collection
defines not just one cut, but a collection of valid cuts.

Theorem 4 in [31] defines valid GICs as these cuts and propose to generate them as any
(α, β) ∈ Rn ×R satisfying αᵀx̄ < β and

α
ᵀ
p ≥ β for all p ∈ P

α
ᵀ
r ≥ 0 for all r ∈ R.

(2.1)

For a fixed β, define CutRegion(β,P ,R) as the vectors α feasible to the above system, i.e.,
the coefficients for inequalities with lower-bound β that are valid for P and R. It suffices to
consider β ∈ {−1, 0, 1} to obtain all possible cuts.

Unfortunately, the above method requires maintaining the V-polyhedral description of
C. The size of this V-polyhedral description, as well as the number of rows of (2.1), as shown
in Proposition 2.1, can grow exponentially large in the number of hyperplanes defining C.
Together, these two issues make the full hyperplane activation approach unviable.
Proposition 2.1. Let C be formed by adding kh hyperplanes to the description of C̄, and let
(P ,R) denote the point-ray collection obtained from intersecting the edges of C with bdS.
The cardinality of P can grow exponentially large in kh.

Proof. Suppose we start with C̄ and consider the activation of a halfspace H+. Let R(H)
denote the rays from R̄ that are intersected by H before bdS. For each ray r ∈ R(H) that
intersects H, n− 1− |R(H)| new edges are created (not counting the edge back to x̄ or the
edges between new vertices created by activating H). If |R(H)| ≈ n/2, the size of the new
point-ray collection will be O(n2). The desired result follows inductively.

36

2.3 Partial hyperplane activation
In this section, we propose PHA, an approximate activation method that overcomes the
exponential growth in the size of the point-ray collection when using full hyperplane acti-
vation. Specifically, our algorithm generates at most O(k2

rkh) intersection points and rays,
where kr and kh are both parameters; kr ≤ n is the maximum number of initial intersection
points and rays that we remove via hyperplane activations and kh is the number of activated
hyperplanes.

Showing the validity of PHA requires a strict extension of the tools used in [31] to prove
the validity of full hyperplane activation. We give this extension in Section 2.3.1 and employ
it in Section 2.3.2, in which we describe a concrete variant of PHA called PHA1 and prove
its validity. To facilitate reading, Table 2.1 gives a summary of some of the most frequently
used notation.

Table 2.1: Summary of frequently used notation in this chapter.

Notation Description
H Hyperplanes defining P
Hh; H+

h ; H−h Hh = {x : aᵀhx = bh}; H+
h = {x : aᵀhx ≥ bh}; H−h = Rn \H+

h

N̄ Set of nonbasic variables defining x̄
C̄ Simple cone defined by the nonbasic variables at x̄
R̄ Rays of C̄
H̄ Hyperplanes defining C̄
(P ,R) Set of points on bdS and rays not intersecting bdS
(P0,R0) Initial point-ray collection from C̄ ∩ bdS
CutRegion(β̄,P ,R) Feasible region of (2.2)
RP {p− x̄ : p ∈ P}
Ĉ(P ,R) x̄+ cone(RP ∪R)
G(P ,R) conv(P) + cone(R)
R(Hh) Rays from R̄ intersected by Hh before bdS

2.3.1 Proper point-ray collections
We define a point-ray collection as a pair (P ,R) of points and rays obtained from intersecting
the polyhedron C with bdS, where C is a relaxation of P . Let K denote the skeleton of the
polyhedron C. Let K′ denote the connected component of K ∩ intS that includes x̄ and K′′
denote the union of the other components of K ∩ intS.

Definition 2.2. The point-ray collection (P ,R) is called proper if αᵀx ≥ β is valid for PI
whenever (α, β) is feasible to (2.1) and αᵀv < β for some v ∈ K′.

With this definition, Theorem 2.3 shows that full hyperplane activation creates a proper
point-ray collection, which follows easily from the proof of Theorem 4 in [31].

37

Theorem 2.3. The point-ray collection (P ,R) obtained from intersecting all edges of C
with bdS, where C is defined by a subset of the hyperplanes defining P , is proper.

Given a proper point-ray collection, a GIC is defined as a facet of the convex hull of
points and rays, G(P ,R) := conv(P) + cone(R), referred to by G for short, that cuts off a
vertex of K′. Balas and Margot [31] show that these facets can be generated by solving the
following linear program formed from the given points and rays and optimized with respect
to a given objective direction w ∈ Rn and a fixed β ∈ {−1, 0, 1}:

min
α
{wᵀα : α ∈ CutRegion(β,P ,R)}. (2.2)

In fact, we show something stronger in Lemma 2.4: the cuts we obtain are not only valid
for PI , but also for conv(C \ intS). This extends Theorem 2.3 and will be invoked in proving
the results in Section 2.3.2. For simplicity, we assume that the vertex v ∈ K′ being cut in
Definition 2.2 is x̄ in what follows, unless specified otherwise.

Lemma 2.4. Let (P ,R) be the point-ray collection obtained from intersecting all edges of
C with bdS. If (α, β) is feasible to (2.1) and αᵀx̄ < β, then

F := {x ∈ C : αᵀx < β} ⊆ intS.

Proof. Assume for the sake of contradiction that F \ intS is nonempty. Then F ∩ bdS is
nonempty. We show that this implies an intersection point or ray of C will violate αᵀx ≥ β.

First, note that clF ∩ bdS cannot contain any vertex violating the inequality αᵀx ≥ β,
as each vertex of clF ∩ bdS is an intersection point of C. Hence, as we are also assuming
F ∩ bdS is nonempty, the linear program min{αᵀx : x ∈ clF ∩ bdS} must be unbounded.
Consider initializing this program at x̄ and proceeding by the simplex method using the
steepest edge rule. As the simplex method follows edges of C and it will never increase
the objective value, we will either eventually intersect bdS or end up on a ray of C that is
parallel to bdS. This is the desired contradiction: in the former case, this is an intersection
point that violates the inequality, and in the latter case, this is a ray of C that does not
intersect bdS and violates the inequality.

2.3.2 Algorithm and validity
We describe the PHA1 approach for activating a hyperplane partially and prove that it
yields a proper point-ray collection. The algorithm proceeds similarly to the full hyperplane
activation procedure, in that it activates a hyperplane valid for P , but unlike the procedure
from [31], PHA1 can use any hyperplane valid for P (not necessarily one that defines P),
and the activation is performed on the initial relaxation C̄ instead of an iteratively refined
relaxation that includes previously activated hyperplanes. We show this is not only valid
but also computationally advantageous. Part of this advantage comes from that fact that
PHA1 only requires primal simplex pivots in the tableau of the LP relaxation to calculate
new intersection points and rays.

The trade-off for the computational advantages of PHA1 is that it potentially creates a
weaker point-ray collection compared to full activation, in the sense that the cuts generated

38

Algorithm 2.2 Distance 1 Partial Hyperplane Activation
Input: Polyhedron P defined by hyperplane set H; PI-free convex set S; hyperplane Hh

valid for P ; set of rays RA ⊆ R̄; proper point-ray collection (P ,R) contained in C̄.
1: function PHA1(P, S,Hh,RA, (P ,R))
2: for all rj ∈ RA such that dist(Hh, r

j) < dist(bdS, rj) do
3: Remove all points and rays in (P ,R) that violate H+

h and originate from
a vertex on rj but do not lie on or coincide with any ray from R̄ \ RA.

4: for all rjhi originating at vertex rj ∩Hh do
5: if dist(H, rjhi) < dist(bdS, rjhi) for some H ∈ H̄ not defining rj then
6: Skip this ray.
7: else if rjhi ∩ bdS 6= ∅ then
8: Add pjhi := rjhi ∩ bdS to P .
9: else Add rjhi to R.

10: return P and R.
11: end function

from this collection may be weaker. This is because all vertices created from the partial
activations are restricted to being only one pivot away from x̄, i.e., at (edge) distance 1 from
x̄ along the skeleton of P . For this reason, we refer to Algorithm 2.2 as PHA1. A stronger
version of PHA1, such as a valid distance 2 (or higher distance) procedure, is not difficult to
create. In other words, one could define a hierarchy of PHA procedures of increasing distance
using the principles presented below, eventually leading to the full activation procedure.

We now define some notation used in the algorithm description. For a given (ah, bh) ∈
Rn × R, let Hh := {x : aᵀhx = bh} be a hyperplane such that the corresponding halfspace
H+
h := {x : aᵀhx ≥ bh} is valid for P . Every element of a proper point-ray collection (P ,R)

arises from the intersection of an edge of some relaxation of P with bdS; if the starting
vertex of that edge lies on a ray rj ∈ R̄, then we say that the point or ray originates from
rj. For each rj ∈ R̄, let the distance to Hh along the ray rj starting at x̄ be

dist(Hh, r
j) :=

{
(bh − aᵀhx̄)/aᵀhrj if aᵀhrj > 0,

∞ otherwise.

We will slightly overload this notation to also refer to the distance along ray rj to bdS,
dist(bdS, rj). This will be the distance along rj from x̄ to the nearest facet of S (or∞ if no
facet of S is intersected). With these definitions, we present Algorithm 2.2, which takes as
an input the polyhedron P , the cut-generating set S, the hyperplane Hh being activated, a
set of rays RA from R̄ that will be permitted to be cut by Hh (a parameter we will use only
later), and any proper point-ray collection to be modified via the activation of Hh. We also
assume that along with the point-ray collection, we have kept a history of which edge led
to each point and ray to be added to the collection. This is used in the algorithm in step 3
when deciding which points and rays to remove.

Theorem 2.5 states the validity of Algorithm 2.2 for the special case when all rays of C̄
are permitted to be cut. We show how to relax this restriction in Section 2.4.

Theorem 2.5. Algorithm 2.2 when RA = R̄ outputs a proper point-ray collection.

39

In the rest of this section, we will build to a proof of Theorem 2.5 with the help of several
useful intermediate results. The validity of PHA1 follows from proving that the inequalities
that can be generated from (2.2) are valid for a relaxation of PI related only to x̄ and the
points and rays in the collection. Unlike the proof of full hyperplane activation, this does not
rely on any particular relaxation of P used to obtain the points and rays. Given a point-ray
collection (P ,R), let RP := {p − x̄ : p ∈ P} and Ĉ(P ,R) := x̄ + cone(RP ∪ R). That
is, Ĉ(P ,R) is the polyhedral cone with apex at x̄ and rays including R and a ray from x̄
through each intersection point in P .

Lemma 2.6. If (P ,R) is a proper point-ray collection, then PI ⊆ Ĉ(P ,R).

Proof. Otherwise there exists an inequality valid for G that cuts both x̄ and a point of PI .
This contradicts the assumption that (P ,R) is proper.

The next two lemmas state inclusion properties for the sets of cuts obtainable from two
different point-ray collections.

Lemma 2.7. For i ∈ {1, 2}, let P i denote a set of points on bdS and Ri a set of rays.
If for every (α, β) such that α is feasible to CutRegion(β,P2,R2) and αᵀx̄ < β, α is also
feasible to CutRegion(β,P1,R1), then

Ĉ(P1,R1) ⊆ Ĉ(P2,R2).

Proof. Let Ĉi := Ĉ(P i,Ri), i ∈ {1, 2}. Assume for the sake of contradiction that there
exists an extreme ray r of Ĉ1 that is not in Ĉ2. If r does not intersect bdS, define q :=
r; otherwise, let q := r ∩ bdS, and note that q /∈ Ĉ2. Then there exists an inequality
α̂ᵀx ≥ β̂ that separates x̄ and q from G(P2,R2). This is a contradiction, as α̂ is feasible to
CutRegion(β̂,P2,R2) and α̂ᵀx̄ < β̂, but it is not feasible to CutRegion(β̂,P1,R1), since it
violates the inequality corresponding to q.

Lemma 2.8. Let P 1 and P 2 be rational convex polyhedra such that P 1 ⊆ P 2, and x̄ ∈
P 2. Let P i and Ri denote the intersection points and rays generated from the intersec-
tion of P i with bdS, for i ∈ {1, 2}. Then, for a given constant β, a vector α feasible to
CutRegion(β,P2,R2) and cutting x̄ will also be feasible to CutRegion(β,P1,R1).

Proof. Since P 1 ⊆ P 2, we have P 1 ∩ bdS ⊆ P 2 ∩ bdS ⊆ P 2 \ intS. By Lemma 2.4,
P 2 \ intS ⊆ {x : αᵀx ≥ β}, which completes the proof.

Next, we remark on one subtlety of Algorithm 2.2, in step 2. Namely, whenever the
hyperplane being activated intersects a ray of C̄ outside of intS, the algorithm skips that
ray. In Proposition 2.9, we show this is valid because such intersections would lead to only
redundant intersection points, in the sense that these points will never be part of a valid
inequality that cuts away x̄. We show the result only for points, as rays are never redundant.
Recall that K denotes the skeleton of the polyhedron C, K′ denotes the connected component
of K∩ intS that includes x̄, and K′′ denotes the union of the other components of K∩ intS.
Let P ′ and P ′′ denote the intersection points between bdS and the edges of the closure of
K′ and K′′, respectively.

40

Proposition 2.9. Any intersection points in P ′′ \ P ′ are redundant.

Proof. Let α be any feasible solution to CutRegion(β,P ′,R) such that αᵀx̄ < β. Suppose
for the sake of contradiction that a point w ∈ P ′′ \ P ′ violates the inequality. Since w ∈ K′′
and x̄ ∈ K′, any path from x̄ to w along the skeleton of C must intersect bdS at some point
in P ′. Since C is convex and both x̄ and w are cut, there must exist such a path entirely in
{x : αᵀx < β}, implying some intersection point in P ′ is cut, a contradiction.

We now use these results to prove Theorem 2.5.

Proof of Theorem 2.5. Let (P∗,R∗) be the point-ray collection that Algorithm 2.2 outputs.
Let Ĉ∗ := Ĉ(P∗,R∗). Observe that intersecting the edges of Ĉ∗ with bdS yields exactly
the same point-ray collection (P∗,R∗). Then, using Lemma 2.4 with Ĉ∗, it follows that all
obtainable cuts will be valid for Ĉ∗ \ intS. To prove the theorem, it suffices to show the
inclusion PI ⊆ Ĉ∗, which we do next.

From Lemma 2.6, we have that PI ⊆ Ĉ := Ĉ(P ,R), where (P ,R) is the proper point-ray
collection given as an input to the algorithm. We need to show that the point-ray collection
after activating Hh is proper. Let Pc and Rc denote the set of points and rays from (P ,R)
that violate H+

h .
First we consider intersection points that lie on Hh. Let P 1 := Ĉ∩Hh and P 2 := C̄∩Hh,

with P i and Ri the corresponding intersection points and rays of P i with bdS, for i ∈ {1, 2}.
Since P and R are contained in C̄, Ĉ ⊆ C̄. As a result, we can apply Lemma 2.8, which
implies that every α (for a β such that αᵀx̄ < β) that is feasible to CutRegion(β,P2,R2)
will also be feasible to CutRegion(β,P1,R1).

Now we consider the entire halfspace H+
h . The set of intersection points of Ĉ ∩H+

h with
bdS is P := P1 ∪P \Pc, and the set of rays is R := R1 ∪R\Rc. In addition, we have that
P∗ = P2 ∪ P \ Pc, and R∗ = R2 ∪ R \ Rc. Here we are assuming that all of the points in
P2 belong to the same part of the skeleton of C̄ ∩H+

h that contains x̄. This is without loss
of generality as a result of Proposition 2.9.

Hence, for any β, suppose α is feasible to CutRegion(β,P∗,R∗) and satisfies αᵀx̄ <

β. Then α will also be feasible to CutRegion(β,P ,R). By Lemma 2.7, Ĉ(P ,R) ⊆ Ĉ∗.
Moreover, since PI ⊆ Ĉ and PI ⊆ H+

h , we have that PI ⊆ Ĉ ∩H+
h . The intersection points

and rays obtained from intersecting Ĉ(P ,R) with bdS are precisely P and R. As a result,
by Lemma 2.6, PI ⊆ Ĉ(P ,R). It follows that PI ⊆ Ĉ∗, as desired.

Performing Algorithm 2.2 kh times is dramatically more efficient than the O(nkh) com-
plexity of full hyperplane activation. For every activation using Algorithm 2.2, letting
kr := |RA|, the hyperplane Hh can cut O(kr) rays to create O(k2

r) new intersection points.
Therefore, if kh hyperplanes are activated, the number of intersection points generated by
partial activation is O(k2

rkh).
In the presence of rays in the initial point-ray collection, we next describe the role of

the parameter RA in PHA1, which restricts the set of rays from C̄ that can be cut by any
activated hyperplane. Edges of C that do not intersect bdS can be viewed as intersection
points infinitely far away, and Balas and Margot [31] show that this view suffices when
extending CutRegion(β,P ,R) with only points to a valid system with both points and rays.

41

However, when generating GICs, rays play a fundamentally different role than points. In
particular, when activating a new hyperplane cuts some p ∈ P0, the new intersection points
that are created are either on the SIC or are deeper relative to p (see Theorem 3 in [31]). In
contrast, any intersection points created as a result of cutting a ray from R0 will all lie on
the SIC, as shown in Proposition 2.10.

Proposition 2.10. Suppose r ∈ R0 is a ray that does not intersect bdS, and H is an
activated hyperplane that intersects r at v := r ∩H. Denote by Y the set of new rays on H
that originate from v. Then the subset of rays Y ′ in Y that intersect bdS create intersections
points on the hyperplane αᵀ0x = β0, where αᵀ0x ≥ β0 is the SIC from C̄ and S. The rays r′
in Y \ Y ′ satisfy αᵀ0r′ = 0.

Proof. LetRc
0 ⊆ R0 denote the set of initial rays cut byH before bdS. When ray r intersects

H, it creates n − 1 − |Rc
0| new rays emanating from v, which we denote by Y . There are

n− 1 hyperplanes that define r. Any ray r′ ∈ Y lies on n− 2 of these hyperplanes, as well
as on H. There exists a ray r̂ ∈ R0 \ Rc

0 that also lies on these n − 2 facets, and r′ can be
written as a nontrivial conic combination of r and r̂. Let F denote the two-dimensional face
of C̄ defined by all conic combinations of r and r̂.

Suppose r̂ intersects bdS and let p̂ := r̂ ∩ bdS. By the remark above, the half-line
L := p̂ + θr, θ ≥ 0 is contained in {x : αᵀ0x = β0} ∩ bdS, since r ∈ R0 does not intersect
bdS. Further, L is also contained in F , which is parallel to r, r̂, and r′. Since r′ is a
nontrivial conic combination of r̂ and r, it intersects bdS. The resulting intersection point
is on L, which lies on the SIC.

Now suppose r̂ does not intersect bdS. Then αᵀ0r = αᵀ0r̂ = 0. Since r′ is a nontrivial
conic combination of r and r̂, it too satisfies αᵀ0r′ = 0.

The consequence of Proposition 2.10 is that activating hyperplanes on rays of C̄ that
do not intersect bdS will create weak points, as these points actually lie on the SIC, not
deeper as desired. Thus, the input RA to Algorithm 2.2 will, in our implementation, always
be chosen from the set of rays of C̄ that intersect bdS, i.e., from R̄ \ R0. Choosing RA

arbitrarily may in general lead to invalid cuts; the validity of our choice follows from the
results in Section 2.4. The full details of how we implement PHA1 to generate cuts are given
in Algorithm 2.3.

2.4 PHA1 with tilted hyperplanes
An outcome of proving the validity of PHA1 is that the hyperplane given as an input to
Algorithm 2.2 can be an arbitrary valid hyperplane for P , not necessarily one from the
hyperplane description of P . One application of this insight is to choose hyperplanes that
only cut rays of C̄ that intersect bdS, to avoid the weak intersection points that would
otherwise be created as shown in Proposition 2.10. However, it is not practical to search for
arbitrary valid hyperplanes that satisfy specific desired properties such as which particular
rays of C̄ are or are not cut. Instead, we propose to activate tilted versions of hyperplanes
defining P , and we show this can be done using information from the original (not tilted)
hyperplane without a need to explicitly calculate the tilted hyperplane; that is, tilting does

42

Algorithm 2.3 Generalized Intersections Cuts by PHA1

Input: Convex rational polyhedron P defined by a set of hyperplanes H; set I ⊆ [n]
denoting the integer variables, objective coefficient vector c; classes of objectives O;
number non-tilted hyperplanes kh; fractionality threshold εfrac.

1: function PHA1CutGenerator(P, I, c,O, kh, εfrac)
2: x̄← a solution from arg min{cᵀx : x ∈ P}.
3: σ ← {j ∈ I : max{x̄j − bx̄jc , dx̄je − x̄j} ≥ εfrac}.
4: HA ← ∅; C ← ∅.
5: for k ∈ σ do
6: R‖k ← {r ∈ R̄ : dist(bdSk, r) =∞}; Rk ← R‖k; Pk ← {r ∩ bdSk : r ∈ R̄ \ Rk}.
7: for h ∈ {1, . . . , kh} do
8: for k ∈ σ do
9: Choose a hyperplane H to activate.
10: (Pk,Rk)← PHA1(P, Sk, H, R̄ \ R‖k, (Pk,Rk)).
11: Add cuts to C by solving (2.2) with objective types O, ensuring x̄ is cut.
12: return C.
13: end function

not lead to any additional computational burden. A byproduct of the tilting theory is that
choosing RA as in Algorithm 2.3 is valid.

Algorithm 2.4 is an alternative, but not mutually exclusive, approach to Algorithm 2.3
for using PHA1. Namely, we provide a way to use tilting to reduce the size of the point-
ray collection when the number of rays of C̄ that are cut is large, which is desirable when
seeking cuts stronger than the SIC. When cutting kr rays and activating kh hyperplanes,
the algorithm creates O(krk2

h) points and rays, which has a clear advantage to the O(k2
rkh)

points and rays that are created from Algorithm 2.3 when kr is large. In our implementation
in Section 2.7, we compare the two ideas when used individually and together.

We now define a tilted hyperplane. Let H be a hyperplane defining P that is not tight at
x̄. The degenerate case is handled separately, in Appendix C.1. Any n affinely independent
points on H define the hyperplane; to define a tilted version of H, we will only need to
change some of these points. We use the intersection of H with the n affinely independent
rays of C̄ (possibly in their negative directions) to define H.

Suppose N̄ = {1, . . . , n} to remove indexing issues. For an arbitrary d ∈ Rn ∪ {∞}, for
j ∈ N̄ and the corresponding rj ∈ R̄, if dj /∈ {0,∞}, define v(dj) := x̄+djr

j, and otherwise,
set v(dj) := rj. Let V(d) := {v(dj) : j ∈ N̄}.

Let dH be a vector of length n with entry j equal to min{dist(H, rj),− dist(H,−rj)}
if rj or −rj intersects H, and dHj = 0 otherwise. Each of the vertices in V(dH) is affinely
independent from the rest because the rays R̄ are affinely independent. Furthermore, all the
rays rj such that dHj = 0 are affinely independent, and none of the vertices created lie on
these rays. Thus, the the set V(dH) of n vertices and rays uniquely define the hyperplane H.

A tilting of H is defined via a vector δ ∈ Rn ∪ {∞}, so that the tilted hyperplane H̃
is the unique hyperplane through the vertices and rays given in V(dH + δ). While tilting
hyperplanes can be used in many ways in conjunction with PHA1, arbitrary values of δ would

43

lead to invalid cuts. Indeed, it is clear that δ should be chosen in a way that ensures H̃ is
valid for P . However, in Definition 2.11, we further restrict the range of values for δ based on
our motivation of selectively cutting only certain rays of C̄ instead of all of the rays. These
tighter limits essentially restrict the tilted hyperplane to intersect each ray r ∈ R̄ either in
the original vertex H ∩ r, or in the initial intersection point r ∩ bdS.

Definition 2.11. Let Rc(C̄) ⊆ R̄ denote the rays of C̄ that have been cut by a set of previ-
ously activated hyperplanes. Let H be a hyperplane defining P that is not tight at x̄. Then
δ ∈ Rn∪{∞} defines a targeted tilting of H (with respect to S) if δj ∈ {0, dist(bdS, rj)−dHj }
for all j ∈ {1, . . . , n} such that 0 < dHj < dist(bdS, rj) and rj /∈ Rc(C̄), and δj = 0 other-
wise.

The motivation for targeted tilting comes not only from Proposition 2.10, to avoid cutting
the rays in R0, but also from our desire to find GICs strictly stronger than the SIC from
the same PI-free convex set S. This may require cutting many rays of C̄. However, using
Algorithm 2.3 for this purpose could involve unnecessarily cutting some rays of C̄ multiple
times. This will happen when we have already cut a certain ray of C̄ but a hyperplane
being subsequently activated intersects it again; not only might this effort be wasted, but
also it may create redundant or weak intersection points. As an alternative, we present the
targeted tilting algorithm, Algorithm 2.4, which is tailored to the task of cutting the initial
intersection points and rays more efficiently.

Algorithm 2.4 Generalized Intersection Cuts by PHA1 and Targeted Tilting
Input: Polyhedron P defined by a set of hyperplanesH; a vertex x̄ of P ; indices of fractional

integer variables σ; hyperplane selection criterion SC; classes of objectivesO; setRA ⊆ R̄
for the rays of C̄ to cut.

1: function PHA1CutGeneratorWithTargetedTilting(P, x̄, σ,SC,O,RA)
2: for k ∈ σ do
3: Rk ← {r ∈ R̄ : dist(bdSk, r) =∞}; Pk ← {r ∩ bdSk : r ∈ R̄ \ Rk}.
4: for j ∈ {1, . . . , n} do . Assume sorted by decreasing reduced cost
5: If rj /∈ RA, skip this ray and return to step 4.
6: for k ∈ σ do
7: Hj ← {H ∈ H \ H̄ : dist(H, rj) < dist(bdSk, rj)}, δ ← {0}n.
8: if Hj 6= ∅ then
9: Select a hyperplane Hj ∈ Hj according to selection criterion SC.
10: for all i ∈ {j + 1, . . . , n} do
11: δi ← max{0, dist(bdSk, ri)− dist(Hj, r

i)}.
12: (Pk,Rk)← PHA1(P, Sk, Hj, {r1, . . . , rj} ∩ RA, (Pk,Rk)).
13: if log(j) ∈ Z or j = n then
14: Add cuts to C by solving (2.2) with objective types O, ensuring x̄ is cut.
15: end function

Algorithm 2.4 focuses on cutting one ray of C̄ at a time. The hyperplane chosen for each
ray is tilted in step 11 in a way that avoids cutting all other rays, other than the ones that

44

have been previously cut, as required in Definition 2.11. However, this requirement creates
a nonmonotonicity when performing targeted tilting, in the sense that cutting more rays of
C̄ could actually lead to generating weaker cuts. This is due to our observation that cutting
a ray multiple times may lead to the addition of weak intersection points to the collection.
We counteract this in step 14 of Algorithm 2.4, by performing cut generation before all
hyperplanes have been chosen and activated. To reduce computational effort, this step is
only performed dlog(n)e times.

Although targeted tilting may reduce the number of weak intersection points that result
from cutting the same rays of C̄ repeatedly, it may also miss improving the point-ray collec-
tion in certain directions. This creates an inherent trade-off when deciding whether to use
PHA1 as part of Algorithm 2.3 or Algorithm 2.4. We discuss this as part of our numerical
study in Section 2.7.

Using V(dH + δ), one can easily compute the closed-form expression for the tilted hy-
perplane H̃, which can then be used in PHA1 to calculate the new point-ray collection.
However, the next theorem shows that when a hyperplane obtained by targeted tilting is
being activated, the formula for the tilted hyperplane is not required to be computed. The
effect is that throughout PHA1, all calculations can be performed using H and not H̃.

Theorem 2.12. Let H be a hyperplane defining P and Rc(C̄) ⊆ R̄ the set of rays previously
cut, H̃ be a hyperplane obtained via a valid targeted tilting δ of H, and RA := {rj ∈ R̄ : 0 <
dHj +δj < dist(bdS, rj)}. Given a proper point-ray collection (P ,R), the point-ray collection
returned by PHA1(P, S,H,RA, (P ,R)) is proper.

Proof. We show that PHA1(P, S,H,RA, (P ,R)) returns an identical point-ray collection to
PHA1(P, S, H̃, R̄, (P ,R)), which we have already proven is proper in Theorem 2.5. Let
rj ∈ R̄. We analyze, case-by-case, the steps of Algorithm 2.2 when activating H̃ over all the
rays R̄ versus activating H over the rays RA.

Case 1: dHj +δj ≥ dist(bdS, rj). In this case, rj is not selected in step 2 of Algorithm 2.2.
This is because, when activating H, rj is not in RA, and when activating H̃, dist(H̃, rj) ≥
dist(bdS, rj). Note that if δj > 0, then we are in this case, so we assume δj = 0, i.e.,
dHj = dH̃j , for the remainder of the proof.

Case 2: dHj ≤ 0. The ray rj is again not considered in step 2 of the algorithm, this time
because dist(H, rj) = dist(H̃, rj) =∞ ≥ dist(bdS, rj).

Case 3: 0 < dHj < dist(bdS, rj). In this case, the ray is processed in step 2 for both H
(it belongs to RA) and H̃. As we noted, vj := rj ∩ H̃ is the same as the intersection rj ∩H.
It will be useful in the subsequent discussion to compare the edges that originate at vj for
C̄ ∩ H̃ and C̄ ∩ H. Other than the edge from vj to x̄, each such edge is directed towards
a ray rk ∈ R̄ \ {rj}. Let ek be the edge of C̄ ∩ H in the direction of rk, and let ẽk be the
edge of C̄ ∩ H̃ in that same direction. When δk = 0, we have that ek = ẽk, in which case
the steps of Algorithm 2.2 relating to this edge will be same regardless of whether H̃ or H is
being activated. Thus, we focus on the case that δk > 0, i.e., when 0 < dHk < dist(bdS, rk)
and dHk + δk = dist(bdS, rk). Note that this means ek intersects rk somewhere in intS.

We now check that the same points and rays are removed in step 3 for both procedures.
Consider a point or ray, call it p, that is removed in this step by the activation of H̃. Let e

45

be the edge that had resulted in the addition of p to (P ,R). It must be that e originates at
a vertex that lies between x̄ and vj, and e does not intersect rk anywhere in intS. Moreover,
e crosses ẽk for some edge ẽk emanating from vj. Clearly this remains the case when the
corresponding edge ek coincides with ẽk. Else, as we observed, ek ∩ rk occurs in intS.
Meanwhile, ẽk does not intersect rk in intS. As ek and ẽk both originate at vj, it follows
that in order to cross ẽk, e must first cross ek, which implies that p will also be removed in
step 3 when activating H, as desired. This argument is illustrated in Figure 2.1. Conversely,
if a point is not removed by the activation of H̃, it is easy to see that the point will not
violate H either.

rj rk

e
ek

ẽk

x̄

pj pk
p

vj

Figure 2.1: Illustration of case 3 of the proof of Theorem 2.12. When ek and ẽk do not
coincide, it must be the case that ek intersects rk in the interior of S and that the point p
will be cut by both H and H̃.

Finally, we show that the same points and rays are added in the for loop starting at
step 4. These steps are identical when ek and ẽk coincide, so we again suppose that ek 6= ẽk.
The activation of H̃ would lead to adding the initial intersection point or ray rk ∩ bdS.
However, this point or ray already exists in (P ,R), so it suffices to show that activating H
will neither remove this existing point or ray, nor add an extraneous point or ray. The first
part is a consequence of the fact that rk /∈ RA. For the second part, that ek∩ rk occurs prior
to bdS means that the condition in step 5 holds, so this edge is skipped and no extraneous
points or rays are added to the point-ray collection.

One effect of Theorem 2.12 is that it is valid to simply ignore all intersections of hyper-
planes with rays in R0, as is done in Algorithm 2.3. To see this, for any hyperplane H valid
for P , we can simply set δj = ∞ when dHj > 0 and δj = 0 when dHj ≤ 0, resulting in the
tilted hyperplane H̃ not intersecting rj before bdS. The activation performed in step 10 of
Algorithm 2.3 is valid because the rays in R0 are always ignored, so that the conditions of
Theorem 2.12 apply. Similarly, the theorem applies for step 12 of Algorithm 2.4.

An arbitrary sequence of valid tilted hyperplanes would not enable us to use this implicit
calculation. Two subtle conditions appearing in Definition 2.11 are of particular importance
for Theorem 2.12 to hold. First, we require that δj = 0 for all rays of C̄ that have previously
been cut. Second, when δj is nonzero, we force it to take the exact value dist(bdS, rj).
Appendix C.2 contains an example showing that relaxing either of these conditions may lead
to invalid cuts.

46

2.5 Implementation choices for PHA1

Algorithms 2.3 and 2.4 both involve steps in which a hyperplane is selected and then, after
the points and rays have been collected, a set of objective directions is used for generating
GICs from the resulting (2.2). In this section, we discuss the choices we make for these steps
and provide theoretical motivation for the decisions.

2.5.1 Choosing hyperplanes to activate
Hyperplane activation in Algorithm 2.4

We first state the three criteria we consider for choosing hyperplanes to activate in step 9 of
Algorithm 2.4, i.e., as the parameter SC. For an index k ∈ I, we consider optimizing over
the Sk-closure, i.e., conv(P \ intSk).

(H1) Choose the hyperplane that first intersects some ray r ∈ R̄\R0 before bdSk.
This corresponds to pivoting to the nearest neighbor from x̄ along the ray r, which would
be the same hyperplane selected in the procedure from [31].

(H2) Choose the hyperplane that yields a set of points with highest average
depth. Here, depth is calculated as the Euclidean distance to the SIC (using the same split
set). (H2) seeks a set of points that are far from the cut we are trying to improve upon. The
idea is that the resulting cuts will then be deeper as well.

(H3) Choose the hyperplane creating the most final intersection points. A final
intersection point is defined as follows.
Definition 2.13. Suppose (Pk,Rk) is a proper point-ray collection. An intersection point
in Pk or a ray in Rk is final (with respect to Sk) if it belongs to P and bdSk, meaning it
cannot be cut away by any valid hyperplane activations.

We denote the set of final intersection points by PFk and final rays by RF
k .

Proposition 2.14. Suppose C = P . Then, the intersection points in PFk define vertices of
the Sk-closure and the rays RF

k define extreme rays of Sk-closure.
Proof. The Sk-closure is defined as Pk = conv(P \ intSk). Therefore, the points p ∈ PF are
in the Sk-closure since they belong to P ∩ bdSk. Furthermore, the rays in RF are in the
Sk-closure since they are extreme rays of P that do not intersect bdSk.

Consider an arbitrary side of the split disjunction, S1
k := {x : xk = bx̄kc}. Suppose that a

vertex p = r ∩S1
k in Pk is not a vertex of the Sk-closure. Then it can be written as a convex

combination of other vertices of P ∩ S1
k that are also intersection points created from edges

of P . This implies that r, an edge of P , can be written as a conic combination of edges in
P that intersect S1

k , which is a contradiction. Showing that rays in Rk are extreme rays of
Sk-closure follows similar reasoning.

Thus, (H3) targets a set of points that lead to facet-defining inequalities for the set
conv(P \ intS). It turns out to be useful to distinguish between intersection points that are
in P and those that are not.

47

Hyperplane activation in Algorithm 2.3

Hyperplanes in step 9 of Algorithm 2.3 are chosen by combining the above options into one
rule as follows. For each hyperplane H that is a candidate for activation, we compute the set
of intersection points that would result from activating H. We calculate the number of new
final intersection points created, as well as the average depth of the points with respect to the
SIC. We choose the best hyperplane H∗ based on (H3) and use (H2) as a tie-breaking rule,
as several hyperplanes may all create the most final intersection points. We then recompute
the number of new final intersection points and average depth of the points for the remaining
hyperplanes (after H∗ is activated) and repeat the process, until kh hyperplanes are selected.

2.5.2 Choosing objective functions
Even if we know that strong cuts exist from a given point-ray collection, it remains to
generate these GICs using (2.2). To do this, we need to appropriately choose objective
function coefficient vectors. We consider the following objective directions:

(R) Ray directions of C̄ (i.e., the initial intersection points)

(V) Vertices that are generated from hyperplane activations

(T) Intersection points obtained for Sk (the tight point heuristic)

(S) Intersection points from other splits

The first set of objectives, (R), is incentivized by the observation that obtaining GICs
that strictly dominate the SIC from the same PI-free convex set requires cutting many
of the initial intersection points. This observation is made concrete in the Theorem 2.18 in
Appendix 2.6; we show that finding a strictly dominating cut requires reducing the dimension
of the convex hull of the initial intersection points and rays. Another objective typically used
for a cut-generating linear program is to minimize x̄ᵀα, to obtain the most violated cut with
respect to x̄. We generalize this with (V), by optimizing to find the most violated cuts with
respect to each of the vertices created on C̄ by hyperplane activations.

The third set of directions, (T), is referred to as the tight point heuristic as we are simply
trying to find a cut tight on each of the rows of (2.2) corresponding to points. In other words,
we minimize αᵀp for every p ∈ P from the current split. Obviously, we will not be able to
cut away p; the purpose of this objective function is to place a cut as close to the chosen
intersection point as possible. The fourth set, (S), capitalizes on the fact that multiple split
sets are considered simultaneously in practice, so that we can share information across the
sets to obtain stronger cuts.

The objective directions (T) and (S) switch the typical perspective used for linear pro-
grams that generate cuts. Instead of finding a cut with maximal violation, the cuts we obtain
from these objectives aim to approximate the convex hull of intersection points and rays from
every direction, thereby obtaining as many of the facets of that convex hull as possible and
a set of cuts with a wider diversity of angles, which is a desirable computational quality.

Next, we discuss the theoretical motivation for (T). Consider optimizing over the Sk-
closure: min{cᵀx : x ∈ conv(P \ intSk)}. We show that intersection points can be used

48

to find an optimal solution to this problem without using (2.2), and we address how the
heuristic (T) aims to obtain the bound implied by this optimal solution.

Theorem 2.15 shows what bounds can be computed on the optimal value over the Sk-
closure using the point-ray collection when P ⊆ C, i.e., not all hyperplanes may have been
activated. We define pk ∈ arg minp∈PF

k
cᵀp (when PFk is nonempty) and pk ∈ arg minp∈Pk

cᵀp.
Let z = cᵀpk (defined to be +∞ when PFk is empty) and z = cᵀpk.

Theorem 2.15. Suppose PFk is nonempty. If z < z, then z is a lower bound and z is an
upper bound on the minimum over the Sk-closure. Otherwise, z ≤ z and z is the minimum
over the Sk-closure.

Proof. By Proposition 2.14, pk is in the Sk-closure. Therefore, z always provides an upper
bound on cᵀp∗, where p∗ is a minimum over the Sk-closure.

When z < z, z = min{cᵀx : x ∈ C ∩ bdSk} provides a valid lower bound on cᵀp∗, since
P∩bdSk ⊆ C∩bdSk. On the other hand, when z ≤ z, we have z = min{cᵀx : x ∈ C∩bdSk},
which implies that z provides a lower bound on cᵀp∗. Therefore, it must be a minimum over
the Sk-closure.

Corollary 2.16 follows immediately for the special case when C = P .

Corollary 2.16. If C = P , then pk is an optimal solution over the Sk-closure.

Thus, pk is readily available from Pk and implies a lower bound on the value of the optimal
solution over the Sk-closure. The same bound z implied by pk can be obtained through GICs,
but it may require many cuts generated from (2.2). We may be able to obtain one inequality
tight at pk by using pk itself as the objective coefficient vector, since αᵀpk ≥ β for all (α, β)
feasible to (2.1), and there will exist a facet-defining inequality ᾱᵀx ≥ β̄ for G satisfying
ᾱᵀpk = β̄. For validity of this inequality to be guaranteed, we must additionally verify that
the inequality cuts a point v ∈ K′. However, even if this is satisfied, it is unlikely that the
one cut will imply the bound cᵀx ≥ z on the objective value. In the worst case, n facets of G
that are tight at pk may be required to obtain this bound via cuts. To get the other facets
tight at pk, we can use points in Pk that lie close to pk. This is precisely what we do in
approach (T), though we do not only use pk and points in its vicinity, but also other points
from Pk to encourage diversity of the cut collection.

Finally, we give more details and motivation for the objective directions (S). When
using a single split set Sk, no intersection point generated from that split can be cut by any
inequality generated through (2.2) from the point-ray collection for Sk. However, different
splits (more generally, different PI-free convex sets) give rise to different point-ray collections,
and the buildup of intersection points and rays can and should be done in parallel for several
splits. The first reason for this is computational efficiency: one can intersect an edge with the
boundaries of more than one split set and store these intersection points or rays separately.
The second reason is that, when using multiple split disjunctions, an intersection point on
the boundary of one split set may lie in the interior of another and hence can be cut away
by a facet of the point-ray collection from this second split. With this in mind, let σ be the
indices of a set of integer variables that are fractional at x̄, i.e., σ ⊆ {j ∈ I : x̄j /∈ Z}. For

49

every intersection point p generated from intersecting an edge of C with the boundary of
some split disjunction, we follow the edge to find the last split disjunction Sk, k ∈ σ, that
this edge intersects. If p lies in the interior of Sk, then we will use p as an objective for (2.2)
with feasible region determined by the point-ray collection from Sk.

2.6 Theoretical results

2.6.1 Existence of strictly dominating generalized intersection cuts
In this section, we provide some theoretical motivation for Algorithm 2.4 by giving necessary
and sufficient conditions for the existence of a GIC that strictly dominates the SIC after
activation of a single hyperplane.

Definition 2.17 ([31]). Consider two inequalities that are valid for PI but not necessarily
P . Inequality 2 dominates 1 on P if for every x ∈ P , the fact that x satisfies Inequality 2
implies that x satisfies Inequality 1. Inequality 2 strictly dominates 1 if, in addition, there
exists x ∈ P such that x violates Inequality 2 but satisfies Inequality 1.

The theorem proved in this section strengthens Theorem 5 in Balas and Margot [31] for
the case when S is a split disjunction. Theorem 5 of the aforementioned paper gives sufficient
conditions for a GIC to strictly dominate the SIC, given that dominance holds. We show that
this condition is also necessary for strict dominance when S is a split disjunction. For ease of
exposition, Theorem 2.18 assumes that all rays of C intersect bdS because Proposition 2.10
shows that intersecting rays cannot lead to deeper points.

Suppose S = {x : 0 ≤ xk ≤ 1} is a split disjunction on a variable xk. Let S1 := {x : xk =
0}, and S2 := {x : xk = 1}. We partition the intersection point set P into P1 and P2, where
P1 := P ∩ S1, and P2 := P ∩ S2. Recall that P0 and R0 are the points and rays obtained
from intersecting C̄ with bdS. We also partition P0 into P1

0 := P0 ∩ S1 and P2
0 := P0 ∩ S2.

Intuitively, the theorem shows that a strictly dominating cut with respect to the SIC must
reduce the dimension of conv(P1

0) or conv(P2
0).

Theorem 2.18. Suppose that R0 = ∅, P1
0 6= ∅ and P2

0 6= ∅, and (P ,R) is a proper point-ray
collection obtained from activating a single hyperplane H valid for P . There exists a basic
feasible solution to (2.1) corresponding to a cut strictly dominating αᵀ0x ≥ β0 if and only
if relint(H+) ∩ P t0 = ∅ and H− ∩ P t0 6= ∅, for at least one side t of the split disjunction,
t ∈ {0, 1}.

Proof. For the “if” direction of the proof, suppose without loss of generality that relint(H+)∩
P1

0 = ∅ and H− ∩ P1
0 6= ∅. Any point in P1 lying on the SIC is in conv(P1

0). Because
relint(H+) ∩ P1

0 = ∅, it holds that (P1 \ P1
0) ∩ conv(P1

0) = ∅. This implies that any point p
in P0 \P0

0 satisfies αᵀ0p > β0. Recall that |P1
0 |+ |P2

0 | = n. Since some point of P1
0 lies in H−,

|P1
0 ∩ H+| ≤ |P1

0 | − 1. It follows that at most n − 1 intersection points from P0 remain in
P . This added degree of freedom and the aforementioned depth of points in P1 \ P1

0 allows
the SIC to be tilted to obtain a GIC that strictly dominates the SIC. The “only if” direction
follows from Theorem 5 in Balas and Margot [31].

50

The above result shows that any single hyperplane is unlikely to directly lead to a strictly
dominating cut. Instead of looking for one such hyperplane, in our implementation we
focus on activating a set of hyperplanes that together cut away large parts of conv(P1

0) and
conv(P2

0). We do this by targeting each of the intersection points in P0 one at a time in
step 4 of Algorithm 2.4.

Although strict dominance is difficult to attain, our next result shows that activating
hyperplanes is monotonic in the sense that the lower bound implied by the point-ray col-
lection can only be improved by activating hyperplanes. This complements Theorem 3 of
Balas and Margot [31], in which it is shown that activating hyperplanes increases the depth
of points with respect to the SIC. This leaves open the question of whether the lower bound
on the objective value (implied by the points) improves after activating hyperplanes, which
Proposition 2.19 resolves. Using the notation from Section 2.5.2, we show that when the
ray creating the least cost intersection point pk is cut by a hyperplane, the objective value
implied by the new intersection points is greater than or equal to z.

Proposition 2.19. Let r be the edge of C that leads to pk, i.e., pk = r∩bdSk, H be a hyper-
plane intersected by r before bdSk, and P ′ denote the set of intersection points originating
at r ∩H, obtained by activating H. Then minp{cᵀp : p ∈ P ′} ≥ z.

Proof. Suppose S1
k is the facet of Sk containing pk, and let S2

k be the opposite facet. We
have that z = minx{cᵀx : x ∈ C ∩ S1

k} ≤ minx{cᵀx : x ∈ C ∩ S2
k}. Since each of the points

p ∈ P ′ is either (possibly strictly) in C ∩ S1
k or C ∩ S2

k , the result follows.

2.6.2 Characterizing bounded objective functions for the PRLP
We turn to an analysis of (2.2). It is possible for the optimal solution to (2.2) to be un-
bounded, a behavior we have in fact observed in our numerical implementation. To better
understand this, in this section we present some structural properties of CutRegion(β̄,P ,R),
the feasible region to (2.2) for a fixed right-hand size β̄, that characterize the objective func-
tion choices leading to unboundedness.

We begin by studying when the system CutRegion(β̄,P ,R) has valid cuts for a given
proper point-ray collection. Recall that K′ denotes the connected component of the skeleton
of P that includes x̄ ∩ intS, and any inequality feasible to (2.1) that cuts a point v ∈ K′ is
valid. We will consider the system

G# := {α : α ∈ CutRegion(β̄,P ,R); vᵀα < β̄}.

Theorem 2.20. Let (P ,R) be a proper point-ray collection and let v ∈ K′. The system
CutRegion(β̄,P ,R) has valid cuts as feasible solutions in the following cases: (1) for β̄ = 1
if and only if 0 6∈ G and v /∈ conv(P) + cone(P ∪R) = G + cone(P), (2) for β̄ = −1 if and
only if v 6∈ conv(G ∪ {0}), and (3) for β̄ = 0 if and only if v 6∈ cone(P ∪R).

Proof. Let Q be the |P| × n matrix containing the intersection points in P as its rows, and
R be the |R| × n matrix with rows comprised of the rays in R. Let e denote the n-vector of

51

all ones. Using the nonhomogeneous Farkas’ lemma [116], G# has a feasible solution if and
only if the following two systems are infeasible:{

λ, µ ≥ 0 : Qᵀλ+Rᵀµ = v

β̄eᵀλ ≥ β̄

} {
λ, µ ≥ 0 : Qᵀλ+Rᵀµ = 0

β̄eᵀλ > 0

}
When β̄ = 1, the first system is infeasible if and only if v /∈ G + cone(P), and the second
system is infeasible if and only if 0 /∈ G, as the existence of a solution (λ, µ) implies (λ/eᵀλ, µ)
is also feasible. When β̄ = −1, the first system is infeasible if and only if v /∈ conv(G ∪ {0}),
and the second system is always infeasible, since λ ≥ 0. When β̄ = 0, the first system is
infeasible if and only if v 6∈ cone(P ∪R), and the second system is always infeasible.

The feasible region to (2.2) is CutRegion(β̄,P ,R), not G#. However, if we assume that
v is used as the objective to (2.2), then Theorem 2.20 can be used to show when (2.2) has
a finite solution. Observe that (2.2) implicitly ranks valid inequalities and picks the most
violated cut with respect to v. If there exists a homogeneous inequality valid for G that cuts
off v, this ranking breaks down, since all homogeneous inequalities can be scaled to have
arbitrarily large violation and hence are unbounded directions in (2.2).

From the β̄ = 0 case in Theorem 2.20, it follows that the linear program (2.2) is bounded
if and only if v belongs to cone(P ∪R). Corollary 2.21 characterizes the two open objective
function sets within cone(P ∪ R) that admit valid cuts of only one type, either with right-
hand side 1 or −1.

Corollary 2.21. The system (2.2) has valid inequalities that cut off a point v only for

1. β̄ = 1 if and only if 0 /∈ G and v ∈ conv(G ∪ {0}) \ G.

2. β̄ = −1 if and only if v ∈ (G + cone(P)) \ G.

Proof. Notice that

conv(G ∪ {0}) \ G ⊆ conv(G ∪ {0}) ⊆ cone(P ∪R)

and {conv(G ∪ {0}) \ G} ∩ {G + cone(P)} = ∅. Therefore, the result in part 1 follows from
Theorem 2.20. The proof of the second part is similar.

2.7 Computational results
This section contains the results from computational experiments with PHA1 as used in
Algorithm 2.3 from Section 2.3 and Algorithm 2.4 from Section 2.4. The purpose of these
experiments is exploratory; that is, we seek conditions and implementation choices that lead
to strong GICs. To do this, we evaluate the effect of a variety of parameters, including those
discussed in Section 2.5, and identify structural properties of instances that can be taken
advantage of to find stronger cuts. In particular, our results indicate that it can be beneficial
to seek a multitude of intersection points that are deep or final as discussed in Section 2.5.1,
and to subsequently target GICs tight on these points through objective functions.

52

We test Algorithm 2.3 and Algorithm 2.4 when used independently, as well as in combi-
nation. The purpose of this is to test the strength of targeted tilting relative to non-tilted
hyperplanes as in Algorithm 2.3. When used together, we first perform Algorithm 2.4 and
afterwards perform non-tilted activations. This is equivalent to inserting the steps of Algo-
rithm 2.4 before step 7 of Algorithm 2.3.

2.7.1 Experimental setup
Parameters. Several parameters are fixed throughout the experiments, while others are
varied, summarized in Table 2.2 and elaborated on below.

Table 2.2: Parameters that are varied and the values considered.

Parameter Values Considered

Hyperplane scoring function, SC {H1, H2, H3}
Objective functions, O {(R), (V), (T), (S)}
Targeted tilting {On, Off}
non-tilted hyperplanes, kh {0, 1, 2, 3, 4}

The fixed parameters are as follows. The sets used for cut generation are all the elemen-
tary splits. The time limits are one hour per set of parameters and at most five seconds
per objective function for each time (2.2) is resolved. The instances are not preprocessed,
and presolve is turned off for (2.2), as using presolve adversely affected the quality of the
solutions. At most 1,000 GICs are generated per instance (a limit seldom attained). As
the cardinality of P may be large, using all the intersection points as objective directions
for (2.2) may be prohibitively expensive; as a result, we limit the number of points used for
objective functions to 1,000 per instance. The overall zero tolerance is set to 10−7, while εfrac
(used in Algorithm 2.2) is set to 10−3; i.e., a point is considered fractional if it is at least
10−3 from the nearest integer.

We also perform some standard checks to avoid numerically unstable cuts. Cuts with dy-
namism higher than 106 are rejected, where dynamism is the ratio of the largest and smallest
cut coefficients. Additionally, for each candidate cut that is generated, its orthogonality with
every existing cut is checked. Given two cuts αᵀ1x ≥ β1 and αᵀ2x ≥ β2, their orthogonality
is computed as 1 − α1·α2

‖α1‖2‖α2‖2
. If the cut already in the pool that is most parallel to the

candidate cut has orthogonality less than 0.01 and one of these two cuts is sparser or has a
larger Euclidean distance from the LP optimal solution, then only that cut is kept.

While these parameters are fixed, we evaluate the effect of varying which hyperplanes
are to be activated and which objective functions are to be used for (2.2). In Algorithm 2.3,
we vary kh from 0 to 4, where kh = 0 implies we do not perform any non-tilted activa-
tions. Section 2.7.3 contains computational results relating to the hyperplane activation
rules described in Section 2.5.1. Section 2.7.4 presents the results for the objective functions
discussed in Section 2.5.2.

Cut generation. We generate cuts in the nonbasic space. The vertex x̄ of C̄ in this space
corresponds to the zero vector, and the jth ray of C̄ in the nonbasic space has a single

53

nonzero jth entry. As a result, the intersection points or rays defining SICs (one pivot from
x̄) and GICs from PHA on C̄ (two pivots from x̄) have one and two nonzero coordinates,
respectively. Thus, the constraint coefficient matrix of (2.2) is sparse. This improves the
time complexity of implementing Algorithm 2.2. In addition, it implies that it is sufficient
to consider cuts with β = 1 to obtain all valid inequalities that cut x̄.

Environment. All algorithms are implemented in C++ in the COIN-OR framework [112],
with Clp version 1.15 as the LP solver, using a 64-bit PowerEdge R515 with 64GB of
memory and twelve AMD Opteron 4176 processors clocked at 2.4GHz. The operating system
is Linux Fedora 19 and compiler is g++ version 4.8.3 20140911 (Red Hat 4.8.3-7).

Cut evaluation. The metric we use to evaluate the cuts obtained from a specific set of
parameters is percent gap closed. The gap is defined as the difference between the optimal
values of the integer program and its linear programming relaxation. Denoting the optimal
value of the integer program by zIP, of its linear relaxation by zLP, and of the linear relaxation
with cuts added by z′, we have

% gap closed := 100× (z′ − zLP)/(zIP − zLP).

The baseline we use is the percent gap closed by SICs, which are the simplest GICs. We then
add GICs along with the SICs to assess what additional effect GICs have on the percent gap
closed in the presence of the SICs.

