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Abstract

In this dissertation, we model and provide insights to some of the main challenges the world
of online marketing currently faces. In the first chapter, we study the role of information
asymmetry introduced by the presence of experts in online marketplaces and how it affects
the strategic decisions of different parties in these markets. In the second chapter, we study
the attribution problem in online advertising and examine optimal ways for advertisers to
allocate their marketing budget across channels. In the third chapter, we explore the effects
of modern ad blockers on users and online platforms.

In the first chapter, we examine the effect of the presence of expert buyers on other
buyers, the platform, and the sellers in online markets. We model buyer expertise as the
ability to accurately predict the quality, or condition, of an item, modeled as its common
value. We show that nonexperts may bid more aggressively, even above their expected
valuation, to compensate for their lack of information. As a consequence, we obtain two
interesting implications. First, auctions with a “hard close” may generate higher revenue
than those with a “soft close”. Second, contrary to the linkage principle, an auction platform
may obtain a higher revenue by hiding the item’s common-value information from the buyers.
We also consider markets where both auctions and posted prices are available and show that
the presence of experts allows the sellers of high quality items to signal their quality by
choosing to sell via auctions.

In the second chapter, we study the problem of attributing credit for customer acquisi-
tion to different components of a digital marketing campaign using an analytical model. We
investigate attribution contracts through which an advertiser tries to incentivize two pub-
lishers that affect customer acquisition. We situate such contracts in a two-stage marketing
funnel, where the publishers should coordinate their efforts to drive conversions. First, we
analyze the popular class of multi-touch contracts where the principal splits the attribution
among publishers using fixed weights depending on their position. Our first result shows the
following counterintuitive property of optimal multi-touch contracts: higher credit is given
to the portion of the funnel where the existing baseline conversion rate is higher. Next, we
show that social welfare maximizing contracts can sometimes have even higher conversion
rate than optimal multi-touch contracts, highlighting a prisoners’ dilemma effect in the equi-
librium for the multi-touch contract. While multi-touch attribution is not globally optimal,
there are linear contracts that “coordinate the funnel” to achieve optimal revenue. However,
such optimal-revenue contracts require knowledge of the baseline conversion rates by the
principal. When this information is not available, we propose a new class of ‘reinforcement’
contracts and show that for a large range of model parameters these contracts yield better
revenue than multi-touch.

In the third chapter, we study the effects of ad blockers in online advertising. While
online advertising is the lifeline of many internet content platforms, the usage of ad blockers
has surged in recent years presenting a challenge to platforms dependent on ad revenue.
In this chapter, using a simple analytical model with two competing platforms, we show
that the presence of ad blockers can actually benefit platforms. In particular, there are
conditions under which the optimal equilibrium strategy for the platforms is to allow the
use of ad blockers (rather than using an adblock wall, or charging a fee for viewing ad-free
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content). The key insight is that allowing ad blockers serves to differentiate platform users
based on their disutility to viewing ads. This allows platforms to increase their ad intensity
on those that do not use the ad blockers and achieve higher returns than in a world without
ad blockers. We show robustness of these results when we allow a larger combination of
platform strategies, as well as by explaining how ad whitelisting schemes offered by modern
ad blockers can add value. Our study provides general guidelines for what strategy a platform
should follow based on the heterogeneity in the ad sensitivity of their user base.

Keywords: competitive strategy; segmentation; pricing; sniping; online auctions; signaling;
attribution; advertising; Shapley value; multi-touch; game theory; marketing funnel; ad
blocking; ad sensitivity; ad intensity
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Chapter 1

Expertise in Online Markets1

In this chapter, we examine the effect of the presence of expert buyers on other buyers,
the platform, and the sellers in online markets. We model buyer expertise as the ability
to accurately predict the quality, or condition, of an item, modeled as its common
value. We show that nonexperts may bid more aggressively, even above their expected
valuation, to compensate for their lack of information. As a consequence, we obtain
two interesting implications. First, auctions with a “hard close” may generate higher
revenue than those with a “soft close”. Second, contrary to the linkage principle,
an auction platform may obtain a higher revenue by hiding the item’s common-value
information from the buyers. We also consider markets where both auctions and posted
prices are available and show that the presence of experts allows the sellers of high
quality items to signal their quality by choosing to sell via auctions.

1.1 Introduction
The advent of online auctions such as those in eBay led to the first massive-scale deployment
of simple second-price auction mechanisms for consumer products. Even though eBay started
as a platform for consumer-to-consumer auctions for selling items out of one’s garage, it is
now a large selling platform enabling over $200 billion commerce volume and reaching over
200 million users annually.2 The addition of posted-price sales has fueled this growth by
allowing it to serve as a competitor to other online retail sites. The growth of this new
segment of online markets that combine auctions with posted prices raises important new
questions about the optimal strategies for buyers and sellers as well as questions about the
best design of the platform.

The eBay auction format enforces a “hard close” or ending time at which the item is
sold to the highest (winning) bid. In the hours leading up to closing time, the auction is
open and simulates the open outcry English auction. If all bidders had only private values,
traditional auction theory dictates that the dominant strategy for every bidder is to bid up to
his true value. To enable this, eBay offers a proxy bidding tool that allows a bidder to specify

1Based on joint work with Isa Hafalir, R. Ravi, and Amin Sayedi
2http://venturebeat.com/2013/10/16/ebay-earnings-sales-up-21-revenue-up-14-and-double-

digit-paypal-user-growth/ (accessed January 2016)

1

http://venturebeat.com/2013/10/16/ebay-earnings-sales-up-21-revenue-up-14-and-double-digit-paypal-user-growth/
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2 CHAPTER 1. EXPERTISE IN ONLINE MARKETS

his maximum value, and the tool automatically bids the minimum bid increment above the
current highest bid (as long as it is below the bidder-specified value). Thus, it was something
of a paradox when a majority of eBay auctions exhibited sniping – the phenomenon where a
bidder submits his only bid in the last few seconds of the auction, thus avoiding any response
from other bidders.

While several explanations for this behavior have been advanced, one of the most intuitive
and accepted ones is that of experienced bidders (Wilcox, 2000) or dealers/experts (Roth
and Ockenfels, 2002). For example, Roth and Ockenfels (2002, p. 1095) argue, and provide
empirical evidence, that the existence of sniping in online markets is partly due to buyers’
heterogeneity in their experience with online markets and their expertise in the product
category: “[T]here may be bidders who are dealers/experts and who are better able to
identify high-value antiques. These well-informed bidders...may wish to bid late because
other bidders will recognize that their bid is a signal that the object is unusually valuable.”

In this line of reasoning, the item auctioned off is assumed to have a common value
which these experts have a better knowledge of, and submitting a sniping bid is a way for
experts to withhold this information to reap the advantage of this information asymmetry
in the resulting price. While several papers have subsequently built upon and refined this
explanation of sniping (Bajari and Hortacsu, 2003; Rasmusen, 2006; Ockenfels and Roth,
2006; Hossain, 2008; Ely and Hossain, 2009), all of them have examined the phenomenon
only from the bidders’ perspective. More broadly, to best of our knowledge, no other paper
has studied the strategic impact of buyers’ heterogeneity in expertise (which causes the
sniping behavior) on the platform and sellers’ strategies in online markets. In this paper,
we examine the effect of the existence of expert buyers on all of the stakeholders in online
markets: the expert and nonexpert buyers, the sellers, and the platform. We discuss the
following research questions:

1. How do nonexpert buyers adjust their strategies to compete with experts?

2. How does the presence of experts affect the platform revenue?

3. How does the presence of experts affect the sellers’ strategies in online markets?

1.1.1 Our Contributions
First, we show that the presence of experts encourages the nonexperts to bid more aggres-
sively. In particular, we show that because of the sniping strategy of the expert buyers in
hard-close auctions, nonexpert buyers have to bid more than their expected value; otherwise
they only win items of low quality against the expert buyers. Quantifying this, we show
in Proposition 1.1 that the higher the proportion of experts among the bidders, the more
aggressively the nonexperts bid above their expected value for the item.

Next, we consider the impact of the presence of experts on the platform’s strategies.
In particular, should the platform maintain the hard-close format for the auction, which
allows the experts to snipe, rather than switch to the “soft-close” format? Also, if the
platform knows the quality value of the item and can credibly reveal it to the buyers, should
it commit to sharing this information with them? We find interesting answers to these
questions. Regarding the first question, at the outset, it appears that the hard-close format
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may hurt platform revenue since without the sniping behavior of experts, nonexpert buyers
could respond to bids of experts, and the item would sell at a higher price. Since the
platform’s fee is usually a fixed fraction of the selling price, the platform would then have
an incentive to favor the soft-close format.3 Contrary to this expectation, we show that
the aggressive bidding behavior of the nonexperts that we describe above implies that the
platform’s overall revenue increases in the hard-close format for a wide range of parameter
values (Proposition 1.2). This is a potential new explanation as to why online auction
companies such as eBay4 retain the hard-close auction format from a revenue perspective.
We note, however, that the strategic choice of soft- versus hard-close format is a complex
decision affected by competition among auction platforms as well as a variety of other bidder
considerations such as the avoidance of potentially costly bidding wars in hard-close auctions.
Our observation above exposes a new facet in a variety of such potential explanations for
the popularity of this format.

This result has another important and interesting implication regarding the second ques-
tion: the platform can benefit from committing to withholding the quality information
(Corollary 1.1). This is in contrast to the celebrated linkage principle5 (Milgrom and Weber,
1982), and is driven by buyers’ heterogeneity in their level of expertise. Proposition 1.1 can
also be interpreted as a reverse winner’s curse. In auctions with common values, bidders bid
lower than their valuation to avoid the winner’s curse. However, our result shows that when
bidders are heterogeneous in their level of information, non-informed bidders bid more than
their valuation to make up for their lack of information.

Finally, we consider the impact of the presence of expert buyers on the sellers’ strategies.
In particular, we investigate the choice of selling mechanisms between the auction and a
posted price sale when they are both available (as is common in most online auction-houses).
In the presence of expert buyers, under certain conditions, we show that by selling in an
auction, a seller can credibly signal6 the quality value of his item (Proposition 1.3). By
selling in an auction, the seller shows that he can rely on the market (specifically, on the
expert buyers) to decide the value of the item. This is a risk that a seller with a low quality-
value item cannot take. Furthermore, this signaling is possible only if there are enough
experts, who know the value of the item, in the market. Otherwise, the seller of a high
quality-value item will not be able to separate himself from the seller of a low-value item.
In other words, the existence of experts in the market allows the sellers of high-quality
products to separate themselves by selling in auctions. This finding is in line with auction
houses’ claim that auctions increase buyers’ confidence. For example, Fraise Auction7 argues
that one of the benefits of selling in auction is that the “competitive bidding format creates
confidence among the buyers when they see other people willing to pay a similar amount for
the property.” To best of our knowledge, this result is a new explanation for the popularity

3In fact, some auction platforms such as the now defunct Amazon Auctions and Trademe, removed sniping
by implementing a soft close that automatically extended the auction time whenever a bid is submitted.

4EZsniper.com provides an extensive list of auction sites with a hard close.
5The linkage principle argues that the auction house always benefits from committing to revealing all

available information.
6Note that the signal that we discuss here is the seller’s choice of the selling mechanism. This is different

from bids by other bidders, which can also be signals of the quality of the product.
7http://fraiseauction.com/why-auction/ (accessed January 2016)

https://www.ezsniper.com/
http://fraiseauction.com/why-auction/
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of auctions in certain product categories. We reiterate that the strategic choice of auction
versus posted-price is a complex decision affected by several factors. Our observation above
proposes a new explanation for why some sellers may choose to use auctions.

Taken together, we initiate the first comprehensive study of the effect of the presence of
expert buyers in online markets featuring auctions with a hard close and posted prices, and
establish the following results.

1. Nonexpert buyers must adjust their strategies in response to experts’ sniping, and,
under certain conditions, have to bid more than their expected value in hard-close
auctions in equilibrium.

2. As a consequence, the platform revenue is higher in the hard-close auction than in the
soft-close format for a wide range of parameter values.

3. Finally, the presence of experts in markets with hard-close auctions and posted prices
allows the seller of high-quality items to credibly signal the quality of the item by
selling in the auction and separating himself from sellers of low-quality items who sell
using posted prices, under certain conditions.

Note that despite the explosive growth of auctions particularly in the consumer-to-consumer
arena, our findings are relevant mainly to items with a significant common value component
(such as collectibles, antiques, art, and used items of uncertain quality).

In what follows, we review related literature. Section 1.2 introduces the main model,
Section 1.3 solves the equilibria of the model with a hard close, and Section 1.4 compares
them with the corresponding equilibria of the auction with a soft close, which does not allow
for sniping. In Section 1.5, we analyze the sellers’ game of choosing among selling formats.
We conclude the paper in Section 1.6. All proofs and further details are relegated to the
Appendices.

1.1.2 Related Literature
Our work relates to the literature on online auctions with common values and a hard close,
intermediaries’ incentives to reveal product quality information, sellers’ strategies to signal
product quality, and the advantages and disadvantages of auctions versus posted prices. In
the following, we review the related literature on each topic.

Bajari and Hortacsu (2003) argue that last-minute bidding is an equilibrium in a stylized
model of eBay auctions with common values. They develop and estimate a structural econo-
metric model of bidding in eBay auctions with common value and endogenous entry. Wilcox
(2000) and Rasmusen (2006) use common values to model sniping and bidders’ behavior on
Ebay auctions. Wilcox (2000) shows that sniping increases as buyers’ experience increases.
Furthermore, the increase in the sniping behavior of the more experienced bidders is more
pronounced for the type of items that are more likely to have a common value component.
Similarly, a model with no common value as in Yoganarasimhan (2013) demonstrates no
sniping behavior. Rasmusen (2006) considers a model where bidders incur a cost for learn-
ing the common value of the item. As a result, those who acquire the information snipe
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to hide their information from other bidders. Similar to the previous literature,8 sniping
emerges as an equilibrium strategy in our model as well. However, our focus is the effect of
the presence of experts on nonexperts’, sellers’, and the platform’s strategies and revenues,
which is crucially missing in the earlier literature. Glover and Raviv (2012) show that when
sellers can choose between hard-close and soft-close formats, soft close leads to a higher
revenue, and experienced sellers are more likely to choose soft close. We discuss their result
in Section 1.5, and show that soft close emerges as the unique pooling equilibrium if sellers
can choose the closing format. Our result provides a new theoretical explanation for their
empirical findings. In contrast to earlier work by Ockenfels and Roth (2006), who show an
example in which seller revenue is lower at the equilibrium for hard-close than in the soft-
close case, in our model, we show that the hard-close format increases revenue compared to
the soft-close format. More specifically, we provide an explanation as to why online auction
companies such as eBay retain the auction format that allows for sniping from a revenue
perspective that takes into account the aggressive bidding behavior of the nonexperts.

In this paper, we show that an intermediary could benefit from withholding information
about the quality of the items in an auction. This is in contrast with the well-known linkage
principle by Milgrom and Weber (1982). The linkage principle argues that the auction house
always benefits from committing to reveal all available information. The intuition behind
the principle is that revealing the information can mitigate the winner’s curse and motivates
the buyers to bid more aggressively. We arrive at the contrast due to buyers’ heterogeneity
in terms of their information about the quality value of the item, as modeled by their
expert status. More specifically, the result of Milgrom and Weber (1982) is established
when valuation of bidders depend symmetrically on the unobserved signals of the other
bidders, a condition that is not satisfied in our setup.9 Withholding information, under
certain circumstances, has also been shown to increase social welfare, by Zhang (2013), in
the context of product labeling. Gal-Or et al. (2007) show that, under certain conditions, a
buyer benefits from withholding information in procurement schemes.

Many researchers in marketing have studied signaling unobserved quality under informa-
tion asymmetry. Moorthy and Srinivasan (1995) and Soberman (2003) show that sellers can
use warranties such as money-back guarantees to signal the quality of their items. Bhardwaj
and Balasubramanian (2005) show that by letting the customers request information about
an item, rather than revealing it without solicitation, a seller can signal the quality of his
item. Mayzlin and Shin (2011) show that uninformative advertising, as an invitation for
search, can be used to signal product quality. Li et al. (2009) investigate auction features
such as pictures and reserve price that enable sellers to reveal more information about their
credibility and product quality, and empirically examine how different types of indicators
help alleviate uncertainty. Finally, Subramanian and Rao (2016) show that, by displaying
daily deal sales, a platform can leverage its sales to experienced customers to signal its type
and attract new customers. This is relevant to our result as in both Subramanian and Rao’s
paper and our paper, the existence of experts (or experienced customers) can help the sell-

8The literature on trying to explain sniping in online auctions is vast. Other than previously mentioned
papers, see also Ockenfels and Roth (2006), Hossain (2008), Wintr (2008), and Ely and Hossain (2009).

9Failure of the linkage principle has also been argued in a few other papers in the auction theory literature.
For example, Perry and Reny (1999), Krishna (2009, Chapter 8.1), and Fang and Parreiras (2003) show the
failure in setups with multiple items, ex-ante asymmetries, and budget constraints, respectively.
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ers to extract more revenue from the nonexpert customers. However, the higher revenue is
achieved using very different tools, displaying daily deal sales versus selling in auctions, in
the two papers. Compared to the previous literature, we introduce a new dimension for sell-
ers to signal the quality of their items. In particular, for product categories with a common
value component where assessing the common value needs expertise (e.g., in the antiques
category), we show that selling via auction can signal that the item has a high common
value.

Finally, we review the related literature that compares auctions to posted price selling
mechanisms. Einav et al. (2013) propose a model to explain the shift from Internet auctions
to posted prices and consider two hypotheses: a shift in buyer demand away from auctions,
and general narrowing of seller margins that favors posted prices. By using eBay data, they
find that the former is more important. There is a significant economics literature that
compares auctions to posted price mechanisms. Notably, Wang (1993) compares auctions
with posted prices and shows that auctions become preferable when buyers’ valuations are
more dispersed. In another important paper, Bulow and Klemperer (1996) have shown that
the additional revenue one can obtain by attracting one more bidder in an auction without
reserve price is greater than the additional revenue by setting the optimal reserve price, hence
in a sense establishing that “value of negotiating skills is small relative to value of additional
competition” (p. 180). In an empirical work, Bajari et al. (2008) conclude that the choice of
sales mechanism may be influenced by the characteristics of the product being sold. To the
best of our knowledge, our paper is the first work that considers the signaling effects of the
choice of the mechanism on buyers’ beliefs. Specifically, we show that the choice of selling
mechanism can be used by sellers of high-quality items as a signal of their item’s quality.

1.2 Model
We consider a model with two buyers and one item. We assume that there are two types
of buyers, experts and nonexperts, and each buyer is an expert with probability p. Given
anonymity of online marketplaces, we assume that each buyer does not know whether his
opponent is an expert or not.10

In our model, the items sold in online auctions have differing levels of “quality value,”
which may reflect the condition of a used good or the relative efficacy of a product among
its competitors. Note that this value is similar to a common value in that its benefit accrues
equally to both expert bidders (who can accurately predict quality value) and nonexpert
bidders (who do not know the quality value). We assume that the quality value, denoted by
a binary random variable C with realizations 0 and c > 0, is known only by experts and is
the same for both experts and nonexperts (therefore it can be described as a common value).
Moreover, the items sold in online auctions also have differing levels of “private value,” which
may reflect bidders’ private tastes for the items, or whether they have immediate needs for
the items. Each bidder may have a different private value. We assume that the private value,
denoted by a binary random variable V with realizations 0 and v > 0, is learned privately
by both experts and nonexperts.

10On eBay and most other auction platforms, identities of bidders are revealed only after an auction ends.
Furthermore, bidders can easily hide their type by creating and using a new account online.
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The total value of the item for a bidder is the sum of the quality value and an additional
private value component. More specifically, we assume that C has a binary distribution:
Pr[C = c] = q (high common value) and Pr[C = 0] = 1 − q (low common value), also
V (for each bidder) has a binary distribution: Pr[V = v] = r (high private value) and
Pr[V = 0] = 1 − r (low private value). We assume that c, v, p, q and r are common
knowledge. Moreover, buyers’ private value types are privately known by all buyers, and
the realization of C is privately known only by experts (nonexperts know only the prior
probability distribution). The total value of the item for each bidder is simply C+V , where
C is the quality value of the item and V is the buyer’s specific private value.

We model the online auction with a hard close as a two-stage bidding game where the
second stage represents the very last opportunity to submit a bid (the sniping window),
while the first stage represents the whole window of time preceding the close. Even though
in practice the period before the sniping window is a dynamic game, we model it (Stage 1) by
allowing each bidder to submit a single bid: to reconcile this with reality, we can think of the
highest bid that a bidder submitted before the sniping window as the first-stage bid. Bidders
can observe competitors’ bids of Stage 1 and respond to them in Stage 2; however, they do
not have enough time to respond to competitors’ bids of Stage 2. It is worth mentioning
that we can derive all of our results with a more realistic dynamic game model of the first
stage.11 However, though it is a bit more involved, it does not add any further insight to our
analysis, so we use the simpler two-stage formulation here.

Motivated by the fact that bidding in the sniping window has the risk of losing the bid due
to erratic internet traffic, we assume that a bid in stage 2 goes through only with probability
1 − δ for sufficiently small δ ≥ 0. Throughout the paper, we assume that 0 ≤ δ ≤ δ̄ where
δ̄ is defined in Section 1.A.3. This assumption implies that the risk of the bid not going
through, due to δ, is not large enough to outweigh the benefit of sniping for experts. We
provide an example of equilibrium structure when δ > δ̄ in Section 1.B.2. The assumption of
small δ is also consistent with industry numbers that show that the rate of failure of sniping
bids is less than 1%.12

Figure 1.1: Timeline of the game

The timing of the model is as follows (see also Figure 1.1). Before Stage 1, each buyer
knows his own type (expert or nonexpert), but not the type of the other buyer. If a buyer

11We can consider a dynamic auction in the time interval [0, 1) and sniping at time 1.
12For example, see https://www.quicksnipe.com/faq.php (accessed January 2016).

https://www.quicksnipe.com/faq.php
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is an expert, he also knows the common value (whether C = 0 or C = c). All buyers also
know their buyer-specific private values (whether V = 0 or V = v). In Stage 1, both buyers
simultaneously submit their bids. After Stage 1 and before Stage 2, both buyers observe the
other buyer’s bid, and may be able to infer their opponent’s type (and values). In Stage 2,
both buyers simultaneously decide if they want to increase their bid from Stage 1, and if so
by how much. In other words, bids of Stage 2 have to be greater than or equal to bids of
Stage 1. Stage 2 bids are received by the auctioneer with probability 1 − δ. If the bid of
Stage 2 is lost for a bidder (with probability δ), the auctioneer continues to use the bid of
Stage 1 for that bidder. After Stage 2, the item is given to the buyer with the highest bid at
the price of the second-highest bid. If there is a tie between two bidders of different values,
then the item goes to the one of higher value; if both have the same value but are of different
types, the tie is broken in favor of the nonexpert; if both bidders have the same value and
type, the tie is broken randomly.13

In auctions with a soft close, there are possibly an infinite number of stages. If a bid is
submitted at any stage, bidders can submit another bid in the next stage. The game ends
when no bid is submitted in some stage. We also consider posted prices in Section 1.4. In
this game, the seller posts a price z and the bidders then decide whether to buy at this price.
The trade takes place at the posted price z if and only if at least one bidder is interested
in the item. If both bidders want the item, each of them gets the item with probability 1

2 .
Finally, in both types of auctions, soft and hard close, and in posted price, we assume that
the platform fee is a constant fraction ξ of the selling price and is paid by the seller.

1.3 Effect of Experts on Buyer Strategies
In this section, we describe the equilibria of the auction game (a formal complete treatment
is in Section 1.A.1). We derive conditions under which experts use sniping, in equilibrium,
to protect their information about the common value of the item. Furthermore, we show
that, under certain conditions, nonexperts with high private value bid aggressively—even
above their expected valuation—to compete with experts.

We call an expert/nonexpert with high/low private value a high/low expert/nonexpert.
Our main lemma characterizing the equilibrium (Lemma 1.2 in Appendix 1.A) splits the
values of v into nine ranges depending on the relative values of c, v, p, r, and q. Our char-
acterization labels the strategies for each of the four types of players as one of five different
behaviors: (i) a sniping strategy is adopted only by experts and involves mimicking the
nonexperts in the first stage and bidding their true value only in the second stage; (ii) a
truthful strategy involves bidding the truthful (expected) value and revising it in the second
stage under any additional relevant information; (iii) an aggressive strategy is adopted only
by high nonexperts and involves bidding over the expected value to have a chance of win-
ning against the experts – we discuss this strategy in detail in subsection 1.3.2; (iv) a mixed
strategy is a mixed version of the truthful and aggressive strategies; (v) an underbidding
strategy is used only by low nonexperts, where they bid lower than their expected value for

13For a full description and motivation of the tie-breaking rule, please see Section 1.B.3. We demonstrate
that our results continue to hold if we change the rule to break the tie in favor of experts rather than
nonexperts.
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the item.

1.3.1 Experts Induce Sniping
Lemma 1.2 presents necessary and sufficient conditions for each of the above strategies to
emerge in equilibrium for each type of bidder. In particular, we show that low experts use
the sniping strategy if and only if v ≤ c · (1−p)(1−q)r

2pq(1−r)+(1−p)r , while high experts always use a
sniping strategy.

Note that the expression c · (1−p)(1−q)r
2pq(1−r)+(1−p)r is decreasing in q and p, and increasing in r

and c. In other words, a low expert’s incentive to snipe increases as p or q decrease, and as
r or c increase.

To see why, first note that a low expert snipes only if the common value is high. A
low value of p (i.e., there are few experts in the market), a low value of q (i.e., there are
few high quality items in the market), or a high value of c (i.e., quality difference between
low-quality and high-quality items is large), all indicate that the low expert’s information,
that the common value is high, is valuable. This motivates the low expert to snipe and hide
this information. Therefore, as p decreases, q decreases, or c increases, the threshold on v for
the low expert to snipe increases. Moreover, a high value of r indicates that the opponent
is likely to have a high private value. Therefore, as r increases, the probability that the
low expert would win the item without sniping decreases, which increases his motivation to
snipe. As a result, as r increases, the threshold on v for the low expert to snipe increases.

1.3.2 Impact of Experts on Nonexperts’ Strategy
A high nonexpert’s optimal strategy depends on the value of v. If v is sufficiently high
(cq + v ≥ c), a high nonexpert’s expected value for the item is higher than c. In this case,
high nonexperts always win the competition against low experts. For smaller values of v,
the situation is more interesting. By bidding their expected value against experts, high
nonexperts win only when the common value is low. Therefore, high nonexperts have to
bid higher than their expected value (aggressive strategy and mixed strategy) to win a high-
common-value item against low experts. Note that bidding above the expected value does
not necessarily mean that they have to pay more than their expected value, because the
auction format is second price. The only risk is that if two high nonexperts compete with
each other, they may both bid above their expected value and end up paying more than their
expected value. In this case, a nonexpert’s payoff could be negative. Our first proposition
discusses the conditions under which nonexperts bid more than their expected value.

Proposition 1.1. If the expected value of a high nonexpert for the item is less than the
common value of the item (i.e., cq + v < c), the high nonexpert may bid more than his
valuation for the item in equilibrium. Moreover, the probability of overbidding increases as
the fraction of experts in the market (i.e., p) increases.

Proposition 1.1 shows that if the value of v is high enough, nonexperts always take the risk
of over paying, and bid above their expected value in order to win against experts. However,
if v is not sufficiently large, a nonexpert over bids only with some probability (depicted in
Figure 1.2). This mixed strategy allows the nonexperts to mitigate the risk of over paying
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Figure 1.2: Probability that a high nonexpert
overbids as v increases for p = 0.3, r = 0.5,
q = 0.1, and c = 1.
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Figure 1.3: Probability that a high nonexpert
overbids as p increases for v = 0.5, r = 0.5,
q = 0.1, and c = 1.

due to competition with another nonexpert. Furthermore, Proposition 1.1 shows that as the
probability p that the opponent is an expert increases, a nonexpert’s willingness to take the
risk and bid above his expected value increases (depicted in Figure 1.3).

1.4 Effect of Experts on Platform Strategies
An important assumption in Proposition 1.1 is that experts can hide their information by
sniping. The platform can eliminate sniping by extending the duration of the auction when-
ever a bid is submitted (this is the soft-close auction format). In this case, nonexperts always
have enough time to respond to experts’ bids and, therefore, do not have to bid above their
expected valuation.

We show that, under certain conditions, nonexperts’ aggressive behavior leads to higher
revenue for the platform to the extent that the platform benefits from allowing sniping (by
enforcing a hard close). In other words, experts’ ability to hide their information forces the
nonexperts to bid more aggressively, and ultimately leads to higher revenue for sellers and
for the platform. This result also relates to platform strategies regarding the revelation of
information. In Section 1.4.3, we show the breakdown of the linkage principle by showing
that the platform may benefit from withholding quality information from the buyers when
the buyers are heterogeneous in their level of expertise.

1.4.1 An Auction with a Soft Close
We now consider a model in which sniping is not possible. One way to prevent sniping is by
extending the duration of the auction by a few minutes every time there is a bid near the
current end time of the auction. This auction is called an auction with a soft close and was
used by the now defunct Amazon Auctions. A way to model this is by starting with a game
that has only one stage and every time there is a bid during the current stage, the auction



1.4. EFFECT OF EXPERTS ON PLATFORM STRATEGIES 11

extends for one more stage. In other words, every time someone makes a bid, the other
buyers can see it and respond to it. In Section 1.4.2, we first characterize the equilibrium
for a model of soft-close auctions—the details are in Lemma 1.3 in Section 1.A.2. Then we
compare seller’s revenue and the platform’s revenue across the two models. The goal is to see
which ending rule results in better revenues for the sellers (and therefore for the platform).

1.4.2 Effect of Experts on Platform Revenue
Here we summarize the key implications of Lemma 1.3 that appears in Appendix 1.A: when
the soft-close format is used, high nonexperts bid their expected value. If they see a bid of
c, they infer that the opponent is a low expert and the common value is high. In that case,
they increase their bid to c to win the item at price c. On the other hand, with soft close,
experts always reveal the value of a high-common-value item to nonexperts. This increases
the nonexperts willingness to pay and in some cases leads to higher revenue for the seller.
However, when there is a soft close, nonexperts do not have to bid above their valuation.
This reduces the competition and can hurt sellers’ revenue as well as the platform’s revenue.
In Lemma 1.1 we see that sellers can benefit from a hard close under certain conditions. We
use this lemma to analyze the platform’s incentive in having a hard close.

Lemma 1.1. When cq + v < c, the seller of an item with low common value always has
higher expected revenue in a hard close than in a soft close, whereas the seller of an item with
high common value has higher revenue in hard than soft close if and only if p is sufficiently
large.

Lemma 1.1 shows that the seller of an item with low common value always benefits from
a hard close. This is intuitive because a hard close causes sniping, which prevents the flow of
information from experts to nonexperts. Therefore, when there is a hard close, nonexperts
are more likely to overpay for an item with low common value. The interesting part is that
even the seller of an item with high common value benefits from a hard close if p is high
enough. This is because when there is a hard close, nonexperts know that they will not be
able to infer the common value, and therefore, have to bid more aggressively to win the item.
As we observe in Proposition 1.1, this aggressive bidding behavior increases as p increases.
If p is sufficiently large, the positive effect of this aggressive bidding behavior on seller’s
revenue can dominate the negative effect of the lack of information flow, and result in higher
revenues for the seller of a high-quality item with a hard close than with a soft close. Using
the same argument, we can see that the platform can also benefit from a hard close when p
is sufficiently large. This result is formalized in Proposition 1.2.

Proposition 1.2. If the expected value of the high nonexperts for the item is less than the
common value of the item (i.e., cq + v < c), and the fraction of experts in the market (i.e.,
p) is sufficiently large, the platform’s revenue from a hard close is higher than that from a
soft close.

A graphical illustration of Proposition 1.2 is depicted in Figure 1.4. When cq + v < c
(v/c < 0.9 in the figure), the region where a hard close provides higher revenue appears
when v is sufficiently larger than c, and p is sufficiently large. This is because higher v and
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Figure 1.4: The regions are labeled with the format that provides higher revenue for the
platform (for r = 0.5 and q = 0.1). Note that 0.9 = 1− q.

higher p both lead to nonexperts’ aggressive bidding, as we saw in Figures 1.2 and 1.3 and
Proposition 1.1.

Proposition 1.2 shows that for some items the platform’s revenue is higher in a hard
close, while for other items the revenue is higher in a soft close. Ideally, the optimal strategy
for a platform would be to use different policies for different items. However, in practice,
platforms may have to use the same policy for all items for other reasons (e.g. consistent
user experience). Therefore, the optimal policy will depend on the distribution of the items
and the volume of the transactions across the parameter space.

1.4.3 Experts and the Breakdown of the Linkage Principle
Finally, we discuss the connection between the hard-close format and revelation of informa-
tion in the marketplace. Note that a hard close allows the experts to protect their information
about the value of the item. We know that the platform sometimes benefits from a hard
close. This could suggest that the platform may also benefit from withholding information
about the value of the item. This is an important implication because it is in contrast with
the well-known “linkage principle” in auction theory (Milgrom and Weber, 1982).

The linkage principle states that auction platforms (e.g., auction houses) benefit from
committing to reveal all available information about an item, positive or negative. The
platform revealing the information reduces the downside risk of winning the item, also known
as the winner’s curse. But we show that there is also a downside in revealing the information
in the presence of heterogeneous bidders, and the platform may sometimes benefit from
committing to not revealing the information.

Our result shows that when bidders are asymmetric in terms of their information about
the value of the item, bidders with less information have to bid more aggressively, otherwise,
they only win the item when bidders with more information do not want the item (i.e., the
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common value is low). This aggressive behavior incentivizes the platform to withhold any
information about the quality value of an item. This result is formalized in the following
corollary.

Corollary 1.1. In auctions with hard close, for medium values of p and v
c
, committing to

reveal the common value to the buyers decreases platform’s revenue.

We should note that the region in Figure 1.4 where the hard-close format provides higher
revenue is the same as the region in Corollary 1.1 in which the platform prefers to withhold
the common value information.

Our model is different from the model in Milgrom and Weber (1982) in several aspects.
However, the breakdown of the linkage principle is due to only two differences in modeling
assumptions. First, we allow the bidders to be heterogenous in terms of their information
about the value of the item. Second, bidders do not know how much information other
bidders have in this regard. We can show that even in a sealed bid second price auction,
a special case of the model in Milgrom and Weber (1982), introducing these two aspects
can lead to the breakdown of the linkage principle. Furthermore, both of these aspects are
required for the linkage principle to break down. In particular, if bidders are asymmetric
in terms of how much information they have about the value of the item, but they know
how much information other bidders have (e.g., whether the opponent is an expert or not),
Campbell and Levin (2000) establish that the linkage principle still holds.

Finally, note that Corollary 1.1 applies only to settings in which the platform has access
to some valuable information about the item that is not easily available to all the bidders.
For example, using historical market data, eBay provides a quality score for used items in
certain categories. Another example is the free vehicle history reports that eBay provided
for some time but later discontinued.14

So far we have discussed the effect of the existence of experts on nonexperts’ and the
platform’s decisions. In Section 1.5, we analyze the effect of experts on sellers’ choice of
selling mechanism. In particular, we show that the existence of experts can help the sellers
of items with a high common value to signal the value of their items to nonexperts.

1.5 Effect of Experts on Seller Strategies
In this section, we show that the existence of experts in the market could help the sellers to
signal the quality/common value of their item to nonexperts. We look at sellers’ choice of
selling mechanism between an auction and a posted price sale.15 We call the seller of an item
with high common value a high-type seller, and the seller of an item with low common value
a low-type seller. A seller is high-type with probability q where q is common knowledge.
A seller naturally knows his own type; experts also know the seller’s type (since they know
the common value of items being offered). But nonexperts do not know the seller’s type.
We investigate whether a seller can signal his type using the selling mechanism (auction

14http://announcements.ebay.com/2009/11/free-vehicle-history-reports-on-ebay-motors/
(accessed January 2016)

15In Section 1.B.5, we further consider the seller’s choice of closing format (hard versus soft) as a signaling
mechanism.

http://announcements.ebay.com/2009/11/free-vehicle-history-reports-on-ebay-motors/
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versus posted price). In particular, we derive conditions for the existence of a separating
equilibrium. We show that existence of enough experts in the market is a necessary condition
for a separating equilibrium to exist; furthermore, when the fraction of experts in the market,
p, is sufficiently large, a separating equilibrium exists only for moderate values of v

c
.

A seller sets his selling mechanism M (posted price or auction). In case of posted price,
M also includes the price. For a mechanism M , we assume that all nonexperts have the
same belief about a seller who uses M . In general, nonexperts’ belief about a mechanism is
the probability that they think a seller using that mechanism is a high type. However, since
we consider only pure strategy Nash equilibria of the game, the nonexperts’ belief about a
mechanism is limited to three possibilities: Low (L), High (H), and Unknown (X). In belief
L, nonexperts believe that a seller using mechanism M is always a low-type seller. In belief
H, nonexperts believe that a seller using mechanism M is always a high-type seller. Finally,
in belief X, nonexperts cannot infer anything about the seller’s type and believe that the
seller is high-type with probability q.

Nonexperts have beliefs about each mechanism M . In equilibrium, the beliefs must be
consistent with the sellers’ strategies. In particular, if both types of sellers use the same
mechanism in (a pooling) equilibrium, the nonexperts’ belief for that mechanism must be
X. If the two types of sellers use different mechanisms in (a separating) equilibrium, the
nonexperts’ belief for the mechanism used by the low-type seller must be L and for the
mechanism used by the high-type seller must be H. Furthermore, in an equilibrium, given
the nonexperts’ beliefs, sellers should not be able to benefit from changing their strategies.

Note that sniping is relevant only when the buyers’ belief about some mechanism M is
X. Therefore, in a separating equilibrium, the platform’s decision on whether to use a soft or
hard close does not affect buyers’ equilibrium behavior or sellers’ strategies. In other words,
the following analysis applies to both soft- and hard-close cases.

In general, signaling games can have infinitely many equilibria, supported by different
out-of-equilibrium beliefs in the game. Therefore, proving just the existence of an equilibrium
with certain characteristics may not be a strong result. To further strengthen the support
for our result that selling in auction can be used by high-type sellers as a signal of quality, we
show that, under certain conditions, such an equilibrium is the only separating equilibrium
that survives the “Intuitive Criterion” refinement. The Intuitive Criterion, introduced by
Cho and Kreps (1987), is an equilibrium refinement that requires out-of-equilibrium beliefs
to place zero weight on types that can never gain from deviating from a fixed equilibrium
outcome. The Intuitive Criterion has been used in various signaling papers in the marketing
literature including, but not limited to, Simester (1995), Desai and Srinivasan (1995) and
Jiang et al. (2011).

Proposition 1.3 below shows that when the fraction of experts in the market is sufficiently
large and the value of v

c
is moderate, there exists a unique separating equilibrium in which

a high-type seller chooses an auction and a low-type seller chooses posted price as their
respective selling mechanisms. A proof and related analysis are provided in Section 1.A.4.
Figure 1.5 shows the regions in which this separating equilibrium exists and is unique as a
function of p and v/c.