Instance selection. We test forty instances selected from MIPLIB [5, 43, 44, 109] (all
versions) based on the following criteria meant to identify small problems so that many
different parameter settings can be tested (over 200 in our experiments): (1) The number of
rows and number of columns must be no more than 500 each. (2) The instance has to be
integer-feasible with zLP < zIP, and the gap closed by SICs is not 100%. (3) There must be
at least one non-final intersection point created from intersecting the rays of C̄ with bdS.
(4) The instance must not be known to have 0% gap closed from split cuts based on previous
experiments [35, 67]. Criterion 3 exists because we do not cut rays of C̄ that do not intersect
bdS, so if all intersection points are final, no hyperplanes will be activated.

We modify the stein15, stein27, and stein45 instances to reduce symmetry, by re-
placing the objective

∑n
j=1 xj with

∑n
j=1 jxj. We also remove the cardinality constraint∑n

j=1 xj ≥ (n− 1)/2, as this is not present in the initial formulation of these instances [86].
In addition, we exclude instances go19 and pp08aCUTS: the former because its continuous
relaxation solves exceptionally slowly, and the latter because it is simply a strengthened
version of pp08a.

2.7.2 Point-ray collection statistics
Consider the following statistics averaged across all the instances and all the splits used for
each instance, for the best combination of parameters for each instance. The first statistic
shows the high prevalence of rays of C̄ that do not intersect bdS, which demonstrates the
impact of Proposition 2.10 and our resulting decision to always set the parameter RA of

54

Algorithm 2.2 to a subset of the rays of C̄ that intersect bdS. Of the rays of the initial cone
C̄, 58% belong to R0. An additional 5% of the initial rays lead to final intersection points,
leaving possibly few rays that can be cut for some instances. For eight instances, only 10%
of the rays are able to be cut.

We can also provide an idea of the number of rows in (2.2) in practice, i.e., the number
of points and rays we generate. The number of points ranges from about 21 to 35,000, with
an average of 2,350 and median of 217, though there exist instances with split sets leading
to as few as 2 and as many as 46,000 points. The number of rays in (2.2) ranges from 0 to
1,600, with an average of 220 and median of 160. Figure 2.2 plots the number of generated
points across instances (for the best parameter combination for each instance) as a function
of the number of rays of C̄ that can be cut; we observe a quadratic relationship, as predicted
by our analysis in Section 2.3.

0 50 100 150 200 250 300

Number Rays To Cut

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
u

m
b

e
r

P
o

in
ts

 P
e

r
S

p
lit

×10
4 Number Points vs Number Rays To Cut

Figure 2.2: Number generated points versus number of rays that can be cut.

2.7.3 Effect of hyperplanes activated
In this section, we analyze how the choice of hyperplanes to activate, as described in Sec-
tion 2.5.1, affects the percent gap closed by GICs. In addition, we consider whether targeted
tilting leads to better cuts. In Section 2.4, we discussed that, theoretically, neither Algo-
rithm 2.3 nor targeted tilting is strictly stronger than the other. As a result, computational
experiments are necessary to assess the practical strength of each approach.

Table 2.3 shows the effect of hyperplane activation choices on gap closed for the 29
instances in which GICs close additional gap over SICs. All possible objective functions
(discussed in Section 2.5.2) for (2.2) are used. The best percent gap closed is shown per
instance in: column 2 for SICs; column 3 for GICs across all parameter settings; columns 4
through 7 for Algorithm 2.3 with kh ∈ {1, 2, 3, 4}; columns 8 through 10 for targeted tilting
using each of the hyperplane scoring functions (H1), (H2), (H3); and columns 11 through
14 for when targeted tilting is used in conjunction with Algorithm 2.3 (for kh ∈ {0, 1, 2, 3}).
Note that column T+0 is simply the best result from columns 8 through 10.

The results show that Algorithm 2.3 closes 98% of the best percent gap closed, and that
it achieves the best result across all settings for 55% of the instances without using any

55

Table 2.3: Best percent gap closed by hyperplane activation choice for instances with any
improvement over SICs. Some values differ in the thousandths digit.

Only Alg. 2.3 Only Alg. 2.4 Alg. 2.4 with Alg. 2.3
Instance SIC Best +1 +2 +3 +4 H1 H2 H3 T+0 T+1 T+2 T+3
bell3a 44.74 59.48 59.07 59.07 59.48 59.48 58.94 58.68 58.94 58.94 59.08 59.08 59.08
bell3b 44.57 59.10 59.10 59.10 59.10 59.10 51.36 53.45 51.36 53.45 53.45 53.45 53.45
bell4 23.37 26.52 24.67 24.67 25.26 25.26 23.82 26.35 23.83 26.35 26.35 26.52 26.52
bell5 14.53 85.37 85.37 85.37 85.37 85.37 17.58 19.99 17.58 19.99 19.99 19.99 19.99
blend2 16.00 18.72 16.28 16.28 16.28 16.28 18.72 16.94 18.72 18.72 18.72 18.72 18.72
bm23 5.92 10.98 8.00 10.55 10.98 10.98 8.88 9.94 8.94 9.94 9.94 9.94 9.94
egout 51.57 51.60 51.57 51.57 51.57 51.57 51.59 51.60 51.59 51.60 51.60 51.60 51.60
k16x240 7.56 7.71 7.71 7.71 7.71 7.71 7.56 7.65 7.56 7.65 7.65 7.65 7.65
lseu 4.57 4.65 4.57 4.65 4.65 4.65 4.65 4.57 4.65 4.65 4.65 4.65 4.65
mas74 3.30 4.31 4.30 4.31 4.31 4.31 4.11 3.81 3.98 4.11 4.11 4.11 4.11
mas76 2.37 2.46 2.38 2.46 2.46 2.46 2.37 2.37 2.37 2.37 2.37 2.37 2.37
mas284 0.38 0.41 0.38 0.38 0.38 0.38 0.41 0.41 0.41 0.41 0.41 0.41 0.41
misc05 3.60 4.48 3.60 3.60 3.60 3.60 3.60 4.48 3.60 4.48 4.48 4.48 4.48
mod008 1.31 1.38 1.31 1.38 1.38 1.38 1.31 1.31 1.31 1.31 1.31 1.31 1.31
mod013 4.41 7.37 4.41 4.72 4.72 7.28 4.72 7.28 4.72 7.28 7.37 7.37 7.37
modglob 9.59 13.79 9.62 13.79 13.79 13.79 9.97 10.04 9.97 10.04 10.05 10.05 10.05
p0033 1.83 5.19 1.83 2.59 2.59 2.59 5.19 5.19 5.19 5.19 5.19 5.19 5.19
p0282 3.67 5.05 4.65 4.81 4.81 5.05 4.09 4.81 4.09 4.81 4.83 4.87 4.87
p0291 27.78 40.07 39.80 40.07 40.07 40.07 27.92 31.81 27.92 31.81 31.81 31.81 31.81
pipex 0.81 1.44 1.36 1.36 1.36 1.36 1.44 1.44 1.44 1.44 1.44 1.44 1.44
pp08a 51.44 54.46 52.47 54.41 54.46 54.46 52.76 53.36 52.76 53.36 53.37 53.37 53.37
probportfolio 25.14 25.27 25.14 25.14 25.14 25.14 25.17 25.27 25.17 25.27 25.27 25.27 25.27
sample2 5.86 10.25 5.86 5.86 5.86 5.86 5.86 10.25 5.86 10.25 10.25 10.25 10.25
sentoy 10.38 12.97 10.38 11.10 12.97 12.97 11.89 12.45 12.39 12.45 12.45 12.45 12.45
stein15* 50.00 58.33 50.00 50.00 58.33 58.33 56.03 50.00 56.03 56.03 57.16 57.16 57.16
stein27* 7.41 9.48 7.41 7.86 7.86 7.86 9.47 9.48 9.47 9.48 9.48 9.48 9.48
stein45* 7.10 7.51 7.51 7.51 7.51 7.51 7.36 7.47 7.36 7.47 7.47 7.47 7.47
vpm1 9.99 10.18 9.99 9.99 9.99 9.99 9.99 10.18 9.99 10.18 10.18 10.18 10.18
vpm2 10.19 11.71 11.04 11.19 11.19 11.71 11.15 11.23 11.15 11.23 11.23 11.23 11.23
Average 15.50 21.04 19.65 20.05 20.46 20.57 17.17 17.65 17.18 17.94 17.99 18.00 18.00
Number wins 4 5 4 3 11 1 1 0

56

targeted tilting. This is achieved when kh = 4, though the marginal impact of activating
more hyperplanes diminishes as kh increases. The table also shows that the effect of targeted
tilting is mixed. Targeted tilting alone wins 11 times, meaning it achieves the best result
for 38% of the instances. Moreover, we see that targeted tilting is effective in its goal of
generating cuts that improve over SICs. Indeed, GICs improve over SICs for all instances
(using three decimal places) when using targeted tilting without any non-tilted activations,
i.e., no Algorithm 2.3 (column T+0), whereas when using Algorithm 2.3 on its own, six
instances (egout, mas284, misc05, probportfolio, sample2, and vpm1) see no improvement
at all over SICs. On the other hand, targeted tilting may lead to weaker cuts, as reflected in
the fact that the best average percent gap closed is achieved by Algorithm 2.3 on its own,
and that Algorithm 2.3 seems to have a relatively insignificant impact on improving the
results once targeted tilting has been used.

In our experiments, we find that though final intersection points are targeted, they rep-
resent a small percent (12% on average) of all generated points. This does not necessarily
imply bad cuts: for example, GICs close an additional 8% of the gap for stein15_nosym over
SICs alone, but only 2 of the 300 points created are final. Nevertheless, this suggests that
one promising future direction to obtain stronger cuts is to target more final intersection
points, as this will lead to more facet-defining inequalities for conv(P \ intS).

2.7.4 Evaluating objective function choices
Next, we examine which objective functions for (2.2) lead to the strongest cuts. Table 2.4
shows the effect of the possible values of the parameter O when all other parameters are
allowed to vary freely. The first column gives the best percent gap closed across all parameter
settings. The next column provides the best percent gap closed when only objective functions
(R) are used. In the next three columns, we show the percent gap closed when (R) is used
in conjunction with one of the other types of approaches. The last three columns show the
effect of using (R) and any two of the remaining approaches.

Our experiments show that the simplest and fastest approach, of trying to cut along the
ray directions, works well in practice, closing 98% of the gap closed when using the more
involved heuristics and achieving the best result for 12 of the 29 instances with nonzero extra
gap closed. The next best choice of objective function is (T). Using (R) and (T) together
achieves the best result across all parameter settings for 22 of the 29 instances with nonzero
extra percent gap closed. Moreover, over 76% of the cuts that are active at the post-cut
optimum come from procedures (R) and (T), on average.

We also tested a bilinear program that finds a cut with maximal violation with respect
to a vertex of P with all SICs added, but it did not yield additional strong cuts.

2.7.5 Strength of GICs
Finally, we look at the best percent gap closed across all parameter settings. We compare
the percent gap closed by using GICs and SICs together to using SICs on their own. When
the GICs close an additional amount of the integrality gap, it is clear that we are getting a
tighter relaxation of the integral hull. The converse is not true; that the extra gap closed by
GICs is zero does not imply that the cuts have no effect on tightening the relaxation.

57

Table 2.4: Best percent gap closed by objective function used, for instances with any im-
provement over SICs. Some values differ in the hundredths digit.

Instance Best R R+V R+S R+T R+V+S R+V+T R+S+T

bell3a 59.48 59.48 59.48 59.48 59.48 59.48 59.48 59.48
bell3b 59.10 59.10 59.10 59.10 59.10 59.10 59.10 59.10
bell4 26.52 26.34 26.34 26.34 26.52 26.34 26.52 26.52
bell5 85.37 85.37 85.37 85.37 85.37 85.37 85.37 85.37
blend2 18.72 16.29 18.72 16.29 18.69 18.72 18.72 18.69
bm23 10.98 9.48 10.43 10.64 10.98 10.64 10.98 10.98
egout 51.60 51.60 51.60 51.60 51.60 51.60 51.60 51.60
k16x240 7.71 7.71 7.71 7.71 7.71 7.71 7.71 7.71
lseu 4.65 4.65 4.65 4.65 4.65 4.65 4.65 4.65
mas74 4.31 4.30 4.30 4.30 4.30 4.31 4.30 4.31
mas76 2.46 2.38 2.38 2.38 2.46 2.38 2.46 2.46
mas284 0.41 0.39 0.39 0.41 0.41 0.41 0.41 0.41
misc05 4.48 4.48 4.48 4.48 4.48 4.48 4.48 4.48
mod008 1.38 1.37 1.37 1.38 1.37 1.38 1.37 1.38
mod013 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37
modglob 13.79 13.79 13.79 13.79 13.79 13.79 13.79 13.79
p0033 5.19 2.59 2.59 5.19 5.19 5.19 5.19 5.19
p0282 5.05 4.82 4.87 5.01 4.92 5.01 4.92 5.05
p0291 40.07 39.91 39.91 40.00 40.07 40.00 40.07 40.07
pipex 1.44 1.43 1.43 1.44 1.44 1.44 1.44 1.44
pp08a 54.46 53.52 54.46 54.45 53.58 54.46 54.46 54.45
probportfolio 25.27 25.27 25.27 25.27 25.27 25.27 25.27 25.27
sample2 10.25 5.86 10.25 10.25 10.25 10.25 10.25 10.25
sentoy 12.97 12.45 12.45 12.97 12.85 12.97 12.85 12.97
stein15* 58.33 58.33 58.33 58.33 58.33 58.33 58.33 58.33
stein27* 9.48 9.48 9.48 9.48 9.48 9.48 9.48 9.48
stein45* 7.51 7.47 7.47 7.51 7.51 7.51 7.51 7.51
vpm1 10.18 10.03 10.18 10.18 10.18 10.18 10.18 10.18
vpm2 11.71 11.71 11.71 11.71 11.71 11.71 11.71 11.71

Average 21.04 20.59 20.89 20.93 21.00 21.02 21.03 21.04
Number wins 12 5 7 10 0 0 2

58

Table 2.5: Best percent gap closed and number of cuts.

Best % gap closed # cuts

Instance SIC GIC Diff SICs Active SICs GICs Active GICs

bell3a 44.74 59.48 14.74 32 11 150 32
bell3b 44.57 59.10 14.53 35 20 90 42
bell4 23.37 26.52 3.15 46 20 800 36
bell5 14.53 85.37 70.85 25 12 186 77
blend2 16.00 18.72 2.72 6 2 169 7
bm23 5.92 10.98 5.06 6 0 1000 6
egout 51.57 51.60 0.03 38 35 95 77
flugpl 11.74 11.74 0.00 10 6 17 6
gt2 83.13 83.13 0.00 11 11 16 12
k16x240 7.56 7.71 0.15 14 6 57 8
lseu 4.57 4.65 0.08 12 6 172 9
mas74 3.30 4.31 1.00 12 1 1000 52
mas76 2.37 2.46 0.10 11 2 817 12
mas284 0.38 0.41 0.03 20 0 901 3
misc05 3.60 4.48 0.87 11 3 305 53
mod008 1.31 1.38 0.07 5 0 916 2
mod013 4.41 7.37 2.96 5 2 105 18
modglob 9.59 13.79 4.20 29 15 350 63
p0033 1.83 5.19 3.35 6 4 46 24
p0040 6.65 6.65 0.00 4 4 24 22
p0282 3.67 5.05 1.37 26 4 799 41
p0291 27.78 40.07 12.29 10 2 130 20
pipex 0.81 1.44 0.62 6 2 559 28
pp08a 51.44 54.46 3.02 53 43 303 73
probportfolio 25.14 25.27 0.13 125 68 1000 177
sample2 5.86 10.25 4.39 12 4 597 17
sentoy 10.38 12.97 2.59 8 0 1000 6
stein15* 50.00 58.33 8.33 5 2 40 9
stein27* 7.41 9.48 2.08 27 2 516 4
stein45* 7.10 7.51 0.42 45 3 341 6
timtab1 17.54 17.54 0.00 136 38 307 88
vpm1 9.99 10.18 0.18 15 10 132 37
vpm2 10.19 11.71 1.53 31 12 593 52

Average 17.23 22.10 4.87

glass4 0.00 0.00 0.00 72 36 14 12
misc01 0.00 0.00 0.00 12 0 90 5
misc02 0.00 0.00 0.00 8 8 23 14
misc03 0.00 0.00 0.00 22 8 109 14
misc07 0.00 0.00 0.00 26 12 909 293
p0201 0.00 0.00 0.00 40 19 95 29
rgn 0.00 0.00 0.00 19 11 28 13

59

Table 2.5 shows the best result for percent gap closed for each instance, across all pa-
rameter settings. The percent of the integrality gap closed by SICs and by GICs is given
in columns 2 and 3. Column 4 shows the difference between columns 3 and 2. Columns 5
and 6 show the number of SICs generated as well as how many of the SICs are active at the
optimum of the LP with all cuts added. Columns 7 and 8 show the same for GICs. The top
part of the table shows those instances for which GICs or SICs close any gap over the LP
relaxation, and the bottom part of the table contains the remaining instances.

GICs close extra gap over SICs for 72.5% of the instances. The average extra percent
gap closed across all instances is around 4%, around 4.9% on those instances in which SICs
have any effect, and around 5.5% on those instances with nonzero gap closed. This latter
number represents a 35% improvement over just using SICs.

Another way to assess strength of cuts is to check activity at the optimum of the LP
relaxation after adding all cuts. On average, over 80% of the active cuts are GICs, and though
we generate many more GICs than SICs, the GICs contain 1.8 times as many active cuts
as the total number of SICs. Moreover, one can select for the strong cuts with reasonable
success. We adopt a common cut selection criterion (see, e.g., [2]) that sorts cuts based
on a combination of their efficacy (the Euclidean distance by which they cut x̄) and their
orthogonality to cuts that have already been selected. Adding the cuts in this way and using
just five times as many total GICs as SICs, we can close 21.4% gap over SICs (compared to
22.1% using all the GICs), that is, 98% of the improvement from adding all GICs.

2.7.6 Summary
The GICs generated from our PHA approach close a significant percentage of the integrality
gap with respect to SICs. This validates the premise of PHA, that stronger intersection
cuts can be obtained from collecting a manageable number of intersection points and rays.
We examine the trade-off in using PHA1 with and without the targeted tilting algorithm.
Using tilting permits more hyperplanes to be activated and is somewhat better at improving
over SICs, but can create weaker points that are avoided by the procedure without tilting.
Moreover, our experiments identify one aspect of PHA that can be improved to lead to
stronger cuts. Only 12% of the points we generate are final, which indicates that the GICs
generated from our approach are far from the split closure and motivates future work on new
methods targeting such final intersection points. We also evaluate several different objective
functions that can be used in (2.2) and determine one (the tight point heuristic) that seems
particularly effective, which has implications for any future GIC computational experiments.
One of the motivations of the GIC procedure is the ability to generate diverse cuts, which
we find is indeed possible. However, we do not wish to add a large number of cuts to our
LP relaxation. We show that in fact a a small set of diverse GICs achieves nearly the same
result as using all the GICs.

60

Chapter 3

Cutting Planes by Tilting on Split
Disjunctions

3.1 Introduction
This chapter is a primarily theoretical exploration of the generation and strengthening of
general-purpose cutting planes for mixed-integer linear programs via a simple tilting frame-
work. Tilting is defined, abstractly, as any operation that uses one inequality to derive
another, by changing the angle or right-hand side of the base inequality. In the literature,
this idea reappears under a medley of different names, including tilting, but also rotation,
lifting, and coefficient strengthening. We introduce a framework that aggregates several
existing presolve and cut-generation techniques that utilize the concept of tilting, but are
typically not viewed as equivalent. Our contribution is not only proposing an efficient im-
plementation of tilting, but also explicitly discussing connections among, and a unifying
geometric perspective for, a variety of these prior closely-related techniques.1

Recall our notation from Section 1: PI = {x ∈ Rn : Ax ≥ b, xj ∈ Z for all j ∈ I}, P is
the relaxation of P obtained by removing the integrality restrictions, (IP) is the integer pro-
gramming problem (with respect to objective function c) being solved, (LP) is the associated
linear program, x̄ is an optimal solution to (LP), and our goal is to tighten the relaxation P
by adding valid cutting planes (cuts), which are inequalities that are valid for PI but not P .

The tilting procedure in this chapter is conceptually simple: given a valid inequality for
PI and a split disjunction, tilt the inequality until it is supporting for the disjunctive hull,
which is the convex hull of the union of P intersected with each disjunctive term; we will
refer to the disjunctive hull for a split disjunction as the (single) split hull. In other words,
we tilt the base inequality until it touches a point in P on each side of the split disjunction.
The resulting split cuts will typically compare favorably to SICs [21] and GMICs [88], but
they might not necessarily be facet-defining for the split hull. We also explore extensions
that produce stronger valid cuts that may cut away parts of the split hull, and we show how
to utilize several split disjunctions at once to produce one tilted inequality that aggregates
information across these splits.

We propose a particularly computationally efficient way to implement tilting from strong
1Parts of this chapter appeared as a poster at the Mixed Integer Programming Workshop in 2016 [106].

61

branching or probing information that is already readily available in mixed-integer program-
ming solvers. These are methods (see, e.g., [4, 131]) that involve tentatively branching on
elementary split disjunctions and using the resulting logical implications to either tighten
the formulation P or select a variable to branch on during branch-and-bound. This is an ex-
pensive process, in that it involves solving two linear programs per variable (though perhaps
not to optimality), but it is empirically effective, such as resulting in drastically reduced
branch-and-bound tree sizes. Typically only the optimal value for each program is used, but
a basis is also available; we propose a way of using these bases for cut generation, which is
a way to further compensate the computational burden of probing and strong branching.

The tilted inequalities are actually strengthened versions of the base inequalities for
certain important classes of problems, such as those in which all integer variables are binary.
In this special case, the tilting procedure can be used to replace the base inequalities without
adding any constraints to the original system. The drawback of tilting is that the new feasible
region, while a tighter approximation of the integer hull, may have a denser description and
hence lead to slower solving times, which leads to a tradeoff that we do not address directly
but merits further investigation. In particular, when the tilted row is denser, it may be
worthwhile to keep it as a cut instead of replacing the original inequality in the formulation.

The idea of tilting has consistently recurred in the integer programming literature in
various contexts: for cut generation [54, 107, 126], as lifting techniques [74, 137], and in pre-
solve methods [3, 10, 131]. The distinctions among these methods include the choice of base
inequality (whether the starting point is a cut or an inequality defining P), the tilting direc-
tion (typically elementary split disjunctions), and the relaxation of PI used for tilting (e.g.,
the distinction between exact and approximate lifting). It is sensible to study these tech-
niques under one umbrella and discuss the connections to our work. A more computationally
demanding, but also more general, tilting method was investigated by Chvátal et al. [54].
Espinoza et al. [80] connected this more general tilting to lifting [137], which we extend by
highlighting the relationship of tilting to coefficient strengthening [3, 10, 131]. As a further
extension, we discuss the correspondence to mixing [95] (equivalent to star inequalities [14]),
which we will show is a form of tilting. The idea of using strong branching information to
tilt has also been proposed in the context of mixed-integer nonlinear programming (using
the objective vector for a base inequality) by Kılınç et al. [108].

The types of inequalities generated in this chapter can be seen as somewhere in between
the generalized intersection cuts generated in Chapter 2 and the disjunctive cuts from Chap-
ter 4. Namely, unlike the former chapter, tilted cuts will be supporting for the split hull and
they are relatively easier to compute, though they only apply to split disjunctions (or inter-
sections of split disjunctions) as opposed to arbitrary simple disjunctions. Compared to the
method of the latter chapter, tilted cuts are weaker but can be generated much more quickly,
which is useful in practical settings, in which simple procedures that sacrifice strength for
efficiency are often preferred.

The exact tilting method we propose and test as our algorithmic contribution is not
currently implemented in practice, to the best of our knowledge. Our computational experi-
ments, while preliminary, are suggestive of the practical potential of our approach, although
significantly more empirical evaluation is required. The integrated tilting framework we de-
velop leverages many existing tilting techniques, which we feel is conducive to future research
on understanding and deciding when to use each tilting variant in a solver.

62

3.2 Tilting an inequality using a split disjunction
In Section 3.2.1, we apply tilting to the special case of objective cuts. We present the general
case in Section 3.2.2 and an example in Section 3.2.3. Section 3.2.4 concerns convergence
properties of tilting when it is applied recursively. In Section 3.2.5, we discuss a particular
computationally efficient tilting algorithm that uses strong branching information. In Sec-
tion 3.2.6, we derive Farkas multipliers certifying the validity of tilted cuts, which are useful
in strengthening approaches, considered in Section 3.2.7.

3.2.1 Tilted objective cut
To simplify exposition, we focus on the case of an elementary split disjunction, though the
results straightforwardly extend to any split disjunction. Let P 1 := {x ∈ P : xk ≤ bx̄kc}
and P 2 := {x ∈ P : xk ≥ dx̄ke}, where k ∈ I, and let S := {x ∈ Rn : bx̄kc ≤ xk ≤ dx̄ke}.
Let intS denote the interior of S.

We first show how to tilt (equivalently, strengthen) the inequality cᵀx ≥ cᵀx̄. In fact, this
is identical to a result of Kılınç et al. [108, Proposition 3] in the context of mixed-integer
nonlinear programming, so we present Proposition 3.1 without proof. For t ∈ {1, 2}, let pt
denote an optimal solution to minx{cᵀx : x ∈ P t}.

Proposition 3.1. The following inequality is valid for conv(P 1 ∪ P 2).

c
ᵀ
x ≥ c

ᵀ
p1 + (cᵀp2 − cᵀp1)(xk − bx̄kc).

Proposition 3.1 will be generalized by Theorem 3.3 in Section 3.2.2. The next proposition
shows that the tilted objective cut, as in Propostion 3.1, is stronger than the objective cut
cᵀx ≥ min{cᵀp1, cᵀp2}.

Proposition 3.2. The optimal objective value of (LP) after adding the tilted objective cut
will be min{cᵀp1, cᵀp2}. This value is strictly greater than cᵀx̄ if and only if {x ∈ P : cᵀx =
cᵀx̄} ⊆ intS.

Proof. Without loss of generality, assume cᵀp1 ≤ cᵀp2. Then the tilted objective cut implies
that cᵀx ≥ cᵀp1 because (cᵀp2− cᵀp1)(xk−bx̄kc) ≥ 0 whenever xk ≥ bx̄kc, and, by definition
of p1, cᵀx ≥ cᵀp1 for all x ∈ P with xk ≤ bx̄kc. For the second statement, if the optimal face
of P lies entirely in intS, then by definition of optimal face, cᵀp1 > cᵀx̄. Similarly, for the
converse, if the objective value after adding the tilted objective cut is strictly greater than
cᵀx̄, then the entire optimal face of P must be removed by the cut; the only points of P that
violate the cut lie in intS, so the optimal face of P must belong entirely to intS.

The tilted objective cut is not parallel to the objective function when cᵀp1 6= cᵀp2. This
is a desirable property due to computational issues that arise with dual degeneracy when
adding inequalities that are parallel to the objective. However, the tilted objective cut we
have defined only differs in one coefficient from the original objective. In Section 3.3, we give
a method to further tilt using information from several split disjunctions at once, which will
yield a tilted objective cut that may be drastically different than the original objective.

63

3.2.2 Tilted inequalities, the general case
In this section, we show how to tilt a base inequality hᵀx ≥ bh using a valid split disjunction,
(πᵀx ≤ π01) ∨ (πᵀx ≥ π02) with π01 < πᵀx̄ < π02. Let P 1 := {x ∈ P : πᵀx ≤ π01} and
P 2 := {x ∈ P : πᵀx ≥ π02}, which we again assume are nonempty, and let S := {x ∈ Rn :
π01 ≤ πᵀx ≤ π02}. Let St= := {x ∈ Rn : πᵀx = π0t}, for t ∈ {1, 2}, denote side t of the split
disunction. We permit wide split disjunctions (π02 > π01+1) as in [48]. Theorem 3.3 provides
the formula for computing a tilted inequality. Geometrically, the operation we perform is to
tilt the base inequality using the hinge {x ∈ S2= : hᵀx = bh} until it is supporting for P 1,
and then do the same for the new inequality intersected with S1= until it is a support for
P 2. In Section 3.2.3, we will give an example of applying the tilting technique.
Theorem 3.3. Given h ∈ Rn, β1 ∈ R, and β2 ∈ R such that hᵀx ≥ βt is a valid inequality
for P t, t ∈ {1, 2}, consider the inequality αᵀx ≥ β defined as

n∑
j=1

(
hj −

(
β2 − β1

π02 − π01

)
πj

)
xj ≥ β1 −

(
β2 − β1

π02 − π01

)
π01. (3.1)

The inequality αᵀx ≥ β is valid for conv(P 1 ∪ P 2) if (1) P ⊆ S, or (2) αᵀp < β for some
p ∈ P ∩ intS, or (3) for each t ∈ {1, 2}, there exists a point qt ∈ P t such that αᵀqt = β.

Proof. For t ∈ {1, 2}, we have that

{x ∈ P ∩ St= : αᵀx ≥ β} = {x ∈ P : hᵀx ≥ β1 +
(
β2 − β1

π02 − π01

)
(πᵀx− π01), πᵀx = π0t}

= {x ∈ P : hᵀx ≥ βt, π
ᵀ
x = π0t}.

This shows that αᵀx ≥ β is valid for P ∩ St=, t ∈ {1, 2}, and hence valid for conv(P 1 ∪ P 2)
under condition (1).

Now consider the other two conditions for validity for conv(P 1 ∪ P 2). (2) If αᵀp < β for
some p ∈ P ∩ intS, then it follows from convexity that the inequality is valid for P 1 and P 2.
(3) Suppose, for each t ∈ {1, 2}, there exists a point qt ∈ P t satisfying αᵀx = β. Let p be a
point in P 1 and p̂ be the point on the line segment pq2 such that πᵀp̂ = π01. Since αᵀq2 = β
and αᵀp̂ ≥ β, convexity implies that αᵀp ≥ β. Applying the analogous argument for a point
from P 2, we conclude that the inequality is valid for both P 1 and P 2, as desired.

Note that when we work with an elementary split disjunction on a variable xk, the tilted
cut (3.1) reduces to a straightforward generalization of Proposition 3.1:

h
ᵀ
x ≥ β1 + (β2 − β1)(xk − bx̄kc).

Naturally, it is desirable to have a sense of the theoretical strength of tilted inequalities.
One proxy for strength is whether is an inequality is facet-defining (or supporting) for the
split hull, conv(P 1 ∪ P 2). Unfortunately, in general, tilting is not guaranteed to produce
a facet-defining, or even supporting, inequality. On the other hand, we will not tilt using
arbitrary coefficient vectors h ∈ Rn. A mild condition suffices for guaranteeing the tilted
inequality to be supporting for conv(P 1 ∪ P 2). We give this condition in Proposition 3.4.
The proposition also provides a sufficient condition for the tilted inequality to be a proper
cut (i.e., not valid for P) and facet-defining for the split hull.

64

Proposition 3.4. Given (h, bh) ∈ Rn × R, let βt := minx{hᵀx : x ∈ P t} be finite. Let
αᵀx ≥ β be the tilted inequality as defined in (3.1). Suppose that hᵀx ≥ bh is valid for P .
(1) If P ⊆ S or there exists a point p ∈ P ∩ intS such that hᵀp = bh, the inequality αᵀx ≥ β
is supporting for P ∩ St=, t ∈ {1, 2}. (2) If p as above exists and bh < max{β1, β2}, then
αᵀp < β. (3) Finally, if hᵀx ≥ βt defines a face of dimension dt for P ∩St=, t ∈ {1, 2}, then
αᵀx ≥ β defines a face of conv(P 1 ∪ P 2) with dimension at least max{d1 + 1, d2 + 1}.

Proof. Fix t ∈ {1, 2}. To show the first claim, we prove that there exists a point qt ∈ P ∩St=
with αᵀqt = β. Equivalently, we need qt to satisfy hᵀqt = βt. Let q ∈ P t such that hᵀq = βt
(q is guaranteed to exist by definition of βt). Clearly, q ∈ St= when P ⊆ S. Now consider the
second sufficient condition. Define qt as the point on the line segment between p and q for
which πᵀx = π0t. By convexity of P , qt ∈ P t, so that hᵀqt ≥ βt, and βt = hᵀq ≥ hᵀqt ≥ hᵀp,
from which it follows that hᵀqt = βt, as desired.

Next, assume that bh < max{β1, β2}. Assume without loss of generality that β2 ≥ β1. It
holds that either β2 > β1 or β1 > bh (or both) and πᵀp ≥ π01 = πᵀq1. Hence,

α
ᵀ
p = α

ᵀ(q1 + p− q1) = β + h
ᵀ
p− hᵀq1 −

(
β2 − β1

π02 − π01

)
· (πᵀp− πᵀq1) < β.

For the last claim, for each t ∈ {1, 2}, there exist dt + 1 affinely independent points from
P ∩St= satisfying αᵀx = β. Any point from the other side of the split disjunction is affinely
independent of these dt + 1 points, giving the desired result.

Corollary 3.5. If hᵀx ≥ β1 is valid for and defines an (n− 1)-dimensional face of P ∩S1=,
and hᵀx ≥ β2 is valid for P 2, then αᵀx ≥ β as in (3.1) is facet-defining for the split hull.

Proposition 3.4 is useful for identifying which base inequalities should be tilted. In
particular, let hᵀx ≥ bh be any inequality that is valid for P . Then we can find βt =
minx{hᵀx : x ∈ P t} and define the tilted inequality as in Theorem 3.3. As long as hᵀp = bh
for some point p ∈ P ∩ S, e.g., using any inequality tight for x̄, tilting can be viewed as a
strengthening (within S) of hᵀx ≥ bh using the split disjunction. We say an inequality can
be tilted when tilting yields an inequality stronger (within S) than the original one, which
happens if (and only if) bh < max{β1, β2}.

Being stronger within S does not mean that the tilted inequality strictly dominates the
base inequality with respect to the given split, as defined below.2

Definition 3.6. Let ` := infx{πᵀx : x ∈ P} and u := supx{π
ᵀx : x ∈ P}. Then αᵀx ≥ β

dominates hᵀx ≥ bh with respect to S if every point p ∈ R := {x ∈ Rn : ` ≤ x ≤ u} that
satisfies αᵀp ≥ β also satisfies hᵀx ≥ bh. Strict dominance occurs when there exists a point
p ∈ R such that αᵀp ≥ β but hᵀp > bh.

2When we say one inequality dominates another on a region R ⊆ Rn, we mean that any point from R
that satisfies the first necessarily satisfies the second. See, for example, Definition 2.17. In the setting of this
chapter, using R = P is not meaningful, because we are not comparing two cuts: when the base inequality
is valid for P , and the tilted cut is valid for PI , then clearly every point valid for the split hull satisfies both
inequalities. The definition we use instead is adapted from [3, Definition 2].

65

Our notion of dominance is equivalent to redundancy: essentially, we are checking
whether the tilted inequality can replace the base inequality without introducing new feasi-
ble points. In the case of facial disjunctive programs [17], such as binary integer programs,
tilting can achieve strict dominance, which follows from Proposition 3.7.

Proposition 3.7. Let hᵀx ≥ bh be a valid inequality for P such that hᵀp = bh for some
p ∈ P ∩ intS. and let βt ≥ bh such that hᵀx ≥ βt is valid for P t, t ∈ {1, 2}. Let αᵀx ≥ β be
the tilted inequality as defined in (3.1). Suppose that the following two conditions hold: (1)
β1 = bh or P 2 \ S2= = ∅, and (2) β2 = bh or P 1 \ S1= = ∅. The tilted inequality dominates
hᵀx ≥ bh with respect to S, and it is strictly dominant if and only if bh < max{β1, β2}. If
P ⊆ S, we do not need to require the existence of p ∈ P ∩ intS.

Proof. We assume that bh < max{β1, β2}, as otherwise the base inequality remains un-
changed. The tilted cut is valid by Theorem 3.3, trivially when P ⊆ S, and using the
same reasoning as in Proposition 3.4 to show that αᵀp < β. Moreover, it clearly dominates
hᵀx ≥ bh for points in P ∩ St=, with strict domination for either side for which βt > bh,
which completes the proof when P ⊆ S. Now suppose P 2 \ S2= is nonempty, which implies
that β1 = bh, by assumption. Let q ∈ S2= \ P (otherwise hᵀq ≥ bh by definition) such that
αᵀq ≥ β. We show that hᵀq > bh. Take any q1 ∈ P ∩ S1= such that αᵀq1 = β. Let q2 be
the point on the line segment between q and q1 that intersects S2=. Since hᵀq1 = bh and
hᵀq2 > bh, it follows that hᵀq > bh.

3.2.3 Example of tilting a valid inequality for the LP relaxation
We show an example of tilting applied to the mixed-integer program below. The example is
shown in maximization form for ease of illustration.

max
x1,x2,x3

x3

−(1/4)x1 + x3 ≤ 7/8
(3/2)x1 + x3 ≤ 7/4
−x2 + x3 ≤ 1/2

(1/2)x2 + x3 ≤ 5/4
(9/4)x1 + (3/4)x2 + x3 ≤ 25/8
x1, x2, x3 ∈ [0, 1]
x1 ∈ Z

We will tilt the inequality hᵀx = −(1/4)x1 + x3 ≤ 7/8 using the elementary split dis-
junction on variable x1. For the x1 ≤ 0 side, the point (0, 3/8, 7/8) is feasible to P , so
β1 = 7/8. For x1 ≥ 1, maxx{hᵀx : x ∈ P, x1 ≥ 1} = 0 = β2, achieved at (1, 0, 1/4).
Applying Theorem 3.3, the tilted cut only differs in the coefficient on x1, which changes to
(−1/4) − (0 − 7/8) = 5/8. The resulting cut is (5/8)x1 + x3 ≤ 7/8. Note that the condi-
tions in Proposition 3.4 are satisfied; hence, the tilted cut is facet-defining for the split hull.
Figure 3.1 depicts this example.

66

x̄ x̄

Figure 3.1: Example of tilting an inequality valid for P using an elementary split disjunction.

3.2.4 Existence of tilted cuts

If tilting is applied recursively, i.e., inequalities defining P are recursively tilted via split
disjunctions, then it is natural to consider whether this procedure will converge to the convex
hull of PI or stall somewhere in the process. Proposition 3.8 implies that, for n = 3, the
process converges to a point in PI even when restricted to elementary split disjunctions.

Proposition 3.8. When n = 3, for any k ∈ I such that x̄k /∈ Z, there exists an inequality
defining P that can be tilted.

Proof. We show that, specifically, one of three inequalities that correspond to the nonbasic
variables at x̄ can be tilted. These three inequalities define a polyhedral cone, C. Let
C1 := {x ∈ C : xk ≤ bx̄kc} and C2 := {x ∈ C : xk ≥ dx̄ke}. The extreme points of C1 and
C2 are in one-to-one correspondence with the extreme rays of C. As C has three extreme
rays, it follows that either C1 or C2 will have exactly only extreme point; say C1 without
loss of generality. In this case, C1 will exactly be the intersection of two inequalities of C
and the disjunctive term inequality, xk ≤ bx̄kc. This implies the desired result, as the third
inequality defining C will then not be supporting for C1, meaning it can be tilted.

In contrast, for n ≥ 4, recursively tilting only the inequalities defining P via elementary
split disjunctions does not, in general, converge to a point in PI .

Proposition 3.9. There exists a polyhedron P 6= PI for which no inequality defining P can
be tilted using any elementary split disjunction.

67

Proof. The statement is proved via the integer program below.

max
x1,...,x4

x4

−x1 + x3 + x4 ≤ 0
x1 + x2 + x4 ≤ 1
−x2 ≤ 0
−x3 ≤ 0
x1 ∈ Z

An optimal solution to the LP relaxation is (1/2, 0, 0, 1/2). The only split disjunction avail-
able is on x1. However, the points (0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), and (1, 0, 1, 0) are feasible
to P and demonstrate that none of the right-hand sides of the inequalities defining the prob-
lem can be improved.

Though pathological examples exist for which no inequality defining P can be tilted, such
as in Proposition 3.9, it is intuitively very unlikely to encounter such a case (and, indeed,
large numbers of inequalities defining P can be tilted for every instance in our computational
experiments). Next, in Proposition 3.10, we state a sufficient condition for when a SIC can
be tilted. Moreover, under this condition, the tilted cut will dominate the SIC generated
from a basis of P . Essentially, the proposition is that a SIC can be strengthened by tilting
when it is not supporting for the split hull.

Proposition 3.10. Let γᵀx ≥ γ0 denote the SIC from a given basis of P . If {x ∈ P t :
γᵀx = γ0} = ∅ for t ∈ {1, 2}, then there exists an inequality hᵀx ≥ bh valid for P that can
be tilted such that the resulting tilted cut will strictly dominate γᵀx ≥ γ0 when P ⊆ S.

Proof. The fact that an inequality that can be tilted exists is trivial under the assumption,
by letting h := γ and bh := γᵀx̄ < γ0, as it implies minx{γᵀx : x ∈ P t} > γ0 for t ∈ {1, 2};
this results in a tilted SIC that dominates the original SIC when P ⊆ S, by Proposition 3.7.

A different way to circumvent the lack of convergence to the optimal solution for the
integer hull is to tilt in different directions when using the direction defined by the split is
not fruitful. We discuss a method for doing this in Section 3.2.7.

3.2.5 Selecting base inequalities via strong branching
We have shown that tilting, when done appropriately, leads to inequalities that are support-
ing (but perhaps not facet-defining) for conv(P 1∪P 2). This is generally a desirable property
that is not satisfied by other classes of split cuts, such as GMICs. Even lift-and-project (Sec-
tion 1.4), traditionally thought of as a way of producing facet-defining inequalities, generates
cuts that are not supporting the split hull under commonly-used normalizations [84]. More-
over, generating a L&PC involves solving a higher-dimensional linear program, whereas
tilting uses the solution of two linear programs in the original dimension of the problem,

68

which will generally be faster.3 Nevertheless, a naïve implementation of tilting may still
seem expensive, as we ostensibly optimize over P 1 and P 2 for each inequality being tilted.
In this section, we outline a more computationally efficient tilting procedure utilizing readily-
available information from solvers when only elementary splits are used.

The key insight is in the following easy lemma.

Lemma 3.11. Every solution to minx{hᵀx : x ∈ P t}, for any h ∈ Rn and t ∈ {1, 2}, yields
the optimal tilting right-hand side βt for at least n− 1 inequalities.

Proof. Let p ∈ arg minx{h
ᵀx : x ∈ P t}. There are at least n − 1 inequalities defining p

other than πᵀx = π0t (if p lies on bdS), as p is a vertex. The right-hand side of every such
inequality cannot be improved (from whatever the original value is in the description of P)
using that side of the split disjunction.

Therefore, in our experiments, after each time solving minx{hᵀx : x ∈ P t}, we record all of
the inequalities of P tight at that vertex. Hence, when any of those inequalities other than
h is used as a base inequality, only one linear program needs to be solved to perform tilting.

Lemma 3.11 is especially useful in light of the fact that, during branch-and-bound, solvers
perform strong branching, which involves choosing several potential branching variables and
computing an optimal point (with respect to the objective direction c) for each side of the
corresponding elementary split disjunctions. Consequently, solvers already have much of the
requisite information needed to employ tilting, but that information is not being used.4

Strong branching can be used for a further computational improvement that applies
to any base inequality, not only one defining P (a generalization we consider later in this
chapter). For each split disjunction considered in strong branching, we are given not only an
optimal solution pt ∈ arg minx{c

ᵀx : x ∈ P t} for t ∈ {1, 2}, but also an associated cobasis for
pt. The cobasis contains indices corresponding to n linearly independent inequalities of P t

tight at pt, including the indices for n−1 tight inequalities from P , as in Lemma 3.11. Let Ct,
t ∈ {1, 2}, denote the basis cone, with apex at pt, defined by the n inequalities corresponding
to the cobasis of pt. As we show next in Corollary 3.12, we can use this cobasis to deduce
the optimal right-hand side over P t for additional base inequalities, namely those that are
valid for both C1 and C2.

Corollary 3.12. Suppose that h ∈ Rn such that hᵀr ≥ 0 for each extreme ray r of C1 and
C2. Then the following inequality is valid for conv(P 1 ∪ P 2):

h
ᵀ
x ≥ h

ᵀ
p1 +

(
hᵀp2 − hᵀp1

π02 − π01

)
(πᵀx− πᵀx̄).

Proof. If hᵀr ≥ 0 for each extreme ray of Ct, then hᵀx ≥ hᵀpt is valid for Ct, t ∈ {1, 2}. The
result then directly follows from Theorem 3.3 with β1 = hᵀp1 and β2 = hᵀp2.

3There exists an alternative way to produce L&PCs involving pivoting to different basic solutions in the
original space [32]; however, one can employ tricks to reduce the computational overhead for tilting as well,
such as only using few dual pivots to calculate β1 and β2, so we do not pursue this comparison further.

4What we call strong branching information can also be gathered during the equivalent presolve step
called probing. We discuss this more in Section 3.5.

69

To reiterate, the utility of Lemma 3.11 and Corollary 3.12 is that many inequalities can
be tilted simultaneously by solving only one linear program for each side of the split disjunc-
tion, and, in fact, such a linear program is already being solved to obtain strong branching
information, but it is not being used for generating cuts. This observation drastically reduces
the computational overhead of tilting; conversely, tilting could justify the consideration of
more strong branching candidates.

We also point to another important reason to focus on p1 and p2 when generating cuts.
Intuitively, the cuts tight on these two points are likely to be the most helpful ones for closing
the integrality gap. We provide computational evidence for this idea later in this chapter;
in Chapter 4, we also give some theoretical support for this intuition.

3.2.6 Farkas certificate for tilted cuts
Tilted inequalities from a split disjunction are in the class of split cuts [61]. One can generate
all cuts that are valid for a split disjunction via the CGLP as defined in Section 1.4, whose
basic feasible solutions are L&PCs. The feasible region of the CGLP, specialized to a split
disjunction and without the normalization constraint, is given in the linear system (3.2).

u1A− u1
0π
ᵀ = α

ᵀ

u2A+ u2
0π
ᵀ = α

ᵀ

u1b− u1
0π01 ≥ β

u2b+ u2
0π02 ≥ β

u1, u1
0, u

2, u2
0 ≥ 0

(3.2)

Kılınç et al. [108] make the connection between tilted objective cuts and the CGLP; we now
extend this to the general case of tilted inequalities. The utility of making this connection is
not purely theoretical; in fact, it enables us to apply classical cut strengthening techniques
to tilted cuts, as we discuss in Section 3.2.7.

Since the tilted inequality is valid for P t for t ∈ {1, 2}, there exist nonnegative Farkas
multipliers (w1, w1

0) and (w2, w2
0) that certify the validity of αᵀx ≥ β, equivalently of hᵀx ≥

βt, for each of those sets, meaning they satisfy:

w1A− w1
0π
ᵀ = h

ᵀ
w2A+ w2

0π
ᵀ = h

ᵀ

w1b− w1
0π01 ≥ β1 w2b+ w2

0π02 ≥ β2.

These multipliers are provided to us as dual solutions after solving minx{hᵀx : x ∈ P t}.

Theorem 3.13. Let h ∈ Rn, β1 ∈ R, and β2 ∈ R such that hᵀx ≥ βt is a valid inequality
for P t for each t ∈ {1, 2}. Define α and β as in Theorem 3.3. Suppose that αᵀp < β for
some point p ∈ P ∩ intS. Then (α, β, u1, u1

0, u
2, u2

0) is feasible to (3.2), where

u1 = w1 u1
0 = w1

0 + (β2 − β1)/(π02 − π01)
u2 = w2 u2

0 = w2
0 − (β2 − β1)/(π02 − π01).

70

Proof. We first verify that the constraints of (3.2) hold:

u1A− u1
0π
ᵀ = w1A−

(
w1

0 + β2 − β1

π02 − π01

)
π
ᵀ = h

ᵀ −
(
β2 − β1

π02 − π01

)
π
ᵀ = α

ᵀ

u2A+ u2
0π
ᵀ = w2A+

(
w2

0 −
β2 − β1

π02 − π01

)
π
ᵀ = h

ᵀ −
(
β2 − β1

π02 − π01

)
π
ᵀ = α

ᵀ

u1b− u1
0π01 = w1b−

(
w1

0 + β2 − β1

π02 − π01

)
π01 ≥ β1 −

(
β2 + β1

π02 − π01

)
π01 = β

u2b+ u2
0π02 = w2b+

(
w2

0 −
β2 − β1

π02 − π01

)
π02 ≥ β2 −

(
β2 − β1

π02 − π01

)
π02 = β.

It remains to prove that u1
0 and u2

0 are nonnegative. Without loss of generality, assume
that β2 ≥ β1; this implies u1

0 ≥ 0. Next, assume for the sake of contradiction that u2
0, as

defined, is negative. We show that this would imply that αᵀp ≥ β. Geometrically, as we are
only changing u1

0 and u2
0, the interpretation is that we obtain αᵀx ≥ β by tilting the base

inequality using the disjunctive term inequalities πᵀx ≤ π01 and πᵀx ≥ π02; when u2
0 < 0,

the implication is that we have “tilted too much” on P 2. Using this intuition, we proceed
algebraically. Let ᾱᵀ = u2A and γ = u2b; ᾱᵀx ≥ γ is a consequence of Ax ≥ b, so it follows
that it is valid for P , i.e., that ᾱᵀp ≥ γ. Observe also that α = ᾱ+ u2

0π = ᾱ− |u2
0|π. Hence,

α
ᵀ
p = ᾱ

ᵀ
p− |u2

0|π
ᵀ
p ≥ γ − |u2

0|π02 = u2b− |u2
0|π02 = u2b+ u2

0π02 ≥ β,

which is the desired contradiction.

3.2.7 Generating stronger tilted cuts
This section outlines ideas for generating stronger tilted cuts. One straightforward direction
is using tilting to strengthen any cut valid for the split hull. For example, one can generate
a GMIC from a basis of P and a split disjunction, then apply tilting to the GMIC as a base
inequality, using either the same or a different split disjunction. The resulting cut can then
be further strengthened by modularization, which we discuss next.

A posteriori strengthening by modularization. There are several generic ways to use
integrality information to strengthen a given cut, which are more or less equivalent when
applied to a cut derived from a split disjunction. These include monoidal cut strengthen-
ing [28], standard modularization [34], and the group-theoretic perspective, such as trivial
lifting [75, 100]. Applying these techniques (see Section 1.5) simply requires a set of Farkas
multipliers certifying the validity of each cut,5 which is precisely a solution to the system
(3.2).

Given a feasible solution (α, β, u1, u1
0, u

2, u2
0) to (3.2), one can define a strengthened cut

α̃ᵀx ≥ β using Corollary 1.11 from Section 1.5. For all j ∈ [n] \ I, define α̃j := αj. The

5Actually, monoidal strengthening also requires the split variable to be bounded over P . Standard
modularization works without this assumption.

71

coefficient α̃j, for j ∈ I is set as follows. Let z∗ = (u1 − u2)A·j/(u1
0 + u2

0) for any j ∈ I,
where A·j denotes column j of A. Replace αk by

α̃j := max{u1A·j + u1
0 dz∗e , u2A·j − u2

0 bz∗c}.

The cut α̃ᵀx ≥ β is valid for conv(P 1 ∪ P 2) and is stronger than αᵀx ≥ β. Theorem 3.13
gives a feasible solution to (3.2) for the tilted cuts we have defined so far, enabling tilted
cuts to be modularized efficiently.

Strengthening the disjunction. Modularizing the cut coefficients is applied after a cut
(and corresponding Farkas multipliers) has been generated. Conceptually, the proof of the
strengthening comes from showing that the new cut is valid for a strengthened version of the
original disjunction, though we never explicitly optimize over the disjunction. An alternative
is to first strengthen the disjunction and then produce a cut. This may, in general, produce
a different cut than modularization of an inequality from the original split disjunction.

Further tilting. One perspective for tilting that we mentioned is that of taking the cut
restricted to one side of the split disjunction and using this as a hinge to tilt until the
inequality is supporting for the other side of the split disjunction. This corresponds to taking
a face-defining inequality for, say, S1= and appending one point from P 2. It is natural to
consider incorporating a second point from P 2, leading to tilting along a different hinge and
direction, which can further increase the dimension of the face of conv(P 1 ∪ P 2) defined by
the cut. (Alternatively, if the initial tilted cut already defines a facet of the split hull, it is
worthwhile to pursue a second facet-defining inequality.) This has strong connections to the
tilting technique studied by Chvátal et al. [54] (which itself is related to lifting, as discussed
in [80]), and also to the tilting idea outlined in the dissertation of Perregaard [126, Section 4].
We elaborate on these connections in Section 3.5.

Let ᾱᵀx ≥ γ be a given tilted cut from a base inequality hᵀx ≥ bh. To perform additional
tilting, first we find, for t ∈ {1, 2}, a point qt ∈ arg minx{ᾱ

ᵀx : x ∈ P t} and a corresponding
cobasis, which in most cases is exactly the optimal solution to minx{hᵀx : x ∈ P t}. This
point will satisfy ᾱᵀqt = γ (if not, we can tilt until the cut is supporting). Along with the
point, we will be given the dual values which allow us to apply Theorem 3.13 to calculate
the Farkas multipliers, say {ū1, ū1

0, ū
2, ū2

0}, certifying the validity of ᾱᵀx ≥ γ, which we will
use to further tilt the inequality.

First, we state a simple but useful complementary slackness condition that must be
satisfied by the Farkas multipliers. For convenience, define d1 := −πᵀ, d1

0 := −π01, d2 := πᵀ,
and d2

0 := π02.

Lemma 3.14. Let (α, β, {u1, u1
0, u

2, u2
0}) denote a feasible solution to (3.2) in which u1

0 and
u2

0 are both positive. Fix t ∈ {1, 2}, define N+ := {i ∈ [m] : uti > 0}, and let q ∈ P t. It holds
that αᵀq = β if and only if Ai·q = bi for all i ∈ N+ and dtq = dt0.

Proof. If αᵀq = β, then

β = α
ᵀ
q = utAq + ut0d

tq ≥ utb+ ut0d
t
0 ≥ β.

72

Then Ai·q = bi for all i ∈ N+ and dtq = dt0. In the converse direction, under the assumption,

α
ᵀ
q =

∑
i∈N+

utiAi·q + ut0d
tq =

∑
i∈N+

utibi + ut0d
t
0 = β.

Let Ct be the basis cone with respect to the cobasis of qt, defined by n linearly independent
inequalities of P t that are tight at qt (say, indexed by set N t). Let R1 and R2 denote the
extreme rays of C1 and C2.6 Lemma 3.15 summarizes a few key properties of the basis cones.

Lemma 3.15. Suppose αᵀx ≥ β is a valid cut for conv(P 1 ∪ P 2). Let t ∈ {1, 2}, qt ∈
arg minx{α

ᵀx : x ∈ P t}, and Ct be the basis cone defined by the cobasis associated with qt. It
holds that (1) each ray r ∈ Rt satisfies αᵀr ≥ 0, and (2) αᵀx ≥ β is valid for Ct. If αᵀx ≥ β
defines a d-dimensional face of P t, then (3) it also defines a d-dimensional face of Ct, and
(4) αᵀr = 0 for d extreme rays of Ct.

Proof. Statement (1) is a consequence of the optimality of qt over P t with respect to objective
direction α. Namely, the rays of Ct correspond to nonbasic variables and αᵀr is the reduced
cost on the related nonbasic variable, which will be nonnegative at optimality. This then
implies statement (2), that αᵀx ≥ β is valid for Ct.

Now suppose αᵀx ≥ β defines a face of P t of dimension d. Take d+1 affinely independent
points, {qt, x1, . . . , xd} from {x ∈ P t : αᵀx = β}. Each of these points belongs to Ct because
Ct ⊇ P t, certifying (3), that αᵀx ≥ β defines (at least) a d-dimensional face of Ct.

To prove (4), since Ct is a simplicial cone, all of its proper faces are simplicial cones
themselves, so the fact follows from taking the d (or more) rays of the simplicial cone corre-
sponding to the proper face defined by αᵀx ≥ β.

In the following discussion, we look at ways to further tilt the initial cut. By Lemma 3.15,
ᾱᵀx ≥ γ is a valid, though perhaps not facet-defining, inequality for conv(C1∪C2). We first
propose, in Lemma 3.16, a tilting that, when available, immediately increases the dimension
of the face of conv(C1 ∪ C2) defined by the tilted cut. This tilting utilizes a well-known
complementarity property for any basic feasible solution to (3.2), that u1

i · u2
i = 0 for all

i ∈ [m]; it corresponds to finding a ray of C1 or C2 to be tight for the new tilted cut.

Lemma 3.16. Suppose there exists i∗ ∈ N1 ∩N2 such that δi∗ := min{ū1
i∗ , ū

2
i∗} > 0. Let

α̃
ᵀ := ᾱ

ᵀ − δi∗Ai∗·, and
β̃ := γ − δi∗bi∗ .

Then α̃ᵀx ≥ β̃ is a valid cut for and defines a higher-dimensional face of conv(C1 ∪ C2).

Proof. Define corresponding multipliers, for each t ∈ {1, 2}: ũti∗ := ūti∗ − δi∗ and ũti := ūti for
all i ∈ [0, 1, . . . ,m] \ {i∗}. These certify the validity of the new cut for C1 ∪ C2.

6These can be read directly from the optimal tableau to minx{ᾱᵀx : x ∈ P t}, which is already being
solved when we optimize over P t for the best right-hand side for the (original) base inequality. It could be
beneficial to instead work with the tangent cone at qt, but this is not always easy to obtain.

73

By Lemma 3.14, for any q ∈ P t such that ᾱᵀq = γ, it holds that Ai·q = bi for all i ∈ [m]
such that uti > 0. Hence,

α̃
ᵀ
q = ᾱ

ᵀ
q − δi∗Ai∗·q = γ − δi∗bi∗ = β̃.

Thus, the new tilted inequality is tight on all the points of P t that the original inequality was
tight on. In addition, at least one of ũ1

i∗ and ũ2
i∗ has value zero. Without loss of generality,

say ũ1
i∗ = 0. Let r denote the (unique) ray of C1 such that Ai∗·r > 0. It follows from

Lemma 3.14 that ᾱᵀr > 0 while α̃ᵀr = 0. Moreover, the point qt + r does not belong to
{x ∈ P t : αᵀx = β}, so it is an additional affinely independent point satisfying the new cut
at equality, proving that the face of conv(C1 ∪ C2) defined by α̃ᵀx ≥ β̃ has dimension one
higher than the face defined by ᾱᵀx ≥ γ.

We can apply Lemma 3.16 repeatedly, until u1
i · u2

i = 0 for all i ∈ [m]. Each application
of this simple tilting increases the number of rays of C1 ∪ C2 that are tight for the tilted
cut. Whenever one of these rays contains a point of P t, the new tilted cut actually defines a
higher-dimensional face of the split hull (not just conv(C1 ∪C2)). In general, this procedure
may stop short of defining a facet of conv(C1 ∪ C2), such as when there are more than n
variables from u1 and u2 that take positive values.

We now consider an alternative way to further tilt. Let R∗ ⊆ R1 ∪ R2 denote the rays
that are tight for the cut, i.e., R∗ := {r ∈ R1 ∪ R2 : ᾱᵀr = 0}. The tilting approach of
Chvátal et al. [54] involves finding a feasible solution (a tilting direction) (v, w) ∈ Rn×R to

(ᾱ + v)ᵀq1 = γ + w

(ᾱ + v)ᵀq2 = γ + w

(ᾱ + v)ᵀr = 0 for all r ∈ R∗

(ᾱ + v)ᵀr̄ = 0
and then tilting in the direction defined by (v, w). This leads to an inequality that is tight
on q1, q2, all rays in R∗, and on r̄. Equivalently, we can find a solution (v, w) to

v
ᵀ
q1 = w

v
ᵀ
q2 = w

v
ᵀ
r = 0 for all r ∈ R∗

v
ᵀ
r̄ = 0

A solution to this system can be found (if one exists) via the simplex method.

3.3 Tilting using multiple split disjunctions
In practice, multiple integer-restricted variables take fractional values in x̄, leading to mul-
tiple possible split disjunctions that can be considered. In this section, we describe ways to
apply tilting to multiple split disjunctions. First, we cover a method for generating a cut
from multiple disjunctions applied in sequence, which is equivalent to generating a cut from
a subspace of the original problem, or lifting a cut valid for a node of a branch-and-bound
tree to be valid for the root node. Afterwards, we look at a way to tilt from information
from several split disjunctions applied in parallel (as opposed to in sequence).

74

3.3.1 Tilting cuts from a subspace (sequential tilting)
In the statement of Theorem 3.3, we require hᵀx ≥ βt to be valid for P t, t ∈ {1, 2}. However,
with minor modifications of the proof of that result, one can see that the same tilted inequal-
ity is actually valid for PI as long as β1 and β2 are such that hᵀx ≥ βt is valid for P t ∩ PI
(rather than P t). The resulting tilted cut may no longer be valid for the split disjunction.
One way to use this observation is to generate a SIC (or GMIC) in the subspace P t. The
coefficients of the cut can simply be read from the optimal tableau for a solution pt ∈ P t,
e.g., as the SIC (or GMIC) from any binary variable fractional at the vertex pt of P t, making
this a low-cost operation.7

The more generic extension to the above concept is deriving globally valid cuts from a
branch-and-bound tree by a sequence of tilting operations applied recursively. This sequential
tilting is an analogue to what is called approximate lifting in the literature, and it has
previously been used in the contexts of binary knapsack sets [65, 92] and primal cutting
planes [74] (see also Richard [130] and the references therein). In our setting, we are
considering an arbitrary mixed-integer program, rather than a class of problems with special
substructure, but the underlying mathematical technique is exactly the same.

Specifically, consider any leaf node of a given branch-and-bound tree in which branching
is performed on elementary split disjunctions, and take the path from the root to that leaf
node. Say that the leaf node is on level K of the tree, and the optimal solutions to the
LP relaxations for the nodes along the path are x1, . . . , xK+1, where x1 := x̄. For ease of
exposition but without loss of generality, assume that the leaf node is arrived at by taking
the right branch at each level of the tree, and the split variable to get from level k − 1 to k
is xk. Thus, the LP relaxation at the leaf node is {x ∈ P : xk ≥

⌈
xkk
⌉
for all k ∈ [K]}.

We can derive a valid inequality for the root-level split disjunction (x1 ≤ bx̄1c) ∨ (x1 ≥
dx̄1e) as follows. Let (αK)ᵀx ≥ βK2 be a valid inequality for the the leaf node. To get a cut
valid for the parent of the leaf node, we solve the tilting (lifting) problem, by solving for

βK1 := min
x
{(αK)ᵀx : x ∈ P, xK ≤

⌊
xKK
⌋
, xk ≥

⌈
xkk
⌉
for all k ∈ [K − 1]}.

Thus, (αK)ᵀx ≥ βK1 + (βK2 − βK1)(xK −
⌊
xKK
⌋
) is valid for the parent of the leaf node (by

Theorem 3.3). We can define this process recursively. For ` ∈ [K − 1], let

α` := α`+1 − (β`+1
2 − β`+1

1)e`+1

β`2 := β`+1
1 − (β`+1

2 − β`+1
1)

⌊
x`+1
`+1
⌋

β`1 := min
x
{(α`)ᵀx : x ∈ P, x` ≤

⌊
x``
⌋
, xk ≥

⌈
xkk
⌉
for all k ∈ [`− 1]}.

Then, by induction, the inequality (α1)ᵀx ≥ β1
1 +(β1

2−β1
1)(x1−bx̄1c) is valid for the root-level

split disjunction.8 The inequality in expanded form is

(αK)ᵀx−
K∑
`=1

(β`2 − β`1)x` ≥ β1
1 − (β1

2 − β1
1) bx̄1c .

7Generating Gomory cuts merely requires the basis inverse for the optimal solution on each side of the
split disjunction, which, as we have already pointed out, is readily available from strong branching.

8Of course, the inequality that is valid for the root-level split disjunction can be used in strengthened
form for internal nodes of the branch-and-bound tree.

75

x1

x2

x3 x̄

(a) Feasible region of the original
linear relaxation.

x1

x2

x3 x̄p1

p11

p12

p2

p21

p22

(b) Feasible regions for four leaf
nodes of a B&B tree.

x̄
p1

p2
p11

p12

p21

p22

(c) B&B tree, with a node’s depth
proportional to its objective value.

x1

x2

x3

(d) Cut valid only for the node as-
sociated with p22.

x1

x2

x3

(e) Cut valid for the node asso-
ciated with p2.

x1

x2

x3

(f) Cut valid for the root node; cuts
a ray of basis cone at p1.

Figure 3.2: Example of sequentially tilting an objective cut using a branch-and-bound tree.
The base inequality is x3 ≤ 5/8, shown in (d), and it is iteratively tilted, starting at an
arbitrary leaf node along the path to the root, until it is valid for the root.

We illustrate this technique for a small example in Figure 3.2.

Returning to the simplest version of this procedure, of tilting valid cuts derived for P 1

or P 2, one issue that becomes readily apparent is that the number of cuts starts growing
unmanageably large. There could be n fractional integer variables at x̄, and n− 1 at p1 and
p2, yielding about 2n2 possible tilted cuts, far more than the number of Gomory cuts from
elementary split disjunctions based on x̄ (at most n cuts). This points to the need for future
work in designing intelligent rules for the number and characteristics of the cuts to generate
from each elementary split.

A cut produced in the subspace P t that cuts away pt is clearly infeasible for conv(P 1∪P 2).
This implies that tilted subspace cuts would not be obtainable as L&PCs from the original
split disjunction, but rather as cuts that are valid for a disjunction formed from two split
disjunctions. We next discuss another way to use multiple split disjunctions.

76

3.3.2 Mixing inequalities (simultaneous tilting)
In the previous section, we considered a sequential tilting approach as a way of generating
a globally valid cut from a valid inequality for a node of a branch-and-bound tree. In this
section, we look at split disjunctions that are applied in parallel and how we can generate
one stronger tilted cut by sharing information across the splits.

For ease of exposition, we consider only elementary split disjunctions. Let σ := {j ∈ I :
x̄j /∈ Z} and k ∈ σ. Define P 1

k := {x ∈ P : xk ≤ bx̄kc} and P 2
k := {x ∈ P : xk ≥ dx̄ke},

which we assume are nonempty, and set Sk := {x ∈ Rn : bx̄kc ≤ xk ≤ dx̄ke}. For t ∈ {1, 2},
let zkt denote the optimal value of minx{cᵀx : x ∈ P t

k} and set

z0 := max
k∈σ

min{zk1, zk2}.

As a direct corollary of Proposition 3.2, we can state a better bound on the objective
value of (LP) after adding cuts from multiple split disjunctions simultaneously.

Corollary 3.17. The optimal value of (LP) after adding the tilted objective cut for each
k ∈ σ will be at least z0.

Proof. Adding to P the tilted objective cut from any Sk, k ∈ σ, results in an objective value
of min{zk1, zk2} by Proposition 3.2, so we can guarantee objective value z0 by adding all the
tilted objective cuts.

Kılınç et al. [108] use Corollary 3.17 to strengthen the cuts derived from Proposition 3.1
via the following valid inequality for PI , in which z̄kt := max{z0, zkt}:

c
ᵀ
x ≥ z̄k1 + (z̄k2 − z̄k1)(xk − bx̄kc).

This inequality cuts points of conv(P 1
k ∪ P 2

k) for any k ∈ σ for which z0 > min{zk1, zk2}.
Though the tilted objective inequalities are not parallel to the objective function, they

each differ from the objective function in only one coefficient, albeit a different one for each
k ∈ σ. Using the idea of mixing [95, 128] (or equivalently star inequalities in the context
of mixed vertex packing problems [14]), Kılınç et al. [108] further strengthen the tilted
objective cuts for binary problems, and simultaneously derive an inequality that differs in
more coefficients from the original objective vector.

In Theorem 3.18, following Günlük and Pochet [95, Theorem 2], we apply mixing to any
base inequality, though we give a different proof based on tilting. Note that the method only
applies at the bounds of P corresponding to variables in σ. This is automatically satisfied
for binary problems.

Theorem 3.18. Let h ∈ Rn. For k ∈ σ and t ∈ {1, 2}, define

βkt := min
x
{hᵀx : x ∈ P t

k}

γ0 := max
k∈σ

min{βk1, βk2}

γk := max{βk1, βk2}.

77

Suppose there exists p ∈ P such that p ∈ intSk for all k ∈ σ and hᵀp < γ0. Assume, without
loss of generality, that σ∗ ⊆ σ is numbered sequentially (from 1) such that γk−1 < γk for
1 ≤ k ≤ |σ∗|. Let σ∗1 := {k ∈ σ∗ : βk1 > βk2} and σ∗2 := σ∗ \ σ∗1. Then the following mixing
inequality is valid for PI

h
ᵀ
x ≥ γ0 +

∑
k∈σ∗1

(γk − γk−1)(dx̄ke − xk) +
∑
k∈σ∗2

(γk − γk−1)(xk − bx̄kc). (3.3)

if {x ∈ P : xk < bx̄kc} = ∅ for all k ∈ σ∗1 and {x ∈ P : xk > dx̄ke} = ∅ for all k ∈ σ∗2.

Proof. For ease of exposition, suppose βk1 ≤ βk2 for all k ∈ σ∗. The inequality hᵀx ≥ γ0 is
valid for PI , and specifically P 1

1 ∩ PI , by the assumption that hᵀp < γ0. By Theorem 3.3,
the inequality hᵀx ≥ γ0 + (γ1 − γ0)(x1 − bx̄1c) is valid for PI . Now let k′ := |σ| and assume,
inductively, that the mixing inequality holds for the first k′ − 1 variables from σ∗, so that

h
ᵀ
x ≥ γ0 +

∑
k∈[k′−1]

(γk − γk−1)(xk − bx̄kc)

is valid for PI . Let
h̃ := h−

∑
k∈[k′−1]

(γk − γk−1)ek

and
β̃1 := γ0 −

∑
k∈[k′−1]

(γk − γk−1) bx̄kc .

Thus, h̃ᵀx ≥ β̃1 is valid for P 1
k′ ∩ PI . Moreover, we know that hᵀx ≥ γk′ is valid for P 2

k′ . We
assumed that {x ∈ P : xk > dx̄ke} = ∅ for all k ∈ σ∗, which implies that

min
x∈P 2

k′

h̃
ᵀ
x = min

x∈P 2
k′

hᵀx− ∑
k∈[k′−1]

(γk − γk−1)xk


≥ γk′ − max

x∈P 2
k′

 ∑
k∈[k′−1]

(γk − γk−1)xk


≥ γk′ −

∑
k∈[k′−1]

(γk − γk−1) dx̄ke

=: β̃2.

Note that

β̃2 − β̃1 = γk′ −
∑

k∈[k′−1]

(γk − γk−1) dx̄ke − γ0 +
∑

k∈[k′−1]

(γk − γk−1) bx̄kc = γk′ − γk′−1.

Therefore, by Theorem 3.3, h̃ᵀx ≥ β̃1 + (β̃2 − β̃1)(xk′ − bx̄k′c) is valid for PI (because it is
violated by p), which is exactly the mixing inequality (3.3).

78

Figure 3.3: Example of tilting an inequality using multiple split disjunctions simultaneously
(i.e., without reoptimization, by using only the optimal values on the two sides of each split).

The proof of Theorem 3.18 demonstrates that a mixing inequality (3.3) corresponds to
performing a sequence of tiltings, without having to reoptimize to find the new right-hand
side every time. This is why we call this method simultaneous tilting, as an analogue to
simultaneous lifting. An example illustrating the generation of a mixing inequality, viewed
as a sequence of tilting operations, is given in Figure 3.3.

One advantage of using mixing is that one base inequality need not be replaced by |σ|
new tilted cuts, but rather by just one new inequality that aggregates information across all
the possible splits. For the binary case, the mixing inequality dominates the tilted inequality
that would be derived from the first split disjunction (in the order in σ∗); however, it will
not, in general, dominate for the subsequent split disjunctions. We can close some of this
gap by adding the last (or last few) unmixed tilted cuts.

The mixing inequality can also be derived for arbitrary split disjunctions. On the other
hand, it is not clear whether it can easily be applied to splits not occurring at the variable
lower or upper bounds.

3.4 Computational results
In this section, we report preliminary experiments with variants of tilted cuts for different
classes of base inequalities. Algorithm 3.5 summarizes the theoretical results contained in
Sections 3.2 and 3.3 in an implementable format. We emphasize that our investigation is
preliminary; our objective is only to ascertain some limited sense of the strength of tilted
cuts that use strong branching information. There are several steps of the algorithm that
have not been implemented in our code. First, in steps 12, 22, and 29, we only check if
Ai·x ≥ bi is tight at the corresponding point (without doing the ray test, which we perceive
as too expensive). From the strengthening procedures of Section 3.2.7, we only implement
the idea of tilting Gomory cuts generated in the subspace. The steps to perform these
missing procedures are still included in the algorithm description for completeness.

With that caveat, our goal is to evaluate the percent integrality gap that can be closed

79

Algorithm 3.5 Tilted Cuts
Input: Polyhedron P ; objective direction c; optimal solution to (LP) x̄; integer-restricted

variables fractional at x̄, σ ⊆ I.
1: function TiltedCuts(P, c, x̄, σ)
2: C ← ∅. . Initialize pool of cuts.
3: for i ∈ [m] do
4: βikt ← bi for k ∈ σ and t ∈ {1, 2}. . Initialize tilting coefficients.
5: for k ∈ σ do
6: For t ∈ {1, 2}, let pkt ∈ arg minx{c

ᵀx : x ∈ P t
k} and Ckt the associated basis cone.

7: β0
kt ← cᵀpkt for t ∈ {1, 2}.

8: C ← C ∪ {cᵀx ≥ β0
k1 + (β0

k2 − β0
k1)(xk − bx̄kc)}. . Tilted objective cut.

9: Choose Mk ⊆ [m]. . E.g., only those tight at pk1 or pk2, or all [m].
10: Mkt ←Mk for t ∈ {1, 2}. . Track which indices remain for each side.
11: for t ∈ {1, 2} and i ∈Mkt do
12: if Ai·pkt = bi (or Ai·r ≥ 0 for all rays r of Ckt) then
13: βikt ← Ai·p

kt and remove i from Mkt.
14: for i ∈Mk do
15: if Ai·pk1 = bi and Ai·pk2 = bi then . Inequality cannot be tilted for this split.
16: Remove i from Mk1 and Mk2 and return to step 14.
17: if i ∈Mk1 then
18: Remove i from Mk1.
19: if Ai·pk1 > bi then
20: Let q ∈ arg minx{Ai·x : x ∈ P 1

k } and let C be the associated basis cone.
21: βik1 ← Ai·q.
22: for i′ ∈Mk1 such that Ai′·q = bi′ (or Ai′·r ≥ 0 for all rays r of C) do
23: βi

′

k1 ← Ai′·q and remove i′ from Mk1.
24: if i ∈Mk2 then
25: Remove i from Mk2.
26: if Ai·pk2 > bi then
27: Let q ∈ arg minx{Ai·x : x ∈ P 2

k } and let C be the associated basis cone.
28: βik2 ← Ai·q.
29: for i′ ∈Mk2 such that Ai′·q = bi′ (or Ai′·r ≥ 0 for all rays r of C) do
30: βi

′

k2 ← Ai′·q and remove i′ from Mk2.
31: C ← C ∪ {Ai·x ≥ βik1 + (βik2 − βik1)(xk − bx̄kc)}.
32: for t ∈ {1, 2}, k′ ∈ I such that pktk′ /∈ Z do . Optional.
33: Generate subspace cut from {x ∈ P t

k : xk′ ≤
⌊
pktk′
⌋
} ∨ {x ∈ P t

k : xk′ ≥
⌈
pktk′
⌉
}.

34: Tilt subspace cut then add resulting tilted inequality to C.
35: Generate mixing inequality for each i ∈ [m] using {βikt}k∈σ,t∈{1,2} and replace the

corresponding cuts in C. Optionally, also replace constraint i of P . . Optional.
36: Apply monoidal strengthening to all tilted cuts in C. . Optional.
37: Perform further tilting as in Section 3.2.7. . Optional.
38: return Set of tilted cuts C and updated formulation for P .
39: end function

80

Table 3.1: Results for experiments with tilted cuts as in Algorithm 3.5.

GMIC T0 T1 T1M T1* T1*M T*1K T*10K
Avg % gap closed 22.9 31.9 35.3 35.4 35.1 35.2 35.8 37.7
Avg time (s) 0.3 75.0 75.1 10.0 10.0 1.1 7.4
Avg # cuts / |σ| 1.0 1.0 14.3 4.1 1.9 0.7 16.3 26.0

by tilted cuts, when compared to a baseline of GMICs. We select 42 instances from MI-
PLIB (all versions) based on the criteria that they contain no more than 500 rows or 500
columns, have a known IP optimal value, and have nonzero gap closed by split closure ex-
periments [35]. All code is implemented in C++, compiled with g++ (GCC) 4.8.3 20140911
(Red Hat 4.8.3-7), and uses Clp version 1.16.10 as the linear programming solver.9

We first compare three classes of base inequalities: the objective vector (we call these type
0, or T0, tilted cuts), all hyperplanes defining P (type 1, or T1), and only those hyperplanes
defining P that are tight at an optimal solution on one or the other side of the elementary
split disjunction (type 1*, or T1*). We also employ mixing to reduce the number of generated
cuts; note that mixing is essentially free computationally, once bounds have been computed—
the only requirement is sorting the bounds in increasing order. The variants of T1 and T1*
with mixing are denoted T1M and T1*M. Lastly, we tilt unstrengthened Gomory cuts in
the subspace, as discussed in Section 3.3. As discussed previously, there are unmanageably
many such possible cuts, so we set a limit of either 1, 000 or 10, 000 tilted subspace cuts; we
call these procedures T*1K and T*10K, respectively.

In Table 3.1, we report the average percent integrality gap closed by these tilted cuts, the
average time to generate all of the cuts per instance, and average number of cuts generated
as a fraction of the number of fractional variables at x̄ (which is the number of GMICs that
can be produced from elementary split disjunctions). The baseline for comparison will be the
percent of the integrality gap closed by GMICs. All percent gap closed numbers reflect tilted
cuts added together with GMICs (in order to measure the additional effect that using tilted
cuts would have). The column headings reflect the type of tilted cuts being used, with labels
as previously defined. The full set of results for percent gap closed are given in Table 3.2,
where we also include the sizes of the instances tested. For the stein instances, we make two
modifications with respect to their online version, to make them less symmetric. First, we
replace the objective function

∑
i∈[n] xi with

∑
i∈[n] ixi, and second, we remove an additional

cardinality constraint (which is also a lower bound on the original objective value), as this
is not present in the original formulation of these instances [86].

The results show that tilted objective cuts (T0) are fast to generate (0.3 seconds in
total, on average across the instances) and close roughly 9% additional gap, on average, over
GMICs on their own. Tilting the hyperplanes defining P (procedure T1) yields an additional
3.4% gap closed, on average. However, tilting all the hyperplanes defining P generates a very
large number of cuts. At this point, we employ mixing (as procedure T1M) to reduce the
number of cuts: after applying mixing, we have a single tilted inequality from each base

9Note that an earlier version of Clp results in a different optimal basis being selected for some problems
(for example, with instance misc02), which would lead to different results.

81

Table 3.2: Instance size and percent gap closed for tilting experiments.

% gap closed
Rows Cols GMIC T0 T1 T1M T1* T1*M T*1K T*10K

bell3a 123 133 45.1 61.5 64.0 62.1 64.0 61.6 64.6 64.6
bell3b 123 133 44.6 90.7 90.7 96.6 90.7 90.7 91.8 91.8
bell4 105 117 23.4 91.6 91.6 91.6 91.6 91.6 92.2 92.2
bell5 91 104 14.5 85.4 85.4 85.4 85.4 85.4 86.4 86.4
blend2 274 353 16.3 20.9 20.9 20.9 20.9 20.9 20.1 20.1
bm23 20 27 16.8 17.2 17.2 16.8 17.2 16.8 26.2 26.2
egout 98 141 40.3 51.6 56.3 56.3 56.3 56.3 76.2 76.2
flugpl 18 18 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11.7
gt2 29 188 91.9 91.9 91.9 91.9 91.9 91.9 91.9 91.9
go19 441 441 2.0 3.1 3.1 3.2 3.1 3.2 3.0 4.2
k16x240 256 480 11.4 11.4 11.4 11.4 11.4 11.4 25.5 25.5
lseu 28 89 55.2 55.2 55.2 55.2 55.2 55.2 55.8 55.8
mas284 68 151 0.9 4.2 4.2 5.2 4.2 5.2 3.1 3.1
mas74 13 151 6.7 6.7 6.7 6.7 6.7 6.7 8.4 8.4
mas76 12 151 6.4 6.4 6.4 6.4 6.4 6.4 8.1 8.1
misc02 39 59 3.7 4.9 5.1 5.1 5.1 5.1 5.1 5.1
misc03 96 160 8.6 8.6 9.0 8.6 9.0 8.6 8.6 8.6
misc05 300 136 23.7 23.7 23.7 23.7 23.7 23.7 26.9 26.9
misc07 212 260 0.7 1.2 1.2 0.7 1.2 0.7 0.7 0.7
mod008 6 319 20.1 20.1 20.1 20.1 20.1 20.1 20.8 20.8
mod013 62 96 4.4 7.4 7.4 5.7 7.4 5.7 26.2 26.2
modglob 291 422 17.4 17.6 17.6 18.0 17.6 18.0 29.3 29.3
p0033 16 33 56.8 56.8 56.8 56.8 56.8 56.8 57.1 57.1
p0040 23 40 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
p0201 133 201 25.2 25.2 25.2 25.2 25.2 25.2 46.4 46.4
p0282 241 282 3.7 40.3 85.7 85.7 81.3 81.3 17.2 17.3
p0291 252 291 27.8 29.6 69.5 69.5 69.4 69.4 47.9 47.9
pipex 25 48 28.4 28.4 28.4 28.4 28.4 28.4 30.3 30.3
pp08a 136 240 51.4 51.4 53.0 53.0 53.0 53.0 57.1 78.9
pp08aCUTS 246 240 28.5 28.5 28.5 28.5 28.5 28.5 46.3 52.2
probportfolio 302 320 25.1 25.1 25.6 27.4 25.6 27.4 26.8 34.1
prod1 208 250 0.0 40.9 64.3 64.3 63.3 63.5 9.1 40.9
rgn 24 180 9.7 9.7 9.7 9.7 9.7 9.7 17.9 17.9
rlp2 68 451 0.6 1.9 3.2 3.1 3.2 3.1 2.7 2.7
sample2 45 67 5.9 13.0 13.0 16.0 13.0 16.0 38.2 38.2
sentoy 30 60 19.3 19.3 19.3 19.3 19.3 19.3 21.9 21.9
stein15* 35 15 50.0 64.6 64.6 65.6 64.6 65.6 63.8 63.8
stein27* 117 27 7.4 32.0 32.0 35.4 32.0 35.4 33.7 33.9
stein45* 330 45 7.1 27.7 27.7 23.7 27.7 23.7 27.8 31.4
timtab1 171 397 23.7 23.7 31.4 28.5 31.1 31.8 26.4 34.2
vpm1 234 378 10.0 10.0 11.1 11.1 11.1 11.1 14.8 14.8
vpm2 234 378 15.4 17.4 32.3 33.4 32.2 33.3 34.0 37.3
Average 22.9 31.9 35.3 35.4 35.1 35.2 35.8 37.7

82

inequality. The result is drastic: we decrease the number of generated tilted cuts from 14
times the number of possible GMICs to merely 4. Interestingly, the gap closed by the mixed
inequalities actually increases on average (due to increases for 9 of the 42 instances tested).
However, generating the T1 and T1M cuts takes far too much time (over a minute, on
average, per instance, which is slower than many of these instances would take to solve to
optimality using a commercial code).

The next improvement we consider is only tilting a subset of the inequalities defining
P , procedure T1*. Intuitively, inequalities that are tight on one or the other side of the
split disjunction may be the most important ones in terms of affecting the objective value.
The results reflect this intuition: the average percent gap closed by using only these cuts is
35.1%, which is only 0.2% smaller than the gap closed using all of the hyperplanes defining
P . Moreover, the number of cuts generated is drastically reduced: only 1.9 times as many
cuts, on average, as there are fractional variables at x̄. We can further reduce this number
by mixing, which leads to fewer cuts than the number of GMICs. Though we do also make
progress on time (taking ten seconds on average per instance for cut generation), given the
small size of these instances, the procedure is still far from practical.

Lastly, we test only one of the strengthening procedures from Section 3.2.7 in these early
experiments: tilting subspace SICs, i.e. unstrengthened Gomory cuts generated from the
optimal solution to one side of a split disjunction, which are then tilted to be valid for the
other side of the split disjunction. The other strengthening approaches (tilting based on the
GMIC disjunction, applying modularization, and further tilting based on Farkas multipliers)
have not yet been implemented in our code. Note that tilting is also an easy way to strengthen
other cutting planes when they are not supporting for the split hull, but we do not test them
in this context. The results are peculiar, in the sense that T*1K and T*10K lead to stronger
cuts (which is understandable, as the base inequality here is stronger, and also more cuts are
produced), but they are also faster. For example, on average, the cuts from procedure T*1K
close 35.8% of the integrality gap while taking only 1.1 seconds per instance. We can close
about 2% more gap using a cut limit of 10, 000 with T*10K, but the result is an enormous
number of cuts, which is impractical; on the other hand, we do not employ intelligent rules
for choosing which Gomory cuts to tilt, leaving open the question of developing effective
heuristics for selecting subspace Gomory cuts.

Our computational experiments are preliminary, but they suggest that using strong
branching (probing) information may be extremely worthwhile, either to generate cuts or
replace (strengthen) rows of the original formulation. As future work, we hope to integrate
Algorithm 3.5 into the code of an open-source solver, which will facilitate more extensive
computational testing in a practical setting. The motivation for making the next step a solver
implementation is the ubiquity of tilting-based operations—it is not immediately clear how
many solvers already have similar techniques in their cut generation or presolve codes, with-
out perceiving the techniques from a unified mathematical viewpoint, which we contribute.
To this end, we next discuss some of the related literature to the tilting idea of this chapter.

83

3.5 Existing literature related to tilting
We end this chapter with a discussion of the existing approaches, many of which have already
been mentioned, that are akin to tilting. What we define as tilting is not formally specified,
but rather corresponds to an informal operation that takes as an input one inequality and
outputs a different inequality that depends somehow on the first. Being conceptually simple,
the operation of tilting a hyperplane has been applied in a variety of contexts and under a
myriad of different names (in fact, we have already used the concept in this dissertation, in
Chapter 2). Hence, it is useful to put the tilting technique, as it is specifically used in this
chapter, in context. One difference we state outright is that most of the methods in the liter-
ature focus on the special case of binary problems and elementary split disjunctions, whereas
we present tilting as a tool that can be applied for mixed-integer programs and arbitrary
split disjunctions. The typical application is likely to be to elementary split disjunctions,
but our presentation applies in the more general context, which has been a topic of interest
in recent years (e.g., when branching using strengthened disjunctions, as in [63, 104]).

Coefficient strengthening and lifting. Tilting on elementary split disjunctions, with-
out using strengthening or mixing, is (nearly) equivalent to research streams on a presolve
technique called coefficient strengthening and on cutting planes obtained by lifting.10 Both
of these techniques take a base inequality hᵀx ≥ bh and replace hk, k ∈ I, by a “stronger”
coefficient such that the resulting cut is valid for PI . The primary difference between the
two methods is that coefficient strengthening is typically implemented during presolve to
strengthen a given formulation, while lifting is applied during cut generation to increase the
dimension of a valid inequality generated from a subspace. Thus, the distinction between
the two methods is the origin of the base inequality, but both can be interpreted as ap-
plying probing, in which implications are derived from tentatively fixing variables to some
value [101, 131].11 There is one more practical difference, which we ignore, that coefficient
strengthening requires the new inequality to dominate the base inequality, which is why the
technique is only applied at the bounds of the variable whose coefficient is being strengthened
(which satisfies the conditions for dominance in Proposition 3.7).

In contrast to our setting, in most of the literature, coefficient strengthening and lifting
are investigated for the specific case of pure or mixed binary problems, and even more so for
specially-structured constraints. For example, coefficient strengthening was first applied to
knapsack constraints [50, 76, 107], though it was later extended to other constraint types [77,
78]. The history is similar for lifting, where the first applications were to set packing [119,
123, 124] and knapsack problems [20], before Wolsey [137] outlined lifting more generically,
though still in the context of a one-row relaxation.

More recently, coefficient strengthening was presented in a more general setting and eval-
uated for mixed binary problems by Andersen and Pochet [10], who test strengthening the
coefficients on binary variables in constraints defining P (though in their tests, this strength-

10The equivalence of lifting and tilting is also highlighted by Espinoza et al. [80].
11Presolve refers to improving the representation of an instance. There are two types of presolve: pre-

processing methods that derive implications prior to solving the first LP relaxation, and optimization-based
approaches. The latter category, which includes probing, is significantly more expensive and more naturally
pairs with cutting plane generation when making decisions about allocating computational resources.

84

ening is applied recursively) as well as for Gomory cuts derived from x̄. In parallel, Dey and
Richard [74] explored lifting as a way of preprocessing cuts for mixed-integer programs. The
technique in this latter paper is tested only for a modified primal cutting plane method, but
it is conceptually identical to tilting as in this chapter. Notably, unlike much of the lifting
literature, they consider the full set of constraints of P when computing lifting coefficients, as
opposed to a one-row relaxation. They do not consider improvements such as strengthening
or mixing, and they do not evaluate the method for generic coefficient strengthening. One
way to view our work is as a first step to investigating the open questions discussed in the
conclusion of [74] via a more computationally efficient implementation of the idea tested in
[10]. To the best of our knowledge, the tilting we test in this chapter is not applied in its
generic form in commercial codes. See, for instance, the sections on coefficient reduction and
lifting in the recent survey of presolve methods in Gurobi by Achterberg et al. [3].

Applying tilting to Gomory cuts derived from x̄ has previously been investigated [10,
74, 107], but we have not found examples testing the generation of a Gomory cut from a
subspace and then tilting it to be globally valid, as we do in our computational experiments.
We also have not found the ideas of modularization, mixing, or selecting base inequalities by
probing (strong branching) in either the lifting or coefficient strengthening literature. For
more references for coefficient strengthening and lifting, the interested reader can consult
modern surveys of presolve and lifting techniques [3, 130]. See also the paper of Gu et al.
[93] for a review of sequential lifting methods.

Other tilting methods. We next mention two papers concerning more general tilting
procedures that deal with generating valid inequalities from arbitrary disjunctions. In con-
trast to these two papers, the tilting procedure we define is simpler because its scope is less
broad: we focus on split disjunctions in order to strengthen a given valid inequality (such
as a constraint defining P). As discussed in Section 3.2.7, our tilted cuts can be viewed as
a starting point for the more expensive tilting procedures of [54, 126].

In Chapter 4 of his Ph.D. dissertation, Perregaard [126] outlines a recursive procedure
for producing a collection of tilted cuts from an arbitrary valid disjunction, with the goal
of capturing some of the information from a branch-and-bound tree via a pool of cuts that
implies the disjunctive lower bound, the best objective value that could be obtained from
the disjunction (by optimizing over each term). At each step of that procedure, there is a
collection of inequalities that are valid for the disjunctive hull, and a collection of affinely
independent points from the disjunctive hull are kept per each inequality (certifying a lower
bound on the dimension of the face defined by that inequality). One base inequality (that is
not facet-defining for the disjunctive hull) is selected from the collection. A second, invalid,
inequality is then identified that is tight for the same points of the disjunctive hull as the
base inequality. Subsequently, these two inequalities are combined (by tilting) to yield two
new cuts that together dominate the base inequality and each define a higher-dimensional
face of the disjunctive hull. To achieve the goal of capturing the dual bound from a partial
branch-and-bound tree, the procedure initializes the cut collection with the objective cut
implied by the disjunctive lower bound.

A similar tilting method was explored, more formally and with accompanying computa-
tional experiments, by Chvátal et al. [54], inspired by local cuts for the traveling salesman

85

problem [12]. The goal of this paper is to generate strong facet-defining inequalities (without
necessarily capturing the disjunctive lower bound). One modification, with respect to the
just-mentioned algorithm of Perregaard, is that the local cut tilting works in a subspace of
the original problem, generating facet-defining inequalities for some restriction of PI , which
are then lifted to be valid for the original space.

Although neither paper explicitly makes a connection to strong branching, in Section 4.7
of his dissertation, Perregaard discusses a “fast approximation” that uses only the constraints
from each disjunctive term that are nonbasic at the optimal solution for that term. Our
tilting algorithm in essence uses this same relaxation, but for a different purpose, generating
weaker cuts but doing so more computationally efficiently.

There are other methods in the literature that are essentially tilting by another name,
but a comprehensive review is outside the scope of this chapter. Nevertheless, we mention
the relevant techniques of sequential pairing of inequalities [94] and the tilted cuts of Balas
[17, Section 9].

Mixing. The last connection we make is to the literature on mixing. As we previously
stated, and is readily apparent from the proof of the mixing inequality in Theorem 3.18,
mixing is tilting. The idea of mixing arose independently as a way of combining valid in-
equalities (in [95]) and from extending conflict graphs for mixed-binary programming [13,
14]. This latter connection is notable in that conflict graphs are themselves used for prepro-
cessing, including for strengthening coefficients. However, while the conflict graph is only
used for binary programs, we apply tilting to general mixed-integer problems.

3.6 Conclusion & open problems
The main contributions of this chapter are (1) introducing a generic framework for tilting-
based approaches to generating and strengthening valid inequalities for mixed-integer pro-
grams, (2) proposing an efficient implementation of tilting that uses strong branching infor-
mation readily available in solvers, (3) incorporating the concept of tilting on several split
disjunctions at once when generating a tilted inequality, (4) describing preliminary compu-
tational experiments within our tilting framework that allude to its potential for practical
impact, and (5) surveying existing literature on methods that involve tilting, such as lifting
and coefficient strengthening.

Our theoretical treatment of tilting is self-contained and aggregates several techniques
that previously existed independently in the literature. The review of the literature in this
chapter is surely not comprehensive, and other preprocessing, strengthening, and cut gener-
ation methods are likely to also be geometrically equivalent to tilting on split disjunctions.
Nevertheless, the takeaway is that it is important to understand when a technique reduces
to tilting, in order to leverage the various theoretical and practical insights that have been
derived from studying related concepts under different names.

While we stress that the computational results are preliminary, they indicate that there is
substantial strength to be gained from tilting constraints defining a given relaxation, as well
as tilting Gomory cuts derived from one side of a split disjunction. Both of these base inequal-
ities make use of strong branching, which potentially provides new ways to offset the cost of

86

that expensive operation. In addition, the idea of mixing dramatically reduces the number
of cuts that are generated, which is helpful for further decision-making during branch-and-
bound. Finally, we outline, but have not yet evaluated, strengthening approaches, including
using Farkas multipliers (again, readily available from strong branching) for modularizing
the coefficients of the tilted cut and for further tilting.

There are several questions that merit further computational investigation. First, when
tilting is applied to a base inequality coming from the constraints of P , we can either replace
the original inequality in the formulation, or we can add the tilted cut with the rest of the
pool of cuts, and it is not clear when to do which. The latter option could make sense if
we wish to avoid making the constraint matrix more dense (see also the related remarks
in [3, Section 7.2.2]), but this necessitates extensive empirical evaluation. A second generic
question is when should the solver expend effort on producing shallow, but computationally
inexpensive, tilted cuts as compared to deeper cuts, such as general disjunctive cuts? This
second question closely ties in with recurring comments about the practical limitations of
strong branching and probing, that the information from these techniques is often useful
but too expensive to gather; see, e.g., the discussion in [101]. One way to reduce that
computational burden is utilizing solver information in as many ways as possible, which is
one reason for our focus in this chapter on strong branching. Lastly, we mention that it
would be natural to attempt extending the tilted cuts in this chapter to nonlinear problems,
similarly to how Kılınç et al. [108] evaluated the tilted objective cuts in a nonlinear context.

87

88

Chapter 4

V-Polyhedral Cuts

This chapter is based on joint work with Egon Balas.

4.1 Introduction
As a reminder of notation, PI is the feasible region of the integer programming problem we
are solving, (IP); P is the feasible region of (LP), the linear programming relaxation of (IP);
x̄ is an optimal solution to (LP); and N is the index set of nonbasic variables at x̄. The basis
cone C(N) is the (simple and simplicial) cone with apex at x̄ defined by the n inequalities
indexed by N . Given a valid disjunction, ∨t∈T (Dtx ≥ Dt

0), P t := {x ∈ P : Dtx ≥ Dt
0} is the

feasible region for disjunctive term t ∈ T and PD := conv(∪t∈T P t) is the disjunctive hull.
This chapter presents theoretical and experimental results for a framework, which we call

V-polyhedral cuts (VPCs), for generating cuts from general valid disjunctions. Our approach
is motivated by and can be viewed as a natural extension of generalized intersection cuts
(GICs) [31], for which we presented computational results in Chapter 2 but required simple
disjunctions (equivalently, convex PI-free cut-generating sets). However, VPCs can also be
viewed independently, as an efficient alternative to lift-and-project cuts (L&PCs) [24, 25],
which were discussed in Section 1.4. The advantage of developing this methodology is that
it enables practical testing of cut generation from much stronger disjunctions than those
typically used in practice, which is the focus of this chapter. We evaluate our cuts both for
strength, by measuring the gap closed when they are applied to the LP relaxation feasible
region P , and effectiveness as part of branch-and-cut. The results show that VPCs substan-
tially improve the root gap closed as compared to Gomory mixed-integer cuts (GMICs), while
the branch-and-cut experiments merit further research and refinement of the implementation
but already suggest the procedure can have significant practical relevance.

The VPC framework allows us to successfully generate a large number of cuts without
resorting to recursion. As mentioned in Section 1, the motivation for pursuing such a proce-
dure is avoiding numerical issues and “tailing off” that occurs when Gomory cuts are applied
based on rounds of previously-generated cuts, a well-known phenomenon in the integer pro-
gramming community (for example, see the discussion of [40, Table 1]). The cuts in this
chapter are all produced from the initial relaxation P , not derived from other cutting planes,
reducing the potential for compounding computational inaccuracies, and indeed the VPCs

89

in our experiments appear numerically stable. Moreover, our procedure is able to generate
arbitrarily strong valid inequalities (up to the limit of reaching the facets defining PI) by
using increasingly strong disjunctions (again, we emphasize that this is without recursion).

In practice, non-simple disjunctions are derived from the integrality constraints on several
variables and are closely related to the process of branching on variable bounds. For example,
cross cuts come from the union of two elementary split disjunctions, which is a special case
of t-branch split cuts studied by Li and Richard [110]; each cross disjunction is equivalent to
taking the four-term disjunction formed from the leaf nodes of a two-level branch-and-bound
tree. In general, the set of leaf nodes at an arbitrary stage of the branch-and-bound process
defines a valid disjunction. The disjunctions we test in this chapter precisely arise from the
leaf nodes of a partial branch-and-bound tree. One reason we focus on this experimental
setup is to develop a better understanding of the interaction between cuts and branch-and-
bound. We echo the following sentiment by Lodi [111]:

Overall, it seems that a tighter coordination of the two most fundamental ingredi-
ents of the MIP solvers, branching and cutting, can lead to strong improvements.

Typically cuts are not generated at nodes of a branch-and-bound tree much deeper than
the root node as this would require either additional overhead for maintaining cuts at each
node or a procedure that ensures the cuts are globally valid. Both of these options are ex-
pensive and indicate why cuts are usually only separated at or near the root node. Padberg
and Rinaldi [125] state that using “classical cutting planes and tree-search is out of the ques-
tion as far as the solution of large-scale combinatorial optimization problems is concerned”
because of the additional computational cost involved. Nonetheless, some general-purpose
cutting planes do theoretically work when derived from arbitrary nodes. Gomory cuts from
a particular node can be valid for the whole tree when some specific conditions are sat-
isfied [26]; see also the discussion of finding globally valid cuts in [122]. Our approach is
different in that we do not just look at a single node but rather the set of leaf nodes of the
partial branch-and-bound tree; the observation that this set forms a disjunction implies that
we can apply the full technology of disjunctive programming.

Multi-term disjunctive cuts coming from partial branch-and-bound trees have previously
been proposed and tested in different contexts. One stream of research tests them (us-
ing L&PCs) for stochastic mixed-integer programming [87, 129, 132, 138]. The drawback
of L&PCs is that generating a single cut involves optimizing the higher-dimensional cut-
generating linear program (CGLP). Perregaard and Balas [127] present results on a relative
of VPCs that requires row generation to guarantee cut validity and compare the time to
generate cuts from multi-term disjunctions using their approach instead of solving the larger
(CGLP). The authors conclude that solving the CGLP becomes much slower as the number
of terms of the disjunction grows. This is relevant as VPCs use the same kind of linear
program as in [127] but produce valid cuts immediately, which should make them only
more computationally efficient. The row generation idea from [127] was recently revisited
by Louveaux et al. [114] to analyze the strength of intersection cuts from two-row relax-
ations. In combination with results from [113], they conclude that the gap closed by cuts
from two-row relaxations can be significant compared to Gomory cuts, though most of this
strength comes from split sets that can be derived from the two-row relaxations. Chvátal
et al. [54] experimented with partial branch-and-bound trees as part of local or target cut

90

algorithms [11, 51], which are dual to the separation schemes in this paper and that of [114,
127]. Computational tests of L&PCs generated from multi-term disjunctions obtained via
partial branch-and-bound trees were also performed in the context of the cutting plane tree
algorithm [52, 53] and as part of studies elaborating on the connection between disjunctive
cuts and the Reformulation-Linearization Technique [134, 135]. Finally, we mention the
computational experience of solving the seymour problem documented by Ferris et al. [82],
in which (globally valid) L&PCs were generated from partial branch-and-bound trees with
16 leaf nodes and with 256 leaf nodes to eventually yield 256 subproblems that were later
solved to optimality individually.

Traditional general-purpose cutting planes focus mainly on simultaneously using multi-
ple, typically simple, disjunctions. In contrast, we propose a different philosophy, which is to
generate a large number of deep cuts from one strong non-simple disjunction instead. The
existing literature demonstrates that an effective cut separator for general disjunctions may
have great potential benefits. We build on this previous work by designing a fast cut gener-
ator that enables us to test large disjunctions. We describe properties of our cut-generation
scheme in Section 4.2, such as conditions under which we obtain facets of the disjunctive
hull and theoretical results that benefit our implementation. Section 4.3 provides the setup
of our computational experiments, the results of which are contained in Section 4.4. First,
we validate the existence of strong cuts from our framework. This leads us to also evaluate
the cuts as part of branch-and-bound. The results of these experiments indicate that a vital
and challenging question that remains outstanding is which particular multi-term disjunc-
tions lead to good cuts. Then, in Section 4.5, we compare our approach of using one large
disjunction with that of using a collection of shallow disjunctions. Finally, drawing from our
computational experience, we discuss in Section 4.6 some of the considerations for future,
improved implementations of VPCs.

4.2 Point-ray linear program
Let P and R denote sets of points and rays in Rn. Define the point-ray linear program
(PRLP), taking the point-ray collection (P ,R) and an objective direction w ∈ Rn as an
input, as follows:

min
α,β

α
ᵀ
w

α
ᵀ
p ≥ β for all p ∈ P

α
ᵀ
r ≥ 0 for all r ∈ R.

(PRLP)

The feasible solutions (α, β) to (PRLP) correspond to inequalities αᵀx ≥ β that we call
V-polyhedral cuts (VPCs). Define the point-ray hull as conv(P) + cone(R).

We first detail properties of the feasible region of (PRLP). In particular, we prove
necessary and sufficient conditions for VPCs to be valid cuts for PI , and we discuss the
conditions under which VPCs are facet-defining for the disjunctive hull. We then analyze
the theoretical strength of the cuts, part of which drive our choices of objective functions w
for (PRLP). Finally, we present Algorithm 4.6, which shows our implementation for finding a
set of points and rays and generating a set of cuts from that point-ray collection via (PRLP).

91

4.2.1 Globally proper point-ray collections
The PRLP is analogous to the linear program (2.2) used for GICs. The primary difference
is the source of the points and rays, which may no longer correspond to the intersection of
edges of P (or some relaxation of it) with the boundary of a PI-free convex set. To transition
to the setting of this chapter, we adapt Definition 2.2 of a proper point-ray collection from
Chapter 2.

Definition 4.1. The point-ray collection (P ,R) is called globally proper if αᵀx ≥ β is valid
for PI whenever (α, β) is feasible to (PRLP).

Definition 2.2 requires that feasible solutions of (PRLP) correspond to valid inequalities
for PI only when they cut some point of the connected component of P \ PD containing x̄.
Thus, there is a dependence in the definition on PD and on x̄, both of which are removed
in Definition 4.1. Consider a standard intersection cut (SIC), such as the one shown in
Figure 4.1. If the SIC is αᵀx ≥ β, then (α, β) is a feasible solution to the (PRLP) from
the SIC point-ray collection, such that every constraint is satisfied at equality. However,
(−α,−β) is also feasible to this (PRLP), corresponding to the invalid cut αᵀx ≤ β. Thus,
the SIC point-ray collection is proper but not globally proper. The point-ray collections in
Chapter 2 were similarly proper but not necessarily globally proper; in contrast, the present
chapter builds globally proper point-ray collections.

The utility of working with a globally proper point-ray collection is that one does not
need to check whether x̄ is cut away in order to ensure validity. This is useful because x̄ is
a transient point, no longer truly important after the first cut that removes it. One must
consider this fact for any cutting plane method, but especially ones that attempt to forego
rounds of cuts (which of course provide useful information on subsequent LP optima) in
favor of producing a large number of cuts all at once. Unfortunately, much experimentation
is required in order to understand which are the relevant cutting planes to generate that
are satisfied by x̄. As a result, though our point-ray collections will be globally proper,
our computational experiments will only produce cuts that remove x̄; the non-violating cuts
remain the subject of future research.

Theorem 4.2 shows that the extreme ray (because β is not normalized) solutions to
(PRLP) correspond to facet-defining inequalities for the point-ray hull.

Theorem 4.2. The inequality αᵀx ≥ β is valid for conv(P) + cone(R) if and only if (α, β)
is a feasible solution to (PRLP) from the point-ray collection (P ,R). The inequality defines
a facet if and only if the solution (α, β) is an extreme ray of (PRLP).

Proof. Every point x̂ ∈ conv(P) + cone(R) can be expressed as a convex combination of
the points and rays in (P ,R). For any inequality αᵀx ≥ β satisfied by all of these points
and rays, it follows that αᵀx̂ ≥ β. Every extreme ray (α, β) to (PRLP) has the additional
property that n affinely independent points and rays from the point-ray collection satisfy
αᵀx = β, which means that the inequality defines a facet of conv(P) + cone(R). The reverse
directions follow, respectively, from the definitions of valid and facet-defining.

As a direct corollary, we obtain a necessary and sufficient condition for a point-ray col-
lection to be globally proper.

92

x1

x2

x3

x̄

x1

x2

x3

x̄

x1

x2

x3

x̄

Figure 4.1: Example of the point-ray collection for a SIC. The first panel shows the feasible
region P and the optimal solution x̄. The second panel shows the cone C(N) and the three
points obtained by intersecting it with the boundary of the split disjunction on variable x1.
The third panel shows the the SIC, which is also the convex hull of the intersection points.

Corollary 4.3. A point-ray collection (P ,R) is globally proper if and only if PI ⊆ conv(P)+
cone(R).

Proof. Sufficiency of the condition follows from Theorem 4.2: every feasible solution to
(PRLP) is valid for conv(P) + cone(R) and hence for PI . Necessity is similarly evident as,
otherwise, there exists an extreme ray of (PRLP) that cuts a point in PI .