Let us define
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ν1 = min
(

(1− p)(1− p(1− 2r(1− r)))
2r(1− r) ,

(1− p)2

2(1− p(1− p))(1− r)r

)
,

ν2 = min
(

(1− pr)2

r(p(2− pr)− r) ,
1

2r(1− r)

)
,

ν3 = min
(

1− r
2r ,

(1− p)(2− r(1− p))
r (4 + (2− p(2− p))r2 − 2r(3− p))

)
.

Proposition 1.3. If v
c
∈ [ν1, ν2], there exists a separating equilibrium in which a high-

type seller uses an auction and a low-type seller uses a posted price v. Furthermore, if
v
c
∈ (ν1, ν3), this is the only separating equilibrium that survives the Intuitive Criterion

refinement. Finally, there exists no separating equilibrium in which a low-type seller uses an
auction.

v/c 
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Figure 1.5: The graph shows the existence and uniqueness of a separating equilibrium in
which the high-type seller uses auction and the low-type seller uses posted price, assuming
r = 1

4 .

The proof and a more elaborate discussion of Proposition 1.3 are relegated to Ap-
pendix 1.A. The intuition behind the proof of Proposition 1.3 is as follows. First, note
that in general, an auction is more favorable to a high-type than a low-type seller. This
is because, in auctions, the price is determined by bidders, and expert bidders do not bid
high when the seller is low-type. This allows the high-type seller to separate himself from
the low-type seller by selling in an auction. But for this separating equilibrium to exist,
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the low-type seller’s incentive to mimic has to be sufficiently low and the high-type seller’s
incentive to separate has to be sufficiently high. These two forces give us the thresholds ν1
and ν2 for existence (and ν3 for uniqueness under IC refinement) of this equilibrium.

In a separating equilibrium, even nonexperts know that the low-type seller is a low
type. Hence, nonexperts are willing to pay at most v for the item sold by the low-type
seller. Therefore, the low-type seller’s incentive to mimic increases as v or p decreases. If
p and v are sufficiently small, since the low-type seller’s incentive to mimic is sufficiently
large, a separating equilibrium does not exist. This is captured by condition v

c
≥ ν1 in

Proposition 1.3, and is represented by the left contour in Figure 1.5.
On the other hand, as v

c
increases, the common value matters less, and the high-type

seller’s incentive to signal his type (and to separate himself) decreases. When v
c
is large

enough, we show that the high-type seller chooses to sell via an auction only if p is sufficiently
small. This gives us the second condition for existence of this separating equilibrium, namely,
v
c
≤ ν2. The condition for uniqueness of the equilibrium, v

c
≤ ν3, follows a similar intuition.

It is interesting to note that the seller’s strategy in a separating equilibrium, and the
conditions for existence of this equilibrium, do not depend on q. Intuitively, this is because
buyers can always infer the seller’s type in a separating equilibrium; therefore, when consid-
ering the seller’s strategy and possible out-of-equilibrium deviations, the ex-ante probability
that the seller is high type does not matter.

A Note on Hard- vs. Soft-close Formats. In this section, motivated by eBay’s platform,
we studied sellers’ choice of auction versus posted price. It is theoretically interesting to
know what happens, when limited to using auctions, if sellers can choose between hard-close
and soft-close formats.16 This is the mechanism that was employed by the now defunct
Yahoo Auctions. In Section 1.B.5, we show that if sellers can choose between soft-close and
hard-close formats, the only equilibrium that survives D1 criterion refinement17 is the one in
which both types of sellers use the soft-close format (as a pure strategy pooling equilibrium).
Furthermore, nonexperts’ belief in the hard-close format will be low. This implies that sellers
who choose the hard-close format (out of equilibrium) will earn less revenue in expectation.
Our results are consistent with the empirical findings of Glover and Raviv (2012) that show
that the soft-close format leads to higher revenue than the hard-close format, and that sellers
with less experience are more likely to use the hard-close format. Our explanation, however,
is different from theirs, as we attribute the revenue difference to buyers’ beliefs and the
underlying signaling mechanism as opposed to sniping.

1.6 Conclusion
In this paper, we examined important questions for the buyers, sellers, and the platform
of an online market supporting auctions and posted prices. We answered questions about
optimal behavior for each of them using the well-documented presence of expertise among
the bidders as the key underlying assumption. In particular, we studied the impact of the

16We are grateful to an anonymous referee for suggesting this question.
17Intuitively, D1 equilibrium refinement requires out-of-equilibrium beliefs to be supported on types that

have the most to gain from deviating from a fixed equilibrium. For an extended discussion, see Fudenberg
and Tirole (1991, Section 11.2).
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presence of expert bidders in online markets using a simple model of auctions with a hard
close and posted prices. Motivated by large number of used items sold in online markets such
as eBay.com, we supposed that items have differing levels of “quality” (which we model as
common values), and different bidders have different capacities (which we model as expertise)
to predict the quality. Bidders with low expertise may be affected by bids earlier in the
auction, as these can be interpreted as signals for the quality of the item. In our model,
sniping emerges as an equilibrium strategy for experts to hide their information about the
quality of the item in hard-close auctions.

Our results provide several important managerial implications.

• We show that, as a consequence of sniping behavior in equilibrium by the experts in
hard-close auctions, nonexpert buyers with less information have to bid aggressively,
i.e., more than their expected value. This result highlights the compensatory behavior
adopted by the large majority of bidders (nonexperts) that arises endogenously in these
common marketplaces.

• Surprisingly, given the aggressive behavior of nonexperts, the platform’s revenue can
be higher in hard-close auctions (where sniping is prevalent) than in soft-close auctions
(where sniping cannot happen). This is a new, as-yet unexplored addition to the variety
of explanations of why many online auction sites use the hard-close rather than the
soft-close format.

• Another interesting implication of nonexperts’ aggressive behavior is that the platform
can benefit in its revenue from committing to hide the information. This result has
important managerial implications, as it suggests that when buyers are heterogeneous
in terms of their information about the value of the item, the linkage principle does
not always hold.

• When sellers can choose between auction and posted-price formats, a seller may be
able to signal the high quality (or authenticity) of his item to the buyers by selling
in an auction and thus separate himself from low-quality-item sellers as long as there
are enough experts in the market. This provides useful guidance to vendors in such
markets, where the magnitude and extent of these decisions can be moderated based
on the degree and extent of the presence of expert buyers in the mix. This result also
provides a new explanation for the success of auctions in categories such as antiques,
art, and collectibles, where common value and therefore expertise are important.

Collectively, our work sheds light on the important differences that arise when knowledgeable
or expert buyers are introduced to online marketplaces, and leads to useful guidelines for all
participants in such markets.

1.A Appendix
In this appendix, we present detailed explanations of the results. First, we discuss the
analyses and proofs of Sections 1.3 and 1.4, in Sections 1.A.1 and 1.A.2, respectively. Then,
we provide details of the role of the parameter δ in our model in Section 1.A.3. Finally, in
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Section 1.A.4, we detail the results of Section 1.5. Some of the proofs and longer discussions
are relegated to Appendix 1.B.

1.A.1 Analyses and Proofs of Section 1.3
In this section, we formally characterize the equilibria of the auction game.

Based on the relation of the parameters c, v, p, r, and q, we split the set of possible
parameter values into nine mutually exclusive and collectively exhaustive ranges. In the first
four ranges, we have that cq + v < c and v < cq; in the next two, we have cq + v < c and
v ≥ cq, in the next two, we have cq + v ≥ c and v < cq, and in the last range, we have
cq + v ≥ c and v ≥ cq.

Consider the function

f(c, p, r, q) = c · (1− p)(1− q)r
2pq(1− r) + (1− p)r .

Let m1 = f(c, p, r, q),m2 = f(c, p, 1 − r, 1 − q),M1 = f(c, p, 1, q) = c · (1 − q), and M2 =
f(c, p, 1, 1−q) = c·q. It is easy to verify thatm1 ≤M1 andm2 ≤M2. We consider nine differ-
ent cases as follows: v ∈ [0,min{m1,m2}), v ∈ [m1,min{m2,M1}), v ∈ [m2,min{m1,M2}),
v ∈ [max{m1,m2},min{M1,M2}), v ∈ [M2,m1), v ∈ [max{m1,M2},M1), v ∈ [M1,m2),
v ∈ [max{m2,M1},M2), and v ∈ [max{M1,M2},+∞).

To describe an equilibrium, we use the notation (s1, s2, s3, s4), which means that a high
expert follows the strategy s1, a low expert follows the strategy s2, a high nonexpert the
strategy s3, and a low nonexpert the strategy s4. For the bidding strategies of each type we
use the following notation:

• For a high expert, consider the following strategies:

– sHE1 : If C = 0, he bids v in the first stage and does nothing in the second stage. If
C = c, he bids cq+ v in the first stage and bids c+ v in the second stage (sniping
strategy).

– sHE2 : If C = 0, he bids v in the first stage and does nothing in the second stage.
If C = c, he bids c in the first stage and bids c + v in the second stage (sniping
strategy).

• For a low expert, consider the following strategies:

– sLE: If C = 0, he does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage (sniping strategy).

– tLE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing
in the second stage (truthful strategy).

• For a high nonexpert, consider the following strategies:

– xHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c + v in the second stage. Otherwise, he bids c
in the second stage with probability 1 − a, where a = 1 − 2p(1−r)qv

(1−p)r(c−(cq+v)) (mixed
strategy).
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– oHNE: He bids c in the first stage. If he sees a bid other than 0, v, cq, or c in the
first stage, he bids c + v in the second stage. Otherwise, he does nothing in the
second stage (aggressive strategy).

– tHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, c, or
cq + v in the first stage, he bids c+ v in the second stage (truthful strategy).

• For a low nonexpert, consider the following strategies:

– xLNE: He bids v in the first stage. He bids cq in the second stage with probability
1− g, where g =

2pr(1−q)v
(1−p)(1−r)(cq−v)−δ

1−δ (mixed strategy).

– uLNE: He bids v in the first stage and nothing in the second stage (underbidding
strategy).

– tLNE: He bids cq in the first stage and nothing in the second stage (truthful
strategy).

We describe equilibrium bidding strategies for buyers in the nine cases in the following
lemma.

Lemma 1.2. For the auction model described in Section 1.2, the buyers’ equilibrium bidding
strategies are given below.

1. If v ∈ [0,min{m1,m2}), the set of strategies (sHE1 , sLE, xHNE, xLNE) forms an equilib-
rium.

2. If v ∈ [m1,min{m2,M1}), the set of strategies (sHE2 , tLE, oHNE, xLNE) forms an equi-
librium.

3. If v ∈ [m2,min{m1,M2}), the set of strategies (sHE1 , sLE, xHNE, uLNE) forms an equi-
librium.

4. If v ∈ [max{m1,m2},min{M1,M2}), the set of strategies (sHE2 , tLE, oHNE, uLNE) forms
an equilibrium.

5. If v ∈ [M2,m1), the set of strategies (sHE1 , sLE, xHNE, tLNE) forms an equilibrium.

6. If v ∈ [max{m1,M2},M1), the set of strategies (sHE2 , tLE, oHNE, tLNE) forms an equi-
librium.

7. If v ∈ [M1,m2), the set of strategies (sHE1 , tLE, tHNE, xLNE) forms an equilibrium.

8. If v ∈ [max{m2,M1},M2), the set of strategies (sHE1 , tLE, tHNE, uLNE) forms an equi-
librium.

9. If v ∈ [max{M1,M2},+∞), the set of strategies (sHE1 , tLE, tHNE, tLNE) forms an equi-
librium.

The proof of Lemma 1.2 is relegated to Section 1.B.1.
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Proof of Proposition 1.1. This result comes directly from Lemma 1.2. We can see that when
m1 ≤ v < M1, nonexperts overbid all the time, and when v < m1, they overbid with some
probability. We can check in the proof of Lemma 1.2 that the probability of over bidding is
1− a = 2p(1−r)qv

(1−p)r(c−(cq+v)) . It is easy to see that this is an increasing function on p.

1.A.2 Analyses and Proofs of Section 1.4
Expert strategies for soft-close auctions

As before, for the bidding strategies of each type of buyer, we use the following notation:

• For a high expert, consider the following strategy:

– t′HE: If C = 0, he bids v in the first stage and nothing later. If C = c, he bids
c+ v in the first stage and nothing later (truthful strategy).

• For a low expert, consider the following strategy:

– t′LE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing
later (truthful strategy).

• For a high nonexpert, consider the following strategy:

– t′HNE: He bids cq+ v in the first stage. If he sees a bid of c or c+ v at some point
and cq + v < c, he bids c in the next stage (truthful strategy).

• For a low nonexpert, consider the following strategies:

– x′LNE: He bids v in the first stage. In the second stage, he bids cq with probability
1− w, where w = 2pr(1−q)v

(1−p)(1−r)(cq−v) , and nothing later (mixed strategy).

– u′LNE: He bids v in the first stage and nothing later (underbidding strategy).
– t′LNE: He bids cq in the first stage and nothing later (truthful strategy).

Lemma 1.3. In a platform with soft close,

1. if v ∈ [0,m2), the set of strategies (t′HE, t′LE, t′HNE, x′LNE) forms an equilibrium;

2. if v ∈ [m2,M2), the set of strategies (t′HE, t′LE, t′HNE, u′LNE) forms an equilibrium;

3. if v ∈ [M2,+∞), the set of strategies (t′HE, t′LE, t′HNE, t′LNE) forms an equilibrium.

Proof. With soft close, an expert is going to bid his true valuation at some point, because
anything less than the true valuation will result in a lower payoff. If there is a nonexpert
opponent he is going to respond to that; therefore the expert may as well bid truthfully from
the first stage. More specifically, the strategies for the experts will be as follows:

• High Expert: If C = 0, bids v in the first stage and nothing later. If C = c, bids c+ v
in the first stage and nothing later (strategy t′HE).
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• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
later (strategy t′LE).

For the high nonexpert, the strategy is simple as well. He will bid his expected valuation in
the first stage, which is cq + v. If the opponent bids c or c+ v in the first stage (or at some
later point), he will understand that he is an expert and that C = c, therefore if cq + v < c
he will bid c in the next stage (the minimum possible bid that maximizes his payoff). This
is strategy t′HNE.

If cq ≤ v (i.e. v ≥ M2), then a low nonexpert will bid his expected valuation in the first
stage, which is cq, and then he will not do anything (strategy t′LNE). Because, even if, for
example, he sees a bid of c and realizes that the common value is high, by bidding c and
winning the item, his payoff is still 0.

If v < cq (i.e. v < M2), then a low nonexpert doesn’t want to bid cq from the beginning
because if the opponent is a high expert and C = 0, he will end up with negative payoff. So,
he bids v in the first stage, i.e., the maximum he can without the risk above, and waits. If
he sees a bid other than v from the opponent, he will lose anyway, so it doesn’t matter what
strategy he will follow next, and we assume he will follow the same strategy as if he sees a
bid of v. If he sees a bid of v, then he bids cq in the second stage with probability 1 − w.
No matter what happens in the second stage, he does nothing in the third stage. We need
now to calculate the probability w.

First of all, if he does nothing in the second stage and he sees a bid of cq, he realizes
that the opponent is another low nonexpert, but there is no reason to bid something higher
because his expected payoff will be 0. If the opponent doesn’t bid as well, then the auction
ends, and there is no third stage. Therefore, his payoff if he sees a bid of v in the first stage
and he does nothing in the second, is

pr(1− q)
pr(1− q) + (1− p)(1− r)(0)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(wcq − v2 + (1− w)0

opponent is low nonexpert

).

If he bids cq in the second stage, his payoff is

pr(1− q)
pr(1− q) + (1− p)(1− r)(−v)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(w(cq − v) + (1− w)0)

opponent is low nonexpert

.

We need these two expressions to be equal, from which we get

w = 2pr(1− q)v
(1− p)(1− r)(cq − v) .

This is always non-negative, and it is < 1 iff

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

Therefore, if v < m2, the low nonexpert follows the strategy x′LNE.
If v ≥ c(1−p)(1−r)q

2pr(1−q)+(1−p)(1−r) = m2 (and v < M2), then it is sub optimal to bid cq, therefore
we set w = 1 (strategy u′LNE).
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Proof of Lemma 1.1. For a low seller, a hard close is always better, because the bid of every
bidder is greater than or equal to his bid when there is a soft close.

For a high seller, we know from Proposition 1.1 that as p increases, high nonexperts bid
more and more aggressively. This makes the revenue higher as p increases, in the hard-close
format. Therefore, to show the result, it is enough to show that for p ≈ 1 the revenue with
hard close is better than the revenue with soft close.

When p ≈ 1, it holds that m1 ≈ m2 ≈ 0; therefore there are only two relevant equilibria
in Lemma 1.2 (cases 4 and 6, since it is also v < M1) and two in Lemma 1.3 (cases 2 and 3).
Case 4 of Lemma 1.2 corresponds to case 2 of Lemma 1.3 and case 6 of Lemma 1.2 corresponds
to case 3 of Lemma 1.3. We can see that all bids are the same in both models except the bids
of the high nonexpert, which are higher with a hard close (the high nonexpert is overbidding
in the equilibria 4 and 6 of Lemma 1.2). Therefore, overall the expected revenue is higher
for a high seller with the hard-close format.

This is also illustrated in Figure 1.A.1, which shows which policy gives higher revenue
to the high seller in different regions of the parameter space. Notice that this is slightly
different from Figure 1.4, which refers to the platform’s revenue.

v/c

p

0

0

1.5

1

Hard Close

Soft Close

Soft Close
(equivalent if δ = 0)

0.9

Figure 1.A.1: The regions show whether a hard close provides higher revenue for a high
seller (for r = 0.5 and q = 0.1). This figure is slightly different from Figure 1.4 in that this
compares formats that provide higher revenue for a high seller versus the earlier figure that
does the same for the overall platform revenue.

Proof of Proposition 1.2. This result follows directly from Lemma 1.1. Since a low seller al-
ways benefits from a hard close, and a high seller benefits for large p, the expected platform’s
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revenue is better with a hard close for sufficiently large p.

The analogue of Figure 1.4 where the format that provides the higher revenue is labeled
as a function of other parameters in the model is presented in Figure 1.A.2. In particular,
in Figure 1.A.2a we can see that as r (the probability that a bidder has high private value)
increases, the region where a hard close provides higher revenue becomes smaller. This is
because from the perspective of a high nonexpert, high r means higher probability that
the other bidder is a high nonexpert too, which in turn means lower willingness to bid
aggressively in the hard-close format. This results in lower revenue for a hard close when r
is large.

v/c

r

0

0

1.5

1

Hard Close

Soft Close

Soft Close
(equivalent if δ = 0)

(a) For p = 0.5 and q = 0.1.

v/c

q

0

0

1.5

1

Hard Close

Soft Close

Soft Close
(equivalent if δ = 0)

(b) For r = 0.5 and p = 0.5.

Figure 1.A.2: The regions are labeled with the format that provides higher revenue for the
platform. This figure is an analogue of Figure 1.4, presenting the same result for other
parameter variations.

Proof of Corollary 1.1. When the platform reveals the common value to everyone, all bidders
bid their true valuation. Therefore, in the region in which the aggressive bidding of high
nonexperts makes hard close better than soft close for the platform (the middle region in
Figure 1.4), the platform prefers to hide the common value so that the high nonexperts keep
bidding higher than their true valuation.

1.A.3 Upper-bound Condition on δ

In our model, we assume that δ is sufficiently small, i.e., δ ≤ δ̄. This upper-bound condition is
calculated as the minimum of at most three different thresholds coming from the indifference
conditions for the three of the types of players: high experts, low experts, and low nonexperts.
These are the conditions that reflect the relations between the parameter values at which
the current set of strategies are no longer in equilibrium. Intuitively, when δ > δ̄, the cost
of sniping (i.e., the risk that the bid does not go through) outweighs its benefits. Therefore,
some types of bidders decide not to snipe. Since other types of bidders know this, they
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also have to update their strategies. As a result, we get different (and several cases of)
equilibrium structures for δ > δ̄. We provide an example of this in Section 1.B.2.

A thorough discussion and calculation of the thresholds for δ̄ is deferred to Section 1.B.2.
The exact definition of δ̄ is given in Lemma 1.4. To provide some intuition, in Figure 1.A.3
we present plots of δ̄ as a function of v, of p, of q, and of r.
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(a) As a function of v, for c = 1, q = 0.1, r = 0.5,
p = 0.5.
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(b) As a function of p, for c = 1, q = 0.1, r = 0.5,
v = 0.3.
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(c) As a function of q, for c = 1, r = 0.5, p = 0.5,
v = 0.3.
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(d) As a function of r, for c = 1, q = 0.1, p = 0.5,
v = 0.3.

Figure 1.A.3: Plots of the upper-bound δ̄ as a function of v, of p, of q, and of r.

1.A.4 Analyses and Proofs of Section 1.5
We use the following notation to explain the results of this section: Let πBT (M), where
T ∈ {L,H} and B ∈ {L,H,X} denote the expected profit of a seller who uses mechanism
M ∈ {A, (B, z)} (where A denotes auction, and (B, z) denotes posted price where the price
is z), has type T , and nonexperts believe has type B. LetMpool be the mechanism that both
types of sellers use in a pooling equilibrium.

The revenue of a high- or low-type seller in an auction, where nonexperts have belief high
or low, is given in the following formulas. Recall that p is the probability of being expert,
and r is the probability of having high value.

πHH (A) = c+ r2v;
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πLL(A) = r2v;

πLH(A) =

cp2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

cp (2(1− p)r + p− 2(1− p)r2) + r2v if v > c;

πHL (A) =

c(1− p)2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

c(1− p)(p(2(1− r)r − 1) + 1) + r2v if v > c;

Similarly, the revenue of a high- or low-type seller using posted price with price z, in each
of the four cases, is

πHH (B, z) =


z if z ≤ c,

(2r − r2)z if c < z ≤ c+ v,

0 otherwise;

πLH(B, z) =



(1− (1− p)2(1− r)2)z if v ≤ c and z ≤ v,

(2p− p2)z if v ≤ c and v < z ≤ c,

(2pr − p2r2)z if v ≤ c and c < z ≤ c+ v,

(1− (1− p)2(1− r)2)z if v > c and z ≤ c,

(2r − r2)z if v > c and c < z ≤ v,

(2pr − p2r2)z if v > c and v < z ≤ c+ v,

0 otherwise;

πHL (B, z) =



(1− p2(1− r)2)z if v ≤ c and z ≤ v,

(2(1− p)− (1− p)2)z if v ≤ c and v < z ≤ c,

(2r(1− p)− r2(1− p)2)z if v ≤ c and c < z ≤ c+ v,

(1− p2(1− r)2)z if v > c and z ≤ c,

(2r − r2)z if v > c and c < z ≤ v,

(2r(1− p)− r2(1− p)2)z if v > c and v < z ≤ c+ v,

0 otherwise;

πLL(B, z) =

(2r − r2)z if z ≤ v,

0 otherwise.

Proof of Proposition 1.3. We prove the proposition in three parts. In part A, we show that
there is no separating equilibrium in which the high-type seller uses posted price and the low-
type seller uses auction. In part B, we show that when v ∈ [ν1, ν2], there exists a separating
equilibrium in which the high-type seller uses auction and the low-type seller uses posted
price v. Finally, in part C, we show that for v ∈ (ν1, ν3), this is the only equilibrium that
survives the Intuitive Criterion refinement.
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Part A. Note that πLL(A) < πLL(B, v), which means that conditioned on the type of sellers
being revealed, the low-type seller always prefers posted price v to auction. Therefore, the
low-type seller never uses an auction in a separating equilibrium.

Part B. Note that for a separating equilibrium in which the high-type seller uses auction
and the low-type seller uses posted price to exist, the following two conditions are necessary
and sufficient:

πLL(B, z) ≤ πHL (A),

πHH (A) ≥ πLH(B, z).

The first condition guarantees that the low-type seller cannot benefit from deviating and
the second condition guarantees that the high-type seller cannot benefit from deviating.
πLL(B, z) is optimized at z = v, and is equal to (2r − r2)v. Having this less than or equal to
πHL (A), and using basic calculus, gives us the condition v

c
≥ ν1. Similarly, solving the second

inequality for v gives us condition v
c
≤ ν2. If nonexpert buyers’ beliefs are L for posted prices

and H for auction, then ν1 ≤ v
c
≤ ν2 is also sufficient for existence of this equilibrium.

Part C. Finally, we show that if ν1 ≤ v
c
≤ ν3, the separating equilibrium in which the high-

type seller uses auction and the low-type seller uses posted price is the only pure strategy
separating Nash equilibrium that survives the Intuitive Criterion refinement. Assume for
sake of contradiction that there exists another separating equilibrium. We already know
from Part A of this proof that the low-type seller cannot be using auction. Therefore, both
types must be using posted price (with different prices) in this equilibrium. Using the same
argument as in Part B of the proof, we know that the low-type seller must be using posted
price v. Suppose that the high-type seller is using posted price ζ. For this to be a separating
equilibrium, the low-type seller should not benefit from deviating and mimicking the high-
type seller: πLL(B, v) ≥ πHL (B, ζ). Using basic calculus, we can show that this implies the
following condition on ζ. We must have ζ ≤ (r−2)v

(p−1)(pr−r+2) . Let π
∗ = πHH (B, ζ) be the profit of

the high-type seller (in the hypothetical separating equilibrium) subject to this constraint.
If πHH (A) > π∗, then the high-type seller benefits from deviating to auction unless non-

experts’ belief about auction is L. But note that if v
c
> ν1, nonexperts’ belief about auction

cannot be L according to the Intuitive Criterion refinement. Specifically, since the high-type
seller benefits from deviating to auction and the low-type seller never benefits from devi-
ating to auction even if buyers’ belief in auction is H, according to the Intuitive Criterion
refinement, buyers’ belief in auction should be H. Therefore, if πHH (A) > π∗ the high-type
seller benefits from deviating to auction and the hypothetical equilibrium cannot exist. Us-
ing basic calculus, the condition πHH (A) > π∗ reduces to v

c
≤ ν3. Therefore, for v

c
∈ (ν1, ν3),

the separating equilibrium in which the high-type seller uses auction and the low-type seller
uses posted price is the only pure strategy separating Nash equilibrium that survives the
Intuitive Criterion refinement.

1.B Additional Appendix
In this appendix, we first give a complete proof of the equilibrium-characterization lemma 1.2
in Section 1.B.1. In Section 1.B.2, we calculate the explicit upper bound δ̄ on the value of
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δ alluded to in Section 1.A.3. We then provide a robustness check on the choice of our tie-
breaking rule in Section 1.B.3 by showing that the analog of the main lemma 1.2 continues
to hold even if we invert the tie-breaking rule to favor experts instead of nonexperts. In
the next Section 1.B.4, we show an extrapolation of our main result for the case when the
private value distribution has a support of more than two values, thus lending support for
our main observations in the limiting continuous case. Finally, in Section 1.B.5, we consider
equilibria when sellers sell in an auction but can choose between hard-close versus soft-close
formats.

1.B.1 Proof of Lemma 1.2
Proof. We will group the nine equilibria into four cases. These are v < min{M1,M2} (equi-
libria 1, 2, 3 and 4), M2 ≤ v < M1 (equilibria 5 and 6), max{M2,M1} ≤ v (equilibrium 9),
and M1 ≤ v < M2 (equilibria 7 and 8).

Case 1. First, assume that v < min{M1,M2}. This means that cq + v < c and v < cq.
Consider the following general set of strategies:

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c+ v in the second stage. Otherwise, he bids c in the
second stage with probability 1− a.

• Low nonexpert: Bids cq in the first stage with probability b and v with probability
1− b. If his bid was v, he bids cq in the second stage with probability 1− g.

The probabilities a, b, g are as yet undetermined . For now, we just assume that a > 0.
We will examine if anyone has an incentive to change his strategy and at the same time try to
determine the probabilities and the conditions for which the above is an equilibrium. These
conditions will give us the proof that equilibria 1 and 3 are correct. Later, we will relax the
assumption on a and examine what happens when a = 0; this will lead us to conditions that
equilibria 2 and 4 are correct, and will conclude the proof of the four equilibria in the first
case.

— High Expert with C = 0: His valuation is v and now he bids v in the first stage.
If he does nothing in the first stage and he bids v in the second stage, then there is some
probability that his bid will not go through with a payoff of 0, and in the case it goes through,
his payoff would be the same in all cases as if he had bid v in the first stage (against a low
nonexpert, his payoff is 0 in both cases). Therefore, it is optimal for him to follow this
strategy.

— High Expert with C = c: His valuation is c+v and now he bids cq+v in the first stage
and bids c+ v in the second stage. We consider three alternative strategies which dominate
all the rest, and we prove that he doesn’t have any incentive to deviate to any of them.
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One strategy is to bid v in the first stage and c + v in the second stage. This strategy
has a different result for him only if his bid in the second stage doesn’t go through. In that
case, by having a bid of v instead of a bid of cq + v can only decrease his payoff.

Another strategy is to bid 0 in the first stage and c + v in the second. The behavior of
the rest of the bidders will not change, but his payoff will decrease because he can lose in
some cases whereas the bid of cq + v would give him a positive payoff.

The last strategy is to bid c + v (or c) in the first stage and nothing (or c + v) in the
second. However, if we assume that his bid will go through in the second stage, with the
alternative strategy the result would be the same in all cases except in the case he faces a
high nonexpert, where his payoff strictly decreases. Therefore, since δ is sufficiently small18,
it is better to bid in the second stage.

— Low Expert with C = 0: His value is 0 and he does nothing, which is optimal for him.
— Low Expert with C = c: His value is c. The payoff if he bids c in the first stage is

A(δ) = pr((1− δ)0 + δ(c− (cq + v)))
opponent is high expert

+ p(1− r)((1− δ)0 + δ(c− (cq + v)))
opponent is low expert

+ (1− p)r((1− δ)0 + δ(c− (cq + v)))
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

.

The payoff with the current strategy is

B(δ) = (1− δ)
bid goes through

·
[
pr((1− δ)0 + δ(c− (cq + v)))

opponent is high expert

+ p(1− r)((1− δ)0 + δ(c− (cq + v)))
opponent is low expert

+ (1− p)r(a(c− (cq + v)) + (1− a)(1− δ)0 + (1− a)δ(c− (cq + v)))
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

]

+ δ
bid doesn’t go through

·
[
pr((1− δ)0 + δ0)

opponent is high expert

+ p(1− r)
(

(1− δ)0 + δ
c− (cq + v)

2

)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

]
.

It holds that B(0)− A(0) = (1− p)ra(c− (cq + v)) > 0 (for a > 0), which means that for
sufficiently small δ, B(δ) > A(δ), i.e. the current strategy is better.

18Formally, this condition means δ < δ̄, which we discuss in Section 1.B.2.
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The alternative is to bid something else in the first stage other than cq+ v or c, and c in
the second, but this doesn’t increase the payoff.

— High nonexpert: His expected valuation is cq + v. Bidding something else other than
cq + v in the first stage will not change the bidding behavior of the opponent to something
better for him, therefore he prefers to bid cq + v in the first stage rather than wait.

In the second stage, it doesn’t matter what they do if they see a bid of 0 or v or cq, since
the result cannot change. If they see a bid other than 0, v, cq, or cq + v (like c or c + v),
something that doesn’t happen in the equilibrium, they assume that the common value is
high which means that their valuation is c+ v, so they bid c+ v. The reason is that the only
one who might have incentive to deviate from the current strategies is an expert with C = c
who tries to bluff in some way to hide the common value.

If they see a bid of cq + v, then they know that their opponent is a high expert with
C = c, or a low expert with C = c, or a high nonexpert. Their payoff by doing nothing in
the second stage is

A2 = prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))
opponent is high expert and C=c

+ p(1− r)q
prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (a0 + (1− a)(1− δ)0 + (1− a)δ0)

opponent is high nonexpert

,

while their payoff by bidding c is

B2 = (1− δ)
bid goes through

·

 prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))
opponent is high expert and C=c

+ p(1− r)q
prq + p(1− r)q + (1− p)r ((1− δ)v + δ(c+ v − (cq + v)))

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (a0 + (1− a)(1− δ)cq + v − c

2 + (1− a)δ0)
opponent is high nonexpert


+ δ

bid doesn’t go through
· A2.

By bidding c + ε for some small ε > 0, his payoff can only decrease. By bidding c − ε, the
payoff is the same as if they stay with the bid of cq + v (according to the tie-breaking rule,
if two bidders are both high, the nonexpert wins). It holds that

B2 −A2 = (1− δ)
[

p(1− r)q
prq + p(1− r)q + (1− p)r

(1− δ)v +
(1− p)r

prq + p(1− r)q + (1− p)r
(1− a)(1− δ)

cq + v − c
2

]
,

and we want this to be equal to 0 to permit mixing these strategies, which will give us an
expression for the mixing probability a. This is

a = 1− 2p(1− r)qv
(1− p)r(c− (cq + v)) .
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This is always ≤ 1. We assumed also that a > 0, which is equivalent to v < c(1−p)r(1−q)
2p(1−r)q+(1−p)r =

m1. Therefore, we need this condition to have an equilibrium in this case.
If 1 − 2p(1−r)qv

(1−p)r(c−(cq+v)) ≤ 0, which is equivalent to v ≥ m1 and corresponds to a = 0, we
need a different set of strategies and we consider this case later.

— Low nonexpert: His expected valuation is cq. His payoff if he bids cq in the first stage
is

A3 = pr(q0 + (1− q)(−v))
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(b0 + (1− b)(g(cq − v) + (1− g)(1− δ)0 + (1− g)δ(cq − v))
opponent is low nonexpert

)

His payoff if he bids v in the first stage and follows the current strategy in the second stage
is
B3 = pr(q0 + (1− q)(g0 + (1− g)(1− δ)(−v) + (1− g)δ0))

opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)
[
b0 + (1− b)(g2(cq − v2 ) + (1− g)g((1− δ)(cq − v) + δ

cq − v
2 )

opponent is low nonexpert

+g(1− g)((1− δ)0 + δ
cq − v

2 ) + (1− g)2((1− δ)20 + (1− δ)δ(cq − v) + δ(1− δ)0 + δ2 cq − v
2 ))

]
.

Now, in the second stage, if a low nonexpert with a bid of v sees any bid other than v from
the opponent, bidding cq or nothing in the second stage doesn’t affect his payoff. If he sees
a bid of v, then he knows that the opponent is either a high expert with C = 0 or a low
nonexpert. If he does nothing in the second stage, his payoff is

A4 = pr(1− q)
pr(1− q) + (1− p)(1− r)(1− b)(0)

opponent is high expert and C=0

+ (1− p)(1− r)(1− b)
pr(1− q) + (1− p)(1− r)(1− b)(g cq − v2 + (1− g)(1− δ)0 + (1− g)δ cq − v2 )

opponent is low nonexpert

,

while if he bids cq, the payoff is

B4 = (1− δ)
bid goes through

 pr(1− q)
pr(1− q) + (1− p)(1− r)(1− b)(−v)

opponent is high expert and C=0

+ (1− p)(1− r)(1− b)
pr(1− q) + (1− p)(1− r)(1− b)(g(cq − v) + (1− g)(1− δ)0 + (1− g)δ(cq − v))

opponent is low nonexpert


+ δA4

bid doesn’t go through
.
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It must hold that A4 = B4 to permit mixing these strategies, from which we get an expression
for the mixing probability g which is

g =
2pr(1−q)v

(1−p)(1−r)(1−b)(cq−v) − δ
1− δ .

This expression is non-negative for sufficiently small δ and it is < 1 iff

v <
c(1− p)(1− r)(1− b)q

2pr(1− q) + (1− p)(1− r)(1− b) .

For b = 0 and the corresponding g, we get A3 ≤ B3 (for g < 1), therefore the current
strategy of the low expert is optimal and we get an equilibrium. For this reason, we set
b = 0. The above condition then becomes

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

If v ≥ m2, then we set g = 1 (which corresponds to strategy uLNE).
This ends the proof for equilibria 1 and 3.
When a = 0, the strategy for the low expert we considered above is not always optimal.

This happens when v ≥ m1. More specifically, since he knows that the high nonexpert will
bid c in the second stage for sure, he has no reason to wait until the second stage to bid, and
bids c from the first stage. With the same logic, since a high nonexpert knows for sure that
he will bid c in the second stage, it is even better to bid c from the first stage. Moreover,
when a high nonexpert sees a bid of c in the first stage, he doesn’t know for sure what
the opponent is, so he doesn’t increase his bid. This will change also the strategy for the
high expert with C = c. In the first stage, he prefers to bid c instead of cq + v, because a
bid of cq + v would reveal that he is a high expert and C = c. So, the equilibrium when
v ≥ c(1−p)r(1−q)

2p(1−r)q+(1−p)r = m1 is as follows.

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids c in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids c in the first stage. If he sees a bid other than 0, v, cq or c in the
first stage, he bids c+ v in the second stage. Otherwise, he does nothing in the second
stage.

• Low nonexpert: Bids v in the first stage. He bids cq in the second stage with probability
1− g.

The proofs for the high expert, the low expert and the low nonexpert are the same.
We need to check if the high nonexpert has any reason to change strategy. An alternative
strategy for him would be the one he had before, i.e. to bid cq+ v in the first stage and c in
the second with some probability. So, suppose that he had bidden cq + v in the first stage
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and he sees a bid of c. His payoff by doing nothing in the second is 0, while the payoff to
bid c in the second stage is

B′ = (1− δ)
bid goes through

·

 prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (c)))
opponent is high expert and C=c

+ p(1− r)q
prq + p(1− r)q + (1− p)r (c+ v − c)

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (cq + v − c

2 )
opponent is high nonexpert


+ δ

bid doesn’t go through
· 0.

This is ≥ 0 for v ≥ c(1−p)r(1−q)
2prqδ+2p(1−r)q+(1−p)r , which is true since

v >
c(1− p)r(1− q)

2p(1− r)q + (1− p)r ≥
c(1− p)r(1− q)

2prqδ + 2p(1− r)q + (1− p)r .

Therefore, he is better off by bidding c rather than 0 in the second stage. This means that by
bidding in the first stage he can increase his payoff. All other possible strategies are trivially
dominated by those we considered above.

This ends the proof for equilibria 2 and 4.
Summarizing the first case, when a > 0 (i.e. v < m1) and g < 1 (i.e. v < m2), we get

the equilibrium (sHE1 , sLE, xHNE, xLNE), when a = 0 (i.e. v ≥ m1) and g < 1 (i.e. v < m2),
we get the equilibrium (sHE2 , tLE, oHNE, xLNE), when a > 0 (i.e. v < m1) and g = 1 (i.e.
v ≥ m2), we get the equilibrium (sHE1 , sLE, xHNE, uLNE), and when a = 0 (i.e. v ≥ m1) and
g = 1 (i.e. v ≥ m2), we get the equilibrium (sHE2 , tLE, oHNE, uLNE).

Case 2. Assume now that M2 ≤ v < M1. This means that cq ≤ v and cq + v < c.
Consider the following set of strategies:

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c+ v in the second stage. Otherwise, he bids c in the
second stage with probability 1− a.

• Low nonexpert: Bids cq in the first stage and nothing in the second.