This is distinct from testing whether a point-ray collection is merely proper in the sense
of Definition 2.2, for which we provide a necessary and sufficient condition in Theorem 4.4.
Denote by Px̄ the connected component of P \ PD that contains x̄.

Theorem 4.4. A point-ray collection (P ,R) is proper if and only if the line segment between
every x̂ ∈ Px̄ and every point in PI intersects conv(P) + cone(R).

Proof. Necessity is clear as otherwise a valid inequality for conv(P)+cone(R) separates both
some x̂ ∈ Px̄ and a point in PI . We show sufficiency. For every x̂ ∈ Px̄\(conv(P)+cone(R)),
there exists a facet αᵀx ≥ β of conv(P) + cone(R) that cuts x̂. The point-ray collection is
proper if every such inequality is valid for PI . Take any p ∈ PI . We are given that there
exists a point q ∈ conv(P) + cone(R) on the line segment between x̂ and p. Since x̂, p, and
q are all in the convex set P , αᵀx̂ < β, and αᵀq ≥ β, it follows that αᵀp ≥ β.

4.2.2 VPCs from simple cone relaxations
For t ∈ T , let P t∗ and Rt

∗ be the complete set of extreme points and rays of P t, and define
P∗ := ∪t∈T P t∗ and R∗ := ∪t∈TRt

∗. As a corollary of Theorem 4.2, we know that not only
is this point-ray collection globally proper, but also that extreme rays of the (PRLP) from
this point-ray collection correspond to facet-defining inequalities for the disjunctive hull.

93

Corollary 4.5. The point-ray collection (P∗,R∗) is globally proper. Every extreme ray
(α, β) to the associated (PRLP) corresponds to a facet-defining inequality αᵀx ≥ β for PD.
Conversely, for every facet αᵀx ≥ β of PD, the solution (α, β) to (PRLP) is feasible and
defines an extreme ray.

Working with the complete V-polyhedral description of each disjunctive term is, however,
impractical, as the number of points and rays can grow exponentially large in m and n, as we
showed in Proposition 2.1. A natural alternative would be to use some small, strict subset of
the point-ray collection (P∗,R∗). It is not difficult to see that this could lead to invalid cuts,
as shown in Appendix D.1. This is the reason Perregaard and Balas [127] and Louveaux
et al. [114] employ constraint generation to obtain valid cuts.

We take a different direction from the previous work by way of the following corollary to
Corollary 4.3, stating that as long as the point-ray hull forms a V-polyhedral relaxation of
PD, then the point-ray collection is globally proper.

Corollary 4.6. If P t ⊆ conv(P) + cone(R) for all t ∈ T , then the point-ray collection
(P ,R) is globally proper.

Hence, to implement VPCs, instead of pursuing all facet-defining inequalities for the
disjunctive hull, we use a relaxation of PD with a compact V-polyhedral description. The
simplest such relaxation for each disjunctive term is the polyhedral cone C(N (pt)) formed
from an optimal solution pt to minx{cᵀx : x ∈ P t} and the cobasis N (pt) associated with
pt. We refer to the resulting set of points and rays as a simple point-ray collection and the
cuts from the (PRLP) from this point-ray collection simple VPCs. We state their validity
as Lemma 4.7, a corollary of Corollary 4.6 and the fact that PI ⊆ ∪t∈T P t ⊆ ∪t∈T C(N (pt)).

Lemma 4.7. If, for all t ∈ T , P t contains pt and Rt is the set of n extreme rays of
C(N (pt)), then the point-ray collection (∪t∈T P t,∪t∈TRt) is globally proper.

4.2.3 VPCs corresponding to facets of the disjunctive hull
Using a V-polyhedral relaxation such as C(N (pt)) for each disjunctive term has the advan-
tage of producing a compact point-ray collection, but it may restrict the set of inequalities
obtainable from (PRLP). Some inequalities valid for the disjunctive hull may not even be
feasible to (PRLP), as demonstrated by the example in Figure 4.2.

While not all facet-defining inequalities for PD can be generated, it is natural to ask
under which conditions VPCs are guaranteed to correspond to facet-defining inequalities for
PD. This is what we address in Proposition 4.8.

Proposition 4.8. Let (P ,R) be a globally proper point-ray collection. If every point in P
belongs to PD and every ray in R is an extreme ray of P , then every cut corresponding to
an extreme ray of (PRLP) defines a facet of PD.

Proof. By Theorem 4.2, every extreme ray of (PRLP) corresponds to an inequality that
is facet-defining for conv(P) + cone(R). By definition of facet, this inequality is satisfied
at equality by n affinely independent extreme points or rays of the point-ray hull. Every

94

x̄ x̄

C(N 1)
C(N 2)

P 1

P 2

Figure 4.2: This example shows that using the relaxations C(N (pt)) may prevent certain
valid inequalities from being generated. The right panel shows that the dashed inequality
that is valid for PI would violate a ray of the cone C(N 2).

point in P belongs to PD by assumption, and, by the Fundamental Theorem of Integer
Programming [117], the recession cones of P and conv(PI) coincide, so every extreme ray of
P also belongs to the disjunctive hull. Thus, the inequality is also facet-defining for PD.

It may be difficult to meet or check the conditions of Proposition 4.8 in practice. Hence,
we next give a weaker sufficient condition under which facets of conv(P)+cone(R) correspond
to facets of PD. Given an extreme ray (α, β) of (PRLP) from a point-ray collection (P ,R),
we will say that a point p ∈ P or ray r ∈ R is nonbasic (or in the cobasis) if the slack
variable of the corresponding constraint in (PRLP) is nonbasic.

Proposition 4.9. Let (P ,R) be a globally proper point-ray collection and (α, β) be an ex-
treme ray of (PRLP). If all points in P belong to PD and, for every nonbasic ray r ∈ R,
there exists ε > 0 and a nonbasic point p such that p+ εr ∈ PD, then αᵀx ≥ β defines a facet
of PD.

Proof. The cobasis corresponding to (α, β) provides n affinely independent points from PD
that satisfy αᵀx = β. This is because the constraints of (PRLP) defined by the nonbasic
variables are necessarily affinely independent. Moreover, our assumptions imply that, for
every nonbasic ray r ∈ R, there is a nonbasic point p ∈ P and ε > 0 such that p̂ := p + εr
belongs to PD. It follows that αᵀp̂ = β as αᵀp = β and αᵀr = 0, by definition of nonbasic.

We might observe that, although for simple VPCs, each ray in R actually only comes
from just one disjunctive term, Proposition 4.9 requires checking all pairs of points and rays
(across disjunctive terms). Proposition 4.10 shows this is unnecessary for split disjunctions;
it is sufficient to guarantee facet-defining inequalities for PD through a local property.

Proposition 4.10. Given two terms P 1 and P 2 of a split disjunction, if the basis defining
pt is unique for t ∈ [2], then the simple VPCs corresponding to extreme rays of (PRLP)
from this point-ray collection are all facet-defining for PD.

Proof. Under the assumption, for each t ∈ [2] and j ∈ [n], every ray rjt of C(N (pt)) em-
anating from pt contains in its relative interior a point pjt ∈ P t. The result follows from

95

x̄

Figure 4.3: Example of a four-term disjunction that shows even if the point-ray collection
is composed only of points that belong to the disjunctive hull and rays that contain such
points in their relative interior, facets of conv(P) + cone(R) may still not correspond to
facet-defining inequalities for PD. The first panel shows P ; the second panel shows P t and
the cones C(N (pt)) for t ∈ [4] as well as the disjunctive hull; and the third panel shows
conv(P) + cone(R) and the points and rays (in wavy lines) that are tight for each of the
facets of this point-ray hull. Observe that the dashed wavy line is a ray that is added to
R from one term of the disjunction, but affects the point-ray hull when it originates from a
point from a different term.

applying Proposition 4.9 and the fact that αᵀp1 = αᵀp2 = β because these are the only two
nonhomogeneous constraints of (PRLP).

In contrast, Figure 4.3 shows that an analogous (and logical-seeming) result is false
for more general disjunctions. The intuition is that, although a ray originates from some
particular point, it is ultimately added to all points in P to calculate the disjunctive hull.

4.2.4 Normalization for the PRLP
As we presented it, (PRLP) faces the same issue as (CGLP) without any normalization, in
that it is unbounded for every nonzero objective direction w, as one can arbitrarily scale any
feasible solution (α, β) by any positive scalar. An unbounded direction corresponds to a ray
γ belonging to the recession cone of the feasible region to (PRLP). In theory, this can be
used to generate the valid cut γᵀx ≥ 0, but, in practice, the unbounded directions returned
by our linear programming solver are not guaranteed to be extreme rays of the recession
cone and as a result may correspond to weak cuts, so we reject them.

One solution is to add a normalization constraint that bounds the magnitude of the cut
coefficients, which takes the form

∑n
i=1|αi| ≤ 1. Such a normalization has the undesirable

characteristic that it may add extreme points to the feasible region of (PRLP) that do not
correspond to facet-defining inequalities for the disjunctive hull.

96

A second normalization, adopted in [114, 127] and proposed by Balas and Perregaard
[33], is to add the constraint αᵀ(p− x̄) = 1, for some p ∈ PD. This guarantees that (PRLP)
is always bounded and has certain other nice properties, but depends on a good choice of p.

We take a third approach for normalizing (PRLP) that involves fixing β to a constant
value. As observed in [31], it suffices to consider only three values for β: {−1, 0,+1}. This
might indicate that one would need to solve three linear programs to generate cuts with such
a normalization, as stated in the discussion of normalizations in [114]. We avoid this issue
by formulating (PRLP) in the nonbasic space defined by the cobasis N at x̄. In this space,
the optimal solution x̄ is the origin. As a result, if we are looking for cuts that are violated
by x̄, it suffices to fix β = 1. Another advantage of working in the nonbasic space is that
(PRLP) can be expected to be much sparser than if it were formulated in the structural
space of variables. This is because the number of nonzero components in every row roughly
corresponds to the number of simplex pivots from x̄ to the point or ray for that row.

Though in this chapter, the assumption is that β = 1, in practice we will actually use
some scaled positive constant determined by the input, as β = 1 could lead to numerical
issues, due to how it causes the cut coefficients scale. To illustrate this, suppose cᵀpt ≥ 108

for all t ∈ T . Then, if β = 1, α = c/108 is a feasible solution to (PRLP). However,
coefficients less than 10−7 are often regarded as zero by solvers, so we may end up generating
cuts incorrectly with improper scaling.

4.2.5 Choosing strong and successful objectives
Having set up the constraints of (PRLP), we now turn to the objective directions w. Choos-
ing these carefully is critical to the success of any VPC algorithm, as the objectives directly
determine the nature of the VPCs obtained. Aside from the type of cuts obtained, it is also
important to make the cut-generating process efficient. We say that every time we solve
(PRLP) and a new cut is not generated, a failure occurs. In our experiments with GICs
from Chapter 2 and an early implementation of VPCs, failures were frequent (over 85% of
the objectives tried).

One reason for failure is that (PRLP) may be infeasible for a particular point-ray col-
lection. Figure 4.3 actually illustrates such a a situation. In that example, infeasibility is a
consequence of conv(P) + cone(R) not having any facet-defining inequalities that cut away
x̄. Section 2.6.2 gives the precise theoretical conditions for when (PRLP) is guaranteed to
be feasible. The next proposition, which can be derived from those results but is simpler to
show directly, gives a sufficient condition for the feasibility of (PRLP) that we use in our
implementation, as it applies to our experimental setup of working in the nonbasic space.
Let p denote a point from P with minimum objective value, i.e., p ∈ arg minp{c

ᵀp : p ∈ P}.

Proposition 4.11. If β = 1, x̄ = 0, and cᵀp > 0, then (PRLP) constructed from a simple
point-ray collection is feasible.

Proof. It suffices to observe that α = c/cᵀp is a feasible solution to (PRLP). For p ∈ P ,
αᵀp = cᵀp/cᵀp ≥ 1 by definition of p. For r ∈ R, we need to show that cᵀr ≥ 0. This
follows from the fact that pt ∈ arg minx{c

ᵀx : x ∈ P t}, which implies that pt is also optimal
when minimizing over C(N (pt)). For any ray r ∈ C(N (pt)), for all λ > 0, the point pt + λr
belongs to C(N (pt)). Hence, cᵀpt + λcᵀr ≥ cᵀpt.

97

The two other primary reasons for failures we observed were that, for the given objective
direction w: (1) (PRLP) was feasible but unbounded, and (2) (PRLP) had a finite optimal
solution but the corresponding cut was a duplicate of a previously generated cut. We will
not be able to completely eliminate failures, but in the remainder of this section, we work
towards choosing objectives that help reduce the failure rate. At the same time, we will target
generating strong VPCs, while mostly ignoring potential effect of the cuts within branch-
and-bound; this latter goal is poorly understood and hence difficult to target directly.

The obvious first candidate for an objective direction is to maximize the violation by x̄,
as is done in the case of L&PCs. Unfortunately, in the nonbasic space and with β = 1, x̄
is simply the origin and all cuts have violation equal to 1. As proxies, we use two other
objectives. First, we try the all-ones objective, wj = 1 for all j ∈ [n]. The interpretation
is that we seek an inequality that puts equal weight on cutting each of the rays of C(N).
Second, we add to P a round of GMICs, separated from x̄, and calculate a new optimal
solution x̃; we then use w = x̃, which finds a cut maximizing the violation with respect to x̃.

Finding cuts that maximize violation with respect to points not in PD is a paradigm
that may place too much emphasis on cutting away irrelevant parts of the relaxation. The
alternative is to find inequalities that minimize the slack with respect to points that do
belong to PD. Within this latter perspective, we are able to utilize whatever structural
information we possess about the disjunctive hull. We will now discuss precisely what kind
of information can be inferred from our V-polyhedral relaxations of the disjunctive hull.

On one hand, we have stated that using a relaxation of each P t, t ∈ T , may lead to the
(PRLP) yielding cuts that are not facet-defining for PD. In contrast, the next result shows
that, using even the potentially weak simple point-ray collection, the optimal value over the
disjunctive hull can be obtained by optimizing over the points in P .

Proposition 4.12. Let (P ,R) be a simple point-ray collection. The point p ∈ arg minp{c
ᵀp :

p ∈ P} is also an optimal solution to minx{cᵀx : x ∈ conv(P) + cone(R)} and to minx{cᵀx :
x ∈ PD}. Moreover, there are n facet-defining inequalities of conv(P) + cone(R) that can be
added to P such that p is also an optimal solution to the resulting relaxation.

Proof. This is a direct consequence of the fact that pt ∈ arg minx{c
ᵀx : x ∈ P t} for all

t ∈ T . The n inequalities are simply the ones determined by the cobasis of p from solving
minx{cᵀx : x ∈ conv(P) + cone(R)}.

We say that cᵀp is the disjunctive lower bound and examine whether we can achieve it
via VPCs. Note that we can always add the inequality cᵀx ≥ cᵀp, but this is generally
counterproductive, as such objective cuts tend to create multiple optimal solutions to the
subsequent relaxation, which cause difficulties for solvers.

By Proposition 4.12, we know that we can attain the disjunctive lower bound via n facets
of conv(P) + cone(R) tight at p. One way to generate a cut tight at p is to use the objective
direction w = p. Absent numerical issues, the optimal solution will be some ᾱ) such that
ᾱᵀp = 1. Though this is only one cut, it can be used to find other objective directions. We
will work with a modified (PRLP), which we refer to as PRLP=, in which the constraint
αᵀp ≥ 1 changed to αᵀp = 1. Let R be the set of rays from R that are not tight for the cut;
i.e., R := {r ∈ R : ᾱᵀr > 0}.

98

Proposition 4.13. PRLP= with objective direction r̄ ∈ R has a finite optimal solution.
The optimal value is strictly less than ᾱᵀr̄ only if the resulting cut is distinct from ᾱᵀx ≥ 1.
The optimal value is zero if and only if there exists a facet-defining inequality for conv(P) +
cone(R) that cuts x̄ and is tight on r̄.

Proof. The fact that PRLP= is finite and bounded is a direct result of the constraint αᵀr̄ ≥ 0
and the feasibility of PRLP=. The second statement is obvious. The last statement comes
from the one-to-one correspondence between extreme ray solutions to PRLP= and facet-
defining inequalities for conv(P) + cone(R) that cut away x̄.

Propostion 4.13 resolves issue (1) mentioned above, of having a feasible (PRLP) that
is unbounded. Unfortunately, we may still get failures from issue (2), meaning the optimal
solution to PRLP= corresponds to a cut we previously generated. For example, it may be the
case that there exists r ∈ R such that, for all α feasible to PRLP=, αᵀr ≥ ᾱᵀr. Using such an
r as the objective for PRLP= could reproduce the solution ᾱ. To prevent such phenomena
from excessively slowing down cut generation, we add a failure rate parameter, which detects
when there is an unacceptably small percent of the objectives successfully producing new
cuts. We discuss this in Section 4.3.

Lastly, we address the practical question: do all n facets from Proposition 4.9 exist as
extreme rays of (PRLP) in our setup? Note that the example in Figure 4.4 shows that these
n facets might not be the same as the n facet-defining inequalities of PD that are tight at p.

The answer to this question, which we give by way of example, is no. To see why, we
need to understand which inequalities can be generated from (PRLP) in our setup. The
specific modifications we have made from the general case are that we fix β > 0 and work
in the nonbasic space in which x̄ is the origin. This implies that we will never generate
any facet-defining inequalities for conv(P) + cone(R) that are satisfied by x̄. One might
initially assume that these inequalities are not necessary in order to attain the bound cᵀp.
We dispel that notion in Figure 4.4. The example demonstrates that ignoring inequalities
that do not cut away x̄ may lead to an optimal value (after adding cuts) that is strictly
better than cᵀp. Note that in this example, the point-ray collection uses the complete V-
polyhedral description of each P t, so, unlike the example in Figure 4.2, this situation is not a
consequence of using a relaxation of PD. This may partially explain why, in our experiments,
despite our refined objective choices, we do not always obtain the bound cᵀp.

4.3 Computational setup
The technique we call V-polyhedral cuts is quite general, and there are many possibilities
for implementing it. In Appendix D.3, we list and briefly discuss some of the many possible
parameters that may play a role in the VPC framework. We experiment with only a small
subset of the parameters, so a more thorough tuning may improve upon our reported re-
sults. Section 4.2 covered the rationale driving some of our choices: given a valid disjunction,
we described how to construct a globally proper point-ray collection from that disjunction,
normalize the corresponding (PRLP), and judiciously select objective directions when gen-
erating VPCs. We put these elements together in Algorithm 4.6, after which we describe
additional details of our experiments.

99

p

x̄

p p

Figure 4.4: Example that shows an inequality tight at p that does not cut away x̄ may
be necessary for achieving the bound cᵀp. In this example, we assume we are maximizing
along the vertical axis. The first panel shows the original polytope. The second panel is the
polytope after adding the only split inequality that cuts away x̄. The third panel shows the
polytope after adding all the valid split cuts.

Algorithm 4.6 Type 1 V-Polyhedral Cuts
Input: Polyhedron P ; disjunction ∨t∈T P t.
1: function VPC1(P, {P t}t∈T)
2: for t ∈ T do
3: pt ← optimal solution to minx{cᵀx : x ∈ P t}.
4: N (pt)← cobasis associated with pt.
5: P t ← {pt} and Rt ← rays of C(N (pt)).
6: P ← ∪t∈T P t and R ← ∪t∈TRt.
7: Set up the constraints of (PRLP) using the point-ray collection (P ,R).
8: C ← ∅.
9: Solve (PRLP) with all-ones objective w = e and add the resulting cut to C.
10: Add GMICs to P and let x̃ denote an optimal solution to the refined relaxation.
11: Solve (PRLP) with w = x̃ and add the resulting cut to C.
12: p← point from arg minp{c

ᵀp : p ∈ P}.
13: Solve (PRLP) with w = p and add the resulting cut, ᾱᵀx ≥ 1, to C.
14: PRLP= ← (PRLP) with added constraint αᵀp = 1.
15: P ← {p ∈ P : ᾱᵀp > 1}, sorted in order of decreasing angle with the objective.
16: R ← {r ∈ R : ᾱᵀr > 0}, sorted in order of decreasing angle with the objective.
17: for all w̄ ∈ P ∪R do
18: Solve PRLP= with w = w̄ and add the resulting cut to C.
19: Remove from P ∪R all points and rays that are tight for the generated cut.
20: If twice the cut limit objectives have been tried in this loop, break (go to step 21).
21: return Set C of generated cuts.
22: end function

100

Our general choices are the following. The disjunctive terms provided as input to Algo-
rithm 4.6 will be the leaf nodes of a partial branch-and-bound tree. We only use one round of
cuts and all cuts are rank one with respect to P . We set a limit on the number of generated
VPCs that is equal to the number of integer variables that are fractional at x̄, i.e., the same
as the limit on the number of Gomory cuts. A variety of tolerances and other limits are
relevant in various parts of the code; we mention these in context later in this section.

In this basic setup, we do not vary the cut limit, the number of cut rounds (which we
restrict to one in accordance with our goal of avoiding recursive cut generation), or impose
limits on cut orthogonality or maximum density. These all merit further exploration, as
prior work has repeatedly demonstrated that these values can mean the difference between
an algorithm that works in practice and one that seems to produce negative results. For
instance, the importance of cut orthogonality has been noted previously by, e.g., Balas et al.
[25] and Ferris et al. [82]. See also the discussion in Karamanov [103, Chapter 3].

Environment. All algorithms are implemented in C++in the COIN-OR framework [112]
using Clp version 1.16r2294 and Cbc version 2.9r2351 as the underlying branch-and-
bound solvers, respectively, to generate VPCs. The solver used to test the effectiveness of
VPCs when used as part of branch-and-bound is Gurobi version 7.5.1 [96]. The machine
used is a 64-bit PowerEdge R515 with 64GB of memory and twelve AMD Opteron 4176
processors clocked at 2.4GHz. The operating system is Linux Fedora 19 and compiler is
g++ version 4.8.3 20140911 (Red Hat 4.8.3-7).

Evaluation. We evaluate cuts from two different perspectives: strength and effect on
branch-and-bound. The strength of the cuts is assessed by the percent root gap closed
(defined in Chapter 2) by one round of VPCs. As a baseline, we also report the percent gap
closed by adding one round of GMICs, as well as the percent gap closed by using both VPCs
and GMICs together. In addition, we report, both with and without the use of VPCs, the
root gap closed by Gurobi after one cut pass and after the last round of cuts is added at the
root. The effect on branch-and-bound is measured by the time Gurobi takes to solve the
problem with VPCs added as user cuts; this is compared to the time taken without VPCs.

Instance selection. Instances were selected from the union of MIPLIB [5, 43, 44, 109],
CORAL [56], and NEOS1 sets by the following criteria: (1) the IP optimal value is known;
(2) the number of rows and number of columns of the presolved instance is each at most
5,000; (3) the partial branch-and-bound tree with 64 leaf nodes does not find an IP optimal
solution; (4) the disjunctive lower bound is strictly less than the maximum objective value
of any leaf node. The last criterion aims to avoid infeasible instantiations of (PRLP), which
is what typically occurs when maxp∈P cᵀp = cᵀp. When we report gap closed, we will also
filter by another condition, that cᵀp > cᵀx̄ from the 64-leaf partial tree, as instances in which
the disjunctive lower bound and optimal value of the LP relaxation coincide are not good
candidates for evaluation by gap closed.

Of the instances with at most 5,000 rows and columns, Table D.1 in Appendix D.4 lists
the 75 that were removed from consideration and the reason for removal, leaving 195 for our

1These instances are currently not easily accessible online, so they can be provided upon request.

101

experiments. We modify the instances stein27 and stein45 from the versions in MIPLIB,
which contain an additional constraint providing a lower bound for the objective value that
is not present in the original formulation of the problem [86].2

Instance preprocessing. Every instance is first preprocessed by Gurobi’s presolve. This
procedure is used in order to improve the fairness of the testing environment. It allows VPCs
to be generated from the same version of the instance that would be used internally by the
branch-and-bound solver. This is also a reason for turning presolve off during the subsequent
branch-and-bound tests, as one round of presolve has already been applied. At the same,
for some instances, preprocessing closes a significant portion of the integrality gap, which
could make the process of finding strong cuts more difficult. For reproducibility, one must be
aware that not only might Gurobi’s presolve algorithms change with a new version (release
of the software), but also they depend on the random seed given to the solver. We do not
experiment with this latter variability (we presolve with the random seed 628 only).

Generating a partial branch-and-bound tree. The partial branch-and-bound tree
will be generated by the node, variable, and branch selection rules that follow, which are
the defaults for Cbc. Node selection will be roughly by the best-first or best-bound rule, in
which the next node to explore will be the one with the minimum objective value (though
the number of fractional variables at each node is also considered, it is to a much lesser
extent). Variable selection utilizes the outcome of strong branching on up to five fractional
variables at each node. Between the two possible children of the node when branching on
the variable that is selected, the direction is chosen by a similar rule to the node selection
criteria, i.e., typically in the direction of the child with a lower optimal value.

We will use as the disjunction for each instance the set of leaf nodes of a partial branch-
and-bound tree generated by full strong branching; We stop building the partial branch-and-
bound tree after reaching 2, 4, 8, 16, 32, or 64 leaf nodes of the partial tree, independently.
These leaf nodes of the partial tree form the disjunction that we input to Algorithm 4.6.

From the leaf nodes, we obtain a simple point-ray collection (P ,R). When constructing
the associated (PRLP) (in the nonbasic space defined by the cobasis at x̄), we remove all
duplicate rows. In addition, any rows that are actually bounds on the α variables are removed
as explicit constraints and kept as bounds instead. Henceforth, we assume that (P ,R) has no
duplicates. We proceed with generating cuts from a given (PRLP) if it is feasible and solves
to optimality within a minute when using no objective, i.e., just the feasibility problem.

Cut processing. Not every objective function we try for (PRLP) leads to a new cut,
a subject we started discussing in Section 4.2.5. In that section, the failures discussed
were (PRLP) being unbounded or leading to a duplicate cut. Other failures are imposed
by conditions that we set. If the time to solve (PRLP) for an objective is greater than 5
seconds, we abandon the objective. If we do obtain a solution, since (PRLP) is formulated in
the nonbasic space, we first convert the cut to the structural space, yielding a cut γᵀx ≥ γ0.
Next, we remove small coefficients: for j ∈ [n], if |γj| < ε, we ignore the coefficient, and

2In contrast to Chapters 2 and 3, we do not artificially reduce symmetry by replacing the objective for
these instances.

102

if ε ≤ |γj| < εcoeff, we replace xj by either its lower or upper bound and adjust γ0. In our
experiments, ε = 10−7, and εcoeff = 10−5. Assume that γᵀx ≥ γ0 has been processed in
this way. The cut is rejected if it is a duplicate of or dominated by a previously generated
VPC. It will also be rejected if its dynamism (maxj∈[n]|γj|/minj∈[n]{|γj| : γj 6= 0}) is higher
than 108. In addition, if there exists some previously generated VPC αᵀx ≥ β that is nearly
parallel to γᵀx ≥ γ0, i.e., if α · γ/(‖α‖ · ‖γ‖) < εorth (εorth = 10−3 in our setup), then we keep
only one of these two cuts (the one that separates x̄ by a greater Euclidean distance, or if
these are equal, the sparser cut).

We solve (PRLP) until we exhaust all objectives or reach one of the stopping criteria:

1. Numerical difficulties are encountered while solving (PRLP).

2. The time limit for cut generation is reached.

3. The cut limit is reached.

4. The failure limit is reached.

An example of numerical difficulties we have encountered is when (PRLP) solves to
optimality for one objective but is deemed primal infeasible for another. The time limit for
cut generation is 900 seconds (the time to set up the partial tree and build (PRLP) is not
counted against this). The cut limit is equal to the number k of fractional variables at the
LP optimal solution.

The failure limit we use comes from some experimentation and is not trivial. It varies
based on several parameters: there are different maximum failure rates depending on whether
“few” or “many” cuts have been generated, and whether “many” objective functions have
been attempted. Let φfew_cuts := 0.95, φmany_cuts := 0.90, φmany_obj := 0.80. We define “few”
cuts as nfew_cuts := 1, “many” cuts as nmany_cuts := dk/4e, and “many” objectives as

nmany_obj := max{dnfew_cuts/(1− φfew_cuts)e , dnmany_cuts/(1− φmany_cuts)e}.

Hence, the default for nmany_obj is max{20, 10 dk/4e}. After each cut, we test whether the
current failure ratio (number of unsuccessful objectives as a proportion of the total number
of objectives attempted) is greater than the appropriate threshold (φfew_cuts, φmany_cuts, or
φmany_obj); if it is, then we return that we have reached the failure limit. We also say we
reached the failure limit if the first dnfew_cuts/(1− φfew_cuts)e objectives all lead to failures;
this is often an indicator of numerical issues with the instance. As more cuts are generated
and more objectives are tried, we decrease the acceptable failure rate as there is likely to
be diminishing marginal benefit for additional cuts and we wish to avoid spending excessive
amounts of time attempting to generate cuts unsuccessfully.

Branch-and-bound settings. The VPCs will be given to Gurobi at the root as user
cuts, which allows Gurobi to use its internal cut selection criteria. All of Gurobi’s default
parameters are used except the following:

• Fix a random seed (we use 628).

• Set a time limit of 3600 seconds.

103

• Disable use of multiple threads.

• Disable presolve. (Each instance is already presolved during preprocessing.)

• Disable heuristics. (This is to reduce performance variability.)

• Disable dual reductions. (Required for enabling user cuts.)

• Provide the IP optimal value (with a small tolerance) via bestBdStop.

Using different partial tree sizes for VPCs could introduce a bias, so we also test how Gurobi
performs on the instances across seven different random seeds (i · 628 for i ∈ [7]), and we
report the best result across these runs as well as on just the first random seed. Note that
VPCs are not tested with these other random seeds, as the purpose of these other seeds is
explicitly to give Gurobi an advantage over VPCs to negate the bias introduced by using
multiple partial trees; on the other hand, we may be overcompensating, as in practice, it is
likely some combination of the variability due to random seeds and VPCs would be utilized.

4.4 Computational results
The goals of the computational experiments are to assess (1) the strength of VPCs by the
percent root gap closed by one round of the cuts, which we discuss in Section 4.4.1, and (2)
the effectiveness of VPCs when added at the root and used as part of branch-and-bound,
covered in Section 4.4.2. In Section 4.4.3, we analyze at a finer level of detail where our
procedure works well and where it can be improved. In the subsequent tables and figures,
“G” refers to GMICs, “V” refers to VPCs, “GurF” refers to Gurobi after one round of cuts
at the root, “GurL” refers to Gurobi after the last round of cuts at the root, and “DB”
refers to the value of the disjunctive lower bound cᵀp from the partial branch-and-bound
tree for each instance with 64 leaf nodes (an upper bound on the gap we can close using
VPCs on their own). For the columns including VPCs, sometimes a partial tree size will be
specified (either as “V (`)” or “` leaves”), indicating that these results concern only the runs
for partial trees with ` leaf nodes. When a partial tree size is not specified, the result shown
will be the best across the six partial tree sizes tested.

4.4.1 Percent root gap closed
Table 4.1 provides a summary of the average percent gap closed by GMICs, VPCs, and VPCs
used together with GMICs, as well as the percent gap closed by one round of cuts at the root
by Gurobi and after the last round of cuts added by Gurobi at the root. Table D.2, in the
appendix due to its length, contains the values for all the instances. In these results, no a
posteriori strengthening techniques, as described in Section 1.5, are applied to VPCs: there
are two sources of cut strength, one from the disjunction from which the cut is produced, and
one from modularization taking advantage of integrality properties after the cut is generated.
We are not using this second strength in this chapter, as applying the technique requires the
use of additional information about the cut when it is derived from a disjunction that is not

104

Table 4.1: Summary statistics for percent gap closed by VPCs.

Set # inst G DB V V+G GurF V+GurF GurL V+GurL

All 184 Avg (%) 17.28 24.03 15.60 26.95 25.99 33.03 46.48 52.07
Wins 114 91 156 143 116

≥10% 87 Avg (%) 14.41 37.73 29.55 33.47 20.03 32.59 38.81 49.95
Wins 75 71 84 73 68

1K 81 Avg (%) 16.38 25.25 20.73 30.61 23.90 34.14 43.40 52.41
Wins 57 51 70 66 57

simple. We investigate a method to apply strengthening to VPCs in Chapter 5. Note that,
in contrast, the GMICs do take advantage of modularization.

Column 1 indicates the set of instances: the first two data rows concern the 184 instances
for which the disjunctive lower bound is strictly greater than the LP optimal value, the
second two data rows pertain to the subset of the 184 instances for which VPCs close at
least 10% of the integrality gap, while the last two data rows refer to the subset of 81
instances with at most 1,000 rows and 1,000 columns. The first row for each set gives the
average for the percent gap closed across the instances. The second row for each set shows
the number of “wins”, which is defined as an instance for which using VPCs closes strictly
more (by at least 10−7) of the integrality gap. For columns “DB”, “V”, and “V+G” wins are
relative to column “G”; for “V+GurF” wins are counted with respect to column “GurF”;
and for “V+GurL” wins are with respect to column “GurL”.

Column 2 gives the number of instances in each set. Column 4 is the percent gap closed
by GMICs when they are added to the LP relaxation. Column 5 is the percent gap closed as
implied by the disjunctive lower bound from the partial tree with 64 leaf nodes. Column 6
is the percent gap closed by VPCs; the subsequent column is the percent gap closed when
GMICs and VPCs are used together. Columns 8 and 9 show the percent gap closed by
Gurobi cuts from one round at the root, first without and then with VPCs added as user
cuts. Columns 10 and 11 show the same, but after the last round of cuts at the root.
Columns 8 and 10 use the best result (maximum gap closed) by Gurobi across the seven
random seeds tested.

The results indicate the strength of VPCs. Namely, using VPCs and GMICs together
leads the average percent gap closed at the root to increase from 17% to 27%. VPCs on
their own close strictly more gap than GMICs for 91 instances; in comparison, we see that
for 114 instances the disjunctive lower bound is greater than the optimal value after adding
GMICs, so there are only 23 additional instances for which VPCs on their own could have
gotten stronger results. For 11 of those 23 instances, we achieve the cut limit, implying
that a higher percent gap might be achieved if we permitted more cuts to be generated.
When VPCs are used with GMICs together, more gap is closed for 156 of the 184 instances.
Perhaps even more indicative of the utility of VPCs are the results when VPCs are used as
user cuts within Gurobi. For the first round of cuts at the root, the percent gap closed goes
from 25% (without VPCs) to 33% (with them), with strictly better outcomes for 143 of the
183 instances. For the last round of cuts at the root, the percent gap closed increases from

105

46.5% to 52% by using VPCs.
The results are even more pronounced for the other two sets of instances. For the instances

in which VPCs perform well (close at least 10% of the integrality gap on their own), VPCs and
GMICs together close over double the gap closed by GMICs on their own, with improvements
for 84 of the 87 instances in that set, and VPCs provide nearly a 30% improvement in the
gap closed after the last round of cuts at the root node of Gurobi (50% compared to 39%).
For the 81 instances with up to 1,000 rows and columns, GMICs close 17% of the integrality
gap, VPCs alone close 21%, while together they close 31%.

For the columns including VPCs, the result reported is the maximum percent gap closed
across all partial tree sizes tested. One may initially assume that the strongest cuts would
always come from the partial tree with 64 leaf nodes. This is indeed true of the disjunctive
lower bound, but it does not always hold for VPCs. One reason, meaningful in conjunction
with the fact that we generate a fixed number of cuts, is that there are likely to be more
facet-defining (i.e., essential) inequalities for the disjunctive hull from stronger disjunctions.
As a result, achieving the disjunctive lower bound may become more difficult, in particular
given our relatively conservative cut limit. Another reason, on an intuitive level, is that more
of the facet-defining inequalities for the deeper disjunctions may not cut away x̄, which are
cuts we do not generate in these experiments. Finally, the rate of numerical issues goes up
as the disjunctions get larger; we investigate this more in Section 4.4.3.

Figure 4.5 shows how the average percent gap closed increases with disjunction size. In
this figure, “0 leaves” refers to the gap that is closed without using any VPCs, while “Best”
corresponds to the same values as in Table 4.1, i.e., the best value per instance is used across
all partial tree sizes tested. We show the same four measures as in Table 4.1. In solid black is
the percent gap closed by VPCs; dark gray without hatching indicates GMICs; dark gray with
hatching is for the first round of cuts by Gurobi; and light gray with hatching is after the last
round of Gurobi cuts at the root. In addition, the dashed line shows the average disjunctive
lower bound (and upper bound on the value of the percent gap closed by VPCs). This figure
shows that VPCs do get stronger as stronger disjunctions are used, and, at the same time, the
marginal benefit of GMICs decreases as better disjunctive cuts are generated. An important
conclusion from this figure is that our procedure avoids the “tailing-off” effect from recursive
applications of cuts: without requiring recursion, by simply using a (sufficiently) stronger
disjunction, we make steady progress toward the optimal value of (IP).3 Nevertheless, we
also see that there is much room for improvement in our implementation of the framework,
as the gap closed by VPCs grows increasingly farther from the disjunctive lower bound with
the use of larger partial trees.

4.4.2 Branch-and-bound effect
We now turn to the second metric, of the effect of our cuts on branch-and-bound in terms
of time and number of nodes when VPCs are added as user cuts to Gurobi. There are
159 instances for which Gurobi is able to solve the instance to optimality within an hour
either with or without using VPCs; we call this set “All” for this subsection. Of these 159

3In preliminary experiments, we tested multiple rounds of GMICs and observed the tailing-off phenomenon
commonly reported in cutting plane literature. It is possible to apply the VPC procedure in rounds as well,
which may make sense in practice, but this falls outside of the scope of the current study.

106

0 leaves 2 leaves 4 leaves 8 leaves 16 leaves 32 leaves 64 leaves Best
0

10

20

30

40

50

A
ve

ra
ge

%
ga

p
cl

os
ed

Effect of varying number leaf nodes

V

V+G

V+GurF

V+GurL

VPC upper bound

Figure 4.5: Average percent gap closed broken down by the number of leaf nodes used to
construct the partial branch-and-bound tree. Shown is the gap closed for VPCs with and
without GMICs, as well as the gap closed at the root by Gurobi after the first and last round
of cuts. “0 leaves” refers to the percent gap closed when no VPCs are used. “Best” refers to
the maximum gap closed, instance-by-instance, across all partial tree sizes.

107

Table 4.2: Summary statistics for time to solve instances with branch-and-bound.

Time (s) Nodes
Set # inst Gur1 Gur7 V w/PRLP Total Gur1 Gur7 V

All
[0,3600) 159

Gmean 81.48 58.94 63.79 68.37 68.50 6069 4475 4549
Wins1 87 89 45 45 105 109
Wins7 41 12 12 64

All
[10,3600) 76

Gmean 276.89 180.00 199.21 216.69 217.23 28642 18692 19152
Wins1 49 43 33 33 47 47
Wins7 13 8 8 21

All
[100,3600) 37

Gmean 869.71 560.84 652.80 713.80 715.91 88735 57796 61536
Wins1 23 20 17 17 25 19
Wins7 4 2 2 6

All
[1000,3600) 11

Gmean 2126.58 1877.63 2016.00 2017.51 2017.62 208021 173557 157995
Wins1 4 2 2 2 6 4
Wins7 0 0 0 1

6 trees
[0,3600) 97

Gmean 65.56 54.28 54.04 56.59 56.67 6747 5588 5239
Wins1 44 57 30 30 57 73
Wins7 33 11 11 51

6 trees
[10,3600) 41

Gmean 260.64 200.26 199.38 210.43 210.78 46013 34449 31386
Wins1 24 24 21 21 24 29
Wins7 10 7 7 17

6 trees
[100,3600) 19

Gmean 973.42 723.02 765.35 811.93 812.85 200983 139998 135861
Wins1 10 9 9 9 12 10
Wins7 2 1 1 4

6 trees
[1000,3600) 8

Gmean 2088.90 1861.25 1983.85 1984.85 1984.99 376028 314438 261487
Wins1 3 1 1 1 4 3
Wins7 0 0 0 1

108

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Gu
ro

bi
 t

im
e

w
/V

PC
s (

m
in

 7
 ru

ns
)

Gurobi time w/o VPCs

Gurobi run with one random seed vs min of 7 VPC runs from different trees

Figure 4.6: Plot in log-log scale showing on the horizontal axis the time to solve each of
the instances using Gurobi with random seed 628 and on the vertical axis the minimum
across the solution times when VPCs are added as user cuts from partial trees with ` leaves,
` ∈ {0, 2, 4, 8, 16, 32, 64}. The solid line is the parity line; VPCs have more benefit for an
instance the farther the corresponding data point is below this line. This plot indicates what
can be expected given an oracle that can determine a good partial tree to use per instance.

109

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Gu
ro

bi
 t

im
e

w
/V

PC
s (

m
in

 7
 ru

ns
)

Gurobi time w/o VPCs (min 7 runs)

Min 7 Gurobi runs with different random seeds vs up to 7 VPC runs from different trees

Figure 4.7: Plot in log-log scale showing on the horizontal axis the minimum time to solve
each of the instances using Gurobi across seven random seeds (i · 628 for i ∈ [7]) and on the
vertical axis the minimum across the solution times when VPCs are added as user cuts from
partial trees with ` leaves, ` ∈ {0, 2, 4, 8, 16, 32, 64}. One aspect reflected in these results is
the higher variability among more difficult instances.

110

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Gu
ro

bi
 t

im
e

w
/V

PC
s (

m
in

 7
 ru

ns
)

Gurobi time w/o VPCs (min 7 runs)

Min 7 Gurobi runs with different random seeds vs 7 VPC runs from different trees

Figure 4.8: The same as Figure 4.7 but with only the instances for which cuts were generated
successfully from all partial tree sizes. For easier instances, it appears that when VPCs help,
they help consistently. Th results on the medium-difficulty instances are mixed: when VPCs
help, they tend to improve solution times more than the improvement from using a better
random seed, but using a “good” random seed helps much more frequently. For the very
hard instances, our cuts do not seem to be competitive with a lucky random seed.

111

instances, there are 97 for which we were successfully able to generate VPCs for all six partial
branch-and-bound trees; we refer to this as the “6 trees” set of instances. Table 4.2 contains
a summary of the statistics for the set “All” in the top half and for the set “6 trees” in
the bottom half. We further divide each set of instances into four bins, where bin [t,3600)
contains the subset of instances which Gurobi solved within an hour but took at least t
seconds to solve for all experiments. The first column of the table indicates which set and
bin is being considered. The second column is the number of instances in that subset. The
next column indicates the three summary statistics presented for each subset. The first row,
“Gmean”, for each subset is a shifted geometric mean (with a shift of 60 for time and 1000
for nodes, as in [1]). The second row, “Wins1”, is the number of “wins” for each column with
respect to Gurobi run with one random seed, a baseline that we will denote by “Gur1”. A win
in terms of time is counted when the “Gur1” baseline is at least 10% slower, to account for
some variability in runtimes. The third row, “Wins7”, is the number of “wins” with respect
to the best Gurobi run across seven random seeds, which we call the “Gur7” baseline.

We now describe the eight remaining columns of Table 4.2. Columns 4 and 5 give the
values for the two baselines, “Gur1” and “Gur7”. Column 6 provides the statistics for the
fastest solution time by Gurobi when VPCs are added as user cuts (without accounting
for cut generation time) across the six different partial trees tested per instance, but also
including the time from “Gur1” as one of the possible minima, indicating the option of
not using VPCs for that instance. Column 7 incorporates the total time taken solving
(PRLP), which is the total cut generation time excluding the time taken to produce the
partial branch-and-bound tree and set up the point-ray collection. Column 8 incorporates
these excluded times as well. Columns 9 through 11 concern the number of nodes taken to
solve each instance to optimality for the two baselines and for when VPCs are considered.
For column 10, the value for “Wins7” in each bin is the number of instances for which the
number of nodes for “Gur7” is fewer than the number of nodes taken by Gurobi with VPCs.
The full results for the instances in set “All” are given in Table D.3, while the full results
for the set “6 trees” are in Table D.4. However, we also plot, on a log-log scale, the values
for “Gur1” against “V” (for set “All”) in Figure 4.6, for “Gur7” against “V” (for set “All”)
in Figure 4.7, and for “Gur7” against “V” (for set “6 trees”) in Figure 4.8.

The results show unequivocally that using VPCs vastly dominate the baseline “Gur1”,
yielding a drastic reduction in the average number of seconds and nodes to solve each in-
stance. Of course, comparing the value of “V” to “Gur1” is tremendously biased; by defini-
tion, the values in column “V” weakly dominate the ones in column “Gur1”. The purpose
of such a comparison is showing the theoretical benefit of the VPC approach: with an ideal
way to select a partial tree per instance (including knowing when not to use VPCs at all),
these are the results one would see. Unfortunately, in practice, we do not have access to
such an oracle, but the results suggest the need for crafting a good rule to take the place
of this ideal oracle. The most obvious rule, of fixing ` leaf nodes for just one of the options
` ∈ {2, 4, 8, 16, 32, 64}, does not work. These summary statistics for each partial tree size
independently are given for the “6 tree” set in the appendix in Table D.5. Adding VPCs
degrades the average performance of Gurobi for each partial tree size. Of course, this rule
is just one simple idea for choosing a partial tree per instance and does not exclude other,
more intelligent rules.

An alternative to such an oracle approach would be to run seven concurrent processors,

112

Table 4.3: Number of leaf nodes yielding the best result for each experiment per instance.

Gap Time
V V+G V+GurF V+GurL All 6 trees

No improvement 9 9 41 68 70 40
2 leaves 4 5 46 14 17 7
4 leaves 8 11 10 18 8 5
8 leaves 20 23 14 13 19 12
16 leaves 30 35 16 15 12 6
32 leaves 27 27 15 14 19 15
64 leaves 86 74 42 42 14 12

each one with a different partial tree setting, and to stop when the first of these processes
solves the problem to optimality. A concurrent option is present in Gurobi, for which the
current default is to give each of the allocated processors a different random seed. The
comparison of “V” to “Gur7” can be seen as testing whether it is worth replacing random
seeds with more aggressive cut generation as a source of variability. Such a comparison only
really makes sense for the set “6 trees” (as we do not have statistics for seven runs for the
other instances). What we see from Table 4.2, as well as in Figure 4.8, is that for easier
instances (those that solve in under ten minutes), using VPCs seems to beat the random
seeds strategy with consistency. On the other hand, for the harder instances (on a very
small number of instances), better performance is provided by “Gur7”. One explanation for
this is that harder instances are known to have more variability, which is corroborated by
our experiments, and random seeds may introduce more randomness than adding VPCs.
Another explanation is that solvers often employ more expensive cut generation techniques
for harder instances, such as generating globally valid cuts after the root node, which could
reduce the advantage of our stronger cuts. One technique that is employed by solvers is
producing mixed-integer rounding cuts where the point being separated is not x̄, but rather
the optimal solution to a deeper node of the branch-and-bound tree, though the separation
is still done using the initial relaxation to maintain global validity of the cuts.

4.4.3 Partial tree size and objective function analysis
One aspect that is hidden in the preceding results is the number of leaf nodes used for
the partial branch-and-bound tree to obtain the reported gap closed and branch-and-bound
times. What is reported is the best result across all the tested sizes of the partial tree, i.e.,
with number of leaf nodes ` ∈ {2, 4, 8, 16, 32, 64}. We next disaggregate the analysis to see
how the different size partial trees perform alone.

Table 4.3 gives the distribution for which choice of partial tree was best for each of the
experiments. For each instance, we look at the appropriate metric and take the size of the
smallest partial tree that led to the best result for that metric, assuming that the best result
led to an improvement over the relevant baseline for that metric. To determine improvement,
we use the same tolerances as before: the gap closed is counted as improved when it is at

113

Table 4.4: Statistics about the density of generated cuts broken down by partial tree size.

V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(64)

inst w/VPCs and time < 3600s 155 141 134 131 118 109
wins by time 46 26 37 39 37 36
Avg min cut density 0.280 0.288 0.343 0.410 0.436 0.464
Avg max cut density 0.433 0.455 0.523 0.551 0.561 0.565
Avg avg cut density 0.363 0.371 0.432 0.491 0.516 0.525
Avg avg cut density (win by time) 0.356 0.316 0.352 0.435 0.508 0.496
Avg avg cut density (non-win) 0.366 0.383 0.462 0.515 0.520 0.540

least 10−7 higher, and the time is considered improved when the instance solves at least 10%
more slowly without using VPCs. The first column is the tree size (including the option that
VPCs yielded no improvement), the second through fifth columns refer to gap closed (for the
set of 184 instances with cᵀp > cᵀx̄), while the sixth and seventh columns concern branch-
and-bound time for the sets “All” and “6 trees” (where improvement is counted against
the “Gur1” baseline). As mentioned in the context of Figure 4.5, the tree with the most
leaf nodes produces the best percent gap closed quite often, but not always; there are even
instances for which ` = 2, i.e., just a single split disjunction, yields the strongest cuts. In
contrast, there is no single winner for best partial tree size in terms of branch-and-bound
time, as we had already discussed in the context of Table D.5.

This phenomenon of stronger cuts not being directly correlated to better branch-and-
bound performance is not easy to explain, due to the hard-to-predict effect of cuts on the
branch-and-bound process. Nevertheless, there is one aspect of Table 4.2 that suggests a
possible explanation. Observe that the number of times that using VPCs beats “Gur1” and
“Gur7” in terms of number of nodes is typically higher than the number of wins for VPCs
in terms of time. For each instance in which the number of nodes decreases but the time
increases, what happens is that the time per node increases. There are several possible
reasons for this. One is that cut filtering, i.e., deciding which cuts to apply at each node,
could be slower when there are more cuts in the potential cut pool. Another possible reason
is that the solving the relaxation at each node of the branch-and-bound tree could be slower
with additional cuts added. It is commonly known that making the coefficient matrix denser
will slow down the matrix operations needed to solve a linear program. Consequently, we
next look at how the density of VPCs changes as deeper disjunctions are used.

Table 4.4 gives the average cut density statistics across the different partial tree sizes.
The density of a cut is defined as the number of nonzero cut coefficients divided by the total
number of coefficients. In this table, the columns are labeled V (`) for ` ∈ {2, 4, 8, 16, 32, 64},
referring to the runs in which the number of leaf nodes is `. The set “All’ of 159 instances
is the one used to generate this table. The first data row is the number of these instances
having VPCs for each partial tree size. The second data row gives the number of these
instances that win on time compared to “Gur1”. The next three rows give the average of
the minimum, maximum, and average densities of VPCs for each instance. The penultimate
row is the average of the average cut densities for those instances counted in the second data

114

Table 4.5: Statistics about the objectives leading to failures, broken down by partial tree
size used for cut generation.

V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(64)

inst w/obj 191 174 168 164 149 129
inst w/succ obj 191 174 166 162 145 126
inst no obj 4 21 27 31 46 66
inst all obj fail 0 0 2 2 4 3
inst all obj succ 13 12 6 6 9 5
% obj fails 22.19 25.07 27.81 32.46 33.81 35.16
% fails dup 43.87 41.76 46.69 52.51 60.21 64.05
% fails unbdd 44.06 42.54 33.39 25.51 18.13 18.69
% fails tilim 2.09 4.85 10.86 13.80 11.50 9.43
% fails dyn 3.18 3.95 5.40 4.45 3.98 3.95
% fails all-ones 56.02 59.77 48.81 46.34 36.24 22.48
% fails post-GMIC opt 60.00 62.64 66.67 58.90 54.05 51.56
% fails DB 20.70 21.00 24.06 29.30 31.31 32.88
obj / cut 2.26 1.93 2.08 2.56 2.87 3.34
(s) / obj 0.01 0.07 0.19 1.49 1.40 4.35
(s) / cut 0.03 0.10 0.28 3.38 6.65 23.25

row, i.e., those that win by time with respect to “Gur1”. The last row is the average of the
average cut densities for the instances that do not win by time.

The first observation is that the number of instances having cuts decreases from 155 for
the setting with 2 leaf nodes to 109 for the 64 leaf node setting. The average cut density
goes from 0.363 to 0.525 on average, which could help explain the fact that the cuts from
the strogner disjunctions, which we have seen are stronger, yield worse branch-and-bound
times. In addition, the last two rows show that there is a clear gap between those instances
for which VPCs help and those for which they do not. Namely, for each column, the average
of the average cut density is always lower for those instances that win by time. This suggests
that future experiments may benefit from doing cut filtering by density, or possibly reducing
the density of generated cuts a posteriori while sacrificing strength.

Next, via Table 4.5, we discuss our objective function choices, including statistics on
the frequency of failures as a function of disjunction size. A caveat is that our analysis of
objectives functions is somewhat limited by our relatively conservative strategy in selecting
objectives to use, in order to limit time spent on cut generation and the types of failures
discussed in Section 4.2.5. The objectives we choose utilize the results of Chapter 2, which
show that a successful class of objectives is the set of points and rays of the point-ray
collection, but, motivated by Proposition 4.12, we only do this for cuts tight at p (the loop
starting at step 17 of Algorithm 4.6). It is natural to consider cuts that only lie on deeper
points, but this, as well as cuts that are satisfied by x̄, remains a topic for future research.

115

Table 4.6: Statistics about when generated cuts are active, broken down by partial tree size.

V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(64)

% active GMIC 50.69 49.21 48.48 45.20 43.99 43.66
% active VPC 34.00 33.56 33.10 35.46 34.77 34.30
% active one-sided 81.82 81.82 81.82 81.82 81.82 81.82
% active all-ones 59.52 64.29 58.14 56.82 53.68 56.00
% active post-GMIC opt 80.26 75.38 71.43 62.69 60.29 62.90
% active DB 22.10 22.21 23.04 27.25 28.69 29.27

Table 4.5 contains the data for objective failures using the entire set of 195 instances. The
columns of the table are the same as Table 4.4. The rows are divided into several sets. The
first set gives statistics on the number of instances for each column for which: (1) objectives
were tried, (2) VPCs were generated, (3) objectives were not tried, (4) none of the objectives
yielded VPCs, and (5) all of the objectives led to distinct VPCs. The next set gives the
average percent of the objectives that were failures. The subsequent set of rows looks at the
cause of these failures, which fall into one of four categories:

• “Dup”: the optimal solution to the PRLP is an exact duplicate of an existing cut

• “Unbdd”: (PRLP) does not have a finite solution for that objective

• “Tilim”: the time limit for (PRLP) is attained for that objective

• “Dyn”: the dynamism of the new cut is too high

The following set of rows looks at the percent of failures for each class of objectives: “all-ones”
(w = e), “post-GMIC” (step 11 of Algorithm 4.6), and “DB” (step 17 of Algorithm 4.6). The
last set of rows looks at the average number of objectives required to generate each distinct
VPC, as well as the average number of seconds taken per objective and per cut.

This table shows that failures become more frequent when using disjunctions with more
terms, with average failure rate increasing from 22% to 35%. The primary reason for this
is that more objectives lead to cuts that were previously generated, leading to, on average,
64% of the failures. The cause is that there are more unsuccessful objectives being tried for
the “DB” class of objectives. The last set of rows of the table also show that cut generation
can be extremely costly for stronger disjunctions, which could be mitigated by reducing the
failure rate. In Appendix D.5, Table D.6 contains the statistics for the number of objectives
tried and failures just for the best run (across all partial tree sizes) per instance, as well as
the time per objective and per cut.

Lastly, we look at which classes of objective functions are more likely to lead to active
cuts (after the addition of all cuts), as a different measure of the effect of our cuts. Table 4.6
gives averages for which cuts are active at the optimal solution after adding both GMICs and
VPCs to P , for GMICs and VPCs, as well as individually based on the objective producing
each VPC. The first row is the percent of GMICs that are active. The second row is the
percent of VPCs that are active, averaged across those instances per each column for which

116

VPCs were generated. The next row concerns an additional set of cuts that is added in our
procedure, which we call “one-sided”. In the process of generating VPCs, while selecting
variables for strong branching, we occasionally detect that one of the two possible branches
is infeasible. In this case, we generate the “one-sided cut” (from the variable xk, k ∈ I)
xk ≤ bx̄kc if P ∩ {x : xk ≥ dx̄ke} is infeasible, or xk ≥ dx̄ke if the opposite term is infeasible.
These cuts are generated for 11 of the 195 instances, with a total of only 17 cuts. The last
three rows of the table give the percent of active cuts for the three classes of objectives that
we test. For each of the sources of VPCs, the value in each column is averaged only across
those instances for which there exist cuts from that source.

Table 4.6 shows that the proportion of active VPCs remains relatively constant across
the different partial tree sizes, but that the percent of active GMICs decreases as VPCs from
stronger disjunctions are used. Aside from the one-sided cuts, of which an average of 82%
are active across all partial trees tested, the objectives “all-ones” and “post-GMIC opt” lead
to cuts that are frequently active, though these objectives yield at most two cuts in total per
instance. Though the “DB” class of objectives leads to a smaller percentage of active cuts,
it yields increasingly more active cuts as stronger disjunctions are utilized, and, of course, it
is the source for the majority of the cuts that we generate.

4.5 Alternative cut-generating sets and point-ray col-
lections

In this section, we briefly mention experiments with other choices for cut-generating sets (in-
stead of those derived from partial branch-and-bound trees) and with potential refinements
of the simple point-ray collection used for all of the previous results.

4.5.1 Gap closed using multiple split and cross disjunctions
Instead of using one large, multi-term disjunction, as we do above, the typical approach in
the literature is to generate cuts from the union of several shallower disjunctions. We report
results on preliminary computational experiments to assess the strength of VPCs obtained
from multiple split disjunctions or multiple 2-branch (cross) disjunctions. An alternative
that we do not test but merits exploration in the future is that of several partial branch-
and-bound trees produced from different branching strategies.

Let σ := {j ∈ I : x̄j /∈ I} be the set of indices of integer variables that take fractional
values in x̄. For each k ∈ σ, there is a corresponding elementary split disjunction (xk ≤
bx̄kc) ∨ (xk ≥ dx̄ke). We generate VPCs from each of the elementary split disjunctions
applied to P . We also report on the strength of VPCs from the nonconvex PI-free set
corresponding to a union of two split disjunctions from pairs of indices in σ.

We experiment on a smaller set of instances (37 in total) in order to conserve computa-
tional resources, and we report only the percent gap closed (without testing the cuts’ effect
on branch-and-bound time). The reason for both of these restrictions is that these early
experiments strongly support the use of partial trees as the cut-generating set over multiple
split or cross disjunctions. The size restriction for the experiments in this section is at most
500 rows and 500 columns. The other instance selection criteria remain unchanged. The

117

Table 4.7: Summary on small instance set of average percent gap closed, average percent of
GMICs and VPCs active at the optimum after adding both sets of cuts to P , average “cut
ratio” between number of VPCs and number of GMICs, and the shifted geometric mean (by
60) for generating VPCs for each partial tree size as well as on runs with multiple split and
cross disjunctions.

G V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(64)

V+G
(splits)

V+G
(crosses)

% gap closed 16.33 18.48 19.55 21.73 25.52 30.74 35.26 21.79 26.92
% active GMIC 50.40 49.68 45.01 40.11 35.37 36.90 45.65 35.82
% active VPC 22.09 22.59 30.57 29.81 29.26 27.90 14.19 10.45
Cut ratio 0.63 0.64 0.66 0.69 0.71 0.72 14.27 108.23
Time (geomean) 0.16 0.54 2.34 7.24 13.16 14.43 7.38 53.40

limit on the number of cuts per split or cross disjunction is set as |σ| (which is the same as
the limit from each partial branch-and-bound tree).

Table 4.7 has columns for “G” (GMICs), “V+G (`)” for ` ∈ {2, 4, 8, 16, 32, 64} (VPCs
used together with GMICs from a partial branch-and-bound tree with ` leaf nodes), and
“V+G (splits)” and “V+G (crosses)” (values corresponding to using splits and crosses, re-
spectively). The rows give the average percent gap closed, the average percent of active
GMICs and VPCs at the post-cut optimum, the ratio between the number of VPCs and
number of GMICs, and the geometric mean (with a shift of 60) of the time needed to gener-
ate cuts (including the time to generate the partial trees and set up the point-ray collections).

As Table 4.7 shows, the gap closed by VPCs from multiple split disjunctions is comparable
to that from using a partial tree with 8 leaves, while multiple cross disjunctions yield a gap
closed similar to that from partial trees with 16 leaves. However, when using splits and
crosses, the number of VPCs is considerably larger than the number of GMICs, and cut
generation time is also on average much greater. This data supports our conclusion that
using partial branch-and-bound trees to generate disjunctions for our procedure is preferable
to using multiple split or cross disjunctions.

4.5.2 Tightening the V-polyhedral relaxation
We have seen in Figures 4.2 and 4.3 that using the relaxations C(N (pt)) for each term t ∈ T
can limit the set of cuts that can be generated. A natural question to consider is whether a
different relaxation would lead to stronger cuts.

One approach, which we have not tested computationally, involves refining the relaxations
of each disjunctive term to some Ct ⊆ C(N (pt)) for each t ∈ T such that the following
condition is satisfied for all t, t′ ∈ T , t 6= t′:

Ct ∩ {x ∈ Rn : Dt′x ≥ Dt′

0 } = ∅.

This would avoid the type of problem shown in Figure 4.3. The essential idea would in-
volve activating hyperplanes, but the process is generally made simpler by the fact that the
disjunctive inequalities in practice all take on a simple form (each is a bound on a variable).

118

A different idea is to keep a simple cone as the relaxation for each term of the disjunction,
but to use a different cobasis as the origin. Specifically, we can apply the VPC procedure
based on Lemma 4.7, not on pt, but on a neighbor of pt obtained by pivoting along any
edge of P t. We tested this procedure on VPCs generated from the set of elementary split
disjunctions. The results were negative, in the sense that only a small additional percent
gap was closed, whereas the extra computational expense involved was significant. Our
interpretation of this outcome is that the VPCs from simple cones contain the vast majority
of the cuts that affect the objective function value and are obtainable from each elementary
split. This was in fact a primary motivation for pursuing more complicated disjunctions for
cut generation.

4.6 Conclusion & open problems
This chapter presents a step toward merging cut-generation and branching in integer pro-
gramming solvers by providing a computationally tractable method for generating cuts from
partial branch-and-bound trees. The framework we introduce is to (1) select a disjunction,
(2) choose a (compact) V-polyhedral relaxation for each disjunctive term, and (3) selectively
generate cuts by judiciously choosing objective directions to optimize over (PRLP) formed
from the point-ray collection.

Our investigation touches each of these aspects. We test the traditional disjunctions used
for cut generation (elementary split disjunctions and cross disjunctions), but we find that a
disjunction produced from a branch-and-bound tree yields far better cuts (despite the fact
that this is merely one disjunction, compared to the O(n) elementary split disjunctions or
O(n2) cross disjunctions). The quality of the cuts we obtain is closely tied with properties
of the partial branch-and-bound tree. An open problem that remains is how to assess when
to stop the partial branch-and-bound process and turn to cut generation.

The relaxation for each disjunctive term that we use is quite simple, but therein lies
its advantage. We experimented with tighter relaxations, but the marginal improvement
in gap closed was relatively little, and the tightening was expensive. However, we show
examples highlighting the weakness of our simple relaxations, that only a subset of all the
valid disjunctive cuts can be produced, and the computational results do, at times, reflect
this weakness. Thus, there is an opportunity to improve the quality of the generated VPCs
by considering tighter relaxations generated from structural information about each instance.

For the objective directions, we provide theoretical support for objective directions to
(PRLP) that yield new and strong VPCs more frequently than previous approaches (reducing
the percent of objectives failing to produce a cut from 80% in early experiments, to around
30% in the current implementation).

Overall, our computational results indicate that the cuts we generate are strong, as evi-
denced by the percent integrality gap they close (compared to both GMICs and the default
cut setting of Gurobi). Moreover, we generate VPCs non-recursively, based only on logical
conditions imposed on P and without implications from other cuts, and the integrality gap
they close increases steadily with the use of stronger disjunctions, avoiding the common
tailing off of strength experienced by other cut families that require recursive applications
to reach strong cuts. In addition, for some instances, our results show that the extra com-

119

putational effort pays off in reduced branch-and-bound time.
Last, but not least, though our experiments focus on generic mixed-integer programs,

there seem to exist classes of instances for which VPCs works particularly well. We have not
yet been successful in identifying what characteristics of an instance lend it to be particularly
amenable to our framework, but there exists the possibility for future specialization of the
VPC framework given special problem structure.

There are several other challenges moving forward in order to make VPCs truly practical.
Some of the remaining open questions are listed below.

1. We used full strong branching to generate the partial branch-and-bound tree; however,
while this is typically the strategy that empirically yields the smallest branch-and-
bound trees, it may not be the best one for generating useful VPCs. For example, it may
be better in some cases to use a strategy for the partial tree that differs substantially
from the default branch-and-bound strategy employed.

2. What is the best (from the perspective of resulting cuts) size of the partial tree?

3. Inequalities that cut away the LP optimal solution may not be the ones that help most
in branch-and-bound, so there may be benefit to generating inequalities from (PRLP)
scaled with β = −1.

4. The best number of cuts that should be generated for an instance remains unresolved.

5. The V-polyhedral relaxation we use is very simple; what are more complicated relax-
ations that can be used, and when do they merit the additional cost of obtaining them
(versus, for example, simply generating a larger partial branch-and-bound tree)?

6. Can VPCs be strengthened in an efficient way?

7. A partial branch-and-bound tree may lend some partial information about the structure
of the instance that can be used in many more ways than merely generating cuts, such
as informing a better branching strategy. This has been partially explored in the
past [85], but can the technique be effectively combined with cut generation?

120

Chapter 5

Towards a Correspondence Between
V-Polyhedral Cuts and
Lift-and-Project Cuts

This chapter is based on joint work with Egon Balas.

5.1 Introduction & preliminaries
In this chapter, using a combination of polarity and duality arguments, we make a con-
nection between V-polyhedral cuts (VPCs) and lift-and-project cuts (L&PCs), by mapping
a correspondence between feasible solutions to the point-ray linear program (PRLP) as in
Chapter 4 and to the cut-generating linear program (CGLP) from Section 1.4.1

We work with the following disjunction∨
t∈T

{x ∈ Rn : Atx ≥ bt}.

The system Atx ≥ bt could, as before, denote the inequalities of P along with the inequalities
of term t of a valid disjunction (1.1), but we also allow the more general case, such as the
setting of Chapter 4, where each term is relaxed to be the simple polyhedral cone arising from
a basic relaxation, in which case Atx ≥ bt would consist of the inequalities corresponding to
nonbasic variables at a vertex for term t. Let P t := {x ∈ Rn : Atx ≥ bt} (which we assume
is nonempty) be the H-polyhedral (inequality) description of disjunctive term t ∈ T , and
let (P t,Rt) denote the equivalent V-polyhedral description, i.e., the set of extreme points
and rays of P t, so that P t = conv(P t) + cone(Rt). Let PD := cl conv(∪t∈T P t) with extreme
points and rays given by the collection (P := ∪t∈T P t,R := ∪t∈TRt). For t ∈ T , let m′t
denote the number of rows of At. We first informally summarize some important disjunctive
programming concepts and the two cut-generating paradigms that we are relating.

1We derive many of our results from first principles, as we find it more intuitive, but the interested reader
can consult the texts [36, 98] for general principles of polarity and duality, as well as [140] in the context of
polyhedra. An overview of convex analysis that pertains to disjunctive cuts, and a more formal technical
treatment of disjunctive programming, is given by Balas [17, 19]; see also the paper by Cornuéjols and
Lemaréchal [62].

121

As discussed in Section 1.4, one way to generate valid cuts for PD is through the CGLP,
which is an application of disjunctive programming duality [17, Section 4]. To recap, the
essence of the technique is that an inequality αᵀx ≥ β is valid for PD if and only if the
inequality is valid for each P t, t ∈ T . Consequently, by Farkas’ lemma, αᵀx ≥ β is valid for
PD if and only if the following system is feasible, in variables (α, β, {vt}t∈T):

αᵀ = vtA
β = vtbt

vt ∈ Rm′t
≥0

 for all t ∈ T . (5.1)

Note that a straightforward application of Farkas’ lemma would produce β ≤ vtbt constraints.
We enforce equality, which is without loss of generality if either all the constraints Ax ≥ b
are subsumed by Atx ≥ bt (see Proposition 5.11), or if we assume the slack variable for the β
constraint is accounted for in each Atx ≥ bt system via the redundant inequality 0ᵀx ≥ −1.

A convenient geometric view is obtained by rewriting the set of requirements (5.1) as

(α, β) ∈
⋂
t∈T

cone
(
{(Ati·, bti)}i∈m′t

)
.

The vector −Ati· is called the normal to constraint i ∈ [m′t], which is the vector perpendicular
to Ati·x = bti in the direction that does not belong to the halfspace. The geometric insight
from this interpretation is that αᵀx ≥ β is valid for P t and supporting at a point pt ∈ P t

if and only if −α lies in the normal cone at pt, formed from the normals to constraints of
P t that are tight at pt.2 Hence, −α will lie in the intersection of the normal cones obtained
from each disjunctive term.

An alternative way to generate disjunctive cuts is through the reverse polar of PD [17,
Section 5], which is defined with respect to a given β̄ ∈ R as

{α ∈ Rn : αᵀx ≥ β̄ for all x ∈ PD}.

Clearly this captures all of the valid inequalities for PD having right-hand side β̄.3 Since
x ∈ PD if and only if x ∈ conv(P) + cone(R), it holds that αᵀx ≥ β̄ is valid for PD if and
only if it is satisfied by all of the points and rays in (P ,R). This yields the system (PRLP),
in variables α ∈ Rn, with respect to a fixed β̄

α
ᵀ
p ≥ β̄ for all p ∈ P

α
ᵀ
r ≥ 0 for all r ∈ R.

(PRLP(β̄))

This yields exactly the same facets of PD as (5.1) normalized by β = β̄:{
(α, {vt}t∈T) : (α, β̄, {vt}t∈T) is feasible to (5.1)

}
. (CGLP(β̄))

2Formally, the normal cone at pt is the closed convex cone of vectors forming obtuse angles with every
ray x− pt, x ∈ P t, i.e., {α ∈ Rn : αᵀ(x− pt) ≤ 0 for all x ∈ P t}.

3Note again the relationship to the normal cone. If a cut ᾱᵀx ≥ β̄ is valid for P t, then ᾱ belongs to
the reverse polar as defined. If the cut is supporting at pt ∈ P t, then ᾱᵀpt = β̄, which, plugging into the
definition, means that −ᾱ belongs to the normal cone at pt.

122

The advantage of using (PRLP) over (CGLP) is the absence of the Farkas multipliers as
variables, which implies that the optimization problem we solve to generate a cut is in the
original dimension of the problem, rather than in a lifted space. This is much more efficient
and enables us to test generating disjunctive cuts from disjunctions with many terms, as in
Chapter 4. Moreover, while the two cut-generating approaches are theoretically equivalent
(both contain all the facet-defining inequalities for the disjunctive hull; see Corollary 4.5),
we showed that by working in the nonbasic space, setting β̄ = 1, and selecting objective
functions judiciously, we can efficiently generate disjunctive cuts that are violated by x̄. This
β normalization can also be applied to the CGLP (as in (CGLP(β̄))), but most commonly
other normalizations are used, which may lead to cuts from the CGLP that are not even
supporting for the disjunctive hull [84]. VPCs thus have an immediate advantage over
L&PCs.

There is, however, a disadvantage to the (PRLP) formulation, which is precisely that we
do not obtain the Farkas multipliers, and hence we cannot directly apply the cut strength-
ening techniques described in Section 1.5. Thus, the practical motivation for pursuing a
constructive correspondence between feasible solutions to (PRLP) and feasible solutions to
(CGLP) is having a way to both efficiently generate and strengthen disjunctive cuts.

In Section 5.2, we start with an overview of several properties that are useful towards
establishing the correspondence. Section 5.3 then describes the interesting direction of the
correspondence, starting with a feasible cut generated via the PRLP and ending with a basis
for the CGLP. Section 5.4 goes through the details of a complete example.

5.2 Relationship between H- and V-polyhedral descrip-
tions

In this section, we state a few key properties relating valid cuts for PD to the H- and V-
polyhedral descriptions of PD. As the discussion is notation-heavy, we provide Table 5.1 as
a reference, ordered alphabetically.

Let ᾱᵀx ≥ β̄ be a valid inequality for PD. Let (ᾱ, {v̄t}t∈T) be a corresponding basic
feasible solution to (CGLP(β̄)).4 Let J t be the indices of the basic variables for term t ∈ T :

J t := {i ∈ [m′t] : vti is basic in {v̄t}t∈T }.

From J t, an important subset is the set of indices of variables taking strictly positive values:

J t+ := {i ∈ J t : v̄ti > 0}.

For t ∈ T and N ⊆ [m′t], let AtNx ≥ btN be the constraints of P t indexed by N and define

F̄ t(N) := {x ∈ Rn : AtNx = btN},
F t(N) := {x ∈ P t : AtNx = btN} = F̄ t(N) ∩ P t.

4When β̄ = 0, (ᾱ, {v̄t}t∈T) actually corresponds to an extreme ray of (CGLP(β̄)), which is not basic. In
this case, the “basis” will refer to the basis of the vertex at which the ray originates (which is the origin).

123

Table 5.1: Reference for notation used in this chapter, listed alphabetically.

Symbol Definition Comments

(ᾱ, β̄, {v̄t}t∈T) Extreme ray of (5.1)
Atx ≥ bt Inequalities defining term t ∈ T
β̄t β̄t := minx{ᾱᵀx : x ∈ P t} Not equal to β̄ for terms t ∈ T \ T ∗

F̄ t(N) F̄ t(N) := {x ∈ Rn : AtNx = btN}
Feasible region defined by inequalities
indexed by N ⊆ [m′t]

F t(N) F t(N) := {x ∈ P t : AtNx = btN}
Face of P t defined by inequalities
indexed by N ⊆ [m′t]

F t∗ conv(Pt∗) + cone(Rt∗) Face of P t exposed by the cut
J t {i ∈ [m′t] : vti is basic in {v̄t}t∈T } Indices of basic variables for term t

J t+ {i ∈ J t : v̄ti > 0} Indices of the strictly positive
variables for term t ∈ T

N t(x) {i ∈ [m′t] : Ati·x = bti}
Indices of the inequalities of P t tight
for x ∈ Rn

N t(p, r)
⋂

x∈{p+λr:λ∈R≥0}

N t(x) Indices of the inequalities tight for all
points on ray r ∈ Rn originating at p

N t∗
⋂

x∈P t:ᾱᵀx=β̄t

N t(x) Indices of the inequalities tight for
every element on the face of P t
exposed by ᾱᵀx ≥ β̄t

P t P t := {x ∈ Rn : Atx ≥ bt} Disjunctive term t ∈ T
(Pt,Rt) Extreme points and rays of P t

(Pt∗,Rt∗) Pt∗ := {p ∈ Pt : ᾱᵀp = β̄},
Rt∗ := {r ∈ Rt : ᾱᵀr = 0}

Extreme points and rays of P t that
are tight for the cut

T ∗ {t ∈ T : ∃pt ∈ P t s.t. ᾱᵀpt = β̄} Indices of the disjunctive terms that
the cut is tight on

124

We first state a simple relationship between J t+ and the indices of the tight inequalities of
P t at a given x̂ ∈ Rn, using the complementary slackness condition (Atx− bt)vt = 0.5

Proposition 5.1. For any t ∈ T and x̂ ∈ Rn such that Ati·x̂ ≥ bti for all i ∈ J t+, ᾱᵀx̂ = β̄
if and only if Ati·x̂ = bti for all i ∈ J t+, i.e., {x ∈ Rn : ᾱᵀx = β̄} = F̄ t(J t+).

Proof. We have that v̄tAt = ᾱ and v̄tbt = β̄.
⇐= Since Ati·x̂ = bti for all i ∈ J t+ and v̄ti = 0 for all i /∈ J t+,

ᾱ
ᵀ
x̂ = v̄tAtx̂ =

∑
i∈Jt+

v̄tiA
t
i·x̂ =

∑
i∈Jt+

v̄tib
t
i = v̄tbt = β̄.

=⇒ We are given that ᾱᵀx̂ = β̄. Then

β̄ = ᾱ
ᵀ
x̂ = v̄tAtx̂ =

∑
i∈Jt+

v̄tiA
t
i·x̂ ≥

∑
i∈Jt+

v̄tbti = v̄tbt ≥ β̄.

It follows that Ati·x̂ = bti for all i ∈ J t+.

Let T ∗ denote the index set for the disjunctive terms for which the cut is supporting,
i.e., for which there exists a point in P t tight for ᾱᵀx ≥ β̄:

T ∗ := {t ∈ T : there exists pt ∈ P t for which ᾱᵀpt = β̄}.

Let (P t∗,Rt∗) denote the points and rays from (P t,Rt) that are tight for the cut. That is,
p ∈ P t∗ if and only if p ∈ P t and ᾱᵀp = β̄, and r ∈ Rt∗ if and only if r ∈ Rt and ᾱᵀr = 0.

Denote the face of P t defined (exposed) by the cut by

F t∗ := {x ∈ P t : ᾱᵀx = β̄} = conv(P t∗) + cone(Rt∗).

Lemma 5.2. If t ∈ T ∗, then rank(AtJt) = |J t|.

Proof. By definition of a basis, the columns indexed by J t+ are linearly independent, which
means the vectors {(Ati·, bti)}i∈Jt+ are linearly independent. Let t ∈ T ∗ and assume for
the sake of contradiction that {Ati·}i∈Jt are not linearly independent, so there exists λ 6= 0
such that λᵀAtJt+ = 0. I claim that this implies that λᵀbtJt+ = 0, which is a contradiction.
Let p ∈ P t such that ᾱᵀp = β̄. By Proposition 5.1, Ati·p = bti for all i ∈ J t+. Hence,
0 = λᵀAtJt+p = λᵀbtJt+ .

Lemma 5.3. For t ∈ T ∗, F t∗ = F t(J t+) and dim(F t∗) ≤ dim(F̄ t(J t+)) = n− |J t+|.6

Proof. The first statement is immediate by Proposition 5.1 and the definition of F t(J t+).
For the second statement, observe first that F t∗ ⊆ F̄ t(J t+). Next, when F̄ t(J t) 6= ∅, F̄ t(J t+)
has dimension n− rank(AtJt+) = n− |J t+|, where the equality is due to Lemma 5.2.

5In the language of convex analysis, if x̂ ∈ P t, Proposition 5.1 and Lemma 5.3 imply that −ᾱ lies in the
normal cone at x̂ if and only if x̂ lies on the face of P t exposed by ᾱᵀx = β̄. See [98, Proposition 5.3.3].

6Using the convention that dim(∅) = −1.

125

The utility of Proposition 5.1 and Lemma 5.3 in the context of this chapter is clear. In
one direction, it shows that a basic feasible solution to (CGLP(β̄)) provides the indices J t+
that we can map to the face of P t exposed by the cut, which results in the set of points and
rays that are tight for the cut, from which we can ultimately find a cobasis for (PRLP(β̄)).7

The converse direction, which is the one of interest, of finding J t+ from a given (P t∗,Rt∗),
requires us to take into account potential degeneracy. For any x ∈ Rn, let

N t(x) := {i ∈ [m′t] : Ati·x = bti}

index the inequalities of P t, t ∈ T , that are tight at x. With this, for x ∈ P t, we can
rephrase Proposition 5.1 as ᾱᵀx = β̄ if and only if J t+ ⊆ N t(x). Slightly abusing notation,
for a ray r ∈ Rn emanating from a point p ∈ Rn, let

N t(p, r) :=
⋂

x∈{p+λr:λ∈R≥0}

N t(x).

For t ∈ T ∗, define

N t∗ :=
⋂
x∈F t∗

N t(x)

= {i ∈ [m′t] : Ati·x = bti for all x ∈ F t∗}
= {i ∈ [m′t] : Ati·p = bti for all p ∈ P t∗, Ati·r = 0 for all r ∈ Rt∗}

=
⋂
p∈Pt∗

(
N t(p) ∩

⋂
r∈Rt∗

N t(p, r)
)

as the indices of the inequalities satisfied at equality by all elements of P t that are tight
for the cut, corresponding to the intersection of all the cobases of the points and rays in
(P t∗,Rt∗); these cobases can be saved when collecting the points and rays (P t,Rt).

We first state a lemma relating N t∗ to J t+ and the dimension of the face exposed by the
cut—namely, if N t∗ and J t+ coincide, then the inequality in Lemma 5.3 holds at equality.
Knowing this dimension can be useful; for example, it can be incorporated as a criterion
for deciding which next cuts to pursue in the VPC framework. Note that we have an upper
bound on the dimension of F t∗ by (P t∗,Rt∗). Indeed, dim(F t∗) ≤ |P t∗| + |Rt∗| − 1, where
equality will only hold when these points and rays are all affinely independent.8

Lemma 5.4. For t ∈ T ∗, n−|N t∗| ≤ dim(F t∗) ≤ |P t∗|+ |Rt∗|−1. If (P t∗,Rt∗) are affinely
independent, then dim(F t∗) = |P t∗|+ |Rt∗| − 1. If J t+ = N t∗, then dim(F t∗) = n− |J t+|.

7This direction of the correspondence is obviously the easier one, and we do not really need the derived
results, as ᾱ is immediately feasible to (PRLP(β̄)), and the only remaining task is to identify a valid basis.
However, if something other than the β normalization is used for the CGLP, there may exist basic feasible
solutions that correspond to inequalities that are not facet-defining or even supporting for the disjunctive
hull, which means they will not exist as basic feasible solutions to (PRLP). See the discussion in [84].

8This is actually satisfied in the context of the basis cone relaxations used in Chapter 4. The basis cones
are simplicial, meaning every face of the cone is a simplex, which implies that all the points and rays incident
to the face are affinely independent.

126

Proof. The upper bound is clear. Next, we have that dim(F t∗) = n−rank(AtNt∗) ≥ n−|N t∗|.
When N t∗ = J t+, rank(AtNt∗) = |N t∗| = |J t+| by Lemma 5.2, proving the claim.

The set of points and rays on the face of P t exposed by the cut provide N t∗. To identify
J t+ from this set, we have the following proposition.

Proposition 5.5. For t ∈ T ∗, F t∗ = F t(N t∗) and J t+ ⊆ N t∗. If i ∈ N t∗ and F t(N t∗\{i}) 6=
F t∗, then i ∈ J t+. If F t(N t∗ \ {i}) 6= F t∗ for all i ∈ N t∗, then J t+ = N t∗.

Proof. The statement J t+ ⊆ N t∗ is obvious by Lemma 5.3: for any i ∈ J t+, F t∗ = F t(J t+)
implies that Ati·x = bti for all x ∈ F t∗ (vacuously for t /∈ T ∗), which means that i ∈ N t∗.

Let i ∈ N t∗ and consider F ′ := F t(N t∗ \ {i}) ⊇ F t∗. Suppose there exists xi ∈ F ′ \ F t∗.
This is a point that satisfies all but one of the inequalities of N t∗ and for which ᾱᵀxi > β̄,
as xi /∈ F t∗. By Proposition 5.1, xi must violate one of the inequalities indexed by J t+, and
since only i is removed from N t∗, a superset of J t+, it must be that i ∈ J t+. Thus, when all
i ∈ N t∗ satisfy the given property and belong to J t+, the equality J t+ = N t∗ holds.

Corollary 5.6. For t ∈ T ∗, if dim(F̄ t(J t+)) = dim(F t∗), and Atx ≥ bt is irredundant, then
J t+ = N t∗.

Proof. The conditions imply that there are no additional implied equalities of P t added to
J t+ when intersecting F̄ t(J t+) with P t, so N t∗ = J t+.

As a consequence of Proposition 5.5, when we are constructing a feasible solution to
(CGLP(β̄)) from a feasible solution to (PRLP(β̄)), the basic variables can be chosen from
N t∗. In general, identifying the strictly positive variables requires testing for redundancy in
the description of F t∗. We can avoid this step when {F t∗}t∈T ∗ belong to a class of polyhedra
called simple, which are precisely those that are not primal degenerate at any extreme point
or ray, i.e., for which every extreme point and ray is defined by a unique basis [140]. Note
that this is the situation for the basis cone relaxations used for VPCs in Chapter 4.

Definition 5.7. An n-dimensional pointed polyhedron P is called simple if every extreme
point of P is incident with exactly n facets of P and every extreme ray of P is incident with
exactly n− 1 facets of P .

Corollary 5.8. If t ∈ T ∗ and F t∗ is simple, i.e., |N t(p)| = n for all p ∈ P t∗ and |N t(r)| =
n− 1 for all r ∈ Rt∗, then J t+ = N t∗.

Proof. Let d := dim(F t∗). As F t∗ is simple, |N t∗| = n − d, i.e., F t∗ is contained in exactly
n−d facets of P t. (To see this, observe that |N t∗| ≥ n−d and AtNt∗ has full row rank because
the constraints indexed by N t∗ are a subset of the n linearly independent inequalities at any
vertex of F t∗.) For any i ∈ N t∗, F t(N t∗ \ {i}) is defined by n − d − 1 facets of P t, so it is
has one higher dimension than F t∗, meaning it contains a point of P t that does not belong
to F t∗. Since this holds for all i ∈ N t∗, by Proposition 5.5, J t+ = N t∗.

127

Connection to irregular cuts. We end this section with a sufficient condition for iden-
tifying irregular cuts (introduced in Section 1.4.2) using a V-polyhedral description of the
disjunctive terms (complementing the H-polyhedral characterization given by Balas and Kis
[30]). Suppose that, for all t ∈ T , the first m inequalities of Atx ≥ bt are the inequalities
Ax ≥ b defining the original linear programming relaxation (LP). Let Kt := J t ∩ [m] and
Kt+ denote the indices of the strictly positive multipliers. Define K as the union of the basic
CGLP variables, i.e., K := ∪t∈TKt.

Balas and Kis [30] characterize two types of irregular bases. if |K| > n, then the basis
is irregular of type 1, while if rank(AK) < |K|, the basis is called irregular of type 2. For
intuitive reasons, we refer to a type 1 basis as type >, and a type 2 basis as type <. A
facet-defining cut ᾱᵀx ≥ β̄ is irregular if every possible basis of (CGLP(β̄)) with α = ᾱ is
irregular.

Theorem 5.9. Suppose that for each t ∈ T , the constraints Atx ≥ bt contain Ax ≥ b as the
first m inequalities. Let ᾱᵀx ≥ β̄ be a valid facet-defining cut for PD. Suppose the associated
sets F t∗, for t ∈ T ∗, are all simple. Let N := ∪t∈T ∗N t∗ ∩ [m]. If |N | > n, then the cut is
irregular and every corresponding basis of (CGLP(β̄)) is of type >. If rank(AN) < |N |, then
the cut is irregular and every corresponding basis of (CGLP(β̄)) is of type <.

Proof. Corollary 5.8 implies that, regardless of which basis is chosen for (CGLP(β̄)) that
corresponds to this same cut, the set of positive multipliers J t+ will equal N t∗, so K ⊇ N .
Thus, when |N | > n, this gives rise to a setK with |K| > n, which implies the cut is irregular
of type >. When rank(AN) < |N |, the conditions of a type < basis are satisfied: any CGLP
basis will have a set of positive multipliers containing two linearly dependent rows.

5.3 From VPCs to L&PCs
In the previous section, we laid the groundwork for using a feasible solution (ᾱ, β̄) to (PRLP)
to get a basic feasible solution to (CGLP(β̄)). We proved that in the case that a given valid
cut exposes only simple faces on each disjunctive term, then the intersection of all the cobases
of the points and rays tight on that face provides the indices of the positive CGLP variables.
Fortunately, the setting of Chapter 4 is exactly one in which we use a simple (in fact, also
simplicial) polyhedral relaxation of each P t, and hence every face of that relaxation is simple.
The general setting is more challenging due to the potential presence of degeneracy. (See
Example 2 in Section 5.4.)

Our goal is to define the basic variables {J t}t∈T . To set the stage, what we need are as
many basic variables as there are rows of the system (CGLP(β̄)) excluding the nonnegativity
constraints, which is |T |(n + 1) basic variables. Without loss of generality, all of the α
variables will be basic (as they are free variables). We will show later in this section, in
Lemma 5.10, how to handle terms t ∈ T \ T ∗, by constructing J t such that |J t| = n + 1.
This implies that the remaining basic variables must satisfy

∑
t∈T ∗|J t| = |T ∗|(n+ 1)− n.

For each t ∈ T ∗, let pt ∈ P t such that ᾱᵀpt = β̄. There exists a cobasis for pt, N t ⊆ N t(pt)
with |N t| = n, such that ᾱᵀx ≥ β̄ is valid for

Ct := {x ∈ Rn : AtNtx ≥ btNt}.

128

We will select J t as a subset of N t. Note that this automatically means linear independence
of the vectors we choose is satisfied (in accordance with Lemma 5.2). This basis cone Ct has
one extreme point, pt, and the extreme rays {ri}i∈Nt are given by the columns of (AtNt)−1.9
Suppose for notational convenience that (P t,Rt) refers to the point-ray description of Ct

(rather than of P t). Thus, we define the sets (P t∗,Rt∗), F t∗, and N t∗ with respect to Ct.
The fact that Ct is both simple and simplicial has two implications. First, the collection

of tight points and rays (P t,Rt) is affinely independent. Second, the indices J t+ are uniquely
determined and given to us simply as N t∗. By Lemma 5.4,

|P t∗|+ |Rt∗| − 1 = dim(F t∗) = n− |N t∗| = n− |J t+|.

We also know that ᾱᵀx ≥ β̄ defines a facet of PD, certified by ∪t∈T ∗(P t∗,Rt∗). Thus,

n =
∑
t∈T ∗

(|P t∗|+ |Rt∗|) =
∑
t∈T ∗

(dim(F t∗)− 1) =
∑
t∈T ∗

(n− |J t+| − 1) = |T ∗|(n+ 1)−
∑
t∈T ∗
|J t+|.

Thus, setting J t = N t∗ for all t ∈ T ∗, we have the required number of basic variables for
(CGLP(β̄)). Now we discuss how to actually find their values.

Having identified the indices J t+, we now set the values v̄ti , i ∈ J t+, such that ᾱᵀ =∑
i∈Jt+ v̄tiA

t
i·. Each extreme ray of Ct corresponds to increasing the slack on one of the n

constraints defining Ct. For any j ∈ J t+, Atj·rj = Atj·(AtNt)−1
·j = 1 and Ati·r

i = 0 for all
i ∈ N t \ {j}, and the dot product ᾱᵀrj is known (and strictly positive). It follows that,

ᾱ
ᵀ
rj =

∑
i∈Jt+

v̄tiA
t
i·r

j = v̄tjA
t
j·r

j =⇒ v̄tj = ᾱ
ᵀ
rj.

In the case that there exists a point of P t, t ∈ T ∗, tight for the cut and having no primal
degeneracy, we would pick that point as pt, and the rest of the construction for that term
would proceed as above. When there is degeneracy at pt, we have to take care to pick a
subset N t ⊂ N t(pt) so that ᾱᵀx ≥ β̄ is valid for the resulting basis cone.

Lastly, we address setting the values of vt for a disjunctive term t ∈ T \ T ∗, i.e., one
for which the cut is not supporting. First, observe that there exists β̄t such that ᾱᵀx ≥ β̄t
is supporting for P t, and we can find β̄t using P t. The first statement is due to the linear
program minx{ᾱᵀx : x ∈ P t} being bounded (it has value at least β̄ because the given cut
is valid for P t). The second statement is due to the fact that a linear program achieves its
optimum at an extreme point, and we have these extreme points in P t, so

β̄t := min
x∈P t

ᾱ
ᵀ
x = min

p∈Pt
ᾱ
ᵀ
p.

That is, we only have to check the dot product of ᾱ with each point in the point-ray collection
from term t. Analogously to the T ∗ case, let pt ∈ arg minp{ᾱ

ᵀp : p ∈ P t}, and let N t ⊆
N t(pt) denote a cobasis of pt such that ᾱᵀx ≥ β̄t is valid for Ct := {x ∈ Rn : AtNtx = btNt}.

Let J t be the set containing N t and the index of the inequality 0ᵀx ≥ −1 assumed to be
in the system (say this corresponds to index 0). Observe that {(Ati·, bti)}i∈Nt ∪ (0ᵀ,−1) are

9Add slack variables st
Nt for each row indexed by N t, so that At

Ntx − st
Nt = bt

Nt . Then observe that
x = (At

Nt)−1bt
Nt +(At

Nt)−1st
Nt = pt +

∑
i∈Nt rist

i. Keeping the rays unscaled is important for our derivation.

129

linearly independent, as AtNt has rank n because it defines a vertex of P t, so 0ᵀ cannot be
written as a linear combination of the rows of AtNt , meaning (0ᵀ,−1) is linearly independent
of the vectors (AtNt , btNt).

We set the values of vt by the same recipe as before for all i ∈ N t, i.e., by setting
v̄ti = ᾱᵀri, where ri denotes the column of (AtNt)−1 associated with i ∈ N t. This means that∑

i∈Nt

v̄tib
t
i = ᾱ

ᵀ
∑
i∈Nt

(AtNt)−1
·i b

t
i = ᾱ

ᵀ(AtNt)−1bt = ᾱ
ᵀ
pt = β̄t.

For i = 0, we simply set v̄t0 = β̄t − β̄. This implies that v̄tbt = β̄t − (β̄t − β̄) = β̄, as desired.
We also can check that the coefficient on ᾱj, j ∈ [n], is correctly set:

v̄tAt·j =
∑
i∈Nt

v̄tiA
t
ij =

∑
i∈Nt

ᾱ
ᵀ(AtNt)−1

·i A
t
ij = ᾱ

ᵀ(AtNt)−1At·j = ᾱ
ᵀ
ej = ᾱj.

We have proved the following lemma, which completes the desired correspondence.

Lemma 5.10. If t ∈ T \ T ∗, then |J t| = n+ 1 without loss of generality. �

A final computational remark: in the context of Chapter 4, we have already performed
the expensive inverse computation to get the rays of each Ct (at the time the point-ray
collection is determined).

5.4 Correspondence examples
In this section, we give three examples of the correspondence between the V-polyhedral
and H-polyhedral cut-generating approaches (i.e., between feasible solutions of (PRLP) and
(5.1)). The first example shows the construction of an irregular basis (but not an irregular
cut), the second example illustrates the effect of degeneracy, and the third example shows
the effect of a disjunctive term for which the cut is not supporting.

Example 1.

Consider the following problem:

min
x1,x2

−x2

2x1 − x2 ≥ 1/2 (c1.1)
−(1/2)x1 − x2 ≥ −3/4 (c1.2)
x1, x2 ∈ Z

The optimal solution to the linear programming relaxation is x̄ = (1/2, 1/2). A valid dis-
junction is (−x1 ≥ 0; −x2 ≥ 0) ∨ (x1 ≥ 1; −x2 ≥ 0). The disjunctive hull introduces two
new inequalities (cuts):

(1/2)x1 − x2 ≥ 1/2 (c1.3)
−x2 ≥ 0. (c1.4)

130

(c1.1)
(c1.2)

(c1.3)

(c1.4)

x̄

P 1

P 2

x̄

P 1

P 2{1,3}

{1} {3}

{7,8} {6,8}
{6}

{7}

Figure 5.1: Left panel: feasible region of P and the disjunction for the example. Right panel:
the inequalities tight for each extreme point, numbered as in the CGLP.

The disjunction, incorporating the inequalities of P , is
2x1 − x2 ≥ 1/2

−(1/2)x1 − x2 ≥ −3/4
−x1 ≥ 0
−x2 ≥ 0

 ∨


2x1 − x2 ≥ 1/2
−(1/2)x1 − x2 ≥ −3/4

x1 ≥ 1
−x2 ≥ 0

.
To distinguish between the inequalities of the two disjunctive terms, we will refer to the
inequalities defining P 1 by numbers 1 through 4 and to the inequalities defining P 2 by
numbers 5 through 8, which will also correspond to the numbering for the columns (variables)
of the CGLP for this problem. The LP feasible region and the boundary of the disjunctive
terms are shown in the left panel of Figure 5.1. The right panel indicates the cobasis of
each extreme point and ray of P 1 and P 2, where the numbers in the braces indicate the
inequalities tight at that point or ray.

The following is the feasible region of the CGLP for this example.

v1
1 v1

2 v1
3 v1

4 v2
5 v2

6 v2
7 v2

8 α1 α2 β

2 −1/2 −1 0 −1 = 0
−1 −1 0 −1 −1 = 0
1/2 −3/4 0 0 −1 ≥ 0

2 −1/2 1 0 −1 = 0
−1 −1 0 −1 −1 = 0
1/2 −3/4 1 0 −1 ≥ 0

1 = 1/2

The PRLP, with β fixed to 1/2, is as follows, constructed from the extreme points and
rays of P 1 and P 2.10 We also indicate the cobasis of each point and ray, as well as the
slack with respect to ᾱᵀ = (1/2,−1), corresponding to cut (c1.3). We use this solution to

10Note that P 1 and P 2 share an extreme ray (0,−1), and this extreme ray is redundant, in the sense that
it can never be tight for any valid cut for PD. This demonstrates the importance of preprocessing the PRLP
in practice, which we discussed in Chapter 4.

131

construct a basic feasible solution to (CGLP(β̄)).

α1 α2 β cobasis slack name

0 −1/2 ≥ 1/2 {1, 3} 0 p1

0 −1 ≥ 0 {3} 1 r1

−1 −2 ≥ 0 {1} 3/2 r3

1 0 ≥ 1/2 {7, 8} 0 p2

3/2 0 ≥ 1/2 {6, 8} 1/4 p3

1 −1/2 ≥ 0 {6} 1 r5

0 −1 ≥ 0 {8} 1 r8

Observe that the tight points and rays for this cut are (0,−1/2) and (1, 0); call them p1

and p2. We have that N1∗ = N1(p1) = {1, 3} and N2∗ = N2(p2) = {7, 8}. Following the
procedure of the previous section, we define the cones C1 and C2. The apex of C1 is p1 and
its rays are r1 and r3, while the apex of C2 is p2 and its rays are r7 and r8. These are all
defined in the point-ray collection except for r7, which can be calculated to equal (1, 0).11
We set values v̄1

1 = ᾱᵀr1 = 1, v̄1
3 = ᾱᵀr3 = 3/2, v̄2

7 = ᾱᵀr7 = 1/2, and v̄2
8 = ᾱᵀr8 = 1.

Observe that

v̄1(A1, b1) = v̄1
1(2,−1, 1/2) + v̄1

3(−1, 0, 0) = (1/2,−1, 1/2) = (ᾱᵀ, β̄)
v̄2(A2, b2) = v̄2

7(1, 0, 1) + v̄2
8(0,−1, 0) = (1/2,−1, 1/2) = (ᾱᵀ, β̄).

Hence, we have identified the desired Farkas multipliers, as desired.
In this case, the set of inequalities of P associated with positive CGLP variables is

K = {1}. However, neither the basis nor the cut is irregular. Although the number of basic
multipliers on the constraints of P is one (fewer than n = 2), the associated submatrix of A
has full row rank, so we can complete a cobasis N ⊇ K that gives rise to the cut, namely
N = {1, 2}. The fact that the cut is not irregular can also be seen by using the CGLP
variables {v1

3, v
1
4} and {v2

7, v
2
8}, which yield the set convex S for this example, i.e., that the

cut is an intersection cut from the disjunction (−(3/2)x1 ≥ 0) ∨ ((1/2)x1 − x2 ≥ 1/2).
If we were to use the technique of Chapter 4, then prior to generating a cut, we would

choose a basis cone for each disjunctive term and get the corresponding simple point-ray
collection. One of the possibilities for arg minx{−x2 : x ∈ P 2} is the point p3 = (3/2, 0) (in-
stead of (1, 0)). If that point were chosen, the cut (c3.3) would not be feasible for C(N2(p3)).
Moreover, the points and rays (P1,R1) would all be immediately redundant. The reason
is that one of the rays at C(N2(p3)) is (−1, 0), which intersects the boundary of the first
disjunctive term. In Section 4.5.2, we discussed a potential remedy were such a situation
to arise. The idea is to “activate” disjunctive inequalities to prevent rays originating in one
term of the disjunction from intersecting other terms.

Example 2.

We illustrate the complication caused by degeneracy by the instance shown in Figure 5.2.
The figure shows the feasible region to a polyhedron P (truncated by the unit cube), whose

11Note that the rays in the point-ray collection are unscaled, corresponding directly to (At
Nt∗)−1, as

otherwise we have to normalize when computing the values of the CGLP multipliers.

132

x1 = 0

x1 = 1

(c2.1)

(c2.2)

(c2.3)

x1 = 0

x1 = 1
p1

p2

p3

Figure 5.2: Example 2 illustrating disjunctive terms with primal degeneracy. The initial
polyhedron has no degeneracy, but it is introduced after taking the disjunction.

constraints are below, and a cut derived from the disjunction (−x1 ≥ 0) ∨ (x1 ≥ 1).

−(13/8)x1 − (1/4)x2 − x3 ≥ −15/8 (c2.1)
(1/2)x1 + x2 ≥ 1/2 (c2.2)
(1/2)x1 − x3 ≥ −3/4 (c2.3)
(1/2)x1 − x2 ≥ −1/2 (c2.4)

x2 ≥ 0 (c2.5)

The disjunctive cut we generate is

−(5/8)x1 − (1/4)x2 − x3 ≥ −7/8,

from which we set ᾱᵀ = (−5/8,−1/4,−1) and β̄ = −7/8. The cut, depicted in the right panel
of the figure, is incident to a point on P 1, p1 = (0, 1/2, 3/4), that is tight for four inequalities:
three defining P (constraints 2–4), and one being x1 = 0. These four inequalities comprise
N1∗: N1∗ = {2, 3, 4, 01} (where 01 refers to the disjunction-defining inequality −x1 ≥ 0).
Note that the original polyhedron is simple, but P 1 is not.

Applying the correspondence procedure detailed in Section 5.3, we require the choice of
a set N1 ⊆ N1(p1) such that ᾱᵀx ≥ β̄ is valid for C(N1). We cannot choose an arbitrary
subset of three indices from N1(p1). Of course, one of the inequalities in N1 must be −x1 ≥ 0
(otherwise, we have not impose the disjunction, and the cut is not valid for C({2, 3, 4})). For
the remaining inequalities, we need to pick two of {2, 3, 4}. If we pick {2, 3}, we again get an
invalid basis cone: one of the rays (corresponding to the slack on inequality (c2.2)) is (0, 1, 0),
and ᾱᵀ(0, 1, 0) = −1/4 6≥ 0). It can be verified that the only valid choice for this example
is N1 = {3, 4, 01},12 which results in the cone C(N1) having three rays: r3 = (0, 0,−1),

12We are essentially finding an optimal basis of minx{ᾱᵀx : x ∈ P 1} from knowing the optimal solution.

133

r4 = (0,−1, 0), and r01 = (−1,−1/2,−1/2). Calculating the dot product of the cut with
each of these rays, we find v̄1

3 = 1, v̄1
4 = 1/4, and v̄1

01 = 5/4, satisfying v̄1(A1, b1) = (ᾱᵀ, β̄).
On the other side of the split, the cut is incident to two points, p2 and p3 as labeled in

the right panel of Figure 5.2, resulting in N2∗ = N2(p2)∩N2(p3) = {1, 02} (02 corresponding
to x1 ≥ 1). The point p2 is nondegenerate, having cobasis N2 := N2(p2) = {1, 2, 02}. Using
this point to define the basis cone for term 2, we get that the rays of C(N2) (by taking the
inverse of A2

N2) are r1 = (0, 0,−1), r2 = (0, 1,−1/4), and r02 = (1,−1/2,−3/2). From this,
we calculate that v̄2

1 = ᾱᵀr1 = 1 and v̄2
02 = ᾱᵀr02 = 1 (it is unnecessary to check ᾱᵀr2, as

2 /∈ N2∗, which means the dot product will necessarily equal 0). It is easy to see that this
solution satisfies v̄2(A2, b2) = (ᾱᵀ, β̄).

Example 3.

In this third example, we demonstrate the case of a cut that is not supporting for one of the
disjunctive terms, using a variant of the irregular cut illustrated in Figure 1.6. Consider the
following integer program:

min
x1,x2

−x1 − x2

(5/2)x1 − x2 ≥ −5/4 (c3.1)
−x1 + (5/2)x2 ≥ −5/4 (c3.2)
−x1 − x2 ≥ −7/4 (c3.3)
x1, x2 ∈ Z

Let Ax ≥ b denote the inequalities (c3.3)–(c3.1). We will use the three-term disjunction

 Ax ≥ b
−x1 ≥ 0
−x2 ≥ 0

 ∨
 Ax ≥ b

x1 ≥ 1
−x2 ≥ 0

 ∨
 Ax ≥ b
−x1 ≥ 0
x2 ≥ 1

.
The disjunctive hull introduces one cut, which we define as ᾱᵀx ≥ β̄:

−x1 − x2 ≥ − 5/4. (c3.4)

Figure 5.3 shows the LP feasible region in the left panel and the result of taking the disjunc-
tion (including the addition of the disjunctive cut) in the right panel.

The feasible region of (PRLP(β̄)), with β̄ = −5/4, is given below, as well as the slack of
each point with respect to the cut (c3.4). The cobasis of each point is also indicated. As in
Example 1, to better distinguish among the disjunctive terms, we number the inequalities
sequentially: inequalities 1–5 for term 1, inequalities 6–10 for term 2. and inequalities 11–15

134

x1

x2

(c3.3)

(c3.1)

(c3.2)

p13 p12

p11

p14

p23

p22 p21

p33

p32

p31

Figure 5.3: Example of an irregular cut from a three term non-simple disjunction. The term
defined by (x1 ≤ 0, x2 ≤ 0) ultimately causes irregularity of the type in which |N | > n.

for term 3, where the first three indices for each term refer to the original inequalities Ax ≥ b.

α1 α2 β cobasis slack name

0 −1/2 ≥ −5/4 {2, 4} 7/4 p11

0 0 ≥ −5/4 {4, 5} 5/4 p12

−1/2 0 ≥ −5/4 {1, 5} 7/4 p13

−5/6 −5/6 ≥ −5/4 {1, 2} 35/12 p14

5/4 0 ≥ −5/4 {7, 10} 0 p21

1 0 ≥ −5/4 {9, 10} 1/4 p22

1 −1/10 ≥ −5/4 {7, 9} 7/20 p23

0 5/4 ≥ −5/4 {11, 14} 0 p31

0 1 ≥ −5/4 {14, 15} 1/4 p32

−1/10 1 ≥ −5/4 {11, 15} 7/20 p33

Observe that none of the points from P 1 = conv({p11, p12, p13, p14}) are tight for the cut, so
the cut is not supporting for that term. We will return to this term after getting the values
of v2 and v3.

The only point tight (having zero slack) on P 2 for the cut is p21. Its cobasis is N2(p21) =
{7, 10}, where inequality 7 refers to (c3.2), and inequality 10 to −x2 ≥ 0. As this is the
only tight point, and its cobasis is nondegenerate, we have that N2∗ = J2. To calculate
the values of v2, we need the rays of C(N2(p21)). Taking the inverse of A2

N2(p22), we get
that r7 = (−5/2,−1) and r10 = (−1, 0). Thus, we calculate that v̄2

7 = ᾱᵀr7 = 7/2 and
v̄2

10 = ᾱᵀr10 = 1.
For term 3, the only tight point is p31, which leads to J3 = {11, 14}, where inequality 11

corresponds to (c3.1) and inequality 14 to −x1 ≥ 0. The rays of C(N3(p31)) are r11 = (0,−1)
and r14 = (−1,−5/2), resulting in values v̄3

11 = ᾱᵀr11 = 1 and v̄3
14 = ᾱᵀr14 = 7/2. It is easy

135

to verify that v̄t(At, bt) = (ᾱᵀ, β̄) for t ∈ {2, 3}.
We now handle term 1, by first calculating the optimal point minp{ᾱᵀp : p ∈ P1}—it is

simply the point of P1 with minimum slack, which happens to be uniquely the point p12 =
(0, 0), with cobasisN1(p12) = {4, 5} (which equalsN1∗ because the cobasis is nondegenerate).
The rays of C(N1(p12)) are r4 = (−1, 0) and r5 = (0,−1), which yields values v̄1

4 = ᾱᵀr4 = 1
and v̄1

5 = ᾱᵀr5 = 1. As stated in the discussion preceding Lemma 5.10, assuming 0ᵀx ≥ −1
is also part of the system defining term 1, say with inequality index 0, we set v̄1

0 = 5/4 to
compensate for the right-hand side disparity between β̄ = −5/4 and ᾱᵀp12 = 0. Note that in
this example, the inequalities defining P t subsume the Ax ≥ b constraints. This means, by
Proposition 5.11, that there exists a feasible solution v1 without using positive weight on the
redundant slack constraint. Moreover, the proof of that result is constructive. We leave it
as an exercise that applying this construction produces another feasible solution for term 1,
v̄1

1 = (0, 0, 5/7, 2/7, 2/7). This happens to have only three positive variables, which we can
choose for our basis.