We now investigate if anyone has incentive to change strategy. For a > 0, the arguments
for all types of bidders are the same as in the previous case except for the low nonexpert.
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The expected valuation of a low nonexpert is cq. Now he bids cq in the first stage and his
expected payoff is 0. The only way to get the item is only if he faces another low nonexpert,
in which case they both bid cq and there is a tie. But even in this case he has to pay cq, so
his payoff is 0. He cannot achieve a better payoff, since it is never optimal to bid something
above his expected valuation.

This ends the proof for equilibrium 5.
Similarly as in the previous case, the equilibrium when v ≥ c(1−p)r(1−q)

2p(1−r)q+(1−p)r = m1 (which
means a = 0) is as follows.
• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.

If C = c, bids c in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids c in the first stage. If he sees a bid other than 0, v, cq, or c in
the first stage, he bids c + v in the second stage. Otherwise, he does nothing in the
second stage.

• Low nonexpert: Bids cq in the first stage and nothing in the second.
This ends the proof for equilibrium 6.
Summarising the second case, when a > 0 (i.e. v < m1), we get the equilibrium

(sHE1 , sLE, xHNE, tLNE), and when a = 0 (i.e. v ≥ m1), we get the equilibrium (sHE2 , tLE,
oHNE, tLNE).

Case 3. Next, suppose that max{M2,M1} ≤ v. This means that max{cq, c(1− q)} ≤ v.
We consider the following set of strategies:
• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.

If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

• Low nonexpert: Bids cq in the first stage and nothing in the second.
This is the simplest case. Both high and low nonexperts have nothing to lose by bidding

their expected valuation, therefore they do so from the first stage. The low nonexpert has
no reason to hide his identity, therefore he bids his valuation from the first stage. The same
is true for a high expert with C = 0. Finally, the high expert with C = c bids the highest
possible he can in the first stage without revealing that he is a high expert, which is a bid of
cq + v, and then he bids c+ v in the second stage. If he bids c+ v from the first stage, then
his payoff strictly decreases because of the possibility that the opponent is a high nonexpert.

This ends the proof for equilibrium 9.
Summarizing the third case, we get the equilibrium (sHE1 , tLE, tHNE, tLNE).
Case 4. Finally, suppose that M1 ≤ v < M2. This means that c(1 − q) ≤ v < cq. We

consider two cases:
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• If v < c(1−p)(1−r)q
2pr(1−q)+(1−p)(1−r) = m2, the following is an equilibrium.

– High Expert: If C = 0, bids v in the first stage and does nothing in the second
stage. If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

– Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and
nothing in the second stage.

– High nonexpert: Bids cq+v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

– Low nonexpert: Bids v in the first stage. He bids cq in the second stage with
probability 1− g, where g =

2pr(1−q)v
(1−p)(1−r)(cq−v)−δ

1−δ .

• If v ≥ c(1−p)(1−r)q
2pr(1−q)+(1−p)(1−r) = m2, the following is an equilibrium.

– High Expert: If C = 0, bids v in the first stage and does nothing in the second
stage. If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

– Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and
nothing in the second stage.

– High nonexpert: Bids cq+v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

– Low nonexpert: Bids v in the first stage and nothing in the second.

For the experts and the high nonexpert, the proofs are similar to the previous case. For
the low nonexpert, the proof is similar to the second case.

This ends the proof for equilibria 7 and 8.
Summarizing the fourth case, when g < 1 (i.e. v < m2), we get the equilibrium (sHE1 , tLE,

tHNE, xLNE), and when g = 1 (i.e. v ≥ m2), we get the equilibrium (sHE1 , tLE, tHNE, uLNE).

1.B.2 More on δ

Recall that δ is the probability that a bid in the second stage does not go through (due to
network or other technical difficulties). For the result of Lemma 1.2 to hold, in the model
section, we assumed that δ ≤ δ̄. In this section, we elaborate on how to calculate the value
of δ̄. We also briefly discuss how the equilibrium structure changes when δ > δ̄.

We start with the first case of Lemma 1.2, i.e. when v ≤ min{m1,m2}. In that case, the
set of strategies (sHE1 , sLE1 , xHNE, xLNE) is an equilibrium for sufficiently small δ.

More specifically, there are three threshold values τ1, τ2, τ3, and the case 1 of Lemma 1.2
holds if δ ≤ min{τ1, τ2, τ3}. The first threshold, τ1, corresponds to the strategy of the high
expert. When δ exceeds this threshold, a high expert with C = c prefers to bid c + v in
the first stage instead of waiting to bid in the second stage (i.e. instead of following strategy
sHE1 ).

The second threshold, τ2, corresponds to the strategy of the low expert. When δ exceeds
this threshold, a low expert with C = c prefers to bid c in the first stage instead of following
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the strategy sLE1 . To compute τ2, we have to find the minimum δ for which B(δ) ≥ A(δ) in
the proof of Lemma 1.2, or equivalently solve the equation B(δ) = A(δ) for δ.

The third threshold, τ3, corresponds to the strategy of the low nonexpert. When δ exceeds
this threshold, a low nonexpert prefers to bid cq in the first round, i.e. prefers to follow the
strategy tLNE instead of the strategy xLNE. To compute τ3, we have to find the minimum δ
for which the probability g in the proof of Lemma 1.2 is non-negative, or equivalently solve
the equation g(δ) = 0 for δ.

The closed-form expressions for the three thresholds are given below.

τ1 =
−
√

2c2(p− 2)(p− 1)(q − 1)2r2 + 4c(p− 2)p(q − 1)q(r − 1)rv + p2(r − 1)2v2 + 2c(p− 1)(q − 1)r + p(4q − 1)(r − 1)v
cp(q − 1)r + 2p(2q − 1)(r − 1)v ,

τ2 = max

 1
(p(r−1)−2r)(c(q−1)+v)

√
2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

,

1
− (p(r−1)−2r)(c(q−1)+v)
√

2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

 =

= 1
(p(r−1)−2r)(c(q−1)+v)

√
2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

,

τ3 = 2pr(1− q)v
(1− p)(1− r)(cq + v) .

The plot in Figure 1.B.1 shows how platform’s revenue changes as δ increases in the
interval [0,min{τ1, τ2, τ3}].

We can see that as δ increases, platform’s revenue decreases. The reason for this is that
the equilibrium remains the same, i.e. the bids of the buyers are the same, but the probability
that some bids don’t go through increases, therefore the expected final price of the item is
lower.

We continue with the second case of Lemma 1.2, where the equilibrium is (sHE2 , tLE, oHNE, xLNE).
Here we need only two bounds for δ, one for the high expert and one for the low nonexpert,
since the low expert bids only in the first round independently of the value of δ.

The threshold for the low nonexpert remains the same as in the previous case, i.e. it is
τ3. However, the bound for the high expert will change due to the change in the strategies
of the other bidders.

Consider the following strategy for the high expert:

• tHE: If C = 0, he bids v in the first stage and does nothing in the second stage.
If C = c, he bids c + v in the first stage and nothing in the second stage (truthful
strategy).

To find the new threshold for the high expert, we need to compare his payoff when he
uses the strategy sHE2 , his payoff when he uses the strategy tHE, and see when the first is
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Figure 1.B.1: Platform’s revenue as δ increases, for v = 0.03, c = 1, p = 0.5, r = 0.5, and
q = 0.1. It is τ1 = 0.445287, τ2 = 0.386605, and τ3 = 0.415385.

larger than the second, which will make (sHE2 , tLE, oHNE, xLNE) an equilibrium. The new
threshold is

σ1 = max

2p+
√

2
√

(p− 2)(p− 1)− 2
p

,
2p−

√
2
√

(p− 2)(p− 1)− 2
p

 =

=
2p+

√
2
√

(p− 2)(p− 1)− 2
p

.

Therefore, the necessary and sufficient condition for the second case of Lemma 1.2 is
δ ≤ min{σ1, τ3}. Similarly for every case of the lemma, we can find the bound for δ. The
following result summarizes all the cases.

Lemma 1.4. The necessary and sufficient condition for δ in Lemma 1.2 is δ ≤ δ̄, where

δ̄ =


min{τ1, τ2, τ3}, if v ∈ [0,min{m1,m2}) (case 1),
min{σ1, τ3}, if v ∈ [m1,m2) (cases 2, 7),
min{τ1, τ2}, if v ∈ [m2,m1) (cases 3,5),
σ1, if v ∈ [max{m1,m2},+∞) (cases 4,6,8,9).

An example of equilibrium for δ > δ̄.

Since, according to the industry numbers, the probability that the sniping bid does not go
through is less than 1%, in the main model we only consider the case in which δ is relatively
small. However, it is theoretically interesting to know what happens for larger values of δ.
Depending on the value of δ and other parameters in the model, the full analysis leads to too
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many cases the discussion of which is beyond the scope of this paper. However, to gain some
intuition, in the following we discuss one example of the equilibrium structure for δ > δ̄.
Interestingly, we see that the platform’s revenue could be non-monotone in δ.

Consider the following parameter values, c = 1, q = 0.1, r = 0.5, p = 0.5, v = 0.7,
and δ = 0.44. We have v > M2 = 0.1 and v < m1 = 0.75; therefore, we are in case 5 of
Lemma 1.2. However, it holds that τ1 = 0.348355 and τ2 = 0.257284, i.e., δ exceeds the
necessary and sufficient threshold given in Lemma 1.4 for (sHE1 , sLE, xHNE, tLNE) to be an
equilibrium.

In particular, the low expert does not want to snipe since δ is larger than τ2, so he
moves his bid to the first stage. In other words, he prefers to follow the strategy tLE instead
of the strategy sLE. This will cause a change in the strategies of the other bidders. The
new equilibrium will be (sHE2 , tLE, oHNE, tLNE), which happens to be the same as case 6 of
Lemma 1.2.

This is because if we cosnider the proof of case 6, the requirements for the equilibrium
are satisfied, even though v < m1. First, it holds that δ < σ1 = 0.44949, so the high expert’s
best response is sHE2 . Moreover, it is the case that v > c(1−p)r(1−q)

2prqδ+2p(1−r)q+(1−p)r = 0.698758, which
makes oHNE the best response for the high nonexpert. The value of v for the low expert and
the low nonexpert doesn’t matter as long as the others follow the aforementioned strategies.
Therefore, (sHE2 , tLE, oHNE, tLNE) is an equilibrium.

This causes the following interesting phenomenon. Even though in the interval [0, 0.257284],
platform’s revenue is a decreasing function of δ, as depicted in Figure 1.B.1; as δ increases
more, outside this interval, platform’s revenue increases. In this example, for δ = 0.257284,
platform’s revenue is 0.251106, while for δ = 0.44, it is 0.264497.

This is mainly because the low expert has changed his strategy by moving his bid of c
from the second stage to the first stage, i.e., from the point where his bid was not going
through with probability δ = 0.257284 to the point where his bid always goes through (when
δ = 0.44); this change has a positive effect on the expected price of the item.

As δ increases even more (above σ1), we see similar patterns: intervals in which platform’s
revenue is a decreasing function of δ, and some ‘jumps’ of the revenue in between due to
the change of strategies by bidders. In the limit, when δ ≈ 1, no-one will bid in the second
stage and the auction will be like a sealed-bid second price auction where everyone bids in
the first stage.

1.B.3 Choice of Tie-breaking Rule
In this section, first we elaborate on the choice of our tie-breaking rule. We argue that this
rule always favors the bidder who is willing to bid slightly higher than the current bid (i.e.
his payoff continues to remain positive if he slightly raises his bid) which the other bidder is
not able to match. Then, we show that our results are robust to the choice of the tie-breaking
rule. In particular, we show that the equilibrium strategies remain almost unchanged, and
our main results continue to hold, under a very different tie-breaking rule.

Recall that we use the following tie-breaking rule: If there is a tie between a low-type
bidder and a high-type bidder, then the item goes to the high-type. If the two bidders are of
the same type but of different expertise levels, then the item goes to the nonexpert. Finally,
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if the two bidders are of the same type and of the same expertise level, then the winner is
determined by a fair coin toss.

There are two interesting cases for which the tie-breaking rule has an effect in the equi-
libria described in the main lemma. The first is when a high nonexpert faces a low expert
who knows that C = c, and they both bid c. In this case, the high nonexpert is willing to
bid above c to win the tie and take the item, because his valuation is higher than c, but
the low expert cannot do the same since his valuation is c. Therefore, the tie-breaking rule
favors the bidder who would be willing to pay a slightly higher price.

The second case is when a high expert who knows that C = 0 faces a low nonexpert, and
they both bid v. In this case, the low nonexpert does not want to win the item, because his
valuation is below v. Therefore, he has an incentive to bid a bit below v, whereas the high
expert does not want to do the same since his valuation is v. Thus, again the tie-breaking
rule favors the bidder who has higher willingness to pay.

Intuitively, if we break the tie in favor of the other bidder in any of the above cases, one of
the bidders would want to increase or decrease his bid by the smallest possible amount ε > 0.
Since in our model the strategy space is continuous and not discrete, such ε does not exist.
We use this tie-breaking rule to avoid such complications. However, to further demonstrate
the robustness of our results, in the following, we show that equilibrium strategies, and
therefore all of our main results, continue to hold if we change the rule in the opposite
direction and favor the experts over the nonexperts.

Changing the tie-breaking rule.

Consider the following alternate tie-breaking rule: If there is a tie between two bidders
of different expertise levels, then the item goes to the expert. Otherwise, the winner is
determined by a fair coin toss. To reduce the number of cases in the analysis, we assume
that δ = 0, and only focus on the bids of the second stage.

As explained above, this game does not have a pure strategy Nash equilibrium unless we
discretize the bidding space. We show that as the size of the discretization step converges to
zero (i.e., the bidding space converges to continuous), the equilibrium outcome of the new
tie-breaking rule converges to that of the old tie-breaking rule.

To discretize the strategy space, we assume that bidders can bid c or c + ε, for some
very small ε > 0, but they cannot bid anything in between. This assumption will come
into play when there is a tie between a low expert and a high nonexpert who both bid c
(the first case discussed earlier in this section). Note that without this discretization, high
nonexperts sometimes want to bid the smallest number strictly larger than c; this is because
high nonexperts want to win against experts but lose against other high nonexperts. We
assume that the rest of the strategy space remains unchanged.

We start by defining the strategies for the different types of bidders.

• For a high expert, consider the following strategy:

– tHE: If C = 0, he bids v. If C = c, he bids c+ v.

• For a low expert, consider the following strategy:

– tLE: If C = 0, he does nothing. If C = c, he bids c.
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• For a high nonexpert, consider the following strategies:

– xHNE: He bids cq + v with probability a and c+ ε with probability 1− a, where
a := a(ε) = 1− 2p(1−r)qv

(1−p)r(c+ε−(cq+v)) .

– oHNE: He bids c+ ε.
– tHNE: He bids cq + v.

• For a low nonexpert, consider the following strategies:

– xLNE: He bids v with probability g and cq with probability 1 − g, where g =
2pr(1−q)v

(1−p)(1−r)(cq−v) .

– uLNE: He bids v.
– tLNE: He bids cq.

We define also a new threshold for v, the analogous of the old m1, that now depends also
on ε. We have that m1 := m1(ε) = (c+ε−cq)(1−p)r

2p(1−r)q+(1−p)r .
Intuitively, high nonexperts who want to over-bid now bid c+ ε instead of c. This allows

them to win against experts, even though ties are broken in favor of experts. We now describe
the equilibrium bidding strategies for buyers in nine cases in the following lemma.

Lemma 1.5. For the auction model described above with the alternative tie-breaking rule,
the buyers’ equilibrium bidding strategies are given below.

1. If v ∈ [0,min{m1(ε),m2}), the set of strategies (tHE, tLE, xHNE, xLNE) forms an equi-
librium.

2. If v ∈ [m1,min{m2,M1}), the set of strategies (tHE, tLE, oHNE, xLNE) forms an equi-
librium.

3. If v ∈ [m2,min{m1(ε),M2}), the set of strategies (tHE, tLE, xHNE, uLNE) forms an
equilibrium.

4. If v ∈ [max{m1(ε),m2},min{M1,M2}), the set of strategies (tHE, tLE, oHNE, uLNE)
forms an equilibrium.

5. If v ∈ [M2,m1(ε)), the set of strategies (tHE, tLE, xHNE, tLNE) forms an equilibrium.

6. If v ∈ [max{m1(ε),M2},M1), the set of strategies (tHE, tLE, oHNE, tLNE) forms an
equilibrium.

7. If v ∈ [M1,m2), the set of strategies (tHE, tLE, tHNE, xLNE) forms an equilibrium.

8. If v ∈ [max{m2,M1},M2), the set of strategies (tHE, tLE, tHNE, uLNE) forms an equi-
librium.

9. If v ∈ [max{M1,M2},+∞), the set of strategies (tHE, tLE, tHNE, tLNE) forms an equi-
librium.
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Proof. We will prove the first four equilibria, i.e. when v < M1 and v < M2, which are the
most general. The rest of the cases are similar to the proof of the Lemma 1.2.

We have that v < min{M1,M2}. This means that cq + v < c and v < cq. Consider the
following general set of strategies:

• High Expert: If C = 0, he bids v. If C = c, he bids c+ v.

• Low Expert: If C = 0, he does nothing. If C = c, he bids c.

• High nonexpert: He bids cq + v with probability a and c+ ε with probability 1− a.

• Low nonexpert: He bids v with probability g and cq with probability 1− g.

The probabilities a, g are as yet undetermined. We will examine if anyone has incentive
to change strategy and at the same time try to determine the probabilities and the conditions
for which the above is an equilibrium. These conditions will give us the proof that equilibria
1 and 3 are correct.

Both the high and the low experts bid truthfully and this is optimal for them. This
is because they bid in the second stage, therefore they don’t have any fear to reveal the
common value to nonexperts. They also know their true valuation, and since we have a
second-price auction, it is optimal for them to bid their true values.

Now, we consider a high nonexpert. His expected valuation is cq + v. Their payoff by
bidding cq + v is

A2 = prq(0)
opponent is high expert and C=c

+ pr(1− q)(0)
opponent is high expert and C=0

+ p(1− r)q(0)
opponent is low expert and C=c

+ p(1− r)(1− q)(v)
opponent is low expert and C=0

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(g(cq) + (1− g)(v))
opponent is low nonexpert

,

while their payoff by bidding c+ ε is

B2 = prq(0)
opponent is high expert and C=c

+ pr(1− q)(0)
opponent is high expert and C=0

+ p(1− r)q(v)
opponent is low expert and C=c

+ p(1− r)(1− q)(v)
opponent is low expert and C=0

+ (1− p)r
(

(1− a)cq + v − (c+ ε)
2

)
opponent is high nonexpert
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+ (1− p)(1− r)(g(cq) + (1− g)(v))
opponent is low nonexpert

.

By bidding c + ε + ζ for some small ζ > 0, his payoff can only decrease. By bidding c,
the payoff is the same as with the bid of cq + v. It holds that

B2 − A2 = p(1− r)q(v) + (1− p)r
(

(1− a)cq + v − (c+ ε)
2

)
,

and we want this to be equal to 0 to permit mixing these strategies, which will give us an
expression for the mixing probability a. This is

a = 1− 2p(1− r)qv
(1− p)r(c+ ε− (cq + v)) .

This is always ≤ 1. The inequality a > 0 is equivalent to v < (c+ε−cq)(1−p)r
2p(1−r)q+(1−p)r = m1. So, we

need this condition for equilibria 1 and 3. If 1− 2p(1−r)qv
(1−p)r(c+ε−(cq+v)) ≤ 0, then it is always better

for the high nonexpert to bid c+ ε, so we set a = 0 (equilibria 2 and 4).
Next, we consider a low nonexpert. His expected valuation is cq. His payoff if he bids cq

is

A3 = pr(q0 + (1− q)(−v))
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(g(cq − v) + (1− g)0)
opponent is low nonexpert

.

His payoff if he bids v is

B3 = pr(q0 + (1− q)0)
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)
(
g
cq − v

2

)
opponent is low nonexpert

.

It must hold that A3 = B3 to permit mixing these strategies, from which we get an expression
for the mixing probability g which is

g = 2pr(1− q)v
(1− p)(1− r)(cq − v) .

This expression is always non-negative, and it is < 1 iff

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.
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If v ≥ m2, then we set g = 1 (which corresponds to strategy uLNE).
This ends the proof.

Notice that as ε goes to 0, the bidding strategies of Lemma 1.5 approach the strategies of
the main Lemma 1.2. This means that the analogues of Proposition 1.1 and Proposition 1.2
will continue to hold with the alternative tie-breaking rule.

1.B.4 Distribution of Bidders’ Private Value
In the main model, we assumed that V has binary distribution with support {0, v}. In this
section we relax that assumption and show that our main result, that nonexperts sometimes
bid more than their expected value, still holds. More specifically, for k ≥ 2, we assume that
the private value of each bidder is V = i·v

k−1 with probability ri, where i ∈ {0, 1, . . . , k − 1}
and ∑k−1

i=0 ri = 1. In the main model, we had k = 2, r2 = r, and r1 = 1− r.
The tie-breaking rule is a generalization of what we had in the main model. We assume

that in case of a tie the bidder with the highest private value wins. If the two bidders have
the same private value, then the nonexpert wins. If both bidders have the same private value
and the same expertise level, then the winner is determined with a fair coin toss.

To simplify the analysis, we assume that δ = 0 and only focus on the bids in the second
stage. It is easy to see that it is weakly dominant for all the experts to bid their true
valuation. In other words, if an expert has private value i·v

k−1 , he will bid i·v
k−1 when the

common value is low (C = 0), and c+ i·v
k−1 , when the common value is high (C = c). We also

assume that v ≤ c ·min{q, 1− q} (which corresponds to the condition v ≤ min{M1,M2} of
our main model).

We show that, in equilibrium, nonexperts will mix between at most three different bids.
More specifically, if a nonexpert is of type i, meaning that his private value is i·v

k−1 , he will
mix between (i+1)·v

k−1 , c · q+ i·v
k−1 , and c+ (i−1)·v

k−1 . The bid (i−1)·v
k−1 is employed because he wants

to lose against the experts of higher type when C = 0. The bid c · q + i·v
k−1 is used because

this is his expected valuation and this is the bid he wants to have against a nonexpert. The
bid c+ (i−1)·v

k−1 is used because he wants to win against an expert of lower type when C = c.
The reason that bidders use only these three bids in equilibrium is that, assuming that

the opponent also uses the same strategy in equilibrium, every other bid is dominated by at
least one of these three. The intuition is as follows. A bid y ∈ [0, cq) will lose against all
the bids in [cq,+∞) and will win only against some bids in [0, v]. But a bid in [0, v] means
that either the opponent is an expert and C = 0, in which case we want to win against
bids in [0, vi] and lose against bids in [vi+1, v], or the opponent is a nonexpert who happened
to underbid, in which case we want to win all the time, something achieved by the bid of
cq + vi. So, depending on the parameters of the model, y is dominated by either vi+1 or
cq + vi. When these two give the same payoff, i.e. when the nonexpert is mixing between
the two, y is dominated by both.

Similarly, a bid y ∈ [cq, c) will lose against all the bids in [c,+∞), will win against all
bids in [0, v], and will win against some bids in [cq, cq+v]. But a bid in [cq, cq+v] means that
the opponent is a nonexpert, in which case we want to win against all bids in [cq, cq + vi−1]
and lose against bids in [cq + vi+1, cq + v]. So, y is dominated by the bid cq + vi.
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Finally, a bid y ∈ [c,+∞) will win against all bids in [0, cq + v], and will win against
some bids in [c,+∞). But a bid in [c,+∞) means that either the opponent is an expert and
C = c, in which case we want to win against bids in [c, c + vi−1] and lose against bids in
[c+vi, v], or the opponent is a nonexpert who happened to overbid, in which case we want to
lose all the time, something achieved by the bid of cq+ vi. So, depending on the parameters
of the model, y is dominated by either c + vi−1 or cq + vi. When these two give the same
payoff, i.e. when the nonexpert is mixing between the two, y is dominated by both.

Suppose that the nonexperts of type i will bid (i+1)·v
k−1 with probability θi,1, c · q+ i·v

k−1 with
probability θi,2, and c+ (i−1)·v

k−1 with probability θi,3, where θi,1 + θi,2 + θi,3 = 1. It holds that
θ0,3 = 0 and θk−1,1 = 0.

The expected payoff of a nonexpert of type i < k − 1 when he bids (i+1)·v
k−1 is

Φi =(1− p)
i−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+ 1

2riθi,1
(
cq + iv

k − 1 −
(i+ 1)v
k − 1

)
+ p(1− q)

i∑
j=0

v(i− j)rj
k − 1 .

The expected payoff of a nonexpert of type i when he bids c · q + i·v
k−1 is

Ψi =(1− p)
k−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+

i−1∑
j=0

rjθj,2

(
iv

k − 1 −
jv

k − 1

)
+ p(1− q)

k−1∑
j=0

v(i− j)rj
k − 1 .

The expected payoff of a nonexpert of type i > 0 when he bids c+ (i−1)·v
k−1 is

Ωi =(1− p)
k−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+

i−1∑
j=0

rjθj,3

(
cq − c+ iv

k − 1 −
(j − 1)v
k − 1

)

+
k−1∑
j=0

rjθj,2

(
iv

k − 1 −
jv

k − 1

)
+ 1

2riθi,3
(
cq − c+ iv

k − 1 −
(i− 1)v
k − 1

)
+ p

(1− q)
k−1∑
j=0

v(i− j)rj
k − 1 + q

i−1∑
j=0

rj

(
iv

k − 1 −
jv

k − 1

) .

Consider the case where θi,1 > 0 for every i < k − 1, θi,2 > 0 for every i, and θi,3 > 0 for
every i > 0. In other words, all types of nonexperts are mixing between all their potential
bids. This case corresponds to the equilibrium in case 1 of Lemma 1.2. To find all the
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probabilities t, we need to solve the system

Φi = Ψi, for i ∈ {0, 1, . . . , k − 2}
Ψi = Ωi, for i ∈ {1, 2, . . . , k − 1}
θ0,3 = 0
θk−1,1 = 0

3∑
m=1

θi,m = 1, for i ∈ {0, 1, . . . , k − 1}.

The solution to this system for k = 2 is

θ0,1 = 2p(q − 1)r1v

(p− 1)r0(cq − v)

θ0,2 = 1− 2p(q − 1)r1v

(p− 1)r0(cq − v)
θ0,3 = 0
θ1,1 = 0

θ1,2 = 1− 2pqr0v

(p− 1)r1(c(q − 1) + v)

θ1,3 = 2pqr0v

(p− 1)r1(c(q − 1) + v) ,

which is the same as our solution in the main body of the paper (θ1,2 = a and θ0,1 = g).
The solution to the system for k = 3 is

θ0,1 = 2v(2cq(p(q − 1)r1 + 2(p− 1)r0) + v(−p(q − 1)(r1 − 2r2)− 4(p− 1)r0))
(p− 1)r0 (4c2q2 + 4cqv − 7v2)

θ0,2 = (2cq − v)((p− 1)r0(2cq − v)− 2p(q − 1)r1v)− 4p(q − 1)r2v
2

(p− 1)r0 (4c2q2 + 4cqv − 7v2)
θ0,3 = 0

θ1,1 = 2v(2cq(p(q − 1)r2 − (p− 1)r0) + v(p(q − 1)(2r1 + 3r2) + (p− 1)r0))
(p− 1)r1 (4c2q2 + 4cqv − 7v2)

θ1,2 =
(

16c4(p− 1)(q − 1)2q2r1 − 16c3(q − 1)qv
(
r2(pq2 − (p+ 1)q + p)

+ r0(p((q − 1)q + 1) + q − 1) + (p− 1)r1
)

+ 4c2v2
(
2r0(p(q((q − 1)q + 4)− 1) + 3q2 − 4q + 1)

+ r1(p(−6(q − 1)q − 3) + 18(q − 1)q + 7)− 2r2(p(q((q − 2)q + 5)− 3) + q(2− 3q))
)

+ 4cv3
(
r0(p(q(13q − 12)− 2) + 5q + 2) + r1(p(8(q − 1)q − 3) + 7)

+ r2(p(q(13q − 14)− 1)− 5q + 7)
)

+ 7v4
(
2r0(−3pq + p− 1)

+ 2r2(3pq − 2p− 1) + (3p− 7)r1
))
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/(
(p− 1)r1

(
4c2(q − 1)2 − 4c(q − 1)v − 7v2

) (
4c2q2 + 4cqv − 7v2

))

θ1,3 = 2(p− 1)r2v(2c(q − 1) + v)− 2pqv((3r0 + 2r1)v − 2c(q − 1)r0)
(p− 1)r1 (4c2(q − 1)2 − 4c(q − 1)v − 7v2)

θ2,1 = 0

θ2,2 = (p− 1)r2(2c(q − 1) + v)2 + 2pqv(2r0v − r1(2c(q − 1) + v))
(p− 1)r2 (4c2(q − 1)2 − 4c(q − 1)v − 7v2)

θ2,3 = 2pqv(r1(2c(q − 1) + v)− 2r0v)− 8(p− 1)r2v(c(q − 1) + v)
(p− 1)r2 (4c2(q − 1)2 − 4c(q − 1)v − 7v2) .

Even though we can analytically solve the system for larger values of k, the closed-form
solution does not have any meaningful pattern. In the following example, we numerically
solve the system for the case of k = 20, which would be an approximation of uniform
continuous distribution of v.

Figure 1.B.2 shows a plot of the three mixing probabilities as functions of the private
value of a nonexpert for k = 20 and small v. We can see that as the private value increases,
the probability of underbidding decreases and the probability of overbidding increases.

Figure 1.B.2: Mixing probabilities as a function of the private value. Blue is for underbidding,
orange for bidding the expected valuation, and green for overbidding. The plot is for k = 20,
ri = 1/k for i ∈ {0, . . . , k − 1}, c = 1, q = 0.5, p = 0.999, and v = 0.0006.

As v increases, we will get different equilibria where some types of nonexperts don’t
mix between all their potential bids, i.e., some θi,1’s become 0. A complete analysis of the
equilibrium is beyond the scope of this paper as the number of cases in equilibrium analysis
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grows exponentially in k as v increases; however, the general pattern is that as v increases,
nonexperts bid more aggressively. This is consistent with our findings in the main body of
the paper.

1.B.5 Signaling Using Closing Format: Hard vs. Soft Close
In this section, we consider a situation in which the platform lets the sellers decide whether
to sell in an auction with hard-close or soft-close format. We call the seller of an item with
high common value a high-type seller, and the seller of an item with low common value a
low-type seller. A seller is high-type with probability q where q is common knowledge. A
seller naturally knows his own type; experts also know the seller’s type (since they know the
common value of items being offered). But nonexperts do not know the seller’s type. We
investigate whether a seller can signal his type using the closing format (soft versus hard).
In particular, we derive conditions for existence of a separating equilibrium.

A seller sets his closing format F (soft or hard). For a format F , we assume that all
nonexperts have the same belief about a seller who uses F . In general, nonexperts’ belief
about a format is the probability that they think a seller using that format is high-type.
However, since we only consider pure strategy Nash equilibria of the game, nonexperts’
belief about a format is limited to three possibilities: Low (L), High (H), and Unknown
(X). In belief L, nonexperts believe that a seller using format F is always a low-type seller.
In belief H, nonexperts believe that a seller using format F is always a high-type seller.
Finally, in belief X, nonexperts cannot infer anything about the seller’s type and believe
that the seller is high-type with probability q.

Nonexperts have beliefs about each format F . In equilibrium, the beliefs must be con-
sistent with sellers’ strategies. In particular, if both types of sellers use the same format in
(a pooling) equilibrium, nonexperts’ belief for that format must be X. If the two types of
sellers use different formats in (a separating) equilibrium, nonexperts’ belief for the format
used by the low-type seller must be L and for the format used by the high-type seller must
be H. Furthermore, in an equilibrium, given the nonexperts’ beliefs, sellers should not be
able to benefit from changing their strategies.

We use the following notation to explain the results of this section: Let πBT (F ), where
T ∈ {L,H} and B ∈ {L,H,X} denote the expected profit of a seller who uses mechanism
F ∈ {soft, hard} and has type T , and nonexperts believe has type B.

Lemma 1.6. For any B ∈ {L,H} and any T ∈ {L,H} we have πBT (soft) = πBT (hard). In
other words, if nonexperts have no uncertainty about the type of the seller (B 6= X), soft-
close and hard-close formats both lead to the same revenue for the seller (no matter what
type the seller is).

Proof. Note that when nonexperts have no uncertainty about the type of the seller, they do
not infer anything from other bidders’ bids, and do not update their expected value. The
auction reduces to a full-information second price auction in this case.

The seller’s revenue, in each case, is given by

πHH (soft) = πHH (hard) = c+ r2v;
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πLL(soft) = πLL(hard) = r2v;

πLH(soft) = πLH(hard) =

cp2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

cp (2(1− p)r + p− 2(1− p)r2) + r2v if v > c;

πHL (soft) = πHL (hard) =

c(1− p)2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

c(1− p)(p(2(1− r)r − 1) + 1) + r2v if v > c.

Lemma 1.7. No separating equilibrium exists.

Proof. Assume for sake of contradiction that there is a separating equilibrium in which
the low-type uses format F and the high-type uses format F ′. Note that, using the above
expressions, we have πLL(F ) < πHL (F ) = πHL (F ′) for any F and F ′. Therefore, the low-type
benefits from mimicking, contradicting the equilibrium condition.

Depending on out-of-equilibrium beliefs, the game could have multiple pooling equilibria
(both soft- and hard-close). We can show that soft-close is always a pooling equilibrium.
Furthermore, for regions in which hard-close provides higher expected revenue for the high-
type seller, as shown in Figure 1.A.1, hard-close is also a pooling equilibrium. The intuitive
criterion is not sufficient for refining the equilibrium set to a unique equilibrium. However,
we can show that only soft-close pooling equilibrium can survive the D1 criterion refinement.
Intuitively, the high-type always gains more (loses less) than low-type by deviating to soft-
close format in a hard-close pooling equilibrium. Therefore, out-of-equilibrium beliefs on
soft-close auction, subject to D1 requirement, is high. This makes the deviation to soft-close
always profitable (in a hypothetical hard-close equilibrium). Therefore, hard-close pooling
equilibrium cannot survive D1 criterion refinement. This is formally proved in the following
lemma.

Lemma 1.8. A hard-close pooling equilibrium cannot survive D1 criterion refinement.

Proof. Assume for sake of contradiction that there is a hard-close pooling equilibrium. Let z
be the buyer’s belief, the probability that the seller is high-type, on observing the soft-close
format. We show that for any z < 1, if a low-type seller weakly benefits from deviating to
soft-close, a high-type seller strictly benefits from deviating. Then, according to D1 criterion,
this implies that out-of-equilibrium belief on soft-close has to be high. Therefore, hard-close
cannot be an equilibrium.

Assume for sake of contradiction that there is a z for which a low-type seller weakly
benefits from deviating to soft-close, but a high-type seller does not strictly benefit from
deviating to soft-close. First, note that if both buyers are nonexperts, the equilibrium
outcome is not affected by the type of the seller. In other words, both types of sellers would
have the same revenue in each closing format. Similarly, if both buyers are experts, the
equilibrium outcome is not affected by the closing format. Therefore, to compare the benefit
of deviation (for sellers), we can assume that the buyers have different levels of expertise:
an expert and a nonexpert.
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If the expert is low-value, then the revenue is zero in both hard-close and soft-close
formats for the low-type seller. The revenue for the high-type seller is always greater than
or equal in soft-close (always c) than in hard-close (at most c, depending on the value of z
and whether the nonexpert is using an aggressive strategy or not).

Finally, consider the case that the expert is high-value. First, assume that the nonexpert
is also high-value. In this case, the revenue of soft-close for high-type seller is always c and
for low-type seller is always v. The revenue of hard-close for the low-type seller is always v.
Therefore, the low-type cannot prefer hard-close to soft-close in this sub-case. Next, assume
that the nonexpert is low-value. In this case, the revenue of the auction in both soft-close
and hard-close cases is determined by the bid of the nonexpert. A low-value nonexpert has
the exact same strategy in soft-close and hard-close formats. Furthermore, this strategy
does not depend on whether the common value is high or low. Therefore, low-type and high-
type sellers have the same revenue in the hard-close format and in the soft-close format.
As shown, there is no case (for any z) in which a low-type seller benefits from deviating to
soft-close while a high-type seller does not. Furthermore, it is easy to see that there are cases
in which the high-type seller strictly benefits from this deviation. Therefore, according to
D1 criterion, buyers’ out-of-equilibrium belief on soft-close auction has to be high.

Given that, in a hypothetical hard-close equilibrium, buyers’ belief on soft-close is high,
sellers always benefit from deviating to soft-close. Therefore, hard-close cannot be a pooling
equilibrium.

Finally, note that a soft-close pooling equilibrium always survives D1 criterion refinement.
This is because whenever the high-type seller benefits from deviating to hard-close, the low-
type seller also benefits from deviating to hard-close (the proof is very similar to the proof of
Lemma 1.8). Therefore, a soft-close pooling equilibrium in which out-of-equilibrium belief
on hard-close is low survives D1 criterion refinement.

Given that the only pure strategy equilibrium that survives D1 criterion refinement is
a soft-close pooling equilibrium, we show that, compared to the case where the platform
decides closing format, a low-type seller and the platform are both (weakly) worse off if the
closing format decision is left to the sellers. A high-type seller may be worse off or better
off, depending on other parameters, as shown in Figure 1.A.1.



Chapter 2

Multi-Channel Attribution: The
Blind Spot of Online Advertising1

In this chapter, we study the problem of attributing credit for customer acquisition
to different components of a digital marketing campaign using an analytical model.
We investigate attribution contracts through which an advertiser tries to incentivize
two publishers that affect customer acquisition. We situate such contracts in a two-
stage marketing funnel, where the publishers should coordinate their efforts to drive
conversions.

First, we analyze the popular class of multi-touch contracts where the principal splits
the attribution among publishers using fixed weights depending on their position. Our
first result shows the following counterintuitive property of optimal multi-touch con-
tracts: higher credit is given to the portion of the funnel where the existing baseline
conversion rate is higher. Next, we show that social welfare maximizing contracts can
sometimes have even higher conversion rate than optimal multi-touch contracts, high-
lighting a prisoners’ dilemma effect in the equilibrium for the multi-touch contract.
While multi-touch attribution is not globally optimal, there are linear contracts that
“coordinate the funnel” to achieve optimal revenue. However, such optimal-revenue
contracts require knowledge of the baseline conversion rates by the principal. When
this information is not available, we propose a new class of ‘reinforcement’ contracts
and show that for a large range of model parameters these contracts yield better rev-
enue than multi-touch.

2.1 Introduction
The last decade has seen a large shift of advertising effort from offline to online channels.
Internet advertising revenue is projected to overtake TV advertising for the first time in
2017.2 The key benefit of the online medium is the accountability provided by the user clicks
and the cookie trails left by their visits to various advertising venues. This fine-grained view
of the user’s journey through the decision funnel along with the specific advertising actions

1Based on joint work with Vibhanshu Abhishek and R. Ravi
2http://www.pwc.com/us/outlook (accessed March 2017).
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they are exposed to (banner and display ads, video ads, text ads after search, emails) provides
a unique opportunity to solve the traditional marketing mix problem in a very user-specific
way. The key to arriving at optimal resource allocations across the channels is to determine
the response model of how each of the interventions affects the decision-making journey
of the customer. This is commonly phrased as an attribution problem of how the credit
for a digital conversion should be split among the various advertising actions. Attribution
allows an advertiser to determine the impact of each ad-type so that the effectiveness of
different types of ad activities can be taken into consideration while deciding how to split
the advertising budget.

The problem of attribution is not new. It arises in traditional advertising channels like
television and print as well, where advertisers have resorted to marketing mix models using
aggregate data (Naik et al., 2005; Ansari et al., 1995; Ramaswamy et al., 1993). However,
online advertising offer a unique opportunity to address the attribution problem as advertis-
ers have disaggregate individual-level data which were not previously available (Goel, 2014).
Disaggregate data offer the possibility of determining the effectiveness of an ad on an indi-
vidual customer at a specific time. Although better data has improved the accountability
and performance in online advertising, several advertisers still use simplistic approaches like
last/first touch attribution that might be suboptimal under a variety of conditions (PWC,
2014; Abhishek et al., 2016). The rapidly growing size of the industry and concerns raised by
the advertisers have lead to tremendous recent focus on attribution. Companies like Google,
Marketo, and Datalogix have designed and offered several new algorithmic attribution tech-
niques in the last few years. Google (2017a) alone offers a variety of such models including
last-touch and first-touch (where the last and first publisher gets the full credit respectively),
as well as other weighted models including options for weighting based on fixed weights, time
decay or position. Google (2017b) also offers an alternate data-driven attribution method
that is based on the Shapley value of each publisher.

At the same time, many researchers have proposed empirical models of attribution. At
its core, the attribution rule determines the payment received by publishers for showing
an advertiser’s ad.3 Most of the existing literature has assumed that the publishers are not
strategic (with the exception of Berman (2015)) and that their actions are not affected by the
attribution methodology used. However, publishers (e.g. Facebook or Google) have to exert a
considerable amount of effort (such as investments in technology) to match an ad impression
with the right customer, and this effort level is affected by the incentives. Unfortunately, a
typical advertiser cannot observe the effort exerted by a single publisher in the funnel while
the final conversion is based on the total effort by all publishers in it. This might lead to
free-riding where a publisher aims to benefit from the effort exerted by another publisher in
the pipeline, and creates an opportunity for moral hazard (Holmstrom, 1982). In addition,
the publishers are much better informed about the consumers as they observe them in many
different contexts as compared to the advertiser. This information asymmetry prevents the
advertiser from estimating the effectiveness of a publisher’s marketing action and can lead
to adverse selection. As an example of such an inefficiency, Abhishek et al. (2016) show that

3In this paper, we denote publisher as an entity that is responsible for matching ads to consumers and
the delivery of ads. In most cases, this role would be fulfilled by an ad network such ad Double Click of
Yahoo Display Network, a search engine like Google or a large publishers like Facebook or Snap. We use the
term publisher to be consistent with the prior literature (e.g. Berman (2015))
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once display publishers have determined which consumers are most likely to convert, they
flood them with ads. This crowds out more effective publishers and drives revenues from
them to less effective publishers. Both the moral hazard and adverse selection problems
create a misalignment of incentives between the advertiser and the publishers resulting in a
loss of efficiency in online advertising.

The misalignment in incentives is manifested in many ways. Ad fraud has become a
major concern and publishers charge advertisers for ads that consumers never see. In fact,
methodologies like last-touch give credit to publishers even if the consumer would have
converted without seeing an ad. There is a substantial increase in low-quality ad inventory,
that do not lead to any meaningful outcomes such as conversions (Scott, 2016). A recent
Economist (2016) article shows that ad fraud will cost advertisers US$ 7 billion this year and
is growing rapidly. Even though advertisers are aware of these issues, they are not able to
address them due to the lack of appropriate data and the complexity of the online advertising
industry. This complication is exacerbated even further due to the multiple touch-points
spanning several publishers that jointly affect the consumer decision-making funnel. The
multiplicity of publishers create a lack of accountability (Economist, 2016), which affects the
advertisers and ultimately the entire advertising industry adversely. Although advancement
in attribution methodologies have made advertising more efficient,4 they have not eliminated
the moral hazard or adverse selection issue completely. One way to eliminate or reduce the
moral hazard issue is using newer attribution methodologies, e.g. Berman (2015) presents
a Shapley value based attribution scheme that performs better than last-touch attribution
when the publishers’ ads are strategic complements and the uncertainty in consumer behavior
is low.

In this paper, we propose a simplified two-stage model of the purchase funnel to determine
the most appropriate attribution methodology. Prior literature (Mulpuru, 2011; Court et al.,
2009; Bettman et al., 1998) shows that consumers move through different stages before they
purchase a product. Consequently, in our analysis, the two stages considered are awareness
and consideration. Incorporating the temporal dynamics is not only a more natural approach
to addressing the attribution problem but also leads to interesting new results as opposed to
more static models considered in prior literature. We consider two distinct publishers that
are responsible for generating ad impressions on behalf of the advertiser and jointly drive
consumers towards conversion. In the basic model, we consider that one publisher can create
awareness and the other one can drive conversions.5

After reviewing related work and background in Sections 2.2 and 2.3, we define our
model in Section 2.4. In Section 2.5, we first analyze a linear attribution rule that splits a
fraction of the marketing dollar as f and 1−f between the two publishers (for a conversion).
This rule resembles the commonly used multi-touch attribution rules, such as first- and last-
touch. We term the resulting contracts as f -contracts, which in turn determine the efforts
exerted by the publishers in the co-production process. One might expect the optimal f
to give more credit to the stage where the baseline conversion rate is lower. We show the

4For example, “According to Forrester Research, B2B companies are seeing an average of 15 to 18 percent
lift in revenue as a result of implementing a closed-loop attribution system.” (https://www.clickz.com/
lift-off-a-new-study-on-attribution-and-revenue/41687/, accessed March 2017).

5In an extension of the basic model, we assume that both publishers compete for both awareness and
conversions.

https://www.clickz.com/lift-off-a-new-study-on-attribution-and-revenue/41687/
https://www.clickz.com/lift-off-a-new-study-on-attribution-and-revenue/41687/
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counter-intuitive result that, all else being equal, an advertiser using an optimal f -contract
should give more credit to a publisher with higher baseline probability of advancing (down
the purchase funnel) in its stage. We arrive at this counter-intuitive result because of the
way multi-touch contracts compensate publishers. There is a complementarity between the
baseline rate of one stage and the effort exerted by the publisher in the other stage since
the final conversion is a co-production process. In the presence of this effect, to provide an
incentive for the publisher in this stage to exert optimal effort, the optimal f -contracts gives
this publisher more credit if its baseline rate is high.

Next, we show that social welfare maximizing contracts can lead to have even higher
conversion rates than optimal multi-touch contracts, highlighting a prisoners’ dilemma effect
in the equilibrium for the multi-touch contract. Our result shows that the optimal f -contract
gives an inefficient equilibrium due to lack of coordination between the publishers. This result
is unique in the attribution literature as we show that the general class of f -contracts, which
are commonly used in practice, can result in inefficiencies in the effort exerted by the different
publishers.6

In Section 2.6, we explore the broader design space of linear contracts. We show that
there are optimal linear contracts that can “coordinate the marketing channels” to achieve
optimal revenue. However, these optimal contracts suffer from the same problem as optimal
multi-touch contracts in that they require full knowledge of the baseline conversion rates
by the principal (advertiser). For this reason we propose a new class of ‘reinforcement’
contracts. These contracts perform significantly better over a wide range of parameters than
other multi-touch contracts while not relying on the knowledge of the baselines. Finally, in
Section 2.7, we examine several extensions of our underlying models and show that the main
findings still hold under a variety of circumstances.

This paper addresses an important gap in the attribution literature, namely the strategic
decision by the publishers in a dynamic purchase funnel. As discussed earlier, incorporation
of the dynamic nature of the conversion process leads to new and interesting results. This
paper has also several managerial implications about designing of multi-channel advertising
contracts under information asymmetry and uncertainty. Advertisers can use the contracts
outlined in the paper to increase the effectiveness of multi-channel advertising.

2.2 Literature Review
Recent years have seen a tremendous amount of academic interest in the attribution problem
given the importance to the industry. Here, we discuss the different streams of literature
that are relevant to our research.

We start off with some of the empirical work on attribution from the marketing literature.
Shao and Li (2011) propose two multi-touch attribution models, a bagged logistic regression
model and a probabilistic model, and they apply these two approaches to a real-world data-
set. Jordan et al. (2011) explain why current attribution methods are inefficient and they
find an optimal ad allocation and payment scheme in a model they developed. Dalessandro

6Given the inefficiency, a related issue is how bad an f -contract can be in terms of social welfare. Using a
concept called the Price of Anarchy (Koutsoupias and Papadimitriou, 1999; Roughgarden and Tardos, 2002),
we show that this multiplicative ratio is bounded by 4

3 .
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et al. (2012) propose an attribution methodology based on a casual estimation problem that
uses the concept of Shapley Value. Anderl et al. (2013) introduce a graph-based framework
for attribution using Markov models and test it in real-world data-sets. Li and Kannan
(2014) propose a measurement model for attributing conversions to different channels and
find that the relative contributions of these channels are different from those estimated by
traditional metrics like last-touch. Xu et al. (2014) develop a multivariate point process that
captures the dynamic interactions among ad clicks and find that even though display ads
may have low direct effect on conversions, they have also an indirect effect by stimulating
subsequent visits through other ad formats. Abhishek et al. (2016) use a hidden Markov
model for consumer behavior to find that different channels and types of ads affect consumers
in different stages in the purchase funnel.

One of the first analytical papers on attribution was by Berman (2016). Berman uses an
analytical model with two publishers and two advertisers that involves externalities between
the publishers and uncertainty about consumer visit order. Using his model, he shows that
bidding truthfully in ad auctions is not an equilibrium for the advertisers. He also shows
that last-touch attribution results in lower profits for advertisers compared to not using
attribution, while an attribution based on Shapley value can result in higher profits when
conversion rates are low.

Our work differs from Berman’s work in that we explicitly model the marketing funnel
and we take into account customer’s microtrails. We believe that the nature of some websites
make them more or less likely to be at a certain point in a customer’s trail. For example,
when a customer searches for a product he is already interested in, we can assume that
he is in the final stage of consideration, and therefore an ad in the search engine is more
likely to be the last-touch point before purchase. This affects the behavior of publishers
who publish ads for different stages in the funnel, and as a result it is important especially
for multi-touch contracts. Another difference is that we model a wider range of attribution
rules, where last-touch and Shapley value are special cases, and we examine the advertiser’s
problem to determine the optimal attribution. However, we assume a functional form for
the relation between the effort of the publisher and the increase in conversion rate, while
Berman models the process of price setting at each stage more realistically via a second-price
auction.

The attribution problem is also related to the team production literature in contract
theory. There is a big literature on the topic, but to mention just a few, Holmstrom (1982)
studies the problem of moral hazard in team compensation and how it can be dealt with by
breaking the budget-balancing constraint. Eswaran and Kotwal (1984) followed by explaining
how not balancing the budget can result in a new source of moral hazard. Holmstrom and
Milgrom (1987) study compensation schemes for incentivizing agents. Dearden and Lilien
(1990) consider a problem in which the firm learns over time. McAfee and McMillan (1991)
study the interaction between moral hazard and adverse selection in a team model.

Besides the context, another key difference to our work is that we explore the multiplica-
tive effect of agents’ efforts, which is a result of the marketing funnel. In other words, instead
of all agents putting efforts together that adds to a total effort, they put efforts in stages in
a way that the result of the effort an agent puts in a stage is affected by what happened in
other stages. Incorporating this difference, which is a key to the marketing funnel approach,
leads to some interesting results.
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2.3 Background
We present some background on the purchase funnel, attribution models, and fairness con-
siderations.

2.3.1 Purchase Funnel and Common Attribution Rules

Figure 2.1: Purchase funnel.

In the online world, consumers are exposed daily to a number of different types of ads,
e.g. display ads, search ads, affiliate ads and sponsored content. Before a consumer purchases
a product, he is influenced by these ads as he moves through his decision making process,
which has been commonly captured using the purchase funnel as shown in Figure 2.1. The
purchase funnel captures the progression of individuals from being unaware about the firm to
purchasing products and becoming the firm’s customers. A fraction of the total population
becomes aware of the firm and moves into the state of awareness. Some of these brand aware
individuals might be further interested in purchasing products from the firm and move into
the next consideration state. Finally, a small fraction of individuals that consider the product
will eventually purchase it. Since each of these stages contains fewer number of consumers
than the previous one, the progression is typically illustrated as a funnel. Consumers enter
through the top of the funnel, pass through the different stages, and some of them convert.
Each type of ad that a consumer is exposed to helps his move to a further stage on this path,
and some ads are more effective in some stages than others (e.g. display ads in the awareness
stage, and search ads in the consideration stage).

For advertisers using both stages of the funnel, it is important to have an attribution
rule for eventual conversions. This rule will determine who gets credit every time there is
a conversion, conditional on all the ads the user has previously seen. As an example, last-
touch attribution is a widely used attribution model, where all the credit is assigned to the
ad responsible for the last ad exposure before conversion. Last touch is very popular for its
convenience and because it is easy to implement. However it might not be optimal, since it
fails to take into account ads used to build awareness and interest to the consumer.
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To address this issue, firms have started offering alternative models like first-touch
(Google, 2017a), where the credit goes to the first ad the user was exposed to because
it was the ad that made him enter the funnel. In even more general multi-touch models, the
advertiser determines how to split the credit between all the ads in a consumer’s trail. For
example, he could give equal weight to all the ads in the trail or give more weight to the
first and the last touch points and less in the middle.

2.3.2 Fairness and Shapley Value
One approach that has been gaining popularity in the advertising literature for deciding
payment rules is fairness (Berman, 2015; Dalessandro et al., 2012; Abhishek et al., 2016).
Fairness has also been gaining attention in the economics literature since its introduction by
Rabin (1993) to examine game-theoretic problems. Defining fairness has been a challenging
problem and researchers have used a set of axioms to delineate what is fair (van den Brink,
2002; Lan et al., 2010). Shapley (1953) proposed four such natural axioms and proved that
there is a unique rule that satisfies them. We call this rule the Shapley Value, and the payoff
of each player according to this rule is a weighted sum of his marginal contributions to every
subset of players.7 This approach, also referred to as the incremental approach, has been
commonly adopted in the attribution literature (Abhishek et al., 2016; Berman, 2015) and
practice (Google, 2017b). Shapley value is a great attribution rule if our goal is to achieve a
fair result and if the attribution rule we use does not affect the performance or actions of the
players. Now suppose that the effort of each player depends on the attribution rule we use,
and our goal is to maximize the total output of the game. Even though Shapley value based
attribution meets the fairness axioms, it might not be the most optimal for an advertiser.
For example, if a publisher doesn’t get enough credit with the Shapley value, he might put
less effort in showing ads and the advertiser will end up with fewer conversions overall. It
is possible that an alternative attribution scheme might give the publisher higher payouts
so that he puts in more effort with a better overall result. How should we then choose an
attribution rule that maximizes the total value of the game? Our paper tries to answer this
question.

2.4 Model

2.4.1 Overview
Before purchasing a product, a consumer moves through two stages: awareness and consid-
eration.8 This model is based on the idea of a conversion funnel which is frequently used in
marketing (Mulpuru, 2011; Court et al., 2009; Bettman et al., 1998). Every period, a new
consumer arrives in the system and moves to the first stage (awareness).9 A consumer in
the first stage either moves to the second stage (consideration stage) with probability f(a),

7For a formal definition, see Appendix 2.A.3.
8We analyze two stages for clarity of exposition, but out results continue to hold with more than two

stages.
9The model can be generalized by including some stochastic waiting time in each stage, but this does not

influence the results.
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or leaves the system. The function f(a) has as argument the advertising level a for the first
stage. The ads in the first stage create awareness, e.g. display ads or sponsored content.
Similarly, a consumer in the second stage either purchases the product with probability g(c),
or leaves the system. c is the advertising level for the second stage. Ads in the second stage
are more transaction oriented and lead directly to conversion, e.g. search ads. Note that it
is not necessary for consumers to see ads in either stage before they purchase as f(0), g(0),
the baseline rates at each stage, can be strictly positive.

Figure 2.1: General representation of the model.

2.4.2 Consumer Model
Awareness Stage

For the customer to purchase a product, it should belong in the customer’s consideration
set. If the consumer is not aware of the product, then it is unlikely that he will eventually
purchase the product. We assume that a fraction of consumers (≥ 0) might be aware of
the product even in the absence of advertising. We represent the baseline rate of these
consumers by q0 ∈

[
0, 1

2

]
. Some consumers learn about the product because they have seen

an ad from Publisher 1. The rate of these consumers is a ∈
[
0, 1

2

]
, where a is a decision

variable for Publisher 1. In other words, we assume the functional form f(a) = a+q0 for the
function f (see also Figure 2.2). When a consumer learns about the product, they move to
the consideration stage. If a consumer does not learn about the product in this first stage,
which happens with probability 1− q0 − a, they leave the system.10

We assume the convex functional form of w · a2 for the effort that Publisher 1 has to
exert to result in additional conversion a in the first stage. The probability a captures how
effective the publisher is in showing the ads to the relevant audience, while the convexity of
the functional form models diminishing returns to effort by the publisher.11

10In the Appendix 2.A.2 we also consider a more general model of the funnel and show how it can be
reduced to the simple model analyzed here.

11Note that the probabilities a and q0 are at most 1
2 , to make sure that f(a) ≤ 1. In reality, these

probabilities are very small, so we don’t lose anything by assuming the upper bound of 1
2 . Moreover, to

make sure that a will not exceed this bound when we find the equilibria, we assume that w is sufficiently
high. We will use the bound w ≥ 1, which is sufficient for our model.
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Figure 2.2: A more detailed representation of the model.

Consideration Stage

After consumers reach the consideration stage and are interested in the product, then we
have the second stage of our model. Some consumers in that stage will decide to buy the
product after seeing an ad from publisher 2. This will happen with probability c ∈

[
0, 1

2

]
,

which is a decision variable for Publisher 2. Some other aware consumers will buy the
product without seeing any ad and this will happen with probability p0 ∈

[
0, 1

2

]
. In other

words, we assume that the function g has the form g(c) = c + p0. The probability that a
consumer in the second stage will not buy the product in the end is 1− p0 − c.

Publisher 2 can be considered as a website with content related to the product, where
aware consumers go to look for more information before they decide if they will buy (e.g. a
search engine, a site with reviews or comparisons of similar products). As before, we assume
the convex functional form of v · c2 for the effort that Publisher 2 has to exert to result in
additional conversion c in the second stage.12

2.4.3 Firm’s Problem
In the absence of advertising, a fraction q0 ·p0 of consumers convert. With online advertising,
the firm gains the ability to convert more consumers ((q0 + a) · (p0 + c)) by showing them
ads. The firm cannot advertise directly, but can use the advertising real estate provided by
the publishers to reach its customers.

The firm can observe the consumers who decided to buy the product and all the ads
they’ve seen prior to that (e.g., through the trail captured in browser cookies). It may not
know the efforts the publishers put (that resulted in the additional rates a and c in the two
stages), or the baseline probabilities q0, p0.13 What the firm can infer by observing a large

12Similarly to the first stage, we assume that c and p0 are at most 1/2 and to enforce this upper bound of
c in the equilibria, we assume that v ≥ 1.

13The advertiser can potentially observe consumers who do not convert. However, as long as the advertiser
does not observe all the consumers in the market, it cannot determine p0, q0 with certainty.
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number of consumers are the percentages of people who followed each of the four possible
paths before conversion. For example, it will know that an a · c fraction of consumers have
seen an ad from the first publisher in the first stage and an ad from the second publisher
in the second stage before they convert. Similarly, it will know that an a · p0 fraction of
consumers have seen an ad from the first publisher in the first stage and no ad in the second
stage before they convert, and so on (Figure 2.3).

Firm / Advertiser

Ad 1

No AdNo Ad

No Ad

No Ad

Ad 2

Ad 2Ad 1

𝑞0𝑝0𝑞0𝑐

𝑎𝑝0 𝑎𝑐

Figure 2.3: The four types of click-streams the firm can observe.

For every conversion, the firm wants to spend some fixed amount in advertising, which
we normalize to $1.14 The question that we address is the optimal way to split this dollar
between the two publishers in order to maximize the conversion rate (a+ q0)(c+ p0).

2.4.4 Valid Contracts and Publishers’ Problem
Any attribution rule the firm uses will lead to a contract with the publishers. The publishers
try to maximize their profits by putting in the optimal amount of effort based on the contract
they have with the firm. A contract is defined by two payment functions g1, g2 that satisfy
the equality

g1(a, q0, c, p0) + g2(a, q0, c, p0) = (a+ q0)(c+ p0),

where g1 is the payment to the first publisher and g2 is the payment to the second publisher.
Since (a+ q0)(c+ p0) is the conversion rate and we assume that the firm wants to spend $1
per conversion, the functions g1 and g2 specify how the firm should split their advertising
budget between the two publishers.

14This limit on the spend can arise from the cost of the competing outside advertising options, e.g. print
or television advertising.
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Valid Contracts. The contracts that the firm can offer to the publishers must be based
on the information that the firm knows. In this paper we will focus on the class of linear
payment functions with respect to the four products q0p0, q0c, ap0, ac. This type of contracts
have two advantages. First, they don’t require the knowledge of the baseline rates p0, q0 or
the publishers’ efforts a, c to be implemented, but only knowledge of the percentages of people
who followed each of the four possible paths before conversion (Figure 2.3).15 Second, even
if the baseline rates p0, q0 are known to the advertiser, attribution rules that depend linearly
only on the products q0p0, q0c, ap0, ac can be applied in an online fashion. Every time there
is a conversion, the advertiser can attribute one unit of credit among publishers based on the
conversion path the customer followed. Note also that the widely used class of multi-touch
attribution contracts is a special case of linear contracts.

The profit of the first publisher is given by

π1 = g1(a, q0, c, p0)− w · a2,

where w · a2 is the advertising cost in the first stage. Publisher 1 decides a to maximize his
profits. Similarly, the profit of the second publisher is given by

π2 = g2(a, q0, c, p0)− v · c2,

where v · c2 is the advertising cost in the second stage. Publisher 2 decides c to maximize
his profits.

2.4.5 Benchmarks
Next, we consider two benchmark models to compare with our main model. In both models,
we assume that the firm and the publishers are integrated, i.e. the firm controls the adver-
tising efforts. In the first model, the goal for the firm is to maximize the social welfare, i.e.
the sum of profits of the two publishers. In the second model, the goal is to maximize the
number of conversions.

Maximizing Social Welfare (Publishers’ Optimal) In the first benchmark model,
the firm will make all the decisions about advertising, and its goal is to maximize the social
welfare. The social welfare is equal to the total revenue minus the total cost for the publishers.
Therefore, the optimization problem for the firm is as follows.

max
a,c

(a+ q0)(c+ p0)− (wa2 + vc2)

a, c ≥ 0.

Maximizing Conversion Rate (Firm’s Optimal) There are two ways we could poten-
tially model this benchmark case. One is to model it as an optimization problem with the
conversion rate as the objective and no constraints. In other words, we don’t care about the

15Note that if the firm can only observe the four products q0p0, q0c, ap0, ac, it cannot infer the individual
efforts. This is because for any solution (q0, a, p0, c) that satisfy these products, there are other solutions of
the form

(
q0x, ax,

p0
x ,

c
x

)
, for x > 0 that satisfy them too.
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cost of advertising effort, but we want to find the optimal effort level that maximizes the
number of conversions. However, this would be unrealistic, simply because we can always
achieve a conversion rate of 1 in this optimization problem.

The more appropriate benchmark is achieved by including a constraint on the cost of
advertising effort. Note that in the main model, the firm can spend $1 for every conversion,
which goes to the two publishers. Therefore, the appropriate benchmark is to determine
the optimal conversion rate given that the cost of advertising effort is exactly the number
of conversions (multiplied by unit revenue per conversion). In other words, the optimization
problem for the firm is as follows.

max
a,c

(a+ q0)(c+ p0)

(a+ q0)(c+ p0) = wa2 + vc2

a, c ≥ 0.

We denote by a∗, c∗ the efforts in the optimal solution of this problem.

2.5 Multi-Touch Attribution

2.5.1 Definition of f-contract
We start by considering simple contracts that split conversion credit among the touch points
of a consumer’s trail. The canonical form of such a contract, that we term an f -contract, is
summarized in the following table.

Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

no no 1
2

1
2

no yes 0 1
yes no 1 0
yes yes f 1− f

The parameter f ∈ [0, 1] is some value determined by the firm or externally. Note that in
the table above, in the case that the consumer sees no ad, we split the dollar equally to the
two publishers. This is an arbitrary choice made to be consistent with the assumption that
the firm always pays out a dollar for every conversion. However, since this is just the same
constant amount each publisher gets, its value does not affect the equilibrium behavior of
the publishers. In other words, we could also assume that in case of no ad, both publishers
get 0, without any change in our results.

In an f -contract, the profit of the publishers are as follows,

π1 = 1
2q0p0 + ap0 + fac− wa2,

π2 = 1
2q0p0 + q0c+ (1− f)ac− vc2. (2.1)

Some examples of contracts of this form are the last-touch (f = 0), where all the credit
goes to the last ad a consumer had seen prior to the conversion, and the first-touch (f = 1)
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where all the credit goes to the first ad. It is also interesting to note that for f = 1
2 , we get

the Shapley value attribution of this model. In other words, the f -contract captures a wide
range of attribution models commonly used in practice (Google, 2017a).

If we solve for the equilibrium under an f -contract, the equilibrium efforts exerted by
the publishers are as follows,

a(f) = fq0 + 2vp0

4vw − f(1− f) ,

c(f) = (1− f)p0 + 2wq0

4vw − f(1− f) ,

while the conversion rate as a function of f is given by

r(f) = (f 2q0 + 2v(p0 + 2wq0))((1− f)2p0 + 2w(q0 + 2vp0))
(4vw − f(1− f))2 .

2.5.2 Optimal f-contract
We can now investigate the properties of the optimal contract and show how different pa-
rameters affect the split of the advertising dollar between Publishers 1 and 2. We study the
effect of the baseline conversion rates here and consider the effect of the publisher costs later
in Section 2.7.1. We then investigate the social welfare properties of the equilibrium of the
f -contract.

Effect of baseline conversion rates

Our first proposition shows how the optimal contract f ∗ varies with baseline rates q0 and
p0. To motivate it, note that if the value of the baseline rate q0 is high, there is already a
high rate of intrinsic conversion in the first stage. This suggests that there is less value in
increasing the incentive to the first publisher in the co-production process, and hence could
lead to lowering f as q0 increases. However, we find the opposite to be the case. (All proofs
are provided in the appendix.)

Proposition 2.1. Let f ∗ = f ∗(q0, p0) be the value of f in the optimal f -contract for the
firm as a function of q0 and p0. Then, f ∗ is increasing in q0 and decreasing in p0.

This proposition shows that as the baseline rate of the first stage (q0) increases, the
amount we give to the first publisher in the optimal f -contract increases. We arrive at this
counter-intuitive result because of the way multi-touch contracts compensate publishers. If
the baseline rate in the first stage increases, the number of consumers who don’t see an ad
in the first stage but see an ad from the second publisher in the second stage increases. This
implies that the payoff of the second publisher increases (as shown in Equation 2.1). Since
there is complementarity between q0 and the effort exerted by Publisher 2, this increases his
incentive to put more effort. However, the incentive for the first publisher does not increase
due to an increase in q0. To balance things out and give incentive to both publishers to
put more effort to increase the overall conversion rate, we should increase the value of f ,
i.e. the amount we give to the first publisher. Increasing f gives Publisher 1 more incentive
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to increase a, leading to an overall increase in the total conversion rate. The argument for
the decrease in f ∗ with an increase in p0 is similar as the advertiser wants to incentivize
Publisher 2 to put more effort.

0.1 0.2 0.3 0.4 0.5
q0

0.2

0.4

0.6

f *

v=1

v=1.5

v=2

v=2.5

v=3

Figure 2.1: The value of f ∗ as a function
of q0 for various values of v, p0 = 0.25,
and w = 2.
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Figure 2.2: The value of f ∗ as a function
of p0 for various values of v, q0 = 0.25,
and w = 2.

Our result indicates that if the level of awareness of a product or brand is high, the family
of f -contracts needs to incentivize the publisher creating awareness even more, as the second
publisher that leads to conversions is automatically receiving a relatively higher payoff. This
suggests the counterintuitive recommendation that well known advertisers should be allo-
cating relatively more resources to informational advertising. On the other hand, products
that deliver high intrinsic value to consumers so that consumers are likely to buy them if
they are aware of the products represent products with high p0: advertisers for such prod-
ucts should increase their spending on persuasive forms of advertising (in the second stage).
As explained in the previous paragraph, these will best balance the automatic incentive for
increase in effort in the other stage in optimally splitting the budget. Figures 2.1 and 2.2
illustrate the proposition and show the optimal contract as a function of q0 and p0 for some
fixed values of the parameters.

Even though this finding might seem counterintuitive, it is consistent with some real-
world observations. For example, advertisers in industries where awareness is high such as
consumer packaged goods and entertainment spend a relatively higher fraction of their online
ad dollars on branding ads as opposed to advertisers in industries like travel and financial
services where conversion rates are much higher (eMarketer, 2015). In the latter categories,
the spending is more skewed toward direct response ads (e.g. search ads) as these categories
are more likely to have a higher baseline for conversion (p0). Table 2.1 shows the spread of
spending across branding and direct response.

In the preceding discussion, we presented the properties of the optimal contract. In real-
ity however, the advertiser may not know the baseline rate of awareness and consideration.
However, the following corollary offer insights on how the advertiser should split the ad-
vertising dollar if he knows the relationship between the two baseline rates in the first and
second stage. If the advertiser has reasons to believe that a larger fraction of consumers are
aware of the product but a relatively smaller fraction are likely to convert on their own then
he should compensate Publisher 1 more if the cost of advertising is the same across the two
publishers.
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Category Branding Direct Response Ratio
CPG 3.23 1.74 1.86
Entertainment 1.68 1.12 1.50
Telecom 2.85 3.63 0.79
Financial services 2.73 4.46 0.61
Retail 4.52 8.39 0.54
Travel 1.36 3.49 0.39

Table 2.1: Online advertising spending by industry (in billions of dollars). Source: eMarketer
(2015)

Corollary 2.1. Assume that w = v. It holds that

• If q0 > p0, then f ∗ > 1
2 .

• If q0 = p0, then f ∗ = 1
2 .

• If q0 < p0, then f ∗ < 1
2 .

Social Welfare and Price of Anarchy

How does the optimal f -contract perform compared to a centralized solution that maximizes
the social welfare? It is clear that the f -contract will be worse than the first-best or socially
optimal solution in terms of the social welfare, but it is not clear if the resulting conversion
rate would be higher or lower. The following proposition answers this question. It shows that
the first benchmark model, where a central planner maximizes the social welfare, can yield a
result where everyone (including the firm) is better off compared to the optimal f -contract.

Proposition 2.2. Consider the first benchmark (where we maximize social welfare of the
publishers) and the equilibrium in the optimal f -contract. In the first benchmark, the con-
version rate is higher. Moreover, sometimes the publishers’ payments are higher too.

Proposition 2.2 shows that the f -contract gives an inefficient equilibrium, since there
can be an alternative solution where everyone is better off. This is a result of the lack of
coordination between the publishers. In the centralized solution, both publishers put more
effort which turns out to be good for both of them. However, in the f -contract equilibrium
we observe a version of the prisoner’s dilemma. In particular, when one of the publishers
puts a lot of effort, the other one prefers to lower his effort and free-ride. We believe that
this result is quite unique in the attribution literature as we show that the general class of
f -contracts, which are commonly used in practice, can result in a prisoner’s dilemma that
adversely affects the efforts exerted by the different publishers.

This result illustrates how multi-channel attribution can be a blind spot for advertisers.
Not only they might have limited information that obstructs their view of what the optimal
attribution is, but there is also some inherent inefficiency in the widely used multi-touch rules.
Thus, even if an advertising firm obtains good estimates of the conversion propensities in
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the market and determines the best multi-touch, the outcome can still be inefficient. In
Section 2.6, we explore how we can use alternative attribution rules to resolve this problem.

Given the inefficiency, a related issue is how bad an f -contract can be in terms of social
welfare. This can be measured by a concept called the Price of Anarchy (Koutsoupias and
Papadimitriou, 1999), defined as the maximum value of the ratio between the social welfare
in the optimal centralized (first-best) solution and the worst possible social welfare in any
equilibrium.16 The higher the price of anarchy, the more inefficient the equilibrium.17

As an example in our setup, if we consider the last-touch contract (f = 0), with the
publishing costs set as low as possible, i.e. w = v = 1, and the baseline rate of the second
stage set as low as possible, i.e. p0 = 0, then the social welfare in the first benchmark is q2

0
3 ,

while the social welfare in the equilibrium is q2
0
4 . This gives a ratio of 4

3 . In the following
proposition, we show that this is actually the worst possible case, i.e. the price of anarchy is
equal to 4

3 . In other words, the social welfare in an f -contract is never worse that 3
4 of the

optimal.

Proposition 2.3. Let SWOPT be the social welfare in the first benchmark and SWf be the
social welfare in an f -contract equilibrium. It holds that

1 ≤ SWOPT

SWf

≤ 4
3 .

Moreover, as w → +∞ or v → +∞, the ratio SWOP T

SWf
tends to 1.

The intuition behind why an increase in imbalance of the publishing costs w and v results
in the social welfare approaching the optimal (first-best) social welfare, is that the high costs
resolve the lack of coordination between the publishers in the prisoner’s dilemma described
above. As the cost of advertising in a particular stage increases, the publisher of this stage
puts lesser and lesser effort. At some point he will put no effort at all in both the centralized
solution and the equilibrium. At that point only one publisher exerts effort, which means
that there is perfect coordination resulting in the first-best outcome.

Figure 2.3 shows the values of the ratio SWOP T

SWLast-Touch
for various parameters. We see that

last-touch performs the worst in terms of social welfare when the cost v in the second stage
is low and when the baseline p0 in the second stage is low. Figure 2.4 shows the comparison
of the conversion rate in the first benchmark case to the conversion rate under the optimal
f -contract. Note that the conversion rate of the optimal f -contract, similarly to the social
welfare, performs the worst when the costs (v and w) are low.

In summary, for both the firm and the publishers, multi-touch contracts (even the optimal
one) are sub-optimal, while they perform better when there is a high degree of heterogeneity
in the advertising costs across the two channels (i.e. w � v or w � v). This indicates
that advertising will be more efficient (and profitable) in industries where there is a wide
discrepancy in the advertising costs. If we assume that the click through rate (CTR) is a
good proxy for the publisher costs,18 we can use the discrepancy in CTR as a proxy for

16In our case the equilibrium is unique, so we don’t have to worry about determining the worst.
17For a prominent example where this concept is used in computer science, see Roughgarden and Tardos

(2002).
18A high CTR indicates lower costs for the publishers as they need to put less effort to get clicks.
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Figure 2.3: Social welfare in the first benchmark (publishers’ optimal) over the social welfare
in the last-touch contract as a function of p0 and v, for q0 = 0.25, and w = 2.

discrepancy in the effort parameters w and v. Based on the Google AdWords data presented
in Table 2.2, we observe that in industries with high cost discrepancy (e.g. consumer services,
employment services, finance and insurance) there is indeed higher efficiency (as indicated
by the higher revenue per thousand impressions (RPM) of the publishers and the higher
conversion rates (CVR) in these industries), while for industries with low cost discrepancy
(e.g. dating and personals, e-commerce, technology) where the CTR in both Search and
Display are high, the efficiency is lower (lower RPM and CVR).

2.6 Beyond Multi-touch Contracts
In the previous section we showed that the general class of f -contracts are generally sub-
optimal. We now consider alternative payment functions and compare them with each other
in terms of the conversion rate in the equilibrium.

2.6.1 Optimal Contract
One may wonder if there is a valid contract (in the sense of Section 2.4.4) that achieves the
optimal conversion rate (the one achieved in the second benchmark by a central planner).
The following proposition shows that this is actually possible with a contract that is linear
w.r.t. the observed products q0p0, q0c, ap0, ac.
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Figure 2.4: Conversion rate in the second benchmark (firm’s optimal) over the conversion
rate in the optimal f -contract as a function of p0 for various values of v, q0 = 0.25, and
w = 2.

Proposition 2.4. There is a contract that achieve the optimal conversion rate, given by the
following payment functions.

g1(a, q0, c, p0) = 1
2q0p0 + sap0 + tq0c+ fac

g2(a, q0, c, p0) = 1
2q0p0 + (1− s)ap0 + (1− t)q0c+ (1− f)ac

The values of s, t, f are defined below.

s = 1 + q0p0 + 2v(c∗)2

2a∗p0

t = −q0p0 + 2w(a∗)2

2q0c∗

f = 1
2 + −a

∗p0 + q0c
∗ + 3w(a∗)2 − 3v(c∗)2

2a∗c∗

Note that a∗, c∗ in the above proposition are the optimal values of the optimization
problem in the second benchmark (Section 2.4.5).

In order to understand why the contract in Proposition 2.4 achieves the optimal rate, it is
useful to compare it to the payments for the publishers in Equation 2.1. As mentioned earlier,
any f -contract suffers from a free-riding problem. Both publishers want the other publisher
to exert effort that leads to a prisoner’s dilemma. In the payoff outlined here, the publishers
are punished for the effort exerted by the other publisher (both t and 1−s are negative). This
payment scheme disincentivizes both publishers from free-riding. By appropriately choosing
s, t and f , the advertiser is able to achieve perfect coordination between the publishers. In
equilibrium the publishers’ profits are zero (their outside option).19

19We can extend the model such that the publishers have a non-zero outside option, but the qualitative
results do not change.
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Industry CTR
(Search)

CTR
(Display)

Measure of
Cost

Discrepancy

RPM
(Search)

RPM
(Display)

CVR
(Search)

CVR
(Display)

Consumer Services 2.40% 0.20% 144.00 $90.48 $1.38 5.00% 0.96%
Employment Services 2.13% 0.14% 231.47 $89.46 $2.32 3.97% 1.28%
Finance & Insurance 2.65% 0.33% 64.49 $98.58 $2.38 7.19% 1.75%
Dating & Personals 3.40% 0.52% 42.75 $6.46 $0.94 2.75% 0.41%
E-Commerce 1.66% 0.45% 13.61 $14.61 $1.31 1.91% 0.96%
Technology 2.38% 0.84% 8.03 $42.36 $1.68 2.55% 1.04%

Table 2.2: Click-Through Rate (CTR), Revenue per thousand impressions (RPM), and
Conversion Rate (CVR) in AdWords by industry, for both Search and Display (Google
Display Network). Cost discrepancy is measured as CTR2

Display
CTR2

Search
(different measures yield similar

results). The table entries reflect a correlation between the cost discrepancy and the columns
for RPM and CVR. Source: Irvine (2016)

A drawback of the aforementioned contract is that it is not clear how an advertiser can
implement this contract if he has incomplete information about q0 and p0, which are required
to determine the values of a∗ and c∗.