The above basis is irregular. Define the set K as the indices of Ax ≥ b that have positive
multipliers in {v̄t}t∈T . We find that K = {1, 2, 0} (in the case that 0ᵀx ≥ −1 is used with
positive weight) or K = {1, 2, 3}; thus the basic feasible solution we constructed is irregular.
However, there actually exists a regular basis for this example. This is because, due to the
particular structure of this instance, any three of the five variables v1

1, . . . , v
1
5 can be made

basic, e.g., we can use v1 = (1, 0, 0, 7/2, 0), with v1
1, v1

4, and v1
5 basic. The corresponding

point of P is p14, which is is feasible to the disjunction. Though we cannot take a standard
intersection cut from this cobasis, we can generate a simple disjunctive cut via Lemma 1.2,
which results precisely in the cut (c3.4). We discuss a variant of this example in more detail
in Appendix A.

5.5 Enforcing equality in the β constraints
We prove that enforcing equality in the constraints vtbt = β (as opposed to vtbt ≥ β) holds
without loss of generality, meaning that we do not lose any valid cuts obtainable from PD.

Proposition 5.11. Let ᾱᵀx ≥ β̄ denote a feasible inequality for PD that cuts some point of
P := {x ∈ Rn : Ax ≥ b}, and v̄t, t ∈ T , a set of Farkas multipliers certifying the validity of
the cut. Suppose that Atx ≥ bt includes all the constraints Ax ≥ b for every t ∈ T for which
the cut is not supporting on P t. Then there exists {v̄t}t∈T such that v̄tbt = β̄ for all t ∈ T .

Proof. Let t ∈ T . We have that v̄tAt = ᾱᵀ and v̄tbt ≥ β̄. If the cut is supporting for P t, it
always holds that v̄tbt = β̄: given pt ∈ P t such that ᾱᵀpt = β̄, it follows that

β̄ = ᾱ
ᵀ
pt = v̄tAtpt ≥ v̄tbt ≥ β̄,

so all the inequalities, including the last, hold at equality.
Now suppose ᾱᵀx ≥ β̄ is not supporting for P t. Since ᾱᵀx ≥ β̄ for all x ∈ PD, we

have that: (1) there exists β̃0 ∈ R such that ᾱᵀx ≥ β̃0 is valid and supporting for P ,
and (2) there exists β̃t ∈ R (with β̃t > β̃0 and β̃t > β̄) such that ᾱᵀx ≥ β̃t is valid and
supporting for P t. (These can be obtained by minimizing ᾱᵀx over x ∈ P and x ∈ P t.)

136

Therefore, there exist nonnegative vectors ṽ0 and ṽt such that ṽ0At = ᾱ, ṽ0bt = β̃0 (where
ṽti = 0 for all indices not corresponding to the constraints of Ax ≥ b), and ṽtAt = ᾱ,
ṽtbt = β̃t. Hence, letting θt = (β̃t − β̄)/(β̃t − β̃0), which is nonnegative by the assumption
that β̄ > minx{ᾱᵀx : x ∈ P t} = β̃0, we can set v̄t = θtṽ

0 + (1 − θt)ṽt, from which it follows
that v̄tAt = ᾱ and v̄tbt = β̄.

5.6 Conclusion
This chapter establishes the details of a correspondence between the bases of the linear
programs used to generate cuts from the V-polyhedral and lift-and-project methodologies. In
our experiments of Chapter 4, there exist instances for which Gomory cuts are much stronger
than V-polyhedral cuts. We hypothesize that modularization of the cut coefficients plays
a substantial explanatory role, and this chapter provides a necessary step towards testing
that hypothesis. Namely, the correspondence we develop enables applying cut strengthening
techniques to V-polyhedral cuts, by deriving the Farkas multipliers that are required for the
technique. This theoretical derivation requires substantial complementary computational
experimentation, to ascertain whether the strengthening be done efficiently in practice, and
whether (and under what conditions) the extra effort to strengthen the cuts is worthwhile
in terms of producing sufficiently stronger cuts.

137

138

He taught her how to split and define
But if you study the logistics
And heuristics of the mystics
You will find that their minds rarely move in a line

—Brian Eno, Backwater, 1977

Chapter 6

Conclusions & Future Research

This dissertation focuses on the development and evaluation of non-recursive methods for
generating cutting planes for mixed-integer linear programs. We investigate three distinct
frameworks: partial hyperplane activation for generalized intersection cuts (Chapter 2), cut-
tings planes by tilting on split disjunctions (Chapter 3), and V-polyhedral cuts (Chapter 4).

These trace an organic progression of increasingly stronger cuts, culminating with V-
polyhedral cuts, in which we provide a computationally efficient approach for separating
cuts from general valid disjunctions (as opposed to the limited class of simple disjunctions
studied in much of the literature). Instead of the common practice of using a multitude of
weak disjunctions derived from the integrality of one or two variables, we obtain cuts from
one strong disjunction arising from the set of leaf nodes of a partial branch-and-bound tree.
The computational results with V-polyhedral cuts demonstrate that we are able to effectively
generate cuts from these strong disjunctions that are substantially stronger than the baselines
of Gomory cuts and those cuts that are currently implemented in the commercial solver
Gurobi. Moreover, for many instances, providing the cuts to Gurobi, for use during branch-
and-bound, results in reduced solving times. Given these promising results, in Chapter 5, we
build a Farkas certificate for our cuts, which is a necessary ingredient for applying classical
cut strengthening techniques to V-polyhedral cuts.

Altogether, this dissertation contributes methods, theory, and computational experience
on the frontier of cutting plane research. The results indicate two primary directions for
related future research. First, a practical implementation of the cuts we introduce would
benefit from a refined understanding of the interactions between the presolve, cutting plane,
and branching components of a solver. For example, in the context of V-polyhedral cuts,
we have left open the questions of which instances are amenable to the cuts, and if they
are applied, then which particular partial branch-and-bound tree should be used for cut
generation. This represents an area of active research (see, e.g., [118]). Second, our single-
minded purpose has been the setting of mixed-integer linear programming. However, some of
our techniques have natural extensions to nonlinear programming, an area with increasing
prevalence and importance. More concretely, there has already been recent work testing
intersection cuts for polynomial optimization [42]. Simultaneously, progress has been made
on resolve capabilities and branch-and-bound methods for nonlinear settings [41], which may
enable the the extension of V-polyhedral cuts to convex optimization settings. It is therefore
worthwhile to pursue generalizations of our methods to nonlinear disjunctive programming.

139

140

Appendix A

On Regular Bases and Simple
Disjunctive Cuts

In this chapter, we make a distinction between irregular cuts defined as those that cannot
be obtained as a standard intersection cut (SIC) and a more general class of irregularity:
cuts that cannot be obtained as a simple disjunctive cut, as defined in Lemma 1.2. The
key difference is that simple disjunctive cuts apply without the assumption that the point
being separated does not belong to the disjunctive hull. We also prove that regularity
of a cut is related only to the positive variables in a solution to the cut-generating linear
program (CGLP) for the terms of the disjunction for which the cut is supporting. After we
formally define a regular basis, we give a motivating example, which generalizes the one from
Figure 1.8 in Chapter 1.

Definition A.1. A regular basis of (CGLP) is defined as one in which the set K := {i ∈
[m] : vti > 0 for some t ∈ T } has cardinality at most n and AK has full row rank.

Consider the example shown in Figure A.1. The first panel of the figure gives the feasible
region to the linear programming relaxation of the following integer program:

min
x1,x2

−x2

2x1 − x2 ≥ −1
−x1 + 2x2 ≥ −1
−x1 − x2 ≥ −7/4
x1, x2 ∈ Z

In the second panel, we display the imposition of the disjunction(
−x1 ≥ 0
−x2 ≥ 0

)
∨
(

x1 ≥ 1
−x2 ≥ 0

)
∨
(
−x1 ≥ 0
x2 ≥ 1

)
.

The result is the generation of a new disjunctive cut,

−x1 − x2 ≥ 1.

141

x1

x2

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≥ 0

Figure A.1: Example of a cut that cannot be derived as a SIC, but can be generated as a
simple disjunctive cut. The first panel shows the feasible region of the linear programming
relaxation. The second panel shows the result of taking a three-term non-simple disjunction
and the associated cut (with a wavy line). The last panel shows the boundary of the convex
set S resulting from the CGLP variables on the disjunctive inequalities.

142

From the figure, it is clear that this cut cannot be obtained as a SIC. There are two bases
corresponding to points of P that are not feasible to the disjunctive hull, and the SICs from
these bases are dominated by the above cut.

This cut has associated regular and irregular bases, depending on the choice of basic
variables for term 1. Suppose an irregular basis is returned, which results in the following
multipliers for the corresponding CGLP:

u1 = (0, 0, 4/7) u1
0 = (3/7, 3/7)

u2 = (0, 1, 0) u2
0 = (0, 3)

u3 = (1, 0, 0) u3
0 = (3, 0).1

Multiplying the inequalities of the disjunction by the ut0 multipliers gives rise to the simple
disjunction

(−(3/7)x1 − (3/7)x2 ≥ 0) ∨ (−3x2 ≥ 0) ∨ (−3x1 ≥ 0).
Reversing these inequalities and taking their conjunction yield the convex cut-generating set
S shown in the bottom of Figure A.1.

The index set of the inequalities of P with positive CGLP variables is N = {1, 2}. The
associated rays of the cone C(N) and optimal tableau are provided by the columns of A−1

N :

A−1
N =

[
2/3 1/3
1/3 2/3

]
=⇒ x1 = −1 + (2/3)s1 + (1/3)s2

x2 = −1 + (1/3)s1 + (2/3)s2,

where s1 and s2 are the nonnegative slacks associated with the first two constraints of P .
Using this optimal tableau, we can express the simple disjunction above in the space of

the nonbasic variables:

(−(3/7)s1 − (3/7)s2 ≥ −6/7) ∨ (−s1 − 2s2 ≥ −3) ∨ (−2s1 − s2 ≥ −3).

Normalizing each term by the right-hand side, we obtain

(−(1/2)s1 − (1/2)s2 ≥ −1) ∨ (−(1/3)s1 − (2/3)s2 ≥ −1) ∨ (−(2/3)s1 − (1/3)s2 ≥ −1).

Finally, applying the formula for the simple disjunctive cut from Lemma 1.2, a valid cut
for the disjunction is

max{−1/2,−1/3,−2/3}s1 + max{−1/2,−1/3,−2/3}s2 ≥ min{−1,−1,−1}
=⇒ −s1 − s2 ≥ −3
=⇒ −(2x1 − x2 + 1)− (−x1 + 2x2 + 1) ≥ −3
=⇒ −x1 − x2 ≥ −1.

We conjecture that the fact that the cut in this example can be derived as a simple
disjunctive cut is no coincidence. Let (α, β, {ut, ut0}t∈T) denote a feasible solution to the
CGLP such that αᵀx ≥ β is not valid for PD. Let S be defined as {x ∈ Rn : ut0Dtx ≤
ut0D

t
0 for all t ∈ T }, and let S ′ := {x ∈ S : αᵀx ≤ β}. We first prove that, in a specific

sense, the terms for which αᵀx ≥ β is not supporting are redundant.
1A regular basis is, for example, obtained by setting (u1, u1

0) = (u2, u2
0).

143

Proposition A.2. Let (α, β, {ut, ut0}t∈T), S, and S ′ be defined as above. If αᵀx ≥ β is not
supporting for a term t ∈ T , then the inequality ut0Dtx ≤ ut0D

t
0 is redundant for S ′.

Proof. Note that the set S ′ is convex, and it is PI-free (it is a restriction of S, which is
PI-free by definition). Moreover, αᵀx ≥ β being valid for P \ intS means that the cut is also
valid for P \ intS ′. Now suppose the cut is not supporting for some term t ∈ T . The cut
is valid for {x ∈ P : ut0Dtx ≥ ut0D

t
0}, but it is not supporting for that set. It follows that

ut0D
tx ≤ ut0D

t
0 is, in turn, not supporting for the set S ′.

The utility of this is evident from the formula for the simple disjunctive cut. Namely,
given a cobasis N and a disjunction ∨t∈T (dtsN ≥ dt0) in the nonbasic space, the cut is∑

j∈N

max
t∈T

dtjsj ≥ min
t∈T

dt0,

so if we can replace the disjunction by one with fewer terms, we get a stronger cut.
We now state our conjecture for extending Theorems 9 and 12 by Balas and Kis [30] to

cover simple disjunctive cuts, not merely SICs.

Conjecture A.3. Let (α, β, {ut, ut0}t∈T), S, and S ′ be defined as above. Define T ∗ := {t ∈
T : there exists p ∈ P t for which αᵀp = β}. Let K∗ := {i ∈ [m] : uti > 0 for some t ∈ T ∗}.
If |K∗| ≤ n and rank(AK∗) = |K∗|, then then the cut αᵀx ≥ β is equivalent to the simple
disjunctive cut associated with the sets S ′ and N .

Suppose K∗, defined as in the conjecture, has cardinality at most n and rank(AK∗) =
|K∗|. The idea is there exists a setN ⊆ [m] that containsK∗ and for which AN is nonsingular.
If the point A−1

N bN ∈ intS, then the validity of the conjecture follows from [30, Theorem 9].
The result is also true when A−1

N bN violates all the inequalities defining S: in this case, we
can normalize each of these inequalities to have right-hand side −1 in the nonbasic space, as
in the example, and the cut corresponds to intersecting each ray of C(N) with the farthest
facet-defining inequality for S.

144

Appendix B

Three Normalizations for
Lift-and-Project Cuts

In this chapter, we discuss three normalizations for the CGLP and provide some geometric
intuition for what they do to the feasible region of the membership linear program (MLP),
the dual to (CGLP) (see Section 1.4). The motivation is a better understanding of lift-and-
project cuts (L&PCs). A geometric presentation of different normalizations also appears
in the dissertation of Soares [136, Chapter 3]. We give particular focus to the so-called
trivial normalization, for which we provide the optimal solutions to the MLP and CGLP for
an arbitrary general disjunction. The cut from the CGLP is a SIC when the point being
separated is a basic solution of P , but, in general, the optimal solution may correspond to
an irregular cut.

The notation is the same as in Section 1.4. Namely, At := [A;Dt], bt := [b;Dt
0], and

mt is the number of rows of Dt. The variables of the CGLP as in Section 1.4 are α ∈ Rn,
β ∈ R, and vt ∈ Rm+mt

≥0 for all t ∈ T . As before, we can also disaggregate vt into the first m
and last mt components, which we will refer to as ut ∈ Rm

≥0 and ut0 ∈ Rmt
≥0 (the multipliers

on Ax ≥ b and on Dtx ≥ Dt
0). The normalization constraint to (CGLP), with coefficients

nα ∈ Rn, nβ ∈ R, nt ∈ Rm+mt for t ∈ T , and n0 ∈ R, is

α
ᵀ
nα + βnβ +

∑
t∈T

vtnt = n0.

Three common normalization constraints for (CGLP) are the β-normalization (βNC)
for a given β̄, the standard normalization (SNC) and the trivial normalization (TNC). We
denote by e the all-ones column vector with as many entries as needed, in context.

β = β̄ (βNC)∑
t∈T

vte = 1 (SNC)∑
t∈T

ut0e = 1 (TNC)

Other options for the normalization exist. Another normalization involves fixing the violation
by setting nα to a point in P . A recently proposed normalization, by Fischetti et al. [84],
adapts (SNC) to be less sensitive to the scaling of the constraints of P .

145

We will refer to the MLP, which we restate here for convenience.

min
{yt,yt

0}t∈T ,γ
n0γ

Atyt − btyt0 + ntγ ≥ 0 for all t ∈ T
yt0 ≥ 0 for all t ∈ T∑
t∈T

yt + nαγ = x̄∑
t∈T

yt0 + nβγ = 1

We work with a given solution to (MLP), ({ȳt, ȳt0}t∈T , γ̄). Below is a recap of the helper
variables we defined.

T ∗ := {t ∈ T : ȳt0 > 0}.

x̂t :=
{
ȳt/ȳt0 for all t ∈ T ∗,
ȳt for all t ∈ T \ T ∗.

γ̂t :=
{
γ̄/ȳt0 for all t ∈ T ∗,
γ̄ for all t ∈ T \ T ∗.

ŷt0 := ȳt0/(1− nβγ̄) for all t ∈ T .

P̂ t :=
{
{x : Atx ≥ bt − ntγ̂t} for all t ∈ T ∗,
{x : Atx ≥ −ntγ̂t} for all t ∈ T \ T ∗.

We also restate (and refer to) two reformulated versions of the feasible region of (MLP):

Atx̂t ≥ bt − ntγ̂t for all t ∈ T ∗

Atx̂t ≥ −ntγ̄ for all t ∈ T \ T ∗

ȳt0 ≥ 0 for all t ∈ T∑
t∈T ∗

ȳt0x̂
t = x̄− nαγ̄∑

t∈T ∗
ȳt0 = 1− nβγ̄

(B.1)

and

Atx̂t ≥ bt − ntγ̂t for all t ∈ T ∗

Atx̂t ≥ −ntγ̄ for all t ∈ T \ T ∗

ŷt0 ≥ 0 for all t ∈ T∑
t∈T ∗

ŷt0x̂
t = (x̄− nαγ̄)/(1− nβγ̄)∑

t∈T ∗
ŷt0 = 1.

(B.2)

146

y2

y0

y1

(x̄, 1)

(x̄, 1− γ̄)

PD

cone(PD) y2

y1

x̄

x̄/(1− γ̄)

PD

Figure B.1: Depiction of β-normalization.

B.1 β-normalization constraint

When we use (βNC), nβ = 1, n0 = β̄, while nα and nt (for all t) are equal to zero. The
interpretation (using (B.1)) is that we are trying to represent the point (x̄, 1−γ̄) in cone(PD).
Note that for all t ∈ T , P̂ t = P t because nt = 0. Figure B.1 gives a geometric representation:
the normalization corresponds to the (minimum necessary) vertical shift until the translated
point is in the region cone(PD).

Another viewpoint, also shown in Figure B.1, comes from (B.2) and positive homogeneity:

(x̄, 1− γ̄) ∈ cone(PD) ⇐⇒ (x̄/(1− γ̄), 1) ∈ cone(PD) ⇐⇒ x̄/(1− γ̄) ∈ PD.

Yet another interpretation is that, instead of scaling x̄, we can equivalently apply the
scaling to P̂D (here equal to PD):

x̄/(1− γ̄) ∈ PD ⇐⇒ x̄ ∈ (1− γ̄)PD.

This last reformulation makes it clear that the β-normalization is in fact the same as the
gauge function for the set PD, i.e., the minimum scaling of PD such that x̄ belongs to the
scaled set. Such a scaling does not always exist, but it is guaranteed to exist when 0 ∈ intPD.

A consequence of the interpretation of the MLP as the gauge function when the normal-
ization is (βNC) is that the dual, the CGLP, is then the support function of PD. It also
then follows that the cut generated by the CGLP will be one of the facets of PD tight at
x̄/(1 − γ̄), which means one can identify the cut obtained from the optimal solution to the
CGLP “geometrically”, from looking at PD and the position of x̄.

147

B.2 Standard normalization constraint
When we use (SNC), n0 = 1, nt = e for all t ∈ T , nα = 0, and nβ = 0. In this case, the
interpretation is: enlarge the feasible region by translating each constraint by an additive
constant until x̄ is in the enlarged region. As noted by Fischetti et al. [84], the optimum γ
depends on the scaling of the constraints (they propose an alternative they call the Euclidean
standard normalization constraint to remedy this difficulty).

The objective to the MLP under this normalization is min γ. Recall that we let γ̂t = γ̄/ȳt0
for all t ∈ T ∗, and, as nt = e for all t ∈ T , γ̂t then represents the amount by which the
constraints of P t are translated. Thus, the objective can roughly be interpreted as finding
the minimal amount of translation necessary to place x̄ in the convex hull of the modified
feasible regions P̂ t. This is of course sensitive to the scaling of the constraints, which is
exactly the motivation for the alternative, normalized, version of the standard normalization
that is proposed in [84].

B.3 Trivial normalization constraint
We now turn to the trivial normalization (TNC), i.e., n0 = 1, nti = 1 for all i ∈ {m +
1, . . . ,m+mt}, while nti = 0 for all i ∈ [m], nα = 0, and nβ = 0. When working with a split
disjunction, the normalization is u1

0 +u2
0 = 1. For a split disjunction, it is known [32, 47, 84]

that the CGLP gives the SIC associated with x̄. We derive an optimal solution to (MLP)
and (CGLP) under the trivial normalization for an arbitrary disjunction.

B.3.1 Optimal solution to the MLP
From (B.2) under this normalization, we have that x̄ is a convex combination of points
x̂t ∈ P̂ t, t ∈ T ∗, where P̂ t = {x ∈ P : Dtx ≥ Dt

0 − γ̂t}. The key observation is that, unlike
with some other normalizations, here P̂ t ⊆ P for each t ∈ T ∗. Since x̄ is a vertex of P , it
cannot be represented as a convex combination of any other vertices of P . It follows that
x̂t = x̄ and Dtx̂t ≥ Dt

0 − γ̂t, t ∈ T ∗. The geometric interpretation is that we are translating
the inequalities Dtx ≥ Dt

0 until x̄ is expressible as a convex combination of points from the
enlarged (with respect to P t) regions. The upshot is that only those constraints of P that
are tight at x̄ can have nonzero Farkas multipliers (the variables of the CGLP). Figure B.2
illustrates this geometric intuition.

More formally, define, for all t ∈ T , δt := maxi{Dt
0i −Dt

i·x̄ : i ∈ [mt]} as the maximum
violation of any constraint defining disjunctive term t.

Theorem B.1. An optimal solution to (MLP) under the normalization (TNC) is

ȳt =
(

1/δt∑
t′∈T 1/δt′

)
x̄ for all t ∈ T

ȳt0 = 1/δt∑
t′∈T 1/δt′

for all t ∈ T

γ̄ = 1∑
t′∈T 1/δt′

.

148

x1

x2

x̄

x1

x2

x̄

x1

x2

x̄

Figure B.2: Depiction of trivial normalization using the split (x1 ≤ 0) ∨ (x1 ≥ 1). Each P t

is enlarged until it contains x̄. The wavy line is the SIC from the basis at x̄.

Proof. Note that T ∗ = T using this solution, ȳt = ȳt0x̄, and γ̄ = ȳt0δt for all t ∈ T . First, we
verify the solution is feasible. As x̄ does not belong to the disjunctive hull, Dtx̄ 6≥ Dt

0 for
every t ∈ T ; thus, δt > 0, implying that ȳt0 ≥ 0, for all t ∈ T . Since, clearly,

∑
t∈T ȳ

t
0 = 1,

we have that
∑

t∈T ȳ
t = x̄. Finally, we check the remaining set of constraints of (MLP):

Atyt− btyt0 +ntγ ≥ 0. Recall that At = [A;Dt] and bt = [b;Dt
0]. For the constraints of P , the

corresponding entry of nt is 0, so Aȳt − bȳt0 = ȳt0(Ax̄ − b) ≥ 0. For the constraints defining
the disjunction, with e denoting the all-ones vector,

Dtȳt −Dt
0ȳ
t
0 + eγ̄ = ȳt0(Dtx̄−Dt

0 + eδt) = ȳt0(eδt − (Dt
0 −Dtx̄)),

which is nonnegative by the definition of δt.
We now prove optimality. As is evident from the first set of constraints of reformulation

(B.1), for any feasible solution to (MLP) and the corresponding indices T ∗ for which yt0 > 0,

γ ≥ max
t∈T ∗

max
i∈[mt]

{
yt0(Dt

0i −Dt
i·x̄)
}

= max
t∈T ∗

{
yt0 max

i∈[mt]

{
Dt

0i −Dt
i·x̄
}}

= max
t∈T ∗

{
yt0δt

}
,

where we have used the fact that nti = 0 for all i ∈ [m] and our previous observation that
x̂t ∈ P and x̄ is a vertex, from which it follows that x̂t = x̄ for all t ∈ T ∗. The feasible solution
must satisfy

∑
t∈T ∗ y

t
0 = 1 and yt0 ≥ 0 for all t ∈ T . Consequently, γ is minimized when yt0δt

takes the same value for all t ∈ T ∗ (otherwise, for whichever term has the highest value, the
weight yt0 can be reduced and distributed among the other terms). Hence, yt′0 = yt0δt/δt′ for
all t, t′ ∈ T ∗; summing up over all t′, we get that

1 =
∑
t′∈T ∗

yt0 =
∑
t′∈T ∗

yt0δt
δt′

=⇒ yt0 = 1/δt∑
t′∈T ∗ 1/δt′

.

As a result,
γ ≥ max

t∈T ∗

{
yt0δt

}
= 1∑

t′∈T ∗ 1/δt′
≥ 1∑

t′∈T 1/δt′
.

This completes the proof, as the objective value of the solution from the theorem statement
matches this bound.

149

B.3.2 Optimal solution to the CGLP for simple disjunctions
Theorem B.1 validates our earlier intuition. For example, in the case of a simple disjunction
∨t∈T (dtx ≥ dt0), for each t ∈ T , δt is the amount by which x̄ violates the inequality defining
disjunctive term t. From (B.1), γ̂t = δt, so each disjunctive term inequality is translated by
precisely the amount δt needed to make dtx̄ = dt0.

Now we turn to the dual to (MLP), i.e., (CGLP), from which we can derive the cut
that the trivial normalization yields. As in Section 1.3, we add a slack variable sn+i for
each row, so that Ax − s = b. Given the disjunction ∨t∈T (dtx ≥ dt0) and a cobasis N ⊆
{n+ 1, . . . , n+m}, we next give the formula for SIC in the structural space (previously, in
Section 1.3, we derived it in the nonbasic space). As before, index the rows with nonbasic
slacks by N := {i ∈ [m] : n + i ∈ N}, let AN denote the n × n nonsingular submatrix of
A with rows indexed by N , and let bN be the subset of elements of b indexed by N . Define
sN as the nonbasic slack variables, and recall the optimal tableau in the nonbasic space that
we stated in (1.2), obtained by multiplying through the rows indexed by N with A−1

N , and
using the fact that AN x̄ = bN :

x = x̄+ A−1
N sN = x̄+

∑
j∈N

rjsj.

This gives a representation of the optimal tableau for the structural variables only. The
vector rn+i, where i ∈ N , is simply column i of the matrix A−1

N ; we represent this by (A−1
N)·,i.

We also use (dtA−1
N)i = dt(A−1

N)·,i for component i of the vector dtA−1
N . In addition, define

λti := (dtA−1
N)i/δt and λi := maxt∈T λti. The value of λi will be the coefficient on variable

sn+i for the SIC in the nonbasic space.

Lemma B.2. The SIC from the given basis and disjunction is (α0)ᵀx ≥ β0, where

(α0)ᵀ :=
∑
i∈N

λiAi·, β0 := 1 +
∑
i∈N

λibi.

Proof. We first convert the disjunction ∨t∈T (dtx ≥ dt0) from the structural space to the
nonbasic space. Using the tableau in (1.2),

dtx− dt0 = dt

(
x̄+

∑
j∈N

rjsj

)
− dt0 =

∑
j∈N

dtrjsj − (dt0 − dtx̄) =
∑
j∈N

dtrjsj − δt.

The SIC in the nonbasic space is then (by applying the formula from Section 1.3)∑
j∈N

max
t∈T

{
dtrj

δt

}
sj ≥ 1 =⇒

∑
i∈N

λisn+i ≥ 1 =⇒
∑
i∈N

λi(Ai·x− bi) ≥ 1,

from which the result follows.

For i ∈ N , let ti ∈ arg maxt {λti : t ∈ T } . Hence, the SIC is equivalent to(∑
i∈N

λtii Ai·

)
x ≥ 1 +

∑
i∈N

λtii bi.

150

In the case of a simple disjunction, the feasible region of the CGLP under the trivial
normalization is:

utA+ ut0d
t = α

ᵀ for all t ∈ T
utb+ ut0d

t
0 ≥ β for all t ∈ T∑

t∈T

ut0 = 1

ut, ut0 ≥ 0 for all t ∈ T.

(B.3)

Theorem B.3. Under the trivial normalization, an optimal solution to (B.3) is

ūt0 := 1/δt∑
t′∈T 1/δt′

for all t ∈ T

ūti := λtii − λti∑
t′∈T 1/δt′

= 1∑
t′∈T 1/δt′

(
dti

δti
− dt

δt

)
(A−1

N)·,i for all t ∈ T , i ∈ N

ūti := 0 for all t ∈ T , i 6∈ N

ᾱ := α0∑
t′∈T 1/δt′

=
∑
i∈N

ūti0 (dtiA−1
N)iAi·

β̄ := β0∑
t′∈T 1/δt′

= 1∑
t′∈T 1/δt′

+
∑
i∈N

ūti0 (dtiA−1
N)ibi.

and yields the SIC arising from the basis corresponding to N .

Proof. We first show feasibility. Clearly, ūt0 > 0 for all t ∈ T and
∑

t∈T ū
t
0 = 1. For any

solution in which uti = 0 for all i /∈ N , we have that

utA+ ut0d
t = α

ᵀ =⇒ utNAN = α
ᵀ − ut0dt.

Let t̂ ∈ T be an arbitrary term index. It follows that

ūt̂N = ᾱ
ᵀ
A−1
N − ū

t̂
0d
t̂A−1

N

= 1∑
t′∈T 1/δt′

(∑
i∈N

(dtiA−1
N)iAi·A−1

N

δti
− dt̂A−1

N

δt̂

)

= 1∑
t′∈T 1/δt′

(∑
i∈N

(dtiA−1
N)ieᵀi
δti

−
∑
i∈N

(dt̂A−1
N)ieᵀi
δt̂

)

= 1∑
t′∈T 1/δt′

(∑
i∈N

(
dti

δti
− dt̂

δt̂

)
(A−1

N)·,ieᵀi

)
.

This matches our definition of ūt and shows feasibility of the constraints involving α for all
disjunctive terms, as t̂ was arbitrarily chosen. Note that ūti = 0 for all i ∈ N such that ti = t,
and ūti ≥ 0 for all t ∈ T and i ∈ N , by the definition of ti.

151

Next, for the β constraints, we show that (ūtb+ ūt0d
t
0)− β̄ = 0 for any t ∈ T . Expanding

terms, and using the facts that A−1
N bN = x̄ and δt = dt0 − dtx̄,

(ūtb+ ūt0d
t
0)− β̄ = 1∑

t′∈T 1/δt′

(∑
i∈N

(
dti

δti
− dt

δt

)
(A−1

N)·,ibi + dt0
δt
−

(
1 +

∑
i∈N

dti(A−1
N)·,ibi
δti

))

= 1∑
t′∈T 1/δt′

(
−
∑
i∈N

dt(A−1
N)·,ibi
δt

+ dt0
δt
− 1
)

= 1∑
t′∈T 1/δt′

(
−d

tx̄

δt
+ dt0
δt
− 1
)

= 0.

This completes the proof of feasibility. Moreover, it is clear from the definition of ᾱ
and β̄ that the cut ᾱᵀx ≥ β̄ is simply the SIC scaled by 1/

∑
t′∈T (1/δt′). Lastly, we show

optimality. The objective value is

ᾱ
ᵀ
x̄− β̄ = 1∑

t′∈T 1/δt′

(∑
i∈N

(dtiA−1
N)iAi·x̄
δti

−

(
1 +

∑
i∈N

(dtiA−1
N)ibi
δti

))
= − 1∑

t′∈T 1/δt′
.

Note that this is exactly the negative of the optimal objective value to (MLP) (in which
we negated the objective function that would be obtained by directly taking the dual to
(CGLP)), as proved in Theorem B.1, which proves optimality by duality.

Theorem B.3 gives the same values of the CGLP variables as in Balas and Kis [30, The-
orem 7], but proves that the solution is optimal under the trivial normalization (though we
do not take the extra step of constructing a basis). As a direct corollary to Theorem B.3, we
also recover the previously known result for the split disjunction case, as in [24, Section 3.3],
[33, Theorem 16], and [84, Theorem 2].

Theorem B.4. The following is an optimal solution to (B.3) under normalization (TNC)
when the disjunction is (−πᵀx ≥ −π0) ∨ (πᵀx ≥ π0 + 1). Define f0 := πᵀx̄− π0.

ū1
0 := 1− f0

ū2
0 := f0

ū1
i := ū2

i = 0 for all i ∈ [m] \N
ū1
i := max

{
0, (πᵀA−1

N)i
}

for all i ∈ N
ū2
i := max

{
0,−(πᵀA−1

N)i
}

for all i ∈ N
ᾱ := f0ū

1A+ (1− f0)ū2A

β̄ := f0(1− f0) + f0ū
1b+ (1− f0)ū2b

Moreover, ᾱᵀx ≥ β̄ is equivalent to the SIC from the basis corresponding to N .

Proof. One can directly plug in the values δ1 = f0, δ2 = 1−f0, and so on, into Theorem B.3.
Some variables have simpler definitions than in the general case because d1 = −πᵀ = −d2

and the scaling term 1/(1/δ1+1/δ2) = f0(1−f0) = δ1δ2, allowing some quantities to cancel.

152

B.3.3 Optimal solution to the CGLP for general disjunctions
In Theorem B.1, we gave an optimal solution to (MLP) under the trivial normalization of the
CGLP for an arbitrary (not necessarily simple) disjunction. We then gave the corresponding
dual solution, but only for a simple disjunction, in Theorem B.3. In fact, it is not hard to
derive the optimal solution to (CGLP) under the trivial normalization for any disjunction.
The key insight is based on our geometric interpretation of the trivial normalization: namely,
for each t ∈ T , the disjunctive term inequalities Dtx ≥ Dt

0 are translated until the first one
of them is satisfied at equality by x̄. For each term, fix it ∈ [mt] to be the index of one of
these inequalities, i.e., it ∈ arg maxi{Dt

0i −Dt
i·x̄ : i ∈ [mt]}. Then define dt := Dt

it,· (row it
of Dt) and dt0 := Dt

0it . (This is a valid simple disjunction.)

Theorem B.5. The values (ᾱ, β̄, {ūt, ūt0}t∈T } as defined in Theorem B.3, except

ūt0it := 1/δt∑
t′∈T 1/δt′

for all t ∈ T

ūt0i := 0 for all t ∈ T , i 6= it.

are an optimal solution to (CGLP) under the trivial normalization and yield the SIC arising
from the basis corresponding to N .

Proof. Everything proved in Theorem B.3 goes through as before when we ignore the original
disjunction and work only with the derived simple disjunction ∨t∈T (Dt

it,·x ≥ Dt
0it).

The consequence of Theorem B.5 is that, given any basis to P , we immediately (without
having to solve the higher-dimensional (CGLP)) can find the Farkas multipliers certifying
the validity of the SIC from that basis. The utility of having these Farkas multipliers for
the SIC from any disjunction is that we can now apply strengthening techniques such as
based on the modularization of the coefficients corresponding to nonbasic integer-restricted
variables. We discussed this in generality in Section 1.5.

An important factor to consider is that under the trivial normalization, for the case of
general disjunctions, we encounter a scaling problem that is not present for simple disjunc-
tions. Namely, for simple disjunctions, there is a uniquely defined SIC from a basis of P ,
which precisely yields an optimal solution to (B.3). On the other hand, for general disjunc-
tions, every choice of nonnegative multipliers {ut0}t∈T yields a convex PI-free set, each of
which has a corresponding SIC. Theorem B.5 defines one setting for these multipliers, in
which only one inequality defining each disjunctive term has positive weight. However, this
inequality depends on a calculation of violation, which is sensitive to scaling. As a result, the
SIC obtained from the solution defined in Theorem B.5 may be dramatically weaker than a
SIC from the best possible choice of multipliers {ut0}t∈T . We give an example of this next.

B.3.4 Trivial normalization example with a general disjunction
Consider PI defined as the set of (x1, x2) ∈ Z2 solutions to

x1 − x2 ≥ −1/2
−x1 − x2 ≥ −3/2.

153

x1

x2
x̄

x1

x2
x̄

x1

x2
x̄

x1

x2
x̄

Figure B.3: Example showing that trivial normalization for a general disjunction is sensitive
to scaling and may yield a weak SIC. The first panel shows the feasible region of P . The
top right panel shows one SIC that can be obtained from the two-term general disjunction
(B.4) with u1

0 = u2
0 = (1/6, 1/3). The bottom left panel shows the cut obtained from the

split disjunction (−x1 ≥ 0) ∨ (x1 ≥ 1). This is the same as the cut obtained from applying
Theorem B.5. The last panel shows the cut that would be obtained from the disjunction
(x1−x2 ≥ 0)∨(−x1−x2 ≥ −1), which would be the SIC obtained from applying Theorem B.5
under a different scaling (e.g., by multiplying the first inequality in both terms by 1/3).

Suppose we take the disjunction(
− x1 ≥ 0

1
2x1 − 1

2x2 ≥ 0

)
∨
(

x1 ≥ 1
−1

2x1 − 1
2x2 ≥ −1

2

)
. (B.4)

Recall that δt := maxi{Dt
0i − Dt

i·x̄ : i ∈ [mt]}. In this case, δ1 = max{0 − (−1/2), 0 −
(1/2)(1/2) − (−1/2)(1)} = max{1/2, 1/4} = 1/2, achieved by the inequality −x1 ≥ 0, and
similarly δ2 = 1/2, achieved by the inequality x1 ≥ 1. The matrix A−1

N is[
1/2 −1/2
−1/2 −1/2

]
.

From this, applying Theorem B.5, an optimal solution to (B.3) is

ū1
0 = ū2

0 = (1/2, 0)
ū1 = (1/2, 0)
ū2 = (0, 1/2)
ᾱ
ᵀ = (0,−1/2)
β̄ = 0.

This is the cut x2 ≤ 1/2, which is weaker than the disjunctive cut x2 ≤ 0 obtainable via the

154

x1

x2

x̃

Figure B.4: Example of the trivial normalization yielding an irregular cut. The disjunction
is (−x1 ≥ 0)∨ (−x2 ≥ 0). The point x̃ is the optimal vertex after adding the two SICs from
P (shown as dashed lines). The wavy line is an irregular cut and the optimal solution to the
CGLP (without the two SICs) under the trivial normalization when separating x̃.

following (suboptimal) feasible solution to (B.3):

û1
0 = û2

0 = (1/6, 1/3)
û1 = û2 = (0, 0)
α̂
ᵀ = (0,−1/6)
β̂ = 0.

Note that Theorem B.5 would still produce the cut x2 ≤ 1/2 if every disjunctive term
inequality were scaled to have norm 1, i.e., if δt corresponded to the maximum Euclidean
distance by which x̄ is cut off.

If a different scaling of (B.4) is used, e.g., if we multiply −x1 ≥ 0 and x1 ≥ 1 by 1/3,
then the biggest violation comes from the second inequality for each disjunctive term and the
theorem yields the even weaker SIC x2 ≤ 3/4. Regardless of scaling, however, Theorem B.5
cannot generate the strongest SIC, x2 ≤ 0, because for that cut, both components of u1

0 and
u2

0 are positive. The example is depicted in Figure B.3.

B.3.5 Irregular cuts from the trivial normalization
We now return to the case of a simple disjunction to highlight the importance of the as-
sumption we use in Theorem B.1 and Theorem B.3, that that the point we are separating,
x̄, is a vertex of P . Suppose that the objective function to (CGLP) is instead minαᵀx̃− β,
where x̃ ∈ P but perhaps not a vertex. For example, x̃ might be an optimal solution to
min{cᵀx : x ∈ P̃} where P̃ is the polyhedron obtained after adding to P all SICs from
feasible or infeasible bases of P .

Note that the geometric intuition for the trivial normalization still holds: the optimal
solution to (MLP), as in the reformulation (B.1), corresponds to finding points x̂t = yt/yt0
(for t ∈ T ∗, the indices for which yt0 > 0) such that x̂t ∈ P and x̃ =

∑
t∈T ∗ y

t
0x̂

t. When x̃ is

155

not a vertex of P , what is no longer true is the property that x̂t = x̃ for all t ∈ T ∗. This
implies that the solution defined in Theorem B.1, while still feasible, may not be optimal.

Intuitively, if x̃ does not belong to the disjunctive hull PD, then there exists a facet of the
disjunctive hull that cuts x̃, and it will be obtainable as a feasible solution to (CGLP). This
solution may correspond to an irregular cut, as we state in Proposition B.6 and illustrate in
Figure B.4.

Proposition B.6. Let x̃ ∈ P and (α̃, β̃, {ũt, ũt0}) denote an optimal solution to (B.3) when
separating x̃ using a simple disjunction ∨t∈T (dtx ≥ dt0). The optimal value α̃ᵀx̃−β̃ is negative
if and only if x̃ /∈ PD. If x̃ /∈ PD but satisfies every SIC obtainable from P using the given
disjunction, then α̃ᵀx ≥ β̃ is an irregular cut.

Proof. Every valid inequality for PD has a corresponding feasible solution to (B.3). Hence,
the optimal objective value is negative if and only if there exists a valid inequality that cuts
x̃, which happens if and only if x̃ /∈ PD. Assume now that x̃ /∈ PD, so that α̃ᵀx̃ < β̃. When
x̃ /∈ PD but satisfies all possible SICs, the cut α̃ᵀx ≥ β̃ necessarily corresponds to an irregular
cut: if it were possible to represent it as a SIC, then it would be satisfied by x̃.

B.4 Concluding remarks about CGLP normalizations
In this chapter, we discussed normalizations for (CGLP) and their geometric interpretation
via the dual to the CGLP given in (MLP). As we mentioned, we do not cover all possi-
ble normalizations, such as the so-called reverse polar normalization discussed in [33] and
more recently investigated by Serra [133]. The geometric interpretations are helpful in un-
derstanding the CGLP, and they are also useful when building a correspondence between
V-polyhedral cuts (VPCs) and L&PCs, as we do in Chapter 5.

Moreover, our new results include giving the optimal solutions to the MLP and the
CGLP under the trivial normalization. An interesting consequence of Theorems B.1 and
B.5 is that we have some semblance of a correspondence, for general disjunctions, between
the original space of variables and the higher-dimensional space of variables used for cut
generation through the CGLP. This suggests that we might be able to implement a limited
variant of pivoting in the original tableau while calculating reduced costs in the CGLP, as
in [23, 32]. Moreover, we may even be able to obtain the irregular cuts from a disjunction,
as we showed in Proposition B.6.

156

Appendix C

PHA Appendices

C.1 Tilting for degenerate hyperplanes
We previously showed how to tilt a hyperplane H defining P that is not degenerate, i.e., x̄
does not lie on H. We defined H using n affinely independent points obtained by intersecting
the n affinely independent rays of C̄ with H. These points all lie on one-dimensional faces
of C̄. In the case that H is degenerate, we will instead use two-dimensional faces of C̄ to
define the hyperplane, which we will then modify to define a targeted tilting.

When a degenerate hyperplane H is activated on C̄, each of the extreme rays of the new
cone C̄ ∩ H+ that lie on H can be defined by H and n − 2 hyperplanes of C̄ that are not
redundant for C̄ ∩H+. Thus, each ray of the new cone lying on H is on a two-dimensional
face of C̄. Let RH∗ denote an affinely independent set of n− 1 of these rays lying on H. Let
R̄c be the rays of C̄ that are cut by H+. For each r ∈ RH∗, since it lies on a two-dimensional
face of C̄, we can define (r̄1, r̄2) ∈ R̄c × (R̄ \ R̄c) such that r can be expressed as a convex
combination of r̄1 (which is cut by H) and r̄2 (which is not cut by H); in particular, let λHr
be the multiplier such that r = λHr r̄

1 + (1− λHr)r̄2. Figure C.1 depicts this construction.

r1 r2

r

H

x̄

λHr

Figure C.1: Illustration of targeted tilting construction for a degenerate hyperplane.

If we know λHr and the rays r̄1 and r̄2 for every r ∈ RH∗ , then we can use this to give
an alternate definition of H. To define a targeted tilting of H, we can modify the values
λHr for each r ∈ RH∗ using some δr. In order to coordinate with the definition of a targeted
tilting that we gave in Section 2.4, the intersection points and rays created by activating the

157

tilted hyperplane should either be identical to those obtained from activating H or coincide
with some initial intersection point or ray. It is not difficult to see that this means the
allowed values for δr are 0 and −λHr . With such a tilting, Theorem 2.12 will still hold, i.e.,
activations can be performed by using H and RA without a need for explicitly computing
the tilted hyperplane.

C.2 Tilting example
In this section, we demonstrate an example in which a valid tilting combined with the implicit
computation used in Theorem 2.12 leads to invalid cuts. The example additionally provides
intuition for the targeted tilting rule that if a hyperplane cuts a ray of C̄ that has already
been cut, then we should not tilt the hyperplane along that ray. This is sufficient, as we
have shown, to allow us to apply the implicit computation scheme.

The left panel of Figure C.2 shows the feasible region of P := {x ∈ R3 : −2x2 + x3 ≤
0;−2x1 + x3 ≤ 0; 12x1 + 10x2 − 5x3 ≤ 9; 10x1 + 12x2 − 5x3 ≤ 9;x1 + x2 + x3 ≤ 1}, and the
right panel of the same figure shows the cone C̄. The cut-generating set S is the unit box,
{x ∈ R3 : 0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 1}. The hyperplane activations are of H1 and then H2. We
tilt H1 along r2 so that the intersection of this ray with H̃1 coincides r2 ∩ bdS, and H2 will
similarly be tilted along r1 so that the intersection of r1 with H̃2 is at the point r1 ∩ bdS.
The tilted hyperplanes are shown in the top panel of Figure C.3.

The tilting defined above is clearly valid. It also satisfies all but one of the conditions of
being a targeted tilting; it does not meet the requirement that H2 and H̃2 must intersect r1

at the same point, as a result of the activation of H1 on r1 prior to the activation of H2.
However, as shown in the bottom panel of Figure C.3, when the implicit computation

algorithm is applied to these tilted hyperplanes, a point of conv(P \ intS) is cut. This is
because H̃2 intersects r1 outside of the interior of S. Hence, the intersection point H̃2 ∩ r1

is not added to the point collection, as a result of step 5 of Algorithm 2.1. This intersection
point is the same as H1 ∩ r1, which has already been removed from the point collection
during the activation of H̃1.

There may be many approaches in which a tilted hyperplane activation can be computed
implicitly using only information from the untilted hyperplane. Our method prevents the
situation in this example from occurring by requiring that r1 intersects H̃2 at the same
point as it intersects H2. An example of an alternative would be to add the intersection
point r1 ∩ H̃2 = r1 ∩ H1 back into the point collection when activating H̃2, but then the
intersection points obtained from activating H1 on r1 would be redundant.

158

x2

x3

x1

x̄

H1

H2 x2

x3

x1

r2

r1

r3

x̄

Figure C.2: Feasible region of P and C̄.

x2

x3

x1

x̄

x2

x3

x1

x̄

x2

x3

x1

x̄

Figure C.3: Hyperplane activations leading to cutting a point in conv(P \ intS).

159

160

Appendix D

VPC Appendices

D.1 Example of invalid cuts from a point-ray collection
This example shows that the using as the point-ray collection the optimal points pt on each
term t ∈ T along with the neighbors of pt may lead to the generation of invalid cuts from
the associated (PRLP).

max
x1,x2,x3

x3

−x3 ≤ −1/2
−(7/4)x1 + 5x2 − 2x3 ≤ 1
−x1 − 5x2 + 2x3 ≤ −1
−x1 − (20/3)x2 + (7/3)x3 ≤ −3/2
x1 − x2 + (3/2)x3 ≤ 3/2
2x1 − x2 + 3x3 ≤ 7/2
−x1 + 4x2 + 2x3 ≤ 7/2
−x1 + 4x2 ≤ 2
x1, x2, x3 ∈ [0, 1]
x1 integer

Let P denote the feasible region of the linear relaxation of the above integer program.
Figure D.1 shows the feasible region of P . Point q1 denotes the optimal solution to the linear
programming relaxation. The vertices of P are:

q1 = {1/2, 1/2, 1}
q2 = {1, 3/4, 3/4}
q3 = {1, 3/4, 1/2}
q4 = {1, 1/2, 2/3}
q5 = {1, 1/4, 1/2}
q6 = {0, 1/2, 3/4}
q7 = {0, 2/5, 1/2}.

161

q1

q2

q3
q4

q5

q6

q7

x1 = 0

x1 = 1

q2

q3
q4

q5

q6

q7

q8

q9

x1 = 0

x1 = 1

Figure D.1: The LP polytope P for the counter-example showing an optimal point on each
disjunctive term and its neighbors as the point-ray collection may lead to invalid cuts.

We use as the valid disjunction the elementary split on x1. If we solve max{x3 : x ∈
P, x1 = 0}, the maximum is achieved by q6. Solving max{x3 : x ∈ P, x1 = 1}, the maximum
is achieved by q2. Consider using q2 and q6 and their neighbors as the collection of points
given to (PRLP). Thus P = {q2, q3, q4, q6, q7} and R = ∅.

One cut that can be obtained from this set of points is ᾱᵀx ≥ β̄ where ᾱ = (−1/6, 5,−2)
and β̄ = 1, which goes through q6, q7, and q4, leaving q2 and q3 on the feasible side, and
cutting off not only q1, but also q5. Indeed, ᾱᵀq1 = −1/12 + 5/2 − 2 = 5/12 < 1, while
ᾱᵀq4 = ᾱᵀq7 = ᾱᵀq6 = 1, and ᾱᵀq2 = 25/12 > 1 and ᾱᵀq3 = 31/12 > 1. However, as seen
in Fig. D.1, ᾱᵀq5 = 1/12 < 1, so that point of P ∩ {x : x1 = 1} is cut off, making the cut
invalid.

There is a relatively simple resolution for the above counterexample. If we require the
generated cuts to be tight at the optimal solutions on each facet, q6 and q2, then all generated
cuts will be valid for conv(PD). We state this in Theorem D.1.

Theorem D.1. For each t ∈ T , set P t to be an optimal solution pt to arg minx{c
ᵀx : x ∈ P t}

as well as one point on each of the edges emanating from pt within P t. Let P := ∪t∈T P t and
R := ∅. Any feasible solution to (PRLP) formulated from these points and amended with
the condition αᵀpt = β for all t ∈ T yields a valid cut for PI .

Proof. Let (α, β) be a feasible solution to (PRLP) such that αᵀpt = β for all t ∈ T . Since
αᵀp ≥ β for all p ∈ P t, it holds that αᵀ(p − pt) ≥ 0. This means that, for each t ∈ T , the
generated cut is valid for the cone with apex at pt and rays going through each of the points
p ∈ P t. By convexity, this cone is a relaxation of P t. It follows, by Corollary 4.6, that the
cut is valid for PI .

162

D.2 Sample partial branch-and-bound tree
In the chapter, we use a partial branch-and-bound tree as the source of the disjunction for
cut generation. The partial trees are produced from the branching strategy described in
Section 4.3. In particular, there may exist nodes of the tree that are pruned, and the tree
may be very asymmetric. We illustrate this with one sample tree, shown in Figure D.2,
constructed from the instance bm23 and terminated after finding 64 leaf nodes. This tree
includes two pruned nodes (the leftmost leaf node, from branching on x15, and an adjacent
leaf on the same level, from branching on x8).

9 9

17 17 22 22

8 8

2 2

0 0

15 15

9 9

8 8

11 11 9 9

22 22 1 1

17 17

0 0

1 1 6 6

5 5

26 26 4 4

2 2

14 14

8 8

21 21

22 22

17 17

14 14 15 15

8 8

0 0

1 1

12 12

21 21 21 21

22 22

7 7 2 2

10 10

26 26

24 24 17 17

26 26 1 1

6 6

22 22 26 26

0 0 1 1

9 9

22 22

22 22

5 5 15 15

0 0 8 8

4 4 3 3

24 24 26 26

22 22

2 2

19 19

14 14

13 13

16 16

Figure D.2: Partial branch-and-bound tree with 64 leaf nodes for instance bm23.

D.3 Parameters to consider for VPC implementations
There are many choices that could be influential in an implementation of VPCs. In this
section we list, mostly without discussion, some of the more important parameters.

1. Which disjunction(s) to use? Some options to consider are:

(a) Split disjunctions: (xj ≤ bx̄jc) ∨ (xj ≥ dx̄je) for all j ∈ I with x̄j /∈ Z.
(b) Disjunctions based on the integrality of two integer variables fractional in x̄.
(c) Disjunctions with more terms, such as from the leaf nodes of a partial branch-

and-bound tree. This raises the questions of:
i. which strategy to use to generate the partial tree (how to choose the next sub-

problem, number of strong branching candidates to test, variable to branch
on, and direction to branch in),

ii. how large the partial tree should be, and
iii. how else we can use the structural information gained while constructing the

partial tree.

2. How to choose the V-polyhedral relaxation? We showed that using the type 1 point-ray
collection may significantly weaken the possible cuts that can be generated. On the

163

other hand, using a more involved relaxation may be computationally expensive, not
only when choosing and constructing the proper refinement, but also by increasing the
size of the resulting point-ray linear program (PRLP), since this LP is solved many
times.