Even though the preceding contract might not be implementable, it provides us the
intuition that contracts that penalize publishers for the effort of the other publisher, instead
of just compensating them for their efforts, tend to work better. The penalty due to under-
performance can increase the efficiency of the system, because it gives incentive to both
publishers to put more effort instead of free-riding and depending on the effort of the other
publisher. In the following subsection, we define one such contract. We call it a reinforcement
contract20 and show that it performs better than any multi-touch contract in the majority
of the cases. Moreover, the firm does not need to know the exact values of the baseline
probabilities to implement it, which makes it more practical.

2.6.2 Reinforcement Contracts
Perhaps the simplest form of a valid contract is given by the payment function g1 = 1

2(a +
q0)(c + p0), which we call equal-split. According to this payment, both publishers get the
same credit for every conversion. The reinforcement or (r)-contract is a generalization of the
equal-split (r = 0) and it is given by the following payment function.

g1 =
(

1
2 +

(
a

a+ q0
− c

c+ p0

)
r

)
(a+ q0)(c+ p0), for r ∈ R.

It is evident from the preceding equation that an (r)-contract not only compensates
publishers for the effort they put, but it also penalizes them for the effort the other publisher
puts. The following table shows the canonical form of the corresponding attribution rule.

20The name is motivated by the similarity to rewarding good performance and penalizing bad performance
in reinforcement learning.
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Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

no no 1
2

1
2

no yes 1
2 − r

1
2 + r

yes no 1
2 + r 1

2 − r
yes yes 1

2
1
2

Note that r can take values above 1
2 , i.e. this attribution rule has the unique property of being

able to assign negative credit to channels that do not appear in conversion paths.21 Thus,
instead of focusing only on the touch points like the multi-touch attribution rules do, it pays
attention to non-touch points as well. This change of focus can help resolve the commitment
problem illustrated in Section 2.5.2. The following proposition will help us determine the
optimal (r)-contract.

Lemma 2.1. The conversion rate under an (r)-contract is a convex function of r.

Lemma 2.1 tells us that the optimal (r)-contract is achieved for the maximum possible
value of r that keeps both publishers into the game, i.e. both publishers have non-negative
payoff by putting some effort in the equilibrium. This is useful, because in a practical
situation the firm can determine the optimal (r)-contract by increasing the value of r until
one of the publishers drops out. In other words, implementing the (r)-contract reduces to a
simple search problem in a repeated dynamic environment.

A practical way to implement a type of reinforcement contract like the (r)-contract is
to use an attribution method that assigns negative credit to publishers who do not appear
in a conversion path. This will incentivize publishers to put more effort into being part of
conversion paths, and as a result the conversion rates will increase.

In Figure 2.1, we can see a comparison of performance of the different contracts we
considered in this paper. As we can see, the optimal (r)-contract performs significantly
better than any other contract that does not require the knowledge of the baselines in the
majority of the cases (except for very small values of q0, where an f -contract is better). The
chosen values of the parameters for drawing the plot are arbitrary and the picture looks very
similar for different values as well. Note also that in the symmetric case, i.e. when w = v
and q0 = p0, the optimal (r)-contract achieves the first best conversion rate.

2.7 Extensions
In this section, we first discuss how the optimal f -contract behaves as a function of the
cost parameters of the publishers, and how a firm can choose the optimal f -contract under
limited uncertain information about baseline conversion rates. Then we examine the effect
of competition on the advertising game.

21In an f -contract, even if we allow f to take negative values, it is never optimal to do so. As we can see
in the proof of Proposition 2.1, it is always 0 ≤ f∗ ≤ 1.
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Figure 2.1: Conversion rate for different contracts as a function of q0 (for w = v = 2 and
p0 = 0.25). The first best is the one that maximizes conversion rate. The reinforcement
contract is second best for a wide range of parameter values.

2.7.1 Effect of Cost Parameters of Publishers in Optimal f-contracts
We now return to the popular f -contracts and explore how the advertising dollar might be
split between the two publishers based on the difficulty of advertising in the different stages.
The advertising cost can be driven by several factors, e.g. the reach of a publisher, its ability
to target the right set of consumers, the intensity of advertising by competitors, or type of
the product being sold.

Recall that w represents the cost of advertising effort in the first stage, and v the corre-
sponding value for the second.

Proposition 2.5. There is a threshold w ∈ [1,+∞] such that f ∗ is decreasing in w for
w ∈ [1, w] and increasing in w for w ∈ [w,+∞).22 Similarly, there is a threshold v ∈ [1,+∞]
such that f ∗ is increasing in v for v ∈ [1, v] and decreasing in v for v ∈ [v,+∞).

Interestingly, f ∗ is not monotone with respect to w. It is easy to see that when the cost of
advertising in the first stage increases, Publisher 1 would reduce the amount of effort. As the
result, the advertiser compensates Publisher 1 by increasing f ∗ to induce more effort as w
increases. However, we find that when w is sufficiently small, f ∗ decreases when w increases.
In order to understand this counterintuitive finding, it is important to note that even though
Publisher 1 is affected directly due to the increase in advertising cost, Publisher 2 is also
affected indirectly as w increases. This results in Publisher 2 exerting less effort because his
payoff is reduced due to the multiplicative factor of the two efforts in the payoff function
presented in Equation 2.1. Consequently, the advertiser needs to incentivize both publishers

22 w is given implicitly by the solution to the equation w = p0(1−f∗(w))
2q0

.
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Figure 2.1: The value of f ∗ as a function of w, for q0 = 0.1, p0 = 0.4, and v = 10. The
monotonicity changes at w = 1.909.

to increase the effort. When w is relatively small, it is easier to increase the effort exerted
by Publisher 1 as compared to Publisher 2. Under this condition, it is more important to
increase the fraction paid to Publisher 2 to increase the overall conversion rate, which leads
to a decrease in f ∗ with w. Figure 2.1 shows the variation in f ∗ with w.

The following corollary shows how the different advertising costs affect f ∗. A firm which
uses multi-touch attribution for its campaign should give more credit to the advertising
channel with the highest publishing cost, all else being equal.

Corollary 2.2. Assume that q0 = p0. It holds that

• If w > v, then f ∗ > 1
2 .

• If w = v, then f ∗ = 1
2 .

• If w < v, then f ∗ < 1
2 .

2.7.2 Implementing the f-contract Under Uncertainty
To find the optimal f -contract, the firm needs to know the baseline rates q0, p0. In this
section, we propose an approach that can be used by the firm to determine the optimal
f under asymmetric information. The following proposition shows that using very little
information the firm can derive the optimal (in expectation) f -contract.

Proposition 2.6. Assume that the firm does not know the values of q0, p0, but it has some
information about the distributions from which they are drawn. Then, the firm can calculate
the value f ∗ of the optimal (in expectation) f -contract, by only using the moments E[q0p0],
E[q2

0], and E[p2
0].

This proposition shows that the advertiser does not need too much information to derive
f ∗. As long as he knows the second moments of the baseline rates , he can find the optimal
split between the two publishers. Now, suppose that a firm knows that both the publishing
costs and the expected baselines rates are the same in the two stages, the following corollary
sheds light on how the advertiser should set f ∗.

Corollary 2.3. Let f ∗ be the value of the optimal (in expectation) f -contract for the firm.
If v = w and E[q0] = E[p0], then
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• If Var[q0] = Var[p0], then f ∗ = 1
2 .

• If Var[q0] > Var[p0], then f ∗ > 1
2 .

• If Var[q0] < Var[p0], then f ∗ < 1
2 .

Corollary 2.3 shows that a firm which uses multi-touch attribution for its campaign should
give more credit to the advertising channel with higher uncertainty about the baseline rate,
all else being equal.

2.7.3 Competition in Each Stage

In this extension, we assume that both publishers can show ads in both stages of the game.
In other words, there is competition not only across stages but also in each stage. In this
variation, we want to see how increased competition between the publishers will affect our
results.

As in the original model, there is a continuum of consumers of mass 1 moving as in the
diagram of Figure 2.1. The variable a now will be a vector (a1, a2), where a1 is a decision
variable for the first publisher, with cost w1a

2
1, and a2 is a decision variable for the second

publisher, with cost w2a
2
2. Similarly, the variable c will be a vector (c1, c2), where c1 is a

decision variable for the first publisher, with cost v1c
2
1, and c2 is a decision variable for the

second publisher, with cost v2c
2
2. For the functions f and g, we assume the functional forms

f(a) = a1 + a2 + q0 and g(c) = c1 + c2 + p0, where q0 and p0 are the baseline probabilities.
In each stage, we assume that a consumer can see at most one ad. The effort a1 represents

the probability that during the awareness stage he will see an ad from the first publisher, a2
is the probability that he will see an ad from the second publisher, and q0 is the probability
that he will move to the conversion stage without seeing an ad. Similarly, the effort c1
represents the probability that during the conversion stage he will see an ad from the first
publisher, c2 is the probability that he will see an ad from the second publisher, and p0
is the probability that he will decide to buy the product without seeing an ad during the
conversion stage.

As before, we assume that the baseline probabilities q0, p0 cannot be more than 1
2 and

that the cost parameters v1, v2, w1, w2 are sufficiently large (so that f(a), g(c) ∈ [0, 1] in the
equilibrium).

For every conversion, the firm wants to spend $1 in advertising. The question is what
is the optimal way to split this dollar between the two publishers in order to maximize the
number of conversions, which is f(a)g(c).

The equivalent of an f -contract in this variation is summarized in the following table.
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Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

0 0 1
2

1
2

0 1 1 0
0 2 0 1
1 0 1 0
1 1 1 0
1 2 f 1− f
2 0 0 1
2 1 1− f f
2 2 0 1

A 0 in the first two columns means no ad, a 1 means ad from the first publisher and a 2
means ad from the second publisher. The parameter f ∈ [0, 1] is some value determined by
the firm or externally.

As in the original model, some examples of contracts of this form are the last-touch
(f = 0), where all the credit goes to the last ad the consumer had seen prior to the conversion,
and the first-touch (f = 1) where all the credit goes to the first ad, which made the consumer
aware of the product. The following lemma will help us determine the optimal f -contract in
this extended model.

Lemma 2.2. Let r(f) be the conversion rate in an f -contract as a function of f . Then,
r(f) is concave in (0, 1).

Since r(f) is concave, we know that the optimal value f ∗ is either the single root of the
equation r′(f) = 0 in (0, 1) (when it exists), or 0, or 1. More specifically, if r′(f) < 0 in
(0, 1), then f ∗ = 0. If r′(f) > 0 in (0, 1), then f ∗ = 1. If there is a root f such that r′(f) = 0,
then it is unique and f ∗ is equal to this root.

To show the robustness of our results in this extended model, we consider the following
numerical examples.

Figures 2.2 and 2.3 are the analogs of Proposition 2.1. As we can see, f ∗ is increasing in
q0 and decreasing in p0.
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Figure 2.2: Optimal f for different values
of q0, for v1 = v2 = w1 = w2 = 2, p0 = 1

4 .
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Figure 2.3: Optimal f for different values
of p0, for v1 = v2 = w1 = w2 = 2, q0 = 1

4 .
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Figure 2.4: Social Welfare
in the equilibrium (purple)
and in the first best (blue)
for different values of q0, for
v1 = v2 = w1 = w2 = 2,
p0 = 1

4 , f = 0.
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Figure 2.5: First publisher’s
profit in the equilibrium
(purple) and in the first
best (blue) for different val-
ues of q0, for v1 = v2 =
w1 = w2 = 2, p0 = 1

4 ,
f = 0.
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Figure 2.6: Firm’s revenue
in the equilibrium (purple)
and in the first best (blue)
for different values of q0, for
v1 = v2 = w1 = w2 = 2,
p0 = 1

4 , f = 0.

Figures 2.4, 2.5, and 2.6 are the analogs of Proposition 2.2. As we can see, in the first
best the conversion rate is higher, and sometimes publisher’s profits are higher too.

Figures 2.7 and 2.8 are the analogs of Proposition 2.3. In this case, the upper bound of
the ratio is even tighter at 512

507 .
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Figure 2.7: Ratio of Social welfare in the
first best over the Social welfare in the
equilibrium for different values of a, for
q0 = p0 = 1

4 , f = 0, v1 = w2 = lo = 2,
v2 = w1 = hi, hi = a · lo. The limit as
a→∞ is 512

507 = 1.00986.
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Figure 2.8: Ratio of Social welfare in the
first best over the Social welfare in the
equilibrium for different values of a, for
q0 = p0 = 1

4 , f = 0, v1 = v2 = lo = 2,
w1 = w2 = hi, hi = a · lo. The limit as
a→∞ is 1.

Finally, Figures 2.9 and 2.10 are the analogs of Proposition 2.6 and Corollary 2.3. The
firm can determine f ∗ by using the moments E[q0p0], E[q2

0], and E[p2
0]. Moreover, if q0 and

p0 have the same mean, but q0 has higher variance, then f ∗ > 1
2 .

2.8 Conclusion
The online advertising industry has continued to grow rapidly in the last two decades. While
it offers several advantages over traditional advertising, the information asymmetry and
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Figure 2.9: Firm’s revenue for different
values of f when E[p0] = E[q0] = 1

4 and
E[p2
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12 , for v1 = w1 = v2 =
w2 = 2. The optimal value is for f = 1

2 .
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Figure 2.10: Firm’s revenue for different
values of f when E[p0] = E[q0] = 1

4 and
E[p2

0] = 1
16 , E[q2

0] = 1
12 , for v1 = w1 =

v2 = w2 = 2. The optimal value is for
f = 0.556179.

misalignment of incentives between the advertisers and publishers poses a threat to this
industry in form of ad fraud, substandard ad inventory, and sub-optimal effort by advertisers.
In this paper, we formalize this problem in the context where consumers move through
two stages before they purchase and show how standard contracts, also known as multi-
touch contracts, might not lead to the most effective outcome for advertisers and publishers.
Multi-touch contracts can result in the advertiser receiving lower return on investment and
the publishers generating smaller revenues in equilibrium. The inefficiency in multi-touch
attribution arises due to a prisoner’s dilemma where the dominant strategy of publishers in
both stages is to exert less effort in showing ads. We also show that our results are in line
with real-world observations. Furthermore, motivated by optimal contracts, we introduce
reinforcement contracts, that penalize publishers if they exert relatively less effort than the
other publisher, and show how they can reduce the prisoner’s dilemma and lead to higher
profits for the advertiser.

Our research has several managerial implications. One important findings of our research
is that advertisers should spend a relatively larger fraction of their advertising budget on
the stage of the purchase funnel that they believe has a higher baseline conversion rate. E.g.
if an advertiser knows that the level of brand (or product) awareness is higher than the
baseline conversion probability in the consideration stage, they should spend more on brand
advertising, even if the exact levels are unknown. Secondly, in industries where the cost to
create awareness is similar to the cost of showing consumers ads to drive conversion, the
advertisers should engage with publishers that can show ads in both stages of the funnel.
This will reduce the prisoner’s dilemma across the stages and help in better coordination of
the incentives between the advertiser and the publisher. Furthermore, the results presented
in this paper underscore the need for better transparency in online advertising. The online
advertising ecosystem is becoming extremely complicated with many participants, often with
misaligned incentives. This has led to an increase in data fragmentation, which increases the
information asymmetry. This can lead to online advertising becoming a less effective medium
and reduce advertisers’ desire to move their advertising budget online. Sharing information
across all the participants resolves this problem and can increase the effectiveness of online
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advertising, making both advertisers and publishers better off. Finally, if the advertiser has
enough market power, it should carefully consider reinforcement contracts for attribution to
increase the returns from advertising. This will prevent the publishers from getting stuck in
the unfavorable prisoner’s dilemma equilibrium.

Our research has a few limitations and presents directions for future work. Our model
focuses on a single advertiser as he allocates credit between competing publishers. In that
sense, our advertiser has market power to dictate the attribution rule. A possible extension is
to consider how competition between different advertisers can affect the attribution process,
where the market power of one advertiser would be considerably reduced. Our insights can
be used by each advertiser in the stage of budget allocation among different advertising
channels, but advertisers’ competition could give some extra insights on patterns of overall
spending.

The reinforcement attribution contracts we suggest as improvement over multi-touch con-
tracts have some good theoretical properties and are more practical than optimal contracts,
but there might still be some challenges in their implementation. The key insight from them
is that assigning negative credit to non-appearances of advertising channels in conversion
paths can be beneficial for the advertiser, because it increases competition between the pub-
lishers and it incentivizes them to put more effort. However, an advertiser who wants to
implement such an attribution contract should also take into account the quality of the ads.
A low-quality ad that appears in a lot of conversion paths should not be incorrectly consid-
ered as important for conversions. To do this properly, an advertiser needs to have sufficient
data about consumer paths that did not lead to a conversion. A future research direction,
therefore, is to dive more into the intricacies regarding making reinforcement contracts more
practical.

Finally, one important result of our research is to show that an attribution based on
Shapley value is often not optimal for advertisers. Shapley value uses the marginal contri-
bution of each publisher to the conversion rate in order to provide a fair attribution, but it
does not take into account the publishers’ incentives. As a result, we have shown that there
are alternative attribution schemes with better results for the advertiser. Another future re-
search direction is to extend the framework of this paper and provide a general formulation
of an optimal scheme for ad attribution.

2.A Appendix

2.A.1 Analyses and Proofs

Proof of Proposition 2.1. The payoff of the first publisher in the f -contract is 1
2q0p0 + ap0 +

fac − wa2, while the payoff of the second publisher is 1
2q0p0 + q0c + (1 − f)ac − vc2. This

means that the equilibrium efforts are a = fq0+2vp0
4vw−f(1−f) and c = (1−f)p0+2wq0

4vw−f(1−f) . Therefore, the
conversion rate in the equilibrium is

r(f) = (f 2q0 + 2v(p0 + 2wq0))((1− f)2p0 + 2w(q0 + 2vp0))
(4vw − f(1− f))2 .
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It holds that r′(f) =

−4f 3(vp2
0 + wq2

0) + 12f 2vp2
0 − 4f(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0) + 4(p2
0v + 4vwp0q0 + 4vw2q2

0)
(4vw − f(1− f))3 .

The discriminant of the cubic formula in the numerator is

∆ = −256v2w2(2(vp2
0 + wq2

0) + p0q0)3(2(vp2
0 + wq2

0)(27 + 16vw) + 9(3 + 16vw)p0q0) ≤ 0,

which means that the equation r′(f) = 0 has a single real root. It’s also r′(0) = p2
0v+4vwp0q0+4vw2q2

0
16v3w3 ≥

0 and r′(1) = − (q0+2p0v)2

16v3w2 ≤ 0. Therefore, the single root is in the interval [0, 1]. That root
is the value of f ∗. The result is a long expression, so to write it down we use the following
notation. Let

x = wq2
0, y = vp2

0, z = q0p0, H = 2(x+ y) + z

A = H
(
H(16xy + 27z2) + 128xyz

)
,

B = 3

√
xyH

(
9(x− y)zH +

√
3(x+ y)

√
A
)
,

n = 3
√

12,m = 2 3
√

18.

Then
f ∗ = y

x+ y
+ nB2 −mxyH(H + 2z)

6(x+ y)zB .

Now, we need to prove that f ∗ is increasing in q0 and decreasing in p0. We’ll start by proving
that it is increasing in q0. Since r′(f ∗) = 0, it holds that

−a(f ∗)3 + b(f ∗)2 − cf ∗ + d = 0,

where a = 4(vp2
0 + wq2

0), b = 12vp2
0, c = 4(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0), and d =
4(p2

0v + 4vwp0q0 + 4vw2q2
0). By taking partial derivatives with respect to q0 and solving for

∂f∗

∂q0
, we get

∂f ∗

∂q0
=
− ∂a
∂q0

(f ∗)3 + ∂b
∂q0

(f ∗)2 − ∂c
∂q0
f ∗ + ∂d

∂q0

3a(f ∗)2 − 2bf ∗ + c

The denominator is equal to

12(vp2
0 + wq2

0)(f ∗)2 − 24vp2
0f
∗ + 4(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0) =
12vp2

0(f ∗ − 1)2 + 12wq2
0(f ∗)2 + 16vw(vp2

0 + 2p0q0 + wq2
0) ≥ 0,

therefore, it is enough to prove that the numerator is positive. The numerator is equal to

8w(−q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0)),

thus we need to prove that −q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0) ≥ 0. We know

that 1 = a(f∗)3−b(f∗)2+cf∗
d

, so it is enough to prove that

−q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0)a(f ∗)3 − b(f ∗)2 + cf ∗

d
≥ 0,
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or equivalently

fp0 ((2vp0 − q0)(f ∗)2 − 6vp0f
∗ + 4vw(q0 + 2vp0) + 2p0v)

p0 + 2wq0
≥ 0.

It is

(2vp0 − q0)(f ∗)2 − 6vp0f
∗ + 4vw(q0 + 2vp0) + 2p0v =

vp0
(
2(f ∗)2 − 6f ∗ + 2 + 8vw

)
+ q0

(
−(f ∗)2 + 4vw

)
≥

vp0
(
2(f ∗)2 − 6f ∗ + 2 + 8

)
+ q0

(
−(f ∗)2 + 4

)
=

2vp0

((
f ∗ − 3

2

)2
+ 11

4

)
+ q0 (2− f ∗) (2 + f ∗) ≥ 0.

Therefore, it holds that ∂f∗

∂q0
≥ 0, which means that f ∗ is increasing in q0. Because of

symmetry, 1− f ∗ is increasing in p0, which means that f ∗ is decreasing in p0.

Proof of Corollary 2.1. Let w = v. If q0 = p0, it holds that wq2
0 = vp2

0, therefore using the
notation of the proof of Proposition 2.1, x = y. This means that

A = (4x+ z)((4x+ z)(16x2 + 27z2) + 128x2z) = (4x+ z)(4x+ 3z)3

and
B = 3

√
2x3(4x+ z)

√
3
√
A = x

3
√

2
√

3
√

(4x+ z)(4x+ 3z).

Thus,

nB2 −mxyH(H + 2z) = 2x2 3
√

18(4x+ z)(4x+ 3z)− 2 3
√

18x2(4x+ z)(4x+ 3z) = 0,

which means that f ∗ = y
x+y = 1

2 .
From Proposition 2.1, we know that f ∗ is increasing in q0, therefore if q0 > p0, f ∗ > 1

2 ,
and if q0 < p0, f ∗ < 1

2 .

Proof of Proposition 2.2. The optimal efforts (in terms of social welfare) are aOPT = q0+2vp0
4vw−1

and cOPT = p0+2wq0
4vw−1 . In an f -contract, the equilibrium efforts are af = fq0+2vp0

4vw−f(1−f) and
cf = (1−f)p0+2wq0

4vw−f(1−f) . It holds that aOPT ≥ af and cOPT ≥ cf , which means that the conversion
rate is higher in the first benchmark. This is true for every f -contract, therefore for the
optimal f ∗-contract as well.

The first publisher’s payment in the first best solution (under an f -contract) is

p1,OPT = q0p0

2 + (2p0v + q0)(p0(f + 2vw − 1) + (2f − 1)q0w)
(4vw − 1)2 ,

while in the equilibrium of an f -contract is

p1,f = q0p0

2 + w(fq0 + 2p0v)2

(4vw − f(1− f))2 .
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We want to prove that sometimes p1,OPT ≥ p1,f∗ . More specifically, we’ll show that this is
true for the symmetric case where q0 = p0 and v = w. In that case, it is f ∗ = 1

2 and the
inequality p1,OPT ≥ p1,f∗ is equivalent to

1
2(2w − 1) ≥

4w
(4w − 1)2 ,

which is true, since it is equivalent to 16w2 − 8w + 1 ≥ 16w2 − 8w.

Proof of Proposition 2.3. The inequality SWOP T

SWf
≤ 4

3 is equivalent to

a′q0p0 + b′q2
0 + c′p2

0 ≤ 0,

where

a′ = 4(1− f)2f 2 + 32(1− f)fv2w2 − 4((1− f)2f 2 + 8(1− f)f − 4)vw − 64v3w3,

b′ = w
((

3(1− f)2 + 4
)
f 2 + 8(1− f)(2− f)vw − 16v2w2

)
,

c′ = v
((

3f 2 + 4
)

(1− f)2 + 8f(1 + f)vw − 16v2w2
)
.

Therefore, it is enough to prove that a′ ≤ 0, b′ ≤ 0, and c′ ≤ 0.
The expression (3f 2 + 4) (1− f)2 + 8f(1 + f)vw− 16v2w2 is a second degree polynomial

with respect to vw with largest root

f(1 + f) + 2
√

1− (1− f)f (2 + f 2)
4 ≤ 1.

Since vw ≥ 1, i.e. larger than the larger root, and the coefficient of v2w2 is negative, the
value of the polynomial is non-positive. This means that c′ ≤ 0. Similarly, b′ ≤ 0 (we just
replace f with 1− f).

For a′, we have that

a′ + 48 = 4(1− vw)
(
4(3 + 4vw) + (4vw − (1− f)f)2

)
≤ 0,

which means that a′ < 0, and we are done.
The upper bound of the ratio is achieved for (p0, f, v, w) = (0, 0, 1, 1) or (q0, f, v, w) =

(0, 1, 1, 1).
It remains to show that as w → +∞ or v → +∞, the ratio SWOP T

SWf
tends to 1. It holds

that SWOP T

SWf
=

(4vw − f(1− f))2 (vp2
0 + wq0(4vp0 + q0)

)
(4vw − 1) (w (f2q0(8vp0 + q0)− 8fvp0q0 + 4vp0(vp0 + q0)) + (1− f)2p0 (f2q0 + vp0) + 4vw2q0(4vp0 + q0)) .

Both the numerator and the denominator are third degree polynomials in w. The coefficients
of w3 in both of these polynomials are equal to 16v2q0(4vp0 + q0). Therefore, as w → +∞,
the ratio goes to 16v2q0(4vp0+q0)

16v2q0(4vp0+q0) = 1. Similarly, as v → +∞, the ratio goes to 1.
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Proof of Proposition 2.4. Let a∗, c∗ be the efforts in the optimal solution (second bench-
mark). We define the payments functions

g1(a, q0, c, p0) = 1
2q0p0 + sap0 + tq0c+ fac

and
g2(a, q0, c, p0) = 1

2q0p0 + (1− s)ap0 + (1− t)q0c+ (1− f)ac,

where

s = 1 + q0p0 + 2v(c∗)2

2a∗p0
,

t = −q0p0 + 2w(a∗)2

2q0c∗
,

f = 1
2 + −a

∗p0 + q0c
∗ + 3w(a∗)2 − 3v(c∗)2

2a∗c∗ .

Since a∗, c∗ are the optimal efforts, we know that they satisfy the equality

(a∗ + q0)(c∗ + p0) = w(a∗)2 + v(c∗)2.

It is

∂(g1(a, q0, c
∗, p0)− wa2)
∂a

∣∣∣∣∣
a=a∗

= sp0−2wa∗+fc∗ = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2a∗ = 0.

Similarly,

∂(g2(a∗, q0, c, p0)− vc2)
∂c

∣∣∣∣∣
c=c∗

= (1−t)q0−2vc∗+(1−f)a∗ = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2c∗ = 0.

This means that (a∗, c∗) is the equilibrium under the contracts g1, g2. To complete the proof,
we need to verify that the payoffs of the two publishers in the equilibrium are non-negative.
For the payoffs, we have that

g1(a∗, q0, c
∗, p0)− w(a∗)2 = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2 = 0

and
g2(a∗, q0, c

∗, p0)− v(c∗)2 = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2 = 0.

Proof of Lemma 2.1. The conversion rate under an (r)-contract is equal to(
(2r + 1)(q0 + 4p0v)

16vw − 1 + q0

)(
(2r + 1)(p0 + 4q0w)

16vw − 1 + p0

)
,

which is a convex function of r. Furthermore, the conversion rate is maximized when the
participation constraint for one of the publisher is binding.
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Proof of Proposition 2.5. Using the same notation as in the proof of Proposition 2.1, we have
that

∂f ∗

∂w
=
− ∂a
∂w

(f ∗)3 + ∂b
∂w

(f ∗)2 − ∂c
∂w
f ∗ + ∂d

∂w

3a(f ∗)2 − 2bf ∗ + c

and we know that the denominator is positive, therefore we need to see when the numerator
is positive. Let N be the numerator, then it holds that

wN = wN − (−a(f ∗)3 + b(f ∗)2 − cf ∗ + d) = 4(1− f ∗)v(4w2q2
0 − (1− f ∗)2p2

0).

Therefore, the numerator is positive iff 2wq0 > (1− f ∗)p0 and negative if 2wq0 < (1− f ∗)p0.
This means that when f ∗ is bellow the line 1− 2wq0

p0
, f ∗ is decreasing in w, and when it’s above

that line, it’s increasing in w. From this and the fact that f ∗ is continuous, we conclude that
f ∗ can cross the line 1 − 2wq0

p0
in at most one point. If that point exists, then w is the root

of the equation f ∗ = 1 − 2wq0
p0

with respect to w. If that point doesn’t exist, then either f ∗
is always increasing, which means w = 1, or always decreasing, which means w = +∞.

The result for v now follows because of symmetry.

Proof of Corollary 2.2. Let q0 = p0. Similarly to the proof of Corollary 2.1, if w = v, it is
x = y and therefore f ∗ = 1

2 .
For the other two parts, we need the fact that if q0 = p0, then f ∗ is increasing in w. This

doesn’t come immediately from Proposition 2.5, but we’ll show that it is true. Using the
notation of the proof of Proposition 2.5, we have that

wN = 4(1− f ∗)v(4w2q2
0 − (1− f ∗)2p2

0) =
= 4(1− f ∗)v(4w2 − (1− f ∗)2)q2

0 ≥
≥ 4(1− f ∗)v(4− (1− f ∗)2)q2

0 =
= 4(1− f ∗)v(1 + f ∗)(3− f ∗)q2

0 ≥ 0.

Therefore, ∂f∗
∂w
≥ 0 and the result follows.

Proof of Proposition 2.6. For the expected conversion rate, we have that

E[r(f)] = E[p2
0](2(1− f)2v + 8v2w) + E[q2

0 ](2f2w + 8vw2) + E[p0q0]((1− f)2f2 + 4vw + 4(1− f)2vw + 4f2vw + 16v2w2)
(4vw − f(1− f))2 .

In other words, it depends only on E[q0p0], E[q2
0], and E[p2

0].

Proof of Corollary 2.3. Let w = v and E[q0] = E[p0]. Using the notation of the proof of
Proposition 2.1 with the difference that now x = wE[q2

0], y = v E[p2
0], and z = E[q0p0]

(instead of wq2
0, vp

2
0, and q0p0), we know that f ∗ is the single real root of the polynomial

−af 3 + bf 2 − cf + d, where a = 4(x + y), b = 12y, c = 4(4vwy + 3y + 8vwz + 4vwx), and
d = 4(y + 4vwz + 4vwx).

If Var[q0] = Var[p0], then that implies E[q2
0] = E[p2

0], which means that x = y. For f = 1
2 ,

we get −af 3 + bf 2 − cf + d = 1
2(x − y)(16vw − 1) = 0. This means that 1

2 is the root, i.e.
f ∗ = 1

2 .
If Var[q0] > Var[p0], then x > y. The coefficient of f 3 in the polynomial above is negative

and since it has a single real root, the polynomial is positive for f smaller than the root and
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negative for f larger the root. For f = 1
2 , we get −af

3+bf 2−cf+d = 1
2(x−y)(16vw−1) > 0.

This means that for the root f ∗, it holds that f ∗ > 1
2 .

Similarly, if Var[q0] > Var[p0], then x < y. Therefore, for f = 1
2 , we get −af 3 + bf 2 −

cf + d = 1
2(x− y)(16vw − 1) < 0, which means that f ∗ < 1

2 .

Proof of Lemma 2.2. Here is the sketch of the proof in 11 steps:

• To prove that r(f) is concave, it is enough to prove that r′(f) is decreasing in (0, 1).

• To prove that r′(f) is decreasing, it is enough to prove that r′′(f) is negative in (0, 1).

• We can write r′′(f) as h(f)g(f).

• We can prove that h(f) is positive in (0, 1). Therefore, it is enough to prove that g(f)
is negative in (0, 1).

• To prove that g(f) is negative in (0, 1), it is enough to prove that g(f) is convex in
(0, 1) and that g(0) < 0 and g(1) < 0.

• We can prove that g(0) < 0 and g(1) < 0, so it remains to prove that g(f) is convex
in (0, 1).

• To prove that g(f) is convex in (0, 1), it is enough to prove that g′′(f) is positive in
(0, 1).

• To prove that g′′(f) is positive in (0, 1), we can first prove that g′′(f) is convex, and
then that g′′(m) > 0, where m is the point in (0, 1) where g′′ attains its minimum.

• To prove that g′′(f) is convex, we can prove that g(4)(f) is positive in (0, 1).

• To find m, we will solve the equation g(3)(f) = 0, which will give a single root.

• Finally, we can prove that g′′(m) > 0.

2.A.2 A More General Model and Equivalence
In this section, we justify some simplifications we made in our model in order to make it
easier to analyze. We start with a general model that captures all the important things
that we want to model, and then we see how we can transition from the general model to
our model. In the end, we prove an equivalence result, where we show that for any set of
parameter values of the general model and any attribution rule, there are parameter values
in our model that give the same equilibrium behavior and the same conversion rate. In
other words, we don’t lose much with the simplifications and at the same time, we make the
problem more tractable.
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The General Model

Every consumer who enters the funnel is exposed to an awareness ad with probability r1.
If a consumer does not see an awareness ad, then the probability that he will move to the
next stage in the funnel is b1 (baseline). If a consumer is exposed to an awareness ad, but
he was not going to consider the product without the ad, then he moves to the next stage
with probability e1. We assume that r1 and b1 are fixed, while e1 is a decision variable for
the first publisher (effort).

The reason we assume that r1 is fixed is because this can be something pre-determined
and it is also easily measured. What is not observable by a firm is the effort the publisher
puts in showing ads. The effort will affect how effective the ads will be, e.g. it will show how
good targeting the publisher does. Higher effort comes with a cost for the publisher given
by the convex function c1e

2
1.

Summarizing the above, there are eight types of consumers as shown in the following
table

Exposed to ad Not exposed to ad

Not in the baseline
(1− b1)r1e1

(1− b1)r1(1− e1)

0

(1− b1)(1− r1)

In the baseline
b1r1

0

b1(1− r1)

0

In each cell the upper part is the probability that the consumer will move to the con-
sideration stage (second stage in the funnel), while the lower part is the probability that he
will leave from the system (exit the funnel).

As we can see, the fraction of people who move from the first stage to the second without
seeing an ad is

b1(1− r1),
while the fraction of people who move from the first stage to the second after seeing an ad is

b1r1 + (1− b1)r1e1.

Similarly, every consumer who enters the consideration stage in the funnel is exposed
to a consideration ad with probability r2. If a consumer in the second stage does not see
a consideration ad, then the probability that he will purchase the product is b2 (baseline
probability). If a consumer is exposed to a consideration ad, but he was not going to
purchase the product without the ad, then he purchases with probability e2. We assume
that r2 and b2 are fixed, while e2 is a decision variable for the second publisher (effort). The
cost for the effort e2 is given by the convex function c2e

2
2

The fraction of people who move from the second stage to the purchase without seeing
an ad is

b2(1− r2),
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while the fraction of people moving from the second stage to the purchase after seeing an ad
is

b2r2 + (1− b2)r2e2.

Figure 2.A.1: General model.

The firm can see all the consumers who purchased the product in its website and only
them. It can also see, for each consumer who purchased, which ads they were exposed to
prior to the purchase.

In other words, the firm can observe that a fraction b1(1− r1)b2(1− r2) of consumers will
purchase the product without seeing any ad, a fraction (b1r1 + (1 − b1)r1e1)b2(1 − r2) will
purchase after seeing an ad only in the first stage, a fraction b1(1−r1)(b2r2 +(1−b2)r2e2) will
purchase after seeing an ad only in the second stage, and a fraction (b1r1+(1−b1)r1e1)(b2r2+
(1− b2)r2e2) will purchase after seeing ads in both stages. So the firm can determine these
four quantities even though it doesn’t know the individual efforts e1, e2 or the baselines b1,
b2.

Transition from the general model to our model

To simplify the notation and make the analysis a bit easier, we make the following changes
to the general model:

• We define the constant q0 = b1(1 − r1), which we will call baseline probability (even
though the actual baseline is b1). This is the probability that a consumer in the first
stage will move to the second without seeing any ad.

• We define the decision variable a = b1r1 + (1− b1)r1e1. This is the probability that a
consumer in the first stage will see an ad and then move to the second stage. So now
we’ll assume that the first publisher will have to decide a instead of deciding e1. The
cost of e1 was c1e

2
1, which makes the cost of a something of the form ξ(a − ψ)2, for

constants ξ, ψ. This means that the first publisher will choose an a such that a ≥ ψ.
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We will simplify this cost further to wa2 for some constant w. This is without loss
of generality because we can always approximate the cost of the original model by
adjusting w, and make sure that a ≥ ψ in equilibrium. Below we prove this claim
formally.

• Similarly, we define the constant p0 = b2(1 − r2); the baseline probability for the
transition from the consideration stage to purchase.

• Finally, we define the decision variable c = b2r2 + (1− b2)r2e2 for the second publisher
with an associated cost vc2.

Figure 2.A.2: Simplified model.

In this version of the model, the firm can determine the quantities q0p0, ap0, q0c, and ac,
even though it doesn’t know the individual values of q0, p0, a, and c.

Claim 2.1. The two models are equivalent.

Proof. We will prove that for any equilibrium (e∗1, e∗2) in the general model, there are w, v
such that there is an equilibrium (a∗, c∗) in the simplified model that satisfies a∗ = b1r1 +
(1− b1)r1e

∗
1 and c∗ = b2r2 + (1− b2)r2e

∗
2.

We fix the values of b1, b2, r1, r2, c1, c2, and let p1(e1, e2) and p2(e1, e2) be the payment
functions in the general model for the first and the second publisher respectively. Let (e∗1, e∗2)
be an equilibrium of the general model under these payment functions.

We define q0 = b1(1− r1) and p0 = b2(1− r2). We also define the functions g(e1) = b1r1 +
(1− b1)r1e1 and h(e2) = b2r2 + (1− b2)r2e2, and let a′ = g(e∗1) and c′ = h(e∗2). The payment
functions in the simplified model will then be p1(g−1(a), h−1(c)) and p2(g−1(a), h−1(c)) for
the first and the second publisher respectively. We set

w = ∂p1(g−1(a), h−1(c′))
∂a

∣∣∣∣∣
a=a′
· 1

2a′
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and
v = ∂p2(g−1(a′), h−1(c))

∂c

∣∣∣∣∣
c=c′
· 1

2c′ .

For these w and v, it holds that

∂(p1(g−1(a), h−1(c′))− wa2)
∂a

∣∣∣∣∣
a=a′

= 0

and
∂(p2(g−1(a′), h−1(c))− vc2)

∂c

∣∣∣∣∣
c=c′

= 0.