3. Which cutting planes to generate? A few of the relevant characteristics are:

(a) Number of cuts.
(b) Number of rounds of cuts.
(c) Minimum orthogonality of the cuts (with respect to each other).
(d) Density of the cuts.
(e) Strengthening of the cuts (or disjunctions).
(f) Requirement that x̄ is cut away.

4. Which objectives to try in (PRLP)? The two perspectives are finding cuts that have
maximum violation with respect to some point not in PD, or cuts that have minimum
violation with respect to some point in PD. As described earlier, the three objectives
we use are as follows.

(a) All-ones objective, w = e.
(b) The optimum after adding Gomory mixed-integer cuts (GMICs) to P .
(c) The point determining the disjunctive lower-bound. First, we use w = p, where

p ∈ arg min{cᵀp : p ∈ P}. Then, use w = r for all rays r ∈ R that were not tight
for the cut from the objective w = p.

5. How to set up the branch-and-bound experiments? There is a trade-off between main-
taining an experimental setting that closely resembles reality and controlling for the
vast amount of variability in optimization solvers that can overshadow any of the com-
putational results.

D.4 Discarded instances
Of the instances with at most 5,000 rows and columns, Table D.1 lists the 75 that were
removed from consideration and the reason for removal. As the table shows, one of the
most common reasons for discarding an instance was that no cuts were generated for that
instance due either to maxp∈P cᵀp = cᵀx̄ (the optimal value over the best leaf node equals
the optimal value of the LP) or (PRLP) being primal infeasible. The situations are treated
together because the former anyway typically results in (PRLP) being infeasible, though
it also implies that our metric of gap closed is not reasonable for that instance. There is
potential for these instances to either generate inequalities that do not cut away x̄ or to try
to find a different partial branch-and-bound tree, but that has been beyond the scope of our
investigation.

164

Table D.1: Instances that were not considered with reason for being discarded.

Instance Set Reason

22433 coral Integer-optimal solution found during partial tree construction
air01 miplib2 Integer-optimal solution found during partial tree construction
air02 miplib2 Integer-optimal solution found during partial tree construction
air03 miplib3 Integer-optimal solution found during partial tree construction
air06 miplib2 Integer-optimal solution found during partial tree construction
berlin_5_8_0 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
bnatt400 miplib2010 Max leaf value = LP optimal value
csched008 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
egout miplib3 Integer-optimal solution found during partial tree construction
enlight13 miplib2010 Solved by presolve
enlight15 miplib2010 Solved by presolve
fixnet3 miplib2 Solved at root by Gurobi
fixnet4 miplib2 Solved at root by Gurobi
flugpl miplib3 Optimal solution to presolved LP is integer-feasible
gen miplib3 Solved at root by Gurobi
ic97_potential miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
lp4l miplib2 Integer-optimal solution found during partial tree construction
markshare1 miplib2003 Max leaf value = LP optimal value
markshare2 miplib2003 Max leaf value = LP optimal value
markshare_5_0 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
mcf2 coral Same as danoint
misc01 miplib2 Integer-optimal solution found during partial tree construction
misc02 miplib2 Integer-optimal solution found during partial tree construction
misc04 mipib2 Integer-optimal solution found during partial tree construction
misc05 miplib2 Integer-optimal solution found during partial tree construction
mitre miplib3 Presolved instance has no integrality gap
mkc1 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1200887 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1211578 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1228986 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1337489 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1425699 coral Integer-optimal solution found during partial tree construction
neos-1426635 miplib2010 Max leaf value = LP optimal value
neos-1426662 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
neos-1436709 miplib2010 Max leaf value = LP optimal value
neos-1437164 coral Max leaf value = LP optimal value or numerical trouble
neos-1440447 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1440460 miplib2010 Max leaf value = LP optimal value
neos-1441553 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-1442119 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
neos-1442657 miplib2010 Max leaf value = LP optimal value
neos-1516309 coral Integer-optimal solution found during partial tree construction
neos-1605075 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
neos-1620770 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible

165

Instance Set Reason

neos-430149 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-530627 coral Solved at root by Gurobi
neos-555298 coral Presolved instance has no integrality gap
neos-555424 miplib2010 Presolved instance has no integrality gap
neos-555694 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-555927 coral Max leaf value = LP optimal value
neos-631694 coral Max leaf value = LP optimal value or PRLP primal infeasible
neos-847302 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
neos-955215 coral Max leaf value = LP optimal value or PRLP primal infeasible
noswot miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
ns1208400 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
opt1217 miplib2003 Max leaf value = LP optimal value or PRLP primal infeasible
p0033 miplib3 Integer-optimal solution found during partial tree construction
p0040 miplib2 Optimal solution to presolved LP is integer-feasible
p0201 miplib3 Integer-optimal solution found during partial tree construction
p0291 miplib2 Integer-optimal solution found during partial tree construction
pigeon-10 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
pigeon-11 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
pigeon-12 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
pigeon-13 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
pigeon-19 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
pk1 miplib2003 Max leaf value = LP optimal value or PRLP primal infeasible
pw-myciel4 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
rlp2 neos Integer-optimal solution found during partial tree construction
sample2 miplib2 Integer-optimal solution found during partial tree construction
set1cl miplib2 Solved at root by Gurobi
stein09_nocard miplib2 Integer-optimal solution found during partial tree construction
stein15_nocard miplib2 Integer-optimal solution found during partial tree construction
usAbbrv-8-25_70 miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible
vpm1 miplib3 Solved at root by Gurobi
wachplan miplib2010 Max leaf value = LP optimal value or PRLP primal infeasible

166

D.5 Tables for partial branch-and-bound tree experi-
ments

This section contains full tables left out of the main text due to length.
Table D.2 shows the number of rows and columns for each of the 184 instances with

cᵀp > cᵀx̄, the number of cuts produced to yield the “best” VPC objective value (across
partial tree sizes), and the percent gap closed for each instance. Columns 2 and 3 give,
for each instance, the number of constraints and variables after preprocessing. The next
two columns show the number of cuts generated. Column 6 is the percent gap closed by
GMICs when they are added to the LP relaxation. Column 7 is the percent gap closed as
implied by the disjunctive lower bound from the partial tree with 64 leaf nodes. Column 8
is the percent gap closed by VPCs; the subsequent column is the percent gap closed when
GMICs and VPCs are used together. Columns 10 and 11 show the percent gap closed by
Gurobi cuts from one round at the root, first without and then with VPCs added as user
cuts. Columns 12 and 13 show the same, but after the last round of cuts at the root. For
columns 10 through 13, the values are the maximum percent gap closed across seven random
seeds. The last two rows of Table D.2 reproduce the summary data in Table 4.1.

167

Table D.2: Percent gap closed by instance for GMICs (G), VPCs (V), both VPCs and
GMICs used together, and the bound implied by the partial branch-and-bound tree with 64
leaf nodes (DB). Also shown are the sizes of the instances, the number of cuts added, and
the percent gap closed by Gurobi at the root (after one round (GurF) and after the last
round (GurL)). Entries in which DB appears to be 0.00 are actually small strictly positive
numbers.

cuts % gap closed

Instance Rows Cols G V G DB V V+G GurF V+GurF GurL V+GurL

10teams 210 1600 158 2 100.00 85.71 28.57 100.00 100.00 100.00 100.00 100.00
23588 137 237 75 75 5.77 72.18 71.83 71.83 12.13 12.13 21.39 71.60
30n20b8 387 4197 188 98 11.42 1.64 0.04 11.42 1.10 1.10 10.78 10.78
50v-10 233 2013 29 29 45.75 18.01 6.92 46.01 43.40 42.86 66.19 57.32
a1c1s1 2141 2489 155 7 24.27 4.86 1.51 24.27 42.17 44.43 89.16 88.89
aflow30a 449 812 25 25 16.54 17.17 15.93 19.19 24.75 27.05 63.24 62.72
aflow40b 1401 2687 36 36 12.00 14.59 13.33 15.65 22.87 25.40 57.04 57.22
aligninq 337 1831 182 58 11.59 64.30 39.52 40.38 23.41 44.49 48.51 53.66
arki001 693 957 63 12 35.17 13.92 6.24 35.30 27.90 28.01 40.93 40.73
b2c1s1 2546 2677 246 8 16.45 1.51 0.13 16.45 12.85 17.10 70.71 71.23
bc1 1338 1044 5 5 0.59 15.50 14.23 14.23 30.60 30.94 41.06 40.36
beasleyC3 1153 1704 148 148 14.47 2.81 1.04 14.54 48.28 51.31 97.33 97.33
bell3a 63 82 7 4 36.98 53.83 40.67 43.65 38.39 45.54 45.54 45.54
bell3b 73 91 24 21 31.17 86.10 83.93 84.65 32.61 86.41 44.29 95.03
bell4 73 88 27 7 25.62 21.72 14.22 26.39 19.47 23.48 28.91 28.91
bell5 34 56 10 10 13.84 84.75 77.17 77.78 13.58 30.08 22.77 79.65
bg512142 898 757 204 9 0.81 1.82 1.03 1.69 3.45 3.62 10.84 11.12
bienst1 520 449 26 8 11.95 43.61 43.61 43.61 9.65 43.61 12.07 43.61
bienst2 520 449 33 8 9.77 35.63 35.63 35.63 9.89 35.63 10.56 35.63
binkar10_1 815 1423 38 24 13.01 9.96 9.63 14.24 7.62 35.48 72.72 76.47
blend2 154 302 13 13 5.46 29.37 22.80 23.04 3.21 15.26 21.86 26.77
bm23 20 27 6 6 16.81 71.47 70.92 70.92 19.85 70.25 35.93 71.22
cap6000 1725 4596 2 2 42.44 69.28 64.70 65.75 0.54 0.54 44.61 66.06
cov1075 637 120 120 1 1.47 10.49 10.49 10.49 30.00 30.00 30.00 30.00
csched007 274 1680 136 59 5.17 7.71 4.69 7.44 18.06 18.15 36.58 37.42
csched010 272 1678 124 124 4.17 6.05 3.07 4.86 13.48 13.55 36.37 36.37
d10200 898 689 152 37 0.60 14.48 10.54 10.54 0.00 0.00 0.00 0.00
danoint 656 513 34 10 0.26 3.50 1.68 1.77 1.04 2.03 3.28 3.28
dcmulti 271 529 46 46 38.90 27.04 13.84 42.04 40.20 52.25 74.19 77.62
dfn-gwin-UUM 156 936 45 45 45.85 33.45 29.03 47.09 34.53 32.86 61.26 58.85
dg012142 1987 1899 397 16 0.48 0.09 0.05 0.49 0.66 0.66 1.24 1.24
eilB101 100 2815 89 89 2.47 13.46 0.50 2.59 9.69 11.98 41.71 42.74
eild76 75 1893 63 63 1.09 8.84 0.56 1.13 7.34 9.73 54.62 54.62
fiber 267 998 42 42 68.21 10.19 9.38 68.21 46.44 53.63 91.31 91.57
fixnet6 477 877 12 12 24.15 67.53 33.07 45.73 41.23 49.70 73.81 84.01
g200x740i 940 1480 171 25 3.90 2.78 0.20 4.00 68.96 71.91 88.34 88.12
gesa2 1344 1176 42 10 23.86 36.17 6.67 28.17 53.05 66.24 98.44 98.38

168

cuts % gap closed

Instance Rows Cols G V G DB V V+G GurF V+GurF GurL V+GurL

gesa2_o 1200 1176 73 12 27.12 15.71 8.74 31.54 33.18 36.09 89.66 94.04
gesa2-o 1200 1176 73 12 27.12 15.71 8.74 31.54 33.18 36.09 89.66 94.04
gesa3 1296 1080 58 58 7.71 48.28 27.90 30.24 42.61 49.43 68.35 74.61
gesa3_o 1152 1080 100 9 44.14 39.57 18.45 45.39 60.46 63.09 72.67 77.75
glass4 392 317 72 72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
gmu-35-40 356 651 11 11 0.07 0.00 0.00 0.07 0.63 0.63 4.87 4.87
gmu-35-50 358 953 16 16 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
go19 361 361 357 175 2.00 15.58 13.12 13.12 2.60 12.64 6.69 13.35
gt2 28 173 14 7 87.06 2.90 1.67 87.06 42.27 51.11 100.00 100.00
harp2 92 1013 27 27 17.28 15.51 12.23 18.47 13.70 15.72 35.24 37.28
iis-100-0-cov 3831 100 100 100 1.15 35.60 35.55 35.55 3.80 35.39 9.03 43.24
iis-bupa-cov 4796 337 153 98 0.85 31.11 25.35 25.35 4.37 24.33 6.19 25.46
janos-us-DDM 755 2179 81 81 11.98 3.89 3.41 12.20 23.84 24.07 25.62 25.78
k16x240 256 480 14 14 11.40 23.34 21.48 22.47 66.92 69.71 77.90 78.55
khb05250 100 1299 19 14 74.91 57.82 44.64 76.06 67.08 76.61 99.89 99.89
l152lav 97 1987 52 52 12.57 42.42 9.99 16.11 1.12 7.82 3.36 10.08
lotsize 1920 2985 520 4 13.70 2.14 0.27 13.81 19.66 22.43 83.31 83.32
lrn 4968 4399 278 43 19.85 18.01 0.06 19.86 21.77 21.59 28.35 28.29
lseu 28 79 9 9 5.84 22.79 17.26 19.23 38.92 40.73 62.75 60.67
macrophage 2708 1889 535 13 8.52 3.92 1.97 9.84 71.59 72.06 99.71 99.53
mas074 13 148 12 12 6.67 13.51 13.34 13.36 1.51 13.34 7.64 13.44
mas076 12 148 11 11 6.42 13.30 12.96 12.96 3.66 12.34 13.81 13.97
mas284 68 148 20 4 0.87 34.87 33.81 33.81 0.51 33.75 7.67 33.88
maxgasflow 4288 4526 720 7 22.38 0.00 0.00 22.38 25.77 25.96 33.43 32.60
mc11 1917 3035 363 363 30.66 0.54 0.14 30.66 75.89 78.36 97.70 97.16
mcsched 1853 1495 1259 416 0.03 3.45 0.51 0.51 0.06 0.43 0.38 0.53
mik-250-1-100-1 100 251 100 100 53.52 12.03 7.23 53.52 46.61 52.12 74.14 74.14
mine-90-10 4118 778 346 103 6.25 34.42 31.68 32.01 19.99 35.99 25.28 37.10
misc03 95 138 18 18 0.00 50.69 44.32 44.32 0.00 40.51 0.00 46.46
misc07 211 232 16 16 0.72 6.09 5.49 5.49 0.00 0.40 6.09 6.77
mkc 961 2933 122 20 5.74 5.47 3.66 6.23 4.08 9.87 46.88 46.85
mod008 6 319 6 6 24.37 26.26 24.96 27.75 15.07 20.94 75.67 78.53
mod013 62 96 5 5 5.88 52.81 47.39 47.39 30.61 31.94 74.70 77.21
modglob 286 354 29 29 18.09 25.31 3.95 19.58 49.77 55.14 95.37 97.35
n4-3 884 2950 39 39 8.18 23.31 12.39 14.86 18.21 18.21 61.98 64.11
neos-1058477 966 769 28 19 0.75 25.42 6.69 6.69 0.05 6.45 99.21 99.21
neos-1112782 2070 4050 44 6 23.10 66.36 2.58 24.00 13.75 16.31 38.04 38.04
neos-1112787 1640 3200 39 6 23.33 74.82 3.18 24.34 14.16 17.32 38.22 38.22
neos-1215259 1179 1494 145 51 3.46 33.22 22.47 22.47 10.92 25.46 36.80 40.06
neos-1225589 650 1250 25 12 3.94 8.92 4.72 5.51 85.07 85.15 98.95 98.96
neos-1281048 459 685 127 10 0.00 7.18 7.16 7.16 66.23 66.23 99.34 99.34
neos-1396125 1437 1158 63 63 0.00 2.73 0.09 0.10 3.13 3.13 7.40 7.40
neos-1413153 2500 2451 269 1 14.37 26.85 1.48 14.40 15.51 15.51 32.82 32.87
neos-1415183 2809 2757 253 253 11.13 29.29 3.90 11.26 24.40 24.40 29.08 29.08

169

cuts % gap closed

Instance Rows Cols G V G DB V V+G GurF V+GurF GurL V+GurL

neos-1420205 341 231 44 1 0.00 14.67 14.67 14.67 20.00 20.00 20.00 20.00
neos-1489999 998 484 484 106 0.41 36.51 17.92 18.06 0.48 14.19 1.66 18.24
neos-1582420 2487 2407 293 91 2.30 31.61 14.77 14.77 12.77 12.77 58.44 58.44
neos-1595230 677 490 120 - 2.40 10.00 0.00 2.40 0.00 0.00 0.00 0.00
neos-1601936 3088 4022 628 - 100.00 100.00 0.00 100.00 100.00 100.00 100.00 100.00
neos-1605061 3447 4023 773 - 39.04 34.19 0.00 39.04 38.37 38.37 91.45 91.45
neos-1616732 1026 200 200 117 1.47 25.79 25.76 25.76 1.85 25.74 7.33 25.74
neos-1620807 405 231 62 1 0.00 16.67 16.67 16.67 0.00 16.67 0.00 16.67
neos-480878 1141 622 23 23 1.84 21.61 14.16 14.69 1.59 11.04 7.80 16.77
neos-501453 13 52 1 1 70.00 0.08 0.08 70.00 70.00 70.00 72.12 72.12
neos-504674 1128 634 148 148 7.09 12.11 5.21 7.97 10.07 10.47 17.19 18.44
neos-504815 887 500 116 116 4.53 18.55 12.92 13.33 10.59 11.95 15.88 18.60
neos-512201 1108 627 143 56 5.68 18.12 12.73 13.87 15.98 18.02 25.01 25.41
neos-522351 1705 1524 106 106 52.74 29.37 29.37 52.75 79.77 79.77 99.22 99.51
neos-538867 1042 666 47 47 0.00 4.60 2.32 2.32 0.00 10.60 0.00 11.11
neos-538916 1154 704 53 53 0.00 4.66 4.49 4.49 0.00 6.32 0.00 10.87
neos-547911 357 2352 86 - 0.91 11.57 0.00 0.91 1.65 1.65 10.88 10.88
neos-570431 925 495 217 54 1.48 43.75 43.38 43.38 9.48 43.42 33.17 43.52
neos-584851 661 441 274 - 0.56 7.64 0.00 0.56 2.33 2.33 7.91 8.55
neos-593853 1202 2030 9 9 20.88 49.15 41.97 43.81 24.41 39.11 35.64 45.35
neos-598183 452 916 19 19 19.39 24.89 16.62 22.46 4.26 14.74 95.70 98.85
neos-603073 452 974 20 20 4.35 4.23 3.29 5.52 1.78 3.33 31.29 31.61
neos-686190 3658 3660 95 80 4.38 62.51 23.45 23.45 4.56 4.56 11.17 24.58
neos-717614 811 3049 145 15 66.87 3.98 2.07 67.65 72.36 87.24 97.87 98.79
neos-775946 1543 2880 159 19 36.93 33.39 31.88 36.93 36.93 34.40 61.65 52.62
neos-801834 3300 3260 481 54 2.95 62.23 17.46 17.63 1.77 1.77 10.18 20.84
neos-803219 621 360 20 20 13.00 65.81 59.02 59.68 18.57 55.03 19.26 59.13
neos-803220 611 350 20 20 14.88 55.68 54.34 54.44 21.92 54.01 22.79 54.55
neos-806323 1070 689 159 31 25.77 0.43 0.43 25.77 21.52 21.62 26.86 36.33
neos-807639 1037 616 116 116 19.99 78.81 72.34 72.52 19.99 68.57 44.43 72.78
neos-807705 1073 643 142 142 10.62 35.75 32.77 33.89 18.13 31.70 20.67 38.75
neos-810326 1730 1701 198 166 3.80 64.03 21.27 21.27 18.66 18.66 28.33 29.51
neos-825075 328 800 148 6 0.00 11.11 11.11 11.11 0.00 10.71 0.00 50.00
neos-839859 2626 1950 144 16 5.10 33.12 10.92 11.93 1.71 11.39 9.59 14.35
neos-860300 568 1232 95 95 1.54 37.62 9.59 9.59 13.97 15.91 56.83 57.48
neos-862348 953 1833 121 30 53.29 4.42 2.01 53.29 54.22 55.66 70.34 62.57
neos-880324 182 135 45 11 0.00 36.33 36.33 36.33 14.42 36.33 24.04 36.33
neos-886822 1057 1025 376 158 3.18 3.16 0.09 3.22 2.04 2.06 2.75 2.75
neos-892255 1675 1521 186 - 0.00 33.33 0.00 0.00 33.33 33.33 33.33 33.33
neos-906865 1562 1160 34 34 17.47 39.37 29.73 30.71 15.50 28.14 27.37 30.31
neos-916792 1413 1465 89 20 4.06 15.72 9.37 9.67 0.43 9.42 6.15 10.90
neos-942830 589 831 262 1 6.25 25.00 12.50 12.50 25.00 25.00 50.00 50.00
neos14 437 676 130 14 55.47 7.14 4.29 56.00 55.55 55.84 80.17 81.18
neos15 460 699 153 16 48.80 6.30 4.23 49.26 48.87 49.12 75.31 78.37

170

cuts % gap closed

Instance Rows Cols G V G DB V V+G GurF V+GurF GurL V+GurL

neos17 486 511 171 171 4.19 1.16 0.47 4.58 70.31 70.60 87.80 87.26
neos18 3058 760 532 4 11.30 2.61 2.61 13.91 54.35 54.35 62.94 61.26
neos3 1146 2160 28 28 2.49 20.37 11.83 13.33 3.07 14.17 18.16 25.92
neos5 63 63 35 1 11.11 37.50 37.50 37.50 4.17 37.50 20.85 37.50
neos7 1698 1390 22 13 29.12 30.06 19.44 29.12 35.06 35.06 46.56 46.56
newdano 520 449 52 2 7.76 28.32 28.32 28.32 7.92 28.32 10.60 28.32
ns1606230 3459 3261 966 - 4.11 1.70 0.00 4.11 16.76 16.76 58.55 58.55
ns1688347 2352 1242 317 5 10.38 29.56 16.98 16.98 27.04 27.32 39.62 39.62
ns1830653 1309 585 237 113 9.57 26.28 9.90 11.60 19.32 19.32 28.84 28.84
ns894788 923 2012 376 - 100.00 9.04 0.00 100.00 100.00 100.00 100.00 100.00
nsrand-ipx 510 3713 69 9 14.03 13.75 5.41 15.69 11.10 15.21 61.52 60.55
p0282 160 200 24 24 3.19 13.47 9.84 10.58 74.91 75.93 97.94 99.63
p0548 117 365 31 4 48.62 10.78 7.42 48.93 76.86 79.01 99.86 99.86
p100x588b 688 1176 74 74 10.57 5.43 2.23 11.91 75.33 79.67 91.18 90.36
p2756 591 2143 96 85 93.51 11.61 4.81 93.51 78.76 79.38 98.25 98.58
p6000 1725 4596 2 2 41.65 67.98 63.49 64.52 0.53 0.53 43.78 64.82
p6b 502 451 375 49 0.91 12.92 10.34 10.34 0.64 9.93 1.10 10.40
p80x400b 474 792 52 5 12.27 7.70 2.34 12.75 76.04 78.27 89.49 90.63
pg 125 2700 92 3 24.30 9.18 1.41 24.87 82.28 82.28 82.65 82.65
pg5_34 225 2600 88 20 23.45 6.70 0.66 23.93 94.67 95.35 98.80 98.80
pipex 25 48 6 6 35.56 33.47 33.27 36.66 14.11 31.80 96.90 98.68
pp08a 133 234 53 4 54.53 22.35 9.90 54.53 60.60 59.91 95.38 95.50
pp08aCUTS 239 235 46 46 33.79 21.04 12.71 35.72 49.38 54.18 91.78 91.20
probportfolio 302 320 105 48 4.61 18.70 9.89 11.30 1.98 2.86 14.12 16.31
prod1 75 117 40 40 4.66 40.54 36.12 36.30 9.96 32.51 25.36 37.72
protfold 2110 1835 570 - 4.35 6.56 0.00 4.35 5.83 5.83 10.78 12.89
qiu 1192 840 36 36 0.65 36.61 17.63 18.02 1.57 16.52 6.43 17.74
qnet1 360 1417 47 47 12.61 23.89 8.45 17.11 26.14 30.71 86.21 87.05
qnet1_o 237 1314 10 10 25.04 63.67 61.48 62.68 46.87 63.66 93.45 84.56
queens-30 900 900 900 1 2.29 2.98 0.17 2.31 0.27 0.48 2.24 2.24
r80x800 880 1600 65 65 31.62 20.13 2.01 32.41 67.79 72.71 87.68 86.94
ran14x18 284 504 18 18 7.75 10.58 10.23 10.48 22.86 24.14 52.15 52.09
ran14x18-disj-8 447 504 84 24 0.14 10.29 8.19 8.19 0.74 1.64 6.29 9.22
ran16x16 288 512 20 20 10.17 20.19 19.12 19.59 35.22 37.05 62.42 61.20
reblock67 1928 585 442 72 10.68 31.20 20.55 22.24 15.80 21.43 35.09 39.21
rgn 24 180 18 3 8.03 64.07 42.44 45.39 35.33 49.51 57.49 67.22
rococoB10-011000 720 3510 261 98 9.68 1.10 0.79 9.68 22.30 22.30 31.84 31.95
rococoC10-001000 576 2442 128 128 29.16 30.83 20.85 32.35 35.59 35.71 64.66 66.55
roll3000 1036 897 185 57 5.13 1.34 0.44 5.25 25.82 29.00 89.29 89.33
rout 290 555 40 40 1.47 17.07 16.66 17.02 2.79 16.05 6.36 16.66
roy 147 139 11 11 4.53 43.14 29.82 30.30 25.57 37.61 80.64 86.89
sentoy 30 60 8 8 19.31 61.36 59.51 59.79 9.02 12.10 35.30 59.96
set1al 432 652 197 5 98.85 3.66 1.86 98.85 99.15 99.15 99.95 99.95
set1ch 423 643 129 129 29.41 2.19 1.92 29.41 67.21 67.21 99.84 99.75

171

cuts % gap closed

Instance Rows Cols G V G DB V V+G GurF V+GurF GurL V+GurL

set3-10 2481 2677 176 5 17.62 3.77 0.00 18.81 8.63 8.79 39.55 39.69
set3-15 2537 2677 174 9 7.36 1.77 0.16 7.37 6.98 7.51 29.53 29.62
set3-20 2537 2677 176 8 10.55 1.09 0.00 11.04 8.15 8.59 33.50 33.31
seymour 4369 893 472 7 3.84 15.92 4.17 5.26 20.55 20.67 44.19 43.98
seymour-disj-10 4770 1022 604 103 0.20 5.42 0.50 0.51 0.27 0.28 0.49 0.80
sp98ir 1395 1576 102 99 3.69 31.37 11.54 12.04 12.74 12.74 50.19 50.65
stein27_nocard 117 27 27 1 8.30 59.26 59.26 59.26 10.05 66.67 33.33 66.67
stein45_nocard 330 45 45 1 4.69 53.48 53.48 53.48 7.62 59.09 22.80 59.09
timtab1 165 365 128 4 24.08 11.49 4.48 24.08 30.31 29.79 62.70 59.11
timtab2 285 625 214 8 13.66 9.25 2.61 13.66 22.81 23.17 42.75 47.53
toll-like 4038 2570 551 11 3.86 2.61 2.13 5.39 57.23 58.20 91.52 91.50
tr12-30 710 1028 321 4 58.36 1.74 0.78 58.60 60.22 60.39 99.58 99.65
uct-subprob 1725 2062 827 5 2.23 10.48 6.30 6.88 10.60 11.75 33.27 33.82
umts 1749 1648 281 75 0.97 0.17 0.07 0.97 1.69 1.69 5.01 5.01
vpm2 127 187 24 24 18.20 13.62 11.24 20.06 43.29 48.35 72.77 71.44

Average 17.28 24.03 15.60 26.95 25.99 33.03 46.48 52.07
Wins 114 91 156 143 116

Table D.3: Time (in seconds) and number nodes taken to solve each instance. The table is
sorted by column 4 (“V” under “Time (s)”). “Gur1” indicates Gurobi run with one random
seed. “Gur7” indicates the minimum from seven runs of Gurobi with different random seeds.

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
neos-796608 0.01 0.01 0.01 0.01 0.01 22 20 22
neos-501453 0.02 0.02 0.02 0.02 0.02 176 176 176
gt2 0.02 0.02 0.02 0.02 0.02 2 2 2
roy 0.03 0.03 0.03 0.03 0.03 18 18 1
pipex 0.03 0.03 0.03 0.03 0.03 4 4 3
p0548 0.04 0.04 0.04 0.04 0.04 2 2 2
bm23 0.09 0.09 0.04 0.09 0.09 391 391 167
mod013 0.06 0.06 0.04 0.06 0.06 61 61 43
set1al 0.05 0.04 0.05 0.05 0.05 8 8 8
lseu 0.09 0.08 0.09 0.09 0.09 227 227 227
sentoy 0.19 0.18 0.10 0.19 0.19 127 127 127
modglob 0.13 0.13 0.11 0.13 0.13 55 55 10
mod008 0.12 0.12 0.12 0.12 0.12 45 45 33
bell5 0.19 0.19 0.12 0.13 0.13 2332 2332 1255
khb05250 0.14 0.14 0.13 0.14 0.14 7 7 6
p0282 0.15 0.14 0.13 0.15 0.15 90 90 3
neos-1599274 0.16 0.14 0.16 0.16 0.16 1 1 1

172

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
bell4 0.39 0.38 0.28 0.36 0.36 2537 2537 1623
gesa2 0.34 0.33 0.31 0.34 0.34 17 17 17
neos-1225589 0.39 0.31 0.31 0.39 0.39 26 26 23
stein27_nocard 0.38 0.37 0.33 0.38 0.38 2703 2701 2703
vpm2 0.34 0.34 0.34 0.34 0.34 457 457 457
qnet1_o 0.42 0.36 0.35 0.42 0.42 88 21 27
set1ch 0.37 0.34 0.35 0.37 0.37 317 317 317
fixnet6 0.35 0.34 0.35 0.35 0.35 42 42 35
neos-1058477 0.37 0.30 0.36 0.37 0.37 10 7 10
dcmulti 0.38 0.37 0.37 0.38 0.38 114 78 57
neos-880324 0.37 0.35 0.37 0.37 0.37 482 431 482
blend2 0.89 0.47 0.39 0.77 0.78 1455 1048 947
fiber 1.07 0.33 0.41 0.54 0.56 584 172 222
neos-1480121 0.41 0.28 0.41 0.41 0.41 1015 816 1015
rgn 0.44 0.36 0.41 0.44 0.44 1440 1350 1440
bell3b 0.59 0.36 0.46 0.47 0.47 4251 2691 2621
gesa3_o 0.63 0.62 0.47 0.63 0.63 66 66 44
misc03 0.83 0.61 0.51 0.57 0.58 1686 1221 863
gesa3 0.64 0.63 0.56 0.64 0.64 40 40 38
neos-522351 1.00 0.89 0.61 1.00 1.00 152 150 34
bell3a 0.93 0.93 0.69 0.72 0.73 8123 8123 5948
neos7 1.58 0.95 0.71 1.58 1.58 684 280 355
p2756 1.45 1.25 0.75 1.45 1.45 461 461 132
neos-1420205 3.79 0.64 0.76 1.08 1.10 5511 1752 1872
pp08a 1.27 0.85 0.79 0.83 0.83 1574 947 873
pp08aCUTS 1.18 1.14 0.80 0.93 0.94 1105 1105 868
neos-598183 0.87 0.87 0.87 0.87 0.87 114 114 33
gesa2_o 1.45 1.44 0.96 1.45 1.45 565 565 555
gesa2-o 1.77 1.67 0.96 1.72 1.76 565 565 555
neos-775946 1.95 1.57 0.99 1.95 1.95 146 41 36
qnet1 1.26 0.88 1.00 1.26 1.26 44 23 26
23588 1.62 1.30 1.41 1.62 1.62 1181 744 961
l152lav 2.35 1.56 1.49 2.35 2.35 631 328 319
lectsched-4-obj 2.48 1.24 1.52 2.48 2.48 53 1 53
macrophage 1.95 1.93 1.60 1.95 1.95 21 21 9
neos-862348 1.78 1.78 1.78 1.78 1.78 313 154 313
neos-1112787 3.04 2.99 1.96 3.04 3.04 801 801 504
neos20 2.06 1.20 1.97 2.06 2.06 497 342 497
neos2 2.40 2.40 2.40 2.40 2.40 624 601 624
neos-555771 4.92 1.87 2.59 4.92 4.92 517 128 212
10teams 19.24 8.72 2.81 19.24 19.24 591 189 31
neos17 2.92 2.38 2.92 2.92 2.92 2305 1877 2305

173

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
neos-825075 4.13 2.56 4.13 4.13 4.13 543 543 543
neos-584851 23.27 3.49 4.31 4.99 5.13 3728 663 688
neos-717614 13.09 11.22 4.62 13.02 13.09 12024 12024 8816
neos-1281048 5.82 5.82 5.44 5.82 5.82 102 69 102
neos-1489999 5.57 5.26 5.57 5.57 5.57 88 73 80
aligninq 5.82 5.82 5.82 5.82 5.82 490 490 490
neos18 5.88 5.15 5.88 5.88 5.88 2191 1819 2191
mas284 8.63 8.11 6.10 8.63 8.63 14405 13942 14405
neos3 7.01 5.46 6.28 7.01 7.01 2097 1653 1665
neos16 7.33 0.68 6.36 6.43 6.48 3635 523 3635
neos-603073 6.76 6.63 6.41 6.76 6.76 770 770 770
eild76 6.47 6.21 6.47 6.47 6.47 152 152 152
neos-512201 12.83 5.58 6.57 12.83 12.83 2254 1439 1602
neos-803219 7.58 6.40 7.58 7.58 7.58 5415 4719 5195
neos-803220 9.50 8.79 8.05 9.50 9.50 8260 7561 7161
neos-504815 8.53 8.53 8.53 8.53 8.53 3459 3459 3138
neos-801834 9.97 9.89 9.33 9.97 9.97 195 182 158
pg 10.44 10.38 9.67 10.44 10.44 1016 1016 1016
neos-806323 25.71 16.41 9.91 12.54 13.15 6714 4041 1696
neos-807639 12.53 9.86 10.46 12.53 12.53 3400 3284 3043
neos-807705 10.64 8.95 10.64 10.64 10.64 2217 1898 2217
neos-1112782 10.78 10.72 10.78 10.78 10.78 1895 1895 1392
neos-593853 110.01 21.46 12.54 14.93 15.15 27195 9343 4694
neos-570431 13.65 13.65 13.65 13.65 13.65 1193 1161 1193
misc07 74.12 29.06 14.10 14.19 14.22 62889 25415 16054
binkar10_1 15.53 15.53 14.92 15.53 15.53 6414 5288 5744
aflow30a 18.96 10.68 15.14 15.33 15.39 4528 2423 2894
p6000 15.84 15.80 15.84 15.84 15.84 3948 3948 3306
cap6000 15.93 15.77 15.93 15.93 15.93 3948 3948 3306
stein45_nocard 16.28 14.31 16.19 16.28 16.28 46555 43499 38857
neos-860300 20.95 20.95 17.78 20.95 20.95 654 654 485
arki001 18.18 8.35 18.18 18.18 18.18 6489 2198 6489
neos-1415183 19.52 5.30 19.52 19.52 19.52 1244 735 900
neos-1413153 19.94 17.85 19.94 19.94 19.94 1157 1143 1149
beasleyC3 28.69 14.95 21.66 23.52 23.87 910 659 615
mc11 30.34 26.08 21.67 30.34 30.34 636 628 590
roll3000 32.71 21.32 27.08 27.83 28.18 2126 1547 1587
rout 28.15 28.15 28.15 28.15 28.15 19067 16967 11779
neos-1582420 28.94 3.86 28.94 28.94 28.94 1047 155 1047
ns1688347 54.90 27.02 30.33 54.90 54.90 2152 1113 1517
bienst1 46.14 34.20 32.46 42.84 42.98 11102 10784 8872
neos-480878 52.07 31.22 35.85 42.75 42.87 7962 6836 5891

174

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
neos-538916 36.13 36.13 36.13 36.13 36.13 19766 19766 19766
neos-906865 38.18 37.23 38.18 38.18 38.18 7315 6707 7315
neos-504674 66.24 38.61 40.45 42.48 43.22 8281 5109 5453
neos-911880 3600.00 19.21 41.53 41.83 42.03 4303328 10741 32373
neos-538867 47.76 47.76 47.76 47.76 47.76 33208 33208 33208
neos-892255 49.08 20.54 49.08 49.08 49.08 680 464 680
neos-1215259 54.28 43.70 49.61 54.28 54.28 1308 979 1107
prod1 62.72 56.37 50.91 55.52 56.99 44431 41529 33157
qiu 62.65 49.55 52.41 62.65 62.65 10065 8814 9216
neos-839859 59.02 43.62 56.20 59.02 59.02 4621 3058 4621
neos-1396125 157.30 28.99 58.39 76.44 77.08 6501 1148 2311
pg5_34 109.63 109.63 59.31 59.84 59.88 15750 15750 8833
mik-250-1-100-1 85.85 64.02 59.81 61.81 61.91 30820 25082 24685
lrn 162.87 42.50 63.75 162.87 162.87 5145 1111 1518
sp98ir 68.95 44.26 68.95 68.95 68.95 1269 1269 1206
bc1 72.98 72.98 72.98 72.98 72.98 2771 2771 2771
neos-810326 159.47 40.99 76.52 101.22 101.87 4005 860 2170
neos-686190 101.64 71.97 80.58 101.64 101.64 10071 5581 6536
ran16x16 189.96 114.96 90.14 91.35 91.51 38847 29498 18434
mas076 131.06 123.68 90.73 90.83 90.84 219321 219321 182305
harp2 216.56 133.74 92.73 93.50 93.54 115912 85376 76767
30n20b8 165.72 133.03 106.97 165.72 165.72 785 716 785
mine-90-10 793.30 269.93 119.46 406.70 413.23 208784 62561 34388
nsrand-ipx 143.16 132.33 123.19 127.88 128.04 6860 5502 4792
bienst2 145.79 117.76 138.51 143.89 144.02 82657 72249 76823
neos-886822 141.96 108.31 141.96 141.96 141.96 12818 10610 12818
neos14 162.75 156.85 157.38 157.42 157.44 58288 58288 58288
timtab1 308.79 235.68 227.72 227.79 227.82 58028 36560 36976
glass4 354.27 211.68 259.66 259.86 259.96 404317 156966 140261
mcsched 278.94 138.59 278.94 278.94 278.94 24029 13421 23045
tr12-30 366.49 283.71 296.44 299.07 299.77 155870 110839 115114
ns1830653 650.26 189.63 297.15 373.44 384.05 14002 7119 9065
eilB101 356.06 337.29 308.44 356.06 356.06 5049 5049 4937
neos-1620807 401.95 401.95 348.95 349.28 349.40 170114 170114 146470
neos-916792 419.24 419.24 414.67 419.24 419.24 80347 75915 77289
ns1606230 437.61 406.49 437.61 437.61 437.61 539 537 539
ns2081729 1164.14 325.98 444.50 446.65 447.71 856594 265549 297466
reblock67 669.56 490.69 454.50 669.56 669.56 149731 94609 102046
neos-1601936 2887.71 129.24 490.70 1349.39 1426.28 10225 457 855
rococoC10-001000 945.54 922.11 665.86 668.82 668.93 55535 51122 55439
neos-1595230 1103.66 719.61 748.57 751.06 751.17 181361 114144 129236
neos5 1239.90 617.23 789.47 790.31 791.26 905747 510755 370106

175

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
neos-547911 858.75 234.31 858.75 858.75 858.75 13946 5279 13946
n4-3 961.28 760.15 961.28 961.28 961.28 16189 13521 15961
aflow40b 1098.90 1098.90 1098.90 1098.90 1098.90 50709 50709 50709
neos-1605061 1209.36 1209.36 1209.36 1209.36 1209.36 6283 6277 6283
dfn-gwin-UUM 1373.28 964.96 1230.43 1239.19 1239.75 276913 209309 208185
umts 2344.82 974.07 1234.36 1337.32 1337.85 866745 398798 471882
k16x240 1493.09 1060.81 1399.93 1400.15 1400.19 517769 307378 397159
mas074 1913.29 1540.80 1428.56 1428.76 1428.79 2704801 2457271 2647865
gmu-35-40 3600.00 575.93 1497.91 1501.60 1502.05 1763647 213513 1204007
newdano 1658.79 1658.79 1658.79 1658.79 1658.79 1583316 1577872 148850
iis-100-0-cov 2286.74 2286.74 2286.74 2286.74 2286.74 113846 113846 113846
csched007 2525.97 2391.25 2525.97 2525.97 2525.97 114745 93447 114745
a1c1s1 2698.94 2698.94 2545.58 2555.06 2556.30 46312 43057 43584
csched010 3600.00 2442.29 3028.19 3040.81 3040.97 95668 67054 85407
p80x400b 3156.20 2182.93 3156.20 3156.20 3156.20 363870 284292 299703
gmu-35-50 3517.04 3517.04 3517.04 3517.04 3517.04 1789962 1096140 1789962
Gmean 81.48 58.94 63.79 68.37 68.50 6069 4475 4549
Wins1 87 89 45 45 105 109
Wins7 41 12 12 64

Table D.4: Time (in seconds) and number nodes taken to solve each of the instances for
which all six branch-and-bound trees successfully yielded VPCs. The table is sorted by
column 4 (“V” under “Time (s)”). “Gur1” indicates Gurobi run with one random seed.
“Gur7” indicates the minimum from seven runs of Gurobi with different random seeds.

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
gt2 0.02 0.02 0.02 0.02 0.02 2 2 2
roy 0.03 0.03 0.03 0.03 0.03 18 18 1
pipex 0.03 0.03 0.03 0.03 0.03 4 4 3
p0548 0.04 0.04 0.04 0.04 0.04 2 2 2
bm23 0.09 0.09 0.04 0.09 0.09 391 391 167
mod013 0.06 0.06 0.04 0.06 0.06 61 61 43
set1al 0.05 0.04 0.05 0.05 0.05 8 8 8
lseu 0.09 0.08 0.09 0.09 0.09 227 227 227
sentoy 0.19 0.18 0.10 0.19 0.19 127 127 127
modglob 0.13 0.13 0.11 0.13 0.13 55 55 10
mod008 0.12 0.12 0.12 0.12 0.12 45 45 33
bell5 0.19 0.19 0.12 0.13 0.13 2332 2332 1255
khb05250 0.14 0.14 0.13 0.14 0.14 7 7 6

176

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
p0282 0.15 0.14 0.13 0.15 0.15 90 90 3
bell4 0.39 0.38 0.28 0.36 0.36 2537 2537 1623
gesa2 0.34 0.33 0.31 0.34 0.34 17 17 17
stein27_nocard 0.38 0.37 0.33 0.38 0.38 2703 2701 2703
vpm2 0.34 0.34 0.34 0.34 0.34 457 457 457
qnet1_o 0.42 0.36 0.35 0.42 0.42 88 21 27
set1ch 0.37 0.34 0.35 0.37 0.37 317 317 317
fixnet6 0.35 0.34 0.35 0.35 0.35 42 42 35
dcmulti 0.38 0.37 0.37 0.38 0.38 114 78 57
blend2 0.89 0.47 0.39 0.77 0.78 1455 1048 947
fiber 1.07 0.33 0.41 0.54 0.56 584 172 222
rgn 0.44 0.36 0.41 0.44 0.44 1440 1350 1440
bell3b 0.59 0.36 0.46 0.47 0.47 4251 2691 2621
gesa3_o 0.63 0.62 0.47 0.63 0.63 66 66 44
misc03 0.83 0.61 0.51 0.57 0.58 1686 1221 863
gesa3 0.64 0.63 0.56 0.64 0.64 40 40 38
neos-522351 1.00 0.89 0.61 1.00 1.00 152 150 34
bell3a 0.93 0.93 0.69 0.72 0.73 8123 8123 5948
p2756 1.45 1.25 0.75 1.45 1.45 461 461 132
pp08a 1.27 0.85 0.79 0.83 0.83 1574 947 873
pp08aCUTS 1.18 1.14 0.80 0.93 0.94 1105 1105 868
neos-598183 0.87 0.87 0.87 0.87 0.87 114 114 33
gesa2_o 1.45 1.44 0.96 1.45 1.45 565 565 555
gesa2-o 1.77 1.67 0.96 1.72 1.76 565 565 555
23588 1.62 1.30 1.41 1.62 1.62 1181 744 961
macrophage 1.95 1.93 1.60 1.95 1.95 21 21 9
neos-862348 1.78 1.78 1.78 1.78 1.78 313 154 313
neos17 2.92 2.38 2.92 2.92 2.92 2305 1877 2305
neos-717614 13.09 11.22 4.62 13.02 13.09 12024 12024 8816
neos-1489999 5.57 5.26 5.57 5.57 5.57 88 73 80
neos18 5.88 5.15 5.88 5.88 5.88 2191 1819 2191
mas284 8.63 8.11 6.10 8.63 8.63 14405 13942 14405
neos3 7.01 5.46 6.28 7.01 7.01 2097 1653 1665
neos-603073 6.76 6.63 6.41 6.76 6.76 770 770 770
neos-512201 12.83 5.58 6.57 12.83 12.83 2254 1439 1602
neos-803219 7.58 6.40 7.58 7.58 7.58 5415 4719 5195
neos-803220 9.50 8.79 8.05 9.50 9.50 8260 7561 7161
neos-504815 8.53 8.53 8.53 8.53 8.53 3459 3459 3138
pg 10.44 10.38 9.67 10.44 10.44 1016 1016 1016
neos-806323 25.71 16.41 9.91 12.54 13.15 6714 4041 1696
neos-807639 12.53 9.86 10.46 12.53 12.53 3400 3284 3043
neos-807705 10.64 8.95 10.64 10.64 10.64 2217 1898 2217

177

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
neos-593853 110.01 21.46 12.54 14.93 15.15 27195 9343 4694
neos-570431 13.65 13.65 13.65 13.65 13.65 1193 1161 1193
misc07 74.12 29.06 14.10 14.19 14.22 62889 25415 16054
binkar10_1 15.53 15.53 14.92 15.53 15.53 6414 5288 5744
aflow30a 18.96 10.68 15.14 15.33 15.39 4528 2423 2894
p6000 15.84 15.80 15.84 15.84 15.84 3948 3948 3306
cap6000 15.93 15.77 15.93 15.93 15.93 3948 3948 3306
stein45_nocard 16.28 14.31 16.19 16.28 16.28 46555 43499 38857
arki001 18.18 8.35 18.18 18.18 18.18 6489 2198 6489
mc11 30.34 26.08 21.67 30.34 30.34 636 628 590
roll3000 32.71 21.32 27.08 27.83 28.18 2126 1547 1587
rout 28.15 28.15 28.15 28.15 28.15 19067 16967 11779
ns1688347 54.90 27.02 30.33 54.90 54.90 2152 1113 1517
bienst1 46.14 34.20 32.46 42.84 42.98 11102 10784 8872
neos-480878 52.07 31.22 35.85 42.75 42.87 7962 6836 5891
neos-504674 66.24 38.61 40.45 42.48 43.22 8281 5109 5453
prod1 62.72 56.37 50.91 55.52 56.99 44431 41529 33157
pg5_34 109.63 109.63 59.31 59.84 59.88 15750 15750 8833
mik-250-1-100-1 85.85 64.02 59.81 61.81 61.91 30820 25082 24685
bc1 72.98 72.98 72.98 72.98 72.98 2771 2771 2771
ran16x16 189.96 114.96 90.14 91.35 91.51 38847 29498 18434
mas076 131.06 123.68 90.73 90.83 90.84 219321 219321 182305
harp2 216.56 133.74 92.73 93.50 93.54 115912 85376 76767
mine-90-10 793.30 269.93 119.46 406.70 413.23 208784 62561 34388
nsrand-ipx 143.16 132.33 123.19 127.88 128.04 6860 5502 4792
bienst2 145.79 117.76 138.51 143.89 144.02 82657 72249 76823
neos14 162.75 156.85 157.38 157.42 157.44 58288 58288 58288
timtab1 308.79 235.68 227.72 227.79 227.82 58028 36560 36976
tr12-30 366.49 283.71 296.44 299.07 299.77 155870 110839 115114
neos-916792 419.24 419.24 414.67 419.24 419.24 80347 75915 77289
rococoC10-001000 945.54 922.11 665.86 668.82 668.93 55535 51122 55439
neos5 1239.90 617.23 789.47 790.31 791.26 905747 510755 370106
aflow40b 1098.90 1098.90 1098.90 1098.90 1098.90 50709 50709 50709
dfn-gwin-UUM 1373.28 964.96 1230.43 1239.19 1239.75 276913 209309 208185
k16x240 1493.09 1060.81 1399.93 1400.15 1400.19 517769 307378 397159
mas074 1913.29 1540.80 1428.56 1428.76 1428.79 2704801 2457271 2647865
gmu-35-40 3600.00 575.93 1497.91 1501.60 1502.05 1763647 213513 1204007
newdano 1658.79 1658.79 1658.79 1658.79 1658.79 1583316 1577872 148850
iis-100-0-cov 2286.74 2286.74 2286.74 2286.74 2286.74 113846 113846 113846
a1c1s1 2698.94 2698.94 2545.58 2555.06 2556.30 46312 43057 43584
p80x400b 3156.20 2182.93 3156.20 3156.20 3156.20 363870 284292 299703

178

Time (s) Nodes
Instance Gur1 Gur7 V V+PRLP V Total Gur1 Gur7 V
gmu-35-50 3517.04 3517.04 3517.04 3517.04 3517.04 1789962 1096140 1789962
Gmean 65.56 54.28 54.04 56.59 56.67 6747 5588 5239
Wins1 44 57 30 30 57 73
Wins7 33 11 11 51

Table D.5: Branch-and-bound statistics by number leaf nodes for “6 trees” set of instances.
Each set contains the instances for which VPCs were generated and Gurobi solves the prob-
lem in under an hour either with or without VPCs.

Time (s) Nodes
Set # inst Gur1 V w/PRLP Total Gur1 V
2 leaves
[0,3600) 97 Gmean 65.56 70.29 70.98 71.11 6747 200625

Wins1 26 20 20 44
2 leaves
[10,3600) 48 Gmean 199.22 216.63 218.85 219.13 32828 33126

Wins1 14 13 13 21
2 leaves
[100,3600) 22 Gmean 785.11 888.62 890.16 890.31 182736 200625

Wins1 7 7 7 10
2 leaves
[1000,3600) 11 Gmean 2016.85 2225.14 2225.53 2225.73 455997 532363

Wins1 3 3 3 3
4 leaves
[0,3600) 97 Gmean 65.56 72.85 75.50 75.96 6747 187036

Wins1 12 9 9 32
4 leaves
[10,3600) 48 Gmean 199.22 228.71 238.11 239.54 32828 37405

Wins1 8 7 7 14
4 leaves
[100,3600) 22 Gmean 762.16 925.84 933.12 933.62 152198 187036

Wins1 3 3 3 5
4 leaves
[1000,3600) 11 Gmean 2016.85 2434.61 2436.20 2436.67 455997 572511

Wins1 1 1 1 2
8 leaves
[0,3600) 97 Gmean 65.56 69.71 77.01 77.94 6747 169522

Wins1 22 12 12 41
8 leaves
[10,3600) 48 Gmean 199.22 214.97 238.04 240.74 32828 33309

Wins1 11 9 9 20
8 leaves
[100,3600) 23 Gmean 728.12 792.90 814.31 815.97 164565 169522

Wins1 6 6 6 10
8 leaves
[1000,3600) 11 Gmean 2016.85 2350.61 2360.07 2361.38 455997 496207

Wins1 2 2 2 5
16 leaves
[0,3600) 97 Gmean 65.56 68.09 91.35 93.24 6747 156831

Wins1 27 14 13 40
16 leaves
[10,3600) 47 Gmean 206.32 215.40 279.14 284.70 34556 30524

Wins1 12 10 10 20

179

Time (s) Nodes
Set # inst Gur1 V w/PRLP Total Gur1 V
16 leaves
[100,3600) 22 Gmean 770.35 838.38 925.39 931.40 175639 156831

Wins1 5 5 5 9
16 leaves
[1000,3600) 10 Gmean 2116.48 2633.10 2662.14 2665.77 425732 374841

Wins1 2 2 2 4
32 leaves
[0,3600) 97 Gmean 65.56 72.79 125.62 129.90 6747 194536

Wins1 27 8 8 41
32 leaves
[10,3600) 46 Gmean 214.11 245.78 393.29 405.24 35721 37933

Wins1 11 7 7 20
32 leaves
[100,3600) 23 Gmean 728.12 890.85 1010.87 1020.74 164565 194536

Wins1 4 4 4 8
32 leaves
[1000,3600) 10 Gmean 2116.48 2422.80 2487.50 2501.11 425732 510264

Wins1 2 2 2 4
64 leaves
[0,3600) 97 Gmean 65.56 71.53 165.41 176.93 6747 145261

Wins1 32 10 9 48
64 leaves
[10,3600) 46 Gmean 213.16 238.46 516.36 553.50 36141 34778

Wins1 14 9 9 25
64 leaves
[100,3600) 23 Gmean 728.12 809.06 1050.44 1078.81 164565 145261

Wins1 8 7 7 14
64 leaves
[1000,3600) 11 Gmean 2016.85 2422.10 2526.42 2555.06 455997 401381

Wins1 2 2 2 5

Table D.6: Information about objectives and time to generate cuts corresponding to the
results in Table D.2.