Notice that p1(g−1(a), h−1(c′))−wa2 is the utility of the first publisher and p2(g−1(a′), h−1(c))−
vc2 is the utility of the second publisher in the simplified model. In other words, (a′, c′) is
an equilibrium in the simplified model.

Example 2.1. Let’s consider a 1
2 -contract and let b1 = 1

3 , b2 = 1
4 , r1 = 1

5 , r2 = 1
6 , c1 =

2, c2 = 3. The equilibrium in the general model is (e∗1, e∗2) = (0.00765193, 0.00626063). For
w = 1.69573 and v = 3.53964, we get the equilibrium (a∗, c∗) = (0.0676869, 0.0424492) in
the simplified model, and it holds that a∗ = b1r1 + (1− b1)r1e

∗
1 and c∗ = b2r2 + (1− b2)r2e

∗
2.

2.A.3 Definition of Shapley Value
Let N be a set of players and let v : 2N → R be a function such that for every subset S ⊆ N
of players, v(S) gives the total payoff the members of S will get by working together. For a
pair (v,N), an attribution rule is a function φi(v) that gives the payoff of player i.

Axiom 2.1. Symmetry: If two players are equivalent, then they should have the same payoff.
Two players i, j are equivalent if their contribution to every subset of other players is the
same, or mathematically if v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆ N \ {i, j}.

Axiom 2.2. Null player : The payoff of a null player should be 0. A player i is called
null if he doesn’t contribute anything to any subset of other players, or mathematically if
v(S ∪ {i}) = v(S) for every S ⊆ N \ {i}.

Axiom 2.3. Additivity: The sum of payoffs that a player gets for two different games
should be equal to the payoff he gets if we consider the two games as one big game. Or
mathematically, φi(v + w) = φi(v) + φi(w) for every player i ∈ N and any two functions
v, w : 2N → R.

Axiom 2.4. Efficiency: The total payoff is distributed among all the players. Or mathe-
matically, v(N) = ∑

i∈N φi(v).

Shapley (1953) proved that there is a unique rule that satisfies these four axioms. We
call this rule the Shapley Value, and it is given by the following formula

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n! (v(S ∪ {i})− v(S)).
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Chapter 3

The Beneficial Effects of Ad Blockers1

While online advertising is the lifeline of many internet content platforms, the usage of
ad blockers has surged in recent years presenting a challenge to platforms dependent
on ad revenue. In this chapter, using a simple analytical model with two competing
platforms, we show that the presence of ad blockers can actually benefit platforms.
In particular, there are conditions under which the optimal equilibrium strategy for
the platforms is to allow the use of ad blockers (rather than using an adblock wall,
or charging a fee for viewing ad-free content). The key insight is that allowing ad
blockers serves to differentiate platform users based on their disutility to viewing ads.
This allows platforms to increase their ad intensity on those that do not use the ad
blockers and achieve higher returns than in a world without ad blockers. We show
robustness of these results when we allow a larger combination of platform strategies,
as well as by explaining how ad whitelisting schemes offered by modern ad blockers can
add value. Our study provides general guidelines for what strategy a platform should
follow based on the heterogeneity in the ad sensitivity of their user base.

3.1 Introduction

3.1.1 Background

Online advertising is like taxes. Nobody likes them, but they exist because people understand
that they are necessary. Millions of websites, including some of the largest internet com-
panies, depend on advertising as their main source of revenue. Online advertising revenue
in the US in 2015 was $59.6 billion2, almost half of it accounted for by Google.3,4 Google,

1Based on joint work with R. Ravi and Kannan Srinivasan
2http://www.iab.com/wp-content/uploads/2016/04/IAB-Internet-Advertising-Revenue-

Report-FY-2015.pdf (accessed May 2017)
3https://www.statista.com/statistics/266249/advertising-revenue-of-google/ (accessed May

2017)
4http://www.businessinsider.com/stats-on-googles-revenues-from-youtube-and-google-

play-2015-7 (accessed May 2017)
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Facebook5, and Twitter6 together make up more than 65% of the total revenue.7 Advertising
is the main source of revenue for all these companies. Another example of an industry that
depends heavily on advertising is the US news industry, with 69% of its revenue coming from
advertising.8 More generally, advertising is the key reason many content-providing websites
are able to offer their services to users for “free” (other than the implicit payment of user
attention to the ads). In short, today’s internet would not be what it is without advertising.

Of course advertising is not a new phenomenon. Even before the era of the internet,
companies advertised products on billboards, newspapers, radio stations, TV channels, and
other mass media. However, there is a key difference between advertising on the internet
today and the other media. The interactive nature of the internet gives users the easy
ability to block ads with ad blockers. An ad blocker is a type of software, usually added
conveniently as an extension to an internet browser, that will prevent any ads from appearing
on the browsed web pages. When a user with an ad blocker visits a website with ads, the
blocker identifies the ad content and blocks it from loading. Consequently, the website does
not receive any ad revenue for that user.9

Ad blocking is not something new either. After VCRs became popular in the 1980s,
there was a trend among viewers for commercial skipping. To combat this, advertisers tried
to make ads more entertaining. In 1999, ReplayTV launched the first DVR with a built-in
feature to skip commercials.10 Since then, providers of commercial skipping features have
been plagued by lawsuits that claim damages to the copyright of the original content.11 A
difference between these precursors and ad blockers on the internet is that now it is easier
than ever before to block ads, since several ad-blocking extensions are just a few clicks away
in most browsers.12

In Figure 3.1, we can see how adblock usage is changing over the years for desktop and
mobile devices. We observe a steady increase in both categories with an average of 44.8%
increase for desktop and 63.9% increase for mobile per year. Even though mobile ad blockers
were not as popular as their desktop counterparts in 2015, in the beginning of 2017 we see the
opposite, since more than 380 million mobile devices have an installed ad blocker versus 236
million desktop devices. PageFair and Adobe (2015) estimated that the cost of ad blockers
for publishers in terms of lost revenue in 2015 was $21.8 billion, which was around 14% of the
global ad spend. Today with many more devices with ad blockers than in 2015 (Figure 3.1),
we expect this number to be much larger.

5http://www.businessinsider.com/facebook-us-ad-revenue-2016-1 (accessed May 2017)
6https://www.emarketer.com/Article/Twitter-Ad-Revenues-Expected-Continue-Robust-

Growth/1013571 (accessed May 2017)
7https://www.bloomberg.com/news/articles/2016-04-22/google-and-facebook-lead-digital-

ad-industry-to-revenue-record (accessed May 2017)
8http://www.journalism.org/2014/03/26/the-revenue-picture-for-american-journalism-and-

how-it-is-changing/ (accessed May 2017)
9See e.g., http://alternativeto.net/software/adblock-plus/ (accessed May 2017).

10https://en.wikipedia.org/wiki/Commercial_skipping (accessed May 2017)
11https://www.techdirt.com/articles/20160211/10423633579/dish-agrees-to-cripple-ad-

skipping-dvr-to-settle-fox-lawsuit.shtml (accessed May 2017)
12https://adblockplus.org/getting_started (accessed May 2017)

http://www.businessinsider.com/facebook-us-ad-revenue-2016-1
https://www.emarketer.com/Article/Twitter-Ad-Revenues-Expected-Continue-Robust-Growth/1013571
https://www.emarketer.com/Article/Twitter-Ad-Revenues-Expected-Continue-Robust-Growth/1013571
https://www.bloomberg.com/news/articles/2016-04-22/google-and-facebook-lead-digital-ad-industry-to-revenue-record
https://www.bloomberg.com/news/articles/2016-04-22/google-and-facebook-lead-digital-ad-industry-to-revenue-record
http://www.journalism.org/2014/03/26/the-revenue-picture-for-american-journalism-and-how-it-is-changing/
http://www.journalism.org/2014/03/26/the-revenue-picture-for-american-journalism-and-how-it-is-changing/
http://alternativeto.net/software/adblock-plus/
https://en.wikipedia.org/wiki/Commercial_skipping
https://www.techdirt.com/articles/20160211/10423633579/dish-agrees-to-cripple-ad-skipping-dvr-to-settle-fox-lawsuit.shtml
https://www.techdirt.com/articles/20160211/10423633579/dish-agrees-to-cripple-ad-skipping-dvr-to-settle-fox-lawsuit.shtml
https://adblockplus.org/getting_started
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Figure 3.1: Millions of devices with adblock software over the years (— Desktop, - -
Mobile). (PageFair, 2017)

3.1.2 How do Platforms Respond?

Websites hosting content and supported by ads act as platforms for gathering viewers and
advertisers. Their revenue stream is directly affected by the deployment of ad blockers by
the viewers. The response of these platforms to ad blockers have varied considerably.13,14

Some platforms disallow the use of ad-blocking software when viewing their sites, by
using an adblock wall. This is the name for currently available technology that allows
websites to detect if a visitor is using an ad blocker and if so, refuse to give access to him.
Forbes is an example of a website that uses an adblock wall.15 City A.M. was the first UK
newspaper website to ban the use of ad blockers and prevent adblock users from reading
content.16

Other platforms offer ad-free or ad-light subscription services for viewing content, by
using a paywall. Financial Times17, The Wall Street Journal18, and The Washington Post19

are a few examples of news sites with such a paywall. A slightly different but related strategy
was adopted by Youtube: it was originally dependent solely on advertising, but in 2015 it
launched YouTube Red, a subscription based service that offers ad-free access to all YouTube
videos with some additional exclusive content.20

Many platforms use a combination of the aforementioned options. They use an adblock
wall that offers two choices to the users, either to disable their ad blocker or pay a fee for an

13https://www.pubnation.com/blog/publishers-fight-back-how-the-top-50-websites-combat-
adblock (accessed May 2017)

14http://adage.com/article/media/publishers-weigh-ways-fight-ad-blocking/299116/ (ac-
cessed May 2017)

15https://digiday.com/media/forbes-ad-blocking/ (accessed May 2017)
16https://www.theguardian.com/media/2015/oct/20/city-am-ban-ad-blocker-users (accessed

May 2017)
17https://www.ft.com/products (accessed May 2017)
18https://subscribe.wsj.com (accessed May 2017)
19https://subscribe.washingtonpost.com (accessed May 2017)
20https://www.theverge.com/2015/10/21/9566973/youtube-red-ad-free-offline-paid-

subscription-service (accessed May 2017)
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ad-free version of the site. Some examples of websites using this strategy are Wired21, Bild22,
and Business Insider.23 The New York Times has also experimented with an adblock wall
of this type for some time.24 This option mirrors ad-free services that have been available in
more traditional media, e.g. an alternate to watching a movie or show for free on network
TV is to buy or rent an ad-free copy.

Finally, there are some platforms, like The Guardian, that request viewers to disable ad
blockers as a gesture of support for the content in the site (without preventing access if they
do not).25 There are also sites that simply ignore the use of ad blockers and allow their
use. In fact, the majority of the content providing websites in the internet today follow
this simple strategy of doing nothing about the existence of ad blockers other than simply
allowing their use.

3.1.3 Research Questions
Internet ad blockers motivate some fundamental questions: What is the optimal response of
platforms to their presence? Are adblock walls the solution to the ad-blocker problem? Why
should platforms ever allow ad blockers, if they can prevent them using a simple adblock
wall? When should they erect a paywall and charge a fee for ad-free or ad-light content?
Under what conditions should they use these different options? In this paper, we address
the central questions above, and explore further the effects ad blockers have on platforms
and users. For instance, if we compare a world without ad blockers and the current world
with them, are the effects of ad blocking only negative for platforms? How do platforms’
ad-revenues change with the availability of ad blockers? How is overall user welfare affected
by ad blocking? To answer these questions, there are three important elements we model:
competition, ad intensity, and heterogeneity in the ad sensitivity.

Competition. There are several reports that adblock walls do not work.26 Several websites
that implemented some type of adblock wall, like Wired, Bild, and Forbes, have seen their
traffic deteriorate right after the introduction of the adblock wall.27 The main explanation
for this is that most adblock users who visit such websites and face a wall prefer to leave
the website instead of disabling their ad blocker, even temporarily. In fact, in a survey by
PageFair (2017), 74% of adblock users said that they leave websites when faced with an
adblock wall, and only 26% disable their ad blockers to read the content.

Competition is the key reason for why adblock walls do not work. Most websites do not
21https://www.wired.com/how-wired-is-going-to-handle-ad-blocking/ (accessed May 2017)
22http://www.reuters.com/article/us-axelspringer-adblock-idUSKCN0S70S020151013 (accessed

May 2017)
23http://adage.com/article/media/business-insider-testing-paywall-ad-blocking-

response/305951/ (accessed May 2017)
24https://www.wsj.com/articles/new-york-times-experiments-with-ways-to-fight-ad-

blocking-1457378218 (accessed May 2017)
25http://www.economist.com/news/business/21653644-internet-users-are-increasingly-

blocking-ads-including-their-mobiles-block-shock (accessed May 2017)
26http://www.businessinsider.com/ad-blocking-walls-not-working-2016-2 (accessed May 2017)
27https://thestack.com/world/2016/04/21/sites-that-block-adblockers-seem-to-be-

suffering/ (accessed May 2017). However, it is unclear whether the loss in traffic after an adblock
wall implementation directly translates to loss in revenue.
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offer unique content that users cannot find elsewhere. As a result, instead of disabling their
ad blocker and facing the inconvenience of ads, users prefer to look for the same or similar
content elsewhere.

Ad intensity. Websites can control how many ads they will show, how intrusive or
annoying the ads will be, their size, their position, and so on. All these affect the user
experience and how much disutility a user will get from the ads. As an example, Forbes.com,
when presenting an adblock wall to a user, shows a message promising users that if they
disable their ad blocker, they will be presented with an “ad-light” experience in return. In
the survey by PageFair (2017), 77% of adblock users said that they were willing to view
some ad formats and are not totally against ads. Therefore, ad intensity is a key decision
for platforms, since it directly affects how users react.

Heterogeneity in ad sensitivity. The increase in the adoption of ad blockers has other
reasons in addition to their ease of installation. Digital ads offering rich-media content such
as audio, video, pop-ups and flashing banners have become increasingly intrusive to the
content absorption experience. The rise of the mobile internet also puts a premium on the
space available for content viewing that is jeopardized by ads that take up too much real-
estate, mobile data consumption, and battery life. Finally, re-targeting practices associated
with digital ads have increased the perception of privacy intrusion among viewers.

Nevertheless, the adoption of ad blockers among viewers is not likely to be universal
since the sensitivity of viewers to ads is sufficiently heterogeneous across sites and devices
from which the sites are accessed. Users that access the platforms from public or corporate
machines may not have the ability to install new uncertified software such as ad blockers.
Casual users who do not spend too much time on sites with annoying ads will not take
the effort to employ ad blockers and update/maintain them. Less technical users may not
even be aware of the existence and convenience of ad blockers. Many technically-savvy users
may also continue to allow ads to support the sites they visit by acknowledging that they
indirectly pay for the content they consume. Some users simply continue to view ads so as
be kept informed of new products and promotions over time.

In a survey by PageFair and Adobe (2015), when non-adblock users were asked what
would cause them to start using an ad blocker, 50% of the respondents stated that misuse of
their personal information would be a reason to enable ad blocking. 41% of them responded
that an increase in the number of ads from what they typically encounter today would also
be a good reason. There was an 11% saying that they would never use an ad blocker, and
this proportion increases to 23% for those aged between 35 and 49 years old. In contrast,
when adblock users were asked for their main motivation behind adblock usage in PageFair
(2017), only 6% of them stated privacy as the main reason. Security and interruption were
the two leading reasons at 30% and 29% respectively, while page speed and the fact that
there are too many ads came next with 16% and 14% respectively.

This provides evidence that there are fundamentally two classes of users based on whether
they use ad blockers or not, and there is a lot of heterogeneity in the ad sensitivity of users
in both classes. Furthermore, there is also difference in ad sensitivity between these two
classes of adblock and non-adblock users.
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3.1.4 Contributions
In this paper we devise a simple analytical model to answer the questions of Section 3.1.3.
We model sites as two competing platforms for hosting content and attracting users. We
assume two classes of users: one that uses ad blockers and the other that does not; note that
the former are typically more ad-sensitive than the latter. Each platform has three options:

• Ban strategy: Continue displaying ads and ban ad blocking (e.g., using an adblock
wall). If a viewer uses an ad blocker, he has to disable it to get access to the site.28

• Allow strategy: Continue to display ads and allow ad-blocking software by any user
that installs it.

• Fee strategy: Stop displaying ads and offer only an ad-free site with a subscription
fee.

Note that in the second option, the platform will make no revenue from adblock users, but
only from those who do not use an ad blocker and can see ads.

Given that banning ad blockers is an option for both platforms, we would expect that
this would always emerge as an equilibrium strategy since it would curb the loss of revenues
compared to the allow strategy. However the competitive dynamics between even two sym-
metric platforms results in a surprising equilibrium. Our first result argues that there are
conditions where both platforms arrive at Allow as their symmetric optimal
strategies (Proposition 3.1 in Section 3.4). The intuition is that the action of installing
ad blockers serves as a filter for more ad-sensitive users that employ ad blockers; with these
users gone, each platform can move to a higher intensity of advertising to users and hence
increase revenue.

While allowing ad blockers results in increased advertising by both platforms, we may
expect the utility of users exposed to this increased advertising to decrease substantially as a
result. However, our second result argues that when platforms Allow ad blockers, this can
increase the overall welfare of users (Proposition 3.2 in Section 3.4). The result follows from
the filtering effect, which can raise the utility of ad-sensitive users substantially by allowing
them to filter ad content, overshadowing the potential loss of utility to less ad-sensitive users
who might now be subject to more advertising. Perhaps even more surprisingly though,
there are cases where no user is worse off when ad blockers are allowed, while
platforms and some users are better off resulting in a Pareto-improvement in overall
welfare as a result of introducing ad blockers.

In Section 3.5.1, we extend the main model by adding the following option for platforms:

• Ads or Fee strategy: Give the choice to users to either disable their ad blockers and
be exposed to ads, or pay a fee for an ad-free version of the site (e.g., using a paywall).

The argument in favor of this new strategy is that it can achieve the filtering effect that the
Allow strategy had by making ad-sensitive users pay the subscription fee, while users with

28Another strategy some platforms use to bypass ad blockers is placing advertising content, e.g. mentions
of products, that is organically mixed in with their native content. For the purposes of our model, this
strategy can be considered the same as the Ban strategy, since it is just a different way to make adblock
users see ads.
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lower ad sensitivity see ads. However, we show that even with the addition of the Ads
or Fee strategy, there is still an equilibrium where both platforms Allow ad
blockers (Proposition 3.3). To show this, we further split the class of non-adblock users
into two further classes with different ad sensitivities. In this context, Ads or Fee is a
better strategy for platforms when there is heterogeneity in the ad sensitivity between the
two classes of non-adblock users, because it helps separate very ad-sensitive non-adblock
users from the rest, while Allow is a better strategy when the two non-adblock user classes
are more homogeneous in their ad sensitivity.

In Section 3.5.2, we extend the main model in a different direction by adding the following
option for each platform:

• Whitelist strategy: Allow ad blockers and pay a fee to the ad-blocker company to
put the platform in the default whitelist.

This strategy is motivated by the “Acceptable Ads initiative”29. This is a program intro-
duced by Adblock Plus, the most popular adblock extension, according to which publishers
and advertisers who comply with certain criteria could get whitelisted so that their ads
may pass through the filter of the ad blocker. This strategy seems to be inferior to the
previous strategies, since this option simply requires platforms to pay for something they
had for free before the advent of ad blockers. However, we show that there is an equi-
librium where platforms use the Whitelist strategy and this equilibrium can
sometimes increase their revenue even more than when ad blockers did not exist
(Proposition 3.4). For this, we now split the class of adblock users into two further classes
with different ad sensitivities. In this context, Whitelist is a better strategy when there
is heterogeneity in the ad sensitivity between the two classes of adblock users, since it can
help platforms separate ad-sensitive adblock users from the rest, while Allow is a better
strategy when the two adblock user classes are more homogeneous in their ad sensitivity.

Finally, in Section 3.6, we extend the main model to include content creators who generate
the content of the platforms and share the revenue with them. We show the robustness of
our earlier results in this extension; we also show that allowing ad blockers can result in an
increased quality of content. This provides an additional benefit for users when ad blockers
are allowed.

3.2 Literature Review
Our paper is related to the advertising and marketing avoidance literature (Clancey, 1994;
Cho and Cheon, 2004; Speck and Elliott, 1997; Li and Huang, 2016; Seyedghorban et al.,
2016). Below we discuss some of the more closely related papers.

Anderson and Gans (2011) consider a model of a content provider who chooses a level
of advertising while consumers decide if they will adopt ad-avoidance technology or not.
They show that ad-avoidance penetration can increase advertising clutter, but it decreases
the content provider’s profit. One difference with our setting is that in their model, there

29https://adblockplus.org/acceptable-ads

https://adblockplus.org/acceptable-ads
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is a price for consumers to adopt ad-avoidance technology.30 As a result, their setting is
more appropriate for more traditional ways of ad avoidance, like DVRs or other physical
appliances, where there is a non-zero sunk cost for their adoption. In our setting, where the
most popular ad blockers are free of charge and they are just a few clicks away to install in
most browsers, this assumption is not as realistic. Another difference is that we consider a
model with competition where platforms can actually decide if they will allow ad blocking or
not. This is a more appropriate model for a website trying to decide if they will implement
an adblock wall or not, instead of just assuming that adblock usage is unavoidable as in their
model.

Johnson (2013) examines a model with firms that can target their ads to consumers
and consumers who can avoid advertising. He shows that improved targeting can benefit
firms but not necessarily consumers. He also shows, that in equilibrium, consumers may
under-utilize their ability to block ads. A difference with our model is that there is a direct
link between advertising firms and consumers, where firms can target the consumers with
the higher probability of buying their product. In other words, there is no intermediate
publisher who takes part in the decision process. He also assumes that there is some (pos-
itive) cost to consumers for avoiding ads and that the firm has a cost for sending an ad
regardless of whether the ad is avoided or not. All these make his setting a better model for
more traditional direct advertising campaigns, like direct mail with intentional avoidance by
consumers.

Hann et al. (2008) take a different approach by focusing more on the privacy of consumers.
In their setting, sellers market their products to consumers through solicitations. Consumers
have two ways to avoid solicitations: either by concealment (e.g. registering in a do-not-call
list) or by deflection (e.g. with call screening). There are also two types of consumers,
consumers with high demand and those with low demand for the products. They show that
concealment by low-demand consumers can lead sellers to market more, while the opposite is
true when there is concealment by high-demand consumers. They also show that concealment
is worse for consumer welfare than deflection.

Wilbur (2008) studies a two-sided empirical model of the television industry with ad-
vertisers on one side and viewers on the other. One of his counterfactual findings is that
ad avoidance tends to increase advertising quantities and decrease network revenues. Goh
et al. (2015) investigate the externalities imposed by consumers who avoid ads on other con-
sumers in the context of the US Do Not Call registry (DNC). They found that the number
of subsequent DNC registrations was positively correlated with the number of first wave
registrations. This suggests that perhaps telemarketers increased the number of calls to
unregistered consumers after the first wave driving even more subsequent registrations.

Aseri et al. (2017) study a similar problem to ours, namely the benefits of ad blockers,
in a different setting. They consider a monopolistic platform who might not want to ban ad
blockers because of network effects among its users. They also assume that the platform can
choose a different ad intensity for each type of user (e.g. show fewer ads to adblock users who
whitelisted the site), which is an additional discriminatory tool platforms can use for their

30In that sense, ad avoidance from the perspective of consumers is more like the Ads or Fee plan of our
model, but the content provider does not receive the fee. This can explain some of their results when viewed
in our framework.
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benefit. The difference with our paper is that we consider competition between platforms
and we show that even when network effects are not present, and also platforms cannot
directly discriminate users based on their type, ad blockers can still benefit them (due to a
competition-softening effect).

Several papers also study settings where a media provider has to decide between an ad-
based and a subscription-based strategy (Prasad et al., 2003; Peitz and Valletti, 2008; Tåg,
2009; Stühmeier and Wenzel, 2011; Vratonjic et al., 2013). Armstrong et al. (2009) study
consumer protection policies and their impact on the consumers’ incentives to become in-
formed of market conditions. They show that when consumers are able to refuse marketing,
price competition can decrease, which can harm consumers. Spam filters can also be consid-
ered a form of ad avoidance. Falkinger (2008) studies the equilibria in a model about spam
filters with different levels of tolerance. In relation to ad annoyance, Goldstein et al. (2014)
study the costs of annoying ads to publishers and users.

To the best of our knowledge, none of the previous work has considered ad avoidance from
a perspective of a publisher who has the ability to prevent or limit it in a competitive setting.
This is because prior work focused on traditional media providers, like TV stations, or direct
marketing actions, like mail, calls, or email. Our setting, on the other hand, is inspired
by web ads, ad blockers, and the available anti-adblock technology used by many websites
today.31 We extend the strategy space of publishers to include the most popular responses
to ad blockers by websites, like adblock walls, pay walls, combinations of the two, allowing
ad blockers, or paying for whitelisting services. This leads to quantitatively different results,
with the general surprising conclusion that ad blockers can actually benefit both publishers
and users in several different ways.

Outside the ad-avoidance literature, our results are also related (in terms of model me-
chanics) to price discrimination and price sensitivity (Corts, 1998; Desai, 2001; Desai and
Purohit, 2004; Coughlan and Soberman, 2005; Pazgal et al., 2013). As an example of a re-
lated result, Jain (2008) uses a model of digital piracy to show that when more price-sensitive
consumers are the ones who copy software, then piracy can help firms. Shaffer and Zhang
(1995) study the effects of price-discriminating customers by offering promotions based on
their past purchase behavior and show that this can reduce the profits of the firms in a
competitive environment.

3.3 Model
In this section, we describe the main model that we will use for the results in Section 3.4.
In Sections 3.5.1 and 3.5.2, we extend this basic model by adding additional strategies to
platforms’ strategy space as well as additional segments of users.

3.3.1 Platform Model
There are two platforms, platform 1 and platform 2, competing over a set of users. Each
platform can choose one of three different strategies, Ban, Allow, or Fee.

31https://www.wsj.com/articles/the-rise-of-the-anti-ad-blockers-1465805039 (accessed May
2017)
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In the Ban strategy, the platform bans ad blockers by using an adblock wall. If a user with
an ad blocker wants to access the site, she has to disable the ad blocker and see ads. The de-
cision variable for a platform i ∈ {1, 2} with the Ban strategy is the ad intensity ai ≥ 0. The
revenue of a platform i with the Ban strategy is ri = (mass of users who pick platform i) ·
ai.32

In the Allow strategy, the platform allows the use of ad blockers. In this case, a user
with an ad blocker can access the site without seeing any ads and the platform does not get
any ad revenue from them. The decision variable for a platform i ∈ {1, 2} with the Allow
strategy is again the ad intensity ai ≥ 0. The revenue of a platform i with the Allow
strategy is now ri = (mass of users who pick platform i and see ads) · ai.

In the Fee strategy, the platform offers content without any ads using a paywall. A user
who wants to access the content has to pay a subscription fee for it. The decision variable for
a platform i ∈ {1, 2} with the Fee strategy is now the subscription fee pi ≥ 0. The revenue
of a platform i with the Fee strategy is ri = (mass of users who pick platform i) · pi.

3.3.2 User Model
We model users using a Hotelling line. We assume that the two platforms are positioned on
the two endpoints of the interval [0, 1]. Each user draws a value x uniformly at random from
[0, 1] that indicates her position in the interval. Users who are closer to a platform prefer
that platform more than the other.

Any user’s utility consists of three parts. The first part is some intrinsic value they
have for accessing the platforms’ service, e.g. for reading news, and it is independent of the
platform. We use the variable m to indicate this value. The second part is some intrinsic
value each user has for the platform. This is where the Hotelling model is used. For a user
at position x, this intrinsic value is 1−x if they pick platform 1, and x if they pick platform
2. The third part is the disutility a user gets either from ads they have to see or from the
price they have to pay when they choose a platform. We normalize the price sensitivity of
users to 1 and we let their ad sensitivity vary. Throughout the paper we will see how the
heterogeneity in the ad sensitivity between users can affect how platforms behave.

In the basic model, we assume that there are two segments of users. The first segment
consists of users without an ad blocker.33 This segment is of mass λ and its users have ad
sensitivity β. The second segment consists of users with an ad blocker who use it whenever
possible. This second segment is of mass µ and its users have ad sensitivity γ.34 In other

32This simple form of revenue proportional to the ad intensity best models display advertising where
the platform is compensated proportional to the number of ads shown under a cost-per-mille (thousand
impressions) or CPM payment scheme. However, similar arguments as those in the paper can be used for
more involved revenue schemes like CPC/cost-per-click and CPA/cost-per-action. The logic then is that
removing more ad-sensitive users from the market can increase click-through-rates for platforms.

33As mentioned earlier, some possible reasons that these users do not use an ad blocker are either eth-
ical/moral, or because they do not know how to use one, or because they want to support the sites they
visit.

34Note that λ and µ in this model do not depend on the ad intensities a1 and a2, i.e. the decision for
users if they will install or not an ad blocker is exogenous. We can endogenize this decision by assuming
that there is some cost for installing an ad blocker (e.g. learning cost) and letting users decide if they want
to pay this cost based on their ad sensitivity and the ad intensity of the platform they visit. Even though
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words, in this basic model, we assume some heterogeneity in the ad sensitivity between non-
adblock and adblock users. Later, in extensions of the model, we will explore what happens
when there is further heterogeneity in the ad sensitivity inside the segment of non-adblock
users and inside the segment of adblock users.

Figure 3.1 summarizes the utility expressions for a user at position x who picked platform
1, based on the strategy the platform chose and the type of the user. To get the user utility
for platform 2, we need to change (1− x) to x, a1 to a2, and p1 to p2. Note the difference in
ad sensitivity between the two types of users, and also that the adblock users do not suffer
any disutility when the platform chooses the Allow strategy.

Figure 3.1: Utility of the user at position x who picks platform 1 based on the platform’s
strategy (columns) and the type of the user (rows).

Each user can pick at most one platform. We also assume that m, the intrinsic utility
for the service, is large enough so that every user picks at least one of the platforms.35

3.3.3 Information Setting and Timeline
For simplicity we assume that all parameters are common knowledge. This is because any
information uncertainty in the model would add extra complications without necessarily
adding any insights regarding the effects of ad blockers. Moreover, in reality, even if a
platform does not know the size of each segment of users or their ad sensitivity, there are
ways to estimate these quantities. For example, they can use A/B testing with varying ad
intensity to observe how users respond.

The timeline of the game is as follows. First, platforms choose the strategy they want
to follow. This is the first step as this is the major decision platforms have to make. For
example, using ads or subscription fees as their main business model usually means a different
infrastructure for their website. Second, platforms decide the values of their decision variables

the analysis becomes more complicated, we can show that the main results of the paper remain true (for
different conditions). There are two reasons to avoid this direction. One is that to truly endogenize user’s
decision we need to consider other factors that may play a role in that decision, e.g. privacy concerns, but
this is beyond the scope of this paper. The second and more important reason is that users usually do not
decide to install an ad blocker based on the ad intensity of a single website. They are either installing an ad
blocker and use it almost everywhere, no matter the ad intensity of each website, or they do not install one
and see ads. Therefore, it is more realistic to assume that the decision is exogenous.

35This assumption, which is standard in Hotelling models, reduces the number of cases we need to analyze.
When it is not true, i.e. when there are users in the middle of the Hotelling interval who do not pick any
platform, there is no interaction between platforms making each platform act as a monopoly in their own
part of the market. The fact that there is no competition then leads to less interesting results regarding ad
blockers.
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(either ad intensity or price, depending on the strategy), as this is an easier decision to
adjust. Third, users pick which platform to join based on the plan each platform offers so
as to maximize their utility.

3.3.4 Benchmark
In this section, we consider a world without ad blockers as a benchmark to compare the
performance of the above model with ad blockers. This way, we can determine the effects of
the presence of ad blockers on platforms and users.

When ad blockers do not exist, platforms can choose one of two different strategies: the
Ads plan or the Fee plan. A platform with the Ads plan offers its content for free to the
users and its revenue comes from showing ads to them. In that case, since there are no
ad blockers, every user has to be exposed to ads. A platform with the Fee plan offers its
content without ads for a subscription fee.36

Platform 2
Ads Fee

Platform 1 Ads (λ+µ)2

2(βλ+γµ) ,
(λ+µ)2

2(βλ+γµ)
(λ+µ)2

2(βλ+γµ) ,
λ+µ

2

Fee λ+µ
2 , (λ+µ)2

2(βλ+γµ)
λ+µ

2 , λ+µ
2

Table 3.1: Payoff matrix in the benchmark model.

If we analyze the game between the two platforms, we get the payoff matrix in Table 3.1.37

In this game there are two symmetric equilibria, one where both platforms choose the Ads
option and the other where both platforms choose the Fee option.38 In Figure 3.2, we see
the parameter regions of these two equilibria as a function of β (the ad sensitivity of the
first segment of non adblock users) and γ

β
(the ratio of the ad sensitivities of the adblock

users to that of the non-adblock users). As expected, when the ad sensitivities β and γ of
users are low, platforms choose to show ads, while in the opposite case they decide to offer
a subscription fee. The curve that separates the two equilibria is the line λ+ µ = βλ+ γµ.
The (Ads, Ads) strategy profile is an equilibrium iff λ+µ ≥ βλ+γµ, while the (Fee, Fee)
strategy profile is an equilibrium iff λ+ µ ≤ βλ+ γµ.

3.4 Ad Blockers can be Beneficial
In this section we analyze the basic model and show how ad blockers can be beneficial for
platforms in Subsection 3.4.1 and for users in Subsection 3.4.2.

36The Ads plan is similar to the Ban plan of the main model and the Fee plan is the same as the one in
the main model.

37For the proof, see the first part of the proof of Proposition 3.1 in Appendix 3.A.1.
38Asymmetric equilibria can occur only in the degenerate case where λ + µ = βλ + γµ. In that case, all

possible pair of strategies give the same revenue to the platforms. Since this is a region of measure zero in
the parameter space, we ignore it for the remainder of the discussion.
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Figure 3.2: Equilibria regions of the benchmark model for λ = 1 and µ = 2.

3.4.1 Platforms’ Welfare
Our first proposition shows that there is an equilibrium where both platforms allow ad
blockers. In this equilibrium, even though both platforms get no revenue from adblock users
and can ban ad blockers if they want, they still allow adblock users to access the content
for free. Moreover, the revenue of the platforms when they allow ad blockers is sometimes
higher than their revenue when they ban ad blockers or when they use a fee. As a result, the
presence of ad blockers can make platforms better off compared to the benchmark model.
(All proofs are in Appendix 3.A.1.)

Proposition 3.1. There is an equilibrium where both platforms Allow ad blockers. In this
equilibrium, when β is sufficiently low and γ

β
is sufficiently high, platforms are better off than

they would be if ad blockers did not exist.

The intuition for this result is as follows. Let’s assume that the ad sensitivity γ of
the adblock users is larger than β, the ad sensitivity of non-adblock users (Figure 3.1).
When platforms ban ad blockers, they show ads to both segments of users. However, the
competition between the two platforms for the ad-sensitive segment will drive the optimal
ad intensity of both platforms down. As a result, platforms can end up with low ad-revenue.
On the other hand, when platforms allow ad blockers, they do not get any revenue from the
segment of adblock users, but they have to compete only for the segment of non-adblock
users that are less ad-sensitive. This allows them to increase the advertising intensity, which
can result in higher ad-revenue.

The higher the difference in the ad sensitivities of the two segments, the more incentive
platforms have to filter ad-sensitive users from the market and focus only on the users
with low ad sensitivity. As a result, higher γ

β
makes the Allow option more attractive to
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Figure 3.1: Illustration of the ad sensitivities of the two segments of users in the main model.

platforms than the Ban option. Moreover, the lower the ad sensitivity of those who see ads
in the Allow strategy (i.e., low β), the more attractive the Allow plan becomes over the
Fee plan. This gives the two conditions in Proposition 3.1.

If we analyze all possible pair of strategies for the two platforms, we get the payoff matrix
in Table 3.1. As in the benchmark model, there are three symmetric equilibria in this game,
one where both platforms ban ad blockers, one where they allow ad blockers, and one where
they choose a fee. A difference is that now there are regions in the parameter space with
more than one equilibria. In Figure 3.2, we can see the equilibria regions as a function of
β (the ad sensitivity of non-adblock users) and γ

β
(the ratio of the ad sensitivity of adblock

users over the ad sensitivity of non-adblock users). In regions with more than one equilibria,
we list all of them and the first one in the list is the best one for platforms.

Ban Allow Fee
Ban (λ+µ)2

2(βλ+γµ) ,
(λ+µ)2

2(βλ+γµ)
(3λ+2µ)2(βλ+γµ)

2(3βλ+4γµ)2 , λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2
(λ+µ)2

2(βλ+γµ) ,
λ+µ

2

Allow λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2 , (3λ+2µ)2(βλ+γµ)
2(3βλ+4γµ)2

λ
2β ,

λ
2β

9λ(λ+µ)2

2β(3λ+4µ)2 ,
(λ+µ)(3λ+2µ)2

2(3λ+4µ)2

Fee λ+µ
2 , (λ+µ)2

2(βλ+γµ)
(λ+µ)(3λ+2µ)2

2(3λ+4µ)2 , 9λ(λ+µ)2

2β(3λ+4µ)2
λ+µ

2 , λ+µ
2

Table 3.1: Payoff matrix in the main model.

If we examine the plot in Figure 3.2 from the bottom towards the top, we see that when
γ
β
is low, i.e. when adblock users are less ad-sensitive than non-adblock users or when the ad

sensitivity of the two segments is similar, both platforms prefer to ban ad blockers. However,
as γ

β
increases, the Allow option becomes more and more attractive for platforms. Thus,

first we get a region where both Ban and Allow are equilibria but Ban is the better one
for platforms, then a region where both are equilibria but Allow is better, and finally a
region where Allow is the unique equilibrium.

If we now review the plot from the right towards the left, we see that as β (the ad
sensitivity of non-adblock users, who see ads when platforms allow ad blockers) becomes
lower, the Allow option becomes more and more attractive to platforms than the Fee
option. This is because the lower the β, the more the platforms can increase the ad intensity,
and as a result their ad revenue.
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Figure 3.2: Equilibria regions of the main model for λ = 1 and µ = 2. When there are two
equilibrium strategies in the same region, the first one (in bold) is better for platforms.

3.4.2 User Welfare

The next proposition shows that total user welfare goes up when platforms allow ad blockers.
In other words, not only do platforms benefit from the presence of ad blockers, but users
could benefit too. Moreover, there are cases where total user welfare goes up and no user is
worse off compared to the benchmark.

Proposition 3.2. When both platforms allow ad blockers, total user welfare is higher than in
the other two equilibria. Moreover, there are regions in the parameter space where platforms
are better off, total user utility goes up, and no user is worse off compared to a world without
ad blockers.

The total user utility in the Ban equilibrium is the same as the one in the Fee equilib-
rium, while in the Allow equilibrium it is higher. The reason is that when both platforms
allow ad blockers the segment of adblock users get no disutility from ads since they block
them. This improves the overall user utility even if non-adblock users are sometimes worse
off because they have to see more ads.