Objectives Time (s)
Instance Obj Succ Fails % fails Tree Setup Solve (s) / obj (s) / cut
10teams 20 2 18 90.0 2.0 220.9 678.6 33.9 339.3
23588 75 75 0 0.0 1.2 3.4 219.5 2.9 2.9
30n20b8 105 98 7 6.7 1.5 28.6 847.1 8.1 8.6
50v-10 34 29 5 14.7 0.6 0.3 15.6 0.5 0.5
a1c1s1 8 7 1 12.5 1.2 0.1 1.2 0.1 0.2
aflow30a 26 25 1 3.8 1.2 3.3 42.2 1.6 1.7
aflow40b 37 36 1 2.7 5.5 46.8 770.1 20.8 21.4
aligninq 65 58 7 10.8 1.7 8.6 895.2 13.8 15.4
arki001 25 12 13 52.0 0.2 0.0 1.8 0.1 0.2
b2c1s1 29 8 21 72.4 1.6 5.5 119.0 4.1 14.9
bc1 6 5 1 16.7 39.5 10.5 77.0 12.8 15.4
beasleyC3 149 148 1 0.7 1.9 14.7 565.6 3.8 3.8
bell3a 8 4 4 50.0 0.0 0.0 0.0 0.0 0.0
bell3b 50 21 30 60.0 0.0 0.0 0.0 0.0 0.0

180

Objectives Time (s)
Instance Obj Succ Fails % fails Tree Setup Solve (s) / obj (s) / cut
bell4 25 7 18 72.0 0.0 0.0 0.0 0.0 0.0
bell5 11 10 1 9.1 0.0 0.0 0.0 0.0 0.0
bg512142 114 9 105 92.1 1.1 1.2 518.0 4.5 57.6
bienst1 54 8 46 85.2 2.0 101.9 218.2 4.0 27.3
bienst2 68 8 60 88.2 1.9 106.0 237.9 3.5 29.7
binkar10_1 78 24 54 69.2 1.4 2.2 170.6 2.2 7.1
blend2 15 13 2 13.3 0.3 0.5 3.1 0.2 0.2
bm23 7 6 1 14.3 0.1 0.0 0.1 0.0 0.0
cap6000 4 2 2 50.0 1.1 4.3 32.3 8.1 16.1
cov1075 21 1 20 95.2 12.8 5.1 13.3 0.6 13.3
csched007 80 59 21 26.3 1.1 20.9 881.1 11.0 14.9
csched010 138 124 14 10.1 0.6 4.9 645.1 4.7 5.2
d10200 38 37 1 2.6 11.4 15.9 897.8 23.6 24.3
danoint 46 10 36 78.3 5.2 52.9 850.8 18.5 85.1
dcmulti 50 46 4 8.0 0.4 0.2 7.1 0.1 0.2
dfn-gwin-UUM 46 45 1 2.2 0.4 2.3 40.0 0.9 0.9
dg012142 29 16 13 44.8 10.5 50.6 853.8 29.4 53.4
eilB101 91 89 2 2.2 1.2 10.9 624.1 6.9 7.0
eild76 65 63 2 3.1 0.9 10.6 376.4 5.8 6.0
fiber 49 42 7 14.3 0.5 1.1 12.1 0.2 0.3
fixnet6 13 12 1 7.7 0.6 1.1 5.4 0.4 0.4
g200x740i 26 25 1 3.8 0.3 0.1 3.1 0.1 0.1
gesa2 39 10 29 74.4 0.2 0.0 0.1 0.0 0.0
gesa2_o 38 12 28 73.7 0.1 0.0 0.0 0.0 0.0
gesa2-o 38 12 28 73.7 0.1 0.0 0.1 0.0 0.0
gesa3 97 58 39 40.2 0.7 0.3 14.9 0.2 0.3
gesa3_o 10 9 1 10.0 1.1 0.1 2.9 0.3 0.3
glass4 112 72 40 35.7 0.4 0.4 0.3 0.0 0.0
gmu-35-40 11 11 0 0.0 0.5 0.6 12.2 1.1 1.1
gmu-35-50 17 16 1 5.9 0.7 1.5 25.3 1.5 1.6
go19 181 175 6 3.3 4.1 20.4 879.9 4.9 5.0
gt2 30 7 23 76.7 0.0 0.0 0.1 0.0 0.0
harp2 29 27 2 6.9 0.4 0.9 26.5 0.9 1.0
iis-100-0-cov 102 100 2 2.0 58.6 8.0 160.3 1.6 1.6
iis-bupa-cov 98 98 0 0.0 44.0 23.0 880.9 9.0 9.0
janos-us-DDM 126 81 45 35.7 1.1 0.1 3.5 0.0 0.0
k16x240 16 14 2 12.5 0.2 0.2 2.3 0.1 0.2
khb05250 15 14 1 6.7 0.3 0.1 4.5 0.3 0.3
l152lav 54 52 2 3.7 0.2 0.8 76.0 1.4 1.5
lotsize 6 4 2 33.3 0.3 0.0 0.0 0.0 0.0
lrn 51 43 9 17.6 12.0 32.5 858.5 16.8 20.0
lseu 11 9 2 18.2 0.1 0.0 0.2 0.0 0.0

181

Objectives Time (s)
Instance Obj Succ Fails % fails Tree Setup Solve (s) / obj (s) / cut
macrophage 53 13 40 75.5 2.0 2.6 4.7 0.1 0.4
mas074 13 12 1 7.7 0.2 0.3 3.8 0.3 0.3
mas076 12 11 1 8.3 0.2 0.3 3.6 0.3 0.3
mas284 42 4 38 90.5 0.6 1.0 50.1 1.2 12.5
maxgasflow 7 7 2 28.6 0.3 0.0 0.0 0.0 0.0
mc11 380 363 17 4.5 1.0 0.3 57.6 0.2 0.2
mcsched 430 416 14 3.3 4.0 4.3 893.8 2.1 2.1
mik-250-1-100-1 141 100 41 29.1 0.2 0.0 8.8 0.1 0.1
mine-90-10 138 103 35 25.4 6.5 54.4 843.6 6.1 8.2
misc03 20 18 2 10.0 0.3 1.4 6.7 0.3 0.4
misc07 17 16 1 5.9 1.0 7.7 23.9 1.4 1.5
mkc 23 20 3 13.0 0.2 1.3 0.3 0.0 0.0
mod008 8 6 2 25.0 0.1 0.2 2.4 0.3 0.4
mod013 5 5 0 0.0 0.1 0.1 0.1 0.0 0.0
modglob 45 29 16 35.6 0.1 0.0 0.9 0.0 0.0
n4-3 39 39 0 0.0 1.2 32.1 241.4 6.2 6.2
neos-1058477 28 19 9 32.1 0.8 37.1 516.3 18.4 27.2
neos-1112782 19 6 13 68.4 0.2 0.0 4.8 0.3 0.8
neos-1112787 33 6 27 81.8 0.1 0.0 12.6 0.4 2.1
neos-1215259 52 51 1 1.9 4.7 39.8 864.2 16.6 16.9
neos-1225589 52 12 40 76.9 0.9 2.7 82.5 1.6 6.9
neos-1281048 28 10 18 64.3 5.1 61.0 853.3 30.5 85.3
neos-1396125 64 63 1 1.6 2.1 23.3 191.4 3.0 3.0
neos-1413153 21 1 20 95.2 0.6 11.0 29.5 1.4 29.5
neos-1415183 257 253 4 1.6 0.7 13.0 157.2 0.6 0.6
neos-1420205 21 1 20 95.2 0.5 3.2 2.9 0.1 2.9
neos-1489999 107 106 1 0.9 2.2 17.4 886.4 8.3 8.4
neos-1582420 106 91 15 14.2 3.2 13.1 878.4 8.3 9.7
neos-1616732 266 117 149 56.0 10.6 43.7 860.1 3.2 7.4
neos-1620807 21 1 20 95.2 4.0 70.7 36.4 1.7 36.4
neos-480878 24 23 1 4.2 3.4 2.4 27.6 1.2 1.2
neos-501453 1 1 0 0.0 0.0 0.0 0.0 0.0 0.0
neos-504674 176 148 28 15.9 4.2 9.8 501.9 2.9 3.4
neos-504815 128 116 12 9.4 3.4 9.7 294.7 2.3 2.5
neos-512201 131 56 75 57.3 4.2 4.0 550.1 4.2 9.8
neos-522351 184 106 78 42.4 2.5 116.4 598.1 3.3 5.6
neos-538867 85 47 38 44.7 1.5 13.2 67.7 0.8 1.4
neos-538916 60 53 7 11.7 2.3 14.8 80.4 1.3 1.5
neos-570431 72 54 18 25.0 10.3 67.2 832.0 11.6 15.4
neos-593853 11 9 2 18.2 1.1 0.6 10.9 1.0 1.2
neos-598183 22 19 3 13.6 0.3 0.8 57.7 2.6 3.0
neos-603073 24 20 4 16.7 0.3 0.6 9.1 0.4 0.5

182

Objectives Time (s)
Instance Obj Succ Fails % fails Tree Setup Solve (s) / obj (s) / cut
neos-686190 82 80 2 2.4 1.5 7.1 882.8 10.8 11.0
neos-717614 17 15 2 11.8 0.1 0.0 0.1 0.0 0.0
neos-775946 75 19 57 76.0 0.6 2.7 82.5 1.1 4.3
neos-801834 58 54 4 6.9 4.9 25.5 873.9 15.1 16.2
neos-803219 22 20 2 9.1 19.0 8.4 213.3 9.7 10.7
neos-803220 21 20 1 4.8 5.5 4.3 124.1 5.9 6.2
neos-806323 66 31 35 53.0 0.4 0.0 0.4 0.0 0.0
neos-807639 132 116 16 12.1 13.4 5.2 597.4 4.5 5.2
neos-807705 162 142 20 12.3 2.9 3.8 880.2 5.4 6.2
neos-810326 171 166 5 2.9 2.5 7.6 887.4 5.2 5.3
neos-825075 121 6 115 95.0 2.6 57.3 808.9 6.7 134.8
neos-839859 180 16 164 91.1 0.9 4.7 892.3 5.0 55.8
neos-860300 98 95 3 3.1 13.0 4.3 241.2 2.5 2.5
neos-862348 79 30 49 62.0 2.9 64.8 832.1 10.5 27.7
neos-880324 92 11 81 88.0 2.8 6.0 11.0 0.1 1.0
neos-886822 163 158 5 3.1 0.3 0.7 26.0 0.2 0.2
neos-906865 39 34 5 12.8 2.5 33.9 174.7 4.5 5.1
neos-916792 21 20 1 4.8 7.9 34.0 899.5 42.8 45.0
neos-942830 20 1 19 95.0 3.3 318.9 600.1 30.0 600.1
neos14 32 14 18 56.3 0.4 0.0 0.1 0.0 0.0
neos15 34 16 18 52.9 0.4 0.0 0.1 0.0 0.0
neos17 172 171 1 0.6 1.5 2.4 83.2 0.5 0.5
neos18 41 4 39 95.1 2.0 5.3 38.6 0.9 9.7
neos3 42 28 14 33.3 18.8 49.8 16.1 0.4 0.6
neos5 21 1 20 95.2 0.6 2.6 1.5 0.1 1.5
neos7 46 13 33 71.7 0.9 1.5 150.6 3.3 11.6
newdano 41 2 39 95.1 3.9 351.2 434.9 10.6 217.5
ns1688347 7 5 3 42.9 11.9 6.5 13.7 2.0 2.7
ns1830653 162 113 49 30.2 8.8 36.2 867.4 5.4 7.7
nsrand-ipx 21 9 12 57.1 0.4 0.6 25.1 1.2 2.8
p0282 25 24 1 4.0 0.2 0.1 1.1 0.0 0.0
p0548 5 4 1 20.0 0.1 0.0 0.0 0.0 0.0
p100x588b 77 74 3 3.9 0.6 0.3 14.2 0.2 0.2
p2756 97 85 15 15.5 0.2 0.2 4.6 0.0 0.1
p6000 4 2 2 50.0 1.2 4.4 32.9 8.2 16.5
p6b 50 49 1 2.0 7.8 47.2 858.6 17.2 17.5
p80x400b 7 5 2 28.6 0.1 0.0 0.1 0.0 0.0
pg 5 3 2 40.0 0.8 0.2 1.8 0.4 0.6
pg5_34 26 20 6 23.1 0.0 0.0 0.1 0.0 0.0
pipex 7 6 1 14.3 0.1 0.0 0.1 0.0 0.0
pp08a 5 4 1 20.0 0.1 0.0 0.1 0.0 0.0
pp08aCUTS 47 46 1 2.1 0.4 0.9 15.8 0.3 0.3

183

Objectives Time (s)
Instance Obj Succ Fails % fails Tree Setup Solve (s) / obj (s) / cut
probportfolio 49 48 1 2.0 2.3 35.6 863.0 17.6 18.0
prod1 41 40 1 2.4 1.9 0.7 8.9 0.2 0.2
qiu 37 36 1 2.7 3.0 48.3 616.6 16.7 17.1
qnet1 53 47 6 11.3 0.3 1.7 49.3 0.9 1.0
qnet1_o 11 10 1 9.1 0.8 55.4 116.4 10.6 11.6
queens-30 15 1 14 93.3 93.4 60.8 863.5 57.6 863.5
r80x800 69 65 4 5.8 0.8 0.8 125.6 1.8 1.9
ran14x18 18 18 0 0.0 0.4 0.5 7.1 0.4 0.4
ran14x18-disj-8 25 24 1 4.0 8.7 40.5 860.0 34.4 35.8
ran16x16 21 20 1 4.8 0.4 0.8 8.8 0.4 0.4
reblock67 74 72 2 2.7 4.0 46.2 865.3 11.7 12.0
rgn 38 3 35 92.1 0.1 0.3 2.0 0.1 0.7
rococoB10-011000 100 98 2 2.0 1.8 28.1 859.9 8.6 8.8
rococoC10-001000 131 128 3 2.3 1.3 27.8 691.5 5.3 5.4
roll3000 66 57 9 13.6 3.0 0.7 56.9 0.9 1.0
rout 47 40 7 14.9 1.0 24.0 344.6 7.3 8.6
roy 12 11 1 8.3 0.3 0.0 0.1 0.0 0.0
sentoy 9 8 1 11.1 0.2 0.1 0.5 0.1 0.1
set1al 7 5 2 28.6 0.3 0.0 0.0 0.0 0.0
set1ch 160 129 31 19.4 0.5 0.1 11.4 0.1 0.1
set3-10 6 5 1 16.7 0.5 0.1 0.5 0.1 0.1
set3-15 12 9 3 25.0 0.2 0.1 1.2 0.1 0.1
set3-20 8 8 0 0.0 0.6 0.1 1.9 0.2 0.2
seymour 9 7 3 33.3 7.9 1.3 28.9 3.2 4.1
seymour-disj-10 117 103 15 12.8 28.4 14.5 877.2 7.5 8.5
sp98ir 102 99 3 2.9 3.9 16.0 886.6 8.7 9.0
stein27_nocard 21 1 20 95.2 0.2 0.1 0.3 0.0 0.3
stein45_nocard 21 1 20 95.2 1.0 0.3 0.9 0.0 0.9
timtab1 6 4 2 33.3 0.1 0.0 0.0 0.0 0.0
timtab2 9 8 1 11.1 0.1 0.0 0.0 0.0 0.0
toll-like 40 11 29 72.5 3.2 2.9 3.2 0.1 0.3
tr12-30 4 4 0 0.0 0.3 0.0 0.1 0.0 0.0
uct-subprob 36 5 31 86.1 12.4 52.8 324.2 9.0 64.8
umts 105 75 30 28.6 1.4 7.5 895.5 8.5 11.9
vpm2 27 24 3 11.1 0.2 0.0 0.4 0.0 0.0
Average 30.7 3.7 17.6 257.6 4.8 19.7

184

D.6 Tables for experiments with other cut-generating
sets

The tables in this section show that, overall, using partial branch-and-bound trees leads to
comparable or better percent gap closed than generating cuts from multiple split or cross
disjunctions (Table D.7), in less time (Table D.8) and with fewer cuts (Table D.9). A
summary of these tables appeared in Table 4.7.

The columns of Table D.7 give the following information for each instance. Columns 2
and 3 give the dimensions of the instance. Column 4 gives the number of GMICs generated
(one for each elementary split on an integer variable fractional at x̄). Column 5 contains the
number of VPCs generated, while the next column (6) specifies the number of cuts that are
active, i.e., tight, at the optimum of the LP after adding the cuts. Finally, columns 7 and
8 give the percentage of the integrality gap closed by the GMICs and the VPCs. The last
column (9) gives the time used for generating the cuts.

185

Table D.7: Comparison of percent gap closed by VPCs from partial branch-and-bound trees
to using multiple split or cross disjunctions.

Instance G V+G
(2)

V+G
(4)

V+G
(8)

V+G
(16)

V+G
(32)

V+G
(64)

V+G
(best)

V+G
(splits)

V+G
(crosses)

23588 5.8 17.3 28.7 35.7 47.8 60.9 71.8 71.8 28.7 39.8
bell3a 37.0 37.0 37.0 37.0 43.6 43.6 43.6 43.6 37.0 43.9
bell3b 31.2 84.1 84.1 84.1 84.5 84.5 84.7 84.7 51.4 84.3
bell4 25.6 25.6 25.8 26.1 26.0 26.1 26.4 26.4 25.6 29.9
bell5 13.8 13.8 13.8 25.7 25.6 77.8 62.9 77.8 14.8 22.7
blend2 5.5 5.5 7.5 12.1 13.1 15.5 23.0 23.0 7.1 8.9
bm23 16.8 18.0 19.8 19.8 39.5 56.2 70.9 70.9 18.0 20.2
glass4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
go19 2.0 2.5 3.7 5.6 9.8 13.1 2.0 13.1 8.5 5.8
gt2 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1
k16x240 11.4 11.4 12.9 12.8 16.9 17.7 22.5 22.5 13.5 16.4
lseu 5.8 6.1 6.1 6.1 10.1 11.4 19.2 19.2 6.2 9.1
mas074 6.7 6.7 7.2 7.9 9.0 11.1 13.4 13.4 6.9 7.2
mas076 6.4 6.4 6.5 6.4 6.8 8.9 13.0 13.0 6.4 6.5
mas284 0.9 1.8 8.7 12.4 15.6 25.3 33.8 33.8 3.3 10.6
mik-250-1-100-1 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5
misc03 0.0 0.0 0.0 5.4 10.5 17.4 44.3 44.3 0.0 4.1
misc07 0.7 0.7 0.7 0.7 0.9 1.9 5.5 5.5 0.7 0.7
mod008 24.4 24.4 24.4 25.8 25.5 26.7 27.8 27.8 24.4 24.4
mod013 5.9 9.0 9.9 20.6 21.1 36.9 47.4 47.4 9.0 11.6
modglob 18.1 18.5 18.8 19.6 18.9 18.4 18.6 19.6 30.3 44.8
neos-1420205 0.0 0.0 0.0 0.0 0.0 11.4 14.7 14.7 0.0 0.4
neos5 11.1 11.1 11.1 18.8 21.9 29.2 37.5 37.5 11.2 15.7
neos-880324 0.0 0.0 0.0 0.0 0.0 0.0 36.3 36.3 8.5 16.9
p0282 3.2 3.2 3.2 3.4 6.4 7.3 10.6 10.6 65.2 77.9
pipex 35.6 35.6 35.7 35.7 35.6 35.6 36.7 36.7 35.6 35.6
pp08aCUTS 33.8 33.8 34.9 34.9 35.7 34.6 33.8 35.7 39.9 51.9
pp08a 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 56.1 70.3
probportfolio 4.6 4.8 5.4 5.7 7.0 8.4 11.3 11.3 14.7 13.5
prod1 4.7 5.1 8.3 12.2 18.6 29.6 36.3 36.3 9.7 22.4
rgn 8.0 8.0 8.0 8.0 21.6 33.8 45.4 45.4 8.0 8.1
roy 4.5 7.1 10.4 11.3 15.8 24.3 30.3 30.3 7.4 9.3
sentoy 19.3 19.3 20.0 27.5 45.9 55.0 59.8 59.8 21.3 22.9
stein27_nocard 8.3 13.1 17.9 29.5 44.4 50.0 59.3 59.3 28.5 36.4
timtab1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 27.2 34.1
vpm1 15.7 15.7 15.7 15.7 27.6 26.2 22.8 27.6 16.5 17.3
vpm2 18.2 18.6 18.2 18.6 19.0 19.3 20.1 20.1 23.8 31.8
Average 16.33 18.48 19.55 21.73 25.52 30.74 35.26 36.17 21.79 26.92

186

Table D.8: Time to generate VPCs for each of the different partial branch-and-bound tree
sizes and for multiple split and cross disjunctions.

Instance V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(64)

V
(splits)

V
(crosses)

23588 0.5 2.3 8.8 23.9 77.5 224.8 36.2 912.9
bell3a 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.1
bell3b 0.0 0.0 0.0 0.1 0.1 0.2 0.1 2.4
bell4 0.0 0.0 0.0 0.1 0.1 0.2 0.1 2.6
bell5 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3
blend2 0.1 0.2 0.2 0.5 1.6 4.3 0.6 6.9
bm23 0.0 0.0 0.0 0.1 0.1 0.3 0.1 0.2
glass4 0.0 0.1 0.1 0.3 0.5 1.6 1.5 100.8
go19 1.6 7.5 52.1 314.4 906.3 71.7 619.5 926.5
gt2 0.0 0.0 0.0 0.2 0.4 0.9 0.2 2.9
k16x240 0.1 0.1 0.3 0.7 1.6 3.5 0.7 8.8
lseu 0.0 0.0 0.0 0.1 0.2 0.4 0.1 1.0
mas074 0.0 0.1 0.2 0.6 1.4 4.4 0.4 4.8
mas076 0.0 0.1 0.3 0.8 1.9 4.2 0.4 4.8
mas284 0.1 0.3 0.8 4.1 13.5 52.2 1.7 48.8
mik-250-1-100-1 0.1 0.1 0.2 0.4 2.1 9.3 3.8 327.5
misc03 0.1 0.1 0.5 1.1 3.2 8.7 0.9 20.1
misc07 0.1 0.3 0.9 3.0 13.0 33.3 1.3 29.5
mod008 0.1 0.1 0.2 0.4 1.2 2.9 0.2 1.2
mod013 0.0 0.0 0.0 0.1 0.2 0.4 0.1 0.2
modglob 0.1 0.2 0.4 1.2 1.9 3.4 0.8 18.6
neos-1420205 0.2 0.3 0.3 0.9 4.1 7.1 2.4 170.8
neos5 0.1 0.2 0.4 0.7 1.8 4.9 1.4 114.6
neos-880324 0.1 0.6 0.4 1.3 15.3 20.1 2.2 267.1
p0282 0.0 0.1 0.1 0.4 0.7 1.6 0.5 10.9
pipex 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.2
pp08aCUTS 0.1 0.1 0.2 0.8 2.9 17.6 3.7 184.6
pp08a 0.0 0.0 0.1 0.2 0.4 1.1 0.9 39.1
probportfolio 2.3 7.4 41.2 264.7 682.7 903.3 88.5 907.2
prod1 0.1 0.3 1.2 2.7 6.1 11.8 2.0 218.3
rgn 0.0 0.1 0.2 0.3 1.4 2.5 0.4 7.4
roy 0.0 0.0 0.1 0.2 0.3 0.6 0.2 1.4
sentoy 0.0 0.0 0.1 0.2 0.4 0.9 0.1 0.7
stein27_nocard 0.0 0.1 0.1 0.2 0.4 0.5 0.4 19.2
timtab1 0.0 0.0 0.1 0.2 0.3 0.7 2.3 339.6
vpm1 0.0 0.0 0.1 0.2 0.3 0.7 0.1 1.1
vpm2 0.0 0.0 0.1 0.2 0.4 0.8 0.5 8.9
Geomean 0.16 0.54 2.34 7.24 13.16 14.43 7.38 53.40

187

Table D.9: Number of rows, columns, GMICs, and VPCs for small instances used to test
multiple split and cross disjunctions. The last row gives the average ratio of number of VPCs
as a fraction of the number of GMICs.

cuts

Instance Rows Cols G V
(2)

V
(4)

V
(8)

V
(16)

V
(32)

V
(64)

V
(splits)

V
(crosses)

23588 137 237 75 36 75 75 75 75 75 4890 32920
bell3a 63 82 7 1 5 7 4 5 7 4 19
bell3b 73 91 24 3 3 7 21 25 25 63 328
bell4 73 88 27 3 4 8 5 7 9 22 178
bell5 34 56 10 3 2 5 4 10 10 19 82
blend2 154 302 13 13 13 13 13 13 13 117 840
bm23 20 27 6 6 6 6 6 6 6 36 90
glass4 392 317 72 2 4 10 14 0 72 142 906
go19 361 361 357 97 228 357 357 175 0 35760 22557
gt2 28 173 14 3 4 3 7 2 1 21 242
k16x240 256 480 14 14 9 14 14 14 14 166 977
lseu 28 79 9 9 9 9 9 9 9 81 280
mas074 13 148 12 12 12 12 12 12 12 144 779
mas076 12 148 11 11 8 4 10 11 11 112 497
mas284 68 148 20 20 20 20 6 9 4 387 3607
mik-250-1-100-1 100 251 100 1 2 8 13 74 100 1 100
misc03 95 138 18 18 18 18 18 18 18 310 2616
misc07 211 232 16 16 16 16 16 16 16 256 1901
mod008 6 319 6 6 6 3 6 6 6 30 88
mod013 62 96 5 5 5 5 5 5 5 23 50
modglob 286 354 29 21 25 29 29 29 29 209 1049
neos-1420205 341 231 44 40 44 0 0 2 1 613 9756
neos5 63 63 35 25 35 2 1 1 1 719 8989
neos-880324 182 135 45 10 7 0 0 0 11 543 17738
p0282 160 200 24 13 10 24 24 24 24 181 1697
pipex 25 48 6 6 6 6 6 6 6 19 42
pp08aCUTS 239 235 46 6 7 3 5 11 46 924 12766
pp08a 133 234 53 4 5 4 4 2 2 246 1145
probportfolio 302 320 105 105 105 105 105 105 48 6157 9432
prod1 75 117 40 18 40 40 40 40 40 1184 30508
rgn 24 180 18 16 18 18 18 18 3 222 1606
roy 147 139 11 7 6 11 11 11 11 104 368
sentoy 30 60 8 8 8 8 8 8 8 64 224
stein27_nocard 117 27 27 7 11 27 1 2 1 163 6102
timtab1 165 365 128 5 2 3 4 2 2 557 13566
vpm1 128 188 11 11 0 5 11 9 11 56 104
vpm2 127 187 24 24 7 13 24 24 24 247 1209
Avg (cut ratio) 0.63 0.64 0.66 0.69 0.71 0.72 14.27 108.23

188

Bibliography

[1] T. Achterberg. “Conflict analysis in mixed integer programming”. Discrete Optim.
4.1 (2007), 4–20.

[2] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. “Constraint integer program-
ming: a new approach to integrate CP and MIP”. Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems: 5th Interna-
tional Conference, CPAIOR 2008 Paris, France, May 20-23, 2008 Proceedings. Ed.
by L. Perron and M. A. Trick. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
6–20.

[3] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Presolve reduc-
tions in mixed integer programming”. Tech. rep. 16-44. Takustr.7, 14195 Berlin: ZIB,
2016.

[4] T. Achterberg, T. Koch, and A. Martin. “Branching rules revisited”. Oper. Res. Lett.
33.1 (2005), 42–54.

[5] T. Achterberg, T. Koch, and A. Martin. “MIPLIB 2003”. Oper. Res. Lett. 34.4 (2006),
361–372.

[6] T. Achterberg and R. Wunderling. “Mixed integer programming: analyzing 12 years
of progress”. Facets of Combinatorial Optimization. Springer, Heidelberg, 2013, 449–
481.

[7] K. Andersen, G. Cornuéjols, and Y. Li. “Split closure and intersection cuts”. Integer
Programming and Combinatorial Optimization. Vol. 2337. Lecture Notes in Comput.
Sci. Springer, Berlin, 2002, 127–144.

[8] K. Andersen, G. Cornuéjols, and Y. Li. “Split closure and intersection cuts”. Math.
Program. 102.3, Ser. A (2005), 457–493.

[9] K. Andersen, Q. Louveaux, R. Weismantel, and L. A. Wolsey. “Inequalities from two
rows of a simplex tableau”. Integer Programming and Combinatorial Optimization.
Vol. 4513. Lecture Notes in Comput. Sci. Springer, Berlin, 2007, 1–15.

[10] K. Andersen and Y. Pochet. “Coefficient strengthening: a tool for reformulating
mixed-integer programs”. Math. Program. 122.1, Ser. A (2010), 121–154.

[11] D. Applegate, R. Bixby, V. Chvátal, andW. Cook. “Finding cuts in the TSP (a prelim-
inary report)”. Tech. rep. Center for Discrete Mathematics & Theoretical Computer
Science, 1995.

189

[12] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. “TSP cuts which do not con-
form to the template paradigm”. Computational Combinatorial Optimization (Schloß
Dagstuhl, 2000). Vol. 2241. Lecture Notes in Comput. Sci. Springer, Berlin, 2001,
261–303.

[13] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. “Conflict graphs in solving
integer programming problems”. European J. Oper. Res. 121.1 (2000), 40–55.

[14] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. “The mixed vertex packing
problem”. Math. Program. 89.1, Ser. A (2000), 35–53.

[15] G. Averkov, C. Wagner, and R. Weismantel. “Maximal lattice-free polyhedra: finite-
ness and an explicit description in dimension three”. Math. Oper. Res. 36.4 (2011),
721–742.

[16] Y. Awate, G. Cornuéjols, B. Guenin, and L. Tunçel. “On the relative strength of
families of intersection cuts arising from pairs of tableau constraints in mixed integer
programs”. Math. Program. 150.2, Ser. A (2015), 459–489.

[17] E. Balas. “Disjunctive programming”. Ann. Discrete Math. 5 (1979), 3–51.
[18] E. Balas. “Disjunctive programming: cutting planes from logical conditions”. Ed. by

O. Mangasarian, R. Meyer, and S. Robinson. Academic Press, New York, 1975, 279–
312.

[19] E. Balas. “Disjunctive programming: properties of the convex hull of feasible points”.
Discrete Appl. Math. 89.1-3 (1998), 3–44.

[20] E. Balas. “Facets of the knapsack polytope”. Math. Program. 8 (1975), 146–164.
[21] E. Balas. “Intersection cuts—a new type of cutting planes for integer programming”.

Oper. Res. 19.1 (1971), 19–39.
[22] E. Balas and P. Bonami. “Generating lift-and-project cuts from the LP simplex

tableau: open source implementation and testing of new variants”. Math. Program.
Comput. 1.2-3 (2009), 165–199.

[23] E. Balas and P. Bonami. “New variants of lift-and-project cut generation from the LP
tableau: open source implementation and testing”. Integer Programming and Com-
binatorial Optimization. Vol. 4513. Lecture Notes in Comput. Sci. Springer, Berlin,
2007, 89–103.

[24] E. Balas, S. Ceria, and G. Cornuéjols. “A lift-and-project cutting plane algorithm for
mixed 0-1 programs”. Math. Program. 58.3, Ser. A (1993), 295–324.

[25] E. Balas, S. Ceria, and G. Cornuéjols. “Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework”. Man. Sci. 42.9 (1996), 1229–1246.

[26] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. “Gomory cuts revisited”. Oper. Res.
Lett. 19.1 (1996), 1–9.

[27] E. Balas, M. Fischetti, and A. Zanette. “On the enumerative nature of Gomory’s dual
cutting plane method”. Math. Program. 125.2, Ser. B (2010), 325–351.

[28] E. Balas and R. G. Jeroslow. “Strengthening cuts for mixed integer programs”. Eu-
ropean J. Oper. Res. 4.4 (1980), 224–234.

190

[29] E. Balas and T. Kis. “Intersection cuts—standard versus restricted”. Discrete Optim.
18 (2015), 189–192.

[30] E. Balas and T. Kis. “On the relationship between standard intersection cuts, lift-
and-project cuts and generalized intersection cuts”. Math. Progam. (2016), 1–30.

[31] E. Balas and F. Margot. “Generalized intersection cuts and a new cut generating
paradigm”. Math. Program. 137.1-2, Ser. A (2013), 19–35.

[32] E. Balas and M. Perregaard. “A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming”. Math.
Program. 94.2-3, Ser. B (2003). The Aussois 2000 Workshop in Combinatorial Opti-
mization, 221–245.

[33] E. Balas and M. Perregaard. “Lift-and-project for mixed 0-1 programming: recent
progress”. Discrete Appl. Math. 123.1-3 (2002). Workshop on Discrete Optimization,
DO’99 (Piscataway, NJ), 129–154.

[34] E. Balas and A. Qualizza. “Intersection cuts from multiple rows: a disjunctive pro-
gramming approach”. EURO J. Computat. Optim. 1.1 (2013), 3–49.

[35] E. Balas and A. Saxena. “Optimizing over the split closure”. Math. Progam. 113.2,
Ser. A (2008), 219–240.

[36] A. Barvinok. A course in convexity. Vol. 54. Graduate Studies in Mathematics. Amer-
ican Mathematical Society, Providence, RI, 2002, x+366.

[37] A. Basu, P. Bonami, G. Cornuéjols, and F. Margot. “Experiments with two-row cuts
from degenerate tableaux”. INFORMS J. Comput. 23.4 (2011), 578–590.

[38] A. Basu, P. Bonami, G. Cornuéjols, and F. Margot. “On the relative strength of split,
triangle and quadrilateral cuts”. Math. Program. 126.2, Ser. A (2011), 281–314.

[39] A. Basu, G. Cornuéjols, and M. Molinaro. “A probabilistic analysis of the strength of
the split and triangle closures”. Integer Programming and Combinatorial Optimiza-
tion. Vol. 6655. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2011, 27–38.

[40] D. E. Bell and M. L. Fisher. “Improved integer programming bounds using intersec-
tions of corner polyhedra”. Math. Program. 8 (1975), 345–368.

[41] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. “Mixed-
integer nonlinear optimization”. Acta Numer. 22 (2013), 1–131.

[42] D. Bienstock, C. Chen, and G. Muñoz. “Outer-product-free sets for polynomial opti-
mization and oracle-based cuts”. 2018.

[43] R. E. Bixby, E. A. Boyd, and R. R. Indovina. “MIPLIB: a test set of mixed integer
programming problems”. SIAM News 25 (2 1992), 16.

[44] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. “An updated mixed
integer programming library: MIPLIB 3.0”. Optima 58 (June 1998), 12–15.

[45] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. “MIP: theory and
practice—closing the gap”. System Modelling and Optimization (Cambridge, 1999).
Kluwer Acad. Publ., Boston, MA, 2000, 19–49.

191

[46] R. Bixby and E. Rothberg. “Progress in computational mixed integer programming—
a look back from the other side of the tipping point”. Ann. Oper. Res. 149 (2007).
History of integer programming: distinguished personal notes and reminiscences, 37–
41.

[47] P. Bonami. “On optimizing over lift-and-project closures”. Math. Program. Comput.
4.2 (2012), 151–179.

[48] P. Bonami, A. Lodi, A. Tramontani, and S. Wiese. “Cutting planes from wide split
disjunctions”. Integer Programming and Combinatorial Optimization. Ed. by F. Eisen-
brand and J. Könemann. Vol. 10328. Lecture Notes in Comput. Sci. Springer, Cham,
2017, 99–110.

[49] V. Borozan and G. Cornuéjols. “Minimal valid inequalities for integer constraints”.
Math. Oper. Res. 34.3 (2009), 538–546.

[50] G. H. Bradley, P. L. Hammer, and L. Wolsey. “Coefficient reduction for inequalities
in 0-1 variables”. Math. Program. 7 (1974), 263–282.

[51] C. Buchheim, F. Liers, and M. Oswald. “Local cuts revisited”. Oper. Res. Lett. 36.4
(2008), 430–433.

[52] B. Chen, S. Küçükyavuz, and S. Sen. “A computational study of the cutting plane tree
algorithm for general mixed-integer linear programs”. Oper. Res. Lett. 40.1 (2012),
15–19.

[53] B. Chen, S. Küçükyavuz, and S. Sen. “Finite disjunctive programming characteriza-
tions for general mixed-integer linear programs”. Oper. Res. 59.1 (2011), 202–210.

[54] V. Chvátal, W. Cook, and D. Espinoza. “Local cuts for mixed-integer programming”.
Math. Program. Comput. 5.2 (2013), 171–200.

[55] “COIN-OR Cut Generation Library”. https://projects.coin-or.org/Clp/.
[56] “Computational Optimization Research at Lehigh. MIP instances”. http://coral.

ise.lehigh.edu/data- sets/mixed- integer- instances/. Accessed September
2017.

[57] M. Conforti, G. Cornuéjols, and G. Zambelli. “Corner polyhedron and intersection
cuts”. Surveys in Operations Research and Management Science 16.2 (2011), 105–120.

[58] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming. Vol. 271. Graduate
Texts in Mathematics. Springer, Cham, 2014, xii+456.

[59] M. Conforti and L. A. Wolsey. “‘‘Facet” separation with one linear program”. CORE
Discussion Papers 2016021. Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE), 2016.

[60] W. Cook, S. Dash, R. Fukasawa, and M. Goycoolea. “Numerically safe gomory mixed-
integer cuts”. INFORMS J. Comput. 21.4 (2009), 641–649.

[61] W. Cook, R. Kannan, and A. Schrijver. “Chvátal closures for mixed integer program-
ming problems”. Math. Program. 47.2, (Ser. A) (1990), 155–174.

[62] G. Cornuéjols and C. Lemaréchal. “A convex-analysis perspective on disjunctive cuts”.
Math. Program. 106.3, Ser. A (2006), 567–586.

192

https://projects.coin-or.org/Clp/
http://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
http://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/

[63] G. Cornuéjols, L. Liberti, and G. Nannicini. “Improved strategies for branching on
general disjunctions”. Math. Program. 130.2, Ser. A (2011), 225–247.

[64] G. Cornuéjols. “The ongoing story of Gomory cuts”. Extra Volume: Optimization
Stories. Documenta Mathematica, 2012, 221–226.

[65] H. Crowder, E. L. Johnson, and M. Padberg. “Solving large-scale zero-one linear
programming problems”. Oper. Res. 31.5 (1983), 803–834.

[66] S. Dash and O. Günlük. “On t-branch split cuts for mixed-integer programs”. Math.
Program. 141.1-2, Ser. A (2013), 591–599.

[67] S. Dash, O. Günlük, and A. Lodi. “MIR closures of polyhedral sets”. Math. Program.
121.1, Ser. A (2010), 33–60.

[68] S. Dash, O. Günlük, and M. Molinaro. “On the relative strength of different general-
izations of split cuts”. Discrete Optim. 16 (2015), 36–50.

[69] S. Dash, O. Günlük, and D. A. Morán R. “On the polyhedrality of cross and quadri-
lateral closures”. Math. Program. (2016), 1–26.

[70] S. Dash, O. Günlük, and J. P. Vielma. “Computational experiments with cross and
crooked cross cuts”. INFORMS J. Comput. 26.4 (2014), 780–797.

[71] A. Del Pia, C. Wagner, and R. Weismantel. “A probabilistic comparison of the
strength of split, triangle, and quadrilateral cuts”. Oper. Res. Lett. 39.4 (2011), 234–
240.

[72] S. S. Dey, A. Lodi, A. Tramontani, and L. A. Wolsey. “On the practical strength of
two-row tableau cuts”. INFORMS J. Comput. 26.2 (2014), 222–237.

[73] S. S. Dey and S. Pokutta. “Design and verify: a new scheme for generating cutting-
planes”. Math. Program. 145.1-2, Ser. A (2014), 199–222.

[74] S. S. Dey and J.-P. Richard. “Linear-programming-based lifting and its application
to primal cutting-plane algorithms”. INFORMS J. Comput. 21.1 (2009), 137–150.

[75] S. S. Dey and L. A. Wolsey. “Two row mixed-integer cuts via lifting”. Math. Program.
124.1-2, Ser. B (2010), 143–174.

[76] B. L. Dietrich and L. F. Escudero. “Coefficient reduction for knapsack-like constraints
in 0-1 programs with variable upper bounds”. Oper. Res. Lett. 9.1 (1990), 9–14.

[77] B. L. Dietrich, L. F. Escudero, and F. Chance. “Efficient reformulation for 0-1 programs—
methods and computational results”. Discrete Appl. Math. 42.2-3 (1993), 147–175.

[78] L. F. Escudero, S. Martello, and P. Toth. “On tightening 0-1 programs based on
extensions of pure 0-1 knapsack and subset-sum problems”. Ann. Oper. Res. 81 (1998).
Applied mathematical programming and modeling, III (APMOD95) (Uxbridge), 379–
404.

[79] D. G. Espinoza. “Computing with multi-row Gomory cuts”. Oper. Res. Lett. 38.2
(2010), 115–120.

[80] D. Espinoza, R. Fukasawa, and M. Goycoolea. “Lifting, tilting and fractional pro-
gramming revisited”. Oper. Res. Lett. 38.6 (2010), 559–563.

193

[81] J. Farkas. “Theorie der einfachen ungleichungen”. J. Reine Angew. Math. 124 (1902),
1–27.

[82] M. C. Ferris, G. Pataki, and S. Schmieta. “Solving the seymour problem”. Optima
66 (2001), 2–6.

[83] T. Fischer and M. E. Pfetsch. “Monoidal cut strengthening and generalized mixed-
integer rounding for disjunctions and complementarity constraints”. Oper. Res. Lett.
45.6 (2017), 556–560.

[84] M. Fischetti, A. Lodi, and A. Tramontani. “On the separation of disjunctive cuts”.
Math. Program. 128.1-2, Ser. A (2011), 205–230.

[85] M. Fischetti and M. Monaci. “Exploiting erraticism in search”. Oper. Res. 62.1 (2014),
114–122.

[86] D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. “Two computationally difficult
set covering problems that arise in computing the 1-width of incidence matrices of
Steiner triple systems”. Math. Program. Stud. 2 (1974), 72–81.

[87] D. Gade, S. Küçükyavuz, and S. Sen. “Decomposition algorithms with parametric
Gomory cuts for two-stage stochastic integer programs”. Math. Program. 144.1-2,
Ser. A (2014), 39–64.

[88] R. E. Gomory. “Outline of an algorithm for integer solutions to linear programs”.
Bull. Amer. Math. Soc. 64 (1958), 275–278.

[89] R. E. Gomory. “Some polyhedra related to combinatorial problems”. Linear Algebra
Appl. 2.4 (1969), 451–558.

[90] R. E. Gomory and E. L. Johnson. “Some continuous functions related to corner poly-
hedra”. Math. Program. 3.1 (1972), 23–85.

[91] R. E. Gomory and E. L. Johnson. “Some continuous functions related to corner poly-
hedra. II”. Math. Program. 3.1 (1972), 359–389.

[92] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Lifted cover inequalities for 0-1
integer programs: computation”. INFORMS J. Comput. 10.4 (1998), 427–437.

[93] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. “Sequence independent lifting
in mixed integer programming”. J. Comb. Optim. 4.1 (2000), 109–129.

[94] Y. Guan, S. Ahmed, and G. L. Nemhauser. “Sequential pairing of mixed integer
inequalities”. Discrete Optim. 4.1 (2007), 21–39.

[95] O. Günlük and Y. Pochet. “Mixing mixed-integer inequalities”. Math. Program. 90.3,
Ser. A (2001), 429–457.

[96] Gurobi Optimization, Inc. “Gurobi Optimizer Reference Manual”. http : / / www .
gurobi.com. Version 7.5.1. 2017.

[97] Q. He, S. Ahmed, and G. L. Nemhauser. “A probabilistic comparison of split and type
1 triangle cuts for two-row mixed-integer programs”. SIAM J. Optim. 21.3 (2011),
617–632.

194

http://www.gurobi.com
http://www.gurobi.com

[98] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Grundlehren
Text Editions. Springer-Verlag, Berlin, 2001, x+259.

[99] R. Jeroslow. “The principles of cutting-plane theory: part i”. Tech. rep. AD0779955.
Pittsburgh, PA: GSIA, Carnegie-Mellon University, Mar. 1974.

[100] E. L. Johnson. “On the group problem for mixed integer programming”. Math. Pro-
gram. Stud. 2 (1974), 137–179.

[101] E. L. Johnson, G. L. Nemhauser, and M. W. P. Savelsbergh. “Progress in linear
programming-based algorithms for integer programming: an exposition”. INFORMS
J. Comput. 12.1 (2000), 2–23.

[102] M. Jörg. “k-disjunctive cuts and cutting plane algorithms for general mixed integer
linear programs”. Ph.D. Dissertation. Technischen Universität München, Aug. 2008.

[103] M. Karamanov. “Branch and cut: an empirical study”. Ph.D. Dissertation. Carnegie
Mellon University, Sept. 2006.

[104] M. Karamanov and G. Cornuéjols. “Branching on general disjunctions”. Math. Pro-
gram. 128.1-2, Ser. A (2011), 403–436.

[105] R. M. Karp. “Reducibility among combinatorial problems” (1972), 85–103.
[106] A. Kazachkov. “Cutting planes by tilting”. Poster presented at the Mixed Integer

Programing Workshop 2016. 2016.
[107] F. Kianfar. “Stronger inequalities for 0, 1 integer programming using knapsack func-

tions”. Operations Res. 19 (1971), 1374–1392.
[108] M. Kılınç, J. Linderoth, J. Luedtke, and A. Miller. “Strong-branching inequalities for

convex mixed integer nonlinear programs”. Comput. Optim. Appl. 59.3 (2014), 639–
665.

[109] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Sal-
vagnin, D. E. Steffy, and K. Wolter. “MIPLIB 2010: mixed integer programming
library version 5”. Math. Program. Comput. 3.2 (2011), 103–163.

[110] Y. Li and J.-P. P. Richard. “Cook, Kannan and Schrijver’s example revisited”. Dis-
crete Optim. 5.4 (2008), 724–734.

[111] A. Lodi. “Mixed integer programming computation”. 50 Years of Integer Program-
ming 1958–2008. Ed. by M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser,
W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey. Berlin, Heidelberg:
Springer-Verlag Berlin Heidelberg, 2010, 619–645.

[112] R. Lougee-Heimer. “The Common Optimization INterface for Operations Research:
promoting open-source software in the operations research community”. IBM Journal
of Research and Development 47 (2003).

[113] Q. Louveaux and L. Poirrier. “An algorithm for the separation of two-row cuts”.
Math. Program. 143.1-2, Ser. A (2014), 111–146.

[114] Q. Louveaux, L. Poirrier, and D. Salvagnin. “The strength of multi-row models”.
Math. Program. Comput. 7.2 (2015), 113–148.

195

[115] L. Lovász. “Geometry of numbers and integer programming”. Mathematical program-
ming (Tokyo, 1988). Vol. 6. Math. Appl. (Japanese Ser.) SCIPRESS, Tokyo, 1989,
177–201.

[116] O. L. Mangasarian. Nonlinear programming. Vol. 10. Classics in Applied Mathematics.
Corrected reprint of the 1969 original. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1994, xvi+220.

[117] R. R. Meyer. “On the existence of optimal solutions to integer and mixed-integer
programming problems”. Math. Program. 7 (1974), 223–235.

[118] M. Miltenberger, T. Ralphs, and D. Steffy. “Exploring the numerics of branch-and-
cut for mixed integer linear optimization”. Tech. rep. 17-43. Takustr.7, 14195 Berlin:
ZIB, 2017.

[119] G. L. Nemhauser and L. E. Trotter Jr. “Properties of vertex packing and independence
system polyhedra”. Math. Program. 6 (1974), 48–61.

[120] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1988, xvi+763.

[121] G. Owen. “A cutting plane approach to the fixed charge problem”. Unpublished report
for Mathematica. Princeton, NJ, 1965.

[122] M. Padberg. “Classical cuts for mixed-integer programming and branch-and-cut”.
Ann. Oper. Res. 139 (2005), 321–352.

[123] M. W. Padberg. “A note on zero-one programming”. Oper. Res. 23.4 (1975), 833.
[124] M. W. Padberg. “On the facial structure of set packing polyhedra”. Math. Program.

5 (1973), 199–215.
[125] M. Padberg and G. Rinaldi. “A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems”. SIAM Rev. 33.1 (1991), 60–100.
[126] M. Perregaard. “Generating disjunctive cuts for mixed integer programs”. Ph.D. Dis-

sertation. Carnegie Mellon University, Sept. 2003.
[127] M. Perregaard and E. Balas. “Generating cuts from multiple-term disjunctions”. Inte-

ger Programming and Combinatorial Optimization. Vol. 2081. Lecture Notes in Com-
put. Sci. Springer, Berlin, 2001, 348–360.

[128] Y. Pochet and L. A. Wolsey. “Lot-sizing with constant batches: formulation and valid
inequalities”. Math. Oper. Res. 18.4 (1993), 767–785.

[129] Y. Qi and S. Sen. “The ancestral Benders’ cutting plane algorithm with multi-term
disjunctions for mixed-integer recourse decisions in stochastic programming”. Math.
Program. 161.1-2, Ser. A (2017), 193–235.

[130] J.-P. P. Richard. “Lifting techniques for mixed integer programming”. Wiley Encyclo-
pedia of Operations Research and Management Science. Ed. by J. J. Cochran, L. A.
Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith. John Wiley & Sons, Inc., 2010.

[131] M. W. P. Savelsbergh. “Preprocessing and probing techniques for mixed integer pro-
gramming problems”. ORSA J. Comput. 6.4 (1994), 445–454.

196

[132] S. Sen and H. D. Sherali. “Decomposition with branch-and-cut approaches for two-
stage stochastic mixed-integer programming”. 106.2 (2006), 203–223.

[133] T. Serra. “Reformulating the disjunctive cut generating linear program”. Poster pre-
sented at the Mixed Integer Programing Workshop 2016. 2016.

[134] H. D. Sherali, Y. Lee, and Y. Kim. “Partial convexification cuts for 0-1 mixed-integer
programs”. European J. Oper. Res. 165.3 (2005), 625–648.

[135] H. D. Sherali and J. C. Smith. “Higher-level RLT or disjunctive cuts based on a partial
enumeration strategy for 0-1 mixed-integer programs”. Optim. Lett. 6.1 (2012), 127–
139.

[136] J. L. C. Soares. “Disjunctive convex optimization”. Ph.D. Dissertation. Columbia
University, 1998.

[137] L. A. Wolsey. “Facets and strong valid inequalities for integer programs”. Oper. Res.
24.2 (1976), 367–372.

[138] Y. Yuan and S. Sen. “Enhanced cut generation methods for decomposition-based
branch and cut for two-stage stochastic mixed-integer programs”. INFORMS J. Com-
put. 21.3 (2009), 480–487.

[139] A. Zanette, M. Fischetti, and E. Balas. “Lexicography and degeneracy: can a pure
cutting plane algorithm work?” Math. Program. 130.1, Ser. A (2011), 153–176.

[140] G. M. Ziegler. Lectures on polytopes. Vol. 152. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995, x+370.

197

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction & Background
	Preliminaries
	Cut evaluation
	SICs, GMICs, and the nonbasic space
	Standard intersection cuts (simple disjunctive cuts)
	Gomory mixed-integer cuts (strengthened intersection cuts)

	Disjunctive cuts, irregularity, and lift-and-project
	Background on disjunctive cuts
	Irregular cuts
	Cut-generating linear program for lift-and-project cuts
	Membership linear program

	Cut strengthening via modularization
	Standard modularization
	Monoidal cut strengthening
	Strengthening an arbitrary cut
	Strengthening cuts from two-term disjunctions

	Contributions of this dissertation
	Notation

	Partial Hyperplane Activation for Generalized Intersection Cuts
	Introduction
	Full hyperplane activation
	Partial hyperplane activation
	Proper point-ray collections
	Algorithm and validity

	PHA_1 with tilted hyperplanes
	Implementation choices for PHA1
	Choosing hyperplanes to activate
	Choosing objective functions

	Theoretical results
	Existence of strictly dominating generalized intersection cuts
	Characterizing bounded objective functions for the PRLP

	Computational results
	Experimental setup
	Point-ray collection statistics
	Effect of hyperplanes activated
	Evaluating objective function choices
	Strength of GICs
	Summary

	Cutting Planes by Tilting on Split Disjunctions
	Introduction
	Tilting an inequality using a split disjunction
	Tilted objective cut
	Tilted inequalities, the general case
	Example of tilting a valid inequality for the LP relaxation
	Existence of tilted cuts
	Selecting base inequalities via strong branching
	Farkas certificate for tilted cuts
	Generating stronger tilted cuts

	Tilting using multiple split disjunctions
	Tilting cuts from a subspace (sequential tilting)
	Mixing inequalities (simultaneous tilting)

	Computational results
	Existing literature related to tilting
	Conclusion & open problems

	V-Polyhedral Cuts
	Introduction
	Point-ray linear program
	Globally proper point-ray collections
	VPCs from simple cone relaxations
	VPCs corresponding to facets of the disjunctive hull
	Normalization for the PRLP
	Choosing strong and successful objectives

	Computational setup
	Computational results
	Percent root gap closed
	Branch-and-bound effect
	Partial tree size and objective function analysis

	Alternative cut-generating sets and point-ray collections
	Gap closed using multiple split and cross disjunctions
	Tightening the V-polyhedral relaxation

	Conclusion & open problems

	Towards a Correspondence Between VPCs and L&PCs
	Introduction & preliminaries
	Relationship between H- and V-polyhedral descriptions
	From VPCs to L&PCs
	Correspondence examples
	Enforcing equality in the Beta constraints
	Conclusion

	Conclusions & Future Research
	On Regular Bases and Simple Disjunctive Cuts
	Three Normalizations for Lift-and-Project Cuts
	Beta-normalization constraint
	Standard normalization constraint
	Trivial normalization constraint
	Optimal solution to the MLP
	Optimal solution to the CGLP for simple disjunctions
	Optimal solution to the CGLP for general disjunctions
	Trivial normalization example with a general disjunction
	Irregular cuts from the trivial normalization

	Concluding remarks about CGLP normalizations

	PHA Appendices
	Tilting for degenerate hyperplanes
	Tilting example

	VPC Appendices
	Example of invalid cuts from a point-ray collection
	Sample partial branch-and-bound tree
	Parameters to consider for VPC implementations
	Discarded instances
	Tables for partial branch-and-bound tree experiments
	Tables for experiments with other cut-generating sets

	Bibliography