The regions mentioned in the second part of Proposition 3.2 are the regions labeled
“Allow” and “Allow, Fee” in Figure 3.2. In these same two regions in the benchmark
model, there is only one equilibrium where both platforms use a subscription fee. The
disutility non-adblock users get from the fee in the benchmark model is the same as the
disutility they get from ads when platforms allow ad blockers. As a result, their utility in
these regions is the same as it was in the benchmark, while every other user and the platforms
are better off.
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3.5 Additional Plans
In this section, we investigate the effect of adding two different options to the strategy space
of the platforms: an Ads or Fee option that lets users choose between watching ads or
paying for an ad-free plan, and a Whitelist option to paying a fee to the ad blocker to
whitelist their ads among users employing the ad blocker. Even when the Ads or Fee
option is available to platforms, we demonstrate that our main counterintuitive finding that
the Allow option continues to be an equilibrium still holds in certain parameter regions.
When Whitelist is allowed, we show that this is an equilibrium option for both platforms,
and perhaps even more surprisingly, despite the payment to the ad blocker, this improves
their revenues compared to a world with no ad blockers at all. To show these results, we refine
the set of adblock users or non-adblock users into two further subsegments with differing ad
sensitivities.

3.5.1 The Ads or Fee Plan
The reason the Allow plan can benefit platforms in the basic model is that it provides a
natural way for them to “discriminate” users with different ad sensitivities. Ideally platforms
would like to be able to choose a different ad intensity for segments of users with different
ad sensitivity. When they cannot do that, ad blockers provide an exogenous mechanism to
achieve a similar effect. Ad-sensitive users self select themselves out of the market by using
ad blockers, and this way they help not only themselves but also the competing platforms.

However, there is another natural way to “discriminate” users without the help of ad
blockers that a lot of web sites currently use.39 This is by letting users choose between two
different options: either get free access to the site with ads (no ad blockers are allowed) or
pay a fee for an ad-free version of the site (behind a paywall). We call this new plan the
Ads or Fee plan.

The Ads or Fee plan is a combination of the Ban and the Fee plan from the basic
model that tries to achieve the best of both worlds. The rationale is that users who are not
very ad-sensitive will decide to see ads, while ad-sensitive users will choose the fee option.
This solves the problem the Ban strategy had in the basic model of the ad-sensitive segment
forcing platforms to decrease ad intensity. With the Ads or Fee strategy platforms can
choose a high ad intensity for non-adblock users and also make sensitive adblock users pay
a fee to access the content. Thus, this new strategy has the benefits of the Allow strategy
plus some potential extra revenue from adblock users that platforms could not get earlier by
allowing ad blockers.

The main question we want to answer in this section is whether the Ads or Fee strategy
always dominates the benefits of allowing ad blockers. In other words, does the addition of
the Ads or Fee plan wipe out the beneficial effects of the Allow strategy and prevents
it from ever becoming an equilibrium. To answer this question, we extend the model from
Section 3.3 by adding the Ads or Fee strategy to platforms’ strategy space. If a platform
chooses this strategy they will have two decision variables, an ad intensity ai and a price pi.
Users who pick a platform with the Ads or Fee plan will choose between being exposed

39Some notable examples are Wired, Bild, and Business Insider.
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to ads or paying the price, based on which option gives them higher utility.
To get a more refined view of the user ad sensitivities, we also add a third segment of

users to the model in this case. This segment has mass ν and is made of non-adblock users
with ad sensitivity η with β ≤ η ≤ γ (Figure 3.1). The reason we add this third segment
of users is that the comparison of the Ads or Fee plan with the Allow plan will depend
on how heterogeneous the ad sensitivity of non-adblock users is, which we refine by splitting
into two subsegments. Then, by allowing η

β
to change, we can compare the two plans.

Figure 3.1: Illustration of the ad sensitivities of the three segments of users in the model
with the additional Ads or Fee strategy.

The following proposition shows that even after we add the Ads or Fee strategy to the
game, ad blockers can still be beneficial for platforms. There is still an equilibrium where
platforms allow ad blockers, while sometimes this is the unique equilibrium and sometimes
it is the best among others, including one where both platforms choose the Ads or Fee
plan.

Proposition 3.3. When we add the Ads or Fee plan to platforms’ strategy space, there is
still an equilibrium where both platforms Allow ad blockers. In this equilibrium, platforms
are sometimes better off than in a world without ad blockers. There are regions in the pa-
rameter space where this is the unique equilibrium and regions where it is the best equilibrium
for platforms among others.

The reason the Ads or Fee strategy does not always dominate the Allow strategy
and there are still cases platforms get higher revenue by allowing ad blockers is the following.
When a platform allows ad blockers, it will get revenue only from non-adblock users (first
and second segment in Figure 3.1) by showing them ads. When the same platform chooses
the Ads or Fee plan, it gets some revenue from all three segments but the two most
ad-sensitive segments will choose to pay the fee instead of seeing ads. Even though the
ad intensity in the Ads or Fee plan is higher than the one in the Allow plan (because
the platform shows ads to less ad-sensitive users in the first case), when the ad-revenue the
platform gets from the Allow plan is sufficiently higher than the revenue it gets from the
fees in the Ads or Fee plan, Allow is the better option. In other words, there are cases
where the platform prefers the second segment of non-adblock users to see ads instead of
paying the fee, because they can generate more revenue from ads. In the Ads or Fee plan
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though, the platform cannot force these users to see ads instead of paying the fee, because
users do what is best for them. This is why in these cases Allow is the best option for
platforms.

We now describe the conditions under which Allow is the best strategy for platforms.
For the Allow strategy to be better than Fee, we want the users who see ads in Allow
to have relatively low ad sensitivity, i.e. we want low β and η. To make Allow better than
Ban, we want the ad sensitivity of those who see ads in Ban but not in Allow to be higher
than those who see ads in both, i.e. we want high γ

β
and γ

η
. Finally, for Allow to be better

than Ads or Fee, we want those who see ads in Allow but do not see ads in Ads or
Fee to have similar ad sensitivity as those who see ads in both, i.e. we want low η

β
. This is

because otherwise Ads or Fee would be the better option to separate non-adblock users of
different ad sensitivities. In other words, for ALLOW to be the best strategy, we want the
subsegments of non adblock users to be nearly homogeneous in their sensitivities and well
separated from the sensitivity of the adblock users.

After we analyze all possible strategy combinations for the two platforms, we obtain the
payoff matrix in Table 3.A.1. As before, there are four different symmetric equilibria, one for
each strategy that is available to the platforms. In Figures 3.2, 3.3, and 3.4, we can see the
equilibria regions for different parameters. To make the pictures a bit simpler, when there
are more than one equilibria we list the best one for platforms. Thus, the regions where
Allow is the unique equilibrium are subregions of the regions labeled Allow in the plots
and near the borders there are multiple equilibria, one for each region that shares the border.

Figure 3.2: Equilibria regions of the model
with the Ads or Fee strategy for λ = µ =
ν = 1 and η

β
= 3

2 . When there are more
than one equilibria, only the best one for
platforms is listed.

Figure 3.3: Equilibria regions of the model
with the Ads or Fee strategy for λ = µ =
ν = 1 and γ

β
= 4. When there are more

than one equilibria, only the best one for
platforms is listed.

In Figure 3.2, we can see that Allow is the preferred option for platforms when β is low
and γ

β
is high. Moreover, Ads or Fee is better than Allow for relatively higher values
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of η and because η
β
is fixed in that plot, that means higher values of β make Ads or Fee

better than Allow.
Similarly, we can see in Figure 3.3 that Allow is the preferred option when β is low

and γ
η
is high. Moreover, when we compare Allow with Ads or Fee, higher η is better

for Ads or Fee, which means lower γ
η
is better for it.

Figure 3.4: Equilibria regions of the model with the Ads or Fee strategy for λ = µ = ν = 1
and γ

η
= 4. When there are more than one equilibria, only the best one for platforms is listed.

Finally, in Figure 3.4, we see that lower η
β
makes Allow better than Ads or Fee.

This plot is also an example where the Ban region disappears. Even though Ban is an
equilibrium when β and η

β
are low, it is never the best for the particular choice of parameter

values (γ is too high compared to the other ad sensitivities).

3.5.2 Acceptable Ads and Whitelisting
In 2011, Eyeo, the company that developed Adblock Plus, the most popular adblock exten-
sion for browsers, started a program called the “Acceptable Ads initiative”.40 They set a
list of criteria of what are considered acceptable ads based on placement, size, etc., and ads
that complied with those criteria would be whitelisted by default in their ad blocker. Large
companies, like Google, Microsoft, and Amazon were paying monthly fees to Eyeo to partic-
ipate in this program and let their ads pass through the ad blocker.41,42 These whitelisting
services were also the main source of revenue for Adblock Plus.43 In 2016, Eyeo extended this

40https://adblockplus.org/acceptable-ads (accessed May 2017)
41https://www.ft.com/content/80a8ce54-a61d-11e4-9bd3-00144feab7de (accessed May 2017)
42http://www.businessinsider.com/google-microsoft-amazon-taboola-pay-adblock-plus-to-

stop-blocking-their-ads-2015-2 (accessed May 2017)
43https://adblockplus.org/about#monetization (accessed May 2017)

https://adblockplus.org/acceptable-ads
https://www.ft.com/content/80a8ce54-a61d-11e4-9bd3-00144feab7de
http://www.businessinsider.com/google-microsoft-amazon-taboola-pay-adblock-plus-to-stop-blocking-their-ads-2015-2
http://www.businessinsider.com/google-microsoft-amazon-taboola-pay-adblock-plus-to-stop-blocking-their-ads-2015-2
https://adblockplus.org/about#monetization
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program by launching their own ad marketplace where they also started selling “acceptable”
ads to publishers.44,45

The controversial nature of these moves by Adblock Plus created a lot of backlash. As
an example, the CEO of Interactive Advertising Bureau (IAB) characterized Adblock Plus
an “extortion-based business” and their actions “unethical and immoral”.46,47 The main
argument is that first the company created an ad blocker that allowed millions of users
to block ads on websites and now the same company charges money from advertisers and
publishers to unblock their ads. This could be seen as a form of blackmail by those publishers
and advertisers who now have to share part of their revenue with the ad-blocker company.

The key question we address in this context is whether this new option where platforms
have to pay the ad-blocker company to whitelist their ads could ever be beneficial for them. In
the presence of ad blockers, we may expect that sometimes platforms will have to follow this
strategy, first if ad blockers hurt their ad revenue a lot, and second to get an advantage over
competitors with blocked ads. However, more importantly, when they follow this strategy,
how does their revenue change when compared to a world without ad blockers? In other
words, can the option of paying the ad blocker to let their ads go through ever benefit them
over the benchmark model without ad blockers where their ads were shown “for free”?

Figure 3.5: Illustration of the ad sensitivities of the three segments of users in the model
with the Whitelist strategy.

To answer this question we use another extension of the basic model. First, we add a
new strategy to platforms’ strategy space, called Whitelist. When a platform chooses this
Whitelist option, they allow ad blockers and at the same time they pay a fee f ≥ 0 48 to

44https://www.theverge.com/2016/9/13/12890050/adblock-plus-now-sells-ads (accessed May
2017)

45https://acceptableads.com/en/solutions/ (accessed May 2017)
46https://techcrunch.com/2016/05/09/interactive-adverting-bureau-ceo-adblock-plus-is-

an-extortion-based-business/ (accessed May 2017)
47http://www.businessinsider.com/interactive-advertising-bureau-comments-on-ad-block-

plus-2016-1 (accessed May 2017)
48In the case of Adblock Plus and their program, this fee is zero for small entities without a lot of ad

impressions and strictly positive for larger entities.

https://www.theverge.com/2016/9/13/12890050/adblock-plus-now-sells-ads
https://acceptableads.com/en/solutions/
https://techcrunch.com/2016/05/09/interactive-adverting-bureau-ceo-adblock-plus-is-an-extortion-based-business/
https://techcrunch.com/2016/05/09/interactive-adverting-bureau-ceo-adblock-plus-is-an-extortion-based-business/
http://www.businessinsider.com/interactive-advertising-bureau-comments-on-ad-block-plus-2016-1
http://www.businessinsider.com/interactive-advertising-bureau-comments-on-ad-block-plus-2016-1
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the ad-blocker company to whitelist their ads by default. As in the real world, some users
who do not like this whitelist feature and do not want to watch even “acceptable” ads, have
the option to disable the feature and remove all ads. We again consider three segments of
users, but this time refining the segment of adblock users; our model supposes one segment
of non-adblock users of mass λ with ad sensitivity β and two segments of adblock users. The
first segment of adblock users are those who are fine with the whitelisting program and keep
the default whitelist of “acceptable” ads. That segment is of mass ξ with ad sensitivity ζ.
The second segment of adblock users are those who are against all ads, remove the default
whitelist, and as a result block all ads. That segment is of mass µ with ad sensitivity γ.
We do not assume any relationship between β, ζ, and γ, but as we show next, the most
interesting results occur when β ≤ γ and ζ ≤ γ.

The next proposition answers the question above by showing that there is an equilibrium
where both platforms choose the Whitelist plan and that this equilibrium is sometimes
better for platforms compared to the benchmark model with no ad blockers.

Proposition 3.4. When we add the Whitelist plan to platforms’ strategy space, there
is an equilibrium where both platforms choose the Whitelist option. In this equilibrium,
platforms are sometimes better off than they would be if ad blockers did not exist.

To understand the intuition behind the proposition, consider the case where adblock users
are more ad-sensitive than non-adblock users and that those adblock users who remove all
ads are even more ad-sensitive than those who keep the ad blocker’s whitelist, i.e. β ≤ ζ ≤ γ
(Figure 3.5). The main idea is that the Whitelist option can help platforms separate the
two types of adblock users.

A platform with the Ban plan chooses some advertising intensity a > 0 and shows
ads to all three segments of users (Figure 3.5). With the Allow plan, they choose some
advertising intensity a′ > a and show ads only to the first segment of users. As we have seen
in the basic model, sometimes Allow is better because of the high a′ and sometimes Ban
is better because the platforms get ad-revenue from more users. With the Whitelist plan,
the platform chooses some advertising intensity a′′ with a < a′′ < a′ and they show ads to
the first two segments of users, the non-adblockers and the adblocker users who keep the
whitelist. What happens is that this middle ground between Ban and Allow sometimes
provides more revenue than the other two, i.e. showing ads to exactly two segments with
medium ad intensity is better than showing ads to all three segments with low ad intensity
or to just one segment with high ad intensity.

The conditions for which Whitelist is the best option for platforms are the following.
First, we want a sufficiently small fee f , otherwise Whitelist will become a bad option
because it is expensive. Second, we want the ad sensitivity of those who see ads in the
Whitelist plan to be low to make Whitelist better than Fee, i.e. we want low β and
ζ. Third, we want those who see ads in Ban but not in Whitelist to have comparatively
higher ad sensitivity, i.e. we want high γ

β
and γ

ζ
. Finally, to make Whitelist better than

Allow, we want the ad intensity of those who see ads in Whitelist and not in Allow
to have similar ad intensity to those who see ads in both, otherwise Allow that separates
them would be better. Therefore, we also want low ζ

β
. In other words, for Whitelist to

be the best strategy, we want the subsegments of adblock users to be heterogeneous and
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well separated in their sensitivities, while the sensitivity of the lower segment among these
is comparable to that of non-adblock users.

After we analyze all possible pair of strategies for platforms, we get the payoff matrix
in Table 3.A.2. In this game, there are four symmetric equilibria, one for each strategy. In
Figures 3.6, 3.7, and 3.8, we see the equilibria regions for different parameter values. As
before, to make plots a bit simpler, when there are more than one equilibria we list only the
best one for platforms. The regions where each equilibrium is unique are subregions of those
labeled in the plots.

Figure 3.6: Equilibria regions of the model
with the Whitelist strategy for f = 0,
λ = µ = ξ = 1, and ζ = 1

2 . When there are
more than one equilibria, only the best one
for platforms is listed.

Figure 3.7: Equilibria regions of the model
with the Whitelist strategy for f = 0,
λ = µ = ξ = 1, and γ

β
= 7

2 . When there are
more than one equilibria, only the best one
for platforms is listed.

In Figure 3.6, we see that the Whitelist plan is preferred by platforms when γ
β
is high

and β is low. When we compare the Whitelist plan with the Allow plan, Whitelist is
better for low ζ

β
. In this particular plot ζ is fixed, so low ζ

β
means high β. Therefore, there

is a lower and an upper bound for β to make Whitelist the best option.
In Figure 3.7, we see that the Whitelist plan is preferred when γ

ζ
is high and β is low.

To understand why the Ban and the Allow regions are in the order they are, let’s assume
that β is fixed. Since in that plot γ

β
is also fixed, that means γ is fixed. Ban is better than

Allow when ζ
β
is low, which means when ζ is low, which means when γ

ζ
is high.

In Figure 3.8, we see that the Whitelist plan is preferred for medium values of ζ
β
and

low β. We know that Whitelist is better than Allow for lower values of ζ
β
. For the

comparison between Whitelist and Ban, let’s again assume that β is fixed. Higher ζ
β

means higher ζ and since γ
ζ
for that plot is fixed, that means higher γ. But γ is the ad

sensitivity of those who see ads in the Ban plan and do not see ads in the Whitelist plan.
Therefore, higher γ makes Whitelist the better option.
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Figure 3.8: Equilibria regions of the model with the Whitelist strategy for f = 0, λ = µ =
ξ = 1, and γ

ζ
= 2. When there are more than one equilibria, only the best one for platforms

is listed.

In April of 2017, there were surprising reports that Google is planning to create their own
built-in ad blocker for the Chrome browser.49 This ad blocker will remove only “unaccept-
able” ads from web pages. In other words, Google wants to implement a similar program
like the “Acceptable Ads initiative” by Adblock Plus. This is further evidence that Google
realizes the benefits of an ad blocker with a whitelisting feature, even though Google itself
depends heavily on advertising. Thus, instead of letting third parties implement such a
feature and take part of their ad revenue, Google might prefer to do it on its own and thus
exercise more control of the ad-blocker market.

3.6 Quality of Content and Content Creators
An important feature of many internet platforms that affects users decision of which platform
to join is the quality of content. Some platforms generate their own content, while others
depend on third parties to generate content for them.

Youtube is an example of a platform that does not generate its own content. Instead
it depends on content creators to create and upload videos on the website that other users
watch. For a very long time Youtube was dependent solely on advertising as its main source of
revenue. However, recently it started offering subscription plans to its users (named Youtube
Red) for an ad-free version of Youtube with some additional exclusive content. Any revenue

49 https://www.wsj.com/articles/google-plans-ad-blocking-feature-in-popular-chrome-
browser-1492643233 and https://www.theverge.com/2017/4/19/15365572/google-ad-blocking-
feature-chrome-browser (accessed May 2017)

https://www.wsj.com/articles/google-plans-ad-blocking-feature-in-popular-chrome-browser-1492643233
https://www.wsj.com/articles/google-plans-ad-blocking-feature-in-popular-chrome-browser-1492643233
https://www.theverge.com/2017/4/19/15365572/google-ad-blocking-feature-chrome-browser
https://www.theverge.com/2017/4/19/15365572/google-ad-blocking-feature-chrome-browser
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Youtube gets from advertising and from subscriptions is shared with the content creators.
Youtube gets 45% of the revenue, while content creators get the remaining 55%.50 We
examine the question of how the quality of content is affected by the advent of ad blockers
under a revenue share model, like the one Youtube implemented. To do that, we extend the
basic model by adding content creators.

We assume that each platform has its own content creators. Content creators in platform
i ∈ {1, 2} have as decision variable the quality of content qi and they incur some cost ci · q2

i

to generate content of this quality.51 User utility is the same as in the basic model with an
additional quality-based utility term of r · qi for platform i, i.e. higher quality of content in
a platform means higher utility for users in that platform. Each platform has also a fixed
fraction fi that determines how they split the revenue with the content creators. The profit
for content creators in platform i is πi = fi · (total revenue) − ci · q2

i , while the profit for
platform i is ri = (1− fi) · (total revenue). Finally, the timeline of the game is the same as
before with the addition that in the second step content creators also decide the value of qi
to maximize their profit, before users choose between the platforms.

We can show that all the results of the basic model are robust under this extension with
content creators. More specifically, there is an equilibrium where platforms allow ad blockers
and all platforms, content creators, and users are better off compared to a world without
ad blockers. The fact that content creators can be better off when ad blockers are allowed
causes an increase in the quality of content. This is the main result in the next proposition.

Proposition 3.5. When ad blockers are allowed by platforms, the quality of content is higher
for sufficiently high γ

β
and sufficiently low β. This is an additional benefit for users when ad

blockers are allowed, whose welfare can increase even more than the increase with ad blockers
in the basic model without content creators.

Indeed, for the case of symmetric platforms, total user welfare is the same in this extension
and in the basic model when platforms Ban ad blockers or when they use a Fee. However,
when platforms Allow ad blockers, user welfare is higher in this extension than in the basic
model. This is because when platforms Ban ad blockers or use a Fee, all the extra value
that is generated by the quality of content goes to the platforms and the content creators in
the form of increased ad intensity or price. However, when platforms Allow ad blockers,
the higher quality of content allows this extra value to be shared with users who benefit even
more with ad blockers.

3.7 Conclusion

3.7.1 Managerial Implications
Our analysis leads to several managerial implications. It can provide websites with some
general guidelines regarding the plan they should choose based on how heterogeneous their
visitors are in their ad sensitivity. In Figure 3.1, we exhibit a decision diagram summarizing
our findings.

50https://support.google.com/youtube/answer/6204741 (accessed May 2017)
51The convex cost function is a natural choice for increasing quality which has diminishing returns to the

https://support.google.com/youtube/answer/6204741
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Figure 3.1: Flowchart for platforms to decide which strategy to follow based on the hetero-
geneity in the ad sensitivity of their user base.

The decision flowchart contains four questions in increasing order of refinement. If the
users are generally very ad-sensitive, then the platform cannot expect to receive a lot of ad
revenue from them, so it is better to choose a subscription based plan with a fee (Fee).
Otherwise, the platform can benefit from serving ads to the users. If the ad sensitivities of
non-adblock and adblock users are similar (or if non-adblock users are more ad-sensitive),
then ad blockers cannot help the platform and it is better to ban them with an adblock
wall (Ban). If, on the other hand, adblock users are more ad-sensitive than non-adblock
users, then the platform would be better off with a plan that filters out the very ad-sensitive
adblock users. The third question is about the ad sensitivity of non-adblock users. If it is
very heterogeneous, then a plan that offers options to the users like the Ads or Fee plan
can help the platform filter out the very ad-sensitive non-adblock users. If non-adblock users
have homogeneous ad sensitivity and adblock users are more ad-sensitive than non-adblock
users, then allowing ad blockers can be beneficial. The heterogeneity of adblock users plays
a role here. If adblock users are homogeneous then just allowing ad blockers can be enough
(Allow), but if they are very heterogeneous then a whitelist option on top of allowing ad
blockers can be the better plan (Whitelist), since it filters out only the very ad-sensitive
part of adblock users and keeps the rest, even if that means the platform has to pay a fee to
the ad blocker for whitelisting its ads.

The way these findings can be used is the following. First, a platform can run a few tests
with varying types of adblock walls or messages to the users (as many web platforms already
do) in order to estimate the ad sensitivities of the various user segments. Then it can use
the insights from our analysis to decide the ideal plans to offer.

effort by the creator.
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3.7.2 Summary
Ad blockers initiated an existential crisis in the world of online platforms subsisting on
advertising. While most speculations point to a grim outlook for advertisers and platforms
as a result of ad blockers, our results offer an alternative view that might offer a glimmer
of hope for the whole ecosystem, by arguing that ad blockers could actually be beneficial
overall.

We suggest several ways in which ad blocking can be beneficial. First, they can make
the market more efficient by filtering out ad-sensitive users for more intense or targeted ad
serving on the rest. Second, ad-sensitive users can benefit because they can remove ads
that annoy them from web sites. Third, ad blockers can also help regulate the ad industry
through a whitelisting program of acceptable ads. Finally, a more efficient market can also
result in an increase in content quality of web sites, which is an additional benefit for users.

A few years ago, when ad blockers started rising, publishers and advertisers were terrified
of their implications for the future of the online ad industry. However, today we see that
many of them choose a more friendly approach towards ad blockers. News like the recent
plan of Google to create its own ad blocker in its Chrome browser,52 shows that the industry
has started realizing the potential benefits of ad blocking and decided to make it an ally
instead of an enemy. As in many existential crises, the result could be rewarding.

3.A Appendix

3.A.1 Analyses and Proofs
Proof of Proposition 3.1. We consider first the scenario where ad blockers do not exist (bench-
mark model). This is when platforms have only two available strategies: the Ads strategy
where everyone who access the websites has to see ads, and the Fee strategy where users
have to pay a fee to access the site.

In this scenario, we start by considering four possible cases, one for each combination of
plans chosen by the two platforms. For each one of these cases, we will find how the users
react and then which of those cases end up in an equilibrium.

1. Both platforms use Ads. The indifferent user among those without ad blockers is the
one at position xN that is the solution to the equation m+ 1− xN − βa1 = m+ xN − βa2,
i.e. xN = 1+β(a2−a1)

2 .
The indifferent user among those with ad blockers (when they are available) is the one

at position xA that is the solution to the equation m + 1 − xA − γa1 = m + xA − γa2, i.e.
xA = 1+γ(a2−a1)

2 .
Therefore, the expected market share of platform 1 is z1 = λxN +µxA, while the expected

market share of platform 2 is z2 = λ(1− xN) + µ(1− xA). The profit for platform 1 is then
z1a1 and the profit for platform 2 is z2a2. Thus, to find the advertising intensities a1, a2
in the equilibrium, we need to solve the system ∂(z1a1)

∂a1
= ∂(z2a2)

∂a2
= 0. The solution is

a1 = a2 = λ+µ
βλ+γµ . From this, we get that the profit for both platforms is equal to (λ+µ)2

2(βλ+γµ) .

52https://www.engadget.com/2017/06/01/google-chrome-ad-blocking-baked-in-2018/ (accessed
June 2017)

https://www.engadget.com/2017/06/01/google-chrome-ad-blocking-baked-in-2018/
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2. Both platforms have a subscription Fee. In this case, both types of users have similar
payoff function, thus the indifferent user for both types is the one at position x that is the
solution to the equation m+ 1− x− p1 = m+ x− p2, i.e. x = 1+p2−p1

2 .
Therefore, the expected market share of platform 1 is z1 = (λ+ µ)x, while the expected

market share of platform 2 is z2 = (λ+ µ)(1− x).
The profit for platform 1 is then z1p1 and the profit for platform 2 is z2p2. Thus, to find

the prices p1, p2 in the equilibrium, we need to solve the system ∂(z1p1)
∂p1

= ∂(z2p2)
∂p2

= 0. The
solution is p1 = p2 = 1. From this, we get that the profit for both platforms is equal to λ+µ

2 .
3. First platform uses Ads, while the second uses a Fee. The indifferent user among non-

adblock users is the one at position xN that is the solution to the equationm+1−xN−βa1 =
m+ xN − p2, i.e. xN = 1+p2−βa1

2 .
The indifferent user among adblock users is the one at position xA that is the solution

to the equation m+ 1− xA − γa1 = m+ xA − p2, i.e. xA = 1+p2−γa1
2 .

The expected market share of platform 1 is z1 = λxN + µxA, while the expected market
share of platform 2 is z2 = λ(1−xN) +µ(1−xA). The profit for platform 1 is then z1a1 and
the profit for platform 2 is z2p2. Thus, to find the advertising intensity a1 and the price p2 in
the equilibrium, we need to solve the system ∂(z1a1)

∂a1
= ∂(z2p2)

∂p2
= 0. The solution is a1 = λ+µ

βλ+γµ

and p2 = 1.53 From this, we get that the profit for platform 1 is (λ+µ)2

2(βλ+γµ) , while the profit
for platform 2 is λ+µ

2 .
4. First platform uses a Fee, while the second uses Ads. This case is similar to the

previous case. The profit for platform 1 is λ+µ
2 , while the profit for platform 2 is (λ+µ)2

2(βλ+γµ) .
The following payoff matrix summarizes the four cases above.

Platform 2
Ads Fee

Platform 1 Ads (λ+µ)2

2(βλ+γµ) ,
(λ+µ)2

2(βλ+γµ)
(λ+µ)2

2(βλ+γµ) ,
λ+µ

2

Fee λ+µ
2 , (λ+µ)2

2(βλ+γµ)
λ+µ

2 , λ+µ
2

We observe that

• (Ads, Ads) is an equilibrium iff λ+ µ ≥ βλ+ γµ.

• (Fee, Fee) is an equilibrium iff λ+ µ ≤ βλ+ γµ.

• (Ads, Fee) and (Fee, Ads) are equilibria iff λ+ µ = βλ+ γµ.

Now we consider the scenario of the main model, where ad blockers are introduced and
the second type of users can use them if they are allowed. The Ban strategy of the main
model is similar to the Ads strategy of the benchmark, since every user has to see ads in
both of them. Therefore, for the analysis of the main model we can use the four cases we
considered in the benchmark and add to them five more cases for the strategy profiles that
include the Allow strategy.

53Note that the indifferent user for those who do not use ad blockers is the one at position xN = βλ−βµ+2γµ
2(βλ+γµ) ,

which is always at most 1, but we also need this to be non-negative. Therefore, we need that βλ+2γµ ≥ βµ.
Similarly, for the indifferent user for those with ad blockers, we need the inequality 2βλ+ γµ ≥ γλ. Due to
symmetry, we get the same conditions from the fourth case of the proof as well.
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5. Both platforms Allow ad blockers. The indifferent user among those who do not use
ad blockers is the one at position xN that is the solution to the equation m+ 1−xN −βa1 =
m+ xN − βa2, i.e. xN = 1+β(a2−a1)

2 .
The indifferent user among those who use ad blockers is the one at position xA that is

the solution to the equation m + 1− xA = m + xA, since now this type of users can use ad
blockers to avoid ads. It is xA = 1

2 .
The expected market share of platform 1 is z1 = λxN , while the expected market share

of platform 2 is z2 = λ(1 − xN). The profit for platform 1 is then z1a1 and the profit for
platform 2 is z2a2. Thus, to find the advertising intensities a1, a2 in the equilibrium, we need
to solve the system ∂(z1a1)

∂a1
= ∂(z2a2)

∂a2
= 0. The solution is a1 = a2 = 1

β
. From this, we get

that the profit for both platforms is equal to λ
2β .

6. First platform Allows ad blockers, while the second uses Ban. The indifferent user
among those who do not use ad blockers is the one at position xN that is the solution to the
equation m+ 1− xN − βa1 = m+ xN − βa2, i.e. xN = 1+β(a2−a1)

2 .
The indifferent user among those with ad blockers is the one at position xA that is the

solution to the equation m+ 1− xA = m+ xA − γa2. It is xA = 1+γa2
2 .

The expected market share of platform 1 is z1 = λxN , while the expected market share of
platform 2 is z2 = λ(1−xN)+µ(1−xA). The profit for platform 1 is then z1a1 and the profit
for platform 2 is z2a2. Thus, to find the advertising intensities a1, a2 in the equilibrium,
we need to solve the system ∂(z1a1)

∂a1
= ∂(z2a2)

∂a2
= 0. The solution is a1 = 3βλ+βµ+2γµ

β(3βλ+4γµ) and
a2 = 3λ+2µ

3βλ+4γµ .
54 From this, we get that the profit for platform 1 is equal to λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2 ,
while the profit for platform 2 is (3λ+2µ)2(βλ+γµ)

2(3βλ+4γµ)2 .
7. First platform Allows ad blockers, while the second uses Fee. The indifferent

user among non-adblockers is the one at position xN that is the solution to the equation
m+ 1− xN − βa1 = m+ xN − p2, i.e. xN = 1+p2−βa1

2 .
The indifferent user among those who use ad blockers is the one at position xA that is

the solution to the equation m+ 1− xA = m+ xA − p2. It is xA = 1+p2
2 .

The expected market share of platform 1 is z1 = λxN , while the expected market share
of platform 2 is z2 = λ(1− xN) + µ(1− xA). The profit for platform 1 is z1a1 and the profit
for platform 2 is z2p2. Thus, to find the advertising intensity a1 and the price p2 in the
equilibrium, we need to solve the system ∂(z1a1)

∂a1
= ∂(z2p2)

∂p2
= 0. The solution is a1 = 3(λ+µ)

β(3λ+4µ)

and p2 = 3λ+2µ
3λ+4µ .

55 From this, we get that the profit for platform 1 is equal to 9λ(λ+µ)2

2β(3λ+4µ)2 ,
while the profit for platform 2 is (λ+µ)(3λ+2µ)2

2(3λ+4µ)2 .
8. First platform Bans ad blockers, while the second Allows them. This is similar to

case 6. The profit for platform 1 is equal to (3λ+2µ)2(βλ+γµ)
2(3βλ+4γµ)2 , while the profit for platform 2 is

54Note that the indifferent user for those who do not use ad blockers is the one at position xN =
3βλ+βµ+2γµ

6βλ+8γµ , which is always non-negative, but we also need this to be at most 1. Therefore, we need
that 3βλ+6γµ ≥ βµ. Similarly, for the indifferent user for those who use ad blockers, we need the inequality
3βλ+ 2γµ ≥ 3γλ. We get the same conditions for the symmetric case 8.

55The indifferent user for those who do not use ad blockers is the one at position xN = 3(λ+µ)
β(6λ+8µ) , which is

always non-negative and at most 1. Therefore, we do not need any extra inequality here. Similarly, for the
indifferent user for those who use ad blockers, we do not need any extra condition either. The same is true
for the symmetric case 9.



3.A. APPENDIX 115

λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2 .
9. First platform uses a Fee, while the second Allows ad blockers. This is similar to

case 7. The profit for platform 1 is equal to (λ+µ)(3λ+2µ)2

2(3λ+4µ)2 , while the profit for platform 2 is
9λ(λ+µ)2

2β(3λ+4µ)2 .
Summarizing all of the above, we get the following payoff matrix for the two platforms.

Ban Allow Fee
Ban (λ+µ)2

2(βλ+γµ) ,
(λ+µ)2

2(βλ+γµ)
(3λ+2µ)2(βλ+γµ)

2(3βλ+4γµ)2 , λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2
(λ+µ)2

2(βλ+γµ) ,
λ+µ

2

Allow λ(3βλ+βµ+2γµ)2

2β(3βλ+4γµ)2 , (3λ+2µ)2(βλ+γµ)
2(3βλ+4γµ)2

λ
2β ,

λ
2β

9λ(λ+µ)2

2β(3λ+4µ)2 ,
(λ+µ)(3λ+2µ)2

2(3λ+4µ)2

Fee λ+µ
2 , (λ+µ)2

2(βλ+γµ)
(λ+µ)(3λ+2µ)2

2(3λ+4µ)2 , 9λ(λ+µ)2

2β(3λ+4µ)2
λ+µ

2 , λ+µ
2

We observe that (Allow, Allow) is an equilibrium iff the following two conditions
hold.

λ

2β ≥
(λ+ µ)(3λ+ 2µ)2

2(3λ+ 4µ)2 and λ

2β ≥
(3λ+ 2µ)2(βλ+ γµ)

2(3βλ+ 4γµ)2

These two conditions are equivalent to

β ≤ λ(3λ+ 2µ)2

(λ+ µ)(3λ+ 2µ)2 and
λ+ µ · γ

β(
3λ+ 4µ · γ

β

)2 ≤
λ

(3λ+ 2µ)2 .

The function g(x) = λ+µ·x
(3λ+4µ·x)2 is decreasing, therefore (Allow, Allow) is an equilibrium

for low enough β and high enough γ
β
.

Moreover, if
λ

2β ≥
(λ+ µ)2

2(βλ+ γµ) and λ

2β ≥
λ+ µ

2 ,

then the profits of the two platforms in the (Allow, Allow) equilibrium are larger than
their profits in the (Ban, Ban) and (Fee, Fee) equilibria. These conditions are equivalent
to γ

β
≥ 2 + µ

λ
and β ≤ λ

λ+µ , so again when β is low enough and γ
β
is high enough.

Proof of Proposition 3.2. When both platforms choose Allow, the user utility is

λ

(∫ 1
2

0

(
m+ 1− x− β · 1

β

)
dx+

∫ 1

1
2

(
m+ x− β · 1

β

)
dx

)

+ µ

(∫ 1
2

0
(m+ 1− x) dx+

∫ 1

1
2

(m+ x) dx
)

= λ
(
m− 1

4

)
+ µ

(
m+ 3

4

)
.
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When both platforms choose Ban, the user utility is

λ

(∫ 1
2

0

(
m+ 1− x− β · λ+ µ

βλ+ γµ

)
dx+

∫ 1

1
2

(
m+ x− β · λ+ µ

βλ+ γµ

)
dx

)

+ µ

(∫ 1
2

0

(
m+ 1− x− γ · λ+ µ

βλ+ γµ

)
dx+

∫ 1

1
2

(
m+ x− γ · λ+ µ

βλ+ γµ

)
dx

)

= λ

(
m+ 3

4 −
β(λ+ µ)
βλ+ γµ

)
+ µ

(
m+ 3

4 −
γ(λ+ µ)
βλ+ γµ

)

= (λ+ µ)
(
m− 1

4

)
.

When both platforms choose Fee, the user utility is

λ

(∫ 1
2

0
(m+ 1− x− 1) dx+

∫ 1

1
2

(m+ x− 1) dx
)

+ µ

(∫ 1
2

0
(m+ 1− x− 1) dx+

∫ 1

1
2

(m+ x− 1) dx
)

= λ
(
m− 1

4

)
+ µ

(
m− 1

4

)
= (λ+ µ)

(
m− 1

4

)
.

Note that the total user utility is the same when both platforms choose Ban or both
platforms choose Fee, and it is higher when both platforms choose Allow.

Moreover, the utility of users without ad blockers is the same when both platforms choose
Allow or both platforms choose Fee, while the utility of users with ad blockers is always
higher when both platforms choose Allow. This implies that in the regions where platforms
were using Fee in the benchmark but Allow in the main model, no user is worse off with
Allow.

Proof of Proposition 3.3. This proof requires to consider 16 cases, one for each strategy
profile, similar to the cases of the proof of Proposition 3.1 but now with three segments of
users. Since the proof is very repetitive, we illustrate here only one of the cases and then we
provide the payoff matrix we obtain after the full analysis.

Both platforms use the Ads or Fee plan. This case has several subcases based on what
option (between ads or fee) each segment of users picks. Since β ≤ η ≤ γ, there are four
subcases for platform 1:

• p1 < βa1 ≤ ηa1 ≤ γa1

• βa1 ≤ p1 ≤ ηa1 ≤ γa1

• βa1 ≤ ηa1 < p1 ≤ γa1

• βa1 ≤ ηa1 ≤ γa1 < p1



3.A. APPENDIX 117

In the first subcase, every user in platform 1 prefers to pay the fee, therefore this subcase is
as if platform 1 had chosen the Fee plan, and we can ignore it here.56 Similarly, the fourth
subcase is as if platform 1 had chosen the Ban plan, and we can ignore it too. This leaves us
with two subcases for platform 1 and two similar subcases for platform 2. Therefore, there
are four possible strategy profiles we need to analyze. For brevity, we show only the two
symmetric ones here.

1. βa1 ≤ p1 ≤ ηa1 ≤ γa1 and βa2 ≤ p2 ≤ ηa2 ≤ γa2. The indifferent user among the
first segment of non-adblockers is the one at position xN that is the solution to the equation
m+ 1− xN − βa1 = m+ xN − βa2, i.e. xN = 1+βa2−βa1

2 .
The indifferent user among the second segment of non-adblockers is the one at position

xN,2 that is the solution to the equation m + 1 − xN,2 − p1 = m + xN,2 − p2, since those
non-adblock users pay the fee. It is xN,2 = 1+p2−p1

2 .
The indifferent user among adblock users is the one at position xA that is the solution

to the equation m+ 1− xA − p1 = m+ xA − p2. It is xA = 1+p2−p1
2 .

The expected mass of users in platform 1 who see ads is z1,a = λxN , while the expected
mass of users in platform 1 who pay the fee is z1,p = νxN,2 + µxA. Similarly, the expected
mass of users in platform 2 who see ads is z2,a = λ(1−xN), while the expected mass of users
in platform 2 who pay the fee is z2,p = ν(1− xN,2) + µ(1− xA).

The profit for platform 1 is z1,aa1 + z1,pp1 and the profit for platform 2 is z2,aa2 + z2,pp2.
Thus, to find the advertising intensities a1, a2 and the prices p1, p2 in the equilibrium, we
need to solve the system ∂(z1,aa1+z1,pp1)

∂a1
= ∂(z1,aa1+z1,pp1)

∂p1
= ∂(z2,aa2+z2,pp2)

∂a2
= ∂(z2,aa2+z2,pp2)

∂p2
= 0.

The solution is a1 = a2 = 1
β
and p1 = p2 = 1. From this, we get that the profit for both

platforms is equal to λ+β(µ+ν)
2β .

Note that the solution we found satisfy the inequalities of this subcase. Therefore, this
subcase gives us an equilibrium.

2. βa1 ≤ ηa1 < p1 ≤ γa1 and βa2 ≤ ηa2 < p2 ≤ γa2. The indifferent user among the first
segment of non-adblock users is the one at position xN that is the solution to the equation
m+ 1− xN − βa1 = m+ xN − βa2, i.e. xN = 1+βa2−βa1

2 .
The indifferent user among the second segment of non-adblock users is now the one at

position xN,2 that is the solution to the equation m+ 1− xN,2− ηa1 = m+ xN,2− ηa2, since
in these subcase those non-adblock users see ads. It is xN,2 = 1+ηa2−ηa1

2 .
The indifferent user among adblock users is the one at position xA that is the solution

to the equation m+ 1− xA − p1 = m+ xA − p2, i.e. xA = 1+p2−p1
2 .

The expected mass of users in platform 1 who see ads is z1,a = λxN + νxN,2, while the
expected mass of users in platform 1 who pay the fee is z1,p = µxA. Similarly, the expected
mass of users in platform 2 who see ads is z2,a = λ(1−xN) + ν(1−xN,2), while the expected
mass of users in platform 2 who pay the fee is z2,p = µ(1− xA).

The profit for platform 1 is z1,aa1 + z1,pp1 and the profit for platform 2 is z2,aa2 + z2,pp2.
Thus, to find the advertising intensities a1, a2 and the prices p1, p2 in the equilibrium, we

56Note that the Ads or Fee plan is more general than the Fee and the Ban plan, as the platform
can always make ad intensity or price equal to +∞, forcing all of its users to either pay the fee or see ads
respectively. To avoid confusion throughout the paper, when we say that a platform uses the Ads or Fee
plan, we actually mean that some of its users see ads and some of its users decide to pay the fee. When we
say that a platform uses the Fee plan, we actually mean that it either uses the Ads or Fee plan with ad
intensity equal to +∞ or it uses the actual Fee plan with no option for ads. Similarly for the Ban strategy.
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need to solve the system ∂(z1,aa1+z1,pp1)
∂a1

= ∂(z1,aa1+z1,pp1)
∂p1

= ∂(z2,aa2+z2,pp2)
∂a2

= ∂(z2,aa2+z2,pp2)
∂p2

= 0.
The solution is a1 = a2 = λ+ν

βλ+ην and p1 = p2 = 1. From this, we get that the profit for both
platforms is equal to λ2+βλµ+2λν+ηµν+ν2

2(βλ+ην) .
Note however, that the solution we found this time does not satisfy the inequalities of

this subcase, because ηa1 = ηλ+ην
βλ+ην ≥

βλ+ην
βλ+ην = 1 = p1. Therefore, this subcase does not give

an equilibrium.
After we analyze all possible cases and subcases, we obtain the payoff matrix in Ta-

ble 3.A.1. From that matrix, we can also obtain the conditions under which both platforms
choose Allow as their equilibrium strategy.

An example where (Allow, Allow) is the unique equilibrium is for λ = µ = ν = 1,
β = 1

4 , η = 3
10 , and γ = 2. In that case, the payoff matrix becomes

Ban Allow Fee Ads or Fee
Ban 1.8, 1.8 0.88, 1.4 1.8, 1.5 1.8, 2.2

Allow 1.4, 0.88 3.6, 3.6 2.9, 0.96 3.1, 2.2
Fee 1.5, 1.8 0.96, 2.9 1.5, 1.5 1.5, 3

Ads or Fee 2.2, 1.8 2.2, 3.1 3, 1.5 3, 3

Proof of Proposition 3.4. As in the proof of Proposition 3.3, this proof requires to consider
all the 16 possible strategy combinations for the platforms. For brevity we show only one in
detail here and then we provide the payoff matrix with the result of all cases.

Both platforms use the Whitelist plan. The indifferent user among the non-adblock
users is the one at position xN that is the solution to the equation m + 1 − xN − βa1 =
m+ xN − βa2, i.e. xN = 1+βa2−βa1

2 .
The indifferent user among the first segment of adblock users, who keep the whitelist, is

the one at position xA,2 that is the solution to the equationm+1−xA,2−ζa1 = m+xA,2−ζa2,
since those adblock users see ads. It is xA,2 = 1+ζa2−ζa1

2 .
The indifferent user among the second segment of adblock users, who remove all ads, is

the one at position xA that is the solution to the equation m+ 1−xA = m+xA, i.e. xA = 1
2 .

The expected mass of users in platform 1 who see ads is z1,a = λxN + ξxA,2. Similarly,
the expected mass of users in platform 2 who see ads is z2,a = λ(1− xN) + ξ(1− xA,2).

The profit for platform 1 is z1,aa1 − f and the profit for platform 2 is z2,aa2 − f , since
they also have to pay the fee f to the ad-blocker company. Thus, to find the advertising
intensities a1, a2 in the equilibrium, we need to solve the system ∂(z1,aa1−f)

∂a1
= ∂(z2,aa2−f)

∂a2
= 0.

The solution is a1 = a2 = λ+ξ
βλ+ζξ . From this, we get that the profit for both platforms is equal

to (λ+ξ)2

2(βλ+ζξ) − f .
In Table 3.A.2, we can see the payoff matrix of the full game. An example where

(Whitelist, Whitelist) is the unique equilibrium of the game is λ = µ = ν = 1,
β = ζ = 1

10 , and γ = 6
5 . In that case, the payoff matrix becomes
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Ban Allow Fee Whitelist
Ban 3.21, 3.21 1.13, 1.59 3.21, 1.5 1.54, 3.3

Allow 1.59, 1.13 5, 5 3.35, 0.61 3.67, 5.1
Fee 1.5, 3.21 0.61, 3.35 1.5, 1.5 0.96, 8.1

Whitelist 3.3, 1.54 5.1, 3.67 8.1, 0.96 10, 10

Proof of Proposition 3.5. This proof is similar to the proof of Proposition 3.1 with the ad-
ditional step in every case of the decision about qualities by content creators. To avoid
repetition, we analyze one case here and then we provide the payoff matrix of the full game.

Both platforms Allow ad blockers. The indifferent user among the non-adblock users
is the one at position xN that is the solution to the equation m + 1 − xN − βa1 + rq1 =
m+ xN − βa2 + rq2, i.e. xN = 1+β(a2−a1)−r(q2−q1)

2 .
The indifferent user among those who use ad blockers is the one at position xA that is

the solution to the equation m+ 1− xA + rq1 = m+ xA + rq2, since now this type of users
can use ad blockers to avoid ads. It is xA = 1−r(q2−q1)

2 .
The expected mass of users who see ads in platform 1 is z1 = λxN , while the expected

mass of users who see ads in platform 2 is z2 = λ(1− xN).
The profit for the content creators of platform 1 is f1z1a1 − c1q

2
1, while the profit for the

content creators of platform 2 is f2z2a2 − c2q
2
2.57 To find the qualities q1, q2, we need to

solve the system ∂(f1z1a1−c1q2
1)

∂q1
= ∂(f2z2a2−c2q2

2)
∂q2

= 0. This gives the solution q1 = a1f1λr
4c1

and
q2 = a2f2λr

4c2
as a function of the ad intensities a1 and a2.

The profit for platform 1 is (1 − f1)z1a1 and the profit for platform 2 is (1 − f2)z2a2.
Thus, to find the ad intensities a1, a2 in the equilibrium, we need to solve the system
∂((1−f1)z1a1)

∂a1
= ∂((1−f2)z2a2)

∂a2
= 0. The solution is a1 = 4c1

4βc1−f1λr2 and a2 = 4c2
4βc2−f2λr2 . From

this, we get that the profit for platform 1 is equal to 2c1(1−f1)λ
4βc1−f1λr2 and the profit for platform 2

is 2c2(1−f2)λ
4βc2−f2λr2 . Moreover, the qualities are q1 = f1λr

4βc1−f1λr2 and q2 = f2λr
4βc2−f2λr2 .

The user welfare of non-adblock users is

λ

(∫ 1
2

0

(
m+ 1− x− β · 4c1

4βc1 − f1λr2 + r · f1λr

4βc1 − f1λr2

)
dx

+
∫ 1

1
2

(
m+ x− β · 4c2

4βc2 − f2λr2 + r · f2λr

4βc2 − f2λr2

)
dx

)

= λ
(
m− 1

4

)
.

The user welfare of adblock users is

µ

(∫ xA

0

(
m+ 1− x+ r · f1λr

4βc1 − f1λr2

)
dx

+
∫ 1

1−xA

(
m+ x+ r · f2λr

4βc2 − f2λr2

)
dx

)
,

57For simplicity in this analysis and to avoid corner solutions we assume that the cost parameters c1 and
c2 are sufficiently large.
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where xA = 1
2 + 2βc1

4βc1−f1λr2 − 2βc2
4βc2−f2λr2 . For symmetric platforms, i.e. when f1 = f2 = f̂ and

c1 = c2 = ĉ, the user welfare of adblock users is

µ

m+ 3
4 + f̂λr2

4βĉ− f̂λr2

 ≥ µ
(
m+ 3

4

)
,

larger than it was in the main model.
Table 3.A.3 contains the payoff matrix of the game. The quality in the (Ban, Ban)

equilibrium for platform 1 is q1,Ban = f1(λ+µ)2r
4βc1λ+4γc1µ−f1(λ+µ)2r2 . This is less than or equal to

q1,Allow = f1λr
4βc1−f1λr2 when γ

β
≥ 2 + µ

λ
, i.e. for sufficiently high γ

β
. Similarly, q2,Ban ≤ q2,Allow

when γ
β
≥ 2 + µ

λ
.

The quality in the (Fee, Fee) equilibrium for platform 1 is q1,Fee = f1(λ+µ)r
4c1−f1(λ+µ)r2 . This is

less than or equal to q1,Allow = f1λr
4βc1−f1λr2 when β ≤ λ

λ+µ , i.e. for sufficiently low β. Similarly,
q2,Fee ≤ q2,Allow when β ≤ λ

λ+µ .
For the case of symmetric platforms, the total user welfare in the (Ban, Ban) and in the

(Fee, Fee) equilibria is (λ+µ)
(
m− 1

4

)
, i.e. the same as in the main model. However, in the

(Allow, Allow) equilibrium, the total user welfare is λ
(
m− 1

4

)
+µ

(
m+ 3

4 + f̂λr2

4βĉ−f̂λr2

)
≥

λ
(
m− 1

4

)
+ µ

(
m+ 3

4

)
, larger than in the main model.
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3.A.2 Payoff Matrices

Ban Allow Fee Ads or Fee
Ban (λ+µ+ν)2

2(βλ+γµ+ην) ,
(λ+µ+ν)2

2(βλ+γµ+ην)
(3λ+2µ+3ν)2(βλ+γµ+ην)

2(3βλ+4γµ+3ην)2 , C (λ+µ+ν)2

2(βλ+γµ+ην) ,
1
2 (λ+ µ+ ν) (λ+µ+ν)2

2(βλ+γµ+ην) , A

Allow C, (3λ+2µ+3ν)2(βλ+γµ+ην)
2(3βλ+4γµ+3ην)2

(λ+ν)2

2(βλ+ην) ,
(λ+ν)2

2(βλ+ην)
9(λ+ν)2(λ+µ+ν)2

2(3λ+4µ+3ν)2(βλ+ην) ,
(λ+µ+ν)(3λ+2µ+3ν)2

2(3λ+4µ+3ν)2
9(λ+ν)2(µ+ν)2(βλ+ην)

2(3βλ(µ+ν)+ην(4µ+3ν))2 , B

Fee 1
2 (λ+ µ+ ν), (λ+µ+ν)2

2(βλ+γµ+ην)
(λ+µ+ν)(3λ+2µ+3ν)2

2(3λ+4µ+3ν)2 , 9(λ+ν)2(λ+µ+ν)2

2(3λ+4µ+3ν)2(βλ+ην)
1
2 (λ+ µ+ ν), 1

2 (λ+ µ+ ν) 1
2 (λ+ µ+ ν), λ+β(µ+ν)

2β

Ads or Fee A, (λ+µ+ν)2

2(βλ+γµ+ην) B, 9(λ+ν)2(µ+ν)2(βλ+ην)
2(3βλ(µ+ν)+ην(4µ+3ν))2

λ+β(µ+ν)
2β , 1

2 (λ+ µ+ ν) λ+β(µ+ν)
2β , λ+β(µ+ν)

2β

Table 3.A.1: Payoff matrix in the model with the Ads or Fee plan.

A = λ2(µ+ν)2β3+λ(µ+ν)(4λ2+2((γ+2)µ+(η+2)ν)λ+(µ+ν)(4γµ+µ+4ην+ν))β2+(γµ+ην)(((γ+4)µ+(η+4)ν)λ2+2(µ+ν)(2γµ+µ+2ην+ν)λ+4(µ+ν)2(γµ+ην))β+λ(µ+ν)(γµ+ην)2

8β(µ+ν)(βλ+γµ+ην)2

B = 9β3λ2(µ+ν)3+3β2λ(12λ2+6(η+2)νλ+ν(8ηµ+12ην+3ν))(µ+ν)2+βην((48µ+9(η+4)ν)λ2+6ν(4(η+1)µ+6ην+3ν)λ+4ην(2µ+3ν)2)(µ+ν)+η2λν2(4µ+3ν)2

8β(3βλ(µ+ν)+ην(4µ+3ν))2

C = (2γµ(λ+ν)+βλ(3λ+µ+3ν)+ην(3λ+µ+3ν))2

2(βλ+ην)(3βλ+4γµ+3ην)2

Ban Allow Fee Whitelist
Ban (λ+µ+ξ)2

2(βλ+γµ+ζξ) ,
(λ+µ+ξ)2

2(βλ+γµ+ζξ)
(βλ+γµ+ζξ)(3λ+2(µ+ξ))2

2(3βλ+4γµ+4ζξ)2 , E (λ+µ+ξ)2

2(βλ+γµ+ζξ) ,
1
2 (λ+ µ+ ξ) (3λ+2µ+3ξ)2(βλ+γµ+ζξ)

2(3βλ+4γµ+3ζξ)2 , D

Allow E, (βλ+γµ+ζξ)(3λ+2(µ+ξ))2

2(3βλ+4γµ+4ζξ)2
λ

2β ,
λ

2β
9λ(λ+µ+ξ)2

2β(3λ+4(µ+ξ))2 ,
(λ+µ+ξ)(3λ+2(µ+ξ))2

2(3λ+4(µ+ξ))2
λ(2ζξ+β(3λ+ξ))2

2β(3βλ+4ζξ)2 , (3λ+2ξ)2(βλ+ζξ)
2(3βλ+4ζξ)2 − f

Fee 1
2 (λ+ µ+ ξ), (λ+µ+ξ)2

2(βλ+γµ+ζξ)
(λ+µ+ξ)(3λ+2(µ+ξ))2

2(3λ+4(µ+ξ))2 , 9λ(λ+µ+ξ)2

2β(3λ+4(µ+ξ))2
1
2 (λ+ µ+ ξ), 1

2 (λ+ µ+ ξ) (λ+µ+ξ)(3λ+2µ+3ξ)2

2(3λ+4µ+3ξ)2 , F

Whitelist D, (3λ+2µ+3ξ)2(βλ+γµ+ζξ)
2(3βλ+4γµ+3ζξ)2

(3λ+2ξ)2(βλ+ζξ)
2(3βλ+4ζξ)2 − f, λ(2ζξ+β(3λ+ξ))2

2β(3βλ+4ζξ)2 F, (λ+µ+ξ)(3λ+2µ+3ξ)2

2(3λ+4µ+3ξ)2
(λ+ξ)2

2(βλ+ζξ) − f,
(λ+ξ)2

2(βλ+ζξ) − f

Table 3.A.2: Payoff matrix in the model with the Whitelist plan.

D = (2γµ(λ+ξ)+βλ(3λ+µ+3ξ)+ζξ(3λ+µ+3ξ))2

2(βλ+ζξ)(3βλ+4γµ+3ζξ)2 − f
E = λ(β(3λ+µ+ξ)+2(γµ+ζξ))2

2β(3βλ+4γµ+4ζξ)2

F = 9(λ+ξ)2(λ+µ+ξ)2

2(3λ+4µ+3ξ)2(βλ+ζξ) − f
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Ban − 2c1(f1−1)(λ+µ)2

4c1(βλ+γµ)−f1r2(λ+µ)2 ,− 2c2(f2−1)(λ+µ)2

4c2(βλ+γµ)−f2r2(λ+µ)2 I, J − 2c1(f1−1)(λ+µ)2

4c1(βλ+γµ)−f1r2(λ+µ)2 ,− 2c2(f2−1)(λ+µ)
4c2−f2r2(λ+µ)

Allow G,H 2c1(f1−1)λ
f1r2λ−4c1β

, 2c2(f2−1)λ
f2r2λ−4c2β

− 18c1(f1−1)λ(4c1β−f1r
2λ)(λ+µ)2

(3f1r2λ(λ+µ)−4c1β(3λ+4µ))2 , L

Fee − 2c1(f1−1)(λ+µ)
4c1−f1r2(λ+µ) ,−

2c2(f2−1)(λ+µ)2

4c2(βλ+γµ)−f2r2(λ+µ)2 K,− 18c2(f2−1)λ(4c2β−f2r
2λ)(λ+µ)2

(3f2r2λ(λ+µ)−4c2β(3λ+4µ))2 − 2c1(f1−1)(λ+µ)
4c1−f1r2(λ+µ) ,−

2c2(f2−1)(λ+µ)
4c2−f2r2(λ+µ)

Table 3.A.3: Payoff matrix in the model with the content creators.

G = − 2c1(f1−1)λ(4c1β−f1r2λ)(−3f2r2(λ+µ)2+8c2γµ+4c2β(3λ+µ))2

(3f1f2λ(λ+µ)2r4−4(c1f2β(λ+µ)(3λ+4µ)+c2f1λ(3βλ−βµ+4γµ))r2+16c1c2β(3βλ+4γµ))2

H = − 2c2(f2−1)(3f1r2λ(λ+µ)−4c1β(3λ+2µ))2(4c2(βλ+γµ)−f2r2(λ+µ)2)
(f1λ(3f2r2(λ+µ)2+4c2(−3βλ+βµ−4γµ))r2+4c1β(4c2(3βλ+4γµ)−f2r2(λ+µ)(3λ+4µ)))2

I = − 2c1(f1−1)(3f2r2λ(λ+µ)−4c2β(3λ+2µ))2(4c1(βλ+γµ)−f1r2(λ+µ)2)
(f1(λ+µ)(3f2r2λ(λ+µ)−4c2β(3λ+4µ))r2+4c1(f2λ(−3βλ+βµ−4γµ)r2+4c2β(3βλ+4γµ)))2

J = − 2c2(f2−1)λ(4c2β−f2r2λ)(3f1r2(λ+µ)2−4c1(2γµ+β(3λ+µ)))2

(f1(λ+µ)(3f2r2λ(λ+µ)−4c2β(3λ+4µ))r2+4c1(f2λ(−3βλ+βµ−4γµ)r2+4c2β(3βλ+4γµ)))2

K = − 2c1(f1−1)(λ+µ)(3f2r2λ(λ+µ)−4c2β(3λ+2µ))2

(4c1−f1r2(λ+µ))(3f2r2λ(λ+µ)−4c2β(3λ+4µ))2

L = − 2c2(f2−1)(λ+µ)(3f1r2λ(λ+µ)−4c1β(3λ+2µ))2

(4c2−f2r2(λ+µ))(3f1r2λ(λ+µ)−4c1β(3λ+4µ))2



Bibliography

V. Abhishek, P. Fader, and K. Hosanagar. Media exposure through the funnel: A model of
multi-stage attribution. SSRN, 2016. 50, 53, 55

E. Anderl, I. Becker, F. V. Wangenheim, and J. H. Schumann. Putting attribution to work:
A graph-based framework for attribution modeling in managerial practice. SSRN, 2343077,
October 2013. 53

S. P. Anderson and J. S. Gans. Platform siphoning: Ad-avoidance and media content.
American Economic Journal: Microeconomics, 3(4):1–34, 2011. 93

A. Ansari, K. Bawa, and A. Ghosh. A nested logit model of brand choice incorporating
variety-seeking and marketing-mix variables. Marketing Letters, 6(3):199–210, 1995. 50

M. Armstrong, J. Vickers, and J. Zhou. Consumer protection and the incentive to become
informed. Journal of the European Economic Association, 7(2-3):399–410, 2009. 95

M. Aseri, M. Dawande, G. Janakiraman, and V. S. Mookerjee. Ad-blockers: A blessing or a
curse? Working paper, November 2017. 94

P. Bajari and A. Hortacsu. The winner’s curse, reserve prices, and endogenous entry: Em-
pirical insights from ebay auctions. RAND Journal of Economics, pages 329–355, 2003.
2, 4

P. Bajari, R. McMillan, and S. Tadelis. Auctions versus negotiations in procurement: an
empirical analysis. The Journal of Law, Economics, & Organization, 25(2):372–399, 2008.
6

R. Berman. Beyond the last touch: Attribution in online advertising. Working paper, March
2015. 50, 51, 55

R. Berman. Beyond the last touch: Attribution in online advertising. August 2016. Avail-
able at SSRN: https://ssrn.com/abstract=2384211 or http://dx.doi.org/10.2139/
ssrn.2384211. 53

J. R. Bettman, M. F. Luce, and J. W. Payne. Constructive consumer choice processes.
Journal of Consumer Research, 25(3):187–217, December 1998. 51, 55

P. Bhardwaj and S. Balasubramanian. Managing channel profits: The role of managerial
incentives. Quantitative Marketing and Economics, 3(3):247–279, 2005. 5

123

https://ssrn.com/abstract=2384211
http://dx.doi.org/10.2139/ssrn.2384211
http://dx.doi.org/10.2139/ssrn.2384211


124 BIBLIOGRAPHY

J. Bulow and P. Klemperer. Auctions versus negotiations. The American Economic Review,
86(1):180–194, 1996. 6

C. M. Campbell and D. Levin. Can the seller benefit from an insider in common-value
auctions? Journal of Economic Theory, 1(91):106–120, 2000. 13

C.-H. Cho and H. J. Cheon. Why do people avoid advertising on the internet? Journal of
Advertising, 33(4):89–97, 2004. 93

I.-K. Cho and D. M. Kreps. Signaling games and stable equilibria. The Quarterly Journal
of Economics, 102(2):179–221, 1987. 14

M. Clancey. The television audience examined. Journal of Advertising Research, 34(4):
S1–S1, 1994. 93

K. S. Corts. Third-degree price discrimination in oligopoly: All-out competition and strategic
commitment. The RAND Journal of Economics, pages 306–323, 1998. 95

A. T. Coughlan and D. A. Soberman. Strategic segmentation using outlet malls. Interna-
tional Journal of Research in Marketing, 22(1):61–86, 2005. 95

D. Court, D. Elzinga, S. Mulder, and O. J. Vetvik. The consumer decision journey. McKinsey
Quarterly, June 2009. 51, 55

B. Dalessandro, O. Stitelman, C. Perlich, and F. Provost. Causally motivated attribution
for online advertising. Proceedings of the Sixth International Workshop on Data Mining
for Online Advertising and Internet Economy, pages 7:1–7:9, 2012. 52, 55

J. A. Dearden and G. L. Lilien. On optimal salesforce compensation in the presence of
production learning effects. International Journal of Research in Marketing, 7(2-3):179–
188, 1990. 53

P. S. Desai. Quality segmentation in spatial markets: When does cannibalization affect
product line design? Marketing Science, 20(3):265–283, 2001. 95

P. S. Desai and D. Purohit. “Let me talk to my manager”: Haggling in a competitive
environment. Marketing Science, 23(2):219–233, 2004. 95

P. S. Desai and K. Srinivasan. Demand signalling under unobservable effort in franchising:
Linear and nonlinear price contracts. Management Science, 41(10):1608–1623, 1995. 14

Economist. Invisible ads, phantom readers. May 2016. 51

L. Einav, C. Farronato, J. D. Levin, and N. Sundaresan. Sales mechanisms in online markets:
What happened to internet auctions? Technical report, National Bureau of Economic
Research, 2013. 6

J. C. Ely and T. Hossain. Sniping and squatting in auction markets. American Economic
Journal: Microeconomics, 1(2):68–94, 2009. 2, 5



BIBLIOGRAPHY 125

eMarketer. Digital ad spending benchmarks by industry. Executive Summary, May 2015.
62, 63

M. Eswaran and A. Kotwal. The moral hazard of budget-breaking. The Rand Journal of
Economics, pages 578–581, 1984. 53

J. Falkinger. A welfare analysis of “junk” information and spam filters. Technical report,
Working Paper, Socioeconomic Institute, University of Zurich, 2008. 95

H. Fang and S. O. Parreiras. On the failure of the linkage principle with financially con-
strained bidders. Journal of Economic Theory, 110(2):374–392, 2003. 5

D. Fudenberg and J. Tirole. Game theory, 1991. 16

E. Gal-Or, M. Gal-Or, and A. Dukes. Optimal information revelation in procurement
schemes. The RAND Journal of Economics, 38(2):400–418, 2007. 5

B. Glover and Y. Raviv. Revenue non-equivalence between auctions with soft and hard
closing mechanisms: New evidence from yahoo! Journal of Economic Behavior & Orga-
nization, 81(1):129–136, 2012. 5, 16

V. Goel. In advertising, it’s about who gets credit for the sale. New York Times, Decem-
ber 2014. URL http://bits.blogs.nytimes.com/2014/12/26/in-advertising-its-
about-who-gets-credit-for-the-sale/. 50

K.-Y. Goh, K.-L. Hui, and I. P. Png. Privacy and marketing externalities: Evidence from
do not call. Management Science, 61(12):2982–3000, 2015. 94

D. G. Goldstein, S. Suri, R. P. McAfee, M. Ekstrand-Abueg, and F. Diaz. The economic
and cognitive costs of annoying display advertisements. Journal of Marketing Research,
51(6):742–752, 2014. 95

Google. About the default attribution models, 2017a. URL https://support.google.com/
analytics/answer/1665189?hl=en&ref_topic=3205717. Accessed: March 2017. 50, 55,
61

Google. Data-driven attribution methodology, 2017b. URL https://support.google.com/
analytics/answer/3191594. Accessed: March 2017. 50, 55

I.-H. Hann, K.-L. Hui, S.-Y. T. Lee, and I. P. Png. Consumer privacy and marketing
avoidance: A static model. Management Science, 54(6):1094–1103, 2008. 94

B. Holmstrom. Moral hazard in teams. The Bell Journal of Economics, pages 324–340,
1982. 50, 53

B. Holmstrom and P. Milgrom. Aggregation and linearity in the provision of intertemporal
incentives. Econometrica: Journal of the Econometric Society, pages 303–328, 1987. 53

T. Hossain. Learning by bidding. The RAND Journal of Economics, 39(2):509–529, 2008.
2, 5

http://bits.blogs.nytimes.com/2014/12/26/in-advertising-its-about-who-gets-credit-for-the-sale/
http://bits.blogs.nytimes.com/2014/12/26/in-advertising-its-about-who-gets-credit-for-the-sale/
https://support.google.com/analytics/answer/1665189?hl=en&ref_topic=3205717
https://support.google.com/analytics/answer/1665189?hl=en&ref_topic=3205717
https://support.google.com/analytics/answer/3191594
https://support.google.com/analytics/answer/3191594


126 BIBLIOGRAPHY

M. Irvine. Google adwords benchmarks for your industry. http://www.wordstream.com/
blog/ws/2016/02/29/google-adwords-industry-benchmarks, 2016. Accessed: March
2017. 67

S. Jain. Digital piracy: A competitive analysis. Marketing Science, 27(4):610–626, 2008. 95

B. Jiang, K. Jerath, and K. Srinivasan. Firm strategies in the “mid tail” of platform-based
retailing. Marketing Science, 30(5):757–775, 2011. 14

J. P. Johnson. Targeted advertising and advertising avoidance. The RAND Journal of
Economics, 44(1):128–144, 2013. 94

P. Jordan, M. Mahdian, S. Vassilvitskii, and E. Vee. The multiple attribution problem
in pay-per-conversion advertising. In Proceedings of the 4th international conference on
Algorithmic game theory, SAGT’11, pages 31–43, 2011. 52

E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Annual Symposium on
Theoretical Aspects of Computer Science, pages 404–413. Springer, 1999. 52, 64

V. Krishna. Auction theory. Academic Press, 2009. 5

T. Lan, D. Kao, M. Chiang, and A. Sabharwal. An axiomatic theory of fairness in network
resource allocation. In INFOCOM, 2010 Proceedings IEEE, pages 1–9, March 2010. 55

H. Li and P. Kannan. Attributing conversions in a multichannel online marketing environ-
ment: An empirical model and a field experiment. Journal of Marketing Research, 51(1):
40–56, 2014. 53

S. Li, K. Srinivasan, and B. Sun. Internet auction features as quality signals. Journal of
Marketing, 73(1):75–92, 2009. 5

W. Li and Z. Huang. The research of influence factors of online behavioral advertising
avoidance. American Journal of Industrial and Business Management, 6(09):947, 2016.
93

D. Mayzlin and J. Shin. Uninformative advertising as an invitation to search. Marketing
Science, 30(4):666–685, 2011. 5

R. P. McAfee and J. McMillan. Optimal contracts for teams. International Economic Review,
pages 561–577, 1991. 53

P. R. Milgrom and R. J. Weber. A theory of auctions and competitive bidding. Econometrica:
Journal of the Econometric Society, pages 1089–1122, 1982. 3, 5, 12, 13

S. Moorthy and K. Srinivasan. Signaling quality with a money-back guarantee: The role of
transaction costs. Marketing Science, 14(4):442–466, 1995. 5

S. Mulpuru. The purchase path of online buyers. Forrester Report, March 2011. 51, 55

 http://www.wordstream.com/blog/ws/2016/02/29/google-adwords-industry-benchmarks
 http://www.wordstream.com/blog/ws/2016/02/29/google-adwords-industry-benchmarks


BIBLIOGRAPHY 127

P. A. Naik, K. Raman, and R. S. Winer. Planning marketing-mix strategies in the presence
of interaction effects. Marketing Science, 24(1):25–34, Jan. 2005. 50

A. Ockenfels and A. E. Roth. Late and multiple bidding in second price internet auctions:
Theory and evidence concerning different rules for ending an auction. Games and Eco-
nomic behavior, 55(2):297–320, 2006. 2, 5

PageFair. The state of the blocked web. Global Adblock Report, February 2017. 89, 90, 91

PageFair and Adobe. The cost of ad blocking. Ad Blocking Report, 2015. 88, 91

A. Pazgal, D. Soberman, and R. Thomadsen. Profit-increasing consumer exit. Marketing
Science, 32(6):998–1008, 2013. 95

M. Peitz and T. M. Valletti. Content and advertising in the media: Pay-tv versus free-to-air.
international Journal of industrial organization, 26(4):949–965, 2008. 95

M. Perry and P. J. Reny. On the failure of the linkage principle in multi-unit auctions.
Econometrica, 67(4):895–900, 1999. 5

A. Prasad, V. Mahajan, and B. Bronnenberg. Advertising versus pay-per-view in electronic
media. International Journal of Research in Marketing, 20(1):13–30, 2003. 95

PWC. Cross channel attribution is needed to drive marketing effectiveness. Technical report,
2014. 50

M. Rabin. Incorporating fairness into game theory and economics. The American Economic
Review, 83(5):1281–1302, 1993. 55

V. Ramaswamy, W. S. Desarbo, D. J. Reibstein, and W. T. Robinson. An empirical pooling
approach for estimating marketing mix elasticities with pims data. Marketing Science, 12
(1):103–124, 1993. 50

E. B. Rasmusen. Strategic implications of uncertainty over one’s own private value in auc-
tions. Advances in Theoretical Economics, 6(1):1–22, 2006. 2, 4

A. E. Roth and A. Ockenfels. Last-minute bidding and the rules for ending second-price
auctions: Evidence from ebay and amazon auctions on the internet. American economic
review, 92(4):1093–1103, 2002. 2

T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM (JACM),
49(2):236–259, 2002. 52, 64

S. Scott. The $8.2 billion adtech fraud problem that everyone is ignoring. Techcrunch,
January 2016. 51

Z. Seyedghorban, H. Tahernejad, and M. J. Matanda. Reinquiry into advertising avoidance
on the internet: A conceptual replication and extension. Journal of Advertising, 45(1):
120–129, 2016. 93



128 BIBLIOGRAPHY

G. Shaffer and Z. J. Zhang. Competitive coupon targeting. Marketing Science, 14(4):395–
416, 1995. 95

X. Shao and L. Li. Data-driven multi-touch attribution models. KDD ’11, pages 258–264,
2011. 52

L. S. Shapley. A Value for n-Person Games. Princeton University Press, 1953. 55, 85

D. Simester. Signalling price image using advertised prices. Marketing Science, 14(2):166–
188, 1995. 14

D. A. Soberman. Simultaneous signaling and screening with warranties. Journal of Marketing
Research, 40(2):176–192, 2003. 5

P. S. Speck and M. T. Elliott. Predictors of advertising avoidance in print and broadcast
media. Journal of Advertising, 26(3):61–76, 1997. 93

T. Stühmeier and T. Wenzel. Getting beer during commercials: Adverse effects of ad-
avoidance. Information Economics and Policy, 23(1):98–106, 2011. 95

U. Subramanian and R. C. Rao. Leveraging experienced consumers to attract new consumers:
An equilibrium analysis of displaying deal sales by daily deal websites. Management
Science, 62(12):3555–3575, 2016. 5

J. Tåg. Paying to remove advertisements. Information Economics and Policy, 21(4):245–252,
2009. 95

R. van den Brink. An axiomatization of the shapley value using a fairness property. Inter-
national Journal of Game Theory, 30(3):309–319, 2002. 55

N. Vratonjic, M. H. Manshaei, J. Grossklags, and J.-P. Hubaux. Ad-blocking games: Mone-
tizing online content under the threat of ad avoidance. In The Economics of Information
Security and Privacy, pages 49–73. Springer, 2013. 95

R. Wang. Auctions versus posted-price selling. The American Economic Review, pages
838–851, 1993. 6

K. C. Wilbur. A two-sided, empirical model of television advertising and viewing markets.
Marketing science, 27(3):356–378, 2008. 94

R. T. Wilcox. Experts and amateurs: The role of experience in internet auctions. Marketing
Letters, 11(4):363–374, 2000. 2, 4

L. Wintr. Some evidence on late bidding in ebay auctions. Economic Inquiry, 46(3):369–379,
2008. 5

L. Xu, J. A. Duan, and A. Whinston. Path to purchase: A mutually exciting point process
model for online advertising and conversion. Management Science, 60(6):1392–1412, 2014.
53



BIBLIOGRAPHY 129

H. Yoganarasimhan. The value of reputation in an online freelance marketplace. Marketing
Science, 32(6):860–891, 2013. 4

J. Zhang. Policy and inference: The case of product labeling. Technical report, Working
Paper, MIT, 2013. 5


	Abstract
	Acknowledgements
	Contents
	Expertise in Online Markets
	Introduction
	Our Contributions
	Related Literature

	Model
	Effect of Experts on Buyer Strategies
	Experts Induce Sniping
	Impact of Experts on Nonexperts' Strategy

	Effect of Experts on Platform Strategies
	An Auction with a Soft Close
	Effect of Experts on Platform Revenue
	Experts and the Breakdown of the Linkage Principle

	Effect of Experts on Seller Strategies
	Conclusion
	Appendix
	Analyses and Proofs of Section 1.3
	Analyses and Proofs of Section 1.4
	Upper-bound Condition on delta
	Analyses and Proofs of Section 1.5

	Additional Appendix
	Proof of Lemma 1.2
	More on delta
	Choice of Tie-breaking Rule
	Distribution of Bidders' Private Value
	Signaling Using Closing Format: Hard vs. Soft Close


	Multi-Channel Attribution: The Blind Spot of Online Advertising
	Introduction
	Literature Review
	Background
	Purchase Funnel and Common Attribution Rules
	Fairness and Shapley Value

	Model
	Overview
	Consumer Model
	Firm's Problem
	Valid Contracts and Publishers' Problem
	Benchmarks

	Multi-Touch Attribution
	Definition of f-contract
	Optimal f-contract

	Beyond Multi-touch Contracts
	Optimal Contract
	Reinforcement Contracts

	Extensions
	Effect of Cost Parameters of Publishers in Optimal f-contracts
	Implementing the f-contract Under Uncertainty
	Competition in Each Stage

	Conclusion
	Appendix
	Analyses and Proofs
	A More General Model and Equivalence
	Definition of Shapley Value


	The Beneficial Effects of Ad Blockers
	Introduction
	Background
	How do Platforms Respond?
	Research Questions
	Contributions

	Literature Review
	Model
	Platform Model
	User Model
	Information Setting and Timeline
	Benchmark

	Ad Blockers can be Beneficial
	Platforms' Welfare
	User Welfare

	Additional Plans
	The Ads or Fee Plan
	Acceptable Ads and Whitelisting

	Quality of Content and Content Creators
	Conclusion
	Managerial Implications
	Summary

	Appendix
	Analyses and Proofs
	Payoff Matrices


	Bibliography

